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Summary 

 

Inhibition of neuronal activity in networks of the mammalian central nervous 

system is essential for all fundamental brain functions, ranging from perception, to 

consciousness, to action. Both exacerbation and diminution of inhibition dramatically 

affect our behavioral capacities, indicating that, in the healthy brain, strength and 

dynamics of inhibition must be precisely balanced.  

Inhibitory functions are primarily accomplished by neurons releasing the 

neurotransmitter GABA. According to their wide variety of functions, GABAergic 

neurons show a tremendous diversity in morphological, biochemical and functional 

characteristics. The combination of these diverse properties allows the brain to 

generate interneurons acting as, for examples, filters, co-incidence detectors or 

contrast enhancers. GABAergic signaling in thalamus plays an essential role in 

controlling sensory information flow from the periphery to the cortical processing 

centers, and in generating sleep-related neuronal rhythms. Surprisingly, however, the 

diversity of GABAergic neurons is remarkably limited in thalamic networks. Both 

functions mentioned have been tightly associated with two homogeneous groups of 

GABAergic neurons arising within thalamic nuclei or within the nucleus reticularis, a 

shell of inhibitory nuclei surrounding the dorsal thalamus. 

The results arising from the present thesis challenge the view that the diversity 

of GABAergic signaling in thalamus is comparatively limited and proposes that, to 

fully understand GABAergic signaling in thalamus, at least two additional aspects 

have to be considered. First, it shows that GABAergic signaling arising from the 

nucleus reticularis can have a profound effect on the synthesis of second messenger 

compounds that are important in the control of neuronal rhythmicities and in the state-

dependent control of gene expression. Second, it demonstrates the functional 

relevance of a previously undescribed extrathalamic and extrareticular inhibitory 

pathway that arises within the anterior pretectal nuclei, indicating that the architecture 

of GABAergic signaling in thalamus has to be complemented by a conceptually 

novel, powerful afferent pathway. 

The first part investigates the modulation of cAMP synthesis by GABA in 

thalamocortical neurons through the activation of the Gi-coupled GABAB receptors. 

GABAB receptors can provide two different cAMP signals in the neurons. First, 

GABAB receptor activation depresses the level of cAMP inside thalamocortical 
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neurons.  However, a large and long cAMP signal is observed when GABAB 

receptors are activated concomitantly with β-adrenergic receptors, which are Gs-

coupled receptors. In the presence of GABAB receptor agonists, the moderate cAMP 

increase produced by β-adrenergic receptor activation is transformed into a large 

synthesis of cAMP. Remarkably, the activation of the GABAB receptors at the 

synapses between reticular neurons and thalamocortical neurons also potentiates the 

effects of β-adrenergic receptors. Thus, GABAB receptors modulate cAMP signals at 

synapses that are important for the regulation of the state of arousal. 

The second part provides the first electrophysiological description of synaptic 

connections between the anterior pretectum group and the thalamic higher-order 

nuclei. Electric stimulation in the anterior pretectum group evoked inhibitory 

postsynaptic responses (IPS) in the thalamocortical neurons of the higher-order 

nuclei. We showed that the IPS responses were mediated via the GABAA receptors 

activated through monosynaptic connections between the APT and the higher-order 

nuclei. Functionally, the anterior pretectum modulated the discharge properties of the 

thalamocortical neurons, suggesting an important role of this nucleus in the dialogue 

between the thalamus and the cortex.  
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The amino acid GABA (γ-aminobutyric acid) is the main inhibitory 

neurotransmitter in the central nervous system of mammals (CNS). Its primary 

inhibitory function is to control, dampen and coordinate the excitability of the 

principal excitatory neurons, which provide the main pathways of neuronal 

communication within and between neuronal networks of the brain (Freund and 

Buzsáki, 1996; McBain and Fisahn, 2001; Freund, 2003; Lawrence and McBain, 

2003; Maccaferri and Lacaille, 2003; Whittington and Traub, 2003; Jonas et al., 

2004). Although excitatory neurons often outnumber GABAergic neurons by up to 4-

10-fold (Houser et al., 1983; Hendry et al., 1987), inhibitory neurons are highly 

divergent, strategically positioned and physiologically tuned to exert a functional 

control over excitatory communication (Miles et al., 1996; McBain and Fisahn, 2001; 

Freund, 2003) Accordingly, disturbances of GABAergic inhibition has been 

associated with fundamental behavioral disorders such as epilepsy, anxiety, sleep 

disturbances and schizophrenia (Pace-Schott and Hobson, 2002; Freund, 2003; Wong 

et al., 2003; Rogawski and Löscher, 2004). Moreover, important classes of medicines 

used since the beginning of the 20
th

 century, such as barbiturates and benzodiazepines 

(BZs) (Möhler et al., 2002), were later recognized to potentiate GABAergic synaptic 

transmission. The action of these drugs ranges from sedative and anxiolytic to anti-

convulsant, indicating that the potentiation of GABAergic transmission controls 

arousal, emotional states and prevents us from loosing consciousness. Conversely, 

drugs used in the generation of experimental epilepsy, such as penicillin and 

bicuculline, are now known to interfere with GABAergic neuronal communication, 

demonstrating that a reduction in inhibitory tone is one principal actor for human 

epilepsy (Kostopoulos, 2000; Wong et al., 2003; Rogawski and Löscher, 2004).  

Besides controlling excitatory communication, neuronal networks containing 

exclusively GABAergic neurons have been recognized to act as generators and 

pacemakers for rhythmically patterned electrical activity that has been implicated in 

perception, associative learning, control of arousal (McCormick and Bal, 1997; 

Paulsen and Moser, 1998; Whittington and Traub, 2003). In many cases, this unique 

capability of such networks arises from a coupling of inhibitory cells via electrical 

synapses formed by gap junctions (Galarreta and Hestrin, 2001). 



 

 10 

The multiple and fundamental roles of GABAergic transmission are paralleled 

by a bewildering diversity of GABAergic neuron types that is evident at the 

molecular, morphological, biochemical, synaptic and network level (Freund and 

Buzsáki, 1996; Gupta et al., 2000; Maccaferri and Lacaille, 2003).  

This introduction gives a brief overview over the current state of knowledge on 

interneuronal diversity. It will then present an introduction into the current knowledge 

of the cellular basis of GABAergic signaling in thalamic networks, before 

highlighting the author’s contributions that reveal two novel roles of GABAergic 

signaling in thalamic nuclei.  

 

I Diversity of GABAergic neurons in the cental nervous system 

 

The diversity of the interneurons manifests at multiple functional levels and is 

to date best understood in cortical networks. Therefore, the majority of the examples 

referred in the introduction arises from literature on neocortical and hippocampal 

circuits. 

Principal or pyramidal cells (PCs) receive inhibitory inputs from different 

interneurons that have specific electric and architectural properties. The interneurons 

target precise somatodendritic locations of the PCs and of other interneurons. The 

synapses established by interneurons display particular pre- and postsynaptic 

properties. The response is then shaped by the different passive and active properties 

of the somatic and dendritic membranes. Finally, the interneurons are recruited in 

various conditions since they are innervated by different sources of excitatory and 

inhibitory inputs. All together, for distinct network functions, distinct interneuronal 

subpopulations are engaged to control the integrative properties of the neuronal 

circuitries. 

 

1. Diversity of the morphological and biochemical properties of 

interneurons 

  

Morphological studies, based on Golgi impregnations, first provided evidence 

for a diversity of non-pyramidal neurons, and these, therefore, originally provided 

names for morphologically different cell types (Cajal, 1911). Nowadays, the 
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localization of the soma and the distribution of the dendritic and axonal trees are still 

routinely used parameters to classify the interneurons in hippocampus and neocortex 

and are now known to have important functional correlates (Freund and Buzsáki, 

1996; McBain and Fisahn, 2001; Thomson and Bannister, 2003). Thus, the 

localization of the dendritic tree defines the inputs that command the activity of the 

interneurons, whereas the axonal arborization establishes the target domains.  

 The interneurons were later subdivided based on the expression of different 

markers such as neuropeptides and calcium-binding proteins. The neuropeptides 

useful to class interneurons are the somatostatin (SST), the cholecystokinin (CCK), 

the Vasoactive Intestinal Polypeptide (VIP), the neuropeptide Y (NPY), the 

enkephalins and the substance P. The interneuronal neuropeptides are co-released 

with GABA and activate G-protein-coupled receptors (GPCRs) to modulate neuronal 

activity (Baraban and Tallent, 2004). Calcium-binding proteins that are commonly 

used to differentiate interneuron classes are parvalbumin (PV), calbindin (CB) and 

calretinin (CR) (DeFelipe, 1997; Kawaguchi and Kondo, 2002). The Ca
2+

-binding 

proteins are Ca
2+

 buffers that trap free Ca
2+

 with variable kinetics (Clapham, 1995). 

Their role in interneuronal function is becoming increasingly clear and ranges from an 

involvement in short-term plasticity (Blatow et al., 2003a) to a determination of 

neuronal vulnerability during ischemia (Nitsch et al., 1989; Mattson et al., 1991; 

Sloviter et al., 1991; Freund and Magloczky, 1993; Dinocourt et al., 2003). Other 

biochemical differences, such as the expression of nitric oxide synthase and K
+
/Cl

-
 

transporter KCC2 are described. The nitric oxide synthase is generally co-localized in 

cortical neurons expressing the SST and NPY neuropeptides and CB (Smiley et al., 

2000). The KCC2 is more abundant in all PV-positive interneurons of the CA3 and 

CA1 subfields of the hippocampus (Gulyás et al., 2001). The alliance of morphologic 

analysis with antibody staining for these markers is an appropriate way to classify 

interneurons.  

Chandelier cells (or axo-axonic cells) and basket cells (BCs) are two types of 

interneurons that are distinguished based on morphological differences, but both 

innervate characteristically the perisomatic region of the PCs. Axons of the chandelier 

cells terminate exclusively on the initial segment of the axon. Two types of axo-

axonic interneurons are described, one with a radial dendritic tree, the other with a 

horizontal dendritic tree (Freund and Buzsáki, 1996; Ganter et al., 2004). They 

contain the PV but no other markers (neuropeptides or Ca
2+

-binding binding proteins) 
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known so far (Freund, 2003). The interneurons termed BCs display a vast range of 

subtypes. The most widely known BC type contains PV, whereas the other contains 

VIP and/or CCK (Freund, 2003). The BCs positive for PV or positive for CCK have 

in common that the axon terminates on the perisomatic region of the PCs, principally 

on proximal dendrites but also on the soma in the hippocampus and the neocortex 

(Freund, 2003). So two interneuronal types that target the perisomatic region of the 

PCs express PV, which is in agreement with the fact that no PV-positive cells are 

found to target the distal dendrites of the PCs in the hippocampus. Indeed, PV-

positive neurons are primarily found in stratum pyramidale of the CA1 and CA3 and 

stratum granulosum of the dentate gyrus (Freund and Buzsáki, 1996; Nomura et al., 

1997). However, in cortical layer II/III, the multipolar bursting neurons, a new type of 

PV-positive interneurons, have the majority of axonal branches terminating on 

dendrites and rarely in perisomatic regions (Blatow et al., 2003b).  

In the hippocampus, the interneurons that innervate only the dendrites of the 

PCs express individually or in combination SST, NPY, enkephalin and/or CB. 

Different types are described and grouped in 8 classes, again based on morphological 

criteria (Cope et al., 2002). For example, in the hippocampal CA1 subfield, the SST-

positive oriens-lacunosum-moleculare neurons (O-LM) have a horizontal dendritic 

tree that receives inputs from local PCs in the stratum oriens (Blasco-Ibanez and 

Freund, 1995). They project a dense axonal arbour into the stratum lacunosum-

moleculare where they terminate on the distal dendritic shafts and spines of CA1 PCs 

(Freund and Buzsáki, 1996; Maccaferri et al., 2000). The CB-positive bistratified 

interneuron axons expand in the two layers where are located the apical and basal 

dendrites of the PCs, but they do not make terminals into the pyramidal cell layer. 

They make synapses on proximal and distal dendrites of PCs (Freund and Buzsáki, 

1996). 

In the neocortex, morphological criteria are additionally used to distinguish the 

bitufted or double bouquet cells, the Martinotti cells and the neurogliaform cells. The 

bitufted cells were described already by Cajal, have a bipolar dendritic tree and a 

preferentially descending axonal arborisation that innervates the dendrites of the PCs 

in a cortical column. They are CB- or CR-positive (del Rio and DeFelipe, 1997) or 

VIP-positive (Kawaguchi and Kubota, 1996). The Martinotti cells are SST- and CB-

positive and have an ascending axonal arbor that reaches the cortical layer I 

(Kawaguchi and Shindou, 1998; Gupta et al., 2000). The neurogliaform interneurons 
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are multipolar cells with radial dendritic and axonal trees, the second is twice as wide 

as the first (Kawaguchi and Kubota, 1997; Tamás et al., 2003).  

The interneurons described so far preferentially innervate PCs, but, with the 

exception of the chandelier cells, they also make synapses on other interneurons. A 

third type of interneurons specifically and uniquely targets other interneurons. In the 

hippocampus, they are named interneuron-specialized neurons (Freund and Buzsáki, 

1996). The CR-positive interneurons are present in all layers of the hippocampus and 

they target other CR-positive and CR-negative interneurons such as CB- or VIP-

positive interneurons but not the PV-positive BCs or chandelier cells (Gulyás et al., 

1996). 

 

2. Diversity in electrophysiological properties. 

 

The diversity of the architecture and the expression of neurochemical markers 

described above is further combined with the expression of distinct ionic channel and 

neurotransmitter receptor subunits. The resulting variety of physiological properties, 

such as distinct spike-firing patterns or distinct postsynaptic responses, contributes 

essentially to the efficiency and the diversity of interneuronal functions. 

 

a. Action potential discharge modes 

Cortical interneurons were first recognized to be able to discharge at high-

frequency without adaptation (200-600 Hz for hundreds of milliseconds), in contrast 

to PCs which discharge maximally at ~300 Hz with the frequency of the APs that 

declines within 50 ms to less than 100 Hz (Connors and Gutnick, 1990). In view of 

this property, these interneurons were termed fast-spiking neurons (FS). The action 

potential (AP) of the FS neurons has a short width (around 0.5 ms) and is cut short by 

a strong and fast afterhyperpolarization (McCormick et al., 1985). This discharge 

mode suggests that these cells were adapted particularly well for the maintenance of 

inhibitory drive in a wide range of frequencies (Connors and Gutnick, 1990). The 

fast-spiking neurons are usually the PV-positive cells (Cauli et al., 1997; Martina et 

al., 1998), such as the chandelier cells or the BCs (Kawaguchi, 1995). Interestingly, 

BCs in cortex, CA1 hippocampus as well as dentate gyrus, all share these properties. 

In contrast, CCK-positive BCs and the neurons positive for other markers like 

SST, CR, CB and VIP discharge in a regular spiking mode, regular burst pattern or in 
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a delayed spiking pattern (Cauli et al., 1997; Kawaguchi and Kondo, 2002) indicating 

a large diversity of AP discharge modes. 

In an effort to fully characterize cortical interneurons, Gupta et al. (2000) 

correlated morphological and biochemical characteristics with AP discharge patterns 

in a large sample of interneurons from cortical layers II/III (Gupta et al., 2000). They 

distinguished three main principal patterns of response to depolarizing current: 

discharges with or without accommodation, and a stuttering response characterized by 

irregular burst- and tonic firing. This study is the first to demonstrate that the 

combination of electrophysiological, morphological and synaptic properties (see 

below, chapter 3a) allows to fully subdivide cortical interneurons into 14 different 

subtypes. 

 

b. Potassium channels 

The characteristic AP pattern of interneurons is largely shaped by the expression 

of distinct ionic channels. The regular and fast discharge properties may be based on 

different properties of K
+
 currents expressed at the membranes of the regular-spiking 

and FS neurons (Massengill et al., 1997). In FS cells and PCs, three different 

components of the K
+
 current are distinguished depending on their sensitivity to 4-

aminopyridine (4-AP) and tetraethylammonium (TEA), two well-known blockers of 

K
+
 currents. These are a fast delayed-rectifier, a slow-delayed rectifier and an 

inactivating K
+
 current. However, the proportion of each differs between PCs and FS 

neurons. The contribution of the fast delayed-rectifier is five-fold higher in FS than in 

PCs. In FS neurons, the afterhyperpolarization activated after each spike is mainly 

attributed to the fast delayed-rectifier current (Martina et al., 1998; Lien et al., 2002).  

The highest proportion of fast delayed-rectifier K
+
 current is associated with the 

strongest expression of Kv3.1 and Kv3.2 subunits in FS neurons. In contrast, PCs 

present a lower expression of Kv3 and instead a higher expression of Kv4 and Kv2 

subunits (Martina et al., 1998; Lien et al., 2002). Kv3.1 immunostaining shows 

exclusive co-localization of the subunit with PV-positive neocortical interneurons and 

is not observed in PV-negative neurons. Kv3.2 subunit is preferentially observed in 

PV-positive neurons (Chow et al., 1999). Moreover, in heterologous systems, the 

expression of Kv3.1 or Kv3.2 subunits produces currents that have most of the 

biophysical and pharmacological properties similar to the fast delayed-rectifier 

current and that is not the case of the Kv2- and Kv4-mediated currents (Coetzee et al., 
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1999). In mice lacking the Kv3.2 gene, PV-positive neurons, for which the Kv3.2 

subunits are prominently expressed, show wider APs and do not exhibit FS discharges 

(Lau et al., 2000). Thus, the discharge property of the FS interneurons may be based 

primarily on the subunits Kv3.1 and Kv3.2, which form the fast delayed-rectifier 

channels.  

The fast delayed-rectifier K
+
 current is necessary for the FS property because 

the block of the channels composed of the Kv3.1 and Kv3.2 subunits, with low 

concentration of 4-AP, TEA leads to a broadening of a single AP and a reduced 

frequency of the train of spikes induced by injection of depolarizing current (Du et al., 

1996; Martina et al., 1998). The specific properties of the currents mediated by the 

Kv3.1 and Kv3.2 subunits explain why the channels allow FS properties. In the 

following experiments, the fast delayed-rectifier currents are blocked 

pharmacologically and Kv3-mediated currents are added artificially with the fast 

dynamic-clamp technique. The dynamic-clamp technique permits to control the 

properties of the conductance applied in the neurons and thus, to investigate the 

impact of the alteration of one Kv3 current property on the discharge pattern of the 

neurons. The role of the activation threshold, the kinetic of deactivation and the 

inactivation of the current was investigated through this way. First, the currents 

mediated by the Kv3 subunits have to activate at high potentials (threshold potential is 

-20, -10 mV) to observe FS discharge. Thus, an artificially induced shift of the 

activation curve to more hyperpolarized potentials (~-40 mV, comparable to the Kv2- 

and Kv4-mediated currents) converts FS discharges to discharges with adaptation. 

Fast deactivation permits not to delay the generation of a new AP. An artificially 

deceleration of the kinetics of deactivation converts FS discharges to regular spiking 

discharges (Lien and Jonas, 2003). Moreover, the lack of inactivation of the fast 

delayed-rectifier current is primordial to maintain high-frequency discharges and a 

constant AP duration. Introduction of an artificial inactivation of the current led to a 

progressive broadening of the APs (Lien and Jonas, 2003). Conversely, the addition 

of artificial Kv3 conductance by the dynamic-clamp technique induces regularly-

spiking PCs to produce FS discharges (Lien and Jonas, 2003). Thus, the time- and 

voltage-dependent properties of the fast delayed-rectifier current (likely composed of 

Kv3.1 and Kv3.2) are optimized for the FS property of hippocampal interneurons and 

thus interneurons devoid of this current display regular spiking. 
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c. Sodium channels 

In addition to distinct K
+
 currents, the properties of Na

+
 channels further 

strengthen the propensity of interneurons to discharge at high frequencies. Thus, 

hippocampal BCs of the dentate gyrus display a Na
+
 current with faster deactivation 

compared to PCs (the time constants are 0.13 and 0.20 ms, respectively, at -40 mV). 

Moreover, the voltage-dependence of the inactivation is shifted to more depolarized 

potentials (half potentials of inactivation is -58.3 and -62.9 mV, respectively), the 

kinetics of inactivation are slower (the inactivation time constants were 18.6 and 9.3 

ms, at -55 mV) and the kinetics of de-inactivation are faster, thus promoting the rapid 

recruitment of Na
+
 channels during ongoing AP discharges (Martina and Jonas, 

1997). 

 

d. Calcium channels 

In cortical interneurons, the burst is composed of a calcium low-threshold spike, 

on which APs are superposed. The calcium low-threshold spike is based on the 

expression of a transient calcium current (the T-current, see chapter II, 2b), that is 

present in bursting neurons but not in regular spiking (Chen et al., 1996). 

 

3. Diversity of synaptic connectivities 

 

In addition to the diversity of intrinsic electrophysiological, morphological and 

neurochemical markers, interneurons display a marked, yet highly structured diversity 

in their synaptic connectivities. They are positioned in a particular network, receiving 

specific excitatory or inhibitory inputs and projecting to one or several specific 

targets. 

 

a. Output diversity 

Interneuronal - interneuronal connectivity 

In the hippocampus, indications for synaptic connections between interneurons 

were provided by stimulation of afferent fibers, such as the Schaffer collateral 

pathway, that elicited di-synaptic inhibitory postsynaptic potentials (IPSPs) in several 

classes of interneurons (Buhl et al., 1996). Inhibitory connections between 

GABAergic neurons were demonstrated directly using recordings of synaptically 

connected BCs pairs in the CA1 area and dentate gyrus (Cobb et al., 1997; Bartos et 
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al., 2001) or corroborated by anatomical studies, showing, for example, the 

interconnectivity of hippocampal CCK- and PV-containing BCs (Nunzi et al., 1985; 

Katsumaru et al., 1988; Sík et al., 1995; Buhl et al., 1996). Interestingly, the degree of 

interneuronal connectivity is strongly dependent on their anatomical or neurochemical 

phenotype. While PV-positive chandelier cells exclusively target principal neurons 

(Martinez et al., 1996), several classes of interneurons are specialised to innervate 

other hippocampal interneurons such as a subset of VIP-positive neurons or CR-

positive neurons (Acsády et al., 1996; Gulyás et al., 1996). 

In the sensory neocortex, different types of GABAergic interneurons show a 

high degree of mutual interconnectivity. The BCs are connected with other BCs but 

also with dendritic-targetting interneurons or double bouquet interneurons (Tamás et 

al., 1998). Therefore, it is apparent that interneurons not only differ in their 

postsynaptic target preference, with respect to both compartment and cell type-

specific innervation, but also with respect to the differential degree of their efferent 

connectivity.  

Finally, certain interneurons may also show a substantial degree of autaptic self-

innervation (Cobb et al., 1997; Tamás et al., 1998), thus forming a monosynaptic 

inhibitory feedback loop.  

Interneuronal – pyramidal cell  connectivity 

Interneurons control the dendritic, somatic and axonic compartments of PCs. 

The activation of perisomatic inhibiting neurons triggers a fast and large IPSP in the 

PCs that impairs or delays spike generation (Miles et al., 1996). Conversely, the 

activation of dendritically inhibiting neurons triggers a smaller and slower IPSP that 

reduces Ca
2+

 dendritic spikes (Miles et al., 1996). Somatically located synaptic 

terminals are larger and show broader active zones and more mitochondria suggesting 

a higher reliability of release at somatic synapses than at dendritic synapses (Miles et 

al., 1996).  

In addition to compartmentalization, an important aspect of inhibitory inputs to 

PCs is the diversity of short-term plasticity, which includes short-term depression and 

short-term facilitation. The O-LM interneurons of the hippocampus target the distal 

dendrites and the small and slow inhibitory postsynaptic currents (IPSCs) elicited do 

not change for paired stimuli at short intervals. In contrast, the larger and faster IPSCs 

induced by chandelier cells display paired-pulse depression (Maccaferri et al., 2000). 
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The majority of the GABAergic synapses formed on neocortical PCs depresses during 

a train of discharges in interneurons but some classes of interneurons show facilitation 

or both facilitation and depression. A remarkable aspect of these diverse patterns of 

short-term plasticity is that they are associated with a tight target specificity (Gupta et 

al., 2000). Synaptic depression is also found during multiple stimuli (more than 500 

stimulations) but is generally weaker than multiple stimuli depression observed in 

PCs (Galarreta and Hestrin, 1998), perhaps due to a more efficient recycling of the 

synaptic vesicles (Lüthi et al., 2001). Altogether, this suggests that strong activation 

of cortical networks eventually leads to a gradual dominance of inhibition.  

The interneurons regulate PC activity via feedback or feedforward inhibition. If 

interneurons are innervated by collaterals of the afferent axons that target the PCs, the 

interneurons provide feed-forward (feedF) inhibition (Freund and Buzsáki, 1996), 

which manifests as a biphasic excitatory postsynaptic potential (EPSP) - IPSP 

sequence in PCs (Freund and Buzsáki, 1996). In opposite, if the source of excitation 

arises from local collaterals of PCs, the interneurons provide feedback (feedB) 

inhibition (Freund and Buzsáki, 1996). Some interneurons control the PCs by feedB 

or feedF inhibition only, some interneurons are innervated by both afferents and PCs, 

therefore they supply both feedB and feedF inhibition (Freund and Buzsáki, 1996).  

The feedF inhibition controls the integrative properties of PCs by limiting 

temporal summation at the soma to a very narrow time window. This is most evident 

when applying two subthreshold inputs to Schaffer collaterals (Pouille and Scanziani, 

2001). These two inputs induce an AP only when the two stimuli occurred almost 

concurrently (within a 1-5 ms time window, average 1.6 ms). In the absence of feedF 

inhibition, the production of an AP in the CA1 cell by the summation of the two 

EPSPs occurred for longer interstimulus intervals (~1-40 ms, average 14.8 ms). 

Therefore, feedF inhibition makes PCs behave as coincident detectors with a time 

window of 2 ms (Pouille and Scanziani, 2001). The FeedF inhibition reduces also AP 

backpropagation when it concerns distal dendrites (Tsubokawa and Ross, 1996).  

In the feedB inhibition network, the interneurons are activated by the PCs they 

target providing a disynaptic loop. In cortical layer II/III, the PCs receive feedB 

inhibition on their proximal dendrites from VIP-positive bipolar neurons (Rozov et 

al., 2001). The EPSPs generated at the synapses between PCs and bipolar neurons are 

depressing due to the expression of S-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic-acid (AMPA) receptors with a long-lasting desensitization. In 
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contrast, the IPSPs generated at the synapses between bipolar neurons and PCs are not 

altered during a train of pulses (Rozov et al., 2001). Consequently, the feedB 

inhibition will be operative only when PCs discharge low-frequency train of APs. For 

sustained PC discharges, inhibitory drive is reduced by the long desensitization of the 

AMPA receptors of the bipolar neurons (Rozov et al., 2001).  

The bitufted neurons also provide feedB inhibition on the cortical PCs of layer 

II/III but the synapses are located at the distal dendrites. The EPSPs induced in 

bitufted neurons by a train of three discharges in PCs show multiple pulse facilitation 

and IPSPs induced by bitufted neurons in PCs show multiple pulse depression. 

Therefore, the inhibition of bitufted neurons will be more efficient for high-frequency 

discharges in PCs (Reyes et al., 1998). Thus, the subcellular target of feedB inhibition 

depend on the discharge frequency of PCs: high-frequency discharges lead to distal 

feedB inhibition via the bitufted neurons whereas low-frequency discharges lead to 

proximal feedB inhibition via the bipolar neurons. 

Similarly, two types of feedback inhibition are also described in hippocampus. 

Low-frequency stimulations of PCs induced essentially perisomatic feedB inhibitions. 

Higher frequency stimulations results in perisomatic inhibition for the first 

stimulations followed by a dendritic feedB inhibition. The two types of inhibition are 

based on the specific conditions to recruit the perisoma-targetting and dendrite-

targetting neurons (Pouille and Scanziani, 2004). 

 

b. Input diversity 

In addition to the diversity of the synapses they form on their target neurons, the 

interneurons also show differences in the distribution of the excitatory and inhibitory 

inputs they receive (Gulyás et al., 1999). Indeed, ~5% of the inputs on hippocampal 

PV-positive neurons are inhibitory whereas for the CB- and CR-positive cells, 

GABAergic inputs represent ~20-30% of all the synapses. Moreover, GABAergic 

synapses formed on PV- or CR-positive interneurons are in majority  PV- or CR- 

immunoreactive, respectively and they both preferentially target the soma (Gulyás et 

al., 1999).  

The properties of the synapses formed by PCs on interneurons are type specific. 

The types of synapses are distinct morphologically and molecularly, and therefore  

electrophysiologically but also with respect to synaptic plasticity. The case of the 
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synapses formed by hippocampal mossy fibers on three different targets will illustrate 

these points. 

The mossy fibers are formed by the axons of the granular cells of the dentate 

gyrus. In dentate gyrus, recurrent collaterals of the mossy fibers (MF) target the 

proximal dendrites of BCs, which project back onto the granular cells for feedB 

inhibition (Freund and Buzsáki, 1996). The feedF target of the MF are the dendrites of 

the PCs and the local interneurons of the CA3 area (Acsády et al., 1998). The local 

CA3 interneurons provide feedF inhibition on CA3 PCs (Freund and Buzsáki, 1996). 

In the CA3 subfield, MF terminals have the structure of large boutons that form 

multiple release site synapses on PCs. Furthermore, from the large boutons extend 

small filopodia or small en passant terminals, which form single release site synapses 

preferentially on GABAergic neurons. Moreover, the convergence from one granular 

cell is higher to the CA3 interneurons compared to the CA3 PCs (Acsády et al., 1998). 

At MF - CA3 interneuron synapses, the release probability and the quantal 

amplitude of the EPSPs are higher than at MF - CA3 PC synapses due to the 

expression in CA3 interneurons of AMPA receptors with higher single-channel 

conductance (Lawrence and McBain, 2003) and long postsynaptic densities (Acsády 

et al., 1998). Kinetic differences are also observed, as it was shown in other models, 

since the EPSPs generated in interneurons are shorter in duration than in the PCs 

(Gulyás et al., 1993; Thomson et al., 1993; Debanne et al., 1995; McBain and Fisahn, 

2001). In the MF- dentate BC synapses, the EPSPs generated are very short. Several 

parameters explain these fast kinetics. The fast membrane time constants of the 

dentate gyrus BCs are partially responsible for the fast kinetics of the unitary EPSPs 

generated by an AP in granular cells (Geiger et al., 1997). Nevertheless, the principal 

parameter, which influences EPSP kinetics, is the properties of glutamate receptor as 

shown in BCs of the dentate gyrus. In these cells, the decay time constant of a quantal 

EPSP is similar to the time constant of the AMPA receptor deactivation. This is 

important for the temporal summation of the EPSPs in interneurons. Indeed, fast 

deactivating AMPA receptors are associated presynaptically to fast release of 

glutamate, therefore the window for temporal summation is very narrow (few 

milliseconds) and may allow the dentate gyrus BCs to operate as coincident detectors, 

meaning that suprathreshold depolarisation are reached only when several EPSPs 

arrive in this short time window (Geiger et al., 1997). 
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A low proportion of the slowly gating GluR2 (flip) and a high proportion of the 

rapidly gating GluR4 in the composition of the BC AMPA receptors explain the fast 

deactivation of the glutamatergic response in interneurons (Geiger et al., 1995) and 

the high single-channel conductance (Lawrence and McBain, 2003). The subunit 

compositions also dictate the permeability to Ca
2+

. The GluR2 subunit expression 

limits the AMPA receptor conductivity to Ca
2+

. Because of less GluR2 subunit 

expression, the interneurons have AMPA receptors with a higher permeability to 

Ca
2+

. In contrast, the PCs express high levels of GluR2 subunits indicative of AMPA 

receptors with a low Ca
2+

 permeability (McBain and Fisahn, 2001).  

The excitatory synapses between the granular cells and the CA3 interneurons 

are heterogeneous with respect to Ca
2+

-permeability of the AMPA receptor 

(depending on the expression of GluR2 subunit) (Tóth et al., 2000). In the synapses 

with AMPA receptors having a low Ca
2+

-permeability (CI synapses for Ca
2+

-

impermeable synapses), the N-methyl-D-aspartate (NMDA) component of excitatory 

postsynaptic currents (EPSCs) is higher. In opposite, at the synapses with highly Ca
2+

-

permeable AMPA receptors (CP synapses for Ca
2+

-permeable synapses), the NMDA 

component is lower (Lei and McBain, 2002). The CI synapses display a 

postsynaptically induced and NMDA-dependent LTD, whereas the CP synapses have 

a presynaptically induced and NMDA-independent LTD (Lei and McBain, 2004). In 

the CA3 interneurons, LTD was possible but LTP was not induced. It was generally 

accepted that interneurons did not show LTP (McBain et al., 1999). However, it was 

recently found that LTP was induced at MF - dentate gyrus BC synapses indicating an 

input diversity at the level of long-term plasticity. Thus, at the excitatory synapses 

between dentate granule cells and BCs, high frequency stimulation paired with 

postsynaptic depolarization induced LTP with a presynaptic location (Alle et al., 

2001).  

 

c. The electric synapses. 

In neocortex, different subclasses of interneurons are coupled by gap junctions 

such as the FS neurons and the low-threshold spiking (LTS) interneurons. The 

interneurons of one subclass were preferentially (3 out of 32 heterotypic electric 

synapses in Gibson’s experiments) or exclusively (Galaretta’s experiments) connected 

by electric synapses with interneurons of the same subclass, therefore electric 

coupling can give rise to a specific network of interneurons (Galarreta and Hestrin, 
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1999; Gibson et al., 1999). In the FS neurons that were connected by electric and 

chemical synapses, an AP in one cell elicited a biphasic response in the second cell, 

first a short depolarization via the electric coupling followed by a longer IPSP 

induced by chemical interconnections of interneurons (Gibson et al., 1999). Small 

depolarizating currents, which were subthreshold when injected in two cells at 

different time, were suprathreshold when injected simultaneously in two electrically 

connected neurons (Galarreta and Hestrin, 1999). Moreover, APs in one cell eased the 

generation of APs in the connected cells. Therefore, electric coupling allows 

connected neurons to fire synchronously (Gibson et al., 1999). The gap junctions that 

form the electrical synapses between the interneurons are composed of connexin 36. 

In connexin 36 knockout mice, the electric coupling between FS neurons and between 

LTS neurons is rare or absent (Deans et al., 2001; Hormuzdi et al., 2001). The 

absence of gap junctions reduces the capacity of interneurons network to generate 

rhythmic oscillations in the hippocampus and the neocortex (Deans et al., 2001; 

Hormuzdi et al., 2001), providing strong evidence of the role of the electric coupling 

in interneuronal networks to produce large-scale oscillations. 

 

4. Diversity of the receptors 
 

Three types of receptor are activated by the neurotransmitter GABA, the 

ionotropic GABAA and GABAC receptors and the metabotropic GABAB receptors. 

  

GABAA and GABAC receptors possess a Cl
-
 channel that is integrated within 

the receptor protein. The binding of two GABA molecules on the receptor gates the 

Cl
-
 channels and mediates a fast inhibition lasting 10-100 ms. In contrast to GABAA 

receptors, GABAC receptors are defined by their insensitivity to bicuculline 

(Bormann, 2000).  

The GABAC receptors will not be considered further, however, the GABAC 

receptors are composed of ρ1-3 subunits that are highly expressed in the retina. A 

weak expression of ρ subunits are described in the rat thalamus (Wegelius et al., 

1998) and GABAC receptor currents are recorded in acutely isolated thalamic neurons 

(Schlicker et al., 2004). The GABAC receptors may have a role at the retinogeniculate 

synapses where GABA release by local interneurons produce, besides the GABAA 
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and GABAB receptor-mediated currents, a Cl
-
 current that is bicuculline-insensitive 

(Zhu and Lo, 1999). 

GABAB receptors are seven transmembrane-domains proteins that indirectly 

modulate ionic and cytoplasmic effectors via activation of G-proteins. The actions of 

GABAB receptors are thus slower in onset but more prolonged in duration 

(Greengard, 2001). GABAB receptors increase K
+
 conductances (Newberry and 

Nicoll, 1984; Gähwiler and Brown, 1985; Thalmann, 1988), reduce Ca
2+

 currents 

(Mintz and Bean, 1993), inhibit adenylyl cyclases (Wojcik and Neff, 1984; Xu and 

Wojcik, 1986; Gerber and Gähwiler, 1994), activate phospholipase A2 (Duman et al., 

1986), control intracellular release of Ca
2+

 (Hirono et al., 2001) and vesicle 

recruitment  at the presynaptic membranes (Sakaba and Neher, 2003). 

 

a. Diversity of GABAA receptors 

Molecular diversity 

GABAA receptors are ubiquitously expressed in the CNS and form of a 

pentamer composed of various types of GABAA subunits. The 15 different subunits 

described are classed in 6 families: α1-6, β1-3, γ1-3, δ, ε and θ. The GABA binding 

domain is at the interface between the α and the β subunits (Smith and Olsen, 1995). 

Most of the mature brain receptors are composed of the α, β, γ and δ subunits with the 

stoichiometry 2α, 2β and 1 γ/δ (Barnard et al., 1998). The properties of a GABAA 

receptor depend on their subunit composition (Costa, 1998; Hevers and Luddens, 

1998). For example, the receptors composed of α1 subunits have fast deactivation 

kinetics and display desensitization while the presence of the α2 subunit allows faster 

activation kinetics and slower deactivation (Lavoie et al., 1997). The presence of the 

α6 subunits or the δ subunits confers a 10- to 50-fold higher affinity for GABA than 

other GABAA receptors. This composition abolishes also receptor desensitization 

upon prolonged presence of the agonist (Saxena and Macdonald, 1994, 1996; Mody, 

2001). 

The diversity of GABAA receptor subunits seems to be important because they 

have a selective distribution in the brain (Wisden et al., 1992), which varies along the 

development (Laurie et al., 1992). The α1 and α2 subunits are widely expressed in the 

CNS but α1 subunits are more strongly expressed in the cortex and the thalamus 

whereas α2 subunits are preferentially expressed in the limbic sytem (Wisden et al., 
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1992; Fritschy and Möhler, 1995). The α6 subunit expression is restricted to granule 

cells of cerebellum and cochlear nuclei (Wisden et al., 1992). The δ subunit is 

strongly expressed in granule cells of the cerebellum and, to a less extent in the 

thalamus (Wisden et al., 1992; Nusser et al., 1998). The GABAA receptor subunits 

also display a highly organized cellular distribution. At the synapses formed by the 

PV-positive BCs on PCs, the postsynaptic membranes contain mostly the α1 subunits 

(Klausberger et al., 2002). In contrast, at the synapses between the PV-negative BCs 

and PCs, the postsynaptic membranes contain mostly the α2 subunit. The post-

membrane of PCs apposed to chandelier cells have an intermediate ratio for α1 and α2 

subunits compare to synapses formed by PV-positive and PV-negative BCs (Nyíri et 

al., 2001). The IPSCs generated by the PV-positive BCs display fast kinetics of 

deactivation and desensitisation. The IPSC generated by the PV-negative BCs display 

slower kinetics (Lavoie et al., 1997). Similarly, in the hippocampal CA1 PCs, two 

types of synaptic GABAergic IPSCs have been described. One is a fast GABAA 

response generated at the soma (presumably by the BCs and the chandelier cells) and 

the other is a slow GABAA response generated at the dendrites (presumably by the 

interneurons of stratum lacunosum-moleculare). Thus, they are generated by a 

different population of hippocampal interneurons and they are mediated by GABAA 

receptors composed of different subunits leading to a different pharmacological 

profile (Banks et al., 1998). The GABAA receptor subunits may also be confined in 

subcellular compartments such as in the cerebellum where the δ subunits are 

exclusively located extrasynaptically in the soma and dendrites of the granule cells 

(Nusser et al., 1998).  

In the brain, endogenous ligands such as the neurosteroids, act as allosteric 

modulators of the GABAA receptors by facilitating the open state of the GABA-gated 

ion channels. The efficacy of neurosteroids depends on the subunit composition. 

Thus, the neurosteroids may selectively influence GABAergic signaling (Lambert et 

al., 2003).  

Besides binding GABA and the neurosteroids, GABAA receptors also bind 

exogenous molecules such as the BZs, the barbiturates, the alcohol and some volatile 

anaesthetics (Mihic et al., 1997), which alter the properties of the receptors (Costa, 

1998). The binding of the BZs, requires the α1, 2, 3  or α5 subunits in combination with 

any of the β subunit and the γ2, 3 subunits (Costa, 1998; Möhler et al., 2002). 
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Benzodiazepines do not bind the receptor composed of the α4, 6 or γ 1 or in absence of 

γ subunit. Benzodiazepines increase the response to GABA by allosterically 

enhancing the affinity of GABAA receptors to GABA, thereby increasing the 

frequency of the channel openings (MacDonald et al., 1989).  

