edoc-vmtest

Magainin 2 amide interaction with lipid membranes : calorimetric detection of peptide binding and pore formation

Wenk, M. R. and Seelig, J.. (1998) Magainin 2 amide interaction with lipid membranes : calorimetric detection of peptide binding and pore formation. Biochemistry, Vol. 37, H. 11. pp. 3909-3916.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257427

Downloads: Statistics Overview

Abstract

The interaction of the antibiotic magainin 2 amide (M2a) with lipid bilayers was investigated with high-sensitivity titration calorimetry. The enthalpy of transfer of the cationic M2a to negatively charged small unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (75:25, mol/mol) was measured as delta H = -17.0 +/- 1 kcal/mol of peptide. The adsorption isotherm was determined by injecting lipid vesicles into peptide solutions at low peptide concentrations (cPo > 7 microM). The apparent partition coefficient was Kapp approximately 1.2 x 10(4) M-1 at a peptide equilibrium concentration of 1 microM but decreased with increasing peptide concentration. The hydrophobic partitioning of M2a into the lipid membrane is modulated by electrostatic effects that arise from the attraction of the positively charged peptide to the negatively charged membrane. Using the Gouy-Chapman theory to correct for electrostatic attraction, the experimental binding isotherms can be explained with an intrinsic (hydrophobic) partition coefficient of K = 55 +/- 5 M-1 and an effective peptide charge of z = 3.7-3.8. The free energy of binding is delta G = -4.8 kcal/mol. At peptide concentrations cPo < approximately 7 microM, a second effect comes into play, and the titration enthalpies can no longer be explained exclusively by peptide partitioning. The first few injections produce enthalpies of reaction which are distinctly smaller than expected from a pure partition equilibrium, followed by a series of injections with reaction heats larger than expected. After subtracting the enthalpic contribution due to partitioning, the residual enthalpies are endothermic for the first few injections, and exothermic for the consecutive steps. Furthermore, the endothermic excess heat is compensated exactly by the exothermic excess heat; i.e., the excess heat consumed in the first part of the titration experime
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0006-2960
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page