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Summary 

 
Integrins are cell adhesion receptors which mediate interactions between the extracellular matrix and the 

actin cytoskeleton. They are heterodimers composed of α and β subunits. As adhesion receptors, integrins 

are important for cell-cell and cell-matrix interactions and therefore are essential for the structural 

integrity of an organ. Moreover, integrin-extracellular matrix interactions play important roles in the 

coordinated integration of external and internal cues that are essential for proper development. β1 integrin 

is the most widely expressed integrin and controls various developmental processes, including 

neurogenesis, chondrogenesis, skin and hair follicle morphogenesis, and myoblast fusion.  

To determine the role of β1 integrin in normal development of the mouse mammary gland, with a 

particular emphasis on how β1 integrins influcence proliferation, differentiation and apoptosis; we 

examined the consequence of conditional deletion of β1 integrin in mammary epithelia. Itgβ1flox/flox mice 

were crossed with WAPiCre transgenic mice, which led to specific ablation of β1 integrin in luminal 

alveolar epithelial cells. In the β1 integrin mutant mammary gland, individual alveoli were disorganized 

resulting from alterations in cell-basement membrane associations. Activity of focal adhesion kinase was 

also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in β1 integrin 

mutant glands, which correlated with a specific increase of p21Cip1 expression. In a p21Cip1 null 

background, there was a partial rescue of the proliferation defect, as measured by incorporation of 

Bromodeoxyuridene into S-phase cells. These data provide in vivo evidence linking p21Cip1 to the 

proliferative defect observed in β1 integrin mutant glands. A connection between p21Cip1 and β1 integrin 

as well as focal adhesion kinase was also established in primary mammary cells and an established cell 

line. Finally, transplanted mammary tissue from β1 integrin mutant females failed to repopulate recipient 

mammary glands, suggesting for the first time that β1 integrin may be required for the maintenance of 

mammary progenitor cells. 

Overall, we found β1 integrin has multiple roles in mouse mammary gland development. Ablation of β1 

integrin in luminal alveolar cells affects proliferation at early lactation, and the integrity of alveolar lumen 

structures during lactation. The results also suggest that β1 integrins are necessary for mammary 

progenitor cell proliferation and/or survival during mammary gland remodeling.  
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• Aims of the Ph.D. Project   
 

• To determine the role of β1 integrin in the normal development of mouse mammary gland. 

• To investigate the molecular mechanisms for the phenotypes we observed in vivo.  

• Establish an in vitro system that mimics the effects of deletion of the integrin β1 in the mouse. 

 

 

Results 

  

• Conditional deletion of β1 integrin in the mammary gland. 

• Function of mammary gland was impaired in β1 integrin mutant mice. 

• β1 integrin-mutant mammary glands have defects in alveolar integrity. 

• β1 integrin mutant mammary glands show an increase in apoptosis at involution, but not during lactation. 

• Loss of β1 integrin correlates with reduced mammary cell proliferation and upregulation of p21cip1  

• Ablation of β1 integrin impairs focal adhesion signalling. 

• Loss of either β1 integrin or FAK induces p21Cip1 upregulation in primary mammary cells. 

• Absence of p21cip1 rescues impaired BrdU incorporation in mammary cells of β1 integrin mutant mice. 

• Using an in vitro model to further mimic the proliferation defect after loss of β1 integrin. 

• Loss of β1 integrin leads to a defect in alveolar cell proliferation during a second pregnancy. 

 

Conclusion 

 

Discussion 

• Functional differentiation was normal in integrin β1 mutant glands 

• β1 integrin deletion results in loss of epithelial integrity 

• Loss of β1 integrin is not sufficient to trigger apoptosis in alveolar cells.   

• β1 integrins have a key role in the proliferation of mammary epithelial cells in vivo and in culture 

• A possible role for β1 integrins in the mammary stem cells 

• β1 integrins in breast cancer 
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Materials and Methods 

• Antibodies 

• Mouse strains and generation of mammary specific β1 mutant mice. 

• Pup Weight Analysis 

• Milk Annalysis 

• Mammary gland whole mounts 

• Histology and immunofluorescence 

• Electron microscopy 

• Isolation and assays with primary mammary cells 

• Transplantation of mammary epithelium into cleared fat pads of recipient mice 

• Lysate preparation, immunoprecipitation and western blot analysis. 

• MDA-MB-231 cell culture, siRNA transfections and luciferase assays 

• Flow cytometric analysis 

• Extraction of RNA and RT-PCR analysis of p21Cip1 
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Introduction 
 

Part I Integrins: The basic machinery for cell adhesion 

 

In order to function as a tissue, epithelial cells must have the right shape and structure to pack together 

with their neighbors. Therefore, tissue formation in normal physiology requires cell adhesion. Cell 

adhesion governs, e.g., embryonic morphogenesis, angiogenesis, organogenesis, inflammation and tissue 

repair. Two types of adhesion, cell-cell adhesion and cell-matrix adhesion, are relevant for these processes. 

In this chapter, I will introduce the various cell adhesion junctions and adhesion receptors with an 

emphasis on integrins, the major extracellular matrix receptors. 

 

1.1 Cell adhesion receptors 

 

Cell-cell interactions, as well as cell-ECM interactions, are indispensable for normal tissue architecture. In 

mammals, adhesion between epithelial cells is generally mediated by three types of junctions: tight 

junctions (TJs), adherens junctions (AJs), and desmosomes, which together constitute the intercellular 

junctional complex (Perez-moreno et al. 2003). The complexes contain transmembrane receptors, usually 

glycoproteins that mediate binding at the extracellular surface and determine the specificity of the 

intracellular response. 

 

  

Fig.1. Composition of Three Types of Intercellular Junctions (A). 

Diagram of the three major types of intercellular junctions in 

epithelial cells. (B) Electron micrograph depicting the ultrastructure 

of adherens junctions, desmosomes, and tight junctions between two 

murine intestinal epithelial cells. (Perez-Moreno M. et al. 2003) 

 

Each of the junctions possesses unique morphological characteristics, composition, and functions. Tight 

junctions are one mode of cell-cell adhesion in epithelial and endothelial cellular sheets. They act as a 

primary barrier to the diffusion of solutes through the intercellular space, create a boundary between the 
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apical and the basolateral plasma membrane domains, and recruit various cytoskeletal as well as signalling 

molecules at their cytoplasmic surface. The adherens junction is a cellular structure found near the apical 

surface of polarized epithelial cells. Recent evidence has uncovered a key role for AJs not only in 

directing coordinated cellular organization and movements within epithelia, but also in transmitting 

information from the environment to the interior of cells (Perez-Moreno M. et al, 2003). Desmosomes are 

prominent cellular structures especially abundant in tissues that experience mechanical stress, e.g. in skin. 

Cell adhesion involves specific biomolecules such as memebrane anchors and receptors, extracellular 

ligands and cytoskeketal components. An important step in the formation of cell adhesion complexes is 

the clusting of the adhesion receptors involved, such as integrins or cadherins. Cadherins constitute a large 

family of glycoproteins comprised of an extracellular domain responsible for cell-cell interactions, a 

transmembrane domain, and a cytoplasmic domain that frequently is linked to the cytoskeleton. Cadherins 

are found in both adherens junction and demosomes and play a key role in calcium-dependent cell-cell 

interactions. AJs are cadherin-dependent adhesive structures that are intricately linked to the actin 

microfilament network. E-cadherin is typically the cadherin found in the adherens junction. While 

desmosomes are formed by interactions between desmosomal cadherins linked to intermediate filaments.  

At the adherens junctions the intracellular domain of cadherins specifically interacts with catenins; 

catenins serve to link the cadherin to the actin cytoskeleton and also function in cellular signaling 

(Wheelock and Johnson, 2003). Catenin is present in two compartments: a membrane-associated form 

couples E-cadherin to the cytoskeleton, and a cytoplasmic form is associated with a Wnt signaling 

complex that includes the serine/threonine kinase GSK3β, axin, APC, and β-catenin.  

 

Cadherins have been implicated in a number of signaling pathways that regulate cellular behavior. It was 

found that cadherin function is critical in normal development, and alterations in its function have been 

implicated in tumorigenesis (Hajra & Fearon 2002). Changes in the normal expression pattern of the E-

cadherin/catenin complex have been found in various human cancers. In breast cancer, generally speaking, 

partial or total loss of E-cadherin expression correlates with loss of differentiation characteristics, 

acquistion of invasiveness, increased tumor grade, metastatic behavior and poor prognoses. While forced 

expression of E-cadherin decreased proliferation of different mammary carcinoma cell lines, suggesting 

that E-cadherin is a potent tumor suppressor of breast cancer (Berx  &Van Roy, 2001). 
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Both in cell-cell adhesions and cell-ECM adhesions, the associated cytoplasmic proteins of the adhesion 

receptors structurally link them to the cytoskeleton, thereby establishing molecular lines of 

communication to other cell-cell junctions and to cell-substratum junctions. The linkage of cell-cell 

junctions to the cytoskeleton allows single cells of an epithelial sheet to function as a coordinated tissue. 

Additional companion proteins connect structural and signaling elements, and thus intercellular junctions 

function to integrate a number of cellular processes ranging from cytoskeletal dynamics to proliferation, 

transcription, and differentiation.  

 

1.2 Integrins and cell adhesion 

 

As we already mentioned, tissue formation in animals requires both cell-cell contacts and cell-matrix 

contacts. At the cytoplasmic face, both of the contacts are anchored by direct contact between the 

transmembrane proteins and microfilaments. Cell-cell contacts are specified by transmembrane proteins of 

the cadherin family, while cell-matrix contacts contain proteins of the integrin family. It is becoming 

increasingly clear that integration of information received from cell-cell signaling, cell-matrix signaling, 

and growth factor signaling determines ultimate cellular phenotype and behavior. 

 

  

  

 

 

 

1.2.1. Cell-matrix contacts  

Cell–matrix contacts are specialized 

receptors bind to their extracellular m

cytoskeleton. Cell–matrix contacts t

fundamental features of the cells and

have been characterised by their mor

criteria. Cell-matrix contacts can exi

 

Fig.2. Simple epithelia comprised of one layer of cells attaches to the basement 

membranes by focal contacts (orange squares) and to adjacent cells via adherens 

junctions (black rectangles) and desmosomes (pink ovals). Tight junctions (blue 

circles) contribute to the maintenance of apical-basolateral polarity. The plane of 

the mitotic spindles aligns perpendicular to the basement membrane allowing 

lateral expansion of the cells.  (Perez-Moreno.M.et al., 2003) 

 

 

zones at the cell surface, where activated or clustered adhesion 

atrix (ECM) ligands and link intracellularly to components of the 

hus bridge the extracellular and intracellular milieux and are 

 tissues of multicellular organisms. Different cell–matrix contacts 

phology or by biochemical composition, or a combination of both 

st as focal complexes, focal adhesions, fibrillar adhesions, three 
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dimensional matrix adhesions and hemidesmosomes. Some matrix contacts, such as hemidesmosomes, are 

specific to particular differentiated cell types, while others occur in many cell types.  

The best characterized and largest of these structures is the focal adhesion (FA; also known as a focal 

contact). These adhesions are transient in nature, and form in many types of cells that are cultured on a 

substrate coated with ECM. All adherent cells bind to the ECM through integrins—transmembrane 

receptors that bind to specific motifs on numerous ECM proteins (Ruoslahti E. 1996). The binding of 

integrins to the ECM causes them to cluster and leads to the recruitment of a battery of cytoplasmic 

signaling and structural proteins to form FAs at the site of integrin clustering. Numerous structural 

proteins (e.g., vinculin, talin, α-actinin, and paxillin) act as scaffolding proteins that strengthen cell 

adhesion by anchoring FAs to the actin cytoskeleton (Miyamoto et al. 1995). Other types of cell-matrix 

adhesions that have been further identified—focal complexes, fibrillar adhesions and three dimensional 

matrix adhesions—are structurally similar to FAs but differ subtly in composition and morphology 

(Cukierman et al. 2001; Zamir E et al. 2000). Hemidesmosome are extremely large structures that form 

strong bonds between epitheial cells and the underlying interstitial ECM through a chain of molecular 

interactions. Instead of linking to the actin-based cytoskeleton, hemidesmosomes contain adaptor proteins 

which bind to intermediate filaments. The cell-matrix contacts are actually dynamic assemblies with 

above twenty proteins in a complex and all these contacts have essential roles in normal physiology and 

there are many contexts in which abnormalities of cell–matrix contacts lead to chronic and life-threatening 

diseases. 

 

1.2.2.Integrins are the major ECM receptors  

 

As we previously discussed, cells adhere to the ECM and to each other through specific classes of 

transmembrane adhesion receptors. These receptors bind to ligand extracellularly and provide an anchor to 

the intracellular cytoskeleton via cytoplasmic scaffolding proteins. Linkages between external cellular 

contacts, adhesion receptors, and cytoskeleton provide a means for bidirectional communication between 

the inside and outside of a cell. The major transmembrane ECM receptors in these cell-ECM adhesion 

sites belong to the integrin family. In addition to integrins, several other membrane molecules were 

recently reported to localize to focal contacts, including proteoglycans (Zimmermann and David, 1999), 

glycosaminoglycan receptors (Borowsky and Hynes, 1998), as well as signaling molecules (Yebra M et al. 

1999), however, the role of these components in mediating or regulating adhesion is unclear.  
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Integrins comprise a large family of cell surface receptors that are found in many species, ranging from 

sponges to mammals. They are composed of two subunits, α and β. There are several α- and β- subunit 

isoforms; to date 8 α and 8 β subunits have been identified. The receptors always contain one α chain and 

one β chain and each α β combination has its own binding specificity and signaling properties. A specific 

ECM molecule can nevertheless be bound by different types of integrins, and specific integrins can bind to 

different types of ECM molecules. For example, functionally, β1 integrins are a set of cellular receptors 

for extracellular matrix proteins that include fibronectin, collagen, and laminin. 

Integrin α and β subunits contain a large extracellular domain responsible for ligand binding, a single 

transmembrane domain and a cytoplasmic domain. The short cytoplasmic domain of integrins binds a 

variety of intracellular proteins including actin binding proteins like vinculin or talin, and also some 

signaling kinases like focal adhesion kinase (FAK). The extracellular domains of integrins also contain 

multiple binding sites such as the RGD binding site (about 50% of the integrins). As integrins bind to their 

ligand, they change from an inactive to an active configuration and become clustered in the plane of the 

cell membrane and associate with a cytoskeleton and signaling complex that promotes the assembly of 

actin filaments. The reorganization of actin filaments into large stress fibers, in turn, causes more integrin 

clustering, thus enhancing the matrix binding and organization by integrins in a positive feedback system. 

As a result, ECM proteins, integrins, and cytoskeletal proteins assemble into aggregates on each side of 

the membrane. Well-developed aggregates can be detected by immunofluorescence microscopy and are 

known as focal adhesions and ECM contacts (Burridge & Chrzanowska-Wodnicka, 1996). In this manner, 

integrins serve as integrators of the ECM and cytoskeleton, the property for which integrins are named. 

 
Fig.3. Integrins can adopt inactive and active 

configurations, which differ by change in relative 

orientation of the α− and β− subunits. The active 

orientation has enhanced affinity for both external 

and cytoplasmic ligands. Binding of ligand on 

either side promotes the change to active form, so 

cytoplasmic ligands can promote binding to ECM, 

and ECM binding can enhance interaction with 

cytoplasmic ligands or binding partners. 

(Schwartz, M.A. 2001). 

 

 

  

  

 

 

 

 

 

1.3 Downstream pathways of integrins 
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Integrin-ligand interactions are accompanied by clustering and activation of the integrins on the cell 

surface, which is also accompanied by the transduction of signals into intracellular signal transduction 

pathways that mediate a number of intracellular events. Integrins transduce a great many signals. The 

majority of signalling molecules implicated in ECM–integrin interactions appear to be rather ubiquitous 

mediators of signal transduction. For example, Miyamoto et al. (Miyamoto er al. 1998) showed that at 

least 20 different proteins, including Rho GTPases, Raf, Ras, FAK, and MAPKs such as extracellular-

signal-regulated kinases (ERKs), can be recruited to the ECM ligand/integrin-binding site. In an attempt to 

understand how these intracellular mediators may contribute to specialized patterns of gene expression 

and cell behaviour, we will focus primarily on FAK, shc and ERK/MAPK pathways. 

 

1.3.1 The FAK/Src Pathway 

Integrins activate various protein tyrosine kinases, including focal adhesion kinase (FAK), Src family 

kinases, and Abl, and a serine-threonine kinase, integrin-linked kinase (ILK) (Giancotti & Ruoslahti, 

1999). The integrin-dependent pathways involving FAK and Src-family kinases have been studied in 

some detail. 

Focal adhesion kinase (FAK) is a tyrosine kinase which is commonly found in integrin mediated focal 

adhesions. It is a critical component of the focal adhesion and provides both structural and kinase activity 

to the focal contact. The FAK pathway is activated by most integrins. The activation of FAK is not well 

understood, but it is coupled to the assembly of focal adhesions. FAK may be recruited to nascent focal 

adhesions because it interacts, either directly or through the cytoskeletal proteins talin and paxillin, with 

the cytoplasmic tail of integrin β subunits. Upon activation, FAK autophosphorylates Tyr397, creating a 

binding site for the Src homology 2 (SH2) domain of Src or Fyn. The Src kinase then phosphorylates a 

number of focal adhesion components. The major targets include paxillin and tensin, two cytoskeletal 

proteins that may also have signaling functions, and p130CAS, a docking protein that recruits the adapter 

proteins Crk and Nck. FAK also combines with, and may activate, phosphoinositide 3-OH kinase (PI 3-

kinase), either directly or through the Src kinase. Finally, there is evidence that Src phosphorylates FAK at 

Tyr925, creating a binding site for the complex of the adapter Grb2 and the Ras GAP exchange factor 

mSOS. These interactions link FAK to signaling pathways that modify the cytoskeleton and activate 

mitogen-activated protein kinase (MAPK) cascades (Giancotti & Ruoslahti, 1999).  
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A number of observations strongly suggest that activation of FAK by integrins plays a central role in 

initiating many of the signals that regulate growth. For example, mutation of tyrosine residues critical for 

FAK autophosphorylation prevents integrin-mediated proliferation. Also, oncogenic transformation of 

cells, which abolishes the requirement for anchorage-dependent growth, activates FAK. Consistent with 

this, introduction of constitutively active FAK leads to cell transformation, anchorage-independent growth 

and the suppression of apoptosis (Boudreau NJ & Jones PL, 1999). 

 

1.3.2 The Fyn/Shc Pathway 

It is becoming clear that, like binding to the ECM, integrin signalling is determined by both α and β 

subunits. Several integrins interact, through the extracellular or transmembrane domain of their α−subunit, 

with other membrane proteins. For example, in addition to activating FAK, some β1 and αv integrins also 

activate the tyrosine kinase Fyn and, through it, the adapter protein Shc. In this pathway, caveolin-1 

appears to function as a membrane adapter, which couples the integrin α  subunit to Fyn. Upon integrin 

binding to ECM, Fyn becomes activated, and its SH3 domain interacts with a proline-rich site in Shc. Shc 

is then phosphorylated by Fyn at Tyr317 and combines with the Grb2-mSOS complex. Although most 

integrins interact with caveolin-1 and Fyn, only a subset of integrins can activate Fyn and thereby recruit 

Shc: Perhaps these integrins are associated with an activator of Fyn, such as a phosphatase that removes 

the phosphate group from the autoinhibitory tyrosine residue in Fyn. Yes and Lck are known to be 

enriched in rafts and may mediate the activation of Shc when Fyn is not expressed. 

The cytoplasmic domain of the β-subunit also contributes to the specificity of integrin signalling. For 

example, the unique, long cytoplasmic tail of integrin β4 allows α6β4 to recruit Shc by a mechanism 

distinct from that used by β1 and αv integrins: upon α6β4 binding to the ECM, the β4 tail is 

phosphorylated on tyrosine residues by an integrin-associated kinase and binds to Shc directly (Giancotti 

& Ruoslahti, 1999). 
 

 

 
 

 

 

 

 

 13Fig.4.Model of the (A) FAK and (B) Shc pathways. (Giancotti & Ruoslahti, 1999) 



 

1.3.3 The Erk-MAPK Pathway 

The Activation of mitogen activated protein kinase (MAPK) occurs after integrin-ligand binding (RGD 

peptides, fibronectin, laminin), resulting in the translocation of Erk from the cytoplasm to the nucleus. We 

already mentioned that both FAK and Shc can contribute to the activation of the Ras–extracellular signal-

regulated kinase (ERK) MAPK cascade. MAPK can also be activated by integrin linked kinase (ILK) in a 

FAK independent pathway. The relative contribution of each pathway may depend on the cell type and 

perhaps also on how far the adhesion process has progressed. In many cell types, Shc appears to be 

responsible for the initial high-level activation of ERK upon cell adhesion. FAK, which is activated more 

slowly, may sustain the ERK activation. The integrins that do not activate Shc are weak activators of ERK 

and cell proliferation. The ability of integrins to activate ERK may be especially important when the 

concentration of growth factors available to the cell is limited. In this setting, proliferation is likely to 

require costimulation of ERK through integrins and growth factor receptors (Giancotti & Ruoslahti, 1999). 

 

1.3.4 Partnership with growth factors 

Integrins are not only signal on their own but are also necessary for optimal activation of growth factor 

receptors. The receptors for insulin, platelet derived growth factor (PDGF), epidermal growth factor 

(EGF), and vascular endothelial growth factor (VEGF) are optimally activated by their ligands only under 

appropriate cell attachment conditions (Giancotti & Ruoslahti, 1999). Treatment of endothelial cells with 

beads coated with an Arg-Gly-Asp (RGD) tripeptide or with fibronectin leads to coaggregation not only of 

β1 integrins and FAK, but also of high affinity receptors for basic fibroblast growth factor (bFGF) in the 

newly assembled focal adhesions (Miyamoto S et al.1996). The aggregation of the growth factor receptors 

results in their partial activation, possibly bringing growth factor signaling closer to a threshold of 

manifest activity and enabling cross talk between integrins and growth factor receptors. Although a 

systematic analysis has not been conducted, certain integrins appear to be preferentially associated with 

specific growth factor receptors. Thus, the αvβ3 integrin can be immunoprecipitated in complexes with 

the insulin, PDGF, and VEGF receptors (Soldi R., et al 1999), whereas α5β1 and perhaps other β1 

integrins associate with the EGF receptor (Miyamoto S et al.1996) 
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1.4 Control of cell shape, growth and survival by integrins  

 

The formation of cell adhesion complexes by integrins assures substrate adhesion as well as targeted 

location of actin filaments and signalling components, and hence is essential for establishing cell polarity, 

directed cell migration, and maintaining cell growth and survival. 

 

1.4.1. Integrins and cell shape: the association of actin and integrins. 

Ligand binding to integrins leads to integrin clustering and recruitment of actin filaments and signalling 

proteins to the cytoplasmic domain of integrin. Actin cytoskeletal structures include cortical actin, stress 

fibers, lamellipodia, and microspikes. Actin stress fibers are linked to integrins at the inner surface of the 

plasma membrane involving a focal adhesion complex including α-actinin, Focal adhesion kinase, talin, 

vinculin, and zyxin. Signaling through integrins depends on the formation of these focal adhesions, 

dynamic sites in which cytoskeletal and other proteins are concentrated and which regulate migration and 

the shape of a cell.  