Generation of mutant mice for the different subunits allowed association of 

specific GABAA receptor subunits with particular pharmacological and behavioural 

characteristics. For example, mice expressing a genetically engineered BZ-insensitive 

α1 subunit showed no diazepam-induced anterograde amnesia and a reduced 

anticonvulsant effect of BZ. In contrast, the myorelaxant, motor-impairing, ethanol-

potentiating and anxiolytic-like properties of diazepam were not impaired (Rudolph et 

al., 1999). Conversely, the corresponding point mutation in the α2 subunits reduced 

the anxiolytic effect of BZ (Löw et al., 2000). These two studies managed to link a 

complex behaviour to the expression of a specific GABAA receptor subunit, meaning 

α1 subunit to memory and α2 to stress emotion. This powerful strategy also permitted 

to demonstrate that the α1 subunits temporally define the critical-period plasticity in 

the visual cortex (Fagiolini et al., 2004). 

Physiological diversity 

The Cl
-
 current induced by GABAA receptor opening depends on the driving 

force for Cl
-
 ions, namely the numerical difference between the reversal potential of 

Cl
-
 ions and the actual membrane potential of the postsynaptic membrane. Three 

situations are commonly found in native cells. A) If the reversal potential is more 

negative than the membrane potential, activation of the receptor induces an influx of 

Cl
-
 ions that hyperpolarizes the cell. B) If neurons have a resting membrane potential 

close to the reversal potential of Cl
-
 ions (around -65 mV), the net ionic flux is low 

and the effect of GABA is due to a decrease of membrane resistance that shunts other 

excitatory inputs C) If the membrane potential lies below the reversal potential, the 

flux of anions is outward and the effect is a depolarization of the membrane.  

In cortical neurons of embryonic and newborn animals, GABA is excitatory 

because the intracellular concentration of Cl
-
 is high and the reversal potential is thus 

more positive than the resting membrane potential, such that GABA acts as a 

depolarizing neurotransmitter (Situation C). Remarkably, in immature neurons, it is 

the GABAergic excitation itself that induces the expression of KCC2, a K
+
/ Cl

-
 co-

transporter. KCC2 extrudes Cl
-
 and thus shifts the reversal potential of Cl

-
 to more 
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negative value (Ganguly et al., 2001). NKCC1 is a co-transporter driven by the Na
+
 

and K
+
 gradients. Activation of NKCC1 leads to an increase in intracellular Cl

-
 

concentration. NKCC1 is down-regulated along the development (Plotkin et al., 

1997). The enhanced and reduced expressions of KCC2 and NKCC1, respectively, 

lower the cytoplasmic concentration of Cl
-
 that transforms the GABAA receptor 

responses from depolarizing in immature neurons to hyperpolarizing in mature 

neurons (Ganguly et al., 2001).  

GABA exerts excitatory effects in mature neocortical neurons as well. Thus, the 

resting potential of cortical neurons recorded in acute slices is around -79 mV, more 

negative than the reversal potential of Cl
-
 ions at the soma and the dendrites (~-

70mV). Nevertheless, GABAA-mediated response is not only excitatory but also 

inhibitory depending on the subcellular location where it is induced. First a dendritic 

GABAergic depolarization turns a subthreshold somatic EPSP elicited simultaneously 

into a suprathreshold EPSP. In contrast, a somatic GABAergic depolarization inhibits 

a suprathreshold EPSP elicited simultaneously because the effect of shunting 

inhibition is stronger than the depolarization induced by the flux of Cl
-
. When the 

glutamatergic EPSP is delayed by at least 5 ms, the somatic GABAergic 

depolarization is now excitatory and facilitated the glutamatergic EPSP to reach AP 

threshold. Therefore, when the GABAergic depolarization is spatially and temporally 

distant from the glutamatergic EPSP, GABAergic response facilitates the EPSP 

(situation C). On the contrary, when the GABAergic depolarization and the 

glutamatergic EPSP are evoked simultaneously and nearby, GABAergic response 

inhibits the EPSP (situation B) (Gulledge and Stuart, 2003).  

 

b. Tonic activation of GABAA receptors 

The synaptic activation of GABAA receptors responsible for fast inhibition of 

the targeted neurons is also termed as phasic response, in contrast to tonic activation 

of GABAA receptors. The tonic activation consists in a constant activation of 

extrasynaptic receptors by ambient GABA present in the extracellular milieu. Tonic 

activation of GABAA receptors was described in granule cells of the cerebellum 

(Brickley et al., 1996), the granular cells of the dentate gyrus (Stell and Mody, 2002) 

and the interneurons of the hippocampal CA1 subfield (Semyanov et al., 2003).  
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In the cerebellum, the association with the α6 subunit produces a receptor 

showing three properties require for tonic inhibition: high affinity for GABA, slow 

desensitization and a long open time (Brickley et al., 1996; Nusser et al., 1998; 

Brickley et al., 2001). The ambient GABA levels are controlled by GABA uptake 

mechanisms and residing extrasynaptic GABA is estimated to be superior to 0.4 µM 

(Attwell et al., 1993). This minimal concentration is sufficient to activate high-affinity 

receptors containing the α6 subunits and the δ subunits (EC50 for GABA is 0.2-0.5 

µM) (Saxena and Macdonald, 1996). The tonic inhibition reduces the excitability of 

cerebellar granule cells and alters the sensitivity of the neurons to excitatory inputs 

(Semyanov et al., 2004). In hippocampal interneurons, a functional role for tonic 

inhibition is also described (Semyanov et al., 2003). In these neurons, GABAA 

receptor-dependent tonic activation is mediated by high affinity receptors that are 

pharmacologically different from the GABAA receptors responsible for phasic 

inhibition at the interneuronal-interneuronal synapses and at the interneuronal-PC 

synapses. Thus, similarly to cerebellum, a particular subunit composition of the 

GABAA receptors underlies tonic inhibition, but, in contrast to the cerebellum, the 

δ subunits seem not to be required. The tonic inhibition of interneurons reduces their 

excitability and thus modulates the inhibitory drive to the PCs. In addition, in this 

preparation, the blockade of GABA uptake unmasks tonic inhibition of PCs, which 

shares similar pharmacological properties with the tonic inhibition of interneurons. 

Thus, tonic inhibition of interneurons may arise from spillover of GABA coming 

from interneuronal-interneuronal synapses and not from the interneuronal-PC 

synapses where GABA uptake may prevent GABA spillover (Semyanov et al., 2003).  

 

c. GABAB receptors 

GABAB receptors were originally identified in pharmacological experiments 

showing that 1) GABA could act through a bicuculline-insensitive receptor 2) These 

effects were mimicked by application of baclofen, a compound that is still used 

against spasticity (Bowery et al., 1980), 3) These receptors were GPCRs (Asano et al., 

1985). A first subunit was cloned in 1997 and was named GABAB(1) which partially 

showed the properties of native receptor (Kaupmann et al., 1997). A second subunit, 

GABAB(2), was cloned in 1998 (Kaupmann et al., 1998) and it was demonstrated that 

co-expression of the GABAB(1) and the GABAB(2) proteins was absolutely required for 
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a functional receptor. The GABAB receptor is the first example of a heterodimeric 

metabotropic receptor (Filippov et al., 2000), a concept now widely established for 

GPCRs (Bouvier, 2001; Milligan et al., 2003). The genetic disruption of the 

GABAB(1) subunit or the GABAB(2) subunit in mice prevents the major functional 

effects normally observed after activation of GABAB receptors (Schuler et al., 2001; 

Gassmann et al., 2004).  

 

d. Activation of GABAB receptors 

In contrast to activation of GABAA receptors, GABAB receptors need stronger 

stimulations of the GABAergic axons to be activated synaptically (Dutar and Nicoll, 

1988). Thus, at the majority of GABAergic synapses, GABAB receptor activation is 

generally not observed following activation of a single presynaptic interneuron, even 

when this neuron produces a train of APs at high-frequency (Scanziani, 2000). 

Conversely, extracellular stimulation routinely produced a GABAB response, 

indicating that a coordinated release of GABA may be required for GABAB receptor 

activation (Scanziani, 2000). In the CA3 area of the hippocampus, GABAB receptor-

mediated currents have been studied in detail (Scanziani, 2000). Thus, blocking 

GABA uptake allows GABAB receptors to be activated even by a single neuron 

suggesting that extrasynaptic GABAB receptors are activated by spillover of GABA 

out of the synaptic cleft.  It is estimated that, in the presence of functional GABA 

uptake, the cooperation of 2 to 20 stimulated interneurons is required to generate a 

GABAB response (Scanziani, 2000).  

The search for the mechanism underlying the requirement of increased 

stimulation intensity to activate GABAB receptors has led to an intense debate over 

the subcellular location and the properties of GABAB receptors. The location of 

GABAB extrasynaptically is one reason that helps to explain the necessity of higher 

stimulation to activate GABAB as the GABA released has to spillover the synaptic 

cleft (Isaacson et al., 1993; Scanziani, 2000). An additional explanation is that 

activation of the K
+
 channels demands the cooperative binding of several (four) G-

proteins to the G-protein inward rectifier channels as suggested by computational 

modelling. In this hypothesis, a threshold level of G-proteins has to be activated by 

GABAB receptors to produce detectable K
+
 currents (Destexhe and Sejnowski, 1995). 
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In two exceptional cases, the synaptic release of GABA by a single cell was 

sufficient to allow the activation of a unitary GABAB response. At synapses between 

the neurogliaform interneurons and the PCs, a single presynaptic AP elicited a 

biphasic postsynaptic response composed of fast GABAA and slow GABAB 

components (Tamás et al., 2003). At the GABAergic synapses between the neurons of 

the reticular nucleus and the thalamocortical (TC) neurons, unitary GABAB-mediated 

hyperpolarizations are possible. A unique AP in neurons of the nucleus reticularis 

(nRt) resulted in a pure GABAA response in TC neurons but a prolonged burst of APs 

in nRt neurons was sufficient to produce a response with a GABAB component (Kim 

et al., 1997).  

 

 

II GABA signaling in the thalamus. 

 

1. Basic cellular and synaptic organization of the thalamus 

 

a. Organization of the thalamic nuclei  

The thalamus is an aggregate of nuclei located within the diencephalon, which 

is composed of the epithalamus, the dorsal thalamus, the ventral thalamus and the 

hypothalamus. The dorsal thalamus directly sends projections to the cortex and is 

principally responsible for the gating functions traditionally ascribed to the thalamus 

(Jones, 1991; Sherman and Guillery, 1996).  

The nuclear subdivision of the dorsal thalamus, from now on referred to as ‘the 

thalamus’, arises predominantly from the topographically organized projections 

arriving either from 1) the sensory periphery or 2) from cortical layer V. These 

driving inputs are defined as the determinants of the receptive field properties of 

thalamic neurons, but they constitute a minor portion (5-10%) of the total number of 

synapses (Jones, 2002; Guillery, 2003). The remaining synapses arise from 

modulatory inputs via brainstem and cortical layer VI afferents. Modulatory inputs 

shape the synaptic properties of driving afferents and the intrinsic electrophysiological 

characteristics of thalamic cells, but do not primarily determine the receptive field 

(Sherman and Guillery, 1996; Sherman, 2001c; Jones, 2002; Guillery, 2003). 

Based on the nature of driving inputs, thalamic nuclei are subdivided into first-

order and higher-order nuclei (HOn). The first-order nuclei or relay nuclei are driven 
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by afferents from the sensory periphery and serve as an obligatory relay for all 

sensory information except olfaction. For example, the dorsal lateral geniculate 

nucleus (dLGN) and the ventrobasal nucleus (VB) are two nuclei specialized to relay 

the external visual and somatosensory information to the primary visual and 

somatosensory cortex, respectively. The HOn receive input from cortical layer V and 

from sensory afferents but the first are driving inputs and the second are modulatory 

inputs (Diamond et al., 1992b; Sherman and Guillery, 2002). Frequently, activation 

within HOn is associated with more complex functions related to sensory processing, 

such as multisensory analysis, selective attention and expectation of reward 

(Kinomura et al., 1996; Ahissar et al., 2000; Komura et al., 2001b). 

Compared to first-order nuclei, little is known about the connectivity of HOn 

and about their function in TC and cortico-cortical communication. Presumably, the 

representations of each sensory modality are contained in at least one relay nucleus 

and one HOn. For example, the latero-posterior, the latero-dorsal and the posterior 

nuclei are HOn specialized to treat the visual and the somatosensory information, 

respectively (Bourassa and Deschênes, 1995; Bourassa et al., 1995; Sherman and 

Guillery, 1996). Moreover, first-order and HOn are interconnected via inhibitory nRt 

neurons, further indicating a tight communication between the ‘simple’ first-order and 

the more complex HOn (Crabtree et al., 1998; Crabtree and Isaac, 2002). 

 

b. Cellular and synaptic structure 

Compared to cortical and hippocampal circuits, the cellular architecture of 

thalamic nuclei appears remarkably simple, containing essentially only three types of 

neurons, the TC neurons, the thalamic interneurons, and the nRt neurons. 

Furthermore, compared to hippocampus and cortex, GABAergic signaling in 

thalamus appears strikingly uniform, with only two sources of inhibition from two 

seemingly homogeneous cell groups with spatially restricted distributions. The 

cellular structure, the principal synaptic (driving) inputs and the axonal projections of 

these three cell groups are briefly presented here. For a detailed account of neuronal 

subgroups within the nRt, the reader is referred to Pinault (2004). 

Thalamocortical neurons 

Somatodendritic morphology: In dorsal thalamic nuclei, the principal neurons 

are the glutamatergic TC neurons (Kaneko and Mizuno, 1988). In cats and rodents, 
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these are multipolar neurons with large somata (20x30 µm diameter) and radially 

arranged dendrites (Yamamoto et al., 1985; Yen et al., 1985), although more 

polarized dendritic trees are also described (Brecht and Sakmann, 2002). In vivo 

studies in the visual system have provided a functional subdivision of TC neurons into 

X-, Y-, and W-cells which is based on the linearity of responses to visual inputs, the 

receptive field structure, and the axonal conduction velocity (Sherman, 1985). This 

differential responsiveness of TC neuron subtypes correlates with distinct 

morphological (Friedländer et al., 1981; Crunelli et al., 1987) and electrophysiological 

(Bloomfield et al., 1987; Crunelli et al., 1987) characteristics. However, in other 

thalamic nuclei, TC cells appear as a more homogeneous group with no clear 

relationship between morphological and functional properties (Brecht and Sakmann, 

2002). 

Synaptic driver inputs: The driving inputs established by sensory afferents are 

glutamatergic (Montero and Wenthold, 1989; Turner and Salt, 1998) and terminate on 

the proximal dendrites of the TC neurons (McAllister and Wells, 1981; Wilson, 

1989). The sensory ascending tracts, such as the optic tract and the medial lemniscus, 

are composed of large-diameter axons that form large terminals on the TC neurons of 

the dLGN (Bowling and Michael, 1980) and of the VB (McAllister and Wells, 1981; 

Liu et al., 1995b), respectively.  

Axonal projections: The TC neurons project axons to the cortex. The TC axon 

terminals are principally located in the layer IV of the cortex (Herkenham, 1980) and 

form asymmetric glutamatergic synapses on the spiny dendrites of the neurons of this 

layer (Kharazia and Weinberg, 1994; Sherman and Guillery, 1996). On their way to 

the cortex, TC axons project collaterals to the neurons of the nRt (Scheibel and 

Scheibel, 1966; Yamamoto et al., 1985; Yen et al., 1985; Harris, 1987). Recently, it 

was also proposed that intralaminar axonal collaterals of TC neurons observed 

previously (Ferster and LeVay, 1978; Friedländer et al., 1981) innervate local 

interneurons to provide feedB inhibition (Cox et al., 2003). 

 

Local interneurons 

The other types of neurons found in the dorsal thalamic nuclei are the local 

interneurons. The proportion of interneurons varies as a function of the nuclei and the 

species. They can represent up to 30% of the cell bodies as revealed by the glutamic 
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acid decarboxylase (GAD) staining. This enzyme transforms glutamate into GABA. 

The primates have a higher proportion of interneurons than the rodents. For example, 

in rodent somatosensory thalamus, no interneuron is present (Arcelli et al., 1997), 

while in the dLGN, the interneurons represent 20% of the neurons (Gabbott et al., 

1986). In the primates, the local GABAergic neurons represent around 35-40% of the 

neurons in the dLGN and the VB (Arcelli et al., 1997). 

Somatodendritic morphology: The interneurons are small (8-14 µm diameter) 

GABAergic neurons (Ohara et al., 1983). They have a polar appearance with two 

highly branched dendrites arising from the opposite side. Most of the interneurons 

have a short ramified axon arising from the soma or the proximal dendrites (Rafols 

and Valverde, 1973; Montero, 1987; Gabbott et al., 1988). 

Interneurons in thalamic nuclei are unique, because besides the classic synapses 

formed at the axonal terminals (F1 synapses), the dendrites of interneurons form a 

triadic synaptic arrangement (named F2 synapses) with the retinogeniculate terminals 

and the postsynaptic dendrites of TC cells of X-type (Wilson et al., 1984; Sherman 

and Guillery, 1996, 2002). 

Synaptic triad: The triad has the following structure: The retinal axon makes 

asymmetric glutamatergic synapses on a TC cell dendrite and a dendrite of an 

interneuron that contains elements of a presynaptic structure, such as a cluster of 

synaptic vesicles (Ralston, 1971; Hamos et al., 1985). The interneuron then 

establishes a dendro-dendritic synapse on the same TC cell dendrite and is induced to 

release the vesicle after activation by the retinal tract, independently of the activity of 

other cellular compartments (Ralston, 1971). In this manner, the interneuron provides 

a highly localized feedF inhibition that controls the transmission efficiency of the 

prethalamic pathways. This triadic arrangement is embedded in a glial sheet to form a 

glomerular structure (Williams and Faull, 1987), thus ensuring the focal regulation of 

GABA release onto postsynaptic GABA receptors. 

Besides prethalamic connections, the interneurons are innervated by 

corticothalamic (CT) collaterals, as shown with morphological studies (Weber et al., 

1989; Montero, 1991; Erisir et al., 1998). They also receive excitatory inputs coming 

from intrageniculate collaterals of TC neuron axons (Cox et al., 2003). 
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Axonal projections: Besides the dendrodendritic synapses found in triads, 

interneurons form axodendritic or axosomatic inhibitory synapses (F1 terminals) onto 

TC neurons of the X- and Y-type (Guillery, 1969; Famiglietti and Peters, 1972). 

 

Nucleus reticularis neurons 

Somatodendritic morphology: The nRt is composed of a homogeneous 

population of small neurons (10-20 µm diameter) that express the GAD (Houser et al., 

1980; Yamamoto et al., 1985). Via Golgi impregnations of the nRt, Scheibel & 

Scheibel (1966) first provided a detailed description of the homogeneous group of 

oval or slightly elongated, multipolar cells with long, relatively unramified dendrites 

that were stretched out along the axis of the nRt, so perpendicularly to the direction of 

the TC and CT tracts. 

Principal synaptic inputs: The nRt lies in the path of axonal projections between 

the thalamus and the cortex and receives glutamatergic synaptic inputs from both 

areas (Scheibel and Scheibel, 1966). The cortical synapses on nRt cells represent the 

majority (>60%) of synapses present on the dendrites of nRt cells (Carman et al., 

1964; Ohara and Lieberman, 1981; Liu and Jones, 1999), whereas TC synapses 

amount to only 20%. This numerical dominance of cortical synapses at least partially 

explains the powerful control of nRt function, and thus indirectly of thalamic activity, 

by the cortex (Contreras et al., 1996; Bal et al., 2000; Blumenfeld and McCormick, 

2000; Zhang and Jones, 2004).  

Axonal projections: The nRt neurons project exclusively to the dorsal thalamus 

(Jones, 1975; Houser et al., 1980; Ohara and Lieberman, 1981; Steriade et al., 1984). 

Before, the reticulothalamic axons may give rise to intra-reticular collaterals (Cox et 

al., 1996). In dorsal thalamus, the nRt neurons terminals synapse on the soma, the 

proximal dendrites of rodent VB neurons (Peschanski et al., 1983) and dLGN neurons 

(Ohara et al., 1980) or on their intermediate dendrites (Kim et al., 1997).  

 

2. Electrophysiological properties the thalamocortical neurons 

 

Unique electrophysiological properties of TC neurons endow thalamic networks 

with the capacity to generate rhythmic neuronal activity in an autonomous manner. 

These rhythm-generating properties are essential for the generation of oscillatory 
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activity within TC networks that is observed during different phases of slow-wave 

sleep. The early stages of non-REM sleep is characterized by the recurrence of 6-15 

Hz oscillations that last 1-3 s and named spindle oscillations. Then, during the late 

stages of sleep, 0.5-4 Hz oscillations named delta waves appear  (Steriade et al., 1993; 

McCormick and Bal, 1997; Jones, 2002). For at least these two sleep-related rhythms 

that are sequently present in the electroencephalogram (EEG) of mammals, the 

cellular and the synaptic basis are remarkably well understood and is explained to a 

large extent by the activity of TC neurons and the GABAergic inhibition of these cells 

by the nRt 

 

a. Action potential discharge modes 

A principal property of TC neurons is the ability to generate rebound burst of 

APs upon transient membrane hyperpolarization. Jahnsen and Llinás (1982, 1984 a, b) 

were the first to describe these characteristic AP discharge patterns via intracellular 

recordings from guinea-pig TC cells (Llinás and Jahnsen, 1982). These authors found 

that when the membrane potential of TC neurons was below –60 mV, a step 

depolarization produced a burst of APs composed of a low-threshold spike (LTS), on 

which fast spikes were superimposed. They also showed that a hyperpolarizing 

potential induced a rebound burst when the membrane potential was set back to the 

resting potential. In contrast, when the membrane potential was above –60 mV, the 

same step depolarization evoked tonic firing of Na
+
 spikes. These observations were 

surprising because they showed that TC neurons displayed a dual AP discharge mode 

dependent upon the recent history of membrane potential trajectory. Moreover, it 

indicated that, paradoxically, TC neurons could discharge APs as a rebound response 

to inhibitory synaptic input. Jahnsen and Llinás further characterized the ionic 

conductances underlying this anomalous electrophysiological behavior and 

determined that the conductance that generated the LTS was inactivated at potential 

above -55 mV and that the removal of this inactivation required membrane 

hyperpolarization and was time-dependent (Jahnsen and Llinás, 1984a). Using ion 

substitution and blocker experiments, the LTS was found to be carried by Ca
2+

 

channels, whereas the superimposed fast spikes were carried by TTX-sensitive Na
+
 

channels (Jahnsen and Llinás, 1984b).  

The functional correlate of the dual discharge mode was found when recording 

in vivo from animals during different states of arousal. During sleep, in vivo 
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intracellular recordings showed that TC neurons of dLGN had a hyperpolarized 

membrane potential and that the main discharge pattern observed consisted in a burst 

of APs. Conversely, during waking or rapid-eye-movement sleep (REM sleep), the 

membrane potential was depolarized and the firing pattern of the cell consisted mostly 

in tonic firing (Hirsch et al., 1983; McCarley et al., 1983; Weyand et al., 2001). Thus, 

the AP discharge pattern was correlated with the arousal state and suggested that the 

burst discharge mode prevalent during sleep phases could contribute to the failure of 

thalamic neurons to faithfully transmit sensory signals to the cortex. In contrast, 

during the tonic firing mode, cells respond to incoming activities with individual 

spikes at frequencies that are proportionnal to the intensity of the stimuli. Indeed, 

analysis of the input-output relationship of TC neurons revealed that the burst 

discharge mode did not faithfully transmit information because the frequency of AP 

discharge during a burst did not depend on the amplitude of the inputs (Sherman, 

2001a).  

Although not nearly as common, arrhythmic bursting can also occur during 

wakefulness in a minority of dLGN cells and a variety of studies have emphasized a 

critical role of burst discharges in sensory processing. Bursts were observed at the 

onset of a visual stimulus presented for the first time, whereas subsequent 

presentations of a similar stimulus induced a burst less often (Weyand et al., 2001). 

Moreover, decreased arousal of the cat enhanced the probability to observe a burst in 

response to a visual stimulus (Weyand et al., 2001). Like the single spikes, thalamic 

bursts are informative for the cortex but with a different content. Indeed, in the FS 

interneurons of the cortical layer IV, the first spike of the TC bursts, which occurred 

mainly in drowsy animals, was more efficient to induce a suprathreshold response 

than a spike during regular firing (Swadlow and Gusev, 2001). It is therefore 

proposed that in an inattentive animal, the appearance of a new stimulus entails a 

burst in the dLGN TC neurons. This first burst would lead to a reliable activation of 

the cortex. This is consistent with the detector role attributed to the burst (Sherman, 

2001b). In awake state, the bursts may serve to detect fast changes in the sensory 

signals whereas the spikes decode a detailed representation of the signal (Nicolelis 

and Fanselow, 2002b). 
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b. The low-threshold calcium current 

The ability of the TC neurons to produce a rebound burst of APs is the 

consequence of the expression of a particular type of voltage-gated Ca
2+

 channel, also 

called the T-channel (IT) or Low-Voltage Activated (LVA) Ca
2+

 channel (Coulter et 

al., 1989; Huguenard, 1996), in the proximal dendrites and the soma (Suzuki and 

Rogawski, 1989; Destexhe et al., 1998; Williams and Stuart, 2000b).  

A transient Ca
2+

 current, different from two other Ca
2+

 current types, was 

originally identified in sensory neurones of the chick dorsal root ganglion and termed 

T-current, with the ‘T’ highlighting the transient appearance of the current (Nowycky 

et al., 1985). In TC neurons, the T-current manifests as a rapid inward current that has 

a low threshold of activation ~-65 mV compared to the high-voltage activated (HVA) 

Ca
2+

 channels which activates at potentials above ~-30 mV. The current inactivates 

within tens of milliseconds and the voltage-dependence of the steady-state 

inactivation is ~-83 mV. Both kinetics of activation (τ=2-8 ms) and inactivation 

(τ=20-50 ms) are dependent on voltage, being faster at more depolarized potentials 

(Coulter et al., 1989). At hyperpolarized potentials below -90 mV, IT recovers from 

inactivation within less than 500 ms (time constant of recovery = 250 ms at -92 mV) 

(Coulter et al., 1989). Upon transient membrane hyperpolarization, such as it occurs 

during inhibitory synaptic input arising from GABAergic neurons, neurons endowed 

with IT can thus, at the end of the hyperpolarization, generate a rapid, all-or-none 

depolarization that can reach AP threshold and promote a burst-like discharge of APs 

at frequencies up to 250-400 Hz (Jahnsen and Llinás, 1984b). 

The calcium channels are tetramers composed by the α1 subunit that is thought 

to form the pore of the channel and is associated to β, α2/δ and γ subunits (Catterall et 

al., 2003). At least ten α1 subunit transcripts have been cloned and three transcripts, 

the α1G (Cav3.1), the α1H (Cav3.2) and the α1I (Cav3.3) are related to T-channels 

(Cribbs et al., 1998; Perez-Reyes et al., 1998; Lee et al., 1999) . The α1G was the first 

cloned and showed strongest expression in the TC neurons (Perez-Reyes et al., 1998; 

Talley et al., 1999). In mice lacking the α1G subunits, the TC neurons lacked IT and 

failed to generate rebound burst responses following transient membrane 

hyperpolarization. The transgenic mice were resistant to the generation of spike-and-

wave discharges typically observed in the relay nuclei of the thalamus after injection 

of drugs that promoted these epileptiform oscillations in wild-type mice (Kim et al., 
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2001b). These results indicate a crucial role of IT in the generation of synchronized 

oscillations in TC networks. The consequence of the lack of α1G subunits on the 

sleep of these animals has so far remained unexplored. 

 

c.The hyperpolarization-activated non-selective cationic current  

In addition to showing a strong propensity to generate rebound low-threshold 

calcium bursts, TC neurons express a hyperpolarization-activated cation current (Ih), 

classically referred to as the pacemaker current. The properties of Ih are detailed here 

in the review ‘Regulation of recombinant and native hyperpolarization-activated 

cation channels’ (part III).  The pacemaker current activates at potentials below –60 

mV and is carried by both Na
+
 and K

+
 ions, with a higher permeability to K

+
 ions 

(PNa/PK ∼ 0.2-0.4). Recently, a small permeability for calcium was identified via 

imaging techniques for the current produced by recombinant expression of human 

HCN4 transcript in HEK293 cells or for the native current in dorsal root ganglia 

neurons (Yu et al., 2004a). Within the hyperpolarized activation range, the current is 

mainly carried by an influx of Na
+
 ions across the membrane, as evident from Na

+
 

imaging studies in dopamine cells of the substantia nigra pars compacta (Knöpfel et 

al., 1998). The kinetics of activation are usually best described by a biexponential 

time dependence (McCormick and Pape, 1990a; Santoro et al., 2000).  

A remarkable characteristic of Ih is its modulation through cyclic nucleotides. 

Cyclic AMP (cAMP) increases the amplitude of the current and accelerates the 

kinetics of activation (DiFrancesco and Tortora, 1991; Robinson and Siegelbaum, 

2003). 

Four subunits of the HCN (Hyperpolarization-activated cationic non-selective) 

channels, HCN1-4, were recently cloned and they were found to generate currents that 

showed properties strongly reminiscent of those found in intact cells. 

Immunocytochemistry and in situ hybridization essays has shown that the TC neurons 

express mainly HCN2 and HCN4, the two subunits most sensitive to cAMP 

(Moosmang et al., 1999; Santoro et al., 2000).  

The combination of IT and Ih is the basis for the delta oscillations, a type of slow 

rhythmic discharges at 0.5-4 Hz that are found both in vitro (McCormick and Pape, 

1990a; Leresche et al., 1991; Soltesz et al., 1991; Destexhe et al., 1993; Steriade et al., 

1993; Hughes et al., 1998) and in vivo (Steriade et al., 1991) and that contribute to the 
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emergence of the slow EEG waves during deep sleep phases. These oscillations are 

cell-autonomous as they are produced in the absence of synaptic activity and of AP 

generation (McCormick and Pape, 1990a; Leresche et al., 1991; Soltesz et al., 1991; 

Destexhe et al., 1993). Briefly, when the cell is hyperpolarized around –75 mV, the h-

current is activated and it drives the potential back to depolarized state. The slow 

kinetics of activation of Ih permit a sufficient de-inactivation of the T-current. The 

opening of T-channels elicits a fast depolarization that triggers the burst of APs. The 

depolarization of the cell inactivates IT, de-activates Ih and results in the repolarization 

of the potential, which re-activates Ih and triggers a new burst.  

 

3. GABAergic signaling in thalamus I: the nucleus reticularis  

 

The principal inhibition of thalamic nuclei is exerted by the nRt that forms a 

shell of inhibitory cells surrounding the thalamus. The nRt exerts both a global 

inhibition of thalamic nuclei and is involved in the genesis of neuronal 

synchronization and rhythmicity in TC networks (McCormick and Bal, 1997; 

Steriade, 2001; Jones, 2002), and a local inhibition that acts to control the gain and 

precision of information transfer during sensory processing (Norton and Godwin, 

1992; Nicolelis and Fanselow, 2002b; Pinault, 2004). In parallel to the first chapter of 

this thesis, we focus here on the cellular and synaptic basis of nRt function and the 

diversity of its actions in thalamic networks. 

 

a. Electrophysiological properties of the nucleus reticularis neurons 

Similar to the TC neurons, the nRt cells have two different AP discharge modes, 

a tonic mode and a burst mode as shown in vitro (Spreafico et al., 1988; Bal and 

McCormick, 1993) and in vivo (Domich et al., 1986; Mulle et al., 1986). The capacity 

to burst is also associated with the expression of low-threshold calcium currents. 

Nevertheless, the burst discharge differs from that generated by TC neurons due to the 

fact that the nRt T-channels have molecular and physiological properties distinct from 

those expressed in TC neurons. The current activates at more depolarized potentials 

(~-50 mV), permitting nRt cells to generate bursts at more positive potentials 

(Huguenard and Prince, 1992). Due to decelerated inactivation, the burst lasts longer 

so that 6 to 8 APs are generated instead of only 1 to 3 APs in TC neurons (Bal and 
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McCormick, 1993; Contreras et al., 1993). The time and voltage-dependent properties 

of the activation and inactivation observed in nRt IT are thought to result from the 

strong expression of the α1I subunit (Talley et al., 1999). Indeed, recombinant 

expression of α1I subunits leads to a current with a more depolarized voltage-

dependence of the activation and a slower activation (the time constant is 4.7 ms) and 

inactivation (the time constant is 55 ms) compare to the α1G and α1H subunits (the 

activation and inactivation time constants are, 1.7-1.8 and 14-15 ms) (Perez-Reyes et 

al., 1998; Lee et al., 1999). Finally, in contrast to TC neurons, nRt neurons are 

capable to produce burst discharges in a repetitive manner. This is mostly due to the 

fact that calcium influx during low-threshold calcium bursts is tightly coupled to 

calcium-dependent afterhyperpolarizing currents (Avanzini et al., 1989; Bal and 

McCormick, 1993) which repolarize sufficiently the membrane potential to allow for 

fast recovery of inactivation of IT (Bal and McCormick, 1993).  

In comparison to TC neurons, nRt cells show a qualitatively similar, yet 

biophysically distinct intrinsic propensity to discharge in bursts. Due to the equipment 

with a peculiar set of intrinsic conductances, this intrinsic bursting is facilitated to 

occur at fairly depolarized potentials, and usually entrains the generation of at least 

two or three more rebound bursts. These pronounced discharge properties of nRt cells 

make them uniquely suited to act as pacemaker cells for the initiation of rhythmic 

activity driven by GABAergic synaptic inhibition. 

 

b. Synaptic connectivities within the nucleus reticularis 

Connection by chemical synapses 

The main axon of 65% of reconstructed nRt neurons gives rise to intra-reticular 

collaterals before running into the dorsal thalamus of young rats (Cox et al., 1996), 

but in adult rats no intra-reticular axon collaterals has been found so far in other 

studies (Pinault et al., 1995a, b). If they exist, the intra-reticular collaterals may form 

GABAergic synapses on the proximal and distal dendrites of the nRt neurons (Liu and 

Jones, 1999). Moreover, intra-reticular inhibition could also be mediated through 

dendro-dendritic synaptic contacts that have been described on nRt neurons 

(Deschênes et al., 1985; Pinault et al., 1997). Accordingly, local stimulation of nRt 

neurons results in intra-reticular inhibition mediated by both GABAA receptors and 
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GABAB receptors (Bal et al., 1995b; Ulrich and Huguenard, 1996; Sanchez-Vives et 

al., 1997; Shu and McCormick, 2002). 

Intra-reticular inhibition prevents the occurrence of hypersynchrony in network 

activities of the TC system. Disinhibition of nRt cells via local application of 

bicuculline in vitro (Bal et al., 1995b; Jacobsen et al., 2001) resulted in a 

transformation of sleep-related, weakly synchronized oscillations into a 

hypersynchronous activity typical for generalized epilepsies (McCormick and 

Contreras, 2001). The GABAA receptors that mediate intra-reticular inhibition contain 

the β3 subunits (Wisden et al., 1992). Mice in which the β3 subunit was genetically 

removed were epileptic and showed 3 Hz oscillations in the EEG that were abolished 

by administration of ethosuximide (DeLorey et al., 1998). Moreover, in vitro, 

hypersynchronous multi-unit activities were observed in the majority of the thalamus 

of knock-out mice. Therefore, both pharmacological and genetic evidence strongly 

supports a crucial role of nRt neurons and their reciprocal inhibition in both the 

generation and the limitation of synchronized oscillatory activity (Huntsman et al., 

1999).  

Accordingly, an increase of intra-reticular inhibition prevents synchronous 

oscillations. The benzodiazepines stopped oscillations elicited by stimulation in the 

internal capsule in wild-type mice (Sohal et al., 2003). In mice expressing a 

genetically engineered BZ-insensitive α1 subunits, application of clonazepam (a BZ) 

suppressed evoked oscillations, whereas in mice expressing the BZ-insensitive α3 

subunit, application of clonazepam had no effect. Subunits of the α1-type are 

expressed in TC neurons while nRt neurons express α3 subunits (Wisden et al., 1992). 

Therefore, the BZ effect was mediated by the potentiation of GABAA inhibition 

within the nRt (Sohal et al., 2003). The intra-reticular inhibition may reduce the 

number of bursts in an oscillation by reducing the excitability of the cells. Through 

this way, it limits the synchronization of the discharges in nRt cells and TC cells 

(Sohal and Huguenard, 2003). 

 

Connection by electrical synapses 

Based on the detection of tight bundling of dendritic trees (Scheibel and 

Scheibel, 1966; Ohara and Lieberman, 1985; Liu and Jones, 1999) and the presence of 

dendritic spikes (Contreras et al., 1993), it has long been suspected that nRt neurons 
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may communicate via both axodendritic and dendrodendritic electrical contacts and 

thus form a densely connected electrical network with the capacity for strong 

synchronization. Moreover, connexin 36 is expressed in nRt (Deans et al., 2001; Liu 

and Jones, 2003), indicating the probable formation of gap junctions between nRt 

neurons. Indeed, dual recordings from closely apposed nRt cells reveal that the 

majority of nRt neurons are electrically coupled (Landisman et al., 2002). The electric 

synapses in nRt have the characteristics of a low-pass filter: the high-frequency AP 

discharges in one cell are more attenuated by electric coupling than the lower 

frequency discharges. There is almost no attenuation for spike discharge frequencies 

inferior to 10 Hz while 100 Hz spike discharges are attenuated by ~75% (Landisman 

et al., 2002). The electric coupling between two nRt cells is also particularly efficient 

to transfer charge movement induced by injection of negative current or by induction 

of rebound bursts in one cell. The gap junctions between nRt neurons are almost 

entirely dependent on connexin 36 since in animals lacking this protein, apposed nRt 

neurons do not display any electric coupling (Landisman et al., 2002). The nRt is 

composed of relatively small clusters of electrically coupled cells that can 

synchronize rhythmic activity over relatively short distances (40 µm) (Landisman et 

al., 2002) whereas synaptic GABA inhibition occurs via long-range connections (until 

300 µm) (Sohal et al., 2000). Electric coupling may thus serve to locally synchronize 

small clusters of neighbouring neurons during thalamic synchronized oscillations, 

such as during spindle waves in slow-wave sleep (Long et al., 2004). 

 

c. Thalamocortical and corticothalamic inputs  

The neurons of the nRt are driven by two types of excitatory inputs, one arising 

from TC collaterals, the other from CT collaterals. Thalamocortical inputs into nRt 

cells have been well characterized in vitro studies on slice preparations maintaining 

the connectivity between TC and nRt neurons. The activation of the TC neurons by 

local application of glutamate or by electrical stimulation induces EPSPs in the nRt 

(Bal et al., 1995b). In paired recordings, the unitary EPSPs elicited by APs in TC 

neurons are found to summate sublinearly during both tonic and burst firing, 

suggesting the absence of a boosting effect of high-frequency discharge on the 

functional connection between TC and nRt neurons  (Kim and McCormick, 1998; 

Gentet and Ulrich, 2003). Nevertheless, the summated EPSPs generated by one 
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rebound burst in a TC neuron induce bursts in a nRt neuron (Kim and McCormick, 

1998), although the convergence of TC inputs during synchronized TC rhythms, such 

as spindle waves, greatly increases the reliability of burst generation in nRt cells (Kim 

and McCormick, 1998). The TC-nRt EPSPs are mediated predominantly by AMPA 

receptors, but also show a NMDA receptor-mediated component at resting membrane 

potentials (Bal et al., 1995b; Jacobsen et al., 2001; Gentet and Ulrich, 2003), 

consistent with the expression of weakly Mg
2+

-sensitive NMDA receptor subunits in 

nRt cells (Wenzel et al., 1995; Wenzel et al., 1997). 

The number of CT synapses far exceeds that attained by TC projections (Liu 

and Jones, 1999). Moreover, CT projections innervate both nRt and TC neurons, yet 

CT synapses show a four-fold higher expression of AMPA receptor subunits in the 

postsynaptic membrane of reticular neurons, suggesting both a numerical and 

physiological dominance of cortical effects on nRt neurons (Golshani et al., 2001). 

