FLEXIBLE SEMANTIC SERVICE EXECUTION

Inauguraldissertation

zur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultét

der Universitiat Basel
von

Thorsten Moller
aus Saalfeld /Saale, Deutschland

Basel, 2012

Originaldokument gespeichert auf dem Dokumentenserver: http://edoc.unibas.ch.

[@oile)

Dieses Werk ist unter dem Vertrag “Creative Commons Namensnennung — Keine kommerzielle
Nutzung — Keine Bearbeitung 3.0 Schweiz” lizenziert. Die vollstindige Lizenz kann unter
http://creativecommons.org/licences/by-nc-nd/3.0/ch eingesehen werden.

http://edoc.unibas.ch
http://creativecommons.org/licences/by-nc-nd/3.0/ch

@creative
commons

Attribution-NonCommercial-NoDerivs 3.0 Switzerland

You are free:

@ to share — to copy, distribute and transmit the work.

Under the following conditions:

@ Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

@ Noncommercial — You may not use this work for commercial purposes.

@ No Derivative Works — You may not alter, transform, or build upon this
work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from
the copyright holder.

Public Domain — Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:

* Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

¢ The author’s moral rights;

* Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to the web page http:
//creativecommons.org/licences/by-nc—-nd/3.0/ch.

Disclaimer — The Commons Deed is not a license. It is simply a handy reference for under-
standing the Legal Code (the full license) — it is a human-readable expression of some of
its key terms. Think of it as the user-friendly interface to the Legal Code beneath. This Deed
itself has no legal value, and its contents do not appear in the actual license.

Creative Commons is not a law firm and does not provide legal services. Distributing of, dis-
playing of, or linking to this Commons Deed does not create an attorney-client relationship.

http://creativecommons.org/licences/by-nc-nd/3.0/ch
http://creativecommons.org/licences/by-nc-nd/3.0/ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultat

auf Antrag von

Prof. Dr. Heiko Schuldt, Universitat Basel, Dissertationsleiter
Prof. Dr. Birgitta Konig-Ries, Friedrich-Schiller-Universitit Jena, Korreferentin

Basel, den 27. Mérz 2012

Prof. Dr. Martin Spiess, Dekan

To my mother and father

Stillstand ist der Tod
Geh voran, bleibt alles anders

HERBERT GRONEMEYER
first line also in Triptychon, MAX FRISCH

Zusammenfassung

Die vorliegende Arbeit widmet sich einer wichtigen Aufgabenstellung, die im Um-
feld verteilter und dienstbasierter Architekturen auftritt: Die korrekte, zuverldssige und
effiziente Ausfiihrung softwarebasierter Dienste. Im Zentrum dieser Arbeit stehen da-
bei zwei Ansitze die jeweils die Flexibilitat bei der Umsetzung dieser Aufgabe steigern.
Erstens eine neuartige Methode zur automatisierten Vorwéartsbehandlung von Dienst-
tehlern zur Ausfiihrungszeit, genannt Control Flow Intervention (CFI). Zweitens eine
in sich geschlossene Ausfiihrungstechnik die die Migration laufender Ausfithrungsin-
stanzen zwischen verfiigbaren Ausfiihrungsmaschinen gestattet. Beide tragen den spe-
zifischen Anforderungen neuartiger internetbasierter und mobiler Anwendungsgebiete
Rechnung. Wesentliche Merkmale dieser Anwendungen sind (i) Inhdrenz entfernter
Aufrufe, (ii) ad-hoc-Dienste um dynamisch sich verdandernden Umgebungen und Be-
nutzerprédferenzen gerecht zu werden und (iii) eine hohe Fehleranfalligkeit bedingt
durch drahtlose Verbindungen und Volatilitidt angebotener Dienste.

Die zugrunde liegende Theorie fiir alle in dieser Arbeit angestellten Untersuchun-
gen sind Semantische Dienste, insbesondere basierend auf deduktiven und entscheid-
baren Beschreibungslogiken. In einem ersten Schritt greifen wir bisherige Arbeiten aus
diesem Bereich auf und entwickeln diese weiter hin zu einem kohérenten formalen Sys-
temmodell welches wesentliche Dimensionen in der Semantik von Diensten vereint.

Basierend auf diesem Systemmodell liegt anschliessend das Hauptaugenmerk auf
CFL. Ziel dieser Methode ist es, Dienstfehler durch geeignete Ersetzungsstrategien nach
vorn zu korrigieren, so dass das geplante Gesamtziel eines Dienstes in dquivalenter
oder zumindest vergleichbarer Form trotzdem erreicht werden kann. Dies wird durch
dynamisches Ausweichen auf semantisch dquivalente oder dhnliche Alternativen er-
moglicht. Hierbei wird davon ausgegangen, dass konkrete Alternativen nicht Bestand-
teil der Dienstspezifikation sind. Es wird lediglich angenommen, dass sie in der An-
wendungsdoméne vorhanden sind. Da Alternativen somit nicht vordefiniert sind, wird
im Fehlerfall dynamisch nach ihnen gesucht.

Da das vorgestellte Systemmodell zwei Arten von Nebenldufigkeit bei der Dienst-
ausfiihrung zuldsst, und da die Reprédsentation des Zustandes verschiedener Ausfiih-
rungsinstanzen in einer gemeinsamen Wissensbasis erfolgt, wird ausserdem der kor-
rekte und inferenzvermeidende simultane Zugriff auf solche Wissensbasen untersucht.
Diese Arbeit stellt dazu ein neuartiges Zugriffsmodell zur Koordination von neben-
laufigen Transaktionen auf einer Web Ontology Language Wissensbasis vor. In diesem
Zusammenhang werden dessen Leistungs- und Isolationseigenschaften diskutiert.

Um die praktische Anwendbarkeit der entwickelten Methoden untersuchen zu kon-
nen, wurden diese prototypisch in unserem verteilten und dezentralen Ausfithrungs-
system OSIRIS NEXT implementiert. Wir beschreiben den grundlegenden Aufbau die-
ses Systems. In diesem Zusammenhang stellt diese Arbeit dann die verteilte Ausfiih-
rungstechnik vor, die insbesondere fiir (semi-)automatisch zusammengefiigte und nur
wenige Male ausgefiihrte ad-hoc-Dienste optimiert ist.

Schliesslich wurden die vorgestellten Verfahren durch verschiedene Experimente
hinsichtlich ihres Laufzeitverhaltens quantitativ evaluiert. Die dabei gemachten Erfah-
rungen und Resultate zeigen das Potential der Verfahren fiir deren Einsatz in der Praxis.

Abstract

This thesis deals with an important task in the context of distributed and service-
oriented architectures: the correct, reliable, and efficient execution of software-based
services. In the center of this work are two approaches that increase the flexibility in
this task. First, a novel method for automated forward recovery of service failures at
execution time, called Control Flow Intervention (CFI). Second, a self-contained tech-
nique that allows for migration of running execution instances among available execu-
tion machines. Both address requirements specific to novel Internet-based and mobile
applications. Characteristic for such applications are (i) inherent remote invocation, (ii)
ad-hoc services to cope with dynamically changing environments and user preferences,
and (iii) frequent errors due to wireless connections and volatility of offered services.

The underlying theory for all investigations made in this thesis are Semantic Ser-
vices, based in particular on deductive and decidable Description Logics. In a first step,
we take up prior work in this area and develop it further towards a coherent formal
system model that combines essential dimensions of service semantics.

Based on this model, the focus is then on CFI. The goal of this method is to cor-
rect service failures by appropriate replacement strategies in a forward-oriented way,
meaning that the overall goal of a service remains attainable, though in a semantically
equivalent or at least comparable form. This is achieved by dynamically shifting to se-
mantically equivalent or similar alternatives. Alternatives are however not pre-defined
as part of the service specification. Rather, it is assumed that they exist in the application
domain and that they are searched for on demand in the presence of a failure.

Since the system model allows for two types of concurrency in the service execution,
and since the state of execution instances is represented in a shared knowledge base,
we also investigate the problem of ensuring correct concurrent access to knowledge
bases so that inferences are avoided. Specifically, we present a novel concurrency con-
trol model for transactions operating over a Web Ontology Language knowledge base.
Efficiency and isolation properties of the presented approach are furthermore discussed.

In order to investigate the practical applicability of the presented methods, they
were prototypically implemented in our distributed and decentralized execution sys-
tem OSIRIS NEXT. We describe the architecture of this system. In this context, the
distributed execution technique is presented that is particularly optimized for ad-hoc
services that are usually (semi-)automatically composed and executed a few times only.

Finally, the presented methods were evaluated quantitatively by various experi-
ments with respect to their runtime behavior. The results and the experiences gained
show the potential of the methods for their application in practice.

Acknowledgments

I am deeply indebted to my adviser Prof. Heiko Schuldt for his friendly supervision,
for many excellent ideas he provided, and for displaying patience on my occasional ten-
dency towards action rather than intellect. He gave me the unique opportunity to write
this thesis in his group. I also enjoyed the relaxed working environment he provided.
This thesis would not have reached its altitude without him.

I wish to thank my former and present colleagues of the DBIS group at University of
Basel. There have been numerous conversations and stimulating discussions over the
last years. Out of the DBIS members, I would especially like to thank my officemate
Nadine Frohlich for sharing her insights on scientific and other topics, and for sharing
all the (unavoidable) ups and downs in doing a Ph.D.

I would also like to express how valuable it was to collaborate with many know-
ledgeable people during the research projects CASCOM and LOCA. Among the people
that contributed to this work, I would like to thank Marcel Biichler who supported
me in the implementation. For her professional and uncomplicated character, and for
agreeing to be a member of the thesis committee, cordial thanks go to Prof. Birgitta
Konig-Ries. A big thanks also goes to Dr. Christian Hollmann and Roman Langfeld for
reading preliminary versions and for making invaluable comments.

This thesis would probably never have been started without Sungyon So. Her nat-
ural acumen persuaded me (in an irresistible way) that I should do a Ph.D. I also like
to thank her for staying close over the years despite the physical distance. Going even
further back in time, it is to the credit of my sister Iris Moller who persuaded me in the
same yet different way to start the voyage to Computer Science.

A special thanks goes to my parents Christine and Siegfried Moller for everything
they gave to me, especially their continuous encouragement, support, and trust. This
thesis is dedicated to them. Finally, I owe so much to my beloved Julia. Her strength
and lightheartedness comforted and protected me throughout the last year of finishing
this work — no one knows better these engaged days.

Contents

Zusammenfassung
Abstract
Acknowledgments
1 Introduction
1.1 Service-based Applications L L.
1.2 Problem Description
1.3 Thesis Goals and Contributions
14 ThesisOutline
2 Motivation
2.1 E-Commerce Scenario o oo
22 E-HealthScenario o
2.3 Application Dynamics and Consequences
3 Fundamentals
3.1 DescriptionLogics o
3.1.1 Description Logic SHOZN it
3.1.2 Description Logic SROZQ
3.1.3 Datatype Mapsand DataRanges
3.14 Reasoning and its Computational Complexity
3.1.5 Operations on KnowledgeBases
3.2 Resource Description Framework
3.3 Web Ontology Language
331 ImportMechanism
3.3.2 Representation Formats
333 DProfiles
334 MappingtoRDFGraphs.
4 System Model
4.1 Basic Elements, Relations, and Assumptions
411 FunctionalUnit
412 Operation
413 Implementation
414 Service
415 Profile
416 Process
4.1.7 Service Description oo L

42 Service Model,

ix

xi

xiii

XVi CONTENTS
421 Profile Parametero 51

422 Preconditionsand Effects 56

42.3 Profile, Operation, and Service 73

43 ProcessModel 76
431 ControlFlow 76

432 DataFlow o 85

433 Well-formed Processes 90

44 SummMary 91
5 Forward Failure Handling using CFI 95
5.1 The Basic Control Flow Intervention Cycle 97
52 Rangeof Application Lo L oo 98
52.1 System Environments 98

522 Failuretypes. o 100

5.3 Replacements and their Structure oo 0oL 102
5.4 Semantically Equivalent Execution 104
54.1 TheMatchmakingTask 106

542 ThePlanning Task 111

5.4.3 Functional Profile Equivalence 117

5.4.4 Functional Equivalent Execution 121

54.5 Similar Execution and Non-functional Properties 131

5.5 Integration with Transactional Processes 135
551 Guaranteed Termination 136

55.2 Integration Strategies. L. 138

5.6 Repeated Intervention 139
56.1 Threshold 140

562 Progress 140

5.6.3 Possibility to make Progress 141

57 Discussion o o 142
571 Disambiguating Profile Parameters 142

5.7.2 To Plug-in Match or not to Plug-inMatch 143

5.7.3 Structure-aware versus Structure-nescient Replacements 143

574 Replacement Composition Planning via Translation into PDDL . . 144

58 Summary 145
6 Concurrency Control for Shared Knowledge Bases 147
6.1 Motivation e 148
6.2 CC Model for OWL KnowledgeBases 150
6.21 OWLDataltems 150

6.2.2 BasicOperations, 152

6.23 Transactions o o 153

6.2.4 Correct Concurrent Access 154

6.2.5 AccessProtocolo 155

6.2.6 Higher Level Conflicts 157

6.2.7 Extended Commit Protocol 161

6.2.8 Correctness of the Protocol 162

CONTENTS XVii

6.3 RDF Triple Store Integration 164
6.4 Integration of Inferencing Engines, . 166
6.4.1 Online Computation of Implicit Knowledge 167

6.4.2 Materialization of Implicit Knowledge 167

6.5 CC applied to Semantic Service Execution 169
6.6 Discussion 171
6.6.1 Correctness oo Lo 171

6.6.2 Performance 172

6.7 Summary 174

7 Implementation 177
71 OSIRISNEXT e 177
7.1.1 Architectural Overview 178

7.1.2 Peer-to-Peer Execution 000000 182

713 Control Flow Intervention 187

7.2 KB Access Optimization Techniques 188
721 Prepared Queries Lo oo 190

722 FrameCaching 192

7.3 Snapshot Isolation OWL DataStore. 195
7.3.1 Interfacing withthe OWLAPI 195

7.3.2 Data Structures and Snapshot Management 196

7.3.3 Transactions and Conflict Checking 196

8 Experimental Results 199
8.1 Control Flow Intervention 199
8.1.1 ExperimentalSetup., 200

812 Results 200

8.2 ExecutionEngine 0 00 oo oo 202
8.2.1 ExperimentalSetup. 202

822 Results 202

8.3 KB Access Optimization Techniques 203
8.3.1 ExperimentalSetup., 203

832 Results 204

8.4 Snapshot Isolation OWL DataStore 207
8.4.1 ExperimentalSetup. 0. 208

842 Results 209

9 Related Work 215
9.1 Adaptation and Exception Handling 215
9.2 Distributed Execution 0 .. 217
9.3 Concurrent Access to KnowledgeBases 219

10 Conclusions and Future Work 223
10.1 Summary 223

10.2 Future Work 225

XVii CONTENTS

Appendix 227
Al Effect System Algorithms 0oL 227
A.2 Conditional Choice for Control Flow Graphs 230
A.3 Properties of Read and Update Operations 231

Bibliography 233

Index 261

Figures

1.1

2.1
2.2

3.1

3.2

4.1
4.2
4.3

4.4

4.5
4.6
4.7

51
5.2
53

6.1

6.2

6.3

6.4

6.5

6.6

7.1
7.2
7.3

Integral parts and important requirements of the service execution task. . 4
Example e-commerce scenario: Book Seller. 10
Example e-health scenario: Emergency Assistance. 11

Distinction between high level knowledge base updates and direct up-

dates at the level of the storagelayer. 33
Graphical representation of overlaps and containment regarding lan-

guage expressiveness for FOL, OWL, and Logic Programs 37
Classification of service semantics combined in the system model. 41
Basic elements of the system and their static structure. 43
Schematic diagram of assignment functions for exemplary input/output

in different formats. o L oL Lo Lo 54
Links between representatives of profile parameters and variables in pre-

conditions and effects (dotted lines represent possible links). 67
Unfolded control flow graph of the emergency essistance service. 80
Data flow primitives. Lo o o 86
Summary of the system model depicting its main layers. 92
CFI in relation to conventional failure handling approaches. 96
Integral activities forming the Control Flow Intervention cycle.. 97
Examples for structural substitutions in control flow graphs. 105

Overlapping read /update access on the KB for concurrent service execu-

Commit Pipe for OWL Concurrency Control. 162
CC model levels for RDF triple store integration. Transactions consist-
ing of operations over OWL syntactic instances result in operations over

disjoint sets of RDF triples at lowestlevel. 164
Data items at OWL and RDL level illustrated using a fictitious OWL syn-
tacticinstance. oL 165
System Architecture Types for Integration of an OWL Data Store with
Inferencing Engines. L 167

Mapping of read and update queries (see Figure 6.1) for service execution
to read /update transactions and example operations over OWL syntactic
instances. 170

High level organization of OSIRIS NEXT. 179
Internal design and functional decomposition of an OSIRIS NEXT peer. . 180
Emergency Assistance process depicted as nested OWL-S constructs. . . . 184

XX FIGURES
74 Simple example illustrating the execution strategy implemented in

OSIRISNEXT. . . . o v ot 185

7.5 Internal structure and main components of an execution peer. 187
7.6 Comparison of (pre-) condition evaluation procedure for conventional

and optimized approach using prepared queries. 192

8.1 Search and substitution times for increasing number of available services. 202
8.2 Fife-number summary of total execution time for Dictionary service as a

function of increasing number of concurrent execution requests per peer. . 203

8.3 Repeat-Until service executed with different configurations. 206
8.4 Total execution time as a function of KB size for conventional and opti-

mized configuration. L L L 207

8.5 Execution times in comparison for basic workloads. 211

8.6 Execution times in comparison for additional workloads. 212

Tables

1.1
3.1

3.2
3.3

34
4.1

51
6.1

7.1
7.2

8.1

8.2
8.3
8.4
8.5
8.6

Characteristics of applications considered in this thesis. 2

Syntax and Semantics of SHOZN concept expressions and roles and cor-

responding OWL constructs 22
Additional Constructs in SROZQ and their Semantics 25
Model-Theoretic Semantics of DL+D data ranges, concepts, axioms, and

ASSEItIONS . . . v v e e e e e e e 27
Examples for mapping of OWL syntactic constructs to RDF triples. 39
Combinations of TBox axioms and ABox assertions that cause KB incon-

sistency for L1, and in the absence of the UNA. 71
Different dimensions of planning domains. 115

Commutativity and set-preservation of read, add, and delete operations

onOWLdataitems. 153
Classification of OWL-S control constructs with regard to migration. . . . 183
SWRL atoms, their semantics, and mapping to SPARQLBGP. 191
Search and substitution times for service profiles of different size (varying

number of inputs, outputs) Lo oo Lo L 201
Exemplary services used for evaluation purposes. 204
Execution speedup of exemplary services. 205
Workloads used for the performance analysis and their characteristics. . . 208
Average time to normalize n-ary axioms/assertions (2 <n <10). 210

Comparison of execution time and transactions per second as a function
of increasing concurrency and workloads. o000 213

Introduction

IF WE WERE ASKED TODAY to name major advancements and breakthroughs regard-
ing systems, hardware, software, and information management technologies within
the last two decades, one might frequently get the following answers. At systems level,
methods that enabled pervasive and decentralized infrastructures. At hardware level,
mobile devices and wireless communication technologies. At software level, the new
paradigm of Service-oriented Computing where applications are built by combining re-
usable building blocks rather than being monolithic entities. And finally, methods and
data models that enabled data and information management to scale up to the global
level.

One particular example where all this went together is certainly the Internet with
its prevalent application the Web. While in the early days of the Internet the main ap-
plications were electronic mail, instant messaging, and file transfer, it has evolved into
a multi-purpose application platform with applications of various kinds. Notably, it
is used today as a platform to build service-oriented applications. Around the millen-
nium, however, it was found that methods used at that time for information represen-
tation in the Web (and other application areas) generally lack the ability to make the
meaning — the semantics — of information understandable to machines. The goal of
semantic technologies — which are being researched much longer — is to facilitate au-
tomation based on formal frameworks allowing machines to interpret and reason about
the concepts, objects, and their relations within a given domain. The vision of the Se-
mantic Web [BLHLO1, FWL02] is to (i) bring these semantic technologies to the global
level of the Web and other applications built on top of the Internet, and (ii) to enable
the interlinking of information from diverse heterogeneous sources. These technologies
therefore play an important role to information integration.

This thesis cannot be viewed independent of all these fields, as it is the progress in
these fields that spawned novel application forms that call for appropriate methods to
realize them. In fact, we see this thesis situated in the intersection of the following ar-
eas. First, pervasive and often decentralized infrastructures. Second, applications that
are built based on the paradigm of Service-oriented Computing. Applications in which
information technology is more and more integrated into everyday activities, with mo-
bile users and mobile as well as embedded devices. Finally, methods to make the se-

2 Introduction

mantics of information and resources — most notably services — available for automated
interpretation and reasoning by machines.

Having illuminated the general context of this thesis, we will now introduce it in
more detail. In the remainder of this chapter we describe the envisioned applica-
tion forms, outline the problems addressed, summarize the contributions made, and
overview how this thesis is structured.

1.1 Service-based Applications

In this work, we consider applications that are built based on the paradigm of Service-
oriented Computing (SOC) [Pap03]. In this programming and computing model, single
services are re-usable pieces of software, designed to achieve intents of some sort either
by physical transformations in the real world or information processing on data. We
expect services to be available at a large variety of stationary, mobile, and embedded
devices. Also, we expect services to be accessed mainly by users via mobile devices.
Table 1.1 summarizes the characteristics of service-based applications considered in this
thesis. These characteristics reflect features sought in today’s and future Internet-based
applications [CS06, SGAQ7].

Table 1.1: Characteristics of applications considered in this thesis.

Dimension Explanation

Methodology Applications are composed out of a set of pre-existing, reusable, and
loosely coupled components — the services — each contributing cer-
tain units of functionality required by the application.

Creation Not necessarily pre-defined and manually created by software en-
gineers. Rather, they may be synthesized ad hoc using (semi-)auto-
mated service composition methods [RS04] in order to take into ac-
count dynamics of various origins such as user preferences or envi-
ronmental and contextual properties.

Machinery Services are deployed to a large variety of hardware, not only on
stationary, but particularly on mobile or embedded devices of di-
verse computing, storage, and communication capabilities.

Operation Services process data or information and might as well create effects
in the real world. Regarding the data processed, we focus, however,
on discrete services in contrast to stream-based services.*

Interaction Remote interactions between services themselves and services and
client devices in an asynchronous manner. Applications form (com-
plex) interaction patterns over their constituting services.

* The difference between discrete and continuous operation mode is clarified in Section 4.1.1.

1.2 Problem Description 3

Applications may be built solely by combining pre-existing services. Such a combi-
nation of a set of services that altogether make up a value-added “larger” one is referred
to as a composite service (CS) [MBE03].! Notably, a CS may represent a workflow or busi-
ness process. In fact, the SOC paradigm together with composite services is increasingly
adopted by IT-supported Workflow Management (WfM)? and Business Process Man-
agement (BPM)3. The underlying assumption is that the tasks of workflows or activity
units of business processes can be realized using software services and their operations.

1.2 Problem Description

An important task is the automated coordination of service execution. Analogous to
automated workflow and processe execution [AHO2], service execution comprises all the
activities that need to be carried out at runtime by a system in order to (i) invoke the ser-
vices and operations of which it is composed in a coordinated manner as specified, (ii)
to correctly manage (store and access) data that is processed unless execution finishes,
and (iii) to detect, handle, and recover from runtime failures (see Figure 1.1). These
activities also include initiation, control, and validation of service invocations, and in-
vocation of services in parallel where possible. Typically, this task is carried out by a
dedicated execution engine* acting on behalf of a user or software agent. Such an engine
is responsible for correct service enactment and it should also include means to achieve
a sufficient degree of reliability and efficiency. It may come stand-alone or can be an
integral part of comprehensive service-based workflow management systems (WfMS)®
or service-based business process management systems (BPMS)®.

When invoked, services create effects of some sort in the real world and/or process
data of some kind. This is the functional dimension of services. On the other hand,
they consume different resources at runtime (e.g., electric energy, disk space for data
being processed, CPU cycles for computations). This is the non-functional dimension
of services. As a matter of these two, both service users and service providers are in-
terested that certain properties can be ensured in the course of execution. Regarding
the functional dimension, the most important properties are correctness, reliability, and

The technical concept can be compared to mashups, a term coined more recently to refer to content ag-
gregation technologies [BDS08]. Mashups, however, aim at combining data and presentation in addition
to functionality. Mashups therefore target a broader spectrum of composite applications.

2WfM is commonly viewed as including concepts, methods, and technologies to support the design,
administration, configuration, enactment, and analysis of business processes [Wes07].

3According to [AHWO03], BPM can be considered an extension of WfM that originates from office
automation [JB96].

*Note that the singular form used here shall not imply any system related property. Such an engine
may be a centralized (and autonomous) system. On the other hand, multiple engines may cooperate in a
distributed (and decentralized) manner for accomplishing the execution task.

SIn [Law97], a WEMS is defined as a system that defines, creates and manages the execution of work-
flows through the use of software, running on one or more workflow engines, which is able to inter-
pret the process definition, interact with workflow participants and, where required, invoke the use of
Information-Technology (IT) tools and applications.

®In [Wes07], a BPMS is defined as a generic software that is driven by explicit process representations
to coordinate the enactment of business processes.

4 Introduction

requirements

Correctness

‘ Reliability \

| Efficiency]

Service Execution Task

Figure 1.1: Integral parts and important requirements of the service execution task.

efficiency (see Figure 1.1). While the latter two should be clear, the former refers to
preservation of a consistent state upon termination (assuming that one started from a
consistent state) even in the presence of failures or exceptional situations. Apart from
failures caused by errors made at design time of a system, failures can occur because
systems are subject to various phenomena of a stochastic nature. Also, one of the eight
golden rules of process management [Dvt05, Chapter 15] states that exceptions should
be considered the rule because not everything can be determined beforehand.

The aspect of system-supported failure handling and recovery is important for the
service execution task, especially when it comes to service execution in distributed en-
vironments such as the Internet where multiple systems (software, hardware) as well as
humans can be involved. In general, one wants to ensure that once execution of a service
has been started it will not arbitrarily halt somewhere before its end, caused by a failure
or an exceptional situation. If this would happen, the final outcome of the service would
be achieved only partially, up to a level where the outcome has not been achieved at all.
This would displease service users as well as service providers. Moreover, resources
that have been used may remain in an undefined state, possibly resulting in inconsis-
tent data seen on subsequent use. Also, subsequent use of resources may be impeded in
case they were not properly released. Consequently, failure handling for service execu-
tion aims at two things. First, ensuring consistency regarding data and resources. This
is achieved, second, by methods that ensure that one can recover from an error either by
rolling back to the previous correct state of the system as if nothing was done or by rolling
forward to a new consistent state. These two approaches are commonly categorized as
backward and forward recovery, respectively [LA90, ALRL04].” Among prominent meth-
ods in this regard are transactional ones (e.g., [GMS87]). Their basic principle is that a
service execution or a part thereof is understood as a transaction. Backward recovery
then either reverses effects of a partial execution (due to an error) by applying the in-

71t should be noted that the term forward recovery is understood in a very general way in the field of
dependable computing, meaning that the system reaches some new state without an error (i.e., there are
no further requirements on what particular state this is).

1.2 Problem Description 5

verse or compensates for these effects. From a semantic point of view, compensation
does not necessarily directly undo the effects but may be done in a countervailing way
(e.g., issuing a credit note and mark an order as canceled instead of completely deleting
it). In contrast, forward-oriented recovery aims at achieving either the original outcome
or a semantically equivalent final outcome. The latter — methods for forward-oriented
failure handling and recovery by achieving semantically equivalent or similar outcomes
— is the first and major dimension of flexibility for the service execution task subject to
be systematically studied in this thesis.

Another aspect belonging to the non-functional dimension is efficiency. One is likely
interested in keeping costs low, both resource usage costs and costs of the service exe-
cution task itself (e.g., in terms of time, space, money). For instance, having the option
to choose from a set of execution engines that are all able to execute a certain service but
varying in terms of costs to do so, one would likely want to choose the one that induces
lowest costs. One may even want to migrate from one execution engine to another in the
course of execution if it turns out that another one can do better; for instance, because
it is faster or consumes less energy. This applies in a similar way to services. Having
determined that a set of services are functionally equivalent or similar, one may want
to choose the one that provides the best value regarding some non-functional property
(e.g., shortest time required for a computation). In a heterogeneous and large scale set-
ting such as the Internet it can often be assumed — in fact, it is usually the case — that
different options exist to choose from semantically equivalent or similar services, from
resources of different capacities, and from devices that may be better suited to execute
a particular service than another.

These two features — (i) forward-oriented semantic service failure handling and (ii)
the ability to migrate an ongoing execution to an engine at runtime that best fits a set of
context and situation specific criteria — are what we consider as constituting flexibility
for the composite service execution task. The main focus is put on a novel approach
to forward-oriented semantic service failure handling which we call Control Flow Inter-
vention (CFI). The general idea of CFI is to allow an execution engine to intervene in
the default control flow of a service in the presence of an invocation failure and allow
it to replace one or several failed services or operations by a semantically equivalent
(or similar) one. Rather than being pre-defined as part of the service specification, a
replacement is dynamically searched by the engine at failure time. To achieve this, CFI
essentially proposes a combined Description Logic and Petri-net based approach to for-
malize and reason about the semantics of services.

In order to implement (i) and (ii) in practice so that computers handle them mostly
in an automatic way, a couple of issues need to be solved:

¢ How to determine whether services or single operations of them are equivalent re-
garding their functional and/or non-functional properties. Essentially, this comes
down to formalizing a decidable notion of equivalence. In addition, this formaliza-
tion should be compatible to also allow representing a broader notion of similarity.

* How to represent functional and non-functional properties of services and how to
store these representations such that one can (efficiently) find candidates for the
purpose of forward failure handling.

6 Introduction

* How to ensure that a replacement that has been selected also preserves executabil-
ity of the service and that it complies with its data flow.

* How to ensure consistency of data especially for concurrent execution of multiple
services and concurrent execution threads within a service. These two types of
concurrency are an essential requirement as they exist in many practical applica-
tion scenarios.

¢ How to determine whether there are other execution engines available that can
take over an ongoing execution as they can do it in a more efficient way (i.e.,
whether it would be beneficial to migrate an ongoing execution to another engine).

¢ How to ensure consistent execution state migration at runtime from one engine
to another so that it can be seamlessly resumed at the new engine from the state
where it was paused.

The next section outlines each of the contributions made on how we address these
questions.

1.3 Thesis Goals and Contributions

The overarching goal of this thesis is to further the research into Semantic Services and
the service execution task in particular. Our work builds upon the state-of-the-art in
Semantic Service research. From this perspective, our work should be seen as one step
towards integration with other research areas, namely, Process and Workflow Manage-
ment and Transactional Information Systems. While many of the visions of Semantic
Services have been described in detail at a conceptual level, we also see this work as a
valuable step towards implementing this vision in practical systems.
The main contributions that result from theoretical work are:

* A formal system model that provides precise semantics for the execution of Se-
mantic Services. It combines, first, the description of the functional and non-
functional properties of services and representation of their semantics based on
Description Logics. Second, the behavior of services by viewing them as pro-
cesses. This includes the flow of control and data, allows for concurrency within
and among service instances (intra- and inter-service concurrency), and captures
how a world state representation in a knowledge base evolves in the course of
execution. The system model furthermore includes distributed environments.

* A novel method to semantic forward-oriented failure handling for the service ex-
ecution task, called Control Flow Intervention [MS08, MS10b]. CFI proposes the
integrated use of Semantic Service matchmaking and composition with process-
based execution [MSGKO06]. More specifically, we (i) analyze failure types that can
be covered by CFI, (ii) define different types of replacements and requirements on
how to find or create them, and (iii) describe requirements to preserve executabil-
ity under a replacement.

1.4 Thesis Outline 7

¢ A general concurrency control model and protocol that provides transactional
read and update access to shared Web Ontology Language [W3C09] (OWL)
knowledge bases. This model jointly considers (i) data level consistency properties
according to serializability theory in databases and (ii) consistency requirements
at Description Logic level. This is achieved by transferring the notion of trans-
actions from databases to read and update access over knowledge bases. Second,
transactions consist of read and update operations that directly operate over OWL
axioms, assertions, and annotations rather than at the lower physical data level.
This allows to analyze and control conflicting access at both the semantic and data
level.

Furthermore, the main contributions that result from practical work are:

* A distributed and peer-to-peer style execution system for efficient semantic service
execution, called OSIRIS NEXT [MS07]. This system is the platform in which most
of the experimental work has been carried out.

* An implementation of CFI in OSIRIS NEXT and an empirical evaluation of its
runtime performance [MS10b]. The evaluation demonstrates the practical appli-
cability of CFI. For the implementation and evaluation, we have also developed a
simple service repository based on an RDF triple store that can be queried using
SPARQL.

* An execution technique that allows for migrating ongoing service executions
among execution peers in OSIRIS NEXT [MS07]. The migration process is self-
contained and optimized for ad hoc services, as it does not require additional sys-
tem services.

* Two optimization techniques that are used in our implementation of a service ex-
ecution engine [MS10a]. The first one is used to speed up repeated precondition
checking. The second one is a caching technique that provides rapid access to fre-
quently reused parts of a service specification. We present speedup results for an
empirical performance evaluation. Moreover, these techniques are applicable be-
yond the service execution task to efficiently read information from graph based
RDF triple stores.

* An implementation of the concurrency control model and protocol together with
a main memory OWL store. We present a detailed empirical performance eval-
uation for which a benchmark for OWL updates has been defined that mimics
typical access patterns of practical applications.

1.4 Thesis Outline

This thesis is organized in ten chapters that can be grouped in five parts. The introduc-
tory part consists of this chapter and Chapter 2. In this chapter we have started by guid-
ing the reader to the place in the Service-oriented Computing research field where this

8 Introduction

thesis is located. This included a description of the service execution task and its main
activities. Based on characteristics of service-based applications, we have highlighted
the problems that this thesis addresses and have summarized the main contributions.
The problem description is further set forth in Chapter 2 where we present two such
service-based applications taken from the e-commerce and e-health domain. We show
how the methods presented in this thesis contribute to these applications. Throughout
this thesis, we will often refer back to these applications for the purpose of illustrative
examples.

The second part is made up by Chapter 3. In this chapter, we give a rather detailed
introduction to the fundamentals on which this thesis builds. This includes the the-
ory of Description Logics, the Web Ontology Language, and the Resource Description
Framework. Additional foundational information that is relevant to our work, namely
the theory of Petri nets and principles of service matchmaking and planning, is inten-
tionally provided in situ throughout subsequent chapters.

The conceptual part of this thesis is divided into Chapter 4, 5, and 6. Chapter 4
takes up the current state-of-the-art on Semantic Service research. In this chapter, we
present a formal system model for the Semantic Service execution task. It combines
representation of the semantics of functional and non-functional properties with the
behavior of services by viewing them as processes. The model also includes a formal
notion of executability. All methods introduced in subsequent chapters will be applied
to this model. In Chapter 5 we present in detail CFI for optimistic and semantic forward
failure handling, describe the types of failures that can be covered, and discuss its prop-
erties. Chapter 6 is then entirely devoted to a model for concurrency control on shared
knowledge bases so as to avoid different types of inferences. We apply this approach to
OWL knowledge bases, show that it is compatible with representation of OWL axioms,
assertions, and annotations as RDF triples, and provide two architecture blueprints for
efficient integration of reasoning engines.

The fourth part is devoted to the practical work of this thesis. In Chapter 7, we de-
scribe the implementation of CFI in our peer-to-peer style distributed service execution
system called OSIRIS NEXT. We also describe techniques for efficient semantic ser-
vice execution that have been implemented in OSIRIS NEXT. First, two techniques to
speed up repeated access to the same information of a knowledge base. Second, a tech-
nique that allows for dynamic migration of ongoing executions among execution peers,
which was especially designed for ad hoc services and mobile environments. Finally,
Chapter 7 also presents how the concurrency control model introduced in Chapter 6 has
been implemented. Chapter 8 then describes how we have evaluated our methods and
techniques. We present and discuss experimental results.

The final part is divided into Chapter 9 and 10. The former reviews the most im-
portant related work and discusses qualitative differences. The latter summarizes the
results of this thesis and discusses possible future work.

Motivation

IN THIS CHAPTER, we describe two exemplary, albeit simplified, practical application

scenarios to further illustrate the potentials of having flexible semantic service failure
handling using CFI and the possibility of dynamically migrating ongoing executions.
The scenarios are chosen from diverse domains. One from the e-commerce domain, the
other from the e-health domain. We will refer back to them throughout this thesis for
illustration purposes. Finally, advantages of the CFI approach are summarized and put
into relation to rollback and compensation based approaches.

2.1 E-Commerce Scenario

This application scenario describes a simplified book ordering and shipment composite
service. Typically, online book sellers would provide such a service in the Internet for
(prospective) customers that want to order some book(s). Apart from interactions with
the customers, this CS shall integrate an additional online shipper service to deliver
ordered book(s) to the customer. Figure 2.1 shows the structure of this CS, depicted as
an control flow graph that specifies the local execution dependencies among the single
services it consists of. The nodes represent the enclosed services find book, order &
pay, and shipment. The connecting directed arrows specify a precedence — the order in
which they need to be invoked. Figure 2.1 also shows data items processed and their
flow. This is depicted by enumerated item names inside the right-copped rectangles.
The first service is an atomic service provided by a third-party online library. It is used
as the first step to retrieve the unique ISBN number (7) for a book searched by the
customer based on its title (1), author name (2), and publisher information (3). The
second service order & pay would be provided by the book seller. It is used to place
an order of one or more items (4) of the book identified before (7) as well as to handle
payment by credit card or the like (5). This service may be a composite service itself; its
decomposition is not illustrated here. Upon completion this service produces an order
and payment acknowledge (8). The acknowledge shall include information about (i)
how many items of the book were actually ordered and (ii) the actual value charged to
the credit card account. Finally, the service shipment, provided by a third-party shipper,

10 Motivation

is used as the last step to request delivering the ordered book(s) (4,7) to the customer’s
address (6). Since this may involve a fee charged by the shipper, the credit card number
(5) is required again to debit the fee. Upon completion, this service also produces an
acknowledge (9) informing about whether it actually accepted the request and if so, the
expected delivery date and the value charged to the credit card account.

1:title

2:author 8:orderAck
3:publisher V % B 9:shipmentAck
4:amount @ \‘)/ /

5:credCardNo

o A\
G:address 123 | 7:isbn 457 4 9)
@ () > find book order & pay shipment @

Customer

A 4

Figure 2.1: Example e-commerce scenario: Book Seller.

If this CS is executed in an automated way by a system on behalf of a customer, the
customer certainly expects particular guarantees. Apart from correctness guarantees
(e.g., the correct book is ordered, the credit card is not charged incorrectly), this also
includes guarantees concerning the overall goal that the CS is supposed to achieve.
From a transactional point of view, this basically refers to the atomicity property: either
the expected result is achieved upon completion or a state is preserved as if it were
never executed. This is commonly referred to as the all-or-nothing rule. For instance,
once the book was ordered and payed it should be asserted that it will be delivered (e.g.,
by issuing a shipment acknowledge). Likewise, if the book would not be found or if
placing the order failed (e.g., because it was not on stock or the service was temporarily
off-line for maintenance), the CS should terminate as if it were never executed.

On the other hand, under some conditions, it would still be possible to achieve the
overall result. For example, the customer might be fine with buying the book from
another book seller. There might be other online book sellers available offering their
own online book selling services. Also, the book seller might run multiple order &
buy services for different sites. If the services provided by the other book sellers or the
additional site services qualify as semantically equivalent, the system executing the CS
can recover in a forward-oriented way instead. After having determined a semantically
equivalent alternative service, the system would intervene by modifying the “default”
execution flow. In the example, the original order & pay service would be replaced by
an alternative. Finally, the system would resume execution from its current position
with invocation of the replacement; thus, allowing to complete in a way that would still
satisfy the user’s needs. This is the basic idea underlying the CFI approach.

2.2 E-Health Scenario

In this scenario, we consider an emergency medical assistance application scenario. It
was subject to the design, implementation, and evaluation in the EU-funded interna-

2.2 E-Health Scenario 11

tional research project CASCOM [BLF'06]. The scenario starts from a person that faces
a situation where she/he needs to request (immediate) medical assistance because of a
sudden disease or emergency. Further actions triggered to handle the case include (i)
the selection and activation of a local ambulance, (ii) the gathering of (recent) medical
data from the persons medical record, and (iii) the submission of this data to a mobile
device carried by the emergency physician who is in charge of giving primary care. The
latter aims at providing the physician with relevant medical information about the per-
son in order to gain prior insight in its past and current health state, current medication,
allergies, or drug intolerances.

Considering a service based coverage of this scenario, specialized services would
have to exist that provide assistance in identifying the person that issued the request,
to discover, select and trigger a local ambulance, to query the person’s medical record
for relevant information and documents, and to transfer them to the physicians mobile
device. For this purpose, a CS like the one shown in Figure 2.2 may have been created.

;i[sggation "4,5 / @docRefs 7:activationAc§
query .

3:time :
4:symptoms medical record

Jp—

activate ambulance ¥ "
® [
E 5:details [2345) 6 amb1> 23,456 7}
dentif select trigger
O_’tl enfity person ambulance ambulance

Operator
Figure 2.2: Example e-health scenario: Emergency Assistance.

[68)
transfer

documents

This CS may be invoked by a telephone operator in a local emergency dispatch cen-
ter. In a more visionary setting, it may also be an intelligent agent running on a mobile
device carried by the person in need of emergency care, that automatically triggers the
service by placing the request. No matter how it gets invoked, as a first step a service
identify person is used to identify and to retrieve personal details. This may be done
based on the social security number (1) or other personal data. Afterwards, the ser-
vice splits into two paths that can be performed in parallel; that is, a precedence order
exists only for subsequent services within a path but not between paths.! The lower
path consists of another composite service activate ambulance whose decomposition is
also shown. Typically, it would be provided by a local emergency center. This embed-
ded CS is responsible for selecting a local ambulance and to activate it subsequently.
The selection would typically be done based on criteria supporting the decision such
as the location of the person (2), the time when the request was received (3), symptoms
that were reported (4), and personal details (5); the latter two being optional. The ser-
vice trigger ambulance actually triggers an alarm signal on a mobile device used by the
crew of the selected ambulance (6) accompanied by submitting the mission information

!Note that this statement looses its generality as soon as synchronization primitives between parallel
paths would be introduced.

12 Motivation

(2-5). Its output is a positive or negative acknowledge (7) confirming whether the ac-
tivation was successful or not. The second parallel path consists of the service query
medical record. Imagine this service as being able to retrieve document references (8)
to (relevant) documents from various sources of the medical record of some person (5),
based on, e.g., a set of search keywords (4). Because this is likely to be a rather com-
plex task, it is expected to be realized by yet another CS. However, its actual structure
is not of particular interest here, which is the reason why it is not further decomposed.
Finally, the two parallel paths join so that as a last step the service transfer documents
is invoked upon completion of both paths. This service takes the document references
found by the query medical record service and submits them to the mobile device of
the ambulance crew based on the ambulance identifier that has been selected and acti-
vated before. The physician can then use this device to download and read the medical
documents, assuming that it is authorized to access them. Ideally, this is done while still
being on the way to the person’s place.

Similar to the book seller scenario, computer aided execution of this CS would be
hardly accepted if certain execution guarantees were not provided. For instance, if the
service trigger ambulance fails. In this case, a crucial part of the overall result can-
not be achieved. Such failures may happen, for instance, for technical reasons when
the connection to the mobile device used by the ambulance crew could not be estab-
lished. Even for non-technical reasons when a negative acknowledge is returned by
this service, e.g., because the ambulance crew was already busy with handling another
mission. A forward-oriented strategy to automatically recover from these service fail-
ures can be achieved by online replacement of the entire service activate ambulance by
a semantically equivalent service. The fact that a qualifying alternative service would
be available in practice can be assumed in this application scenario because regions are
usually covered by more than one ambulance center, and ambulance centers often keep
more ambulances ready than statistically required.

In principle, invocation of the identify person service may also fail for technical rea-
sons; albeit this should only rarely be the case because availability of such a service is
required to be very high, for obvious reasons. The forward-oriented approach of CFI
would also be applicable in this case provided that qualifying semantic equivalences
exist. In practice, this is likely the case, for similar reasons than with trigger ambulance.
There is almost always a redundant coverage of a region by more than one emergency
center. On the other hand, assuming that the service query medical record or transfer
documents fails should not cause the overall CS to fail as their success is not crucial.
The result of these services is basically optional. The emergency physician should be
able to handle the medical case sufficiently even without additional information from
the health record of the person.

It was mentioned above that execution of the emergency assistance CS might be au-
tomatically triggered by a software agent running on a mobile device carried by the
person. As a matter of the fact that mobile (as well as embedded) devices do have lim-
ited resources compared to stationary devices, it might be inadvisable to execute the CS
completely on the local execution engine running on the mobile device. For instance,
battery capacity might be low, network bandwidth might be small, wireless network
connectivity might not be as reliable as a wired network connection, and computational

2.3 Application Dynamics and Consequences 13

and/or memory resources might also be insufficient. Instead of a single local execu-
tion system, a distributed and decentralized execution system consisting of multiple
interacting engines deployed to physically separated devices (nodes) would be advan-
tageous, as nodes can cooperate in sharing the execution task. This allows to overcome
two problems. First, the problem of limited and/or less reliable resources. Having the
possibility to migrate an ongoing execution from the engine running on the mobile de-
vice to an engine running on a better equipped and/or more reliable (stationary) device
would likely be beneficial in this case. Just imagine the mobile device would run out of
power while execution is still in progress. Second, the problem of centralized resources.
A distributed and decentralized system not requiring supervision or global coordina-
tion of ongoing executions also facilitates a high degree of scalability as is does prevent
the need for central resources which may become bottlenecks.

2.3 Application Dynamics and Consequences

Inherent to the e-commerce and e-health application scenario presented above is a high
degree of application dynamics. Rather than being composed of the same services for
all possible users, the composite services would consist of different services for different
groups of users. In case of the book seller scenario, it can almost be taken for granted
nowadays that enterprises target customers on a nationwide level, if not even on the
global level. For instance, the same enterprise may run multiple instances for different
countries. Also, it is the nature of any market that more or less many (competing) enter-
prises act on it; hence, there will be more than one book seller, in the same way as there
will be more than one shipper, all providing their own services. These two dimensions
span an area of semantically equivalent or similar services from which the book order
CS can be composed. What is more, users usually have preferences for service selection
(e.g., a book seller close to the customers place or a book seller known to have a high
reputation). Albeit not the primary scope of this thesis, this calls for ad hoc composition
of the CS using (semi) automatic service composition methods [RS04]. An important
consequence is that there is not a single common book seller CS, but rather different
ones. Each of them would be executed probably just once; at least fewer times than a
common CS used by many users. This calls for a flexible, self-contained, and peer-to-
peer like approach to distributed execution. We have found that the architectural design
of a distributed execution system and its strategy used to coordinate execution among
nodes is a result of application workload patterns, based on the general technical set-
ting. Given the workload of (i) many different CSs that are (ii) executed few times only
and where single services are (iii) rather short-running, an approach is required that
does not come with initial overhead required to subsequently coordinate execution.

These kind of dynamics and its consequences apply in a similar way to the emer-
gency medical assistance scenario. Here, however, the current local place of the person
having urgent health problems determines which identify person and activate ambu-
lance service would be a candidate to be used — they should be close together. Ob-
viously, as a matter of the emergency-related setting, services are also required to be
short-running.

Fundamentals

HE PURPOSE OF THIS CHAPTER is to give an overview of (i) the theory of Description
Logics (DLs), (ii) the Web Ontology Language (OWL) and how it relates to DLs, and
(iii) to briefly introduce the Resource Description Framework (RDF). The former are a fam-
ily of languages for representing knowledge in a way that enables computers to reason
about it. DLs have become very popular in recent years. They are successfully used
in various application domains such as medical informatics (e.g., [Ope, Int]) and dig-
ital libraries (e.g., [KMO09]). Most notably, DLs are the underlying formalism of OWL,
the de-facto knowledge representation framework in the Semantic Web. RDF is another
framework that provides a (lower-level) general data model for conceptual description
and modeling of information in the Semantic Web.

As stated in Chapter 1, CFI proposes the use of the DL based approach to formalize
and reason about the semantics of services. OWL and RDF, on the other hand, are used
as a concrete representation means. This chapter is, therefore, included to provide a
sound basis for subsequent chapters and to make this thesis self-contained. For reasons
of brevity, the presented level of detail is representative but not exhaustive. For instance,
the section on DLs entirely skips inferencing procedures. Readers already familiar with
those theories may skim through the sections to get familiar with the exact notation that
is being used.

3.1 Description Logics

Description Logics (DLs) are a family of knowledge representation formalisms based on
deductive logic based reasoning. They evolved from early frame-based systems [Min74]
and semantic networks [Qui67] developed in the 1970s. These early systems were, how-
ever, not fully satisfactory because of their lack of precise semantic characterization. As
a result, reasoning results were strongly dependent on the implementation strategies
(i.e., for the same input different tools may return different results). The question then
arose as to (i) how to provide formal semantics to those knowledge representations so

16 Fundamentals

that (ii) reasoning procedures can be built that are sound! and complete? with respect
to the intended semantics. One important step towards DLs was the recognition that
many of the features to express structures and relationships in frames and semantic net-
works could be given a semantics by relying on first-order logic (FOL); and that already
a fragment of FOL is sufficient to express them [BL85]. Increasing levels of modeling ex-
pressivity have be introduced over time. Not surprisingly, however, it turned out that
higher expressiveness results in harder computational complexity of reasoning up to
constructs that are undecidable, in general. Yet, the computational complexity resulting
from the various DL constructs is well understood (for a summary see [Zol]) and most
recent DLs are mostly limited to be decidable. If not, then because deliberate decisions
were made to offer very high expressivity to application domains where automated rea-
soning is not of utmost importance. On the other hand, DLs trading expressive power
for performance of reasoning tasks have been defined (e.g., [LB87, BKM99, BBL08]) in
which reasoning procedures are known to be tractable. Altogether, the family of DL lan-
guages is probably the most thoroughly understood set of formalisms in all of knowl-
edge representation.

The basic notions in DLs are individuals (a.k.a. objects), concepts (a.k.a. classes), and
roles (a.k.a. properties).> Altogether, they make up the vocabulary (or names) of the do-
main of interest. In short, an individual name identifies a physical or virtual object
existing in the domain of interest such as J.S. Bach or Basel. Concept names identify the
abstract notions of the domain and are essentially classes of individuals such as Com-
poser, City, Book, or Hospital. Role names identify the relations among individuals
such as writtenBy or partOf. Concepts and roles are used, first, for modeling a (hi-
erarchical) structure (a.k.a. terminology) representing intensional knowledge about the
domain or “world” by means of terminological axioms. The entire vocabulary is then
used to describe extensional knowledge by making assertions about the individuals. Both
axioms and assertions are statements that are true by definition in the world. Asser-
tions, in particular, express concept memberships of individuals, relationships among
individuals using roles, and individual name (in)equalities if the use of alias names is
permitted. Informally, extensional knowledge describes the state of affairs in the do-
main. Extensional knowledge is thought to be contingent or dependent on a single set
of circumstances and therefore subject to occasional or even constant change. Inten-
sional knowledge, however, is thought to change seldom — to be “timeless”, in a way.
Because terminological knowledge is clearly different from assertional knowledge, they
get represented by dedicated containers, called TBox, RBox, and ABox.* They contain

!In mathematical logic, a deductive reasoning system is sound iff its rules of proof do not allow for
a false inference from a true premise. If a reasoning system is sound and its axioms are true then its
theorems are also guaranteed to be true.

2The converse of the soundness property is the completeness property. A deductive reasoning system
is complete iff there are no true sentences that cannot — at least in principle — be proved by the reasoning
system. In other words, every logical consequence can be deduced.

3Individuals, concepts, and roles correspond to constants, unary, and binary predicates, respectively,
in FOL.

4In the literature, the RBox is often considered part of the TBox; hence, it is not distinguished from the
TBox.

3.1 Description Logics 17

concept inclusion axioms, role inclusion axioms, and individual assertions, respectively.
Together they make up a knowledge base.

Another aspect of knowledge representation based on DLs is the integration of con-
crete domains (i.e., pre-defined) such as numbers, strings, date times, and so on. Almost
all “data” oriented applications require such a feature in order to express binary rela-
tionships whose range of allowed values — the codomain — maps to a concrete domain.
In the application scenarios described in Chapter 2 we find, for instance, the publication
date of a book, the credit card number of a customer, the weight of a person, the blood
pressure or respiration rate of a patient, the social security number of a person, the
departure and (expected) arrival time of an ambulance, or the costs of using some ser-
vice. All these examples express (finite) ranges of values over concrete domains such as
integers, date times, real numbers, strings, that are often also associated with a measure-
ment unit. In early versions of DLs, extensions to such concrete domains were designed
in an ad hoc way unless a general method was established for integrating knowledge
about concrete domains within a DL language [BH91]. Recent works then addressed
the integration of datatypes to form datatype maps, defined the notion of data ranges, and
analyzed the aspect of decidability and computational complexity of reasoning with
common data types [HS01, MHO8].

In the following two sections we summarize the syntax and semantics of the
two most widely known DLs today, namely SHOZN and SROZQ. The former
corresponds to DL “species” of version 1.0 of the Web Ontology Language (OWL
DL) [MHO04], while the latter underlies version 2.0 [W3C09]. At the time of writing, the
latter is the latest OWL release. Section 3.1.3 then introduces the extension to integrate
concrete domains. Section 3.1.4 briefly discusses the main reasoning tasks and lists im-
portant computational complexity results. Section 3.1.5 discusses basic operations over
knowledge bases, their assumptions, and implications. The definitions follow closely
the corresponding literature [HS01, HPSHO03, HKS06, BCM 07, MHO8].

3.1.1 Description Logic SHOIN

SHOIN belongs to DLs of high expressive power. In short, it allows to define (i)
transitive and non-transitive roles, (ii) their inverse, (iii) comprises various constructors
to create complex concept expressions, and (iv) allows to describe inclusion hierarchies
over roles and concepts. These are syntactically defined as follows.

Syntax of SHOIN

Definition 3.1 (SHOZN roles). Let Vpp be a countable set of role names.” The set of
SHOIN roles (or roles for short) is Vop U{R™ | R € Vpp}, where R~ is the inverse role
of R. A role transitivity axiom is of the form Tra(R) where R € Vpp.

A role inclusion axiom is of the form R T S, for two roles R and S, called sub and super role,
respectively. A role is simple if it is not transitive and none of its subroles is transitive.

SWe use the subscript OP to indicate that roles are called object properties in OWL and for distinguish-
ing them later on from concrete roles (a.k.a. data properties).

18 Fundamentals

Since there is also the notion of concrete roles, which will be introduced later when
we introducing data ranges, a role R € Vpp is also called an abstract role.

Definition 3.2 (SHOZN concepts). Let Vi, V) be countable sets of concept names and
individual names respectively, that may, under certain restrictions, have non-empty intersec-
tions.® The set of SHOZN concepts (or concepts for short) over the vocabulary V¢, Vy, and
roles is inductively defined as follows.

(1) Every concept name A € V is a concept.
(2) T (top), L (bottom) are concepts.

(3) If C, D are concepts, R is a role, S is a simple role, a € V| is an individual name, and n, m
are non-negative integers, then the following are also concepts:

* —C (negation), C M D (conjunction), C U D (disjunction),
e {ay,...,an} (nominal),
e JR.C (existential restriction), VR.C (universal restriction),

* >n S (min cardinality restriction), <n S (max cardinality restriction).”
A concept is atomic if it is a concept name. A concept is complex otherwise.

The operators available in a DL to formulate complex concepts (roles) are also called
concept (role) constructors. If every constructor available in a DL £; is also in another DL
L, then £, is said to be a sublanguage of L,. For instance, the basic DL ALC8 is a sublan-
guage of SHOZN because it contains top, bottom, negation, conjunction, disjunction,
existential restriction, and universal restriction.

As will be seen when formal semantics are given to the symbols and constructors,
the symbol T is used to denote the universal concept (having the same semantics as
C U =C) and L denotes its complement the empty concept (C M —=C). In fact, in DLs
that allow for negation there are dualities regarding constructors: Conjunction is dual
to disjunction under negation since CM D < —(=C U —D) (De Morgan’s law) where
< means logically equivalent. Analogously, existential and universal restriction are
dual under negation (3R.C & —VR.—C and VR.C < —3R.~C). Consequently, for each
complex concept created from these constructors there is always an equivalent dual
concept; hence, such DLs provide syntactic sugar.

Notational Conventions

Throughout this thesis, we adopt the following notational conventions in definitions
and examples:

®With punning, a meta modeling technique allowing to reuse names in cases in which it is possible to
disambiguate the exact use of a name, V¢, V; and the set of role names Vpp need not, under certain restric-
tions, be mutually disjoint. For more details see http://www.w3.0rg/2007/0WL/wiki/Punning.

“Number restrictions are limited to simple roles in order to retain decidability [HST99].

8 ALC stands for Attributive Language with Complement.

http://www.w3.org/2007/OWL/wiki/Punning

3.1 Description Logics 19

¢ Definitions and abstract examples are typeset in math mode. The upper-case let-
ters A, B are used for atomic concepts (A, B € V(); C, D for concepts; R, S for roles
where S sometimes denotes a simple role; the lower-case letters a, b for individual
names (a,b € V}); m,n for natural numbers.

* Concrete examples are typeset in slanted font shape. Concept names start with an
uppercase letter followed by lowercase letters (e.g., Customer, Person, Book), role
names start with a lowercase letter (e.g., hasOrdered, likes), and individual names
are composed of uppercase letters (e.g., ALICE, BOB).

Terminological Knowledge

No matter which particular DL is considered, concepts and roles are used in terminologi-
cal axioms to express how concepts or roles relate to each other in the domain of interest.
In the most general case, these axioms have the form

CCD (RCYS) or C=D (R=5S5).

The former are called inclusions whereas the latter are called equalities. Informally, an
inclusion states that the right-hand side concept (role) subsumes the left-hand side (i.e.,
a super concept/role that is more general than the sub concept/role). In logical terms,
an inclusion C C D says that in order to be a member of D it is sufficient to be a member
of C and that it is necessary to be a member of D to be a member of C. In fact, an
inclusion can be understood as an implication C — D; we will come back to this later
when detailing OWL 2 RL in Section 3.3.3. This is analogous the case for role inclusions
R T S. Equalities, on the other hand, express that two concepts (roles), even though
they might differ in intension, have the same extension. This means that an equality
C = D expresses necessary and sufficient conditions for concept membership in either
direction; analogous for role equalities R = S. Therefore, an equality X; = X5 is an
abbreviation for two symmetric inclusion axioms X; = X; & X; & X A Xy T Xy
where X, X; are either concepts or roles.

An inclusion C C D where the left-hand side might possibly be a complex concept
is called a general concept inclusion axiom (GCI). An equality A = C whose left-hand side
is an atomic concept A € V- is called a concept definition. Equalities of this kind are most
often used to introduce symbolic names for complex concepts.

We will now formally define the most general form of collections of these axioms.

Definition 3.3 (RBox). An RBox R is a finite set of role inclusion axioms of the form R T S
and transitivity axioms Tra(R) where R, S are roles.

Definition 3.4 (TBox). A TBox T is a finite set of general concept inclusion axioms of the form
C C D where C, D are concepts.

An atomic concept occurring on the left-hand side of a concept definition in 7 is
defined whereas an atomic concept that only occurs on the right-hand side in 7 is prim-
itive. Analogously, we can speak of primitive and defined roles. As a matter of fact,
instances of primitive concepts can only be declared explicitly; how this can be done
follows below.

20 Fundamentals

Unfortunately, the presence of GClIs in the TBox, which is correspondingly called
general then, causes worst-case computational complexity of terminological reasoning
to become intractable. Therefore, a restricted form of the TBox is often considered where
reasoning has tractable complexity for several DLs such as ALC [Lut99]. More precisely,
an acyclic TBox T is a TBox such that

* T contains only concept definitions,
e there is at most one definition for each concept name A € V- in T, and

¢ there does not exist a concept definition A = C in 7 where A occurs either directly
or indirectly in C (i.e., if the definition of A does not transitively use itself).

If the last item does not hold then 7 is called cyclic. The characteristic of acyclic TBoxes
is that they are unequivocal regarding each defined concept. Furthermore, the extension
of each defined concept is uniquely determined by the extension of primitive concepts.
As a result, it is possible to compile away an acyclic TBox by a technique called unfold-
ing: iteratively replace defined concepts occurring on the right-hand side of a concept
definition by its definition unless only primitive concepts occur on the right-hand side
of each concept definition.

Assertional Knowledge

The second part of knowledge representation means expresses the state of affairs in a
domain: In the ABox one uses concepts and roles to make assertions about individuals.
These assertions have the form

C(a), R(a,b), a=D>, a#b.

A concept assertion C(a) states that a is a member of C. A role assertion R(a,b) is used to
state that b is a filler of the role R for a. More intuitively, a is related to b through R.

In contrast to the relational data model [Cod70, Cod90], DLs usually do not adopt the
Unique Name Assumption (UNA). In the absence of the UNA the same individual might
have different names (i.e., there can be aliases). This means that given only two distinct
individual names a,b without having further knowledge about them one can neither
conclude that they identify different individuals nor the same individual. Hence, the
absence of the UNA necessitates the latter two types of assertions. An individual equality
a = b asserts that the individual names 2 and b represent the same individual (i.e., 2 and
b are different names identifying the same individual) and an individual inequality a # b
asserts the opposite (i.e., that 2 and b represent distinct individuals in the domain). It
should be clear that (in)equalities are dispensable under the UNA.

Definition 3.5 (ABox). An ABox A is a finite set of assertions of the form C(a),R(a,b),a =
b,a # b where a,b € Vi, C a concept, and R a role.

3.1 Description Logics 21

Knowledge Base

Depending on the context, slightly different definitions of a knowledge base (KB) can be
found in the literature. One possibility is to state that it consists of a TBox 7, an RBox R,
and an ABox A, denoted with K = (7, R, A). More often, however, a KB is defined to
be made up by a TBox and an ABox only. This is achieved by defining the TBox to also
contain role inclusion axioms (of an RBox) in addition to concept inclusions. Finally,
one can define a KB as the union of a TBox and an ABox. Formally,

K:=(T,A) or K:=TUAd. (3.1)

To simplify expositions, we will adopt the definition as a pair by default but sometimes
prefer the latter for convenience.

Given a DL £, a knowledge base K is an L-knowledge base if and only if each complex
concept and complex role occurring in the axioms and assertions in K is built using the
constructors available in £. Analogously, we can speak of L-concepts, L-inclusions, L-
assertions, L-TBoxes, and L-ABoxes.

Finally, we use the general term syntactic construct to refer to any of the different
types of axioms and assertions defined by some DL. The term syntactic instance is used
to refer to a concrete instance of any of the available syntactic constructs. Consequently,
we can say that a knowledge base is a set of syntactic instances.

Semantics of SHOZIN

Now that we have seen how the DL SHOZN is syntactically defined, “meaning” is
given to concepts, roles, assertions, and axioms in a formal way. This is achieved in
terms of model-theoretic semantics [Tar56], enabling to interpret each of them in a non-
empty domain of interest.

Definition 3.6 (Semantics of SHOZN). An interpretation for SHOZN is a tuple T =
(AT, 1) where AT is the non-empty interpretation domain. The interpretation function - as-
signs each individual name a € Vi to an individual a* € AT, each concept name A € V¢ toa
subset AT C AT, and each role name R € Vppy to a subset RT C AT x AL. The interpretation
function is extended to transitive, inverse roles and complex concepts as shown in Table 3.1.

If C and R is a concept and role, respectively, then CT and R is called the extension of C and R,
respectively, in . An individual name a € V| represents an instance of a concept C if a? € C*
inZ.

An interpretation I satisfies a GCI C C D if ct c pZ; analogous for role inclusion axioms,
see Table 3.1. An interpretation T satisfies a TBox T, written T |= T, if it satisfies all axioms
in T . Such an interpretation is called a model of T

An interpretation T satisfies ABox assertions C(a) if aZ € C%, R(a,b) if (a,b) € R, a = b
ifal = b, and a # bif a® # b’. T is a model of an ABox A, written T |= A, if it satisfies all
assertions in A.

An interpretation T is a model of the knowledge base IC = (T, A), written T |= K, if it is

a model of both T and A. If there exists a model I for K then K is said to be consistent (or
satisfiable); synonymously, we say that A is consistent w.r.t. T.

22 Fundamentals

Table 3.1: Syntax and Semantics of SHOZN concept expressions and roles and corre-
sponding OWL constructs

DL OWL
Ex. ‘ Syntax ‘ Semantics
A AT C AT Class
T T = A7 Thing
1 1T=0 Nothing
R RT C AT x AT ObjectProperty
S Tra(R) RT = (R)* TransitiveProperty
CrD (CnD)f =ctnD? intersectionOf
cCub (CuD)f =cfubp? unionOf
-C (-C)F = AT\C* complementOf
JrR.C {x]Jy.(x,y) € RTand y € CT} someValuesFrom
VR.C {x | ¥y.(x,y) € RT implies y € C*} allvaluesFrom
H R1 C R, R% C R% subPropertyOf
O | {a1,...,an} | {a1,...,an}t ={at}U---U{al} oneOf*
IR.{a} {x | (x,a%) € R} hasValue
7z R~ {(x,y) | (y,x) € RT} inverseOf
N >n S {x|t{y| (x,y) € SI} >n} minCardinality
<nS {x|#{y] (x,y) € ST} <n} maxCardinality
F Fun(S) (x,y) € ST and (x,z) € S* impliesy = z | FunctionalProperty

gN denotes the cardinality of the set N.
Fun(S) is a syntactic variant of <1 S (listed for completeness sake).

Based on Definition 3.6 we can formally express the semantics of the UNA.

Definition 3.7 (Unique Name Assumption). An interpretation I respects the unique name
assumption iff - is an injection regarding interpretation of individual names; that is, Va,b €
Vi: al = b implies a = b.

The cases where -7 is a surjection or a bijection regarding individual names are re-
spectively referred to as the parameter names assumption (i.e., no unnamed individuals)
and standard names assumption (e.g., the identity function a’ = a).

In contrast to database schema frameworks such as the ER model [Che76, SS77] that
make the assumption of defining a single model, a KB does not define a single model.
In fact, it can be seen as a set of constraints that may be satisfied by a possibly infinite
set of models. This is easiest to understand when considering that no constraints at
all — the empty KB — means that any model is possible. Adding more constraints usu-
ally means fewer models, up to the point where no model remains possible due to the
existence of contradictory constraints. The latter is called an inconsistent KB (see Defini-
tion 3.6). Speaking of constraints here, it is important not to confuse this with the notion
of integrity constraints. “Rather than being statements about the world, [integrity] con-
straints are statements about what the KB can be said to know” [Rei88]. In other words,
integrity constraints are meant for enforcing the acceptable states (content) of the KB.

3.1 Description Logics 23

Yet one might want to interpret axioms in the KB both as integrity constraints and in the
“standard” way [MHS09, TSBM10].

Moreover, different assumptions on the cardinality of the domain AZ can be made;
hence, on the size of models. In open environments such as the Web one typically as-
sumes an open (infinite) domain AT since one cannot assume to have complete knowl-
edge. On the other hand, one can strictly close the domain by stating T C {ay,...,a,}
where ay,...,a, are the named individuals that shall exist in the domain. An open
versus closed domain has consequences, for instance, on the existential constructor:
whereas JhasFriend. T can refer to new, otherwise unknown, individuals in an open
domain, it does refer to an 4; in a closed domain (and without further knowledge it is
not known which particular g; this is). In contrast, a database model is considered to
be a finite structure since a database is understood as a complete representation of an
application domain: as noted above, the database is a particular model.

The aspect whether the domain is open versus closed is not to be confused with the
open world assumption (OWA) versus the closed world assumption (CWA), which refer to
different reasoning paradigms. The former means that given an assertion or axiom
and a KB K, if ¢ is satisfied only in some models of K then neither K = ¢ nor K = ¢
can be concluded. In such a case we can merely draw the conclusion that the truth-
value of ¢ is not known; K is underspecified w.r.t. ¢. In contrast, a failure to proof ¥
to be true due to lack of sufficient information implies that it is false under the CWA.
Formally, K [~ ¢ implies K = —¢. This reflects common-sense reasoning in which one
conjectures 1 to be false if it is not true, which builds on the assumption that all relevant
knowledge is available (as opposed to the assumption under the OWA that knowledge
is incomplete). The CWA is common to databases. For instance, if the product database
of a book seller does not contain a certain book then it is concluded that the book is not
offered by the book store; under the OWA we can only conclude that it might be offered,
but we cannot be certain based on the information stored in the database.

Finally, the syntactic constructs allowed in SHOZN can interact in such a way that
a KB does not admit finite models (i.e., it admits only models with an infinite domain
AL). For example, DLs allowing for inverse roles, functional roles (<1 R), and cycles in
the TBox [CGLNO1]. In general, a DL where each concept or TBox admits a finite model
is said to have the finite model property [EF95]. This becomes important for reasoning
procedures and especially if one wants to compute and materialize the complete set of
implicit axioms and assertions entailed by a KB. Obviously, this is impossible if the KB
admits only infinite models.

3.1.2 Description Logic SROZQ

Roughly speaking, SROZQ [HKS06] extends SHOZN by a number of new constructs
that have proven useful in practical domains such as the medical domain and that do
not affect decidability and practicability. This includes the following.

1. Complex role inclusion axioms of the form Rjo---o R, C R (n > 2), where o
denotes composition of roles (binary relations). They are used to express prop-
agation of one property along another one. For instance, one can state that the
friend of an enemy is also an enemy hasEnemy o hasFriend C hasEnemy, or that

24 Fundamentals

a brother of the father is an uncle hasFather o hasBrother C hasUncle. In order to
preserve decidability, complex role inclusions in a TBox must adhere to the syn-
tactic restriction of not forming a cycle; a negative example [MHRS06] being;:

hasUncle
yd N
hasFather o hasBrother T hasUncle hasFather hasBrother
hasChild o hasUncle C hasBrother pd
hasChild

2. Qualified number restrictions of the form >nS.C and <nS.C to restrict role fillers
to a certain concept, where S is a simple role (see Section 3.1.1). For instance,
the axiom BookStoreCustomer = (>1 hasOrdered.Book) states that for being a
book store customer it is sufficient and necessary to have ordered at least one
book. Observe that qualified number restrictions can be seen as generalizations of
existential and universal restriction since 3R.C < >1 R.C and VR.C & <0 R.—C.

3. Reflexive, irreflexive, symmetric, asymmetric, and disjoint roles, denoted with
Ref(R), Irr(S), Sym(R), Asy(S), and Dis(S1, S2), respectively, where S;) are sim-
ple roles. Note, however, that symmetric and transitive roles do not increase ex-
pressive power when inverse roles and role composition is available: Sym(R) is
equivalent to R~ C R and Tra(R) is equivalent to Ro R C R.

4. The universal role U. In order to preserve decidability, the universal role cannot,
however, be used in complex RIAs.

5. The class restriction constructor 35.Self, where S is a simple role, to allow describ-
ing concepts such as a narcissist as Jlikes.Self.

Table 3.2 summarizes syntax and semantics of these new constructs, whereby role
and concept symbols are used analogous to Definition 3.1 and Definition 3.2. Finally,
negated role assertions of the form —S(a,b) have been added where S is a simple role.
This is especially worthwhile under the OWA to make negative ABox assertions such as
—likes(ALICE, THE_LORD_OF_THE_RINGS). Formally, an interpretation Z satisfies a
negated role assertion —S(a, b) if (aZ,b?) ¢ SZ.

3.1.3 Datatype Maps and Data Ranges

A valuable extension to DLs are concrete domains, based on the framework proposed
in [BH91].? In contrast to individuals from the general-purpose (or abstract) domain A%
we have considered thus far, values of concrete domains are “eternal” (mathematical)
abstractions. Notable examples include numerical, temporal, and spatial concrete do-
mains, the latter of which is not considered in the following. Characteristic to values of
concrete domains is that their identity is determined by some procedure usually involv-
ing their structure. For instance, the strings 24.10.2010 and 2010/10/24 both identify

9Combinations of “standard” DLs with concrete domains are commonly denoted by appending (D)
to the name of the DL (e.g., SHOZN (D), SROZQ(D)).

3.1 Description Logics 25

Table 3.2: Additional Constructs in SROZQ and their Semantics

DL OWL
Ex. ‘ Syntax ‘ Semantics
35.Self {x] (x,x) € ST} SelfRestriction
S u ut = AT x A topObjectProperty
R | S40---05,CR S%O---OS%QRI propertyChain
>nS.C {x|#{y | (x,y) € STandy € C*} > n} | minCardinalityQ
0 with onClass
<nS.C {x|#{y] (x,y) € STandy € C*} < n} | maxCardinalityQ
with onClass
2 Sym(R) (x,y) € R* implies (y,x) € R* SymmetricProperty
e Asy(S) (x,y) € ST implies (y,x) € S* AsymmetricProperty
é Ref(R) Diag? C R? ReflexiveProperty
@ Irr(S) ST N Diag’ =@ IrreflexiveProperty
< Dis(S1, S2) STNSI =0 disjointObject-
R~ Properties

o is overloaded to denote the standard composition of binary relations.
#N denotes the cardinality of the set N. Diag” denotes the set {(x,x) | x € AT}.

the same date — October 24" 2010 — after normalization from the (locale-specific) lexical
space into the value space, which is done by a procedure based on the structure.

Since concrete domains, in their unrestricted form, have severe consequences on
decidability and computational complexity of reasoning, more recent works then in-
troduced practicable notions of datatype maps and data ranges [HS01, MHO08]. In short,
datatype maps are formalizations of (i) a set of available datatypes, (ii) their value space
and lexical space, and (iii) facets and facet expressions. The latter are expressions over a
datatype, that further restrict their range of values. Datatypes are usually thought to
be unary. Nevertheless, the definitions introduced in the following can be extended to
n-ary datatypes as in [PHO3] (e.g., date can be considered a 3-ary datatype consisting
of the components year, month, and day). Finally, data ranges are basically expressions
over the elements in a datatype map.

Definition 3.8 (Datatype Map). A datatype map is a 4-tuple D = (Vp, Vis, Vi, D), where
* Vpisaset of datatypesd,

® Vs is a function assigning a set of lexical forms Vi s(d) to each d € Vp where Vi 5(d)
is called the lexical space of d,

* Vr is a function assigning a set of facets Vr(d) to eachd € Vp, and
e -Disa function assigning a datatype interpretation d” to each datatype d € Vp called

the value space, a facet interpretation f C dP to each facet f € Vr(d), and a data
value 0P € dP to each lexical form (constant) v € Vis(d).

26 Fundamentals

A facet expression for a datatype d € Vp is a formula ¢ built using propositional connectives
over the elements from Vp(d) U {T,, Ly}. The function -P is extended to facet expressions

by setting, for fi) € Vp(d), (Ta)? = dP, (Lo)? = @, (=f)P = d°\fP, (AN f)P =
L0 and (fV f2)P = fPUL.