Remodelling of preexisting actin filaments into the different actin filaments structures is mainly controlled 

by members of the Rho family of GTPase. Among them, CDC42 induces filopodia, Rac induces 

lamellipodia, and Rho induces focal adhesions and associated stress fibers. It is known that integrins can 

activate the Rho-family of small guanine nucleotide –binding proteins and then regulate cell speading and 

migration (Ren X.D et al. 1999).  

It is well appreciated that alterations in ECM–integrin interactions cause changes in cell shape and 

behaviour. For example, TENASCIN-C, an extracellular matrix (ECM) glycoprotein, interacts with αvβ3 

integrins to modify smooth muscle cell shape (Jones PL et al. 1997). However, recent studies have 

demonstrated that ECM-dependent changes in cell shape and three-dimensional tissue architecture 

determine cell function by modulating integrin signalling pathways. For example, when cultured on an 

exogenous basement membrane, normal mammary epithelial cells adopt a polarized cuboidal morphology, 

become quiescent and express high levels of β-casein. Although expression of β-casein depends upon 

basement-membrane (BM) laminin interacting with β1 integrins and activation of a tyrosine 

phosphorylation signalling cascade, the rounding and clustering of the cell is also a necessary condition 

for the milk production; if mammary epithelial cells are forced to spread on laminin, while maintaining 

their interaction with β1 integrins, expression of β-casein is suppressed (Roskelley, C. 1994). Thus cell 
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shape could impact upon integrin-dependent signalling pathways and appears to profoundly modulate the 

processing of signals generated by identical ECM–integrin interactions. 

Recent work has revealed that the integrin–actin cytoskeleton connection is highly dynamic and subject to 

many regulatory processes. In healing skin wounds for example, integrin-mediated cues promote the 

reorganization of the cytoskeleton of keratinocytes at the wound edge resulting in directed migration and 

wound closure. Loss of ß1-integrins on keratinocytes leads to impaired as well as non-directed migration 

resulting in severely delayed re-epithelialization (Grose et al., 2002). Furthermore, it has become clear that 

the interaction between integrins and the actin cytoskeleton is differentially regulated in different locations 

of the cell. At the leading edge of migrating cells, integrins bind the ECM, recruit the actin cytoskeleton 

and initiate local reorganization of the actin network, promoting different types of membrane protrusion. 

At the rear of the cell, integrins detach from the ECM, dissolve the link to the cytoskeleton and are, at least 

partially, recycled to the front of the cell (Ballestrem et al., 2001). Taken together, these data indicate that 

the interaction of the cytoskeleton with the adhesion receptors plays an important role in cell polarity, 

spreading and motility. 

 

1.4.2. Integrins and cell cycle control 

1.4.2.1. Overview of cell cycle control mechanisms 

In the past decades extensive studies using cultured cells and genetic model organisms have strongly 

contributed to the elucidation of the mechanisms that regulate cell proliferation and the the cell cycle. A 

synopsis is given below. Basically, the cell cycle is divided into four phases: G1 (gap 1), S (DNA 

synthesis), G2 (gap2) and M (mitosis). The individual phases of the cell cycle allow for a controlled 

replication of the genome, organelles and other cellular components.  

Here we would like to discuss mainly the mechanisms regulating G1 to S phase progression on which my 

work has focused. Cyclins and cyclin dependent kinase (CDKs) are known to be major players in 

mediating the progression and passage through these two phases of the cycle. CDKs are inactive in the 

absence of their cyclin partners, and they are activated by the binding of their partner cyclins. In 

mammalian cells, the major complex present in G1 is Cyclin D/CDK (4 or 6). During the late G1 phase, 

Cyclin E is actively expressed and binds CDK2 forming the Cyclin E/CDK2 complex. Cyclin A is 

induced at or near the G1/S boundary; it binds to CDK2 in S phase and involved in S phase progression. 

In addition to their binding to Cyclins, the activity of CDKs is also regulated by the presence of Cyclin 

dependent kinase inhibitors (CKI).  
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Mitogenic growth factors promote G1 phase cell cycle progression by stimulating the formation or 

activation of Cyclin D-cdk4/6 and Cyclin E-cdk2. These mitogenic effects typically involve increases in 

Cyclin D expression and decreases in CKI expression. The active enzymes then phosphorylate the 

retinoblastoma protein (pRb) and its family member, p107. Hypophophorylated pRb and p107 form 

complexes with members of the E2F family, which act as transcriptional repressors. PRb and p107 

phosphorylation results in disruption of pRb/E2F and p107/E2F complexes, allowing for the induction of 

E2F dependent genes such as Cyclin A (DeGregori J.T; 1995). 

As we discussed above, CKIs are involved in the modulation of the CDK activity during the cell cycle. 

This family of proteins can be divided in two broad categories: cip/kip family (p21cip1, p27kip1, and 

p57kip2) which bind to cyclin E-cdk2, cyclin A –cdk2, and cyclin D-cdk4/6, and the INK4 family (p15, 

p16, p18, and p19) which bind only to cyclin D-cdk4/6. The members of the Ink4 group inhibit cdk4 and 

cdk6 by promoting their dissociation from Cyclin D, while the Cip/Kip members inhibit all CDKs in a 

concentration dependent manner (sherr, C.J, 1996). Overexpression of any member of the CIP/Kip family 

causes a G1 block/arrest in transfected cells; while overexpression of Ink4 members such as p16 causes a 

reduction of the Cyclin D/cdk4 complex levels (Quelle D.E.et al. 1995) 

The p21 and p27 proteins are necessary for the formation and stabilization of CyclinD/CDK4 complexes 

(Cheng, M., et al.,1999). The titration of these two CKI relieves the inhibition of Cyclin E/CDK2 

complexes. This, in turn, grants the progressive accumulation of Cyclin E/CDK2 activity and the further 

hyperphosphorylation of Rb proteins. The system generates a hierarchical program of CDK activation 

since the increase of CDK2 activity during G1 requires inactivation of both the cip/kip proteins and is 

therefore dependent on the prior activation of the Cyclin D pathway. Once CDK becomes active it triggers 

the degradation of p27 by targeting it for phosphorylation and subsequent ubiquitination (Vlach, JS 

Hennecke & B.Amati, 1997). This event has two major effects: The destabilization of Cyclin D/CDK(4,6) 

complexes and the resulting release of p21 which is able to inhibit Cyclin E/cdk2. The temporary titration 

of p21 by Cycline E/CDK2 allows the formation of CyclinA/CDK2 complexes, which will then mediate S 

phase progression. P21 and p27 differ mostly in their expression kinetics. Generally p27 levels are high in 

quiescent cells and decrease in late G1, the protein levels are thought to be regulated by proteasome 

mediated degradation (Vlach, JS Hennecke & B.Amati, 1997). P21 levels instead, are low in quiescent 

cells and increase during the late G1 phase (Macleod, KF et al. 1995). In addition to its normal regulatory 

mechanisms, p21 levels can be induced by the p53 pathway. The INK4 proteins are thought to mediate 

CDK activity modulation through the same pathway. Upon an anti-mitogenic stimulus, such as TGF-β, 
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INK4s are expressed and promot the dissociation of CyclinD/CDK4, which causes the releases of p21 and 

the inhibition of cdk2 activity (Reynisdottir,I. et al. 1995).  

 

1.4.2.2. Integrins and cell cycle control 

Integrins are required for growth factor signalling 

Cells require anchorage to the ECM to proliferate. Integrins activate growth-promoting signaling 

pathways that are responsible for the anchorage requirement. Two such pathways appear to be activated 

by most integrins. In one of them, integrins facilitate growth factor–mediated activation of ERK. In some 

cells, signaling along the Ras-ERK cascade is blocked at the level of the activation of either Raf or MEK 

in the absence of attachment. Integrins remove this block, perhaps by activating Rac or PI 3-kinase (Frost 

J.A., et al.1997). ERK may be required for cell growth because it phosphorylates the ternary complex 

factor (TCF), which promotes transcription of the immediate-early gene c-Fos (Treisman R., 1996). In 

another pathway, integrins activate the MAPK c-Jun NH2-terminal kinase (JNK), which regulates 

progression through the G1 phase of the cell cycle. The activation of JNK requires the association of FAK 

with Src and p130CAS and the recruitment of Crk (Miyamoto S, et al. 1995). Activated JNK enters the 

nucleus and phosphorylates the transcription factor c-Jun, which combines with c-Fos to form the AP-1 

transcription factor complex. AP-1 then regulates genes that are important for cell proliferation (Treisman 

R., 1996). Because most growth factors are poor activators of JNK, the ability of integrins to activate this 

kinase may explain why cell proliferation requires integrin-mediated adhesion. 

 

Integrins regulate cyclin-Cdk activity 

As we mentioned, progression through the G1 phase of the cell cycle requires the sequential activation of 

CDK4/6 and CDK2. The activities of these kinases are regulated by integrins. Thus, integrin signals are 

necessary for cells to traverse the cell division cycle. For example, the activation of CDK4/6 are 

suppressed in cells that are not anchored to ECM (Zhu X, et al., 1996). Moreover, anchorage to the ECM 

is necessary for the down-regulation of the CDK2 inhibitors p21 and p27 and, thus, activation of cyclin E–

CDK 2 (Zhu X, et al., 1996). The reason for the accumulation of p21 and p27 in suspended cells is not 

known, but its effect is compounded by the decrease in Cyclin D–CDK 4/6, a complex that sequesters p21 

and p27 and prevents their action on CDK2 (Giancotti FG & Ruoslahti E. 1999). 

A few studies have tried to link specific integrins with specific events in anchorage-dependent cell cycle 

progression. Symington (Symington BE. 1995) showed that CDK activity and pRb phosphorylation were 
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stimulated when a α5β1 integrin overexpressing K562-subclone was treated with the peptide GRGDS (a 

ligand for α5β1 integrin). Klekotka et al. showed that the α2β1 integrin supports cell-cycle progression of 

mammary epithelial cells adherent to type I collagen matrices. Integrin collagen receptors containing the 

α2 cytoplasmic domain stimulated expression of Cyclin E and CDK2 resulting in Cyclin E/CDK2 

activation in the absence of growth factors other than insulin (Klekotka PA et al. 2001). Meredith et al. 

(Meredith  et al. 1999) microinjected a growth inhibitory form of the β1-integrin subunit into 10T1/2 

fibroblasts and found that cell cycle progression was blocked in late G1, near or after the induction of 

cyclin E-CDK2 activity. Nevertheless, detailed studies of specific integrin on distinct Cyclin-CDK events 

have yet to be reported. 

 

1.4.3. Integrins and cell survive 

Apoptosis is an efficient way to physiologically eliminiate excess or damaged cells in a controlled manner 

that precludes an inflammatory response. Integrin-mediated cell attachment is one of the main regulators 

of apoptosis. Loss of attachment to the matrix causes apoptosis in many cell types. This phenomenon, 

referres to as “anoikis”, may help maintain the integrity of tissues. (Frisch and Screaton, 2001). Specific 

integrin mediated attachment plays an important role in suppressing anoikis. For example, upon 

detachment, HUVECs rapidly die by apoptosis. However, adhesion on fibronectin protect HUVECs from 

TNF induced cell death (Fornaro M et al. 2003). Also, a laminin-rich basement membrane is required for 

long-term cultures and survive of primary mammary epithelial cells (Farrelly N et al. 1999).  

Integrins suppress anoikis in attached cells by activating signaling pathways that promote survival and 

inactivating the ones that promote apoptosis. A number of these pathways have been partially 

characterized and seem to be of varying importance in different types of cells. A pathway that begins with 

the activation of focal adhesion kinase (FAK) by ECM bound integrins and results in the activation of 

phosphatidylinositol 3-kinase (PI3-K) and Akt/protein kinase B seems to be a major source of survival 

signals in most cells (Frisch et al. 1996b; Khwaja et al. 1997 and Matter and Ruoslahti, 2001). Akt 

promotes survival, at least in part, by phosphorylating and thereby inactivating two proapoptotic proteins, 

Bad and caspase-9 (Cardone et al.,1998 and del Peso et al. 1997). Inhibition of p53 prevents FAK 

deficient cells from undergoing anoikis when deprived of growth factors, suggesting that p53 mediates the 

death signal under FAK deficiency (Ilic D, et al. 1998).  

Like cell growth, anoikis can be controlled by the ECM in an integrin-specific manner. The α5β1 and 

αvβ3 integrins induce expression of the anti-apoptotic protein Bcl-2 in CHO cells, protecting cells from 
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apoptosis from stresses such as the lack of growth factors. Other integrins, including another fibronectin 

receptor, αvβ1, do not provide this survival effect. (Zhang et al. 1995; and Matter and Ruoslahti, 2001). 

Using truncated Bcl-2-regulating integrin (α5β1) screening (the cytoplasmic domain of the Bcl-2-

regulating integrin was truncated to screen for cDNAs capable of enhancing expression of the Bcl-2 gene 

despite the disabled integrin), a mitochondrial protein, Bit1, was identified that is released into the 

cytoplasm during anoikis and to mediates apoptosis by regulating the functions of two Groucho family 

transcriptional regulators : AES and TEL. Importantly, the apoptosis induced by Bit1/AES is atypical in 

that caspase activation is not involved.(Jan,YW, et al. 2004). In addition, the αvβ3 integrin promotes 

endothelial and melanoma cell survival; this effect correlates with suppression of the p53 pathway and 

activation of the nuclear factor kappa B transcription factor (Stromblad S et al. 1996 & Scatena, M et al. 

1998). The activation of Shc by α1β1, α5β1, and αvβ3 may also contribute to protection from apoptosis 

(Wary KK, et al. 1996). Furthermore, integrins and the EGF receptor coordinately prevent anoikis in 

epithelial cells by downregulating the BH3 domain-only proapoptotic protein Bim (Reginato et al., 2003). 

Thus, integrin mediated attachment to ECM is a general requirement for cell survival, but survival under 

special circumstances may require a particular integrin.  

Anoikis is likely to be important in the maintenance of tissue architecture, as it would ensure the demise of 

cells that detach from their original site in a tissue. The requirement for a specific integrin as the mediator 

of the attachment may provide an additional safety factor, because it would facilitate the destruction of 

cells that have attached at an inappropriate tissue location. Tumor cells are generally resistant to anoikis 

and can proliferate in the absence of anchorage to ECM (Schlaepfer & Hunter, 1998). This may help to 

explain their propensity to leave their original site and metastasize. 

 

1.5. Functional consequence of integrin gene mutations in mice 

 

During the last two decades, most of the information about integrin function has been derived from in 

vitro cell culture systems. Gene targeting technology recently made it possible to generate mice that lack 

specific integrins in a constitutive or cell type-specific manner. Analyses of these mice demonstrate how 

integrin-mediated adhesion and signal transduction affect development and maintenance of tissues and 

provide additional insight into integrin functions in various diseases. 
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To date, 18 α and 8 β integrin subunits have been deleted in the mouse. Ablation of integrin genes leads to 

various phenotypes during mouse development, ranging from apparently normal mice to early lethality 

(Bouvard D, et al. 2001). β1 integrin is the most widely expressed integrin and controls various 

developmental processes. In this chapter, we will mainly focus on integrin β1 and discuss its role in early 

mouse development and in the different development contexts.  

 

1.5.1 Early mouse development 

Disruption of the ubiquitously expressed integrin β1 gene leads to the loss of at least 12 different integrin 

receptors and results in peri-implantation lethality characterized by an inner cell mass (ICM) failure. 

Fertilization of β1-null oocytes and the entire pre-implantation development is normal (Fässler & Meyer, 

1995; Stephens LE et al. 1995). A possible explanation of the ICM failure could be the loss of β1-

mediated survival signals since lack of interaction of the ectodermal cells with the BM could lead to their 

loss by apoptosis and arrest of additional development (Coucouvanis & Martin, 1995). Another possibility 

could be that the lack of β1 integrins leads to abnormal BM assembly since β1 integrin is crucial for 

normal expression and correct assembly of BM components into a supramolecular structure (Aumailley M 

et al. 2000). 

 

1.5.2. Neurogenesis 

Evidence coming from fly and worm suggest a critical role for the integrin family during brain 

development and for maintaining brain functions (Anton ES et al. 1999). This was also confirmed in mice. 

α3-null mice display a defect in neuron migration and a disorganized layering of the cerebral cortex, 

suggesting that this integrin is involved in radial neuronal cell migration. A very similar phenotype is 

observed in reeler mice, which lack the extracellular matrix protein reelin. In these mutant mice, migration 

of Cajal-Retzius cells is impaired, leading to an abnormal lamination of the cerebral cortex. A recent study 

showed that α3β1 integrin can bind reelin (Dulabon L et al. 2000). This interaction may provide a stop 

signal and arrest neuronal migration. Ablation of the β1 integrin gene in all cells of the developing cortex 

causes cortical neurons to become severely disorganized and Cajal-Retzius cells misplaced, but does not 

prevent the migration of neuronal precursors, however, it does cause layering defects close to the marginal 

zone (Graus-Porta D, 2001). The ability of neuronal precursors to migrate in the absence of β1 integrin is 

not consistent with the migration phenotype seen in the absence of the α3 integrin, since β1 is the only 

 21



subunit that is known to form heterodimers with α3. Perhaps an altered balance between different β1 

integrin heterodimers is more detrimental than their complete absence. 

Myelination in the peripheral nervous system is accomplished by Schwann cells. Myelin-forming 

Schwann cells synthesize abundantly the laminin receptors α6β4, α6β1 integrins and dystroglycan, and 

minor amounts of α2β1 integrin. Inactivation of β1 integrin specifically in Schwann cells using the Cre-

loxP system has shown that β1 integrins are crucially important for Schwann cell–axon interactions. β1-

null Schwann cells populates nerves, proliferate, and survive normally. However, loss of 

integrin β1 causes failure of ensheathing and segregating axons in development nerves 

and delayed myelination. (Feltri ML et al. 2002). 

 

1.5.3. Chondrogenesis 

β1 integrin is a dominant integrin β subunit expressed in the heart. Two of the four splice variants of 

β1 integrin; β1A and β1D are expressed on cardiac myocytes. They are identical with the exception of the 

last 24 amino acid residues of their respective cytoplasmic domains. The expression of β1A and β1D 

isoforms is developmentally regulated in cardiac cells. β1A is expressed during embryogenesis while β1D 

expression begins late in development and eventually becomes the dominant β1 integrin isoform 

expressed on adult cardiac myocytes. On the basis of in vitro analysis, integrin-mediated attachment to the 

ECM has been suggested to be important for controlling growth and differentiation of cardiomyocyte 

(Borg TK et al. 2000). Furthermore, integrins were proposed to function as mechanoreceptors that 

transform mechanical stimuli into biochemical signals that affect cellular function (Borg TK et al 2000). 

Several genetic mouse models demonstrate an important function of β1 integrin in cardiac muscle in vivo. 

Mice expressing β1A instead of β1D in heart show a mildly disturbed heart phenotype, whereas 

replacement of β1A by β1D results in embryonic lethality with a plethora of developmental defects, in part 

caused by the abnormal migration of neuroepithelial cells. (Baudoin C et al. 1998). Even more severe 

defects occur in the heart when both β1A and β1D are absent or functionally inactivated. The areas with 

β1-null cardiac muscle cells in the heart of β1-null chimeras become smaller with time and show signs of 

degeneration. Ultra-structural analysis revealed alterations in the sarcomeric architecture. In addition, 

transgenic mice expressing a dominant-negative form of β1 integrin, in which the extracellular and 

transmembrane domain of CD4 is fused to the cytoplasmic domain of β1 integrin, show hypertrophic 
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changes in the heart. Mice that express high levels of the transgene die around birth and display a 

replacement fibrosis (Keller RS et al. 2001).  

 

1.5.4. Skin and hair follicle morphogenesis 

The skin is composed of an epidermal and a dermal layer, which are separated by a basement membrane. 

The epidermis is made primarily of keratinocytes, while the dermis contains different cell types including 

fibroblasts, endothelial cells and macrophages as well as large amounts of extracellular matrix. Adhesion 

of the keratinocytes to the basement membrane and to each other is important for the development of skin 

and for the maintenance of skin integrity. During differentiation, basal keratinocytes detach from the 

basement membrane and migrate to suprabasal layers. This movement is accompanied by a complex 

change of cell–cell and cell–matrix interactions involving adhesion molecules such as cadherins and 

integrins (Hotchin et al., 1995; Zhu and Watt, 1996). Basal keratinocytes attach to the underlying 

basement membrane via integrins. In skin, several integrin receptors are expressed by the epidermal 

keratinocytes, including α2β1, α3β1 and α6β4. Genetic ablation of the α6 or β4 integrin gene in mice 

resulted in a complete absence of hemidesmosomes, creating large blisters between the dermis and the 

epidermis (Georges-Labouesse et al., 1996; van der Neut et al., 1996). Skin-specific ablation of the 

β1 integrin gene at around birth demonstrated a role of β1 integrin in the processing of the BM 

components and in the growth and maintenance of hair follicles. β1-deficient basal keratinocytes have an 

aberrant morphology and a reduced proliferation rate, but are still able to terminally differentiate. While 

ectopic expression of α2, α5 and β1 integrin in the suprabasal layers of transgenic mice resulted in 

hyperproliferation, perturbed keratinocyte differentiation and a psoriasis-like phenotype (Carroll et al., 

1995). 

 

1.5.5. Myoblast fusion 

Vertebrate skeletal muscle fibers express many integrin subunits in developmentally regulated patterns, 

including the integrin β1 subunit and its partners α 1, 3, 4, 5, 6, 7, and  (Gullberg et al., 1998). The most 

abundant integrin in skeletal muscle is α7β1, which is expressed during all stages of muscle development 

(Bao ZZ et al. 1993). Mice with a targeted deletion of the α7 integrin develop a progressive muscular 

dystrophy after birth. The major defect is severe disruption of the myotendinous junctions (Mayer et al., 

1997). Mutations that inactivated the mouse integrin β1 subunit gene in developing myoblasts show that 

β1 integrins regulate myoblast fusion and sarcomere assembly. β1-deficient myoblasts adhere to each 
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other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that 

regulates cell fusion is no longer expressed at the cell surface of β1-deficient myoblasts, suggesting that 

β1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, β1 

integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin 

glycoprotein complex are still expressed but cannot compensate for the loss of β1 integrins, providing 

evidence that different ECM receptors have non-redundant functions in skeletal muscle fibers 

(Schwander.M et al 2003). 
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Part II Mammary gland development 
 

2.1 Mammary gland is an attractive organ for development studies 

 

Mammary gland is a specific organ for female mammals. This developed organ could deliver essential 

nutrients to the newborn offspring. These nutrients are assembled in a rich proteinaceous and lipid fluid 

termed milk. Milk is sufficiently complex that it alone is sufficient to support the development of the 

newborn through the critical initial stages of postnatal development and growth. Functional differentiation 

of the mammary gland is a crucial step in the reproductive cycle of mammals. The anatomical and 

morphological design of the gland as well as the regulation of its development and function is subservient 

to this main function. 

The mammary gland consists of two primary components: the parenchyma, which forms a system of 

branching ducts from which secretory acini develop, and the adipose stroma, which provides a substrate 

within which the parenchyma develops and function. The parenchyma consists of two major epithelial 

structures: collecting ducts that form during puberty and are maintained throughout adulthood, and alveoli, 

containing the luminal, milk-secreting cells that appear during pregnancy and lactation and are lost during 

remodeling at involution. Alveolar growth and proliferation occurs predominantly during pregnancy, 

followed by functional differentiation of alveolar epithelial cells at parturition. Some additional alveolar 

proliferation occurs during the first few days of lactation. During lactation, the secretory cells produce 

large amounts of milk.  