Accordingly minimal CT fiber stimulation elicits EPSCs with amplitudes up to three-

fold greater than the EPSCs amplitude evoked at CT-TC synapses. Like the TC-nRt 

connections, activation of CT fibers produces not only EPSCs but also di/poly-

synaptic IPSCs due to activation of neighbouring nRt neurons (Zhang and Jones, 

2004). Via this powerful influence on nRt neurons, it is perhaps not surprising that 

cortical inputs to the thalamus is essentially involved in the synchronization of 

thalamic oscillations (Contreras et al., 1996; Bal et al., 2000; Blumenfeld and 

McCormick, 2000) and in the sharpening of receptive fields (Alitto and Usrey, 2003). 

 

 

d. Inhibition of thalamocortical neurons by the nucleus reticularis neurons 

The output projections from the nRt are limited to the thalamic nuclei, including 

both first-order and HOn. Therefore, nRt and TC neurons form reciprocally connected 

loops in which consist the basic cellular network able to self-sustain synchronized 

network activity that contributes to both sleep and epileptic rhythmic waves 

characteristically observed in EEG recordings (Steriade et al., 1993; Steriade et al., 

1994; McCormick and Bal, 1997; Siegel, 2004). An in vitro ferret preparation, which 

preserves the ability of thalamic circuit to produce the spindle waves, has been used to 

detailed the biophysical mechanisms for their generation in the thalamus (von Krosigk 

et al., 1993). Activation of excitatory inputs from TC or CT tracts induce bursts in nRt 

cells that lead to a barrage of IPSPs in thalamic neurons. The resulting 
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hyperpolarization of the membrane of TC cells permits the removal of inactivation of 

IT and the repolarization of membrane potential can be followed by a rebound calcium 

spike associated with bursts of APs. The thalamic bursts induce a barrage of EPSPs in 

reticular neurons that de-inactivates IT, allowing the generation of bursts and then a 

new cycle can start again (von Krosigk et al., 1993; Bal et al., 1995a,b; McCormick 

and Bal, 1997). The frequency of the spindle waves (6-15 Hz) is chiefly determined 

by the duration of the IPSPs in TC neurons (Bal et al., 1995a,b). Moreover, nRt-

mediated inhibition of TC neurons during states of waking acts in a feedB manner to 

control the gain of information transfer from the periphery to the cortex (Le Masson et 

al., 2002). 

The extracellular stimulation of the nRt in horizontal rodent thalamic slices 

generally evokes biphasic inhibitory responses in the TC neurons (Huguenard and 

Prince, 1994a; Warren et al., 1994; Warren et al., 1997) with both GABAA and 

GABAB receptor-mediated components. At reticulothalamic synapses, activation of 

the GABAB receptor component could be observed at similar stimulation intensity as 

the GABAA component (Huguenard and Prince, 1994a). Paired recordings of 

connected nRt neurons and TC neurons allowed studying the properties of unitary 

nRt-TC connections (Cox et al., 1997; Kim and McCormick, 1998). Unitary IPSCs 

evoked in TC neurons by an AP in nRt neurons showed small amplitude (20 pA in 

average) and high failure rate (~60%) in few neurons (3 out of eight). Bursts of APs 

in nRt neurons reduced the failure rates (a three folds decrease) but did not alter the 

response properties. The strong pairs (5 out of 8 pairs) showed large amplitudes (190 

pA in average) and no failure. Bursts in presynaptic nRt neurons strongly amplified 

the response (increase by 270% of the control charge current). The difference between 

the two synapse subtypes may arise from morphological differences as the weak and 

the strong synapses were estimated to present 1-3 release sites against 5-70 release 

sites, respectively (Cox et al., 1997). The GABAB receptor-mediated responses are 

observed whether the nRt cell produced prolonged burst discharges (Kim and 

McCormick, 1998), indicating that nRt neurons can give rise to unitary GABAB-

mediated responses in response to prolonged bursts. In contrast to TC-nRt 

connections, IPSPs generated by nRt cells show pronounced facilitation at higher 

frequencies (Kim and McCormick, 1998), indicating that the impact of nRt burst 

discharges is further strengthened by the presynaptic properties of nRt synapses. 
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Modelling of inhibitory feedB has shown that the strength of feedB inhibition 

decreases the reliability between sensory input and the TC neurons discharge (Le 

Masson et al., 2002). When TC neurons were hyperpolarized as during sleep, the 

correlation between the arrival of sensory inputs and discharges was negatively 

correlated with the strength of feedback inhibition. During arousal, or in vitro after 

application of noradrenaline, the TC neurons were more depolarized and the 

efficiency of sensory inputs to trigger spikes was increased even in the presence of 

strong feedB (Le Masson et al., 2002), indicating that nRt neurons can control the 

amount of information that can be transmitted by TC neurons to the cortex.  

 

4. GABAergic signaling in thalamus II: Local interneurons  

 

a. Electrophysiological properties of local interneurons 

A large variety of data on the electric properties of the interneurons have been 

reported. Some studies showed a higher input resistance and a longer membrane 

conductance of the interneurons compared to TC neurons (McCormick and Pape, 

1988; Zhu et al., 1999b). Indeed, the input resistance was ~500 MΩ and the 

membrane time constant was ~100 ms for rat interneurons and the values are 100 MΩ 

and 25 ms for the TC neurons in the data presented by Zhu and colleagues (Zhu et al., 

1999a). Some studies showed a shorter time constant (36.8 for the interneurons and 

58.2 ms for TC) (Williams et al., 1996) and a similar cell resistance (Pape and 

McCormick, 1995; Williams et al., 1996), 80 and 160 MΩ, respectively. The 

discrepancies of the data were not commented but they were not due to species 

differences, as Williams and Zhu used both rats. 

The presence of IT (Pape et al., 1994) allows the interneurons to generate LTS 

with a duration of 100-300 ms (Pape and McCormick, 1995). Depolarization of the 

cell membrane induces several bursts of spikes at a frequency between 25 and 150 Hz 

(Zhu et al., 1999b). In a previous paper, the interneurons produced high-frequency 

tonic firing upon depolarization of the cell (Pape and McCormick, 1995) and no burst 

activity. A high resistance (500 MΩ in Zhu’s study against 80 MΩ in Pape’s study) of 

the membrane of the recorded interneurons seemed to be required to observe 

oscillatory discharges (Zhu et al., 1999b). 
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A passive model of interneurons, considering the passive and morphological 

properties of the soma and dendrites of interneurons, has concluded that the dendritic 

tree and the soma with the proximal dendrites form two isolated compartments, and 

only the two last may influence the firing pattern of interneurons (Bloomfield and 

Sherman, 1989). Conversely, distal dendritic compartments may function as 

independent local processors in dendro-dendritic communication, as a simulated 

depolarization of the distal dendrites may be not detected in soma (Bloomfield and 

Sherman, 1989). Moreover, (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid 

(ACPD), an agonist of metabotropic glutamate receptors, increased the release of 

GABA at the dendro-dendritic synapses, while ACPD did not alter the membrane 

potential recorded at the soma (Pape and McCormick, 1995; Cox et al., 1998), 

supporting the conclusion of the cell modelling study. 

 

b. Inhibition of thalamocortical neurons by local interneurons 

A possible role of interneurons in thalamic function was provided early by in 

vivo stimulation of prethalamic afferents. In cat, activation of either optic nerve or the 

mammillothalamic tract elicited an EPSP followed by a Cl
-
 mediated-IPSP with a 

latency short enough to propose a disynaptic feedF inhibition (Lindstrom, 1982; Paré 

et al., 1991). Similarly, in the rat deprived of nRt, activation of interneurons by retinal 

tract stimulations first evoked a fast EPSP followed by a disynaptic IPSP consisting of 

a GABAA and a GABAB component (Crunelli et al., 1988). In anterior thalamic 

nucleus, it was even possible to distinguish a triphasic IPSP with a first, fast GABAA 

component mediated via the dendro-dendritic synapses of the glomerulus, and the 

second and the third components is produced by both GABAA and GABAB receptors 

via the axo-dendritic synapses (Paré et al., 1991). 

A second putative mechanism of inhibition by the interneurons or by the nRt is 

the calcium-dependent presynaptic inhibition of the retinogeniculate synapses by 

activation of GABAB receptor, presumably by spillover of GABA from the 

interneurons-TC synapses or reticulothalamic synapses (Chen and Regehr, 2003). 
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I Introduction to the paper 1 

 

Cyclic AMP (cAMP) is a prototypical second messenger that mediates the 

action of extracellular signals, such as hormones and neurotransmitters, to 

intracellular physiological responses, such as electrical activity and gene expression 

(Zagotta and Siegelbaum, 1996; Antoni, 2000; Hanoune and Defer, 2001; Kaupp and 

Seifert, 2002). In the central nervous system, cAMP is involved in cellular and 

synaptic processes related to essential neural functions, such as sleeping, waking, 

learning and memory (Silva et al., 1998; Mayford and Kandel, 1999; Hanoune and 

Defer, 2001).  

The regulation of cyclic nucleotides plays a particularly important role in 

thalamic functions. The thalamocortical (TC) neurons possess a potent subcellular 

machinery controlling intracellular cAMP levels ([cAMP]i) that contribute to induce 

the transitions between the burst and the tonic firing mode
 
(McCormick, 1992; 

McCormick and Bal, 1997). Thus, these cells express numerous neurotransmitter 

receptors that are activated at the transition from the sleeping to the waking state
 

(Pape and McCormick, 1989; McCormick and Pape, 1990b; McCormick and 

Williamson, 1991; Lee and McCormick, 1996). Activated receptors are positively 

coupled to an increase in [cAMP]i, probably via Gs-protein-mediated activation of 

adenylyl cyclases (ACs)
 
(McCormick and Pape, 1990b; McCormick and Williamson, 

1991; Lee and McCormick, 1996). Conversely, receptors coupled negatively to cAMP 

synthesis via Gi-protein-mediated inhibition of ACs may promote the burst discharge 

mode of thalamic cells, thereby contributing to the generation of sleep-related 

oscillations (Pape, 1992). 

During non-rapid-eye-movement sleep, but also during some types of epilepsy, 

the TC system generates a number of slow, synchronized electrical oscillations, which 

are responsible for the electroencephalographic (EEG) patterns used to characterize 

sleep and epilepsy in clinical applications. The TC neurons are part of the pacemaker 

circuit that underlies the generation of some of these oscillations, including sleep 

‘spindle waves’. These are epochs of 1-3 sec periods of 7-14 Hz network activity that 

appear at regular intervals of 5-30 sec (McCormick and Bal, 1997). A major factor for 

the slow periodicity of spindle waves may be an activity-dependent increase in 

[cAMP]i in the TC neurons. Increased [cAMP]i modulates the intrinsic electrical 

properties of these cells in such a manner that their ability to participate in the 
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oscillations is decreased for a period that is equivalent to the silent phase between the 

spindle waves (Bal and McCormick, 1996; Lüthi and McCormick, 1999). The 

spindles oscillations waxe and wane. In vitro, The waxing of the oscillations is due to 

an progressive increase in the recruitment of neurons that participate to the oscillation. 

The waning is underlaid  by depolarization of the thalamic neurons that promotes the 

inactivation of T-current. The depolarization responsible for the waning of the 

oscillations could be triggered by the upregulation of the h-current (Bal and 

McCormick, 1996) via an increase of intracellular calcium level during the burst Ih 

(Lüthi and McCormick, 1998a). During spindle oscillations, rhythmic influx of 

calcium may regulate a Ca
2+

-sensitive adenylyl cyclase and the resulting enhancement 

of cAMP levels is responsible for the persistent activation of Ih (Lüthi and 

McCormick, 1999). The persistence of Ih activation is also determined by the slow 

rate of cAMP dissociation from the CNBD at the cytoplasmic tail of the channel 

(Wang et al., 2002). Therefore, subcellular oscillations in intracellular messenger 

levels appear to contribute to the timing of rhythmic behaviors in sleep, and, perhaps, 

also during epilepsy.  

In spite of this important role of cAMP signaling in thalamus, little is known 

about how thalamic GABAB receptors control cAMP turnover. Given that GABAB 

receptors could be involved in thalamic oscillations (Jacobsen et al., 2001), it is 

crucial to understand how synaptically activated receptors control cAMP synthesis, 

and therefore, perhaps, the timing of large-scale synchronized oscillations. In this 

study, we therefore aimed to characterize GABAB receptor-mediated control of cAMP 

synthesis, taking advantage of the fact that these cells strongly express an ionic 

current, the pacemaker current Ih, that can be recorded with electrophysiological 

techniques (McCormick and Pape, 1990a). The ionic channels underlying this current 

are gated directly by [cAMP]i, therefore, cAMP acts as a ‘first messenger’ for these 

ionic channels (DiFrancesco and Tortora, 1991; Wainger et al., 2001). The molecular 

subunits constituting the pacemaker channels in thalamus show the highest sensitivity 

to [cAMP]i amongst the four subunits identified in the brain so far (Kaupp and Seifert, 

2001; Robinson and Siegelbaum, 2003). On the other hand, Ih appears to exhibit little 

susceptibility to direct regulation by other intracellular factors, such as Ca
2+

, kinases 

or phosphatases (Pedarzani and Storm, 1995; Accili et al., 1997; Budde et al., 1997; 

Larkman and Kelly, 1997). Therefore, pacemaker channels are built-in, selective 

reporters of submembraneous [cAMP]i produced by the membrane-bound ACs. Using 
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Ih recordings, we were able to continuously read-out of [cAMP]i in these cells and to 

quantify AC activity under physiological conditions. 

 

1. GABAB receptor signaling in the thalamus 

 

In situ hybridization (Liang et al., 2000) and immunochemistry studies have 

shown that GABAB receptors were highly expressed in the thalamus (Fritschy et al., 

1999; Margeta-Mitrovic et al., 1999; Princivalle et al., 2000; Princivalle et al., 2001; 

Kulik et al., 2002). The expression of GABAB receptors in TC neurons was already 

maximal at the age of two weeks in the rat (Princivalle et al., 2000). In the ventrobasal 

thalamus (VB), GABAB(1) and GABAB(2) subunits expression overlapped in neurons 

(Princivalle et al., 2001; Kulik et al., 2002). In the dendrites, the GABAB(1a/b) and 

GABAB(2) subunits were found extrasynaptically both around the GABAergic 

synapses and around non-GABAergic synapses (presumably corticothalamic (CT) 

synapses) (Kulik et al., 2002). One study suggested that GABAB(1a) subunits might be 

present at postsynaptic sites on cell bodies (Princivalle et al., 2001). 

 

a. The effects mediated by GABAB receptors in the thalamus 

Activation of GABAB receptors by the reticular neurons 

The activation of GABAB receptors of TC neurons required long burst 

discharges in the connected nRt neurons (Kim and McCormick, 1998), which were 

observed when disinhibition between nRt neurons was induced pharmacologically 

(Sanchez-Vives et al., 1997) or genetically (Huntsman et al., 1999).  

In the VB nucleus of the thalamus, blocking GABAB receptors with saclofen led 

to a 2.3-fold increase in the average receptive field size of VB neurons  (Lee et al., 

1994). As the nRt neurons are the only source of GABA in VB nucleus (Arcelli et al., 

1997), this result suggests that GABAB receptors at the reticulothalamic synapses are 

able to control the responsiveness of TC neurons to sensory stimulus and therefore are 

able to control the transmission of sensory signals to the cortex. 

Additional information about the role of GABAB receptors in the 

reticulothalamic connections was detailed in the general introduction (see chapter II, 

3d). 

 

Activation of GABAB receptors by the local interneurons  
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GABAB receptors activated synaptically at the GABAergic synapses formed 

between interneurons and TC neurons induced a hyperpolarization of the cell. In the 

lateral geniculate nucleus, activation of the optic tract induced a tri-phasic response 

(Paré et al., 1991). The first was excitatory, the second was a fast hyperpolarization 

and the last was a slow hyperpolarization. The potassium conductance underlying the 

last response was similar to the hyperpolarization induced by baclofen (Bac). 

Moreover, the slow hyperpolarization was insensitive to bicuculline but blocked by 

phaclofen, suggesting a GABAB receptor-dependent action (Hirsch and Burnod, 1987; 

Crunelli et al., 1988; Soltesz et al., 1988). This response was due to the excitation of 

the interneurons by the optic tract stimulation (Crunelli et al., 1988). 

 

b. Activation of GABAB receptors during thalamocortical synchronization 

Activation of GABAB receptors during spindle oscillations 

Both GABAA and GABAB receptors contribute to the spontaneous generation of 

sleep-related oscillations, but their relative contributions vary dependent upon the 

species investigated. In ferrets, application of GABAB receptor antagonists in vitro 

only weakly modulated the frequency and amplitude of spindle oscillations (von 

Krosigk et al., 1993; Blumenfeld and McCormick, 2000). However, in rat slices, 

spindle-like oscillations that were produced in a pro-oscillatory milieu were sensitive 

to blockade of GABAB receptors (Jacobsen et al., 2001). The GABAB receptor-

mediated hyperpolarization display slow kinetics and prolonged duration (150-300 

ms) and thus may increase the time to complete a loop of activity between thalamic 

reticular cells and thalamocortical neurons from ~70-150 ms for 7-14 Hz sleep-

associated spindle oscillations to ~300-400 ms for 3-5 Hz absence seizure-related 

oscillations (McCormick and Contreras, 2001). 

 

Activation of GABAB receptors during absence seizures oscillations  

Definition and characterization: Epilepsy syndromes fall into two broad categories: 

generalized
 
and partial (or localization-related) syndromes. In generalized

 
epilepsies, 

the seizures seem to begin simultaneously
 
in both cerebral hemispheres and generally 

lead to a loss of consciousness. In partial epilepsies, by contrast, seizures originate
 
in 

one or more localized foci, although they can spread to involve
 
the entire brain.  

Childhood absence epilepsy or petit mal epilepsy is a generalized epilepsy 

syndrome
 
that begins between the ages of four and eight years with absence

 
seizures. 
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During absence seizures, patients stare and cease normal activity
 
for a few seconds 

with no convulsion, then return immediately to normal and have
 
no memory of the 

event. These seizures can occur tens
 
or hundreds of times a day. There is a classic

 

EEG pattern of three-per-second, generalized spike-and-wave discharges (SWDs)
 
in 

childhood absence epilepsy. The SWDs are composed of strong burst discharges 

during spikes combined with inhibition-induced silencing during waves. Absences 

usually appear at times of transition to or from sleep, in quiet wakefulness and in light 

non-REM sleep (Futatsugi and Riviello, 1998; McCormick and Contreras, 2001), 

suggesting that they represent a paroxysmal development of naturally occurring sleep-

related oscillations occurring during these states. These 3 Hz frequency waves are 

recorded bilaterally in TC system of epileptic children during absence seizures 

(Williams, 1953). The anatomical origin of SWDs is a subject of continuous debate.  

 

Anatomical origin of the SWDs associated to absence epilepsy: In Denis Williams’s 

study (1953), the 3 Hz SWDs were found to start first in the thalamus and Williams 

concluded that "the clinical state of petit mal epilepsy is due to a disturbance in the 

thalamus which causes a rhythmic discharge throughout the cortex" (Williams, 1953). 

In addition, electrical stimulation of the
 

thalamus in cats produced bilaterally 

synchronous EEG discharges
 
that resembled the classic absence pattern (Jasper and 

Droogleever-Fortuyn, 1947). Thus, the thalamus was considered as the centre for the 

generation of absence seizures. 

In contrast, penicillin, a weak GABAA antagonist, was able to induce a 

transformation of EEG spindles to SWDs when applied within the cat cortex 

(Kostopoulos et al., 1981). Penicillin did not have such effect when it was applied in 

the thalamus (Futatsugi and Riviello, 1998). The penicillin-induced SWD in cat was 

considered as a good model of absence seizures as the SWD EEG pattern was 

accompanied with some behavioural and pharmacological features typical for absence 

seizures. This model is named the Feline Generalized Penicillin-induced Epilepsy or 

FGPE (Kostopoulos, 2000). The development of generalized SWDs requires the 

presence of both a functional thalamus and a functional cortex, as evident from 

studies in the cat with an anatomical or functional decortication or thalamectomy, 

leading to no SWD generation in response to penicillin injection (Kostopoulos, 2000). 

Thus, the mechanism that generates absence seizures is now believed
 
to involve the 

circuitry between the thalamus
 
and the cerebral cortex. Today, it seems probable that 



 

 52 

the increase of discharge synchrony, underlying absence seizures, starts within the 

cortex that secondarily recruits the thalamus.  

In vivo, during spontaneous SWDs arising in the unanaesthetised WAG/Rij rats, 

a model of absence epilepsy (Coenen et al., 1992), multi-recordings in the cortex and 

the thalamus showed that the SWDs started in the somatosensory cortex and then 

spread into other areas of the cortex and then in the thalamus. During the first 500 ms 

of the SWDs, the cortex led and recruited the thalamus. After this period, the cortex 

and the thalamus influenced each other to increase the synchronization process 

(Meeren et al., 2002). In the genetic absence epilepsy rats of Strasbourg (GAERS), an 

other model of absence epilepsy (Marescaux et al., 1992), SWD-related discharges of 

TC neurons and nRt neurons occurred almost synchronously, but, again, they began 

~7-8 ms after the CT SWD-related discharges (Pinault, 2003). Similarly, in 

anaesthetised cats, multisite recordings in the cortex and the thalamus during 3 Hz 

SWD-like oscillations showed that paroxysmal events were first observed in the 

cortex and then in the dorsal thalamus (Steriade and Contreras, 1995). The SWDs 

were associated with an enhanced duration of the bursts of the nRt neurons that 

exerted strong inhibitory drive in TC neurons. Thus, 60% of the TC neurons were 

hyperpolarized and silent during SWDs and that may explain the lost of consciousness 

associated with absence seizures (Steriade and Contreras, 1995). However, this was 

not confirmed in GAERS, where TC neurons kept on discharging in bursts after a 

phasic inhibition at each cycle of the SWDs (Pinault, 2003). 

Two in vitro studies in ferret showed that the frequency of oscillations 

generated in the thalamic network was dependent upon the strength of the CT 

feedback inputs (Bal et al., 2000; Blumenfeld and McCormick, 2000) in such a 

manner that high cortical discharge preferentially induced slow 3 Hz thalamic 

oscillations.  

Therefore, both in vivo and in vitro evidence points towards an essential role of 

the cortex in the initiation of SWDs, whereas the maintenance and large-scale 

synchronization is also dependent upon thalamus. Similarly to spindle waves, the 

synchronization of TC neuron discharges within the thalamus is thought to depend on 

nRt neurons (Steriade and Contreras, 1995; McCormick and Contreras, 2001) and the 

activation of TC GABAB receptors in response to nRt neuron activity may play a role 

in this process. 
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In vivo studies of absence seizures and the involvement of GABAB receptors: In 

previous studies, the role of the GABAB receptors has been suggested by in vivo 

experiments. In GAERS and in the lethargic mice, a mouse model of absence seizures 

(Hosford et al., 1992; Hosford et al., 1995), microinjection in the thalamus or 

systemic injection of GABAB receptor agonists exacerbated absence seizures 

(Hosford et al., 1992; Liu et al., 1992; Hosford et al., 1995). In contrast, injection of 

GABAB receptor antagonists prevented them (Hosford et al., 1992; Liu et al., 1992; 

Vergnes et al., 1997). The alteration of SWDs by GABAB receptor modulators was a 

sign of the implication of GABAB receptors in the generation of SWDs. Nevertheless, 

the hypothesis of GABAB receptor implication had been refuted by other in vivo 

studies. 

In the GABAB(1) knock-out mice, despite the lack of functional GABAB 

receptors, long (10 s) 3-5 Hz oscillations were observed in few mice nevertheless the 

oscillations were rare (less than once per day) and they were considered as atypical 

compare to GAERS absence-seizures oscillations (Schuler et al., 2001). Stronger 

evidence came from in vivo intracellular recordings of GAERS TC neurons during 

spontaneous SWDs, they did not show the presence of significant inhibitory potentials 

mediated by GABAB receptor but uniquely by GABAA receptor (Pinault et al., 1998). 

Moreover, in the WAG/Rij model, the application of CGP 55845, an antagonist of 

GABAB receptors, failed to change the discharges pattern of the TC neurons during 5-

9 Hz SWDs (Staak and Pape, 2001). Nevertheless, CGP 55845 antagonized the effect 

of bicuculline application, which transformed the 5-9 Hz SWDs into 3 Hz SWDs 

(Staak and Pape, 2001). Therefore, the GABAB receptors seem not to be activated 

during spontaneous SWDs occurring in two well-accepted rat models of absence 

seizure but GABAB receptor-dependent inhibition is present during pharmacologically 

induced SWDs.  

The generation of 3 Hz oscillations in the TC network has been developed in in 

vitro preparations. The in vitro model outcomes were in favor of a GABAB receptor 

role in the generation of bicuculline-induced 3 Hz oscillations. 

 

Involvement of GABAB receptors derived from in vitro studies: In an in vitro model 

of ferret slices, the application of bicuculline in the nRt induced thalamic 3 Hz 

oscillations. These oscillations strongly resembled in vivo recordings of SWDs 

occurring during absence seizures. Importantly, application of GABAB receptor 
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antagonists abolished this seizure-like activity whereas block of these receptors had 

no effect on spindle activity (von Krosigk et al., 1993). When rendering the nRt 

network hyperexcitable by locally blocking GABAA receptors with bicuculline, 

GABAB receptor-mediated potentials in TC neurons could be evoked (Bal et al., 

1995b; Kim et al., 1997; Sanchez-Vives et al., 1997). It was therefore proposed that 

the lack of intra-reticular inhibition allowed a cooperative activation of GABAB 

receptors in TC neurons (Sohal and Huguenard, 2003), contributing to 

hypersynchronous oscillations. Following the near complete block of GABAA 

receptors, the time to complete a loop of activity between thalamic nRt cells and TC 

neurons lengthened to ~300-400 ms, and therefore the network generated a rhythmic 

oscillation at ~2-3 Hz (von Krosigk et al., 1993). The role of GABAB receptor-

mediated responses in the generation of absence epilepsy has also been suggested by 

showing that two anti-absence drugs affected GABAB receptor-mediated responses. 

Indeed, BZs and ethosuximide reduced the probability of burst discharges in nRt 

neurons, thereby indirectly provoking a reduction of GABAB receptor-mediated 

responses in rat TC neurons (Huguenard and Prince, 1994a, b).  

The increase in the CT feedback strengths has been proposed to be the factor 

that increases nRt neuron activity and leads to activation of GABAB receptors in TC 

neurons (Destexhe, 1998; Bal et al., 2000; Blumenfeld and McCormick, 2000). 

 

2. Regulation of cAMP synthesis by GABAB receptor signaling  

 

The inhibition of cAMP synthesis by GABAB receptor activation is well known 

(Wojcik and Neff, 1984; Xu and Wojcik, 1986; Gerber and Gähwiler, 1994), 

nevertheless, GABAB receptor can have, surprisingly, a stimulatory action on cAMP 

production. Indeed, it has been shown that GABAB receptor stimulation enhances the 

production of cAMP induced by the activation of the Gs-coupled receptors. The 

negative and the positive effects of GABAB receptors on [cAMP]i were described the 

same year in 1984 by two different groups (Karbon et al., 1984; Wojcik and Neff, 

1984). The inhibition of cAMP synthesis will be shortly presented while the unusual 

promoting action of GABAB receptors will be explained in greater detail. 
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a. Negative effect of GABAB receptors on cAMP levels 

 Biochemical evidences of the inhibitory effect of GABAB receptors on cAMP levels 

In primary cultures of cerebellar granule cells, GABA and Bac inhibited the 

activity of ACs (Wojcik and Neff, 1984). A similar effect was found in rat striatum 

(Hashimoto and Kuriyama, 1997). In rat spinal cord slices, GABA and Bac also 

inhibited cAMP formation induced by forskolin, a direct activator of all the AC 

isoforms (Malcangio and Bowery, 1993). The effect has also been reconstituted by 

co-expression of purified Gi-proteins, receptors and ACs in artificial membranes 

(Nishikawa et al., 1997), suggesting that these three components might be necessary 

and sufficient for the effect observed in native membranes.  

 

Mechanisms 

The inhibition of cAMP production appears to require only the presence of 

GABAB(2) receptor subunits. Indeed, the activation of recombinant GABAB(2) subunit-

composed receptors, in HEK293 or COS cells respectively, was sufficient to inhibit 

the forskolin-induced increase of [cAMP]i (Kuner et al., 1999; Martin et al., 1999). 

Moreover, in HEK293 cells, activation of the recombinant heterodimeric receptors did 

not change this effect. In contrast, the opening of potassium channels required the co-

expression of the two subunits in the cells (Kuner et al., 1999). Further experiments 

will be required to explain these observations. 

The inhibitory effect of GABAB receptor activation is sensitive to pertussis 

toxin showing the mediation via Gi/o proteins (Xu and Wojcik, 1986). The inhibition 

of ACs by Gi-protein is due to the release of the αi subunit. αi subunit inhibits at least 

AC I, III, V and VI isoforms. In contrast, the subtypes II, VII, VIII are insensitive to 

the αi subunit (Tang and Gilman, 1992; Anholt, 1994; Smit and Iyengar, 1998; 

Hanoune and Defer, 2001). 

 

b. Positive effect of GABAB receptors on cAMP levels 

Biochemical evidences of the positive effect of GABAB receptors on cAMP levels 

A first study in 1984 showed that 100 µM Bac potentiated by 50-fold the 

increase of [cAMP]i induced by exposing cerebral cortical slices to a saturating 

concentration of noradrenaline (Karbon et al., 1984). This was confirmed by two 

studies where the authors also investigated the negative action of GABAB receptor 
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activation on [cAMP]i. Thus, Bac had no or only a slight effect per se on [cAMP]i, 

but it inhibited the increase of [cAMP]i induced by the application of forskolin (Hill, 

1985; Knight and Bowery, 1996). Therefore, depending on the condition of activation 

of ACs, directly by forskolin or indirectly via Gs-coupled receptors, GABAB receptor 

activation mediates two opposite effects. 

The synergistic action of GABAB receptors was not specific to β-adrenergic 

receptors but also strengthened the [cAMP]i increase provoked by the activation of 

vasoactive intestinal peptide, histamine, corticotrophin-releasing hormone (CRH) in 

cortex (Karbon and Enna, 1985; Watling and Bristow, 1986; Onali and Olianas, 

2001). Similar observations were obtained with neuronal membranes of the olfactory 

bulb, hippocampus and hypothalamus (Watling and Bristow, 1986; Olianas and Onali, 

1999). Phaclofen (a phosphonic derivate of Bac) is the first antagonist shown to 

antagonize the opening of potassium conductances by Bac (Dutar and Nicoll, 1988). 

Phaclofen also reduced the GABAB receptor-induced facilitation of the increase of 

[cAMP]i subsequent to β-adrenergic receptor activation, showing that Bac effect was 

mediated by GABAB receptors (Robinson et al., 1989). A second antagonist, 

CGP35348, had the same antagonistic property and blocked the potentiating effect of 

Bac on noradrenaline-induced stimulation of ACs in rat cortical slices (Olpe et al., 

1990).  

 

Mechanisms 

Six different blockers were found to show similar potencies in antagonizing the 

two opposite actions of Bac, suggesting that they were mediated by 

pharmacologically indistinguishable receptors (Knight and Bowery, 1996). 

The potentiating action of GABAB receptors is mediated by Gi/o proteins as 

pertussis toxin blocks the action of Bac (Olianas and Onali, 1999; Onali and Olianas, 

2001). Moreover, in cortex exposed to pertussis toxin injected 

intracerebroventricularly, the potentiating activity of GABAB receptors on the actions 

of isoproterenol (Iso), an agonist of the β-adrenergic receptor, was reduced. 

Therefore, this effect, as the other GABAB receptor actions, is likely mediated by Gi-

proteins (Wojcik et al., 1989). 
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Downstream of the activation of Gi-proteins, several hypotheses have been 

proposed to explain the increase of cAMP production subsequent to the interaction 

between Gi-coupled receptors and Gs-coupled receptors. 

 

-Increase of the coupling between the Gs-coupled receptor and the Gs-proteins: A 

study with cortical membranes preparation suggested that the promoting influence of 

GABAB receptors was mediated by an increase of the affinity between the β-

adrenergic receptor and the Gs-protein (Scherer et al., 1989). 

 

-Involvement of arachidonic acid synthesis:  The potentiating effect of Bac was 

reduced by exposing cerebral cortical slices to EGTA, a chelator of divalent cations, 

or quinacrine, a nonselective inhibitor of phospholipase A2 suggesting an involvement 

of calcium and phospholipase A2 (Duman et al., 1986). Moreover, the potentiation by 

Bac was partially inhibited by blocking the 5-lipoxygenase, which metabolizes 

arachidonic acid, with the inhibitor nafazatrom (Schaad et al., 1989). 

 

-Involvement of adenylyl cyclases: The first hypothesis that the ACs were the 

intermediate where cross-talked the GABAB receptors and the β-adrenergic receptors 

was put forward in 1985. In this study, it was shown that Bac increased the amplitude 

of Iso-induced [cAMP]i enhancements but it did not modify the time course of the 

[cAMP]i increase. This suggested that Bac did not interfere with the affinity between 

the β-adrenergic receptor and its agonist. Moreover, the GABAB receptor-induced 

potentiating effect was independent of the phosphodiesterase activity. Thus, the 

authors proposed that the ‘cyclic-nucleotide generating system’ could be the point 

where GABAB receptor and β-adrenergic receptor cascades interacted (Karbon and 

Enna, 1985). The description of the different subtypes of ACs and their specific 

profile of modulation supported this idea. 

Nowadays, a profile of modulation that could explain most directly the 

synergistic action of Gi/o-coupled receptors upstream of cAMP synthesis is presented 

by two types of AC isoforms, type II and IV (and perhaps AC VII isoforms). The 

activity of these enzymes is dramatically enhanced upon binding of βγ subunits from 

Gi-proteins in the presence of αs subunits released from Gs-complexes. Several nM 

of βγ subunits activate AC II, IV isoforms but only in the presence of αs subunit (Gao 
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and Gilman, 1991; Tang and Gilman, 1991; Federman et al., 1992). Activation of Gs-

proteins alone may not be sufficient to activate ACs by this process because of a 

relatively low abundance of Gs-proteins (Milligan et al., 1998). In contrary, Gi/o 

proteins are around 10-fold more abundant in the cells, permitting the release of 

sufficient βγ subunits to potentiate the action of αs subunits (Tang and Gilman, 1991, 

1992; Anholt, 1994; Smit and Iyengar, 1998; Hanoune and Defer, 2001). In Xenopus 

oocytes, in which Gi- and Gs -coupled receptors were co-expressed, the activation of 

Gi–coupled receptors enhanced the cAMP production elicited by the Gs-coupled 

receptor stimulation (Uezono et al., 1997; Ulens and Tytgat, 2001b). In the first study, 

it was observed that the positive action of Bac was dependent on the AC II isoform 

but not on AC III isoform (Uezono et al., 1997). The interaction between Gi-and Gs-

proteins was also described in ventricular myocytes (Belevych et al., 2001), in 

neurons of olfactory bulb (Olianas and Onali, 1999) and cortex (Onali and Olianas, 

2001). Indeed, in the three studies, blocking the interaction between βγ subunits and 

αs subunits impaired the promotion of cAMP synthesis by Gi-coupled receptors. The 

βγ subunits were successfully inhibited with the GDP-bound form of the α subunit of 

transducin, a scavenger of G-protein βγ subunits (Federman et al., 1992), or with a 

peptide (QEHA) that binds free G-protein βγ subunits (Chen et al., 1995). 

 

c. Effects of GABAB receptors on cAMP levels in native neurons 

 

The inhibitory and the synergistic effects of GABAB receptors on [cAMP]i were 

also recognized in ‘living’ neurons where GABAB receptor actions target ionic 

channels or gene expression. 

The calcium-dependent potassium current (IAHP) mediates the 

afterhyperpolarization of hippocampal PCs where it entails spike frequency 

adaptation. This current is reduced by [cAMP]i (Pedarzani and Storm, 1993). In CA1 

PC, Bac potentiated the ability of Iso, an agonist of the β-adrenergic receptor, to 

decrease IAHP and thus to increase [cAMP]i (Andrade, 1993). Similarly to GABAB 

receptors, the enhancement of [cAMP]i by β-adrenergic receptors was also promoted 

by activation of α-adrenergic receptors (Pedarzani and Storm, 1996). In contrast, in 

CA3 PCc, Bac reduced [cAMP]i and led to an increase of the IAHP but it inhibited the 

reduction of IAHP mediated by Iso (Gerber and Gähwiler, 1994), indicating a 
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differential coupling of GABAB receptors in CA1 versus CA3 neurons. Thus, in CA1 

neurons, Gi-coupled receptors interact positively with β-adrenergic receptors to 

promote the synthesis of cAMP but not in CA3 neurons. 

In rat midbrain synaptosomes, Bac inhibited the cAMP/protein kinase A  (PKA) 

pathway, which, in turn, enhanced the calcium current passing through ionotropic 

P2X receptor opened by ATP (Gomez-Villafuertes et al., 2003). The decrease in 

cAMP synthesis by Bac also prevented the inhibition of GABAA receptors by 

forskolin in rat cerebellar granule (Barila et al., 1999). 

GABAB receptor-mediated control of cAMP turnover also affects the regulation 

of gene expression. In primary cultures of cerebellar granule neurons, forskolin 

increased the expression of the chloramphenicol acetyl transferase reporter (CAT), the 

transcription of which is under the control of the cAMP pathway through a sequence 

CRE (cAMP responsive element). Bac reduced the enhanced expression of CAT by 

forskolin, but not the increase of CAT expression induced by overexpression of the 

PKA showing that the effect of GABAB receptor activation is downstream to PKA 

(Barthel et al., 1996). This effect could also be explained by a direct interaction 

between GABAB receptors and the activating transcription factor type 4 or ATF4, a 

transcription factor that binds to the CRE sequence (Nehring et al., 2000). 
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Summary 

A crucial aspect of pacemaker current (Ih) function is the regulation by cyclic 

nucleotides. To assess the endogenous mechanisms controlling cAMP levels in 

the vicinity of pacemaker channels, Ih regulation by G-protein-coupled 

neurotransmitter receptors was studied in mouse thalamocortical neurons. 

Activation of ββββ-adrenergic receptors with (-)-isoproterenol (Iso) led to a small 

steady enhancement of Ih amplitude, whereas activation of GABAB receptors 

with (±)-Baclofen (Bac) reduced Ih, consistent with an up- and downregulation of 

basal cAMP levels, respectively. In contrast, a transient (ττττdecay~200 s), 

supralinear upregulation of Ih was observed upon co-application of Iso and Bac 

that was larger than that observed with Iso alone. This upregulation appeared to 

involve a cAMP synthesis pathway distinct from that recruited by Iso, as it was 

associated with a reversible acceleration in Ih activation kinetics and an occlusion 

of modulation by photolytically released cAMP, yet showed an 11 mV as opposed 

to a 6 mV positive shift in the activation curve and an at least seven-fold increase 

in duration. GABA, in the presence of the GABAA antagonist picrotoxin, 

mimicked, whereas N-ethylmaleimide, an inhibitor of Gi-proteins, blocked the 

upregulation, supporting a requirement for GABAB receptor activation in the 

potentiation. Activation of synaptic GABAB responses via stimulation of 

inhibitory afferents from the nucleus reticularis potentiated Iso-induced 

increments in Ih, suggesting that synaptically located receptors couple positively 

to cAMP synthesis induced by ββββ-adrenergic receptors. These findings indicate 

that distinct pathways of cAMP synthesis target the pacemaker current and the 

recruitment of these may be controlled by GABAergic activity within thalamic 

networks. 

 

Introduction 

The autonomous beating of the heart and a considerable number of rhythmic 

activities in the brain are controlled by the hyperpolarization-activated cation 

currents Ih, also termed pacemaker currents (for review, see Pape, 1996; Lüthi & 

McCormick, 1998; Santoro & Tibbs, 1999; Robinson & Siegelbaum, 2003). 

Pacemaker channels are gated upon hyperpolarization and generate a depolarizing 
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drive back towards threshold, thereby facilitating the next rhythmic firing episode. 

Pacemaker currents are enhanced when intracellular concentrations of cAMP are 

increased (for review, see Santoro & Tibbs, 1999; Kaupp & Seifert, 2001; 

Robinson & Siegelbaum, 2003). The cAMP-mediated augmentation of cardiac Ih is 

crucial for the accelerating effects of sympathetic activity on the heartbeat (Brown 

et al., 1979). Moreover, cAMP-mediated enhancement of Ih in the brain contributes 

to control the slow periodicities in neuronal network activities related to sleep and 

epilepsy (Bal & McCormick, 1996; Lüthi & McCormick, 1999). 