Observe that the symbols T; and L ; denote built-in universal and empty facets,
respectively, specific to a datatype d € Vp.

'Example 3.1|

Imagine a datatype map D with Vp = {string, real}, where string® shall be the set of all
strings over some alphabet X (i.e., string” = ¥*) and real” the set of real numbers. The
set Vs(string) would then contain all lexical string forms and Vjg(real) shall contain
decimal representations of real numbers.! Finally, the set Vr(real) might contain the
facet int, interpreted as the set of integers, and facets of the form <;, >;, <;, and >, for
decimal numbers g. The facet expression int A >19 A <p9 would then represent the
integers 11, ...,19.

The syntax and semantics of the description logics SHOZN (D) and SROZQ(D)
will be introduced next. In essence, they are obtained by extending the “core” descrip-
tion logic with a datatype system. Prior to that, the notion of data ranges is yet to be
introduced.

Definition 3.9 (Data Ranges). Let D = (Vp, Vi, Vi, D) be a datatype map and let Vg =
Udev, Vis(d) be the union of all lexical forms over all datatypes in D. The set of data ranges
for D is the smallest set that contains

(1) Tp (universal data range),

(2) d (datatype range),

(3) d|¢] (facet data range over a datatype),
(4) {v1,...,0,} (enumeration),

(5) dr (negated data range),
ford € Vp, ¢ a facet expression for d, v; € Vg, and dr a data range.

Definition 3.10 (Syntax of DL+D). Let DL be a description logic defined over the vocabulary
(Ve, Vop, Vi). Let Vpp be a countable set of concrete role names!! pair-wise disjoint from
Ve, Vop, V1. Let D be a datatype map. Let Ty € Vpp be a concrete role, a € Vi an individual,
v € Vg alexical form, dr a data range for D, and n a non-negative integer.

The logic DL+D, obtained by extending D L with D, extends the concepts of D L with concepts
of the form 3T.dr,VT.dr, >nT.dr, and <nT.dr. The set of TBox axioms is extended by inclusion
axioms of the form Ty T T, and disjointness axioms of the form Dis(Ty, Tp). The set of ABox
assertions is extended by assertions of the form T(a,v).

190f course, one could also represent real numbers in binary or hexadecimal form.
'We use the subscript DP to indicate that they are called data properties in OWL.

3.1 Description Logics 27

Table 3.3: Model-Theoretic Semantics of DL+D data ranges, concepts, axioms, and
assertions

Data Ranges
(To)? = &7 " =7
{o1,..., . })P = {oP,..., 0P} dr- = AP\ drP
Concepts Axioms
(3AT.dr)t = {x | 3y.(x,y) € T' and y € drP} Dis(Ty, T») = TE NTE =@
(VT.dr)t = {x | Yy.(x,y) € T? implies y € drP} NCh=TCT?
(>nT.dr)t = {x | #{y| (x,y) € T and y € drP} > n} Assertions
(<nT.dr)t = {x | #{y| (x,y) € T and y € drP} < n} T(a,v) = (at,0P) € T*

N denotes the cardinality of a set N.

In order to define formal semantics for the constructs of data ranges, the datatype
domain AP needs to be introduced, which is done by Definition 3.11. The function -7 is
then extended for the constructs as shown in Table 3.3.

Definition 3.11 (Semantics of DL+ D). An interpretation for DL+D is a triple T =
(AT, AP, .T), where AT and AP are nonempty disjoint sets such that d° C AP foreachd € Vp.
The interpretation function - is derived from DL and extended to assign to each concrete role
T € Vpp the interpretation TZ C AT x AP. Furthermore, -X and -P are extended to data
ranges, complex concepts, axioms, and assertions as shown in Table 3.3.

An interpretation T is a model of a D L~+D knowledge base IC, written T |= I, if it satisfies all
axioms of the TBox ‘T and all assertions of the ABox A.

In [MHO08] it is shown that, without losing generality, the assumption can be made
that datatypes d(;) € Vp are pairwise disjoint; that is, if d1,d> € Vp and dy # d; then
dP NdP = @. This allows for a modular treatment of different datatypes for reasoning
(i.e., handling a datatype d does not necessitate considering other supported datatypes
Vp \ d). Furthermore, it has been pointed out in [MHO08] that K can be interpreted by
considering only those datatypes from the datatype map that are explicitly mentioned
in KC. This is the reason why it is not necessary to define the consequence relation |= in
Definition 3.11 w.r.t. the entire datatype map (i.e., including those datatypes not men-
tioned in K) provided that A? is the set that contains at least the interpretations for each
d € Vp, which is the case. Note, however, that the consequences of K might change
under the extension of a datatype map with a new datatype (i.e., if AP is enlarged).

3.1.4 Reasoning and its Computational Complexity

A key feature of DLs is the possibility to reason about the axioms and assertions in a
KB and to infer additional implicit knowledge, thereby making it explicit. In general,
what can be inferred — the consequences — depends on (i) the rules of inference defined
by a (description) logic and obviously on (ii) what is known already — the premises.
The rules of inference can be defined so that the set of consequences changes either
monotonically or non-monotonically with the set of premises. A (description) logic is

28 Fundamentals

said to be monotonic only if its rules of inference do not allow for reduction of the set of
consequences when new premises are added. Otherwise it is non-monotonic. Simply
put, it means that learning a new piece of knowledge cannot reduce what is implicitly
known by inference. Most DLs, in particular SHOZN and SROZQ, are monotonic
if interpreted under OWA, while interpretation under CWA results in non-monotony
since a negative consequence — is no longer entailed if a positive assertion/axiom ¢ is
learned (added to a KB).

In the following, we will briefly introduce main reasoning tasks in DLs without go-
ing into detail on reasoning algorithms as their internals are not of importance through-
out this thesis. Main results on their worst-case computational complexity for SHOZN
and SROZQ are given at the end of this section.

Standard Reasoning Tasks

Several reasoning tasks (problems) exist for TBoxes and ABoxes. Reasoning over an
ABox can further be done in isolation or w.r.t. a TBox. We start with TBox reasoning
tasks, which fall into the category of terminological reasoning.

First, when conceptualizing a domain, it is often needed to find out whether con-
cepts are contradictory and whether they actually make sense. Intuitively, a concept
C makes sense w.r.t. a set of interrelated concepts — a TBox — if there exists an inter-
pretation 7 that satisfies each concept (cf. Definition 3.6) and where C has at least one
individual as a member in Z. Such a concept is said to be satisfiable w.r.t. the TBox and
unsatisfiable otherwise. Other important reasoning tasks over TBoxes are whether one
concept subsumes another one, whether two concepts are equivalent, and whether two
concepts are disjoint. These tasks can be transferred analogously to roles. Formally,
they are defined as follows.

Definition 3.12 (TBox Reasoning Problems). Let C, D be concepts, T a TBox, and A an
ABox.

* Concept Satisfiability: C is satisfiable w.r.t. T iff there exists a model Z of T such that
CT is nonempty.

¢ Concept Subsumption and Equivalence: C is subsumed by (resp. equivalent to)
D w.rt. T iff Ct € DT (CT = D?) for every model T of T, written T = C C D
(T EC=D)."?

e Concept Disjointness: C and D are disjoint w.r.t. T iff Ct N DT = @ for every model
ZofT.

In DLs where the concept intersection constructor () exists and which contain the
unsatisfiable concept (L), all problems above can be reduced to concept subsumption.
This means that it is sufficient to implement subsumption checking in order to imple-
ment the other. Similarly, these problems can be reduced to unsatisfiability for DLs
having concept intersection (') and negation ().

12The relation symbol |= is either understood as “satisfies” or as “entails” depending on whether the
left-hand side is an interpretation or a set of axioms and/or assertions.

3.1 Description Logics 29

The task of computing the entire subsumption hierarchy of parents and children of
each named concept in a TBox is the so-called classification process. It is an important
feature for verification and graphical visualization of a conceptualization.

Standard reasoning tasks in the ABox (and w.r.t. a TBox) are instance checking, con-
sistency checking, the retrieval problem, and its dual the realization problem. Similar to
reduction of TBox reasoning tasks to concept subsumption (or satisfiability), the latter
three can all be accomplished by reduction to instance checking.

Definition 3.13 (ABox Reasoning Problems). Let C be a concept, « an ABox assertion, T a
TBox, and A an ABox.

* Instance Checking: A entails « w.r.t. T (or a is a consequence of A w.r.t. T) if every
interpretation that satisfies T and A also satisfies a, written T, A |= a.

e Retrieval Problem: Find all individuals a such that T, A |= C(a); analogous for roles.

* Realization Problem: Given an individual a and a set of concepts C, find the most
specific concepts C; € C (i.e., there is no C' € C such that C' # C;and C' C C;) such
that T, A = C;(a); analogous for roles.

If the TBox is empty (e.g., when it is acyclic and has been compiled away) then we
can drop 7 in Definition 3.13. Finally, it is worth mentioning that ABox instance check-
ing for negated assertions can be polynomially reduced to ABox consistency without
negated assertions, and vice versa [Mil08, Section 2.2]. Formally, if ¢ is either C(a) or
R(a,b) then T, A = —¢iff AU {¢} is inconsistent w.r.t. 7.

Queries as Advanced Instance Retrieval

The retrieval problem can be seen as a very limited querying facility to knowledge bases.
Data-intensive applications, however, usually have demanding requirements to query-
ing facilities. More powerful instance retrieval can be done using so-called conjunctive
ABox queries [CGL98, HT00] of the form

g:= a1 N---Nay

where «; is an atom of the form C(x) or R(x,y), C is a concept, and R is either a simple
but possibly inverse abstract role or a concrete role (concrete roles do not have inverses).
Let Vy be a finite set of variable names disjoint form V; and V5. Then x is either an indi-
vidual x € V] or a variable x € Vi and y is either a variable y € Vy, an individual y € V;
if R is an abstract role, or a lexical form y € Vg if R is a concrete role.!3 Note that in this
form we allow for (i) direct use of individuals in atoms analogous to [KRHO07] and (ii)
the use of data values and concrete roles analogous to [HMO05]. These are unproblem-
atic extensions compared to the original form considered in [CGL98, HT00]. As usual, a

13The general concept of a conjunctive query refers to the class of FOL formulas that can be built from
atomic formulas, the conjunction connector, and the existential quantifier; that is, a conjunctive query
is of the form x1,...,xg, 3xkyq, ..., I (ag A - - A ay,) where xq, ..., xy are free variables (distinguished),
Xk+1,---,%; are bound variables (undistinguished), and «;, .. ., a;, are atomic formulas (i.e., n-ary predi-
cates over constants and the variables x4, ..., x;).

30 Fundamentals

variable is represented by a symbol and can be substituted by a value. Variables are parti-
tioned into distinguished variables also called answer or solution set variables (i.e., where
the substituted value is part of a solution) and existentially quantified undistinguished
variables that are not part of a solution. A query without distinguished variables is called
a Boolean query because it can only be used to test whether “something” is entailed by
an ABox (true) or not (false). Let Var(g) be the set of variables occurring in a conjunctive
ABox query g. Let A be an ABox, Z a model of A, Varr C Var(q) be the set of variables
that occur at the filler position of a concrete role R (i.e., if there is an « = R(x, y) where
Ris a concrete role and y € Var(q) then y € Varg), and 7t : Var(q) UV; UV g — AT UAP
a total function such that

(o witha € Vi if x € Var(q), x € Varg, and x distinguished
IP withl € Vs if x € Var(q),x € Varg, and x distinguished
@),

(x) = ec A if x € Var(gq),x ¢ Varp, and x undistinguished
e € AP if x € Var(q), x € Varg, and x undistinguished
x if x is an individual name x € V;
[xP if x is a lexical form x € Vg .

7t is called a match (solution) for Z and q if Z =7 « for every a € g. For a a concept
membership assertion C(x) or a role membership assertion R(x,y) then

T =5 C(x) if m(x) € C*
and
T |=r R(x,y) if (7r(x), 7t(y)) € R .

If there is a match 7w for Z and g then it is also said that Z satisfies g w.r.t. 7T, written
Z E=x q. The query entailment problem (QEP) is deciding whether all models Z of a
knowledge base K also satisfy g for some match 7, written K |= 4. In fact, query en-
tailment is the decision procedure used for Boolean queries. The solutions of a query
with distinguished variables are tuples of individual names or lexical forms where each
tuple is obtained by substituting the distinguished variables according to each match
entailed by the K. Finding all solutions corresponds to the query answering problem
(QAP) [GLHS08]. QEP and QAP can be mutually reduced [CGL98, HTO0O].

Finally, the query containment problem (or query subsumption) is the reasoning task of
deciding whether a conjunctive query generally has at least the matches that another
query has. Formally, given a DL £, a query g is subsumed by a query ¢’ w.r.t. an £-KB
K = (T, A),denoted with K |= g C ¢/, iff for every L-Abox A’ and the KBK' = (T, A")
it holds that the solution set of g is a subset of the solution set of 4’. Observe that this
assumes that ¢, 4’ share the same set of distinguished variables.

Computational Complexity of Reasoning Tasks

The worst-case computational complexity of subsumption reasoning for SHOZN is
known to be intractable since it is NExpTime-complete [TobO1]. In the general case
SROZLQ is even harder, namely N2ExpTime-complete but NExpTime under the syn-
tactic restriction of bounded role hierarchies [Kaz08]. The former is due to the complex

3.1 Description Logics 31

role inclusion axioms Rj o - - - o R; C R. For a summary of complexity result for various
sublanguages of SHOZN, SROZQ and other DLs see [Zol].

Complexity of conjunctive query answering is analyzed either as a function of the
size of the query only, the size of the ABox only, or both together. They are respec-
tively called query complexity, data complexity, and combined complexity. At the time of
writing, decidability of query answering in SHOZN and SROZQ is still open, though
signs that this is the case take shape [GR10]. Recently, it has been shown that com-
bined complexity in the Horn fragment of SHOZ Q and SROZQ is ExpTime-complete
and 2ExpTime-complete, respectively [ORS11], which means that it is not harder than
subsumption in the full versions of these DLs. Complexity of the fairly expressive sub-
language SHZQ is known to be 2ExpTime-complete in the presence of inverse roles
and ExpTime-complete otherwise [Lut08].

As usual, asymptotic worst-case complexity results say little about average com-
plexity in practice. Several studies have given empirical evidence that optimized rea-
soning procedures yield reasonable response times in practical settings [Hor98, HM01a,
HMO8]. It has also been noted that exponentially hard cases can be exponentially rare
in practice [Har06]. As a response to intractable complexity results, however, less ex-
pressive DLs have been devised of which reasoning is known to be tractable and query
answering implementable on top of conventional relational database technology (see
Section 3.3). They are the result of profoundly understanding which particular interac-
tions of modeling constructs lead to intractability. In other words, these DLs reflect the
desire to get to the highest expressivity for which worst-case tractability is retained.

3.1.5 Operations on Knowledge Bases

From a purely syntactical point of view, a knowledge base is essentially a set of axioms
and assertions. Therefore, one can apply standard set operations such as creating the
union, intersection, or difference of two knowledge bases K1, K. This allows then to
determine — at a syntactical level — whether they are disjoint, have parts in common, or
are actually the same. On the semantical level, however, the result and the practicabil-
ity of these operations depends on the expressivity and the interpretations (models) of
the single knowledge bases K;. Obviously, two knowledge bases K; and K, that are
satisfiable when viewed in isolation need not be satisfiable when building their union
K1 U Ky because the may model contradicting knowledge. On the other hand, differ-
ence KCq \ K7 and intersection [y N KCy are uncritical regarding satisfiability for mono-
tonic DLs because the result cannot be “larger” than the arguments (i.e., the result is a
subset of K1, K, anyway). Example 3.2 and the next paragraph illustrates this.

'Example 3.2|

Consider the following KBs where the semicolon “;” delimits the TBox from the ABox
and the comma “,” delimits axioms and assertions inside the TBox/ABox.

K1 ={Person, Female, Woman = Person N Female; Woman(CURIE)},
I, ={Person, Female, Woman = Person N Female, Man = Person [-Woman;
Man(EINSTEIN)}.

32 Fundamentals

The union, intersection, and difference are then

KC1 U Ky ={Person, Female, Woman = Person 'l Female,

Man = Person N ~Woman; Woman(CURIE), Man(EINSTEIN)},
IC1 N Ky ={Person, Female, Woman = Person 'l Female},
K1\ Ko ={Woman(CURIE)}.

Example 3.2 is an innocuous one. None of the operations yields an inconsistent
knowledge base, i.e., all concepts, axioms, and ABox assertions are still satisfiable in
every resulting knowledge base; observe that they are also satisfiable in isolation. This
is due to the fact that K; and Ky do not model contradicting knowledge. Adding, for
instance, Woman(CALLIOPE) to Ky and Man(CALLIOPE) to K, would, however, re-
sult in an inconsistency in the union K4 U K, because the concepts Man and Woman
were indirectly described as disjoint. That is, there can be no model in which the indi-
vidual referred to by the name CALLIOPE' is both a man and a woman. Observe that
K1 and K, remain consistent when viewed in isolation. It is beyond the application of
the union operator to knowledge bases to ensure that the resulting knowledge base is
still satisfiable. Consequently, a consistency check should be done before committing
an operation if an application requires a consistent knowledge base at any time.

Apart from dealing with knowledge bases by means of set operators, almost all ap-
plications not only require the ability to read their content but to modify or edit them
in order to accommodate new, revise existing, or retract obsolete knowledge [FMK™08].
In the Al research field this is well known as the belief revision and belief update prob-
lem [Pep08]. In short, belief revision refers to the process of how to modify a knowl-
edge base “in the light of new information that was previously inaccessible” and where
the initial knowledge base needs to be modified because it is incomplete or parts have
become obsolete or incorrect in light of the new information. In contrast, the belief up-
date problem refers to the process of how to modify a knowledge base that needs to be
brought up-to-date to changes in a dynamic domain (in the world) because it is out-of-
date after changes have occurred in the domain. The update problem gets into focus in
Chapter 4 when we discuss how to represent the effects of service and service operation
invocations. In the context of Chapter 6, however, updating a KB is viewed from a data
management point of view. More specifically, we will define the lower level storage
layer of a knowledge base management system (KBMS) to provide update operations
with direct semantics, meaning that operations directly add or delete axioms and asser-
tions. To make this data-centric point of view more explicit, we classify belief revision
and belief update as indirect update semantics and the latter as direct update semantics, see
Figure 3.1. In [HPSKO06] the notion of edit semantics has been defined for ABoxes, which
is equivalent to our notion of direct updates. We follow this definition but generalize it
for the knowledge base as follows.

Definition 3.14 (Direct KB Update). Let L be a Description Logic and let K = T U A be
an L-knowledge base. Then, updating K by adding (deleting) a new (existing) L-syntactic

4Calliope is the intersexual protagonist in the novel Middlesex by Jeffrey Eugenides.

3.1 Description Logics 33

u’
Indirect

p update
KB Editing Layer semantics

(e.g. Consistency Preservation, Belief Update)

u f reads
v : Direct

p update

KB Storage Layer 8 semantics

-

)

Figure 3.1: Distinction between high level knowledge base updates and direct updates
at the level of the storage layer.

instance , written K + ¢ (K —), results in an updated KB K' such that K' = KU {¢}
(K'= K\ {y}).

A direct KB update (or direct update for short) is a finite and non-empty set of these additions
and deletes. Given K and a direct update U, K' is the result of updating IC with U, written
K =y K', obtained by applying all adds and deletes in U to K.

A direct update U is usually thought to be applied in an atomic way: either none
or all additions and deletes are applied. Obviously, allowing direct updates on K may
affect its entailments (i.e., the implicit knowledge). Moreover, applying U may result
in an inconsistent X’ if U adds axioms or assertions that either contradict with existing
knowledge or among each other (e.g., if an add of ¢ and — is in U). Practical KBMSs
might, therefore, be equipped with a knowledge base editing!® layer on top of the stor-
age layer as depicted in Figure 3.1. Its purpose is to transform a belief revision or belief
update represented by U’ at the higher level (i.e., an indirect update, which may con-
tradict with), into a direct update U such that (i) consistency at DL level is preserved
and (ii) the desired update semantics as defined by the actual Belief Revision or Belief
Update approach is achieved. In order to achieve this, the editing layer may need to
interrogate the knowledge base (i.e., read-access it), which is indicated by the dashed
arrow in Figure 3.1. Finally, we make the following observation.

Observation 3.1. Given a monotonic DL L such as SHOZN (D) or SROZQ(D), an L-KB
IC, and a delete-only direct update U with KK =1 K', if IC is consistent, so is K.

The reason is that every delete can only reduce explicit and implicit knowledge. In other
words, only addition of new axioms or assertions can lead to inconsistency. This is not
the case in general for non-monotonic logics; thus, deletes would need to be considered
as well by the consistency preservation mechanism.

I5The term refers to the field of modifying a knowledge base either to resolve inconsistencies or in
response to a change request [FMK™08].

34 Fundamentals

3.2 Resource Description Framework

As the name indicates, RDF is a framework for representing information about (Web)
resources. Originally designed as a meta data model, RDF has come to be used as a
general framework for conceptual information representation. This is also due to the
design goal of facilitating Web-scale processing, exchange, and semantic interpretation
of information by machines rather than being only displayed to humans. Its basic idea
is to allow anybody to make statements about any resource (in the Web), represented
in the form of so-called subject-predicate-object triples. The subject denotes the resource
about which a statement is made (i.e., the answer to the question about whom or what
a statement is made). The predicate (a.k.a. property) denotes traits that are true of the
subject and establishes a relationship between the subject and the object. The latter is
somebody or something involved in the subject’s predicate.

RDF’s data model is a labeled, directed multi-graph whose nodes are partitioned
into named, blank, and literal nodes. As a matter of the abstract graph based nature,
it is independent of any concrete (serialization) format for representing or storing a
graph. A named node represents a resource that has an Internationalized Resource Identi-
fier (IRT) [DS05] as its name.'® A blank node also represents a resource, but one that has
no separate form of identification — it cannot be identified outside a graph. A blank node
is to be seen as a local and existentially quantified variable representing an anonymous
resource. For instance, the triples (ALICE, ownsBook, _1), (_1, genre, Fiction) state that
Alice owns an otherwise unknown fiction book. Literals are data values such as strings,
numbers, dates, and so on. Literals may be plain or typed. The former are strings and
may optionally have a language tag. They are intended to be used for plain text in a
natural language. Plain literals are formally interpreted to denote themselves (lexical
space = value space). In contrast, a typed literal is a string (lexical form) associated with
a datatype, the latter identified by an IRI. Analogous to data values of concrete domains
(see Section 3.1.3), the value of a typed literal is found by applying the lexical-to-value
mapping associated with the datatype to the lexical form. Finally, the edges of the graph
are named predicates. Predicates are generally identified by an IRI analogous to named
nodes. RDF graphs are formally defined as follows.

Definition 3.15 (RDF Graph). Let VR be a set of IRI resources and Vg a set of blank nodes
disjoint from V. Let Vi be a set of literals disjoint from Vg and Vg. An RDF graph G is a set of
triples (s, p, 0) with

g C (VRUVB) X Vg X (VRUVBUVL)

where s, p, o0 is called the subject, predicate, and object, respectively. The set of nodes of G
is the set of subjects and objects of triples in G. The set of edges of G is the set of predicates of
triples in G. An RDF graph is ground if it has no blank nodes (Vg = @).

It follows from Definition 3.15 that literals cannot be subjects and that an IRI resource
may occur both as a subject and predicate (because Vx is not further partitioned). The

16The RDF specification actually defines named nodes as URI resources. The generalization to IRIs is
unproblematic since they are generalized URIs over the Unicode character set (as opposed to URIs whose
alphabet is a subset of the ASCII character set).

3.3 Web Ontology Language 35

use of literals as subjects is a long debated restriction and it is still open whether it will
be integrated in future RDF versions (for a summary of the discussion see [W3C]).

An RDF dataset is a collection of RDF graphs. More precisely, it is a set of one default
graph and zero or more named graphs, written

DS:{g/(ullgl)/---/(un/gl’l)} TZZO

where G, Gy, ..., G, are RDF graphs with G being the default graph, uy,...,u, are dis-
tinct IRIs, and the pairs (u#;, G;) denote the named graphs (i.e., the default graph does
not have a name and each named graph is identified by an IRI). Usually, the default
graph is the RDF merge of named graphs in the dataset. The RDF merge of a set of RDF

graphs G; ... G, is an RDF graph
G=Ugi

where G/ has been obtained from G; by standardizing apart blank nodes such that G
does not share blank nodes with G;...G,. However, the definition of RDF datasets
does not impose a relationship between the default and named graphs. Another pos-
sible arrangement is to have meta information about the named graphs in the default
graph and have triples of named graphs not visible (merged) in the default graph. For
instance, to have triples in the default graph representing provenance information about
the named graphs.

Analogous to DLs, RDF has a formal model-theoretic semantics in order to support
reasoning about the meaning of triples and graphs. In particular, it defines a notion
of entailment between graphs. In short, a graph G’ (constructed, for instance, by some
procedure from another graph G) is entailed by § if every interpretation which satisfies
all triples in G also satisfies all triples in G'. For details we refer to [Hay04].

3.3 Web Ontology Language

OWTL's features are influenced by a couple of (difficult to combine) requirements and
design goals. On one hand it was clearly intended to be an ontology language
for representing knowledge in terms of classes of objects and how they are interre-
lated. Taking existing knowledge representation languages such as SHOE [HHL99] and
OIL [FHH"01] to the next level was one goal. On the other hand it was intended to ex-
tend the Semantic Web technology stack on top of RDFS, RDF, and XML such that Web
scale exchange and combination of OWL ontologies is supported. In particular, OWL
has a mechanism allowing to include (import) ontologies specified somewhere else into
another ontology. This constitutes the hyperlinking effect for knowledge representation
just like information hyperlinking in the classical Web, which made it so powerful.

An ontology is the basic information “container” in OWL. In contrast to informa-
tion science where an ontology is understood as a shared conceptualization of a do-
main [Gru93], the notion of an OWL ontology goes beyond this. Specifically, it can
additionally contain:

e assertions representing the (current) state of affairs in some domain (i.e., an ABox),

36 Fundamentals

e entity declarations that define the vocabulary of some domain, and

e gnnotations that associate additional (meta) information with axioms, assertions,
or entities.

Annotations are, however, outside the underlying DL framework: they do not con-
tribute to the implicitly entailed knowledge and are therefore also called non-logical ax-
ioms.!” An annotation is made by means of a so-called annotation property, which is a
binary relation analogous to an object or data property. We will also call an annotation
a syntactic instance. An entity corresponds to a name in either of the vocabulary sets
V1, Ve, Vb, Vop, Vpp, Vap, where Vap is a set of annotation property names. Syntacti-
cally, an entity is always identified by an IRI.

An OWL ontology can actually be seen as an extended knowledge base. We define
the notion of an OWL knowledge base that, for technical reasons, keeps the “core” knowl-
edge base, entity declarations, and annotations apart. The terms OWL ontology and
OWL knowledge base are thus understood as interchangeable.

Definition 3.16 (OWL Knowledge Base). An OWL knowledge base is a 3-tuple VW =
(KC, D, A) where K is a knowledge base (see Equation (3.1)), D is a set of entity declarations,
and A is a set of annotations.

We assume that D and A can be updated under the same direct update semantics
than K, as stated by Definition 3.14. Finally, it should be clear that entity declarations
are implicit and annotations are disregarded when dealing with the “core” KB K.

3.3.1 Import Mechanism

The import mechanism of OWL works as follows. The import closure IC(O) of an ontol-
ogy O is a set containing O and all ontologies that O imports.!® The syntactic instance
closure SIC(Q) is the union of syntactic instances of each ontology in the import closure

SIC(O)= |J o,
0€IC(0)

where anonymous individuals have been standardized apart; that is, they are treated
as being different. Anonymous individuals are analogous to blank nodes in RDF and
cannot be identified outside an ontology.

3.3.2 Representation Formats

The functional-style syntax [MPSP09] (a.k.a. abstract syntax) defines the syntactic con-
structs of OWL and their structure. The primary storage and exchange format of OWL
ontologies is RDF/XML based on the OWL-to-RDF mapping (see Section 3.3.4). Other
formats are the Manchester Syntax [HPS09], Turtle [BBL11], and OWL/XML [MPPS09],
sorted in descending order of readability for humans.

17There are, however, some simple inferences for annotations under RDF-based formal semantics.

8There are two exceptions when an imported ontology must not belong to the import closure: in case
ontologies are different versions form the same ontology series and when ontologies are declared to be
incompatible.

3.3 Web Ontology Language 37

~

4 - - N
Horn Logic Logic Programs

First Order Logic
Programs

4 N\
OWL 2 Full

OWL 2 DL

RL

N J

Figure 3.2: Graphical representation of overlaps and containment regarding language
expressiveness for FOL, OWL, and Logic Programs

3.3.3 Profiles

OWL 2 DL can be seen as the default modeling level that provides the highest expres-
sivity while retaining decidability of standard reasoning tasks. The acronym reflects
its origin in the description logic SROZQ(D) (and SHOZN (D) for OWL 1 DL); in
fact, they can be considered syntactic variants: The formal model-theoretic semantics of
OWL 2 DL [MPGO09] precisely matches the formal semantics introduced in Section 3.1.

OWL has also been given formal model-theoretic semantics based on and compat-
ible with RDF’s formal semantics [Sch09]. In fact, this yields an even more expressive
modeling level (language) because RDF features can be used along with OWL features.
However, standard reasoning tasks are no longer decidable in general under these RDF-
based semantics. The modeling level is correspondingly called OWL Full.

In addition, OWL 2 comes with three profiles [MGH'09], namely OWL 2 EL,
OWL 2 QL, and OWL 2 RL. They are mainly motivated by intractability of reasoning
in OWL DL. Each of them is essentially a subset of OWL 2 sufficient for different types
of applications. They generally scale better due to their tractable complexity of rea-
soning. Figure 3.2 illustrates the relationship between the different language levels of
OWL 2 and also puts them into relation with FOL and Logic Programs.

OWL 2 EL

The EL acronym reflects the profile’s origin the EL DL family [BBLO8]. These DLs are
generally known to have polynomial worst-case complexity of subsumption reason-
ing w.r.t. a TBox. Consequently, they are especially useful in domains where the TBox
can become very large. For instance, SNOMED CT [Int] has about 380000 concepts
built using only conjunction (1), existential restriction (3R.C), and the top concept (T).
Amongst other restrictions, OWL 2 EL disallows a number of concept constructors,
namely negation (—), disjunction (L), universal restriction (VR.C), and also disallows
inverse roles, which can (in combination) lead to exponential complexity.

38 Fundamentals

OWL 2 QL

The QL acronym reflects the profile’s aim to be realized on top of existing relational
DBMS. In fact, it targets application domains where the ABox can become very large
with billions of individuals and efficient ABox query answering is the most important
reasoning task. The latter can be implemented by rewriting queries into, for instance,
standard SQL queries. Complexity of query answering w.r.t. a TBox in OWL 2 QL is in
PTime, for some cases even in LogSpace.

OWL 2 RL

The RL acronym reflects the profile’s purpose of resembling an OWL-based rule lan-
guage [GHVDO03]. The basic idea is that a concept inclusion axiom C C D can be under-
stood as a rule-like implication
D < C

—~

head body
where the sub concept is the rule body (antecedent) and the super concept is the rule
head (consequent).!” OWL 2 RL is best used for application domains requiring scalable
reasoning without sacrificing too much expressive power. In order to ensure decidabil-
ity and to avoid the need for nondeterministic reasoning, OWL 2 RL imposes restrictions
on the rules that can be expressed. Amongst other things, it disallows rules (concept in-
clusion axioms) where the existence of an individual enforces the existence of another
individual. Also rules are restricted to be asymmetric, i.e., there are concepts that can
be used as the body (subconcept) but cannot be used as the head (superclass).

3.3.4 Mapping to RDF Graphs

The OWL mapping to RDF graphs [PSM09] defines a bidirectional transformation based
on unique rules from the OWL abstract syntax to RDF graphs while preserving formal
OWL semantics for a roundtrip (OWL — RDF — OWL). Formally, let i be a possibly
nested syntactic instance; note that several syntactic constructs can be nested (e.g., a
complex concept expression). Then, T(¢) denotes the RDF graph (set of triples) ob-
tained by recursively applying the OWL-to-RDF mapping rules to ¢. We overload T for
ontologies. The RDF graph for O is obtained by applying T to all syntactic instances

Y € O; that s,
T(0)= |J T(y).
peO

Observe that this does not include imported ontologies (if any). T can be analogously
overloaded for OWL knowledge bases; that is, T(W) = Uyew T(#).

YWhereas C C D and C — D are logically equivalent, they are not to be confused with a trigger
(a.k.a. production) rule C = D [BCM'07, Section 2.2.5]. The semantics of the trigger rules is given in a
declarative way by equivalence to an epistemic inclusion KC T D that basically states that an individual
ais amember of D if it is known either explicitly or implicitly by inference that a is a member of C. In other
words, C = D is not equivalent to its contrapositive =D = —C. Trigger rules are therefore constructive;
their semantics can also be defined in an operational way as a forward-chaining process.

3.3 Web Ontology Language 39

Table 3.4 illustrates the mapping using some examples. Observe that the number
of triples to which a OWL syntactic instance is mapped is not only determined by the
type of syntactic construct. Some of them (e.g., ObjectOneOf, DisjointUnion) map to a
number of triples that is proportional to the arity of actual syntactic instance.

Table 3.4: Examples for mapping of OWL syntactic constructs to RDF triples

Syntactic Construct ¥ T(¥) |IT(Y)]
Declaration(Class(x)) x rdf :type owl:Class. 1
Declaration(ObjectProperty(x)) x rdf:type owl:ObjectProperty. 1
ObjectHasValue(p y) x rdf:type owl:Restriction. 3
x owl:onPropertyp. Xxowl:hasValuey.
ObjectOneOf (y1 ... Yn) x rdf:type owl:Class. > 6 for
xowl:oneOf (T(SEQ(y1...yn))) . n>2
ObjectMaxCardinality(p m y) x rdf:type owl:Restriction. 4

X owl:onPropertyp. xowl:onClassy.
x owl:maxQualifiedCardinality
"m" " "xsd:nonNegativelInteger.

DisjointObject Properties(p1 p2) p1 owl:propertyDisjointWith py. 1
DifferentIndividuals(x; x3) x; owl:differentFromuxsy. 1
Class Assertion(x y) xrdf:typey. 1
ObjectProperty Assertion(xq p x2) X1 p X2 . 1
Syntactic Instance ¢ T(y) IT(p)
Declaration(Class(:Father)) :Father rdf:type owl:Class. 1
Declaration(Class(:Mother)) :Mother rdf :type owl:Class. 1
Declaration(Class(:Parent)) :Parent rdf :type owl:Class. 1
Declaration(:hasSon rdf:type owl:0bjectProperty. 1
ObjectProperty(:hasSon))
DisjointUnion(:Parent :Parent owl:disjointUnionOf _:1. 5
:Mother :Father) _:1rdf:first:Mother. _:1rdf:rest _:2.
_:2rdf:first :Father. _:2 rdf:rest rdf:nil.
Class Assertion(egy:Isis :Mother) egy:Isis rdf : type :Mother . 1
ObjectProperty Assertion(egy:Isis :hasSon egy:Horus . 1

egy:Isis :hasSon egy:Horus)

SEQ(x1...xy) is the linked RDF list, mapped to one triple for n = 0 and 7 2 triples for n > 1.
_:1i denotes a blank node; x, y denote an IRI or a blank node; p denotes an IRI; m,n non-
negative integers.

System Model

SEMANTIC SERVICE EXECUTION requires a system that manages this task. The pur-
pose of this chapter is to describe an abstract system model that seeks to jointly
represent the integral parts providing the basis for the types of flexibility introduced
and motivated in Chapter 1 and 2 in a general and formal way. First, the functional
and non-functional properties of services reflecting the data, change, and non-functional
semantics in the domain of their use. Second, the behavior that occurs when they are
performed, comprising the interactions, communications, and synchronizations among
acting parts.

This chapter is correspondingly divided into two main sections, see Figure 4.1. First,
Section 4.2 in which we present a service model that captures these properties and their
semantics. Second, Section 4.3 in which a process model is presented that captures the
behavior along with execution semantics. Together with a preceding section where we
introduce the basic elements, they make up the system model that is taken as the basis
for subsequent chapters.

Service Semantics

Functional Semantics Non-functional Semantics Execution Semantics
Change Semantics Data Semantics
L . v] L . v]
v v
Service Model Process Model

Figure 4.1: Classification of service semantics combined in the system model.

The service model builds largely upon previous research and initiatives on (for-
mal) Semantic Service frameworks, namely OWL-S [MBH"04], SAWSDL [FL07], and
WSMO [LPRO05] (in alphabetical order) and adopts the DL based approach to represent
the semantics of services and their operations. General introductions to principles of

42 System Model

Semantic Services have been given, for instance, in [CS06, SGA07, SHS08, FEST11]. The
process model builds upon previous research in the area of modeling workflows and
concurrent systems, in particular formal process models. Development of such models
is strongly connected with their intended use and objectives. A categorization into five
different uses has been presented in [CKO92] of which we quote the category that is
relevant for this work:

Automate execution support requires a computational basis for controlling be-
havior within an automated environment.

Well-studied directions in the area of process theories are activity-oriented ap-
proaches and process algebras. A prominent representative for the latter is the 7-
calculus [Mil99], whereas PETRI nets [Mur89] belong to the former category. Many
process modeling languages build on these formalisms [LS07]. More recently, the set of
process theories has been further extended by applying the declarative and constraint-
based approach to process modeling [PA06, PSSA07]. In this thesis, we will adopt the
PETRI net formalism to provide a model of the behavior of services. It provides a well-
understood theory general enough to model distributed and concurrent systems, which
are prerequisites to capture the nature of the application forms presented in the intro-
duction (see Section 1.1). Equally important to this work, they can be used to provide
firm executable semantics.

Finally, our goal is to devise a generic and principled approach. Analogous to the
Reference Model for Service-oriented Architectures [MLM106], we aim at being inde-
pendent of specific standards, technologies, implementations, or other concrete details.
On the other hand, there are additional (technical) aspects related to service execution,
notably: service engineering, programming, and provision; quality-of-service negotia-
tion and enforcement between service providers and users; security and privacy con-
cerns such as policies that should control the use of services in open environments. But
these are all non-goals to this thesis and therefore not addressed by the model.

4.1 Basic Elements, Relations, and Assumptions

The purpose of this section is to provide a big picture on how the system is structured.
More specifically, we will introduce and define the basic elements in the system infor-
mally, identify how they relate to each other, provide important background informa-
tion, and point out basic assumptions that are made in this thesis. Whenever possible,
elements are introduced in bottom-up succession. Figure 4.2 depicts the static structure
of the system model. For the most part, this represents a common denominator over ba-
sic notions and their relations in prominent Semantic Service and Web Service descrip-
tion frameworks. Though frameworks do not fully agree on a common terminology and
differ in their formal representation, these notions and the relations can be identified
more or less directly in DSD [KKRMO05], OWL-S, SAWSDL, WSMO, WSDL [CMRW07],

4.1 Basic Elements, Relations, and Assumptions 43

< presents
Profile Functional Unit
1 1 _invoke() _
* Zﬁ Grounding
1 [
|
|
. |
Process describes » Service Operation 1 ! 1 Implementation
1 1

Figure 4.2: Basic elements of the system and their static structure in UML notation.
Colored elements are part of a service description.

and the more recent hRESTS [KGV08] and SA-REST [GRS10] for microformat-style em-
bedding.! The terminology that we will use follows mostly OWL-S and WSDL.

Normative assumptions that are made about the basic elements in the following
subsections are set out-of-line and are highlighted using enumeration labels of the form
(An). Assumptions that have an informative character or assumptions that are conse-
quences of the structure and the relations depicted in Figure 4.2 are not highlighted and
will be described in-lined.

Also, we do not yet detail how semantics nor behavior is formalized in the following
subsections. Finally, we abstract from a number of conceptual, infrastructural, and tech-
nical aspects that are all relevant to concrete implementations of the system model. This
includes (i) how elements are created and how they are actually represented, (ii) tech-
nical means that are used, for instance, by clients to interact with services, (iii) technical
means on how the elements are provided, (iv) technical details concerning the differ-
ent actors in the system such as service clients, service providers, execution engines,
or other infrastructure related entities, and (v) the environment in which the system is
deployed (e.g., centralized, distributed, peer-to-peer).

4.1.1 Functional Unit

As the name suggests, a functional unit is an abstract notion meant to encapsulate some
well-defined functionality. There are two kinds of functional units in this model: ser-
vices and operations. No matter which, they are designed to achieve either application
or system related intents of some sort. Generalizing the definition given in [Pre04] to
a functional unit, it has “the capacity to perform something of value, in the context
of some domain of application”. This includes essentially information processing over
data and/or physical transformations in the real world. In this thesis, we consider func-
tional units of the following kind.

(A1) A functional unit is deterministic regarding information processing and physical
transformations.

IThere is also WSMO-Lite [VKVF08] and MicroWSMO [MKP09]. The former slightly extends
SAWSDL, whereas the latter relies on hRESTS. Both can be seen as light-weight successors of WSMO.

44 System Model

(A2) Data processed by a functional unit is discrete.?

Assumption 1 means that services and operations are devoid of internal randomness
regarding information processing and physical transformations. More specifically, they
are devoid of what is often referred to as internal as opposed to external nondetermin-
ism [Hoa85].> Therefore, they can be seen as partial functions of the input data to be
processed and the current state of affairs in the application domain; hence, they may
not have different results with different probabilities for each result when invoked with
the same input data and starting from the same state. Note that this understanding
of determinism does very well include services and operations that are implemented
based on nondeterministic algorithms.

Assumption 2 means that a functional unit may consume and produce single data
items (of a well-defined format) rather than continuous streams of individual data items
— known as data streams [BBD"02] — whose end may not be known in advance and
where data items may arrive in a time-varying manner. This is what we call discrete
versus continuous operation mode (cf. Table 1.1) and this classification shall relate only to
data being processed. The reason for this restriction is that data stream processing yields
some fundamental new research problems that are out of scope to this thesis. We submit
that discrete operation mode resembles today’s standard SOAP and REST based Web
service technologies, as they consider processing bounded messages (of a well-defined
structure). Support for continuous stream services has been addressed, however, for
service-oriented platforms in various works (e.g., [ABMO04, SPL*04, BFL*07, GRL"08,
BS11]).

A functional unit is assumed to provide the (technical) means to invoke it, meaning
that this is the interaction primitive for starting its execution. However, a service does
actually not provide a direct technical instrument to invoke it. Invocation here is un-
derstood as its instantiation (by an execution engine). In an ideal world, invocation as
well as the invoked functional unit itself never fails. In a real world with concurrency,
conflicting access to shared resources, and undesired phenomena of a stochastic nature
they may occasionally fail. For example, there might be sudden changes that do not
allow an operation to finish. This topic together with recovery will get into main focus
in Chapter 5.

Finally, Figure 4.2 shows that every functional unit presents exactly one profile. This
might appear a restriction considering the fact that there are reasons that suggest a
model in which especially services can present multiple profiles, which is the case, for
instance, in the OWL-S framework. In fact, this is a simplification rather than a restric-
tion, justified by the fact that we are concerned with the service execution task. A service
might actually present multiple profiles but this aspect is not relevant when it comes to
execution and is therefore not represented in the model. This will be further explained
in Section 4.1.5 when discussing the profile.

2The nature of data that can be processed is not always made clear in the literature on Web Services
and Semantic Services thereby leaving space for unintended interpretation.

3Internal nondeterminism refers to the case where a choice is made by the system as the result of an
internal nondeterministic decision. In contrast, external nondeterminism reflects the case where a choice
is made by the environment outside the control of the system.

4.1 Basic Elements, Relations, and Assumptions 45

4.1.2 Operation

An operation is one of possibly many functional units of which a service is composed
of. Operations can be compared to the notion of actions in action and planning the-
ory [GNTO04, HLPO8] or tasks (activities) in workflow theory [JB96]. That said, we un-
derstand an operation as having no externally visible substructure: from the outside it
is observed as an indivisible, atomic unit. In contrast to a service, an operation is there-
fore not associated with a process. This means that it is understood as a black box of
which internals and its internal behavior are not known (not of further interest).

Usually, an operation realizes some functionality that is either too “small” to make
up a service on its own or that is an idiosyncratic part of a service. Conversely, de-
termining the operations of a service depends, in part, on how it can be functionally
decomposed. Note that an operation is not assumed to be private or hidden. Analo-
gous to a service, an operation is publicly visible in the system; it is just an integral part
of a service.

Invocation of operations is inherently remote for services provided in a network
(e.g., the Internet) and is done by means of a request message for request-reply and
one-way interaction protocol operations. We understand a one-way interaction as asyn-
chronous, meaning that the invoker can proceed immediately. A request-reply inter-
action is understood as synchronous: control proceeds only after the reply has been
received (which does not necessarily imply busy-waiting of the invoker for the reply).

One-way and request-reply interaction protocols imply that operations are stateless.
This is not a limitation since a stateful operation, as it is understood here, can equally
well be viewed as a composite service. Without loss of generality we can therefore make
the following assumption.

(A3) Operations are stateless.

Statelessness refers to the property of not maintaining conversational state beyond
the duration of an invocation. When an invocation completes, the state is no longer re-
tained. In other words, interaction with a stateless operation is subject to a total amnesia
of conversational memory once invocation completes. Statelessness is important inso-
far as it is one means of facilitating loose coupling, which is perhaps the main principle
in service-oriented computing. However, the importance here lies in the constriction
of operations to simple one-way or request-reply interaction protocols. All interaction
protocols that go beyond the simple request-reply message exchange inevitably require
maintaining a conversational state (a.k.a. session); hence, are stateful. We submit that
a stateful operation can always be converted into a stateless one either by putting con-
versational state to the invoker side (frontend) and including relevant parts in each in-
vocation as additional input data or by putting it to secondary and possibly persistent
memory (backend) used by the operation on each invocation [Jos07, Chapter 15].

In the system model, an operation has exactly one implementation that performs the
functionality when invoked. In practice, however, one might want to extend this and
allow an operation to be implemented in multiple while functionally equivalent ways.
There are two main reasons that motivate this. First, to allow the provider to make an
operation accessible in multiple technical ways (e.g., using various protocol and mes-

46 System Model

sage/data formats). Second, to provide different implementations with varying quality
characteristics (e.g., performance). Imagine, for instance, a text retrieval operation im-
plemented using different algorithms of which one performs best for long query input
texts whereas the other for rather short query inputs.

The simplification of the model to exactly one implementation per operation is made
for the same reason than the simplification that functional units present exactly one pro-
file (further explained in Section 4.1.5): invocation of an operation at execution time ac-
tually invokes one and only one of its implementations. Deciding which one to chose
if there are multiple implementations available is an optimization problem that is rele-
vant but not in the immediate focus of this thesis. Clearly, the decision can involve (i)
the different quality characteristics, (ii) the preferred access technology, or (iii) the com-
bination of both. The time when such a decision is made is a typical instance of early
binding (where the decision is made at design time, hence, it is static at runtime) versus
late binding (where the decision is made dynamically at runtime whenever necessary).

It is important to understand that an operation — analogous to a service — is thought
of as an abstract representation of functionality. Only implementations deal with con-
crete levels of realization and usage. Therefore, an operation that has no implementation
is said to be abstract. Obviously, an abstract operation is only useful for static analysis
of its properties but invocation is actually not possible. Since we concentrate on service
execution — which does not make sense for abstract operations (and abstract services)
anyway — we restrict the model to require at least on implementation per operation; this
restriction can otherwise be dropped.

For the sake of completeness, we mention other (technical) aspects that are, however,
not important for the purpose of this chapter. First, remote invocation of an operation
is assumed to take place in a best effort network where messaging is reliable to a level
as provided by the data transmission protocol used such as TCP. Second, an operation
may, optionally, provide means to get canceled prematurely. Otherwise an operation
is assumed to be indivisible, which is the more common case. If cancellation is sup-
ported then it is understood analogous to a transactional rollback: Once an invocation
has been canceled all effects that have been created up to this point will be reversed.
Finally, completion of one-way interaction style operations may be accompanied by an
acknowledge/notification message.

4.1.3 Implementation

An implementation is a concrete realization of the functionality specified by an opera-
tion. It is, therefore, associated to one and only one operation. Moreover, an implemen-
tation is assumed to be accompanied by a declarative description of all technical details
on how to access and use it. This includes message and data formats (e.g., JSON, XML,
YAML), transport protocols (e.g., HTTP), and address information (i.e., an endpoint ref-
erence such as an URL). The technical concept is known in OWL-S as a grounding and
in WSDL as a binding; from a conceptional point of view, they are so closely related that
they can be considered synonyms. These technical details are represented in the system
model by the Grounding association class.

4.1 Basic Elements, Relations, and Assumptions 47

Assuming that different implementations of the same operation realize the intended
functionality correctly and only this functionality, they can only differ in non-functional
properties, the conditions required to be operable (see Section 4.1.5), and their access
technology (e.g., SOAP, REST, RPC).

4.1.4 Service

A service is a functional unit that is composed of a finite set of operations and that can
also include other services as sub services. This effectively yields a tree-structured con-
tainment relation that bottoms out in operations and allows to recursively decompose
a service. However, the containment relation is of minor relevance compared to the be-
havioral perspective that views the routing of control and data between operations and
sub services (see Section 4.1.6).

In order to clarify the notion of services, [Pre04] put forward a model-theoretic def-
inition making a distinction between abstract and concrete services. An abstract service
is understood as the set of all its concrete services. A concrete service is therefore an
actual occurrence (or realization) of an abstract service (e.g., a concrete emergency case
handled as defined by the emergency assistance service, see Section 2.2). The differenti-
ation between an abstract and a concrete service is synonym to using the terms service
type and service instance. Analogously, the terms parametric and ground service used
in [BML™05] refer to the same concept (parametric = type, ground = instance). To be
consistent with the process terminology set forth in Section 4.1.6, we will use the terms
service instance and service, the latter being the short form for an abstract service.

A service is assumed to be globally available in the system. Every actor (e.g., a client)
in the system can possibly invoke a service provided that the actor has the technical
means and is authorized to do so; note that the security aspect is out of scope to this
thesis. This also means that it can be very well invoked by a client or the provider of the
service. In the former case the service can be seen as passive (i.e., the provider awaits
requests) while for the latter it can be seen as active (i.e., started on the initiative of the
provider). Invocation of a service eventually results in invocation of operations as spec-
ified by its process. Finally, a service can be cross or just intra-organizational. A service
is cross-organizational if it includes sub services provided by different organizations
and intra-organizational otherwise.

4.1.5 Profile

A profile* describes the functional and non-functional properties of a service or an oper-
ation, thereby making them self-describing. In other words, having access to the profile
is sufficient and is the only means to get to know these properties in advance without
actually using a service or an operation. The profile does not, however, tell anything
about the behavior of a service.

Regarding the functional dimension, this includes (i) input data consumed, (ii) output
data produced, (iii) preconditions required to be satisfied in order to operate effectively,

4In addition to the term profile, the terms capability description and signature are synonymously used in
the literature (e.g., [PKPS02, SWKL02, GMP06]).

48 System Model

and (iv) effects that are asserted to hold upon successful termination. Preconditions and
effects, therefore, express changes that are going to be made in the course of execution.’
Capturing the functional aspect of a service or an operation by these four categories —
hereafter abbreviated IOPE — originates from action theories in Artificial Intelligence
and is known as the change semantics.® A key aspect in all Semantic Service frameworks
is that IOPEs are described relative to a shared application domain conceptualization —
an ontology. The ontology captures the terminological domain knowledge by defining
the concepts of the domain. In our case this is a Description Logic theory — the TBox if
loaded into a KB.

Regarding the non-functional dimension, a profile includes properties that describe
how a functional unit is supposed to be and which can be used to judge its quality
characteristics. Exemplary categories are performance, cost, security, trust, reliability, or
transactional properties. Analogous to IOPE, properties in the non-functional category
— hereafter abbreviated N — are semantically described relative to an ontology, which
models typical QoS concepts in this case.

A profile might also include properties that neither fit well into the functional nor the
non-functional dimension but rather onto a meta-level. Examples are a list of categories
for the purpose to classify them according to a (business) taxonomy or the creation
date and version number of the profile. Meta properties are rather relevant for service
selection, but barely for the service execution task since they do not play an ultimate
part in the course of execution.

As already indicated in Section 4.1.1, there are reasons for allowing especially ser-
vices to present multiple profiles. The main motivation is to allow service providers to
publish different profiles for different use cases. For instance, the provider of the ship-
ment service in the book seller scenario (see Section 2.1) might want to publish two pro-
files: one for express delivery and another one for regular delivery. The former would
usually differ from the latter in the non-functional property representing its costs, as
extra costs are charged. However, the instantiation of a service for the purpose of its
execution ultimately involves a commitment for exactly one profile. Both the service
provider and the service consumer certainly do not want to leave the properties of the
service that is to be enacted open in the sense that the provider might deliver properties
of one or another profile of a complex service. Rather, execution starts from an agree-
ment upon exactly one profile. This also holds for the sub services (if any) of a service.
Therefore, the system model starts from the point where the commitment for the single
profile that is supposed to be enacted has been made.

Related to the aspect of single versus multiple profiles is the fact that profiles may
be updated (frequently) as a result of functional or non-functional changes made by
the service provider. In practice such updates are likely to be made more often to non-

SWe note that the WSMO framework further distinguishes between preconditions versus assumptions
and postconditions versus effects. Preconditions and postconditions are statements that relate to the
inputs or outputs (referred to as the information space). Assumptions and effects are statements that
neither relate to an input nor an output but the state of the world before and after an invocation. Since
this distinction is not relevant from our perspective — both types can be checked at execution time (but
not necessarily all of them can be checked at design time) — we consider preconditions/assumptions and
postconditions/effects as synonyms, respectively, and will only use the terms precondition and effect.

6See [HLPO8] for a comprehensive introduction to the most prominent action theories.

4.1 Basic Elements, Relations, and Assumptions 49

functional properties (e.g., changes in usage costs). We attribute a functional unit as
volatile if its profile can be subject to changes. Clearly, the profile does not change for a
service instance while it is executed for the same reason why there is one profile.

Finally, the profile maintainer and the service provider need not necessarily be the
same. The profile of an e-commerce service, for example, may have been created by
the service provider and augmented by a consumer organization or other parties. The
reason is that non-functional properties can be classified in two categories: those within
and those beyond the influence of the service provider [HKRKO09]. Take as an example for
the latter trustworthiness or reputation. It is hard to imagine that the service provider
would honestly grade them. In fact, one would rather trust an independent third party
that makes such assessments in an objective way. We therefore abstract from whether a
profile is a single entity or not. A profile might be split into several parts that are even
published in different places. On the other hand, profiles are obviously assumed to be
made available for retrieval, which is usually done by means of system-wide directories
— the service market, so to speak.

4.1.6 Process

In essence, a process specifies and reflects the execution of a service. For the sake of
clarity, we point out our understanding of the terms process, process instance, and pro-
cess model first, as we intentionally decided to slightly deviate from the closely related
terminology commonly used in Business Process Management [Wes(07]. In our model,
the term process is basically a short form (for the sake of brevity) loaded with two dif-
ferent meanings. First, it refers to a process specification (or schema) that describes the
behavior of a service that occurs in the course of its execution. Clearly, a process in-
stance is such a concrete occurrence of a process specification (occurring as a result of
invocation of the service). This is the second meaning. Consequently, the term process
is used interchangeably either to refer to the specification of a certain type of process
or an instance of it (cf. service and service instance in Section 4.1.4). To avoid ambigu-
ous cases when the meaning would not be clear from the context we will explicitly add
specification, or instance then. Finally, the default meaning of the term process in our
nomenclature corresponds to the notion of a business process model in [Wes(07]; the latter
should, therefore, not be confused with the process model described in Section 4.3 that
describes the underlying formal model of processes.

It follows from Figure 4.2 that every service is described by one and only one process.
Even services that are composed out of just one operation are described by a process. In
this case the process is trivial and represents either a one-way or a request-reply style
interaction.

Following activity-oriented process models, a process is essentially understood as
a control flow together with a data flow. The former can be depicted by a control flow
graph that describes the local execution dependencies between operations and embed-
ded services. The data flow can be seen as unidirectional links connecting, for instance,
an output of an operation to an input of a subsequent operation. Only by respecting the
operational semantics when working off the control flow graph and handling the flow
of data at execution time the intended functionality of the service is achieved.

30 System Model

There are two related notions in the areas of Web Services and BPM, namely or-
chestration and choreography. To clarify the relationship, we shall briefly review them.
In [Pel03] an orchestration is characterized as “an executable business process that can
interact with both internal and external Web Services”. Furthermore, it “represents
control from one party’s perspective”; that is, from the perspective of the organiza-
tion in which it is executed. An orchestration can, therefore, be understood as a cross-
organizational composite service that includes external services. In contrast, a choreog-
raphy rather takes a birds-eye perspective. It has been given similar but still different
meanings in the literature. We list three of them here. A choreography

¢ “allows each involved party to describe its part in the interaction” and “tracks the
message sequences among multiple parties and sources [...] rather than a specific
business process that a single party executes” [Pel03];

* “describes peer-to-peer collaborations of participants by defining, from a
global viewpoint, their common and complementary observable behavior;
where ordered message exchanges result in accomplishing a common business
goal” [KBRT05];

¢ “designates a business task performed by multiple roles, but does not give an im-
plementation composed of a set of participants. The specification of the individual
participants is at the level of BPEL-like languages” [QZCY07].

In essence, a choreography defines a collaboration protocol between the peers (parties)
that cooperate in a business process (i.e., a contract between the peers to which they
need to adhere when executing their part). Such a protocol may allow for many different
realizations, meaning that there can be many different (cross-organizational) composite
services each having different processes that adhere to the choreography. This shows
that a choreography is not executable “as is”. It is therefore not directly relevant to this
thesis.

4.1.7 Service Description

The Web Services Architecture [BHM™04] defines a service description as machine-
processable including — amongst other aspects — a service’s semantics. The latter is
viewed as a “contract between the requestor entity and the provider entity concerning
the effects and requirements pertaining to the use of a service”.

Following [Pre(04], a service description has, as its model, an abstract service (service
type). It is the goal of a service description framework to achieve completeness regarding
the abstract service described, meaning that the model of a service description includes
all instances of the abstract service. Completeness is basically achieved in all DL and
FOL-based frameworks both in the functional as well as the non-functional dimension
because of their grounding in TARSKI-style model-theoretic semantics [Tar56]. The basic
idea is that the extension of the profile spans the model of an abstract service.

It has also been pointed out in [Pre04] that in practice service descriptions are usually
not correct in the sense that there might be concrete services of an abstract service that

4.2 Service Model 51

cannot be delivered at least temporarily by the service provider (e.g., the order & pay
service of the book seller scenario that fails for some book because it is out of stock).

Analogous to the OWL-S framework, the profile, the process, and profiles of con-
tained operations are considered the basic elements that constitute a declarative ser-
vice description. However, without grounding information of operations, a service’s
description does not yet allow for its execution as the necessary technical details are
missing on how to access and invoke the operations. Consequently, the service execu-
tion task inevitably requires a service description format that includes primitives for
describing these grounding information, which we formulate by the following assump-
tion.

(A4) Every service is annotated by an executable service description.

Clearly, a service description should have the same visibility in the system than the
service about which it is made has. A service that is global, meaning that any actor in
the system can possibly access it (provided that the actor is authorized to do so), should
have a globally accessible service description.

Finally, the aspect of concrete service description formats, how they are stored, how
they can be accessed, and appropriate means to achieve efficient and scalable discov-
ery, aggregation, and search is a research topic of its own and largely beyond the scope
of this thesis. This applies equally to security concerns. As there is no single solution,
the system model is intentionally open in this regard. In distributed environments,
however, dedicated service directories are usually considered for this, being either cen-
tralized systems or organized in a decentralized way.

4.2 Service Model

The service model described in the following essentially builds upon well-established
works in two fields. First, the declarative while DL-based approach to conceptualize
and reason about the semantics of functional and non-functional properties of services
and their operations. Second, the action-based approach inspired by action and plan-
ning theories such as the Situation Calculus [Rei01] and the Fluent Calculus [Thi05] for
representing the functional aspect in the behavior of services and operations.

The central notion here is the profile where a service or an operation is perceived as
a black box. We start by defining the required notions of a profile parameter, a precondition
system and an effect system upon which we eventually provide formal definitions for a
profile, an operation, and a service.

4.2.1 Profile Parameter

A profile parameter (parameter for short) is the notion used to capture an input, an out-
put, or a non-functional property; as noted in Section 4.1.5, categories are abbreviated
I,O, N, respectively. It consists of five elements. First, a name that is usually human-
assigned. In the service model, the name of a parameter is merely used for identification
purposes. Although practical names often carry superimposed semantics, we shall not

92 System Model

assume that this is generally the case for parameter names. Second, a type used to relate
a parameter to a shared conceptualization (i.e., an ontology). The type is, therefore, the
central means that captures the semantics of a profile parameter. Third, a data value that
can be any kind of data item, but not a data stream as discussed in Section 4.1.1. For an
IO parameter, the data value is the actual input or output in the format as consumed or
produced by an operation or a service. The data value of an N parameter is optional as
it is not part of the data processed by a service; if used then it is the quantity or nominal
assigned (e.g., MAXRESPONSETIME = 30sec; CERTIFICATION = ISO9001). Fourth, a
profile parameter includes a finite set of representatives. Representatives can be referred
to by variables in preconditions and effects in order to instantiate (ground) them. Each
representative is either an individual name or a lexical form (see Definition 3.2 and 3.9).
The existence of representatives in addition to the data value is owing to the observation
that practical operations and services are often heterogeneous in the sense that different
data formats are in use. More specifically, a data value may be in a format that cannot
be directly used within preconditions and effects.

Finally, a profile parameter includes an assignment function, denoted with ¢, that cap-
tures how the representatives are determined. There are basically two types. For an 10
parameter, ¢ establishes a relationship between the data value and the representatives
(i.e., how the latter are derived from the former). For an N parameter, ¢ can also de-
scribe a query operating, for instance, over context information, a KB, or other sources
of information. As will be seen, ¢ is simple (e.g., a syntactical transformation) down to
trivial in some cases. A profile parameter is formally defined as follows.

Definition 4.1 (Profile Parameter). Let Vi, Vs be a set of individual names and lexical forms,
respectively. A profile parameter (parameter for short) is a 5-tuple Pa = (id, type, val, Re, o)
where

* id is the name (or identifier) of the parameter,
* type is either a concept or a data range, called the type of the parameter,
* val is a data item, called the data value optionally assigned to the parameter,

® Re ={ry,...,ru} isafinite set of representatives r; € V; UV g indexed by consecutive
integers {1,...,n}, and

* o is an assignment function (or procedure) for Re.

The lowest numbered representative rq is called the primary representative and the rest are
secondary representatives.

A profile parameter is concrete if its type is a data range and general otherwise.” A profile
parameter is instantiated (or ground) if Re is non-empty.

We will use the function-like notation id(Pa), type(Pa), val(Pa), and Re[i](Pa) to
denote the name, type, data value, and the i-th representative of a parameter Pa, re-
spectively. In concrete examples, we will write PAR: Type to denote a parameter named
PAR, whose type is a concept or data range named Type (i.e., type(PAR) = Type).

’The terminology is chosen in analogy to concrete domains versus the general-purpose domain (see
Section 3.1.3).

4.2 Service Model 53

Two parameter Pay, Pa; are said to have the same name, written id(Pay) = id(Pay), iff
the strings are the same sequence of characters. Two parameter are said to be equivalent,
written Pa; = Pay, iff their types are equivalent; that is, given a KB /C,

K = type(Pay) = type(Pay) .

Equivalent parameter therefore have the same extension in every interpretation Z that
is a model of K. Consequently, profile parameter are ascribed with Tarski-style model-
theoretic semantics [Tar56] as membership over sets. Two parameter are said to be the
same, written Pa; = Paj, iff they have both the same name and are equivalent.

The name and the type of a parameter are assumed to be static, meaning that they
are assigned at design time. In contrast, we shall abstract from whether the data value
val (and hence the set of representatives Re) is constant or variable between different
service instances since this is a relative matter.® In the same vein, we can abstract from
whether there is a default value for val, which would be specified at design time and used
by default whenever a value is not assigned at runtime. However, it is important that
val and hence Re are service instance bound for IO parameter while we can also abstract
from that for N parameter. An IO profile parameter can therefore also be understood as
a statically typed instance variable while an N parameter need not be instance specific.

Details on data formats for val are intentionally left unspecified in Definition 4.1.
The reason is to allow the use of various kinds of (possibly “complex”) data depending
on the actual data formats consumed and produced by an operation or service. Subject
to the actual grounding, the data value might therefore further involve a second-party
type. Note that type and the second-party type need not necessarily be the same, though
both are certainly in a more or less close intensional relationship.

The primary representative Re[1] is special insofar as — analogous to a typed vari-
able in a programming language — the type of a profile parameter defines the range of
representatives that can be assigned for Re[1]. An assignment outside such a range is
considered illegal. For a concrete parameter Pa, Re[1] is generally a lexical form repre-
senting an element from the value space of the data range. Formally, given a DL+D
interpretation Z with the datatype and data range interpretation function -7,

(Re[1](Pa))P € (type(Pa))D) 4.1)

Analogous, for a general parameter Pa, Re[1] is required to be an instance of the concept;
that is, given an interpretation Z,

(Re[1](Pa)) € (type(Pa))T . (4.2)

We note that the requirement expressed by Equation (4.1) and (4.2) can be equally ex-
pressed by a precondition. Therefore, we leave it to the discretion of an implementation
how they are actually enforced. Secondary representatives (if any) are exempted from
this restriction and can even be a mixture of individuals and lexical forms. However,
we require all representatives to be compatible to the preconditions and effects by whom
they are referred. This will be detailed in Section 4.2.2.

80me man’s constant is another man’s variable. [Per82]

o4 System Model

<Person> { "Person" : {
<firstName>Alice</firstName> "firstName" : "Alice",
<lastName>Wond</lastName> "lastName" : "Wond",
<birthday>03.03.2003</birthday> "birthday" : "03.03.2003",
<SSID> 123 456 789 </SSID> (%] "SSID" : " 123 456 789"

</Person>

}
02

a3(;prefix : <urn:example.org#>
<:AliceWond> a :Person;
:firstName "Alice";
:lastName "Wond";
:birthday "03.03.2003";
:SSID " 123 456 789 "

Figure 4.3: Exemplary input/output values in different data formats: XML (top left),
JSON (top right), and RDF Turtle syntax (bottom). Value-specific assignment functions
01, 02, and o3 specify how representatives are determined. In this case the primary
representative shall be a person’s concatenated name plus a namespace prefix and the
secondary representative its social security Id.

If a parameter is referred to by a precondition or an effect, or if it is taken into ac-
count for the purpose of dynamic failure recovery (the former of which detailed in Sec-
tion 4.2.2 and the latter in Section 5.4.4) then Re is non-empty. Elements of Re are then
determined by the assignment function ¢. In general, o may be an n-ary function such
that

Re:=o0(ay, ..., an) n>0 (4.3)

and where a4, ..., a, are the arguments. As mentioned above, the representatives of IO
parameters are solely derived from the data value; thatis, Re := o(val). Figure 4.3 illus-
trates the relationship between val, ¢, and Re using a simple practical example where
also three different data formats are considered. Further details on ¢ are as follows.

Concrete Input and Output Profile Parameter

Valid data values for concrete parameters are all lexical forms in the extension of the
data range; that is,

(val(Pa))P € (type(Pa))? . (4.4)

This means that an operation or service directly takes or produces, for instance, an inte-
ger value. Therefore, ¢ is either a trivial identity mapping such that Re[1](Pa) = val(Pa)
or a simple syntactical conversion from one lexical space into another (e.g., a date from
the US locale specific date format into DE specific date format). Since there can be at

4.2 Service Model 55

most syntactic differences between val and Re[1], one of them — preferably the represen-
tative — is actually redundant and can be factored out in an implementation. Secondary
representatives are usually not needed for unary datatypes such as numbers. For com-
posite datatypes such as dates or other n-ary datatypes they might be needed in order
to reference a component of a data value (e.g., the day of a date).

General Input and Output Profile Parameter

There are basically two possibilities for general IO parameters. In the simple case, the
data value is an individual name. Analogous to concrete IO parameters, this means
again that Re[1](Pa) = val(Pa) and 0 is the trivial identity mapping. Hence, in order to
satisfy Equation (4.2),

(val(Pa))t € (type(Pa))t . (4.5)

An example for this simple case would be an operation that consumes or produces a
data item that is an IRI and that refers to an OWL individual. Observe, that the data
item can be an anonymous instance of the concept (i.e., val(Pa) ¢ Vi). In this case,
there would be an artificial name (that is not meaningful to the application) created by
a Skolemization-style approach (e.g., an anonymous OWL individual corresponds to a
blank node in RDF).

On the other hand, the data value might be a more complex structured data item.
For instance, SOAP-based Web services use XML Schema elements to define the in-
put/output parts of messages exchanged. Therefore, val can also be a data item that
is an instance of a second-party type. Such a type is understood to allow for a possi-
bly infinite set of data items where each data item is well-formed in the sense that it
complies to the type’s specification. Usually, the specification imposes structure and
syntax on data (and might also include a set of operations that can be applied on in-
stances of the type). Examples of such second-party types are XML Schema elements
or types of (object-oriented) programming languages such as Java classes. The assign-
ment function ¢ then represents a conversion that is supposed to select and/or extract
the representatives (cf. Figure 4.3). Rather than being a generic function as in the sim-
ple case mentioned before, ¢ is then specific to the second-party type and needs to be
defined as part of the design process. The Extensible Stylesheet Language (XSL) is one
example for specifying and performing such conversions.

Non-Functional Profile Parameter

Since a non-functional parameter — no matter whether concrete or general — differs from
“real” IO parameters in the sense that it does neither represent a data item consumed
nor produced, ¢ is a function that rather captures where the representatives come from.
For instance, when the representatives are dynamically determined by a query g over
a knowledge base K (or any other information source), thus, Re := ¢ (K, q). Another
example would be the case where ¢ is a trivial null-ary function returning a constant
primary representative.

o6 System Model

Remark on Profile Parameter Types

The type of a parameter is taken from a domain ontology O (that was loaded into a KB).
In general, O can be local or global in the domain. If it is local then there are possibly
other local ontologies in the domain. They are designed independently, for instance,
by different service providers, and all of them might model the domain in more or less
different and overlapping ways. If O is global then it is either shared by all partici-
pants in the system (which means that there is a high degree of standardization), or one
can assume that it represents the combination of all the local ontologies where concepts
and data ranges have been merged or aligned. The assumption of such a possibly dy-
namically constructed global ontology is (tacitly) made by numerous DL-based service
discovery/selection approaches (e.g., [SWKL02, CWT08, SMM10, TRBD11]). The prob-
lem of (automated) merging or aligning multiple local ontologies [ES07] is not a goal of
this thesis.

4.2.2 Preconditions and Effects

From the conceptual point of view taken in the service model our goal is it to capture
the essentials of preconditions and effects in a general way. This is motivated by the
abundance of different precondition and effect semantics in the Al literature that each
have their own advantages and disadvantages. In fact, it has been argued in [Win90]
that there is no single approach available that can be applied generally in any setting.
For this reason, we will provide a generalization first by defining the notion of a precon-
dition system and the notion of an effect system that capture the basics concerning change
semantics of services/operations. After these notions have been introduced, we discuss
concrete examples for each of them, some of which we have used in our implementa-
tion. We first clarify why one can separate the two systems.

Observation 4.1. Preconditions and effects can be defined independently and dealt with in
isolation.

The question whether a precondition is satisfied is independent of the problem of how
to update the current state of affairs according to an effect. Second, it is not necessary to
take effects into account when reasoning about preconditions; vice versa when reason-
ing about effects. This shall not, however, preclude a combined treatment of both. For
instance, reasoning whether all of a sequence of operations are executable one after the
other and what their overall effect is.

Precondition as well as effect systems are made up of two elements, respectively:

1. A formal language to express concrete preconditions and effects.
2. An evaluation function.

The latter has either of the following purpose: For a precondition system it embodies the
mechanism used to check whether a precondition holds true w.r.t. a representation of the
current state of affairs in the domain of application, which is commonly referred to as
the world state. For an effect system, the function embodies how to update the world state

4.2 Service Model 57

representation according to an effect. The underlying basic idea taken from prominent
action theories such as the Situation Calculus [Rei01] is that the world state and general
domain constraints® of the application domain are axiomatized as a logical theory. Fol-
lowing the DL-based approach initially proposed in [LS02] and further extended, for
instance, in [BML 05, LLMWO06, BLL10], we consider the use of a DL knowledge base
for representing the world state and general domain constraints. More precisely, the
ABox represents the world state and the TBox domain constraints. In addition, an effect
causes changes to the ABox but does not extend to the TBox:

(A5) The TBox is a protected part'?, meaning that it is invariant under an effect.

For instance, an inclusion axiom Ambulance T Vehiclell <2 carries.Patient (which
states that ambulances are vehicles that carry at most two patients) cannot be modi-
fied as the result of a service execution. A concrete assertion carries(A1, BOB) (which
states that BOB is carried by ambulance A1) can very well be an effect of the execution
of a service or one of its operations.

Changes to the TBox that might become necessary from time to time in concrete
application domains are done outside the precondition and effect system. It should be
evident that such changes need to be correctly coordinated with precondition checking
and effect changes at runtime so that anomalies resulting from interfering accesses to
the knowledge base can be avoided. Not only for this reason, we consider these three
types of accesses to a KB to be made under a transactional regime, see Chapter 6.

Though not explicitly included in the definition of a precondition system nor an ef-
fect system, variables in concrete precondition and effect systems are a means to establish
links between (i) a precondition and an input or non-functional parameter, (ii) between
a precondition and an effect, and (iii) between an input, output, or non-functional pa-
rameter and an effect. In other words, the use of variables in preconditions allows to
“check” not only the current world state but, in addition, to check relevant parts of
actual input and non-functional property values by referring to representatives of an
input or non-functional property. Analogously, the use of variables in effects allows
to express changes of the world state in two ways. First, to incorporate actual input,
output, or non-functional parameter values by referring to a representative of them. As
an example, consider the trigger ambulance service from Section 2.2 that takes as an
input the concrete ambulance that has been selected to get triggered. Then one would
certainly want to express an effect that the selected ambulance is busy upon success-
ful execution, which can only be done in this case based on the information provided
by the input. Second, one can incorporate the results of preconditions in effects by re-
ferring to so-called solution set variables of preconditions, which essentially allows to
change assertions about existing individuals that match a precondition. As an example,
let us take again the trigger ambulance service and suppose that another precondition
requires that there is a crew (e.g., consisting of a driver and an emergency physician)
for the selected ambulance that is on standby. Again, one certainly wants to express

9Domain constraints are also referred to as state constraints or integrity constraints in the literature on
actions and change (e.g., [LR94, HR99]) because they describe the possible states of the world.

19The notion of a protected part as a subset of a logical theory/knowledge base is used analogously,
for instance, in [Win88b, G588, CKNZ10].

o8 System Model

that the crew is busy upon successful execution. Clearly, the crew is not provided as an
input to the service but we shall assume that it can be retrieved in the process of pre-
condition checking from the information in the KB; that is, it is returned as a solution
if the precondition is satisfied. Hence, one would use a “crew” variable in the effect
linked to a “crew” solution set variable in the precondition. Summing up, variables get
instantiated at execution time thereby grounding preconditions and effects.