Human breasts begin developing in the embryo. In both female and male newborns, milk ducts and 

lobules (milk producing glands) are well formed and organized. With the beginning of female puberty, 

the release of estrogen in combination with progesterone causes the female breasts to undergo dramatic 

changes, which culminate in the fully mature form. Further maturation of the breast tissues occurs with 

lactation. 
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and function of mammary gland is an important event for the reproduction of the mammals. Furthermore, 

the understanding of normal gland function, development, structure and regulation can assist the 

investigation of the breast cancer; a disease threatens the females, for example, 180,000 woman annually 

in the United States. Finally, the mammary gland is a good model for the development studies when the 

repeated phases of growth and differentiation can be examined, since at involution the organ goes through 

complete remodeling. Thus the mammary gland provides a unique opportunity to evaluate the role of 

specific proteins in the formation and function of a transient, but highly specialized, organ. Also, in 

mammary gland, the complex biological and cellular interactions make the possibility to study the 

regulation of the same gene expression in diverse cell types.  

 

2.2 The development of mammary epithelium 

The mammary gland consists of two major epithelial structures: collecting ducts that form during puberty 

and are maintained throughout adulthood, and alveoli, containing the luminal, milk-secreting cells that 

appear during pregnancy and lactation and are lost during remodeling at involution. 

 

2.2.1.Terminal end bud formation and ductal morphogenesis. 

A branched epithelial structure includes a network of tubes that are integral to the function of a number of 

glandular organs (Gumbiner BM, 1992; Affolter M, et al 2003). Lung, kidney, salivary gland , and 

mammary gland are examples of organs that develop through branching morphogenesis. The latter is 

unique among these organs in that the majority of its branching is post-embryonic. Extensive branching 

begins in puberty in the female and ceases after expanding to the outer limits of the mesenchymal fat pad.  

Branched structures are first seen in the mouse mammary gland in late embryonic development 

(Robinson GW et al , 1999). Expansion of the ductal tree within the fat pad occurs rapidly after 3 to 4 

weeks of age, when ovarian hormones begin systemic circulation, and ceases around 10 weeks of age. 

During branching morphogenesis, primary ducts elongate, driven by terminal end bud proliferation, and 

the tree 'fans out' within the fat pad through a process of terminal end bud bifurcation and lateral side 

branching.  

Mammary ducts are composed of a mixture of epithelial cells with distinct morphological and function 

lineages: the luminal cells, which form the tubular duct; and the second lineage, which give rise to 

myoepithelial cells to aid in the expulsion of milk from the alveoli during lactation. Both of these lineages 

are established simultaneously and arise from the end buds during puberty (Williams and Daniel, 1983). 
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The teminal end buds are bulbous structures found in pubertal animals. Elongation of mammary ducts in 

the immature mouse takes place as a result of rapid growth in end buds. These structures proliferate at the 

apex of elongating ducts and are responsible for penetration of the surrounding adipose stroma; by turning 

and branching, end buds give rise to the characteristic open pattern of the mammary ductal tree.  

These bulb-shaped structures consist predominantly of an outer layer of epithelial cells, termed cap cells, 

and an inner layer of epithelial cells, termed body cells. The extent of proliferation in the TEB has been 

estimated to be as much as 5-fold more than that observed in mature ducts. Within the TEB, the cap cells 

often display the highest proliferative activity (Dulbecco R,1982, Humphreys RC 1999). The TEB is also 

a site of significant apoptosis in the developing gland, and it is this apoptosis that is believed to cause 

canalization of the developing ducts (Humphreys RC,1996). Regulation of TEB development occurs at 

several levels involving steroid and peptide hormones as well as local production of growth factors 

(Humphreys RC 1999, Kleinberg DL 1997)

Numerous studies suggest that IGF-I plays an important role in mammary gland development. Firstly, 

IGF-I is a potent mitogen for normal mammary epithelial cells in culture, and ductal growth can be 

induced in mammary gland explant cultures by IGF-I in combination with mammogenic hormones 

(Richert M, Wood TL 1999). Secondly, in vivo local administration of IGF-I induces mammary TEB 

development (Kleinberg DL 1998) and transgenic mice that overexpress IGF-I specifically in the 

mammary gland during pregnancy and lactation exhibit an increased incidence of mammary hyperplasia 

and tumorigenesis (Hadsell DL, 1996 & 2000). Lastly, the mRNAs for both IGF-I and the IGF-I receptor 

(IGF-IR) are expressed in both the mammary stroma (Walden PD, 1998) and the developing TEB (Richert 

M, Wood TL 1999), and studies by Ruan and co-workers (Ruan W & Kleinberg DL 2000) demonstrated 

that targeted deletion of IGF-I inhibits normal TEB development. 

Besides hormone and growth factors, it was found that the Matrix metalloproteinases (MMPs), the 

stromal factors that are ideally positioned to regulate stromal–epithelial cross talk (Sternlicht & Werb, 

2001), could regulate mammary gland branching morphogenesis by clearing a path for invading ducts by 

degrading ECM barriers and permitting ductal penetration into the mammary fat pad. During early 

puberty, MMP-2 supports the invasion of TEBs into the stromal fat pad, by protecting against excessive 

apoptosis within TEBs. Later in puberty, MMP-2 acts on the mature primary duct to repress excessive 

secondary lateral budding and branching. While MMP-3 acts on both primary and secondary ducts to 

induce secondary and tertiary branch formation (Bryony S, et al, 2003). In contrast, introduction of 
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exogenous tissue inhibitor of metalloproteinases-1 (TIMP-1) into pubertal mammary gland, via a pellet, 

retards ductal invasion (Fata et al., 1999). 

 

2.2.2 Alveolar development and milk secretion 

With pregnancy occurs, the gland begins forming side buds. Buds repeatedly form and elongate 

perpendicular to existing ducts to form small terminal ducts. When the mammary fat pad is filled so that 

there is little space between nascent buds, sac-like alveoli are formed at the end of the terminal ducts. 

Alveolar growth and proliferation occurs predominantly during pregnancy, followed by functional 

differentiation of alveolar epithelial cells at parturition. Some additional alveolar proliferation occurs 

during the first few days of lactation. It’s was demonstrated that prolactin induced phosphorylation of 

Stat5 is a key event in functional mammary development and differentiation. (Details will be discussed in 

2.2.5.2) 

The alveoli composed of a single layer of polarized luminal, milk-secreting cells that surround an 

enclosed space, or lumen. The earliest signs of lumen formation are many small cavities and crevices 

lined with microvilli which appear at scattered sites throughout the branching cords and neck of the gland. 

Differentiated luminal secretory cells are well polarized and organized. The myoepithelial, another cell 

lineage to basket the secretory cells in the alveolus, play central role in milk ejection. Differentiated 

myoepithelial cells are highly contractile and their ultrastructure is reminiscent of that of smooth muscle 

cells. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig.7.The phenotype of mammary alveolar epithelium in

mouse. The spherical mammary alveolus, consisting of a

single layer of secretory cells, is shown in schematic cross-

section. Some important architectural and functional features

of this structure are: (1,2) extensive interactions between cells

and (1) ECM, as well as (2) other cells; (3) basal nuclei and

(4) apical microvilliindicating morphological polarity;

(5)casein microvilli and (6) fat droplets formed intracellularly

and secreted apically into the lumen; (7) myoepithelial cells

and their processes; (8) secreted milk is collected in ducts.
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At the end of pregnancy, the mammary gland starts milk synthesis. Milk is an externally secreted fluid 

designed specifically to nourish the young. It contains vital nutrients such as proteins, carbohydrates, 

lipids, minerals, and vitamins together with bioactive substances. Milk is secreted more or less 

continuously into the alveolar lumens and stored there. Removal of milk from the alveoli is accomplished 

by contraction of the myoepithelial cells surrounding the alveoli and ducts. This process is called milk 

ejection. 

 Most protein components are secreted from the mammary epithelium by exocytosis. In contrast, the lipid 

droplets bulge against and gradually become enveloped in apical plasma membrane, finally separating 

from the cell as the milk fat globule. By specific gene ablation, it was found that Xanthine oxidoreductase 

(XOR, the rate-limiting enzyme in purine catabolism is specifically required for enveloping milk fat 

droplets with the apical plasma membrane prior to secretion from the lactating mammary gland. The 

XOR+/- females are unable to maintain lactation and their pups die of starvation 2 wk postpartum 

(Claudia Vorbach, 2002). 

 

2.2.3 Involution    

Lactogenesis represents a profound and rapid series of changes in the activity of differentiated mammary 

epithelial cells from a quiescent state to a fully active secretory state. In the absence of suckling or at 

cessation of nursing, these differentiated mammary epithelial cells are removed and the gland is 

remodeled to a duct system similar to that in the mature virgin. This process, named as involution, is the 

last stage of the mammary life cycle. The destroyed milk-producing machinery can be recapitulated in a 

subsequent pregnancy in preparation for another round of lactation. 

Mammary gland involution goes through two distinct stages. In the first stage, lack of suckling and milk 

stasis results in a rapid, but reversible induction of apoptosis within the differentiated population of 

mammary epithelial cells, but there is no remodeling of the lobular-alveolar structure. When the lack of 

suckling is prolonged, the involution goes through into the second stage. The apoptosis is accompanied by 

a tissue-remodeling phase involving the induction of matrix-degrading enzymes and inflammatory cell 

infiltration. The lobular-alveolar structure of the gland is obliterated as proteinases degrade basement 

membrane and extracellular matrix (ECM). This mammary alveoli regress process cannot be reversed. 

The end result of this process is the elimination of all lobuloalveolar structures leaving behind a simple 

ductal tree. 
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In mice, apoptosis of mammary alveolar cells commences within hours of the end of sucking and peeks at 

day 3 and decreases thereafter, while the alveolar structure has completely degenerated after a dying 

period of 4 days. The apoptosis of individual alveolar cells is correlated with increased expression levels 

of many genes. It was found stat3, another member of the STAT family of proteins, was induced in the 

first phase of involution. And the mice of conditional knock out of stat3 in mouse mammary gland 

showed a decrease in epithelial apoptosis and a dramatic delay of the involution process upon forced 

weaning (Chapman RS, 2000). 

 

2.2.4 Hormonal and growth factor regulation 

Development of the mammary gland is controlled by systemic steroid and peptide hormones and local 

growth modulators (Topper and Freeman, 1980). Steroid hormones of the ovary and placenta were 

implicated very early as important stimulators of mammary gland development (Anderson R, 1974). The 

ductal outgrowth and, in part, alveolar proliferation is controlled by ovarian steroid hormones (Daniel and 

silberstein 1987). It was already determined that estrogen stimulates ductal elongation (Korach et al, 

1996), while progesterone is necessary for alveolar development (Humphreys et al. 1997). Furthermore, It 

was established that prolactin (PRL), a 23-kDa peptide, which is mainly synthesized in lactotrophic cells 

of the anterior pituitary of vertebrates, are involved in lobuloalveolar differentiation, milk synthesis, and 

lactation (Topper and Freeman, 1980). Prolactin is essential for the transition from a proliferative to a 

lactating mammary gland and for the maintenance of milk secretion. The withdrawal of prolactin and 

oxytocin, another peptide hormone inducing the contraction of myoepithelial cells and thereby for milk 

ejection, causes involution of the mammary gland to a mature virgin-like state (Wagner, 1997).  

Additionally, A stimulatory role in the proliferation and/or differentiation of mammary epithelial cells is 

suggested for most growth factors including epidermal growth factor, amphiregulin, transforming growth 

factor, and insulin like growth factor (Lamote.I ,2004). 
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ecline after the mitogens have been removed. This, together with a very short half-life of this protein 

lin D1 levels in response to changes in extracellular environment (Sherr, 

 as an oncogene responsible for parathyroid adenomas 

 Consistent with the oncogenic role of cyclin D1 are the observation that transgenic 

Fig.8. Overview of the regulation of mammary gland development. During embryonic development, signaling 

molecules important in epithelial-mesenchymal interactions include PTHrP, FGF-10, LEF-1, and Msx2. Under the 

influence of maternal PRL and PL, the neonatal mammary gland undergoes transient functional differentiation and 

 

 

 produces witch's milk. Mammary gland development proceeds slowly after birth until puberty, when E and GH 

stimulate rapid ductal elongation. During pregnancy, progesterone stimulates alveologenesis and lactogenesis 1. At 

parturition, the withdrawal of progesterone is required for initiation of lactogenesis 2. Prolactin promotes lactogenesis 2 

and, along with oxytocin, maintains lactation. The withdrawal of prolactin and oxytocin causes involution of the 

mammary gland to a mature virgin-like state. (MFP, mammar.y fat pad; TEB, terminal end bud.) Wysolmerski; 

endotext.com 

 

 

 

 

 

2 2.5. Signaling within the cell 

.5.1. Proliferation and Cell cycle regulators 

 the first chapter (1.4.2), we already discussed the cell growth and cell cycle control. It’s known th

clins and cyclin dependent kinase (cdks) are the major players in mediating the progression and passa

rough the cycle.  

ur mammalian G1 cyclins have been described to date: cyclins D1, D2, D3 and cyclin E. Th

pression of cyclin D1 is rapidly induced following the exposure of cells to mitogens; it's levels rapi

2

In

c

th

F

e

d

permits rapid modulation of cyc

C.J. 1994). Cyclin D1 was originally cloned

(Motokura et al. 1991). Subsequently, the aberrant expression of cyclin D1 was documented in several 

human malignancies. Most striking is the frequent involvement of cyclin D1 in human breast cancers 

(Schmidt, E. 1996).

mice engineered to overexpress this cyclin in their breast tissue are prone to mammary adenocarcinomas 

(Wang, T.C. et al. 1994). 

 32



Besides basic cell cycle machinery modulators, there is an increasing list of local growth factors, such as 

epidermal growth factor, amphiregulin, and insulin like growth factor, has been shown to have a 

stimulatory role in the proliferation and/or differentiation of mammary epithelial cells. Mammary glands 

from adolescent AR null mice displayed striking defects in ductal outgrowth. Additional loss of EGF or 

TGF exacerbated the defect whereas mice lacking only EGF and TGF had normal glandular arborization, 

underscoring the fundamental role of AR in ductal elongation (N. Luetteke et al, 1999). Different from 

EGF ligand, studies in mice on ERBB expression and activating profiles revealed that signalling by 

on of receptors. Receptor-

ssociated tyrosine kinase (JAKs) cross-phosphorylate each other as well as the tyrosine residues on the 

toplasmic proteins from the STAT family are recruited 

tional postpartum gland, high levels of activated Stat5 can be found while only small amounts 

EGFR is critical for ductal outgrowth(L. Troyer and D. Lee, 2001). The insulin-like growth factor (IGF) 

family of ligands (IGF-I and IGF-II), binding proteins (IGFBP 1–6), and receptors (IGF-IR and IGF-IIR) 

also play pivotal roles in growth and development of the mammary gland. And the downstream signalling 

pathways of IGF receptors have been elucidated. In general, IGF-IR acts through two primary cascades, 

the mitogen activated protein (MAP) kinase and phosphatidyl-3-kinase (PI3-K) kinase pathways. The 

ultimate targets of the MAP kinase and PI3-K kinase cascades include members of the Ets and forkhead 

transcription factor families. Regulation of transcription factors provides a mechanism by which IGF 

mediates a proliferative and differentiative effect (LeRoith and Roberts, 2003). 

 

2.2.5.2 cell differentiation and Stat5a regulation. 

During lactation, the secretory cells produce large amounts of milk. Inside the various milk proteins, 

WAP and β-casein are as known to be transcriptional regulated by prolactin-JAK-STAT signalling 

pathway. 

Prolactin and many cytokins use STAT proteins to regulate the transcriptions of specific genes through 

the JAK-STAT pathway. Ligand binding triggers dimerization or oliogmerizati

a

receptors. Subsequently, SH2-containing latent cy

to the receptor complex and phosphorylated by the JAKs. Two STAT proteins dimerize, translocate into 

the nucleus, and activate gene transcription by binding to GAS in gene promoters. 

In the func

of phosphorylated Stat1 and Stat3 have been detected (Liu, X., 1996). And phosphorylation of Stat5a and 

-5b is very low in mammary tissue of virgins and during early pregnancy but rises sharply after day 14 of 

pregnancy. This led to the hypothesis that the activation of Stat5 is a critical step in the terminal 

differentiation of mammary secretory epithelium (Liu, X., 1996). 
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Indeed, the essential role of prolactin or STAT5 a as 

confirmed in mice by genetic disruptions in mice. The 

(Ormandy et al., 1997) or the Stat5a gene (Liu et 98) 

results in impaired alveolar proliferation and functi

Similar to the prolactin receptor, it was found that n to 

activate STAT5 (Jones et al., 1999; Kloth et al., rylates 

STAT5A at the regulatory amino acid Y694 in a STAT5A SRC-homology 2 (SH2) domain-dependent 

ctivation in Erbb4Flox/FloxWap-Cre 

ammary gland. PRL Fig.9. Prolactin signalling in the m

binds to its receptor and causes the PRLR to dimerize. 

Receptor-associated tyrosine kinase JAK2 phophorylates 

the prolactin receptor and the signal transducers and 

activators of transcription Stat5a and Stat5b. Activated 

Stat5a and –5b are transported into the nucleus, bind to 

GAS sequences and induce transcription of target genes. 

ctivity in mammary development and lactogenesis w

inactivation of either the prolactin receptor gene 

 al., 1997, Miyoshi et al., 2001; Teglund et al., 19

onal differentiation. 

members of the ERBB family have also been show

2002; Olayioye et al., 2001). ERBB4 phospho

manner (Jones et al., 1999). Furthermore, ERBB4 phosphorylates STAT5A at a tyrosine(s) in addition to 

at Y694 (Jones et al., 1999) raising the intriguing possibility that ERBB4 regulates novel STAT5 activities 

through multiple phosphorylation events. Recently, genetic ablation of Erbb4 alleles within the 

developing mammary gland revealed a complete ablation of STAT5 a

mammary epithelium at parturition. Consistent with disrupted STAT5 function, Erbb4Flox/FloxWap-Cre 

mammary glands at parturition failed to express the mammary epithelial differentiation marker Npt2B. 

Defects in epithelial functional differentiation at parturition were accompanied by a profound reduction in 

expression of the STAT5-regulated milk genes β casein and whey acidic protein. That suggests ERBB4 

functions as an essential mediator of STAT5 signaling, and that loss of STAT5 activity contributes to the 

impaired functional differentiation of mammary glands observed in mice containing conditional Erbb4 

deletions (Weiwen Long, 2003). 

  

2.2.5.3 Involution and apoptosis of mammary epithelia cells 

The two stages of mammary gland involution are controlled by progressive gain of death signals and loss 

of survival factors. The first stage of involution is controlled by local mammary-derived signals. Milk 

accumulation triggers increased expression of the death-inducing bax gene through a yet-undefined 
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mechanism. Importantly, this process is p53-independent (Li, M, 1996).  The same stimuli mediate loss of 

Stat5a and 5b phosphorylation disrupting the principal pathway for prolactin signaling (Schmitt-Ney, M, 

92; Liu X, 1996). Prolactin is a lactogenic hormone that can promote cell survival. Phosphorylation of 

first stage of involution at a time when Stat5 

ng remodeled (Lund, L. R, 1996; Boudreau, N, 1995). For example, 

19

Stat3 is low during lactation and increases sharply during the 

phosphorylation is lost (Liu.X, 1996). 

The second stage of involution is ushered in by the complete loss of survival factors due to decreased 

levels of systemic lactogenic hormones and activation of proteinase-dependent pathways (Lund, L. R, 

1996). Ensuing disruption of basement membrane and extracellular matrix (ECM) results in remodeling 

of the gland to a state resembling the mature virgin. Systemic lactogenic hormones are survival factors 

that persist through the first stage of mammary gland involution. Although these survival factors cannot 

overcome the dominant local apoptosis signals unleashed after removal of the suckling stimulus, they 

presumably prevent the gland from bei

glucocorticoid stimulation prevented progression of the gland into the second irreversible stage of 

involution, but did not block apoptosis (Li M.L 1997). Importantly, involution can be readily reversed 

during the first 48 h of involution, but not later. 

 

2.3 The function of mammary stromal. 

 

The essential functional component of mammary gland is the mammary epithelial cells. This cell is the 

one that synthesizes milk proteins and can occastionally become neoplastic. However, it relies on other 

cell types for its development and function. The mammary gland exsits as a community of epithelial cells 

that form adhesive interactions with extracellular matrix and the stromal cells. Such associations are 

ssential for maintaining normal tissue homeostasis and function, and, when they break down; cells are e

often deleted by apoptosis. 

 

2.3.1. Role of the stroma cells in the mammary development 

The stroma is an important primary component of the mammary gland. Breast stroma accounts for more 

than 80% of the resting breast volume (Drife JO, 1986). The stromal provides a substrate within which 

the parenchyma develops and function. And it can further support subsequent mammary parenchyma 

development. The stroma or the supportive platform for the epithelial layer is composed of fibroblasts, 
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endothelial cells, smooth muscle cells, adipocytes, inflammatory cells, nerve cells and a macromolecular 

ed the extracellular matrix (ECM).  

chymal 

re detected in stroma at a stage preceding ductal outgrowth (Webber-Hall et al. 1994) 

llagen IV, have been detected by immunohistochemistry 

round the ducts and alveoli of the virgin, pregnant, and lactating mouse mammary gland (Warburton et 

l., 1993; Keely et al., 1995). All of these components 

network of proteoglycans and glycoproteins collectively term

In seminal experiments by Kratochwil and Sakakura, it was suggested that the stroma play an active role 

in mammary gland development and function. It could direct and constrain the developmental plasticity 

of mammary parenchyma (Sakakura T, 1991). When Kratochwil cultured a composite of embryonic 

mammary epithelium and embryonic sub-mandibular (salivary) mesenchyme, the mammary tissue 

developed salivary gland-like lobules. Extending these experiments in vivo, Sakakura demonstrated that 

not only embryonic but also adult mammary tissue could respond in this way to salivary mesen

signals. Importantly, the instructive properties of the stroma did not extend to cytodifferentiation: in a 

pregnant host animal, salivary-like mammary transplants synthesized the milk protein α-lactal-bumin. 

(Sakakura T, 1976) 

The inductive role of stroma is evidence by the identification and elucidation of paracrine factors, which 

regulate the mammary parenchyma morphogenesis, e.g., Wnt proteins, transforming growth factor β 

(TGFβ), and hepatocyte growth factor. For example, TGF-β1 and TGF-β3 have roles in both promotion 

and inhibition of branching morphogenesis that are dependent on concentration and context. HGF/SF 

promotes ductal outgrowth and tubule formation in the mammary gland (Pollard JW. 2001). And Wnt-2, 

Wnt5a, and Wnt-6 a

rasing the possibility that one or more Wnt family are candidates for mediating epithelial induction by the 

stroma. It’s likely that additional paracreine factors will be identified as more attention is focused on role 

of the stroma. It is likely that further knowledge of stromal-epithelial interactions would greatly enhance 

the understanding of mammary gland function. 