Pacemaker channels are composed of subunits from the family of the 

hyperpolarization-activated cation non-selective (HCN) channels. In addition to a 

voltage sensor contained within the six transmembrane segments, HCN channels 

possess a C-terminal cyclic nucleotide-binding domain (for review, see Santoro & 

Tibbs, 1999; Kaupp & Seifert, 2001; Wainger et al., 2001), which has a high 

selectivity for cAMP (Kaupp & Seifert, 2001). This modular structure provides the 

molecular basis for the dual gating of HCN channels by both voltage and cyclic 

nucleotides. Direct cAMP-dependent modulation constitutes a major regulatory 

pathway of native pacemaker channels as well, as evident from the similarity in the 

concentration-dependence and kinetics of cAMP-modulation to cloned channels 

(DiFrancesco & Tortora, 1991; Ludwig et al., 1998; Lüthi & McCormick, 1999; 

Seifert et al., 1999).  

In spite of this important role of cAMP in the direct regulation of pacemaker 

channel function, little is known about the strength and the type of cAMP signals 

generated in the vicinity of pacemaker channels in intact cells. Here, we have 

addressed the diversity of cAMP signaling by studying the regulation of Ih in 

mouse thalamocortical (TC) cells, which shows a high sensitivity to cAMP (Lüthi 

& McCormick, 1999; Seifert et al., 1999). In TC neurons, multiple 

neurotransmitter receptor systems coupled both positively and negatively to cAMP 

synthesis (via Gs- and Gi-proteins, respectively) control the electrophysiological 

activities related to sleep and arousal (for review, see McCormick & Bal, 1997). 

We find that Ih is steadily up- and downregulated by neurotransmitter receptors 

coupled positively or negatively to cAMP synthesis, as described previously (for 

review, see Pape, 1996). However, the most vigorous modulation of Ih is observed 

upon co-activation of Gs- and Gi/o-coupled receptors, which produces a supralinear 
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cAMP signal. These data demonstrate that, in mouse TC neurons, Ih is modulated 

by several cAMP signals differing both in strength and time course. This suggests 

that the pacemaker channels may be surrounded by distinct cAMP synthesis 

pathways, perhaps incorporating distinct adenylyl cyclases (ACs), that are 

recruited according to the type and timing of neurotransmitter stimuli.  

Methods 

Slice preparation 

Mice of either sex between 16-21 days were anesthetized by intraperitoneal 

injection of 90 mg/kg ketamine and 21 mg/kg xylazine and decapitated according to 

the Guidelines of the Veterinary Institute of the Canton Basel-Stadt. Coronal slices 

containing the dorsal lateral geniculate nucleus and the ventrobasal nucleus were 

prepared on a vibratome (VT1000S, Leica, Germany) in an ice-cold oxygenated 

solution containing (in mM): 63 NaCl, 107 sucrose, 2.5 KCl, 1.25 NaH2PO4, 26 

NaHCO3, 0.5 CaCl2, 7 MgCl2, 18 dextrose. The slices were allowed to recover for 5 

min in a home-made interface-type chamber at 35.0°C in the cutting solution, before 

being transferred to a sucrose-free solution containing 126 mM NaCl instead. After an 

additional 30 min, slices were incubated at room temperature for 1-2 h before 

recordings commenced. 

 

Electrophysiological recordings 

Whole-cell voltage-clamp recordings were obtained from visually identified TC 

neurons in the dorsal lateral geniculate and the ventrobasal nucleus of the thalamus 

(BX51WI microscope, Olympus, Germany) at 33.5-35.0°C. No difference in cAMP-

dependent modulation of Ih was found for neurons in these two nuclei and the data 

were pooled. The bath solution contained (in mM): 126 NaCl, 2.5 KCl, 1.25 

NaH2PO4, 26 NaHCO3, 1.5 CaCl2, 2 MgCl2, 1.5 BaCl2, 18 dextrose, 1.7 L(+)ascorbic 

acid. Unless stated otherwise, 1.5 mM Ba
2+

 ions were present to prevent activation of 

K
+
 currents by (±)-Baclofen (Bac). In some experiments, tetrodotoxin (0.5 µM) was 

included to reduce spontaneous synaptic activity. Patch pipettes (2.5-3.5 MΩ, WPI, 

Sarasota, FL) were filled with (in mM): 130 KGluconate, 10 HEPES, 10 KCl, 2 K2-

ATP, 0.2 Na-GTP, 10 Phosphocreatine, 2 MgCl2, pH 7.25, 290 mOsm. GTP was 
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freshly added daily from 100-fold concentrated stock solutions. This solution yielded 

a liquid junction potential of 12 mV that was taken into account for all voltages. 

Recordings yielded series resistances between 5-15 MΩ that were electronically 

compensated by 40-70% and the capacitive transient monitored in parallel with the Ih 

responses. When the series resistance was < 9 MΩ, no compensation was applied, but 

the stability of the capacitive transient checked before each voltage step. Data were 

discarded if the capacitive transient changed by >20% of the original amplitude. 

The h-current was activated in whole-cell voltage-clamp mode by applying 5 s 

hyperpolarizing voltage commands from a holding potential of –62 mV to a test 

potential of –92 mV, the half-maximal activation voltage, at interstimulus intervals of 

12 s. Recordings were selected when current amplitudes reached levels of at least -

100 pA. This voltage protocol ensured that, on the one hand, >85% of the steady-state 

current amplitude at this potential could be activated and the current deactivated 

completely upon return to -62 mV. On the other hand, current amplitudes could be 

measured frequently enough to monitor the temporal development of current 

modulation. To follow the time course of transient upregulation of Ih induced by focal 

application of neurotransmitter agonists or by flash photolysis of caged cAMP, Ih 

activation was limited to 2.5 s. 

Bath application of neurotransmitter receptor agonists was limited to one per 

experiment due to the incomplete wash-out of the effects on Ih. (-)-Isoproterenol (Iso) 

and 8-Bromo-cAMP (8Br-cAMP) solutions were prepared fresh daily from frozen 

stocks. Drugs were applied in the bath (4 ml/min) or via pressure application through 

a patch pipette placed in the vicinity of the cell recorded from. As the efficacy of the 

large number of GABAB antagonists on Bac-induced cAMP formation is 

characterized incompletely (Cunningham & Enna, 1996; Knight & Bowery, 1996), 

the action of antagonists on Bac effects or on those induced by synaptically activated 

GABAB receptors on the Iso-induced potentiation of Ih was not systematically 

evaluated. Data were collected through an Axopatch200B amplifier (Axon 

Instruments, Foster City, CA), digitized at 1 kHz, and analyzed off-line using 

PClamp8.0 software. Monoexponential time constants were analyzed by fitting the 

first 1.5 s of the Ih transient elicited at –92 mV (V1/2) using the Chebychev fitting 

routine, while leaving away the initial lag in the onset of activation (~120 ms). 

Activation curves (Fig. 1, Fig. 3) were fit to the Boltzmann function, with I/Imax= (1 + 
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exp [(V-V1/2)/s])
-1

, with V1/2 the voltage for half-maximal activation, and s the slope 

factor. Normalization of tail current amplitudes was always done with respect to the 

maximal tail current observed under control conditions. Origin software (Version 4.1) 

was used for the fits to the data presented in Fig. 5. Data are presented as 

mean±S.E.M. Paired or unpaired t-tests as appropriate were used for statistical 

analysis and a value of P<0.05 was considered statistically significant. 

 

Electrical stimulation of nucleus reticularis (nRt) afferents 

Electrical stimulation of afferents from the nRt was achieved via bipolar 

tungsten electrodes (115 µm spacing, Frederick Haer & Co., Bowdoinham, ME) 

positioned within the nRt cell layer and exposed to constant current pulses (300-700 

µA, 100 µs). To isolate GABAB receptor-mediated responses, the bathing solution 

contained DL-2-Amino-5-phosphonopentanoic acid (APV, 100 µM), 2,3-Dioxo-6-

nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt (NBQX, 10 

µM) to block glutamatergic receptors and picrotoxin (100 µM) to block GABAA 

receptors. In these experiments, Ba
2+

 was omitted from the extracellular solution until 

a synaptic GABAB response was identified. 

 

Flash photolysis of caged cAMP 

For flash photolysis, caged cAMP ((P
1
-(2-Nitrophenyl)ethyl ester, 100 µM) was 

added to the patch solution from a 100-fold concentrated stock solution in 

dimethylsulfoxide. Flashes were applied via a UV-lamp attached to the 

epifluorescence pathway of the microscope and discharged via the capacitive 

discharges of the FlashMic (Rapp Optoelectronics, Germany), set at 4 V. Trains of 10 

flashes at 10 Hz produced maximal responses and were used for the occlusion 

experiments (Fig. 4). UV-light applied to cells free of caged cAMP induced no 

change in Ih (n=2). The magnitude of the response to photolyzed cAMP was not 

significantly different for at least three flashes delivered at 1-2 min intervals (n=3, 

P>0.05), indicating that similar amounts of cAMP could be released at least three 

times within one cell. 

Pharmacological agents used in this study were purchased from SIGMA (St. 

Louis, MO), except for caged cAMP (Calbiochem, Germany), tetrodotoxin (Latoxan, 

France), CGP54626 and NBQX (Tocris, UK). 
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Results 

Regulation of Ih by Gs- and Gi/o-coupled neurotransmitter receptors in mouse TC 

cells  

We initially confirmed the regulation of Ih by cAMP following activation of 

GPCRs the coupling of which to cAMP synthesis is well documented. We used the 

selective agonist Iso to activate β-adrenergic receptors, known to lead to stimulation 

of cAMP synthesis (Bloom et al., 1975; Madison & Nicoll, 1986; McCormick & 

Pape, 1990) and Bac to stimulate GABAB receptors, which inhibit cAMP production 

(Wojcik & Neff, 1984; Knight & Bowery, 1996). Both β-adrenergic and GABAB 

receptors are expressed in TC neurons (Rainbow et al., 1984; Princivalle et al., 2001; 

Kulik et al., 2002) and contribute to the control of intrinsic and synaptic processes 

related to thalamic function during sleep and arousal (for review, see McCormick & 

Bal, 1997; Huguenard, 1998).  

In agreement with previous reports, bath application of Iso (0.5 µM), a selective 

β-adrenergic agonist, induced a gradual enhancement of the amplitude of Ih to 

128.0±4.3% of control (n=6, P<0.001; Fig. 1A). This enhancement showed a shallow 

dose dependence with a maximal value reached at 135.8±5.7% of control amplitude 

for 5 µM Iso, and a half-maximal effect around 1 nM (116.2±5.3% of control). In the 

continuous presence of Iso, the enhancement of Ih was maintained (less than 10% 

decay) for at least 5 min following start of the bath application. The Iso-induced 

increase in Ih amplitude corresponded to a positive shift in the activation curve of Ih 

from -94.4±0.6 mV to -87.6±1.0 mV with no change in maximal conductance (n=4, 

P<0.05; Fig. 1B; see Methods), similar to values reported previously (McCormick & 

Pape, 1990). Monoexponential fitting of current traces at –92 mV revealed time 

constants of 543±97 ms in Iso compared to 726±120 ms in control (n=6, P<0.02). The 

Iso-induced enhancement of current amplitude, the shift in the activation curve and 

the acceleration of the activation time course typically reflect increased binding of h-

channels to cAMP (for review, see Pape, 1996; Wainger et al., 2001). 

Conversely, alterations in the amplitude of cAMP-sensitive currents following 

activation of Gi/o-coupled neurotransmitter receptors have been associated with an 

inhibition of either basal or forskolin-stimulated AC activity (Pape, 1992; Ingram & 

Williams, 1994; Gerber & Gähwiler, 1994; Svoboda & Lupica, 1998). However, a 
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decrease in Ih has also been attributed to a shunting action of K
+
 currents activated by 

Gi/o-coupled GABAB receptors (Watts et al., 1996). In our experiments, the 

continuous presence of 1.5 mM Ba
2+ 

blocked outward currents activated by Bac 

(172±14 pA in the absence, n=4; -6±7 pA in the presence of Ba
2+

; n=18, P<0.001; 

Pape, 1992; Sodickson & Bean, 1996), while Ih amplitude remained unchanged 

(<10% decrease, n=11). The subsequent application of Bac at a concentration leading 

to maximal activation of K
+
 currents (80 µM; Sodickson & Bean, 1996) produced a 

persistent decrease in the amplitude of Ih to 74.6±3.3% of the original value (n=15, 

P<0.02), without a decrease in input resistance (Fig. 1C). In contrast, no significant 

decrease in Ih was found when Bac was applied at 0.8 µM, close to the threshold for 

activation of K
+
 currents (111.5±5.9% of ctrl, n=7, P>0.05; Sodickson & Bean, 1996). 

The Bac-induced decrease was associated with a negative shift in the activation curve 

of Ih from –92.0±0.3 mV to –97.0±0.4 mV (n=6, P<0.01) with no change in the 

maximal conductance of the current (Fig. 1D). Moreover, the monoexponential time 

constants of activation of Ih were increased from 669±31 ms to 797±35 ms (n=8, 

P<0.01; see Methods), consistent with a reduction of basal cAMP levels surrounding 

h-channels. In support of this possibility, inclusion of a saturating concentration of a 

non-hydrolyzable analog of cAMP in the patch pipette, 8Br-cAMP (5-10 µM), 

prevented the Bac-induced reduction of Ih amplitude (93.8±3.1% of control 

amplitude, n=6, P>0.05; Fig. 1E), indicating an occlusion of Bac-mediated inhibitory 

effects by cAMP previously bound to h-channels. Furthermore, we studied the effects 

of 3-isobutyl-1-methyl-xanthine (IBMX, 100 µM), a general phosphodiesterase 

(PDE) inhibitor, to prevent hydrolysis of cAMP molecules. Bath application of IBMX 

for 4-6 min induced a steady increase in the amplitude of Ih to 117.8±8.8% (n=10, 

P<0.001; Fig. 1F), revealing a basal production of cAMP that is normally 

 

 

counteracted by the hydrolytic activity of PDEs. In 9 cells exposed to Bac, this 

IBMX-induced enhancement was limited to, on average, 105.1±5.3% of control 

amplitude (P<0.05 compared to effects obtained with IBMX alone; Fig. 1F), 

suggesting that basal cAMP synthesis in the vicinity of h-channels was reduced. To 

exclude Bac-induced decreases in channel sensitivity to cAMP, we studied the effects 
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of photolytic release of caged cAMP on Ih before and after application of Bac. 

Maximally three flashes were applied per experiment (see Methods). When cAMP 

was applied photolytically, it induced an increase of Ih amplitude to 131.1±5.8% of 

control (n=4, P<0.05; Fig. 1F). Following application of Bac (80 µM), the increase 

amounted to 133.7±9.1% (n=4, P>0.05; Fig. 1F), indicating that the sensitivity of Ih to 

exogenously applied cAMP was not affected by Bac. Taken together, our data 

strongly suggest that Bac leads to an inhibition of on-going AC activity in a 

concentration range covering that of GABAB-mediated activation of K
+
 currents 

(Sodickson & Bean, 1996). Activated GABAB receptors thus reduce cAMP levels and 

provoke an unbinding of cAMP tonically bound to h-channels. 

In summary, pharmacological activation of Gs- and Gi/o-coupled GPCRs on TC 

neurons led to time-invariant changes in Ih that are consistent with an accumulation 

and a decrease of available cAMP in the vicinity of h-channels, respectively. 

 

 

 

Figure 1. Iso and Bac modulate Ih in a manner consistent with the coupling of ββββ-adrenergic and 

GABAB receptors to adenylyl cyclase. 

A, Bath application of Iso (500 nM) induced a small steady enhancement of Ih amplitude to 

128.0±4.3% of control (n=6, P<0.001). Inset shows an overlay of the Ih current activated during a 

voltage step from –62 to –92 mV in ctrl and during Iso application at steady-state. B, Activation curve 

of Ih in the absence (○) and in the presence (●) of Iso. Activation curves were constructed from tail 

current analysis and normalized to the maximal current under control conditions. This yielded V0.5 = –

94.4±0.6 mV in control and V0.5 = -87.6±1.0 mV in Iso, respectively (n=4, P<0.05). C, Bath application 

of a saturating concentration of Bac induced a steady reduction in Ih amplitude (●) to 74.6±3.3% (n=15, 
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P<0.02). This effect was not associated with a decrease in the input resistance of the neuron (□), but 

rather a small increase to 111.6±9.0% of control (n=7, P>0.05), likely due to decreased Ih amplitude. 

Inset shows an overlay of the Ih current activated during a voltage step from –62 to –92 mV in ctrl and 

during Bac application in steady-state. D, Evaluation of the relative tail current amplitudes of Ih shows 

that Bac induced a leftward shift in V0.5 of the activation curve from –92.0±0.3 mV to –97.0±0.4 mV 

(n=6, P<0.01) with no change in the maximal conductance. E, Left, Bac effects on Ih were occluded 

when 5-10 µM 8Br-cAMP were present in the pipette solution Right, Pooled data illustrating the Bac-

induced decrease in Ih in control (74.6±3.3% of control amplitude, n=15, P<0.02) and with 8Br-cAMP 

present in the pipette (93.8±3.1% of control, n=6, P>0.05). F, Pooled data illustrating the effects of 

bath application of IBMX (filled columns) on the amplitude of Ih in control (117.8±8.8%, n=10, 

P<0.001) and during preceding exposure to Bac (105.1±5.3% of control, n=9, *P<0.05 compared to 

values in control) and of uncaging cAMP (open columns) on the amplitude of Ih in control 

(131.1±5.8% of control, n=4, p<0.05) and during preceding exposure to Bac (133.7±9.1% of control, 

n=4, P>0.05 compared to values in control). In E and F, step voltages from –62 to –92 mV were used 

to evoke Ih.  

 

Co-activation of Gs- and Gi/o-coupled neurotransmitter receptors strongly 

upregulates Ih 

There is evidence that Gi/o-coupled receptors can strongly modulate cAMP-

dependent regulation of ionic currents via Gs-coupled receptors in intact cells, either 

in an antagonistic (Hartzell, 1988; Pape, 1992; Gerber & Gähwiler, 1994) or in a 

potentiating fashion (Andrade, 1993; Pedarzani & Storm, 1996). However, the 

direction and physiological role of cross-talk between these two types of GPCRs has 

never been examined in the TC system, in which β-adrenergically mediated cAMP 

turnover is intimately involved in cellular activities related to states of arousal (Cirelli 

et al., 1996; McCormick & Bal, 1997). The expected time course of change in Ih 

amplitude, assuming an antagonistic effect of Bac on the stimulatory action of Iso, is 

demonstrated in Fig. 2B (thick line). In this case, Ih amplitude should deviate by <10% 

from control at all time points. Superimposed are the experimentally measured values 

of Ih amplitude. In sharp contrast to the expected time course, the amplitude of Ih was 

strongly enhanced during co-application of Iso and Bac. As illustrated in the example 

in Fig. 2A, Ih amplitude approximately doubled (from –400 to –800 pA) upon co-

application of Iso and Bac, but then gradually decayed back to control with a 

monoexponential time constant of 164 s. In 6 cells, co-application of Iso and Bac 

yielded a 152.6±9.6% enhancement of Ih at the peak (range 132-222%) which 

decayed with τ=281±80 s (measured in n=5 of 6 cells). During the co-application, 
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holding current levels showed no significant change (73±21 pA before vs. 63±24 pA, 

n=6, P>0.05; Fig. 2B; lower panel). The input resistance, measured from the 

instantaneous current response during the hyperpolarizing step, decreased by ~30% 

(from 302±56 MΩ to 212±38 MΩ, n=6, P<0.005; Fig. 2B, middle panel) at the peak 

of Ih enhancement, and was restored to control before Ih enhancement had fully 

decayed (272 s after the start of agonist exposure, Ih amplitude at this point: 

129.4±4.2%, n=6, P<0.01). Therefore, the increase in Ih could not be explained based 

on alterations in passive cellular properties, and the decrease in input resistance most 

likely resulted from a contribution of strongly enhanced Ih to instantaneous current 

amplitudes. The results from the co-application suggested that Iso and Bac effects on 

cAMP synthesis displayed a marked divergence from linear summation during an 

initial period, whereas they canceled each other during a delayed steady-state phase. 

The effect of Iso and Bac on Ih showed properties distinct from that induced by Iso 

alone. Thus, the maximal enhancement of Ih obtained in the presence of Iso and Bac 

was markedly larger than that produced by Iso alone (n=11 for Iso; n=6 for Iso and 

Bac, P<0.05). Furthermore, similar strong enhancements of Ih were found when 500 

nM Iso were co-applied with low concentrations of Bac (0.8 µM; 182.3±23.9%, n=5, 

P<0.05; cf. Fig. 5), which, when applied alone, did not reduce Ih (see above). The co-

application of Bac with Iso therefore induced a potentiating effect on Ih that differed 

with respect to strength and concentration dependence from that of Iso alone. This 

indicates the presence of a distinct regulatory pathway of Ih modulation induced by a 

synergistic action of Bac and Iso. 

 

 Figure 2. Co-application of Iso and Bac induces a marked potentiation of Ih. 

A, Raw data showing the transient, strong increase in Ih upon bath application of Iso together 

with Bac at a concentration (80 µM) that reduced Ih when applied alone. Dotted lines are presented to 

facilitate comparison of instantaneous and Ih current amplitudes between the four traces. The time 

course of the potentiation is illustrated at the bottom (●), together with the input resistance of the 

neuron (○). The data points deduced from the traces presented at the top (1-4) are indicated in the plot. 

B, Pooled data from 6 cells illustrating the time course of the potentiation (top panel), of the input 

resistance (middle panel) and the holding current (lower panel). The thick line in the top panel depicts 

the linear sum of the effects of Iso and Bac illustrated in Fig. 1. 
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The synergistic effect is mediated by cAMP 

The enhancement of Ih in the presence of Iso and Bac could be explained either 

by 1) a cAMP-dependent upregulation of Ih, for example via an increased synthesis of 

cAMP triggered by the co-application or 2) alternative modulatory pathways 

targetting Ih that do not involve cAMP (see e.g. Accili et al., 1997; Pan, 2003). We 

first determined the activation curve of Ih during the peak of the potentiation (Fig. 3A, 

B). The activation curve was shifted by 11.1±1.7 mV (from –95.7±0.7 mV to –

84.6±0.9 mV, n=6, P<0.05) towards more positive values (Fig. 3B), whereas the 

amplitude of the maximal currents elicited by voltage steps to –132 mV remained 

unchanged (-1701±181 pA in ctrl vs. -1786±207 pA in Iso+Bac, n=6, P>0.05; Fig. 
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3A). Thus, the upregulation could be described by a simple positive shift in the 

voltage dependence of Ih that was larger than that produced by Iso alone (P<0.05) and 

consistent with a modulation of Ih by cyclic nucleotides. 

 

 

Figure 3. The potentiation of Ih by co-application of Iso and Bac is associated with a strong 

positive shift in the activation curve with no change in maximal conductance. 

A, Top, Family of Ih currents during control (left) and in the presence of Iso and Bac (right). 

Note the pronounced increase in current amplitude at intermediately hyperpolarized potentials. Bottom, 

Graph of Ih current amplitudes as a function of test potential in control (○) and in the presence of Iso 

and Bac (●). Maximal current amplitudes are not changed by Iso and Bac (-1701±181 pA in ctrl vs. -

1786±207 pA in Iso+Bac, n=6, P>0.05). B, Activation curves in control (○) and in the presence of Iso 

and Bac (●). All tail currents were normalized with respect to the maximal tail current under control 

conditions. Co-applied Iso and Bac produced an 11 mV positive shift in the activation curve (from –

95.7±0.7 mV to –84.6±0.9 mV, n=6, P<0.05) with no change in the maximal activation of the current. 

 

To further substantiate an involvement of cAMP, we used flash photolysis of 

caged cAMP to address the sensitivity of Ih to cyclic nucleotides at different time 
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points during the modulation. When cAMP was photolytically released under control 

conditions, it produced an increase in amplitude to 128.9±6.3% of control (n=8, 

P<0.005; Fig. 4A and B). In contrast, when caged cAMP was photolyzed during the 

peak of the enhancement produced by Iso and Bac, the effect was reduced to 

106.6±2.5% of current amplitude preceding the flash (n=5, P>0.05; Fig. 4A and B), 

indicating that the response to cAMP was fully occluded when the action of Iso and 

Bac was maximal. In the continuous presence of Iso and Bac, the sensitivity to cAMP 

was restored upon complete decay of the enhancement, such that photolytically 

released cAMP increased Ih amplitude to 123.6±4.1% of control (n=11, P>0.05 vs. 

flash-induced Ih increase before application of Iso and Bac; Fig. 4B). Thus, 

enhancement of Ih by co-application of Iso and Bac occluded the response to cAMP, 

whereas its decay restored responsiveness. We also compared the properties of Ih at 

the peak of the enhancement with those induced following exposure to Forskolin 

(Forsk), a general AC activator. When bath-applied at a saturating concentration of 10 

µM, Forsk produced a steady increase in Ih amplitude equaling 148.8±5.3% of control 

(n=4, P<0.01), close to the enhancement produced by the co-application of Iso and 

Bac (152.6±9.6%, n=6, P>0.05). Monoexponential fitting of the time course of 

activation of Ih in the presence of Forsk yielded an acceleration of the time constant 

from 825±114 ms to 561±86 ms (n=4, P<0.05; Fig. 4C), reflecting increased cAMP 

binding to the channels. Similarly, the co-application of Iso and Bac accelerated the 

time constant of Ih from 780±57 ms to 533±23 ms (n=6, P<0.01; Fig. 4C). Following 

the decay of the enhancement, however, the time constant recovered to 723±82 ms 

(P>0.05 compared to control). Using lower concentrations of Forsk (1 µM), we tested 

whether Bac could alter the sensitivity of interaction of h-channels with cAMP. Forsk 

alone enhanced Ih to 129.0±2.8% of control (n=4, P<0.05), while the combination of 

Forsk and Bac yielded an enhancement of 114.0±1.2% (n=4, P<0.05), slightly, but not 

significantly smaller than that observed with Forsk alone (P>0.05). Taken together, 

the alterations in the activation properties of Ih, the full occlusion of cAMP effects at 

the peak of the potentation, and the lack of a potentiating effect of Bac on the actions 

of Forsk are indicative of a mechanism dominated by cAMP that mediated the 

potentiation of Ih, most likely via a stimulation of cAMP synthesis (see Discussion). 
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Figure 4. The potentiation of Ih by co-application of Iso and Bac leads to a reversible occlusion of 

Ih modulation via photolytically released cAMP. 

A, Data from two separate experiments showing the response to uncaged cAMP (photolysis was 

initiated at the time depicted by the arrow). In the experiment presented on the left, cAMP was 

photolytically released during control (●) and during the peak of the potentiation induced by Iso and 

Bac (○). In the experiment presented on the right, cAMP was photolytically released at the peak of the 

potentiation (○) and after its full decay (●). To facilitate comparison of the extent of the potentiation 

during the different periods, data were normalized to the average of the three data points preceding 

flash application. B, Pooled data illustrating the increase in Ih amplitude following flash photolysis of 

caged cAMP during control (128.9±6.3% of basal Ih amplitude, n=8, P<0.005), at the peak of the 

potentiation (106.6±2.5% of Ih amplitude preceding the flash, n=5, P>0.05), and after its full decay 

(123.6±4.1% of basal Ih amplitude, n=11, P>0.05 vs. increase before application of Iso and Bac). C, 

Histogram of the time constants of activation of Ih during exposure to Forsk (825±114 ms vs. 561±86 

ms, n=4, *P<0.05) and during the response to co-application of Iso and Bac (780±57 ms in control; 

533±23 ms at the peak, n=6, *P<0.01; 723±82 ms during recovery, P>0.05 compared to control). 
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The presence of Bac transforms the time course of the cAMP signal induced by 

Iso 

The potentiation induced by the co-application of Iso and Bac suggests that a 

coincidental activation of β-adrenergic and GABAB receptors recruited a powerful 

pathway of cAMP synthesis distinct from that targeted by the individual GPCRs. To 

further characterize this pathway, we investigated how the presence of Bac affected 

the time course of the response induced by a brief application of Iso. For this purpose, 

we combined focal application of Iso with bath application of Bac. When Iso (500 nM 

in a pressure ejection pipette) was applied during baseline recording, it produced a 

132.5±4.1% enhancement of Ih amplitude (n=13, P<0.001) that changed by <5% 

during subsequent applications in control (n=3) and decayed with a time course of 

32±6 s. When Bac was applied at a saturating concentration of 80 µM, focal 

application of Iso produced a potentiation of 175.8±10.0% of control amplitude (n=5, 

P<0.02; Fig. 5A). The potentiated response decayed with a time constant of 241±30 s 

(measured in n=4 cells; Fig. 5B), which was markedly slower than the control 

response (P<0.005). When Bac was applied at 0.8 µM, focal application of Iso 

produced an enhancement equaling 190.6±29.2% (n=7, P<0.02 compared to control 

responses which yielded 141.9±11.0% increase of Ih; Fig. 5C). The decay of these 

responses was even further decelerated, with a remaining 152.7±19.5% increase of Ih 

at 4 min after the application of Iso (Fig. 5D). Thus, the cAMP synthesis pathway 

requiring both Iso and Bac showed a distinct temporal profile of cAMP synthesis that 

depended on the strength of activation of Bac receptors. Interestingly, the time course 

of the potentiated response greatly outlasted the duration of the stimulus mediated by 

Iso alone. Thus, the presence of Bac allows the transformation of a transient positive 

input for cAMP synthesis into a more persistent cAMP signal. 
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Figure 5. The presence of Bac changes the time course of the cAMP transient induced by Iso. 

A, Data from a single experiment, illustrating the time course of Ih amplitudes following focal 

exposure to Iso before and after bath application of Bac. Bac alone reduced Ih in this cell by 15%. 

Selected Ih recordings are presented in the inset (1-5). B, Averaged decay time course of the 

potentiation of Ih by local application of Iso alone (○) and in the presence of Bac (●). Lines show the 

non-linear least square fit of a monoexponential curve to the data, yielding a time constant τ = 241±30 

s for Iso+Bac vs. τ = 32±6 sec for Iso (n=4, P<0.005). C, D. Same experiment as in A, B but with Bac 

applied at 0.8 µM. Note that the decay time course was further decelerated by low concentrations of 

Bac, such that monoexponential fitting was not possible. 

 

Pharmacological properties of the receptors involved in the potentiation 

We next verified whether γ-aminobutyric acid (GABA), the natural ligand for 

GABAB receptors, could induce the potentiation of Iso effects by Bac. The 

potentiation was mimicked when Bac was replaced by GABA (1 mM) in the presence 

of the GABAA receptor antagonist picrotoxin (100 µM) in 5 of 7 cells tested 

(145.8±9.4% in ctrl vs. 183.6±11.4% in GABA+Iso, P<0.05; Fig. 6A and D), 

indicating that the endogenous agonist for GABAB receptors could induce a 

potentiation of β-adrenergic responses. To further address the involvement of Gi-

proteins in the potentiation of Ih, we used N-ethylmaleimide (NEM), a membrane-

permeable inhibitor of pertussis-toxin sensitive G-proteins (Winslow et al., 1987; 
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Shapiro et al., 1994; Hirono et al., 2001), to selectively interfere with Gi- but not Gs-

proteins. Bath application of NEM for 2 min fully antagonized Ba
2+

-sensitive outward 

currents induced by Bac at –50 mV (data not shown), while it did not interfere with 

Iso-induced enhancements of Ih (92.2±0.9% of responses without NEM, n=4, 

P>0.05), consistent with a selective inhibition of Gi-proteins. When Iso was locally 

applied in the presence of Bac (0.8 µM) and NEM, the potentiation was fully 

abolished (151.1±4.0% in Iso vs. 150.3±6.8% enhancement in Iso and Bac, n=4, 

P>0.05; Fig. 6B). Moreover, the time constants of the decay of the cAMP transient in 

NEM were rapid, with a monoexponential decay of 90±43 s (compared to 47±16 s in 

control, P>0.05; Fig. 6C). These data point to a requirement of Gi-proteins activated 

by GABAB receptors in the potentiation and prolongation of the cAMP stimulation 

mediated by Iso. 

We then investigated whether activation of GPCRs other than baclofen-sensitive 

receptors also enhanced Iso responses. The A1 agonist N
6
-cyclopentyladenosine 

(CPA, 50 µM) was tested because adenosine receptors are functionally expressed in 

TC neurons and share common mechanisms of action with GABAB receptors in these 

cells (Pape, 1992). When applied in the bath, CPA did not affect the amplitude of 

control responses induced by puff application of Iso (146.4±16.4% during control vs. 

143.0±8.3% during CPA, n=3, P>0.05; Fig. 6D), suggesting that A1 receptors did not 

undergo synergistic interactions with β-adrenergic receptors. We then used [D-Ala-2, 

NMe-Phe-4, Gly-5-ol]-enkephalin (DAMGO, 1 µM) to activate Gi/o-coupled µ-opioid 

receptors that are widely expressed in TC neurons (Brunton & Charpak, 1998). 

Interestingly, application of DAMGO alone caused a rapid, transient increase in the 

amplitude of Ih to 148.0±16.1% of control amplitude (n=4, P<0.02; Fig. 6D), which 

was associated with an acceleration in the monoexponential time constant from 

803±92 ms to 680±99 ms (n=4, P<0.01), suggesting that activation of µ-opioid 

receptors alone coupled positively to cAMP production detected by Ih (see 

Discussion). Thus, distinct Gi/o-coupled neurotransmitters appear to couple differently 

to cAMP synthesis pathways in the vicinity of Ih, both when activated alone or in 

conjunction with β-adrenergic receptors. 
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Figure 6. Pharmacological characterization of the upregulation. 

A, The natural transmitter for GABAB receptors, GABA, induced a potentiation of Iso responses 

in the presence of picrotoxin (100 µM). The graph illustrated the time course of Ih amplitudes in a 

single experiment. Selected Ih recordings are presented in the inset. B, The modulation of Ih by Iso 

remained unaltered in the presence of Bac (0.8 µM), when NEM (120 µM) was pre-applied for 2 min. 

Time course of Ih amplitudes in a representative experiment. Selected Ih recordings are presented in the 

inset (1-5). C, Average time course of decay of Iso-induced modulation of Ih before (○, τ = 47± 16 s, 

n=4) and after (●, τ = 90 ± 43 s, n=4, P>0.05) application of Bac in the presence of NEM. D, 

Histogram summarizing the effects of different combinations of agonists for GPCRs. The responses to 

Iso were potentiated in the presence of GABA (1 mM) and picrotoxin (PTX, 100 µM) (183.6±11.4% 

vs. 145.8±9.4% of control in 5 of 7 cells tested, *P<0.05), but not in the presence of CPA (50 µM) 

(146.4±16.4% vs. 143.0±8.3% of control, n=3, P>0.05), an A1 agonist. DAMGO (1 µM), a µ-opioid 

receptor agonist, increased Ih in the absence of Iso to 148.0±16.1% of control (n=4, P<0.02). 

 

Actions of synaptically activated GABAB receptors on Ih modulation 

In thalamic networks, synaptic activation of GABAB receptors on TC neurons 

occurs during both sleep-related and during pathological hypersynchronous activity in 

vitro resembling generalized epilepsies (Blumenfeld & McCormick, 2000; Bal et al., 



 

 79 

2000), and can result from a hyperexcitation of GABAergic afferents arising in the 

nRt. The effect of postsynaptically activated GABAB receptors on cAMP metabolism 

in TC neurons is, however, unknown. To address the coupling of synaptically 

activated GABAB receptors to cAMP-mediated modulation of Ih, we studied the 

effects of GABAB receptor-mediated synaptic currents evoked via electrical 

stimulation in the nRt (see Methods). In the presence of glutamatergic and 

GABAAergic receptor antagonists (APV, 100 µM, NBQX, 10 µM, Picrotoxin, 100 

µM), electrical stimulation evoked slow outward current responses that peaked at a 

delay of 80±4 ms (range 59-100 ms) and reached amplitudes of 12±3 pA (range 2-50 

pA, n=18; Fig. 7A), similar to responses described previously in rat (Ulrich & 

Huguenard, 1996). The highly selective GABAB receptor antagonist CGP54626 (500 

nM) was tested in 4 cells and completely blocked these outward currents, indicating 

that they were mediated by GABAB receptors (Fig. 7A). Iso was then applied locally 

while concomitantly eliciting GABAB responses (10 stimulations, 5 Hz in the 

presence of 1.5 mM Ba
2+

) and the modulation of Ih amplitude was monitored. 

Synaptic activation of GABAB receptors during simultaneous local application of Iso 

induced a significant potentiation of Ih amplitude (Ih amplitude in Iso: 118.5±4.3% of 

control; Ih amplitude in Iso, with GABAB receptors activated synaptically: 

140.2±12.0% of control, n=7, P<0.05; Fig. 7B and C). In contrast, synaptic 

stimulation alone induced a minor enhancement of Ih (101.7±2.4% of control 

amplitude at 24 sec after application of the stimulation; n=4, P>0.05; Fig. 7B) and 

these stimulation-dependent effects were subtracted from the responses obtained 

during concomitant stimulation and Iso application. Our results thus suggest that 

synaptically activated GABAB receptors can contribute to the control of cAMP 

turnover in TC neurons, while a modulation of Ih via released compounds other than 

GABA appears to play a minor role. 
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Figure 7. Examination of the role of synaptic GABAB receptors in the potentiation of Ih responses 

by Iso. 

A, CGP 54626-sensitive outward currents elicited by stimulation of afferent nRt fibers via 

bipolar tungsten electrodes (300-700 µA, 100 µsec). B, In a different cell, representative Ih responses 

were monitored under control conditions (ctrl) and after Iso was applied with (+ stim, + Iso) and 

without (+ Iso) concomitant activation of GABAB receptors (10 stimuli at 5 Hz). Overlay shows 

control Ih, the current response to application of Iso alone, and the response following conjoint Iso 

application and electrical stimulation. During this experiment, Ba2+ ions (1.5 mM) were present to 

prevent activation of outward K
+
 currents. C, Averaged data for seven experiments, indicating a 

significant increase in the Iso sensitivity of Ih amplitude after electrical stimulation (118.5±4.3% of 

control Ih amplitude during Iso application; 140.2±12.0% of Ih amplitude during Iso application and co-

activation of GABAB receptors, n=7, P<0.05). (○): Control responses; (●): Responses with GABAB 

receptor activation. 
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Discussion 

Here we describe distinct types of GPCR-induced cAMP signals that modulate 

the pacemaker current of TC neurons. The strength and time course of modulation of 

Ih varied considerably depending on the pattern of activation of GPCRs. Steady 

increases or decreases in Ih amplitude occurred upon activation of single receptor 

types coupled positively or negatively to cAMP production. Thus, a basal cAMP 

turnover, which is pronounced in thalamus compared to other regions of the brain 

(Matsuoka et al., 1997; Ihnatovych et al., 2002), can be up- and downregulated 

steadily under the tonic influence of neurotransmitter receptors. In contrast, co-

exposure to two agonists was integrated in a supralinear manner to produce a strong, 

transient increase in Ih, likely mediated by a pharmacologically and kinetically distinct 

cAMP synthesis pathway (see below). Thus, the pacemaker current can be exposed to 

cAMP signals originating from diverse sources, suggesting that pacemaker channels 

are surrounded by cAMP synthesis pathways with distinct molecular properties.  

A crucial point in our study was to demonstrate that the dynamics of the 

modulation of Ih by agonists for GPCRs primarily reflected the time course of 

intracellular cAMP concentrations. While increases in Ih via Iso have been attributed 

to synthesis of cAMP in TC neurons (McCormick & Pape, 1990), Bac-mediated 

decreases of Ih were proposed to occur through a pathway independent of cAMP in 

several neuronal cell types (Jiang et al., 1993; Watts et al., 1996; Pape, 1996). In TC 

neurons, a highly cAMP-sensitive isoform of Ih is expressed (Seifert et al., 1999) and 

basal cAMP synthesis rate in TC neurons is comparatively pronounced (Matsuoka et 

al., 1997; Ihnatovych et al., 2002), two factors advantageous for detecting decreases 

in cAMP via Ih. Indeed, the inhibition of Ih identified here showed characteristics 

typical for cAMP-dependent actions on h-channels, including a negative shift in the 

activation curve and decelerated activation kinetics (for review, see Pape, 1996; 

Wainger et al., 2001). In addition, a saturating cAMP concentration largely occluded 

Bac effects, the activity of ACs appeared reduced in the presence of Bac, and there 

was no measurable change in the sensitivity for cAMP in the presence of Bac. These 

findings therefore indicate that Gi/o-coupled GABAB receptors, in addition to 

adenosine A1 receptors (Pape, 1992), primarily reduce Ih via inhibiting basal cAMP 

synthesis in TC neurons. However, a minor Bac-induced contribution to cAMP-
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independent modulation of Ih, for example via decreases in the concentration of 

cGMP (Fedele et al., 1997; Pape & Mager, 1992), can not be excluded. 