As the expression language might be “too powerful”, the evaluation function might
be defined only for a subset of it (i.e., there can be classes of expressions for which it is
not possible to define meaningful semantics of the check and/or the update function).
Finally, since we aim at supporting automated precondition testing, effect application,
and reasoning about them, we require the evaluation function to be decidable in its
domain of definition.

Precondition System

Having introduced at an informal level the basics of a precondition system, we formally
define it as follows.

Definition 4.2 (Precondition System). Let L be a Description Logic and let K be the class of
L-knowledge bases. A precondition system is a pair PS = (L°,) where LS is a formal
language used to build expressions ¢ € L' and faye: K x LS — {true, false} is a partial
function such that f.y is decidable in its domain of definition. Let K x Effk be the domain of

definition where LES C LS. An expression ¢ € LES is called a precondition.

The semantics of fo (I, @) is that it determines the truth-value of ¢ based on the KB
KC at hand, which contains all the knowledge that, for instance, an execution engine ac-
tually has about the domain. Moreover, the exact semantics of f., depends on whether
the OWA or the CWA is used (i.e., whether the KB is understood as an incomplete or
complete representation of the domain). We do not prescribe the adoption of either
paradigm as this is an application specific decision. However, in our implementation
described in Chapter 7 we will adopt the OWA.

Under the OWA, fai (K, @) returns true or false only if the truth-value of ¢ is either
explicitly known or can be inferred (according to the rules of inference defined by the
reasoning regime used) from what is explicitly known. A failure to proof ¢ to be false
due to lack of knowledge has to be considered as unknown; analogous for true. One
might be tempted to extend f,x under the OWA such that it maps into a ternary target
set {true, false, unknown}. However, under the principle of a conservative or cautious
system, a result of unknown should also be taken as false: without further assumptions
regarding error behavior of services/operations anything from success to harmful fail-
ure can happen if one would execute a service or an operation that has a precondition
whose truth-value cannot be determined based on the information available. Hence, ex-
ecution carries an element of risk in this case. To make this more explicit, we formulate
the following general principle.

Prudence principle. If one cannot determine whether a required condition to proceed is satis-
fied based on the information available about an environment that is otherwise not known then
one should not proceed, as the consequences might not all be foreseeable.

4.2 Service Model 59

The only reasonable solution would be to expand efforts first in getting sufficient
knowledge (provided that one can afford to do so). Therefore, we propose a conser-
vative behavior under the OWA such that fq, in Definition 4.2 considers an unknown
truth-value as false. In contrast, under the CWA, a failure to proof ¢ to be true im-
plies that it is false. In other words, lack of knowledge of ¢ being true allows to infer
everything that follows from ¢ being false.

Observe that fq,« (K, ¢) = false has different consequences on reasoning under
the CWA versus the OWA. Whereas the CWA allows for additional inferences from the
implication of ¢ being false, the OWA does not so if f (K, ¢) = false actually results
from an unknown truth-value of ¢ (i.e., one cannot infer anything from that in this case).

The same conservative behavior should be adopted for an £-knowledge base where
L is a modal logic in which the truth-value of an axiom or assertion in the KB can be
further qualified using the epistemic modal possibly operator ¢. If a precondition ¢ is
possibly true for all what is known — but not necessarily — then the opposite might as
well be the case; hence, f.i should return false in this case.

Effect System
The notion of an effect system is defined in a similar way to the precondition system.

Definition 4.3 (Effect System). Let £ be a Description Logic, K the class of L-knowledge
bases, U the class of direct updates over L-ABoxes. An effect system is a pair ES = (LFS, fup)

where LES is a formal language used to build expressions ¢ € LES and fup: K x 2(£7) 5 U
is a partial function that maps a set of LES-expressions E € 2(£%) into a direct update U € U

over the ABox A of K € K such that fp is decidable in its domain of definition. Let K x 2(£3p)
be the domain of definition where L',Eg C LES. An expression ¢ € EES is called an effect.

The function fup (K, E) is understood as a realization of the belief update problem
for knowledge bases [FUV83, Win90], which can be formulated as follows: given K
being a representation of some domain, how should K be modified in the presence of
changes within the domain represented by E so that the updated KB K’ still represents
the domain after the change? The goal is to capture these changes syntactically by the
direct update U that when applied to K yields K’ (K =y K'). Since the TBox is a
protected part (see Assumption 5), U is obliged to affect the ABox only.

The reason for taking K as one argument (as opposed to just an ABox \A) is that
this makes it possible to also take the TBox into account for determining U, which is an
ultimate requirement in order to be able to address the frame and ramification problem.
The reason for defining f,, over a set of effect expressions E is that interdependencies
among a set of single effects might exist. While every sensible set of effects E should
be pairwise consistent and consistent with the TBox, in the ABox update problem, it is
naturally assumed that the effects in E may conflict (be inconsistent) with the existing
ABox. If consistency of the KB needs to be preserved then the latter implies the need for
a conflict resolution strategy embodied in the effect system.

Another reason for defining the notion of an effect system based on a function fyp
is that this implies that it correctly represents deterministic operations/services (see

60 System Model

Assumption 1); fup would not be a function under nondeterminism as the update U
given K and E might not be uniquely defined.

Apart from the restriction that effects do not extend to the TBox, Definition 4.3
provides several degrees of freedom on how concrete effect systems can be defined.
Notably, this includes the following: (i) effects might conflict with the existing ABox
thereby necessitating a conflict resolution strategy; (ii) it is not stated whether K must
be consistent for an effect to be applicable; (iii) the precise semantics of how E is repre-
sented in the updated KB is not defined, which includes, for instance, conditional effects
of the form /¢ where an effect ¢ is associated with a condition ¢ that determines
whether ¢ is enabled or not; and (iv) nothing is said about the DL £ nor LES. Concrete
effect systems, however, might not exploit the full spectrum spanned by these options.
The main reason is that, depending on the expressivity of £, £F5, and the current state
of K (e.g., whether it is consistent or not), a decidable and practicable solution might not
exist in general. This can be reflected in part by syntactic restrictions; that is, prohibited
expressions in LES\ Eﬁg for which fyp is not defined. Major aspects along which con-

crete effect systems can differ are therefore (i) the expressivity of £, LES, (ii) restrictions
on the TBox (e.g., acyclic), and (iii) strategies to resolve conflicts. The former two are
relevant for retaining decidability and practicability of the belief update problem.

Classification of Effect Systems

A variety of proposals for semantics of updates to Propositional Logic and Description
Logic knowledge bases have appeared in the Al and database literature. It has been
argued in [Win90] that there is no update semantics that can be applied generally in
any setting. As pointed out in [Win88a], the different semantics can be classified as
either model-based or formula-based; with the possible models approach [Win88b, Her96] and
the possible worlds approach [GS88] being prominent representatives, respectively.!! No
matter which, the basic principle that can be found in all update semantics'? is that the
knowledge base ought to change in a minimal way so that only those things that are
forced to change by an effect are changed. This is inspired by Newton’s law of inertia.
As an example, consider the trigger ambulance service from Chapter 2. Suppose the
occupancy of available ambulances is represented in an ABox using assertions state(Al,
IDLE) and state(A1, BUSY) where A1l shall identify a concrete ambulance. Further,
suppose the only effect of trigger ambulance is that the selected ambulance changes its
state from idle to busy. Consequently, nothing but the ambulance that has been selected
(by the select ambulance service) should have changed state from idle to busy as a result
of execution of trigger ambulance.

The Katsuno and Mendelzon postulates (KM postulates for short) [KM91] have cap-
tured what is the essence of the update process in a formal while logic-based way and
also include a definition of the minimum principle. The authors argue that every sen-
sible update semantics should satisfy these eight postulates. Yet it has been shown

UTn the classification of updates that takes a data management point of view (see Section 3.1.5) all these
semantics fall into the category of indirect update semantics (cf. Figure 3.1).

12Gee [HR99] for a comparison of various model-based semantics and [FMK™08] for a broad review of
the research topic in relation to closely connected or overlapping research fields.

4.2 Service Model 61

in [HR99] that prominent update semantics violate some of the postulates. As a result,
they extracted uncontroversial postulates that are not violated by any of them.

As the minimum principle is sometimes too restrictive, the use of occlusions has
been proposed for action theories, which have also been applied in the context of ser-
vices [BML105]. In short, occlusions are used as a device to exempt particular parts of
the world state from the minimum principle under an update. In [BML*05], occlusions
are expressions in the form of ABox assertions meant to be listed as part of a service
description and are understood as occluding parts of the world state from the change
semantics (i.e., these parts may change arbitrarily). Since occlusions open the gates for
nondeterminism in the effects of services and their operations they are not considered
in this thesis (see Assumption 1).

Conversely to occlusions, one might want to represent rigid relations [GNT04] in the
knowledge base. In short, a rigid relation must not vary under an effect update nor
under any other update per definition (e.g., birthplace(J.5S.BACH, EISENACH) with
birthplace being a rigid role since the birthplace of a person cannot change over time).
Therefore, they can be understood as protected parts. However, rigid relations are ABox
assertions; hence, they are not covered by Assumption 5. Yet there are basically two
possibilities to represent them. First, in DLs having nominals one can use a technique to
internalize (relevant parts of) an ABox into a TBox [RPZ10]. Using this technique, ABox
assertions are rewritten as GClIs in the TBox in the following way:

i=b ~ {a}={b},

a£b o~ {a}n{b}C L,

C(a) ~ {a}CC,

R(a,b) ~~ {a} C3RAb},{b} C3IR {a} .

This allows to move rigid relations into the TBox, thus, protecting them from changes
over time. The second possibility is to flag an ABox assertion « or even a role R indi-
cating whether a respectively each assertion R(a, b) is to be interpreted as rigid or not.
This allows then to take into account the flag by an update procedure.

Model-based (MB) Under this paradigm, in which the OWA is usually adopted, an
effect ¢ € E is applied to the individual models Z of K such that each new (updated)
model 7’ satisfies ¢, written Z' = ¢ (i.e., ¢ is true in each new model). Consequently, ¢
expresses changes in an interpretation Z rather than in a knowledge base K.!> We write
T =, 1’ to denote the transition to the changed interpretation Z’ that incorporates ¢
in some yet to be defined while minimal way; analogous for E. The classical meaning
of minimal change as proposed for Propositional Logic in [Win88b] is defined in terms
of a closeness relation between interpretations using symmetric set difference. One way
of transferring this principle to DL interpretations (see [CKNZ10]) is to understand an
interpretation Z as a set of atoms A(a), R(a,b); that s,

Al@)eZTsat € AT and R(ab) eI < (af,bF) e RT .

13Recap that a knowledge base represents the knowledge that, for instance, an execution engine has
about the world, which is usually incomplete. In contrast, an interpretation is understood as a complete
description of the world in this paradigm.

62 System Model

By using standard symmetric difference Z AZ' = (Z\ Z') U (Z'\ Z), an interpretation
T’ is strictly closer to Z than Z" if

INT CcIAT".

This can be easily brought into a distance function by taking the cardinality of the dif-
ference
dist(Z,7) =T A T| .

In general, applying the effects ¢ € E to 7 may result in a set of new interpretations,
which we will denote with E(Z) (i.e., Z' € E(Z)). A set of effects E is deterministic
in Z if |E(Z)| = 1 and nondeterministic in Z if |E(Z)| > 1 (e.g., for disjunctive effects
@1V ¢2). Conversely, there may be no successor model Z' if an effect (or a set of effects)
is inconsistent with I (e.g., two effects ¢; = —¢;). While one cannot generally know
in advance whether an effect is consistent with Z, there is no value in a set of effects
E in which effects are not mutually consistent. We shall therefore assume that there
is an interpretation J that satisfies each ¢ € E. It is clear that if 7 is a model of K
then 7' should be a model of the updated knowledge base K'. Formally, given that
U= fup(K,E), T =7, and K =y K' (see Definition 3.14) then

7' = K' whenever 7 = K, thus, K’ is consistent whenever K is.

Moreover, if Z |= ¢ for some ¢ € E then Z = Z’. In words, the interpretation should
not change at all for each effect that is already satisfied, which relates to the principle of
minimal change.

Let M(K) be the set of models of a knowledge base K. Under a so-called exact
logical update [Liul0], the set of models of K’ is required to be exactly that set resulting
from applying the effects in E to each model of KC; that is, fyp realizes a logical update if

MK = |J E@) . (4.6)
ZeM(K)

This poses the following questions:

1. Given a DL £, does a decidable procedure exist under which Equation (4.6) is
generally ensured?!4

2. Are there languages that are closed under such updates (i.e., is there a language £
in which the effects in E and the elements in U can always be represented)?!®

3. If such a language exists, what is the size of U as a function of the overall input E
and the initial /C (i.e., how does the size of the knowledge base change)?

The problem of model-based updates restricted to the ABox (which we are concerned
with) has been studied in [Liul0O]. In this work it was shown that even the basic DLs
ALC, ALCO, and ALCQTO are not closed under logical updates to the ABox (i.e., it

4Observe that such a procedure would realize fup.
15Observe that this assumes that £ is used for both effects and the knowledge base.

4.2 Service Model 63

is not possible in general to express the elements in U in these DLs) or it is unknown
whether this is possible (e.g., ALC QT).1® Expressing logical updates becomes possible
only if these DLs are extended by the @ constructor known from Hybrid Logic [AdR00]
or by moving to closely related Boolean ABoxes [ABHMO03], which allow for assertions
of the form &y * - - - * a;, where «; is either a concept or role assertion and * is either
the Boolean connector A or V. Therefore, weaker forms of updates have been studied
in [Liul0], namely approximate, projective, and approximate projective update. Yet only
some of the DLs mentioned are closed under these weaker updates while other still
require to resort to Boolean ABoxes or the @ constructor; for details we refer to [Liul0].
It was also shown in this work that in the worst-case the size of the updated ABox in
K’ is exponential in the size of the ABox of I plus the size of E for logical updates
and polynomial for projective updates. Similarly, it was shown in [GLPR09] that also
DL-Liter is not closed under logical ABox updates and therefore similar approximate
update semantics have been proposed with worst-case polynomial complexity. In fact,
in [CKNZ10] it was then shown that all the DLs in the DL-Lite family are not closed
under the model-based update (and even revision) paradigm due to implicit disjunction
intrinsically introduced by the principle of minimal change.

Formula-based (FB) Under this paradigm, the axioms and assertions in K itself are
the units of change (rather than interpretations as in MB). In short, given K and a set of
effects represented by E, the resulting direct update U contains a number of additions
that represent the effects ¢ € E. We call this the primal update and denote it with U,.
Analogous to the MB paradigm, the following properties should be ensured for the
updated KB K’ (which are a subset of the KM postulates):

e Vo e E: K |=¢;
e if L= ¢then K' =K.

Under the premise that consistency is to preserved for K, if E is inconsistent with C (i.e.,
as soon as there is an effect in E that contradicts with K) then U contains, in addition,
a number of deletes. We call this the concomitant update, denoted with U, such that,
finally, U = Uy U Uc. In this case, the idea is to choose a maximal subset Kmax C K
that is consistent with E (i.e., U, deletes the difference K \ Kmax)- Y The problem here
is that, in general, there might exist more than one such maximal Kmnax. As shown in
Example 4.1, this can also be the case for the ABox update problem we are concerned
with. Consequently, this calls for a strategy on how to come up with one updated KB.
Rather than a single obvious choice, there are basically two classes of possibilities to
this. First, a maximal Kmnax is chosen based on some preference relation. This was
proposed in [CKNZ10], called bold semantics; though the authors do not address the
problem of appropriate preference relations. Second, all maximal Kyax are combined
into one. Several strategies have been advocated in the literature of which the cross-
product [FUV83] (CP) and the when in doubt throw it out approach [Gin86] (WIDTIO)
are prominent ones. Given K and a set of effects E, let max(K, E) denote the set of all

oALC, ALCO, ALCQT, ALCQIO are all sublanguages of SROZQ.
17Recap that for monotonic DLs deletion of existing axioms or assertions from K is sufficient to resolve
an inconsistency.

64 System Model

maximal Ky and K the combined KB. CP defines the combination as the disjunction,
whereby each Kmax is understood as a comjunction18 of its axioms and assertions

]CCP = \/ Kmax -
Kmax € max(K,E)

This ensures that no information gets lost. The downside is that Kcp can be exponen-

tially larger. Furthermore, since disjunction is needed to express Kep, it might no longer
be expressible in the DL used. WIDTIO defines the combination as the intersection

Kwiprio = N Kmax -
Kmax € max(K,E)

The advantage of WIDTIO is that it is easy to compute. As pointed out in [Win88b],
it also has a problem: progressively eliminating inconsistency (e.g., in the course of
execution of services) can lead to less and less knowledge since axioms and assertions
not in the intersection will be removed without further considerations.

Example 4.1|

Consider the following knowledge base K and an update E expressed in the form of an
ABox assertion. In addition, suppose the UNA is not adopted.

K = {Fun(R);R(a,b),b # c} E={R(a,c)}

Simply adding R(a, ¢) to K clearly makes it inconsistent because R is functional and b, ¢
are declared to refer to different individuals. To resolve the inconsistency one can either
drop R(a,b) or the inequality assertion b # c¢. Consequently, there are two maximal
Kmax; hence, at least two candidates for X':

Kf = {Fun(R);b # ¢} U{R(a,0)) K3 = {Fun(R);R(s,b)} U{R(s,¢))

ICmax 1 Kmax 2

Whereas K] still entails b # ¢ as in IC, K} now entails b = c. Consequently, the first
case prefers preservation of the interpretation of individual names over individual re-
lations. The second case changes interpretation of names but preserves asserted re-
lations. Under WIDTIO combination of K] and K, the updated KB is Kiypro =
{Fun(R)} U {R(a,c)}; thus, one looses the information regarding the (in)equality of b
and c. Observe that the indeterminism illustrated by this example disappears under the
UNA since synonyms cannot exist (i.e., (in)equality assertions are no longer needed).

The FB paradigm has also been criticised for the possibility of counterintuitive re-
sults (e.g., [BH93]). In particular, it has been shown in [Win88b] that in the presence
of incomplete information the frame and ramification problem are not correctly solved

18Viewing a KB K as a conjunction of its axioms and assertions is consistent with the definition that an
interpretation Z satisfies KC if it satisfies each axiom and assertion.

4.2 Service Model 65

since earlier FB update semantics considered only explicitly asserted knowledge but
disregard implicit knowledge that can be derived (deduced). Therefore, more recent ap-
proaches to formula-based update semantics such as [CKNZ10] consider the deductive
closure of a KB (i.e., all axioms and assertions that are entailed by a KB either explicitly
or implicitly by inference). On the other hand, it has also been argued in [CKNZ10] that
the KM-postulates are too strict in environments like the Web.

In summary, we conclude that there is still no single obvious approach available
that would be ideally satisfactory and universal in terms of expressivity, computational
properties, and avoiding unintuitive results. Moreover, we believe that it is necessary
to examine whether the MB and FB paradigms are actually different. The interesting
question is whether they can be mutually reduced or whether one is a proper subset of
the other. The former would mean that they are equivalent. We conjecture that this is
the case under the premise that one considers either the deductive knowledge closure
or the set of models. In other words, if this conjecture is true then one can define any
update semantic for DL knowledge bases equivalently in either way. Finally, an attempt
to overcome the co-existence of different calculi by a unified action calculus has been
published recently in [Thill]. Yet it remains to be investigated whether it can be applied
for the representation of effects in the context of services and whether it provides a more
general approach.

Concrete Precondition Systems

We give DL-based implementations of f. considering two different but related lan-
guages, thereby constituting two precondition systems:

(PS1) Conjunctive ABox queries (see Section 3.1.4) and the

(PS2) SPARQL query language [HS10] under the OWL 2 Direct Semantics Entailment
Regime [GO10, Section 6] to ensure correct OWL DL semantics. We note that
this approach is similar to the one presented in [SMM10].

Consequently, a precondition is expressed in terms of a query. For both (PS1) and (PS2),
the DL £ used can be SROZQ(D) or any sublanguage (i.e., any expressivity level up to
OWL 2 DL). Regarding expressive power of queries, the main difference between them
is that (PS1) allows for preconditions over the ABox of a knowledge base only while
(PS2) allows formulating preconditions (i) over both the TBox and the ABox (i.e., over
general domain constraints and the world state) and (ii) a particular form of higher or-
der queries where variables can occur in the position of concept names and role names.
More precisely, a SPARQL query can contain basic graph patterns that, when written as
ABox query atoms, have the form

C?(x) and R?(x,y) 4.7)

where C? and R? is a variable that can be substituted by a concept name or role name,
respectively, x is either a variable or and individual name, and y is either a variable, an
individual if R? is bound to an abstract role, or a data value if R? is bound to a concrete

66 System Model

role.”” Moreover, the SPARQL approach allows queries over annotations of an OWL KB
so that even the non-logical information part can be included.

No matter which of the two precondition systems is used, the basic idea is that if g
is a query in either of them and K is the information source queried then

true ifK =g

fa (K, q) = { (4.8)

false otherwise .

Consequently, precondition testing is reduced to query entailment checking if 4 does
not contain solution set variables (i.e., for Boolean queries) and query answering oth-
erwise. This also means that precondition testing inherits decidability and computa-
tional complexity properties resulting from the expressivity of the actual DL £ used
(e.g., if £ is OWL 2 EL then combined query answering complexity for (PS1) is PSpace-
complete [MGH™09]; see also Section 3.1.4). Finally, observe that Equation (4.8) adheres
to the prudence principle no matter whether CWA or OWA is adopted.

The variables occurring in a query g are linked to profile parameters as follows; these
interrelations are depicted in Figure 4.4. Let Var(q) be the possibly empty set of variables
of a query g in either of the languages. If Var(g) is non-empty then it is one- up to three-
partitioned into any combination of solution set variables Varg, initially bound variables
Varj, and undistinguished variables Var; (e.g., Var(g) is two-partitioned if there are so-
lution set and initially bound variables in g but no undistinguished variables). Note that
undistinguished variables are understood as blank nodes in SPARQL. Each solution set
variable v € Varg is referred to by an effect atom, thereby grounding the effect atom
(see next subsection). Each variable v € Var; refers to a representative Re[i] of an input
or non-functional profile parameter Pa. This means that such a variable is substituted
by Rel[i] already before query execution; one can also say that v is instantiated by Re][i].
Each undistinguished variable v € Vary; cannot be linked at all (i.e., they are not used
to relate parts of a precondition to profile parameters nor to effects). Finally, links are
required to be compatible. A link between a representative Re[i] of a profile parameter
Pa and a variable v is compatible if

Re[i](Pa) is an individual <+ v occurs at the position of an individual, (49)
Rel[i](Pa) is a lexical form <« v occurs at the position of a lexical form. '

If g has solution set variables then it might be the case that its execution yields mul-
tiple solutions (results) in K. As an example, consider the following precondition ex-
pressed as an ABox query

Person(x) A CreditCard(y) A hasCreditCard(x,y) A validity(y, VALID) .

Suppose this precondition is specified for the shipment service of the book seller sce-
nario from Chapter 2. It states that a person is required to have a valid credit card. Fur-
ther, suppose that x is an initially bound variable (i.e., it refers to an input; hence, the
actual person individual is determined by this input) and vy is a result set variable (i.e.,

9In terms of FOL this means that variables can be used in the position of predicates (but not in the
position of quantifiers and connectors.)

4.2 Service Model 67

effect
variables

precondition
variables

Functional Unit

91y Re[1],* * Re[1]i=—
valy L» Im Out valy

LN

Om Re[l]m‘d ' : Re[l],, On
valy, L’ Iny, Outy 4'»Ualn

Figure 4.4: Links between representatives of profile parameters and variables in precon-
ditions and effects (dotted lines represent possible links).

it is referred to by an effect). If this precondition is executed against a KB K in which
the person is known to have n > 1 valid credit cards then there are n solutions for y.
This poses the question which is the “best” solution to chose? In fact, this involves an-
other question that has to be answered prior to that: Is such a situation allowed at all? It
turns out that this depends on the actual use case; hence, it has to be answered individ-
ually. If any of the returned solutions can be chosen then such a situation is obviously
allowed (i.e., it does not matter which solution is chosen). Otherwise there would be
either a preference for a particular solution or a requirement that there must be at most
one solution. While (PS2) allows for expressing such preferences over solutions (i.e., a
ranking) as part of 4 by means of solution modifiers for ordering, this is not possible
with (PS1). On the other hand, a requirement of at most one solution is not expressible
in either of them. In fact, it is not difficult to see that such a requirement is a general
domain constraint (e.g., each person might have at most one valid credit card, though
this particular case clearly would not match well with reality). Consequently, it would
have to be declared and enforced outside of preconditions.

As a matter of SPARQL’s grounding in RDF graph matching, (PS2) requires the KB
to be represented in the form of RDF triples (see Section 3.3.4), which makes the use of
an OWL knowledge base WV (see Definition 3.16) a natural consequence. Note that the
use of an OWL knowledge base shall not imply that the full OWL expressivity spectrum
is used in a certain domain of application; it might be a less expressive subset such as an
OWL profile (see Section 3.3.3) or a sub DL. Also, we note that conjunctive ABox queries
can be translated into SPARQL queries given that an appropriate entailment regime is
used (i.e., the expressivity of SPARQL includes the former). In fact, this translation is
straightforward and will be detailed in Section 7.2.1 when we describe our prototype
implementation, which supports (PS2) and a slightly more expressive variant of (PS1).

Finally, we note that the use of the query language SPARQL-DL [SP07] constitutes
another example for a precondition system where f. is again Equation (4.8). The ex-
pressive power of SPARQL-DL is stronger than ABox queries because the TBox can

68 System Model

be queried and the same form of higher order queries can be formulated (see Equa-
tion (4.7)). However, it is weaker than SPARQL under the OWL 2 direct semantics
entailment regime because filter constraints (e.g., regular expressions over data values)
and solution modifiers (e.g., ordering, limiting the number of solutions) do not exist. On
the other hand, SPARQL-DL provides a more OWL friendly syntax because its syntax
is closely related to the functional-style syntax for OWL. Also, a knowledge base need
not be represented by RDF triples.

Concrete Effect System

We give a DL-based implementation of f, considering positive and negative ABox as-
sertions as effect expressions. In the most general case, an effect ¢ is defined as follows:

¢ :=Ax) | R(x,y) | ~A(x) | 2R(x,y) (4.10)

where A is a concept name (A € V), R is either an abstract or concrete role name (R €
Vop U Vpp), and the same rules apply to x, y as for conjunctive ABox query atoms (i.e.,
they can be variables, individuals, or lexical forms depending on the position where
they occur and the role type, see Section 3.1.4). The first two forms are the positive
while the latter two are the negative effects.

Following the formula-based approach for ABox updates proposed in [CKNZ10],
we consider DL-Lite g [CGL107] (which is the basis of OWL 2 QL) and adoption of the
UNA.?° Together this ensures that the direct update U resulting from applying a set of
effects E in the form given by Equation (4.10) to K is (i) uniquely defined and that (ii)
the elements in U are expressible in the same DL. As a consequence of (i) the problem
of how to make a choice between multiple minimal knowledge bases (cf. Example 4.1)
does not exist. Due to availability of existential restriction in DL-Liter , effects are,
however, not necessarily deterministic in general, which will be detailed at the end of
this subsection. Likewise, not imposing additional syntactic restrictions on TBoxes then
effects may imply ramifications (i.e., implicit effects).

We show that U is still uniquely defined when DL-Literg is extended with (i) full
existential restriction 3R.C, (ii) concrete roles, (iii) all additional role types introduced
with SROZQ except transitive roles, (iv) role disjointness axioms, and (v) negated role
assertions —R(a, b). We call the extended version DL—Lite}%. Similarly, the extension to
conditional effects of the form 1/ ¢ where ¢ is a condition determining whether the effect
¢ is enabled is straightforward and does not pose any problems, but is not considered
further here.

In short, DL-Lite}, is syntactically defined as follows. If A € V¢ is a concept, S €
Vop and T € Vpp are abstract and concrete roles, respectively, then the following are
also concepts, roles:

B:= A |3R.C|3T.dr C:=B|-B R:=S|S"
where dr is a data range. TBox axioms are of the form:

Fun(R) Asy(R) Sym(R) Ref(R) Irr(R)
Dis(Ri,R,) Dis(T;,T.) BCC T CT R CR

20The assumption of unique names is common to all standard action theories [Liu10, Thil1].

4.2 Service Model 69

such that neither Fun(R;) nor Fun(R;) is in the TBox. ABox assertions are of the form:
A(a) —A(a) R(a,b) —R(a,b) T(a,v) —T(a,v) .

The semantics of these constructs is defined in the standard way as introduced in Sec-
tion 3.1. Also, note that By U B, C C can be encoded by two inclusions By C C, B, C C;
B € C; MG, can be encoded by B C Cy, B C Cy; disjointness of two concepts By, B, can
be encoded by B; C —B;; and Sym(R) is syntactic sugar since it is equivalent to R~ C R.

Let LS be the set of possible effects in the form given by Equation (4.10) such that all
symbols are taken from a given vocabulary (V¢, Vop, Vpp, Vi, Vis) and a set of variable
names Vy. Then the effect system is:

(ES1) LFS with DL—Lite}ji—knowledge bases, adoption of the UNA, and formula-
based update semantics as detailed below.

By recalling what has been discussed before when we introduced the notion of an effect
system, we make the following assumption specific to this effect system:

(A6) Given a consistent knowledge base L = (7, .A), a set of effects E is consistent
with 7 but may be inconsistent with A.

The semantics of the four types of effects in Equation (4.10) is defined as follows. Let
¢ be an effect in either form and Z, Z’ be interpretations that (i) share the same domain
AT = AT, (ii) include the same datatype map D, and that (iii) agree on interpretation
of individual names, that is, aX = aZ' for each individual name a € V. Note that we
do not need to state (iii) analogously for lexical forms since this is implicitly ensured by
saying that 7,7’ include the same datatype map D. Finally, let y*? be a short form for
y? if y is an individual name and y? if y is a lexical form. Then K’ accomplishes the
application of E to K if Z, 7" are models of I, K/, respectively, and the following holds:

¢ = A(x) then xT e AT
¢ =R(x,y) then (x%,y*P)eRY
9 =-A(x) then ¢ AT
¢ = —R(x,y) then (xf,y'P) ¢ RY

Vo € E: if for each model 7’ of K'. (4.11)

Observe that the meaning of a negative effect is that Z' |= —¢ rather than Z’ = ¢. Con-
sequently, such an effect is not a knowledge retraction. Furthermore, Equation (4.11)
implies that K’ is consistent but it does not yet show how to deal with the situation
when an effect is inconsistent with the ABox of IC, which will be addressed below.

In order for an effect ¢ to be applicable to X, ¢ must be ground; that is, variables in ¢
must have been instantiated either by an individual name or a lexical form. Therefore,
it is to be ensured at design time of a service description that a variable in an effect is
linked either to a solution set variable of a precondition or a representative of a profile
parameter such that the link is compatible as stated by Condition (4.9). This way all
variables get instantiated at runtime (i.e., when a service instance is executed).

From Equation (4.11) we can directly derive the primal update Up. The only signif-
icant detail is to distinguish between OWA and CWA. A positive effect ¢ as well as a

70 System Model

negative effect —¢ is directly added to the ABox under the OWA due to fact that neg-
ative information needs to be maintained equally to positive information.?! Under the
CWA, however, a negative effect =¢ need not be added. Recap, under the CWA it holds
that K [~ ¢ implies £ = —¢. Observe that it would not harm to add —¢; it is just not
necessary. In addition, and irrespective of OWA versus CWA, we need to ensure that
in case the complement of an effect to be added is entailed by K, no matter whether
explicitly or implicitly by inference, it must no longer be entailed by K’. Hence, the
complement needs to be deleted if it is explicitly asserted. If the complement is implic-
itly entailed by K then one needs to find and delete those assertions in A that endorse
the entailment. By slightly adapting Algorithm 2 shown in Appendix A.1 one gets an
algorithm that finds them. In summary, given K = (7,.A) and E then either

U={K+¢|eecE}U
K-——9loecE~9ec A U{K-¢ |y =k ~¢and g € E} (412)

delete complement —¢ of effect delete assertion;q,b that implicitly
¢ that is explicit in A entail complement —¢ of effect ¢

under OWA, or rather

U, ={K+¢|¢ecEand ¢ oneof A(a),R(a,b)} U
{K=—¢locEpc AJU{K -y |¢pFr ~¢pand g € E} (413)

under CWA.

As stated before, if £’ would become inconsistent by simply applying U}, to K then
one deletes a minimal number of assertions from .4 that cause the inconsistency. For-
mally,

U.={K—¢|pec A ¢ ¢&E, and ¢ causes inconsistency } (4.14)
and finally
fup(K,E) = Up U UL .

Clearly, we need to detail how U, is determined. We first show that U, is unique in
general regardless of K and E; hence, there is exactly one KC'. In order to proof this we
need to find all minimal combinations of axioms/assertions that lead to inconsistency.
By showing that for each combination there is a single way of resolving the inconsis-
tency we are done; if there were multiple ways then this would imply the need to make
a nondeterministic choice.

The following chain of argumentation is based on [CKNZ10, Section 5]. We include
transitive roles (Tra(R)) in order to show that they lead to two ways of resolving an
inconsistency, which justifies why DL—Liifej%;rz is restricted in this regard. Let L1, be
DL-Lite} extended by transitive role axioms.

211f a KB entails ¢ and there is an effect ~¢ then we can alternatively establish knowledge retraction
semantics for negative effects by ensuring that the updated KB no longer entails ¢.

4.2 Service Model 71

Table 4.1: Combinations of TBox axioms and ABox assertions that cause KB inconsis-
tency for L1, and in the absence of the UNA. For the sake of brevity, we slightly abuse
our notational conventions (see Section 3.1.1) since we use a,b, ¢ at the filler position
also for lexical forms if R is a concrete role.

’ TBox ‘ ABox ‘ ’ TBox ‘ ABox
C(a),~C(a) Fun(R) | R(a,b),R(a,c),b#c
R(a,b),—R(a,b) Fun(R™) | R(a,b),R(c,b),a # ¢
R(a,b),~R~(b,a) or R~ (a,b),~R(b,a) Asy(R) | R(a,b),R(b,a)
Dis(C,D) | C(a), D(a) Sym(R) | R(a,b),—R(b,a)
Dis(R,S) | R(a,b),S(a,b) Ref(R) | —R(a,a)
Tra(R) | R(a,b),R(b,c),—R(a,c) Irr(R) | R(a,a)

Analyzing when an L1,,-KB becomes inconsistent under addition of new Lv,,-ABox
assertions and in the absence of the UNA then one finds exactly the following cases.
First, if a single assertion C(a) is added for an unsatisfiable concept C C L. Second,
in any of the cases shown in Table 4.1. Out of these cases only those are relevant in
which three (or more) assertions lead to an inconsistency. This is the case for transitive,
functional, and inverse-functional roles. Each of them leads to indeterminism regard-
ing which assertion to delete. It is easily seen that it is sufficient to delete either of
the three assertions to resolve the inconsistency; hence, there is a choice. By disallow-
ing transitive roles, this case ceases to exist. Furthermore, adopting the UNA renders
(in)equality assertions unnecessary (cf. Example 4.1); hence, the two remaining cases of
inverse-functional and functional roles “shrink” to two assertions. Consequently, there
can only be cases where one or two assertions lead to inconsistency, which leads us to
the following lemma.

Lemma 4.4 (Adapted version of [CKNZ10, Lemma 12]). Let 7 U A be an DL-Litej;;%—KB.
If T U A is inconsistent then there is a subset Ay C A with at most two assertions such that
T U Ay is inconsistent.

What is left to be shown is that there is a single choice if an inconsistency arises
from two conflicting assertions. Observe that the case where already a single asser-
tion ¢ causes inconsistency is not relevant because ¢ is inconsistent with the TBox and
therefore precluded by Assumption 6.

Let A4, A_ be the set of assertions that are added respectively deleted by a primal
update U, (Up is defined according to Equation (4.12) resp. Equation (4.13) depending
on whether OWA, CWA is used). Lemma 4.4 implies that if T U (A\ A_) U A, is
inconsistent then there are two assertions ¢, ¢ such that 7 U { ¢, ¥} is inconsistent. The
assertions ¢, P can neither be both in (A \ A_) nor both in A since either (A\ A_)
or A} would be inconsistent then, which contradicts Assumption 6; observe that if
(A\ A_) is inconsistent so is A due to monotonicity of satisfiability. Suppose ¢ € A+
and ¢ € (A\ A_). Since ¢ has to be added in order to accomplish the update, deletion
of 1 is implied, which leads us to the summarizing theorem.

Theorem 4.5 (Adapted version of [CKNZ10, Theorem 13]). The concomitant update U, for
a set of (ES1)-effects E to be applied to a DL-Lite 715-KB K is uniquely defined.

72 System Model

Using the algorithms listed in Appendix A.1 we can compute U.. They are extended
versions of the corresponding algorithms in [CKNZ10] that take into account the addi-
tional features of DL-Lite .

There are two remarks concerning determinism and ramifications in the presence
of a TBox in order. First, restricting effects such that only primitive concepts and roles
are used precludes ramifications. This is easily seen by recalling that ramifications are
introduced by concept/role inclusions. For instance, an effect A(x) and an inclusion
A C B in the TBox makes B(x) an implicit effect of A(x); analogous for roles. Since the
criterion for being primitive is that a concept or role never occurs on the left-hand side
of inclusions in a TBox, it becomes evident why primitive concepts/roles cannot cause
ramifications. Second, under the further restriction that for every inclusion A C C in the
TBox such that A is used by an effect then (ES1) is guaranteed to be deterministic only if
C is not defined using JR. As pointed out independently in [Mil08] and [CKNZ10], ex-
istential restriction can lead to unintuitive ramifications, attributed as a “’higher degree’
of nondeterminism” in [Mil08].22 Example 4.2 illustrates this.

|Example 4.2|

Consider the following TBox, ABox, and effect:

T = {Patient C JtreatedBy.Physician, RetiredPhysician _ —(JtreadedBy .Patient) }
A = {Patient(ALICE), Physician(BOB), treatedBy(ALICE, BOB) }
¢ = RetiredPhysician(BOB)

In words, being a patient implies being treated by a physician, retired physicians do not
have patients, Alice is a patient treated by the physician Bob, but Bob retires, which is
represented by ¢. One can see that besides switching Bob from a physician to a retired
physician, the assertion that Alice is treated by Bob needs to be deleted in order to retain
consistency; hence, the updated ABox is

A’ = {Patient(ALICE), RetiredPhysician(BOB) } .

A’ entails that Alice is treated by some physician (which we do not know) since she is
still a patient. Hence, the only option regarding Alice is that somehow she has immedi-
ately found another physician that treats her now. The option that she is (temporarily)
no patient is not considered.

The problem with Example 4.2 is that the update only makes explicit the new state
of Bob but “forgot” to be explicit about Alice’s new state, or to be more general, the
new state of all patients treated by Bob. In a way, the update is underspecified. One
could resolve the indeterminism by enriching the update with the missing information,
perhaps in an interactive way. This also gives raise to the idea of having an analogue to
integrity constraint checking in databases. Having such a device, an update in which

22Nondeterminism is similarly introduced if C is defined using disjunction (L) or universal restriction
(VR), which are however not present in DL-Lite ;.

4.2 Service Model 73

Bob retires would be rejected by the system if this is not accompanied by stating what
happens with all its patients — are they no longer patients versus treated by another
physician.

Related DL-based Approaches

Concluding this section, we would like to mention that formula-based effect seman-
tics have also been considered in [Sir06, SMM10], which would constitute similar effect
systems. While [SMM10] lacks details on how to choose a maximal Knax in case of a
conflict between an effect and the current state in the ABox, [Sir06] considers the use
of the axiom pinpointing reasoning service [SC03, Kal06] to find the ABox assertions that
contradict with an effect.”> However, it is unclear whether an update resulting from
the application of a set of effects is uniquely defined in general. The approach first
presented in [BML105] and gradually advanced in [LLMWO06, BLL10] essentially con-
stitutes an effect system with model-based semantics. Especially the latest extension to
general TBoxes combined with the representation of causal relationships appears to be
an interesting alternative to investigate further.

4.2.3 Profile, Operation, and Service

We are now at the point where we can introduce formal definitions for profiles, oper-
ations, and services themselves, which is done in this order as they build upon each
other. We tacitly assume that each of these definitions serve as the basis for declarative
descriptions thereof.

Profile

Resuming Section 4.1.5, a profile consists of the five types of properties and is formally
defined as follows.

Definition 4.6 (Profile). A profile is a 5-tuple Pr = (1,0, P, E, N) where
e [isa finite set of input parameters such that Viy, iy € I: id(iy) # id(ip);
* O is afinite set of output parameters such that Yo1,0, € O: id(01) # id(02);
* Pis a finite set of preconditions;
* Eis a finite set of effects;
N is a finite set of non-functional parameters such that ¥ni,n, € N: id(ny) # id(ny).

We will write Pr.I, Pr.O, Pr.P, Pr.E, and Pr.N to denote respective sets of a profile
Pr. Note that each set I, O, P, E, N may possibly be empty; the profile where all sets are
empty is correspondingly called the empty profile. The additional requirement on names

2In [Kal06] a black-box approach is described that relies only on a sound and complete reasoner for
a particular DL, thus, is independent of the DL used. In addition, a glass-box approach tailored to a
particular reasoner and to SHOZN (D) has also been described and implemented.

74 System Model

(identifiers) of input, output, and non-functional profile parameters ensures that they
can be uniquely identified even if they are equivalent.

|Example 4.3/

Recall the find book service and the order & pay service from Section 2.1. Suppose
their profile is denoted with Prq and Pry, respectively. Furthermore, suppose there is
an ontology (that has been loaded into a KB) consisting of the concepts CreditCardNo,
ISBN, BookInfo, Customer, Receipt, and that there is a data range int. The input and
output sets (I, O) would then be specified as follows:

Pri.I = {SEARCHPARAM: BookInfo},

Pr1.0 = {I1SBN:ISBN},

Pry.I = {AMOUNT:int, CCNO:CreditCardNo, CUST:Customer, ISBN:ISBN'},
Pry.O = {ACK:Receipt} .

Consequently, all parameters are general except for AMOUNT, which is concrete. Sup-
pose the parameters CCNO, ISBN, CUST, and AMOUNT have one representative where
the former two shall be strings, the third an individual, and the latter an integer. If Pr,
is supposed to specify a precondition requiring the credit card to be valid and the book
available from stock then it might be expressed by a conjunctive ABox query

Pry.P = {validity(x, Valid) A inStock(y, z) }

where x links to Re[1](CCNO), y to Re[1](ISBN), z to Re[1](AMOUNT), and validity, in-
Stock are roles in the domain ontology. Finally, Pr, might specify an effect stating that
the customer owns the book

Pry.E = {ownsBook(u,y)}

where u links to Re[1](CUST) and ownsBook is yet another role in the domain ontology.

Operation

Resuming Section 4.1.2, an operation is supplemented by a name and formally defined
as follows.

Definition 4.7 (Operation). An operation is a 3-tuple Op = (id, Pr, Gr) where id is the
name (or identifier) of the operation, Pr is a profile, and Gr is a grounding.

Analogous to a profile parameter, the name of an operation is merely intended for
identification purposes (cf. Section 4.2.1). The grounding Gr cannot be defined in more
detail at the level of the system model since it is implementation-specific; hence, we
abstract from technical details. Also, notice that the definition abstracts from whether
an operation is one-way or request-reply; although it should be clear that a non-empty

4.2 Service Model 75

set of outputs in the profile of an operation implies that it is request-reply. Protocol
semantics of operations are addressed in the process model.

If we allow nil at the position of the grounding in Definition 4.7 (i.e., where no
grounding is provided) then we can also represent abstract operations. Operations are
implemented otherwise.

Definition 4.7 can be extended easily such that one can represent operations with
multiple implementations (the motivation of which has been discussed in Section 4.1.2):
instead of the single profile Pr and the grounding Gr one defines an operation as a pair
Op = (id, PG) where PG is a non-empty set of pairs of the form (Pr, Gr) such that for
each pair (Pry, Gry), (Pry, Grp) € PG, the profiles Pri and Pr; differ at most in their
preconditions and non-functional parameters. The additional restriction on profiles is
a consequence of the obvious requirement that all implementations of an operation are
functionally equivalent (see Section 4.1.3). Since differences are possible for precon-
ditions and non-functional properties, implementations may vary regarding required
conditions for being operable and may come with differing quality characteristics.

We define the trivial while special-purpose no-op operation, denoted with NOP, that
presents the empty profile and has no grounding:

NOP = (“no-op”, ({}, {}, {},{}, {}), ni1)

According to what we have stated, NOP is abstract. This shall not worry us since an
implementation would not do anything anyway. Although NOP rather lacks practical
relevance, it is mentioned here because it is used later on as an ancillary tool.

Service

Apart from the elements that we have already formally introduced, a service includes
two more elements: a control flow graph and a data flow graph. Both will be introduced
afterwards in Section 4.3 since they represent the process model of a service, which we
shall feature in its own section.

Definition 4.8 (Service). A service is a 5-tuple Sc = (id, Pr,U, G, Gq¢) where id is the name
(or identifier) of the service, Pr is a profile, U is a finite, non-empty set of functional units that
the service is composed of, G is the control flow graph over elements in U, and Ggs is the

data flow graph over elements in U. Given a service Sc, an instance of Sc is denoted with Sc.

A service is atomic if |U| = 1 and the single functional unit u € U is an operation. Otherwise,
if |U| > 1 then it is composite. Finally, given two services Scg,, and Sc, Scgyyp is called a sub
service of Sc if Scg,p € Sc.l.

Because an atomic service consists of a single operation, their profiles are the same.
Extending Definition 4.8 such that a service can present multiple profiles (the motivation
of which has been discussed in Section 4.1.1 and 4.1.5) is easily achieved by replacing
Pr with a set of profiles, say P, defined to be finite and non-empty. Doing so spawns
an orthogonal dimension to the atomic versus composite dimension. If P contains only
one profile then we shall call the service simple and complex otherwise.

Analogous to the no-op operation but by a slight abuse of Definition 4.8 we can
also model the no-op service; that is, a service that presents the empty profile only, is
composed of nothing, and has an empty control and data flow.

76 System Model

4.3 Process Model

The process model introduced in the following builds on the well-studied and estab-
lished PETRI net formalism (PN) [Mur89], which is also well-known for its application
to Workflow and Business Process modelling (e.g., [Aal98, SW01, AHWO03, AS11]). It
formalizes two key aspects. First, the dynamic behavior occurring in the course of an ex-
ecution. Second, the structure especially of composite services. Applying the definitions
given in [ALRLO04] to services, the behavior is what is done when a service is executed
to implement its functionality. The structure is what enables it to generate the behav-
ior. Since the process model provides the means to make this structure and behavior
explicit, one can say that a service is viewed as a white box. This completes the image
of services that was started with the black box view in the service model.

In the process model, the structure is made up of two parts. First, a control flow that
represents the routing along the invocations of operations and sub services a service
is composed of (i.e., a precedence order, branching, and synchronisations). Second, a
data flow that accompanies the control flow by representing the routing of data (e.g.,
an output that is consumed as an input by a subsequent operation). This section is
correspondingly divided into two main subsections.

There are two important points to understand about the process model. First, the ex-
ecution of a concrete service instance — its process instance — corresponds to an instance
of a PN. Up to this point, different service instances are independent from each other,
no matter whether of the same type of service or of different ones. In other words, up
to the PN formalism used by the process model, the structure and behavior of single
service instances is represented in an isolated manner and inter-process concurrency is
not further considered. However, our process model combines execution semantics of
the control flow with the preconditions and especially the effects that are created in the
course of service execution in a KB and shows when updates are applied to the KB.
Therefore, whether different service instances are isolated from each other depends on
the assumptions made on the scope of the KB. If the KB is shared so that it (i) represents
the state of affairs in an application domain, (ii) is used to check preconditions, and
(iii) if effects from different and possibly concurrent executions are applied to it then
interdependencies that might exist among service instances in the application domain
are considered. This relationship is represented by distinguishing between a local and
global execution state.

4.3.1 Control Flow

The invocation of services and operations in the form of request-reply or one-way inter-
actions essentially constitutes a discrete process with discrete state changes over time.
This makes the PN formalism an almost natural choice to describe such processes be-
cause their state-transition semantics fits well to that. Moreover, the PN formalism is
general enough to (i) represent concurrency and to (ii) map control constructs exist-
ing in prominent process modeling frameworks onto PNs (e.g., BPEL [SS04, OVAT07,
Loh08, LVOS09], OWL-S [NMO02, BCI09]), thereby ascribing precise operational execu-
tion semantics to the control constructs existing in these languages.

4.3 Process Model 77

Before we introduce the formal model of the control flow, we will introduce the
basics of the PETRI net formalism subsequently required, which follows closely [Mur89,
EKR95, Aal98]. Readers familiar with PNs and the notion of WorkFlow nets might skim
through the following sub section.

Petri Nets and WorkFlow Nets

In its basic form, a PETRI net (PN) is a bipartite directed graph G = (P, T, F). Nodes are
divided into the finite set of place nodes P and the finite set of transition nodes T

P:{pl/pZ/---/Pm} and T:{tl,tz,...,tn} .

The set of edges F for such graphs is is called the flow relation and either connects a
place node to a transition node or vice versa (but never two transitions or two places).
Formally,

FC(PxT)U(TxP) .

Observe that F restricts every pair of nodes to be connected by at most one edge. F is
acyclic iff for each pair (x,y) € F then (y, x) ¢ F* where F* is the transitive closure of F.

A path W from a node x7 to a node x; is a sequence W = (x1,x,...,x;) such that
(xj,x;11) € Ffor1 <i < k(ie., (x1,x¢) € F). Anode y is said to be on a path between
node x and node z iff (x,y) € F* and (y,z) € F*. A path W is elementary [Aal98,
Definition 6] iff all nodes on W are unique; that is, iff for any two nodes x;, xj on W
and i # j implies x; # x;. Observe that an elementary path is acyclic. A PN is strongly
connected iff there exists a path from every node to every other node in PUT.

If there is a directed edge from one node to another, the former is called the input node
for the latter, while the latter is called the output node of the former. More generally, the
pre-set and post-set of a place p € P is denoted with ep and pe, respectively. Analogously,
the pre-set and post-set of a transition t € T is denoted with et and te, respectively.
Formally, these sets are defined as follows:

op={t|teTand (tp) € F}, pe={t|te Tand (p,t) € F},
and
of ={p|pePand (pt) € F}, te={p|pecPand (tp) € F} .

The set of initial and final places (a.k.a. source and sink places) is denoted with P; and
Py, respectively, and defined as follows

Pi={p|pcPand ep=0} and Pi={p|pcPandpe=07} .

Inspired by [EKR95], we call the union P; U P¢ the interface of G.%
A free-choice PN is a PN where every arc is either the only incoming arc to a transition
or is the only outgoing arc from a place, that is,

Vp1,p2 € P: pren pre Q@ implies |p1e| = |pre| =1 .

24This slightly differs from [EKR95, Definition 5.1] where the authors essentially consider PNs with
exactly one initial and final place each (similar to WorkFlow nets) and define the interface as the union of
these two places.

78 System Model

A marking M of a PN is an assignment of a number of tokens to a place node (i.e., the
distribution of tokens over place nodes). Formally;, it is described as the function

M: P — N

and where M(p) denotes the number of tokens at place p € P and marking M. A
marking can equally be understood as a multiset over the place nodes or as an element
of the Cartesian product (INp) Pl A marked PN is denoted with G = (P, T, F, M) where
My is the initial marking.

The algebraic structure of a PN G = (P, T,F) can be graphically represented. The
common convention is to represent a place p € P by a circle, a transition t € T by a
rectangle, a pair of nodes (x,y) € F by a directed arc pointing from x to y, and the
number of tokens at a place p by an equal number of points drawn inside the circle
representing p (see Figure 4.5 for an example).

There are various extensions to the basic formalism such as token capacities for
places, associating duration or delay with places/transitions/tokens, or Coloured Petri
nets [Jen87] where tokens are distinguishable by associating them with a value. None of
these extensions is required in the context of this thesis. Instead of extending the basic
formalism, there are also well known restrictions such as the ones already seen (acyclic,
free-choice) or state machines where transitions are restricted to have at most one incom-
ing and outgoing edge, which essentially rules out concurrency. In the process model,
we particularly consider a simplified form of so-called WorkFlow nets [vdA97, Aal98].2°
For this reason, we quote its definition here (notation and terminology slightly adapted).

Definition 4.9 (WorkFlow Net [Aal98, Definition 6]). A Petrinet G = (P, T, F) is a Work-
Flow net iff:

(1) G has two special places: p; and pg. Place p; is the initial place: ep; = @. Place py is the
final place: pse = @.

(2) If we add a transition t* to G which connects place ps with p; (i.e., ot* = {ps} and
t*e = {pi}), then the resulting PN is strongly connected.

The transition t* can be seen as an ancillary tool used to short-circuit a PN.

We adopt another reasonable structural restriction from [Aal98] that ensures that a
place with multiple output transitions (i.e., a split into multiple paths) is complemented
by a place (rather than a transition) at which the previously spawned paths join even-
tually; analogous for transitions. In other words, this restriction precludes that two
different paths spawned at a place join at a transition and vice versa. Let O be the unary
operator that short-circuits a WorkFlow net G as defined by Item (2) in Definition 4.9.
Let 3 (W) be the alphabet of a path W; that is, the set of unique nodes that occur in W.

Definition 4.10 (Well-handled, well-structured [Aal98, Definition 9]). A PN is well-
handled iff for any pair of nodes x and y such that one of the nodes is a place and the
other a transition and for any pair of elementary paths Wy and W, leading from x to y,
L(W1) NE(Wp) = {x,y} implies W1 = W,. A WorkFlow net G is well-structured iff OG is
well-handled.

BWorkFlow nets also have the concept of triggers (which are basically external conditions) and work-
flow attributes (which are modeled using Coloured Petri nets), both of which we do not use.

4.3 Process Model 79

Well-structuredness is necessary for proper realization of conditional routing and
synchronization for parallel routing, which will become clear later when the execution
semantics is introduced. Free-choiceness, in turn, inhibits improper mixing of parallel
and conditional routing since they cannot occur both at the same time. What is more,
these two properties are orthogonal since a PN may have neither, either, or both. How-
ever, the property of being free-choice and cyclic implies well-structuredness (i.e., if a
PN is not well-structured while cyclic then it is not free-choice).

Structure

The syntax of the control flow captures the static dimension of a process — its structure
— and is represented by a control flow graph. The dynamic dimension of execution se-
mantics over the control flow graph is introduced afterwards. In short, the control flow
graph is a PN that satisfies the constraints of a free-choice and well-structured Work-
Flow net. In addition, the control flow graph includes a mapping that assigns each
transition to a single service or a single operation of which the service whose process is
being described is composed of. Given a service Sc, its control flow graph is defined as
follows.

Definition 4.11 (Control Flow Graph). A control flow graph (or control flow for short)
for a service Sc is an enhanced, marked PN G = (P, T, F, My, fu) where

* P,T,F are defined as for a WorkFlow net and F additionally satisfies the properties of a
free-choice and well-structured PN,

* My is the initial marking such that My(pi) = 1 and My(p) = 0 for every other place
p € P\ {pi}, and

* fu: T — Sc.ld U{NOP} is a surjective mapping that assigns each transition t € T either
to the no-op operation or an operation/sub service of which Sc is composed of.

A node x € PUT is an ordinary node (or ordinary place, ordinary transition) iff |ex| =
|xe| = 1; it is a split node denoted with Xy iff |@Xsplie| = 1 and |xspie®| > 1, it is a join
node denoted with Xioin iff |®Xjoin| > 1 and |xjoin®| = 1.

Finally, fu(t) € Sc.U for t an ordinary transition and fu(tspy) = fu(tjoin) = NOP for split
and join transitions.

The initial and final place p;, ps correspond to instantiation and completing termina-
tion of execution, thereby framing the lifecycle of a service instance. Moreover, all places
and transitions are on a path between p; and p¢, which is ensured by the constraint that
all transitions and places except pj, ps have non-empty pre-sets and post-sets. In other
words, there are no dangling transitions nor places, which would actually not contribute
to the behavior of the process.

It is easy to see that for G a control flow graph, if G contains ordinary transitions
that map to a service then one can always unfold G in linear time into a control flow
graph G/, in which all ordinary transitions map to an operation and that preserves the
overall structure. More precisely, let t be an ordinary transition in G that is mapped to a

80 System Model

t identify person ts transfer documents

It3 select ambulance ts trigger ambulance}
I,
| activate ambulance ‘

Figure 4.5: Unfolded control flow graph of the emergency assistance service (cf. Fig-
ure 2.2) with initial marking. The dashed rectangle frames the activate ambulance sub
service.

service Sc!, let i be the input place of ¢, 0 the output place of t, G the control flow graph
of Sc! that has the initial and final place p!, p}, respectively. In addition, we assume that
the set of places (transitions) in Sc is mutually disjoint from the set of places (transitions)
in Sc!. Then, unfolding of t results in a control flow graph G, = (P, T,F, M, fu')
where

P’ = (PUP)\ {p}, pi}
T = (TUT)\{t}
F' = (FUFU{(ix),(y,0)|x e pleycep})
\{(i, 1), (t,0), (pl,x), (y, p}) | x € ple,y € epi} (4.15)
My = Mo
fu' T — Sed USc U U {NOP}

such that f u' preserves the mappings of all ordinary transitions other than ¢; that is,

yoon Jfu(u) ifueT
fu'(u) = {fut(u) P (4.16)

Unfolding is to be repeated iteratively until there are no more ordinary transitions that
can be unfolded. The completely unfolded control flow graph is taken as the basis for
execution because all ordinary transitions map to an operation invocation. Figure 4.5
provides an example of an unfolded control flow graph depicting the process of the
emergency assistance service from Section 2.2.

It is also easy to see that the smallest valid control flow graph contains one transition
T = {t}, has the initial and final place only, and where F = {(pj, t), (¢, pr)}, which
resembles the process of an atomic service.

Finally, we define the notion of a sub control flow or subflow for short as follows.

Definition 4.12 (Sub Control Flow Graph). Let Gy = (P, T,F, My, fu) and Géf =
(P',T',F', M|, fu') be control flow graphs. We define the binary relation < on control flow
graphs by setting G.. I G iff P’ C P, T C T, ¥ CF, fu' C fu, and the following holds
Vi€ T:t €T implies ot C P’ and te C P'.

If GL; < Gt then G, is called a sub control flow graph (or subflow for short) of G.

4.3 Process Model 81

As an example, suppose G is the control flow depicted in Figure 4.5. Then the
dashed rectangle frames a subflow G/, < G consisting of t3,t,, the three adjacent
places, and the connecting arcs. Conversely, the path that begins with the input place of
t3 and that ends in py is not a subflow because not all places of tioin are included.

Execution Semantics

The execution semantics of the control flow graph builds on the standard PN state-
transition semantics.?® Subsequently we always consider unfolded control flow graphs.
Intuitively, a transition corresponds to the invocation of the operation to which it is
mapped. A transition is said to be enabled if and only if

1. there is a token in all its incoming places and

2. all preconditions of the associated operation are satisfied.

The first item should be clear: a marking M of a control flow is one part that determines
whether a transition is enabled or not. The second item is actually relevant only for
ordinary transitions because split and join transitions map to the no-op operation, which
does not has preconditions per se. Since precondition checking is made against some KB
K and since K is updated in the course of execution by effects of completed operation
invocations, we combine M and C into what we call the execution state, which is denoted
with s and defined as the pair

s=(MK) . (4.17)

The marking M represents the local control state and therefore scopes an execution state
to a single service instance. As mentioned already, K might have a broader scope be-
yond a single service instance if the world state that it represents spans multiple inde-
pendent and concurrent service executions (and possibly other actors that query and
update it). We define the global state 5 over all executions in the system as the pair

§=(M,K) (4.18)

where M is a finite set of markings. Notice that K is understood as the same in s and
8. Details regarding advancement of execution states in the course of execution follows
later after the execution semantics has been defined and explained.

An enabled transition can fire. The firing rule defines when it does fire. In our set-
ting, firing depends on whether the invocation/execution of the operation to which a
transition is mapped by fu succeeds or fails. For now it is not important what exactly
the discriminating criterion for success versus failure is. This will be detailed in Sec-
tion 5.2.2. We denote the success and failure case with

exec(fu(t)) =succ and exec(fu(t)) = fail

for a transition t. Again, split transitions are special insofar as they always and instantly
fire if they are enabled because exec(NOP) = succ per definition (i.e., the no-op op-
eration never fails). The failure of an operation invocation/execution is the event that
triggers a recovery procedure. Discussion of this topic is postponed to Chapter 5.

26PN state-transition semantics is sometimes referred to as a token game, which is a more vivid analog
for the flow of tokens through the net by moving tokens from places to other places.

82 System Model

Firing of a transition removes a token from all incoming places and adds a token in
all outgoing places (i.e., the token flow), which is called the transition rule. Formally,
execution semantics of a control flow graph is defined as follows.

Definition 4.13 (Control Flow Graph Execution Semantics). Let Sc be a service and G =
(P, T,F, My, fu) its unfolded control flow graph. Let PS = (LP3, fau) be a precondition
system used by Sc and P a finite set of PS-preconditions. We overload the precondition checking
function fuy for a set of preconditions P as follows:

true ifP=0
S P) =9 A fauc (K@) if 1Pl =1 . (4.19)
@cP

An execution state for an instance Scisa pair s = (M, K) where M is a marking for G and
IC is the corresponding knowledge base. A transition t € T is enabled in s iff

(1) Vp € P: p € ot implies M(p) > 1 and
(2) fak(K,P) = true

where P = fu(t).Pr.P (i.e., the set of preconditions in the profile Pr of the operation associated
with t). Besides, we say that t is token-enabled in s if Item (1) is satisfied (thereby disregarding
Item (2)).

A transition t € T fires only if it is enabled and exec(fu(t)) = succ.

Given a marking M of Ge¢ and a transition t € T, M’ is the new marking resulting from firing
of t if the following holds

M(p)—1 ifpcetandp ¢ te,
VpeP: M (p)=M(p)+1 ifp¢etandp €< te, (4.20)
M(p) otherwise.

We write M < M’ to denote the transition from marking M to M’ by firing of t. We write

M; 5 M, to denote a firing sequence e = (t1,...,t,) with M; LR Mg forl <i <n,
leading from marking My to M,,. In this case we say that execution from M has reached M,,.
Execution of the control flow graph completes only if, starting from the initial marking M,
execution has reached the final marking My such that M¢(ps) = 1 and M(p) = 0 for any
other place p € P\ {ps}.

Finally, we say that M, is token-reachable from M; if there is a firing sequence leading from
M; to My, so that transitions are enabled and fire by disregarding precondition checking and
execution of associated operations (i.e., a dry-run); token-prefixed terms are understood analo-
gously (e.g., token-firing sequence).

In essence, a split place pgpj;r models a choice between its output transitions pgpyite.
Each output transition t € pgpjic® is an exclusive alternative, which is due to the fact
that there can be at most one token in any place p € P of a control flow graph. If ¢ fires

4.3 Process Model 83

then it consumes the only token in pgp,);t; hence, all other transitions pgp;te \ {t} are no
longer token-enabled. As a consequence, if there is more than one output transition for
the initial place p; (i.e., |pi®| > 1) then the first transition t € p;e that fires consumes
the only token of the initial marking My in p;. In other words, in a control flow graph
there is always exactly one output transition (which can be either an ordinary or a split
transition) of the initial place p; that fires. This will become important later in Chapter 5
when discussing structural modifications of control flow graphs.

Note here that Definition 4.13 abstracts from conditions determining one of the out-
put transitions of a split place; hence, a nondeterministic choice is modeled. More pre-
cisely, not making conditions explicit in the process results in internal nondeterminism
as opposed to external nondeterminism (see Footnote 3 on Page 44). Indeed, if we want
to ensure execution in a practical system to be uniquely determined then we need to
avoid internal nondeterminism; hence, all choices must be explicit rather than abstract.
As the way such choices are represented is not relevant subsequently, we have moved
details to Appendix A.2. In short, one way of extending Definition 4.13 to represent de-
terministic processes in which choices at split places are made based on service-specific
conditions is to (i) assign edges with a condition and (ii) extend the transition-enabling
rule such that at most one output transition of a split place is enabled. Summing up, if
we speak of a deterministic process, we refer to the case of no internal nondeterminism
(while there can be external nondeterminism).

A split transition fg,);; spawns independent concurrent paths because all output
places tgpjir® receive a token if fgp;; fires. Conversely, a join transition fjoin represents
synchronization among concurrent paths because it becomes token-enabled only if all
its input places otjoi, have a token. However, a join place pjoin represents no synchro-
nization because it receives a token as soon as one of its input transitions e Pjoin fires.
All its output transitions pjoin® become token-enabled as soon as a token arrives in pjoin-
This explains why the property of being well-structured is important for proper real-
ization of synchronization. If two concurrent paths spawned by a split transition were
joined by a join place then there is no synchronisation taking place among the paths
at the join place: control proceeds as soon as control reaches the place on either path.
In turn, if a choice among alternative paths spawned at a split place were joined by a
join transition then control gets stuck at the transition because it never becomes token-
enabled (i.e., synchronization is modeled where nothing can be synchronized since con-
currency does not exist).

It follows from the syntactic restrictions that the maximum degree of parallelism within
a control flow, which we denote with Q, corresponds to the number of unique start-to-
end paths:

Q=|{W|W=(pi...,ps) and W is elementary } | (4.21)

In summary, the structure defined for control flow graphs together with its execu-
tion semantics provides the possibility to represent processes that may include the most
important control flow patterns, namely:

* Sequential. Subflows are executed one after the other (strict precedence order).

e Conditional. A choice is made for either of two or more subflows (xor).

84 System Model

* Parallel. Subflows are executed concurrently (partial precedence order).
e [teration. Repeated execution of a subflow (do while).

It should be clear that these constructs might be nested (e.g., a sequence executed re-
peatedly).

In addition, the structural restrictions on control flow graphs ensure that they are
sound. Soundness [VvdA97] is a highly desired correctness property regarding the dy-
namic dimension of a process. More specifically, soundness of a WorkFlow net G is
the property that its short-circuited net OG is live and bounded [vdA97, Theorem 11].
Liveness is essentially the absence of deadlocks, meaning that for any marking that
has been token-reached from the initial marking M there is a token-firing sequence
that can token-fire any transition of the net. Boundedness in the context of WorkFlow
nets refers to proper termination, that is, starting from the initial marking Mj it is al-
ways possible to token-reach the final marking M. Soundness of control flow graphs
follows from [vdA97, Corollary 19]. In short, this corollary states that there exist four
soundness-preserving expansion?’ rules:

 Sequential expansion: Replace a transition by two consecutive transitions.
* Conditional expansion: Replace a transition by two conditional transitions.
* Parallel expansion: Replace a transition by two parallel transitions.

e Iteration expansion: Replace a transition by an iteration of a transition.

Applying a sequence of these expansions, one can create any control flow graph starting
from the smallest control flow graph with one transition only.?® Consequently, sound-
ness is a monotonic property for control flow graphs, which particularly implies that
any subflow of a control flow graph is also sound.

To conclude this subsection on execution semantics, Definition 4.13 describes when
and how control in a process proceeds. What is not yet described is when and how
updates to the representation of current state of affairs in a KB are made (i.e., when and
how the execution state is advanced). This is addressed next.

Advancement of Execution State

The firing of a transition f results in a new execution state, both in terms of an updated
marking M (control state) and an updated KB K (world state) resulting from the effects
created by the operation invoked. Since these two parts are ultimately tight together
representation of state-transition semantics of the discrete process model needs to in-
clude this tight relationship in a proper way. The advancement of the execution state in
the course of execution is captured by the following definition.

2’ There are also four complementary and soundness-preserving reduction rules.
ZConversely, one can reduce any control flow graph to the smallest control flow graph by successively
applying one of the complementary reduction rules.

4.3 Process Model 85

Definition 4.14 (Advancement of Execution State). Let Sc be a service and Gy =
(P, T,F, My, fu) its unfolded control flow graph. Let ES = (LE%, fup) be the effect system
used by Sc and let s = (M, K) be an execution state for an instance Sc. The initial execution
state is denoted with so = (My, KCo) where My is the initial marking of Go¢ and Ky is an initial
knowledge base.

Given an execution state s = (M, K) of Sc and a transition t € T, s' = (M, K') is the new
execution state resulting from firing of t iff the following holds

(1) M+ M’ and
(2) K =y K" where U = fup (K, fu(t).E) .

We write s — s' to denote the transition from execution state s to s’ by firing of t.

The are no further assumptions made on the initial KB Ky except that it is consis-
tent, which is a requirement for precondition checking and applicability of effects (see
Section 4.2.2). In practice, Ko would be populated with the relevant domain knowledge
and an initial representation of the state of affairs in the domain of application.

Observe that Definition 4.14 is a simplified description of an isolated execution of
processes which does not take concurrency into account (i.e., it abstracts from interleav-
ing state changes).

The global state 5 of executions evolves as follows. First, given § = (Z\7I, KC), instan-
tiation and termination of a service instance Sc yields a new global state §' = (M, K)
such that

M’ = MU M, (instantiation) resp. =~ M’ = M\ M; (termination)
p

and where My, M are the initial and final marking of Sc. A local transition s Loy

propagates in the obvious way to the global level by a transition § L5 ¢ such that M’
contains the updated local marking M’ and K’ is the updated KB.

Since execution of an operation Op associated to a transition t (Op = fu(t)) is con-
sidered indivisible, the application of the update to the KB is considered to be done in
an atomic way; hence, Op’s effects become visible all at once upon completion. The cor-
rect handling of concurrent updates on the KB by applying a transactional model and
serializability theory will be addressed in Chapter 6.

Finally, we mention that in a practical system the marking part of the execution state
is usually not materialized in this form but rather implicit in the program state of an
execution engine that manages the execution of a service instance.

4.3.2 Data Flow

From a structural point of view, the data flow is seen as a directed overlay graph on top
of the control flow graph. Although extensions of the PN formalism can in principle be
used to also represent the data flow (e.g., coloured PNs), we decided to keep it sepa-
rated from the control flow graph in order not to clutter it and unnecessarily complicate
matters.

86 System Model

(a) (b)
/ = \
a L el R -
\ dop \, " Tmop

Figure 4.6: Data flow primitives: (a) fork; (b) divide where dop is a divide operator; (c)
merge where mop is a merge operator.

—~
@)

)
s

producer
consumers

producer
consumers
producers
consumer

Most of all, the data flow respects the directedness of the control flow graph: it can-
not be counter-directional to the control flow; hence, it is not independent of the con-
trol flow. At the same time, the seamless compatibility of data producers with their
consumers is a crucial requirement for automated executability. This becomes rele-
vant when considering environments with syntactic, structural, and/or semantic data
heterogeneities (see [She98] for this classification of different levels of heterogeneities).
Therefore, in order to completely capture aspects of the data flow model considered in
this thesis we find it necessary to address (i) its structure and execution semantics, (ii)
to describe how it is linked to the control flow, and (iii) to provide and discuss a notion
of data compatibility between the producer of some data item and its consumer(s).

Whereas the primitives in the flow of control are split and join, the primitives in the
flow of data are fork, divide, and merge, which is depicted in Figure 4.6. A fork is essen-
tially the use of a data item by multiple consumers (i.e., the use of the same data item
multiple times). A divide as well as a merge of data ultimately requires the definition of
a divide operator or a merge operator. A divide operator takes one incoming data item and
divides it according to some instructions into multiple outgoing data items. Conversely,
a merge operator takes two or more incoming data items and merges them according to
some instructions to one outgoing data item. Depending on the input, typical operators
involve selection, projection, join, and union. In the data flow model that we consider,
divide and merge operators are not represented as first-class citizens. This is based on
the observation that one can equally represent them by an operation within a service or
a service itself (i.e., they can be realized in either way). Only a fork is an explicit part of
the model.

Sources and Sinks

Following common terminology, the producer of a data item is called the source and
the consumer the sink. The data that “flows” from a source connected to a sink is a
single data item (cf. Assumption 2). Sources and sinks map to input and output profile
parameters. More precisely, we define the set of sources as the union of all outputs
of sub services/operations a service is composed of plus the inputs of the service itself.
Conversely, the set of sinks is the union of all inputs of sub services/operations a service
is composed of plus the outputs of the service itself.

4.3 Process Model 87

Definition 4.15 (Source, Sink). Let Sc be a service. The set of sources O and sinks I of Sc is
defined as follows:

0= (U u.Pr.O) U Sc.Pr.1 and I= (U u.Pr.I) U Sc.Pr.O .

ueScU ueScU

A source o € Sc.Pr.I is called an initial source. A sinki € Sc.Pr.O is called a final sink.

Data Compatibility

In our data flow model, a connection between a sink and a source implies that both are
compatible. The notion of data compatibility exists in one form or another in basically
all service composition, workflow, or business process models/frameworks since it is
imperative to define a data flow at all. Simply put, compatibility is understood as the
possibility to forward the data item produced by the source to the sink so that it will
be accepted and understood by the sink. Therefore, compatibility is a relation that has
a syntactic (accept) and a semantic (understand) dimension. Compatibility at the syn-
tactic level is a prerequisite for compatibility at the semantic level: While it is possible
that a sink accepts a data item forwarded from a source but does not understand it, the
opposite is impossible, intrinsically.

One can define the notion of data compatibility between sources and sinks in a data
flow basically in two ways. Based on the methods employed, we classify them as type-
based and the more general form of mediator-based compatibility; the latter building upon
so-called data mediators. Data mediators are also not represented as first class citizens for
the same reason than divide and merge operators: they can also be realized either as an
operation within a service or an atomic service.?

Type-based compeatibility is the direct form requiring that a source and a sink match
semantically, at least. Using the machinery introduced in the service model this can be
formulated as follows. A source profile parameter o is type-compatible with a sink profile
parameter i if

type(o) C type(i) . (4.22)

This can be understood as a classical plug-in match [SWKL02, PKPS02] (see also Sec-
tion 5.4.1). Observe that due to the unidirectional nature of the data flow a symmet-
ric relation is not needed. Hence, it is not necessary to use the stricter equivalence
type(o) = type(i). Conversely, the more permissive type(o) J type(i), which can be
understood as a subsume match, turns out to be problematic under the assumptions de-
scribed next.

Condition (4.22) is, however, not sufficient to ensure seamless compatibility. With-
out additional statements, it does not yet address compatibility at data level; that is,
it lacks details on syntactical and structural data format requirements. One possibil-
ity that is (tacitly) made in most service frameworks/models is that type-compatibility
implies syntactic and structural data-compatibility. Formulated in terms of our service

2 A data mediator can actually be seen as a special form of a merge operator that has one input only.

88 System Model

model it is the assumption that the set of valid data values for a profile parameter co-
incides with the extension of the concept/data range so that Equation (4.4) and Equa-
tion (4.5), respectively, hold. Applied to o, 1, this is achieved by requiring that 0 and i
either use the same datatype® or that the datatype of o is derived from (is a restriction
of) the datatype of i, which resembles an exact or plug-in match, respectively, at the
level of data.3! Consequently, 0 and i are seamlessly compatible under this assumption,
both syntactically and semantically. Depending on the actual datatype system used in
practice, this would be applicable equally for primitive as well as complex structured
datatypes. For instance, the XML Schema type system includes the possibility to define
a complex datatype d; as the restriction over elements of another complex datatype d5,
which effectively makes the value space of d; a subset of the value space of d,. This also
explains why extending the subsume match type(o) J type(i) to data compatibility is
problematic since there might be data items that are rejected by the sink because they
are out of its value space.