 

2.3.2 cell–matrix interactions with the host stroma 

At the mammary epithelial and stromal cells boundary, there is a separating barrier of special ECM called 

basement membrane (BM). It contains various cellular elements such as laminin, fibrous and non-fibrous 

collagens, proteoglycans, and glycoproteins. The components of basement membrane, including LM-1, 

nidogen, heparan sulphate proteoglycan, and co

a

al., 1982, 1984; Sonnenberg et al., 1986; Beck et a

provide mechanical support to the tissue as well as forming a dynamic, developmentally active 

extracellular matrix/basal lamina complex. 
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An intact basement membrane is essential for the proper function, differentiation and survive of the 

mammary epithelial cells. For example, in the adult, evidence from culture studies show that the signals 

required for the induction of tissue-specific differentiation during pregnancy and maintenance of function 

during lactation arise primarily from basement membrane. Further support for a critical role for basement 

membrane in the functional differentiation of the gland comes from studies in involution where 

degradative loss of basement membranes correlates with loss of functional activity in the epithelium. 

 Howe, 1998). Furthermore, the 

Thus the extracellular matrix in conjunction with certain cytokines plays a central role in coordinating 

mammary epithelial development (Bissell MJ, 1993). Furthermore, it’s already established from cell 

culture model that ECM has an essential function in the control of mammary epithelial cell differentiation 

and survive. Primary mammary epithelial cells that fail to contact the BM show various alterations, 

including changes in survival and functional differentiation, as measured by their inability to respond to 

lactogenic hormones (Barcellos-Hoff et al., 1989) During involution, besides of apoptosis of epithelial 

cells, an important additional feature is the proteolytical degradation of the basement membrane between 

stroma and epithelium. Ultrastructural studies have demonstrated BM (basement membrane) 

disorganization 3 days after weaning (Strange et al., 1992). In addition, the activity of BM degrading 

matrix metalloproteinase (MMP) enzymes, which are important for gland remodelling at later stages of 

involution, is up-regulated 3–4 days after weaning. (Lund et al., 1996).  

There are two main ways in which the ECM can affect cell behaviour. One of these is through harbouring 

growth factors or growth factor-binding proteins. The other is that cell-ECM interactions can directly 

regulate cell behavior, either through receptor-mediated signalling or by modulating the cellular response 

to growth factors. For example ligation of integrins, the major class of ECM receptors, profoundly affects 

the cellular response to mitogenic signals, indicating that cell–matrix interactions are an important 

determinant in the regulation of cell cycle entry (MA Schwartz, 1999; A

signaling pathways specific to ECM integrin can alter interactions between steroid hormones and growth 

factors. For example, In vitro studies of the effects of ECM proteins in mammary epithelial monolayer 

cultures derived from adult mammary gland have been studied (Haslam SZ, 2001). Interactions between 

steroid hormones and growth factor and between two growth factors are influenced by ECM composition. 

Collagen type I (Col I) and fibronectin (FN) and, to a lesser extent, laminin (LM) promote an EGF+IGF-1 

synergistic effect on proliferation. No synergistic, additive or inhibitory effects of progestin or estrogen 

with growth factors are observed on Col I or FN. However, on LM, progestin reduces the proliferative 

response to growth factors (Woodward TL, 2000).  
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2.3.3 Stromal-epithelial interactions during tumor formation 

As we all known, the essential functional component of the mammary gland is the mammary epithelial 

cell. This cell is the one that synthesizes milk proteins and can occasionally become neoplastic. Since we 

already talked about the profound roles of both stromal and ECM in regulating the normal behavior of 

mammary epithelium, it would not be unreasonable to propose that a breakdown in stromal structure 

nd/or cell interactions with extracellular matrix contributes to neoplasia. 

 place in the mammary gland stroma during 

isregulation of the proteinases 

a

It has been shown that certain physiological changes that take

involution are similar to those that occur during malignancy. These include enzyme degradation of the 

ECM, loss of cell adhesion, and breakdown of the basement membrane and release of growth factors. 

Unlike normal cells, malignant cells appear to be resistant to the apoptosis which occurs during tissue 

remodeling and thus these conditions may facilitate tumour cell dissemination and invasion. And the 

ability of tumor cells to cross tissue boundaries may be a result of m

relative to their inhibitors. Proteinases that degrade the extracellular matrix (ECM), including the serine 

proteinases and matrix metalloproteinases (MMPs) have been implicated in various pathological states 

such as inflammation, rheumatoid arthritis, and all stages of tumor progression including growth, invasion, 

metastasis, and angiogenesis. Werb and colleagues engineered the luminal mammary epithelium of mice 

to overexpress stromelysin-1 (One of the metalloproteinase), which predictably disrupted normal stromal-

epithelial interactions and perturbed tissue organization and differentiation. The experiments clearly 

showed that a desmoplastic stroma can drive malignant transformation of an epithelium (Werb.Z, 1996). 

Interestingly, in many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed 

by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. For example, to 

determine the tissue source of the most relevant MMPs, HBC cell lines and HBC tissues were 

xenografted into the mammary fat pad (MFP) or bone of immunocompromised mice and the expression 

of different MMPs were measured. The data directly demonstrate tumour induction of MMP production 

by stromal cells in both the MFP and bone environments and suggest that MMP-13 and MT1-MMP will 

be relevant targets for inhibiting breast cancer progression (Lafleur MA, 2004). To test the tissue 

organization field theory directly, recently, Maffini and co-workers used an acute chemical carcinogen 

(NMU) treatment to rapidly induce tumor formation, and a mammary gland epithelial reconstitution 

approach to distinguish between the contribution of stromal-epithelial interactions and genetic mutations 

to malignancy (Maffini et al., 2004). Interestingly, none of the animals that received MECs treated with 
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NMU in culture developed neoplastic lesions, unless their stromal fat pad had also received a prior bolus 

of NMU. It’s a further data to suggest that the stroma might itself constitute an important mutagenic target. 

 The paracrine factors have been widely implicated not only in the normal mammary parenchyma 

morphogenesis but also in the mammary carcinogenesis. Recently, mammary fibroblasts engineered to 

ectopically express HGF or TGFβ1 alone or together induced mammary epithelial to develop ductal 

carcinoma in situ, adenocacinoma, and poorly differentiated cancer, whereas transplantation of the same 

epitheial cell population with wild-type fibroblasts did not (Kuperwasser, C. et al , 2004). Using the 

conditional inactivation of the TGFβ type II receptor gene in fibroblast, Moses and colleagues have 

shown that TGF-β signaling in fibroblasts modulates the growth and oncogenesis of adjacent epithelia 

(Bhowmick NA).  

 

2.4 Mammary stem cells 

 

It is evident that the mammary gland possesses a strong regeneration capacity bypass the subsequent 

reproductive and lactation cycles. A logical question is then which cells offer this regeneration capacity 

and which cells will survive and which cells will be replaced during the dry period?  

he first question may be explained by the presence of a long-lived population of stem cells in mammary 

inite propensity to produce functional cells. Stem cells are undifferentiated, 

ivision-competent cells that reside in a given tissue, and that function to regenerate and/or replace all of 

 from CzechII MMTV-infected mice and transplanted them into 

leared mammary fat pads of syngeneic hosts. These hosts were mated and 1 day after parturition about 

oved for analysis, leaving the remainder intact for 

subsequent serial transplantation. As expected, most of the transplanted epithelial fragments expanded 

T

gland that have a near-inf

d

the cell types that compose that tissue. The presence of pluripotent stem cells and cell-line committed 

progenitors in the normal mammary gland has been described by several authors in different species such 

as the mouse, rat, human and cow. 

 

2.4.1.One cell, one mammary gland 

Kordon and Smith suggested the existence of a population of self-renewing and pluripotent stem cells in 

the mammary gland of mice. Using viral integration to mark and follow individual clones, they reported 

that a fully differentiated mammary gland could be derived from a single cell clone. They took small 

fragments of mammary epithelium

c

80% of each of the reconstituted glands was rem
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during pregnancy to become complete and functional mammary glands. If these glands had been derived 

from several different progenitors, no clear pattern of MMTV-insertional events would have been 

detected. If, on the other hand, the outgrowths were clonal a distinct and easily detected pattern of 

MMTV insertion sites would have been seen, as was the case in 20 of the 30 different outgrowths 

examined by Southern analysis. As a control, the intact contralateral glands of the host mice were 

analyzed in the same way and, as would be expected for a polyclonal tissue derived from several 

progenitors, no clear pattern of insertional events could be seen. The inescapable conclusion of this first 

part of the work of Kordon and Smith was that most of the reconstituted mammary glands were clonal. 

Fragments of these clonal glands were then transplanted into new hosts where they were shown to retain 

the same pattern of MMTV insertion sites, providing evidence of self-renewal of the original stem cell. 

Additional MMTV insertion sites were often detected, however, suggesting the acquisition of more 

mutations during clonal expansion. (Kordon & Smith 1998). 

2.4.2 Two lineage-specific progenitors come from one stem cell 

By transgenic mouse models, Kordon and Smith also demonstrated that regeneration of the mammary 

secretory lobules can be affected separately from the growth and development of the mammary epithelial 

ducts (Kordon & Smith 1995). This suggests that mammary epithelial stem cells capable of producing 

two functionally distinct progenitor cells in the mammary gland epithelium: one capable of producing 

daughters committed to ductal formation, the other capable only of producing daughters committed to 

panding and maintaining the number of mammary epithelial cells in subsequent 

lactation. 

lobular function.  

Two distinct epithelial cell progenitors have been identified by experiments designed to determine 

whether basal lobular and ductal phenotypes could develop independently under conditions imposed by a 

limiting dilution (Kordon & Smith, 1998). As these precursor cells are limited in their proliferation 

capacity, they need themselves to be renewed by cells originating from the pluripotent stem cell 

population. It can therefore be postulated that candidate cells for renewal are the precursor cells that are 

responsible for ex
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It was found that lobular i.e. secretory progenitor cells are present as distinct entities among the mammary 

epithelial cells of immature virgin female mice. Similarly, ductal epithelial progenitors are present within 

the same population, and both cell populations are extremely small (Kordon and Smith, 1995).  

Additionally, using cre-loxp system, Wagner et al. (2002) demonstrated that a newly matured epithelial 

sponse to 

lactogenic hormones. It was also presented the genetic evidence that despite the close morphological 

 

Mamm o g

basal and luminal cells. These intermediate cells ar

both light and electron microscopy (Chepko & S have few cellular organelles, pale 

light cells (SLC) and as an undifferentiated large light cells (ULLC). In 

rodents the results of in vitro and in vivo experiments suggest that the pale-staining or light cells situated 

cells during pregnancy permanently activates a ubiquitously 

expressed reporter transgene (Rosa-lacZ), whose expression is 

cell population which does not undergo cell death during involution or remodeling after lactation and 

function as alveolar progenitors. In this study, WAP-Cre transgene mice were crossed with reporter 

(Rosa-LacZ) mice to monitor the differentiation process of alveolar precursor cells in re

resemblance, an involuted mammary gland is fundamentally different from a virgin gland, due to the lack 

of the parity-induced population in the latter. 

 

 

Fig.10. The basic principle of the genetic labeling of 

differentiating cells in the developing mammary gland using the 

Cre-lox technique. In this experimental setting, the transient 

upregulation of Cre recombinase in differentiating epithelial 

 

 

 

 

 

2.4.3. Markers and morphology 

ary epithelial cells of a distinctive morph

nuclei and are found as a small 

y can be found in a position intermediate between the 

e distinguished by their pale-staining cytoplasm under 

mith 1997). They 

not dependent on the differentiation status of a given cell. The 

reporter gene remains active in cells that no longer require high 

systemic hormone levels to maintain a functionally 

differentiated state (i.e. WAP gene expression). Hence, the 

permanent activation of the reporter gene (blue X-Gal staining) 

genetically labels differentiating cells that bypass apoptosis and 

remodeling at the conclusion of the reproductive cycle. The 

labeled cells in the remodeled (involuted) gland represent a new 

epithelial subtype, which is not present in nulliparous animals 

(Wagner et al. 2002). 

lo
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between the luminal and the myo-epithelial cell layers are the most likely candidates for a stem-cell 

population (Chepko & Smith 1997). 

The isolation of stem cells from the mammary gland in human and rodents has been hindered by the lack 

of identified specific cell surface markers. In order to characterize putative epithelial stem cells further, a 

method successfully used for stem cell isolation in other tissues were used to isolate a side population 

(SP) from mouse mammary gland. The technique consists of staining isolated cells with Hoechst 33342 

followed by flow cytometric analysis to sort a ‘side population’ (SP) of cells that efflux the fluorescent 

void of 

oducing an entire new mammary epithelial 

tree. This approach relies on the remarkable organizational ability of both the mammary epithelium and 

pithelium and is not due to extracellular effects mediated within the 

transgenic environment and suggest that distinct progenitor populations exist for alveolar cells and for 

dye (Goodell et al. 1997). This shows that mouse mammary SP cells are enriched for expression of three 

putative stem-cell markers; Sca-1, α6-integrin and telomerase (Alvi et al. 2003; Welm et al. 2002). The 

percentage of mouse mammary SP cells was estimated to be 2–3% of all epithelial cells in one study 

(Welm et al. 2002) and 0.5% of total cells in the other (Alvi et al. 2003). Alvi et al. have further reported 

that nearly half of the SP cells were steroid receptor-positive and have produced preliminary data 

suggesting the presence of a similar SP population in human breast epithelium (Alvi et al. 2003). 

2.4.4. Experimental approach for mammary stem cell studies 

An in vivo transplantation system was used to evaluate the developmental capacities of specific mouse 

mammary epithelial cell populations. Mammary cleared fat pad and transplantation technique is to place a 

small piece of mammary tissue or mammary epithelial cells back into a fat pad that is de

endogenous epithelium, the injected material is capable of pr

stroma. It is an important method not only on normal mammary gland development, but also on the 

mammary stem cell exploration.  

One example of the power of the transplantation method using transgenic animals is the experiment of 

Smith who investigated the developmental potentials of mouse mammary epithelial cells in WAP-LacZ 

mice and TGFB1 mice (Kordon EC, et al 1995). By tranplantation, the results demonstrate the phenotype 

is a property of the transgenic e

ductal cells as well as for multipotent cells. Additionally, increased expression of TGFB1 preferentially 

affected alveolar-progenitor stem cells. Furthermore, The use of quantitative transplantation analysis 
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along with specific markers for stem cells would provide a more comprehensive understanding of the 

developmental capabilities of the mammary parenchyma at different stages as well as the effects of 

specific agents (i.e. TGFβ1, oncogenes) in these processes. The genetically engineered mice coupled with 

fluoresence-activated cell sorting analysis and transplantation into the cleared mammary fat pad is set as a 

model system to isolate and characterize functional mammary progenitors and stem cells 

In addition, the cleared fat pad allows serial transplantation of cell populations. Although established cell 

lines maintained in cell culture by serial passage have provided a useful means to study the effects of 

drugs and biological molecules on cell function and growth, this approach is often limited by the absence 

of tissue interactions. In contrast, the ability to serially transplant mammary cells into the mammary fat 

pad allows the establishment of stable and immortalized lines of non-neoplastic mammary cells analogous 

 

2.4.5. Cancer prevention and treatment 

Stem cells are important not only because 

replacment, but also because of the risk they

 indirect evidence that stem cells persist in

tic da

prime targets for oncogenic transformatio

to the established cell lines in vitro. 

 

is

them susceptible to accumulating gene

carcinogenesis is that cancer is a stem-cell

strategies must be targeted to mammary epi

 

   Cleared Fat Pad and Transplantation
of the potential that they offer for organ regeneration or 

 pose in er is concerned, there 

 the mammary gland throughout life, this longevity makes 

mage during self-renewal, where they must be regarded as 

n. Thus, One implication of the ‘multihit theory’ of 

Fig.11.  Cleared Fat Pad technique 

carcinogenesis. As far as canc

 disease. If this is the case, then breast-cancer prevention 
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mammary gland and susceptibility to carcinogens appear to be related. The greatest concentration of stem 

cells is in terminal end bud and alveolar bud structures during pubertal development in rodents, and it is 

during this period that the gland is most sensitive to carcinogens (Russo & Russo 1978a; Russo & Russo 

1978b). Similar structures exist in the breasts of prepubertal and adolescent women, and it is this age 

group that suffered the highest rates of breast cancer after irradiation due to the atomic detonations in 

Japan in 1945 (McGregor et al. 1977). 

In addition, little is known about whether tumours contain stem cells equivalent to normal tissues. Most 

current chemotherapeutic and endocrine agents induce apoptosis, but whether mammary stem cells are 

susceptible to programmed cell death is not known. Studies on the mouse small intestine suggest that 

there may be two populations of stem cells. One of these undergoes spontaneous apoptosis as part of the 

homeostatic mechanism restricting the number of stem cells present at any one time (Potten CS 1997). 

The other, smaller, population is resistant to radiation-induced apoptosis, undergoes DNA repair and, 

presumably, is responsible for repopulation of the damaged intestinal epithelium. If this is the case, then 

therapies aimed at killing proliferating cells may have little impact on this small number of tumour stem 

cells that remain quiescent, but which may cause tumour repopulation following treatment. Stem cells 

may also be responsible for local or distant recurrence that may occur several years after initial treatment 

of the primary tumour. It is therefore imperative that we identify tissue-specific stem cells and study their 

regulation in order to generate new targets for therapy that can prevent tumour stem cells from seeding 

tumour regrowth.  In mammary gland field, the model of transplanted mouse mammary gland refined by 

Kordon and Smith should allow us to determine whether mammary stem cells exhibit similar properties 

and to develop the means to overcome resistance to apoptosis. 
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Part III  Integrins in the normal development and carcinogenesis of mouse mammary gland 

 

In part II, we mentioned that the mammary epithelium consists of two layers: a luminal layer of secretory 

cells and a basal layer of myoepithelial cells. Integrins exist in both of the layers. Immunohistochemical 

studies with human and mouse mammary gland tissue revealed the presence of α2, α3, α6, β1, and β4 

subunits in the luminal and myoepithelial cells and of α1, α5, and αv chains exclusively in the 

myoepithelial cells. The α5 and αv subunits seem to be expressed at lower levels than other integrin 

chains, being restricted to certain developmental stages and regions of the mammary tree. As expected, 

most integrins are present at sites of cell-ECM interaction, on the myoepithelial cells and on the basal 

surface of the alveolar luminal cells. The α2, α3, α6, and β1 integrin chains have also been found on the 

lateral surfaces of the luminal cells at sites of cell–cell interaction where ECM proteins are not detected in 

normal mammary epithelium. The activation status, potential ligands (if any), and functions of the 

integrins present on lateral cell surfaces are not known. These integrins may remain inactive or serve for 

homo- or heterotypic cell–cell interactions as it has been suggested to do in other cell types (Symington 

BE et al. 1993). 

 

 

 Fig.12. A schematic section through part of the 

mammary gland: the lactating alveolus) epithelial 

cells (blue) attach to the extracellular protein matrix 

(red) through a series of integrin proteins (green).  

 

 

 

 

 

 

Integrins have been identified as important regulators of mammary epithelial cell growth and 

differentiation. Their ability to promote cell anchorage, proliferation, survival, migration, and the 

induction of active ECM-degrading enzymes suggests that they play an essential role in normal mammary 

morphogenesis, but, on the other hand, reveals their potential to promote tumor progression. 
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3.1 Integrins play important roles in mammary gland development  

 

 Although data concerning the regulation of integrin expression during mammary gland development are 

rather fragmentary, there is enough experimental evidence to conclude that they are controlled 

transcriptionally and post-transcriptionally. Northern and western blotting performed with isolated rat 

mammary epithelial cells has shown that expression of the β1 and β4 chains increases during pregnancy. 

During lactation, β1 is further upregulated, and its expression level reaches a peak, whereas β4 level 

drops. (Huang R.Y. & Ip M.M, 2001).  

We observed similar changes of β1 integrin expression in the mouse stain C57Bl/6 (Fig.13). The 

upregulation of integrin β1 during late pregnancy and lactation suggests that integrins have important 

roles during these stages. 

 Fig.13. Expression pattern of β1-Integrin during murine mammary gland  development (BL/6) 
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3.1.1. Control of mammary epithelial cell proliferation and survival 

In normal adherent cells, activation of MAPKs and induction of proliferation in response to growth factor 

stimulation occurs only if cells interact with ECM. Moreover, integrin-mediated adhesion to ECM 

substrates is essential for cell survival (described more in Part I). Using a human breast cancer model, 

Weaver et al. could show that treatment of tumor cells in a 3-dimensional culture with inhibitory β1-

integrin antibody or its Fab fragments led to a striking morphological and functional reversion to a normal 

phenotype. The newly-formed reverted acini re-assembled a basement membrane and re-established E-

cadherin-catenin complexes, and re-organized their cytoskeleton. At the same time they downregulated 

cyclin D1, upregulated p21cip1 and stopped growing (Weaver T.M. et al. 1997). Moreover, reciprocal 

interactions between EGF receptor and integrin signaling pathways in the control of proliferation have 

been demonstrated by Wang et al. (Wang. F et al. 1998;Wang. F, et al. 2002). Inhibiting either EGF 

receptor or β1 integrin, in tumor cells growing in three-dimensional cultures in Matrigel, results in growth 
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arrest and restoration of normal morphogenesis. Similar results were obtained by inhibiting MAPKs or 

PI3K, the activation of which is triggered by integrins and growth factor receptors. Importantly, cell–

ECM interactions can regulate expression of the EGF receptor, as cells treated with function-blocking 

anti-β1 integrin antibody have decreased EGF receptor levels (Reginato M.j. et al. 2003).  

In the absence of a survival signal that is induced and maintained by integrins, normal, non-transformed 

mammary epithelial cells undergo apoptosis, termed in this case anoikis. Gilmore et al. showed that this 

process depends on the translocation of Bax, a proapoptotic protein of the Bcl2 family, from the cytosol 

to the mitochondria (Gilmore A.P et al. 2000). Adhesion signals mediated by focal adhesion kinase (FAK) 

prevent the activation of Bax and its translocation to the mitochondria. Bax is activated extremely rapidly 

after cell detachment (Wang.P et al. 2003), whereas subsequent events in the apoptosis program, such as 

cytochrome c release and caspase activation, occur after a considerable delay. Bim is another pro-

apoptotic protein induced in mammary epithelial cells following the loss of integrin-mediated adhesion to 

ECM (Reginato M.j. et al. 2003). Bim appears to be a powerful cell death inducer in mammary epithelial 

cells, as the downregulation of its expression by the RNAi technique inhibits anoikis. The engagement of 

β1 integrin, activation of the EGF receptor, and activation of the ERK MAPKs are required to block Bim 

expression in epithelial cells, clearly demonstrating that integrins trigger survival signals in concert with 

growth factor receptors. Stable overexpression of the EGF-receptor blocks cell detachment-induced Bim 

expression, leads to the activation of ERK in detached cells, and prevents apoptosis. Thus, overexpression 

of the EGF-receptor may enable cells to escape anoikis; lead to a loss of anchorage dependence (Reginato 

M.j. et al. 2003) and this could be involved in the cancer development. 