A vigorous synthesis of cyclic AMP likely mediated the transient potentiation of 

Ih by Iso and Bac. First, the modulation of Ih was associated with a maximal shift in 

the activation curve of Ih, similar to that observed with exogenous addition of high 

cAMP concentrations intracellularly (McCormick & Pape, 1990; Lüthi & 

McCormick, 1999). Second, modulation of Ih, induced by photolysis of caged cAMP, 

was occluded during the peak of the potentiation induced by Iso and Bac, but fully 

reinstated following the decay of the potentiation. Third, reversible accelerations in 

the time course of activation of Ih, which are widely used hallmarks of cAMP-

dependent actions on h-channels, paralleled the enhancement. Fourth, the 

characteristics of the potentiation could be mimicked by stimulation of endogenous 

ACs with Forsk. Fifth, Bac did not appear to alter the sensitivity of h-channels for 

cAMP generated in the presence of non-saturating concentrations of Forsk. Taken 

together, the enhancement of Ih by co-application of Iso and Bac shows characteristics 

that are consistent with an exposure of h-channels to a powerful elevation of cAMP, 

which represents the most widely described pathway of pacemaker current 

modulation (for review, see Pape, 1996; Santoro & Tibbs, 1999; Kaupp & Seifert, 

2001; Robinson & Siegelbaum, 2003). Alternate, more complex modulations of 

pacemaker channel function, such as decreases in the concentrations of cAMP 

required for channel gating, can, however, not be excluded at this point and would 

require experiments under cell-free conditions. 

A cross-talk between Bac and Iso receptors in cAMP signaling could be induced 

at the level of the receptors, the G-proteins, the ACs and the PDEs. As application of 

Bac alone inhibited rather than enhanced Ih, an involvement of alternate GABAB-

receptor induced modulatory pathways, such as Ca
2+

 release (Hirono et al., 2001) and 

an associated cAMP synthesis (Lüthi & McCormick, 1999) are unlikely to be 

involved in the synergism. Moreover, Bac failed to potentiate the action of low 

concentrations of Forsk, indicating that AC activity was not stimulated directly by 

Bac. Furthermore, inhibition of PDEs and decreasing cAMP degradation led to a 

weak augmentation of Ih that could not account for the strength of the potentiation. 

Therefore, the synergism appears to arise at a point upstream of cAMP synthesis. 

Accordingly, we were able to interfer with the potentiation by using NEM, an 

inhibitor of Gi-proteins that interferes with multiple GABAB receptor-mediated effects 
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on ionic currents (Sodickson & Bean, 1996; Hirono et al., 2001). Activation of Gi-

proteins, likely induced by ligand-bound GABAB receptors showing a high apparent 

affinity for Bac, appears thus to be a primary requirement for inducing a potentiation 

of cAMP synthesis, induced in conjunction with stimulation of Gs-proteins.  

In biochemical assays of cAMP levels in neural tissue, activation of Gi/o-

coupled neurotransmitter receptors, including GABAB, α-adrenergic and µ-opioid 

receptors has been reported to potentiate cAMP accumulation induced by Gs-coupled 

neurotransmitter receptors by severalfold (Perkins & Moore, 1973; Sattin et al., 1975; 

Karbon & Enna, 1985; Makman et al., 1988). This paradoxical action of Bac is 

sensitive to pertussis toxin (Wojcik et al., 1989), and was proposed to include a Bac-

induced strengthening of receptor coupling to AC (Scherer et al., 1989) and 

arachidonic acid metabolism (Duman et al., 1986; Schaad et al., 1989). However, a 

profile of modulation that could explain most directly the synergistic action of Gi/o-

coupled receptors upstream of cAMP synthesis is presented by two types of AC 

isoforms, type II and IV. The activity of these enzymes is dramatically enhanced upon 

binding of βγ-subunits from Gi-proteins in the presence of α subunits from Gs-

proteins (Tang & Gilman, 1991; for review, see Tang & Gilman, 1992; Anholt, 1994; 

Smit & Iyengar, 1998; Hanoune & Defer, 2001). These ACs may be involved in Gi/o-

stimulated cAMP production in Xenopus oocytes (Uezono et al., 1997; Ulens & 

Tytgat, 2001), in ventricular myocytes (Belevych et al., 2001) in olfactory bulb 

(Olianas & Onali, 1999), and in cortex (Onali & Olianas, 2001), but their activity in 

intact neurons has not been addressed. In TC neurons, both type II and type IV AC are 

expressed, and type IV activity is up to 10-fold more pronounced than that of other 

ACs (Ihnatovych et al., 2002). This suggests that the marked cAMP production and 

the dependence on synergistic activation of both Gs- and Gi-proteins described here 

may be, at least in part, explained by the activation of this molecularly distinct AC in 

TC cells. 

The activation of different types of Gi/o-coupled receptors showed variable 

capability to potentiate the action of Iso on Ih. Whereas A1 agonists failed to induce a 

potentiation, µ-opioid receptor activation induced a potentiation of Ih in the absence of 

β-adrenergic receptor activation. Thus, in mouse TC neurons, the coupling of Gi/o-

coupled receptors to cAMP turnover detected by Ih, whether positive or negative, 

depends on the receptor type. Interestingly, in Xenopus oocytes, it was observed that 
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µ-opioid receptors unexpectedly potentiate HCN2-mediated currents in ~10% of the 

oocytes in a manner that is sensitive to AC blockers and limited by the availability of 

free αs-subunits (Ulens & Tytgat, 2001). Thus, these GPCRs appear to preferentially 

couple to synthesis of cAMP that is detected by isoforms of HCN channels expressed 

in thalamus (Moosmang et al., 1999; Monteggia et al., 2000; Santoro et al., 2000). 

Electrical stimulation in the nRt cell layer, which comprise the principal 

inhibitory afferents into the dorsal thalamus (for review, see Guillery et al., 1998; 

Crabtree, 1999), produced a GABAB receptor-mediated postsynaptic response on TC 

neurons, with properties similar to those found in rat (Ulrich & Huguenard, 1996). To 

study the effect of synaptically activated GABAB receptors on cAMP formation, the 

activation of K
+
 currents was prevented and stimulation applied repetitively within the 

frequency range of thalamic oscillations (McCormick & Bal, 1997). This protocol 

induced minor changes in Ih, indicating that GABAB receptor activation was not 

strong enough to inhibit cAMP synthesis. Moreover, stimulation per se appeared not 

to induce release of other neurotransmitters that led to strong modulation of Ih. 

However, when stimulation occurred concomitantly with activation of β-adrenergic 

receptors, a marked potentiation of Ih amplitude was observed. Thus, the interaction 

of β-adrenergic receptors with GABAB receptors to control cAMP synthesis extends 

to the synaptic level, although additional factors released upon stimulation that may 

interact synergistically with β-adrenergic receptors can not be excluded (see e.g. 

Pedarzani & Storm, 1996). The present data therefore suggest that the GABAergic 

tone exerted by nRt cells may control the strength of cAMP synthesis induced by 

afferent neuromodulatory pathways. Interestingly, locus coeruleus neurons discharge 

synchronously with sleep-related EEG rhythms in the TC system, while they fire in 

isolation during states of waking (Aston-Jones & Bloom, 1981). Thus, activation of β-

adrenergic receptors could take place over an increased level of activated GABAB 

receptors during states of sleep and during the transition between sleeping and 

waking, perhaps associating these phases with intracellular cAMP signals distinct 

from those during waking. Norepinephrine plays an important role in the control of 

cAMP-dependent gene expression during states of arousal in the TC system (Cirelli et 

al., 1996; Cirelli & Tononi, 2000) and discrete temporal profiles of cAMP transients 

contribute to determine the patterns of gene expression (Bacskai et al., 1993; Kaang et 

al., 1993). The physiological role of various types of cAMP signals induced by 



 

 85 

GPCRs and via synergistic interactions between these could therefore extend into the 

determination of state-dependent patterns of gene expression. 
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I Introduction to the paper 2 

 

The thalamus is composed of a dual system composed of first-order nuclei and 

the higher-order nuclei (HOn). Besides the defining difference in the origin of the 

excitatory inputs that drive the firing properties of the TC neurons (see chapter, II, 

1b), there is emerging evidence for an increased diversity of GABAergic signaling, 

both in terms of neuronal subtypes in nRt (Pinault, 2004) and in terms of 

extrareticular inputs into HOn. For example, an extrareticular inhibitory input from 

the zona incerta innervates specifically HOn (Barthó et al., 2002).  

As mentioned in the introduction (see chapter, II, 1a), the driving functions 

accorded to the cortical layer V are derived from morphological and physiological 

studies. The layer V corticothalamic terminals originate from thick axons and large 

terminals that contain round and large vesicles. The terminals innervate the proximal 

dendrites of TC cells in latero-posterior nucleus (LP), a visual HOn. Moreover, the 

synapses are encapsulated in glomeruli limited by glial cells (Bourassa and 

Deschênes, 1995; Feig and Harting, 1998; Van Horn and Sherman, 2004). Thus, these 

synaptic formations remind the arrangements made by the retinal terminals in the 

dLGN (see chapter II, 1b). They are different from the modulatory inputs arising from 

the neurons of cortical layer VI that innervate the distal dendrites of TC neurons of 

the HOn and relay nuclei. The synapses have small and round vesicles (Vidnyanszky 

and Hamori, 1994; Van Horn and Sherman, 2004). The role of cortex in the receptive 

fied of the pulvinar neurons was shown by making lesions in primate visual cortex. 

The lesions eliminated visual response in the neurons of the pulvinar (Bender, 1983). 

Therefore, the synapses formed by the CT axons arising from the cortical layer V 

have the arrangement of driving synapses and the responses of LP neurons to sensory 

stimulus are dependent on the cortex. The role of the pulvinar and its classification as 

higher-order nuclei has been reviewed in several publications (Casanova et al., 2001; 

Sherman and Guillery, 2002).  

 

1. The Zona Incerta: a novel inhibitory afferent  

 

As the nRt, the zona incerta (ZI) is an embryological derivate of the ventral 

thalamus. It forms a distinct nucleus at the base of the dorsal thalamus. The ZI has 

been subdivided into the rostral, dorsal, ventral and caudal groups (Nicolelis et al., 
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1992), each having a largely different cytoarchitecture and neurochemical 

characteristics.  

The ZI receives topographically organized cortical projections (Shaw and 

Mitrofanis, 2002) from the layer V exclusively, via collaterals passing to the dorsal 

thalamus (Levesque et al., 1996) or from axons passing to the brainstem or spinal cord 

(Mitrofanis and Mikuletic, 1999). They receive ascending inputs from collaterals of 

sensory pathways as the trigeminothalamic axons that arise from the whiskers and that 

terminate in the thalamic posterior nucleus (Po) (Veinante and Deschenes, 1999). ZI 

is also engaged in reciprocal connections with the pretectum and projects to the dorsal 

thalamus (Roger and Cadusseau, 1985; Shammah-Lagnado et al., 1985; Barthó et al., 

2002). Moreover, the anterior pretectal nucleus provides a dense projection to the 

ventral part of the ZI. The ventral and dorsal ZI (ZIv) neurons project to the dorsal 

thalamus as shown by microelectrophoretic injections of tritiated proline and leucine 

(Ricardo, 1981). The result has been confirmed later with different techniques 

(Watanabe and Kawana, 1982; Power et al., 1999; Barthó et al., 2002). Interestingly, 

the preferential ZIv innervations of the dorsal thalamus are restricted to the HOn that 

are also specifically targeted by cortical layer V (Power et al., 1999; Barthó et al., 

2002). The symmetrical synapses made by the ZIv innervations described above are 

primarily GABAergic, contact the proximal dendrites of the HOn neurons and vary 

considerably in size and shape (Barthó et al., 2002). The GABAergic nature of the 

terminals arising from the ZIv is also supported by a study showing that GABA and 

GAD immunoreactive cells are mostly found within the ventral sector of the ZI 

(Kolmac and Mitrofanis, 1998). 

The characteristics and the functional role of ZI - HOn synapses remain to be 

investigated. 

 

2. The anterior pretectum group: a novel afferent projecting to the higher-

order nuclei 

 

Besides the ZI, the anterior pretectum (APT) was found to project GABAergic 

afferents into the thalamus (Bokor et al., 2004). The anterograde fluorescent tracer 

microruby (a fluorescent dye, the tetramethylrhodamine, coupled to biotinylated 

dextran) was injected into APT and permitted to visualize the axonal projections of 
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APT cells. These were found to terminate exclusively in HOn in a topographic 

manner. Postembedding immunogold staining of GABA revealed the co-localization 

of GABA with the dye, demonstrating the GABAergic nature of the synapses made 

between the APT and the TC neurons. GABAergic terminals in the Po formed 

symmetrical synapses with multiple release sites on the proximal dendrites of TC 

neurons. An anterograde tracer was injected in nRt and APT. Thus, the terminals 

formed in thalamic Po by the two GABAergic nuclei could be compared. The 

terminals from APT were larger (surface area 1.2-7.2 µm
2
) than the nRt terminals 

(0.6-1.2 µm
2
). In addition, the APT terminals established up to 10 release sites 

preferentially on single proximal TC cells dendrites while the nRt terminals 

established mostly a single release site on distal TC cells dendrites. The properties of 

the APT terminals showing a higher number of release sites and a location on more 

proximal dendrites suggests a powerful control of relay cell firing by extrareticular 

GABAergic afferents (Bodor et al., 2004). To my knowledge, in HOn such as Po or 

LP, investigations of the inhibitory responses evoked by the direct stimulation of nRt 

have not been reported. 

To obtain a functional correlate for the morphological evidence of a GABAergic 

projection from APT to HOn, we developed an in vitro preparation that preserved the 

connections between the APT and the thalamus. The development of this preparation 

was facilitated because the anterograde staining had revealed a strict horizontal path 

of projection between APT and HOn. Moreover, APT afferents were fluorescently 

stained in vivo prior to slice preparation. Thus, the positioning of stimulation and 

recording electrodes in the slice was guided by the signals in fluorescent microscopy. 

The stimulation electrode was placed close to the site of the injection and the 

recording trials were performed on cells co-localized with the labeled terminals. 
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Summary 

GABAergic signaling is central to the function of the thalamus and has 

been traditionally attributed primarily to the nucleus reticularis thalami (nRT). 

Here we present a previously undisclosed GABAergic pathway, distinct from the 

nRT that exerts a powerful inhibitory effect selectively in higher order thalamic 

relays of the rat. Axons originating in the anterior pretectal nucleus (APT) 

innervated the proximal dendrites of relay cells via large GABAergic terminals 

with multiple release sites. Stimulation of the APT in an in vitro slice 

preparation revealed a GABA
A
-receptor-mediated, monosynaptic IPSC in relay 

cells. Activation of presumed single APT fibers induced rebound burst firing in 

relay cells. Different APT neurons recorded in vivo displayed fast bursting, tonic 

or rhythmic firing. Our data suggest that selective extrareticular GABAergic 

control of relay cell activity will result in effective, state dependent gating of 

thalamocortical information transfer in higher order but not in first order 

relays.  

Introduction  

The inhibitory control of thalamocortical neurons has so far been attributed 

primarily to two neuronal subtypes; neurons of the nucleus reticularis thalami (nRT) 

and local interneurons. Reticular neurons innervate all dorsal thalamic nuclei and act 

as a global pacemaking structure in the generation of sleep-related thalamocortical 

oscillations (Pinault, 2004; Steriade et al., 1993) and as modifiers of the efficacy of 

thalamocortical transmission (Guillery et al., 1998). Interneurons are integrated in 

local circuits and involved in stimulus specific feedforward inhibitory actions 

(Sherman, 2004; Steriade, 2004).  

Several thalamic nuclei receive giant, cortical excitatory afferents arising from 

pyramidal neurons located in layer V. These inputs are functionally and 

morphologically surprisingly similar to the peripheral inputs (Hoogland et al., 1991; 

Reichova and Sherman, 2004; Vidnyanszky et al., 1996). Based on these findings, 

nuclei receiving layer V afferents were distinguished as higher order thalamic relays 

as opposed to first order thalamic relays which receive driving input solely from 

peripheral sources (Guillery and Sherman, 2002; Sherman and Guillery, 2001). In 
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higher order thalamic relays cortical inactivation renders relay cells unresponsive to 

peripheral input, suggesting strong cortical drive in these nuclei, whereas response 

properties in first order relays are hardly affected (Bender, 1983; Diamond et al., 

1992). Furthermore, higher order relays apparently do not participate in simple 

peripheral information transfer but in more complex functions (reward dependent 

firing, binding, attention, complex sensory coding) that necessitate cortical 

involvement (Ahissar and Arieli, 2001; Kinomura et al., 1996; Komura et al., 2001; 

Ward et al., 2002). Selective damage to higher order thalamic nuclei (also known as 

non-specific nuclei) in humans results in sensory neglect, or in more severe cases a 

persistent vegetative state, even when first order nuclei and the neocortex are 

relatively intact (Kinney et al., 1994; Llinás and Paré, 1997; Schiff et al., 2002). This 

strongly suggests that cortical integration of first order and higher order thalamic 

input is critical for cognitive functions.  

Whether the characteristic layer V excitatory input in higher order nuclei is 

paralleled by a distinct inhibitory control is presently not known. Indeed, recent 

studies indicated that inhibitory inputs to higher order nuclei may have multiple 

origins (Bartho et al., 2002; Trageser and Keller, 2004). In the present study, we 

identified a previously unknown inhibitory pathway to the thalamus that originates 

from the anterior pretectal nucleus (APT) and effectively controls relay cell activity 

selectively in thalamic regions that are considered as higher order thalamic relays.  

Results  

The APT-Thalamic Pathway  

Small injections of biotinylated dextran amine (BDA) or Phaseolus vulgaris 

leucoagglutinin (PHAL) into various parts of the APT (Fig. 1A,B) resulted in dense 

patches of varicose fiber labeling in the ipsilateral thalamus (Fig 1C). Contralateral 

projections were negligible. The patches were surrounded by a more loosely 

organized network of terminals. The position of all injection sites relative to the APT 

was determined using double fluorescent labeling for the tracers and for parvalbumin, 

a neurochemical marker for the APT (Celio, 1990). The anterogradely labeled APT 

axons were confined to those thalamic nuclei that are considered as higher order 

relays (Sherman and Guillery, 2001). These included the posterior thalamic (Po), 
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ethmoid and posterior triangular nuclei (somatosensory), the laterodorsal (LD) and 

lateral posterior nuclei (visual), ventromedial nucleus (motor), the mediodorsal 

nucleus (associative), the centrolateral, paracentral and parafascicular nuclei 

(intralaminar) and the suprageniculate-limitans complex. First order relays including 

ventral posterolateral, ventral posteromedial, dorsal lateral geniculate, ventral medial 

geniculate nuclei and the anterior nuclear group were devoid of APT fibers. No APT 

fibers were found in the nRT. The APT-thalamic pathway was organized in a focal 

manner, suggesting a point-to-point rather than a diffuse information transfer. Dorsal 

injections resulted in dense clusters of terminals in laterodorsal and lateral posterior 

nucleus, whereas more ventral injections labeled patches of terminals in the more 

ventral nucleus posterior (Fig. 1D-F). APT injections always labeled a dense 

intranuclear recurrent collateral system within the APT. Sectioning of the brain in the 

horizontal plane following BDA injection into the APT revealed that many fibers 

from the APT to the thalamus ran mainly horizontally, facilitating the preparation of a 

pretecto-thalamic slice in which intact connections between the two structures could 

be studied in vitro (see below). Control injections caudally into the superior colliculus 

(n=5) resulted in a different innervation pattern that was focused on intralaminar 

nuclei. Rostral injections that were confined to thalamus (n=2) resulted in no axonal 

labeling in other thalamic nuclei.  

 

Figure 1. Projection pattern from the anterior pretectal nucleus (APT) to higher order thalamic 

relays.  

A) Six small injection sites (gray patterned patches) are shown on coronal maps (modified from 

Paxinos and Watson, 1998) at three rostrocaudal levels. Four of the six injection sites are located 

within the APT. One is situated near the medial border of the APT, another lies at the border of the 

APT and the adjacent deep mesencephalic region. (B) The light microscopic image of the injection site 

labeled by vertical stripes in A. In the inset the same injection site is depicted in a composite 

fluorescent image for BDA (indicated by a white arrow) and parvalbumin (fluorescently labeled cells 

within the area bordered by white arrowheads), a neurochemical marker for the APT. (C) High-power 

light photomicrograph demonstrating a patch of anterograde terminal labeling in the posterior thalamic 

nucleus after BDA injection into the APT. Arrows depict large axon terminals. In D-F the afferent fiber 

labeling is shown in coronal thalamic maps at three rostrocaudal levels following BDA injections at the 

locations presented in A with the same grayscale patterned coding. Note the focal terminal labeling in 

all types of higher order thalamic relays including visual (LPMR, LDDM, LDVL), somatosensory (Po, 

Ang) intralaminar (CL) and mediodorsal (MD) nuclei. Scales: A, D, E, F: 1 mm; B: 500 µm; inset in B: 

200 µm; C: 20 µm. Abbreviations according to Paxinos and Watson (1998).  
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The ultrastructure of APT thalamic terminals was examined in five animals (3 

BDA, 2 PHAL), in three of which quantitative analysis of GABA content was 

performed (2 BDA, 1 PHAL, n=91). The APT-thalamic terminals were large and 

elongated (long axis up to 5 µm, short axis 1µm), and they established multiple 

release sites (up to 10, examined in serial sections) on the proximal dendrites of relay 

cells (Fig. 2A,B). Almost all boutons possessed multiple rows of puncta adhaerentia-

like specializations and were ensheathed by glial processes. Several GABAergic APT 

terminals were frequently clustered along a single dendrite, each establishing multiple 

contacts, suggesting a powerful control of relay cell activity (Fig. 2C,D). 

Postembedding GABA reaction revealed that the majority (82%; n=91) of the labeled 

terminals were GABAergic (for details see: Supplementary Table 1). In summary, our 

tract tracing experiments revealed a direct, focal, GABAergic APT-thalamic pathway 

that is strategically positioned to exert a strong inhibitory action selectively on 

thalamic neurons of higher order relays. 
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Figure 2. Anterior pretectal (APT) terminals are GABAergic in the thalamus.  

(A, B) Electron micrographs of BDA labeled APT terminals in the nucleus posterior. Silver 

intensified preembedding gold staining (larger silver deposits, small arrows) was used to visualize the 

anterograde tracer, BDA (biotin dextran amine), whereas postembedding immunogold staining (small 

gold particles, as black dots) indicates GABA-immunoreactivity. A giant GABAergic terminal (b
1
) is 

shown on two different electron microscopic sections (approximately 600 nm apart). The bouton 

establishes symmetrical synapses with multiple release sites (arrows) on the proximal dendrite (d) of a 

relay cell. Arrowheads show a row of puncta adhaerentia. Note also the glial coverage on the whole 

non-synaptic surface of the bouton.  

(C) Low power electron micrograph depicts Phaseolus vulgaris leuco-agglutinin (PHAL) 

labeled GABAergic (small gold particles, black dots) boutons terminating on a thick proximal dendrite 

(d) in the nucleus posterior following PHAL injection into the APT. In this case PHAL was revealed 

using DAB as a precipitate (dark deposit within the labeled boutons: b, b
2
). Note that almost all 

GABAergic terminals contacting the dendrite are labeled by the tracer. The bouton b
2 

is shown at 

higher magnification in D. Arrow points to a symmetrical synaptic contact in D, arrowheads show 

puncta adhaerentia. Open arrowheads label the glial coverage of the non-synaptic surface of the 

bouton. The asterisks in B and D label GABAergic tracer-negative boutons terminating on the same 

dendritic profiles. Scales, A-D: 1 µm.  
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APT Control of Relay Cell Activity In Vitro  

To physiologically characterize the synaptic contacts from APT to higher order 

nuclei, a horizontal in vitro slice preparation was developed that maintained the 

connections between the two areas. Slices were prepared from young rats (≤ 1 month) 

injected in vivo with the anterograde tracer micro-ruby into the APT (see Methods). 

The injection resulted in a patch of anterogradely labeled terminals in higher order 

nuclei similar to the adult animals (Fig. 3A
1
). Whole-cell patch-clamp recordings 

were obtained from cells located among the anterogradely labeled fibers (Fig. 3A
2
). 

Thalamocortical cells had a resting membrane potential of -63.8±1.7 mV (n=13) and 

showed rebound burst discharges upon transient negative current injections.  

Electrical stimulation (0.2 Hz, 300-900 µA, 100 µs) of the injection site located 

in the APT in slices bathed in glutamate receptor antagonists (see Methods) evoked an 

outward current with an average amplitude of 66±11 pA (n=26, range 9-178 pA) (Fig. 

3A
3
). This outward current was blocked completely and reversibly by the GABA

A 

receptor antagonist bicuculline (25 µM), (Fig. 3B
1
, B

2
, 1.2±1.0% of control 

amplitude, n=7, p<0.001), indicating that it was an IPSC mediated by activation of 

GABA
A 

receptors. The average response latency, measured from the peak of the 

stimulus artefact to the onset of the response (Fig. 3C, inset) was 2.9±0.3 ms (n=26, 

range 1.0-6.6 ms). The time for the response to rise from 10% to 90% was 1.07±0.11 

ms (n=14).  

To determine whether APT neurons formed monosynaptic connections with 

neurons of higher order nuclei, the variation in response latency and the dependence 

of response amplitude on stimulation intensity was determined. Response latencies 

showed a narrow unimodal distribution with a standard deviation <0.4 ms (Fig. 3C, 

analyzed in 39-272 successive sweeps from n=6 cells). IPSC amplitude showed an 

all-or-none behavior as a function of stimulation intensity, with an abrupt appearance 

of the maximal response amplitude following increments in stimulation currents of 

10-20 µA (Fig. 3D). This step-like intensity-response curve was found in 3 out of 4 

connections tested, indicating that, in these cases, single APT-thalamic fibers were 

causing the observed functional effects. Taken together, both the stability in latency 

and the all-or-none characteristics of the response size are indicative of a 

monosynaptic projection between APT and higher order nuclei neurons.  
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Given that APT neurons show a diverse pattern of ongoing spontaneous action 

potential discharge (see below), it was important to determine how the strength of 

inhibition exerted on thalamocortical neurons depended on prior activity. Here, the 

short-term plasticity of APT synapses was examined using dual extracellular 

stimulation within the APT at interstimulus intervals between 10 and 5000 ms (Fig. 

3E
1
,E

2
). Stimulation intensities were chosen such that the first pulse yielded a 

maximal synaptic response and that no failures were observed with the second pulse, 

such that alterations in the paired-pulse ratio could be attributed predominantly to 

modifications in presynaptic release processes. Under these conditions, each stimulus 

evoked a measurable IPSC and the APT-thalamic pathway showed a weak paired-

pulse depression of <20% at intervals between 10 ms and 1s, but not after 5 s. Thus, 

short-term plasticity of the APT-thalamic synapse is characterized by a weak 

depression over a large range of time intervals and helps to sustain high-frequency 

inhibition of thalamic relay cells.  

 

Figure 3. Projections from the anterior pretectum (APT) to higher order nuclei are GABAergic, 

monosynaptic and exhibit weak paired-pulse depression.  

(A
1
) Low power composite fluorescent micrograph demonstrating the injection site in the APT 

(red signal) and the micro-ruby labeled axon terminals in the thalamic nucleus posterior (Po) 

(arrowheads) in a horizontal slice. An arrow points to the recorded and filled thalamocortical cell 

labeled with a green fluorescent marker for biocytin. The same cell is shown in A
2 

at higher 

magnification (green signal). Note that the cell is located within the micro-ruby-labeled axons (red 

signal). (A
3
) Synaptic response evoked in the cell presented in A

1 
upon extracellular stimulation in the 

APT. The holding potential was -50 mV for this and all subsequent recordings presented in this figure.  

(B
1
) Representative data from a single cell showing the time course of blockade of the inhibitory 

postsynaptic current (IPSC) by bicuculline (Bic, 25 µM). The inset shows 3 superimposed traces, each 

averaged from 10 consecutive sweeps during control, in the presence of bicuculline, and during 

recovery. (B
2
) Histogram showing the average block of the synaptic response and the partial 

reappearance of the IPSC upon washout (n=7, p<0.001 for Bic vs. control).  

(C) Latency histogram of responses from a representative cell, determined from the peak of the 

stimulation artefact to the beginning of the upward deflection of the IPSC. Note the narrow distribution 

of latencies of totally 272 synaptic responses within a time window <1 ms. Inset shows the 

superposition of 79 sweeps, with the dotted lines and the double-headed arrow indicating the latency. 
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 (D) Plot of the amplitude of individual responses (open circles) and mean amplitudes (closed 

circles) versus stimulation intensity. The synaptic response shows a step-like dose-response curve, with 

a sharp threshold for stimulations intensities between 500 and 520 µA. There is no further increase with 

increasing stimulation intensity. Inset shows 50 consecutive sweeps obtained at stimulation intensities 

from 450 to 540 µA (10 µA steps, 5 responses per intensity). (E
1
) Paired-pulse characteristics of IPSCs 

elicited by stimulation in the APT. Representative traces from a single cell are shown for 5 different 
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interstimulus intervals, indicated at the top of the traces. For compactness of the figure, the response 

obtained after the 5.000 ms interval is appositioned closely to the response after 100 ms. Dotted 

horizontal line indicates the peak response to the first of the two stimuli. Small variations in the 

amplitude of the first response (<10%) were compensated for by scaling the traces. (E
2
) Time course of 

recovery from paired-pulse depression, plotted as the paired-pulse ratio (ratio of second vs. first IPSC 

in %) against interstimulus interval. Each data points represents the average of values obtained from 5-

9 cells, with at least 5 interstimulus intervals tested per cell (p<0.05 for all values except 10ms).  

Scales: A
1
: 1mm, A

2
: 200 µm, Abbreviations according to Paxinos and Watson (1998).  

 

To assess the functional impact of APT activity on the discharge properties of 

neurons in higher order nuclei, APT afferents were stimulated while thalamic neurons 

were held in the current-clamp configuration. For IPSCs with amplitudes >50 pA at –

50 mV, APT activity modulated firing characteristics of thalamic cells at both resting 

and depolarized membrane potentials (Fig. 4). When 1-10 IPSPs were evoked at 10 

Hz, a frequency typical for IPSP barrages occurring during natural inhibitory input 

from the nRT (Bal et al., 1995; Steriade et al., 1985), a rebound depolarization (n=3) 

occasionally associated with a burst of action potentials (Fig. 4A) was produced. 

Similar to nRT-dependent rebound burst discharges in vitro (Bal et al., 1995), the 

probability of rebound burst discharge increased with the number of stimuli applied 

(Fig. 4A,B), strongly suggesting that the rebound response was due to the recruitment 

of a low-threshold calcium spike. However, in contrast to nRT, such stimulations 

never led to secondary, rhythmic bursts of IPSPs typical for intrathalamic oscillations 

in somatosensory thalamus (Huguenard and Prince, 1994), consistent with a lack of 

reciprocal excitatory-inhibitory loops between the APT and higher order nuclei. When 

thalamic cells were induced to discharge action potentials by injection of a 

suprathreshold current, APT activity completely prevented or attenuated on-going 

action potential discharge (n=3, Fig. 4C,D). Notably, in two cases, this effective 

control of neuronal discharge was also observed in presumed single-fiber connections. 

Thus, APT afferents, even single axons, can control both burst and tonic modes of 

action potential discharge of thalamic relay cells. 
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Figure 4. Control of thalamic cell firing by synaptic inputs from the anterior pretectum (APT). 

(A) Rebound burst responses of a representative cell upon application of 3 (top six traces) or 8 

repetitive stimuli (bottom six traces) at a frequency of 10 Hz. Note the failure of rebound burst 

generation in 50% of the sweeps when only 3 stimuli were applied. Top and bottom group of traces are 

displaced vertically for clarity. Resting membrane potential is indicated to the right of the top trace of 

each group (-58 mV), but accounts for all traces. (B) Graph illustrating the probability (Prob.) of 

rebound burst generation as a function of the number of stimuli for the cell presented in A. (C) 

Inhibition of tonic action potential generation in response to repetitive APT stimulation. In cell 1 (top), 

discharge was fully prevented, whereas in cell 2 (bottom), the discharge rate was decreased. The cells 

were depolarized to potentials indicated upon d.c. injection of 360 pA (cell 1) and 530 pA (cell 2) to 

induce tonic firing. (D) Graphic illustration of the action potential discharge patterns of the two cells 

presented in C. Each action potential is symbolized as a point. Arrows indicate the time points at which 

stimulation was applied to the APT. Action potential amplitudes were truncated for clarity (see 

Methods).  
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Single Cell Activity in the APT In Vivo  

To identify the natural pattern of inhibitory input a relay cell may receive in 

vivo, juxtacellular recording and labeling was performed in the APT with 

simultaneous EEG recording in the S1 cortex of urethane-anaesthetized rats. During 

recordings (5-15 minutes per neuron) the cortical EEG activity was dominated by a 

slow, low frequency (1-3 Hz), large amplitude oscillation, indicating deep anesthesia 

(Figure 5, Supplementary Fig 1-3). In order to examine the firing patterns of the APT 

neurons during desynchronized cortical activity, the slow oscillation was disrupted by 

applying tail-pinch for 15-60 seconds. This resulted in an immediate change in the 

power spectrum of the cortical EEG, the power of the 1-3 Hz component decreased by 

at least 10-fold and a faster 20-60 Hz band gained place in the spectrum. After 

termination of the tail pinch, the slow oscillation fully recovered. The rhythmicity of 

the cortical slow oscillation was also demonstrated by the multiunit activity of cortical 

neurons recorded by the EEG electrodes. During the slow oscillation, cortical units 

were active only on the upstates of the EEG, while in desynchronized states the 

cortical multiunit activity lost its rhythm.  

APT neurons were found to display a surprisingly heterogeneous firing 

pattern. Based on neuronal firing patterns, 23 out of 27 recorded neurons in the APT 

could be classified into three distinct populations. Major differences were observed 

among these categories in baseline activity, coherence with EEG and in the response 

to tail pinch-induced cortical activation (Fig. 5, see also Supplementary Fig. 1-3 and 

Supplementary Table 2 online).  

Fast bursting neurons (n=6) were characterized by high-frequency discharges 

of 4-16 action potentials during the slow oscillation, mixed with irregular single 

spikes (baseline firing: 9-26 Hz, for details see: Supplementary Table 2) (Fig. 5A). All 

neurons reached intraburst frequencies higher than 350 Hz (up to 600 Hz). The 

activity of most of these neurons (5 out of 6) displayed a moderate correlation with 

the cortical EEG, as demonstrated by the spike-triggered averages (Fig 5A, 

Supplementary Fig 1). Spontaneous or tail-pinch-induced EEG desynchronization 

decreased bursting activity, and the correlation with cortical activity was also 

abolished (Fig. 5A
1
).  

Tonic cells (n=8) displayed monotonous or irregular single spike activity 

during the slow oscillation (baseline firing 7-21 Hz, for details see: Supplementary 
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Table 2). Very rarely, tonic cells fired spike doublets but they never displayed high 

frequency bursts, which characterizes fast bursting cells. The activity of tonic cells 

had no noticeable correlation with the simultaneously recorded slow cortical 

oscillation, as shown by their flat spike triggered EEG averages (Fig. 5B, 

Supplementary Fig 2). Cortical activation induced a slight (about 10%) increase of the 

firing frequency without changing the firing mode (Fig. 5B
1
).  

Slow rhythmic cells (n=9) were characterized by a prominent slow (0.7-8 Hz, 

for details see: Supplementary Table 2) rhythmic activity, consisting of single spikes, 

doublets or bursts. Firing of all slow rhythmic cells was intimately related to the 

ongoing cortical slow oscillation and all action potentials were locked to the up-states 

of the EEG (Fig. 5C, Supplementary Fig 3). Slow rhythmic cells rarely fired during 

cortical down states unlike fast bursting or tonic cells. The intraburst frequency of 

slow rhythmic cells rarely exceeded 150 Hz (max 290 Hz), which is much slower than 

the bursts of fast bursting cells. EEG desynchronization changed the rhythmic activity 

into irregular single spiking (Fig. 5C
1
). In six of these neurons the firing ceased for 

some seconds following tail pinch or decreased to 0.1-3 Hz. Three slow rhythmic 

neurons responded to the cortical activation with elevated, 8-16 Hz tonic firing. All 

neurons regained their slow rhythmic firing pattern when the cortical slow oscillation 

reappeared. 

Four of the 27 recorded neurons located in the APT could not fit into in either of 

the above mentions groups. Two of these displayed a highly irregular firing pattern, 

completely different from other observed activities in the APT. Both of them were 

located in the dorsalmost part of the APT, and thus might be part of a so-far-

unidentified subpopulation of APT cells. The other two neurons showed mainly the 

characteristics of the tonic type, but occasional ~100-200 Hz doublets or short bursts 

were observed. 
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 Figure 5. Three distinct types of neuronal firing patterns in the APT under urethane anesthesia. 

Fast bursting firing pattern during urethane slow oscillation (A) and tail pinch induced cortical 

activation (A
1
). Autocorrelograms (AUTO) and spike triggered averages (STA) are shown. Note the 

prominent peak in the autocorrelogram indicating rhythmic bursting activity. In the inset in A typical 

burst pattern is shown. Intraburst frequency of the neuron can exceed 500 Hz. Note also that there is a 

moderate correlation of the EEG and the unit activity as shown by the STA, which was absent during 

tail pinch induced EEG desynchronization. Cortical activation was also accompanied by a great 

reduction in bursting activity, as shown by a drop in the central peak of the autocorrelogram.  

(B) Tonic APT unit activity during urethane slow oscillation (B) and tail pinch induced cortical 

activation (B
1
). The flat STA indicates a lack of correlation between the unit and the EEG. The unit 

displayed no apparent burst activity or rhythmicity, which is also demonstrated by the flat 

autocorrelogram without a central peak. Firing rate slightly increases during EEG desynchronization.  

(C) Firing pattern of a slow rhythmic neuron in APT during urethane slow oscillation and tail 

pinch induced cortical activation (C
1
). The autocorrelogram indicates the rhythmic spike clusters of this 
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cell type. The firing pattern of slow rhythmic cells was highly coherent with the EEG oscillation as 

shown by the high amplitude STA. During cortical activation (C
1
) the rhythmic firing changed to a 

very slow irregular activity, or ceased for seconds. Note the changes in the autocorrelogram, indicating 

irregular activity, and the lack of correlation with the EEG as shown by the flat STA.  

 

In a subset of the recorded APT neurons (n=14) light and electron microscopic 

examination were performed to identify the neurochemical and morphological 

properties of the cells, and to establish the type of synapses they form on their 

postsynaptic targets. The location of these cells within the APT and their 

reconstructed dendritic tree and local axonal arbor are shown in Supplementary Fig 4 

online. All three neuron types had fusiform or irregularly shaped soma with 4-5 

primary dendrites and a dense local axon arbor network (Fig. 6A
1
,B

1
,C

1,2
). The 

dendrites of fast bursting neurons had nearly twice as many branchpoints (average: 

21; range: 19-24) compared to slow rhythmic (average: 12; range 6-15) or tonic cells 

(average: 6.5; range: 2-11). In addition, the distal dendrites of fast bursting cells were 

covered by peculiar, filopodial, spine-like structures (Fig. 6A
1
), which were found to 

be contacted by vesicle-filled terminals at the electron microscopic level (n=4; data 

not shown). The dendrites of tonic and slow rhythmic cells were only sparsely spiny. 

As the APT is rich in parvalbumin-immunoreactive neurons, we tested whether any 

difference in the parvalbumin content of the physiologically different cell populations 

could be observed. Parvalbumin-immunoreactivity was successfully performed in a 

subset of unequivocally identified cells. All fast bursting cells (n=3) were strongly 

parvalbumin-positive (Fig. 6A), whereas slow rhythmic cells (n=4) were 

parvalbumin-negative (Fig. 6C). Tonic cells (n=5) consistently displayed weak 

immunoreactivity for parvalbumin (Fig. 6B). These data demonstrate that neuronal 

cell classes established by physiological criteria correlate with distinct morphological 

characteristics, substantiating the relevance of the classification.  