At the technical execution level it is therefore indispensable that a source and a sink
are compatible at the conceptual level as well as at the syntactic data level.

Definition 4.16 (Source, Sink Execution Compatibility). Let Sc be a service and O, 1 the set
of its sources and sinks, respectively. A source o € O is execution compatible with a sinki € 1
iff Condition (4.22) holds and the data values produced by i are included in data values accepted
by o.

The notion of compatibility between sources and sinks becomes a more complex
problem under structural and even more so under semantic data heterogeneities. This
is the point where some form of data mediation is ultimately required. Though it is not
the focus of this thesis to also cover this topic, we will briefly discuss the mediator-based
approach next.

Medlator-based compatibility is more complex since it starts from the advanced cases
where the data items produced by a source are not structural compatible with the ac-
cepted data items of a sink and/or where source and sink do not semantically match
relative to some application domain conceptualization so that Condition (4.22) does not
directly hold. Establishing compatibility under these circumstances involves solving a
data integration problem (see [Len(02] for an overview).

Probably the most prominent building block that has been proposed to this in the
literature considers the use of mediators to achieve this [Wie92]. The basic principle
has later been integrated as a core element in the WSMO service framework under the
notion of data level mediation [SCMF06]. Data integration is one of the major and widely
studied topics in databases and information systems with a large body of work on ontol-
ogy based approaches [WVV 01, Noy04]. While the mediator-based approach is more
of an architectural pattern that can be employed in principle to solve any syntactic,
structural, and semantic data incompatibilities, it does not provide concrete methods

30Recap, information about the data format, which includes the datatype, is assumed to be included in
the grounding of an operation (see Section 4.1.3).

31This type of data-compatibility corresponds to the notion of direct and indirect data type compatibil-
ity in [MBEO3].

4.3 Process Model 89

to achieve this. In fact, automated data integration (based on mediators) is still a chal-
lenging and not generally solved problem. For instance, a more recent review of the
topic [BHO8] states that “every step of the information-integration process requires a
good deal of manual intervention”. Common approaches followed currently build on
the idea of data schema mappings and/or structural transformation procedures. These
are usually human-defined in an ad hoc manner for the data formats between which to
mediate. Consequently, there is a certain degree of human involvement. An approach
to estimate the effort in human involvement has been proposed in [GRRT08]. The au-
thors define mediatability as a computable measure quantifying the effort of mediating
between XML-based data schemata in terms of a similarity function.

Virtually all mediation-based approaches with humans in the loop have it that the
data formats (schemas) among which to mediate are known in advance with only a few
different formats involved. However, in open and possibly large-scale environments in
which this cannot be assumed, different approaches are needed [Rah11].

Structure

The structure of the data flow is defined using a consumer-pull style relation on sources
and sinks (rather than producer-push style). In addition, we need a precedence relation
on sources and sinks to represent that the data flow is not counter-directional to the
control flow. Let Sc be a service and let Gs = (P, T, F, My, fu) be its control flow graph.
Let pt: (OUI) — (PUT) be the mapping that returns for each source/sink of Sc its
corresponding place/transition in the control flow graph; that is

pi ifx € Sc.Pr.]
pt(x) =< p¢ if x € Sc.Pr.O (4.23)
t ifx e fu(t).lorx € fu(t).O .

A source 0 € O precedes a sink i € I w.r.t. G, denoted with
0 <Gyl , (4.24)
iff there is a path W in G such that pt(0) is the first and pt(i) is the last element in W.

Definition 4.17 (Data Flow Graph). Let Sc be a service and G its control flow. A data flow
graph (or data flow for short) for Sc is bipartite directed graph Ggs = (O, I, «--) where nodes
are divided into the set of sources O and sinks I of Sc and «-- C I x O is the flow relation
(edges) such that the following conditions hold:

(1) foreachi € Ithereis a pair (i,0) € «-- such that o must not be an initial source if i is a
final sink,

(2) (i,0) € «-- implies that i,0 are execution compatible, and
(3) (i,0) € «—~ implies 0 <c i.

If (i,0) € «-- then i is said to be connected to 0. A source o € O is unused (or unconnected)
if there is no pair (x,0) € «--.

90 System Model

Observe that Item (1) in Definition 4.17 rules out open-sourced sinks; that is, all
sinks are connected to a source. On the other hand, unused sources are permitted (i.e.,
an output data item produced by some operation need not necessarily be consumed),
though this would rather rarely be the case in practice. In other words, «-- is left-
total and right-unique (i.e., it is a function) but neither injective nor surjective: different
sinks may map to the same source (fork) and not all sources might be covered by «--
(unused /unconnected source). Defining the flow relation in the dual form --» C O x I
renders the relation --» inverse-functional, which is the reason why we opted for the
consumer-pull style.

As a last remark, observe that Definition 4.17 precludes connecting an initial source
with a final sink (Item (1)), thereby disallowing a data flow that simply and directly for-
wards a service’s input to one or more of its outputs. The importance of this “restriction”
lies in reasoning. Later in Section 5.4.4 we will assume that every output is represented
by a newly introduced constant. An output produced this way by looping it through
from an input would actually imply being represented by an existing constant; hence,
violate this assumption. From a purely data perspective, however, we could allow such
a loop through data flow, though it is of little practical relevance anyway.

Execution Semantics

The forwarding of data items in the course of execution is directly bound to the service
lifecycle and transition firing as defined by the execution semantics of the control flow
graph. More precisely, for each pair (i,0) € «--, the data item becomes available at an
initial source (pt(0) = p;) when the service gets instantiated (i.e., for the initial marking
My). If pt(o) = t then the data item is produced when ¢ fires. The data item becomes
available at a final sink (pf(i) = pf) when the service execution completes (i.e., for the
final marking My). If pt(i) = t then the data item is consumed when the operation or
service fu(t) is invoked.

Since there are time gaps between production and consumption of data items in
practice, it is the responsibility of an execution engine to keep a data item ready by
temporarily storing it unless it was consumed by all sinks. This also includes cases
of runtime invocation failures that make it necessary to keep data items for recovery
purposes. Conversely, a data item that is never consumed (unconnected source) can
in principle be discarded immediately once it was produced, except that it needs to be
retained for other purposes (e.g., monitoring, recovery, rollback).

4.3.3 Well-formed Processes

As we have seen, both the data flow and the control flow require certain structural prop-
erties to be satisfied in order to be considered well-formed. In essence, these properties
ensure that a process specification is correct in the sense that it can be executed in an au-
tomated way (assuming, of course, that all operations are implemented and necessary
technical grounding details are available). Executability defined in toto in our process
model includes two elements:

4.4 Summary 91

* Soundness — as defined in [vdA97] and embodied by the structural restriction to
well-structured WorkFlow nets in Definition 4.11. Soundness furthermore implies
token-reachability of every transition.

* Data compatibility — as embodied by type-based datatype compatibility between
connected sources and sinks.

We call a process specification that satisfies these properties well-formed. Verifying
whether a process specification is well-formed is considered to be part either of the
specification/design process or to be made at runtime as an initial step of the activa-
tion procedure (i.e., the instantiation) by a validation component part of the execution
system.

There are other verifiable properties known in the literature that can extend the no-
tion of a well-formed processes. One of them is executability [Rei01, BLM05] which
originates from action theory. Executability is the problem of determining whether an
action or a sequence thereof is applicable in a particular state (i.e., whether precon-
ditions are satisfied). Executability checking is in fact also done in our process model,
although stepwise for single operations; embodied by Item (2) of the transition enabling
rule in Definition 4.13. Two more correctness properties are the absence of precondition
and effect conflicts, which has been investigated in the context of semantic business
process modeling in [WHM10].>?> Applied to our model, a precondition conflict exists
between pairs of possibly concurrent operations Op;, Op, in a process if the effects of
Op1 are inconsistent with the precondition of Op; (i.e., execution of Op; prior to Op;
cancels executability of Op,). An effect conflict exists between Op1, Op; if their effects are
inconsistent w.r.t. domain constraints in a TBox.

4.4 Summary

While the overall approach in the system model follows existing Semantic Service
frameworks in a number of respects, we have introduced several generalizations,
namely the notion of representants and the precondition and effect systems. Moreover,
we were able to seamlessly combine the different aspects of services: their execution,
non-functional, change, and data semantics. The latter especially makes the data format
aspect of services explicit by providing a characterization of the notion of data compati-
bility. Finally, we have taken great care to formulate it in a general way so as to separate
practical choices from the conceptual basis.

The main components and layers that are combined in the system model are sum-
marized in Figure 4.7. Apart from the interpretation, all layers (vertical axis) are
parametrized along one or more dimensions, which constitutes various degrees of free-
dom on how the model can be instantiated. On the other hand, we made simplifications
at two places that account for the fact that we are concerned with the service execution
task. These are the reduction to the single process to be executed (though a service might
specify multiple different processes) and the one profile/grounding on each operation

32These two properties are known more generally in Al planning as action dependencies [GNTO4].

92 System Model

to be invoked in the course of process execution. In this regard, the system model might
be seen as tailored for the service execution task.

.® SCn

Specification

Execution

Representation
A

. r

Interpretation
A

Individuals Eternals

Figure 4.7: Summary of the system model depicting its main layers.

The representation and specification layer are parametrized along DLs. Leaving
aside decidability, computational complexity, and determinism properties of reason-
ing especially over preconditions and effects, the model can be instantiated in principle
with any DL that provides the basic subsumption inference. Yet it is precisely these
aspects that limit the possibilities in theory as well as in practice. For example, a DL-
based effect system that allows for disjunctive, existential, or universal restricted con-
cepts as effects renders the change semantics of services/operations to be no longer
deterministic in general (this would equally be introduced in the presence of TBoxes
and the use of atomic concepts as effects that are defined possibly indirectly in terms
of these three constructors). Furthermore, while for all “classical” DLs consistency is a
prerequisite® for the subsumption inference, it is widely recognized that inconsistent

30r, as [PT09] put it more succinctly: “the contemporary logical orthodoxy has it that, from contradic-
tory premises, anything can be inferred”.

4.4 Summary 93

knowledge may naturally appear in many domains. Not surprisingly, reasoning un-
der inconsistency recently gained considerable momentum in Semantic Web research
(e.g., [MHO09, FH10, NS10, ZLW10]). The system model is in principle amenable for
such a paradigm shift; its potential and ramifications have not been explored, how-
ever, in this thesis. This applies equally to other reasoning paradigms such as statistical,
probabilistic, inductive, or abductive reasoning.

Related to the choice of the actual DL is the choice for the OWA versus CWA. Also,
whether the UNA is adopted or not. These are two more parameters of the model. In
controlled and closed application environments where one can assume that all relevant
information is available, adopting the CWA is fully satisfactory since negative infor-
mation (e.g., ~allergicTo(ALICE, PENICILLIN)) does not need to be maintained then.
The picture is different, however, in open environments such as the Web. Ultimately,
the answer to the question whether OWA or CWA should be used in an open environ-
ment depends on what conclusions that are drawn from reasoning are used for. For
instance, if a conclusion is the basis of a risky decision then the OWA (combined with
the prudence principle) is supposably a better choice. Consequently, adoption of OWA
versus CWA should be decided on a case by case basis, rather than making a general
decision. This calls for flexibility in an implementation, meaning that the decision for
OWA versus CWA should be a query-specific rather than a global fixed parameter.

The system model is further parametrized with precondition and effect systems.
This is mainly motivated by the fact that there is (still) no general purpose framework
on the change semantics and reasoning about change.

To complete this summary, the system model is neutral to how execution is orga-
nized. In practice, an execution system can be centralized in the sense that a single
instance is responsible for coordinating correct enactment of a service instance. Con-
versely, a distributed and possibly decentralized execution system can as well be used
in which multiple peers cooperate on fulfilling the task. The consequence of distributed
execution is the need to support shared access to the KB as there are multiple peers that
query and update it. The demand for distributing the KB itself might “naturally” arise
in this case in addition. Finally, the conceptual basis of the system model does not rule
out concurrency, which is natural in almost any domain, as no simplifying assumptions
are made in this regard.

Forward Failure Handling using CFI

BASED ON the system model for Semantic Service execution introduced in the previ-
ous chapter, in this chapter, we describe our method to achieve optimistic while
forward-oriented failure handling to the service execution task. We call it Control Flow
Intervention (CFI), named after its main characteristic. The basic idea is to intervene in
the control flow of a composite service execution in the presence of a failure by mod-
ifying its process specification so as to get a semantically equivalent execution and to
finally resume execution using the modified control flow. The change that the control
flow undergoes is consequently made in the midst of execution and can therefore be
classified as dynamic.

Dynamic change within workflows or (business) processes is not a new research
topic. Early works that address the problem on a conceptual level in the context of
workflow systems date back to the mid-nineties (e.g., [EKR95]). What distinguishes CFI
from conventional approaches is its second main characteristic of being optimistic and
forward-oriented. Optimistic entails that what the change of a service in the presence of
a failure will precisely be is determined ad hoc based on what failed rather than in ad-
vance. The change made to recover from a certain kind of failure is thus not pre-defined.
CFI thereby provides an additional level of flexibility. Forward-oriented, on the other
hand, means that one aims at finding a replacement that results in a semantically equiv-
alent (or similar) outcome when executed instead. These two properties make CFI com-
plementary to conventional failure handling methods such as transactional rollback and
compensation or pre-defined exception and fault handlers. The overall context classi-
tied along (i) the time when recovery means are specified and (ii) what kind of recovery
results can be modeled is depicted by Figure 5.1 and shows where CFI is located.

A key element herein is the notion of a replacement that provides a semantically
equivalent (or similar) execution. In order to achieve the goal of ad hoc creation of a
replacement, mainly two problems need to be addressed. First, how to define a formal
and decidable notion of equivalent (or similar) execution that meaningfully captures
the intuition of humans. Second and closely connected, what techniques can be used to
tind or create a replacement. With respect to the former, we exploit the information on
the semantics of services and their operations available through their profile, the pro-
cess, and partly also the grounding. We propose two different notions of equivalent

96 Forward Failure Handling using CFlI

\

el

[

S

g

QJ

7

S CFI
2 =
s ®
z
= - — - — Recovery result
5 inverse countervailing equivalent similar
>
o %
O <
o & .
MY exception, fault,

g: transactional compensation handler

NG Vo
rollback compensation
N N
backward-oriented forward-oriented

Figure 5.1: CFl in relation to conventional failure handling approaches.

execution that are close from a semantic point of view, but differ with respect to the
techniques used to find /create replacements. More specifically, the first notion relies on
service matchmaking techniques by formulating the process of finding a replacement
as an iterative matchmaking problem. The second is strictly more general and relies
on Al planning techniques by formulating it as a planning problem. While semantic
matchmaking and planning are prominent on their own in semantic services research,
we are focused on streamlining existing methods in these fields to provide an integrated
approach with our service model, which has it that, amongst other aspects, the change
semantics is modeled as a query answering and a belief update problem over a DL
knowledge base.

We will furthermore discuss how the notion of equivalent execution can be broad-
ened towards similar execution. This is worthwhile especially for application domains
in which one cannot assume that the notion of equivalence is appropriate in the sense
that it is too strict to be effective. Conceptually, we see a close link to the area of planning
with soft goals that involves an optimization problem. We therefore sketch a solution
by reducing it to so-called net-benefit planning problems. As a side effect, the notion of
similar execution thereby defined also allows to include non-functional properties.

The remainder of this chapter is organized as follows. We start by providing a high
level overview on how CFI would work in practice in Section 5.1. The types of sys-
tem environments and the types of failures to which CFI is applicable are detailed in
Section 5.2. In Section 5.3 we then introduce the notion of a replacement from a syn-
tactic point of view. The core part of this chapter is Section 5.4 in which we address
the problem at the conceptual level from a semantic point of view. The two notions of
functionally equivalent execution are introduced and corresponding techniques are de-
scribed to search for respectively synthesize replacements. In Section 5.5 we clarify how
the proposed techniques affect the correctness property of guaranteed termination put

5.1 The Basic Control Flow Intervention Cycle 97

Instantiation Completion
resume ® detect ©)
replace @ pause @

find @

Figure 5.2: Integral activities forming the Control Flow Intervention cycle.

forward by transactional processes. In Sections 5.6 and 5.7 we discuss different related
aspects. Finally, Section 5.8 concludes.

5.1 The Basic Control Flow Intervention Cycle

From a high level procedural point of view, CFI is divided into a cycle of actions de-
picted in Figure 5.2. Once a service has been instantiated by an execution engine, failure
detectors monitor all relevant execution events (1). In case an event has been detected
that is classified as a failure, the engine pauses execution at the earliest possible moment
(2), meaning that it temporarily stops working off the control flow. While this is simple
to implement for sequential control flows with a single execution thread, pausing a ser-
vice instance with parallel flows involves a decision: pause all threads or just the one in
which a failure event has been detected. The former is indicated if the recovery strategy
includes the case that the entire service execution is to be aborted. The number of oper-
ations that would need to rollback (or compensate) in this case is thereby reduced to a
minimum. On the contrary, if the recovery strategy is purely forward and guaranteed to
succeed, all non-faulty execution threads can continue without the need to pause them.
The decision is therefore a matter of the recovery strategies.

The following step (3) is the core part. It comprises all the actions that are started
then by the engine to find a qualifying replacement for a part of the service, which
might minimally be a single operation up to subflows. Once a replacement has been
found, the engine then carries out the substitution by moditfying the control and data
flow accordingly (4). Whether a replacement found is reviewed and accepted by a user
prior to substitution is an aspect not in the center of this work. The case in which step (3)
terminates in failure because a replacement does not exist and how this case is further
handled is left out from Figure 5.2. It should be clear that this is the event in which a
conventional recovery strategy would kick in.

Execution finally resumes with the new replacement (5). This last step of the cycle
is equally straightforward to pausing the execution. To conclude, steps (1), (2), (4), and

98 Forward Failure Handling using CFlI

(5) are accompanying management steps of secondary relevance and are therefore not
further addressed in this chapter.

5.2 Range of Application

CFl is applied to the system model introduced in Chapter 4. While this model makes
a couple of assumptions regarding the nature of services, it is not restricted to just one
concrete type of environment. In particular, it includes distributed or non-distributed
system environments as discussed in this section. By characterizing basic properties
of these environments we can precisely identify those types of failures within these
environments that are covered by CFI, which we will discuss after supported system
environments and their basic properties have been described.

5.2.1 System Environments

Following distributed systems theory, we characterize concrete system environments in
terms of three basic abstractions: different types of processes that run on different types
of computing machines and messages exchanged among processes that rely on links that
enable exchange of messages. Notably, there are three different types of processes:

® Sub process
* Service instance process

e Server process

First, a sub process reflects the execution of the implementation of an operation.
Therefore, one can say that the process of a service instance Sc involves n = |Sc’.U|
sub processes (n > 1) where Sc’ is the unfolded service of Sc. Clearly, a sub process is
activated with invocation and ends upon completion. Both the invocation and the sub
process itself may fail as detailed below.

Second, a server is a computing machine at which sub processes run. Obviously, a
server requires software that provides features to activate a sub process on invocation
and to further manage its lifecycle. The execution of this software is reflected by a pos-
sibly infinitely running server process. A server may run any number of sub processes
in parallel, virtually limited only by its technical computing resources. An execution en-
gine is the software that activates and manages the process of a service instance (besides
taking care on the actual execution task). Again, the execution of an engine itself is re-
flected by a possibly infinitely running process. For now it is not important whether
one engine manages the process of a service instance exclusively or whether it cooper-
ates with other execution engines (i.e., distributed service instance process). Analogous
to a server, an execution engine may manage multiple processes of different service
instances in parallel. Furthermore, an execution engine may run on a server or at a
separate (and dedicated) computing machine.

Obviously, this setup results in a distributed system environment as soon as sub
processes and processes of service instances run at different computing machines and

5.2 Range of Application 99

implies communication between them, which is assumed to be done by means of mes-
sage exchange.

However, it should be noted that the applicability of CFI is independent of whether
a concrete system environment is distributed or not. The reason is that the types of
runtime failures that are considered in this work apply to both distributed and non-
distributed environments. On the distributed end, this includes partially synchronous
and synchronous system environments.! Since the step to real-time systems is “only”
of a temporal nature, CFI would in principle also be applicable there, provided that
appropriate means of ensuring timing constraints exist, which is, however, an aspect
not addressed in this thesis. The main properties that we require to be provided by any
concrete system environment are captured by the following assumption:

(A7) There is an (eventually) perfect failure detector. Messaging among (sub) pro-
cesses is reliable.

These two properties are reflected in the so-called fail-stop model [SS83] for synchronous
distributed environments and its variant the fail-noisy model [CGL11a, Chapter 2] for
partially synchronous distributed environments. The basic property shared by both
models is that processes? may crash (i.e., halt prematurely). Moreover, processes can
communicate with each other through point-to-point message-passing. The difference
between the fail-stop and the fail-noisy abstraction lies in the accuracy of failure detec-
tors and is inherent in the synchronous versus partially synchronous nature. Accuracy,
in short, describes quality-of-service restrictions on the mistakes that a failure detector
can make. In summary, the properties of these two models are as follows:

* A process that is not crashed follows its specification. It is called correct if it never
crashes; otherwise it is called faulty.

* Crashed processes do not perform anything. However, in the system environ-
ments that we consider they may recover as detailed in Section 5.2.2.

Recap, an asynchronous distributed system — which is not to be confused with asynchronous versus
synchronous message sending as this refers to non-blocking versus blocking senders [BA06, Chapter 8] —
is characterized by the following two properties:

¢ relative processor speeds and message transmission times are unbounded, which is introduced in
practice when best-effort computing machines and networks are subject to by unpredictable loads;

* (sub) process’s local clocks are not synchronized (i.e., there may be arbitrary drifts) since there is
no access to a global synchronized clock.

In contrast, a synchronous distributed system is characterized by the assumption that processing,
communication delays and clock drifts have an upper bound that is known a priori. Partial syn-
chrony [DLS88] captures the cases where either fixed bounds exist but are not known a priori or where
the bounds are known but only hold after some unknown time. Finally, in a real-time system, upper
bounds are not only known a priori but subject to strict constraints in the sense of deadlines that are to
be met. For more information we refer to general text books such as [BA06, CGL11a].

2For the sake of convenience, we do not distinguish between sub processes, server processes, and
processes of service instances here and just speak of processes.

3The formal definition of correct and faulty in [CT91] relates these terms to a run, which is understood
as an infinite execution of a system.

100 Forward Failure Handling using CFlI

* Every crashed process is (eventually) detected by each correct process based on a
failure detector, which is accessible to each process (Completeness).

¢ Every correct process is (eventually) not erroneously suspected of having crashed
by any correct process (Accuracy).

* A message sent to a correct process is eventually delivered. No message is deliv-
ered more than once (i.e., no duplicates). No message is delivered without having
been sent (i.e., no creation).

* Messages sent between the same processes are delivered in the order sent (FIFO).

The feasibility of an (eventually) perfect failure detector necessitates that processes are
not arbitrarily slow and latencies between message sending and delivery are not arbi-
trarily long. Finiteness of bounds is therefore indeed crucial since it would otherwise be
impossible to distinguish a correct process from a crashed process [FLP85, DDS87]. An
eventually perfect failure detector may erroneously suspect a correct process of having
crashed, but there is a finite while unbounded time after which it eventually accurately
detects a correct process as correct (i.e., it may make mistakes). It is well known that
eventually perfect failure detectors can be implemented either using timeouts [CT91]
or heartbeats [KACT97]; the latter being advantageous over the former since it does
not rely on timeouts and is quiescent (i.e., eventually it stops sending messages). In
contrast, a perfect failure detector is devoid of mistakes and detections are permanent
(i.e., once a crashed process has been detected, a perfect failure detector will not change
its mind). Finally, it should be evident that “applications that have timing constraints
require failure detectors that provide a quality of service with some quantitative timeli-
ness guarantees”, as addressed in [CTA02].

5.2.2 Failure types

CFI as a method for failure handling aims at covering runtime failures that can be fur-
ther classified as either

1. invocation failures or

2. execution failures.

Such failures can occur for many reasons. Apart from software and hardware design
errors made by humans, the main reasons are the following;:

¢ Hardware systems are subject to various phenomena of a stochastic nature that
may suddenly disrupt regular operation.

* Remote distribution of resources and the possibly large number of resources
makes environments only partially observable. It is often impossible to have com-
plete knowledge about the current state of all available resources.

¢ Even if one would have complete knowledge about the environment at some in-
stant in time, it may be subject to arbitrary changes that cannot be anticipated
beforehand.

5.2 Range of Application 101

Note here that detection and handling of Byzantine failures as first discussed
in [LSP82] in the context of distributed systems is beyond the scope of this thesis. We see
means to detect, mask, or protect systems from this class of failures — the importance of
which are beyond question — as a separate matter. It is therefore assumed that systems
do not expose malicious behavior, which is, in fact, implied by the correct versus faulty
property stated earlier on the fail-stop model.

It should also be mentioned that we expect the crash of an execution engine to be
transient; that is, processes of service instances that were active and affected by the
crash, meaning that they have crashed as well, will eventually recover and resume. Con-
sequently, implementations of execution engines need to provide appropriate means
based on stable storage for correct recovery.

Invocation Failures
There are mainly the following reasons for invocation failures:

1. A server that hosts implementations of operations is (temporarily) unavailable.
This can be due to (i) network partitioning (infrastructure related failure), (ii) be-
cause the server is down (e.g., for maintenance purposes), or (iii) because it has
crashed (local hardware or software fault).

2. The profile or implementation (grounding) of an operation has been changed in a
backwards-incompatible way by its provider and some service specification that
makes use of it still assumes the meanwhile outdated version; hence, a malformed
invocation request is created on its execution (incompatibility fault).

Characteristic for an invocation failure is that a sub process was not activated; hence,
no further assumptions on the failure behavior of the sub process need to be made.
An invocation failure is detected by an execution engine based on a timeout in case of
unavailability of a server, which means that guaranteed eventual delivery as ensured
by reliable messaging is explicitly disabled in this case. The second type of invocation
failure is detected by an execution engine based on an error reply message sent be the
server. Finally, it should be clear that erroneously suspecting a server of having crashed
by an eventually perfect failure detector increases the amount of invocation failures.

There is, however yet another type of runtime situation that can be considered an
invocation failure though occurring ultimately before invocation: the case of unsat-
isfied preconditions. Given a transition f and an execution state s = (M, K) such
that t is token-enabled in s, the operation Op = fu(t) is obviously not invokable if
fonk(IC,Op.Pr.P) = false.

Execution Failures

Contrary to an invocation failure, an execution failure happens after an invocation was
successful; that is, after a sub process has been activated and where the sub process
is subject to a failure itself. In addition, we also subsume application-level execution
failures under this category. By this we mean a prematurely ending but not crashing
sub process whose functionality cannot be performed completely due to an unexpected

102 Forward Failure Handling using CFlI

application-level constellation that prevents this. As an example, imagine an order op-
eration within the order & pay service of the book seller scenario from Section 2.1 that
is successfully invoked but nevertheless fails because a book that the customer wants to
order is out of stock. One might counterargue that such application level cases should
all be modeled as preconditions so that precondition checking would already catch
them. However, it is often impractical even infeasible to model all conditions required
for successfully performing an operation (or service). In fact, this refers to the qualifica-
tion problem — the insoluble dilemma we are faced with when trying to fully enumerate
all requirements that may otherwise prevent successful use, as “anyone will still be able
to think of additional requirements not yet stated” [McC90].

For execution failures, we need to further detail the fail-stop behavior of sub pro-
cesses. As stated in Section 5.2.1, a crashed process in the fail-stop and the fail-noisy
model does not perform anything. However, it is not clear yet what this means regard-
ing outputs and effects. The precise understanding of fail-stop is made explicit by the
following assumption.

(A8) Given a sub process sp that reflects execution of an operation Op, none of Op’s
outputs O and effects E materialize if sp fails permanently, nor will any other
erroneous side-effect be made permanent in the underlying sub system. If the
functionality and/or effects of Op makes it infeasible to ensure this property
then a failure must be transient.

A permanent failure means that sp does not recover. This does not exclude recovery
of the server at which sp ran in case the failure (crash) of sp coincided with a crash of
the server. A transient failure of sp means that sp recovers transparently and resumes
execution with a sufficiently small delay. In fact, transient failures are not directly rel-
evant for CFI since it is reasonable to assume that sp will eventually complete in any
case, even if it was subject to repeated crashes.

Not materializing any effect, output, nor any other side-effect for a permanent failure
essentially necessitates the fail-safe or fail-fast property. The transactional approach is one
means to assure that implementations of operations are fail-safe: already created effects
are undone in the presence of a failure (rollback). Fail-fast basically means that a process
stops normal operation already before entering a flawed state and immediately reports
an error. In both cases we assume that some form of an error message is reported back
to the execution engine.

5.3 Replacements and their Structure

From the types of failures that CFI aims at (see Section 5.2.2) we can conclude that they
all share the property that an ordinary transition ¢ in a control flow graph G cannot fire
though it is token-enabled: either because already the preconditions of its associated
operation (or service) are not satisfied (i.e., the second condition required to enable ¢
does not hold) or because exec(fu(t)) = fail. In this section we start by viewing this
problem merely from a structural point of view in the control flow. Treatment from a

5.3 Replacements and their Structure 103

semantic point of view to achieve a semantically equivalent execution is postponed for
Section 5.4.

If transition t cannot fire and having the basic idea of CFI in mind — where we aim
at forward-handling this case — then one needs to modify G so as to get an alternative
execution. We see two possibilities of how such a modification can be done:

1. Rebind t to another service or operation that qualifies as an alternative to the orig-
inal one.

2. Replace a subflow G§ < G that starts with ¢ by a different control flow G that
qualifies as a replacement for G&.*

Rebinding transition ¢ is done by modifying the mapping fu for t so that fu(t) maps to
an operation or service different from the original one. The second way of modifying
a service can be seen as a cut-and-replace approach. By saying that GZ; starts with t we
mean that ¢ is preceded by the initial place of G¢; that is, e = {p{}. The reason is
obvious: G§ need not include preceding transitions on a path from the initial place p; of
Gf to t since they all have been executed successfully already (otherwise token-enabling
would not have reached t).

Considering the second option is more general because it allows even for structural
changes to the original control flow G (i.e., rebinding t does not change the structure of
G.). This is also motivated by the observation that in some application domains having
the possibility for rebinding only might not be sufficient: rebinding ¢t may imply the
need to replace other subsequent transitions as well if they are functionally dependent.

The important property of a replacement G; from a structural point of view in the
control flow is that G, seamlessly fits into G. By this we mean that the substitution
of G by G is control flow graph preserving. Second, that G5 and G, are connected
to the remaining part of G through and only through their interface (i.e., their initial
and final place). This implies the following property. If ¢ is a starting transition in G
(i.e., pf € eot) then any marking that token-enables ¢ will also token-enable a starting
transition ¢’ in G,.

We are now defining such structural substitutions formally that ensures these prop-
erties.

Definition 5.1 (Structural Substitution). Let G and G be control flow graphs such that
G& 9 G G can be structurally substituted by a another control flow graph G if the
following holds:

(1) T*NT" = Q@; in words, the transitions in both G5 and G, are different.

(2) PN P" = {p;, pt}; in words, G5 and G, coincide in their initial and final place p;, ps
and the set of places are otherwise disjoint.

If G& can be structurally substituted by G, then G is called a replacement for G5 We
write G/, = G[GS/GY] to denote the modified control flow graph G/ that is obtained by
substituting G with G in Ge.

4The superscript e and r are used to indicate the error (or exceptional situation) and the replacement
context.

104 Forward Failure Handling using CFlI

Given a control flow graph G, let G, = G[GS/GY]. More precisely, G/ =
(P', T',F', M|, fu') where

P = (PUP")\P°
T =(TUT)\Te
F = (FUF)\F
M}y = My (5.1)

, _Jfut(t) ifteT"
fult) = fu(t) otherwise.

Clearly, Definition 5.1 implies that G5, < G/ and G&; A G.;. Moreover, it is not difficult
to see that Géf is also a control flow graph; hence, it is sound, which can be proved as
follows. Suppose G is the union of G and Gf;. Then the initial and final place in which
G¢ and G coincide are a split and a join place, respectively. Since G5 and G; have
disjoint transitions and except for the initial and final place also disjoint places, their
flow relations are also disjoint (i.e., their control flows are completely independent).
Consequently, there is a choice between either of them in G and therefore also G is
a control flow graph. Finally, G can be reduced to G; by removing G, which can
be done by successively applying one of the soundness-preserving reduction rules, as
mentioned on Page 84. This allows us to formulate the following theorem.

Theorem 5.2. Given a control flow graph G and a replacement control flow graph G, then
replacing any subflow G5 < G by G as given by Equation (5.1) yields a sound control flow
graph G;.

We classify substitutions into three types, characterized by an increasing level of
alteration; n, m are the number of transitions (i.e., n = |T¢|,m = |T*|):

1. One-to-one (1:1): A single transition is replaced by another transition.
2. One-to-many (1:n): A single transition is replaced by another subflow.
3. Many-to-many (n:m): A subflow is replaced by another subflow.

Examples for these three types of substitutions are graphically depicted in Figure 5.3.
Clearly, a one-to-one substitution is the most simple form of alteration, which actually
preserves the structure. In fact, a one-to-one substitution can equally be seen as a rebind-
ing of a transition because the associated service or operation is what actually changes.
It is also easily seen that a one-to-one substitution is a special case of a one-to-many
substitution, and so is a one-to-many substitution a special case of a many-to-many
substitution.

5.4 Semantically Equivalent Execution

Having introduced the structural properties of replacements in the previous section,
we can now address, from a semantic point of view, the criteria that must be met for a

5.4 Semantically Equivalent Execution 105

(a) Gr (b) e (©) o
O——0 O—{—0 O—{-—~{~0
ég é" ée

Figure 5.3: Examples for structural substitutions in control flow graphs. (a) One-to-one:
Simple substitution of a single transition by another transition. (b) One-to-many: Sub-
stitution of a single transitions by a sequential subflow. (c) Many-to-many: Substitution
of a sequential subflow by another sequential subflow.

replacement G; to qualify as such. Intuitively, G7; should provide the property that if
it is executed instead of the original G then it yields a semantically equivalent execution.
But what is a semantically equivalent execution and what not? If one follows intuition
then one would attribute a semantically equivalent execution as the property that, no
matter whether GZ; or G, is executed, one gets equivalent outcomes. Clearly, this rather
rough characterization needs to be formulated precisely. In fact, a detailed treatment
should include two more aspects, at least:

1. Does the notion of a semantically equivalent execution consider the functional
dimension only or does it also include the non-functional dimension?

2. Does the notion of a semantically equivalent execution preserve the original be-
havior as specified by G or not?

Since the behavior of a service execution is implied by the structure of its control flow,
the second question comes down to whether the structure is preserved by a replacement
or not. The first question relates to whether a replacement would yield semantically
equivalent outcomes only or whether it would also provide an equivalent quality-of-
service level than the original. Both are, from a conceptual point of view, separate con-
cerns. In order not to complicate matters, we will handle these two aspects separately.
The main focus is on formulating the notion of functional equivalent execution in two dif-
tferent ways, which is done in Section 5.4.4. Prior to that, in Section 5.4.3 we introduce
the notion of profile equivalence that we use, which is an ultimate prerequisite to the
tirst type of functional equivalent execution. Afterwards in Section 5.4.5 we sketch how
the functional dimension can be combined with the non-functional dimension. More
importantly, in this section we will also address how the notion of equivalent execution
can be broadened towards a notion of similar execution.

Since the first type of functional equivalent execution builds on methods of service
matchmaking while the second on service composition planning, we start by discussing
them in Section 5.4.1 and Section 5.4.2 in order to provide basic background information.
Readers familiar with these topics may skim through these two sections.

106 Forward Failure Handling using CFlI

5.4.1 The Matchmaking Task

Determining whether a service (or an operation) semantically compares with another
one is commonly known as matchmaking, which is a well known task at the core of
service discovery. In fact, it can be understood as a special Information Retrieval prob-
lem [KLKRO08]. Matchmaking has been widely considered in the literature on semantic
services resulting in a variety of approaches. As pointed out in [KIu08], one dimension
of classifying matchmaking approaches are the reasoning methods employed. One can
distinguish three categories along this dimension: logic-based, non-logic-based, and
hybrid. In short, logic-based matchmaking relies on possibly non-monotonic deduc-
tive rules of inference as available in (Description) Logics. Non-logic-based comprises
all suitable methods that are not logic-based. One direction are approaches that ap-
ply (syntactic) similarity measures from Information Retrieval to quantify the seman-
tic relatedness in terms of a distance measure. Another direction considers Machine
Learning methods to find predictive patterns on the semantic relatedness based on the
(meta) data available about services. Finally, hybrid approaches combine logic and non-
logic-based approaches. For (comparative) overviews of these approaches the reader is
referred to [KIu08, MIK ™10, BB10].

Formalization

Independent of the actual approach, semantic matchmaking starts from setting up the
notion of a match. The rationale behind a match is that an advertised service/operation
(i.e., an offer) is of equivalent or similar value than a requested service/operation (i.e., a
demand). Given a profile that semantically describes them, a match is defined in most
cases exclusively on profiles; we shall distinguish advertised and requested profiles by
denoting them with Pr® and Pr", respectively. In mathematical terms a match is either
formalized in terms of a binary relation or a binary predicate (that maps to true or
false interpreted as match or no match). Oftentimes the notion of a match is asym-
metric (hence irreflexive). Applied to profiles, it is usually intended to represent that
an advertised profile Pr® matches with a requested profile Pr", while the opposite — Pr*
matches with Pr® — not necessarily holds as well. It is reasonable at least to consider
the notion of a match as irreflexive because one might want to exclude the trivial case
of no avail: every profile matches to itself per se. Finally, matchmaking is inevitably
driven by domain (or background) information/knowledge based on which one con-
cludes whether there is a match or not; that is, the domain knowledge entails a match or
not. Altogether, we define matchmaking on profiles as follows.

Definition 5.3 (Matchmaking Domain & Problem). A matchmaking domain is a 4-tuple
MD = (K, P, ~, |=) where K is a collection of domain knowledge®, P is a finite set of profiles,
~ C P x P is an irreflexive match relation, and |= is a consequence relation.

Given a matchmaking domain MD and a requested profile Pr" € P, a matchmaking problem
is a tuple MP = (MD, Pr*). ms C P is a set of Pr"-matches for MP iff VPr* € ms: K |=
Pr? ~ Pr'.

°K need not necessarily be a DL knowledge base herein. It can build on other formalisms of repre-
senting knowledge/information. In the same vein, |= need not realize deductive rules of inference.

5.4 Semantically Equivalent Execution 107

The software that implements matchmaking in a specific matchmaking domain is
usually called a matchmaker. A matchmaker inevitably needs to be closely integrated
with a repository that stores profiles, which makes it a natural component of a service
directory, integrated accordingly in the retrieval process (query answering).

As there can be a set of profiles that match some requested profile, one might ad-
ditionally want to order them according to some preferences. There are basically two
ways considered in the literature to this. First, by defining several matching relations
that differ from each other in their degree of match (DoM). This induces a discrete rank
over the DoM and needs to be combined with simple algorithmic processing: If the best
match relation does not hold, try the second best, if this fails then try the next best, and
so on. This approach has been considered in most cases on the functional dimension
of profiles. Another way is to define, in addition to the notion of a match, a possibly
strict order that models user preferences. For instance, one might want to order pro-
files that functionally match a requested profile according to their reliability, response
time, throughput, usage costs, or the like. Of course, the order relation can incorporate
both the functional and non-functional dimension. Preference-based matchmaking is
consequently defined as a straightforward extension of basic matchmaking.

Definition 5.4 (Preference-based Matchmaking Domain & Problem). A matchmaking do-
main with preferences is a 5-tuple MD = (K, P, ~, >, |=) where > C P x P is a preference
order.

Given a matchmaking problem MP = (MD, Pr*), ms = {Pr},..., Pry} is a set of Pr'-matches
for M P, indexed by consecutive integers {1,...,n}, iff the following holds

(1) ms is a set of Pr*-matches for MP in MD = (K, P, ~, |=),
(2) VPr3, Pr}'?‘ € ms: i < jimplies Prd > Pr;?‘ .
Pr} is called the most preferred match and Pr;, the least preferred match.

The preference order > can be defined in many ways. One possibility are quantita-
tive metrics such as distance measures.

DL-based Matchmaking

The general principle common to all DL-based approaches known in the literature is
to formulate the notion of a match, in one or another way, based on the set-theoretic
subsumption relation. Reasoning on whether there is a match is thereby reduced to the
standard subsumption inference task and derives its computational complexity prop-
erties (see Section 3.1.4). In the context of DL-based semantic services it has been first
described in [PKPS02] and [LHO03]. The former assumes structured semantic service de-
scriptions such as a profile and defines the notion of a match on elements of the struc-
ture, which is why it can be classified as structured matchmaking. In contrast, the latter
assumes that a service (or an operation) is semantically described by a single concept
only that is a complex intersection

CiM---MNCy

108 Forward Failure Handling using CFlI

where C; are atomic or complex concepts. It is therefore classified as monolithic match-
making [KIu08]. Part of the idea in [PKPS02] is inspired by earlier works on component
theory in software engineering [ZW97] that similarly build on “more general”, “more
specific” abstractions over the signature of components as well as parallel works in
agent-based environments [SWKLO02].

Inputs and Outputs. There are four prominent matching relations defined exclusively
in terms of the subsumption relation [PKPS02, LHO3]. Under structured matchmak-
ing on the functional dimension of the profile they are utilized by pairwise matching
elements in the input and output sets. More specifically, a profile Pr® matches with
profile Pr" regarding the outputs if there is a matching output 0® € Pr®.0 for ev-
ery output o' € Pr’.O. Note here that Pr® may specify more outputs than Pr" (i.e.,
|Pr2.0| > |Pr".O|). We call such an additional output in Pr? for which there is no match-
ing output in Pr" a spare output. Formally,

Pr® pa-matches Pr' regarding O < Vo' € Pr'.O 30 € Pr.O: type(o") < type(o?)
(5.2)
where > can be one of

e Exact: type(o") = type(o?),
* Plug-in: type(o") 3 type(o?),
* Subsume: type(o*) C type(0?),
and by a slight abuse of notation (the meaning should be clear)
o Intersection®: (type(o®) Mtype(0?)) Z L,
e Disjoint: (type(o™) Mtype(0?)) C L .

These relations constitute a ranked while discrete DoM, the order of which can be
written as
Exact > Plug-in > Subsume > Intersection > Disjoint

where, stated informally, > means “stronger than”. The Exact match is clearly the most
preferable as it is the strongest relation corresponding to extensional equality: Accord-
ing to the model-theoretic semantics in DLs, the concepts or data ranges of matching
outputs have the same extension in every model Z. Given execution compatibility (see
Definition 4.16), the value range of each output in Pr".O coincides with the value range
of the matching output in Pr®.0. The plug-in match is the second best and basically
states that the outputs of the advertised suffice to fulfil the outputs of the requested
(i.e., the advertised does not produce output values that also the requested would not
produce). Conversely, the subsume match states that there might be output values pro-
duced by the advertised that would not be produced by the requested. The disjoint re-
lation is at the lowest level. It is actually not a match since it shows that the advertised
is incompatible with the requested as they have an empty intersection, which is why

6 Also referred to as a partial match (e.g., [HBHP09]).

5.4 Semantically Equivalent Execution 109

we were speaking of four matching relations. This distinguishes it from the intersection
match which captures the case where both are not totally incompatible.

Contrary to outputs, a match is defined vice versa when applied to the inputs of a
profile. More precisely, a profile Pr® matches with profile Pr' regarding the inputs if
there is a matching input i" € Pr'.I for every input i* € Pr?.I. Observe that in this
case Pr* may specify more inputs than Pr? (|Pr".I| > |Pr®.I|); which means that there
can be spare inputs in Pr" for which there is no input in Pr®. However, it is reasonable
to formulate a single condition rather than different degrees of match for inputs. This
is justified by the consideration that the advertised should generally suffice to fulfil
processing at least the range of input values that the requested does, but not less, in
order to be considered a match. Formally,

Pr® matches Pr' regarding I < Vi® € Pre.I 3i* € Pr'.I: type(i*) C, type(i®) (5.3)

where 71 is the maximum distance between type(i*) and type(i®) in the concept/data
range hierarchy. This means that the distance is calculated based on a graph-theoretic
model in which vertices represent concepts and edges represent direct subsumption re-
lations between them (e.g., given A C B C C and there is no D, D, with A © D; C B,
B C D, E C, the corresponding graph contains three vertices A, B, C and two edges
(A, B),(B,C), but not (A, C)). The simplest way is to take the edge count distance (e.g.,
given edges (A, B), (B, C), the distance is 1 for A, B and 2 for A, C). The basic assump-
tion under the edge count distance measure is that subsumption represents uniform
distance. As this might not be appropriate in general, another possibility is to assign
weights in the interval [0,1] to edges, thereby allowing for variability in the distance.
It is further reasonable to combine this with standardization by requiring that the total
sum of weights on the edges between a parent concept and its direct sub concepts is one.
Determining appropriate weights can be done based on information-theoretic models
in which one quantifies the semantic relatedness of concepts.

Limiting Condition (5.3) upwards using a distance is motivated by the case of pro-
files that are too generic and that should therefore be filtered. Otherwise, one would
include profiles that match everything in the worst case: Imagine an input i® of a very
generic advertised profile with type(i®) = T. Clearly, i* matches any input according to
Condition (5.3) because T is the universal concept. Limiting a match to direct parents
(n = 1) effectively avoids such matches, provided that the domain conceptualization is
not flat (i.e., where T is the direct parent). Such limits have also been applied conversely
as lower bounds for matchmaking on outputs (e.g., [KFS09]). Finally, the distance can
also be utilized for ordering. An advertised input i matches a requested input i* more
closely than another input 7 if its type is closer to that of i'; that is,

(type(i') T type(i1)) > (type(i*) En type(i5))
if m < n, which orders i{ before ij in this case.

Preconditions and Effects. Structured matching as embodied by Condition (5.2) and
(5.3) can, in principle, be applied respectively to effects and preconditions that are
DL-based (e.g., [BOI09]). As mentioned before, this principle, in fact, is inspired by
previous work on precondition and effect matching on software components [ZW97].

110 Forward Failure Handling using CFlI

Upon closer inspection we have found, however, that doing so is inappropriate for
effects whose semantics is defined in terms of a belief update. We argue that Con-
dition (5.2) does not appropriately capture the intuition of the plug-in and subsume
match in this case. To explain this, recall that an inclusion C & D or R C S can
be understood as an implication (see Section 3.1.1). In fact, an inclusion on effects
describes a ramification (i.e., an indirect effect). For example, given a role inclusion
hasBoughtBook(x,y) T ownsBook(x,vy), an effect atom hasBoughtBook(x,y) implies
ownsBook(x,y) as an indirect effect — the indirect effect of buying a book is owner-
ship. Now, what is the intuition of the plug-in and subsume match regarding effects?
According to the widely adopted view of [ZW97], the plug-in match? is defined as an
implication. Expressed in terms of profiles it reads as follows:

Pr® plugs into Pr* regarding E iff the effects described by Pr' are implied by Pr®. (5.4)

Alas, we see two problems in this definition. First, it would be possible that Pr? de-
scribes additional effects besides the ones that imply the effects of Pr". Second, as the
definition makes use of implication, it is sufficient that Pr? specifies effects that indi-
rectly imply Pr'’s effects.

We view the plug-in and subsume match as follows. An advertisement subsumes a
request regarding effects if the advertisement creates at least all the effects that the re-
quest creates. We might, more figuratively, say that the advertisement “does more” than
the requested. If we further understand the plug-in match as the dual of the subsume
match then this would mean that an advertisement plugs into a request if it creates
some of the request’s effects. It should now be apparent that Condition (5.2) does not
represent this. We would actually accept that an advertisement plugs in if it creates pre-
indirect effects and it subsumes the request if it creates post-indirect effects. The former
means that the advertisement creates effects that indirectly imply (cause) the effects of
the request (C* £ DY), whereas the latter means that none of the effects of the request
would be created (C* 3 D"). Neither case does adequately represent our intuition. An
alternative definition that represents it simply builds on containment on the effect sets
and (mutual) subsumption between single effects. More precisely,

a | plugsinto r |Pr®.E| < |Pr.E[and V¢ € Pr®.E: ¢ > mp(9)
Pr { subsumes } Priveg. b < { |Pr2.E| > |Pr*.E| and V¢ € Pr'.E: ¢ >t mg(¢)
(5.5)
where mp: Pr®.E — Pr".E and ms: Pr'.E — Pr®.E are injective mappings between the
effect sets and < can be one of:

* Weak plug-in: ¢ C mp(¢); weak subsume: ¢ I ms(¢);
e Strict plug-in/subsume: ¢ = mps(@).

We call the former weak and the latter strict because, depending on the actual effect se-
mantics, a weak match might allow for indirect effects whereas a strict match does not.
Observe that “C” is directed equally for weak plug-in versus weak subsume: in both
cases the effects of Pr® are more specific than those of Pr". Furthermore, “C"” need not

7 Actually called plug-in post match in [ZW97] if applied to effects only.

5.4 Semantically Equivalent Execution 111

be interpreted strictly in the DL set-theoretic way. It particular, it need not be a transi-
tive relation. Analogously, “=" is not necessarily understood in the strict mathematical
sense (reflexive, symmetric, transitive) as one might want to rule out ’cransitivi’cy.8
From Condition (5.5) one can easily derive how weak/strict exact, intersection, and
disjoint matches are defined, which we leave as an easy exercise.
To conclude, if we compare Condition (5.4) with our definition then we see that it

corresponds to a weak subsume, which perfectly reflects the concerns raised above.

Offline versus Online Matchmaking

Whether matchmaking can be done offline versus the need to do it online at runtime
(e.g., as part of a CFI cycle) is merely determined by the temporal variability — thy dy-
namics — of information included in a match relation. For instance, DL-based subsump-
tion matchmaking on IO profile parameters can be done offline since they are statically
typed. The same applies to static preconditions and effects. Non-functional matchmak-
ing on N profile parameters is is more likely to be done online. The reason is that typical
non-functional properties can be subject to possibly frequent dynamic changes (e.g., the
response time that varies depending on the load). Clearly, offline matchmaking can
be utilized for performance optimization by pre-computing matches between profiles
and combining it with appropriate indexing or caching techniques for fast retrieval of
matches at runtime (e.g., [SHF11]).

5.4.2 The Planning Task

The composition of services can be formulated as an Al Planning problem, which has
been pioneered in particular by [McD02, MS02]. As a result of significant advancements
in terms of theoretical foundations, scalability, available tools, and the fact that actions
are well suited for modeling operations of services, Al Planning has come to be a pri-
mal approach to (semi-)automatic composition of (Web) services, evidenced by a series
of surveys [RS04, KSKR05, Pee05, ACMSO08, Klu08, MP09, GTSS11, SVV11]. Planning
approaches range from functional, non-functional, and process-level composition, com-
binations of these, and composition under varying assumptions on the environment.
Yet the prevalent model to planning — not only in the context of service composition — is
that of a discrete state space that is to be searched for solutions.

The Basic State Space Model to Planning

We briefly introduce the state space model, which follows mostly [GNT04, Gef11]. In its
basic form the model contains:

* a finite set of states S, called the state space,

* aset of actions A where A(s) C A denotes the set of actions applicable (executable)
in states € S, and

8Examples where this is the case are the broader, narrower, and related properties (roles) in the Sim-
ple Knowledge Organization System (SKOS) [MB09], which are not transitive (and neither defined as
reflexive nor irreflexive).

112 Forward Failure Handling using CFlI

* a transition function F: A x S — S such thata & A(s) implies F(a,s) = s; in words,
F associates to each current state s and action 4 a successor state s’ that represents
the result of applying a in s if a is applicable in s.

A planning domain is correspondingly represented by the 3-tuple
PD = (S,AF) .

One can equally conceive this model as a directed graph in which a node is a state and
an edge, labeled with an action, represents a transition between a state and its successor
state resulting from the application of the action. The variety of this model lies in the
actual definition of what a state and an action is, what the criterion for an action is to be
applicable in a state, and how the transition function modifies a state.

Given a known initial state sy € S and a goal state s; € S, a sequence of actions
agp, . ..,a, such that

Sit1 = F(lli,Si), 0<i< n,

is a solution or plan in this model if
sg = F(an,su) .

Planning is therefore the ability of a software (agent) to automatically synthesize a plan
without being explicitly told the necessary steps that need to be performed to reach a
goal from an initial situation (state). The 3-tuple

PP = (PD, s, sg)

denotes a planning problem (or planning instance) in the planning domain PD. Clearly,
a path between sy and sg in the graph forms a plan - a sequence of actions, which in-
dicates that the process of planning can be reduced to (heuristic) search in the graph
whether there exists a path leading from s(to sg. An optimal plan has minimum exe-
cution cost among all plans for a planning instance. Under the assumption that actions
have uniform execution costs, a plan is optimal if there is no other plan that is shorter
(i.e., the length of a plan represents its total execution costs).

A common assumption is that there is at least one action applicable in every state
(Vs € S: A(s) # ©). While this assumption is necessary for liveliness it is obviously
not sufficient to guarantee that a plan exists for a planning problem. More relevant, in
fact, are two properties concerning dependability of planning algorithms: soundness and
completeness. A planning algorithm is sound if it generates plans that are correct, mean-
ing that execution of the plan transforms sy into sg. A planning algorithm is complete if
it is guaranteed to (eventually) find a plan if one exists.

The main reasoning task, which is performed by virtually all state space search plan-
ners either explicitly or implicitly when navigating through the space, is plan checking:
given a planning problem PP, is a plan a solution for PP. The second prominent rea-
soning task is plan existence: given a planning problem PP, is there a solution for PP.
Decidability of the latter is, however, not of utmost importance. Most planning tools
assume the existence of a plan anyway and try to find one, instead of proving that none

5.4 Semantically Equivalent Execution 113

exists; see also the discussion in [Hel02]. More relevant is therefore the efficiency of
finding plans while not exhausting available resources such as time or memory.

The basic state space model captures restricted environments only. More specifi-
cally, the fact that the initial state is known assumes full observability of the environment,
which essentially means that one has complete knowledge about the initial situation.
Second, the fact that the transition function maps to a single successor state implies that
actions are deterministic. Third, the system is static, meaning that it stays in a state unless
an action is applied. Finally, time is implicit (i.e., abstracted away), which implies that
actions are thought to be instantaneous and have no duration. Planning under these as-
sumptions is commonly referred to as classical planning. The seminal and still common
framework for encoding classical planning problems is the Stanford Research Institute
Problem Solver (STRIPS) [FN71], which is introduced next.

The STRIPS Framework for Encoding Classical Planning Problems
In short, a STRIPS planning problem is formulated as a 4-tuple (P, O, |,I') where:

* P is a finite set of propositional variables (Boolean variables), called the conditions
(a.k.a. fluents as their truth value can change from state to state);

* O is a finite set of operators (actions) of the form (pre, add, del) where pre,add, del
are each a subset of P, called the precondition, add, and delete sets, respectively;

e | C P is the initial state; and
e I' C P are the goals.

There is one remark on actions versus operators in order here. Unlike stated, it is cus-
tom that an operator is understood as a parametrized action; that is, pre, add, del contain
atoms (predicates) of the form p(xy, ..., x,) where x; is a variable that is implicitly ex-
istentially quantified. An operator thereby represents all actions that can be obtained
by instantiating each variable from a finite set of given logical constants, which we de-
note with C. These constants represent objects existing in the domain that are the sub-
jects of planning — individuals in case of DLs. It is assumed that different constants
denote different objects, that every object that exists is represented by a constant, and
that the interpretation of constants does not change between states (i.e., standard names
assumption together with a fixed interpretation). Notice that a ground atom therefore
resembles a propositional variable. Formally, let Var(o0) be the set of variables occurring
in pre,add, del of an operator o. The set of actions that can be obtained by instantiating
0 based on C, denoted with o[C], is

0[C] = {0[0] | 8: Var(0) — C}

where 0[f] denotes an action obtained by applying a substitution 6 to o.

A STRIPS instance encodes the planning domain as follows. Every state s is de-
scribed as a subset of P (s C P). States are interpreted under CWA: ¢ € P is true in s if
¢ € s; otherwise ¢ is false in s. Hence, states are complete descriptions of the current
situation, which matches the assumption of full observability. The initial state sp is I. A

114 Forward Failure Handling using CFlI

state sq is a goal state if ' C sg. The set of actions applicable in a state s, denoted with
A(s), are those whose preconditions are a subset of s, formally

A(s)={alac (eroo[C]) and pre(a) C s} . (5.6)
Finally, given an action a and a state s, the successor state is
s' =F(a,s) = (s\del(a)) Uadd(a) . (5.7)

Asymptotic computational complexity in the basic (propositional) STRIPS frame-
work is intractable as it has been shown to be PSpace-complete [Byl94]. The reason
is that there can, in general, be plans of exponential length in the size of the planning
problem. Complexity drops to NP for plans bounded to polynomial length. Exceed-
ingly long plans are more of a theoretical matter as the intuition especially in the area of
service composition is that composite services are rather short.

As a result of intractability, a major part of planning research since then has focused
on (i) encoding planning problems in a way that keeps the search space as small as
possible and (ii) to devise search strategies that enable scaling up to possibly huge
state spaces while being sound and complete, and ideally also optimal. A remarkable
achievement in this respect is [HCZ10] where a translation of STRIPS planning prob-
lems into the framework of planning with multi-valued state variables is described,
which is a special case of Functional STRIPS [Gef00], and which results in considerably
smaller state spaces.

The Problem Domain Description Language (PDDL) [MGH 98] is the de facto
standard machine-parsable format for representing STRIPS planning instances and in-
stances expressed in successor languages of STRIPS. Newer versions of PDDL [FLO3,
GLO6] have been extended in several ways; amongst others, to support expressing ex-
tended goals, which will be outlined next.

Extensions to Cover Practical Domains

Since the basic state space model is not expressive enough to capture many real-world
environments it is extended in several ways. Major dimensions along which extensions
are made are summarized in Table 5.1, which we will go through briefly one by one.

Goals. Extensions regarding goals concern scenarios in which one wants to express
more complex objectives than the specification of a final state to be reached. This in-
cludes two classes. First, constraints that describe states that must be traversed or, con-
versely, states that must be avoided by a plan (e.g., achieving a subgoal, avoiding a
critical situation). Second, constraints that must be optimized or meet at some, any, or
all time during plan execution. As both classes relate to a state trajectory in time”, such
goals are referred to as temporally extended goals.

Another line of research is concerned with whether goals are regarded manda-
tory or not. In so-called over-subscription planning [SmiO4] a.k.a. partial satisfaction plan-
ning [BNDKO4] goals are no longer mandatory but desired, meaning that one is satisfied

9In short, a state trajectory is a sequence of pairs ((so, to), (s1,t1), .., (S, tn)) where each s; is a state
and ¢; is a timestamp.

5.4 Semantically Equivalent Execution 115

Table 5.1: Different dimensions of planning domains.

Dimension Short Explanation

Goals Whether a goal represents a state to be reached (no matter how) ver-
sus a desired evolution in the domain.

Whether goals are regarded mandatory versus optional (desired).

Observability =~ Whether states of the domain are partially or fully observable.*

Controllability Whether actions/operators are deterministic versus nondeterministic.

Dynamics Whether the state of the domain changes only through actions or
whether there can be other events that also effect state changes.

Agility Whether plan generation and plan execution are separated versus
interleaved, meaning that execution can take place while planning is
ongoing.

Processing Whether a plan is a strict versus a partial ordering, is conditional,

iterative, or a mixture thereof.

* Partial observability includes the special case of no observability at all.

with plans that achieve a subset of the goals, as opposed to classic planning which ter-
minates in failure unless all goals can be achieved. Such goals are also referred to as soft
goals as opposed to hard goals. They are mainly motivated by planning under limited
resources available (e.g., time) or the presence of mutually exclusive goals. In order to
assist a planner in choosing which goals to achieve, each goal has an utility value asso-
ciated (i.e., one prioritizes goals). Alternatively, one can also penalize the violation of
a goal, which is the approach considered in PDDL3 [GL06]. In addition, actions do no
longer have uniform execution costs. The objective of a planner is then to maximize the
utility while minimizing costs. Hence, planning involves a (combinatorial) optimiza-
tion problem, also referred to as net-benefit problems [HDR08, KG09]. Soft goals, in fact,
describe a simple model of preferences. More interestingly, soft goals!® do not increase
expressive power since they can be compiled into a STRIPS planning problem with ac-
tion costs and hard goals [KG09], for which conventional cost-based STRIPS planning
machinery can be used then.

Observability. In various real-world domains it is not practical even feasible (for tech-
nical reasons) to have complete information about states; that is, states are partially
observable only. Planning under incomplete information about states is modeled by ex-
tending the basic model such that there is a set of initial states. A planner must then
account for the fact that the system might be in any of these states, which is corre-
spondingly referred to as conformant planning as a plan must work for all possible initial
states. Extending STRIPS to allow for negative atoms, conditional effects, and adoption
of OWA is one way of modeling partial observability. Not surprisingly, computational

19To be precise, a soft goal here is either a single fluent or a conjunctive or disjunctive formula over
different fluents.

116 Forward Failure Handling using CFlI

complexity becomes harder: plan existence is ExpSpace-complete for plans exponential
in length [Rin04] and X5 -complete for plans bounded to polynomial length [Tur02]; plan
checking is NP-hard. Similarly, a KB interpreted under OWA models partial observabil-
ity since it may be satisfied by many interpretations, each representing a possible state
of the domain.

Controllability. Apart from partial observability there can be one more source of un-
certainty: actions that behave nondeterministically. Controlling evolvement in this case
necessitates taking all possible outcomes of actions into account, which is correspond-
ingly referred to as contingency planning. Extending the transition function F to map to a
set of successor states is one way of representing nondeterminism of actions, which ren-
ders the model conceptually close to a Kripke structure [Kri63] used mainly in the field
of Model Checking [CGP01]. Another way leading to the theory of Markov Decision
Processes [Put94] is to associate transitions with probabilities to capture the stochastic
character of the domain. The general assumption, however, is that nondeterminism of
actions is tractable, meaning that the number of different outcomes that an action may
have is finite and all possible outcomes are known in advance.

Dynamics. Thus far planning domains were characterized by the absence of additional
events transforming the system into a new state.!! Extending the model to accommo-
date for such events can be done by (i) introducing a finite set of events E and (ii) for-
mulating the transition function as F: A X E x S — S. As there can be transitions solely
caused by an action or an event, a neutral event and, symmetrically, a no-op action are
introduced in addition. Events can also be used to model the concurrent execution of
multiple plans (by different) engines in the domain.

Agility. An operational aspect not related to the underlying model concerns the way
plan synthesis and plan execution are integrated. There are basically two possibilities
to this. Under the paradigm of static planning (a.k.a. offline planning) both are strictly
separated, meaning that the plan is not executed unless it has been completely gener-
ated. Conversely, under the paradigm of dynamic planning (a.k.a. online planning) both
can be interleaved. In the most dynamic case planning and execution are interleaved in
a step-by-step way: each new action added to a plan is executed immediately followed
by planning for the next action, which is repeated unless the goal state is reached. Dy-
namic planning becomes relevant for (i) nondeterministic actions in order to react to
their actual outcome and (ii) dynamic domains in which it is important to take events
into account.

Similarly, a common technique to make planning under incomplete information
practical is to execute information-providing actions'? directly at planning time while
execution of world-altering actions is simulated. However, this involves the so-called
Invocation and Reasonable Persistence Assumption (IRP) [MS02]. Intuitively, IRP states that
(i) information-providing actions can be executed at planning time (i.e., preconditions
are satisfied) and that (ii) information persists once gathered until execution of world-
altering actions, which includes that world-altering actions must not change gathered
information even if the change is only simulated, see Example 5.1.

No matter whether these events are exogenous versus endogenous.
12 Also known as sensing or callback actions.

5.4 Semantically Equivalent Execution 117

Example 5.1

Imagine an information-providing action a; that identifies an idle ambulance; say its
execution returned the ambulance named AIl. Imagine a world-altering action a; that
assigns a mission to A1 by changing its state to busy. If a; is executed again after sim-
ulating execution of a; then it would report A1 still as idle because the real world state
is behind the simulated world state (i.e., re-executing a; later during planning provides
“outdated” information). Consequently, the simulated world state is incorrectly over-
written!3, which might lead to incorrectly reassigning A1.

Conversely, if the state of A1 changes in the real world between simulation and ex-
ecution time of world-altering actions (due to dynamics such as concurrent executions)
then the generated plan might become outdated relative to the real world state, which
can lead to a runtime execution fault of a,.

Processing. Plans need not necessarily be sequences of actions. Whenever two actions
are not mutually exclusive (i.e., there is no causal dependency between them) then they
can be arranged partially ordered; thus, their execution can be linearized in either or-
der or even in a concurrent way. A partial-order plan consequently specifies only those
orderings among actions that are necessary to achieve the goal, which is also referred
to as the least commitment strategy [Wel94]. Conditional plans bring about another type of
structure. They are mainly considered to cope with nondeterministic actions to choose
the next action depending on the actual situation after a nondeterministic action has
been executed. Similarly, iterative plans are a concise way of representing repeated exe-
cution of an action until a desired situation occurs. Execution of all these types of plans
forms a process within the process model introduced in Section 4.3.

Linking Planning and Service Composition

The apparent connection between action planning and service composition is that a
parametrized action corresponds to an operation or to an atomic service. A sequential
plan corresponds to a composite service having a sequential control flow; analogously,
a partially ordered plan corresponds to a control flow with parallel flows. Details of
the correspondences vary depending on what types of semantics are represented by the
action and service model (cf. Figure 4.1) and how it is precisely formalized.

5.4.3 Functional Profile Equivalence

We formulate the criteria for profile equivalence regarding the functional dimension in
a similar way to structured matchmaking described in Section 5.4.1. The main concept
is straightforward: we consider inputs, outputs, and effects (IOE); hence, preconditions
are not considered, the reasons of which will be discussed below. It is important to
understand that we formulate a minimal criterion that comprises properties that are re-
quired at least to get a semantically equivalent execution: equivalent effects, required

13This can be seen as a lost update known from database transaction theory.

118 Forward Failure Handling using CFlI

outputs, while satisfied with the same set of inputs available. It is therefore not con-
tributing another approach to the service matchmaking, apart from the introduction
of a revised criterion of effect matches (cf. Condition (5.5)) and revised match criteria
described next.

We have found that the conventional approach reflected by Condition (5.2) and (5.3)
cannot be utilized in that form for our purposes for two reasons. First, the actual data
flow of a composite service also needs to be taken into account rather than just pro-
files themselves. Second, Condition (5.2) and (5.3) happen to form a surjective relation.
This may lead to ambiguous situations that result in false positive matches; it should
be noted that this was also recognized and described similarly in [KFS09]. The conse-
quence of surjectivity is that an input (output) in one profile might match more than
one input (output) in another profile, which is illustrated by Example 5.2 and further
explained afterwards. Therefore, a stricter relation is needed. Not surprisingly, it turns
out that a one-to-one correspondence (i.e., a bijective relation) effectively disambiguates
these situations. This in turn raises the question whether a match generally implies a
single, unique bijection. Unfortunately, the answer is negative. As we will see, there is
a special case, illustrated by Example 5.3, in which more than one such bijection exists
rather than a single unique one. As a result, more information is needed in order to
decide which one to choose. On the other hand, since we can precisely identify the root
of this case, we can formulate syntactic restrictions under which it does not occur, in
general.

Example 5.2

Suppose a data range inclusion int T long and two profiles Pr* and Pr® having the
following output sets:

Pr'.O = {u:int, v:long} Pr?.0 = {x:int, Y:date}

According to Condition (5.2), Pr? is a plug-in match for Pr" regarding O because U is
matched by X and V is also matched by X; Y is a spare output.
This may happen analogously for inputs. Suppose Pr" and Pr? have the following
input sets:
Pr'.I = {u:int, v:date} Pr?.I = {x:int, Y:long}

According to Condition (5.3), Pr? is a match for Pr' regarding I because X is matched by
U and Y is also matched by U; V is a spare input.

The problem in Example 5.2 is that though the outputs of Pr" are obviously not the
same (otherwise there would be just one output), they are not sufficiently semantically
differentiable since int is a Iong. In general, this problem is the result of the following
cooccurrence:

1. A reflexive, transitive relation < is used (e.g., C or =) for pairwise matching pro-
file parameters.

2. A parameter in one profile either directly or transitively t<-relates to more than
one parameter in the corresponding set of another profile.

5.4 Semantically Equivalent Execution 119

That is, if there is a sequence
type(Pal) > type(Pa?) o< ... > type(Pa?) (n>2)

where Pal, Pa%,. .., Pa% are parameters from the same kind of set (e.g., I or O) of two
profiles Pr!, Pr?2. For example, in Example 5.2 we have

type(X) E type(U) C type(V)
&\/_J . ~ vl
Pra.O Prr.O

on the outputs and

J/

type(U) C type(X) C type(Y)
——

P Pra.I

on the inputs. Observe that transitivity does actually not come into play in this example;
it can be easily modified such that it involves transitivity, which we leave as an exercise.

Clearly, what is required is a one-to-one correspondence on matching profile param-
eters: every parameter that is used should have a unique correspondent. Formulated in
mathematical terms, we want to find a bijection m: X; — X, where X;, X, are sets of
matching profiles parameters. Such a bijection obviously does not exist for Example 5.2;
we can find two surjective mappings my: Pr®.I — Pr".I and my: Pr".O — Pr?.0O instead.

Example 5.3}

Again, suppose a data range inclusion int C long and two profiles Pr" and Pr® having
the following output sets:

Pr'.O = {u:int, v:int} Pr?.0 = {x:long, Y:long}
Then there exist two different bijections m1, m; each satisfying Condition (5.2):

my: m(U)=Xx, m((v)=Y
my: mp(U) =Y, mp(V)=X.

Again, this may happen analogously for inputs.

Example 5.3 illustrates the case in which more than one bijection m exists, rather
than a single one. The triggering cause here is the existence of a sequence of four related
parameters, of which two are in each profile:

type(Pu%) D type(Pa%) D type(Pa%) D type(Pa%))

It is not difficult to see that one can avoid this case by requiring that profile parameters
within one of the different types of sets of a profile Pr are not related among each other;
that is, if

VPay, Pay € Pr.X and Pay # Pay: type(Pay) I£ type(Pay) (5.8)

where X is, for instance, the set of inputs or outputs. This raises the question whether
this restriction is too confining. We leave a discussion of this question to Section 5.7.1.

120 Forward Failure Handling using CFlI

Effects are incorporated as follows. Given effect atoms of the form defined by Equa-
tion (4.10), we require a one-to-one correspondence m analogous to inputs and outputs
and based on the equivalence relation (=), thereby being in accordance with Condi-
tion (5.5). The rationale behind using “=" is that two services (or operations) should
be considered equivalent only if they create the same effects. Since effect atoms of DL-
based effect systems are expressed using concept names and role names, this indeed
means that only the same concepts/roles qualify as equivalent (since “=" is reflexive).

Interestingly enough, the constraint expressed by Equation (5.8) is natural for effects.
In fact, the case of a set of effects E that violates Equation (5.8) should be regarded a
modeling fault because redundancy is modeled. This is easily seen: Suppose the set of
effects E of some profile contains two effect atoms A (x) and A, (x). Suppose there is an
inclusion A; C Aj in the domain (which implies that A, is a ramification of A). Then
Ay(x) is redundant in E as it is implied by A;(x) anyway; hence, it should be removed
from E. The consequence is that, given profiles that adhere to Equation (5.8), either a
bijection exists between two sets of effects or none exists, but never more than one.

We are now ready to introduce our notion of functional profile equivalence.

Definition 5.5 (Functional Profile Equivalence). Let Sc = (id, Pr,U, G, Ggr) be a service,
Pr' € (Uuescy 4-Pr) U Sc.Pr a requested profile of Sc. Let X be a subset of the sources available
w.r.t. Sc’s data flow Ggs as an input for Pri.1* Let Y be the subset of outputs Prt.O that are
actually consumed w.r.t. Sc’s data flow Ggr.'> We define the binary relation ~ on profiles'®
by setting Pr* ~ Pr? iff there exist bijective mappings my: X — I3, mp: Y — O?, and
mg: E* — E?® such that

* Vx € X: type(x) Ty type(my(x)),
* Vy €Y: type(y) 3 type(mo(y)), and
* Vo € E': ¢ = mg(g).

If Pr* & Pr? then the advertised profile Pr? is said to be functionally equivalent to Pr* w.r.t.
Sc’s data flow Ggs.

Observe that outputs of the requested profile Pr" that are not consumed anywhere
in the overall data flow of Sc can be ignored. Conversely, since the data flow is defined
to provide a value for every input that a profile lists, such cases cannot exist for inputs.

Another interesting observation regarding effects is that the approach expressed by
Definition 5.5 is independent of their change semantics ascribed by the actual effect sys-
tem. The reason is not found in a general commonality between different effect systems.
What matters in this regard is that the same effect system is used for all effects applied
to a KB. Only if different effect systems are used for applying effects to the same KB
then they need to be mutually compatible, whatever compatibility precisely means in
this case. What is more, the approach is also not restricted to effect systems whose effect

“Formally, X C {x | x € O and x <, i} wherei € Pr.I, O is the set of sources of Ggf, and x <¢_ iis
defined according to Equation (4.24).

BFormally, Y = {y | y € Pr".O and 3x.(x,y) € «--} where «-- is the flow relation of Gg;.

16The symbol <~ is chosen such that it indicates the relation’s asymmetry.

5.4 Semantically Equivalent Execution 121

expression language L£E° is DL-based. In principle, any framework can be used that de-
fines an appropriate and decidable semantic generalization (subsumption) relation and
where mutual generalization describes equivalence.

Finally, there are two reasons that justify the absence of preconditions for functional
equivalence. First, the inclusion of preconditions is more of a dictate than a contribution
to the decision whether an advertised profile describes equivalent outcomes. Requiring
a plug-in or exact match for preconditions reflects the assumption that all candidates
have similar requirements in order to be operable, which might not be the case. It is
easily conceivable that services/operations have (completely) different preconditions
yet are functionally equivalent. Including preconditions would therefore dictate condi-
tions, which is more of an unnecessary restriction. In fact, one can actually not know
what conditions one should require from an advertised profile to be operable. Second,
it is even not essential to include preconditions bearing in mind that they need to eval-
uate to true anyway in order to be executable. What matters is that preconditions are
satisfied at commencement of execution of the service/operation they describe.