Phosphatidyl-inositol-3-kinase (PI3K) and the serine/threonine kinase Akt are required for transmission 

of the cell survival signal triggered by integrin mediated adhesion. PI3K is a downstream effector of 

insulin receptor signaling and is activated upon treatment of cells with insulin or insulin-like growth 

factors. After several days of primary culture, mammary epithelial cells grown on collagen I undergo 

apoptosis, whereas those cultured on Matrigel in the presence of insulin or insulin-like growth factors (but 

not prolactin or hydrocortisone) do not (Farrelly.N et.al. 1999). The α6 and β1 integrin subunits have 

been found to be required for mammary epithelial cell survival under these conditions. The 

phosphorylation of insulin receptor substrate-1, its binding to PI3K, and the phosphorylation of Akt are 

all enhanced in cultures on Matrigel, suggesting that cell–ECM interactions and PI3K pathway signaling 

via the insulin receptor control survival/apoptosis in mammary epithelial cells (Farrelly.N et.al. 1999; Lee 

Y.J and C. H. Streuli, 1999). 
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The first evidence that β1 integrins are involved in the control of cell survival and proliferation during 

mammary gland development in vivo came from transgenic mice expressing a chimeric molecule 

consisting of the cytoplasmic and transmembrane domains of β1 integrin fused to the extracellular 

domain of CD4 (MMTV-β1-cyto) in mammary epithelial cells. This chimeric molecule does not bind 

ECM ligands and in cultured cells, acts as a dominant negative mutant of β1 integrin. The mammary 

glands of MMTV-β1-cyto females displayed low epithelial cell proliferation and high apoptosis rates 

during the intensive growth phase of mid-pregnancy and early lactation, accompanied by a lack of 

activation of the MAPKs, ERK, and JNK (Faraldo MM et al. 1998&2001). PI3K activation upon 

adhesion leads to the phosphorylation of Akt, which in turn phosphorylates the pro-apoptotic protein Bad. 

These phosphorylation events are essential for cell survival. In the mammary glands of MMTV-β1-cyto 

mice, Akt and Bad were all found to be less phosphorylated than in wild-type animals, revealing a 

deficiency in activation of the PI3K pathway accompanying the perturbation of β1 integrin function 

(Faraldo MM et al. 2001). Important evidence supporting the involvement of β1 integrins in the control of 

mammary epithelial cell survival in vivo was obtained by Prince et al. (Prince et al. 2002). This study 

demonstrated that although β1 integrin was present in mammary epithelial cells at all developmental 

stages, the amount of ligand-associated β1 integrin detected with a conformation-sensitive antibody 

decreased markedly at the onset of involution prior to the peak of apoptosis. Finally, an interesting 

finding suggesting that integrins may transmit pro-apoptotic signals was reported by Seewaldt et al. 

(Seewaldt VL et al. 2001). Human mammary epithelial cells expressing p53 undergo growth arrest and 

form acinus-like structures after several days of culture in Matrigel, whereas cells with suppressed p53 

function, under the same experimental conditions, undergo apoptosis. Cell death can be prevented by 

incubation with anti-β1 or anti-β3 function blocking antibodies, suggesting that α3β1 integrin may be 

involved in the induction of apoptosis in the cells lacking active p53 (Bachelder RE et al. 1999). 

 

3.1.2.Control of mammary epithelial cell differentiation 

Pioneering studies indicated that the cellular microenvironment is critical for mammary epithelial 

differentiation. For example, primary mammary epithelial cells can maintain the glucose metabolic 

patterns of lactating gland and secret milk proteins in response to the lactogenic hormones when the cells 

are cultured on a collagen I gel which is floated into the medium. However, these cells lose their 

differentiation when they were cultured in conventional tissue culture conditions, even in the presence of 
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the lactogenic hormones (Lee, E.Y.H  et al. 1984). These experiments provided some of the first evidence 

that tissue microenvironment and cell shape are prerequisites for tissue specific gene expression. 

Interestingly, the induction of differentiation in cells cultured on floating collagen gels correlated with 

deposition of an endogenously synthesized basement membrane. Direct evidence of a role for basement 

membrane in differentiation came from the observation that single, isolated mammary cells could be 

induced to express β-casein in the presence of basement membrane proteins but not on the collagen I 

(streuli C.H et al. 1991). 

Integrins are major receptors for extracellular matrix proteins, including basement membrane 

components. Studies with functional blocking integrin antibodies have been used to demonstrate their 

requirement for the mammary epithelial differentiation. Anti-β1 integrin antibody inhibited the ability of 

mammary cells embedded within basement membrane to express the milk protein β-casein, wherera other 

blocking antibodies such as one for E-cadherin did not block the differentiation (Streuli C.H et al. 1991). 

Thus, integrins act as basement membrane receptors to trigger a signalling pathway leading to milk 

protein expression.   

Basement membrane signals could regulate mammary differentiation at the transcription level. A 

transcription factor, STAT5 (signal transducer and activator of transcription 5), has been shown to play a 

critical role in mammary gland development and in the control of milk gene expression (More details in 

Part II).  Experiments carried out with mammary epithelial cells in culture have shown that the activation 

of STAT5 via the prolactin receptor pathway requires β1 integrin-mediated interaction with laminin, the 

major component of Matrigel. Prolactin does not induce phosphorylation of its receptor, JAK2 or STAT5, 

if mammary epithelial cells are cultured on interstitial collagen I (Streuli C.H et al. 1995). Moreover, both 

β1 and β4 integrin signals are required for β-casein gene expression by mammary cells cultured on 

Matrigel, suggesting that these integrins act in concert in the control of mammary epithelial cell 

differentiation (Muschler J, et al. 1999). 

The perturbation of β1 integrin function in vivo (MMTV-β1-cyto mouse model) results in the impaired 

differentiation of secretory epithelial cells at the beginning of lactation and precocious dedifferentiation 

during involution, as estimated by levels of β-casein and WAP gene transcripts (Faraldo MM et al 1998). 

The precocious dedifferentiation of the secretory epithelial cells in these transgenic mice is caused by a 

lack of activated STAT5 in the nuclei. However, STAT5 and JAK2 phosphorylation levels are unaffected 
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in the mammary glands of these transgenic mice. These findings suggest that β1-integrin signaling may 

have an impact on STAT5 activity, not only by controlling STAT5 phosphorylation, but also by affecting 

the translocation of STAT5 into the nucleus. The perturbation of β1 integrin function during involution 

also leads to the precocious activation of NF-KB, which can compete with STAT5 for transcriptional 

coactivators and may therefore inhibit the STAT5-dependent transcription of milk protein genes (Faraldo 

MM et al 2002). 

Overall, these studies convincingly demonstrate that basement membrane is essential for the development 

and differentiation of mammary epithelium. The integrin receptors, including β1 integrins and α6β4, are 

involved in the control of mammary epithelial cell terminal differentiation. 

 

3.2 Integrins and breast carcinogenesis 

 

3.2.1. Integrin expression and function in breast carcinogenesis 

In normal breast, intense staining of many integrin subunits is seen concentrated at the basement 

membrane in the myoepithelial layer. In invasive carcinomas, this cell layer is most often absent and the 

expression of integrin subunits on the surface of carcinoma cells is diffuse. This led to the erroneous 

assumption that there is an overall decrease, or absence, of integrin expression in breast carcinoma. 

Although the expression of some integrin subunits is decreased, it is clear from many in vitro and in vivo 

studies that integrin receptors are expressed in breast adenocarcinomas and that they contribute 

significantly to the pathobiology of breast cancer.  

Integrins have been implicated in several aspects of tumor progression, including tumor cell survival, 

induction and activation of matrix-degrading enzymes, migration, and anchorage at the sites of 

metastasis. In this respect, α6β1 and α6 β4, which act as laminin receptors, are the best-studied integrins. 

They promote the survival and migration of breast carcinoma cells. α6 expression is strongest in the 

myoepithelial cells and the staining is predominant at the basal surface in contact with the basement 

membrane. High levels of α6 integrin chains in human mammary carcinoma are clearly correlated with 

low patient survival rates (Friedrichs K et al. 1995). In vitro, in highly metastatic human mammary 

carcinoma cell lines, the inhibition of α6β1 integrin dimer formation abolishes tumor growth and 

metastasis. High levels of apoptosis are observed in the tumors formed by cells lacking the α6 β1 dimer. 

These observations provide evidence that the α6 β1 integrin promotes cell survival in mammary tumors 

(Wewer UM et al. 1997). The α6 β4 integrin, in addition to promoting tumor cell survival, also increases 
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the motility of tumor cells. Carcinoma cell lines often express high levels of α6 β4 integrin but do not 

form hemidesmosomes, which anchor the cells and hinder migration. In this case, α6 β4 is associated 

with actin microfilaments in the invasive membrane protrusions and serves to enhance motility. The α6β4 

integrin is also involved in the activation of PI3K, the small GTP-ases Rho and Rac, and protein kinase 

A, which are all essential for carcinoma migration and invasion (Mercurio AM et al. 2001; O’Connor & 

Mercurio, 2001). α6β4 mediated compression enables carcinoma cells to remodel the basement 

membrane by a process involving the packing of basement membrane material under the cells and the 

mechanical removal of this material from adjacent areas (Rabinovitz I et al. 2001). 

In the mammary tumorigenesis studies, α2β1 is a special in comparison with the other integrins we 

discussed above. The α2β1 integrin is a dual-specificity receptor that recognizes collagens I and IV and 

members of the laminin family. The α2 subunit is expressed basally as well as laterally in luminal 

epithelial cells. The expression of α2β1 is maintained in benign breast lesions such as fibrocystic disease 

or fibroadenomas (Zutter MM et al. 1990). However, the expression level of α2β1 decreases with the 

differentiation status of breast adenocarcinomas. Specifically, poorly differentiated adenocarcinomas 

express very low, or undetectable levels of α2β1 while moderately differentiated adenocarcinomas 

express intermediate levels (Zutter MM et al. 1990&1993). These correlative studies suggested that the 

α2β1 integrin is important for maintaining the differentiation and controlling proliferation of the breast 

epithelium and that its loss is essential for the progression to invasive carcinoma. 

 

3.2.2 Integrin linked kinases 

Two important enzymes that associate with focal adhesions are focal adhesion kinase (FAK) and integrin-

linked kinase (ILK). Because of their ability to bind many adaptor proteins and other signaling enzymes, 

FAK and ILK are viewed as critical components that integrate cell–ECM interactions with cell 

phenotype. Besides these, they were found to be involved in the progression of breast tumor.  

FAK is over-expressed in a number of human tumors, such as colon and breast carcinomas, sarcomas, 

ovarian carcinomas etc. A correlation between the expression level of FAK and the invasive potential of 

the cancer has been described in most of these studies. Possible mechanisms that lead to elevated FAK 

expression might involve increased dosage and amplification of the FAK gene, as observed in cell lines 

derived from human tumors of lung, breast and colon, or its constitutive activation, as described in 

malignant melanoma cells (Kahana O et al. 2002). Cancer studies show that FAK might play a role in 
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suppressing apoptosis. For example, down regulation of FAK with antisense oligonucleotides results in 

apoptosis of tumor cells in culture, as does the inhibition of its function by expression of either FRNK or 

the N-terminal domain (Beviglia L et al. 2003). Furthermore, breast tumor cell lines that are viable 

without ECM attachment also undergo apoptosis upon interruption of FAK function, demonstrating that 

FAK is a survival signal even in the absence of matrix signaling (Xu LH et al. 2000). 

An important function of ILK is structural and, together with its associated proteins, this kinase serves to 

provide an essential component linking the cytoskeleton with integrin attachment sites. At the time of its 

original identification, ILK was proposed to be involved with neoplastic progression because ectopic 

expression of human ILK disrupted cell adhesion to ECM and induced transformation of intestinal 

epithelial cells, as judged by anchorage independent growth (Hannigan GE et al. 1996).  

 

ILK may also be involved with neoplastic progression in the mammary gland, although no studies have 

yet been carried out to examine whether its expression or activity is altered in human breast cancer. In a 

transgenic mouse model, human ILK expressed under the control of the MMTV promoter induced 

epithelial hyperplasia within 6 months, and focal mammary tumors (with a range of different 

morphological phenotypes) appeared in 34% of animals at an average age of 18 months (White DE et al. 

2001). The proliferative response in the epithelium of transgenic glands was accompanied by constitutive 

phosphorylation of PKB, GSK3β, and MAPK. Although it is not clear whether this phosphorylation is 

directly responsible for increased proliferation, other studies in MCF7 cells have indicated that ILK can 

increase the activity of the cyclin D1 promoter (D’Amico M et al. 2000). 

 

3.2.3. Integrin cooperativity with growth factors  

An emerging area in the study of integrin contributions to cancer is the cross-talk between these adhesion 

receptors and soluble growth factor and cytokine receptors. As mentioned in part II, in the normal breast 

integrin receptors cooperate with hormones and growth factors to promote mammary epithelial 

differentiation and function. An increasing number of studies indicate that integrins also cooperate with 

soluble factors to promote carcinoma progression. 

Integrins can cooperate with growth factor receptors to enhance their signaling capabilities. For example, 

α6β1 and α6β4 integrins can associate with the ErbB2 protein and increase its signaling functions. The 

NIH3T3 cells, which have over expressed both α6β4 integrin and erbB2 receptors, but not those 

overexpressing a crippled ErbB-2, showed enhanced proliferation rates and invasiveness (Falcioni R. et 
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al. 1997).  Another mechanism of integrin-growth factor receptor cooperation involves integrin activation 

by growth factors and cytokines. A well-studied example is the activation of the αvβ5 integrin by the 

insulin-like growth factor receptor (Brooks PC et al, 1997). Breast carcinoma cells that express 

αvβ5 adhere to but do not migrate on vitronectin in vitro unless they are stimulated with IGF-1 or insulin. 

In vivo, these cells form tumors in the absence of IGF-1, however, they only metastasize when stimulated 

with IGF-1 or insulin (Brooks PC et al, 1997). These data suggest that the cooperation between αvβ5 and 

the IGF-1 receptor may regulate migration and invasion to promote the metastatic spread of tumor cells. 

 

3.2.4. In vitro and in vivo models 

Since many integrins have the potential to promote tumor progression, antagonists of integrins, such as 

blocking antibodies or peptides, have been used to inhibitor the function of integrins in tumor cells. For 

example, vascular integrins, in particular αvβ3, are important regulators of angiogenesis, including tumor 

angiogenesis. It has been shown that integrin αvβ3 antagonists could suppress tumor angiogenesis and 

tumor progression in many preclinical tumor models. In some breast cancer cell lines, functional integrin 

β1 specific antibodies with the capacity to override the oncogenic events and yield tumor revertant cells 

have been found. For example, in a developed human breast cancer model (HMT-3522 human breast 

cancer cell line), treatment of tumor cells in a 3-dimensional culture with inhibitory β1-integrin antibody 

or its Fab fragments led to a striking morphological and functional reversion to a normal phenotype 

(Weaver V.M. et al. 1997). The newly formed reverted acini re-assembled a basement membrane and re-

established E-cadherin-catenin complexes, and re-organized their cytoskeletons. At the same time they 

downregulated Cyclin D1, upregulated p21cip1, and stopped growing. Tumor cells treated with the same 

antibody and injected into nude mice had significantly reduced number and size of tumors in nude mice. 

The tissue distribution of other integrins was also normalized, suggesting the existence of intimate 

interactions between the different integrin pathways as well as adherens junctions. On the other hand, 

nonmalignant cells when treated with either α6 or β4 function altering antibodies continued to grow, and 

had disorganized colony morphologies resembling the untreated tumor colonies. This shows a significant 

role of the α6/β4 heterodimer in directing polarity and tissue structure. The observed phenotypes were 

reversible when the cells were disassociated and the antibodies removed (Weaver V.M. et al. 1997).  

A recent paper by White et al. shows that β1 integrin is required for mammary tumor growth in vivo. 

Using cre-loxp recombination system to disrupt β1-integrin function in a transgenic mouse model of 
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breast cancer, they could show that β1-integrin expression is critical for the initiation of mammary 

tumorigenesis (White, DE et al, 2004). Although ablation of β1 integrin expression from cells of the 

mouse mammary epithelium did not impair mammary gland development during puberty, deletion of the 

conditional β1-integrin allele dramatically impaired mammary tumorigenesis in the MMTV/PyV MT 

(polyomavirus middle T oncogene) mice. In addition, the deletion of β1 integrin in cultured mammary 

tumor cells was found to be associated with a decrease in the phosphorylation of FAK tyrosine residues, 

including the c-Src binding site. The deletion of β1 integrin from these PyV MT-induced tumor cells also 

inhibited the capacity of these cells to proliferate and form tumors in vivo. Taken together, all these 

observations suggest that β1 integrin plays a critical role in both the initiation and maintenance of 

mammary tumor growth in vivo (White, DE et al, 2004). 
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Part IV: Summary and open questions 
 

To summarize, integrins play essential roles in the development of the mammary gland. The integrin β1, 

one of the main integrin subunit in the mammary gland, plays important roles in mammary epithelium 

proliferation, differentiation, and apoptosis. Besides their functions in the normal mammary gland 

development, they also have potentials to promote mammary tumor progression. 

Although different approaches to interfering β1 integrin expression have been applied to investigate the 

role of integrin β1 in the mammary gland development and mammary tumorigenesis, some limitations of 

these approaches have left many questions open for clarification. For example, what is the role of integrin 

β1 in the specific mammary cell type, or the specific time and window in the mammary gland 

development? What is the molecular mechanism which blocks tumor cell proliferation after β1 integrin 

deletion? 

As mentioned, Faraldo used a dominant negative transgene (CD4-β1 integrin) to interfere with β1 

integrin function in the gland (Faraldo MM et al. 1998). However, dominant negative approaches have 

some limitations. Furthermore, integrins are unique molecules that transduce signals in two directions. 

Thus, the portion of β1 integrin remaining in the dominant negative transgene namely the transmembrane 

and intracellular domain still has the potential to transmit signals. In addition, it is known that depending 

on expression level, CD4-β1 integrin can act either in a dominant negative or a dominant active manner. 

Thus, to understand the role of integrin β1 more precisely in the mammary gland development and clarify 

the molecular mechanism, a genetic approach is very appropriate. 
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Aims of the Ph.D. Project 

(1) To determine the role of β1 integrin in normal development of the mouse 

mammary gland, with a particular emphasis on how β1 integrins influcence 

proliferation, differentiation and apoptosis.  

By using conditional deletion strategy, this was explored in a specific time and 

window in vivo. 

 

(2) To investigate the molecular mechanisms for the phenotypes we observed in 

vivo.  

The uncovering of such mechanisms will explain how β1 integrin affect normal 

development; this could provide clues for the breast cancer investigation. 

 

(3) Based upon results obtained in vivo, to establish an in vitro system that mimics 

the effects of deletion of the integrin β1 in the mouse. 

The aim is to gain experimental flexibility by using an in vitro model that can be 

more easily manipulated than the current mouse model and allow us to further 

investigate the molecular mechanisms underlying the in vivo phenotypes. 
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Results: 
 

 

Conditional deletion of β1 integrin in the mammary gland 

To inactivate the Itgβ1 gene in the mammary gland, we crossed Itgβ1flox/flox mice (Graus-Porta et al., 2001) 

with WAPiCre transgenic mice (Wintermantel et al., 2002). WAPiCre is specifically expressed in the 

luminal epithelial cells of the gland starting at midpregnancy and reaches a maximum at day 3 of lactation 

(Wintermantel et al., 2002)(Fig 2A panel d). WAPiCre is not expressed in the ductal tree of the virgin 

gland, nor is it expressed in the basal myoepithelial cells of the mammary gland (Wintermantel et al., 

2002)(N. Li, unpublished observations and Fig 2A panels b & d). Littermates with the genotype 

Itgβ1flox/flox; WAPiCre-/- (referred to as control mice) or Itgβ1flox/flox; WAPiCre+/- (referred to as β1-integrin 

mutant mice) were used for all analyses.  

Mammary glands from 3-day lactating females were used to examine Cre-mediated recombination. A 

PCR analysis carried out on DNA from mammary tissue, revealed the expected 1.3 kB product resulting 

from the recombined Itgβ1 allele in mutant mice (Fig 1B). The unrecombined 2.1 kB floxed allele was 

detected in control mice and in mutant mice due to the presence of myoepithelial and stroma-derived cells 

(Fig 1B). Western analyses for β1 integrin protein revealed a strong decrease in expression in the 

recombined mutant glands, compared to control glands (Fig 1C), corroborating the PCR results. β1 

integrin is not totally absent since expression remains in the myoepithelial cell layer. 

Immunohistochemical analyses carried out on glands from control 3-day lactating females revealed the 

expected localization of β1 integrin to the basal layer of the myoepithelial cells, and to the basal-lateral 

layer of the luminal cells (Fig.2B, panels e & g; white arrow indicates lateral staining) (Prince et al., 2002; 

Taddei et al., 2003). In lactating glands from β1 integrin mutant females, the majority of luminal cells 

were negative for β1 integrin immunostaining (Fig. 2B, panels f & h), which was most obvious on the 

lateral surface of mutant cells (white arrow, panel g vs. yellow arrow, panel h). The remaining β1 integrin 

immunostaining is from the myoepithelial cells. These results demonstrate the development-specific 

ablation of β1 integrin in the luminal cells of the mammary alveoli. 

To examine directly the functional consequences of β1 integrin ablation on cell adhesion, we performed 

adhesion assays using primary mammary epithelial cells prepared from 5-day lactating glands. There 

were no striking differences in the adhesion of control and β1 integrin mutant cells plated on poly-D-
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lysine (PDL), collagen I (Cl), fibronectin (FN), and gelatin (Fig 1F). However, primary cells from β1 

integrin-mutant glands displayed a severely reduced adhesion on laminin, the major β1 integrin ligand in 

the mammary gland (Prince et al., 2002) (Fig 3, LN).  

 

Function of mammary gland was impaired in β1 integrin mutant mice 

The body weight of litters nursed by either control or integrin β1 mutant mothers were monitored from 

new birth until lactation day 20 (Fig. 4A). The pup weight of pups nursed by mutant mothers began to 

decrease after first round lactation day 5. These pups appear visibly malnourished after first round 

lactation day 14. (Fig. 4A) 

Interestingly, at the secondary lactation stage, the pups nursed by mutant mothers appear visible 

malnourished after lactation day 1, and pup weight of pups nursed by mutant dams reduced dramatically 

in comparison with first round lactation stage (Fig.4B). 

To check the secretion and the quantity of the milk, at first round lactation-day-5 and lactation-day-14, 

control and mutant mice were injected with oxytoxin and milk were collected from #4 mammary glands 

of each mouse. Preliminary data showed that consistent with the functional pup weight analysis, control 

or mutant dams secret similarly volume of milk at lactation-day-5, but there is only little milk secretion 

by mutant mothers at lactation-day-14 (Fig.5C) 

Electrophoretic separation of control or mutant milk samples showed similar milk expression patterns at 

lactation day 5 or lactation day 14, including milk proteins WAP and β-casein (Fig 5A). Western blot 

analysis also showed similar β-casein expression pattern at different lactation stages (Data not shown).  

The prolactin receptor and its effectors, janus kinase 2 (Jak2) and signal transducer and activator of 

transcription 5 (Stat5) have essential roles in mammary gland development and functional differentiation 

(Liu, 1997; Brisken, 1999; Shillingford, 2002). The activity of Stat5 and Jak2 in control and β1 integrin 

mutant mammary glands was examined using phospho-Tyr specific antiserum. P-Stat5 levels were 

strongly- and P-Jak levels slightly-decreased in 3-day lactating glands of mutant females. By 14 days the 

activity of both proteins was near normal (Fig.5B).  

  ERBB families of type 1-receptor tyrosine kinases and their ligands have crucial functions during 

mammopoiesis. Recently, ErbB4 was found to be an essential mediator of STAT5 signaling (Long et 

al.2003). In wild type or mutant mouse mammary glands, erbB4 protein was localized within luminal 

epithelial nuclears at early lactation (fig 5D, upper panel). It was trans-localized to membrane at late 

lactation both in wild type or mutant glands (Fig 5D, lower panel). But the mutant gland sections had 
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more diffused staining.  The integrity of erbB4 staining was not as good as the staining in wild type 

sections (Fig 5D, low panel, Right).  