The ascending axon collaterals of two fast bursting cells could be followed to 

the thalamus (Fig. 6A
3
). In one of them, a cluster of (70-80) labeled terminals was 

recovered in the posterior thalamic nucleus. Electron microscopic analysis of these 

boutons demonstrated that the examined terminals established multiple symmetrical 

synapses on the thick, proximal dendrites of relay cells (n=8). Seven of these 

terminals also showed the ultrastructural characteristics established by the tracing 
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(large size, multiple puncta adhaerentia, glial ensheathment) (Fig. 6A
4
). Local axon 

terminals of the same fast bursting cell also established symmetrical synapses on 

somata or proximal dendrites of APT cells (n=12), but these terminals were smaller 

and had no puncta adhaerentia (Fig. 6A
2
). The terminals of a tonic cell were analyzed 

at the electron microscopic level in the case of a neuron that had collaterals in the 

posterior triangular thalamic nucleus (n=9 terminal), the zona incerta (n=3), the 

ventral lateral geniculate nucleus (n=5) as well as locally (n=3). All 20 terminals 

established single symmetrical synapses (Fig. 6B
2
). No puncta adhaerentia were 

observed. The identification of these cells provides the morphological basis for the 

monosynaptic inhibitory connection between APT and thalamus.  

 

Figure 6. Morphological characteristics of the three physiologically identified cell types. APT-

thalamic projection at the single cell level.  

(A) A fast bursting cell is visualized with a green fluorescent marker for neurobiotin. 

Parvalbumin immunostaining of the same section (PV, in red) demonstrates that the neurobiotin filled 

cell (arrow) is strongly PV-positive. (A
1
) Cell body, dendrites (in black) and local axonal arbor (in red) 

of the same cell are shown. Note complex filopodial spine like structures accumulating in distal 

dendritic regions (see inset). (A
2
) A local axon terminal of the labeled cell establishes two symmetrical 

synaptic contacts (arrows) with non-labeled dendrites (d) in the APT. (A
3
) Projecting axons of the 

reconstructed cell are manually mapped to parasaggital plane using Paxinos and Watson (1998). Four 

ascending main axons reach the thalamus. Terminals were recovered in the nucleus posterior. A 

descending axon collateral projects towards the superior colliculus (double arrow). (A
4
) At the electron 

microscopic level the labeled terminals of the bursting cell establishes symmetrical synapses (arrows) 

onto thick, proximal dendrites in the thalamus. Arrowheads label glial coverage, double arrowhead 

points to a punctum adherens. Note that this thalamic terminal had similar characteristics to those 

visualized by anterograde tracing.  

(B) A neurobiotin filled tonic cell (green) is weakly parvalbumin positive (red). Asterisk 

labels a neuron strongly positive for parvalbumin. (B
1
) Soma and dendrites are shown in black, 

projecting axon is in red in a coronal plane. The neuron is incompletely filled, but a major ascending 

axon was recovered, which reaches the posterior triangular nucleus of the thalamus (PoT), the dorsal 

part of the zona incerta (ZI) and ventral lateral geniculate nucleus (vLGN). At the electron microscopic 

level the axons of tonic cell established symmetrical synapse onto thick, proximal dendrites in all the 

three target areas. (B
2
) A neurobiotin filled bouton (b

3
) is demonstrated here forming symmetrical 

synaptic contact (arrow) with a proximal dendrite (d) in the zona incerta in a low power electron 

micrograph. The same bouton is visible at higher magnification in the inset. 
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(C) Slow rhythmic cells were parvalbumin negative. The neurobiotin labeled, parvalbumin–

negative cell body of the cell C
1 

is shown. C
1 

and C
2 

demonstrate two reconstructed slow rhythmic 

cells, cell bodies and dendrites are in black, axons are shown in red. Dense local axon arbor extended 

with similar dimensions to the dendrites. White arrows in A, B, C point to neurobiotin filled cells 

visualized by a green fluorescent marker. Asterisks labels PV-positive unfilled neurons. Scales: A-C: 

20 µm; A
1
, C

1,2
: 50 µm; A

2,4
: 500 nm; A

3
: 1 mm; B

1
: 200 µm; B

2
: 2 µm, inset 1 µm. Abbreviations 

according to Paxinos and Watson (1998).  

 

In Vitro Stimulation With In Vivo Firing Pattern  

Finally, the impact of natural APT discharges on the behavior of thalamic cells 

was addressed. APT discharge patterns monitored in vivo were therefore used as 

stimulation protocols in vitro (see Methods). The neuronal activity of a fast bursting 

cell (see Fig. 5A) was applied to the APT while recording from relay cells held in 

current-clamp around resting membrane potential. Using a short stimulus train 

consisting of a doublet and two burst discharges clearly indicated that rebound burst 

firing of relay cells could be evoked following application of burst-like stimuli (Fig. 

7A). In a stimulus train mimicking the natural firing of a fast bursting cell (Fig. 7B), 

the probability of rebound burst firing was determined for three periods of 3-32 Hz (5-

14 stimuli) and for 6 periods of 240-300 Hz (5-10 stimuli). When evaluating traces 

from 3 cells, the average probability of rebound burst discharge was 67.2±5.6% for 

high-frequency stimuli, whereas it was limited to 20.2±11.0% after a tonic period 

(p<0.002). This indicates that natural burst firing of APT cells may be a particularly 

effective means of promoting rebound activity in higher order nuclei. 

 

Figure 7. Action potential discharge patterns elicited in thalamic cells of higher order nuclei 

upon stimulation of the anterior pretectum (APT) according to single-unit recordings in vivo. (A) Burst 

discharges in the APT elicit rebound burst discharges in a thalamic cell. (B) APT stimulation patterned 

by the in vivo activity of a fast bursting cell elicit rebound bursts in thalamic cells, preferentially 

following bursting in the APT. Action potential amplitudes were truncated for clarity (see Methods).  
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Discussion  

In the present study, we demonstrate that higher order thalamic nuclei are 

under the control of a powerful GABAergic afferent pathway originating in APT. 

This inhibitory system is morphologically and functionally distinct from the 

GABAergic innervation arising from the nRT. Therefore our data suggest that the 

inhibitory control of relay cell activity is qualitatively different in first order and 

higher order nuclei.  

Identification of a GABAergic APT-thalamic projection is consistent with 

previous tracing studies (Cadusseau and Roger, 1991; Terenzi et al., 1995) and the 

abundant glutamic acid decarboxilase mRNA signal in the APT (Benson et al., 1992; 

Esclapez et al., 1994). Our tract tracing data were confirmed at the single cell level 
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and by physiological data, excluding major confounding effects by spurious tracer 

labeling. The APT-thalamic pathway was found to be highly focal, unlike many other 

ascending inputs to the thalamus from subcortical centers (Hallanger et al., 1987; 

Jourdain et al., 1989) This implicates a localized and specific inhibitory action rather 

than a diffuse modulatory system. Interestingly, a GABAergic pretecto-thalamic 

pathway from the non-retinorecipient pretectum has also been described in reptiles 

(Kenigfest et al., 2000), suggesting the evolutionarily conservative nature of this 

pathway. An APT-higher order projection has already been revealed in the cat as well 

(Berman, 1977; Graham and Berman, 1981; Robertson et al., 1983), although its 

GABAergic nature remains to be verified.  

It has to be stressed that the pathway described here is distinct from that 

arising mainly from another pretectal nucleus in carnivores, the nucleus of the optic 

tract (Cucchiaro et al., 1993). These latter fibers innervate the first order dorsal lateral 

geniculate nucleus, which is always avoided by APT fibers. Afferents from the 

nucleus of the optic tract contact local interneurons with terminals resembling nRT 

boutons (Cucchiaro et al., 1993; Wang et al., 2002), unlike APT-thalamic fibers 

forming terminals with multiple release sites on the proximal dendrites of relay cells. 

 

Comparison of Reticular and Extrareticular Inhibition  

The present data and previous studies indicate that reticular and extrareticular 

(i.e. originating outside nRT) GABAergic inputs in the thalamus are organized 

according to different morphological and functional principles. Small sized nRT 

boutons form single inhibitory synaptic contacts via single active zones mainly with 

the distal dendritic regions of relay cells in all thalamic nuclei (Cucchiaro et al., 1991; 

Liu et al., 1995; Montero and Scott, 1981). In contrast, APT terminals innervate 

exclusively higher order relays, and selectively target the proximal dendritic region of 

relay cells via multiple release sites (Bodor, Bokor, Acsády, unpublished data). 

Reticular input evokes a slow GABA
B
-mediated inhibition besides fast GABA

A 

IPSCs, which play a crucial role in determining the strength and latency of rebound 

burst responses in thalamocortical oscillations (Huguenard, 1998). In contrast, in our 

hands, extrareticular input showed only GABA
A 

responses, even after repetitive 

stimulation, which suggests that it exerts fast, phasic control of relay cell activity.  
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Under urethane anesthesia, nRT cells are characterized by a tonic or burst 

firing pattern, and they can shift between modes (Pinault, 2004). Morphologically, 

nRT neurons are quite homogeneous and display only subtle differences (Lubke, 

1993). In contrast, in vivo juxtacellular recording under urethane anesthesia in this 

study disclosed three types of neurons in the APT with distinct state dependent firing 

patterns and morphology.  

The afferent-efferent connectivity pattern of nRT and APT is significantly 

different. The former have few intranuclear collaterals (Pinault and Deschenes, 1998) 

whereas all three types of APT neurons in this study had a profuse local axon 

network. In addition, the nRT is reciprocally connected to the thalamus, whereas APT 

does not receive direct thalamic feedback. The sole output of the nRT is the thalamus, 

whereas APT has also been shown to innervate brainstem motor centers (Terenzi et 

al., 1995). nRT receives collaterals from cortical layer VI (Steriade et al., 1997), 

whereas APT is contacted by cortical layer V (Cadusseau and Roger, 1991; Foster et 

al., 1989); thus the layer V-APT-thalamus circle represents a separate cortico-

thalamic pathway, parallel to the layer VI-nRT-thalamus loop. Finally, APT but not 

nRT receives peripheral inputs (Veinante and Deschenes, 1999), which enables the 

APT to gate ascending sensory information in a feedforward inhibitory manner.  

The above analysis strongly suggests that the principles of operation are 

different when comparing reticular vs. extrareticular thalamic inhibition, and that the 

extrareticular system represents a structurally and functionally novel component in 

thalamocortical systems. The extensive recurrent collateral system, the ascending and 

the descending projections of the APT indicate complex information processing and 

integrative control of functionally related thalamic and brainstem regions.  

 

Effective Control of Relay Cell Activity by Extrareticular Inhibition  

In vitro experiments in the slice preparation containing interconnected APT and 

higher order nuclei clearly revealed the presence of monosynaptic GABAergic IPSCs 

that showed unitary characteristics in the majority of cases. The large size of APT 

terminals with multiple release sites and their proximal dendritic location are 

morphological indicators of a synapse capable of maintaining transmission at high 

presynaptic firing rates, and thus can play a crucial role in the control of neuronal 

activity (Xu-Friedman and Regehr, 2004). Indeed, activation of a single APT fiber 
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was able to induce rebound burst firing in relay cells. Interestingly, in the cerebellum 

corticonuclear synapses show similar ultrastructural features, including multiple 

adjacent presynaptic release sites, and they exert a powerful inhibition of nuclear cells 

(Telgkamp et al., 2004). Due to the confluence of GABA from these multiple release 

sites to a shared pool of postsynaptic receptors, synaptic depression is minimal even at 

artificially high release probabilities. In the case of APT-thalamic synapses, the 

comparatively slow rise time of IPSCs, the weak paired-pulse depression at all 

interstimulus intervals and the lack of a temporal structure of recovery from paired-

pulse depression are features consistent with other studies on GABAergic synapses 

with multiple release sites (Kraushaar and Jonas, 2000; Telgkamp et al., 2004).  

Trains of stimuli showed that activity in the APT is able to influence thalamic 

information transfer in both burst and tonic firing modes. High-frequency discharges 

of APT cells proved particularly efficient in evoking rebound bursts in relay cells. 

Altogether, the APT input appears functionally as effective as the well-known 

inhibitory interface of thalamocortical networks, the reticular nucleus, although 

additional characteristics critical for nRT function, such as synaptic facilitation during 

burst discharges (Kim and McCormick, 1998) and the exact conditions required for 

the possible synaptic activation of GABA
B 

receptors, remain to be determined.  

High-frequency discharge in GABAergic inputs from the APT may help to 

induce coherent oscillations and/or correlated rebound responses in a group of higher 

order relay neurons that can synchronize simultaneously active thalamocortical 

neuronal ensembles. This activity is then conveyed to cortical areas and will be 

integrated in the cortex together with the specific information ascending through first 

order thalamic relays (Jones, 2001; Llinás and Paré, 1997). The relative timing of 

these two types of thalamocortical activity will dynamically change the way cortical 

networks integrate thalamic inputs from various sources. 

  

The Extrareticular System  

We previously described a GABAergic projection from the zona incerta to 

higher order thalamic nuclei that has similar morphologically characteristics to the 

APT-thalamic pathway (Bartho et al., 2002). Recent data indicate that the zona incerta 

effectively controls the response properties of higher order thalamic relays (Trageser 

and Keller, 2004). Zona incerta is reciprocally connected with the APT (May et al., 
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1997; Terenzi et al., 1995), both innervate brainstem motor centers, and both receive 

layer V cortical input. These data indicate that rather than being localized to a single 

nucleus, the extrareticular GABAergic system may encompass several interconnected 

nuclei at the mesencephalic/diencephalic junction.  

Our conclusion is that the peculiar characteristics of extrareticular GABAergic 

inputs in the thalamus enable this system to impose efficient state-dependent gating 

mechanisms on thalamocortical and corticothalamic information processing 

selectively in higher order thalamic nuclei. 

 

Experimental Procedures  

Male Wistar rats (≤ 1 month, old or adults (300-400g); Charles River, 

Hungary) were used for all experiments. All experimental procedures were performed 

according to the ethical guidelines of the Institute of Experimental Medicine 

Hungarian Academy of Sciences and approved by the Ethical Committee. 

  

Tract Tracing Experiments  

Two different anterograde tracers, biotin-dextran amine (BDA; 10000 MW, 

Molecular Probes, Leiden, The Netherlands, 10% in saline; n=10) and Phaseolus 

vulgaris leuco-agglutinin (PHAL, Vector Labs. Burlingame CA, 2,5% in 0.1 M 

phosphate-buffer (PB); n=5) were used to describe the APT-thalamic pathway. Since 

contralateral labeling was very sparse, unilateral (n=9) and bilateral (n=6) injections 

were also used. Animals were mounted in a stereotaxic frame and iontophoretic 

injections of BDA or PHAL (10 min, 0.5–4.0 µA, 2–7 s on/off duty cycle) were made 

via a glass capillary (tip outer diameter: 5-20 µm) at the following coordinates: 4.8-

5.2 mm posterior, 1.7-2.0 mm lateral and 4.5-5.5 mm ventral to the Bregma according 

to the atlas of Paxinos and Watson (Paxinos and Watson, 1998).  

After a survival time of 4-7 days, rats were deeply anaesthetized by Equithesin 

(chlornembutal, 0.3 ml/100 g), then perfused through the heart first with physiological 

saline (2 min), then with 100 ml fixative containing 2% paraformaldehyde (TAAB, 

UK) and 1% glutaraldehyde (TAAB) in acetate buffer (pH=6.0; 3 min), followed by 

400 ml fixative containing 2% paraformaldehyde and 1% glutaraldehyde in borate 
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buffer (pH=8.5; 50 min). Coronal or horizontal sections (50-60 µm thick) were cut on 

a Vibratome, washed, cryoprotected in 30% sucrose in 0.1 M PB overnight, and 

freeze-thawed in aluminum-foil boat over liquid nitrogen. The position of all injection 

sites was localized using double fluorescent methods for the tracer and parvalbumin. 

For the mapping of the APT-thalamic pathway, only those injections were considered 

in which no retrograde labeling was found in other nuclei in order to minimize 

spurious collateral labeling (n=6). For fluorescent labeling of parvalbumin neurons 

rabbit anti-parvalbumin (1:200, Baimbridge and Miller, 1982) was used. The second 

layer was Alexa 594 conjugated goat anti-rabbit (1:200; Molecular Probes). BDA was 

visualized with Alexa 488 conjugated streptavidin (StA 488; 1:1000; Molecular 

Probes). PHAL was incubated first with goat anti-PHAL (1:10000; Vector) overnight, 

then with FITC-conjugated donkey anti-goat (1:100; Jackson, West Grove, PA). The 

sections were mounted and covered by Vectashield and evaluated by a fluorescent 

microscope (Zeiss Axioscope). Injection sites and labeled fibers were then visualized 

also with 3,3'-diaminobenzidine (DAB) or nickel intensified DAB (DABNi) reaction. 

In the case of BDA, sections were incubated with avidin biotinylated-horseradish 

peroxidase complex (ABC, Vector Laboratories, 1:300) in TBS for 2 hours, then 

developed with DABNi. Sections from animals injected with PHAL were first 

incubated with rabbit anti-PHAL (1:10000; Vector) overnight, the second layer was 

biotin-SP-donkey anti-rabbit F
AB 

fragment (1:300; Jackson) for 2 hours, the third 

layer was ABC. In our experimental conditions postembedding GABA immunogold 

labeling was not always reliable for quantitative purposes if DAB was used as a 

chromogene for the tracers. The DAB precipitate could not be etched from heavily 

labeled terminals, which increased the chance of identifying a terminal as falsely 

GABA-negative. To overcome this difficulty the tracer was developed using the 

preembedding gold method. For preembedding immunogold staining following ABC 

incubation, the ABC signal was amplified by Biotinyl tyramide reagent (1:50, 15 

min.; PerkinElmer Life Sciences, Boston, USA), then sections were incubated in 1 nm 

gold conjugated streptavidin (1:50; Aurion, Wageningen, The Netherlands) dissolved 

in TBS containing 0.8% BSA and 0.1% gelatin overnight, postfixed in 2% 

glutaraldehyde in TBS, then silver intensified with Aurion R-Gent intensification kit. 

All sections were treated with OsO
4 

(1% for 45 min. for DAB staining, 1% 1 min. and 

0.5% for 20 min. in 4 ºC for immunogold staining in 0.1M PB), dehydrated in ethanol 
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and propylene oxide, and embedded in Durcupan (ACM, Fluka, Buchs Switzerland). 

During dehydration the sections were treated with 1% uranyl acetate in 70% ethanol 

for 40 min. Selected blocks containing identified thalamic nuclei were reembedded 

and 65 nm thick ultrathin sections were cut with an Ultramicrotome (Reichert), and 

alternate sections were mounted on copper or nickel grids. Postembedding GABA 

immunostaining was carried out on nickel grids according to the protocol of Somogyi 

et al. (Somogyi et al., 1985). Light microscopic images were scanned with a digital 

camera (Olympus, DP 70). The electron micrographs were taken on a HITACHI 7100 

electron microscope, the negatives were scanned, and brightness and contrast were 

adjusted if necessary using Adobe Photoshop 7.0.  

 

In Vitro Electrophysiological Experiments  

Horizontal slices (400 µm thick) were prepared from rats labeled in vivo at 

postnatal day 16 with the anterograde fluorescent tracer micro-ruby (Molecular 

Probes) in the APT and rats were allowed to survive for 2-14 days before slices were 

prepared. Gas-anesthesia and decapitation occurred according to the guidelines of the 

Veterinary Institute of the Canton Basel-Stadt. Slices were prepared following 

standard procedures. For electrophysiological recordings, slices were constantly 

perfused at 2-3 ml/min with a solution containing (in mM): NaCl 126, KCl 2.5, 

NaH
2
PO

4 
1.25, NaHCO

3 
26, CaCl

2 
1.5, MgCl

2 
2, dextrose 18, L(+)-ascorbic acid 1.7, 

2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo [f] quinoxaline-7-sulfonamide disodium 

salt (NBQX) 0.01, D,L-2-amino-5-phosphonovalerate (APV) 0.1, adjusted to pH 7.4 

by constantly bubbling with 95% O
2
/5% CO

2 
and to an osmolarity of 310 mOsm. 

Whole-cell voltage-clamp recordings were obtained from neurons located in the 

fluorescently labeled area in higher order nuclei using patch pipettes (2.5-3.5 MΩ, 

WPI, Sarasota, Florida, pulled on a Narishige Puller PP-83) filled with (in mM): 

KGluconate 130, HEPES 10, KCl 10, K
2
-ATP 2, Na-GTP 0.2, Phosphocreatine 10, 

MgCl
2 

2, adjusted to pH 7.25 and to an osmolarity of 290 mOsm. Data were acquired 

using an AxoPatch200B amplifier (Axon Instr., Union City, CA), filtered at 2 kHz 

and digitized at 10 kHz. Liquid junction potential (12 mV) was not taken into account 

for the recordings presented. Series resistance (8-15 MΩ) was monitored for stability 

throughout the experiments and data were not included in the analysis if series 

resistance changed by more than 20%. The positioning of a bipolar tungsten 
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stimulation electrode (115 µm spacing, Frederick Haer & Co., Bowdoinham, ME) 

was guided using the fluorescent signal in the APT and electrical shocks (100 µs 

each) were applied using a stimulus isolator (A360, WPI, Sarasota, FL). Stimulation 

waveforms derived from in vivo discharges of APT neurons were applied to the 

isolator via stimulus files generated in Clampex 9.2. Baseline stimulation frequency 

was 0.2 Hz, paired stimuli were applied at 0.1 Hz. At least 5-10 sweeps per 

interstimulus interval were averaged to obtain an accurate quantification of IPSC 

amplitudes. For all recordings presented in voltage-clamp, the holding potential was -

50 mV. Note that the properties of action potentials and associated 

afterhyperpolarizations may be distorted due to the electronic design of the Axopatch 

200B amplifier (Magistretti et al., 1996). For display purposes, action potential but 

not afterhyperpolarization amplitudes were truncated. Electrophysiological data were 

analyzed using PClamp 9.2. software. Data are presented as means±s.e.m. unless 

indicated otherwise. Statistical significance (p<0.05) was assessed using paired two-

tailed t-tests.  

For histological recovery of the recorded cells, 0.2% biocytin (Sigma-Aldrich, 

Sinsheim, Germany) was included in the recording solution and the patch pipette was 

carefully withdrawn at the end of the recordings. Slices were immediately transferred 

to a fixative solution (4% paraformaldehyde with 15% picric acid, 4 °C). Slices were 

fixed for 30 minutes, washed twice in phosphate buffer (0.1 M), before being 

transferred to a cryoprotective solution (30% sucrose in 0.1 M PB, 0.05% NaN
3
) and 

stored at -20 °C. In vitro biocytin labeled cells were visualized by StA 488, then by 

ABC-DABNi reaction (for details: see above). 

  

In Vivo Juxtacellular Recording and Labeling  

Rats were implanted in the S1 cortex with a bipolar tungsten EEG electrode 

(surface and 1.5 mm depth, in vitro impedance: 0.8-1.2 MΩ) under urethane 

anesthesia (20% in saline, 0.76 ml/100g). The recorded signal was amplified, band 

pass filtered (0.1 Hz to 5 kHz; Supertech BioAmp, Supertech, Hungary) and digitized 

at 16.6 kHz (micro 1401 mkll, CED, UK). APT unit activity was recorded by glass 

microelectrodes (in vivo impedance of 20-40 MΩ) pulled from borosilicate glass 

capillaries (1.5 mm OD, 0,86 mm ID, Sutter Inc., USA) and filled with 0.5 M NaCl 

and 2% neurobiotin (Vector Labs, USA). Electrodes were lowered by a piezoelectric 
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microdrive (6000 ULN, Burleigh-EXFO, USA). Neuronal signals were amplified by a 

DC amplifier (Axoclamp 2B, Axon Instruments, USA), filtered between 0.1-5 kHz by 

a signal conditioner (Supertech) and digitized at 16.6 kHz (CED). Juxtacellular 

labeling of the recorded neurons was done as described by Pinault (Pinault, 1996). 

Injection current intensity was increased until the modulation of neuronal firing (up to 

10 nA, for 2-10 min) occurred. Following labeling and a survival period (15 min to 5 

hours) animals were perfused transcardially first with saline (2 min) then with 100 ml 

fixative containing 2% paraformaldehyde and 3.6 % acrolein (Sigma-Aldrich) and 

finally with 300 ml fixative containing 2% paraformaldehyde in 0.1 M PB. 50 µm 

coronal sections were cut on a Vibratome. Double immunofluorescence was used to 

visualize the neurobiotin-filled cell (by StA488) and the parvalbumin content of the 

cell (for details see above in Methods). The neurobiotin was then developed using 

DABNi as a chromogen, and the sections were osmicated, dehydrated and flat-

embedded in Durcupan for light and electron microscopy (for details see above in 

Methods). Filled cells were reconstucted by camera lucida using a 100x oil immersion 

lens. For electron microscopic investigation sections were reembedded and ultrathin 

(60 nm) sections were then cut and examined in the electron microscope.  

 

Acknowledgement  

We thank Krisztina Faddi, Katalin Lengyel, and Győző Goda for their 

excellent technical assistance and for Drs Denis Pare, György Buzsáki, Tamás F. 

Freund, Viktor Varga and Kaspar Vogt for their comments on the earlier version of 

this manuscript. This work was supported by the Hungarian Scientific Research Fund 

(OTKA F32327, T 049100), the Wellcome Trust, the Swiss National Science 

Foundation (No.31-61434.00 and No. 3100A0-103655/1) and the Jubiläumsstiftung 

der Schweizerischen Mobiliarversicherungsgesellschaft.  

References  

Ahissar, E., and Arieli, A. (2001). Figuring space by time. Neuron 32, 185-201. 

Baimbridge, K. G., and Miller, J. J. (1982). Immunohistochemical localization of 

calcium-binding protein in the cerebellum, hippocampal formation and 

olfactory bulb of the rat. Brain Res 245, 223-229. 



 

 123 

Bal, T., von Krosigk, M., and McCormick, D. A. (1995). Synaptic and membrane 

mechanisms underlying synchronized oscillations in the ferret lateral 

geniculate nucleus in vitro. J Physiol 483 ( Pt 3), 641-663. 

Bartho, P., Freund, T. F., and Acsady, L. (2002). Selective GABAergic innervation of 

thalamic nuclei from zona incerta. Eur J Neurosci 16, 999-1014. 

Bender, D. B. (1983). Visual activation of neurons in the primate pulvinar depends on 

cortex but not colliculus. Brain Res 279, 258-261. 

Benson, D. L., Isackson, P. J., Gall, C. M., and Jones, E. G. (1992). Contrasting 

patterns in the localization of glutamic acid decarboxylase and 

Ca2+/calmodulin protein kinase gene expression in the rat central nervous 

system. Neuroscience 46, 825-849.  

Berman, N. (1977). Connections of the pretectum in the cat. J Comp Neurol 174, 227-

254.  

Cadusseau, J., and Roger, M. (1991). Cortical and subcortical connections of the pars 

compacta of the anterior pretectal nucleus in the rat. Neurosci Res 12, 83-100.  

Celio, M. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. 

Neuroscience 35, 375-475.  

Cucchiaro, J. B., Uhlrich, D. J., and Sherman, S. M. (1991). Electron-microscopic 

analysis of synaptic input from the perigeniculate nucleus to the A-laminae of 

the lateral geniculate nucleus in cats. J Comp Neurol 310, 316-336.  

Cucchiaro, J. B., Uhlrich, D. J., and Sherman, S. M. (1993). Ultrastructure of 

synapses from the pretectum in the A-laminae of the cat's lateral geniculate 

nucleus. J Comp Neurol 334, 618-630.  

Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F. (1992). 

Somatic sensory responses in the rostral sector of the posterior group (POm) 

and in the ventral posterior medial nucleus (VPM) of the rat thalamus: 

dependence on the barrel field cortex. J Comp Neurol 319, 66-84.  

Esclapez, M., Tillakaratne, N. J., Kaufman, D. L., Tobin, A. J., and Houser, C. R. 

(1994). Comparative localization of two forms of glutamic acid decarboxylase 

and their mRNAs in rat brain supports the concept of functional differences 

between the forms. J Neurosci 14, 1834-1855.  

Foster, G. A., Sizer, A. R., Rees, H., and Roberts, M. H. (1989). Afferent projections 

to the rostral anterior pretectal nucleus of the rat: a possible role in the 

processing of noxious stimuli. Neuroscience 29, 685-694.  

Graham, J., and Berman, N. (1981). Origins of the pretectal and tectal projections to 

the central lateral nucleus in the cat. Neurosci Lett 26, 209-214.  

Guillery, R. W., Feig, S. L., and Lozsadi, D. A. (1998). Paying attention to the 

thalamic reticular nucleus. Trends Neurosci 21, 28-32.  

Guillery, R. W., and Sherman, S. M. (2002). Thalamic relay functions and their role 

in corticocortical communication: generalizations from the visual system. 

Neuron 33, 163-175.  

Hallanger, A. E., Levey, A. I., Lee, H. J., Rye, D. B., and Wainer, B. H. (1987). The 

origins of cholinergic and other subcortical afferents to the thalamus in the rat. 

J Comp Neurol 262, 105-124.  

Hoogland, P. V., Wouterlood, F. G., Welker, E., and Van der Loos, H. (1991). 

Ultrastructure of giant and small thalamic terminals of cortical origin: a study 

of the projections from the barrel cortex in mice using Phaseolus vulgaris 

leuco-agglutinin (PHA-L). Exp Brain Res 87, 159-172.  

Huguenard, J. R. (1998). Anatomical and physiological considerations in thalamic 

rhythm generation. J Sleep Res 7 Suppl 1, 24-29.  



 

 124 

Huguenard, J. R., and Prince, D. A. (1994). Intrathalamic rhythmicity studied in vitro: 

nominal T-current modulation causes robust antioscillatory effects. J Neurosci 

14, 5485-5502.  

Jones, E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends 

Neurosci 24, 595-601.  

Jourdain, A., Semba, K., and Fibiger, H. C. (1989). Basal forebrain and mesopontine 

tegmental projections to the reticular thalamic nucleus: an axonal 

collateralization and immunohistochemical study in the rat. Brain Res 505, 55-

65.  

Kenigfest, N. B., Belekhova, M. G., Reperant, J., Rio, J. P., Vesselkin, N. P., and 

Ward, R. (2000). Pretectal connections in turtles with special reference to the 

visual thalamic centers: a hodological and gamma-aminobutyric acid- 

immunohistochemical study. J Comp Neurol 426, 31-50.  

Kim, U., and McCormick, D. A. (1998). The functional influence of burst and tonic 

firing mode on synaptic interactions in the thalamus. J Neurosci 18, 9500-

9516.  

Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., and Goode, R. (1994). 

Neuropathological findings in the brain of Karen Ann Quinlan. The role of the 

thalamus in the persistent vegetative state. N Engl J Med 330, 1469-1475. 

Kinomura, S., Larsson, J., Gulyas, B., and Roland, P. E. (1996). Activation by 

attention of the human reticular formation and thalamic intralaminar nuclei. 

Science 271, 512-515. 

Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., and Ono, T. (2001). 

Retrospective and prospective coding for predicted reward in the sensory 

thalamus. Nature 412, 546-549.  

Kraushaar, U., and Jonas, P. (2000). Efficacy and stability of quantal GABA release 

at a hippocampal interneuron-principal neuron synapse. J Neurosci 20, 5594-

5607.  

Liu, X. B., Warren, R. A., and Jones, E. G. (1995). Synaptic distribution of afferents 

from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp 

Neurol 352, 187-202.  

Llinás, R., and Paré, D. (1997). Coherent oscillations in specific and nonspecific 

thalamocortical networks and their role in cognition. In Thalamus, M. 

Steriade, E. Jones, and D. McCormick, eds. (Oxford, Elsevier), pp. 501-517.  

Lubke, J. (1993). Morphology of neurons in the thalamic reticular nucleus (TRN) of 

mammals as revealed by intracellular injections into fixed brain slices. J Comp 

Neurol 329, 458-471.  

Magistretti, J., Mantegazza, M., Guatteo, E., and Wanke, E. (1996). Action potentials 

recorded with patch-clamp amplifiers: are they genuine? Trends Neurosci 19, 

530-534.  

May, P. J., Sun, W., and Hall, W. C. (1997). Reciprocal connections between the zona 

incerta and the pretectum and superior colliculus of the cat. Neuroscience 77, 

1091-1114.  

Montero, V. M., and Scott, G. L. (1981). Synaptic terminals in the dorsal lateral 

geniculate nucleus from neurons of the thalamic reticular nucleus: a light and 

electron microscope autoradiographic study. Neuroscience 6, 2561-2577.  

Paxinos, G., and Watson, C. (1998). The rat brain in stereotaxic coordinates, Fourth 

Edition edn (London, Academic Press).  

Pinault, D. (1996). A novel single-cell staining procedure performed in vivo under 

electrophysiological control: morpho-functional features of juxtacellularly 



 

 125 

labeled thalamic cells and other central neurons with biocytin or Neurobiotin. 

J Neurosci Methods 65, 113-136.  

Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. 

Brain Res Brain Res Rev 46, 1-31.  

Pinault, D., and Deschenes, M. (1998). Projection and innervation patterns of 

individual thalamic reticular axons in the thalamus of the adult rat: a three-

dimensional, graphic, and morphometric analysis. J Comp Neurol 391, 180-

203.  

Reichova, I., and Sherman, S. M. (2004). Somatosensory corticothalamic projections: 

distinguishing drivers from modulators. J Neurophysiol 92, 2185-2197.  

Robertson, R. T., Thompson, S. M., and Kaitz, S. S. (1983). Projections from the 

pretectal complex to the thalamic lateral dorsal nucleus of the cat. Exp Brain 

Res 51, 157-171.  

Schiff, N. D., Plum, F., and Rezai, A. R. (2002). Developing prosthetics to treat 

cognitive disabilities resulting from acquired brain injuries. Neurol Res 24, 

116-124.  

Sherman, S., and Guillery, R. (2001). Exploring the Thalamus, Academic Press, San 

Diego).  

Sherman, S. M. (2004). Interneurons and triadic circuitry of the thalamus. Trends 

Neurosci 27, 670-675.  

Somogyi, P., Hodgson, A. J., Chubb, I. W., Penke, B., and Erdei, A. (1985). Antisera 

to gamma-aminobutyric acid. II. Immunocytochemical application to the 

central nervous system. J Histochem Cytochem 33, 240-248.  

Steriade, M. (2004). Local gating of information processing through the thalamus. 

Neuron 41, 493-494.  

Steriade, M., Deschenes, M., Domich, L., and Mulle, C. (1985). Abolition of spindle 

oscillations in thalamic neurons disconnected from nucleus reticularis thalami. 

J Neurophysiol 54, 1473-1497.  

Steriade, M., Jones, E., and McCormick, D. (1997). Thalamus, Vol Vol. 1., Elsevier 

Science Ltd, Oxford).  

Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993). Thalamocortical 

oscillations in the sleeping and aroused brain. Science 262, 679-685.  

Telgkamp, P., Padgett, D. E., Ledoux, V. A., Woolley, C. S., and Raman, I. M. 

(2004). Maintenance of high-frequency transmission at purkinje to cerebellar 

nuclear synapses by spillover from boutons with multiple release sites. Neuron 

41, 113-126.  

Terenzi, M. G., Zagon, A., and Roberts, M. H. (1995). Efferent connections from the 

anterior pretectal nucleus to the diencephalon and mesencephalon in the rat. 

Brain Res 701, 183-191.  

Trageser, J. C., and Keller, A. (2004). Reducing the uncertainty: Gating of peripheral 

inputs by zona incerta. The Journal of Neuroscience 24.  

Veinante, P., and Deschenes, M. (1999). Single- and multi-whisker channels in the 

ascending projections from the principal trigeminal nucleus in the rat. J 

Neurosci 19, 5085-5095.  

Vidnyanszky, Z., Borostyankoi, Z., Gorcs, T. J., and Hamori, J. (1996). Light and 

electron microscopic analysis of synaptic input from cortical area 17 to the 

lateral posterior nucleus in cats. Exp Brain Res 109, 63-70.  

Wang, S., Eisenback, M., Datskovskaia, A., Boyce, M., and Bickford, M. E. (2002). 

GABAergic pretectal terminals contact GABAergic interneurons in the cat 

dorsal lateral geniculate nucleus. Neurosci Lett 323, 141-145.  



 

 126 

Ward, R., Danziger, S., Owen, V., and Rafal, R. (2002). Deficits in spatial coding and 

feature binding following damage to spatiotopic maps in the human pulvinar. 

Nat Neurosci 5, 99-100.  

Xu-Friedman, M. A., and Regehr, W. G. (2004). Structural contributions to short-term 

synaptic plasticity. Physiol Rev 84, 69-85.  

 

Supplementary data 

Supplementary Table 1  

 
The majority of the APT–thalamic terminals are GABAergic.  

 GABA positive APT terminals in the thalamus 

tracer/thalamic nu Po MD 

BDA 
81 % 

(n=33) 

100 % 

(n=20) 

PHAL  
74 % 

(n=38) 

 

Table 1 demonstrates the percentage of the GABA-positive anterogradely 

labeled APT terminals in different higher order thalamic nuclei following injection of 

BDA (2 animals) or PHAL (1 animal) into the APT.  

 

Abbreviations: BDA, Biotin dextran amine; LD, laterodorsal thal nu; MD, mediodorsal 

thal nu; PHAL, Phaseolus vulgaris leucoagglutinin; Po, posterior thal nu  

 

Supplementary Table 2  

 

Firing rate (Hz) of the recorded APT neurons  

cell  Fast Bursting  Tonic  Slow Rhythmic  

1  8.73±2.21  17.16±2.00  2.48±1.76  

2  26.06±5.56  21.60±1.36  1.25±1.85  

3  19.05±10.80  15.05±2.42  8.48±4.28  

4  18.92±6.02  6.58±1.65  2.06±1.54  

5 13.25±5.14 9.33±1.13 4.28±2.14 
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6  11.31±8.48  7.03±1.74  3.48±1.95  

7 -  7.98±2.90  2.80±2.63  

8 - 14.62±2.94  0.71±0.85  

9 - - 4.85±1.54 

 

Firing frequencies of the recorded APT neurons during cortical slow oscillation.  

Mean firing rate ± SD is given.  

Discharge rate of the fast bursting and tonic neurons are variable, but as shown 

in Supplementary Figures 1-3, their firing pattern is very consistent within a group. 

The larger SD values of the fast bursting neurons is due to the irregularly appearing 

high frequency bursts, whereas in tonic cells, which exhibit a more balanced, single 

spike firing pattern, the SD is much smaller. Slow rhythmic cells displayed the lowest 

firing rate. The rhythmic clustered spiking, characteristic of this cell type, is indicated 

by the large SD values relative to the mean frequencies.  
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Discussion 
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The diversity of the GABAergic signaling has a primordial role in the functional 

homeostasis of the brain. In cortex, the GABAergic inhibition is driven by a huge 

diversity of interneurons. In the thalamus, the traditional view highlighted the relative 

homogeneity of the sources of GABA, from the nucleus reticularis neurons or from 

the local interneurons.  

In this thesis, I present two studies derived from in vitro electrophysiological 

experiments that shed novel light on GABAergic function in the thalamus:  

1) At the level of biochemical signaling, in particular the control of cAMP 

turnover, suggesting that the nRt can control the regulation of thalamic pacemaker 

currents and of other cAMP-dependent processes related to the state of arousal (for 

example, the state-dependent expression of genes and the control of selective 

attention). 

2) At the level of architectural innervation of thalamic nuclei, suggesting that 

extrareticular inhibitory input can control the discharge mode of TC neurons and thus 

the gating function of higher-order nuclei (HOn). 

 

I First paper discussion 

 

By recording the modulation of the biophysical properties of Ih, we could 

determine the dynamics of the [cAMP]i regulation in TC neurons upon the activation 

of G-protein-coupled receptors.  

We first observed that [cAMP]i turnover, which is pronounced in thalamus 

compared to other regions of the brain (Matsuoka et al., 1997; Ihnatovych et al., 

2002), can be up- and downregulated steadily under the tonic influence of the Gs- and 

Gi-coupled receptors, respectively. A steady increase of [cAMP]i occurred upon the 

activation of the β-adrenergic receptors by isoproterenol (Iso), as it was already 

shown (Pape and McCormick, 1989). Conversely, the activation of GABAB receptors 

with baclofen (Bac) led to a steady decrease of Ih. The hyperpolarized shift in the 

activation curve and the slower activation kinetics of Ih induced by Bac, the occlusion 

of Bac-induced inhibition of Ih by saturating concentrations of 8-Br cAMP in the 

pipette solution, and the decreased IBMX-mediated enhancement of Ih in presence of 

Bac strongly argues that Ih reduction was due to the inhibition of [cAMP]i levels by 

Bac. 
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1. The interaction between Gi- and Gs-coupled receptors is mediated by 

cAMP. 