5.4.4 Functional Equivalent Execution

Upon closer inspection of the criteria for functionally equivalent execution, we have
found that one should distinguish between two types: structure-aware and structure-
nescient equivalence. Both have in common that two executions yield equivalent out-
puts and effects. Structure-aware equivalence reflects the additional property that two
executions have the same structure of the control flow. Search for a replacement there-
fore needs to be aware of the control flow structure. Conversely, structure-nescience
reflects the property that two executions yield equivalent outputs and effects indepen-
dent of the structure of the control flow. Replacement search therefore can be nescient of
the structure. In other words, the former calls for a mechanism that takes into account
the process level while the latter need not.

As an example for structure-awareness versus structure-nescience, we return once
more to the book seller service from Section 2.1. Suppose the order & pay service pro-
vided by the original book seller is a sequence of four operations: first, check whether
the book is on stock; second, check the credit card for sufficient credit; third, place the
order; finally, charge the book price to the credit card. A structure-aware replacement
would have the property that it preserves the sequence and the order in which outputs
and effects are created. In contrast, a structure-nescient replacement may come along
with a changed structure. In the example, there might exist, for instance, a replacement
in which the latter two operations (place order, charge credit card) are arranged in a
parallel flow thereby deviating from the original sequential behavior regarding these
two operations.

Clearly, structure-awareness imposes stricter constraints on the notion of functional
equivalent execution. As will be seen, structure-nescience is strictly more general than
structure-awareness. The main reason for distinguishing between both types is that
simple algorithmic processing is sufficient for automatically finding a structure-aware
replacement, whereas finding a structure-nescient replacement is reduced to solving a
planning problem, which is more involved. Both types are introduced in detail next.

122 Forward Failure Handling using CFlI

Structure-aware Functional Equivalent Execution

The general principle regarding a structure-aware equivalent execution is simple. Given
a subflow G§;, a replacement G7; qualifies as such if

1. G preserves the control flow of G and

2. for each ordinary transition ¢ in G¢; with its associated profile there is a function-
ally equivalent profile for the corresponding transition in G;.

Consequently, this type is characterized by the inclusion of a process’ syntactic structure
(as represented by its control flow) in the notion of equivalent execution.

Stating the first item in formally, the control flow is preserved if G5 and G, are the
same except for their mappings fu® and fu'. This directly explains what we mean by
“corresponding transition” in the second item.

Definition 5.6 (Structure-aware Functional Equivalent Execution). Given a service Sc, let
Gt be its unfolded control flow graph and let GS;, G%; be unfolded control flow graphs such
that (i) Ggf < Geg and (ii) Ggf and Gy coincide in their set of places, transitions, and the flow
relation. Then the execution of G is said to be functionally equivalent to Gg; iff for each

ordinary transition t € T®*: fu®(t).Pr ~ fu'(t).Pr.

As a direct consequence of Definition 5.6, if G, G; are functionally equivalent then
not only the control flow structure is preserved but also the data flow structure. All
inputs required within G, are available in a compatible way and all outputs from G
that are subsequently consumed are created in a compatible way by G;. This is a con-
sequence of the mutual matches on elements in IO as required by the relation “~”. The
only missing piece for seamless replaceability is that all sources outside of G that are
connected to a sink inside G; need to be execution compatible (see Definition 4.16),
which requires additional checks at the actual grounding level of operations.

It is easily seen that finding a structure-aware functional equivalent replacement re-
duces to rebinding each ordinary transition, which in turn can be reduced to solving a
matchmaking problem for each transition. Therefore, a simple algorithm such as Algo-
rithm 1 is sufficient to realize structure-aware replacements. The algorithm iterates over
all ordinary transitions in Gg;, updates the binding of transitions, and modifies the data
flow according to replacements found. Searching and selecting matches is delegated to
the algorithm FindMatch. As can be seen, we assume that FindMatch is parametrized
with the relation capturing functional profile equivalence, “~” in this case, and a prefer-
ence relation “>" for selecting the most preferred match. Obviously, the preference re-
lation is not an ultimate requirement from a functional point of view. In Section 5.4.5 we
provide a way how the relation can be defined such that it incorporates non-functional
properties based on a quantitative cost model. More details on how FindMatch can be
implemented follow in Chapter 7.

If O(f) is the asymptotic growth rate of FindMatch then the combined rate is O(nf)
where 7 is the number of ordinary transitions in G§; note that 7 is not a parameter of f.

Finally, structure-aware replacements are applicable without restrictions on G,
meaning that G can in principle be any subflow of a control flow G. This is one

5.4 Semantically Equivalent Execution 123

Input: service Sc = (id, Pr,U, G, Gg¢), subflow G5 = (P¢, T¢, F¢, Mo, fu®) so that

G& 9 Gy, knowledge base K, set of advertised functional units /2
1: foreacht € T¢ and t an ordinary transition do

u®:= fu®(t), u' := FindMatch(u®, K,U?,~, >)

U:=UUu")\ ue

update fu so that it maps t to u"

for each i € u®.Pr.I do
update «-- of G4 by replacing (i€, 0) with (m;(i¢), 0)

end for

for each 0" € u".Pr.O do
update «-- of G4 by replacing each pair (i, mp(0")) with (i, 0")

10: end for

11: end for

Algorithm 1: Rebind(Sc, G, KC,U?) where Find Match(u, KC,U?, ~, >) is an implementa-
tion of preference-based matchmaking in the domain MD = (K, P, ~, >, =) returning
the most preferred matching functional unit for a requested functional unit u. Note that
we tacitly assume a bijection between U/ and P (i.e., we can access the profile of each

functional unit).

difference to structure-nescient replacements. Identifying the extent of G% is mainly a
matter of dependencies between the functional units in the overall control flow. In prac-
tice it might often be the case that one just wants a 1:1 replacement such as replacing an
atomic service as a result of an invocation failure by an alternative atomic service. This
requires, of course, the possibility of replacing it independently of the rest. An example
is the identify person atomic service that can be replaced independently of the other
services in the overall emergency assistance service. The second typical case are n:n re-
placements of n dependent transitions; that is, where the need to replace one transition
(due to a failure) implies the need to replace other transitions as well. An example here
is the select ambulance operation that implies replacing also trigger ambulance.

Structure-nescient Functional Equivalent Execution

If it is the outcome of an execution that matters foremost and behavior to achieve it
comes second then one might as well tolerate different execution behavior in addition
to the use of alternative services/operations. This is the underlying idea pursued by
structure-nescient functional equivalent execution. The vantage gained is the possibility
to formulate the notion of equivalent execution in a more general way by abstracting
from the control flow; hence, the data flow as well. In particular, we want to formulate it
such that it translates directly to a planning problem!”: compose a terminating execution
that finally satisfies a pre-defined goal, which represents the final outcome.

17 A closely related alternative is translation into a projection problem [Rei01], which is a standard reason-
ing task in formal action theories: what holds after an action or a sequence of actions has been executed?
Projection has been, to a large extent, studied independently from planning formalisms.

124 Forward Failure Handling using CFlI

In our setting, the problem formulates as follows. Given a subflow G& whose ex-
ecution yields a set of final outputs O and effects E, is there a replacement G, whose
execution yields equivalent sets O and E. The goal (or target state) is therefore described
in terms of O and E. A replacement G is consequently predetermined only in terms of
the target state and is otherwise up to be found (composed) from available services/-
operations in the domain. What is more, G, should be satisfied with the same set of
outputs (sources) as available for G-

The aspect that remains to be clarified for a precise characterization is the extent of
G&- By adopting the classic principle of planning in which the goal reflects the target
state at the end of a plan execution, the final place of G¢; (hence, G;) coincides either
with the final place of the overall control flow G or the final place of a sub service’s
control flow (if any). For instance, in the emergency assistance service there are two
possibilities (cf. Figure 4.5): either the place after transition ¢4, which reflects the end of
the trigger ambulance sub service, or pg, which reflects the end of emergency assistance
itself. A subflow for which a replacement is to be found (composed) thereby always
extends to a particular final place rather than to some reachable place. The reason is
that this allows to take the profile of the (sub) service that ends with the final place
as the specification of O and E. This is not to say that it is not possible to relax this.
However, the main consequence of allowing G¢; to extend to some place p is the need
for deriving the goal state absolute to p from the operation effects, which is obviously
a matter of the effect semantics as defined by the actual effect system used; hence, a
general mechanism of how to derive the goal state does not seem an easy undertaking
if at all possible.

The following definition formally introduces the notion of structure-nescient func-
tionally equivalent execution.

Definition 5.7 (Structure-nescient Functional Equivalent Execution). Given a service
Sc = (id, Pr,U, G, Gy), let G5 be a subflow G < G such that p§ either coincides with
the final place pg of Sc or the final place pi of a sub service Sc" € Sc.U (if any); that is, either
pf = psor pi = pi. Let E be either Sc.Pr.E or Sc".Pr.E depending on whether p§ = ps
or pf = pi. Analogously, let O be either Sc.Pr.O or the subset of outputs Sc*.Pr.O that are
actually consumed w.r.t. Sc’s data flow Gg¢ (cf. Y in Definition 5.5). E and O are called the
goal effects and outputs, respectively. Finally, let s = (M, K) be the execution state such that
M(p§) = 1. Then the execution of a control flow graph G is said to be functionally equiva-
lent to G¢; iff

(1) G can be structurally substituted by G

cf’

(2) V¢ € E: K |= ¢ no matter whether G or GX; has reached marking M,

(3) there is a bijection mp: O — O’ such that Yo € O: type(o) C type(mo(0)) and where
O’ is the set of outputs produced in state s as the result of execution of GY.

Searching for a replacement under Definition 5.7 is formulated as a planning prob-
lem along the lines of the STRIPS framework (see Section 5.4.2), yet there are consid-
erable differences. A solution to a so-formulated planning problem — a plan — then
constitutes a replacement. We put together a DL-based formulation inspired by [Mil08]

5.4 Semantically Equivalent Execution 125

and message-based planning [HBHP(09]. The latter considers the presence of domain
constraints (called integrity constraints by the authors) that are, however, in the form of
clauses that may contain universally quantified variables.!® The main difference to our
planning scheme is that we consider the effect system (ES1); hence, while there can also
be domain constraints they are axiomatized as a TBox.!” More specifically, the way it is
defined features:

(1) incomplete information (i.e., conformant planning under OWA)?

the UNA;

and adoption of

(2) deterministic effect semantics defined as a belief update over an ABox w.r.t. a
TBox;

(3) message-based planning including on-the-fly creation of new individuals/values
during planning;

(4) goals may contain existentially quantified variables.

While the first item should be clear, the latter three deserve further explanation.

(2) Rather than modeling operations as nondeterministic to accommodate for execu-
tion errors, we do regard them as deterministic (see Section 4.1.1) modeling their ex-
pected (or normal) functionality. This spares us the cost of contingency planning. In this
sense, a service is executed optimistically in the hope that it succeeds and only in case of
a failure event the system reacts, which is possible since execution is monitored based
on an eventually perfect failure detector (see Section 5.2.1).

Furthermore, Item (2) concerns the actual effect system used. As pointed out
in [HBHP09], most planning-based service composition frameworks either (i) ignore
the correspondence between the change semantics of services/operations and the belief
update problem, (ii) make simplifying assumptions, or (iii) do not specify exactly how
effects are applied, let alone conflict resolution. We will apply the DL-based effect sys-
tem (ES1) introduced in Section 4.2.2.21 An important observation is that for monotonic
DLs an effect update (i.e., the update to the world state) can disregard conflict resolu-
tion as a heuristic, meaning that planning proceeds as if effects are never inconsistent
with the ABox.Conflict resolution is thereby deferred until execution of a plan. How-
ever, effects that imply ramifications as entailed by the TBox are taken into account for
planning. We will come back to this point later as we can precisely describe cases in
which disregarding conflict resolution does not pose a problem.

18 A clause therein is of the form Vx, ... ,Vaxp(lp V- -+ V1) where xq, ..., xi are the universally quanti-
fied variables and Iy, .. ., I, are literals; that is, possibly negated n-ary predicates over constants and the
variables x1, ..., X.

197t should be noted that there is an intersection between how the domain is represented in [HBHP09]
and our DL-based planning scheme. Namely, the world state representations are conceptually close and
an inclusion A C B translates to a clause Vx(—A(x) V B(x)). However, differences lie in the arity of
predicates allowed (i.e., the arity in DLs is generally not larger than 2) and the constructors allowed (e.g.,
A T 3R.C is not expressible in the form of a clause as it is defined in [HBHP09]).

201t follows from the state space planning model that it can be applied equally under CWA.

ZSimilar effect systems may as well be used. It follows from [Mil08] that this includes, for instance,
effect systems that rely on the propositionally closed fragments of the DLs ALC up to ALCQZO and that
use model-based update semantics described therein.

126 Forward Failure Handling using CFlI

(3) Message-based planning essentially “ensures that the inputs of each service
w [including operations in our setting] can always be provided by w’s predeces-
sors” [HBHP09]. What is more, it is recognized for some time [McD02] that introducing
new objects on-the-fly at planning time is relevant especially in the area of service com-
position: it is natural that services/operations can have outputs, which makes them
information-providing. More specifically, the information introduced by outputs corre-
sponds to new planning objects. As the information was not known before and does not
change the state of affairs, outputs are also referred to as knowledge effects (e.g., [Sir06]).
Yet it is custom in planning that the set of planning objects C is known a priori and
fixed throughout planning. This has the consequence that services/operations would
not be allowed to have outputs, as every output usually introduces a new constant. For
instance, consider the find book service from Section 2.1. This service is information-
providing: the ISBN number that it outputs is such a new object introduced as the result
of its execution. Otherwise, we would need to assume that the ISBN number is already
a member of C, which implies that virtually all ISBN numbers need to be known — an
assumption that is clearly not realistic in this case. A strategy that has been proposed
to circumvent this is to execute information-providing actions before planning in order
to gather additional constants and add them to C. This strategy is, however, not practi-
cable for operations that have inputs as each operation would need to be executed with
each valid combination of inputs in order to gather all outputs, which can easily esca-
late in the number of executions that would need to be done.?? Therefore, in accordance
with [HBHP09], we assume that C can grow in the process of planning. As pointed out
therein, however, this also has a downside that might appear somewhat frightening at
first: the plan existence problem for plans unbounded in length becomes undecidable,
while decidability is retained for polynomially bounded plans. Notwithstanding the
limitation, putting it into perspective makes it little intimidating: First, as discussed in
Section 5.4.2, the use of planning normally goes along with the assumption that plan-
ning domains are such that a plan exists for a given planning problem and that it is
more relevant to find it rather than to prove that there is none. Second, the intuition of
composite services is that they are rather short, so are plans rather short.

(4) Variables in goals serve as placeholders that can be instantiated from the constants
C and therefore enable determining actual objects in the course of planning rather than a
priori. Consider for instance the goal ambulanceTransport(x, ALICE) stating that there
is an ambulance transport for Alice by an ambulance x. Determining which concrete
ambulance this will be is thereby left open until planning time. Clearly, this involves
the assumption that there is an ambulance represented by an individual name in C, no
matter whether pre-existing or learned on-the-fly (i.e., during planning). Observe that
variables are thereby implicitly existentially quantified. It should be noted, however,
that the possibility of using variables in goals constitutes no more expressive power. As
pointed out in [GNTO04, Section 2.4.1], they can be compiled away. This is achieved by
adding a pseudo operation having the goal as its precondition and a unique grounded
effect that is taken as the new goal instead.

22 An operation that has n > 1 inputs that can each be instantiated from a set of values with m; elements
results in [T/, m; combinations.

5.4 Semantically Equivalent Execution 127

A Planning Problem for a replacement comprises five elements, which are informally
described as follows. First, a set of initial constants containing at least the primary
representatives of all outputs (sources) that have been produced already in the course
of execution. Next, the TBox and ABox of a KB taken as a snapshot in some state at the
moment execution was paused. The ABox makes up the initial planning state. Fourth,
a set of functional units available in the domain. Finally, the goal that represents the
effects in the profile that has been chosen as the final place. As will be seen, outputs are
not directly part of the goal and are indirectly represented via the set of constants.

Definition 5.8 (Replacement Planning Problem). A planning problem for a replacement is a
5-tuple PP = (Co, T,U, A,T) where

* (Cy is the set of initial constants (individuals names and lexical forms),

* T is a TBox such that those inclusions in ‘T obey the restrictions of (ES1) that involve a
concept name A (role name R) and where A (R) occurs as an effect within the profile of a
functional unit in U,

o U is a set of functional units®,
o A — the initial state — is an ABox based on Cy, and
o I'—the goal —is a set of atoms in the form as given by Equation (4.10).

It is assumed that individual names and lexical forms occurring in the initial ABox A
are all in Cp, which is expressed by the wording “based on Cy”.

The elements in Definition 5.8 are precisely as follows. Let Sc be a service instance,
Gt and Gy its control and data flow, respectively, t an ordinary transition of G, O the
sources of Gg¢ according to Definition 4.15, and for i a sink such that pt(i) = t according
to Equation (4.23), let o = {0 € O | 0 <¢, i} be the set of outputs preceding i (i.e.,
all outputs that i can possibly be connected to regardless of whether they are execution
compatible). Then

Co 2 (U Re[1](o)> . (5.9)
0o€o0
In addition, all constants in C; are typed, which we denote with type(c) for ¢ € C;. In case
of the constants on the right-hand side of Equation (5.9) this is the type of the source (i.e.,
the type of the profile parameter). The type of all other initial constants c not in the set
on the right-hand side is either a concept C of an assertion C(c) in A if ¢ is an individual
(i.e., type(c) = C) or a data range dr if c is a lexical form (i.e., type(c) = dr).?* One can
therefore also see C as a kind of a ABox containing knowledge effects (recall that outputs
can be seen as knowledge effects). The main reason for representing them separately in
C rather than also in A is that consistency conflicts (calling for a conflict resolution strat-
egy) are, intrinsically, impossible since an output would match a so-called forward effect
to which we return later. Another reason is that outputs do obviously not contribute

23 As before, we tacitly assume the possibility to access the profile of each functional unit.
24This is similar to a typed RDF literal (e.g., 1.0" "xsd: float;c = 1.0 and dr = xsd: float).

128 Forward Failure Handling using CFlI

to the world state, but rather to knowledge about what objects exist. Next, 7 and in
particular A are the components of the KB K taken as a snapshot from some global state
§ = (M, K) - preferably the most recent — such that M contains G.¢’s marking M with
M(t) = 1. U is the set of functional units available in the domain, but fu(t) ¢ Y. Con-
sequently, ¢/ may contain both operations and possibly complex services. The latter are
treated equally to operations, meaning that planning abstracts from their structure by
regarding them as indivisible black boxes via their profile. Finally, the goal I' is the set
of goal effects in Definition 5.7 where some atoms may be instantiated partially from
constants in Cp. All remaining variables in I" are instantiated in a final goal state from
the final set of constants Cr.

Not surprisingly, the states of the planning space and execution states are conceptu-
ally close. A planning state s herein is a pair s = (C,K). Including the marking M is
not required at least from a planning point of view as it captures execution semantics.
We shall therefore assume that it is implicit and functions as introduced, but for ease of
notation we will include it subsequently only when necessary. In the initial planning
state s, K is taken from the execution state as just described. Subsequent evolvement
of K in the process of planning is assumed to take place in a detached way, meaning that
other changes made to K in the background due to dynamics in the domain are not
visible. We do not consider the combined evolvement of K in this work. This is a topic
for future work.

A functional unit u € U having the profile Pr is applicable in a plan state s = (C,)
iff

1. for each i € Pr.I there is a constant ¢ € C such that type(c) C type(i) and
2. fak(KC, Pr.P) = true (see Equation (4.19)).

Clearly, the first condition ensures concept compatibility in the data flow, but it does not
necessarily ensure data compatibility; hence, not necessarily seamless execution com-
patibility as stated by Definition 4.16. Consequently, and additional check is required at
the technical grounding level.

Applying u in plan state s = (C, K) results in a new state s’ = (C’, K’) such that the
KB changes in the obvious way:

K=y K' where U= fup(K,PrE) .

The new set of constants is:

C'=CU{cy,...,cn}

such that for each 0; € Pr.O there is a constant ¢; = Re[1](o;) (hence, n = |Pr.O|) whose
type is type(c;) = type(o;). This implies that the constants c; are pairwise different as it
does not make sense to output the same constant twice. Furthermore, the fact that the
constants ¢; are assumed to represent newly introduced planning objects in the sense
that they did not exist before implies C N {cy,...,cy} = @.More subtly, an individual

The only planning-based service composition framework we are aware of that includes such data
level checks is [KGO5].

5.4 Semantically Equivalent Execution 129

denoted by a newly introduced constant did actually exist previously but were anony-
mous; hence, was not known, in a sense. This is a consequence of the assumption that
the interpretation domain AZ is invariant. Recall, for (ES1), evolving interpretations
7,7’ share the same domains AT = AT’ Similarly, newly introduced lexical forms are
new in the sense that they were just not used as planning objects before. Recall, also the
datatype map D does not change for evolving interpretations. Another subtlety is that
if two new constants cy, ¢; are introduced such that type(ci) C type(cz) then we might
tace the same kind of ambiguities described in Section 5.4.3.

A control flow graph G is a solution to a so formulated planning problem if
the application of all transitions according to its process semantics leads to a state
st = (Cr,Kr) in the final place such that Kr satisfies all effects according to Item (2)
in Definition 5.7 and there is a subset O’ C Cr satisfying Item (3) in Definition 5.7.
Observe that this formulation is rather powerful as every kind of process would be pos-
sible. Many planning tools, however, synthesize sequential plans thereby restricting
replacements to be sequential flows.

Ways to Reduce Complexity. Planning under the just introduced scheme is rather chal-
lenging. The main reason is the complexity introduced by modeling the change seman-
tics as a query answering problem (preconditions) and a belief update problem (effects)
as opposed to the more benign STRIPS semantics that is realized, respectively, by set
inclusion and the add and delete lists (see Equation (5.6) and (5.7)). There are, however,
ways to trade modeling expressivity for reduced complexity, which can be classified in
two orthogonal categories:

* Avoid the possibility of conflicts, thereby, removing the need for conflict resolution
strategies in order to preserve KB consistency.

* Restrictions that make the belief update problem modulo conflict resolution
equally simple to propositional STRIPS effect semantics.

For DL-based effect systems in which effects are of the form as defined by Equa-
tion (4.10), if the TBox is empty or restricted to subsumption hierarchies over concept/-
role names?® then the belief update problem modulo conflict resolution becomes equiv-
alent to propositional STRIPS effect semantics. More precisely, for a possibly negated
effect A(x) or R(x,y), every inclusion in the TBox where A (R) transitively occurs on
the left-hand side is restricted to a concept name (role name) on the right-hand side.
These kind of inclusions describe “straightforward” ramifications that, when taken into
account, preserve the propositional character of STRIPS. To illustrate this, imagine a
positive effect A(x). Under STRIPS semantics A(x) would be in the add list; analo-
gously, a negative effect = A(x) would be in the delete list. If there is an inclusion A C B
in the TBox where B is a concept name then this implies that the add (delete) list is sim-
ply extended (implicitly) by an effect B(x). Analogously for roles. In contrast, if there
is an inclusion A T C in the TBox where C is a complex concept, say IR. T, then we
also have C(x) in the add list. The important difference is that an instantiation C(a)
cannot be seen as a proposition whereas B(a) can; hence, the propositional machinery

26The presence of such subsumption hierarchies for service composition has been considered, for in-
stance, in [CFB04].

130 Forward Failure Handling using CFlI

sufficient for STRIPS is no longer sufficient in this case. On the other hand, as we have
illustrated in Example 4.2, the use of the existential concept constructor 3R.C introduces
a higher degree of nondeterminism. Since existential restriction is the only constructor
available in DL-Lite}, for which instantiated effects cannot be seen as propositions, we
conclude that (ES1) without them can be covered by propositional STRIPS effect seman-
tics. Observe that the role axioms (Fun(R) and so on) available in DL—Lite}% are also not
a problem since they do not construct complex roles (such as role composition R o S).

Avoiding the possibility of conflicts can be achieved by the syntactic restriction on
so-called forward effects [HBHP09]. Intuitively, a forward effect describes a change in the
domain about which no information was previously represented in the KB. A forward
effect therefore cannot, intrinsically, conflict with the existing world state representation
in the KB. The notion of forward effects as introduced in [HBHP(09] can be transferred
easily to DL-based effect systems and our service model.

Definition 5.9 (DL Forward Effect). A possibly negated atom A(x) or R(x,y) is a forward
effect if at least one of the variables x, y refers to a representative of an output.”’

Definition 5.9 implies that an instantiated effect A(a) or R(a, b) involves at least one
new constant and hence it cannot be inconsistent with the existing ABox. To explain
this further we consider the effect system (ES1). Recap the possible conflict situations
depicted in Table 4.1. It is not difficult to see that in the presence of forward effects a
conflicting combination can actually only occur if effects are inconsistent among each
other and w.r.t. the TBox, which is not sensible anyway as it would be a modeling fault.
As an example, let us take the combination where R is symmetric and there are asser-
tions R(a,b) and —R(a, b). Because a and/or b is new, neither of the assertions may have
been already in the ABox. Hence, both must be effects, but they are inconsistent among
each other w.r.t. Sym(R).

The main downside of the restriction on forward effects is that one cannot express
changes relating exclusively to pre-existing objects. For instance, one cannot model an
operation clear mission with an effect —assignedTo(x, y) that shall represent the clear-
ing of an ambulance x from the mission y and where x, y refer to pre-existing individ-
uals. While the limited modeling power of forward effects might not pose a problem
in some domains, we see it as a substantial restriction. Fortunately, effect system (ES1)
has the property that if there is a conflict then it can be uniquely resolved, which makes
planning under conflicts predictable.

An interesting possibility we see as a heuristic to circumvent the intricacy of conflict
resolution for planning is to simply ignore it. Conflict resolution is thereby deferred
until execution. This is supported by the following observation, which is a consequence
of Observation 3.1.

Observation 5.1. In monotonic DLs and regardless of conflict resolution strategies defined by
the actual effect system used, it is sufficient to delete assertions from the ABox in order to resolve
a KB consistency conflict.

271t should be noted that the definition assumes adoption of the UNA. Defining DL forward effects in
the absence of UNA is possible but requires being more explicit about the interpretation of names.

5.4 Semantically Equivalent Execution 131

This implies that conflict resolution does not involve adding assertions, at least not for
preserving consistency.?® Now, one of the most commonly used search heuristics in
STRIPS-style planning, called delete-relaxation, is obtained by removing the delete lists
of actions [BG01]. Consequently, ignoring the additional deletes of conflict resolution is
an instance of this heuristic. We leave an investigation on ways to exploit this further as
related future work since identifying or improving planning techniques is not a goal of
this thesis.

5.4.5 Similar Execution and Non-functional Properties

Thus far we have concentrated on the functional dimension of service semantics. The
two notions that we have introduced aim at equivalent execution and are therefore in-
evitably fairly strict and leave limited room for similarity, apart from the plug in match
on inputs, outputs and the control flow nescience of the planning-based technique. In
this section we sketch a basic approach to broaden the notion of equivalent execution
towards similar execution. Conceptually, we see a close connection with net benefit prob-
lem solving (see Section 5.4.2). We will therefore follow this method, which means that
it will also be reduced to a planning problem. We will again consider effect system (ES1).
For the reason of higher level nondeterminism introduced by the existential restriction
constructor, we will also assume that no effect is defined (indirectly) using 3R.C. As dis-
cussed before, the belief update problem modulo conflict resolution described by (ES1)
thus becomes equivalent to STRIPS effect semantics; hence, it becomes possible to use
STRIPS machinery. However, applicability is still controlled by the actual precondition
system used (i.e., applicability need not be defined in terms of STRIPS action applica-
bility). For instance, if (PS1) is used then applicability reduces to conjunctive query
answering. This constitutes a kind of hybrid planning scheme.

The formulation as a net benefit problem also allows us to add yet another layer of
flexibility by including non-functional properties in this broader notion of similar exe-
cution and hence for replacement search. The main motivation is to optimize or at least
enable comparing (ranking) the declared quality of service (QoS)* between replace-
ments according to user preferences.

As a central step, two functions are introduced. A cost function that associates an
operation with a value that represents its execution cost. A utility function that assigns
an utility value to preferences. We will use a model where costs are a quantitative mea-
sure of quality — the lower the costs the higher the quality. Preferences take the place of
goals and do either directly or in an extended way accommodate the goals I'. If I/ is a set

28]t should be added that more advanced resolution strategies might make additions as part of higher-
order conflict resolution (e.g., Example 4.2), but this is motivated from a higher application-specific level.

20One should keep in mind that QoS properties can be interpreted in a spectrum of guarantee levels.
At one end is the firm commitment where the user is guaranteed a certain quality of service set by a non-
functional property, which requires that the service level can be enforced accordingly by the underlying
system. Towards the other end are soft guarantees in case the underlying system acts in a best effort
manner. The (technical) aspects of service level negotiation and enforcement are outside the scope of this
thesis.

132 Forward Failure Handling using CFlI

of operations and F is a set of preferences, the details of which are yet to be described,
then the two functions are

feost: U — Ry and (5.10)
fugit: F — R . (5.11)

Observe that f..st models independent costs. Operation’s costs have no interdependen-
cies and are therefore additive. This holds equally for f,;. An extension to conditional
costs (e.g., the cost of some operation is different depending on context such as whether
another operation has been executed before, after, not at all) or conditional utility (e.g.,
the utility of some preference depends on whether another one has been achieved al-
ready, not achieved yet) is straightforward, at least from a conceptual point of view, but
can easily lead to a non-linear optimization problem. In a similar though more benign
way, the two functions can easily be revised to allow for negative values. While positive
costs are expenses, negative costs are revenues. Conversely, a positive utility represents
something sought, while negative utility stands for something to be avoided.

Next, we define the aggregated execution cost of a replacement G;. By overloading
the cost function f.ost for replacements, aggregated costs are given by

feost(GY) = Y feost(Op) (5.12)

OpeU

where U is the set of operations associated to ordinary transitions in G (i.e., the
codomain of fu" minus no-op operations, if any). Considering the fact that in the most
general case G, allows for several types of control flows, Equation (5.12) becomes an
estimate in two cases. The result is a pessimistic upper bound regarding choice since
costs of all choice paths are included. The result is an optimistic lower bound regard-
ing iteration since potential repetitions are not included. Clearly, real costs cannot be
known unless choices in the control flow are completely determined. Notice that Equa-
tion (5.12) can be used regardless of whether G; is unfolded or not since unfolding adds
to the sum.

The objective is then to maximize the overall utility — the net benefit — of a replace-
ment G; while taking into account its overall execution costs. By also overloading f
the objective function is

futil(sz) = < Z]::futil(q))> _fcost(GZf) (5-13)
IS

Clearly, a replacement G, is optimal if there is no other replacement G§ that has utility
futit(G%) higher than f,4i;(GY). How fyi1 and feost are precisely defined over preferences
and operations, respectively, is detailed in the following two subsections.

Execution Costs

Execution costs of operations are defined over non-functional properties (NFPs) in the
following way. Suppose there is a QoS ontology O (e.g., [TTM09]) defining n named

5.4 Semantically Equivalent Execution 133

QoS concepts (which are either general or domain specific). NFPs occurring in the
profile of operations are typed using these concepts (i.e., if Pa is a NFP then type(Pa)
is a concept declared in). Every QoS concept in O is associated with a weight w;
(1 <i < n) that is a non-negative real value w; € Rj. Weights are chosen so as to grade
the relative importance of QoS concepts. Weights are zero by default. As will be seen,
a weight w; = 0 functions as a mask, a value 0 < w; < 1 has a suppressing effect, and
w; > 1 has an amplifying effect.

Since NFPs are qualities expressing how something is supposed to be, we can assume
that their value val can be mapped meaningfully onto a numeric value v from an inter-
val [Umin, Umax, €ven if the interval (i.e., the value range) is just binary. For instance, a
binary representation of reliability: unreliable — 0, reliable — 1. Numeric values are
furthermore normalized; that is, values are projected onto the interval [0, 1] (a.k.a. scal-
ing). There are, however, two types of qualities: those that one wants to maximize such
as reputation or processor speed and those that one wants to minimize such as response
time or price (i.e., the higher the value the better versus the lower the value the bet-
ter). They are respectively called positive and negative in the literature (e.g., [ZBNT04]).
Hence, both types are normalized in different ways as follows:

Umax—0 f _ . O
7= { Umax—Omn 1 OMaX _ Omin 7 (positive NFP) (5.14)
1 otherwise
U—Umin f _ . O
7= { Umax—Omn 1 OMaX _ Omin 7 (negative NFP) (5.15)
1 otherwise

where 7 is the resulting normalized value in the interval [0, 1].

The execution cost of an operation Op whose profile contains the set of NFPs N is
then simply defined as the maximum out of the products of the normalized value of a
NFP and the corresponding weight:

max{w? | type(Pa) — w,val(Pa) — 9,Pa € N} if N # @

. : (5.16)
undefined otherwise .

feost(Op) = {

If the operation is not annotated by any NFP at all then fcost is undefined. This is an
unfavourable special case. Simply defining fcost = O for this case might not reflect well
its real execution cost nor is f.ost = 1 appropriate either. Setting it to zero would advo-
cate laziness in providing information on non-functional properties over industrious-
ness, which is apparently unfair. Conversely, setting it to one generally penalizes lack
of information in an unfair way. There are many strategies conceivable to even out this
case. Two rather simple ones are: The less information is available about non-functional
properties the more an operation is demoted. An operation without any information is
thereby considered in the last place (i.e., detailed information is preferred over lack of
information). Second, the operation is assigned with average costs, calculated from data
gathered from earlier executions or from data about functionally similar operations of
which NFPs are known or which have also been executed previously.

This model of execution costs is simple but effective and has three main charac-
teristics. First, we do not need to make the rather impractical assumption that every

134 Forward Failure Handling using CFlI

operation (service) is annotated for each of a set of QoS concepts with a corresponding
NFP, which is made in several works (e.g., [ZBN 04, AMMO07, MBK 09, KMH]J10]). Ex-
cept for controlled environments, one will rather find the situation that annotations are
made freely, usually for a few QoS concepts only. Second, the user does not need to
assign all weights. Instead, one can be lazy about QoS concepts that one deems unim-
portant. The default weight of zero will mask all QoS concepts anyway that the user
does not care about. Third, the absolute value of weights is less important compared
to the relative value. If the user considers QoS concept C more relevant than D then
it suffices to ensure wc > wp. This supports the observation that humans are rarely
willing nor able to express the importance of a QoS concept directly (and precisely) in
terms of an absolute value. It is easier and arguably more natural to humans to decide,
given two QoS concepts, which one they find more important in some context.

Finally, this model of assigning costs to operations is directly transferable to enrich
both notions of equivalent execution with the possibility of taking non-functional prop-
erties into account. More specifically, the cost function as defined by Equation (5.12)
and Equation (5.16) can be taken as the basis of the preference order considered in
preference-based matchmaking (see Definition 5.4).

Preferences

Contrary to the conventional interpretation of goals there is an important difference for
preferences over target effects and outputs: they are interpreted as desired rather than
mandatory (i.e., soft goals as opposed to hard goals). With respect to Definition 5.7, this
means that the execution of a semantically similar replacement suffices to yield non-
empty subsets E' C E and O’ C O. In other words, the user is prepared to accept a
non-empty difference between E’ and E (O’ and O) that is not achieved.

Analogous to QoS properties, it is useful to give different utilities to preferences
thereby indicating their relative importance. The intention is that one tries to satisfy
those preferences first that have highest utility (and avoid those preferences that have
negative utility). Therefore, every preference ¢; is associated with a positive weight
w; € R, analogous to QoS concepts.

Preferences can accommodate the effect goals in I' and desired outputs O in different
ways. One possibility is to establish a direct correspondence. A preference ¢ is thereby
either an effect in I or an output in O; hence, 7 = I' U O. Given a replacement G, the
utility of ¢ € F is then simply its associated weight f,1(¢) = w if execution of G
satisfies ¢. Otherwise the utility is undefined and thus not included in Equation (5.13).

Another and strictly more expressive possibility is to follow the model put forward
by PDDL3 [GL06], which has been considered in the context of service composition also
in [SM10]. Preferences in PDDL3 are expressions of the form

(* w (is-violated ¢))

where w is a positive weight as before and ¢ is a preference formula.>® The main dif-
ference to the first and rather simple form of preference expressions is that PDDL3 ex-

30To be precise, ¢ is actually a reference to a preference formula since the latter might be referred to by
multiple preference expressions.

5.5 Integration with Transactional Processes 135

pressions can describe temporally extended preferences that are evaluated on a state
trajectory that can minimally be a single state up to a trajectory that extends from the
initial state up to a final state. This is achieved by including temporal operators ascribed
with semantics of Linear Temporal Logic (LTL). Among the temporal operators avail-
able are: at-end, always, sometime, within, at-most-once, and a few more. For instance,
consider the following two PDDL3 preference expressions:

(preference payment (always (or (payBy ?x VISA) (payBy ?x MASTERCARD))))
(preference order (sometime (hasBoughtBook ?x ?y)))

The former preference named payment states that whenever a payment is to be
done for some item identified by ?x the user pays either by VISA or MasterCard;
(payBy ?x VISA) translates to a DL effect atom payBy(x, VISA) where x is a vari-
able referring to a representative of either an input or output, payBy is a role name,
and VISA, MASTERCARD are individual names. The second preference named order
states that at some point the user identified by ?x has bought a book identified by ?y;
(hasBoughtBook ?x ?y) translates analogously to an effect atom hasBoughtBook(x,y).

The nested expression (is-violated ¢) evaluates to a value equal to the number of
times the preference ¢ is violated in the state trajectory described by ¢. In other words,
it calculates a penalty for violation of preferences, which is additionally either ampli-
tied or suppressed by the weight w expressing the relative importance. Notice that
Equation (5.13) is thereby changed to a minimization problem since penalties as well as
costs are to be minimized.

5.5 Integration with Transactional Processes

Composite service execution and the correctness thereof can be meaningfully defined
and reasoned about in the theory of transactional processes [SABS02] that builds, in part,
upon the concept of flexible transactions [ZNBB94, ZNBO01]. Transferring the basic idea
to the service model considered in this work, the execution of a composite service is
conceived as a single transaction that encapsulates a number of sub transactions if the
service is composite. Each sub transaction corresponds to the execution of one of its
functional units. Eventually at the level of operations, a transaction corresponds to the
execution of one operation in the underlying sub system, which may again unfold to
sub transactions at the next lower level of the sub system. Altogether this results in a
nested configuration — nested transactions.

The connection of transactional processes with the concept of transactions lies in the
focus on two major correctness properties: atomicity and isolation. Transactional pro-
cesses, in fact, set up a more general notion of atomicity, rather than simply transferring
the conventional all-or-nothing understanding. More precisely, a transactional process
is correct (or well-formed) in this regard if it provides guaranteed termination, meaning
that execution ends in a well-defined state in any case. Potential failures in the course of
execution are thereby handled in a way not leading to undefined or inconsistent states.
State consistency criteria are normally defined from an application point of view; al-
though application-independent generalizations are conceivable (e.g., avoid unreleased

136 Forward Failure Handling using CFlI

resources that are subject to an exclusive access policy). Multiple services that are con-
currently executed are correctly isolated from each other according to this model if the
overall result is equivalent to a serial execution of them. Isolation is consequently a
correctness property concerning the correct interaction of multiple processes.

It is the purpose of this section to discuss consequences of integrating CFI into this
model, especially consequences on the notion of guaranteed termination. Moreover, we
explore potential integration strategies. Isolation, on the other hand, is beyond the scope
of this thesis. To this end, we would assume that a transactional manager is part of the
system (execution engines) that enforces the precedence order as defined by a process
over all the different system levels involved so as to avoid non-serializable inferences
on shared resources.

5.5.1 Guaranteed Termination

Defining the notion of guaranteed termination starts from the assumption that the trans-
action representing the execution of a functional unit falls in either of three categories:
compensatable, retriable, or pivot [MRKS92]. Without loss of generality, we can restrict
ourselves in the following (for simplicity of expositions) to operations, which is possible
because these characteristics can be preserved for nested configurations, see Observa-
tion 5.2 below.

If Op is an operation then it is compensatable if there is an operation Op~! that when
executed either reverses or, more generally, compensates the execution of Op; without
resorting to execution of additional operations (i.e., cascade free).3! An operation is re-
triable if its execution is guaranteed to complete successfully eventually, possibly after
having been re-invoked multiple times. While an operation can be both compensatable
and retriable, the opposite — neither being compensatable nor retriable — is equivalent
to being pivot.3> The existence of such an operation in a composite service is therefore
“critical” in the sense that it marks a point of no return. Once it has been executed
there is no way back since compensation is not an option anymore. Notice that com-
pensating operations themselves are assumed to be retriable; hence, not pivot. Also,
observe that compensatable, retriable, or pivot are non-functional characteristics that
can be represented already by two Boolean-valued non-functional properties because
compensatable is orthogonal to retriable and pivot matches the case of not compensa-
table and not retriable. By adopting the generalization put forward in [Sch01] these
properties become real-valued and model failure probability and compensation costs, re-

31Reversible is the ultimate form of compensatable. An operation is reversible if all its results can
be undone by executing Op~!; hence, Op~! can be seen as the inverse of Op and execution of Op~!
at some point after Op has been executed yields a state as if execution of Op had never taken place.
Compensatable, as it is understood here and in accordance with [KLS90], is more general as it extends to
the case of compensating results in a countervailing and indirect way. The state after execution of Op~!
may not be identical to a state that would have been reached had Op never been executed. For instance,
undoing an order by marking it as canceled (and issuing a credit note) instead of entirely deleting it. The
general notion of compensation is therefore a matter of application-specific definition.

32We note that the notion of pivot has been used slightly different in the literature. While [MRKS92,
ZNBO01] set pivot equivalent to not compensatable and not retriable, a relaxed definition leaving off retri-
ability is used in [Sch01, SABS02].

5.5 Integration with Transactional Processes 137

spectively. More precisely, a compensatable operation has finite compensation costs in
the interval [0, 00). A retriable operation has a failure probability of zero since it never
fails eventually. A pivot operation has infinite compensation costs since compensation
is not possible and a failure probability in the interval (0, 1) since it is not retriable.

Observation 5.2. The properties compensatable and retriable are preservable for nested config-
urations, while pivot inevitably propagates upwards.

This is easily seen. A functional unit is compensatable if all functional units at the
next lower level are compensatable. In other words, compensation at the higher level is
no longer possible as soon as one functional unit at the next lower level is not compen-
satable. This holds analogously for retriability. As soon as there is one pivot functional
unit at the lower level then the higher level is also pivot.

Clearly, the property of being pivot is a decisive factor on the notion of guaranteed
termination. In the simple case with absence of pivot functional units one can guarantee
termination if all functional units a service is composed of are either retriable or com-
pensatable, though in diametral states. All functional units being retriable guarantees
that, in case of a transient failure of a functional unit, one can eventually complete as
expected. Conversely, all functional units being compensatable guarantees that, in case
of transient or permanent failure of a functional unit, one can reach a ground level state
in which everything that has been done has been compensated. The latter matches the
concept of Sagas [GMS87, GGK'91]. In the presence of pivot functional units, guaran-
teed termination necessitates that each pivot that is not the very last in a control flow is
associated with at least one failure recovery path, as we call it. A failure recovery path is
basically a sub control flow that leads to a consistent state. All functional units on a re-
covery path must furthermore be retriable; hence, it is guaranteed that execution of the
failure recovery path eventually completes. Notice that not a failure of the pivot triggers
its execution but a failure of a subsequent compensatable or pivot operation. What is
more, there might be multiple failure recovery paths for each pivot thereby providing
different alternatives. In this case an additional preference order is considered between
recovery paths that ranks them. The idea is then to select the highest ranked recovery
path first at runtime.

Now, how does CFI relate to the property of guaranteed termination? First of all, if
we put CFI into perspective with what has been just explained then it should be clear
that CFI can be used for dynamic and on demand creation of a recovery path, mean-
ing that it has not been specified in advance. CFI is also more general in that it is not
restricted to this case: The question at which transition a failure occurred is not rele-
vant since an alternative — a replacement — can be created in principle starting from any
place. Yet it is exactly the dynamic creation that is crucial for the property of guaranteed
termination. The guarantee that a replacement exists is clearly a necessary requirement.
In other words, guaranteed termination depends ultimately on guaranteed replacement
existence. Unfortunately, the strong guarantee for the existence of a replacement in any
case can only be made by design. In open environments in which available services and
operations are not known in advance and are likely volatile one can only make weak
guarantees, possibly supported by statistical evidence. This observation holds irrespec-
tive of how sophisticated the approach used for representing and reasoning about the

138 Forward Failure Handling using CFlI

semantics of services is. The point herein is that the utility of CFI lies more in open en-
vironments. The reason is that in cases where it is ensured by design that replacements
exist one can actually assume that they are known at the same time; hence, there is lit-
tle sense in dynamically creating them. Another point is that existence of replacements
is not sufficient for guaranteed termination. The requirement of guaranteed termina-
tion applies equally to replacements themselves. Replacements therefore either need to
consist of retriable operations (analogous to a recovery path) or the failure within the
execution of a replacement must again be manageable in the same way.

All in all we have to accept that CFI alone cannot preserve the property of guaran-
teed termination in cases where one wants to use it. CFI rather provides a best effort
service to the user. This result might leave a smack of dissatisfaction. Be that as it may;,
it appears to be the price to pay for not needing to anticipate and specify in advance
failure handling means. We therefore see CFI as complementary to existing methods
and discuss possibilities of integrating both in the next subsection.

5.5.2 Integration Strategies

Bearing in mind the best effort property of CFI regarding guaranteed termination, trans-
actional recovery approaches that build on the concept of compensation®® and CFI as a
dynamic forward recovery approach should be reasonably combined. The general idea
is to consider pre-defined transactional recovery means as a last resort. Then, two pos-
sible arrangements are:

1. CFlis attempted first. If a replacement does not exist then fallback to transactional
recovery.

2. If there is a pivot and a failure occurs after the pivot has been executed then com-
pensate backwards up to the pivot. CFI may then be attempted to find an alterna-
tive starting after the pivot. If this fails then fallback to transactional recovery.

The first strategy reflects the intention of trying forward recovery from failures first
before falling back to compensation. It is further assumed that all operations of the orig-
inal service are compensatable. One can therefore guarantee well-defined termination
since one can always go back to a ground level state in case CFI fails. The application
logic or user would then decide how to proceed from that state. This strategy will likely
come to be used if a one-to-one replacement is anyway the number one choice. An ex-
ample is the book seller service: if execution of order & pay (or shipment) fails then
one would likely want to search for an alternative online seller (or shipping agency)
first before rolling back as a last resort.

The second strategy considers taking a pivot as a savepoint. In case of a failure one
would generally compensate backwards up to the pivot first and try to find a replace-
ment from that place. Analogous to flexible transactions, a recovery path is assumed
to be pre-defined and associated to the pivot. The recovery path serves as a last resort
if finding a replacement fails. This strategy seems preferable if a service contains sub

33Recap, compensation herein is understood as a generalization that includes reverting results as a
special case.

5.6 Repeated Intervention 139

services and many-to-many replacements are intended. For example, suppose identify
person in the emergency assistance service is marked as a pivot. If at execution time
trigger ambulance fails then one would compensate select ambulance and search for a
replacement of the sub service activate ambulance. However, the compensation of an
operation Op and subsequent search for a replacement starting from a previous state not
only involves executing the compensating operation Op~1, it also implies additional ef-
forts for undoing the effects in the KB. More precisely, if Op~! is indeed the inverse then
one can easily derive the inverse update U~! from the update U that has been applied
previously to the KB: every add (K + ¢) in U becomes a delete (K — ¢) in U~! and vice
versa. Otherwise, if Op~! is a countervailing compensation rather than the inverse then
it has to be regarded as a normal operation. Its set of effects E would then be applied in
the standard way as defined by the effect system used.

On the other hand, if guaranteed termination is not of high importance, then an
integration strategy in the opposite direction comes to mind. More specifically, the
planning-based approach to replacement creation can take advantage of information
whether functional units — operations or atomic services in this case — are compensat-
able, retriable, or pivot. If U is the pool of functional units available and u is a functional
unit in a control flow G that is to be replaced then:

* u € U if u is retriable,
e u~! € U if u is compensatable, and
* u ¢ U if u is pivot.

Observe that both u and 1! can end up in i if u is both retriable and compensatable,
which in turn calls for a preference between compensation or retry, expressed, for in-
stance, by different costs associated with them. If a planner adds ultoa plan then
a kind of chronological rollback is performed. Compensation is thus integrated into
planning.

5.6 Repeated Intervention

If a replacement G" has been found and execution resumes using G* then there is no
guarantee that G" will succeed; except that G' is retriable, which we shall leave out of
consideration in this section. In particular, there can again be failures in the execution
of G'. This can, in theory, lead to the situation of endless interventions made by an
execution engine without actually coming to an end: a failure occurs, a new replacement
is found, execution is resumed using the replacement, a new failure occurs, and so forth.
No matter whether the probability of such a situation is low in practice or not, there
should be measures to deal with this issue. More specifically, there should be a decision
procedure that determines when to give up starting new intervention cycles. Ideally,
one should not give up too early nor try longer than it makes sense, meaning that it was
still possible to come to an end versus an intervention was anyway in vain. We see three
possibilities to this described in the following.

140 Forward Failure Handling using CFlI

5.6.1 Threshold

Presumably the most apparent approach is to set a threshold as a maximum number ¢
of interventions that are allowed to be made during the execution of a particular service
instance. A counter is incremented for every new intervention cycle and if ¢ is passed
then one would give up intervening in case a new failure occurs. While this is simple
to implement it has the downside that it introduces a new problem: What value should
¢ be set to? It is evident that at least the actual service and the error frequency of the
environment have an influence on the value. This means that @ is a function of multiple
parameters

¢ = f(p1,--- pn)

rather than a (global) constant that can be determined generally. As there seems to be no
single obvious law for f, one would probably use more or less sophisticated heuristics.
In case it is even difficult to come up with a suitable heuristic then f might simply
realize a rule of thumb or an educated guess. More advanced strategies might try to
learn f offline from training data or online as an evolutionary process. In any case the
risk of giving up too early or too late remains as long as the value ©# cannot be proven to
be correct in the sense that any smaller or larger value results in giving up too early/too
late.

5.6.2 Progress

Another approach would be the definition and use of a notion of execution progress.
Intuitively, this can be used if one would not want to give up as long as there is signif-
icant progress towards the end (i.e., execution does not stagnate). The question is how
should such a notion of execution progress be defined? One possibility is to formulate
it in terms of a difference between the current and the final state of an execution.

Suppose t is a transition in a control flow graph and dist is the distance between and
the final place p;, measured as the length of the path (¢, ..., ps); recap, every transition ¢
of a control flow graph is on a path between p; and p¢. Formally,

dlSt(t/pf) = |<t//pf>’ :

Suppose t is a token-enabled transition that cannot fire and that it has been replaced in a
first intervention cycle. Now, suppose that subsequently yet another failure occurs and
that t' is the token-enabled transition that cannot fire this time. Then one could define
progress as the condition that

dist(t, ps) > dist(t, ps) . (5.17)

According to this condition there is progress between subsequent intervention cycles if
the younger is for a transition closer to the end. Unfortunately, this condition works
generally only for one-to-one but not in general for one-to-many and many-to-many
replacements as the following example shows.

5.6 Repeated Intervention 141

Example 5.4/

Imagine a control flow graph G that has a simple sequential control flow

F={(pit), (t,p), (p,t"), (", pe)}

consisting of the consecutive transitions ¢ and +". Suppose there was a one-to-many
replacement G/; = G¢[GS;/ GL] with

F={(pit),(t,p)} and F ={(pt"), (',), (P, t"), (", p)},
resulting in the flow relation

F={(pt"), (.0, (0" "), (" p), (pt"), (", p) } .

F* of G

If there is subsequently a failure for ¢ after the operation associated with ¢’ has been
executed successfully, Condition (5.17) does not hold because dist(t, ps) = dist(t’, ps)
though there was obviously progress. This is due the fact that the sequential control
flow was extended under the replacement G¢[G¢;/ G|, which is not taken into account.

Example 5.4 shows that we need to account for structural changes. This can be done
by taking into account the difference in the length of the subflow G¢; that starts with
t and its replacement GJ;. Let |G| denote the length of the longest elementary path
(pi, ..., ps) in the control flow graph G Then, the difference ¢ in length between G,
and G is

6 =[Gyl — |Gl

and we finally get
dist(t, ps) > dist(t', ps) — 6 . (5.18)

Although the notion of progress expressed by Condition (5.18) can be used for one-
to-one up to many-to-many replacements (notice that § = 0 for one-to-one replace-
ments), one can also define it in a converse way as described next.

5.6.3 Possibility to make Progress

Alternatively, one can view the notion of progress from another perspective. If there
is no alternative replacement available anymore then one can obviously not make any
progress anymore; except that one tries to execute a replacement again that has already
been used in the hope that the failure was transient and does not occur again. In other
words, one might not want to give up as long as there is a possibility to make progress.
Determining whether it is possible to make progress can be implemented based on
how replacements are found. Under the use of matchmaking there is a possibility of
making progress as long as there is at least one matching replacement found. Analo-
gously, under planning there is a possibility of making progress if at least one alternative

142 Forward Failure Handling using CFlI

plan is found. However, the downside is that in most cases (e.g., in open and/or dy-
namic environments) one cannot decide at the beginning of an intervention cycle prior
to matchmaking/planning whether it is possible to make progress. In these cases it is
only the search that can provide the answer. Otherwise, one would need prior infor-
mation about the number of remaining options. Without this information, the approach
thus always involves a possibly expensive search to know whether there is a possibility
to make progress.

5.7 Discussion

All the way up to this point we have mainly been concerned with two problems. First,
how to define a formal notion of equivalence (and similarity) that a replacement for a
part of a service must meet to qualify as such and that is adequate from a practical point
of view in the sense that it reflects the intuition of humans. Second, what are techniques
that allow us to check whether we can find or compose a replacement given a set of
candidate services and their operations. With hindsight, we shall return to issues that
have been identified throughout the text but whose discussion has been postponed.
There are also a few more reflections in order.

5.7.1 Disambiguating Profile Parameters

Coming back to the ambiguous cases illustrated by Example 5.2 and Example 5.3, the
reason is that a profile Pr has two (or more) parameters Paj, Pa; of the same sort for
which type(Pay) C type(Pay) holds (cf. Equation (5.8)). Obviously, Paj, Pa;, are not the
same otherwise there would be just one of them in the set, but Pa; “is a” specialization
of Paj according to the backing domain conceptualization. In essence, what we want in
order to eliminate the case that a unique mapping m cannot exist is a relation that tells
two parameters, both of which fall into the same sort of profile sets, semantically apart
unless they are the same in every respect.

One possibility is to enrich the match relation on parameters by additional means to
further discriminate semantics of parameters. Several authors have made proposals in
this direction that rely on statistic-driven or information-theoretic similarity measures
defined usually over the names of parameters or the combination of the name and the
type. While this approach has been shown to increase the precision to a certain extent,
its characteristic is that it tries to live with the status quo, meaning the amount of infor-
mation available from their description.

One can also take up another position that views this issue from the opposite end,
which becomes clear when raising the following question. Should profiles that have pa-
rameters Paj, Pay of the same sort for which type(Pa;) C type(Pay) holds be considered
deficient in the sense that they are not sufficiently precise conceptualized? If one agrees
with this view then the conclusion would be that the semantic annotation should be
revised so that it becomes sufficiently discriminating. How could this be done? As an
example, imagine an information-providing service for retrieving departure and arrival

5.7 Discussion 143

times of trains between two cities; hence, it is parametrized with two inputs for the start
and destination. Suppose these inputs are:

Pay: FROM:City and Pa;: TO:City

where City is a concept defined in some domain ontology. Hence, we have type(Pa;) C
type(Pay) (and vice versa). One can make them fully discriminated by revising their
conceptualization to:

Pay: FROM:City M Start and Pay: TO:City ' Target

where Start and Target shall be additional concepts. This way we have broken the
subsumption relation (provided that Start [Target) by adding the semantics carried
actually by the parameter names to the conceptualization, which was not represented
before. This example shows that it is not really the “fault” of the subsumption relation
that ambiguities may arise but rather deficiencies in the semantic conceptualization.

5.7.2 To Plug-in Match or not to Plug-in Match

Both notions of equivalent execution are in essence defined based on the plug-in match
regarding data and the more strict equivalence match regarding effects. This is a deci-
sion we have made in view of the question what humans would accept. We believe that
this interpretation marks the border between a replacement that can be said to provide
equivalent results and a broader form, as results created are not semantically “outside”
the original. With the subsume match results can be created that one did not expect and
therefore humans would likely want to be asked first for their approval before execution
can resume with a replacement.

This aspect also relates to the question whether it is reasonable for a practical real-
isation to be fully automated in the sense that humans are not in the loop of decision
making. Even with the current definition, this question is again mostly a matter of the
application environment. We believe that a fully automated realisation appears reason-
able in closed environments only, and with a strict definition of equivalent execution.
Open environments in which one cannot assume complete knowledge about all options
available rather make a semi-automatic and mixed-initiative approach more plausible
where the system presents alternatives first and the user can then make a choice. In
general, we conclude that the broader the notion is defined towards similarity the more
it is natural that humans want to be in the loop. This conclusion should be taken as a
design guideline for future systems.

5.7.3 Structure-aware versus Structure-nescient Replacements

Having the two techniques available for finding or composing replacements introduces
a choice: applying either technique exclusively raises the question when to chose which.
On the other hand, one can also ask the question whether they can be reasonably com-
bined. Let us first identify situations in which the exclusive use of either technique is
indicated.

144 Forward Failure Handling using CFlI

Exclusive use of Either Technique

The requirement of preserving the control flow structure can be found in industrialized
manufacturing workflows or medical treatment workflows that consist of a sequence
of steps from which one must not deviate because they are part of (factory-wide) pro-
duction cycles, or because they are medically prescribed. Otherwise, structure-aware
replacements are indicated in (controlled and rather small) environments in which it
is known in advance or even deliberately the case per design that directly functional
equivalent services/operations exist. A typical example is the activate ambulance ser-
vice: in this domain the distribution of ambulance centers is intentionally so that an area
is covered with sufficient redundancy.

In contrast, the main characteristic that indicates the use of planning-based struc-
ture-nescient replacements are domains in which it is likely that alternative services/-
operations exist that can serve as a replacement only by combining them accordingly
(i.e., 1:n and n:m replacements). The matchmaking-based structure-aware replacement
technique would fail in this case as it does not support synthesizing combinations. For
the process of finding combinations it is more important to enable efficiently exploring
the possibly large combinatorial space for solutions, even if the use of heuristics to make
this feasible implies that finding an optimal replacement is not guaranteed in general.

The discriminating feature for both techniques is therefore mainly the degree of func-
tional standardization in the domain. The simplicity offered by the structure-aware re-
placement technique necessitates a high degree of standardization: without sufficient
standardization one cannot assume the existence of directly functional equivalent ser-
vices/operations.

Combined use of Both Techniques

Both techniques can equally well be combined in the form of a chain. More specifically,
bearing in mind that it is the situation that one transition cannot fire due to an error, one
can always start simple by checking whether there exists a one-to-one replacement for
the pending transition, which amounts to a single call to a matchmaker (Find Match).
Only if this fails then the more expensive planning-based technique is used to synthe-
size a composite replacement.

5.7.4 Replacement Composition Planning via Translation into PDDL

Various works consider formulating service composition planning problems via trans-
lation into a PDDL planning problem (e.g., [KG05, KK07, HMV 09, KC10]) or relat-
ed/successor languages (e.g., [BFLT08]), which makes it possible to use off-the-shelf
planning tools directly. In fact, the translation is rather straightforward if atomic ser-
vices/operations are directly understood as parametrized actions (operators). Besides
abandoning the correspondence between the change semantics and the belief update
problem, there are two more concerns. The first one is rather technical. Translation into
PDDL introduces a certain overhead of pre-processing. Complexity of pre-processing
can be exponential in space because virtually all PDDL planning tools are implemented

5.8 Summary 145

based on a propositional representation; hence, require instantiating the variables of op-
erators to get actions. To illustrate the consequences, suppose there are k operators each
having | parameter that can in turn be instantiated from m constants. Then we have
Zﬁ-‘zl H§:1 m;j possible instantiations (actions). Additionally, the approach introduces
post-processing overhead if synthesized PDDL plans need to be translated back into the
process description language used by an execution engine. While pre-processing can in
principle be eliminated by pre-translation prior to planning time, this is not possible
analogously for post-processing unless planning can be done offline (e.g., classic plan-
ning in a static domain, or contingency planning taking into account dynamic changes
in the domain). The amount of time required for translation to PDDL is supposably
(much) larger than back translation: (large) number of actions versus usually rather
short plans.

The second concern is about the change semantics ascribed by the actual precondi-
tion and effect system used. Unless the concrete system matches the simple STRIPS-
style change semantics as discussed above, the use of off-the-shelf PDDL planning tools
is not directly possible as virtually all realize it. In particular, if the change semantics
corresponds to a query answering problem and a belief update problem over a DL KB
and both cannot be translated into a propositional representation then plan checking
is more involved since it reduces to satisfiability checking of an ABox (w.r.t. a TBox)
as opposed to satisfiability checking of propositional formulas. Similarly, the actual ef-
fect system may pose challenges regarding heuristic search functions pertaining to the
expressivity of concepts and the types of TBox inclusions permitted.

5.8 Summary

The main value of the CFI approach is that failure handling and recovery measures do
not need to be modeled explicitly at design time of a service. This simplifies the mod-
eling process. Possible failure situations need not (all) be anticipated and represented
appropriately by explicit failure handling primitives. As a result of formalisms where
this is required, single services (activities in workflow modeling) are often associated
with “mechanical” fault handlers in practice. A failure is simply propagated upwards
in the application, often up to the highest level of human control. It is then up to the
responsibility of the user to trigger appropriate actions.

Second, an execution system implementing CFI would normally not reverse or com-
pensate the effects of service invocations that have been made already in the course
of execution, thus, not rolling back to the initial state at commencement of execution.
Therefore, it would also not require appropriate restart functionality. This is the ap-
proach taken by traditional backward recovery methods following the atomicity prop-
erty of the transaction notion. CFI provides a solution to these situations when back-
ward recovery is impossible — because a pivot has been executed successfully already —
as it is inherently forward-oriented and, more importantly, an alternative but semanti-
cally equivalent execution is found dynamically. In fact, the property whether a service
is compensatable or pivot becomes irrelevant at design time when CFI can be used at
runtime. This solves a problem apparent in large scale environments such as the Inter-

146 Forward Failure Handling using CFlI

net where termination properties of services (wWhether they are compensatable, retriable,
or pivot) are outside the control of a designer and might even be unknown (i.e., when
service providers do not publish these properties as part of the service descriptions).

Third, only in the presence of a failure at runtime actions are taken by an execu-
tion system implementing CFI. This makes CFI an optimistic approach. In contrast to
pre-defined failure handling, however, the approach relies on the availability of seman-
tically equivalent services. This is why we see CFI as complementary to existing failure
handling methods rather than a solution meant to replace any of such existing methods.
Finally, with a solution that allows to implement CFI in a fully automatic way, failure
handling can be done transparent to the user/application.

Concurrency Control for Shared
Knowledge Bases

OUR SYSTEM MODEL described in Chapter 4 allows for two types of concurrency in
the service execution task. First, intra-service concurrency due to the possibility
of parallel paths in the control flow of a composite service. Second, inter-service con-
currency as a matter of the fact that we did not impose restrictions on whether just one
or multiple services can be executed at the same time in the system. Amongst other
aspects!, concurrency implies the need for coordinating access (read and update opera-
tions) to a shared OWL knowledge base so that correct results are generated rather than
inconsistencies, which should generally be avoided. This is the subject of this chapter.

Coordinating concurrent access is commonly referred to as concurrency control (CC)
in the area of database research. CC essentially studies the means to maintain consis-
tency of a shared database, or, as it is the case in the context of this chapter, a shared
OWL knowledge base. In short, this is achieved for OWL knowledge bases following
the ideas of (i) transactional information systems [WV02], (ii) semantically rich oper-
ations [VHBS98], and by (iii) applying an extended version of the Snapshot Isolation
protocol [BBGT95] to coordinate concurrent access. More precisely, we set up a concur-
rency control model for OWL knowledge bases as follows:

1. We take the well known notion of a transaction and formulate it as a partial order of
indivisible read, add, and delete operations over OWL syntactic instances. Conflict-
ing concurrent access is thereby analyzed over these operations; that is, directly at
the level of OWL syntactic instances.

2. Concurrent transactions that may otherwise interfere in an undesired manner are
isolated using the Snapshot Isolation (SI) protocol. The protocol receives a simple al-
gorithmic extension in order to provide protection from two higher level semantic
conflicts specific to OWL and DLs in general.

The read, add, and delete operations are sufficient to realize knowledge base updates
and for reading it. Snapshot Isolation, a multiversion concurrency control mechanism

For instance, scheduling to share common computing resources such as a CPU.

148 Concurrency Control for Shared Knowledge Bases

(MVCC) introduced for databases, offers a higher degree of concurrency compared to
classical inherently-blocking protocols such as strict two-phase locking (S2PL). This is
due to the fact that multiple versions of data are used to provide non-blocking reads,
at the tradeoff that reads may not necessarily see the most recent state of a knowledge
base. As will be seen, snapshot management is simple in this model because multiple
versions of data do actually not exist, resulting from the binary lifecycle of data items
representing OWL syntactic instances.

The main advantage of applying conflict analysis at the level of OWL syntactic in-
stances is that it allows to jointly consider

1. conflicting access on the data representing OWL syntactic instances and

2. two higher level types of conflicts owing to specifics of OWL and DLs in gen-
eral. In short, the first type of conflict reflects the situation where semantically
(logically) equivalent knowledge is described using different expressions, which
is essentially introduced by syntactic redundancies in OWL. By considering the
second type of conflict we can avoid that the updates of concurrent transactions
lead to an unsatisfiable knowledge base.

Because of the specifics of OWL and DLs in general, these two conflict types have to be
considered regardless of the actual CC protocol used.

The approach completely abstracts from the physical representation of OWL syntac-
tic instances. In particular, we show that it is compatible with their representation in the
form of RDF triples. It can therefore be used to build (or extend) RDF triple stores to
provide correct concurrent access to OWL knowledge bases represented as RDF triples.
Finally, the approach allows for efficient integration with reasoning engines.

We would also like to point out that correct concurrent access to a shared OWL
knowledge base is of general relevance for applications where multiple clients (humans
or software agents) need to concurrently read and update it. The approach is, therefore,
described in a general way so as to be applicable beyond the service execution task.
Prior to the detailed description, the next section briefly illustrates and motivates the
need for CC in the service execution task.

6.1 Motivation

There are mainly two types of recurring events in the course of service execution using
semantic services that trigger reading or updating a knowledge base. First, checking
whether the current state of the knowledge base satisfies the preconditions of a ser-
vice/operation whose invocation is due. Second, applying the effects upon (successful)
completion of an invocation to incorporate its effects into an updated new world state.?
As described in Section 4.2.2, precondition checking requires submitting read queries
to interrogate the knowledge base about the current world state. Application of effects
is achieved by means of direct updates that insert new ABox assertions and/or delete

2One can easily find other events such as reading and updating context information that drives dis-
tributed execution, but they shall not interest us here.

6.1 Motivation 149

existing ones. These reads and updates generate sequences of basic read and update
(add and delete) operations over OWL syntactic instances in the KB.

Obviously, reads and updates will be submitted concurrently by an execution en-
gine supporting intra-service concurrency. Therefore, the knowledge base must sup-
port correct coordination of these accesses so that anomalies resulting from interfering
accesses can be avoided. Moreover, if execution engines support the concurrent exe-
cution of multiple services — inter-service concurrency — then the problem of correctly
representing and maintaining a “global” world state that encompasses the effects of
the concurrent executions and that evolves along them has to be considered: Execu-
tions likely happen all in the same domain and all might have interdependencies in this
domain. If one would maintain an isolated world state for each execution then they
would be even more incomplete if not incorrectly represent the “real world” since each
would encompass only local changes of one execution. Consequently, the representa-
tion and management of a global world state inevitably requires a shared knowledge
base equally accessible among concurrent executions. Altogether, this calls for a KBMS
that:

1. provides the possibility to read and update the knowledge base concurrently,

2. is equipped with appropriate means to avoid concurrency phenomena and
anomalies in the representation of the world state, and

3. where the chronology of knowledge base states reflects the temporal ordering in
which the “real” world evolves so as to correctly represent happened-before and
causal relations.

While the former two items should be clear, the latter needs further explanation. In
essence, the concurrent accesses on the KB are partially ordered. The responsibility of
the KBMS is to ensure that such a partial order of accesses that it receives is preserved
and correctly materialized in memory, rather than subject to spurious transposition.
If any specific order of accesses is requested then it is enforced independently of the
KBMS. We will come back to this aspect in Section 6.5 when detailing how CC is applied
to the service execution task.

Figure 6.1 shows when read and update queries are triggered in the course of ser-
vice execution and that they may very well overlap in time as a result of the two types of
concurrency. Consequently, anomalies and phenomena resulting from arbitrary inter-
tferences need to be avoided. One can easily find cases in the two application scenarios
described in Chapter 2 that one wants to avoid. For instance, for a concurrent execution
of two instances of the emergency assistance service the system should ensure that acti-
vation and assignment of a particular ambulance to a mission can be done by either of
the instances (whichever comes first) but it should be neither assigned to both nor that
the representation of an assignment gets lost because it is overwritten.

On the other hand, achieving correctness for these read and update queries should
not result in an approach in which correctness is achieved by a KB access policy such
as multiple-reader/single-writer locking (MRSW), which is easy to enforce and implement
but restricts the amount of concurrency that the system can handle and therefore the
overall performance.

150 Concurrency Control for Shared Knowledge Bases

Composite Service Executions
Opz
q :
/ \
O_>/, Op; Iy s Opa _>©
y \ / |
;
b K “‘ /] Op:3 v ‘,‘\\ iy
i [(Y \ i
i P Y i L
I i A I -
ST O o = o (@)
4 / ! ! ! ;! \ i L ! ' AR i Y " \
7 y J/ i / il i i v i i) A ! \
! ’ i/ i ! 1 8
Bagess, /1 [EEEE. [E R
el e e F e [il e e
time

Figure 6.1: Concurrent execution of composite services with read (r) and update (u)
queries on the KB, and actual execution time (e) of invoked operations. Reads result
from precondition checking, updates from application of effects. Read /update queries
may overlap in time due to concurrent operation invocation within a service instance
(intra-service concurrency) and due to concurrent service executions (inter-service con-
currency).

6.2 CC Model for OWL Knowledge Bases

In the prevalent database read/write model [BHG87, Chapter 1] (a.k.a. page model
[WV02, Chapter 2]), a database is understood as a finite set of named data items, each
having a value over which two deterministic and total operations exist. One to read its
current value and one to write the value, thereby mutating it. The size of data contained
in a data item is called its granularity. In our model, an OWL knowledge base WV is also
understood as a set of data items. The value of a data item, however, is exactly one
possibly nested OWL syntactic instance. Consequently, CC will be applied directly at
the level of OWL syntactic instances.

It should be noted that in our model data items are merely containers that do not
have semantics themselves: It is the (possibly nested) OWL syntactic instance contained
in a data item that is subject to be interpreted, thus, conveys semantics. This is one
difference to the read /write model in which data items themselves are associated with
semantics independent of their value. For instance, a record representing the balance of
a bank account; no matter what the value is it is always to be interpreted as the balance
of a certain bank account.

We start by defining the notion of OWL data items and the basic operations and their
semantics required to realize KB updates. This is followed by formulating the notion
of transactions, histories, and schedules in our model, introducing the SI-based access
protocol, and two specific higher level conflicts. Finally, we discuss the properties that
the Sl-based protocol can guarantee.

6.2.1 OWL Data Items

Formally, an OWL data item whose value is an OWL syntactic instance 1 is denoted with
digWL. In our model, however, there are two fundamental differences to the classical

6.2 CC Model for OWL Knowledge Bases 151

read/write model stemming from the axiomatic way of knowledge representation in
Description Logics.

First, since knowledge (stated by means of OWL syntactic instances) does either exist
or not in an OWL KB W, data items are immutable. Either they do not exist or if they do
exist then they cannot be mutated. Consequently, the set of existing data items makes
up the state of VW, as opposed to an assignment of values to data items that makes up a
database state in the read /write model.

Second, OWL data items are distinguished only by their value rather than by their
identifier as in the read /write model. Consequently, there cannot be distinct OWL data
items that have the sume OWL syntactic instance. This raises the question when are two
OWL syntactic instances considered to be the same? This is defined based on the notion
of structural equivalence [MPSP(09, Section 2.1]. In short, since the meta model of OWL is
defined in terms of UML, the notion of structural equivalence essentially considers (i)
the recursive structure of syntactic instances and (i) type-based equality of strings and
numbers occurring in syntactic instances.

Definition 6.1 (Idem OWL Data Items). Two OWL data items di%WL, di%WL are the same iff
the corresponding syntactic instances y, o are structurally equivalent. In this case we write
di%WL = di%WL. Otherwise they are distinct.

It is important to understand that the notion of idem OWL data items is purely syn-
tactic. In other words, Definition 6.1 does not define when two OWL data items should
be regarded as semantically equivalent. As will be seen, this has consequences on con-
flict relations.

Example 6.1 (Idem OWL Data ltems)]

The OWL data items for the class axioms

DisjointUnion(:Parent :Mother :Father)
DisjointUnion(:Parent :Father :Mother)

are the same because the axioms are structurally equivalent: the order of the latter two
individuals is irrelevant as they represent a set. Similarly, the class expressions

ObjectIntersectionO f (:Book :OnStock)
ObjectIntersectionO f (:OnStock :Book)

are structurally equivalent; hence, they have the same OWL data item.

We note that OWL syntactic instances can be nested. For example, the concept defi-

nition axiom
EquivalentClasses(A ObjectUnionOf(C D))

contains the nested expression ObjectUnionOf(C D), which defines an anonymous
class in this case. Since the inner class expression cannot exist independently because it
is anonymous, it does not represent its own OWL data item. Consequently, OWL data
items may represent nested OWL syntactic instances.

152 Concurrency Control for Shared Knowledge Bases

6.2.2 Basic Operations

KB updates are understood as operations directly adding or deleting OWL syntactic in-
stances according to Definition 3.14. Due to the fact that OWL data items are immutable
and can either exist or not, an add and a delete operation (as opposed to the write opera-
tion in the database read /write model) is sufficient to realize KB updates.

The add and delete operation (performed by the KBMS) are denoted with a() and
d(1), respectively. Their semantics is given by Definition 3.14. In addition, r(¢) shall
denote the read operation that does not change a KB. Read, add, and delete are assumed
to be indivisible (i.e., a KBMS is assumed to execute them in an atomic way). All op-
erations have a return value. The read operation simply returns 1 if it exists and null
otherwise.> The add and the delete operation have a Boolean return value. Let WV be an
OWL KB and S, S’ the set of OWL syntactic instances in W before and after applying
either an add a(y) or delete d(y) to W. The execution of a(y), d(p) returns t rue only
if S’ # S as a result of their execution and false otherwise. In words, an attempt to
add (delete) a syntactic instance which already exists (does not exist) does not modify
W and false is returned to inform the application about the futility of the operation.
Hence, the return value allows applications to detect whether an add/delete actually
caused a change and to handle this appropriately.

Essential to CC is the notion of commutativity of operations, which is defined in our
setting as follows.