We already showed that expression of the milk proteins β-casein and WAP was normal in mutant mice, 

suggesting that the decrease in Jak2/Stat5 activity early in lactation did not have an overall effect on milk 

protein production. As discussed above, the phosphate cotransporter isoform Npt2b staining (Fig8, panel 

c&d), a marker of functional alveolar differentiation (Shillingford, 2003), which is expressed on the 

apical surface of secretory cells (Miyoshi et al., 2001),  was normal in β1 integrin null cells. (Fig 8, panel 

d). Taken together, these results suggest that functional differentiation of mammary glands lacking β1 

integrin is normal, and the decreased pup weight nursed by mutant mice might be due to the impaired 

milk secretion of the mutant mammary glands. 

 

β1 integrin-mutant mammary glands have defects in alveolar integrity due to detachment of 

luminal epithelial cells  

The morphology of control and β1-integrin mutant mammary glands was assessed by whole-mount 

analysis and hematoxylin and eosin (H & E) staining of paraffin sections. Whole-mounts showed that 

during pregnancy and lactation the overall organization of the ductal trees and alveoli were normal in the 

absence of β1 integrin (Fig.6, panel a-d). H & E stained paraffin sections also showed no significant 

differences in either the development of the lobular-alveolar structures or their density in control 

compared to β1-integrin mutant glands taken from 16.5- day pregnant or 1-day lactating mice (Fig 7A, 

panels a & c vs. b & d, respectively and at higher magnification panels g & i vs. h & j, respectively). 

However, at lactation day 5 there was a noticeable change in the alveolar integrity of the glands from β1 

integrin mutant females. Luminally shed cells or bulging cells in the process of shedding were detected 

(Fig 7A, panel f, yellow & black arrows, respectively). In control females, there are very few detached 

cells and quantitation revealed an 11-fold increase in shed and bulging cells after loss of β1 integrin. (Fig 

7A, panel e & f, white box). This phenotype was maintained at later stages of lactation (Data not shown). 

Interestingly, at secondary late-pregnancy and early lactation, the alveolar density severely reduced in 

comparison with control mammary glands either by whole mount analysis (Fig.6 e-h) or by H&E staining 

(Fig.7B:a-d). An examination of lactating mammary glands from females after a second lactation 

revealed the same phenotype, i.e., the integrity of the gland was disturbed and many cells were shed into 

the lumen of β1 integrin mutant females (Fig 7B, panels b & d, higher magnification). The density of the 
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lobular-alveolar structures was also decreased in the β1 integrin mutant females compared to controls at 

day 5 of the first lactation (Fig. 7B, panel d vs. c). These results suggest that loss of β1 integrin decreases 

luminal cell-matrix adhesion, resulting in loss of alveolar integrity. Moreover, the decreased alveolar 

density suggests that proliferation of mammary cells in the absence of β1 integrin might be affected.  

Next, we examined mammary glands from 5-day lactating females with various markers to probe the 

integrity of the alveolar structures. Staining for the myoepithelial marker smooth muscle actin did not 

reveal any differences between β1 integrin mutant and control glands (Fig.8, panels a & b). Staining with 

a laminin-1 antiserum showed that BM localization was normal in the control and mutant glands (Fig.8, 

panel e & f), however, it is evident that in these glands many luminal cells have lost their ability to adhere 

to the BM and have been shed, or are in the process thereof (Fig 8, panel f, white arrows). E-cadherin 

showed a basal-lateral localization in control luminal cells. This pattern was altered in some luminal cells 

of β1-integrin mutant glands (Fig 8, panel g & h), which correlates with decreased E-cadherin levels in 

the mutant glands (Fig. 11D). The expression of β-catenin was normal in mutant glands at early latation 

while it was decreased at lactation day 14(Fig. 11D). We also observed a decrease in the tight junction 

protein ZO-1 late in lactation, which might result from decreased E-cadherin levels since assembly of 

tight junctions depends upon E-cadherin recruitment to adherens junctions (Data not shown). Thus, with 

respect to a myoepithelial cell marker, BM deposition and an apical epithelial marker, mammary glands 

from mice lacking luminal β1 integrin appeared normal. The major phenotype of β1 integrin mutant 

glands was a decreased association of the luminal cells with the laminin-1 rich BM, leading to loss of 

epithelial integrity and increased shedding of cells into the lumen of the gland.  

It is noteworthy, however, that β4 integrin, which is localized to the basal surface of the luminal and 

myoepithelial cells in control glands (Fig.8, panel i), was relocalized in β1 integrin mutant glands; in 

additional to basal staining, β4 integrin was also detected on the apical surface of some luminal cells 

(Fig.8, panel j). Phalloidin was used to visualize actin, since β1 integrins connect the ECM to the actin 

cytoskeleton. Actin stress fibers running along the basal surface of the cells were evident in sections from 

control glands (Fig.8, panel k). In contrast, there were no stress fibers evident in β1-integrin mutant 

glands. Furthermore, strong actin staining was also evident in some lateral and apical surfaces (Fig.8, 

panel l), suggesting that in the absence of luminal β1 integrins, the actin cytoskeleton has become 

disorganized. 
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β1 integrin mutant mammary glands show a slight increase in apoptosis at involution, but not 

during lactation  

Various lines of evidence point to the important role of integrin-mediated adhesion in mammary cell 

survival. Primary mammary cells undergo apoptosis unless cultured on laminin, or when β1 integrin 

function is perturbed (Pullan, 1996b; Gilmore, 2000). Accordingly, we examined mammary glands from 

β1 integrin mutant mice for apoptosis using the TUNEL (terminal deoxynucleotidyl transferase mediated 

dUTP nick end labeling) assay. Apoptotic cells were not detected in lactating glands from β1 integrin 

mutant mice and luminally shed cells were not TUNEL positive (data not shown). Electron microscopy 

(EM) was also used to investigate cells at a higher resolution. Neither cells that lost contact with their 

neighbors (Fig 9A, N), nor cells that had detached and were in the lumen (Fig 9B, white circled cell), 

showed evidence of apoptosis. In particular, the nuclei of these cells appeared normal and did not show 

apoptotic characteristics, such as condensed nuclear fragments (the casein micelles and milk-fat droplets 

are evident in the milk of β1 integrin mutant females). 

Considering that apoptosis is generally low during lactation, we also examined involution, a 

developmental stage with high levels of cell death (Strange et al., 1992; Green et al., 2004). Litters were 

removed from 9-day lactating control and β1 integrin mutant females to induce involution; 24 hrs later 

mammary glands were isolated and examined (Prince et al., 2002). H & E stained paraffin sections 

revealed that involuting glands from β1-integrin mutant mice had 4-5 fold more shed cells in the lumen in 

comparison to controls (Fig. 10, top panels and quantitation on the right). TUNEL staining was also 

performed on the sections. Quantitation of positive cells, both alveolar and shed, revealed a 1.5-fold 

increase in apoptotic cells in β1-integrin mutant mammary glands, compared with control glands (Fig. 10, 

lower panels and quantitation on the right), however, this increase is not significant. It is noteworthy that 

not all shed cells were TUNEL positive (black vs. green arrows in panel d).  

STAT3 is pro-apoptotic and is a crucial mediator of post-lactational regression (Chapman et al., 1999). 

Using conditional gene targeting, it has been shown that in the absence of STAT3, involution is delayed 

for several days, owing to a reduction in apoptosis, and this is associated with elevated levels of p53 

(TRP53 -; Mouse Genome Informatics) and p21, precocious activation of STAT1, and failure to induce 

IGFBP5. After loss of integrin β1, at lactation day 3 and day 14, the phosphorylation of stat3 was 

decreased (Fig.11, panel A). We also checked the expression of p53 and another pro-apoptotic marker 
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Bax. In the absence of integrin β1, the expression of Bax was increased throughout lactation, while the 

express of p53 was only upregulated during late lactation (Fig.11, panel B). 

The serine/threonine kinase PKB transmits survival signals triggered by integrin-mediated adhesion 

(Datta et al., 1999). The activity of this kinase was assessed using an antiserum specific for the active, 

phosphorylated form.  There was no difference in the level of Ser 473 phosphorylated PKB in extracts 

from lactating glands of β1-integrin mutant mice compared to control mice. Furthermore, 

phosphorylation of Ser 9 of glycogen synthase kinase 3-β (GSK3β), a downstream target of PKB, was not 

altered in β1-integrin mutant mammary glands (Fig.11, panel B). 

Taken together, the results suggest that in the absence of β1-integrin, the epithelial cells are shed more 

easily into the lumen of the gland. This phenomenon is apparently not due to increased apoptosis during 

lactation, but very likely due to decreased adherence of the luminal cells to the BM in the absence of β1 

integrins, suggesting that loss of integrin β1 couldn’t trigger the apoptosis in mammary luminal epithelial 

cells during lactation.  At involution, there is a slight increase in the number of apoptotic cells, but this 

increase is not significant. 

 

Loss of β1 integrin correlates with reduced mammary cell proliferation and upregulation of p21Cip1  

At the start of lactation the mammary gland undergoes a proliferative burst. To examine whether β1 

integrin is involved in this process, 2-day lactating females were injected with bromodeoxyuridine (BrdU) 

2 hrs before sacrifice and paraffin sections from the isolated mammary glands were examined with anti-

BrdU monocloncal antibody. In control mice approximately 8% of the luminal nuclei stained positively, 

while only 2% of the luminal cells in mammary glands from β1 integrin mutant mice showed BrdU 

incorporation (Fig. 12A, panels a & b; quantitation in c). Thus, mutant glands show a strong reduction in 

proliferation at the start of lactation.  

Progression through the cell cycle is regulated by periodic activation and inactivation of cyclin dependent 

kinases (CDK). To provide a mechanistic understanding of the decreased proliferation rate in the β1 

integrin mutant glands, we examined the level of positive and negative CDK regulators, the cyclins and 

the CDK inhibitors (CKI), respectively. Cyclin D1, an important G1 regulator in the mammary gland 

(Sicinski et al., 1995) was slightly increased in lactating glands from mutant mice; while neither cyclin E, 

cyclin B1 nor CDK2 levels differed between control and β1 integrin mutant glands (Fig 12B). CKIs of 

the CIP/KIP family (p21Cip1, p27Kip1 and p57Kip2) were also analyzed. The levels of p57Kip2 were similar 
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in control and mutant glands; p27Kip1 levels were slightly elevated in β1 integrin mutant mammary glands 

taken from 14-day, but not 3-day lactating mice; p21Cip1 was dramatically increased in β1-integrin mutant 

glands throughout lactation including lactation day 2 (Fig 12C & data not shown). At least at early times 

the increase in p21Cip1 might be independent of p53, which was decreased in β1 integrin mutant in 

comparison to control mammary glands (Fig 11A). There was also a significant increase in p21Cip1 

specific mRNA in glands lacking β1 integrin (data not shown). Thus, it is possible that the proliferation 

defect might be due, at least partially, to the specific increase in p21Cip1 expression.  

 

Ablation of β1 integrin impairs focal adhesion signaling 

In addition to providing adhesion, engagement of β1 integrins promotes the formation of signaling 

complexes that regulate F-actin accumulation; the best characterized being the focal adhesions. We 

examined focal adhesion kinase (FAK) whose recruitment to these structures induces downstream 

signaling (Schlaepfer, 1998) and paxillin a focal adhesion associated protein that is a target for active 

FAK and Src kinase. FAK activity, as measured by phosphorylation on Tyr397, an autophosphorylation 

site, was decreased in β1 mutant glands (PY397 FAK, Fig.11C). Phosphorylation of paxillin on Tyr118 

was also decreased in β1 mutant glands (Fig11C).  FAK expression level was slightly decreased in 

mutant glands taken at day 14 of lactation (Fig.11C). 

 

 

Loss of either β1 integrin or FAK induces p21Cip1 upregulation in primary mammary cells  

To investigate further the link between β1 integrin, FAK and p21Cip1, we used primary mammary cells 

from Itgβ1flox/flox and from FAKflox/flox mice. Primary cells were prepared from pregnant females and 

cultures were infected with an Adeno-Cre virus or a control Adeno-βgal control virus. Cell lysates from 

2-day infected cultures were examined by western analyses for β1 integrin, FAK and p21Cip1 levels. The 

nearly 100% infection efficiency was attested to by the low levels of both β1 integrin and FAK in Adeno-

Cre infected cells (Fig 13 panels a, b & c). Importantly, each of these cultures showed a strong induction 

in p21Cip1 levels (Fig 13 panels a, b& c). As we observed in vivo, p27Kip1 levels were unaffected by loss of 

β1 integrin in primary cultures.  Furthermore, similar to in the in vivo observation, we found PY-397 

FAK was decreased in the primary cells after loss of integrin β1 (Fig13 panels b). Thus, intact mammary 

glands as well as isolated primary cells display elevated p21Cip1 expression and impaired focal adhesion 
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signalling in the absence of β1 integrin. Moreover, loss of FAK function also leads to upregulation of 

p21Cip1 expression.  

 

Absence of p21Cip1 rescues impaired BrdU incorporation in mammary cells of β1 integrin mutant 

mice. 

To examine if p21Cip1 up-regulation was responsible for the proliferation defect observed in β1 integrin 

mutant mammary glands, p21Cip1 -/- mice were crossed with β1 integrin mutant mice to generate double 

mutant mice. Western Blot analysis was used to examine the expression of β1 integrin and p21Cip1 in 

each mice (Fig.14A). BrdU was injected into lactating females and paraffin sections from isolated 

mammary glands were stained with an anti-BrdU specific antibody (Fig.14B). There was a statistically 

significant increase in DNA synthesis in double mutant glands in comparison with the integrin β1 

mutants (Fig.14B). 

 

Using in vitro model to further investigate the proliferation mechanisms: the anti-proliferative 

effect of β1 integrin loss in MDA-MB-231 cells is dependent upon p21Cip1 up-regulation 

To investigate directly if loss of β1 integrin blocks proliferation via p21Cip1 induction, we used as a model 

MDA-MB-231 breast cancer cells, in which β1 integrin is known to play an important role in the tumor 

cell phenotype (Trusolino et al., 2000; Wang et al., 2002). Transfection of β1 integrin specific siRNA 

strongly reduced expression of the integrin, relative to the control LacZ siRNA-transfected cells (Fig 

15A). β1 integrin knockdown cells had higher levels of p21Cip1 protein (Fig 15A) and mRNA (Fig 15B), 

relative to controls. Immunofluorescence revealed that PY-397-FAK was present on the membrane focal 

adhesions in control cells (Fig 15A, upper panel), and in β1 integrin knockdown cells PY-397-FAK was 

relocalized to the cytoplasm (Fig 16A, lower panel). To link FAK to p21Cip1 induction, we used the FAK-

related non-kinase (FRNK), composed of the noncatalytic carboxyl-terminal protein-binding domain of 

FAK, which acts in a dominant negative manner to attenuate FAK activity (Richardson et al., 1997). 

MDA-MB-231 cultures were transfected with a p21Cip1 promoter luciferase reporter plasmid (el-Deiry, 

1993), together with the FRNK-encoding plasmid and luciferase activity was measured; β1 integrin 

knockdown cells were also examined in a parallel experiment. The results showed that down-regulation 

of β1 integrin expression or interfering with FAK signaling led to a 2-fold and 5-fold increase in p21Cip1 

promoter activity, respectively (Fig. 16B, upper & lower panels).  
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Importantly, loss of β1 integrin had a strong anti-proliferative effect on MDA-MB-231 cells. In 

comparison to control cultures, a FACS analysis revealed that β1 integrin knockdown cells had a 41% 

increase in G1-DNA content and a 90% decrease in BrdU incorporation (Fig 17C, β1); a cell count 

showed that there was a  > 50% decrease in cell number (Fig 17B, β1). In the next experiment, specific 

siRNA was used to probe for the role of p21Cip1 in the anti-proliferative response observed in β1 integrin 

knockdown cells. To accomplish this, cells were transfected with siRNAs for β1 integrin and for p21Cip1, 

either alone or in combination. Western analyses were used to assess transfection efficiencies (Fig 17A), 

and DNA content and cell number were monitored (Fig 17 B& C). Knockdown of p21Cip1 had essentially 

no effect on G1-DNA content, BrdU incorporation (Fig 17C p21 vs. control) or cell number (Fig 17B, 

p21 vs. LacZ). Cells with β1 integrin and p21Cip1 knockdown were rescued from the effect of β1 integrin 

loss. More specifically, G1 DNA content decreased from 88% in β1 integrin knock-down cells to 70% in 

double knock-down cells (56% rescue, based on 47% G1 DNA in control cells); BrdU incorporation 

increased from 4% in β1 integrin knock-down cells to 19% in double knock-down cells (54% rescue, 

based on 39% in control cells) and cell number was rescued by approximately 50%. These results suggest 

that β1 integrin controls proliferation by maintaining low expression of p21Cip1; in the absence of β1 

integrin signaling, p21Cip1 expression is induced transcriptionally and cells accumulate in the G1 phase of 

the cell cycle.  

 

Loss of β1 integrin leads to a defect in alveolar cell proliferation during a second pregnancy 

The phenotype resulting from β1 integrin loss was more pronounced in glands from mice undergoing a 

second pregnancy.  Wholemounts and H & E stained sections both showed that the lobulolalveolar units 

were sparser in the β1 integrin mutant glands compared to control glands (Fig 18A, panels a vs. b and c 

vs. d). Following involution, it has been shown that a portion of WAPCre expressing cells bypass 

apoptosis and remain in the remodeled mammary gland, where they give rise to clonal populations of 

alveolar cells during subsequent pregnancies (Wagner et al., 2002; Ludwig et al., 2001). Considering this, 

we hypothesized that the sparse phenotype was due to the presence of progenitor cells with a recombined 

Itgβ1 gene in the involuted gland, which had an impaired ability to proliferate during the second 

pregnancy. We examined this further using the mammary transplantation technique, a method to 

functionally identify mammary stem cells by measuring their in vivo outgrowth potential (Kordon and 

Smith, 1998; Smith, 1996). Pieces of mammary tissue from β1 integrin mutant mice or control mice were 
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isolated from 3-day lactating glands, a time of maximal Cre expression. These tissue pieces were 

transplanted into the cleared fat pads of recipient syngeneic mice (6 mice for each genotype). After 10 

weeks, recipient females were mated and at pregnancy-day 16, they were sacrificed and mammary gland 

whole mounts were prepared. As expected, control transplants were able to grow out and form ducts 

and/or alveolar structures (5/6) (Fig 18B, panel a). In striking contrast, transplanted tissues from b1 

integrin mutant mice were unable to grow in recipient mice (6/6). These results strongly suggest that 

alveolar progenitor cells have an impaired ability to proliferate in the absence of β1 integrin. 

 

β1-integrin play multiple roles in the development of mammary gland 

Overall, we found β1 integrins have key roles at several stages during the development and function of 

the mammary gland (Fig.19). Firstly, It could regulate the proliferation of mammary alveolar cells at 

early lactation. During involution and tissue remodeling, it might participate in the mammary progenitor 

cell proliferation and/or survive. As an important cell adhesion receptor, it could involve in the glandular 

morphogenesis and maintenance of mammary gland integrity throughout lactation. 
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Fig.1 Genetic ablation of β1 integrin in mouse mammary gland.
A 

C 
 

 

ko 1.3kB
Figure 1. Genetic ablation of β1 integrin in mouse mammary gland. (A) Schematic representation of the 

floxed β1 integrin allele (a) and the recombined allele (b). The first coding exon of the β1 integrin allele was 

flanked by two loxP sites (Graus-Porta et al., 2001). The PCR primers for detection of the floxed and 

recombined allele and the product size are indicated. (c) The structure of the WAPiCre transgene is shown. 

Transgenic mice were generated using a P1-derived bacterial artificial chromosome (PAC) harboring the 

WAPiCre gene with at least 25 kb of 5' flanking sequences.(Wintermantel et al., 2002). (B) Cre mediated 

recombination was analyzed by PCR using genomic DNA from 3-day lactating mammary glands of control 

(Itgβ1flox/flox;WAPiCre-/-) or β1-integrin mutant (Itgβ1flox/flox;WAPiCre+/-) mice.  The 2.1 and 1.3 kB bands 

correspond to the β1 floxed (fl) and the β1 integrin recombined (ko) alleles, respectively. (C). At lactation day 

3, β1 integrin and α-tubulin expression levels were analyzed by western blotting on tisse lysates. 

 

 

fl 2.1kB
 β1-integrin
α-tubulin
B
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Fig.2 Specific ablation of β1 integrin in lactating mammary luminal epithelial cells 

Control Mutant B A Control Mutant 

Figure 2. (A) WAPiCre displays tightly controlled expression in luminal epithelial cells. Paraffin sections from virgin 

(a) and 3-day lactating (c) control mice or virgin (b) and 3-day lactating (d) β1 integrin mutant mice were analyzed for

Cre recombinase expression using a specific antiserum. The black arrow in (d) indicates Cre positive cells. (B) Efficient 

and specific ablation of β1 integrin in luminal epithelial cells. Frozen sections of mammary glands from 3-day-

lactating control (e & g) and β1 integrin mutant  (f & h) mice were stained for β1 integrin. The pictures in g & h were 

taken at a higher magnification. The white and yellow arrows indicate β1 integrin staining of luminal and myoepithelial 

cells, respectively. 
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Fig.3 Effect of β1 integrin deletion on adhesion of primary mammary epithelial cells. 

Figure 3 Loss of β1 integrin in luminal cells leads to impaired adhesion on laminin. Primary mammary cells were 

prepared from 5-day lactating control and β1 integrin mutant females and used immediately in adhesion assays. 7 x 

104 primary cells were plated on 96 wells pre-coated with poly-D-Lysine (PDL), collagen type I (CI), fibronectin 

(FN), laminin (LN) and gelatin. After one hour, unattached cells were washed away, and adhered cells were fixed, 

stained with crystal violet, solubilized in 1% SDS and absorbance at 595 nm was read. The error bars represent 

standard deviation of the mean of triplicate samples within one experiment. 
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Fig.4  Pup Weight Analysis. 

B 

A 

Figure 4. Average body weight increase of pups nursed by three control and three 

mutant mice during first lactation stage (A) and second lactation stage (B).  

Each data point represents the average of 3 litters each with 8 pups (n=24,a) or 6 

pups (n=18,b). Data are means±S.D. This assay is independent of the genetic 

background 
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Fig.5 Milk expression pattern. 

A B 

C 

Figure 5. (A) Milk expression pattern at first lactation day 5 and day 14. The milk proteins (WAP and β-casein) 

are indicated by arrows. (B) Western Blot analysis of p-Stat5, stat5, p-Jak2 and Jak2 protein expression at 

lactation day 3 and lactation day 14. (C) Mice were milked at lactation-day-5 and lactation-day-14. And the 

secreted milk from the fourth mammary glands were collected and calculated at these two time points. 
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Fig.5 Milk expression pattern. 

 
D
Figure 5. (D) ErbB4 staining was checked on mammary sections at first lactation day 3 and day 14. Note the 

nuclear localization of erbB4 at lactation day 3. At lactation day 14 it concentrated on the membrane and at this 

time the staining of erbB4 is more diffused in the mammary gland sections of mutant mice.  
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Fig.6 Whole mount analysis of control and β1 integrin mutant mammary glands. 