The co-exposure to agonists of both Gs- and Gi-coupled receptors was integrated 

in a supralinear manner to produce a strong, transient increase in Ih. We performed 

several experiments to show that the strong and transient enhancement of Ih showed 

the properties of a regulation by [cAMP]i.  

First, co-application of Iso and Bac led to modifications of the voltage- and 

time-dependent properties of Ih similar to alterations induced by a direct modulation 

of Ih by addition of cAMP analogs in the intracellular solution or by application of 

forskolin (McCormick and Pape, 1990b; Lüthi and McCormick, 1999). Second, the 

increase of [cAMP]i at the peak of the modulation appeared to reach a saturating 

concentration for cAMP binding properties to the HCN channels. Thus, flash 

photolysis of caged cAMP, had no effect on Ih during the peak of the potentiation 

induced by Iso and Bac, but the flash-induced increase of Ih recovered following the 

decay of the offset of the potentiation. Third, Bac did not appear to alter the 

sensitivity of h-channels for cAMP generated in the presence of non-saturating 

concentrations of forskolin. 

Thus, concomitant activation of GABAB receptors transformed the amplitude 

and the temporal properties of the Iso-mediated up-regulation of [cAMP]i. In native 

cells, evidence for such [cAMP]i modulation by the interactions between Gi- and Gs-

coupled receptors has been presented in two cases. The calcium-dependent potassium 

currents has been shown to be up-regulated by co-activation of GABAB receptors, 

serotoninergic receptors or α-adrenergic receptors with β-adrenergic receptors in 

hippocampal CA1 pyramidal neurons (Andrade, 1993; Pedarzani and Storm, 1996). In 

ventricular cardiomyocytes, co-activation of M2 muscarinic receptors with the β-

adrenergic receptors promoted the increase of the cAMP-dependent Cl
-
 currents and 

the L-type calcium currents (Zakharov and Harvey, 1997; Belevych et al., 2001). 

Nevertheless, in cardiomyocytes, the interaction of the Gi- and Gs-coupled receptors 

was masked by the strong inhibitory actions of Gi- coupled receptors. The washout of 

the muscarinic receptor agonists or the block of the receptors by an antagonist was 

required to unmask the inhibition and then to observe a rebound supralinear 
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stimulation of the ‘reporter’ currents. In contrast, in our study, similarly to CA1 

neurons, the positive effect of Bac masked the negative actions of Bac. 

 

 

2. The up-regulation of [cAMP]i is mediated by ββββ-adrenergic and GABAB 

receptors  

The activation of the β-adrenergic receptors was required to observe synergistic 

interactions between Bac and Iso. Indeed, the blockade of β-adrenergic receptors with 

the antagonist propranolol (10µM) prevented the increase of Ih by local application of 

Iso (n=3, data not shown). The synergistic action of Bac on Ih was also not observed 

anymore after co-application of Iso and Bac in the presence of propranolol (n=2, data 

not shown). 

Similarly, to show that the GABAB receptors mediated the positive effect of 

Bac, we tested a selective antagonist of GABAB receptors. Surprisingly, we were not 

able to block the potentiation action of Bac by CGP 54626, a potent antagonist of 

GABAB receptors (Brugger et al., 1993). In our hands, CGP 54626 did not fully 

prevent the hyperpolarizing G-protein inward rectifier (GIRK) currents activated by 

Bac (data not shown), while the antagonist blocked the GABAB receptor mediated 

IPSCs evoked by stimulation in the nRt. Futher investigations on the new GABAB 

antagonists may be required as the efficacy of the large number of GABAB 

antagonists on Bac-induced cAMP formation is characterized incompletely 

(Cunningham & Enna, 1996; Knight & Bowery, 1996) 

We showed that the facilitation of cAMP synthesis provoked by Bac was 

mimicked, in the presence of GABAA receptor antagonists, by GABA applied in the 

bath or released synaptically, indicating that the natural ligand for GABAB receptors 

could induce a potentiation of β-adrenergic responses. Moreover, we were able to 

interfere with the Bac-induced GIRK current opening or with the Bac-induced 

potentiation by using the sulfhydryl alkylating agent N-ethylmaleimide (NEM), a 

blocker of the Gi-proteins (Sodickson and Bean, 1996; Hirono et al., 2001).  

The experiments -1) GABA application and 2) synaptic activation of GABAB 

receptors potentiated β-adrenergic receptors effects and 3) NEM prevented the 

synergistic action of Bac on cAMP synthesis- suggest that the strong increase of 
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cAMP by co-application of Bac and Iso is mediated by the interaction between the 

GABAB receptors and the β-adrenergic receptors. 

 

3. Mechanisms of the up-regulation of [cAMP]i by Gi-coupled receptors 

 

As discussed in the introduction (chapter II, 2), biochemical investigations in 

neuronal tissue (Olianas and Onali, 1999; Onali and Olianas, 2001) showed that two 

AC isoforms, the AC II and the AC IV, could be stimulated by βγ subunits in 

condition of the presence of free αs subunits (Gao and Gilman, 1991; Tang and 

Gilman, 1991; Federman et al., 1992). The AC II and IV isoforms were attractive 

candidates to explain the paradoxical potentiation of Gs-mediated cAMP synthesis by 

receptors coupled to Gi-subunits in TC neurons. However, the involvement of these 

enzymes in physiological processes in intact cells has so far not been investigated 

thoroughly. 

In cardiac cells, Belevych (2001) succeeded to describe the molecular cascades 

for the two actions, inhibitory and excitatory, of M2 receptors. In heart, the release of 

acetylcholine by the parasympathetic system generally reduces the heart rate and 

contractility and this action is partially mediated by an inhibition of cAMP synthesis 

(Harvey and Belevych, 2003). Nevertheless M2 receptors have an additional but 

positive effect via βγ subunits. He showed that βγ subunits mediated the stimulation 

of ACs by M2 receptors by the addition of a peptide composed of 27 amino-acids 

(QEHA peptide) in the recording pipette solution. This peptide trapped the βγ 

subunits and prevented the stimulated potency of muscarinic agonist without affecting 

the inhibitory potency of M2 receptors (Belevych et al., 2001). Thus, by inducing βγ 

subunit-induced potentiation of cAMP synthesis, M2 receptors may provoke post-

vagal tachycardia (Belevych et al., 2001). In humans, this rebound increase in heart 

rate and contractility is observed following the termination of parasympathetic 

stimulation (Prystowsky and Zipes, 1985). 

Inspired by Belevych’s study, we also investigated the effects of the inclusion of 

QEHA peptide in the patch pipette. Unfortunately, we did not manage to get good 

recordings of TC neurons when the peptide was added to the pipette solution. The 

intracellular solutions used in the two studies were similar, ruling out insufficient 

solubility of the peptide in the pipette solution. One hypothesis is the discrepancy in 
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the pipette resistance between the two studies. Belevych reported pipette resistance of 

~1.5 MΩ while our pipettes had a resistance ~3 MΩ. Higher pipette resistances 

provide a better diffusion between the pipette solution and the soma thus may help for 

the passage of a peptide of 27 amino-acids. So far, the hypothesis that GABAB 

receptors potentiate the action of β-adrenergic receptor via the release of βγ subunits, 

and consequently activation of AC II and IV isoforms, is supported by the strong 

expression of these two isoforms in thalamus (Matsuoka et al., 1997; Ihnatovych et 

al., 2002).  

 

4. Synaptic regulation of [cAMP]i by GABAB receptors 

 

To assess the functional significance of the GABAB receptor-mediated 

potentiation of cAMP synthesis, we examined whether synaptic inhibitory inputs on 

TC neurons could also influence cAMP. The thalamic ventrobasal nucleus (VB) is 

devoid of interneurons (Arcelli et al., 1997), therefore the only source of GABAergic 

inputs is the nRt. In a VB TC neuron, the postsynaptic activation of CGP 54626-

sensitive GIRK currents was evoked by external stimulation of the nRt tracts. The 

activation of K
+
 currents was then prevented by application of barium. We found that 

synaptic stimulation of GABAB receptor up-regulated significantly the cAMP 

enhancement induced by local application of Iso. Thus, the GABAB receptors located 

at the nRt-TC synapses can influence the generation of cAMP signal in the vicinity of 

HCN channels.  

Besides the direct control of ionic conductance gating, reports on the regulation 

of second messenger levels by metabotropic receptors activated synaptically are rare. 

In the cerebellum synaptic activation of GABAB receptors has been described to 

modulate calcium release from the intracellular store (Hirono et al., 2001). The 

metabotropic glutamate receptors, synaptically activated, control biochemical 

signaling cascades (Heuss et al., 1999) and cAMP-dependent long-term plasticity 

(Tzounopoulos et al., 1998). 

The synaptic activation of GABAB receptors revealed a potentiating, but not an 

inhibiting effect on [cAMP]i metabolism. This result suggests that a higher stimulation 

of GABAB receptors is required to observe the inhibition of [cAMP]i that is detected 

by Ih. Similarly, we found that higher concentrations of Bac (80 µM) leading to a 
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saturation of potassium currents were required to observe an inhibitory action on ACs, 

whereas low concentration (800 nM) were sufficient to observe the synergistic 

interactions between GABAB and β-adrenergic receptors. One possibility to explain 

this observation is that HCN channels are spatially co-localized with AC II/IV 

isoforms and not with the other AC isoforms. The co-localization of ionic channels 

with the cAMP metabolism machinery has already been shown in hippocampal 

neurons (Davare et al., 2001).  

 

5. Functional implications of the up-regulation of cAMP by GABAB 

receptors 

 

Norepinephrine plays an important role in the control of cAMP-dependent gene 

expression during states of arousal in the thalamocortical system (Cirelli et al., 1996; 

Cirelli and Tononi, 2000) and in the modulation of long-term potentiation, a cellular 

form of learning and memory (Wang et al., 1999; Watabe et al., 2000). Distinct 

temporal profiles of cAMP transients contribute to determine the patterns of gene 

expression (Bacskai et al., 1993; Kaang et al., 1993). Therefore, the distinction 

between cAMP ‘spikes’ induced by Iso alone and the slowly decaying plateaus 

produced by Iso and Bac could be involved in determining gene expression patterns. 

Interestingly, locus coeruleus neurons discharge synchronously with sleep-related 

EEG rhythms in the thalamocortical system (Aston-Jones and Bloom, 1981), to which 

a partial activation of GABAB receptors contributes (Huguenard, 1998; Blumenfeld 

and McCormick, 2000). Thus, coincidental activation of GABAB and β-adrenergic 

receptors, in association with a strong cAMP signal, may be typical for phases of 

transition between sleeping and waking. An important aspect into the role of 

norepinephrine-dependent cAMP synthesis in the thalamocortical system could, 

therefore, be found in its timing with respect to synaptically activated GABAB, and 

perhaps other, Gi/o-coupled receptors. 

 

6. Is Ih a good sensor for monitoring the temporal dynamics of [cAMP]i? 

 

Endogenous ion channels have been exploited previously as sensors for second 

messengers (Yazejian et al., 2000; Heine et al., 2002). The temporal precision of such 

tracking methods is limited by the kinetics of channel gating and the localization of 
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channels with respect to the sources of synthesis. Pacemaker channels detect rapid 

increases in cAMP induced by photolysis within about ten seconds (Lüthi and 

McCormick, 1999; Seifert et al., 1999), indicating that they are fast enough to monitor 

fluctuations in cAMP levels that commonly occur over hundreds of seconds (Rich et 

al., 2001; Gorbunova and Spitzer, 2002; Zaccolo et al., 2002). On the other hand, 

half-maximal modulation of Ih is achieved by cAMP levels around 0.2 µM 

(DiFrancesco and Tortora, 1991; Lüthi and McCormick, 1999), while intracellular 

cAMP levels can reach concentrations of tens of micromolar (Bacskai et al., 1993; 

Sudlow and Gillette, 1997; Rich et al., 2001; Heine et al., 2002). Indeed, the increases 

in Ih amplitude during the strong regulation by Iso and Bac correspond to those 

predicted from a maximal shift in the activation curve (Lüthi and McCormick, 1999), 

indicating that the channels may be fully bound to cAMP. Thus, h-channels are cAMP 

sensors with the appropriate kinetics to follow cAMP signals, but cAMP levels 

reached may surpass their binding capacity. Therefore, the strength of cAMP 

synthesis induced by co-application of Iso and Bac is underestimated by measuring Ih. 

The cAMP sensor Ih appears thus to be positioned intracellularly in such a manner 

that strong, transient cAMP signals remain distinguishable from moderate, slow 

effects and thereby allow to reveal distinct dynamics of cAMP signals. Indeed, the 

differences in kinetics, associated with the sharpened sensitivity to increases in the 

concentration of Iso, suggests that h-channels may be spatially closer to the signal 

source activated by Iso and Bac, as opposed to the slower, shallow effects of Iso 

alone. 

 

II Second paper discussion 

 

We established that besides the well-known GABAergic input arising from the 

reticular nucleus, HOn are under the influence of the inhibitory anterior pretectum 

(APT). 

Morphological studies showed that the afferents from the APT are in 90% 

GABAergic and that they formed symmetrical synapses onto the proximal dendrites 

of the TC neurons of the HOn (Bokor et al., 2004). Stimulations of the APT evoked 

monosynaptic, bicuculline-sensitive outward currents in TC neurons of the Po and the 

LD. Therefore, APT-evoked IPSCs are mediated by GABAA receptors. Surprisingly, 
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the IPSC reversal potential observed experimentally was -82.3 ± 1.9 mV (n=15) and 

this value did not match the calculated reversal potential for the Cl
-
 (-62 mV, 

assuming that the carbonate conductance is considered negligible). The values of the 

reversal potential we observed was similar to the reversal potential (-82 mV) of the 

GABAA-receptor-mediated currents induced by local application of GABA or by 

electric stimulation of the nRt and obtained using perforated patch-clamp technique, 

which preserves the native cytosolic milieu (Ulrich and Huguenard, 1997). Thus, in 

our preparation, the Cl
-
 gradient seemed not to be altered although we used whole-cell 

configuration of the patch-clamp technique. A similar negative reversal potential (-94 

mV) was already observed at the synapses between nRt neurons and TC neurons in 

whole-cell configuration and the authors presumed that a strong extrusion of Cl
-
 by 

TC neurons could explain the negative reversal potential of the IPSCs (Huguenard 

and Prince, 1994a).  

Due to a high driving force for Cl
-
 ions, a negative reversal potential of 

GABAA-mediated response may elicit sufficient hyperpolarization to de-inactivate T-

current and then the hyperpolarization induced may promote burst generation. Indeed, 

it was possible to induce burst of action potentials in TC neurons by evoking a single 

or a train IPSPs. For higher number of evoked IPSPs, the probability to observe a 

burst was higher. Furthermore, evoked IPSPs inhibited the production of APs in TC 

neurons. The IPSPs induced by APT stimulation were able to coerce the time when an 

AP was generated. Similarly to nRt neurons, the potency of GABAergic APT neurons 

to generate burst of APs or to phase-locked the TC neuron discharges indicate a 

powerful role of APT in the control of the firing pattern of the HOn neurons. This 

could be primordial in the generation of synchronized activity related to different state 

of arousal. As APT receive afferents from the cortical layer V (Foster et al., 1989; 

Cadusseau and Roger, 1991b), the cortical layer V can thus indirectly control the 

firing pattern of the HOn neurons via  the ZI and the APT  It will be important to 

determine the different role of these two nuclei in the relation between cortex and 

thalamus. 

We performed paired-pulse protocols to investigate the dynamic properties of 

the synapses. We observed that the depression was weak and similar for frequencies 

between 10 and 100 Hz. The morphological studies highlighted that the APT afferents 

formed large size terminals with multiple release sites. This may explain the weak 

paired-pulse depression observed in vitro and the non-linearity between interstimulus 
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frequencies and the paired-pulse ratio. Thus, it was shown in the cerebellum at the 

GABAergic synapses between the Purkinje cells and the nuclear neurons that multiple 

release site synapses permitted 1) high response probability even for low vesicle 

release probability 2) to limit presynaptic depression for high-frequency stimulation. 

In theses studies, they realized a model of multiple release site synapses, which 

showed that the depression was extremely reduced (paired-pulse ratio ~1) even for 

high release probability (0.8) (Telgkamp and Raman, 2002). 

The present experiments were done in rats nevertheless we also observed 

electrophysiologically the connection between APT and HOn in mice. Thus, 

stimulation of APT evoked GABAA-receptor-mediated IPSCs in murine HOn neurons 

with properties similar to the ones observed in rats, such as very negative reversal 

potential. (-90 ± 1.7 mV, n=10). 

Therefore, in rodents, the thalamic HOn are under the control of the layer VI of 

the cortex in two ways, excitatory via the corticothalamic tracts and inhibitory via the 

nRt. A similar scheme seems to be involved for the connections of the cortical layer V 

on the HOn. The neurons of the cortical layer V can drive the HOn neurons directly 

but this may be balanced by disynaptic inhibition via the ZI or the APT. Thus, the 

synaptic organization of the thalamus is extremely diverse and may suggest a complex 

role of the thalamus in brain functions besides the role of gateway between the 

external world and the cortex.     
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1. Abstract 

Ionic currents generated by hyperpolarization-activated cation channels (HCN 

channels) have been principally known as pacemaker currents (Ih), as they allow 

cardiac and neuronal cells to be rhythmically active over precise intervals in time. 

Nowadays, these currents are implicated in numerous additional cellular functions, 

including neuronal integration, synaptic transmission and sensory reception. These 

roles are accomplished by virtue of the regulation of Ih by both voltage and ligands. 

The present review summarizes recent developments on the properties and allosteric 

interactions of these two regulatory pathways in cloned and native channels. In 

addition, it discusses how the expression and properties of native channels may be 

controlled via regulating the transcription of the HCN (hyperpolarization-activated 

cation-non selective) channel gene family and the assembly of channel subunits. 

Recently, a number of cardiac and neurological diseases were found to be intimately 

associated with a dysregulation of HCN gene transcription, suggesting a critical 

contribution of HCN-mediated currents to the pathophysiology of excitable systems. 

As a starting point, we will briefly review the general characteristics of Ih and the 

regulatory mechanisms identified in heterologously expressed HCN channels. 

 

2. Molecular commonalities of cellular rhythms in cardiac and 

nervous systems 

Cardiac sinoatrial cells and some central neurons exhibit pacemaking 

properties, which render them capable of generating electric discharges on a defined 

time scale, independently of external stimuli. Rhythmicity in the heart fulfills the need 

to drive the periodic contractions of cardiac muscle. In the mammalian brain, 

rhythmic neural activity controls not only motor but also higher cognitive functions, 

such as the state of arousal and the encoding and retrieval of information. 

Interestingly, the ionic mechanisms underlying some of these rhythms, in spite of 

their different functions, show strong molecular commonalities. Thus, the ionic 

channels generating autonomous pacemaking capabilities in cardiac and nervous 

tissue are members of the family of voltage- and ligand-gated pacemaker channels.  

Pacemaker channels belong to the superfamily of voltage-gated ion channels, 

yet form a distinct subgroup that is closely related to the voltage-independent, cyclic 

nucleotide-gated channels. The molecular structure of the four cloned channel 
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subunits, which are termed HCN1-4 (for hyperpolarization-activated cation non-

selective channels), exhibits both voltage-sensing and ligand-binding domains (Fig. 

1A; for recent reviews, see (Kaupp and Seifert, 2001; Accili et al., 2002; Biel et al., 

2002; Robinson and Siegelbaum, 2003)). It is increasingly clear that the four HCN 

channel subtypes give rise to ionic currents involved in an unusually broad range of 

neural functions that goes far beyond single-cell rhythmogenesis. This wide 

physiological context in which HCN channels are active is based on a rich repertoire 

of modulatory pathways the channels can be subject to. Not only are HCN channels 

gated by voltage, but they also contain binding sites for intra- and extracellular 

ligands (for review, see (Biel et al., 2002; Robinson and Siegelbaum, 2003)). 

Furthermore, subunit heteromerization, glycosylation and association with auxiliary 

subunits are important determinants of the functional properties of expressed channels 

(Ulens and Tytgat, 2001a; Yu et al., 2001; Altomare et al., 2003; Decher et al., 2003; 

Much et al., 2003). In contrast to the rapidly expanding insight into the regulation of 

channel molecules in heterologous systems, the signaling pathways and the 

physiological context that determine the regulation of Ih in native cells is just 

beginning to be explored. In addition to regulatory properties reminiscent of those of 

expressed HCN channels, channels in native tissue appear to be regulated via activity-

dependent and -independent, short- and long-term alterations in HCN mRNA and 

protein expression (Santoro and Baram, 2003). This latter level of regulation 

contributes to the developmentally controlled Ih expression, but could also account for 

the causes and/or consequences of some cardiac and neurological pathologies.  

 

3. Basic properties of native Ih 

Three peculiar properties of h-currents are highlighted here that make them 

unique amongst the family of voltage-gated ionic currents and earned them the name 

If for “funny current” in the heart (Brown et al., 1979) or Iq for “queer current” in the 

brain (Halliwell and Adams, 1982), when they were originally discovered. First, Ih 

typically activates upon membrane hyperpolarization (below ~-60 mV) rather than 

depolarization, just opposite to most voltage-gated ionic currents that are involved in 

shaping the neuronal response to excitatory input (Fig. 1B). This unusual voltage 

window of activation is reflected in the now widely used name Ih, where “h” stands 

for hyperpolarization. Upon hyperpolarization, the conductance activated is 
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permeable to both Na
+
 and K

+
 ions (permeability ratio K

+
 : Na

+
 = 0.2-0.3). The 

current is carried mainly by Na
+
 ions at the membrane voltages within its activation 

range and produces an elevation in the intracellular Na
+
 concentration (Knöpfel et al., 

1998). More recently, a small permeability to Ca
2+

 ions has also been identified via 

imaging techniques (Yu et al., 2004b). The current is blocked by at least four distinct 

classes of agents: extracellularly by millimolar concentrations of Cs
+
 or by 

capsazepine, a blocker of vanilloid receptors (Ray et al., 2003); intracellularly by the 

lidocaine derivative QX-314 (Perkins and Wong, 1995) or by bradycardiac agents 

(e.g. ZD7288, see (Pape, 1994; Harris and Constanti, 1995; Chevaleyre and Castillo, 

2002; Robinson and Siegelbaum, 2003)). All these compounds, however, show non-

specific effects independently of Ih: Cs
+
 blocks neuronal K

+
 channels (Constanti and 

Galvan, 1983) and interferes with K
+
 uptake in glial cells (Janigro et al., 1997), 

whereas ZD7288 depresses synaptic transmission (Chevaleyre and Castillo, 2002). 

Unless more selective blockers are developed, the pharmacological identification of 

novel physiological roles of Ih should thus be based on the effects of several blockers 

belonging to different classes. Second, activation of the current is fairly slow, with 

activation time constants ranging between hundreds of milliseconds and seconds, 

even at strongly hyperpolarized voltages around -100 mV. Few exceptions include 

pyramidal neurons from hippocampus, cortex and cerebellum, in which activation is 

complete within tens of milliseconds (see section 5). Once activated, the current does 

not inactivate, such that a steadily activated (‘standing’) Ih contributes to the resting 

membrane potential in many neurons, often by opposing the action of tonic outward 

currents (Uchimura et al., 1990; Womble and Moises, 1993; Akasu and Shoji, 1994; 

Doan and Kunze, 1999). Third, Ih is, in most cases, exceedingly sensitive to the 

presence of intracellular cyclic nucleotides. The cyclic nucleotides cAMP and cGMP, 

the latter one probably to a weaker extent, not only accelerate the kinetics of 

activation, but also shift the voltage dependence of activation towards more 

depolarized values (Fig. 1B). In the presence of these ligands, the extent and duration 

of current activation at a given voltage is substantially increased. 

In summary, Ih is generated by voltage-gated ionic channels that in addition 

are sensitive to intracellular ligands, the cyclic nucleotides. They are thus part of a 

small group of ionic channels that are dually gated by both ligands and voltage (Fig. 

1B). The molecular correlates of Ih are phylogenetically related to the ether-à-go-go 

channels and plant inward rectifier currents, which are also gated by voltage and 
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cyclic nucleotides (Santoro and Tibbs, 1999). This dual gating imparts an 

unprecedented level of flexibility to channel function that has so far been illustrated 

most impressively by studying the function of HCN channels. 

 

4. The multiple roles of Ih 

Originally, deviations from ohmic behavior in the steady-state current-voltage 

relationships of electrically excitable motoneurons were described by Oshima and 

coworkers (Araki et al., 1961; Ito and Oshima, 1965). These were termed anomalous 

or inward rectification, referring to an increase in slope conductance when neuronal 

membranes are hyperpolarized. A physiological role for the conductance underlying 

this abnormal behavior was first reported in rod photoreceptor cells, in which a 

rebound depolarization during light-induced hyperpolarization was caused by a Cs
+
-

sensitive membrane conductance (Fain et al., 1978) permeable to both Na
+
 and K

+
 

ions (Bader and Bertrand, 1984). This conductance activated at potentials below -50 

mV and manifested as a slow inward current capable of depolarizing the membrane 

over the time course of seconds. Vertebrate rod photoreceptor cell membranes reach 

potentials below -50 mV upon light-induced hyperpolarization (Fain et al., 1978; 

Bader et al., 1979). Thus, activation of this conductance opposes the cellular response 

to prolonged exposure to light, and is thus involved in adaptation to visual stimuli. 

The interest in slowly activating cation currents gated by hyperpolarization grew 

considerably when it was found that in cardiac tissue, such a current could endow 

cells with an intrinsic propensity to generate oscillatory activity (Fig. 1C; for 

review, see (DiFrancesco, 1985)). The diastolic phase of the heart beating cycle is 

associated with membrane hyperpolarization large enough to allow the voltage-

gating of this current (Brown et al., 1979). The diastolic depolarization eventually 

reaches the threshold for Ca
2+

 current activation and action potential firing. 

Although the diastolic voltage waveform is now known to be generated by a 

combination of voltage-gated currents ((Zaza et al., 1997; Maier et al., 2003), for 

review, see (Schram et al., 2002)), Ih is essential for the generation of rhythmic 

cardiac output. Thus, genetic deletion of  HCN channel subunits perturbs the 

rhythmic depolarizations in intact heart (Ludwig et al., 2003), in sinoatrial node 

cells (Stieber et al., 2003) and in cultured neonatal cardiomyocytes (Er et al., 

2003). Moreover, zebrafish that carry a mutation in the slo mo gene show a slowed 
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heart rate, associated with a decreased amplitude of Ih in cardiomyocytes, while 

other currents involved in cardiac pacemaking remain unchanged (Baker et al., 

1997; Warren et al., 2001). 

H-currents with properties similar to the originally described cardiac If were 

later identified in a large number of electrically excitable cells, ranging from uterine 

smooth muscle cells (Satoh, 1995) and enteric neurons (Galligan et al., 1990) to the 

pyramidal neurons of hippocampus (Halliwell and Adams, 1982) and cortex 

(Solomon et al., 1993). However, convincing evidence for a role of Ih as a pacemaker 

current, in particular the determination of its active pacemaker role independently of 

effects on resting membrane potential, is so far available for a fairly small number of 

neural rhythms. The most prominent among these include sleep-related rhythms 

generated by thalamocortical neurons (McCormick and Pape, 1990a) and thalamic 

networks (Bal and McCormick, 1996; Lüthi and McCormick, 1998b), γ-oscillations in 

hippocampus (Fisahn et al., 2002), synchronized oscillations in inferior olive (Bal and 

McCormick, 1997), and subthreshold oscillations in entorhinal cortex (Dickson et al., 

2000). Furthermore, in slice preparations, spontaneous firing of hippocampal 

interneurons (Maccaferri and McBain, 1996), neostriatal interneurons (Bennett et al., 

2000), substantia nigra (Neuhoff et al., 2002) and area postrema neurons (Funahashi 

et al., 2003) depends on activation of Ih in between individual action potentials. In a 

number of rhythmically active systems, however, other currents are rhythmogenic 

with a minor role of Ih, such as in respiratory rhythms (Thoby-Brisson et al., 2000), in 

supraoptic neurons (Ghamari-Langroudi and Bourque, 2000) or in paroxysmal 

discharges in neonatal hippocampus (Agmon and Wells, 2003). 

Besides being involved in rhythmicities and control of membrane potential, Ih 

is now known to contribute to additional central neuronal functions, such as dendritic 

integration, synaptic release and two types of primary sensory reception (Fig. 2, for 

further review, see (Robinson and Siegelbaum, 2003)). The novel roles of Ih rely 

predominantly on its partial steady activation at the resting membrane potential and its 

modulation by intra- and extracellular signaling molecules. In dendrites of 

hippocampal CA1 (Magee, 1999) and neocortical layer V pyramidal (Williams and 

Stuart, 2000a; Berger et al., 2001) neurons, a standing Ih contributes to the resting 

membrane potential of dendrites by up to 11 mV (Williams and Stuart, 2000a). The 

rapid deactivation of Ih during excitatory inputs produces a hyperpolarization that 
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accelerates the decay of synaptic potentials. During repetitive presynaptic discharges 

at intervals up to less than 5 ms, the temporal summation of postsynaptic responses 

will be further attenuated by the accruing deactivation of Ih. Interestingly, the density 

of Ih augments by severalfold along the somatodendritic axis of apical dendrites 

(Lörincz et al., 2002). Therefore, its effects on the temporal summation of distal 

synaptic inputs will be increasingly pronounced. Indeed, the density of Ih appears to 

be tuned such that it compensates exactly the incrementing filtering effects of the 

dendritic cables, indicating that Ih is a major factor in normalizing temporal 

summation in CA1 and cortical pyramidal cells. As a physiological consequence, 

temporal summation of subthreshold excitatory inputs in principal hippocampal and 

cortical neurons, and hence the eventual timing of action potential generation as well, 

are independent of the location of synaptic input (for review, see (Magee, 2000; 

Desjardins et al., 2003)). The subcellular expression of Ih therefore helps excitatory 

inputs into the dendritic trees to convey the same temporal information independently 

of where they were generated. 

The h-current, by virtue of its voltage dependence, also dampens cellular 

responses to inhibitory synaptic input and allows a rapid resumption of tonic firing, as 

shown via recording the response of Purkinje cells to ramp- or pulse-like injections of 

currents when Ih was either blocked (Williams et al., 2002) or the HCN1 gene was 

knocked-out (Nolan et al., 2003). HCN1-deficient Purkinje cells completely lack an h-

current and show a retarded generation of action potentials during the transition from 

sub- to suprathreshold current injections (Nolan et al., 2003). Furthermore, sinusoidal 

current injections into the dendrites of cortical and hippocampal principal cells 

revealed that Ih controls the temporal relationship between the phase of the current 

injection and the timing of action potentials (Magee, 2001; Ulrich, 2002). The 

involvement of Ih in the control of the phase relationship between a periodic stimulus 

and repetitive action potential generation may have direct consequences at the 

behavioral level. Thus, HCN1-knock-out mice are selectively compromised in 

learning repetitive motor tasks that involve the phasic excitation and inhibition of 

cerebellar Purkinje cells. To explain this deficit, it has been proposed that Ih of 

Purkinje cells may be involved in the plastic events leading to motor learning, perhaps 

by facilitating the coincidence of pre- and postsynaptic activity in the time window 

required for synaptic plasticity of afferents to Purkinje fibers (Nolan et al., 2003). 
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Interestingly, HCN1 protein is also expressed in presynaptic terminals of 

cerebellar basket cells (Santoro et al., 1997), as well as, together with HCN2 and 

HCN4, in the presynaptic zones of retinal bipolar cells (Müller et al., 2003). 

Clustering of HCN3 protein was found at the base of the pedicles generated by cone 

photoreceptor cells, which form synapses to a number of retinal cells (Müller et al., 

2003). Electrophysiologically, the presence of Ih has been verified in the terminals of 

inhibitory cerebellar basket cells and in those of excitatory brainstem afferents, but 

the role it plays in neurotransmitter release appears minor (Southan et al., 2000; Cuttle 

et al., 2001). If Ih is activated for prolonged periods of time (>10 s), the Ca
2+

 ions 

permeating through the channels can, however, facilitate neurotransmitter release in 

response to repetitive action potential discharge in dorsal root ganglia neurons (Yu et 

al., 2004b). This suggests that the elevation of basal Ca
2+

 levels during periods of 

hyperpolarization can modulate synaptic short-term plasticity (Yu et al., 2004b). It has 

also been proposed that presynaptically expressed Ih may contribute to modulate 

synaptic transmission and underlie presynaptic forms of long-term potentiation via 

sensing the cAMP generated via either receptors for neuromodulatory transmitters or 

via Ca
2+

-sensitive adenylyl cyclases (ACs) ((Beaumont and Zucker, 2000; Beaumont 

et al., 2002; Mellor et al., 2002), see, however, (Chevaleyre and Castillo, 2002)).  

Finally, primary sensory pathways exploit Ih for stimulus detection. Upon 

application of a low pH solution, a subset of cells sensitive to sour taste generate an 

inward current which is blocked by Cs
+
 ions (Stevens et al., 2001). The expression of 

HCN1 and HCN4 protein in these cells implicates Ih as a major component in the 

detection of sour stimuli (Stevens et al., 2001). Reduction of a standing Ih by lowering 

temperature also contributes to control the thermosensation of a subgroup of 

trigeminal neurons (Viana et al., 2002). 

 

5. Basic properties and regulation of cloned HCN channels 

Three groups succeeded independently of each other in identifying the genes 

encoding HCN channel subunits (Clapham, 1998; Gauss et al., 1998; Ludwig et al., 

1998; Santoro et al., 1998). These display the overall membrane topology of 

voltage-gated K
+
 channels, with six transmembrane domains S1-S6 (Fig. 1A). The 

sequence motifs typical for voltage-gated ion channels are present in these 

domains, including the amino acid sequence GYG which is characteristic for the 
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narrow portion of the selectivity filter in voltage-gated K
+
 channels between S5 

and S6 and the voltage-sensor motif with regularly spaced, positively charged 

amino acids in S4 ((Doyle et al., 1998), for review, see (Gauss and Seifert, 2000)). 

So far, HCN1, HCN2 and HCN4 genes transcribed in heterologous expression 

systems give rise to currents, with the properties typical for Ih: activation upon 

hyperpolarization and modulation by intracellular cAMP. Currents mediated by 

HCN3 subunits have not been described (see (Much et al., 2003)). The detailed 

characteristics of these properties are strikingly different between channels 

generated by homomeric assembly of HCN1, 2 or 4. Whereas channels composed 

of HCN1 subunits activate rapidly (within tens of milliseconds at voltages below -

100 mV) and are weakly sensitive to cAMP, HCN2 and especially HCN4 subunits 

give rise to currents that activate slowly (hundreds of milliseconds to seconds 

below -100 mV) and are highly sensitive to cAMP. Besides generating 

hyperpolarization-activated inward currents, HCN1 and HCN2 homomers also 

give rise to an instantaneous current component that is Cs
+
-insensitive and voltage-

independent (Proenza et al., 2002; Macri and Accili, 2004). 

The expression of HCN genes at the level of the mRNA distribution in the brain 

reveals complementary, yet partially overlapping expression profiles, which 

correlate reasonably well with the characteristics of native Ih in diverse neuronal 

cell types. Thus, HCN1 is predominantly expressed in cortical, hippocampal and 

cerebellar regions, whereas HCN2 expression is widespread and, concomitantly 

with HCN4, found in regions in which Ih functions as a pacemaker (Moosmang et 

al., 1999; Franz et al., 2000; Monteggia et al., 2000; Santoro et al., 2000). To a first 

approximation, the heterogeneous properties of native Ih are thought to arise from 

this differential expression of HCN1, 2 and 4. 

With the exception of HCN2+HCN3, all dual combinations of channel subunits 

can give rise to heteromeric channel complexes inserted into membranes (Much et 

al., 2003). Electrophysiologically, the currents generated by at least some of the 

heteromeric channels show properties that are intermediate, but distinct from those 

predicted via interpolating between the characteristics of the homomeric channels 

(Chen S. et al., 2001; Altomare et al., 2003). The demonstration that 

heteromerization generates unique forms of Ih, together with the overlapping 

expression patterns of mRNA for HCN subunits in cardiac cells and in neurons 
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(Ludwig et al., 1998; Santoro et al., 1998; Moosmang et al., 1999; Franz et al., 

2000; Monteggia et al., 2000; Santoro et al., 2000), indicates that formation of 

heteromers may contribute to the specification of native Ih. This issue was 

addressed by comparing the properties of native currents and of heteromers 

consisting of the subunits expressed in the cells. In sinoatrial node, heteromers 

generated by HCN1/HCN4 reproduce the kinetics but not cAMP sensitivity of the 

native current (Altomare et al., 2003). In contrast, a linear superposition of the 

currents generated by HCN1 and HCN4 homomers accounts well for the kinetics 

of Ih found in subtypes of retinal bipolar cells (Müller et al., 2003). 

Heterologous expression experiments have additionally reported that accessory 

proteins may further determine native current properties. Thus, currents generated 

by HCN1, HCN2 and HCN4 homomers are substantially larger in amplitude and 

modulated in activation kinetics when co-expressed with the protein MinK-related 

peptide 1, an accessory protein of a number of K
+
 channels (for a review, see 

(Abbott et al., 2001)). These single transmembrane-spanning proteins could 

functionally interact with the C-terminal domain of HCN channels and contribute 

to the diversity in the whole-cell current ((Yu et al., 2001; Decher et al., 2003), see, 

however, (Altomare et al., 2003)). 

The molecular correlate of the observed cAMP sensitivity of Ih resides in a 

cytosolic C-terminal cyclic nucleotide binding domain (CNBD) that is highly 

homologous to the cyclic nucleotide-binding domain of kinases, and to catabolite 

gene activator protein, a metabolic protein from E. coli (Santoro and Tibbs, 1999; 

Kaupp and Seifert, 2001). Removal of the CNBD or mutations of single amino 

acids abolishes the cyclic nucleotide-sensitivity of the expressed channels (Chen S. 

et al., 2001; Wainger et al., 2001; Ulens and Siegelbaum, 2003). The CNBDs of 

each subunit must be bound to cAMP to achieve a maximal effect on the voltage 

dependence (Ulens and Siegelbaum, 2003). An exposed C-terminal domain, likely 

containing the CNBD, confers cAMP sensitivity in native currents, as well. Thus, 

in cardiac cells, infusion of C-terminal specific proteases into the intracellular 

compartment abolishes the cyclic nucleotide sensitivity of Ih (Barbuti et al., 1999), 

while leaving voltage sensitivity intact. The dual gating of both cloned and native 

Ih appears thus to be based on the modular composition of channel subunits by 

sequentially arranged voltage- and ligand-sensing domains. 
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A complicating aspect of the dual gating of HCN channels is the fact that voltage- 

and ligand sensing portion do not act independently of each other. This is 

particularly evident when recording currents generated by channels devoid of a 

CNBD. Such truncated channels show a dramatically accelerated activation that is 

comparable to that induced by exposure of the cytosolic face to maximal 

concentrations of cAMP (Wainger et al., 2001). This suggests that, in the intact 

channel, the ligand-free CNBD influences the voltage-sensing transmembrane 

channel portions in a manner that retards the opening of the pore (Barbuti et al., 

1999; Wainger et al., 2001), while binding of the cyclic nucleotides has an effect 

on activation kinetics equivalent to that of physically removing the CNBD from 

the protein. The interaction between ligand- and voltage-sensing domains not only 

accounts for the current acceleration in the presence of cAMP, but also for the shift 

in the voltage dependence of Ih by cAMP (DiFrancesco, 1999; Wainger et al., 

2001; Wang et al., 2001). In the case of HCN1 and HCN2, the differences in the 

kinetics and the variable cAMP response of the homomers (see above) arise, at 

least in part, by sequence differences within the CNBD and the C-linker domains 

connecting the CNBD to S6 (Wang et al., 2001). 

Dual gating by voltage and ligand has additional important implications for the 

dynamics of current activation: it allows for a prolonged activation of Ih that 

outlasts the presence of free ligands. To understand the generation of such 

persistently activated Ih, two computational studies approximated the gating of 

channels in cyclic allosteric gating models (Fig. 3A) (DiFrancesco, 1999; Wang et 

al., 2002a). In a Monod-Wyman-Changeux model, four distinct states of the entire 

channel were arranged in a cycle (Wang et al., 2002a): the closed and open 

unliganded states, and the closed and open liganded states. The stabilized 

activation of Ih is explained by an 80-fold increase in the cAMP binding affinity to 

the open compared to the closed channel, such that voltage-gating of the 

unliganded channel facilitates binding of cAMP. In a Hodgkin-Huxley model on 

cardiac Ih incorporating two allosterically gated channel subunits, a 6-fold decrease 

in the dissociation constant was obtained, thus yielding a 36-fold decrease for the 

dimer (DiFrancesco, 1999). Both models demonstrate that the dually gated 

channels represent the channel configuration with the greatest free energy decrease 

(DiFrancesco, 1999). These are therefore most reluctant to closure via an imposed 
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depolarizing voltage and lead to a persistence of channels in the dually gated 

mode. These allosteric models therefore show that, via becoming ‘trapped’ in the 

dually gated mode, channels can remain activated for prolonged periods of time 

even if they have been only transiently exposed to both stimuli (Wang et al., 

2002a), resulting in the appearance of persistent, very slowly decaying current 

components. 