Definition 6.2 (Operation Commutativity). Let S be the set of syntactic instances in an OWL
KB W. A combination of two add, delete, or read operations 01, 0 is said to commute iff (i) the
updated set S’ resulting from the execution of 01 and o on S as well as (ii) the return values of
01, 07 are the same regardless of their execution order.

This notion of commutativity is the stricter of two forms because it is agnostic to
the initial state of W. It is therefore also referred to as state-independent commutativ-
ity [VHBS98]. In the weaker form, 01, 0 state-dependently commute if there exists some
S such that S’ is the same and the return values are the same regardless of their execu-
tion order. In [VHBS98] it is even assumed that operation sequences and their return
values are the only means to generate a database state and to detect an equivalence be-
tween any two database states. This can be very well transferred to our model: a KB
can be a black box of which only an initial (possibly empty) state and the sequence of
operations and their return values is known.

Table 6.1 shows the commutativity matrix for all combinations of read, add, and
delete operations. In addition, combinations that do actually not modify W (i.e., S’ = S)
are also shown. These results are fully explained in Appendix A.3.

A final remark about read operations is in order here. The basic read operation
r(1) is supposably not practicable for efficient implementation of all kinds of KB reads
(e.g., query answering). One probably wants at least an additional operation to read
through syntactic instances stored in a KB in an iterator-like manner. In case there are
other types of read operations that cannot be mapped, at least in theory, to sequences
of basic reads r(¢) then we need to extend the commutativity matrix accordingly by

3This type of read operation can equally be understood as a test whether the KB contains ¢ or not.

6.2 CC Model for OWL Knowledge Bases 153

Table 6.1: Commutativity and set-preservation of read, add, and delete operations on
OWL data items. An entry -/+ means that the pair is not commutative (set-preserving)
in general but state-dependently commutative in the constellation noted.

First/second Commutative Set-preserving
Operation | r(y) | a(y) | d(¢) | r(¢) | a(yp) | ()
r(y) + | -/+2] /4P + | -/42] -/4P
a(y) -/ /4R - -/ /42 -
d(y) N A A

AForp €S. PFory ¢8S.

the new types of read operations. On the other hand, there is an evident observation:
different types of read operations apparently commute if they (i) are executed on the
same state of the KB and (ii) whose results are functions of the KB state and nothing else.
Consequently, if a combination of a read and a change operation does not commute then
substituting the read by another type of such read operations would neither commute.
This is important insofar as it allows to generalize commutativity matrices regarding
such read operations.

6.2.3 Transactions

Adapted to our model, the intuition behind a transaction is to represent a finite sequence
of accesses made by one and the same application to a shared OWL KB W. The goal is
to ensure atomic and isolated execution of concurrent transactions. Atomicity means that
if a transaction terminates normally (commits) then all of its effects are made permanent
in W and become visible to others all at once. Otherwise, if it fails (aborts) it has no effect
at all on W. Isolation means that concurrent transactions access VW without interfering
with each other (e.g., reading intermediate changes from a non-committed transaction).

Definition 6.3 (Read/Update Transaction). A read/update transaction (transaction for
short) is a pair T = (O, <) where:

* O is a finite set of add, delete, and read operations containing, in addition, a terminating
abort or commit operation, denoted with @ and ©, respectively, such that

(1) @cO0iff© ¢ O;
(2) if p is @ or © (whichever is in O) then Yo € O: 0 < p .

* < C O x Oisastrict precedence order.

The two constraining items in Definition 6.3 state that a transaction either has a com-
mit © or an abort @ as its final operation (but not both) to indicate whether it terminated
successfully or not. The semantics of < is an ordering in time, meaning that for any
01,00 € O and 07 < o0 then o5 is executed prior to 0p. This implies that there is no
intra-transactional concurrency. Relaxing the strict precedence relation to a non-strict
ordering < is possible for commuting operations since there is obviously no need to

154 Concurrency Control for Shared Knowledge Bases

impose an order on commuting operations. Doing so enables concurrency within a
transaction, which is especially useful to model distributed transactions.

The changeset of a transaction T, denoted with (T), comprises all syntactic instances
that are added or deleted. Formally, given a transaction T = (O, <) then

0(T) ={y | o(y) € Oand o is an add or delete} . (6.1)

A history models an interleaved execution of multiple transactions, formally defined
as follows.

Definition 6.4 (History, Schedule). Let T = {Tq,...,T,} be a finite set of transactions
where every transaction T; € T has the form T; = (0;, <;) and 1 < i < n. A history is a pair
H = (O, <p) where:

* O = U O; is the union of all operations over all transactions, and
* <y C O x O isa partial order, such that

(1) VT;: <; C <y and

(2) each pair of conflicting operations 01,0, € O\ {p; € O; | p;is @;or ©;} are
ordered in <y such that either 01 <y 07 0r 0o <H 01.

Two operations 01(p1), 02(y,) conflict w.r.t. H iff they (i) do not commute, (ii) are
from different transactions (01 € O;, 02 € O}, i # j), and (iii) {1, P, are structurally
equivalent.

A schedule is a prefix of a history.

In plain language, H preserves the order of each transaction T;, is complete in the sense
that all operations of each transaction appear, and conflicting operations (i.e., non-
commutative operations of distinct transactions over the same OWL syntactic instance)
are ordered.

6.2.4 Correct Concurrent Access

The notion of a history (schedule) does not extend to correctness. Correctness, as it is
understood in this context, essentially relates to the aforementioned isolation of trans-
actions. In other words, the criterion for isolated transactions is not yet stated. A sched-
ule might be correct, meaning that interleaved transactions are properly isolated; but it
might as well be incorrect, meaning that transactions interfere.

The major correctness criterion in database transaction theory is serializability. It can
be defined analogously in our model. For this, we have to introduce the notion of a
serial history (schedule) first.

Definition 6.5 (Serial History, Schedule). A history (schedule) is serial if no transaction
starts before another transaction ends.

6.2 CC Model for OWL Knowledge Bases 155

Since transactions in a serial schedule are ordered in time they can obviously not
interfere in time (i.e., an ordering in time implies complete isolation).* This is precisely
the idea underlying the notion of serializability: under the assumption that transactions
are correct by themselves, meaning that each of them does not violate some integrity
constraint IC by itself, then a serial execution of them is also correct since it neither
leads to violation of IC. Serializability of a schedule is consequently the property that
it is equivalent to a serial schedule.’ One can also say that correctness is the absence of
integrity constraint violations for a possibly interleaved execution of concurrent transac-
tions. The role of integrity constraints is indeed important. Observe that serializability
has it that integrity constraints do not need to be known; it all depends on equivalence
to a serial schedule. This aspect will later come back into focus.

There are, in fact, three different formulations of serializability known in the litera-
ture [WVO02]: final state, view, and conflict serializability. While conflict serializability has
been shown to be a special case of view serializability, it is the one of practical relevance
since checking whether a schedule is conflict equivalent to a serial schedule can be done
in polynomial time in the size of the schedule, whereas the other two are NP-complete.

Enforcement of correctness is part of the protocol used to coordinate concurrent ac-
cess. Different protocols may however deliberately offer different isolation levels (i.e.,
different levels of correctness), which is motivated mostly by trading correctness for
performance. The protocol, that we will apply is introduced next.

6.2.5 Access Protocol

The access protocol considers transactions over OWL data items and operations as in-
troduced in Section 6.2.1 to 6.2.3 and essentially follows the SI protocol [BBGT95]. The
protocol enforces the following two rules:

1. Given an OWL KB W, a transaction T; sees a snapshot of V¥V from the point in
time when T; started — every new transaction is associated with a unique start-
timestamp t; larger than any timestamp that has been created before (i.e., strictly
monotonic). Both read and update operations are executed on this snapshot. Up-
dates submitted by other transactions that started after T; are invisible to T;.

2. When T; is ready to commit, it gets a commit-timestamp t. larger than any existing
start and commit-timestamp. T; commits successfully only if there is no other
committed transaction T; whose commit-timestamp is within the interval [fs, ¢
and if the change sets are disjoint 6(T;) N 6(T;) = @. Otherwise, T;, T; conflict and
T; will be aborted. This is also referred to as first committer wins.

A transaction is said to be active starting form the point in time when it has been as-
signed with ¢; until the point in time when it has been assigned with t..

“Note that any order among transactions is legitimate provided that there are no dependencies among
them. If there are dependencies then it is assumed that an order is secured outside the KBMS.

5To be precise, serializability is usually defined over the so-called commit-projection of a schedule: a
schedule S’ obtained from a schedule S by removing aborted and active transactions (i.e., S’ contains the
committed transactions of S only).

156 Concurrency Control for Shared Knowledge Bases

Observe that in this protocol add and delete operations need to be considered in or-
der to determine whether a transaction can commit because they determine the content
of the change sets 6(T;), 5(T;). This makes commit analysis similar to SI applied to the
database read /write model. Recap, in the presence of the write operation the write-sets
are required to be disjoint. Read operations are not included in commit analysis because
every transaction operates on its isolated snapshot. Reads can therefore be executed at
their commencement. From this last aspect we can draw an important conclusion: Un-
der the standard SI protocol it is irrelevant what type of read operations are available.
This is important insofar as it allows adding specific query-like read operations (e.g.,
list all concept inclusions, list all assertions about a given individual). Such additional
read operations are important for implementing efficient KB querying support, as op-
posed to mapping all reads to the basic read operation r(), which can easily become
inefficient.

As a matter of the fact that the protocol is a MVCC mechanism (i.e., each transaction
operates on its own snapshot), it is guaranteed that reads only present results of com-
mitted transactions. However, SI is known to allow for schedules that are not conflict
equivalent to some serializable schedule; that is, there are some concurrency anomalies
that can occur with this protocol. We will resume and detail the discussion on which
properties are ensured in Section 6.2.8. Example 6.2 illustrates the situation of conflict-
ing update transactions.

Example 6.2

This example models the famous concurrent execution of a bank transfer and a with-
draw from one account involved in the transfer. Suppose a KB WV that initially contains
two OWL datatype assertions

Y1 = DataPropertyAssertion(:balance :ACC1 2770) and
Y = DataPropertyAssertion(:balance :ACC2 200),

representing knowledge about two accounts :ACCI and :ACC2 having a balance of
2770 and 200, respectively (i.e., :ACC1 and :ACC2 are names of two distinct individ-
uals, :balance is the name of a data property, and 2770 and 200 are number values).
Transaction T4 shall withdraw an amount of 70 from :ACC1 and transaction T shall
transfer an amount of 100 from :ACC1 to :ACC2. This can be realized using the follow-
ing sequence of operations per transaction

Twd =7(¢1) d(¢1) a(yp3)
Tie = r(1) r(¢2) d(1) d(¥2) a(ipa) a(ys)

where 3, 4, 5 would be

Y3 = DataPropertyAssertion(:balance :ACC1 2700)
Y4 = DataPropertyAssertion(:balance :ACC1 2600)
Y5 = DataProperty Assertion(:balance :ACC2 300) .

6.2 CC Model for OWL Knowledge Bases 157

Clearly, any interleaving of T4, T such that

R < <t or R < v < g

is not serializable; hence, according to the first committer wins rule, Ty commits in the
first case, whereas T,,4 commits in the second.

Example 6.2 contains conflicting read-add-delete transactions. The conflict would
be detected because the change sets are not disjoint d;(Twqg) N d4(Ty) = {d(1)}. This
remains the same even if the applications submitting T,,4, T would (magically) know
the current balance of both accounts so that the reads r(y), 7(¢,) do not appear (add-
delete transactions), thus, the transactions still conflict.

Snapshots need to be created (for reads by other transactions) whenever an OWL
data item digWL gets committed as deleted by a transaction T and there exist other
active transactions that started before T started. These transactions must still be able to
read di%WL. In other words, a snapshot of a deleted data item digWL can be discarded as
soon as there are no more active transactions in the system that have a start timestamp

smaller than the delete-commit timestamp of digWL. Analogously, when a transaction

T commits successfully its change set 6(T) needs to be kept if there are other active
transactions T ... T, in the system because (T) is required for conflict analysis against
the change sets of T1 ... T, to determine whether they are permitted to commit.
Testing for overlapping change sets can also be done more promptly (as opposed to
doing it at the end). An algorithm for the read /write model called first updater wins that
acts this way has been described in [FOO04]. Transferring this algorithm to our model
is straightforward: The first active transaction T; to add/delete a data item di,?WL is
granted to execute the operation. If T; goes on to commit, any other active transaction
that has updated digWL immediately aborts. An active transaction T, with t;rz < tch

that attempts to update di%WL after T has committed aborts upon that attempt.

6.2.6 Higher Level Conflicts

The notion of conflicting transactions, defined for our SI-based protocol in terms of dis-
jointness of sets is the basis to coordinate concurrent access to OWL knowledge bases.
In addition, there are two higher level types of situations that can impair correctness.
In short, they are owing to syntactic redundancies in OWL and its DL-based seman-
tics. The first indirectly represents a transaction conflict that can be detected only by
taking into account the higher semantic level of OWL syntactic instances. By handling
the second type of conflict one can ensure that satisfiability of a KB is preserved for in-
terleaved transactions. We call them Expression Conflict (E) and Satisfiability Conflict (S).
The conflict of operations as defined by Definition 6.4 shall be (O) in this categorization.

It is important to understand that E and S conflicts are a consequence of the specifics
of OWL, not the specifics of the SI-based CC protocol. Therefore, they have to be con-
sidered independent of the actual CC protocol used.

What is more, E and S conflicts cannot occur, in general, for reads and updates on
annotations and entity declarations. The reason is that both are outside the underlying

158 Concurrency Control for Shared Knowledge Bases

DL theory nor are there syntactic redundancies on either of them. Consequently, we do
not need to pay attention to them subsequently.

Expression Conflict

There can be situations where two transactions operate on OWL syntactic instances, say
{1, P2, which are structurally different but which are semantically (logically) equivalent.

In other words, given two distinct data items di%WL, di%WL one cannot generally con-

clude that the syntactic instances 1, ¢, are not logically equivalent. Formally, there can
be cases in which

1 & ¢ while digVl £ dig""

and where <> stands for logical equivalence. With the machinery introduced thus far,
these transactions would not O-conflict because their OWL data items are distinct. The
semantic equivalence of ¢, ¢, however, implies the need to treat them as the same.
Such equivalences can exist for syntactic sugar constructs available in OWL, which are
motivated by the wish to allow for more concise knowledge descriptions. Also, in OWL
there is redundancy in the set of concept constructors (e.g., the negation constructor
ObjectComplementOf allows to eliminate conjunctions in favor of disjunctions by using
negation). Example 6.3 illustrates these semantic equivalencies for different types of
axioms, assertions, and concept expressions.

'Example 6.3

(a) The following axiom

1 = DisjointUnion(:Parent :Mother :Father)

and the axioms
¢ = EquivalentClasses(:Parent ObjectUnionO f (:Mother :Father))
3 = DisjointClasses(:Mother :Father)

are clearly structurally different. Hence, they have distinct OWL data items and
two transactions can never O-conflict. However, at the higher semantic level ¥, is
equivalent to 1, 13 because p; is a syntactic shortcut expressing the same knowl-
edge than 1, 3 together.

(b) This is analogously the case for the individual assertions

¢4 = DifferentIndividuals(:OSIRIS :ISIS :HORUS)
Y5 = DifferentIndividuals(:OSIRIS :ISIS)
Y6 = DifferentIndividuals(:ISIS :HORUS) .

4 is again a concise form of 5, 1.
(c) The following concept expressions are logically equivalent (De Morgan’s law).

Yy = ObjectComplementO f(ObjectIntersectionOf (A B))
g = ObjectUnionOf(ObjectComplementOf(A) ObjectComplementOf(B))

6.2 CC Model for OWL Knowledge Bases 159

Again, 17, 1pg are not structurally equivalent, thus, would have distinct OWL data
items. This can analogously occur for universally and existentially quantified con-
cept restrictions (ObjectAllValuesFrom, ObjectSomeValuesFrom) or cardinality con-
cept expressions, e.g., an exact cardinality restriction is a shortcut of a minimum
and maximum cardinality restriction.

An E-conflict can be detected by pre-processing OWL syntactic instances that are
parameters of the basic operations and transforming them into a syntactic normal form.
The normalized forms are then used for standard O-conflict analysis while retaining, of
course, the actual operation. This leads us to the following formal definition of expres-
sion conflicts between operations in a schedule.

Definition 6.6 (Expression Conlflict). Let 01 (1), 02(¢2) be two operations in a history H that
would O-conflict according to Definition 6.4 if 1y, o were structurally equivalent. Let Nf be a
normalization procedure that transforms an OWL syntactic instance 1 into its normalized form
Nf(¢) and that preserves logical equivalence (i <> Nf()). Then, 01, 0, E-conflict w.r.t. H iff

01(Nf(¢1)), 02(Nf(¢2)) O-conflict w.r.t. H.

Notice herein that we assume every pair of operations within a transaction not to E-
conflict, which is a reasonable sanity assumption that one would want to make anyway
on applications that generate transactions.

From Definition 6.6 we can easily derive the criterion for an E-conflict under the SI
protocol.

Definition 6.7 (SI Expression Conflict). Let Ty, Tp be two transactions and 6(T1),6(T2)
their change sets, respectively. Let Nf be a normalization procedure that transforms a change set
5(T) into a normalized change set 5N (T) such that each OWL syntactic instance occurring
in 6(T) is substituted by its normalized form Nf () in SNF(T). Then, T, T, E-conflict iff their
normalized change sets are not disjoint SNF(T1) N éNF(T,) # @.

There are several types of normal forms of which some of them can be used only
for a subset of OWL. Concept expressions (using Boolean connectives, cardinality re-
strictions, or existential /universal quantifiers) can be normalized to Negation Normal
Form (NNF). More precisely, a complex concept is in NNF iff negation (—) occurs only
in front of atomic concepts. NNF is obtained by applying De Morgan laws to push —
inward (e.g., 7(CM D) < —C U D). Other candidates for concept expressions are the
Disjunctive Normal Form (DNF), the Conjunctive Normal Form (CNF), or the Prenex
Normal Form. A role is in Inverse Normal Form iff inverse applies only to the role name;
that is, (R™)~ is transformed to R. Finally, normalization of syntactic sugar constructs
(e.g., Example 6.3 (a) and (b)) is a simple rule-based rewriting function systematically
transforming them into a set of equivalents. These rules can easily be derived from
OWLs structural specification [MPSP09].

Normalization is rather cheap in terms of computational time complexity. For in-
stance, NNF is linear in the size (number of terms) of concept expressions [HNSS90]. On
the other hand, some normal forms can grow exponential in space. CNF and DNF may
increase a concept expression of 7 terms in worst-case to 2" terms due to the distributive

160 Concurrency Control for Shared Knowledge Bases

law.® Normalization for some n-ary syntactic sugar constructs (e.g., DifferentIndividuals,
DisjointClasses) is polynomial in space, otherwise it is linear (e.g., Samelndividuals, Equiv-
alentClasses). Conversely, normalization can also involve simplifications, for instance,
factoring out tautologies.

Satisfiability Conflict

In general, if contradictory knowledge is added to a KB K then it becomes unsatisfiable;
that is, there exists no model 7 that satisfies all axioms in the TBox and assertions in the
ABox (see Definition 3.6). Recap, reasoning is no longer meaningful in this case because
one can conclude anything from false premises. This is a general concern regardless of
whether K is updated concurrently or not. It can be avoided by a guard mechanism
that analyzes and rejects updates which would result in an unsatisfiable KB (see Sec-
tion 3.1.5). In other words, this mechanism preserves consistency at DL level. In case
of concurrent access, however, it is no longer sufficient to analyze updates made by an
application in isolation; that is to say, concurrent access necessitates combined analysis
of concurrent transactions. Example 6.4 illustrates this.

Example 6.4/

Given an OWL KB W and its core KB /C, consider the transactions
T, = a(DisjointClasses(:A :B)) © and
Ty = a(ClassAssertion(:I1 :A)) a(ClassAssertion(:I1 :B)) © .

It is assumed that K is initially consistent, that T, T, start from the same state (snap-
shot) of VW, and that :A and :B are already declared as concepts in WW. Then, T, T, do
neither O-conflict nor E-conflict because syntactic instances are normalized and struc-
turally different; hence, both can commit. If both commit then X becomes inconsistent
at DL level afterwards: the individual named :I1 cannot be both an instance of :A and :B
since the concepts were declared to be disjoint. This is due to the fact that the knowledge
represented by the updates of Ty, T, contradicts each other.

An S-conflict is consequently the situation where the execution of two or more op-
erations of different transactions leads to inconsistency of the KB, which is formally
expressed by the following definition.

Definition 6.8 (Satisfiability Conflict). Let 01, ...,0,, n > 2 be each either an add or a delete
operation in a history H. Then o, ..., 0, S-conflict w.r.t. H iff the operations are from at least
two different transactions Tq, Ty that are interleaved in H and commit of Tq, Ty leads to an
unsatisfiable KB.

A similar assumption to E-conflicts is made here: within a transaction there is no
S-conflict. It is equally reasonable to assume that a transaction T generated by an appli-
cation is itself consistent, meaning that if KT is the result of executing T on the empty
KB then KT is satisfiable (consistent).

®For example, the following non-DNF concept expression having 2 terms is normalized in DNF to a
concept expression having 4 terms: (C; LUCy) M (C3UCy) < (C1MC3) U (C1MCy) U (CaMC3) U (CaMCy).

6.2 CC Model for OWL Knowledge Bases 161

Also, note that in case of OWL an S-conflict can only occur when new syntactic in-
stances are added but not for deletion. This is a consequence of the fact that the DL
SROIQ(D) underlying OWL 2 (and also any sublanguage such as the DLs underly-
ing the profiles EL, QL, RL) is monotonic (see Observation 3.1). We could therefore
safely drop the delete operation from Definition 6.8. In other words, Definition 6.8 is a
generalization including non-monotonic DLs.

An S-contflict can be detected under the SI protocol by extending the guard mecha-
nism to take into account local changes of a transaction T and the updates of meanwhile
committed transactions, which essentially means to analyze changesets.

Definition 6.9 (SI Satisfiability Conflict). Let T; be a transaction assigned with a start times-

tamp til and a commit timestamp til. Let S be the initial set of syntactic instances in an OWL
KB W wisible at the time when Ty starts (snapshot of T1) and whose core KB K is satisfiable.
Let At, be the set of syntactic instances added by T1. Let T, be a transaction that committed

in the interval [tsTl, tCTl] and At, (D) the set of syntactic instances that were added to (deleted
from) W by Ty. Then, T1 S-contflicts with Ty iff the resulting set 8" = (S \ Dt,) U AT, U AT,
represents an OWL KB W' whose core KB K' is not satisfiable.

If DL consistency needs to be preserved then T; commits successfully only if the
updated core KB K’ is satisfiable. In the general case there might be any amount of

transactions T; (i > 0) which committed in the interval [tsTl, tCTl]. Let A = JAT, and
D = U Dr, be the set of added/deleted syntactic instances by these transactions in this
interval. Then, T; commits successfully only if (S\ D) U A U A, represents an OWL
KB W’ whose core KB K’ is satisfiable.

Depending on the expressivity used in K, satisfiability checking has worst-case poly-
nomial complexity for tractable OWL profiles EL, QL, RL, exponential complexity for
highly expressive OWL DL, up to the point - OWL Full — where it is undecidable in gen-
eral (see Section 3.3.3). Checking for satisfiability conflicts can, therefore, be expensive
compared to the other two types of conflicts.

6.2.7 Extended Commit Protocol

Jointly addressing E, S, and O conflicts requires an extension of the commit rule of the
SI-based CC protocol, see Section 6.2.5. From an algorithmic point of view, this involves
essentially a sequence of three phases before a transaction is permitted to commit. We
call this the commit pipe, depicted in Figure 6.2. It works as follows.

For each transaction T, phase one starts with transaction begin () and lasts until T
is ready to commit. Updates (add and delete operations) submitted by T are normalized
at their commencement and the normal form is kept in T’s changeset.

Phase two starts when a transaction T is ready to commit. A new commit timestamp
t! is assigned and its normalized change set is checked for disjointness against the nor-
malized change sets of all transactions that committed in its lifetime interval [t],t]]. If
there is no O-conflict then this implies that there is also no E-conflict because of preced-
ing normalization. Phase 3 can be started in this case. Otherwise, the T will be aborted.

In phase 3 the change set is checked for S-conflicts according to Definition 6.9. This
requires the use of a reasoning engine that is able to determine if applying the updates

162 Concurrency Control for Shared Knowledge Bases

Applications submitting T, .. T,
concurrent transactions add and delete operations reads
OWL CC e L , ———
Transformation to normal form '
~ = ¥ ¥
7 ® / . '
(® ® ® \—» Sl conflict analysis
normalized change sets “A: Satisfiability analysis
of committed transactions
I s I
v v
Storage & Snapshot native update operations
Management

Figure 6.2: Commit Pipe for OWL Concurrency Control.

preserves satisfiability. Only if phase 3 also succeeds updates are sent irrevocably to
the underlying storage layer to be made permanent. Otherwise, the system rejects the
transaction and might return an appropriate error code to the application.

A change set of a committed transaction T, needs to be kept as long as there is an
active transaction T in the system which started earlier than the commit of T (tI < tlo).

Phase 3 is done at last because it can be much more expensive than phase 1 and 2
together. This is a performance optimization and is otherwise not conceptually presup-
posed. Phase 1 and 3 can, in fact, be optional depending on the consistency require-
ments of applications. Amongst other aspects, this is discussed in the next section.

6.2.8 Correctness of the Protocol

SI is known to guarantee the absence of a number of concurrency phenomena and
anomalies, namely dirty reads and writes, lost updates, non-repeatable reads, and read
skews [BBG195]. Moreover, SI is known to generate recoverable schedules that are also
strict [ND10] (i.e., the class of schedules generated by SI are a proper subset of the class
of schedules that are recoverable and avoid cascading aborts). These results can be
transferred from the read /write model to our model because, based on commutativity
properties of operations, we apply the standard SI commit rule. Since there can also
be indirect conflicts owing to syntactic redundancies in OWL (i.e., data items that are
distinct though the corresponding syntactic instances are logically equivalent), we take
normalized change sets for conflict analysis, thereby ensuring that we do not miss such
indirect conflicts.

It is well known, however, that using standard SI data is unprotected from so-called
write skews. In essence, a write skew is the violation of an integrity constraint IC that
exists between two or more data items (i.e., an invariant that is per definition or natural
law). More precisely, a write skew is the situation in which the sum of the outcomes of
two transactions lead to violation of IC, though each of them when viewed in isolation
respects IC. The existence of this anomaly is plausible bearing in mind that transactions
in a multiversion system each operate on their own snapshot; hence, they are isolated

6.2 CC Model for OWL Knowledge Bases 163

from each other to the extent of being “blind” to what other transactions running in
parallel do. The consequence of this anomaly is that SI permits schedules that would not
occur for a serial execution, which means that SI does not comply with the ANSI/ISO
SQL isolation level serializable.

Probably the most important observation concerning the write skew anomaly is the
cooccurrence of two specifics:

1. A domain-specific integrity constraint is violated (as opposed to “core” integrity
constraints such as referential and entity integrity).

2. More importantly, only multiple transactions, each of them being correct in the
sense that each meets the integrity constraint on its own, can lead to violation of
the integrity constraint, not a single one.

The prominent example of such a domain-specific integrity constraint (used to il-
lustrate a write skew in [BBG195, CRF09]) is that of two bank accounts x, y whose total
balance must remain non-negative IC := x +y > 0. Write skews can analogously occur
in case of add and delete operations on OWL data items because domain integrity con-
straints do obviously not disappear just because the domain is represented by means of
an OWL KB, see Example 6.5.

Example 6.5}

Suppose there is a domain-specific integrity constraint IC(i, §p): either of ¢y, ¥, may
exist but not both together. Also suppose that neither of them is initially contained in a
KB K being accessed. Then the transactions

T1=7r(y1) r(¢2) a(y2) © and
To=r(y1) r(2) a(y1) ©

produce a write skew if both are executed on the same state of K and both commit
because IC is violated then. Observe that they do not O-conflict; we shall further assume
that they neither E- nor S-conflict. The two transactions might be submitted by two
programs that first test whether ¢, ¢, already exist. Since this is not the case both
conclude that they can add either of them; by doing so IC is not violated from their
isolated perspective. Since T, happens to add ¢ and T; happens to add ¢, they cause
IC to become violated.

Using our protocol in this form therefore means that write skews can be avoided
only if considered at application level; that is, applications that access a KB would need
to ensure to generate “safe” transactions (by careful programming) that do not provoke
write skews. This is, of course, not ideal since enforcing correct access (by transparent
handling of these kind of conflicts) should be a matter of the KBMS. However, there are
several approaches known in the literature that establish the serializability property for
SI. A general approach with low overhead has been proposed in [CRF(09]. Equally im-
portant, this approach preserves the property that reads are non-blocking. Serializabil-
ity of transactions is analyzed at runtime (rather than statically at development time) by

164 Concurrency Control for Shared Knowledge Bases

Transactions T,
OWL syntactic a(DisjointUnion(:Parent a(Obj’Prop’(:hasSon))
instances / data items :Mother :Father))

RDF data items
(sets of triples)
to be added,
deleted, read

Figure 6.3: CC model levels for RDF triple store integration. Transactions consisting of
operations over OWL syntactic instances result in operations over disjoint sets of RDF
triples at lowest level.

extending conflict analysis with checks for distinctive non-serializable access patterns.
These checks are essentially done based on an adapted multiversion serialization graph
testing technique [Ady99, FLO"05]. However, the approach also has a downside: two
transactions might be wrongly suspected to conflict when they actually do not (i.e., it
produces false positives). Though the approach is transferable to our model, we have
found that there is also a completely different approach that is devoid of false positives
and therefore seems worth being explored, the basic idea of which will be sketched later
on in the discussion Section 6.6.1.

6.3 RDF Triple Store Integration

Applying CC at the level of OWL syntactic instances is compatible with their repre-
sentation and storage as RDF triples. This means that our approach can be used to
build (or extend existing) RDF triple stores to provide correct concurrent access to OWL
knowledge bases if they should be represented as RDF triples. This relies on one main
observation: Structurally different OWL syntactic instances are always mapped by the
OWL-to-RDF mapping (see Section 3.3.4) into disjoint sets of RDF triples. This implies
that it cannot happen that two update operations (add or delete) that operate over dis-
tinct OWL data items overlap/interfere at the level of RDF triples. Consequently, oper-
ations at the level of RDF triples are uniquely determined by the higher level operations
over OWL data items. This results in the layered approach depicted in Figure 6.3.

We use the notion of RDF data items as an ancillary tool to show that the sets of RDF
triples resulting from the OWL-to-RDF mapping are mutually disjoint whenever they
result from structurally different OWL syntactic instances. It should be mentioned that
they would not find their way into an RDF triple store.

Given an OWL syntactic instance ¢, we denote its corresponding RDF data item
with dillzDF. The RDF data item contains the transitive closure over blank subject nodes

(a.k.a. blank node closure) of T () (see Section 3.3.4). This owes to the fact that OWL syn-
tactic instances can be nested and triples resulting from the mapping of inner syntactic

6.3 RDF Triple Store Integration 165

digt SubClassOf(: A ObjectUnionOf(:B :C))

jRDF
dif

€) owl:Class

1%

LD dikpF

@ Resource
rdf:nil (O Blank node
[] Literal

Figure 6.4: Data items at OWL and RDL level illustrated using a fictitious OWL syntactic
instance.

instances need to be included if the inner syntactic instances are anonymous. The blank
node closure (BNC) is recursively defined as follows. Let t = (s p o) be a triple in an
RDF graph G where the subject node s is a resource (IRI) or a blank node. The blank
node closure bne(t, G) of t in G is the smallest set containing (i) the triple f itself and (ii)
bne(u, G) where u € G is a triple matching the pattern (0 * %), 0 is a blank node, and *
denotes any predicate and object node, respectively.” Then, an RDF data item is

diy”" = |J bne(t,G) (6.2)
teT ()

where G is the RDF graph obtained from recursively mapping all syntactic instances
contained in an OWL KB. Only if ¢ is not nested, or if directly nested syntactic instances
are non-anonymous, then the RDF data item encompasses exactly the set of triples to
which it is mapped; diy,°" = T(p) in theses cases.

It is easy to see that the number of triples contained in an RDF data item is not fix but
varies depending on the actual syntactic instance i (cf. Table 3.4). Figure 6.4 illustrates
how an RDF data item is determined by a nested OWL syntactic instance whose inner
instance is anonymous.

Theorem 6.10 (Disjointness of RDF Data Items). Given an OWL KB W containing two
structurally different OWL syntactic instances 1, o, represented by the RDF data items digPF

and dill;?F being subsets of an RDF graph G = T(WV) then di{}?F N dig?F = Q.

Proof. First, empty RDF data items which contain an empty set of RDF triples do not

exist because there is no empty OWL syntactic instance. If two RDF data items dingF,

dig?F contain just one triple then they are trivially distinct as long as the triples are

distinct according to the RDF specification (otherwise they are the same dill;PF = dig?F .

"Note that the BNC is a subset of the so called concise bounded description [Pat05].

166 Concurrency Control for Shared Knowledge Bases

In any other case T(y1) C dingF and T(¢) C diﬁ,{?F are disjoint since the mapping T
is unique. Finally, for all triples t € T(y) and u € T(y,), bne(t,G) and bne(u, G) are
mutually disjoint, also following from the uniqueness of T. T does create new blank
nodes whenever necessary. [

The layered approach over OWL and RDF data items can be regarded as partly re-
lated to the concept of Predicate Locks (PL) [EGLT76]. This is justified by the fact that the
definition of an RDF data item (see Equation (6.2)) can also be understood as a definition
of a predicate satisfying exactly the set of triples that represent a given OWL syntactic
instance.

Finally, we would like to point out that jointly addressing O, E, and S conflicts di-
rectly at the level of RDF triples is complicated if not infeasible in practice as it would
introduce a considerable overhead: In order to check for E and S conflicts, one would
inevitably need to reconstruct the semantics of OWL syntactic instances from triples
first, for instance, by applying the inverse mapping T~! from RDF to OWL.

6.4 Integration of Inferencing Engines

Integration with DL-based inferencing engines builds on the common ideas of (i) sep-
arating explicit from implicit knowledge and (ii) dynamic computation of implicit
knowledge at query answering time versus materialization of implicit knowledge (pre-
computation). We consider two types of system architectures depicted by Figure 6.5.
Both have in common that explicit knowledge is maintained by a data store (which
might be an RDF triple store) providing CC as discussed in Section 6.2. When mate-
rialization is used we propose, however, to internally partition the data store. This is
done for performance reasons and to prevent the need for a more complex distributed
transaction management. Altogether both architectures share the following properties:

1. Under concurrent updates it is important that inferencing engines see only the
results of committed update transactions. This can be ensured by Sl-based CC in
general, no matter whether it is applied at the level of OWL syntactic instances or
at the level of RDF triples.

2. The fact that reads to the data store are never delayed (by update transactions run-
ning in parallel) provides scalability only bounded by the technical access limits
of the data store. More interestingly, it is even possible to use multiple inferencing
engines in parallel. This allows for better scalability by concurrent query answer-
ing distributed over multiple inferencing engines.

3. The architectures are independent of the different types of reasoning al-
gorithms that exist; notably, rule-based forward/backward chaining (e.g.,
OWLIM [KOMO5]), Datalog engines (e.g., KAON2 [Mot06]), and tableau-based
(e.g., Pellet [SPGT07], HermiT [MSHO09], RacerPro [HMO1b]).

6.4 Integration of Inferencing Engines 167

Client Applications Client Applications
Concurrent Updates Concurrent Queries Concurrent Updates Concurrent Queries
| A A A
\ \
[== \
Data Store @ Pata EStore 4l
explicit axioms == Inferencing Engine | Inferencing Engine
; W T R
and assertions [s - explicit | implicit b
fac.:t.s 3 fagt§ (r) updates to implicit facts partition
(r) reads as part of query answering partition , partition (u) update notifications from explicit
(u) update notifications (optional) facts partition
(a) online inferencing (b) materialization of implicit facts

Figure 6.5: System Architecture Types for Integration of an OWL Data Store with Infer-
encing Engines.

6.4.1 Online Computation of Implicit Knowledge

The first type depicted by Figure 6.5 (a) considers inferences to be computed online as
part of query answering requests. It is intended to be used when update frequency can
become very high and computational complexity of reasoning is rather low, e.g., when
a tractable OWL 2 profile is used (EL, QL, or RL).

Every update will be made directly to the data store and query answering (reads)
will be generally handled via inferencing engines, assuming that an appropriate query
interface is provided either directly by them or layered on top. Consequently, inferenc-
ing engines need to read from the data store in order to provide complete query answer-
ing over explicit and dynamically computed implicit knowledge. However, reasoning
engines are purely read-only regarding the data store (i.e., they never need to update
the data store). Since Sl is used, they can read without additional delays and multiple
instances can be used in parallel to distribute the load of concurrent query answering
requests.

According to this architecture blueprint, an optional update notification mechanism
exists from the data store directed towards inferencing engines. This is motivated by
utilizing incremental reasoning capabilities provided by several inferencing engines.
Whenever an update commits, its change set (added and deleted triples) would be prop-
agated to inferencing engines. This allows them to keep internal caches up to date with
changes to the data store. Finally, we note that with such a notification mechanism it
would also make sense — for performance reasons of reasoning — to actually restrict the
data store to maintain only the (possibly large) ABox and assume that the TBox and
RBox is maintained internally by the inferencing engines.

6.4.2 Materialization of Implicit Knowledge

The second type of architecture blueprint addresses cases where update frequency is
moderate and query requests (vastly) outnumber updates. In such cases it is often ben-
eficial to precompute and materialize implicit knowledge and keep it in sync with up-

168 Concurrency Control for Shared Knowledge Bases

dates to the explicit knowledge. However, materialization is generally possible only if
the expressivity of the underlying DL has the finite model property®; that is, if there cannot
be cases in which one can infer an infinite number of axioms and/or assertions.

One might be tempted to directly apply a separation of explicit and implicit knowl-
edge by using two independent data store instances. However, this imposes more com-
plex CC in order to guarantee correct data access at a global level such that consistency
spans both data stores. The reason is that in this case one has to apply distributed trans-
action management which would require dedicated coordination mechanisms between
data stores to ensure atomicity (e.g., Paxos, Two-Phase Commit, or Commit Ordering).
Our proposal still supports the separation of implicit and explicit facts and also the abil-
ity to distribute the load of inferencing to multiple engines. This is achieved, first, by
using one data store which is internally partitioned in one for explicit and another for
implicit knowledge. Second, by extending transactions such that updates to implicit
knowledge caused by updates to explicit knowledge are committed all at once (or not
at all), essentially making updates spanning both partitions atomic by combining them
into one transaction. The partitioning also has the advantage that all implicit knowledge
can be easily discarded (by clearing the partition).

We illustrate the need for combining updates to either of the partitions into one
transaction using the following example.

Example 6.6}

Imagine a transaction T, making updates in the partition for explicit knowledge, i.e.,
that has a nonempty changeset 6(T,). Furthermore, we assume that T, does not conflict
with another transaction. The successful commit of T, implies updates in the partition
for implicit knowledge, computed by an inferencing engine after T, commits. Let us
assume that these updates were applied to the partition for implicit knowledge by a
transaction T; having the nonempty changeset §(T;). Consequently, T; does not start
before T, commits. In practice there would be a time interval between commit of T,
and commit of T; in which another read-only transaction T, might be executed. In
this interval T, sees the update §(T,) but not yet 4(T;); that is, not the entailments of
the update to the explicit knowledge. Obviously, this would be unsound w.r.t. to the
underlying DL.

The missing knowledge anomaly described in Example 6.6 can be avoided if T, and
T; are combined into one transaction, essentially making application of explicit and
implicit updates atomic. Since both updates become visible all at once in both partitions
other transactions cannot see partial updates. This implies, of course, that the change
sets 6(T,), 6(T;) need to be joined for conflict analysis against other active transactions.

8For instance, SHOQ is a rather expressive DL that has the finite model property.

6.5 CC applied to Semantic Service Execution 169

6.5 CC applied to Semantic Service Execution

At the beginning of this chapter we have explained when semantic service execution
requires read and update queries to be executed on shared KB (cf. Figure 6.1). In this
respect, there are two important aspects to consider:

1. Temporal happened-before relations over changes in the domain need to reflected
accordingly in the KB. That is, a strict precedence in the control flow must be
reflected exactly in the order in which updates made on the KB become visible. In
contrast, a partial precedence should be reflected in a best effort manner, at least,
meaning that the order in which changes are observed versus become visible may
be different.

2. Since the KB is used for decision making, promptly updating it to changes in the
domain and promptly checking whether required conditions hold is important
insofar as it reduces the probability of suboptimal or even wrong decisions due to
tardiness.

Let us begin with the second aspect. The point at which queries are issued (cf. Fig-
ure 6.1) naturally follows the aim of promptness: given the disposition of the service
model, preconditions are checked as late as possible while effects are applied as early
as possible. The concurrency control protocol that has been described in this chapter is
applied to this in an equally natural way: precondition queries prior to invocation and
effect update queries upon completion are encapsulated, respectively, by one transac-
tion as depicted in Figure 6.6. More precisely, precondition checking is encapsulated by
one read-only transaction Tp possibly comprising multiple queries depending on how
many preconditions a service has. This ensures reading the same state of the KB for each
precondition. Effects are applied upon successful completion in one update transaction
Tg possibly comprising multiple add, delete operations depending on the number of
effects a service has. This ensures that effects are applied atomically.

The transactional model is thereby one with multiple transactions per service in-
stance. This raises the question whether combining these transactions along the lines
of multilevel transactions is worthwhile or even implied. More specifically, whether a
model is used in which the execution of a service corresponds to a top-level transac-
tion that encapsulates the transactions for precondition checking and effect updates as
direct sub transactions (i.e., two transaction levels). We can immediately conclude that
the concept of closed nested transactions [Mos85] is not appropriate. The reason is that
the effects applied by update transactions would be made visible to other transactions
only upon commit of the top-level transaction since commit of nested transactions is de-
ferred until the commit of the top-level transactions. Hence, representation of changes
in the domain is (more or less) delayed — a property that is clearly conflicting with the
aim of prompt representation. The concepts of open nested transactions [WS92] and
composite transactions [ABFS97] were introduced to overcome exactly this restriction,
the latter of which being a generalization of the former. Both models are in princi-
ple capable of incorporating the two requirements made above. The commit of sub
transactions is not deferred and the precedence order given by the control flow can

170 Concurrency Control for Shared Knowledge Bases

Composite Service Executions
Opg !

/ \
O - 7 \
1o \ : Ops _>©
/ 'y /
i { I
ad ’
‘

; i Opa

i \ B i
; g v) i
f \ [A
/ \ I
roi A i (@) » O
A by 1 UPs »1 UPe |
, 7 i ! \ \ (Y i y A N
/ i N 4 \
, i / g \ i ”\ / \
; ! v i / i i \ 1 !
, 7 J i J I \ i iy | i \
; / F § i g i [g i !
Transactions K ig T 1 i \EE T
i)
S ‘ P B Loite E
/ 1

‘ Te ‘ Te " Te ‘E‘E ‘T —
aWs) |)) W) |) time
d(s) I d(llfz)
previous . - yiakes |
commitg{;]r T‘ T >
commit commit
Y2, Y3 2 data

Figure 6.6: Mapping of read and update queries (see Figure 6.1) for service execution to
read /update transactions and example operations over OWL syntactic instances.

be correctly enforced. Yet the main potential of these models lies in defining transac-
tional semantics for services to enable reasoning about their transactional correctness,
namely atomicity and isolation. In this regard, it is important to make a distinction
between two related but different aspects: In this section we are concerned with co-
ordinating access to a shared KB that is (primarily) used for representing the world
state as it evolves. This should not be mixed up with the problem of how to meaning-
ful define and provide transactional semantics for the execution of services themselves.
More specifically, advanced transaction models such as the concept of flexible transac-
tions [ZNBB94], Sagas [GMS87, GGK91], or transactional processes [SABS02] provide
generalized notions of atomicity that guarantee termination in a well-defined state over
a services’ sub processes executed in the underlying sub systems. This aspect is not the
subject of this section and has been discussed in Section 5.5.

Coming back to the first requirement stated above, correctly representing tempo-
ral happened-before relationships involves enforcing the temporal succession as spec-
ified by the control flow over the precondition checking and effect creation transac-
tions. A strict precedence in the control flow therefore implies a strict precedence over
the commit order of corresponding transactions. More precisely, if t;,t, are two or-
dinary transitions of some control flow such that #; strictly precedes t, (which is the
case if there is a path W such that t; is the first and ¢, is the last element on W) then
Tplt < T < Tp2 < T2 where < denotes the commit order.

If the SI protocol is applied for CC then precondition checking sees a snapshot of the
latest domain state committed at this instant in time without being blocked nor block-
ing any other active transaction, which makes the protocol particularly suitable. Effects
become visible in an atomic way all at once upon completion of each operation. Effects,
however, do not necessarily have to be applied atomically all at once per operation. This
actually owes to the service model with indivisible request-reply style invocation of op-

6.6 Discussion 171

erations. Considering an advanced service model where effects of (very) long running
operations can emerge any time during execution, it would be more appropriate to sub-
mit update transactions promptly with emergence of each single effect; thus, achieving
an even more fine grained and prompt representation of effects in the knowledge base.

6.6 Discussion

What makes our approach that considers the non-blocking SI protocol particularly suit-
able for applying it as a concurrency control means to knowledge bases rather than the
conventional read/write model or a locking-based protocol such as S2PL? To discuss
this question we shall consider both the qualitative level along serializability proper-
ties (i.e., which isolation levels are guaranteed) and the quantitative level along runtime
performance properties.

6.6.1 Correctness

A discussion of correctness properties should, first and foremost, ask the question which
isolation level would be sufficient from an application point of view.That said, we have
to accept that the required isolation level is completely determined by the concrete do-
main of application. Therefore, the pat answer is that there is no single answer. This is
basically the same result that we get for classic database management. The one law that
seems apparent here is that the larger the domain gets, the more likely it is that a relaxed
correctness is the only feasible solution on the large scale (enforced by a protocol such as
SI or one that provides eventual consistency [Vog09]), whereas a strict correctness notion
such as serializability is required on the small scale (i.e., in subdomains).

Having discussed the isolation level currently provided by our protocol already in
Section 6.2.8, we sketch the basic idea of a completely different correctness notion to
conventional serializability that is purely integrity constraint based. We call it Integrity
Isolation (I?). The basic idea originates from the observation on write skews described
in Section 6.2.8. In fact, it can be seen as a generalization of S-conflict checking.

Recap, the leakage line impeding correctness is essentially the cooccurrence of an
integrity constraint IC that gets violated only by the sum of the updates of multiple
transactions. This gives raise to the idea of making IC known to the KBMS (or DBMS).
If the KBMS is aware of IC and if IC is decidable then it could, in principle, transpar-
ently verify whether interleaved transactions conflict w.r.t. IC. Regarding the Sl-based
protocol this means that the change set of a transaction T that is ready to commit is
checked regarding IC with the change set of every transaction that committed in its life-
time [t],t!]. If IC is not violated (and there is also neither of an OES conflict) then T
commits. Abstracting from the protocol, Integrity Isolation is defined as follows.

Definition 6.11 (Integrity Isolation). Let S be a schedule, S' its commit-projection, and let C
be a finite set of integrity constraints. The non-aborted transactions in S are integrity isolated
w.r.t. Cif neither of them reads data that violates any of the constraints in C nor does the commit
of transactions in S' leads to violation of any of the constraints in C.

172 Concurrency Control for Shared Knowledge Bases

Algorithmically, integrity constraint checking can be integrated in the SI-based ac-
cess protocol by proceeding in the same way as for S-conflict checking.” Likewise, S-
conflict checking is a special case of Integrity Isolation because satisfiability can be seen
as an integrity constraint.

Observe that Integrity Isolation is not equivalent to serializability in general since C
might be incomplete (i.e., there might be integrity constraints in the domain that are not
in C, whatever the reason for this may be).

OWL itself would be one candidate for specifying integrity constraints, especially
as the use of OWL as an integrity constraint specification language has already been
proposed and discussed [MHS09, TSBM10]. This appears attractive since the same for-
malism is homogeneously used. On the other hand, it is not possible to express all kind
of integrity constraints in OWL. For example, one cannot express the prominent write
skew example from the finance domain (x + y > 0, see Page 163) because addition does
not exist in OWL. Therefore, one question that needs to be further explored for this
approach is what would be practicable and sufficiently expressive integrity constraint
specification languages/formalism. It seems evident that a Turing-complete language
is required in order to be general enough. One possibility that comes to mind is to
formulate integrity constraints directly as a Boolean query using, for instance, SPARQL.

Another question regarding Integrity Isolation concerns consequences on the run-
time performance due to the fact that integrity constraint checking becomes part of
transaction processing. The runtime performance change is presumably dominated by
the computational complexity induced by the actual formalism used. What is more, the
approach also comes at the cost of additional efforts at design time for modeling the
constraints. The latter, on the other hand, might be desired anyway as it could be used,
in addition, for checking soundness of the modeled domain at design time.

To the best of our knowledge, the idea of making integrity constraints explicit and
integrating them for isolation reasoning has not been described nor implemented yet,
though integrity constraint checking within single transactions is a standard and long
standing part of database technology.

6.6.2 Performance

Contrasting our approach with the read /write model and other access protocols, partic-
ularly those that are blocking, we argument in the following pro (+) and contra (—) our
approach on performance related concerns. There is one more point, which is inherent
in the model rather than the access protocol, that seems disadvantageous at first sight
but which can be eliminated by optimization (£).

+ Reads are never delayed nor do they delay concurrent update transaction. They
can be done in parallel by virtually any number of clients at the technical scalabil-
ity limits of the system. Non-blocking reads are especially worthwhile for query

Tt should be noted, in this context, that “integrity constraints have two flavours — static and dy-
namic" [Rei88]. Enforcement of the former does not involve taking previous states of a KB into account
whereas this is the case for the latter. The example of a dynamic constraint mentioned in [Rei88] is that of
employment salaries that must never decrease, which requires reading the previous value and comparing
it with the new value in order to determine whether an update adheres to the constraint.

6.6 Discussion 173

answering that involves possibly long-running reasoning. The time required to
answer a read query does not has an impact on concurrent update transaction pro-
cessing (i.e., both are completely decoupled). In contrast, the duration for which
read locks need to be held in a blocking protocol directly affects the performance of
concurrent update transactions in case they need to wait unless a lock is released.

— The longer a (read-only) transaction lasts in time, the more likely it is that its snap-
shot becomes outdated, provided that there is a considerable amount of updates
taking place concurrently in this time. This becomes especially relevant to the
case of representing a world state in the KB. It seems obvious that relying on an
outdated world state can lead to problems (e.g., a decision made based on an out-
dated state that would not have been made based on the most recent state). On
the other hand, considering a blocking protocol, the longer a transaction lasts the
more likely it gets blocked because a data item that is to be read /updated has been
accessed by another transaction. Therefore, it is more relevant to the case of world
state representation not to let the proportion of transactions length and update
frequency diverge to much; that is,

global number of updates during length(T)
length(T)

should not grow too large (length(T) is the duration of T in time).

+ Snapshot management of immutable data items is simpler compared to mutable
data items because the former have a binary lifecycle (they can either exist or not)
as opposed to the need of managing versions in case of mutable data items.

— Snapshot management of immutable data items can lead to higher space con-
sumption because they are entirely deleted and added as opposed to mutable data
items where usually just a fraction is updated (e.g., a record of which a single field
is updated).

£ Direct (naive) implementation of the add and delete operation leads to two ac-
cesses to (stable) memory for what is an update, as opposed to just one access in
the read /write model. To illustrate this, let us come back to Example 6.2. Updating
the balance of the bank account :ACC1 by transaction T,,4 is achieved by a delete
of the obsolete assertion followed by an add of the current assertion (d (1) a(i3)).
If they are directly executed on memory then this would result in two accesses: (i)
return the space allocated by ¢, to free memorys; (ii) allocate space for 3 and store
Y3 in it. Considering the fact that ¢; and 3 differ only in the number value (i.e.,
the subject in RDF terms), we can replace this by one memory access that writes
{3 to the memory space that stores 1; (as it would be the case in the read /write
model). In order to implement this optimization, we must be able to identify so-
associated delete-add operation pairs, which can be achieved in two ways. Either
the KBMS is explicitly told as an additional part of a transaction what are associ-
ated delete-add operations; hence, the application needs to provide this informa-
tion, which is easily conceivable. Otherwise, the KBMS itself analyzes each trans-
action and checks whether there are pairs of operations that can be optimized this

174 Concurrency Control for Shared Knowledge Bases

way. The former appears favourable because it does not induce additional work
in the KBMS, though it requires extension of applications and the transactional
interface of the KBMS.

+ Integration of reasoning engines is simple, scalable, and (i) online computation
of implicit knowledge at query answering time vs. (ii) materialization of implicit
knowledge is supported (provided that an OWL profile is used which has the
finite model property).

Among the different types of conflicts, S-conflict checking does certainly has the po-
tential of dominating the overall performance as its complexity is determined by the
complexity of basic satisfiability reasoning in the underlying DL actually used. On the
other hand, S-conflict checking can be deactivated if (i) logical consistency is not a pre-
requisite for reasoning (e.g., paraconsistent reasoning) or if (ii) it is known that client
applications behave such that they cannot create such update conflicts. Consequently,
it should be seen as an optional feature that one might want to turn off deliberately.
What is more, the presence of an S-conflict not necessarily requires rejection (abort)
of one transaction. It is also possible to try to resolve the conflict. In fact, resolving an
S-conflict corresponds to the belief revision/update problems (see Section 3.1.5 and Sec-
tion 4.2.2). This means that a conflicting transaction would be extended by additional
delete and /or add operations which resolve the conflict.

Likewise, E-conflict checking is not required if all clients agree on submitting trans-
actions in which syntactic instances are always in the same normal form. On the other
hand, the overhead induced by normalization might not be wasted. Reasoning engines
usually require pre-processing and normalization anyways. Consequently, they can
take advantage by directly reusing the normalized forms, provided that a normal form
is used that is the same as the one used by a reasoning engine. Whether this suggests
storing normalized forms rather than (possibly more concise) unnormalized originals is
an aspect beyond the scope of this thesis.

6.7 Summary

Taking OWL syntactic instances as first class citizens for applying concurrency control
directly on them is the basic principle that allows for combining the notion of data con-
sistency with the higher level notion of logical consistency for coordinating concurrent
access to OWL knowledge bases. This idea can in principle be transferred to other
axiomatic knowledge representation formalisms in which axioms are immutable (i.e.,
when revising /updating knowledge is accomplished by removing obsolete axioms and
adding current axioms). As we have seen, the basic principle includes a departure from
the prevalent database read /write model with the basic read and write operations to-
wards a model in which the basic operations are read, add, and delete. We have shown
how CC is applied in this model. It turned out that the paradigm shift is almost straight-
forward. Applying this model generally appears natural to us whenever data items are
immutable.

6.7 Summary 175

Moreover, the basic principle of read/add/delete operations over OWL syntactic
instances can be used regardless of the actual CC protocol, provided that the protocol
relies on the notion of commutativity for determining whether a transaction is permit-
ted to commit. Likewise, the specifics of OWL necessitates E- and S-conflict checking
irrespective of the CC protocol used. In fact, this observation can also be generalized:
every (axiomatic) knowledge representation framework that comes with syntactic re-
dundancies and in which a notion of consistency exits as a prerequisite for reasoning
procedures necessitates E- and S-conflict checking for concurrent access on a shared
knowledge base. We therefore expect these to become standard parts of future KBMSs.

Motivated by the specifics of practical applications that rely on OWL as their infor-
mation representation framework, we have chosen to adopt the non-blocking SI proto-
col rather than a classical locking-based protocol such as S2PL, even though “standard”
SI is known to be not serializable in general. As we have discussed, we expect better
performance for read-dominated workloads and if satisfiability checking is activated.
The choice for Sl is also not problematic bearing in mind that several techniques have
been reported that enforce serializability. Yet this remains to be integrated in the overall
approach.

Finally, we have also shown that the method is independent of the (physical) rep-
resentation of OWL syntactic instances provided that (physical) data items are distinct
whenever their corresponding OWL syntactic instances are distinct. As a result, one
can use representation formats other than OWL's abstract syntax. In particular, it is
possible to use RDF triple stores underneath. An implementation of the method will be
described in Chapter 7 and results of a quantitative evaluation follow in Chapter 8.

Implementation

HIS TECHNICAL CHAPTER focuses on the software developed as part of this thesis.
Our contribution is threefold. First, we describe OSIRIS NEXT — an infrastructure
for peer-to-peer style service execution in which CFI introduced in Chapter 5 has been
prototyped. OSIRIS NEXT works with OWL-S as the service description and process
specification language, which implies that the underlying knowledge representation is
based on OWL. OSIRIS NEXT further includes an execution strategy that allows for on-
demand migration of ongoing service executions among remote peers. We explain the
basic principle and how it is implemented. Afterwards, we describe two performance
optimization techniques that have been implemented to speed up sub-tasks that may
recur frequently for service execution using semantic services. While we use these tech-
niques in the context of service execution, they are not limited to this use case, and are
applicable in general whenever the same parts of a KB are frequently accessed /queried.
Third, we describe an OWL store that implements the CC method introduced in Chap-
ter 6. This chapter is correspondingly divided into three sections. Finally, it should be
mentioned that all software is written in Java.

7.1 OSIRIS NEXT

We have developed OSIRIS NEXT! as a prototype to implement our view of a dis-
tributed, modular, and semantic-aware service execution infrastructure. It combines a
rich set of features from Distributed Systems, Database Technology, Process Manage-
ment, and Semantic Technologies. It also provides the basis on which our method for
flexible failure handling introduced in Chapter 5 has been implemented and evaluated.

OSIRIS NEXT builds upon two lines of previous work. First, the Open Service In-
frastructure for Reliable and Integrated process Support (OSIRIS) that has been originally
developed at ETH Zurich [SWSS03, SWSS04, SST*05]. Second, OSIRIS-SE (Stream En-
abled) — a successor that has been developed in the context of research work on reliable

! Available Open Source (LGPL) at http://on.cs.unibas.ch.

http://on.cs.unibas.ch

178 Implementation

data stream processing at University of Basel [BS07, BS11].> While the commonality be-
tween these three systems is that they feature distributed and decentralized execution,
the execution system implemented in OSIRIS NEXT has been developed independently
of the original OSIRIS process execution system (which is also used in OSIRIS-SE). In
fact, both are different regarding the way in which execution is distributed, which is
further explained in the next section and Section 7.1.2.

7.1.1 Architectural Overview

At its bottom layer, OSIRIS NEXT is essentially a component-based and message-
oriented middleware that supports reliable point-to-point (e.g., one-way, request-reply)
as well as publish/subscribe message exchange patterns. At the higher level, applica-
tion services as well as system services can be deployed. The latter provide basic infra-
structure-related services, and they may also be used by application services. Much of
the design at these two levels goes back to the original OSIRIS system and is conceptu-
ally still the same, though its has been extensively refactored and streamlined.

Application services are either standard Web Services accessible via SOAP or native
application services, which differ from the former in that they are accessible via OSIRIS
NEXT-specific messaging. Both system and native application services are designed at
programming level as managed components that undergo a basic lifecycle. The execu-
tion engine implemented in OSIRIS NEXT is realized as one such component.

Distributed System Organization

The underlying distributed system model considers a set of peers (which may be synony-
mously called nodes).> Peers can reliably exchange messages (i.e., FIFO, no duplicates,
eventual delivery) in both an asynchronous and synchronous way.* Publish/subscribe
message exchange is available in addition and is implemented as a system service on top
of the point-to-point message exchange primitive. The set of peers is not static, meaning
that peers can join and leave at any time (i.e., peers may become disconnected).

Figure 7.1 provides a high level organizational overview of OSIRIS NEXT. The main
property is that there is no hierarchy; hence, it can be seen as a peer-to-peer structure.
Execution engines are deployed at peers. Our design considers at most one execution
engine instance per peer, which is not a limitation since each engine is designed to al-
low for concurrent execution of multiple service instances. Execution engines interact
with each other in order to execute composite services in a distributed way. More pre-
cisely, distributed execution in OSIRIS NEXT means that multiple peers may be involved,

2Apart from the data stream processing unique to OSIRIS-SE, it is a reimplementation of major parts
of OSIRIS in Java, whereas OSIRIS is written in Microsoft C++ and is thus runnable on this platform only
—a drawback resolved by the Java implementation.

3The system supports a one-to-many relationship between physical machines (hosts) and peers, mean-
ing that a host may run multiple peers in parallel. This implies that peers are not necessarily remote in
the sense that they run on different hosts. Peers running on the same host are, however, in different JVM
instances, which in turn means that messages go through a local network layer.

4 Asynchronous versus synchronous message sending is not to be confused with an asynchronous
versus synchronous model of time, see also Footnote 1 at Page 99.

7.1 OSIRIS NEXT 179

Service Provider

Internet

Applications

[]
S —
.)

2]

=)

% —

Execution
Peer

Execution
Peer

Service Execution Provider (Peers)

Figure 7.1: High level organization of service execution engines, application services,
and client applications, and the main interactions between them.

but not concurrently.® Control is consequently not distributed at the same time for a
concurrent process; hence, there is no need for a distributed synchronization protocol.
Application services are either deployed outside of the OSIRIS NEXT network or on
peers within the network. The former are invoked by execution engines via their stan-
dard protocols (e.g., SOAP) whereas the latter are invoked via OSIRIS NEXT-specific
message sending. For this, we have specified an additional OWL-S grounding, see the
subsection on grounding service operations below.

Active engines wait for execution requests sent by client applications. These requests
are either self-contained, meaning that a request includes (i) the service specification (in
OWL-S) and (ii) required input values. In addition, we have implemented a service
specification repository (not depicted in Figure 7.1) by means of which clients can re-
quest the execution of a service that has been uploaded to a repository.

General Peer Architecture

The internal design and the functional decomposition of a peer is depicted in Figure 7.2.
In short, the design is comparable to the staged event-driven architecture (SEDA) [WCBO1].
Incoming and outgoing message processing is divided into stages that are connected by
FIFO queues. Queues can be configured to be backed by a persistent store; hence, being
crash-failure safe.

> From a conceptual point of view, distributed execution is understood herein as follows. Let Q be
the maximum degree of parallelism within the control flow of a service Sc (see Equation (4.21)), let [t;, t;]

(i < j) be the interval between execution start and end of an instance Sc, and let Py be the set of peers
at which the locus of control dwells at some moment in time ¢; < £ < . Then, distributed execution
means that | Uj<i<;j Px| is not limited to 1 and that Vt;: [P| < Q (i.e., the possibility that control spreads
over multiple peers, not necessarily at the same time, and never over more peers at the same time than
the maximum degree of parallelism). As a counterexample, a client-server system in which one server
(peer) executes a service on behalf of a client does not perform distributed execution, even if operations
are invoked remotely. In case of OSIRIS NEXT it holds that Vt;: |P;| = 1 irrespective of Q. In case of the
original OSIRIS system it holds that 3t : |P| = Q.

180 Implementation

Component i

Ve

‘ Command Handler l H

= Work queue —

4 4

Horus (message routing)

—
| E—

Incoming pipeline Outgoing |=— pipeline
‘/ Pipeline handler n ‘ ‘ Pipeline handler m ‘
‘/ Pipeline handler 1 ‘ ‘ Pipeline handler 1 ‘
T h 4

Transport layer

Figure 7.2: Internal design and functional decomposition of an OSIRIS NEXT peer.

Each stage is backed by a thread pool in order to allow for concurrent message pro-
cessing per stage. There are basically two stages: one at front-level for message dis-
patching and pre- and post-processing, and a rear-level one at which application/sys-
tem logic is located. They are respectively integrated in the Horus and components. Al-
though the Horus is, from a software-technical point of view, also a component, it is
the central message dispatcher. All incoming and outgoing messages pass through an
incoming and outgoing pipeline, respectively. Both pipelines are a configurable chain
of pipeline handlers, each implementing specific message pre- and post-processing. For
instance, publishing (sending) a message to all subscribers of a certain topic is imple-
mented as a dedicated outgoing pipeline handler. In addition, the Horus manages the
lifecycle of components (i.e., instantiation, initialization, deactivation).

Components are the basic programming abstraction to implement system or appli-
cation services. A peer may run any number of components in parallel, though compo-
nents are singletons. Each component, in turn, may run any number of command handler
that implement specific system or application logic. An incoming message is eventually
processed by a command handler, and it may send any number of outgoing messages
in return, or designate the behavior for the next message that it receives.®

A message is structured like a key-value associative array. Values are essentially the
payload containers and may be any serializable Java object. Keys, on the other hand,
are strings that, in addition, may form a tree structure (e.g., the keys “A.B” and “A.C”
form a tree in which “A” is the root and “B”, “C” are leaves). Messages are furthermore
typed. Together with a component’s address, this uniquely determines a command
handler that is responsible for handling an incoming message.

6A command handler is thus also comparable with the notion of an actor in the actor model [HBS73,
Hew11], which has recently gained interest in the area of massively concurrent computing.

7.1 OSIRIS NEXT 181

Global System Services

There are a mainly two global system services available to all peers: the so-called sub-
scriptions repository (SubRep) and the load repository (LoadRep).” The LoadRep holds
the recent CPU load of active peers. For this, each peer sends its current load when-
ever there was a change larger than a pre-configured threshold, which avoids sending
a message if the load has not considerably changed.

The SubRep holds meta data and replicates it partially on every peer. Notably, this
includes the current set of subscribers of a particular publish/subscribe topic and the
current set of components (i.e., services) available per peer, the latter of which therefore
establishes a very simple service registry. The SubRep furthermore tracks the current
status of peers that were once known, which we call the peers agency. The algorithm to
detect whether a peer is online or offline has been extended in OSIRIS NEXT. It is based
on periodic “ping” and “pong” messages and outputs a list of peers suspected offline
(which makes it different to heartbeats [KACT97]). More precisely, the interval in which
a ping is sent is successively increased up to a maximum value, and provided that the
status of a peer did not change as a result of the last ping. This gradually reduces the
frequency of messages sent, which is motivated by the observation that peers usually
either have a long uptime (e.g., a server) or a short uptime (e.g., a mobile device). In
other words, the longer the time a peer is known to be online (offline), the more likely it
is that it remains online (offline) for an even longer period. A change of the status from
online to offline, or vice versa, goes along with a reset of the interval to the smallest
value. Also, a peer that starts up (again) registers itself at the peers agency; hence, it
will be promptly marked online rather than at the time when the next ping is sent.

Grounding Service Operations in OSIRIS NEXT

As stated, we have extended OWL-S with a dedicated grounding for OSIRIS NEXT.
The grounding is based upon the following correspondences with the service model:

* A component corresponds to a service.
* A command handler of a component corresponds to an operation.

* A key-value pair of an incoming or outgoing message corresponds to an input and
output, respectively; the key corresponds to the identifier id and the value to the
data value val.

Addressing relies upon the standard mechanism in OSIRIS NEXT. More precisely, the
grounding includes an address (syntactically represented as a URI) that provides all the
necessary details to address a particular command handler of a component.

Related to the grounding is the way how a concrete assignment function ¢ can be
realized. This is achieved by a programmatic abstraction called OWLTransformator.
The name indicates that it is not only used for this purpose. In fact, an OWLTrans-
formator combines determining representatives with transforming service-specific

"The original OSIRIS system has additional types of repositories, but they are not used within OSIRIS
NEXT.

182 Implementation

Java data objects (a.k.a. POJOs) to OWL ABox assertions and vice versa, thereby pro-
viding a mechanism conceptually equivalent to data lowering and lifting considered in
SAWSDL.

Automated Semantic Service Description Generation

Another feature that we have implemented is automated generation of semantic service
descriptions in OWL-S. Every deployed application component thus publishes com-
plete service descriptions for every command handler registered, and which is acces-
sible to any peer via standard messaging as well as via HTTP (provided that the Web
server component is deployed). For this, the developer of a component annotates com-
mand handlers such that every message element (i.e., every input respectively output)
gets associated with (i) an identifier id, (ii) its type, and optionally a (iii) a human read-
able short description and (iv) a custom OWLTransformator to be used. The type is
essentially a reference to an OWL concept or data range.

7.1.2 Peer-to-Peer Execution

The execution system implemented in OSIRIS NEXT features composite service execu-
tion that is distributed on demand while decentralized, which provides another means
of flexibility in the service execution task.

Distributing the execution of composite services invariably requires means of orga-
nizing and coordinating how participating peers share this task. Such means are built
upon three core properties:

* How to partition the composite service into sections that can be executed by differ-
ent execution peers. Within a section, execution is performed by the same peer.

* A strategy to decide when and where sections are distributed to execution peers.

* A protocol that coordinates control among the participating peers such that correct
execution is guaranteed.

The strategy that has been developed for OSIRIS NEXT is designed particularly for
ad hoc services (which supposably have been composed automatically). As a result,
these kind of services are executed usually a few times only, possibly just once. This
calls for a strategy that involves minimal initial overhead to get all peers prepared that
might later be involved in the execution of a particular service. The strategy is fur-
thermore designed for flexibility in dynamically changing environments. For exam-
ple, environments with mobile devices on one hand and computing, storage, and other
types of resources delivered as “elastic” services on the other (of which the recent Cloud
Computing shift is a prominent representative). Both objectives — ad hoc services and
dynamic environments — are addressed by the possibility to migrate ongoing executions
between peers. What is more, the decision whether to migrate or not is made dynam-
ically at runtime as opposed to a decision determined in advance (which thus cannot
take dynamics at runtime into account).

7.1 OSIRIS NEXT 183

Table 7.1: OWL-S control constructs classified according to whether migration can be
performed immediately versus possibly delayed, and whether migration is possible at
all inside them.

Immediately Delayed Indivisible

Any-Order Split Choice
For-Each Split-Join If-Then-Else
Repeat-While Perform
Repeat-Until Set
Sequence Produce

Sections

The question how a composite service can be partitioned into sections can be answered
by analyzing the different control flow patterns that can be formed in the process model.
With an abstract point of view, however, sections that encompass exactly one ordinary
transition t naturally come to mind, which is at the same time the smallest sensible
granularity. Using sections of this size, a migration becomes possible in principle before
and after t; leaving aside technicalities, at t's input and output place.

Upon inspection of the control constructs available in OWL-S we have found, how-
ever, that additional aspects need to be taken into account. Control constructs in OWL-
S can actually be classified into three categories: (i) collection and iteration constructs
that can be partitioned into sections and for which migration is permitted without fur-
ther constraints; (ii) collection constructs that can be partitioned, but where additional
conditions have to be met to permit migration; (iii) constructs that cannot be sensibly
partitioned as they should be considered indivisible. The categories and the constructs
that fall into them are listed in Table 7.1. All constructs in the left column are innocuous
in the sense that a migration inside them can be done without further considerations
as they do not fork concurrent execution threads. This is apparently different for the
constructs in the middle column. A migration of multiple concurrent execution threads
becomes possible only after all threads are in a state in which this is possible, which
means that one has to pause and wait for all threads to be paused. Since a decision to
migrate is made at some point in either thread, the point in time when the migration
can actually be performed is likely delayed. Finally, constructs in the right column are
always executed by one peer since a migration inside them is not sensible. Choice and If-
Then-Else are, however, somewhat special in the sense that only the (conditional) choice
is made in an indivisible way, and subsequent constructs are not affected.

Notice, however, that the model of OWL-S has it that control constructs are nested
(rather than chained) to form complex services; hence, a process forms a tree in which
leaves are atomic service/operation invocations. Nesting implies that an outer (higher-
level) Split or Split-Join dominates nested control constructs regarding when migration
becomes possible. As illustrated by Figure 7.3, if a Split-Join encloses two (or more)
control constructs — a Sequence and a Perform in this case — then a migration within the
sequence is temporally governed by the other thread (i.e., it may be delayed until the
point in time when it becomes possible in the other parallel thread).

184

Implementation

. Sequence
(Performt2> Sequence

Figure 7.3: Emergency Assistance process (see Figure 4.5) depicted as OWL-S constructs
(nesting implies hierarchy). Dotted lines point out stages at which a migration is per-
mitted. As can be seen, there are seven stages altogether. For example, the rightmost
line symbolizes a migration upon completion of t;, ..., t4, but before t5.

Strategy

Figure 7.4 illustrates the migration strategy on the example of a composite service struc-
tured as a sequence of three atomic service invocations (S1, Sz, S3). It is also assumed
that the composite service is split up into sections equal to the atomic services. The
strategy works as follows:

1.

The client sends the OWL-S composite service description together with the input
data to one available execution peer, EP; in this case (step 1 in Figure 7.4).8

EP; parses the service description and instantiates the service by initializing a new
execution state for storing intermediate results and the control flow state.

A decision step follows to determine whether execution of the next section should
be made by EP; or whether the execution should migrate to another peer and con-
tinue there. In the example we assume that execution stays at EP;. Consequently,
it executes the first section which maps to service S; (2).

The decision step is repeated prior to each section.

. In the example we assume that subsequent to invocation of S, by EP; (3) execution

migrates to another peer, say EP; (4). In short, this is achieved by serializing and
transferring the execution state from EP; to EP,.

Finally, after invocation of S3 (5) the last section has finished and the result is
returned to the calling client by EP, (6).

8The client uses the SubRep to get a list of available execution peers first and then selects one by itself.
Alternatively, the client can send the execution request as a publish message having a corresponding
“service execution” topic. The infrastructure will then select a peer on its own to which the request is
forwarded.

7.1 OSIRIS NEXT 185

4. transfer

AN AR v

6. send result data i })/5 invoke B

Client EP; .
2. invok

- 1. submit composite service, — S~ S:

input data, and request execution -
3. invoke

S

Figure 7.4: Execution strategy illustrated for three available execution peers EP;, EP,,
EP; and a composite service made up of a sequence of three atomic services Sy, Sy, Ss3.

Migration from one peer to another comes at the expense of additional communica-
tion (compared to no migration) because it is essentially the current execution state that
needs to be transferred to the new peer. A migration therefore becomes beneficial if the
utility of executing the remaining part at another peer outweighs the communication
overhead and the value of staying at the same peer. Having said that, a migration can
even be imperative if the current peer is simply not capable of executing an entire ser-
vice by itself (e.g., a mobile device whose resources such as storage, bandwidth, battery
charge are not sufficient). Yet another example is offloading ongoing executions from
a peer to newly added peers as a means of scaling out to match an increasing global
workload; analogously possible in the opposite direction as a means of scaling in.

A simple cost model underlies the decision whether a migration is beneficial. Specif-
ically, let P be a finite set of online peers and p¢, p™ € P, p¢ # p" the current and new
execution peer, respectively; synonymously called source and target peer. We define the
benefit, denoted with B, as the function

B : PxP—=-1R
B(pS, p") = costx(cpc) — costx(cpn) — costm (pS, p")

where costy and costy, model execution and migration costs, respectively. Execution
costs costy is a function of a context information set cye (cpn) representing any kind of in-
formation about the environment of the current (new) peer. The context information set
might include various information about (i) the infrastructure or (ii) the application do-
main. The former includes, for instance, available computation and memory resources,
load, and other runtime related information. Application related information includes
meta data about services such as whether a service is memory, data, or computing in-
tensive. The function costy, estimates the costs for migrating execution from p° to p".
The value of costy, mostly depends on the network bandwidth and the overhead to seri-
alize and de-serialize the current execution state. Assuming that costs are positive (i.e.,
costy > 0 and cost,, > 0), the result of B can be characterized as follows:

* B < 0: execution is adverse at the new peer;
* B = 0: execution can continue at either peer;

* B > 0: there is a benefit in migrating to the new peer.