Figure 6. Whole mount analysis of mammary glands taken from control(a;e;c;g) and β1 integrin mutant(b;f;d;h) mice 

during the first (a-d) or second (e-h) round of pregnancy(a;b;e;f) and lactation(c;d;g;h). 
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Fig.7 Loss of integrin β1 leads to adhesion defects and detachment of mammary epithelial cells. 

A 

14.3±2.71.3±0.3

B 

Figure 7. Mammary glands were taken from control- and β1 integrin mutant mice during the first (A) or second 

(B) round of pregnancy and lactation, and paraffin sections were prepared and stained with H & E. (A) The 

mammary glands were from mice at: day 16 of pregnancy (a, b, g & h), lactation day 1 (c, d, i & j), and day 5 (e, f, 

k & l). (B) The mammary glands were from mice at lactation day 5 (a-d). The black arrows in (A) panels f & l and 

(B) panels b and d, indicate irregularities in the alveolar architecture; the yellow arrows in (A) panels f & l, and (B) 

panels b & d, indicate cells shed into the lumen of β1 integrin mutant mice, a phenotype that became starting at 

lactation day 3 of the first pregnancy. (A) panels g-l and (B) panels c and d, were taken at 2X higher magnification 

than (A) panels a-f and (B) panels a and b. White boxes in k&L indicate the quantification of the displaced cells 

(including shed and procuding cells) from 3 pairs of control and mutant mice. 
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Fig.8 Immunostaining of the molecular markers on the mammary gland sections. 

Figure 8. The Frozen sections of mammary glands from 5-day-lactating control mice (a, c, e, g, i & k) and 

β1 integrin mutant mice (b, d, f, h, j & l) mice were stained for: (a & b) α-smooth-muscle actin (20x); (c & 

d) the sodium phosphate cotransporter isoform, Npt2b (20x) (e & f) Laminin-1 (20X); (g & h) E-cadherin 

(60X); the arrows in panels f & h indicate cells detached from the BM; (i & j) β4 integrin (120X); the 

arrowhead in panel j shows relocalization of β4 integrin from the basal surface (white arrow) to the apical 

surface in mutant cells; (k & l) F-actin (100X); the arrow shows stress fibers in luminal cells from control 

mice. In panel l actin staining is localized not only on basal but also lateral surfaces of mutant cells. 
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 Fig.9 There is no increase of apoptosis in integrin β1 mutant glands during lactation. 

Figure 9. Sections prepared from β1 integrin mutant mammary glands of 14-day lactating females were analyzed by 

electric microscopy. In (a) a single luminal epithelial cell that is detaching from its neighbors is shown; the nucleus is 

labeled N. The black arrow and arrowhead indicate caseins micelles and a lipid droplet, respectively (X5000). In (b) a 

detached cell in the lumen is outlined in white. Another cell (arrow) is in the process of detaching. Neither nucleus (N) 

is apoptotic (X2500). 
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Fig.10 Loss of β1 integrin could slightly increase the apoptosis rate during involution. 
Figure 10. Paraffin sections from day 1 involuting mammary glands from control- (a & c) and β1 integrin mutant (b & 

d) mice were stained with hematoxylin and eosin (a & b) or were TUNEL-stained to detect apoptosis (c & d). In a & b 

cells shed into the lumen (black arrows) were quantified (insert on right) in sections from 3 pairs of control and mutant 

mice.  In each case, 900-1200 nuclei per section were counted. Data are means±S.D. In c & d the black arrows show 

positive TUNEL staining; the green arrows show shed cell that are negative for TUNEL staining. Tunel positive cells 

were quantified (insert on right) in sections from 3 pairs of control and mutant mice.  In each case, 900-1200 nuclei per 

section were counted. Data are means±S.D.   
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Fig.11 Changes of signalling pathways after loss of β1 integrin. 

Figure 11. Analysis of proteins from 3- and 14-day lactating mammary glands. Western blotting revealed the 

levels of (A).  p-Stat3, stat3, Bax and p53; (B).p-GSK3β, GSK3β, p-AKT47,Akt; (C). Tyr397 FAK (PY397), 

FAK, vinculin, Tyr118 Paxillin (PY118) and paxillin; (D). E-cadherin, β-catenin and α-tubulin protein 

expression. 
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Fig.12 Loss of β1 integrin leads to reduced mammary cell proliferation. 

Figure 13. (A) For DNA labeling, 2-day lactating females were injected with BrdU 2 hr prior to sacrifice. Paraffin sections 

of mammary glands from control (a) and mutant β1 integrin mutant (b) mice were incubated with a monoclonal antibody 

against BrdU and stained with the ABC staining system. BrdU-positive nuclei (black arrows) were quantified (c) from 3 

pairs of control and β1 integrin mutant 2-day lactating females. In each case, 900-1200 nuclei per section were counted. 

Data are the mean±S.D. (B & C) Analysis of cell cycle regulators from 3- and 14-day lactating mammary glands of control 

(C) and β1 integrin mutant (M) mice. (B) Western blotting analysis revealed that the level of Cyclins B1 and E and CDK2 

were not altered in mutant mice; while Cyclin D1 expression was slightly increased. (C) Western blotting analysis revealed 

that the levels of p27Kip1 and p57Cip2  were not altered in mutant mice at lactation day 3; p27Kip1 level was increased at 

lactation day 14; p21Cip1 level was strongly increased throughout lactation; keratin 18 was used to control loading. 
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Fig.13 Loss of β1 integrin or FAK leads to upregulation of p21 in primary cells. 

Figure.13. Loss of b1 integrin or FAK in primary mammary cells leads to upregulation of p21Cip1. 

Primary mammary cells were prepared from pregnant β1flox/flox mice (A,B) or pregnant FAKflox/flox mice 

(C) and infected with Adeno-β gal control virus or with Adeno-Cre-virus. The infection efficiency 

was nearly 100%, as attested to by staining parallel cultures with a Cre specific antibody. Cell lysates 

were prepared and analyzed by western blotting. The membranes were probed with antiserum specific 

for: (A) β1 integrin, Cre, p21Cip1 and p27Kip ; Erk2 was used to control loading; (B) β1 integrin, Cre, 

PY-397 FAK and FAK. (C) PY-397 FAK, FAK, p21Cip1 and Cre; actin was used to control loading. 
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Fig.14 Absence of p21Cip1 rescues the proliferation defect in β1 integrin mutant mice 

  

  

Figure 14. (A). Analysis the expression of integr

of control (wt), β1 integrin mutant (b1ko), p21kom

mice. 

(B & C). Paraffin sections of mammary glands 

double p21Cip1null; β1 integrin mutant mice were

(C, black arrows) were quantified (B). For control

the double p21Cip1null; β1 integrin mutants 7 mic

section were counted and data are the mean±S

compared with β1 integrin mutant glands. 

 

B
A
 
C
 control
 β1mutant
in β1, p21cip1 from 2-day

ice and double integrin β

from 2-day lactating cont

 stained with a BrdU ant

 and β1 integrin mutant 3

e were examined.  In eac

.D. The asterik denotes s
β1+p21
 lactating mammary glands 

1 mutant p21null (β1+p21) 

rol, β1 integrin mutant and 

ibody. BrdU-positive nuclei

 of each were examined; for 

h case, 900-1200 nuclei per 

ignificant changes (p≤0.05) 

101



Fig.15 Loss of β1 integrin leads to upregulation of p21 in MDA-MB 231 cells. 

Figure 15. β1 integrin- or control lacZ- siRNA was transfected into MDA-MB-231 cells: after 4 days,

(A) cell lysates were analyzed by western blotting and membranes were probed with β1 integrin, p21Cip1

and α-tubulin specific antibodies; (B) total RNA was isolated and p21Cip1 and actin RNA levels were 

quantified using specific PCR primers. 
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Fig.16 Loss of β1 integrin leads to mislocalization of p-FAK in MDA-MB 231 cells. 

Figure 16. (A) After 3 days cells transfected with LacZ siRNA (upper panel) and β1 integrin siRNA (lower panel) 

were stained with PY-397-FAK antiserum. The boxed area is shown enlarged on the right. (B) (Upper panel) cultures 

were transfected 2 days with control LacZ siRNA or β1 integrin specific siRNA; then the WWP-Luc reporter plasmid 

plus control renilla plasmid were transfected and 2 days later p21Cip1 promoter activity was measured. (Lower panel) 

p21Cip1 promoter activity was measured 2 days following transient transfection of a FRNK expression plasmid (DN-

FAK) or the control pCDNA3 plasmid together with the WWP-Luc reporter plasmid and the control renilla plasmid. 

In each experiment luciferase activity was normalized to the Renilla internal control. 
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Fig.17 p21Cip1 was responsible for the anti-proliferative effects of β1 integrin loss. 

Figure 17. (A & B) Four days after transfection of siRNA for LacZ, β1 integrin, p21Cip1  + LacZ, or β1 integrin + 

p21Cip1 (A) MDA-MB231 cell lysates were analyzed by western blotting and membranes were probed with p21Cip1, 

β1 integrin, and α-tubulin specific antibodies, or (B) cells were counted in triplicate. Data are presented as the mean

±S.D.  
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Fig.17 p21Cip1 was responsible for the anti-proliferative effects of β1 integrin loss.
Figure 17. (C) MDA-MB231 cells were transfected with LacZ siRNA and/or β1 integrin siRNA for 3 days, then 

labeled with BrdU for 1hr before collecting. Harvested cells were stained with anti-BrdU-FITC to quantitate cells 

in S-phase and with 7AAD to stain DNA before flow cytometry was performed. The percent cells in G1 and G2-M 

is indicated in the top of each panel; the percentage of cells that incorporated BrdU is indicated in the box. Data 

are presented as the mean±S.D. 
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 Fig.18 A possible role for β1 integrins in the maintenance of mammary stem cells. 

Figure 18. (A) Whole mount analysis (a-b) or histological analysis (c-d) of mammary glands taken from control 

and β1 integrin mutant females at day 16.5 of a second pregnancy.  (Magnifications: a & b - 6X; c & d -10X). (B) 

Whole mount analysis of mammary transplant outgrowths. Pieces of mammary tissue taken from 3-day lactating 

control mice (a) or β1-integrin mutant mice (b) were transplanted into cleared fat pads of 21-day old syngeneic 

females. After 10 weeks the recipient female mice were mated and at pregnancy day-16 glands were removed and 

examined by whole-mount analysis (8X).  

 

 106



Fig.19 β1 integrins play multiple roles in the development of mammary gland. 

Figure 19. A model showing β1 integrins have key roles at several stages during the development and 

function of the mammary gland. Firstly, It could regulate the proliferation of mammary alveolar cells at 

early lactation. During involution and tissue remodeling, it might participate in the mammary progenitor cell 

proliferation and/or survive. As an important cell adhesion receptor, it could involve in the glandular 

morphogenesis and maintenance of mammary gland integrity throughout lactation. 
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Conclusion 
 

• Integrin β1 was specifically deleted in the mammary luminal secretory cells after cre 

mediated recombination. 

• In the absence of β1 integrin, the alveolar architecture was impaired and cells were shed 

into the lumen. 

• The normal proliferative burst at the start of lactation was severely reduced in the absence 

of β1 integrin, which correlated with specifically increased p21Cip1 expression. 

• Ablation of β1 integrin impairs focal adhesion signaling 

• In mammary primary cells, ablation of β1 integrin or FAK could impair focal adhesion 

signalling and upregulate p21cip1 expression. 

• Ablation of β1 integrin in a p21Cip1 null background partially rescued the proliferative 

defect in vivo. 

• In MDA-MB-231 cells, loss of integrin β1 caused a G1 block and p21cip1 upregulation, and 

knock down of p21cip1 could partially rescue this proliferation defect. 

• Transplanted mammary tissue from β1 integrin mutant females failed to repopulate 

recipient mammary glands. 
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Discussion 

 

In this report we present the first detailed molecular analysis of mice with a mammary gland-restricted 

disruption of the β1 integrin-encoding gene. WAPCre-mediated recombination of β1 integrin occurred 

specifically in luminal alveolar cells in late pregnancy and lactation, a time when several phenotypes 

became apparent. Firstly, luminal secretory cells of many alveolar structures became disorganized. Cells 

became detached from the basement membrane and were shed into the lumen of the gland; suprisingly, 

these cells were not apoptotic. Secondly, luminal cell proliferation was reduced strongly and p21Cip1 levels 

were elevated dramatically in the β1 integrin mutant glands. A link between β1 integrin, FAK, p21Cip1 and 

decreased cell proliferation was established not only in vivo, but also in vitro in both primary mammary 

cells and an established cell line.  Finally, transplanted mammary tissue from β1 integrin mutant mice was 

unable to grow in recipient hosts, suggesting a possible role for β1 integrins in stem cell maintenance. 

Based upon these results we propose that β1 integrins have key roles at several stages during the 

development and function of the mammary gland (Fig.19).  

The major functions of integrins are to connect the ECM to the cytoskeleton in order to propagate 

structural order between the two and to activate signalling cascades controlling cellular behavior 

(Giancotti and Tarone, 2003). The phenotypes we present here are consistent with these two main 

functions. We have also observed some differences to published results, e.g., with respect to apoptosis and 

laminin deposition following β1 integrin loss (Faraldo et al 1998). These variations are very likely due to 

the strategy we employed, for example genetic compared to implantation of β1 blocking antibody-

containing pellets (Klinowska et al., 1999) or a DN approach (Faraldo et al 1998). Furthermore, the use of 

a different Cre transgene has allowed the effect of β1 integrin loss to be examined at another 

developmental stage. Interestingly, ablation of β1 integrin using the MMTV-Cre transgene, which is 

expressed in the virgin gland, did not lead to alterations in mammary gland proliferation (White et al., 

2004). Similar to our results, the MMTV-dominant-negative β1 transgenic strain (Faraldo et al 1998) also 

displayed a proliferation defect at lactation; however, the responsible cell cycle regulator was not 

identified.  

 

Functional differentiation was normal in integrin β1 mutant glands 
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Although we observed function impairment of mammary gland in β1 integrin mutant mice as measured by 

pup weight ananlysis (Fig.4), based upon molecular and morphological criteria, functional differentiation 

of mammary glands lacking β1 integrin was normal. Although there was a slight decrease in Jak2 and 

Stat5 activation (Fig 5B), this did not lead to alterations in milk protein gene expression (NL, unpublished 

observations), which is also consistent with the apical expression of Npt2b, a marker of functional 

mammary secretory cells (Fig.8, panel c&d). Furthermore, casein micelles and milk-fat droplets are 

evident in the milk of β1 integrin null females (Fig 9A). These results were to some extent unexpected 

based upon published in vitro (Barcellos-Hoff, 1989)(Streuli, 1995) and in vivo (Faraldo, 1998) results. 

However, it has been observed that many organs are able to differentiate in the absence of β1 integrin 

(Bouvard, 2001). For example, keratinocytes display altered morphology and reduced proliferation in the 

absence of β1 integrin, however, are still able to terminally differentiate (Brakebusch, 2000). 

Moreover, WAPicre expression commences at late-pregnancy and it is possible that in most of the luminal 

cells, the differentiation controlling genes are already turned on before the recombination occurs. 

Furthermore, the integrin β1 is only absent in the luminal epithelial cells and still remained in 

myoepithelial cells in the mutant glands. Although the luminal epithelial cells are main functional cell 

type, the myoepithelial cells which help in milk injection still contain β1 integrin and its interaction with 

the basement membrane may play a role in mataining the differentiation of the organ. 

Thus, we favor the hypothesis that the observed function impairment of the mammary gland in β1 integrin 

mutant mice (Fig.4) is not due to a differentiation defection, but due to the decreased mammary epithelial 

proliferation and impaired mammary gland integrity (disscussed below).  

 

β1 integrin deletion results in loss of epithelial integrity 

 

1. Detachement from the basement membrane 

We show here for the first time that β1 integrin ablation triggers a loss of epithelial integrity in the 

alveolar structures of the lactating mammary gland. Alterations included areas of cells protruding from the 

luminal surface and the appearance of shed cells in the lumen, while basement membrane was normal in 

β1 integrin mutant glands.  

It is well known that one of the main functions of integrins is to mediate adhesion between the cells and 

the extracellular matrix.  Indeed, in the adhesion assay, we found that primary luminal epithelial cells 
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prepared from β1 mutant mammary gland showed defective adhesion specifically on laminin, one of the 

main components of the basement membrane. Therefore, it is not surprising that in vivo cells start to be 

shed after lossing this anchor. For example, skin and hair follicle integrity is crucially dependent on β1 

integrin expression on keratinocytes (Brakebusch, 2000). However, in mammary gland, this event only 

became visible after the lactation-day-3, at that time the WAPiCre has the peak Cre expression, and 

became very obvious after lactation day 5, when about 14% of the luminal cells were in the process of 

shedding or lost in the lumen (Fig.7h). We suggests that this phenotype is not a simple event happening 

only because cells have become detached, but may need other signals to occur.  For example, we suspect 

that integrin β4 may play some roles to protect cells from being shed because more hemi- desmosomes 

could be formed after loss of integrin β1 because integrin β4 could compete α6 subunit (to form hemi-

desmosomes) with integrin β1.  

 

2. Relocalization of integrin β4 subunit 

In the mammary epithelial cells, there are two main integrin β subunits, integrin β1 and integrin β4. 

Integrin β1 is present at the basolateral surfaces of both myoepithelial and luminal epithelial cells. The β4 

is only present at the basal aspect of these two cell types. After ablation of integrin β1, we observed that 

luminal and myoepithelial cells of control and β1 integrin mutant glands display β4 integrin on their basal 

surfaces (Fig.8i). In addition β4 integrin was detected on the apical surface of some luminal cells in the β1 

integrin mutant glands (Fig.8j). The mislocalization of integrin β4 was also observed in dominant negative 

integrin β1 transgenic mice where integrin β4 was revealed at the basal cell surface and, in addition, co-

localized with laminin at the lateral surface of luminal epithelial cells (MA.Glukhova, 1998). We didn’t 

observe the relocalization of laminin. The relocalization of integrin β4 revealed defects in cell polarization 

and may suggest the importance of integrin β1 in cell–cell junctions. 

  

3.Decreased cell-cell association 

The importance of β1 integrin in promoting both cell-extracellular matrix and cell-cell interactions is well 

known from, for example, the kidney (Ojakian and Schwimmer, 1994; Schoenenberger et al., 1994) and 

keratinocytes (Symington et al., 1993; Larjava et al., 1990). In control mammary glands, β1 integrin was 

present on basal and lateral surfaces of luminal cells; its absence in the mutant glands very likely 

contributes to weakened cell-cell interactions. E-cadherin is another protein that might be involved in 
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maintenance of alveolar integrity. In control glands, E-cadherin was found on lateral surfaces of most 

luminal cells (Fig.8g), while in mutant glands many luminal cells had little or no staining, reflecting the 

decrease in E-cadherin levels (Fig.11D). Conditional knock-out of E-cadherin in the mouse mammary 

gland revealed that E-cadherin is a survival factor since massive cell death was observed at parturition in 

the mutant glands (Mechanisms of Dev. 115(2002) 53-62, Rolf Kemler, 2002). Furthermore, β-catenin 

expression was not changed at early lactation but was decreased at lactation day 14 (Fig.11D). Integrin-

dependent BM adhesion is known to reinforce E-cadherin cell-cell adhesion (Schreider et al., 2002) and 

catenin complex formation (Weaver et al., 1997). There was also a decrease in the tight junction protein 

ZO-1 late in lactation (data not shown), which might be a consequence of reduced E-cadherin levels since 

assembly of tight junctions depends upon E-cadherin recruitment to adherens junctions (Cereijido, 2000) 

Thus, these data suggest that in the mammary gland β1 integrin function has an essential role in normal 

tissue architecture via its interactions with other adhesion complexes.  

 

4.Interferance of actin cytoskeleton 

Phalloidin was used to visualize actin, since β1 integrins connect the ECM to the actin cytoskeleton. Actin 

stress fibers running along the basal surface of the cells were evident in sections from control glands 

(Fig.8, panel k). In contrast, there were no stress fibers evident in β1-integrin mutant glands. Furthermore, 

strong actin staining was also evident in some lateral and apical surfaces (Fig.8, panel l), suggesting that in 

the absence of luminal β1 integrins, the actin cytoskeleton has become disorganized. Integrin-dependent 

BM adhesion is known to cooperate in F-actin cytoskeleton organization (Schreider, 2002) (Wang, 1999) 

Thus, these data suggest that in the mammary gland β1 integrin function has an essential role in normal 

tissue architecture via its interactions with other adhesion complexes and with the actin cytoskeleton.  

 

5. Is the impaired milk secretion due to the change of the structural integrity? 

Interestingly, functional analysis showed that the pups fed by mutant mothers had reduced pup weight in 

comparison to the pups fed by wild type mothers. However, functional differentiation as measured by milk 

protein expression was normal in integrin β1 mutant glands, while preliminary data showed that the milk 

secretion in mutant glands might be impaired. Based on the functional analysis and the structural integrity 

results, we suggest that the reduced weight observed in pups nursed by mutant mothers might be due to 

the impaired milk secretion. This impairment in turn might be caused by the altered structural integrity of 

the alveoli in mutant mammary glands. 
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Loss of β1 integrin is not sufficient to trigger apoptosis in alveolar cells.   

Despite the evidence for weakened cell-BM interactions in the absence of β1 integrin, there was no 

obvious increase in apoptotic cells during lactation. Even cells shed, or in the process thereof, were alive, 

as attested to by their nuclear appearance and the lack of TUNEL staining (Fig 9 & data not shown). 

These results are in contrast to those described for primary mammary cells, which are dependent upon β1 

integrin signaling for survival (Boudreau et al., 1995; Streuli et al., 1995) as well as transgenics expressing 

the DN β1 transgene (Faraldo et al 1998). In a similar vein, in the absence of β1 integrins basal 

keratinocytes underwent in vitro, but not in vivo apoptosis (Brakebusch et al., 2000). In vivo, there is 

likely to be a balance, which is well attuned to the environment, between apoptotic and anti-apoptotic 

factors. Primary cells could be more susceptible to apoptosis since they are removed from their normal 

environment. Indeed, microarray analyses carried out on mammary glands from 3-day lactating mice, a 

time when luminal cell-shedding began, revealed that in mutant glands anti-apoptotic genes, such as 

thioredoxin-dependent peroxide reductase (Ueda et al., 2002) were up-regulated, and pro-apoptotic genes 

including caspase-11 (Hisahara et al., 2000) were down-regulated (NL, data not shown). Western Blotting 

analysis also revealed the alteration in the regulations of two pro-apoptotic genes: STAT3 and Bax. 

STAT3 is pro-apoptotic and is a crucial mediator of post-lactational regression (Chapman et al., 1999). 