In addition to being gated by voltage and cyclic nucleotides, HCN2 channel 

subunits are also sensitive to pH changes. Decreases in pH from 7.4 to 6.4 in the 

intracellular compartment result in a down-regulation of the current and in a slow-

down of the speed of activation. Conversely, alkalinization enhances current 

amplitude and activation rate. The sensitivity to pHi allows shifts in voltage 

dependence of up to 20 mV and is mediated by a single His residue located within 

the linker between domains S4 and S5 (Zong et al., 2001). While HCN2 is 

sensitive to changes in internal pH, the channel subunits HCN1 and HCN4 sense 

extracellular pH alterations, albeit with comparatively weak sensitivity. HCN1-

mediated currents show a positive shift in the voltage dependence of up to 35 mV 

when pHe is decreased from 7.4 to 3.9, associated with a strong acceleration in the 

activation time course. 

The primary sequence of HCN channels shows at least one potential consensus 

phosphorylation site for protein kinase A (PKA) which resides within the CNBD 

(Santoro et al., 1998). Furthermore, one of the successful approaches to clone the 

HCN channels was based on a yeast-two-hybrid screen searching for proteins 

interacting with the SH3 domain of the neural specific form of the protein tyrosine 

kinase Src (Santoro et al., 1997). This suggests that some HCN channels may 

molecularly interact with protein kinases, analogously to the association of 

invertebrate cation channels (Magoski et al., 2002) or human K
+
 channels (Holmes 

et al., 1996) with their regulatory kinases via Src homology 3-domains. However, 

direct evidence for a functional consequence of phosphorylation of HCN channels 

is currently lacking, although preliminary reports suggest a role for PKA and 

protein tyrosine kinases (PTKs) in controlling the maximal conductance and 

voltage dependence of HCN2 and HCN4 (Proenza and Accili, 2001; Yu et al., 

2003). In further support for potentially interesting roles of HCN channel 

phosphorylation is the finding that close relatives of HCN channels, the cyclic 
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nucleotide-gated channels, can be phosphorylated by both Serine/Threonine as 

well as Tyrosine kinase activity (for review, see (Kaupp and Seifert, 2002)). These 

phosphorylations control channel apparent affinity for cyclic nucleotides and could 

be important for circadian modulation of ligand sensitivity in cone photoreceptor 

cells (Ko et al., 2001).  

In summary, the cloning and functional expression of HCN channel subunits has 

revealed an array of modulatory capacities of the corresponding currents. We will 

now discuss which of these are likely functionally exploited in native cells, and 

how channel expression is regulated under pathological cardiac and neural 

conditions.  

 

 

6. Regulation of native Ih 

6.1. Regulation by ligands and phosphorylation 

Direct regulation by cAMP. The recognition of Ih regulation by cyclic 

nucleotides was intimately associated with the identification of the currents 

themselves. Thus, the quest for the ionic mechanism underlying the acceleration of 

the heartbeat by adrenaline was found to be associated with an enhancement of Ih 

amplitude upon exposure to adrenaline (Brown et al., 1979). Noradrenaline had long 

been known to be associated with increases in the concentration of intracellular cyclic 

nucleotides in cardiac cells (Brooker, 1973; Hartzell, 1988). It was then demonstrated 

that the amplitude of Ih in sinoatrial node cells could be enhanced by cAMP applied 

directly to the cytosolic portion of cell-free patches, and neither constitutively active 

PKA nor PKA blockade interfered with this modulation (DiFrancesco and Tortora, 

1991). Furthermore, a β-adrenergically mediated membrane depolarization in CA1 

pyramidal cells was not affected by PKA inhibitors, but blocked by Cs
+
 ions 

(Pedarzani and Storm, 1995). This suggested that Ih could be regulated by a direct 

effect of cAMP rather than via a cAMP-dependent activation of protein kinase A 

(PKA), the principal intracellular receptor for cAMP. A modulation of Ih by 

neurotransmitter receptors with experimental evidence implicating a direct action of 

cAMP has since been found in a number of neurons in slice preparations. Prominent 

among these are β-adrenergic receptors in thalamocortical neurons (McCormick and 
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Pape, 1990b; Pape, 1992; Frère and Lüthi, 2004), 5-HT receptors in hypoglossal 

neurons (Bobker and Williams, 1989) and neonatal rat motoneurons (Larkman et al., 

1995; Larkman and Kelly, 1997). Furthermore, endogenous neuropeptides such as 

vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide 

potentiate Ih via a mechanism involving cAMP (Lee and Cox, 2003; Sun et al., 2003), 

whereas substance P-mediated activation of neurokinin 1 receptors inhibits Ih in 

sensory neurons through a messenger pathway yet to be determined (Jafri and 

Weinreich, 1998). The increase of cAMP produced by prostaglandins in sensory 

neurons is also detected by Ih (Ingram and Williams, 1996). The application of PKA 

inhibitors did not affect the action of the agonists for at least some Gs-coupled 

neurotransmitter receptors (Pedarzani and Storm, 1995; Ingram and Williams, 1996; 

Larkman and Kelly, 1997), further supporting the idea that the effects of cAMP were 

direct also in preserved cellular preparations. 

In contrast to the Gs-dependent stimulatory effects, Gi-dependent inhibitory 

actions on cAMP-dependent regulation of Ih have been documented in a few cases 

only, and a complete demonstration that these are mediated via inhibition of 

endogenous AC activity has remained more difficult. In nodose ganglion neurons, an 

inhibitory effect of opioids on cAMP synthesis was demonstrated for forskolin-

stimulated AC activity, whereas no effect was observed on basal current amplitude 

(Ingram and Williams, 1993). In contrast, in thalamocortical and cholinergic 

mesopontine neurons, activation of adenosine A1 receptors inhibited Ih in a manner 

consistent with inhibition of basal AC activity (Pape, 1992; Rainnie et al., 1994), 

although a decrease in cAMP sensitivity of the channels was not excluded in these 

studies. Using a combined assessment of both basal AC activity and channel 

sensitivity, we have recently provided more complete evidence that, in the case of the 

Gi/o-coupled GABAB receptors, a substantial portion of the reduction in Ih amplitude 

is attributable to the inhibition of a comparatively high basal AC activity in 

thalamocortical neurons (Frère and Lüthi, 2004). 

An additional pathway of cAMP-dependent regulation was uncovered upon 

addressing the question of how positive and negative stimuli on cAMP synthesis 

summated when activated simultaneously. Contrary to a linear summation of the 

effects induced by agonists for β-adrenergic and GABAB receptors, and thus to a 

cancellation of these two stimuli, a marked potentiation of Ih amplitude was revealed 
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that appeared to be induced by a distinct, powerful synthesis of cAMP (Frère and 

Lüthi, 2004). Furthermore, Ih can also be regulated by cAMP following increases in 

intracellular Ca
2+

 levels (Lüthi and McCormick, 1999), or by cGMP via the nitric 

oxide pathway (Pape and Mager, 1992). Thus, HCN channels are targeted by multiple 

pathways of cyclic nucleotide synthesis, suggesting that the channels may be 

surrounded by several, perhaps molecularly distinct, ACs (see below). 

Downstream from the neurotransmitter receptors, little is known about the 

molecular organization and the subtypes of ACs and associated regulatory enzymes 

that target Ih. To date, at least nine different subtypes of ACs are characterized 

molecularly (for review, see (Hanoune and Defer, 2001; Cooper, 2003)), many of 

them with distributions overlapping the areas in which HCN channels are expressed 

(Matsuoka et al., 1997; Ihnatovych et al., 2002). Based on the findings of native 

current regulation, it is conceivable that several molecularly distinct types of ACs 

generate cAMP that is detected by HCN channels. An exemplary case is the 

regulation of Ih in thalamocortical neurons. In these cells, the influence of Ca
2+

 in the 

regulation of Ih points to an involvement of the Ca
2+

-sensitive ACs type I and/or type 

VIII, both of which are expressed in thalamocortical neurons (Cali et al., 1994; 

Matsuoka et al., 1997). Furthermore, the synergistic effect found by co-activation of 

Gs- and Gi–coupled neurotransmitter receptors strongly suggests a functional 

association of ACs type II or IV with Ih, which require binding of both Gs- and Gβγ-

subunits for activation (for review, see (Cooper, 2003)). Finally, guanylyl cyclase also 

modulates Ih in thalamocortical cells (Pape and Mager, 1992). The fact that an ionic 

current is regulated by multiple enzymes producing the same second messenger 

suggests that, in native membranes, 1) channels giving rise to Ih are localized in 

subpopulations or clusters, each of which is associated with a distinct cAMP synthesis 

pathway, similar perhaps to the association of Ca
2+

-dependent K
+
 channels with 

specific sources of Ca
2+

 (for review, see e.g. (Sah and Davies, 2000)) or 2) channels 

underlying Ih are colocalized with several types of ACs. A future goal in elucidating 

the regulation of Ih may thus focus on the characterization of the subcellular 

organization of channels with associated regulatory systems, in a manner similar to 

that achieved for other ionic channels involved in cardiac (Marx et al., 2002) or 

neuronal (Sah and Davies, 2000) rhythmicity. 
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The extensive characterization of the multiple pathways of cyclic nucleotide-

dependent regulation of Ih stands in opposition to a relative lack of understanding of 

the physiological conditions during which these types of regulation are induced. For 

example, it has remained unclear whether the G-protein-coupled neurotransmitter 

receptors (GPCRs) leading to regulation of Ih can be activated synaptically. 

Alternatively, extrasynaptically located receptors may set a background level of on-

going G-protein activity that determines a tonic exposure of Ih to cyclic nucleotides. 

We recently studied the effects of GABAB receptor-mediated modulation of Ih, and 

we found that synaptically activated receptors can contribute to potentiate β-

adrenergically mediated augmentation of the current (Frère and Lüthi, 2004). In 

contrast, synaptic activation of GABAB receptors alone did not result in a modulation, 

although addition of agonists for these receptors to the bath downregulated Ih (Frère 

and Lüthi, 2004). Thus, at least some pathways of cAMP synthesis targeting Ih are 

coupled to GPCRs that can be activated following synaptic stimulation. In addition, 

synaptically activated ionotropic glutamate receptors can also contribute to the 

sources of Ca
2+

 leading to acute regulation of Ih (Van Welie et al., 2002). Currently 

available data therefore clearly show that channels generating Ih belong to the family 

of ion channels regulated by synaptically activated neurotransmitter receptors. 

Allosteric regulation. A few years before the characterization of the dual 

allosteric gating of HCN channels, experiments addressing the dynamics of Ih 

activation by cAMP were strongly suggestive of a preferred interaction of cAMP with 

open as opposed to closed ion channels. Thus, the duration of cAMP-mediated effects 

was found to depend upon the voltage protocol that was used to activate the current 

(Lüthi and McCormick, 1999). If a transient cAMP stimulus was applied to a cell 

whose membrane potential was held constantly within the activation range of Ih, 

current upregulation was prolonged by severalfold compared to when the current was 

gated with brief hyperpolarizing steps from a holding potential outside the activation 

range, revealing a slowly developing, persistently activated current component (Lüthi 

and McCormick, 1999). Such prolonged activation of Ih is associated with a number 

of rhythmic network activities (Bal and McCormick, 1996; Bal and McCormick, 

1997; Strata et al., 1997). One illustrative example is found in the spindle waves, 

which arise predominantly during early periods of slow-wave sleep and are generated 

from a reciprocal synaptic interaction between thalamocortical neurons and nucleus 
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reticularis neurons (for review, see (McCormick and Bal, 1997)). In vitro, spindle 

waves appear as 1-3 s periods of 6-14 Hz synchronized oscillatory activity 

interspersed with silent periods of 5-20 s (Fig. 3B). These silent periods are associated 

with a slowly decaying, Ih-dependent membrane depolarization that is maximal after 

the end of a phase of synchrony and has fully disappeared before the occurrence of 

the next spindle wave. It was initially proposed that this slow form of Ih enhancement 

can be explained by the slow kinetics of voltage-dependent deactivation of Ih (Bal and 

McCormick, 1996). However, closer inspection of the factors inducing the 

upregulation revealed a critical role for increases in intracellular Ca
2+

, primarily 

triggered by the low-threshold Ca
2+

 bursts occurring during spindling (Lüthi and 

McCormick, 1998a). The Ca
2+

 ions are detected by a Ca
2+

–sensitive AC, producing an 

increase in cAMP synthesis that enhances Ih (Lüthi and McCormick, 1999). The dual 

exposure of Ih to cAMP and to the repetitive inhibitory input during a spindle wave 

facilitates persistently activated Ih, which, in turn, prevents the next spindle wave until 

Ih is slowly decayed (Fig. 3B). Persistent activation of Ih, based on allosterically 

stabilized ion channel configurations, is thus the electrophysiological consequence of 

activity-induced synaptic and biochemical events associated with synchronized 

network rhythms. 

Regulation by phosphorylation. In parallel to the identification of direct actions 

of cAMP on Ih, several studies reported that, in some preparations, cAMP-dependent 

actions on Ih could indeed be blocked completely when inhibitors of protein kinases 

were present, including PKA (Tokimasa and Akasu, 1990; Chang et al., 1991). 

Support for a role of Ser/Thr protein kinase activity in tonically controlling the 

properties and regulation of cardiac Ih was found in studies using selective Ser/Thr 

phosphatase inhibitors, which induced a positive shift in the activation curve and, at 

least in one preparation, an increase in the maximal conductance of the current (Yu et 

al., 1993a; Accili et al., 1997). In dorsal root ganglia and olfactory receptor neurons, 

the voltage dependence of basal Ih is subject to PKA-dependent phosphorylation, as 

assessed by specific inhibitors of this enzyme (Raes et al., 1997; Vargas and Lucero, 

2003). Stimulation of PKA can lead to a shift in the activation curve that is 

superimposed on that induced by a maximal dose of cAMP (Raes et al., 1997). In 

addition, activated PKA alters the dose-response curve of current activation to cAMP, 

rendering the channels preferentially sensitive to larger changes in the concentration 

of this cyclic nucleotide (Accili et al., 1997; Raes et al., 1997). Altogether, the 
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presently available data indicate that, at least for certain types of Ih, PKA activity is an 

additional parameter that determines the functionality of the ionic channels and the 

associated regulated systems. The level of action of the phosphorylation process could 

occur as a covalent modification of the channel subunits or of auxiliary subunits, and 

regulation of channel protein recycling to alter the maximal conductance could also be 

a potential target of kinases. 

The phosphorylation of channel proteins has repeatedly been reported in playing 

a pivotal role in the maintenance of current properties over time (for review, see 

(Levitan, 1999; Kramer and Molokanova, 2001)), and phosphorylation-dependent 

processes could conceivably contribute to stabilize Ih. Curiously, Ih generated by 

either expressed or native channels shows a pronounced hyperpolarizing shift in 

voltage dependence ranging up to 40-60 mV when maintained in cell-free patches, 

while cAMP sensitivity remains relatively unaltered (DiFrancesco and Mangoni, 

1994; Chen S. et al., 2001). This indicates the presence of essential regulatory factors 

besides cAMP that maintain the voltage dependence of the channels within a 

physiological range, and ATP could be at least partially responsible (Raes et al., 

1997). In addition to PKA-mediated regulation of Ih, protein kinase C and PTKs may 

contribute to the control of current amplitude (Wu and Cohen, 1997; Shibata et al., 

1999). Such regulation can be initiated by growth factors (Thoby-Brisson et al., 2003) 

and neurotransmitters (Cathala and Paupardin-Tritsch, 1997), but may also contribute 

to the basal properties of the current. 

Regulation by pH. By virtue of its sensitivity to strong extracellular pH 

changes, Ih may serve as a transducer for sour stimuli (pH 3-5) in a subset of taste 

cells by generating a depolarizing inward current in response to low pH (Stevens et 

al., 2001). More moderate changes in extracellular pH by up to one unit, such as those 

occurring during transient ischemia in the brain (Silver and Erecinska, 1992) may not 

be sensed by the native currents (Munsch and Pape, 1999a). Conversely, the high 

sensitivity of Ih to intracellular pH changes has been proposed to underlie the 

protective action of carbonic anhydrase inhibitors in generalized seizures (Munsch 

and Pape, 1999b). Carbonic anhydrases catalyse the hydration of carbon dioxide, and 

their inhibition causes an increase in steady-state pH, presumably through an 

accumulation of intracellular hydrogen carbonate. In thalamocortical neurons, the 

resulting augmentation of Ih depolarizes neurons and prevents the generation of 
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rebound calcium spikes, thus reducing their engagement in synchronized paroxysmal 

discharges typical for some types of generalized seizures. 

 

6.2. Regulation at the level of mRNA and protein expression 

In addition to the regulation of Ih and/or associated regulatory systems by 

voltage and ligands, differential up- and downregulation of individual HCN channel 

subunits in defined cell types occurs during development. These maturational 

processes at the mRNA and protein level correspond to a remarkable extent to the 

developmental changes in current density and properties. Moreover, their temporal 

profile matches that of rhythmic synchronized electrical discharges occurring during 

circuit maturation, suggesting that age-specific network activity patterns may be 

promoted by regulated HCN channel transcription. Strikingly, it was recently 

observed that abnormal electrical activity, whether occurring in cardiac or neuronal 

cells, can profoundly disturb the properties of Ih in both immature and adult systems 

(see (Santoro and Baram, 2003)), and that this pathological modulation often is 

associated with an altered transcription of HCN channel subunits. In general, an 

enhancement of neuronal or cardiac electric activity beyond normal seems to be a 

major cause in triggering changes in HCN gene expression, although the changes in 

each subunit HCN1-4 take place seemingly independently of each other (see Table 1). 

The alterations in the level of transcripts develop on both short- and long-term time 

scales and often parallel those in the properties of functional channels at least in a 

qualitative manner. Transcriptional regulation of HCN channels may thus be 

implicated not only in developmental processes and homeostasis of neuronal 

excitability, but also in mechanisms of neurologic and cardiac disease. 

 

Developmental regulation. The developmental regulation of HCN expression has so 

far been studied most extensively in developing mouse ventricular myocytes and in 

rodent hippocampus. Early embryonic myocytes show prominent regular beating and 

express a large Ih, which is probably carried primarily by HCN1 and HCN4 channels 

(Yasui et al., 2001). The amplitude of the current decreases >80% perinatally as 

spontaneous activity ceases, and involves a strongly decreased expression of HCN1 

and HCN4, whereas HCN2 is now the most predominant. The predominance of 

HCN2 over HCN4 increments even further during aging (Shi et al., 1999). 
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In pyramidal cells of the mouse CA1 and CA3 region, the densities of Ih 

conductance undergo a transient increase in the course of the first five to ten postnatal 

days, before smaller adult values are reached around postnatal day 20 (Vasilyev and 

Barish, 2002). During this time, Ih activation rates increase up to 10-fold. The 

expression of HCN1 protein increases strongly in CA1 and CA3 regions and includes 

both somatic and dendritic layers, with a particularly strong signal in stratum 

lacunosum. HCN2 and HCN4 show a much weaker, but progressive and uniform 

increase. RNA transcripts encoding HCN genes are also detectable in developing 

interneurons, in which a differential expression arises around the fifth postnatal day 

(Bender et al., 2001). Transcripts for HCN1 are found predominantly in parvalbumin-

reactive interneurons within the pyramidal cell layer and the stratum radiatum. 

Transcripts for HCN2 and HCN4, however, appear within stratum oriens and co-

express frequently with the neuropeptide somatostatin. These developmental 

expression patterns, which are specific for each HCN subunit, may relate to an age-

specific role of Ih in the generation of slow network oscillations during the first 

postnatal weeks. 

 

Cardiopathies. Cardiac myocytes undergo substantial electrical and structural 

remodeling to adapt to external stressful factors such as pressure overload (e.g. 

hypertension), inflammation (myocarditis), and infarction (for review, see (Tomaselli 

and Marban, 1999; Armoundas et al., 2001)). These adaptations are beneficial to 

maintain cardiac function initially, but can eventually give rise to contractile 

abnormalities and sudden cardiac death. Myocardial hypertrophy is a complication 

commonly associated with cardiovascular pathology. Hypertrophied ventricular 

myocytes from animal models of pressure overload and from the failing human heart 

show a prolonged duration of the action potential associated with a decrease in 

repolarizing outward currents, thus principally enabling them 1) to increase Ca
2+

 

entry, impair Ca
2+

 uptake and retard relaxation and 2) to contribute to the arrhythmias 

observed in cardiac disease (for review, see (Tomaselli and Marban, 1999)). 

Interestingly, in a more advanced stage of hypertrophy, recordings from ventricular 

myocytes of spontaneously hypertensive rats or from failing human heart revealed the 

increased appearance of a diastolic depolarization in between the prolonged action 

potentials, which was associated with the presence of Ih activation at physiological 

voltages (Cerbai et al., 1994; Cerbai et al., 1997; Hoppe et al., 1998). Notably, in 
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normal ventricular cells, Ih does not activate until hyperpolarizations well below – 100 

mV in these non-pacing regions of the heart (Yu et al., 1993b), suggesting that 

sustained hypertrophy led to an alteration in Ih properties. In the failing heart, 

remodeling of Ih was also found in sinoatrial node cells (Verkerk et al., 2003). The 

degree of myocardial hypertrophy was positively correlated with an increase in the 

density of Ih (Cerbai et al., 1996), while current voltage dependence, kinetics and 

modulation by sympathetic stimulation remained unaltered (Cerbai et al., 1996; 

Fernandez-Velasco et al., 2003). These electrophysiological changes were paralleled 

by an upregulation of the HCN2 and HCN4 mRNA levels (Hiramatsu et al., 2002; 

Fernandez-Velasco et al., 2003), which are the predominant isoforms underlying 

ventricular Ih (Shi et al., 1999). The changes in expression levels were most 

pronounced in those cardiac regions with highest pressure overload (Fernandez-

Velasco et al., 2003), indicating that the processes leading to hypertrophy directly 

affected the level of HCN expression. The sequence of events leading from 

hypertrophy to enhancement of Ih in non-pacing regions of the heart appears to 

involve the activation of the type I angiotensin receptor, as its blockage not only 

prevents myocyte hypertrophy, but also reverses Ih upregulation and overexpression 

of HCN2 and HCN4 mRNA (Cerbai et al., 2000; Hiramatsu et al., 2002). Moreover, 

given the similarities in the expression profile of fetal and hypertrophied myocytes, it 

has been speculated that cardiac hypertrophy provokes a re-entry of cells into a fetal 

program and the re-initation of the corresponding gene expression patterns (Cerbai et 

al., 1996; Yasui et al., 2001). In support of this idea, the density of Ih is higher in rat 

neonatal ventricular myocytes and progressively decreases postnatally (see Section 

6.2.) (Cerbai et al., 1999; Yasui et al., 2001). The studies on the consequences of 

myocardial hypertrophy presented the first evidence in favor of an altered Ih due to 

cellular mechanical stress and consequent abnormal electrical activity.  

 

Epilepsies. Currently available data firmly establish that the expression of HCN 

channels at the molecular level is sensitively controlled by aberrant neuronal activity. 

Even brief periods of seizures can be sufficient to persistently modify Ih function. 

These alterations can be neuroprotective or facilitate hyperexcitability, depending on 

the system in which they occur. For example, in febrile seizures occurring during 

development, changes in the properties of Ih appear to facilitate rather than to 

counteract hyperexcitability. Seizures induced by fever are the most common type of 
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seizure in the developing brain and affect up to 5% of small children (< 5 years old) 

during periods of high fever. Febrile-like seizures can be induced in a rat model, in 

which 10-day-old rats are exposed to hyperthermia for a single period of ~30 min. 

Such animals reliably (>98% of animals) develop epileptic convulsions in the 

hippocampus that can be prevented by anti-epileptic drugs (Tóth et al., 1998). 

Moreover, these rats show an increased susceptibility to develop seizures in adulthood 

(Dube et al., 2000), suggesting that this type of early life seizures may predispose to 

later epileptic susceptibility (Walker and Kullmann, 1999; Baram et al., 2002). Three 

persistent modifications of neuronal excitability were determined in hippocampal 

neurons from such rats. In addition to a long-lasting increase in the release of GABA 

(Chen et al., 1999) and an increased retrograde signaling via endocannabinoids (Chen 

et al., 2003), Ih was increased persistently in CA1 cells, even if animals had 

experienced only a single seizure lasting, on average, 23 minutes (Chen et al., 2001). 

Other intrinsic currents important for hippocampal cell firing, as well as passive cell 

properties, remained unaffected. The enhanced expression of Ih induced an 

augmentation of a rebound sag potential and an increased probability of action 

potential generation. Interestingly, while the enhanced vesicular release of GABA was 

dependent upon activation of PKA (Chen et al., 1999), the augmentation of current 

amplitude was independent of this kinase (Chen et al., 2001), suggesting that multiple 

independent mechanisms controlling homeostasis of excitability were affected during 

seizure activity. The functional changes in Ih were paralleled by an altered expression 

of HCN channel subunits (Brewster et al., 2002), that could qualitatively explain the 

changes in current properties. These changes were not observed when seizures were 

prevented by antiepileptics. Thus, hyperthermia-induced brief hyperexcitability led to 

a persistent functional modification of Ih, likely mediated to a large extent via 

modifications at the level of channel subunit transcription. 

Functional changes in Ih have also recently been reported for animal models of 

generalized epilepsies, in which the thalamocortical system is primarily involved. In 

the stargazer mouse, cortical hyperexcitability was found to be associated with a 

three-fold enhanced amplitude of Ih in cortical layer V neurons (Di Pasquale et al., 

1997). In the WAG/Rij rat, an established model for human absence epilepsy, Ih 

activation was shifted negatively and cAMP sensitivity reduced in thalamocortical 

cells (Budde et al., 2003). Although comparatively modest, these modifications 

hyperpolarize the membrane of thalamocortical cells and further their involvement in 
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the burst discharges typical for spike-and-wave activity. Again, current changes could 

be largely explained by the observed enhanced expression of HCN1, the channel 

subunit with the lowest cAMP sensitivity. Both animal models show that, in these 

generalized seizures, alterations in HCN channel expression appear to be maladaptive 

by exacerbating the capacity of neurons to integrate in synchronized oscillations 

associated with absence seizures. 

In contrast, in tissue from chronically epileptic human patients, a strong 

upregulation of HCN1 channel transcripts was found in the dentate gyrus (Bender et 

al., 2003). The survival of these granule cells in sclerotic hippocampus (Isokawa et 

al., 1997) suggested that the augmented expression of HCN channels could act in a 

neuroprotective manner. Indeed, the degree of upregulation in surviving cells was 

proportional to the extent of cell death in the granule cell layer. Further support for a 

neuroprotective role of enhanced Ih expression comes from the observation that the 

anti-epileptic agents lamotrigine and gabapentin upregulate dendritic Ih in 

hippocampal pyramidal neurons (Poolos et al., 2002; Surges et al., 2003). The 

dampening effect on neuronal excitability in the hippocampus likely arises via an Ih–

mediated decrease of neuronal input resistance and/or a reduction of the temporal 

summation of repetitive synaptic inputs (see Section 4). Consequently, the enhanced 

dendritic expression of HCN1 subunits in sclerotic tissue could indeed represent an 

endogenous neuroprotective process developing during prolonged hyperexcitability. 

This unique role of Ih shows that in designing anti-epileptic drugs to selectively target 

molecular subtypes of channel subunits, the family of HCN channels should also be 

considered (Cosford et al., 2002; Wickenden, 2002). 

In view of these various studies on animal models of epilepsy, it is clear that the 

control of HCN subunit expression in neurons is determined not only by the type of 

seizures, but also by the cell type and the developmental stage. This latter factor 

appears to play a particularly important role, because the effects of single febrile 

seizures in young animals are persistent, whereas those of the stronger kainate 

seizures in adult animals show no consequence on HCN expression (Bräuer et al., 

2001; Brewster et al., 2002). In general, the alterations in the expression of channel 

message largely explain the functional alterations in current properties, although there 

are some disagreements with respect to the persistence of the effects at these two 

levels (see e.g. (Brewster et al., 2002)). The mechanisms translating seizures into 

altered HCN channel expression remain, so far, unexplored, but could range from 
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acute influences, such as synaptic activity, (see e.g. (Van Welie et al., 2002)) to long-

term, chronic modulation of channel expression, for example via hormones and 

inflammatory processes (see e.g. (Pachucki et al., 1999)). Detailing the mechanisms 

controlling transcription and expression of HCN channel genes will certainly be 

facilitated via cultured preparations which allow the induction of defined types of 

hyperexcitability for defined periods of time (see (Brewster et al., 2003)). 

 

Nerve injuries. Abnormal spontaneous action potential discharge is a frequent 

consequence of peripheral nerve injury and is believed to be critical in the initiation 

and persistence of neuropathic pain syndromes, such as tactile allodynia (strong 

sensation evoked by light mechanical stimuli) and spontaneous painful sensations 

(Rappaport and Devor, 1990). Acute injury to the spinal cord can result in a 

hyperexcitability of not only nociceptive pathways, but also to dorsal root ganglia cell 

bodies that give rise to large, myelinated Aβ/δ-fibers not normally involved in the 

transmission of pain (Shir and Seltzer, 1990). A resulting hypersensitivity of sensory 

pathways and a misrepresentation of sensory information is thought to contribute to 

the clinical symptoms of neuropathic pain, although central pain processing 

mechanisms are likely involved as well (Rappaport and Devor, 1990). Several rat 

models of spinal cord injury, such as axotomy (Black et al., 1999), chronic 

constriction (Dib-Hajj et al., 1999) or ligation (Kim et al., 2001a) of spinal nerves, 

show that an altered expression of several voltage-gated Na
+
 channel subunits 

contributes to the persistence of neuronal firing in injured cells (for review, see 

(Waxman, 2001)). Interestingly, however, neuropathic pain behavior was reversed in 

a spinal nerve ligation model by the Ih blocker ZD7288, which also reversed the 

spontaneous discharges in injured large myelinated fibers (Chaplan et al., 2003). In 

this, as well as in a chronic compression model (Yao et al., 2003), the maximal 

current density was 1.5-2.5-fold enhanced compared to control, with variable effects 

on voltage dependence and kinetics. These findings establish Ih upregulation, resulting 

from nerve injury, as an essential factor leading to the sensitization of spinal cord 

neurons and to neuropathic pain. The molecular identity of the HCN channels 

contributing to these changes remains to be determined, but appears to involve a 

decrease in the amount of HCN1 and HCN2 mRNA and protein in the case of nerve 

ligation (Chaplan et al., 2003). 
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Besides neuronal injury, lesions in excitatory input can also cause an altered 

expression of HCN channels. In the case of deafferentiation of the hippocampus by 

lesions to the entorhinal cortex, the downregulation of mRNA for HCN1 appears 

prominently in a differential display of total mRNA from isolated hippocampi, and a 

strong reduction in HCN1 protein expression in several neuronal cell types of the 

hippocampus (Bräuer et al., 2001). This decreased expression was paralleled by a 

strong hyperpolarizing shift (up to 19 mV) in current voltage dependence. The strong 

changes were partly reversed following reactive sprouting and replacement of 

entorhinal input by septal and associational afferents. 

 

7. Conclusions. 

The past five years have seen an explosion of information on the molecular 

basis of Ih and its role in normal and pathological processes. The crucial impetus arose 

with the identification of the molecular subunits constituting the channels and is 

currently progressing with the arrival of the knock-out animals, which now also allow 

insight into possible behavioral roles of this current. In addition, the misexpression of 

mRNA in diseased or injured tissue shows that HCN channels can promote 

channelopathies arising at the transcriptional level (Waxman, 2001). Although such 

pathogenic properties are well-known for other channel types (for review, see 

(Waxman, 2001)), they appear to be particularly dramatic for the HCN channels since 

these often occupy a unique physiological role in a cell’s channel repertoire that can 

not be easily complemented or substituted by other ionic channels. Dysregulated 

expression of HCN channels is further complicated by its variable appearance. It can 

be reversible or persistent in time, and appears to be dependent on the precise cellular 

and developmental context in which it occurs. Furthermore, inflammation or ischemia 

occurring under pathological situations may influence the current (Erdemli and 

Crunelli, 1998; Linden et al., 2003). 

A few recent studies have highlighted that understanding the regulation of Ih 

functionality in intact systems will also require considerable attention in the near 

future. For example, in cardiac cells, the properties of Ih are determined by 

sympathetic innervation (Qu et al., 2000) and appear to be co-regulated by β2-

adrenergic receptors (Graf et al., 2001). In lobster stomatogastric neurons, Ih 

expression is co-regulated with the expression of channels giving rise to transient K
+
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currents. This regulation occurs in an activity-independent manner and appears to take 

place at the translational level, as it is not influenced by blockers of transcription 

(MacLean et al., 2003). Altogether, these data strongly suggest that many aspects of 

channel expression, including activation of promoter regions of HCN genes, channel 

synthesis and trafficking, as well as on-site regulation of the channels carefully 

control both density and properties of Ih. Understanding these pathways, in a manner 

as elaborated perhaps as that on the trafficking and homeostasis of synaptic glutamate 

receptors, may prove crucial in designing novel therapeutic targets for cardiac and 

neuronal pathologies. Moreover, they may contribute in the development of a major 

conceptually novel therapeutic approach emerging in the HCN channel field: the de 

novo creation of biological pacemakers capable of driving the heart when the sinus 

node signal fails (Plotnikov et al., 2004) and, perhaps, also for diseases associated 

with rhythmicity in the brain.  

 

Figure legends. 

 

Fig. 1. Summary of basic functional and structural characteristics of Ih and the 

underlying HCN channels. A. Transmembrane topology of the cloned HCN 

channels. S1-S6 symbolize the 6 transmembrane-spanning domains of the 

channels, N and C the N- and C-terminus, respectively. The box at the C-

terminus represents the cyclic nucleotide-binding domain, which is connected 

to the channel via a C-linker domain (Wang et al., 2001) important in coupling 

the binding of cyclic nucleotide to alterations in voltage-gating of the channel. 

The number of amino acids at both termini vary for the four HCN subunits. B. 

Left, activation curves of Ih recorded in ferret thalamocortical cells in the 

presence of incrementing concentrations of 8Br-cAMP, a weakly hydrolyzable 

analog of cAMP, in the whole-cell recording pipette. Note the progressive 

rightward shift of the activation curve with increasing levels of the cyclic 

nucleotide. Inset shows a family of current responses generated by steps to the 

voltages indicated. Vertical and horizontal scale bars indicate 400 pA and 400 

ms, respectively. Right, concentration-response curve of the shift in the half-

activation voltage induced by 8Br-cAMP. The maximal shift corresponds to 

10 mV. C. Identification of the ‘funny’ current, activating at voltage ranges 



 

 165 

covered by the diastolic potential. Reproduced from Reference 11 (copyright 

permission from Nature).  

 

Fig. 2. Summary of old and novel physiological roles of Ih in neurons. A single 

cell is drawn schematically with an axonal (A), somatic (S) and dendritic (D) 

compartment. The axonal compartment can also represent a presynaptic 

specialization in retinal neurons. The roles of Ih are described with key words 

assigned to these compartments. The different regulatory pathways involved in 

these roles are symbolized by ionic channels with various colours, as indicated 

in the legend.  

 

Fig. 3. The dual gating of Ih by voltage and cyclic nucleotides: model and its 

physiological consequences. A. Model of a channel occupying four possible 

states following concerted voltage-induced transitions between the four closed 

(squares) and the four open (circles) subunits, as well as via ligand binding 

and unbinding. Binding sites for cyclic nucleotides are shown as half-squares 

or half-circles attached to the closed and open subunits by a line. Cyclic 

nucleotides are symbolized by filled circles. Thick arrows mark the preferred 

directions of transitions. For further details, see (Wang et al., 2002a). B. Dual 

gating of Ih by voltage and ligands results in a persistent activation of the 

channels that contributes to the timing of slow network rhythms. An 

intracellular recording from a ferret thalamocortical cell participating in 

spindle waves in vitro is shown, indicating the coincidental occurrence of 

repetitive hyperpolarizing inputs (inhibitory postsynaptic potentials, IPSPs) 

and the rebound Ca
2+

 spikes, which lead to the synthesis of cAMP (filled 

circles). Note the small depolarization (Ih-mediated) following each spindle 

wave. Presumed channel states occupied preferentially during the different 

phases of the network rhythms are shown at the bottom. Note the persistence 

of channels in the dually gated states even after the cAMP transient has mostly 

dissipated. For further details, see references in Chapter 6.1. 
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HCN 

subunit 

Transcription enhanced Transcription diminished 

HCN1 • Chronic temporal lobe epilepsy (174) 

• WAG/Rij rat, thalamocortical neurons 

(173) 

• Febrile seizures, CA1 (171) 

• Kainate seizures in young animals, 

CA1+CA3 (171) 

• Entorhinal cortex lesion, hilar neurons 

• Spinal nerve ligation, dorsal root ganglia 

cells (189) 

HCN2 • Febrile seizures, CA1 (171) 

• Kainate seizures in young animals, 

CA1+CA3 (171) 

• Hypertrophy of cardiac ventricle (159-160) 

• Spinal nerve ligation, dorsal root gangli

cells (189) 

HCN4 • Hypertrophy of cardiac ventricle (159-160) 

 

 

Table 1. Changes in mRNA expression for HCN subunits found in tissues producing 

abnormal cardiac or neural activity. Numbers in parentheses indicate the reference. 

The correspondence between altered mRNA expression and functional current 

alterations are often incomplete and not presented in the table. In the following 

studies, the changes in mRNA expression were paralleled by similar alterations in 

protein expression: 174, 180, 189  
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List of abbreviations 

 

[cAMP]i   intracellular concentration of cAMP 

4-AP    4-aminopyridine 

AC    Adenylyl cyclase 

ACPD    (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid 

AMPA    S-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid 

AP    Action potential 

APT    Anterior pretectum  

Bac    Baclofen 

BC    Basket cells 

BZ    Benzodiazepine 

cAMP    Cyclic 3', 5'-adenosine monophosphate 

CAT    Chloramphenicol acetyl transferase 

CB    Calbindin 

CCK    Cholecystokinin 

CI    Calcium impermeable 

CP    Calcium permeable 

CR    Calretinin 

CRE    cAMP responsive element 

CRH    Corticotrophin-releasing hormon 

CT    Corticothalamic 

dLGN    dorsal lateral geniculate 

EEG    Electroencephalo gramm/graphic 

EPS P/C   Excitatory postsynaptic potential/current 

FeedB    Feedback 

FeedF    Feedforward 

GAD    Glutamic acid decarboxylase 

GPCR    G-protein-coupled receptors 

FS    Fast-spiking 

GABA    γ-aminobutyric acid  

GABAA receptor  γ-aminobutyric acid receptor type A 
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GABAB receptor  γ-aminobutyric acid receptor type B 

GABAC receptor  γ-aminobutyric acid receptor type C 

HCN    Hyperpolarization-activated cationic non-selective 

HVA    High-voltage activated 

HOn    Higher-order nuclei 

IAHP    Afterhyperpolarization or calcium-dependent potassium 

    current  

Ih    Hyperpolarization-activated cationic current 

IPS P/C   Inhibitory postsynaptic potential/current 

IT    Low-threshold calcium current 

Iso    Isoproterenol 

LD    Thalamic latero-dorsal nucleus 

LTS    Low-threshold spike 

LVA    Low-voltage activated 

LP    Thalamic latero-posterior nucleus 

MF    Mossy fiber 

NEM    N-ethylmaleimide 

NMDA   N-methyl-D-aspartate 

NPY    Neuropeptide Y 

PKA    Protein kinase A 

Po    Thalamic posterior nucleus 

nRt    Nucleus reticularis 

PC    Pyramidal or principal cell 

PV    Parvalbumin 

SST    Somatostatin 

SWD    Spike-and-wave discharge 

TC    Thalamocortical 

TEA    Tetraethylamonium 

VB    Ventrobasal  

VIP    Vasoactive intestinal peptide 

ZI    Zona incerta 

ZIv    Ventral domain of the zona incerta 
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