186 Implementation

Finding the optimal target peer p" requires calculating the benefit for all online peers:

p" = argmax B(pS, p") .
preP

Practicability therefore depends mainly on (i) the size of P and (ii) whether the infor-
mation used by costy and costy, is locally available or has to be gathered remotely first.
If P may become large then an incomplete approach that not necessarily finds the op-
timum may be the only practical approach. Also, reducing the amount of information
exchanged for the calculation to a minimum is clearly valuable. Taking into account the
possibility of replicating information, there are many arrangements conceivable rather
than a general solution. Our implementation therefore does not come with a fixed im-
plementation but allows to plug-in different implementations.

Protocol

The migration-based strategy requires a protocol that guarantees atomic commitment be-
tween two peers, meaning that migration happens either completely or not at all, but
avoids duplication (i.e., source and target peer both continue execution the service in-
stance) and loss (i.e., execution abruptly ends as no peer continues). Technically, this
can be achieved based on reliable messaging asserting exactly once message delivery.

There are two more factors that influence the design of the migration protocol. First,
is calculation of the benefit integrated into the protocol and if so does it involve informa-
tion exchange (because calculation is distributed or involves remote information gath-
ering)? Second, do candidate target peers have the option to refuse a migration request
(versus being obliged to accept a request in any case)? An answer of yes to these ques-
tions makes a two-phase migration protocol favourable. Both, information exchange
and obtaining approval, can be achieved then in an opening phase. Otherwise, if infor-
mation exchange does not take place and target peers neither have the option to refuse a
request then a single-step request/reply message exchange is sufficient and preferable.

In our implementation, we have decided that peers do have the option of refusing a
migration request. What is more, since one can plug-in an implementation of the benefit
function, calculation may or may not involve information exchange depending on how
it is designed. The protocol is therefore divided into two phases. Yet another factor
to this is that a migration involves essentially transferring the service specification and
the execution state. While the former is usually moderate in size, the latter may be
large depending on the size of intermediate results and the part of the local KB that
needs to be transferred.” A two phase-protocol also avoids transferring the possibly
large amount of data if a target peer refused becoming the new execution peer. The two
phases are as follows.

* Opening Phase: The source peer preselects a set of candidate peers. A peer is
preselected if it is online, runs an execution engine, and its current load is below a
certain threshold.!” The source peer then sends a migration inquiry to all peers in

9This is essentially the ABox and references to ontologies that have been loaded into the TBox.
19The first two pieces of information are available from the SubRep, the latter from the LoadRep.

7.1 OSIRIS NEXT 187

K led,
Bnow ease Process State %
ase S
”””””” \ A A
A
Y Y Y
%ueéyt& - Process - Dlssttrl‘tzutlon =
pdate Manager rategy e
S 1k g5
\ . v g
Composition & Failure Distribution g
P <> Manager =
Matchmaking & Protocol

Figure 7.5: Internal structure and main components of an execution peer.

the set. Target peers reply by sending either an accept or refuse message. A neg-
ative refuse ends the protocol between the two peers. This happens analogously
if the source peer does not receive a reply after a timeout (i.e., sending a negative
reply is optional, but not replying may increase the delay after which the source
peer considers an inquiry as failed for a particular peer). A positive accept com-
municates a commitment limited in time, meaning that the target peer will take
over execution of the service, provided that the source peer reacts before the time-
out set by the target. The positive accept may additionally contain target-specific
context information that the source peer may use to calculate that value of B for
the replying peer.

* Final Phase: Upon selecting a particular target peer, the source peer sends a final
migration request message to the selected peer that contains intermediate results
and the part of the local KB that needs to be transferred. Provided that this mes-
sage is received by the target peer before the timeout it resumes execution and
replies with an acknowledge. Otherwise, it can still reply with a negative timeout
passed message informing the source peer about the too large delay. It is therefore
important that the timeout is set sufficiently ahead of time, which might involve
taking latency of the network layer into account in case it cannot be neglected.

7.1.3 Control Flow Intervention

Implementing CFI in the execution engine requires at least built-in procedures to (i) dy-
namically modify the control flow at execution time, to (ii) find respectively compose
replacements, and (iii) to redirect the data flow. The additionally required procedures
to pause and resume execution are mostly reusable from the implementation of execu-
tion migration as they are essentially the same for both. As a natural consequence, the
OSIRIS NEXT execution engine is functionally divided into several modules as depicted
in Figure 7.5.

188 Implementation

The central part is the Process Manager. It mainly acts as an interpreter for OWL-S
and invokes operations, by delegating request and reply processing to implementations
of the different supported grounding types. The process manager further provides a
monitoring interface. A monitor register itself with the process manager and specifies
an event filter that determines the types of events it will get notified about.

Closely integrated with the process manager is the Failure Manager. Failure detec-
tors are, however, part of the process manager and the failure manager is triggered in
the presence of a failure for which it provides recovery support. Specifically, failures
detected by the process manager are handed over to the failure manager and it is re-
sponsible for managing the procedure of finding a replacement, modifying the control
flow, and redirecting the data flow. In order to do that it interacts with the Composition
& Matchmaking module. This module, in turn, relies on a service repository to retrieve
available service and operation profiles, which is implemented as another component
not depicted in Figure 7.5. Internally, the service repository is currently realized as an
RDF triple store that can be queried using SPARQL. What is more, the failure manager is
not designed to be restricted to CFI only. One could, for instance, integrate conventional
rollback and /or compensation strategies based on transactional support.

All the functionality required to distribute the execution among peers is imple-
mented by the Distribution Strategy and Distribution Protocol. Finally, the Query & Up-
date component is tightly integrated with the KB. One function is to provide a SPARQL
query interface to the KB integrated with an inference engine for deductive DL based
reasoning.!! Its other function is to realize a concrete precondition and effect system.

Each composite service execution instance has associated its local process state (rep-
resenting the control state) and a partly shared KB. The KB is initially populated with re-
quired domain ontologies, the OWL-S service specification to execute, and pre-existing
assertions about individuals, which represent the world state. The part that is shared
among different execution instances is the TBox. This does not pose a problem regard-
ing correct concurrent access since the TBox is a protected part (see Assumption 5) and
is thus read only at execution time. Each service instance currently has its own ABox.
The extension to a fully shared KB by integrating our KB store implementation that
enforces correct concurrent access (see Section 7.3) has been left as future work.

Each execution peer has, in addition, a background KB that acts as a cache for do-
main ontologies that have already been used. Ontologies accessed for the first time will
be fetched from the Web and loaded into it. If a domain ontology that already exists in
the background KB needs to be loaded into a local execution KB of a composite service
instance, only a reference needs to be set (i.e., no physical copying is required).

7.2 KB Access Optimization Techniques

In contrast to traditional workflow engines that mainly act as interpreters of the process
specification (expressed in a language such as BPEL [JE07]), service execution using
semantic services is more involved. Illustrated in part by Figure 6.1, it is characterized

e have used the OWL-DL reasoner Pellet [SPGT07].

7.2 KB Access Optimization Techniques 189

by recurring sub-tasks that all produce queries to the KB. The main types of read and
update queries are:

¢ Read the control and data flow constructs from the process specification so that the
engine can interpret and execute them (according to their operational semantics).

* Read inputs for operation invocations from the KB. Write outputs produced by op-
eration invocations (intermediate results) back to the KB so that they are available
for subsequent use.

¢ Read operation grounding details from the KB in order to prepare service invoca-
tion messages and process replies.

* Read preconditions of services from the KB and check if they are satisfied w.r.t. to
the current state of the KB.

* Materialize effects as a result of operation invocations in the KB to correctly repre-
sent the current world state.

As a consequence, the KB is interrogated almost permanently and updated frequently.
The overall performance is hence influenced to a large extent by the runtime efficiency
of query answering and reasoning services in the KBMS.

We apply two optimization techniques to the service execution task: prepared queries
and a caching strategy called frame caching. Both are, however, of general utility beyond
this application.

Prepared queries actually transfer a concept well known in database programming
to knowledge base querying. One advantage is that costs for repeated query translation
are reduced. The main value, however, is a reduction of the number of KB updates,
which in turn improves the performance of queries that involve inferencing. The rea-
son is that reasoning engines need to re-classify and re-realize the KB after every update,
though some of them (e.g., Pellet [SPG*07]) implement incremental approaches to re-
duce the effort.

Frame caching, on the other hand, aims at reducing the total number of KB accesses
made for composite services that contain iterative control constructs by keeping materi-
alized views of frequently accessed individuals and data values in data structures that
are similar to frames [Min81]. Frame caching is in fact a technique that can be used for
reducing the conceptually implied overhead if an RDF graph-based data model is used
at the lower level and OWL is used at the higher level.

Both techniques have been implemented in the OWL-S API'?, which is a high level
programming library written in Java that has been initially developed by the Mindswap
research group at University of Maryland [SP04]. Although the OWL-S API has been
designed to support RDF as well as OWL programming frameworks underneath, it is
currently implemented on top of Jena, a prominent Semantic Web programming frame-
work [Jena]. The ground-level programming abstraction is therefore organized as an
RDF graph, which has the consequence that an OWL KB is accessible at the lowest level
as a set of RDF triples (no matter how the backing data store is actually organized).

12 Available Open Source at http://on.cs.unibas.ch/owls-api.

http://on.cs.unibas.ch/owls-api

190 Implementation

7.2.1 Prepared Queries

In our implementation, a prepared query is a re-usable and pre-compiled SPARQL state-
ment that allows late binding of variables at query execution time. Prepared queries are
therefore comparable with prepared statements, a well-known abstraction provided by
programmatic access interfaces to relational DBMS (e.g., JDBC) that aim at similar im-
provements of efficiency.

Prepared queries are used in our implementation of the OWL-S API to increase effi-
ciency of checking (i) preconditions and (ii) conditions of conditional process control
constructs that are expressed using SWRL [HPB'04], which, despite being a quasi-
standard, has achieved widespread adoption.!®> Such a SWRL (pre-)condition, subse-
quently referred to as a condition for shortness, is a conjunction of SWRL atoms anal-
ogous to a conjunctive ABox query. A SWRL atom can be either of the form shown in
Table 7.2 or from a subset of built-ins. SWRL built-ins are binary comparison relations
such as lessThan, greaterThanOrEqual or basic mathematical functions such as add,
multiply over XML datatypes. This results in a precondition system whose expressivity
is between (PS1) and (PS2).14 Analogous to (PS1) and (PS2), a variable either refers to a
representative of a profile parameter or is a existentially quantified solution set variable
(i.e., distinguished), supposed to be referred to by an effect. Finally, a condition 4 is sat-
isfied (evaluates to true) iff every atom «a € g is entailed by the KB (which is equivalent
to Equation (4.8)) and where entailment of single atoms is defined as shown in Table 7.2;
built-ins are not listed here for reasons of space, but their semantics is mostly apparent,
see [HPB™ 04, Section 8]. The empty condition is trivially satisfied.

The approach used to check whether a SWRL condition is satisfied is to translate it
to a SPARQL query, executed thereupon on the current state of the KB.1> This is pos-
sible because the formal semantics of a conjunction of SWRL atoms can be preserved
if they are translated to SPARQL basic graph patterns (BGP), and assuming that the
resulting SPARQL query is answered under the OWL 2 Direct Semantics Entailment
Regime [GO10, Section 6]. Table 7.2 shows how SWRL atoms translate to BGPs. For
example, the following condition in abstract syntax

Class(x, InsuredPerson) A Class(x, PhysicalObject)

where x shall refer to a representative of an input, say, an individual named :BOB, and
:InsuredPerson, :PhysicalObject shall be concepts of some domain ontology, translates
to

SELECT =
WHERE { :BOB rdf:type :InsuredPerson ;
rdf:type :PhysicalObject . }

13Note, however, that OWL-S does not mandate the use nor support of particular formalisms.

4This precondition system is more expressive than (PS1) due to built-ins and the two additional types
of atoms to check individual (in)equality, and less expressive than (PS2) mainly because one cannot use
variables in the place of concepts or roles.

I5A condition is thus uniquely satisfied if evaluation of the translated SPARQL query yields exactly one
result, it is not uniquely satisfied if there is more than one result, and it is not satisfied for no result.

7.2 KB Access Optimization Techniques 191

Table 7.2: SWRL atoms, their semantics, and mapping to SPARQL BGP.

Abstract Syntax Semantics
SPARQL BGP Triple Form
Class(x,C) xtec?

(x, rdf : type, C)

IndividualProperty(x, R,y) (x%,y*) € R®
Y)

DataProperty(x, T, v) (xZ,0P) e TZ
(x,T,v)
Samelndividual (x, y) A

DifferentIndividuals(x,y) x*
(x,owl:differentFrom,Y)

Tt
<
N

Using standard interpretation Z = (AL AD, L); C a concept; R an ab-
stract role; x, y an individual or individual variable; T a concrete role;
v a data value (lexical form) or data variable.

In this case, the condition is satisfied if the query has an empty result (which is not to
be confused with no result) as there is no variable to project to (i.e., there is no distin-
guished variable).

The simple and rather naive approach to condition checking starts with replacing
each atom that contains variables that refer to inputs with a new atom in which these
variables have been substituted by the corresponding value. Since conditions are in the
majority of cases expressed using input variables, this implies additional work in all of
these cases; nota bene an insertion of new axioms in the KB (triples in case the KB is
represented in RDF), which is required for the subsequent translation to a query. The
insertion is also a result of the fact that SWRL conditions are part of the service descrip-
tion; hence, they are also stored in the KB. While these insertions are fairly cheap from a
data management point of view, they have severe consequences if an reasoning engine
is attached to the KB, which is almost always the case since reasoning is a primal feature.
Unfortunately, today’s reasoning engines do not yet perform well under (frequent) KB
updates since they need to exhaustively re-perform consistency checks, classifications,
and realizations. The consequence is that such updates to the KB provoke (more or less)
high delays for subsequent queries; thus, reducing the overall performance.

Yet there is another weakness when it comes to repeated checking of the same con-
dition; for instance, if a conditional control construct in a composite service is executed
multiple times (e.g., as part of a loop). As shown in the evaluation chapter, a consider-
able amount of time is spent just for the creation of the SPARQL query from a SWRL
condition (creation of ground atoms and translation to SPARQL). This can result in cases
in which creation time exceeds query execution time by a factor greater than two, which
calls for an optimization.

192 Implementation

SWRL (pre-) condition
Variable | | Create ground
Bindings Atoms
\ 4
Translate to Translate to
Query Query
Y v
Execute Execute Variable
Query in KB Query in KB Bindings
(a) naive approach (b) optimized approach using late binding

Figure 7.6: Comparison of (pre-) condition evaluation procedure for conventional and
optimized approach using prepared queries.

Optimizing SWRL condition checking thus has to address these problems by fac-
toring out the overhead induced by the query creation process. The proposed prepared
queries simplify and optimize the process of condition checking by avoiding the cre-
ation of new ground atoms in the KB. This is achieved by three changes. First, provide
the possibility of translating the original SWRL condition directly to a SPARQL query.
Second, allow for late binding of variables occurring in the query at query execution
time. Third, having late binding of variables enables reusing queries. A condition must
therefore be translated only once and can be executed as often as needed thereby also
supporting conditions that need to be checked multiple times.

This results in a simplified procedure for SWRL (pre-)condition evaluation, which is
depicted in Figure 7.6. Yet its most important advantage is that insertion of additional
ground atoms in the KB is eliminated; thus, preventing that reasoning engines need to
(exhaustively) re-check consistency, re-classify, and re-realize the KB.

7.2.2 Frame Caching

Frame caching is used in the context of the OWL-S API to gain rapid access to the pro-
cess specification (i.e., the control and data flow) and to operation grounding informa-
tion stored in the KB as part of the overall service description/specification. The basic
idea is to exploit locality in repeated KB read accesses whose results match and can be
cached in frame-like data structures. Caching these information improves the perfor-
mance for repeated execution of the same service as well as the execution of loop control
constructs such as Repeat-Until and For-Each'® that iterate over their body. Otherwise,

161t should be noted that OWL-S specifies two control constructs — Any-Order and Repeat-While — that are
not covered by the process model presented in Section 4.3. There are furthermore two control constructs
— Produce and Set — that are actually constructs for controlling the flow of data rather than the flow of
control. Since the OWL-S API aims at being a complete implementation of the OWL-S framework, they
are included here.

7.2 KB Access Optimization Techniques 193

an execution engine has to fetch information repeatedly from the KB (by submitting the
same queries over and over again). The same performance gain is achieved for ground-
ings if services are repeatedly invoked.

However, finding an appropriate caching solution is not straightforward as it has to
take into account the following aspects:

* Location where cached data is stored: Either close to the KB store (probably inside
the KB store) versus close to the application, which acts as client to the KB and
which uses the query results.

* Granularity of cached data: Limiting the amount of cached data to exactly the
query result versus more advanced look-ahead strategies where data that is likely
to be read in the future is pre-fetched and cached in advance.

* Representation of cached data: Graph-based, essentially in the same representation
as stored in the KB versus a differently structured representation that fits more
closely with the access patterns of the client application.

* Cache coherence: Invalidation of cached data in the presence of updates to the orig-
inal data in the KB due to concurrent access by multiple clients.

o Implicit information inferred by reasoning engines on the fly at query execution
time.

The frame caching approach we have developed addresses all the aspects summa-
rized above. This is achieved by combining: (i) materialized views of proximate triples
that form sub graphs of a KB, using (ii) frame-based data structures, which, at the same
time, (iii) realize a simple form of a look-ahead cache, (iv) local to the place where they
are used, and (v) possibly contain inferred information.

The notion of a frame was introduced in frame-based systems [Min81] as an alter-
native to logic-oriented knowledge representation systems. More formally, a frame F
contains a finite set of slots, similar to entries in a record. A slot filler is the value of a
slot and can be a data value or again a frame, thereby allowing nested frames. Now,
the basic idea of frame caching is to use a frame to provide a record-like view of triples
(s, *F,*°) in the KB. The subject s corresponds to the frame F, a property *” corresponds
to a slot of F, and an object *’ is the filler of the corresponding slot *". If a filler is again
a frame, one can represent tree-like sub graphs by nested frames. A frame will always
be created (successively) from the results returned by KB read queries. Using object-
oriented languages, frames can be represented one-to-one as objects. In doing so, one
gets rapid access to the fillers of a frame. Consequently, one gets rapid access to (all)
objects of some subject once a corresponding frame was filled.

Frames may include inferred information which thus does not need to be recom-
puted on every access. Creation (filling) of frames is very cheap as it essentially amounts
to allocating an object instance in memory and assigning references. Frames can be im-
plemented with moderate additional memory requirements provided that slots can be
implemented as direct references. This is possible anyway if the filler is again a frame.
Otherwise, a close integration with the KB store is required such that slots are references
to the values in the KB store.

194 Implementation

Finally, in our execution engine implementation, we apply frame caching for
grounding information and the process specification only. The reason is that only these
are the parts that may be repeatedly accessed. Specifically, each operation grounding is
cached by one frame and the entire process specification (which essentially includes the
control and data flow) is cached by a single nested frame.

Cache Coherence

As with any caching strategy that is supposed to provide cache coherence, there is one
reason that causes (partly) invalidating a cache: if data in the backing data store has
(partly) changed as the result of a write performed by another application in the back-
ground. If the backing data store is however not concurrently accessed (i.e., if it is not
shared) then only an update of the accessing client needs to be handled correctly, which
can be done in the usual way either by a write-through or write-back strategy.

Since we apply frame caching in our execution engine for the grounding information
and the process specification only, we can use the following approach that does not
require a cache coherence protocol. Every service execution instance has its private
cache being a set of possibly nested frames. Among these, the process frame does not
need to be invalidated as long as the process is not subject to dynamic modifications at
execution time since the process specification does otherwise not change. However, a
dynamic change as part of a successful CFI cycle has the consequence that obsolete parts
of the frame are invalidated. This is sufficient because the change is service instance
local. The first access to parts of the replacement not yet in the cache induces fetching
the information from the KB into new sub frames of the process frame.

Intergration with Snapshot Isolation Data Store

We finally discuss, how the caching technique integrates with a data store, such as the
one described in Section 7.3, that offers a transactional interface together with Snapshot
Isolation. To answer this, we need to clarify first whether the cache is transaction-local,
meaning that every transaction has its private cache, or whether it has a broader scope.
In the former case, the situation is simple. Cached data never has to be invalidated
within a transaction since it operates on its own snapshot. An update to data in the
cache by the transaction can be handled by a write-back strategy integrated into trans-
action processing: an update writes to the cache first and is written back if the transac-
tion is permitted to commit. The downside is that it is not decidable right away whether
the cache can be retained beyond the transaction end for a subsequent transaction. This
requires information whether the cached data was updated in the backing store mean-
while by another transaction, which calls for an synchronization strategy that could be
based on an active notification mechanism.

The situation is different if the cache scope spans multiple concurrent transactions.
Since every transaction needs to see its own snapshot, one would need to ensure that
also the cache correctly reflects this, which means that one would need to implement a
snapshot management also for the cache. This makes its implementation considerably
more complex.

7.3 Snapshot Isolation OWL Data Store 195

7.3 Snapshot Isolation OWL Data Store

We have implemented a prototype of our Sl-based concurrency control approach as a
main memory (hence, transient) OWL 2 store. It comes as an alternative data binding
for the OWL API [HB09]. We first address how the OWL store interfaces with the OWL
API, which requires providing some basic background information. Afterwards the
implementation of the data store itself is detailed.

7.3.1 Interfacing with the OWL API

In short, the OWL API is an Open Source library written in Java that “includes first
class change support, general purpose reasoner interfaces, validators for the vari-
ous OWL 2 profiles, and support for parsing and serialising ontologies in a variety
of syntaxes” [HB(09]. It is considered a reference implementation for OWL 2, de-
signed in close correspondence with the OWL standard, used by prominent applica-
tions (e.g., Protégé-OWL Editor [HT06]), and is supported by major reasoning engines
such as FaCT++ [TH06], HermiT [MSHO09], Pellet [SPGT07], Racer Pro [HMO01b], or
TrOWL [TPR10].

The flexible design of the OWL API includes a service provider interface, named
Internals, by means of which it can be extended with third-party storage mecha-
nisms. This provides a clean programming abstraction that our data store implements.
Since the OWL API, however, lacks a transaction programming abstraction, we had to
extend it with programmatic means for transaction end demarcation (commit, rollback).
Transaction begin demarcation, on the other hand, is implicit with the first change or
read (after a rollback or commit).

At its core, the Java object model of the OWL APl is a structured set of Java interfaces
whose names are aligned with the names of syntactic constructs in the OWL 2 structural
specification [MPSP09] (i.e., the different types of axioms, assertions, and annotations).
The resulting one-to-one abstraction of OWL syntactic instances as Java objects, rather
than an RDF-centric abstraction, is ideal from the perspective of our concurrency control
model. First, these Java objects become the unit of concurrency control. Second, these
Java objects are immutable by design; that is, they can be created using factories only
and do not provide object state mutating methods. In addition, the OWL API has built-
in support for determining structural equivalence of syntactic instances and implements
transformation to NNF, which we use for O- and E-conflict checking. The latter means
that a transaction’s change set contains OWL concept expressions (if any) that have been
brought to NNF.

The fact that Java objects representing OWL syntactic instances are immutable
implies that an OoWLontology!” can be modified only through applying add and
remove changes, which correspond to the basic add and delete operations. More
precisely, changes are applied via an OWLOntologyManager associated with each
OWLOntology, which also manages the lifecycle of a set of OWLOnt ology objects.

7owLontology is the basic Java abstraction of an OWL 2 ontology in the API, which is comparable
with the notion of an OWL knowledge base, see Definition 3.16.

196 Implementation

7.3.2 Data Structures and Snapshot Management

The main (global) data structures of the store are concurrent sets and multi-maps. The
latter are used as index structures for fast lookup tables to answer simple queries. For
example, one can get the set of named individuals (V}) directly from one of the maps
(key set) and all assertions about some individual (value set per key). Both sets and
maps are implemented using hash functions for fast lookup. The hash function maps
two syntactic instances to the same hash value if they are structurally equivalent. Colli-
sions are resolved in the obvious way by falling back to more costly checking for struc-
tural equivalence.

The main set and map data structures are thread-safe, meaning that all public meth-
ods that they provide can be invoked safely by multiple threads in parallel. In addition,
they provide snapshot and transaction management. Snapshot management is imple-
mented in a transparent and fully hidden way, meaning that the interface for program-
matic access does not contain any methods by means of which one becomes aware nor
has control over snapshot management internals. Snapshot management is internally
based on a special set data structure, which we call StatusSet. In short, it is a stan-
dard set in which each element — a Java object representing a syntactic instance — is
additionally associated with either of two types of timestamps. A committing transac-
tion associates added objects with a timestamp of type current and deleted objects with
a timestamp of type obsolete. This is sufficient for determining whether an object is vis-
ible to (can be read by) a transaction or not. Recap, the SI protocol has it that an object
is visible to a transaction T if it existed at t]. Obsolete objects can be discarded if there
are no more active transactions in the system that started earlier than the obsolete time-
stamp. Cleanup of discardable objects is done automatically by a garbage-collection like
background thread. In order to make cleanup an operation of O(n) complexity where
n is the number of discardable objects rather than the overall number of objects in a
StatusSet, we use an inverse lookup table: a timestamp of type obsolete maps to all
objects that are associated with this timestamp to allow for fast collection.

7.3.3 Transactions and Conflict Checking

Transactions are represented implicitly by a start timestamp. Timestamps are essentially
64-bit integers and are assigned in strictly monotonic order.!® Transactions are thread-
confined; that is, each thread can have at most one active transaction at a time. Updates
made by a transaction are kept entirely thread-local until a transaction commits. This
has two advantages: (i) additional synchronization means are not needed when transac-
tions make updates since they are not accessed concurrently, (ii) they can be used at the
same time for representation of the change set. Only if a transaction does not conflict,
thread-local changes are applied irrevocably to the global data structures. Otherwise,
all thread-local changes can be discarded at almost no cost.

Contflict analysis takes place as described in Section 6.2.7. More precisely, the nor-
malized change set is updated instantly with every add and delete, but OES-conflict

18 A rough calculation shows that even for a quite high and constant transaction rate of 50000 Tx/sec a
system can run for about 5.8 M years until an overflow occurs.

7.3 Snapshot Isolation OWL Data Store 197

checking is performed finally at transaction end, as opposed to incremental checks per-
formed instantly on each new operation submitted (which is done by the first updater
wins strategy [FOO04]). One reason is that the incremental strategy requires a larger
number of checks if there are no conflicts, which is made clear by Example 7.1.

Example 7.1

Imagine two transactions T, T, that consist of m,n > 1 add/delete operations, re-
spectively, such that the corresponding change sets have |6(T,,)| = m, [6(T,)| = n
elements. Assume change sets are implemented as hash sets, with containment check-
ing complexity usually O(1). As long as change sets are disjoint, incremental while
instant disjointness checking amounts to m + n containment checks in total: a check is
performed whenever an update operation is submitted. It is not difficult to see that if
disjointness checking is done once at the end then only min{m, n} checks are needed.

From Example 7.1 we conclude that the incremental strategy is favourable only for
high conflict rates (because there is a higher chance that less checks are actually done in
case a conflict is detected early), whereas the once-only strategy is favourable for low
conflict rates and for large transactions.

A similar effect is achieved for S-conflict checking. Bearing in mind the possibly
high computational cost of satisfiability reasoning, and unless the actual reasoner used
provides an incremental satisfiability feature (e.g., [HPS06, GHKS10]), it is cheaper to
check satisfiability once only at the end instead of repeatedly after each update oper-
ation. S-conflict checking is implemented currently in a primitive way: (i) apply the
changes tentatively first, (ii) check whether the KB is still satisfiable, and (iii) revoke the
changes in case the result was negative.

Finally, we have implemented a strategy that allows non-conflicting transactions to
commit concurrently while ensuring commit atomicity (recap, updates of a committing
transaction must become visible globally all at once). The former is desired for perfor-
mance reasons while the latter is necessary also because a non-trivial commit requires
making changes to multiple of the global data structures thereby inducing a set of sub
operations that must be observed from the outside in a non-divisible and atomic way:.
The basic idea is to synchronize commit with creation of start timestamps: a new start
timestamp can be created at any time unless a commit is going on. Hence, a new trans-
action cannot start unless a commit has completed, which avoids that a new transaction
reads partial results. Finally, since all global data structures are thread-safe by them-
selves, concurrently executing commits is not a problem and relies on the correctness of
the data structures.

Experimental Results

IFFERENT EXPERIMENTS have been conducted to evaluate the practical utility of the
methods introduced throughout previous chapters. The results of these experi-
ments are presented in this chapter. For the most part, the objective in the experiments
was to demonstrate feasibility in practice on problems of a realistic size and to verify
that the qualitative gain of the methods comes at an acceptable expense.

In order to consider the different factors separately, the experiments are divided into
four groups that correspond to main methods presented: CFI, the execution engine im-
plemented in OSIRIS NEXT, the KB access optimization techniques, and the Snapshot
Isolation OWL data store. The subsequent presentation is ordered accordingly.

8.1 Control Flow Intervention

Evaluation of CFI is targeted to investigate the time it takes (i) to search for a replace-
ment and (ii) to perform the substitution of a failed subflow by its replacement. This has
been combined with different experiments that further aim at investigating the impact
of the following parameters: (i) the size of profiles, (ii) the amount of advertised profiles
that exist, and (iii) the fraction of profiles that are semantically equivalent.

The evaluation is focused on 1:1 replacements using the matchmaking-based tech-
nique (i.e., structure-aware replacements). An evaluation of the planning-based ap-
proach for structure-nescient replacements has been left as future work. Our main goal
in this regard was it to formulate how planning methods can be applied and seamlessly
integrated into the overall approach. Different aspects regarding its practicability have
been discussed however in Section 5.7. For the matchmaking-based technique, we can
show that, with the commodity hardware used, search time remains sufficiently small to
realize the approach by an interactive human-computer interface! up to approximately
3000 advertised services. Furthermore, the cost of substitution is almost negligible com-
pared to search and grows linearly at a flat increase.

!The common rule of thumb is that humans tolerate approximately 3 to 10 seconds of delay in the
system response to keep their attention focused on the dialogue [Nie94].

200 Experimental Results

8.1.1 Experimental Setup

Rather than conducting the experiments in a production environment, we have created
a dedicated testbed based on the emergency assistance composite service. Required
services were implemented as native services deployed on OSIRIS NEXT peers (i.e.,
invocation is done via the OSIRIS NEXT messaging system). Services are decidedly
mockups that do nothing more than creating synthetic outputs and thus have almost
zero reply time. This allows to disregard their execution times and to focus exclusively
on the CFI cycle. Service failures are simulated by message timeouts (i.e., the execution
engine fails to invoke a service).

All experiments were conducted on the hardware mentioned in Section 8.3.1. De-
scriptions of advertised services have been uploaded to our simple service reposi-
tory implementation, which is essentially a main memory RDF triple store based on
Jena [Jena] that provides a SPARQL query interface for retrieval and has the Pellet rea-
soner [SPGT07] attached. The repository and the execution engine were deployed at the
same peer.

A randomized generator has been implemented that is used throughout the exper-
iments to generate synthetic OWL-S service descriptions. The generation process is
parametrized in three ways. First, one can specify a set of domain ontologies, the con-
cepts and data ranges (if any) of which are selected randomly (with a uniform distri-
bution) as the type of inputs and outputs in generated profiles. Second, the number of
inputs/outputs generated per profile can be controlled in two ways: uniform number
of inputs/outputs versus a random number limited by an upper bound. Third, one
can control whether generated descriptions are placed each in its own ontology or all
into one. Finally, generated service descriptions are complete in the sense that they de-
scribe an atomic service grounded to a WSDL Web service; its implementation being
nonexistent, though.

8.1.2 Results
Minimal Setting

In the first experiment the emergency assistance composite service has been executed
40 times with a simulated service failure in a “minimal setting”. This means that the KB
is reduced to that knowledge required minimally, which amounts to 11 domain ontolo-
gies representing concepts used by the services and 10+4 OWL-S ontologies in this case.
There was also just one semantically equivalent service stored in the service repository.
The average execution time without a failure was measured with 114 ms. When simu-
lating a failure, the execution time was 250 ms on average.? The increase induced by CFI
breaks down to 133 ms for querying the service repository (“search”) and 4 ms for mod-
ifying the control and data flow (“substitution”). The significant difference indicates
that the runtime performance of CFI is dominated largely by the query and reasoning
performance (search), which is supported also by subsequent results.

2The value is adjusted for an additional delay caused by a constant timeout for failure detection.

8.1 Control Flow Intervention 201

Table 8.1: Search and substitution times for service profiles of different size (varying
number of inputs, outputs)

Inputs+Outputs in Profile (No. of concepts, data ranges)
Search time [ms]
Substitution time [ms]

L) 20 @12 2 Gl “42) (G3) (64 (66
111 105 107 128 133 188 370 837 1171
16 15 22 25 40 52 61 79 91

Increasing Profile Size

In a second experiment we have analyzed to what extent search performance depends
on the size of a service profile for which an equivalent service is to be found. Table 8.1
compares results for a selection of different service profiles, varying in their number of
inputs and outputs and whether they are typed to a concept or a data range. The results
show that (i) search time is more bound to the number of concepts than data ranges and
that (ii) substitution time is comparably small with an almost negligible increase.

Increasing Number of Available Services

Finally, we measured search and substitution times as a function of the number of avail-
able services in the services repository. In the first experiment, synthetically generated
service specifications have been uploaded to the repository that are ensured to be non-
equivalent to any sub service of the initial emergency assistance service. Each of the
generated service profiles has two inputs and two outputs, each typed to a randomly
selected concept of the LUBM ontology [GPHO05]. Results are shown in Figure 8.1a. The
second experiment considers synthetically generated service specifications that are all
ensured to be equivalent to a failed service, see Figure 8.1b. The results show a linear
increase of search for non-equivalent services. On the contrary, search in case of equiva-
lent services takes slightly more time, but remains almost constant up to approximately
200 equivalent services. The subsequent increase appear to be caused by the reasoning
involved in query answering.

In order to determine whether the increase of search is dominated solely by SPARQL
query processing or by reasoning, both experiments have been repeated in a slightly
modified setting: domain ontologies were extended by explicit concept equivalence as-
sertions that would have been deduced by the reasoner otherwise (when evaluating a
query); thus, making it possible to deactivate the reasoner. The results are depicted by
the Search No Reasoning curves in Figure 8.1. Compared to the search with activated
reasoner, this gives a performance gain by a factor of ~3 for non-equivalent services,
which shows that the increase of search is due to SPARQL query processing in this case.
However, in case of equivalent services, this results in a constant search time, which
can be explained by the fact that the query is limited to select the first matching service
found.

202 Experimental Results

105 F T T HE L | — 400 N HEL L |
I Substitution —a— r [Substitution —a—
| Search Reasoning —a— [Search Reasoning —A—
10* | Search No Reasoning | Search No Reasoning ——]
o H o 300 —
=] e r 1
S . 3 5
§ 10 F § [
= 4 = 200 7]
E 102 E
[} 4 Q
£ E s
I | = 100 —
100 F E r
:F—a—s P a9 4
100 L L P 1 O Eéo E:::ﬂa E:::ﬂa &l

3

10t 10° 10 10t 10? 10°
Number of Services Number of Services
(a) non-equivalent services (b) equivalent services

Figure 8.1: Search and substitution times for increasing number of available services.

8.2 Execution Engine

Evaluation of the execution engine that runs on peers was done with the objective of
examining the characteristics of the internal queued and multi-threaded architecture as
a function of increasing local load, generated by an increasing number of concurrent
execution requests. We show that the internal architecture scales well until a resource-
determined saturation point is reached.

8.2.1 Experimental Setup

Again, all experiments were conducted on the hardware mentioned in Section 8.3.1.
Live Web services deployed in the Internet have been applied to this evaluation in or-
der to include practical influences. For this, an exemplary composite service called Dic-
tionaryTranslator has been used, built upon a sequence of three real SOAP-based Web
services: First, an input term is translated to English from another language. After-
wards, the translated term is looked up via an online English dictionary service return-
ing a short definition of the term. Finally, the definition is translated back to the original
language using the translator service again.

A client peer that runs 1 up to 40 threads (step size 5) issued the requests containing
the service specification together with varying input terms to the execution peer. Each
group was repeated ten times. Migration has been suppressed as this is apparently not
relevant for this particular evaluation.

8.2.2 Results

Figure 8.2 shows the tendency and dispersion in total execution time under increas-
ing local load. The median value shows that the engine nearly scales ideally until a
saturation point is reached, which is around 35 concurrent executions. The increase af-
terwards is not necessarily caused by exhausted CPU resources on the execution peer,

8.3 KB Access Optimization Techniques 203

35
I

30

25
I

g

20

o
@ °
T
|

Overall Execution Time [sec]
15

T T T T T T T T T T
1 2 5 10 15 20 25 30 35 40

Concurrent Requests

Figure 8.2: Fife-number summary of total execution time for Dictionary service as a
function of increasing number of concurrent execution requests per peer.

but can also be a matter of the network and/or the Web services used. The visible out-
liers and skews, even for this moderate composite service, are a matter of the dynamics
of the Internet environment and the rather low number of measurements per group.

8.3 KB Access Optimization Techniques

The main objective in the evaluation of the two KB access optimization techniques —
Prepared Queries and Frame Caching — was to measure the speedup?® in the execution
as a function of (i) the types of services used and (ii) the size and shape of the KB.
The latter has been made to confirm the presumption that execution performance using
frame caching is independent of the KB size and its structure. In addition, we have
verified the presumption that the overhead of filling frames of typical size is negligible.

8.3.1 Experimental Setup

In order to quantify the performance gain of Prepared Queries and Frame Caching for
service execution, we have implemented them in the OWL-S API such that they can be
turned on and off; subsequently we will refer to this as optimized (on) versus conventional
(off) configuration. This provides the flexibility to easily compare any constellation (i.e.,
for any kind of invokable service and using differently sized and shaped KBs).

Various service specifications have been created that are designed specifically for
testing and benchmarking purposes. The intention in the design was to cover a wide
range of possible OWL-S process models and types of (pre-)conditions. As a result,
they simulate different characteristic cases such as short running services or services

3The factor k to which an optimized procedure is faster than an unoptimized one, given a particular
load or problem; that is, k = tuy t, Where t, and t, are the execution times of the unoptimized and
optimized procedure, respectively.

204 Experimental Results

Table 8.2: Exemplary services used for evaluation purposes.

Name Short Description

Any-Order Composite service that uses an Any-Order control construct con-
sisting of three elements, each being the same atomic service that
logs the value of one out of three inputs. Has no preconditions.

For-Each Composite service that uses a For-Each control construct whose
loop body is an atomic service that plays a given MIDI note. This
is combined such that one can play an input list of MIDI notes.
Uses an SWRL precondition that verifies that each note can ac-
tually be played.

If-Then-Else (1,2) Two composite services, each consisting of an If-Then-Else con-
trol construct with different SWRL branching conditions (built-
in less-than and class atom).

MathPow Atomic service that calculates the power of two numbers, both
provided as inputs. Has no precondition.

Repeat-While Composite service that uses a Repeat-While control construct
whose loop condition is expressed in SWRL. The loop body is
an atomic service incrementing a given input number. The while
loop ends if a target value is reached.

Translator Atomic service realizing language translation of words provided
as an input. Uses an SWRL precondition asserting that the
source and target language are supported.

with many iteration cycles. Some of these services are listed and briefly described in
Table 8.2.4

All experiments started from a completely populated KB, meaning that it contains
the service specification under evaluation and required domain ontologies. Further-
more, a consistency check, classification, and realization was initially done on the KB.
We used Pellet [SPGT07] as the reasoner attached to the KB. Note that KB was always
kept entirely in main memory.

Finally, all experiments were conducted on commodity hardware: Win XP; x86
Hyper-Threading CPU, 32bit, 3.4 GHz; 2 GB RAM; 1 Gb/s Ethernet network connection;
Java 6, maximum heap size ~1.5 GB.

8.3.2 Results
Speedup as a Function of Service Structure and Conditions

In the first round of experiments, an evaluation run for each service has been performed
in the conventional and the optimized configuration to measure the difference in execu-

4The services including those not listed in Table 8.2 are available at the OSIRIS NEXT Web site.

8.3 KB Access Optimization Techniques 205

Table 8.3: Execution speedup of exemplary services.

Test Case Conventional Optimized Speedup
Any-Order 40ms 39ms 1.02
For-Each 5410 ms 448 ms 12.08
If-Then-Else 1 180 ms 33 ms 5.45
If-Then-Else 2 27 ms 3ms 12.33
MathPow 502 ps 42 ps 11.96
Repeat-While 2821 ms 828 ms 3.41
Translator 6625 ms 3631 ms 1.82

tion times and calculate the speedup. An evaluation run is the execution of each service
at least ten times, with arbitrary breaks between, and the average time was taken. Ta-
ble 8.3 shows the results. Unlike the second round of experiments, the KB is always
“minimal”, meaning that it contains not more information than ultimately required.

The execution time of the Any-Order service cannot be improved because it neither
has a precondition nor is any part of the process model accessed more than once; hence,
also frame caching has no effect. This service was included in order to analyze whether
creation of frame cache objects introduces a considerable overhead. As the values show,
the execution times differ in what is seemingly a measurement inaccuracy. A more fine
grained analysis showed that creation of the frame that represents the entire grounding
(having 8 slots) takes 80ns on average. This confirms that creating and filling a frame
is time-wise cheap and therefore negligible. Memory-wise, the overhead of a frame is
estimated analytically as

Memory overhead per frame ~ 8bytes + (n x [rsize|dsize])

where 7 is the number of slots, rsize is the number of bytes for an object reference on the
CPU architecture used, dsize is the number of bytes taken by a data value (e.g., an int,
double, String), and the leading 8 bytes is the size of an Java object header. This is
explained by the fact that a frame is represented as a Java object, and every slot is either
a data value or an object reference.

The For-Each service is interesting insofar as the speedup is mostly due to the op-
timized condition evaluation process; that is, the elimination of additional KB inserts.
In the conventional setting, the execution time is dominated by the need of repeated
classification and realization by the reasoner after a KB update.

The evaluation run of the MathPow service is actually different. It is executed 3000
times in succession thereby mimicking frequent re-execution of the same service. Ta-
ble 8.3 lists the average value for one execution. The speedup here is solely due to frame
caching since the service has been deliberately designed not to involve reasoning.

Execution of the Repeat-While service benefits from both techniques because of the
while loop condition and the repeated execution of the loop body. Figure 8.3b further
details the values listed in Table 8.3 in the fraction measured for (i) condition evaluation
and (ii) the execution itself. Apart from the reduction of execution time due to frame
caching, the numbers for condition evaluation show that by activating prepared queries

206 Experimental Results

3000

2500

898

Query Eval. Time % 260

Creation 6l6ps 69
Execution 229us 25

n
=]
=]
]

1500 Query Evaluation

= Process Execution

Execution Time [us]

Other 53pus 6 1000

Total 898 s 100
(a) decomposition of total query eval- N B e
uation time for conventional configu- . ‘ ‘
ration Conventional PQ PQ&FC

(b) comparison of total service execution times for different config-
urations

Figure 8.3: Repeat-Until service executed with different configurations (PQ = Prepared
Queries on; FC = Frame Caching on).

the overhead of repeated translation from SWRL atoms to queries is almost eliminated,
cf. Figure 8.3a.

Finally, the values listed for the Translator service are filtered measurements of pre-
condition evaluation not including execution time. The reason is that frame caching has
no effect since neither the process specification nor the grounding is accessed more than
once.

Speedup as a Function of KB Size and Shape

In the second round we repeated the MathPow evaluation run, but with an incremen-
tally growing ABox of the KB. The KB has been enlarged in two ways. First, by adding
synthetic OWL-S service descriptions. For this, we have implemented a randomized
generator that is parametrized in several ways to control the complexity of generated
service descriptions; more details about it can be found in Section 8.1.1. Second, by
adding randomly generated individuals and assertions about them using concepts and
roles of the LUBM ontology [GPHO05]. In case of adding more OWL-S services, the KB
is enlarged by adding new assertions about new individuals. Specifically, the number of
triples |(s, 7, x°)| for any subject s remains constant. In the second case, however, the
KB is enlarged by adding new assertions about existing individuals, which means that
|(s,*F,%°)| is proportional to the KB increase for those subjects s about which new as-
sertions are added. As a result, the shape of the KB significantly differs in the maximum
branching factor (i.e., the maximum number of assertions about individuals). It should
also be noted that in this round execution times are not distorted by reasoning because
the MathPow service has neither (pre-)conditions nor effects; hence, its execution does
not involve query answering nor updates.

Figure 8.4a and Figure 8.4b show that execution times remain constant when using
frame caching, no matter what the size of the KB is. In contrast, the numbers for the

8.4 Snapshot Isolation OWL Data Store 207

500 AL AL ol T 107 AL AL AL Tty

[Frame Caching —&— | b Frame Caching —8— -

[A/A’—4A_lmgaLhed—1AA?] L Uncached —&— |

@ [1 2 10° E

2 400 = i]
o I 1 o

[&] [S] 4

] 2 10° | 4

o L] 8 10 1

S 300 1 5]

E [1 £]

o o 107 F E

£ F {1 E]

F 200 [1 F]

§ §10° F 1

5 5 1

& 100 F] 8 1

o - | ©10°F 5

l —s 5 5 8 = = = = 8]

0 MR | L el L el L vien 101 N | Ll L el "

10° 10* 10° 10° 10’ 10° 10t 10° 10° 10’
KB size [number of triples] KB size [number of triples]
(a) OWL-S Services (b) LUBM Individuals

Figure 8.4: Total execution time as a function of KB size for conventional and optimized
configuration.

configuration in which caching is deactivated feature significant differences. Whereas
Figure 8.4a shows that execution times also remain constant in case of adding new ser-
vice descriptions, but at a significantly higher level compared to the cached case, times
increase linearly with the KB size when new individuals and assertions are added (Fig-
ure 8.4b). This difference is exactly a result of the shape of the KB. It can be explained
by looking at how indexing is designed for graph-based data structures in the under-
lying Jena graph implementation. In fact, the two cases decidedly model the best and
worst case regarding the index structure. In the former case, access takes advantage of
the index whereas in the latter case sequential scans are performed in addition, which
explains the linear increase.

To conclude, both techniques show considerable performance gain even though
the KB is maintained in main-memory. Since both techniques aim at avoiding repeat-
edly performing the same tasks, the increase is in every way determined by the actual
case, which is also evident in the results. Generally, the advantage especially of Frame
Caching becomes the larger the higher the latency of direct KB accesses becomes.

8.4 Snapshot Isolation OWL Data Store

The evaluation of the SI-based concurrency control method is targeted to measure trans-
action execution times and transactions per second for different benchmarking work-
loads. The evaluation is centered around comparing results of our implementation with
two contestants in order to demonstrate its competitiveness. Another important aspect
that has been investigated is how the contestants behave under an increasing amount
of concurrency. Finally, a brief investigation on the time-wise overhead of normaliza-
tion (induced by E-conflict checking) confirms the presumption that normalization adds
little to overall costs.

208 Experimental Results

Table 8.4: Workloads used for the performance analysis and their characteristics.

Workload #Tx! Min/Max*> R/W? A/D* C/R®
Base Transactions 100 50/100 1 1 100
Mixed Transactions 100 5/500 10 1 100
Many Transactions 1000 50/100 1 1 100
Few Transactions 10 50/100 1 1 100
Large Transactions 100 250/500 1 1 100
Small Transactions 100 5/15 1 1 100
Read-Centered 100 50/100 100 1 100
Write-Centered 100 50/100 0.01 1 100
Add-Centered 100 50/100 1 100 100
Delete-Centered 100 50/100 1 0.01 100
Medial Commit Ratio 100 50/100 1 1 1
Rollback-Centered 100 50/100 1 1 0.01

! Number of transactions per thread. 2Minimum/maximum number of

application operations per transaction. *Read /write ratio per transaction.
pp P p p

*Add/delete ratio per transaction. >Commit/rollback ratio per transaction.

8.4.1 Experimental Setup
Benchmark Workloads

As there is no established benchmark for OWL updates, we have designed a benchmark
ourselves. It consists of several workloads and aims at exposing candidates to diverse
access patterns. These workloads imitate typical application scenarios such as low up
to moderate update ratios, bulk loading in which add transactions dominate, and er-
roneous environments with frequent aborts. We also drive parameters towards corner
cases such as large transactions, high abort rates, and update-only transactions in order
to analyze whether runtime properties considerably change in these cases. Table 8.4
lists the different workloads and provides an overview on how parameters are set.

Each workload consists of fixed sequences of transactions that are generated in ad-
vance for each thread (i.e., one sequence per thread) according to the parameters in Ta-
ble 8.4. This ensures that for each workload each competitor receives exactly the same
transactions arriving in the same order. Transaction length is evenly distributed in the
given interval. All ratios are average values. For instance, a commit/rollback ratio of
100 means that 1 out of 100 transactions aborts on average.

Dataset, Update & Read Queries

A run of any workload starts from a populated KB containing initially (i) the LUBM
benchmark ontology [GPHO05] and (ii) approximately 10000 axioms and assertions cre-
ated with its data generator. Updates are made more frequently to the ABox than to the
TBox. Irrespective of the workload characteristics, this induces bias towards the ABox
(i.e., accesses are not evenly distributed over the KB). Updates add or delete concept

8.4 Snapshot Isolation OWL Data Store 209

expressions, data ranges, properties, concept (property) inclusion axioms, individual
declarations, assertions about individuals, or individual (in)equalities. Reads are in fact
simple queries that may have large result sets such as getting all class assertions, all
object property assertions, all axioms in the TBox, or getting particular entities. The
number of operations per transaction listed in Table 8.4 thus corresponds to typical ap-
plication operations, but not to the basic add, delete, and read operations introduced
in Section 6.2.2. Except for the delete-centered and read-centered workloads, all other
workloads imitate a growth of the KB, which is natural in many application domains.

Competitors

We ran each workload with our (i) implementation, (ii) a base line, and (iii) under
multiple-reader/single-writer locking, subsequently called SICC, Base, and MRSW, respec-
tively. Base does not provide any correctness guarantees because basic add/delete op-
erations are executed at their commencement. However, Base uses locking at the level
of global set and multi-map data structures in order to make the basic add/delete op-
erations atomic. MRSW is enforced by a shared read-write lock, thus, update transac-
tions are exclusive while read-only transactions can execute concurrently. We have also
experimented with OWLDB [HKGB09], which was configured to use an in-memory
RDBMS (H2 and HSQLDB). Unfortunately, we encountered significant performance
limitations probably due to the object-relational mapping. The tests using OWLDB also
suffered from runtime exceptions causing workload runs to end prematurely.

Other Settings

All benchmark runs have been repeated at least three times and the average runtime
has been taken. Transaction think time is generally short, starting from 20us up to
2.5ms. We generally did not attach a reasoning engine in order not to disturb results by
reasoning that takes place in the background. This also implies that S-conflict checking
is not performed throughout the experiments, as this would be more of an evaluation
of the particular reasoning engine used.

An initial ramp-up phase in which the Base Transactions workload is executed pre-
cedes every benchmark run in order to make sure that the Java just-in-time compiler
threshold is exceeded so that compiled code is executed rather than byte code in the
slower interpreted mode.

Finally, all tests have been conducted on a standard server machine: x86-64 dual
QuadCore CPU (16 cores are reported to the OS), 2.26 GHz; 12 GB RAM; Linux.

8.4.2 Resulis

The comparison between the three competitors Base, MRSW, and SICC is shown in
Figure 8.5 and 8.6 for every workload. SICC performs nearly as good as Base on most
workloads. In some cases SICC is even faster when transaction think time is short; see
Base, Small Transactions, and Add-Centered workload. The reason could be that keep-
ing all changes thread-local until they are applied all at once to the global data structures
(in case of a commit) results in lower memory contention than performing every change

210 Experimental Results

Table 8.5: Average time to normalize n-ary axioms/assertions (2 < n < 10).

Axiom/Assertion Time [ps]

DifferentIndividuals 96
DisjointClasses 98
DisjointUnion 115
EquivalentClasses 30
Samelndividuals 31

directly on the thread-safe global data structures as it is done in the Base implementa-
tion. Low level profiling would be needed to further evidence this, which is seemingly
difficult because of the small time scale that makes it prone to inaccuracy due to instru-
mentation that is required. The global locking of MRSW shows the expected strong
increase for increasing transaction think time due to increasing lock hold time. On the
other hand, SICC is about 0.8s slower than Base for the Read-Centered workload, see
Figure 8.5c. This result is furthermore independent of the amount of concurrency, see
Table 8.6. More detailed analysis revealed that there is an implementation specific extra
cost of filtering obsolete data items, which can probably be further optimized.

The Many Transactions workload (see Figure 8.6¢c) is interesting insofar as the
competitors are exposed to a constant load for a rather long time (compared to the
other workloads). We included this workload with the original intention of analyz-
ing whether runtime properties are subject to drifts over time. Because of the side effect
that the size of the KB is considerably enlarged, we realized that this workload should
rather be considered an evaluation of scalability in KB size.

The results in Figure 8.6d to 8.6f are for the rather academic workloads of short sys-
tem up time (Few Transactions), high frequency of delete operations (Delete-Centered)
and high frequency of aborts (Rollback-Centered). These results support the results of
other workloads. The overall runtime behavior does not change substantially in these
cases.

We have repeated each workload run under an increasing amount of concurrency.
This is done by doubling the number of concurrent threads from 4 up to 32. In addi-
tion, transaction think time was evenly distributed in the interval from 20 ps to 500 us
for Many, Large, and Mixed Transactions workloads and 100 ps to 2.5 ms for all other
workloads. Results are shown in Table 8.6. As the load increases, SICC is often faster
than Base (starting from 16 threads, in 7 out of 12 workloads). For high load with 32
threads, SICC is even up to 2 times faster for the Small, Base, and Add-Centered work-
load. Since these are the workloads where SICC also performs better for small trans-
action think time, we attribute this again to lower contention due to keeping changes
thread-local until they are committed.

Finally, we have measured the overhead induced by normalization for frequently
used n-ary axioms and assertions, with a range of values for n that appears most likely
in practice. The results shown in Table 8.5 suggest that normalization introduces only a
small delay in the range of microseconds.

8.4 Snapshot Isolation OWL Data Store

211

60000

50000

40000

30000

20000

10000

Execution time [milliseconds]

25000

20000

15000

10000

5000

Execution time [milliseconds]

0

7000

6000

5000

4000

3000

2000

1000

Execution time [milliseconds]

0

M Base MRSW SICC

100 500 2500
Transaction think time [microseconds]

(a) Base Transactions

B Base | MRSW [SICC

100 500 2500
Transaction think time [microseconds]

(c) Read-Centered

M Base MRSW SICC

100 500 2500
Transaction think time [microseconds]

(e) Small Transactions

Execution time [milliseconds] Execution time [milliseconds]

Execution time [milliseconds]

30000

25000

20000

15000

10000

5000

80000
70000
60000
50000
40000
30000
20000
10000

0

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

H Base MRSW SICC

20 100 500

Transaction think time [microseconds]

(b) Mixed Transactions

M Base MRSW & SICC

— ||
100 500 2500
Transaction think time [microseconds]

(d) Write-Centered

M Base MRSW SICC

20 100 500
Transaction think time [microseconds]

(f) Large Transactions

Figure 8.5: Execution times in comparison for basic workloads and 4 concurrent threads.
Note the shorter transaction think time for Mixed and Large Transactions workloads.

212 Experimental Results
70000 60000
M Base | MRSW [SICC M Base = MRSW [SICC
@ 60000 2 50000
[y [
8 50000 8
2 2 40000
= 40000 =
E E. 30000
(0] (0]
£ 30000 £
= = 20000
_5 20000 _5
3 3
§ 10000 8 10000
- 0 . . u o L
100 500 2500 100 500 2500
Transaction think time [microseconds] Transaction think time [microseconds]
(a) Add-Centered (b) Medial Commit Ratio
700000 6000
M Base MRSW SICC M Base MRSW SICC
‘2’ 600000 $ 5000
C C
8 500000 8
.g .g 4000
= 400000 =
E £, 3000
[0] (0]
£ 300000 £
i * 2000
S 200000 5
) 3
§ 100000 8 1000
w 0 v, [|
20 100 500 100 500 2500
Transaction think time [microseconds] Transaction think time [microseconds]
(c) Many Transactions (d) Few Transactions
60000 60000
M Base MRSW SICC M Base MRSW SICC
8’ 50000 S 50000
C C
o o
o (&
g 40000 8 40000
£, 30000 E. 30000
[0) Q
£ £
= 20000 = 20000
i) R
3 10000 3 10000
8 g
100 500 2500 100 500 2500

Transaction think time [microseconds]

(e) Delete-Centered

Transaction think time [microseconds]

(f) Rollback-Centered

Figure 8.6: Execution times in comparison for additional workloads and 4 concurrent
threads. Note the shorter transaction think time for Many Transactions workload.

8.4 Snapshot Isolation OWL Data Store 213

Table 8.6: Comparison of execution time ¢,y in seconds and transactions per second Tx/s
metrics among the competitors as a function of increasing concurrency and workload
patterns. Final number of OWL axioms, assertions and entity declarations in the KB at

the end of each workload run is also listed.

4 Threads 8 Threads 16 Threads 32 Threads

tex TX/ s tex Tx/ s tex TX/ s tex TX/ S

Base 12 333 15 533 33 485 101 31.7

Base Transaction MRSW 30 133 57 140 127 126 294 109

ase lransactions sSICC 13 308 15 533 21 762 56 57.1
Number of Data Items 26368 42308 76261 143823

Base 138 300 277 289 598 268 1679 19.1

Mixed Transactions MRSW 174 230 320 250 772 207 2209 14.5

SICC 178 225 278 288 601 266 1859 17.2
Number of Data Items 21245 34973 54323 91659

Base 250 160 781 102 2903 55 1159 2.8

Man T ; MRSW 410 9.8 1087 74 3607 44 13435 24

any lransactions SICC 284 141 616 130 1664 96 7227 4.4
Number of Data Items 174630 343149 677788 1344838

Base 13 308 14 571 1.6 1000 30 106.7

Few T ; MRSW 30 133 73 110 129 124 24.9 12,8

ew lransactions siIcC 13 308 14 571 17 941 19 1684
Number of Data Items 12261 14232 18124 24419

Base 48 83 180 44 646 25 2369 14

Laree T ; MRSW 65 61 194 4.1 701 23 2753 12

arge Lransactions SICC 54 74 143 5.6 432 37 1643 1.9
Number of Data Items 89991 191716 358980 706525

Base 14 2857 17 4706 21 7619 44 7273

Small Transaction MRSW 38 1053 75 1067 148 1081 300 1067

sactions SICC 15 2667 17 4706 17 9412 19 16842
Number of Data Items 11616 13017 15758 20388

Base 110 364 120 667 121 1322 138 2319

Read-Centered MRSW 111 360 132 606 160 100.0 216 1481

cad-L-entere SICC 118 339 127 630 129 1240 148 2162
Number of Data Items 10381 10700 11695 13193

Base 109 367 110 727 125 1280 204 156.9

Write-Centered MRSW 400 100 772 104 1570 102 3152 10.2

e--entere sicc 111 360 111 721 110 1455 143 2238
Number of Data Items 43754 76129 143909 276602

Base 148 270 231 346 669 239 2324 13.8

Add.Centered MRSW 317 126 684 117 1574 102 4062 7.9

entere SICC 156 266 189 423 384 417 1261 25.4
Number of Data Items 45703 79655 152402 285901

Base 111 360 110 727 115 1391 122 2623

Delete-Centered MRSW 278 144 573 140 1093 146 2243 143

clete-Lentere sicC 115 348 112 714 118 1356 123 2602
Number of Data Items 10318 10332 10360 10377

Base 109 367 120 667 179 894 488 65.6

Medial Commit Rati MRSW 287 139 567 139 1210 132 2541 12.6

edial L-ommuit Ratio SICC 116 345 127 630 153 1046 310 1032
Number of Data Items 18347 27049 43023 78533

Base 109 367 108 741 112 1429 121 2645

Rollback.Centered MRSW 291 137 554 144 1090 147 2250 142

oliback-Lentere sicc 113 354 113 708 116 1379 125 2560
Number of Data Items 10410 10723 10757 12354

Related Work

THIS CHAPTER reviews related work in three different areas. First, CFI introduced
in Chapter 5 relates to adaptation and exception handling in the field of workflow
management and process-aware information systems. Second, the peer-to-peer style
execution realized in OSIRIS NEXT and introduced in Chapter 7 relates to distributed
execution of workflows and processes. Finally, the knowledge base concurrency control
model and protocol introduced in Chapter 6 relates to transaction theory and manage-
ment in the field of databases.

9.1 Adaptation and Exception Handling

The field of workflow, process, or service adaptation as a means to flexibility and excep-
tion handling is too broad to be discussed here in general. This is illustrated further by
different taxonomies that have been proposed (e.g., [SMR08, BHB"10]) with the aim
of better understanding the different dimensions. For instance, the taxonomy proposed
in [SMR"08] identifies four ways of achieving flexibility, namely by:

* Design — anticipated changes in the operating environment are handled by strate-
gies that are defined at design-time.

* Deviation — unforeseen changes in the operating environment are handled by de-
viating from the expected behaviour such that differences are minimal (e.g., re-
ordering of activities).

* Underspecification — anticipated changes in the operating environment are handled
by strategies that cannot be defined at design-time, because the final strategy is not
known in advance or is not generally applicable (e.g., late modeling or late binding).

* Change — unforeseen changes in the operating environment are handled by modi-
tying the process specification at execution time.

CFI falls into the last category; notice its difference from flexibility by deviation due
to the fact that parts of the control flow are replaced. We therefore concentrate in the

216 Related Work

following on approaches that also belong to this category. For instance, we do not take
account of approaches to flexibility and exception handling realized in systems such as
FLOWer [AWGO05] and YAWL [AHAE(Q7] as they focus on flexibility by deviation re-
spectively by design and underspecification. The authors of [SMR'08] further point
out variability in the effect of change and the moment when changes are allowed. The
former defines whether a change is performed on an instance or on the specification,
thereby affecting all new instances. These two types are correspondingly called momen-
tary and evolutionary change in [SMRT08]. The moment at which a change is introduced
is either at entry time or on the fly, meaning either at instantiation time or in the midst of
execution. CFl is thus further classified as momentary and on the fly.

Research around the ADEPT1 system [RD98, HRRDO03] covers the topic of workflow
adaptation at various levels, including runtime deviation (e.g., move an activity for
the purpose of reordering or postponement), workflow schema evolution, and ad hoc
changes (e.g., insert, delete an activity). The latter has been considered particularly for
the purpose of exception handling at runtime in case of process activity failures [RBRO6].
These works differ from CFI in that they focus on (i) identifying conditions that need to
be satisfied in order to apply a change, (ii) factors that influence the choice of changes,
and (iii) how to correctly perform a change operation. However, they do not target au-
tomating the search for semantically equivalent or similar replacements. The methods
presented therein and in subsequent works [LRD06, LRD08] consider the semantic as-
pect to the extent of describing application-specific mutual exclusion and dependency
constraints among activities, which therefore make them more related to the declar-
ative paradigm of constraint-based workflow specification [PSSA07]. Research along
correctness and reasoning about workflow adaptation is continued in the successor sys-
tem ADEPT2 [RRDO09] (and its commercial offshoot AristaFlow). While research in the
context of ADEPT1 focused on the control flow perspective, a relaxed notion of correct-
ness for workflow instance changes that additionally takes the data flow into account is
presented in [RRWO08].

The declarative workflow system DECLARE [PA06, PSSAQ7] also features momen-
tary and on the fly workflow change. The fundamentally different principle of defining
a workflow as a set of activities together with a set of constraints over them (as op-
posed to an explicit specification of the control and data flow in the prevalent while
imperative paradigm) greatly facilitates flexibility since all kinds of executions are any-
way admitted that satisfy the constraints (i.e., a set of activities and an empty set of
precedence-implying constraints admits any sequential and/or parallel combination).

The major difference of CFI to the methods of change realized in DECLARE as well
as both versions of ADEPT is that their objective does not lie in finding respectively com-
posing failure handling means on demand depending on what has failed. Their focus
lies rather on investigating conditions under which a process instance can be modified
such that it complies with its changed schema. The important assumption is that the
change (i.e., what and how) is determined externally usually by humans, not by the
system itself. All these works should therefore be considered complementary.

Probably the closest relative to the techniques introduced with CFI has been pre-
sented in [VWS08, WVKSO08]. The authors introduce replace-by recovery actions to re-
cover from a failure in the execution of a service in a forward-oriented way, which

9.2 Distributed Execution 217

is virtually the same idea that underlies CFI. The authors also consider exploiting se-
mantic service descriptions (which is based on OWL-S) in order to search for recovery
actions. However, these works stay at a coarse level of detail, do neither describe an
implementation nor an evaluation.

Another close relative is [FFMT10]. The authors propose an approach to handle
exceptions at execution time by repair plans. Generation of a repair plan takes into ac-
count constraints posed by the process structure, dependencies among data, and avail-
able repair actions. A model based theory is used to reason about these three elements.
Generation of a plan is formulated as a planning problem and the search is based on
disjunctive logic programming. The authors also discuss the notion of repairability as a
property of a composite service that should be verifiable at design time. The important
assumption in this work is that repair actions are defined at design time together with
rules for applying them. This assumption is the basis that makes repairability analysis
possible at design time.

Finally, the idea of applying Al planning as a means to adaptivity and excep-
tion handling in workflow systems and service-oriented architectures is not new.
An early work in this direction is [[MS"99]. Among subsequent and similar works
are [GMM 05, FF06, DBCO07, MMR11]. The single overarching principle in all these
works including the planning-based technique put forward by this work is that execu-
tion and planning is interleaved along the lines of dynamic planning. However, what
distinguishes our framework from these works is that we consider a DL-based world
state representation and change semantics that corresponds to a query answering re-
spectively a belief update problem.

9.2 Distributed Execution

Before discussing related work in this field, we identify key classifying characteristics
that can be used to compare execution systems. Most of all, the essential criterion re-
quired of an execution system to qualify as distributed is that the locus of control may be
distributed at execution time in location and time as detailed in Footnote 5 at Page 179.
The subsequent discussion concentrates on systems that meet this criterion. Yet the se-
lection is representative rather than exhaustive as there are numerous proposals in the
literature. Other classifying features related to distributed execution are:

¢ Close versus remote coupling of execution nodes and atomic services/operations:
the former allows for local invocations whereas the latter necessitates remote in-
vocations.

* Direct forward of data being processed between execution engines versus indirect
via overlay networks or (centralized) middleware components (e.g., via a broker
or queueing system).

e Static versus dynamic decision how control is forwarded between nodes. Static
means that all decisions are made prior to execution and can thus not be changed
at execution time, whereas dynamic means that decisions are made on the fly (e.g.,
to allow for late binding).

218 Related Work

Historically, research on system support for distributed workflows and the dis-
tributed execution thereof started in the 1990s, mainly as a means to serve the, at that
time, increasing interest in availability, reliability, and scalability. Among these works
are [BMR94, AMG195, WWWD96, BD97, BD00]. Except for WWWD96] they all share
the property of close coupling.

The INCAS system [BMR94] considers workflows that execute under the control
of autonomous nodes and presents a computational model that already considers (i)
dynamics in the workflow (i.e., the control and data flow may change at execution time),
(ii) partial automation (i.e., some activities in a workflow may be manual), and (iii)
partial connectivity (i.e., nodes may be transiently disconnected). Distributed execution
is coordinated based on so-called information carriers, which are essentially objects that
carry information relevant for (i) the local execution by a node and (ii) routing of control
between the nodes involved in a workflow. Information carriers are forwarded directly
(end-to-end) between nodes. Another specific property of INCAS is that the forward
of control as well as the data flow is encoded by means of event-condition-action rules,
which means that every decision that is to be made in the course of execution needs
to be representable in this scheme. Rules of this kind are similarly used in the EVE
system [GT98].

The Exotica/FMQM architecture [AMG™95] belongs to the fist proposals in which
complete distribution of execution on individual nodes is considered on one hand, and
in which the authors deal with the aspect of failure-resilience; to be precise, the crash of
single nodes. The latter is achieved by means of persistent and transactional messaging
between nodes. Messages are therefore exchanged indirectly via messaging middle-
ware. The approach requires all activities within a workflow to be reentrant (i.e., they
can be safely restarted after a crash) and assumes no inter-workflow dependencies. The
authors also do not discuss whether control forwarding decisions are static or not.

The execution system presented in [BD97, BD00] is conceptually similar to OSIRIS
NEXT in that it also considers the migration of ongoing execution instances between
nodes (wWhich may have been added as a result of a growing overall load). The difference
is, however, that the authors focus on optimizing communication costs only. A later
paper in this line of work analyzed the aspect whether dynamic migration of execution
state from one node to another justifies the additional (communication) effort that it
creates [BR0O4]. It is shown that it is not reasonable as a reaction to an overload of the
communication system and/or the current node since it would add even more load to
them.

In [NCS04], the authors present a compiler-inspired analytical optimization tech-
nique. Based on a cost model that analyzes the dependencies in the control and data
flow, a composite service (specified in BPEL) is partitioned into sections that can be ex-
ecuted independently. The goal is to minimize communication costs while maximizing
the throughput of multiple concurrently executed service instances, which is achieved
by reordering sections. The underlying assumption is therefore frequent re-execution
of services, which makes it different from the objective of OSIRIS NEXT that targets ad
hoc services.

While the objective of the OSIRIS system [SWSS03, SWSS04, SST*05] is a true de-
centralized peer-to-peer approach in which no central components exist, its design also

9.3 Concurrent Access to Knowledge Bases 219

makes it well suited for frequent re-execution, which is mainly due to close coupling
and an approach similar to [AMG™95]. Specifically, the process is partitioned into sec-
tions equal to the activities, which are mapped to atomic services. The architecture
considers that nodes at which atomic services are deployed are equipped with an addi-
tional so-called hyperdatabase layer, which can be understood as a local execution engine.
Prior to execution of a process, a node that provides a service within the process needs
to be prepared by providing it with all information necessary to locally forward control
and data to subsequent nodes according to the process” control flow. The initial distri-
bution of this information is insignificant if the process is executed many times (since
it is done once only). However, it turns out to be an overhead for ad hoc processes (ad
hoc composite services) that are executed a few times only, possibly just once; which is
the reason why OSIRIS NEXT is designed not to involve such an initial step.

Execution of ad hoc composite services has also been addressed in the AMOR sys-
tem [BCF'06]. Similarly to OSIRIS, its architecture also relies on meta data repositories,
but it follows a mobile agent approach, meaning that a process instance is organized
as a mobile agent that moves directly between peers (end-to-end) at which services are
deployed. This approach therefore also assumes close coupling, and requires an agent
runtime layer at service provider peers.

Finally, another agent-based approach has been realized in the NINOS architec-
ture [LMJ10]. One of its main characteristics is that it relies on publish/subscribe mes-
sage exchange. Specifically, peers communicate indirectly via a message broker overlay
network. The control flow of a process is deployed indirectly to so-called activity agents
by establishing a set of subscriptions. More precisely, in order to represent a precedence
relation between two activity agents A < B (i.e., A precedes B), agent A defines a topic
to which agent B subscribes. If A completes execution it sends a message to the topic
which is then received by B, thereby handing over control to B. Messages sent are fur-
thermore used to forward data according to the data flow. This shows that the approach
also involves an initial deployment phase, which therefore makes it inappropriate for
ad hoc composite services.

9.3 Concurrent Access to Knowledge Bases

While research in database concurrency control has been around nearly as long as
database research (with the result that the topic is well understood today and backed
by thorough theory), the study of correctness in concurrent access to shared axiomatic
knowledge bases by developing an analogous transaction theory is in its infancy. Not
surprisingly therefore, the literature on the topic is rare, at best. One reason is per-
haps the practice “to use a database system to store the information in a DL knowledge
base representation system [...] so as to piggyback on the facilities for concurrent ac-
cess provided by the database system” [BCM 107, Section 7.3.3]. One example in this
direction is [HKGB09] in which the authors consider the use of a relational DBMS to-
gether with an object-relational mapping framework as the underlying data store for
the OWL APIL Other examples that are all backed by relational database technology
are [BHT05, ZML"06, AJPS10, CGL*11b]. These works, however, are more focused on

220 Related Work

efficient mappings between OWL and the relational model as well as efficient query
answering. The aspect of concurrent updates and reads is barely discussed explicitly.
In some cases the rather restrictive policy of multiple-reader/single-writer (MRSW) is
assumed.

However, the consequence of using conventional database technology is that the
notion of consistency is restricted to the data level. The higher level notion of consis-
tency at the semantic (logical) level is not considered. Jointly addressing both notions
by transaction processing has, to the best of our knowledge, not yet been described in
the context of axiomatic knowledge representation.

The picture of concurrency control is similar when it comes to RDF triple stores.
While one direction also considers the use of relational database technology under-
neath, there are also “native” RDF triple stores that are designed particularly for RDF’s
graph based data model. The x-RDF-3X system [NW10] is one example in this regard
in which the access protocol is tailored for RDF specifics. The authors consider the use
of Snapshot Isolation combined with predicate-locking for updates to circumvent the
overhead of fine-grained locking over RDF triples. Other native triple stores such as
Bigdata [SYS09] and AllegroGraph'® [Fra] essentially use Snapshot Isolation, but it is not
clear from the documentation whether they implement additional means to avoid write
skews. The Jena Tuple Database (TDB) [Jenb] started out with the limited MRSW access
policy. Only recently the authors have extended it with transactional means providing
serializable access through the use of a still rather limited policy of single writer plus
multiple reader, which should not be confused with MRSW that is defined as single
writer xor multiple reader.

Concerning the transactional model, close relatives to our work are the unified trans-
action model with semantically rich operations [VHBS98] and the concept of multilevel
(or nested) transactions [Mos85] and later generalizations. In fact, our work draws from
the theory established by these works, particularly [VHBS98]. Multilevel transactions,
on the other hand, consider transaction management at different levels of abstraction
independently, albeit not separately. Data items at a higher level are subject to a 1:n
mapping to the next lower level (e.g., the mapping from di%WL to digDF). Similarly, a
higher level operation is implemented as a sub transaction, by a sequence of lower level
operations. Whenever a conflict is detected and handled at a higher level, this needs to
be handled accordingly at the next lower level; thus, making sure that an execution at
lower level does not violate a scheduling decision that has been made further up. Sev-
eral such approaches exist that differ in the degree of parallelism that can be achieved.
Closed nested transactions [Mos85] restrict the visibility of each sub transaction com-
pletely to the scope spanned by its top-level transaction, which severely impacts the de-
gree of concurrency. In open nested transactions [WS92], in turn, sub transactions are al-
lowed to commit prior to the commit of the associated top-level transaction, which leads
to an increased level of concurrency. The composite systems theory, finally, [ABFS97]
considers conflicts at lower levels at finer granularity and even allows to execute con-
flicting higher level operations concurrently at the next lower level.