Using conditional gene targeting, it has been shown that in the absence of STAT3, involution is delayed 

for several days, owing to a reduction in apoptosis (Humphreys RC, et. al. 2002). Bax, a proapoptotic 

member of the Bcl-2 family of proteins, was first discovered in a screen of proteins that exhibited binding 

interactions with Bcl-2. Bax is likely to have pore-forming activity in the mitochondrial membranes, 

subject to control or prevention by association with specific antiapoptotic molecules (especially Bcl-2 and 

Bcl-x ), related to its ability to bind to BH-3 domain-only containing Bcl-2 family member proteins, and 

induce the release of mitochondrial cytochrome c (

L

Willis S. et al. 2003). In the absence of integrin β1, the 

expression of Bax was increased throughout lactation, while the phosphorylation of STAT3 was decreased 

throughout lactation (Fig.11, panel A). We also examined the serine/threonine kinase PKB, which 

transmits survival signals triggered by integrin-mediated adhesion (Datta et al., 1999). The activity of this 

kinase was assessed using an antiserum specific for the active, phosphorylated form. There was no 

difference in the level of Ser 473 phosphorylated PKB in extracts from lactating glands of β1-integrin 

mutant mice compared to control mice. Moreover, phosphorylation of Ser 9 of glycogen synthase kinase 
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3-β (GSK3β), a downstream target of PKB, was not altered in β1-integrin mutant mammary glands 

(Fig.11, panelB). 

Finally, it has been documented that only a combination of unfavorable conditions induces apoptosis. For 

example, HC11 mammary cells when released from a laminin-rich BM (Chammas et al., 1994) become 

apoptotic only if exposed to serum-free medium; EGF-containing medium allowed survival of the released 

cells (Merto et al., 1997). In vivo, it is possible that other signals combined with loss of BM attachment 

could abolish the balance and promote apoptosis. Indeed, at the start of involution, there was a slight 

increase in TUNEL-positive cells in β1 integrin mutant glands, compared to control glands (Fig.10). The 

level of the pro-apoptotic Bax protein was also elevated in mutant glands (NL, unpublished observations). 

Using a conformation specific antibody, it was observed that at the start of involution there is a decrease in 

β1 integrin-BM interaction (Prince et al., 2002). Building upon these results and our current observations, 

Our results suggest that in vivo, cell detachment can be uncoupled from apoptosis and loss of β1 integrin 

in mammary luminal cells is not sufficient to trigger cell death. 

 

β1 integrins have a key role in the proliferation of mammary epithelial cells in vivo and in culture 

 

1. Integrins and proliferation control 

Cells require anchorage to ECM to proliferate; β1 integrin is known to have an important role in 

modulating the activity of signaling pathways that regulate proliferation in many cell types, such as in 

basal keratinocytes (Brakebusch, 2000 & more details in introduction part I and III). In addition to the 

alveolar integrity impairment, the other major phenotype observed in β1 integrin mutant mice was a 

proliferative defect. Proliferation of secretory luminal cells occurs during pregnancy and early in lactation. 

We did not observe a consistent decrease in the number of BrdU incorporating cells at mid-pregnancy (NL, 

unpublished observations), likely due to the fact that WAPCre expression only commences at this 

developmental stage. However, our results clearly show that early in lactation there is a strong decrease in 

alveolar cell division in the absence of β1 integrin (Fig 12).  

 

2. CDK inhibitors  

Cell cycle progression is controled by cyclins and CDKs. A key event in the G1 phase of cell-cycle 

progression is hyperphosphorylation of the retinoblastoma (Rb) protein by active cyclin-CDK complexes, 

leading to release of E2F-family transcription factors from their complex with Rb. In addition to cyclin 

 116



binding, the activity of the G1 phase cyclin-CDKs is affected by the action of specific CDK-inhibitors 

(CKIs). It was shown that integrin signals are necessary for cells to traverse the cell division cycle, a loss 

of its signaling correlates well with increased levels of different CDK inhibitors. β1 deficient 

chondrocytes show a defect in the G1/S phase transition, which is, accompanied by upregulation of the 

CKIs p16Ink4a and p21Cip1 (Aszodi et al., 2003). Ablation of β1 integrin in developing cerebellum revealed 

its role in cerebellar granule cell precursor (CGP) proliferation. In the absence of β1 integrin the CGP pool 

failed to expand due to p27Kip1 upregulation (Blaess et al., 2004). Here we show that there is a specific 

increase in p21Cip1 levels in lactating mammary glands from β1 integrin mutant mice. Morover, we have 

also provided in vivo evidence that p21Cip1 is responsible for the anti-proliferative effects of β1 integrin 

loss. In the absence of p21Cip1 and β1 integrin there was a partial, but statistically significant rescue in the 

proliferative defect (Fig 14). Using the MDA-MB-231 cells we also showed that simultaneous knockdown 

of p21Cip1 in β1 integrin knockdown cells partially rescued the G1 cell cycle block induced by loss of the 

integrin (Fig 17). Since we observed both upregulation of Bax and p21cip1, the downstream target gene of 

p53, throughout lactation, we also checked the expression of p53. After loss of integrin β1, the expression 

of p53 was down-regulated at early lactation and increased at late lactation. We also checked another 

target gene MDM2 and there are no difference of p-MDM2 or total protein expression between the control 

glands and the mutants. In the future it will be important to verify whether p53 play a role in the 

upregulation of p21Cip1 after loss of integrin β1. 

 

3. The role of Focal adhesion kinase (FAK) in proliferation. 

FAK plays an important role in integrin-mediated signaling (Geiger et al., 2001; Parsons et al., 2000). We 

observed that phospho-FAK levels were decreased in β1 integrin mutant mammary glands (Fig 4E). 

Paxillin, a focal adhesion associated protein is a target for tyrosine kinases that are activated as a result of 

integrin signaling after cell adhesion. FAK in association with Src, which binds activated FAK via a SH2-

Tyr397 association, phosphorylates paxillin on two major sites, one of which (Tyr118) we show here is 

strongly decreased in the β1 integrin mutant mammary glands (Fig 11C).  

Studies carried out with the transgenics expressing dominant β1 integrin also reported that the 

proliferation rate was decreased at the begining of lactation. However, they showed that this growth defect 

induced by perturbation of β1-integrin function in the mammary gland epithelium result from a lack of 

MAPK activation via the Shc and Akt pathways, but the kinase activity of FAK was normal. In our studies, 
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we could not find consistent change in p-MAPK level (Data not shown); and the AKT pathway appears to 

be normal in mutant glands (Fig. 11b).  

We consider it likely that FAK kinase provides the link between β1 integrin, p21Cip1 and decreased 

proliferation. Firstly, using primary mammary cells from Itgβ1flox/flox and from FAKflox/flox mice we showed 

that Cre-mediated recombination of each gene led to impaired focal adhesion signalling and an increase in 

p21Cip1 expression (Fig. 13). Secondly, siRNA-mediated knockdown of β1 integrin in MDA-MB-231 cells 

led to PY-397-FAK relocalization, increased p21Cip1 expression and decreased proliferation. Expression of 

the DN FAK protein, FRNK (Richardson et al., 1997), in these cells induced the same phenotype. Finally, 

we determined that p21Cip1 was responsible for the anti-proliferative effects of β1 integrin loss since 

simultaneous knockdown of p21Cip1 in β1 integrin knockdown cells rescued the proliferative defect 

induced by loss of the integrin.  

To date there is no physiological evidence linking FAK to p21Cip1 upregulation. In fibroblast cells, FAK 

has been directly linked to cell division, which correlates with changes in the expression of cyclin D1 and 

the cdk inhibitor, p21Cip1; while cyclin D1, but not p21Cip1, was thought to be the primary functional target 

of FAK signaling pathways in cell cycle regulation (Zhao, 1998; Parsons et al., 2000). We showed here, 

both in vivo and in vitro, that β1 integrin has a key role in regulating cell cycle progression of luminal 

mammary epithelial cells, and we propose that β1 integrin signaling via FAK stimulates mammary 

alveolar cell proliferation, while in the absence of the integrin, p21Cip1 transcription is stimulated leading 

to a proliferative block. 

To date we have not found the molecular link the FAK kinase and p21cip1. A possible candidate Hic-5 , a 

LIM protein with striking similarity to paxillin, has been checked in the studies, because it was reported 

that Hic5 could shuttle between focal adhesion sites and nuclear and it functions as a potential coactivator 

for Sp1 (shibanuma, 2004). Western Blotting analysis showed that the expression of Hic-5 was increased 

in the mutant glands during lactation. However, by immunostaining, we couldn’t find obviously nuclear 

translocation of Hic-5 in both mammary sections and MDA-MB-231 cells (Data not shown).  

 

  

A possible role for β1 integrins in the mammary stem cells 

 

Our results also suggest that β1 integrin has an important role in proliferation and/or maintenance of 

mammary alveolar progenitor cells. Mammary glands taken from females undergoing a second round of 
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pregnancy showed a strong reduction in the density of lobulolalveolar units, suggesting that there is a 

reduction in the number of progenitor cells that enable rapid alveolar expansion (Fig 7A). Using the 

mammary transplantation technique, which allows a functional identification of mammary stem cells by 

measuring their in vivo outgrowth potential (Smith, 1996; Kordon and Smith, 1998), we could show that 

epithelium from β1 integrin mutant glands had a severe impairment in its ability to repopulate a mammary 

fat pad. These results strongly suggest that alveolar progenitors have an impaired ability to proliferate 

and/or suvive in the absence of β1 integrin. Considering the known role of integrins in maintenance of 

stem cells in, e. g, hair cell follicles (Watt, 2002), it is tempting to speculate that β1 integrins might also 

have a similar role in the mammary gland. 

Interestingly, we observed a specific upregulation of p21cip1, one of the CDK inhibitors, in the mutant 

gland. It’s known that p21cip1 is not only a protein that binds and inhibits cyclin-dependent kinases, but 

also recognized to play an important role in DNA repair, apoptosis, cellular senescence, terminal 

differentiation, and cell cycle arrest upon extracellular signalling (Poole AJ, et al. 2004).  However, the 

molecular events orchestrating the role of p21cip1 remain largely undefined in stem cells. For example, 

relative to keratinocytes from wild-type mice, keratinocytes derived from p21cip1-/-mice contain a 

significantly increased number of cells with clonogenic potential and high rates of attachment, two 

interrelated properties which have been directly connected with label-retaining stem-cell populations. 

These subpopulations have a lesser commitment to differentiation and generate all types of terminally 

differentiated keratinocytes that are present in vivo, not only in the interfollicular epidermis but also in the 

hair follicles (Topley GI, et al. 1999). On the other hand, p21cip1 was reported as a stem cell marker in 

human breast epitheial cells. These cells with Hoechst dye-effluxing “side population” (SP) properties, 

characteristic of mammary stem cells in mice, were demonstrated to be undifferentiated “intermediate” 

cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-

fold enriched for ERα-positive cells and expressed several fold higher levels of the ERα, p21cip1 and Msi1 

genes than non-SP cells (Clarke RB, et al. 2005). In addition, p21cip1 might play a role in  stem cell surive. 

For example, p21cip1 rescues human mesenchymal stem cells from apoptosis induced by low-density 

culturing (van den Bos. et al. 1998).  Thus, we propose that loss of integrin β1 could affect the 

proliferation and/or survive of mammary stem cells, and p21cip1 might be involved in this process. 

However, the functions and mechanisms underline it needs to be determined in the future. 
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β1 integrins in breast cancer 

 

It is well known that integrins have important roles in cancer cell biology (Christofori, 2003). Activation 

and elevated expression of β1-integrin-coupled signaling effectors have been implicated in the induction 

of a wide variety of human cancers, including those of the breast, colon, prostate, and ovaries. In addition, 

the overexpression of β1-integrin-associated molecules such as ILK can result in the induction of 

mammary tumors in experimental mouse models (White et al. 2001). With respect to breast cancer, β1 

integrin blocking antibodies induced a morphological and functional reversion of breast tumor cells 

growing in a 3D culture model (Weaver et al., 1997). The same antibody also blocked proliferation of 

MDA-MB-231 tumor cells (Wang et al., 2002). Building on these studies, we show here that in the 

absence of β1 integrin these cancer cells arrest in G1 due to up-regulation of p21Cip1. Very recently the 

role of β1 integrin was also examined in a transgenic mammary tumor model, where it was shown that 

loss of this integrin interferes with the ability of polyoma middle T (MT) expressing mammary cells to 

proliferate (White et al., 2004). This was manifested in vivo by the absence of MT-induced 

hyperplasias/tumors in mammary glands. Based upon our results we propose that p21Cip1 upregulation in 

response to β1 integrin loss might be the mechanism underlying the block in tumor cell proliferation.  
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Materials and Methods 
 

Antibodies  

Antibodies used for immunostaining were: α4 β1 integrin and laminin-1 (Klinowska et al., 1999), β4 

integrin (Zymed), E-cadherin (BD Transduction Laboratories), PY-397-FAK (Biosource), Cre 

(Wintermantel et al., 2002), α−smooth-muscle actin (Sigma), BrdU (Roche), Npt2b (a gift from J.Biber, 

Univ Zurich)(Hilfiker et al., 1998), phalloidin-TRITC (Sigma), FITC-labeled and TRITC-labeled 

secondary antibodies (Molecular Probes). 

Antibodies used for western analyses were: β1 integrin (Graus-Porta et al., 2001); β-catenin (BD 

Transduction Laboratories), FAK (Upstate Biotechnology); p21Cip1   p57Kip2, cyclin E, cyclin B1, Cdk2, 

Bax, P53 (Santa Cruz), cytokeratin 18 (PROGEN), α−tubulin (Neomarkers); PY-397-FAK (Biosource); 

E-cadherin, p27Kip1 (Transduction Labs), cyclin D1 (NoVoCastro); Vinculin (Sigma). .), p-stat5(Upstate 

Biotechnology), stat5a polyclonal antiserum (JBC Volume 271, Number 50, Issue of December 13, 1996 

pp. 31863-31868), 

 

Mouse strains and generation of mammary specific β1 mutant mice.  

The Itgβ1flox mouse strain, in which the first coding exon of the integrin β1 subunit gene was flanked by 

two loxP sites, has been described (Graus-Porta et al., 2001) (Fig 1A panel a).  Mice expressing Cre under 

the control of the whey acidic protein (WAP) gene promoter harbor a P1-derived bacterial artificial 

chromosome (PAC) carrying the improved coding sequence of Cre recombinase (WAPiCre) 

(Wintermantel et al., 2002) (Fig. 1A panel c). Itgβ1flox/flox mice were mated with mice heterozygous for the 

WAPiCre transgene on a Itgβ1flox/+ background. Offspring were genotyped by PCR analysis using 

genomic DNA prepared from tail biopsies. Littermates with the genotype Itgβ1flox/flox; WAPiCre-/- 

(referred to as control mice) or Itgβ1flox/flox; WAPiCre+/- (referred to as β1-integrin mutant mice) were 

used for all analyses.  β1-integrin mutant mice were generated in accord with Mendelian ratios. For the in 

vivo rescue experiment, p21Cip1 null mice (Jackson Laboratory) were crossed with Itgβ1flox/+;WAPiCre+/- 

mice, to produce Itgβ1flox/+;WAPiCre+/-;p21+/- and  Itgβ1flox/+ ;p21+/- mice, which were further intercrossed. 
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In order to initiate forced involution, litters of at least 6 pups were removed from β1-integrin 

mutant females after 9 days of lactation (Prince et al., 2002) and the mammary glands were isolated and 

analyzed at the specified times. The mice were maintained and handled according to the Swiss guidelines 

for animal safety. 

 

Pup Weight Analysis 

We mixed newborn pups from wt or k.o. Mothers and give to eight (1st Lactation) or six (2nd lactation) 

litters to pseudo-mothers. The body weight increase was documented for each pup from lactation day 2 to 

20.  The average body weight of the litters was calculated as means土SD. 

 

Milk Annalysis 

Pups were removed for 3-4 h before milking the mothers. Mice were anesthetized with 

NARKETAN+Rompun (100µL/10 g body weight) and injected intraperitoneally with Oxytoxin (0.3IU; 

Sigma) in 200µL PBS. After a 5-10-min incubation period milk was withdrawn with a Pasteur pipette. 

Diluted milk was analyzed with 15% SDS-PAGE gel. 

 

Mammary gland whole mounts 

Inguinal mammary glands were dissected, spread onto a glass slide and fixed overnight in Tellyesnicky’s 

Fixative. The slides were rinsed in water, the tissue was defatted with acetone, hydrated through graded 

alcohol, and stained with Iron-haematoxylin for 1.5 h, then washed in water, dehydrated, and mounted.  

 

Histology and immunofluorescence  

Inguinal mammary glands were dissected, fixed in 4% paraformaldehyde in phosphate-buffered saline 

(PBS), pH 7.4, then embedded in paraffin or frozen in optimal cutting temperature compound (OCT, 

Tissue Tek) for sectioning. Immunohistochemistry was performed on 8 µm cryosections that were fixed in 

4% paraformaldehyde. The sections were stained for times ranging from 1 hr to overnight with the 

primary antibody that was diluted in blocking solution. H & E staining was carried out on paraffin 

sections of 5 µm thickness using the tissue stainer COT 20 (Medite). For BrdU labeling, 2-day lactating 

females were intraperitoneally injected with 100 µg BrdU (Sigma)/g body weight 2 hr prior to sacrifice.  

Paraffin sections of the mammary glands were incubated with a monoclonal antibody against BrdU and 

stained with a mouse ABC staining system (Santa Cruz). For the detection of cell apoptosis, paraffin 

 122



sections were TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick end labeling) -stained 

using the In Situ Cell Death Detection Kit, AP (Roche). 

 

Electron microscopy 

Pieces of mammary gland from 14-day lactating females were fixed in 3% paraformaldehyde, 0.5% 

glutaraldehyde in 10 mM PBS (pH 7.4) for 1 hr. The tissue was rinsed in PBS then post-fixed in 1% 

osmium tetroxide in PBS for 1 hr and dehydrated in an ascending series of ethanol solutions followed by 

15 min in acetone. Specimens were infiltrated with Epon:acetone (1:1) then Epon:acetone (2:1) for 1 hr 

each, followed by pure Epon for 4 hr. Polymerization was carried out at 60° C for 24-48 hr. Ultrathin 

sections were cut, mounted and contrasted with 6% uranyl acetate for 60 min, followed by lead acetate for 

2 min. Sections were viewed under a Leo 910 transmission electron microscope.    

 

Isolation and assays with primary mammary cells 

Primary mammary cells were prepared from control and β1 integin mutant females (Pullan, 1996a). The 

cultures consist of > 80% epithelial cells, as attested to by pan-keratin staining.  Freshly prepared cells 

were used to perform adhesion assays: 7 x 104 cells were plated in 96 well dishes pre-coated with poly-D-

Lysine (500 µg/ml, Sigma), collagen type I (50 µg/ml, Roche), fibronectin (25 µg/ml, Gibco), laminin (20 

µg/ml, Sigma) or gelatin (1 mg/ml, Sigma). After one hour, unattached cells were washed away and 

adhered cells were fixed, stained with crystal violet, solubilized in 1% SDS and the absorbance was read 

at 595 nm. 

In order to ablate β1 integrin and FAK in vitro, primary cultures were prepared from pregnant Itgβ1flox/flox 

and FAKflox/flox mice. In the FAKflox/flox mice, LoxP sites flank the exon that contains the ATP loop in the 

kinase domain and Cre-mediated excision results in a frame-shift that prevents FAK protein expression. 

Primary cells were infected in suspension with Adeno-Cre or Adeno-β−galactosidase virus for 45 

min(Watkin et al.,2002), before plating and culturing for another two days. More than 95% infection was 

verified by immunostaining with antibodies to Cre or β-galactosidase. zVAD was added for the final 24 hr 

to protect against possible cell death. 
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Transplantation of mammary epithelium into cleared fat pads of recipient mice  

Inguinal mammary glands of syngeneic 21-day-old females were cleared of mammary epithelium as 

described (Deome et al., 1959). Mammary glands from 3-day lactating control or β1 integrin mutant mice 

were dissected, chopped into pieces of approximately 1mm3 and transplanted into the cleared fat pads. Ten 

weeks after transplantation, recipient females were mated and at pregnancy-day 16, mice were sacrificed 

and mammary gland whole mounts were prepared. In this experiment, six mice were transplanted with 

tissue pieces from wild type and six with tissue pieces from β 1 integrin mutant mice. 

 

Lysate preparation, immunoprecipitation and western blot analysis. 

To prepare lysates from mammary glands, the frozen tissue was ground to a powder in liquid nitrogen and 

homogenized in lysis buffer containing 10 mM HEPES (pH 7.5), 100 mM KCl, 5% glycerol, 1% Triton-

X-100, 0.1% SDS, 10 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 10 µg/ml Aprotinin, 10 µg/ml Leupeptin, 

1 mM Na3VO4, and 10 mM sodium molybdate. Cell lysates were prepared in NP40 lysate buffer (Lane et 

al., 2001). Cell lysates were subjected to SDS-PAGE, then transferred to PVDF membranes, which were 

blocked in 10% horse serum (GIBCO) or 5% nonfat milk for 1 hr and incubated overnight at 4°C with 

specific antibodies. Membranes were then incubated with the secondary antibody (Amersham) and signals 

were detected by enhanced chemiluminescence (ECL; Amersham) 

 

MDA-MB-231 cell culture, siRNA transfections and luciferase assays 

MDA-MB-231 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal 

calf serum (Gibco-BRL). For siRNA transfection, cells were seeded in 6-well plates and transfected 24 hrs 

later with siRNA duplexes (100 nM) using OligofectAMINE (Invitrogen), according to the manufacturer’s 

protocol. The 21-mer oligoribonucleotide pairs (Qiagen) were as follows: for integrin β1 (accession 

number NM-033669) nucleotide 167-189, for p21Cip1 (Accession number NM-000389) nucleotide 236-

254, for control LacZ (accession number NM55068) nucleotide 4277-4297 (obtained from D. Cappellen, 

FMI). Two days after siRNA transfection, cells were trypsinized, counted and plated either for 

immunohistochemistry on collagen I coated wells or for proliferation assays. Cells were stained with a P-

FAK specific antiserum 24 hr after plating; 48 hr after replating cell proliferation was measured. For 

transient transfections with plasmids, cells were plated at a density of 1 x 105 per well in 6-well dishes. 

One day later cells were transfected with a DN-FAK expression vector (FRNK, from Dr. Schlaepfer, 

Scripps, CA), a p21Cip1 reporter plasmid (WWP-Luc reporter plasmid from Dr. Vogelstein) and a Renilla 
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plasmid (Promega) using the Tranfection Reagent Effecten (Qiagen). Two days later, lysates were 

prepared and the luciferase assay was performed with Dual-Luciferase Reporter Assay Systerm (Promega), 

according to standard procedures. To control for transfection efficiency, Luciferase activity was 

normalized to the Renilla control.   

 

Flow cytometric analysis  

Cells were transfected with siRNA for LacZ, β1 integrin or p21Cip1 as described above. After 3 days cells 

were pulse-labeled with 10 µΜ BrdU for 1hr, then harvested and stained using the BrdU Flow Kit (BD 

pharmingen) according to the manufacturer's protocol.  BrdU-positive cells were detected using a 

fluorescein isothiocyanate-conjugated anti-BrdU antibody and DNA was stained with 7-amino-

actinomycin D. Cell cycle position of the BrdU-labeled cells was determined by two-color flow cytometric 

analysis. 

 

Extraction of RNA and RT-PCR analysis of p21Cip1

RNA was prepared by the Trizol method (GiBCO) and purified using the RNAeasy kit (Qiagen). Purified 

RNA was reverse transcribed and PCR amplified by standard procedures using the specific 

oligonucleotide primers for p21Cip1 (F: 5’- GGACCTGTC ACTGTCTTGTA- 3’; R: 5’- 

CTTCCTCTTGGAGAAGATCAG -3’) and actin (F:5’-CCTTCCTGGGCATGGAGTCCT-3’; R: 5’- 

GGAGCAATGATCTTGATCTT –3’). 
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