Works on concurrency control in the context of deductive databases and Frame-
based knowledge representation are furthermore worth noting. In [CM95], a locking-

Wersion 4.4

9.3 Concurrent Access to Knowledge Bases 221

based protocol called Dynamic Directed Graph policy has been presented and analyzed
which supports graph-based KBs that contain cycles. In the area of Frame-based KBs,
an optimistic concurrency control algorithm has been presented in [KCP99]. An ap-
proach similar to multi-granularity locking with enhanced lock modes capturing the
abstraction relationships’” semantics has been presented in [RH95]. None of these ap-
proaches is generally blocking-free for reads because they use locking-based protocols.

Finally, somewhat further away are works on collaborative while concurrent
ontology development, which is especially relevant for large ontologies such as
SNOMED CT [Int] that are developed and maintained in larger teams. A recent pro-
posal to this has been made in [EGHB11]. The authors adapt concurrent versioning
techniques that are usually used in software engineering. Furthermore, the authors
have defined notions of structural equivalence and difference between different states
of an ontology. They are used to enable tool-based resolving of structural as well as
semantic (logical) conflicts.

10

Conclusions and Future Work

MONG THE TASKS in the lifecycle of service-oriented applications, service execu-
tion, as it has been viewed in this thesis, is of equal standing to its siblings service
discovery and composition. In fact, the means of flexibility investigated herein involved
an interwoven treatment of the three of them. There is no doubt that the increased flexi-
bility comes at a price: an additional layer of complexity. In this concluding chapter, we
recapitulate the main contributions vis-4-vis the additional complexity and point out
research directions that can extend and improve our work.

10.1 Summary

In this thesis, we have extended the computational basis of automated service execution
support in two ways: First and foremost, we have presented a complete framework to
deal with runtime failures in an optimistic and forward-oriented way that spares one the
effort of anticipating and pre-defining recovery means. Second, we have put forward a
method for distributed and decentralized composite service execution. These two fea-
tures bring about two dimensions of flexibility that account for challenges which we
have identified in new application domains that adopt the service-oriented computing
paradigm, namely: ad hoc composed services, distributed setting, variety of devices
(mobile, stationary, embedded), and possibly large amount of semantically related ser-
vices out of which composite services can be synthesized.

As an inceptive step, we have laid the basis by setting up a formal system model that
views service execution as a discrete process and that incorporates those dimensions of
service semantics that are relevant to our objectives. While the overall strategy of mod-
eling service semantics follows prior work on semantic services in a number of respects,
we were able to generalize and extend it as well as to combine the different dimensions
of service semantics in a coherent way. Namely, the immanent relationship between
change and execution semantics has been combined seamlessly and in a general way
through the notion of an execution state and its advancement as determined by the con-
crete precondition and effect system used. The possibility to instantiate the system with

224 Conclusions and Future Work

different precondition and effect systems provides a way to vary the tradeoff between
expressivity and computational complexity depending on practical needs.

For the failure recovery framework, the essential step was to formulate a notion of
semantically equivalent execution that reflects the intuition of humans. Specifically, we
have formulated two notions of functionally equivalent execution, which are reduced
respectively to a matchmaking and a planning problem. The reason to formulate two
rather than a single notion is motivated both technically and with application domains
in mind. The matchmaking-based replacement search technique trades narrower scope
of practical applicability for lower algorithmic complexity. The planning-based tech-
nique, on the other hand, is strictly more general since it abstracts from the control flow,
but comes at a higher algorithmic complexity.

The planning-based replacement composition technique that we have presented
builds directly upon the DL knowledge base part of the execution state, which is mo-
tivated precisely by getting to the aforementioned seamlessness. The consequence is
that a translation into a propositional planning framework such as STRIPS is not gen-
erally given, depending on the concrete precondition and effect system used. Other
researchers may prefer translatability into a propositional planning framework in order
to reduce implementation efforts by using off-the-shelf planning tools.

We have furthermore described a way how the planning-based notion of equiv-
alence can be broadened towards similarity as well as to take into account the non-
functional dimension. This follows essentially the shift from viewing goals as manda-
tory towards viewing them as desired and formulating preferences over goals. The
consequence of this extension is however that combinatorial search performed during
planning is extended by an optimization problem.

The central concept in the system model — the use of the symbolic approach based
on Description Logics to represent and reason about semantics — implies that reason-
ing in the notions of equivalence that we have defined essentially reduces to the basic
deductive subsumption inference. After pondering over the usefulness of relying on
subsumption, it turned out that a sufficiently accurate conceptualization of the domain
is more important in order to avoid ambiguities in profiles. Yet it is precisely this ac-
curacy that is often hard to achieve — developing an accurate and consistent domain
conceptualization is still time-intensive expert work. The problem is also due to the fact
that humans are subject to beliefs. Beliefs may change over time and different people
may have different beliefs. This calls for future improvements and we will come back
to this aspect below.

Regarding the way how execution is organized, we have presented a self-contained
strategy that is distributed, decentralized, and that is designed particularly for ad hoc
services and devices of a diverse range of computing, memory, and network resources.
As the use of semantic services involves frequent access to a KB at execution time, re-
gardless of how it is organized, we have also presented two optimization techniques
geared towards reducing the number of accesses, avoiding unnecessary updates, and
simplifying query evaluation. Both techniques can greatly improve performance and
are furthermore applicable generally beyond the service execution task.

Another problem investigated in this thesis is coordinating concurrent access to
shared knowledge bases such that incorrect inferences are avoided. This is a problem of

10.2 Future Work 225

general relevance to shared knowledge management. It occurs in our system model due
to the fact that we allow for concurrent execution of multiple service instances. Specifi-
cally, we have considered the axiomatic knowledge representation paradigm that comes
with a higher level semantic (logical) notion of consistency as a prerequisite to reason-
ing over knowledge. The approach presented is the first to combine the conventional
notion of consistency at the data that represents the knowledge with the higher level
semantic notion of consistency. This is achieved by taking axioms (syntactic instances,
as we also call them) as the unit of concurrency control. Since they are furthermore
immutable, it appeared natural to us to depart from the prevalent read/write model
towards a model in which the basic operations are add, delete, and read. The access
protocol is essentially Snapshot Isolation with a simple algorithmic extension. Though
Snapshot Isolation does not satisfy the correctness notion of serializability, it has been
chosen mainly because query answering might involve intractable reasoning, which
does not pose a problem as reads are non-blocking in this protocol. We have finally
proposed an alternative notion of correctness that is exclusively based on integrity con-
straints and sketched a way how it could be realized for Snapshot Isolation.

Finally, the conclusion from the implementation and the quantitative evaluation is
that the different methods present an ensemble capable of handling practical problems
of a realistic size, thereby demonstrating the potential of the overall approach.

10.2 Future Work

Not looking through a researcher’s eyes for a moment, perhaps the premier question a
practitioner might raise is what are the costs of implementing the approach in practice
and what are its risks. While the results obtained from our quantitative evaluation
demonstrate the basic feasibility, a thorough study in a real practical setting is needed.
Setting off such a study is still difficult because a key element in the overall approach
— the use of profiles describing the semantics of services and their operations — turns
out to be still critical in this regard: the until now unresolved cold start problem of
semantic services [BB10]. To date, it is by far not standard that profiles are available for
real existing services. Part of the problem is also due to the fact that developing domain
conceptualizations is expensive expert work. The biggest challenge is therefore to make
the process of creating these annotating profiles less costly while retaining accuracy.
In fact, we believe that the success of semantic services in general depends strongly
on automation support for this process. What is needed at least is tool support that
makes the process easier for humans and faster in total. Perhaps it is also necessary to
become rewarding for service providers. Ideally, the process is automated to an extent
that humans will be in the position of final assessment and revision of profile proposals
created by computers. Approaches that seem most potential to this are (statistic-driven)
machine learning methods. Though this problem is related it has a direct influence on
the future success of the work presented herein.

Coming back to the research perspective, there are several directions in which our
work can be further extended and improved, some of which are connected with related
areas.

226 Conclusions and Future Work

Two topics for future work are readily visible from the simplifying assumptions (A2),
(A8) that we have made. Transferring optimistic failure-handling to data stream pro-
cessing services yields questions about how to represent and reason about the semantics
of data streams and processing operators. Approaches might, however, build upon the-
oretical and technical groundwork for handling operator failures presented in [BS11].
Relaxing the assumption on the failure behavior is closely related to the extension of the
service and process model towards prompt representation of effects. The current model
has it that application of effects to the world state representation in the KB is considered
to be made at once upon completion of operation invocation. This is the less appropri-
ate the longer an operation runs. One could therefore further investigate a paradigm
shift towards a model in which effects might occur any time during the invocation of
an operation and are immediately applied to the KB rather than upon completion. We
see such an extension involved both on the theoretical side and on the technical side.
What is required technically is that operations need to be either inspectable so that they
can be observed for their effects (i.e., monitoring), or provide an event mechanism for
instant notification about creation of effects (i.e., callbacks).

Another interesting question is how to extended CFI to include ad hoc defined roll-
back and compensation. In other words, how can the vacant quadrant in Figure 5.1 be
filled. While we have outlined different possibilities already in Section 5.5.2, a formal
underpinning is certainly left to be done that particularly includes an investigation of
the property of guaranteed termination. More generally, a framework defining a no-
tion of recoverability and means to reason about it such that it can be verified prior to
execution is worth being developed.

Finally, Integrity Isolation, the alternative notion of correctness for concurrent trans-
actions discussed in Section 6.6.1 is worth being further investigated. Since the all-
important part in this approach is identification of integrity constraints in practical do-
mains and whether their quantity is manageable, the next logical step before further
technical considerations should be an investigation whether identification is reasonably
possible.

Appendix

A.1 Effect System Algorithms

The following two algorithms are based on [CKNZ10] and have been extended to ac-
commodate the additional features of the DL considered by the Effect System (ES1).
Given a TBox T, let cI(T) = {¢ | T = ¢} be the deductive closure of T (i.e., all TBox
axioms entailed by 7). Analogously, let c/7(.A) be the deductive closure of AU 7. Al-
gorithm FastEvol takes as its input a KB K. Furthermore, given a primal update Uy, it
takes the set A, = {¢ | (K +¢) € Up} (ie., the assertions added by Up) and the set
A-={¢ | (K—¢) € Up} (ie, the assertions deleted by Up,). FastEvol computes the
set of all conflicting assertions D. Algorithm Weeding takes the KB KC and the set D and
deletes every assertion ¢ € D if ¢ € A (i.e., if it is explicitly asserted). Otherwise, it
deletes all assertions from A that 7 -entail ¢.

Input: consistent KB I = (7, A), set of assertions D to be deleted from A
Output: concomitant update U

1. U :=@
2: for each Ci(c) € D do // first, pick concept assertions
3 ifCy(c) € Athen U, := U .U {K — Cy1(c)} end if
4. foreach BC C; € cl(T) do
5: if B(c) € Athen U := U.U{K — B(c)} end if
6: if B equals JR.C; then
7: for each R(c,d) € cl1(A) do
8: if Co(d) € cl7(A) then D := DU{R(c,d)} end if
9: end for
10: end if
11: end for
12: end for
13: for each =Cy(c) € D do // second, pick negated concept assertions

14: if °Cy(c) € Athen U, := U .U {K — —Cy(c)} end if
15: foreach BC —C; € cI(T) do

16: if B(c) € Athen U, := U.U{K — B(c)} end if

17: if B equals 3R.C; then

18: for each R(c,d) € clr(A) do

19: if Co(d) € cly7(A) then D := DU{R(c,d)} end if
20: end for

21: end if

22: end for

23: end for

Algorithm 2, Part 1 of 2: Weeding(/C, D)

228

24: for each Ry(a,b) € D do // third, pick role assertions
25: if R1(a,b) € Athen U, := U.U{K — Ry(a,b)} end if
26: foreach R, C Ry € ¢cl(T) do

27: if Ry(a,b) € Athen U, := U, U {K — Ry(a,b)} end if

28: end for

29: end for

30: for each =R, (a,b) € D do // finally, pick negated role assertions

31: if "Ry(a,b) € Athen U, := U, U{K — —Ry(a,b)} end if
32: foreach R, C Ry € ¢l(T) do

33: if “Rq(a,b) € Athen U, := U.U{K ——Ry(a,b)} end if
34: end for
35. end for

Algorithm 2, Part 2 of 2: Weeding(/C, D)

Input: consistent KB K = (7, .4), ABox A consistent with 7, ABox A_
Output: concomitant update U,
s Ao =l (AN A) Uclr(Ay), Ay ==clr(Ay), D =@
: foreach C(a) € A1 do
if 7C(a) € cly(A) then
D:=DU{-C(a)}
end if
end for
for each R occurring in 7 do
if {R(a,b),~R(a,b)} C Ay then
if R(a,b) € A, then D := DU{-R(a,b)}
else D := DU{R(a,b)} end if
end if
: end for
: for each R~ occurring in 7 do

R B AU R S e

O

14: if {R(a,b),~R (b,a)} C Aj then

15: if R(a,b) € Ay thenD :=DU{-R (b,a)}
16: else D := DU{R(a,b)} end if

17: end if

18: if {R (a,b),—R(b,a)} C Aj then

19: if R"(a,b) € Ay then D := DU {=R(b,a)}
20: else D:= DU{R (a,b)} end if

21: end if

22: end for

Algorithm 3, Part 1 of 2: FastEvol (K, A4, A_)

A.1 Effect System Algorithms

229

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

for each Dis(Cy,C;) € ¢l(T) do
if {Cl (a), Cz(ﬂ)} C Aj then
if C; (El) €A thenD :=DU {Cz(d)}
else D := DU{C;(a)} end if
end if
end for
for each Dis(Ry, Ry) € cI(T) do
if {Rl (ll, b), Rz(ll, b)} - .A() then
if Rl(a, b) S .A+ then D := DU {Rz((l, b)}
else D := DU{Ry(a,b)} end if
end if
end for
for each Fun(R) € cI(T) do
if {Ry(a,b),Ry(a,c)} C Ap then
if Ri(a,b) € A4 then D := DU {Ry(a,c)}
else D := DU{Ry(a,b)} end if
end if
end for
for each Asy(R) € cl(T) do
if {R1(a,b),Ro(b,a)} C Aj then
if R1(a,b) € A, then D := DU {Ry(b,a)}
else D := DU{Ry(a,b)} end if
end if
end for
for each Sym(R) € cI(T) do
if {R1(a,b),~Rp(b,a)} C Ay then
if R1(a,b) € A, then D := DU {—Ry(b,a)}
else D := DU{Ry(a,b)} end if
end if
end for
U, := Weeding(K, D)

Algorithm 3, Part 2 of 2: FastEvol (K, A+, A_)

230

A.2 Conditional Choice for Control Flow Graphs

One way of extending the notion of a control flow graph to also model processes in
which deterministic choices are made based on service-specific conditions is as fol-
lows.! Given a control flow graph G = (P, T,F, My, fu), let Fpe = {(p,t) |
p asplit place and t € pe} be the set of all output edges of split places in Gy. Let £
be a formal condition expression language where a condition v € £ is understood as a
Boolean-valued function (i.e., it is either true or false). First, a partial mapping

cond: Fgppip — L

is introduced that assigns a condition v € £ to a pair (pspht, t) € Fgplit (i-e., only an
outgoing edge of split place can have a condition assigned). Notice that cond is partial;
hence, a condition is possibly assigned but not necessarily. Conditioning transition en-
abling merely on the evaluation of conditions is therefore not sufficient to ensure that
at most one output transition ¢ of a split place pgp);; becomes enabled because (i) the
edge (Psplits t) might not be associated with a condition and (ii) there can be multiple
edges (psplit/ t;) whose associated condition is true. Consequently, additional means are
required that enforce this property. There are two ways to achieve this:

1. For every split place pgppir € P the conditions possibly assigned to its outgoing
edges are required to be mutually exclusively true and every split place has at
most one outgoing edge that does not has a condition assigned. Then, a transition
t € T is enabled iff [tem (1) and Item (2) of Definition 4.13 hold and, in addition,

cond(psplie, t) = implies 7y is true

V i € PZ i € t d
Psplit Psplit € 1 an {Cond(pSPIit/ t) — undefined implies

Vt' € pepiic® and t # t: cond(pepi, t') is false.

This rule says that if f is the output transition of a split place pgp;; then ¢t is en-
abled either if the condition on the edge (pspiit, t) is the one that is true among all
the conditions on outgoing edges of pgpyit, Or if there is no condition assigned to
(pspht, t) then the conditions on all other outgoing edges of Psplit are false.

2. For each split place pspjit € P a priority mapping prtyp,,, is introduced that de-
fines a precedence order on its output transitions. Formally,

Prtypspm: {t | te psplit.} — {11 sy |psplit.|}

such that prty,_, is a bijection and the value 1 is interpreted with highest and
| pspiit® | with lowest priority. The priority is employed by the transition-enabling
rule such that it uniquely determines one transition out of the output transitions
of psplit in cases where the condition on more than one outgoing edge of pgp;; is
true or where more than one outgoing edge does not has a condition associated.

IThere are also alternative ways to achieve the same based on coloured PNis.

A.3 Properties of Read and Update Operations 231

Formally, a transition t € T is enabled iff Item (1) and Item (2) of Definition 4.13
hold and, in addition,

vPspli’t € P: Psplit € ot and

cond(pspiit, t) is undefined or true implies t = arg min prtypspht(t’)
tlepsplit.

where arg min denotes the arqument of the minimum; that is, in this case, the transi-
tion t' € pgpiie® for which prtypspht(t’) is minimal.

A.3 Properties of Read and Update Operations

In the following, we explain the commutativity and set-preservation results given in
Table 6.1 for those combinations which do not commute and are not set-preserving in
general. Let S be the initial set of syntactic instances in an OWL knowledge base WV, let
S’ be the resulting set after any combination of two read, add, or delete operations has
been applied to W, and ¢ a OWL syntactic instance. The return value of an operation
is indicated as follows. a(y) = t, a(¢) = £ shall denote that adding ¢ returned true
or false, respectively. Indices 1,2 are used if necessary to distinguish among different
invocations of the same operation.

It is plainly apparent that the read/read combination is commutative and set-
preserving. The return value is the same regardless of the execution order and neither
of the reads causes a change of W (S = S’). Consequently, it does not matter which read
is executed first.

For all other combinations two cases need to be considered: ¥y € S and ¢ ¢ S.
Depending on these cases and the actual combination either add and/or delete may be
futile or the read may return null as shown in the following;:

Read/Add ¢ €S: r(p)=v, a(p)=1% S'=S
a(p) =1, () =9 §'=s
Y &S r(p) =null, a(yp) =t S'=SuUy
a(yp) =+, r(p) =y s'=Suy
Read/Delete p€S: r(yp)=¢, dp)=t S =S\y
d(yp) =t, r() = null S =S\y
Y &S: r(p)=null, d(y)="* S'=8
d(y) =1, (1) = null S =
Read/Delete p€S: r(yp)=¢, dy)=t S =S\y
d(yp) = t, r() = null S'=8S\y
Y &€S: r(p)=null, d(y)="* S'=8
d(y) =1, () = null S =

232

Add/Add ¢ e€S: m(yp)=£f, a(p) =1 S =
n9) =1 a(p) =t 5=
pES: m(p)=t, m(p) =1 s'=suy
w(yp) =t a(yp) =1 S'=Suy
Delete/Delete ¢ €S: di(p)=1t, do(¢p)=1£ S =S\y
dy(p) =t, di(yp) =1 S'=S\y
YpES: di(p)=1£ do(y) =1 s'=s
d(p) =1, di(p) =1 s'=s
Add/Delete ¢ €S: a(yp)=f, d(p) =t S =S\y
dg) =t aly) -t s s
pEs: ap) =t dyp) =t s =5
d(y) =1, a(p)=t S'=Suy

Clearly, these combinations do neither commute nor are they set-preserving in general.
However, some of them state-dependently commute [VHBS98], meaning that they com-
mute depending on the initial state; that is, depending on whether ¢ € S or not. Read-
/add and add/add commute for ¢ € S (but not for ¢ ¢ S); if the add operation is futile
because the syntactic instance ¢ is in V anyway already. Analogously, read /delete and
delete/delete commute for i ¢ S; if the delete operation is futile because is not in W.

This raises the question whether it is worth the extra effort of optimizing for state-
dependent commutativity. The main motivation is that if the change set of concurrent
transactions are additionally checked whether they contain such combinations then the
number of conflicts that lead to aborts might be reduced. It seems to be evident that
the decision pro or against spending the effort depends on the workloads. More specif-
ically, it depends on the absolute occurrence frequency of state-dependently commut-
ing combinations in a workload and, more importantly, on the relative frequency of
cases where a transaction would conflict under “standard” commutativity (1) whereas
it would not conflict under state-dependent commutativity (2). The higher the ratio be-
tween (1) and (2) the more worthwhile the additional effort becomes. However, we be-
lieve that optimizing for state-dependent commutativity is forlorn hope because cases of
state-dependent commuting operations are rare in most workloads. What is more, con-
sidering applications that are “conscious”, meaning that they try to avoid futile read,
add, and delete operations anyway (since it is natural to avoid doing futile things), the
frequency of state-commuting cases becomes fairly small.

Bibliography

Publication year histogram of this bibliography.

T T T T T
geof A
_‘g | n |
S 40|]
(oW
o
o) L
=
S 20/
S
= |
Z.
0= M

é@qbé?@é\@(\(\(\‘o«‘\(\ PP DIPHH DL D>
¥ 2 Z q/ N q‘” q"’% q‘: «‘” :’ /\2/@ \‘Z i%%iiiiﬁﬁ'ﬁﬁﬁ@
° 0 S M R S T OIEN IR
@x‘”@@@@ °’°’°’ @@@@@@@@@@@@f&@f&f&@

[Aal98] Wil M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. Journal of Circuits, Systems, and Computers, 8(1):21-66, 1998.

[ABES97] Gustavo Alonso, Stephen Blott, Armin Fefller, and Hans-Jorg Schek. Cor-
rectness and Parallelism in Composite Systems. In Proceedings of the 16th
Symposium on Principles of Database Systems (PODS), pages 197-208, New
York, NY, USA, 1997. ACM.

[ABHMO3] C. Areces, P. Blackburn, B. M. Hernandez, and M. Marx. Handling Boolean
ABoxes. In In Proceedings of the 2003 International Workshop on Description
Logics (DL-2003), 2003.

[ABMO04] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml. In
Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, PODS '04, pages 35-45, New York, NY,
USA, 2004. ACM.

[ACMS08] Vikas Agarwal, Girish Chafle, Sumit Mittal, and Biplav Srivastava. Under-
standing Approaches for Web Service Composition and Execution. In Pro-
ceedings of the 1st Bangalore Annual Compute Conference, pages 11-18, New
York, NY, USA, 2008. ACM.

[AdROO0] Carlos Areces and Maarten de Rijke. From Description to Hybrid Log-
ics, and Back. In Frank Wolter, Heinrich Wansing, Maarten de Rijke,
and Michael Zakharyaschev, editors, Advances in Modal Logic, pages 17—
36. World Scientific, 2000.

234

BIBLIOGRAPHY

[Ady99]

[AHO02]

[AHAEO07]

[AHWO03]

[AJPS10]

[ALRLO4]

[AMG195]

[AMMO7]

[AS11]

[AWGO05]

[BAO6]

[BB10]

[BBD+02]

Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1999.

Wil ML.P. van der Aalst and Kees M. van Hee. Workflow Management: Mod-
els, Methods, and Systems. MIT Press, 2002.

Michael Adams, Arthur ter Hofstede, Wil van der Aalst, and David Ed-
mond. Dynamic, Extensible and Context-Aware Exception Handling for
Workflows. In Robert Meersman and Zahir Tari, editors, On the Move to
Meaningful Internet Systems 2007: CooplS, DOA, ODBASE, GADA, and IS,
volume 4803 of LNCS, pages 95-112. Springer, 2007.

Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Mathias Weske, editor, Busi-
ness Process Management, volume 2678 of LNCS. Springer, 2003.

Lina Al-Jadir, Christine Parent, and Stefano Spaccapietra. Reasoning with
Large Ontologies Stored in Relational Databases: The OntoMinD Ap-
proach. Data & Knowledge Engineering, 69(11):1158-1180, 2010.

Algirdas AviZienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. Dependable and Secure Computing, IEEE Transactions on, 1(1):11-33,
2004.

Gustavo Alonso, C. Mohan, Roger Giinthor, Divyakant Agrawal, Amr El
Abbadi, and Mohan Kamath. Exotica/FMQM: A Persistent Message-
Based Architecture for Distributed Workflow Management. In Proceedings
of the IFIP Working Conference on Information Systems for Decentralized Orga-
nization, pages 1-18, Trondheim, Norway, 1995.

Eyhab Al-Masri and Qusay H. Mahmoud. QoS-based Discovery and
Ranking of Web Services. In Proceedings of 16th International Conference
on Computer Communications and Networks (ICCCN), pages 529-534, 2007.

Wil van der Aalst and Chirstian Stahl. Modeling Business Processes: A Petri
Net-Oriented Approach. MIT Press, May 2011.

Wil M.P. van der Aalst, Mathias Weske, and Dolf Griinbauer. Case han-
dling: a new paradigm for business process support. Data & Knowledge
Engineering, 53(2):129-162, 2005.

Moti Ben-Ari. Principles of concurrent and distributed programming.
Addison-Wesley, 2nd edition, 2006.

Shalini Batra and Seema Bawa. Review of Machine Learning Approaches
to Semantic Web Service Discovery. Journal of Advances in Information Tech-
nology, 1(3), 2010.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS 02, pages 1-16, New York, NY, USA, 2002. ACM.

BIBLIOGRAPHY 235

[BBG95]

[BBLOS]

[BBL11]

[BCF'06]

[BCI09]

[BCM107]

[BD97]

[BDOO0]

[BDS08]

[BFL*07]

[BFL*08]

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O'Neil. A Critique of ANSI SQL Isolation Levels. In
Michael J. Carey and Donovan A. Schneider, editors, SIGMOD Conference,
pages 1-10. ACM Press, 1995.

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL En-
velope Further. In Proceedings of the OWLED 2008 DC Workshop on OWL:
Experiences and Directions, Washington, DC, USA, 2008.

David Beckett and Tim Berners-Lee. Turtle - Terse RDF Triple Language.
W3C Team Submission, March 2011. Available at http://www.w3.0rg/
TeamSubmission/turtle/.

Walter Binder, Ion Constantinescu, Boi Faltings, Klaus Haller, and Can
Tiirker. A Multiagent System for the Reliable Execution of Automatically
Composed Ad-hoc Processes. Autonomous Agents and Multi-Agent Systems,
12:219-237, 2006.

Antonio Brogi, Sara Corfini, and Stefano lardella. From OWL-S Descrip-
tions to Petri Nets. In Elisabetta Nitto and Matei Ripeanu, editors, Service-
Oriented Computing - ICSOC 2007 Workshops, pages 427-438. Springer,
Berlin, Heidelberg, 2009.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook: The-
ory, Implementation and Applications. Cambridge University Press, 2nd edi-
tion edition, 2007.

Thomas Bauer and Peter Dadam. A Distributed Execution Environment
for Large-Scale Workflow Management Systems with Subnets and Server
Migration. In Proceedings of the Int’l Conference on Cooperative Information
Systems (CooplS), pages 99-108. IEEE, June 1997.

Thomas Bauer and Peter Dadam. Efficient Distributed Workflow Man-
agement Based on Variable Server Assignments. In Proceeding 12th Int'l
Conference on Advanced Information Systems Engineering (CAiSE), number
1789 in LNCS, pages 94-109. Springer, June 2000.

D. Benslimane, S. Dustdar, and A. Sheth. Services Mashups: The New
Generation of Web Applications. Internet Computing, IEEE, 12(5):13-15,
sep. 2008.

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan, Anton Ri-
abov, and Fan Ye. A semantics-based middleware for utilizing hetero-
geneous sensor networks. In James Aspnes, Christian Scheideler, Anish
Arora, and Samuel Madden, editors, Distributed Computing in Sensor Sys-
tems, volume 4549 of LNCS, pages 174-188. Springer, 2007.

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan, and Anton
Riabov. A Tag-based Approach for the Design and Composition of Infor-
mation Processing Applications. In Proceedings of the 23rd ACM SIGPLAN

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/

236

BIBLIOGRAPHY

[BGO1]

[BH91]

[BH93]

[BHOS]

[BHB*10]

[BHGS7]

[BHM™04]

[BHTO5]

[BKM99]

[BL85]

[BLF06]

[BLHLO1]

conference on Object-oriented Programming Systems Languages and Applica-
tions, OOPSLA ’08, pages 585-602, New York, NY, USA, 2008. ACM.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial In-
telligence, 129(1-2):5-33, 2001.

Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete
Domains into Concept Languages. In Proceedings of the 12" International
Joint Conference on Artificial Intelligence (IJCAI), pages 452-457, Sydney,
1991. A long version appeared in the Technical Report RR-91-10, DFKI,
Germany, 1991.

Gerhard Brewka and Joachim Hertzberg. How to Do Things with Worlds:
on Formalizing Actions and Plans. Journal of Logic and Computation,
3(5):517-532, 1993.

Philip A. Bernstein and Laura M. Haas. Information integration in the
enterprise. Communications of the ACM, 51:72-79, September 2008.

Soren Balko, Arthur H.M. ter Hofstede, Alistair P. Barros, Marcello La
Rosa, and Michael J. Adams. Business process extensibility. Enterprise
Modelling and Information Systems Architectures Journal, July 2010.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferrisand, and David Orchard, editors. Web Services
Architecture. W3C Working Group Note, February 2004. Available at
http://www.w3.0rg/TR/ws—arch/.

Sean Bechhofer, Ian Horrocks, and Daniele Turi. The OWL Instance Store:
System Description. In Robert Nieuwenhuis, editor, Automated Deduction
— CADE-20, volume 3632 of LNCS, pages 177-181. Springer, 2005.

Franz Baader, Ralf Kusters, and Ralf Molitor. Computing Least Common
Subsumers in Description Logics with Existential Restrictions. In IJCAI"99:
Proceedings of the 16th international joint Conference on Artifical Intelligence,
pages 96-101, San Francisco, CA, USA, 1999. Morgan Kaufmann Publish-
ers Inc.

Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowl-
edge Representation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1985.

Federico Bergenti, Heimo Laamanen, Alberto Fernandez, Sascha Os-
sowski, Heikki Helin, Oliver Keller, Matthias Klusch, Heimo Laama-
nen, Antonio Lopes, Sascha Ossowski, Heiko Schuldt, and Michael Schu-
macher. Context-aware Service Coordination for Mobile e-Health Appli-
cations. In European Conference on eHealth (ECEHO06), 2006.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 284(5):34-43, 2001.

http://www.w3.org/TR/ws-arch/

BIBLIOGRAPHY 237

[BLL10]

[BLM105]

[BML*05]

[BMR94]

[BNDKO04]

[BOI09]

[BRO4]

[BS07]

[BS11]

[By194]

[CFB04]

Franz Baader, Marcel Lippmann, and Hongkai Liu. Using Causal Rela-
tionships to Deal with the Ramification Problem in Action Formalisms
Based on Description Logics. In Christian G. Fermiiller and Andrei
Voronkov, editors, LPAR-17, volume 6397 of LNCS (subline Advanced Re-
search in Computing and Software Science), pages 82-96, Yogyakarta, Indone-
sia, October 2010. Springer.

Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter.
Integrating description logics and action formalisms: first results. In
AAAI-20, pages 572-577. AAAI Press, 2005.

Franz Baader, Maja Mili¢i¢, Carsten Lutz, Ulrike Sattler, and Frank Wolter.
Integrating Description Logics and Action Formalisms for Reasoning
about Web Services. Technical Report LTCS-05-02, Chair of Automata
Theory, Institute of Theoretical Computer Science, Dresden University of
Technology, Germany, 2005. Long version of [BLM*05].

Daniel Barbara, Sharad Mehrotra, and Marek Rusinkiewicz. INCAS: A
Computation Model for Dynamic Workflows in Autonomous Distributed
Environments. Technical report, Matsushita Information Technology Lab-
oratory, 1994.

Menkes van den Briel, Romeo Sanchez Nigenda, Minh Binh Do, and Sub-
barao Kambhampati. Effective Approaches for Partial Satisfaction (Over-
Subscription) Planning. In Deborah L. McGuinness and George Ferguson,
editors, AAAI, pages 562-569. AAAI Press / The MIT Press, 2004.

Ayse B. Bener, Volkan Ozadali, and Erdem Savas Ilhan. Semantic match-
maker with precondition and effect matching using SWRL. Expert Systems
with Applications, 36(5):9371-9377, 20009.

Thomas Bauer and Manfred Reichert. Dynamic Change of Server Assign-
ments in Distributed Workflow Management Systems. In Proceedings of the
6" Int'l Conference on Enterprise Information Systems (ICEIS), pages 91-98,
Porto, Portugal, 2004.

Gert Brettlecker and Heiko Schuldt. The OSIRIS-SE (stream-enabled) in-
frastructure for reliable data stream management on mobile devices. In
Proceedings of the 2007 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’07, pages 1097-1099, New York, NY, USA, 2007.
ACM.

Gert Brettlecker and Heiko Schuldt. Reliable distributed data stream man-
agement in mobile environments. Information Systems, 36(3):618-643, 2011.
Special Issue on WISE 2009 - Web Information Systems Engineering.

Tom Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2):165-204, 1994.

Ion Constantinescu, Boi Faltings, and Walter Binder. Large Scale, Type-
Compatible Service Composition. In Proceedings of the International Confer-

238

BIBLIOGRAPHY

[CGLI8]

[CGL*07]

[CGL11a]

[CGL*11b]

[CGLNO1]

[CGPO1]
[Che76]

[CKNZ10]

[CKO92]

[CM95]

[CMRWO7]

[Cod70]

[Cod90]

ence on Web Services (ICWS), pages 506-513, San Diego, California, USA,
June 2004. IEEE.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
Decidability of Query Containment under Constraints. In PODS, pages
149-158, Seattle, Washington, June 1998. ACM Press.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable Reasoning and Efficient Query
Answering in Description Logics: The DL-Lite Family. Journal of Automated
Reasoning, 39:385-429, 2007.

Christian Cachin, Rachid Guerraoui, and Rodrigues Luis. Introduction to
Reliable and Secure Distributed Programming. Springer, 2nd edition, 2011.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo. The MASTRO System for
Ontology-based Data Access. Semantic Web, 2:43-53, January 2011.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele
Nardi. Reasoning in Expressive Description Logics. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, chapter 23,
pages 1581-1634. Elsevier Science Publishers, 2001.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2001.

Peter Pin-Shan Chen. The Entity-Relationship Model—Toward a Unified
View of Data. ACM Transactions on Database Systems, 1(1):9-36, 1976.

Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy
Zheleznyakov. Evolution of DL-Lite Knowledge Bases. In Peter Patel-
Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Pan, Ian
Horrocks, and Birte Glimm, editors, The Semantic Web — ISWC 2010, vol-
ume 6496 of LNCS, pages 112-128. Springer, 2010.

Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Commun.
ACM, 35:75-90, September 1992.

Vinay K. Chaudhri and John Mylopoulos. Efficient Algorithms and Per-
formance Results for Multi-user Knowledge Bases. In IJCAI'95, pages 759-
766, San Francisco, CA, USA, 1995. Morgan Kaufmann.

Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana, editors. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation, June 2007. Available at
http://www.w3.0rg/TR/wsdl120/.

Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM, 13(6):377-387, 1970.

Edgar FE. Codd. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

http://www.w3.org/TR/wsdl20/

BIBLIOGRAPHY 239

[CRF09]

[CS06]

[CT91]

[CTAO02]

[CWTO08]

[DBCO07]

[DDS87]

[DLS88]

[DS05]

[Dvt05]

[EF95]

[EGHB11]

[EGLT76]

[EKR95]

Michael J. Cahill, Uwe Rohm, and Alan D. Fekete. Serializable isolation
for snapshot databases. ACM Trans. Database Syst., 34(4):1-42, 20009.

Jorge Cardoso and Amit P. Sheth, editors. Semantic Web Services, Processes
and Applications, volume 3 of Semantic Web And Beyond Computing for Hu-
man Experience. Springer, 2006.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
asynchronous systems. In Proceedings of the tenth annual ACM symposium
on Principles of distributed computing, PODC '91, pages 325-340, New York,
NY, USA, 1991. ACM.

Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the Quality of
Service of Failure Detectors. IEEE Transactions on Computers, 51:561-580,
2002.

Bin Cheng, Xingang Wang, and Weiqin Tong. Ontology-Based Semantic
Method for Service Modeling in Grid. In Jian Cao, Minglu Li, Min-You
Wu, and Jinjun Chen, editors, Network and Parallel Computing, volume 5245
of LNCS, pages 339-348. Springer, 2008.

Maria R-Moreno Dolores, Daniel Borrajo, Amedeo Cesta, and Angelo
Oddi. Integrating Planning and Scheduling in Workflow Domains. Ex-
pert Systems with Applications, 33(2):389-406, 2007.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of the ACM, 34:77-
97, January 1987.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35:288-323, April 1988.

M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs) —
Request for Comments: 3987. The Internet Society, January 2005. Available
athttp://tools.ietf.org/html/rfc3987.

Marlon Dumas, Wil M.P. van der Aalst, and Arthur H.M. ter Hofstede, edi-
tors. Process-Aware Information Systems: Bridging People and Software through
Process Technology. Wiley-Interscience, Hoboken, NJ, 2005.

Heinz-Dieter Ebbinghaus and Jorg Flum. Finite model theory. Perspectives
in mathematical logic. Springer, 1995.

Jiménez-Ruiz Ernesto, Bernardo Cuenca Grau, Ian Horrocks, and Rafael
Berlanga. Supporting concurrent ontology development: Framework, al-
gorithms and tool. Data & Knowledge Engineering, 70(1):146-164, 2011.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624-633, 1976.

Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic
Change Within Workflow Systems. In Proceedings of Conference on Orga-
nizational Computing Systems (COOCS), pages 10-21, New York, NY, USA,
1995. ACM.

http://tools.ietf.org/html/rfc3987

240

BIBLIOGRAPHY

[ESO7]

[FFO6]

[FFM*10]

[FFST11]
[FH10]

[FHH*01]

[FLO3]

[FLO7]

[FLO"05]

[FLP85]

[FMK™08]

[FN71]

[FOO04]

[Fra]

[FUV83]

Jérome Euzenat and Pavel Shvaiko. Ontology Matching. Springer, Berlin,
2007.

Hugo M. Ferreira and Diogo R. Ferreira. An Integrated Life Cycle for
Workflow Management Based on Learning and Planning. Journal on Coop-
erative Information Systems, 15(4):485-505, 2006.

Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and
Gaston Tagni. Exception Handling for Repair in Service-Based Processes.
IEEE Transactions on Software Engineering, 36(2):198-215, 2010.

Dieter Fensel, Federico Michele Facca, Elena Simperl, and Ioan Toma. Se-
mantic Web Services. Springer, Berlin, Heidelberg, 2011.

Jun Fang and Zhisheng Huang. Reasoning with inconsistent ontologies.
Tsinghua Science & Technology, 15(6):687-691, 2010.

Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider. OIL: An Ontology Infrastructure for
the Semantic Web. IEEE Intelligent Systems, 16(2):38-45, 2001.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for express-
ing temporal planning domains. Journal of Artificial Intelligence Research,
20(1):61-124, 2003.

Joel Farrell and Holger Lausen, editors. Semantic Annotations for WSDL and
XML Schema. W3C Recommendation, August 2007. Available at http:
//www.w3.0rg/TR/sawsdl/.

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and
Dennis Shasha. Making snapshot isolation serializable. ACM Trans.
Database Syst., 30:492-528, June 2005.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal of the ACM,
32:374-382, April 1985.

Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris
Plexousakis, and Grigoris Antoniou. Ontology change: classification and
survey. The Knowledge Engineering Review, 23(02):117-152, 2008.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the ap-
plication of theorem proving to problem solving. Artificial Intelligence, 2(3-
4):189-208, 1971.

Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A Read-Only Trans-
action Anomaly under Snapshot Isolation. SIGMOD Record, 33:12-14,
September 2004.

Franz Incorporation. AllegroGraph RDFStore Web 3.0’s Database. http:
//www.franz.com/agraph/allegrograph/. Visited on July 27, 2012.

Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the semantics
of updates in databases. In Proceedings of the 2nd ACM SIGACT-SIGMOD

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.franz.com/agraph/allegrograph/
http://www.franz.com/agraph/allegrograph/

BIBLIOGRAPHY 241

[FWLO02]

[Gef00]

[Gefl1]

[GGK*91]

[GHKS10]

[GHVDO3]

[Gin86]

[GLO6]

[GLHSO08]

[GLPRO9]

[GMMT05]

[GMP06]

symposium on Principles of database systems, PODS 83, pages 352-365, New
York, NY, USA, 1983. ACM.

Dieter Fensel, Wolfgang Wahlster, and Henry Lieberman, editors. Spinning
the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT
Press, Cambridge, MA, USA, 2002.

Héctor Geffner. Functional STRIPS: A More Flexible Language for Planning
and Problem Solving, pages 187-209. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

Hector Geffner. Planning with Incomplete Information. In Ron van der
Meyden and Jan-Georg Smaus, editors, Model Checking and Artificial Intel-
ligence, volume 6572 of LNCS, pages 1-11. Springer, 2011.

Hector Garcia-Molina, Dieter Gawlick, Johannes Klein, Karl Kleissner, and
Kenneth Salem. Modeling Long-running Activities as Nested Sagas. Data
Engineering, 14:14-18, March 1991.

Bernardo Cuenca Grau, Christian Halaschek-Wiener, Yevgeny Kazakov,
and Boontawee Suntisrivaraporn. Incremental Classification of Descrip-
tion Logics Ontologies. Journal of Automated Reasoning, 44:337-369, 2010.

Benjamin N. Grosof, lan Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs with Description
Logic. In Proceedings of the 12th International World Wide Web Conference,
pages 48-57, Budapest, Hungary, 2003.

Matthew L. Ginsberg. Counterfactuals. Artificial Intelligence, 30:35-80, Oc-
tober 1986.

Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in
PDDLS3. In ICAPS Workshop on Soft Constraints and Preferences in Planning,
pages 7-13, 2006.

Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Answering
conjunctive queries in the SHZQ description logic. Journal of Artificial
Intelligence Research, 31:150-197, 2008.

Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Ric-
cardo Rosati. On Instance-level Update and Erasure in Description Logic
Ontologies. Journal of Logic and Computation, 19:745-770, October 2009.

Michal Gajewski, Mariusz Momotko, Harald Meyer, Hilmar Schuschel,
and Mathias Weske. Dynamic failure recovery of generated workflows. In
Sixteenth International Workshop on Database and Expert Systems Applications,
pages 982-986, 2005.

Stephan Grimm, Boris Motik, and Chris Preist. Matching Semantic Service
Descriptions with Local Closed-World Reasoning. In York Sure and John
Domingue, editors, The Semantic Web: Research and Applications, volume
4011 of LNCS, pages 575-589. Springer, 2006.

242

BIBLIOGRAPHY

[GMS87]
[GNTO04]

[GO10]

[GPHO5]

[GR10]

[GRL*08]

[GRR'08]

[GRS10]

[Gru93]
[GS88]

[GT98]

[GTSS11]

[Har06]

Hector Garcia-Molina and Kenneth Salem. Sagas. SIGMOD Record,
16:249-259, December 1987.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Morgan Kaufmann, Amsterdam, 2004.

Birte Glimm and Chimezie Ogbuji, editors. SPARQL 1.1 Entailment
Regimes. W3C Working Draft, October 2010. Available at http://www.
w3.0rg/TR/sparglll-entailment/.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics, 3(2-3):158-182,
2005.

Birte Glimm and Sebastian Rudolph. Status QIO: Conjunctive Query En-
tailment is Decidable. In Proceedings of the 12th International Conference
on the Principles of Knowledge Representation and Reasoning (KR-10). AAAI
Press/The MIT Press, 2010.

Levent Gurgen, Claudia Roncancio, Cyril Labbé, André Bottaro, and Vin-
cent Olive. Sstreamware: a service oriented middleware for heteroge-
neous sensor data management. In Proceedings of the 5th international con-
ference on Pervasive services, ICPS '08, pages 121-130, New York, NY, USA,
2008. ACM.

Karthik Gomadam, Ajith Ranabahu, Lakshmish Ramaswamy, Amit P.
Sheth, and Kunal Verma. Mediatability: Estimating the Degree of Human
Involvement in XML Schema Mediation. In IEEE International Conference
on Semantic Computing, pages 394—401, August 2008.

Karthik Gomadam, Ajith Ranabahu, and Amit Sheth, editors. SA-REST:
Semantic Annotation of Web Resources. W3C Member Submission, April
2010. Available at http://www.w3.0org/Submission/SA-REST/.

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifi-
cations. Knowledge Acquisition, 5(2):199-220, 1993.

M. L. Ginsberg and D. E. Smith. Reasoning About Action I: A Possible
Worlds Approach. Artificial Intelligence, 35:165-195, June 1988.

Andreas Geppert and Dimitrios Tombros. Event-based Distributed Work-
flow Execution with EVE. In Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, pages 427—-
442, London, UK, 1998. Springer.

Georg Grossmann, Rajesh Thiagarajan, Michael Schrefl, and Markus
Stumptner. Conceptual Modeling Approaches for Dynamic Web Service
Composition. In Roland Kaschek and Lois Delcambre, editors, The Evolu-
tion of Conceptual Modeling, volume 6520 of LNCS, pages 180-204. Springer,
2011.

Frank van Harmelen. Where does it break? or: Why Semantic Web re-
search is not just “Computer Science as usual” — Keynote at ESWC. http:

http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/Submission/SA-REST/
http://www.eswc2006.org/keynote-frank-van-harmelen.pdf

BIBLIOGRAPHY 243

[Hay04]

[HBO09]

[HBHP09]

[HBS73]

[HCZ10]

[HDROS]

[Hel02]

[Her96]

[Hew11]

[HHL99]

[HKGBO09]

[HKRK09]

//www.eswc2006.org/keynote-frank—-van—-harmelen.pdf, 2006.
Visited on July 27, 2012.

Patrick Hayes, editor. RDF Semantics. W3C Recommendation, February
2004. Available at http://www.w3.0org/TR/rdf-mt /.

Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
Working with OWL 2 Ontologies. In Rinke Hoekstra and Peter F. Patel-
Schneider, editors, OWLED, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

Jorg Hoffmann, Piergiorgio Bertoli, Malte Helmert, and Marco Pistore.
Message-Based Web Service Composition, Integrity Constraints, and Plan-
ning under Uncertainty: A New Connection. Journal of Artificial Intelligence
Research, 35:49-117, May 2009.

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In Proceedings of the 3rd interna-
tional joint conference on Artificial Intelligence, pages 235245, San Francisco,
CA, USA, 1973. Morgan Kaufmann.

Ruoyun Huang, Yixin Chen, and Weixiong Zhang. A Novel Transition
Based Encoding Scheme for Planning as Satisfiability. In Proceedings of
the 24th Conference on Artificial Intelligence (AAAI), pages 89-94, Atlanta,
Georgia, USA, 2010. AAAI Press.

Malte Helmert, Minh Do, and loannis Refanidis, editors. IPC Deter-
ministic Competition, 2008. Available at http://ipc.informatik.
uni-freiburg.de/Results.

Malte Helmert. Decidability and Undecidability Results for Planning with
Numerical State Variables. In Proceedings Workshop Planen und Konfiguri-
eren (PukK), 2002.

Andreas Herzig. The PMA Revisited. In Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning, pages
40-50. Morgan Kaufmann, November 1996.

Carl Hewitt. Actor Model of Computation: Scalable Robust Information
Systems. In Inconsistency Robustness, pages 16-28, Stanford, USA, 2011.

Jeff Heflin, James Hendler, and Sean Luke. SHOE A Knowledge Represen-
tation Language for Internet Applications. Technical Report CS-TR-4078
(UMIACS TR-99-71), Dept. of Computer Science, University of Maryland,
1999.

Jorg Henss, Joachim Kleb, Stephan Grimm, and Jiirgen Bock. A Database
Backend for OWL. In Rinke Hoeksta and Peter F. Patel-Schneider, edi-
tors, Proceedings of the 5th International Workshop on OWL: Experiences and
Directions (OWLED), volume 529, 2009.

Mohamed Hamdy, Birgitta Konig-Ries, and Ulrich Kiister. Non-functional
Parameters as First Class Citizens in Service Description and Matchmak-
ing — An Integrated Approach. In Elisabetta Di Nitto and Matei Ripeanu,

http://www.eswc2006.org/keynote-frank-van-harmelen.pdf
http://www.eswc2006.org/keynote-frank-van-harmelen.pdf
http://www.w3.org/TR/rdf-mt/
http://ipc.informatik.uni-freiburg.de/Results
http://ipc.informatik.uni-freiburg.de/Results

244

BIBLIOGRAPHY

[HKS06]

[HLPO08]

[HMO1a]

[HMO1b]

[HMO5]

[HMO8]

[HMV+09]

[HNSS90]

[Hoa85]
[Hor98]

[HPB*04]

[HPS06]

editors, Service-Oriented Computing - ICSOC 2007 Workshops, volume 4907
of LNCS, pages 93-104. Springer, 2009.

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proc. of the 10" Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR2006), pages 57-67. AAAI Press, 2006.

Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors. Hand-
book of Knowledge Representation. Foundations of Artificial Intelligence. El-
sevier Science, 1st edition, 2008.

Volker Haarslev and Ralf Moller. High Performance Reasoning with Very
Large Knowledge Bases: A Practical Case Study. In Bernhard Nebel, edi-
tor, IJCAI, pages 161-168, Seattle, Washington, USA, August 2001. Morgan
Kaufmann.

Volker Haarslev and Ralf Miiller. RACER System Description. In Rajeev
Goré, Alexander Leitsch, and Tobias Nipkow, editors, Automated Reason-
ing, volume 2083 of LNCS, pages 701-705. Springer, 2001.

Peter Haase and Boris Motik. A mapping system for the integration of
OWL-DL ontologies. In Proceedings of the first international workshop on In-
teroperability of heterogeneous information systems, IHIS "05, pages 9-16, New
York, NY, USA, 2005. ACM.

Volker Haarslev and Ralf Moller. On the Scalability of Description Logic
Instance Retrieval. Journal of Automated Reasoning, 41(2):99-142, 2008.

Ourania Hatzi, Georgios Meditskos, Dimitris Vrakas, Nick Bassiliades, Di-
mosthenis Anagnostopoulos, and Ioannis Vlahavas. PORSCE II: Using
planning for semantic web service composition. In In Proceedings of the In-
ternational Competition on Knowledge Engineering for Planning and Scheduling
in Conjuction with ICAPS, pages 38—45, 2009.

Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauf3. Sub-
sumption Algorithms for Concept Description Languages. In Proceedings
of the 9th European Conference on Artificial Intelligence, pages 348-353, Stock-
holm, Sweden, 1990.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, New
York, 1985.

Ian Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
Principles of Knowledge Representation and Reasoning, pages 636—649, 1998.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. W3C Member Submission, May 2004. Available at
http://www.w3.0rg/Submission/SWRL/.

Christian Halaschek-Wiener, Bijan Parsia, and Evren Sirin. Description
Logic Reasoning with Syntactic Updates. In Robert Meersman and Zahir
Tari, editors, On the Move to Meaningful Internet Systems 2006: CooplS, DOA,

http://www.w3.org/Submission/SWRL/

BIBLIOGRAPHY 245

[HPS09]

[HPSHO3]

[HPSKO06]

[HR99]

[HRRDO3]

[HSO01]

[HS10]

[HST99]

[HTO0]

[HTO6]

[Int]

GADA, and ODBASE, volume 4275 of LNCS, pages 722-737. Springer,
2006.

Matthew Horridge and Peter F. Patel-Schneider. OWL 2 Web Ontology Lan-
guage Manchester Syntax. W3C Working Group Note, October 2009. Avail-
able at http://www.w3.0rg/TR/owl2-manchester-syntax/.

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The Making of a Web Ontology Language. Journal
of Web Semantics, 1:2003, 2003.

Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin, and Aditya Kalyan-
pur. Description Logic Reasoning for Dynamic ABoxes. In Bijan Parsia,
Ulrike Sattler, and David Toman, editors, Description Logics, volume 189 of
CEUR Workshop Proceedings, Windermere, Lake District, UK, 2006. CEUR-
WS.org.

Andreas Herzig and Omar Rifi. Propositional belief base update and min-
imal change. Artificial Intelligence, 115:107-138, November 1999.

Arthur ter Hofstede, Manfred Reichert, Stefanie Rinderle, and Peter
Dadam. ADEPT Workflow Management System. In Mathias Weske, ed-
itor, Business Process Management, volume 2678 of LNCS, pages 370-379.
Springer, 2003.

Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D)
description logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 199-204. Morgan Kaufmann, 2001.

Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query Language.
W3C Working Draft, October 2010. Available at http://www.w3.0rg/
TR/sparglll—-query/.

Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning for
Expressive Description Logics. In Harald Ganzinger, David A. McAllester,
and Andrei Voronkov, editors, LPAR, volume 1705 of LNCS, pages 161-
180. Springer, 1999.

Ian Horrocks and Sergio Tessaris. A Conjunctive Query Language for De-
scription Logic Aboxes. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, pages 399—404. AAAI Press, 2000.

Matthew Horridge and Dmitry Tsarkov. Supporting Early Adoption of
OWL 1.1 with Protégé-OWL and FaCT++. In Bernardo Cuenca Grau, Pas-
cal Hitzler, Conor Shankey, and Evan Wallace, editors, OWLED, volume
216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

International Health Terminology Standards Development Organisation.
SNOMED CT: Systematized Nomenclature of Medicine-Clinical Terms.
http://www.ihtsdo.org/snomed-ct/. Visited on July 27, 2012.

http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.ihtsdo.org/snomed-ct/

246

BIBLIOGRAPHY

[JB96]

[JEO7]

[Jena]
[Jenb]

[Jen87]

[JMS*99]

[Jos07]

[KACT97]

[Kal06]

[Kaz08]

[KBR'05]

[KC10]

[KCP99]

[KFS09]

Stefan Jablonski and Christoph Bussler. Workflow Management: Modeling
Concepts, Architecture and Implementation. International Thomson Com-
puter Press, September 1996.

Diane Jordan and John Evdemon. Web Services Business Process Execution
Language Version 2.0. OASIS Standard, April 2007. Available at http:
//docs.ocasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

Jena Developer Team. Jena - Semantic Web Framework. http://
openjena.ord.

Jena Developer Team. Jena Tuple Database. http://incubator.
apache.org/Jjena/documentation/tdb/. Visited on July 27, 2012.

Kurt Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozen-
berg, editors, Petri Nets: Central Models and Their Properties, volume 254 of
LNCS, pages 248-299. Springer, 1987. 10.1007 /BFb0046842.

Peter Jarvis, Jonathan Moore, Jussi Stader, Ann Macintosh, and Paul
Chung. Exploiting Al Technologies to Realise Adaptive Workflow Sys-
tems. In Proceedings of the AAAI Workshop on Agent-Based Systems in the
Business Context, 1999.

Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design.
O'Reilly, 2007.

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A
timeout-free failure detector for quiescent reliable communication. In Mar-
ios Mavronicolas and Philippas Tsigas, editors, Distributed Algorithms, vol-
ume 1320 of LNCS, pages 126-140. Springer, 1997.

Aditya Kalyanpur. Debugging and repair of OWL Ontologies. PhD thesis,
University of Maryland at College Park, College Park, MD, USA, 2006.
AAI3222483.

Yevgeny Kazakov. RIQ and SROIQ Are Harder than SHOIQ. In Gerhard
Brewka and Jérome Lang, editors, KR, pages 274-284, Sydney, Australia,
September 2008. AAAI Press.

Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher, Yves
Lafon, and Charlton Barreto, editors. Web Services Choreography Description
Language Version 1.0. W3C Candidate Recommendation, November 2005.
Available at http://www.w3.0rg/TR/ws—cdl-10/.

Mehmet Kuzu and Nihan Cicekli. Dynamic Planning Approach to Auto-
mated Web Service Composition. Applied Intelligence, pages 1-28, 2010.

Peter D. Karp, Vinay K. Chaudhri, and Suzanne M. Paley. A Collaborative
Environment for Authoring Large Knowledge Bases. Intelligent Informa-
tion Systems, 13(3):155-194, 1999.

Matthias Klusch, Benedikt Fries, and Katia Sycara. OWLS-MX: A hybrid
Semantic Web service matchmaker for OWL-S services. Web Semantics:
Science, Services, and Agents on the World Wide Web, 7(2):121-133, 2009.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://openjena.org
http://openjena.org
http://incubator.apache.org/jena/documentation/tdb/
http://incubator.apache.org/jena/documentation/tdb/
http://www.w3.org/TR/ws-cdl-10/

BIBLIOGRAPHY 247

[KGO5]

[KG09]

[KGVO08]

[KKO7]

[KKRMO05]

[KLKROS]

[KLS90]

[K1u08]

[KM91]

[KMO09]

[KMHJ10]

Matthias Klusch and Andreas Gerber. Semantic Web Service Composi-
tion Planning with OWLS-XPlan. In In Proceedings of the 1st Int. AAAI Fall
Symposium on Agents and the Semantic Web, pages 55-62, 2005.

Emil Keyder and Hector Geffner. Soft Goals Can Be Compiled Away. Jour-
nal of Artificial Intelligence Research, 36:547-556, September 2009.

Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. hRESTS: An HTML
Microformat for Describing RESTful Web Services. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology - Volume 01, pages 619-625, Washington, DC, USA,
2008. IEEE Computer Society.

Hyun-Sik Kim and In-Cheol Kim. Mapping Semantic Web Service De-
scriptions to Planning Domain Knowledge. In R. Magjarevic, J. H. Nagel,
and Ratko Magjarevic, editors, World Congress on Medical Physics and
Biomedical Engineering, volume 14 of IFMBE Proceedings, pages 388-391.
Springer, 2007.

Michael Klein, Birgitta Konig-Ries, and Michael Mussig. What is needed
for semantic service descriptions — a proposal for suitable language con-
structs. International Journal Web Grid Serv., 1:328-364, December 2005.

Ulrich Kiister, Holger Lausen, and Birgitta Konig-Ries. Evaluation of
Semantic Service Discovery—A Survey and Directions for Future Re-
search. In Marius Walliser, Stefan Brantschen, Monique Calisti, Thomas
Hempfling, Thomas Gschwind, and Cesare Pautasso, editors, Emerging
Web Services Technology, Volume II, Whitestein Series in Software Agent
Technologies and Autonomic Computing, pages 41-58. Birkhduser, 2008.

Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A Formal Ap-
proach to Recovery by Compensating Transactions. In Proceedings of the
sixteenth International Conference on Very Large Databases (VLDB), pages 95—
106, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

Matthias Klusch. Semantic Web Service Coordination. In Michael Schu-
macher, Heikki Helin, and Heiko Schuldt, editors, CASCOM: Intelli-
gent Service Coordination in the Semantic Web, chapter 4, pages 59-104.
Birkh&user, 2008.

Hirofumi Katsuno and Alberto O. Mendelzon. On the Difference between
Updating a Knowledge Base and Revising It. In Proceedings of the 2nd Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
pages 387-394. Morgan Kaufmann, April 1991.

Sebastian Ryszard Kruk and Bill McDaniel, editors. Semantic Digital Li-
braries. Springer, 2009.

Zhang Kun, Xu Manwu, Zhang Hong, and Xu Jian. Agent Service Match-
making Algorithm for Autonomic Element with Semantic and QoS Con-
straints. Knowledge-Based Systems, 23(2):132-143, 2010.

248

BIBLIOGRAPHY

[KOMO5]

[KRHO7]

[Kri63]

[KSKRO5]

[LA90]

[Law97]
[LB87]

[Len02]

[LHO03]

[Liu10]

[LLMWO6]

[LM]10]

[Loh08]

Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. OWLIM - A
Pragmatic Semantic Repository for OWL. In Mike Dean, Yuanbo Guo,
Woochun Jun, Roland Kaschek, Shonali Krishnaswamy, Zhengxiang Pan,
and Quan Sheng, editors, Web Information Systems Engineering — WISE
Workshops, volume 3807 of LNCS, pages 182-192. Springer, 2005.

Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive
queries for a tractable fragment of OWL 1.1. In Proceedings of the 6th in-
ternational The semantic web and 2nd Asian conference on Asian semantic web
conference, ISWC’07/ASWC’07, pages 310-323, Berlin, Heidelberg, 2007.
Springer.

Saul Kripke. Semantical Considerations on Modal Logic. Acta Philosophica
Fennica, 16:83-94, 1963.

Ulrich Kiister, Mirco Stern, and Birgitta Konig-Ries. A Classification of
Issues and Approaches in Automatic Service Composition. In First Inter-
national Workshop on Engineering Service Compositions (WESC), 2005.

P.A. Lee and T. Anderson. Fault tolerance, principles and practice. Depend-
able computing and fault-tolerant systems. Springer, 2nd edition, 1990.

Peter Lawrence. Workflow Handbook 1997. John Wiley, New York, 1997.

H.J. Levesque and R.J. Brachman. Expressiveness and Tractability in
Knowledge Representation and Reasoning. Computational Intelligence,
3(1):78-93, 1987.

Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Pro-
ceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 233-246, New York, NY, USA, 2002. ACM.

Lei Li and Ian Horrocks. A software framework for matchmaking based
on semantic web technology. In Proceedings of the 12th international confer-
ence on World Wide Web, WWW “03, pages 331-339, New York, NY, USA,
2003. ACM.

Hongkai Liu. Computing Updates in Description Logics. PhD thesis, Techni-
cal University of Dresden, January 2010. Availableathttp://lat.inf.
tu-dresden.de/research/phd/Liu-PhD-10.pdf.

Hongkai Liu, Carsten Lutz, Maja Mili¢i¢, and Frank Wolter. Reasoning
about Actions using Description Logics with general TBoxes. In Michael
Fisher, Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors,
JELIA-10, volume 4160 of LNAI, pages 266-279. Springer, 2006.

Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A Distributed
Service-oriented Architecture for Business Process Execution. ACM Trans-
actions Web, 4:2:1-2:33, January 2010.

Niels Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL
2.0. In WS-FM, volume 4937 of LNCS, pages 77-91. Springer, 2008.

http://lat.inf.tu-dresden.de/research/phd/Liu-PhD-10.pdf
http://lat.inf.tu-dresden.de/research/phd/Liu-PhD-10.pdf

BIBLIOGRAPHY

249

[LPRO5]

[LR94]

[LRDO6]

[LRDOS]

[LS02]

[LSO7]

[LSP82]

[Lut99]

[Lut08]

[LVOS09]

[MBO09]

[MBEO3]

[MBH*04]

Holger Lausen, Axel Polleres, and Dumitru Roman, editors. Web Service
Modeling Ontology (WSMO). W3C Member Submission, June 2005. Avail-
ableat http://www.w3.0rg/Submission/WSMO.

Fangzhen Lin and Raymond Reiter. State constraints revisited. Logic Com-
puting, 4(5):655-678, 1994.

Linh Ly, Stefanie Rinderle, and Peter Dadam. Semantic Correctness in
Adaptive Process Management Systems. In Schahram Dustdar, José Fi-
adeiro, and Amit Sheth, editors, Business Process Management, volume 4102
of LNCS, pages 193-208. Springer, 2006.

Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Integration and Verifi-
cation of Semantic Constraints in Adaptive Process Management Systems.
Data & Knowledge Engineering, 64(1):3-23, 2008.

Carsten Lutz and Ulrike Sattler. A Proposal for Describing Services with
DLs. In Proceedings of the 2002 International Workshop on Description Logics,
2002.

Ruopeng Lu and Shazia Sadiq. A Survey of Comparative Business Process
Modeling Approaches. In Witold Abramowicz, editor, Business Information
Systems, 10th International Conference, volume 4439 of LNCS, pages 82-94.
Springer, 2007.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems,
4:382-401, July 1982.

Carsten Lutz. Complexity of Terminological Reasoning Revisited. In Har-
ald Ganzinger, David McAllester, and Andrei Voronkov, editors, Logic for
Programming and Automated Reasoning, volume 1705 of LNCS, pages 181-
200. Springer, 1999.

Carsten Lutz. The Complexity of Conjunctive Query Answering in Ex-
pressive Description Logics. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, [JCAR, volume 5195 of LNCS, pages 179-193,
Sydney, Australia, August 2008. Springer.

Niels Lohmann, Eric Verbeek, Chun Ouyang, and Christian Stahl. Com-
paring and evaluating Petri net semantics for BPEL. International Journal
of Business Process Integration and Management (IJ[BPIM), 4(1):60-73, 2009.

Alistair Miles and Sean Bechhofer, editors. SKOS Simple Knowledge Or-
ganization System. W3C Recommendation, August 2009. Available at
http://www.w3.0rg/TR/skos-reference/.

Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid.
Composing Web services on the Semantic Web. The VLDB Journal, 12:333—
351, November 2003.

David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott,
Sheila Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry

http://www.w3.org/Submission/WSMO
http://www.w3.org/TR/skos-reference/

250

BIBLIOGRAPHY

[MBK*09]

[McC90]

[McD02]

[MGH 98]

[MGH09]

[MHO04]

[MHO08]

[MHO09]

[MHRS06]

[MHS09]

[MIK*10]

Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Seman-
tic Markup for Web Services. W3C Member Submission, November 2004.
Available at http://www.w3.0rg/Submission/OWL-S.

Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova, Nikolaos Geor-
gantas, and Valérie Issarny. QoS-Aware Service Composition in Dynamic
Service Oriented Environments. In Jean Bacon and Brian Cooper, editors,
Middleware, volume 5896 of LNCS, pages 123-142. Springer, 2009.

John McCarthy. Formalizing of common sense: papers by John McCarthy /
edited by Vladimir Lifschitz. Ablex Publishing, 1990.

Drew McDermott. Estimated-Regression Planning for Interactions with
Web Services. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso,
editors, Proceedings of the Sixth International Conference on Artificial Intelli-
gence Planning Systems (AIPS), pages 204-211. AAAI, 2002.

Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - The Plan-
ning Domain Definition Language. Technical report, CVC TR-98-003 /DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fok-
oue, and Carsten Lutz, editors. OWL 2 Web Ontology Language Profiles.
W3C Recommendation, October 2009. Available at http://www.w3.
org/TR/owl-profiles/.

Deborah L. McGuinness and Frank van Harmelen, editors. OWL 1 Web
Ontology Language Overview. W3C Recommendation, February 2004.
Available at http://www.w3.0rg/TR/owl—-features/.

Boris Motik and Ian Horrocks. OWL Datatypes: Design and Implementa-
tion. In Proceedings of the 7 th International Semantic Web Conference (ISWC),
pages 307-322, 2008.

Yue Ma and Pascal Hitzler. Paraconsistent Reasoning for OWL 2. In Axel
Polleres and Terrance Swift, editors, Web Reasoning and Rule Systems, vol-
ume 5837 of LNCS, pages 197-211. Springer, 2009.

Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL
and Logic Programming Live Together Happily Ever After? In Isabel
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Mike Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC
2006, volume 4273 of LNCS, pages 501-514. Springer, 2006.

Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between
OWL and relational databases. Web Semantics: Science, Services and Agents
on the World Wide Web, 7(2):74-89, 2009.

Keyvan Mohebbi, Suhaimi Ibrahim, Mojtaba Khezrian, Kanmani
Munusamy, and Sayed Gholam Hassan Tabatabaei. A comparative eval-
uation of semantic web service discovery approaches. In Proceedings of the

http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-features/

BIBLIOGRAPHY 251

[Mil99]
[Mil08]

[Min74]

[Min81]

[MKPO09]

[MLM*06]

[MMR11]

[Mos85]

[Mot06]

[MP09]

[MPGO09]

[MPPS09]

12th International Conference on Information Integration and Web-based Ap-
plications & Services, iiWAS "10, pages 33-39, New York, NY, USA, 2010.
ACM.

Robin Milner. Communicating and Mobile Systems: The m-calculus. Cam-
bridge University Press, Cambridge, UK, 1999.

Maja Milici¢. Action, Time and Space in Description Logics. PhD thesis, Uni-
versity of Dresden, Dresden, Germany, 2008.

Marvin Minsky. A Framework for Representing Knowledge. Technical
Report Artificial Intelligence Memo 306, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 1974.

Marvin Minski. Mind Design, chapter A Framework for Representing
Knowledge. MIT Press, 1981.

Maria Maleshkova, Jacek Kopecky, and Carlos Pedrinaci. Adapting
SAWSDL for Semantic Annotations of RESTful Services. In Robert Meers-
man, Pilar Herrero, and Tharam Dillon, editors, On the Move to Meaningful
Internet Systems: OTM 2009 Workshops, volume 5872 of LNCS, pages 917-
926. Springer, 2009.

C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown, and
Rebekah Metz, editors. Reference Model for Service Oriented Architecture 1.0.
OASIS Standard, 2006. Available at http://docs.oasis—-open.org/
soa-rm/v1.0/soa-rm.html.

Andrea Marrella, Massimo Mecella, and Alessandro Russo. Featuring Au-
tomatic Adaptivity through Workflow Enactment and Planning. In Pro-
ceedings of the 7th International Conference on Collaborative Computing (Col-
laborateCom), Orlando, Florida, USA, 2011.

Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. The MIT Press, 1985.

Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitdt Karlsruhe (TH), Karlsruhe, Germany,
January 2006.

Annapaola Marconi and Marco Pistore. Synthesis and Composition of
Web Services. In Marco Bernardo, Luca Padovani, and Gianluigi Zavat-
taro, editors, Formal Methods for Web Services, volume 5569 of LNCS, pages
89-157. Springer, 2009.

Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau, ed-
itors. OWL 2 Web Ontology Language Direct Semantics. ~W3C Rec-
ommendation, October 2009. Available at http://www.w3.0rg/TR/
owl—-direct—-semantics/.

Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider, editors.
OWL 2 Web Ontology Language XML Serialization. =~ W3C Recom-
mendation, October 2009. Available at http://www.w3.0rg/TR/
owl2-xml-serialization/.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.w3.org/TR/owl-direct-semantics/
http://www.w3.org/TR/owl-direct-semantics/
http://www.w3.org/TR/owl2-xml-serialization/
http://www.w3.org/TR/owl2-xml-serialization/

252

BIBLIOGRAPHY

[MPSP09]

[MRKS92]

[MS02]

[MS07]

[MSO08]

[MS10a]

[MS10b]

[MSGKO06]

[MSHO09]

[Mur89]

[NCS04]

[Nie94]

Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, editors. OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntax. W3C
Recommendation, October 2009. Availableat http://www.w3.0rg/TR/
owl-syntax/.

Sharad Mehrotra, Rajeev Rastogi, Henry F. Korth, and Abraham Silber-
schatz. A Transaction Model for Multidatabase Systems. In Proceedings of
the 12" International Conference on Distributed Computing Systems (ICDCS),
pages 56-63, Yokohama, Japan, June 1992.

Sheila A. Mcllraith and Tran Cao Son. Adapting Golog for Composition
of Semantic Web Services. In 8th International Conference on Principles of
Knowledge Representation and Reasoning, pages 482-496, 2002.

Thorsten Moller and Heiko Schuldt. A Platform to Support Decentralized
and Dynamically Distributed P2P Composite OWL-S Service Execution.
In Middleware for SoC Workshop, 8" Middleware Conf., Newport Beach, CA,
USA, 2007. ACM.

Thorsten Moller and Heiko Schuldt. Control flow intervention for seman-
tic failure handling during composite serice execution. In ICWS "08: Pro-
ceedings of the 2008 IEEE International Conference on Web Services, pages 834—
835, Washington, DC, USA, 2008. IEEE Computer Society.

Thorsten Moller and Heiko Schuldt. Optimized data access for efficient
execution of semantic services. In ICDE Workshops, pages 257-262. IEEE,
2010.

Thorsten Moller and Heiko Schuldt. OSIRIS Next: Flexible Semantic Fail-
ure Handling for Composite Web Service Execution. In ICSC "10: Pro-
ceedings of the IEEE Fourth International Conference on Semantic Computing,
pages 212-217, September 2010.

Thorsten Moller, Heiko Schuldt, Andreas Gerber, and Matthias Klusch.
Next-generation applications in healthcare digital libraries using seman-
tic service composition and coordination. Health Informatics Journal,
12(2):107-119, 2006.

Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for
Description Logics. Journal of Artificial Intelligence Research, 36:165-228,
2009.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541-580, Apr 1989.

Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentraliz-
ing Execution of Composite Web Services. In Proceedings of the 19th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
quages, and applications (OOPSLA), pages 170-187, New York, NY, USA,
2004. ACM.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann, San Francisco,
Calif., 1994.

http://www.w3.org/TR/owl-syntax/
http://www.w3.org/TR/owl-syntax/

BIBLIOGRAPHY 253

[NMO02]

[NO10]

[Noy04]

[NS10]

[NW10]

[Ope]

[ORS11]

[OVAT07]

[PAO6]

[Pap03]

[Pat05]
[Pee05]

[Pel03]

Srini Narayanan and Sheila A. Mcllraith. Simulation, verification and
automated composition of web services. In Proceedings of the 11th inter-
national conference on World Wide Web, pages 77-88, New York, NY, USA,
2002. ACM.

Ragnar Normann and Lene T. Ostby. A theoretical study of "Snapshot Iso-
lation’. In Proceedings of the 13th International Conference on Database Theory,
ICDT, pages 44-49, New York, NY, USA, 2010. ACM.

Natalya F. Noy. Semantic Integration: A Survey of Ontology-based Ap-
proaches. SIGMOD Record, 33:65-70, December 2004.

Linh Nguyen and Andrzej Szalas. Three-Valued Paraconsistent Reasoning
for Semantic Web Agents. In Piotr Jedrzejowicz, Ngoc Nguyen, Robert
Howlet, and Lakhmi Jain, editors, Agent and Multi-Agent Systems: Tech-
nologies and Applications, volume 6070 of LNCS, pages 152-162. Springer,
2010.

Thomas Neumann and Gerhard Weikum. x-RDF-3X: Fast Querying, High
Update Rates, and Consistency for RDF Databases. PVLDB, 3:256-263,
September 2010.

OpenGALEN Foundation. OpenGALEN: open source medical terminol-
ogy and tools. http://www.opengalen.org. Visited on July 27, 2012.

Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query An-
swering in the Horn Fragments of the Description Logics SHOIQ and
SROIQ. In Toby Walsh, editor, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 1039-1044. AAAI, Juli 2011.

Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephan Breutel, Mar-
lon Dumas, and Arthur H.M. ter Hofstede. Formal semantics and analysis
of control flow in WS-BPEL. Science of Computer Programming, 67:162-198,
July 2007.

Maja Pesic and Wil M.P. van der Aalst. A declarative approach for flexi-
ble business processes management. In Johann Eder and Schahram Dust-
dar, editors, Business Process Management Workshops, volume 4103 of LNCS,
pages 169-180. Springer, 2006.

Mike P. Papazoglou. Service-Oriented Computing: Concepts, Character-
istics and Directions. International Conference on Web Information Systems
Engineering, 0:3, 2003.

Patrick Stickler. CBD - Concise Bounded Description. W3C Member Submis-
sion, June 2005. Available at http://www.w3.0rg/Submission/CBD.

Joachim Peer. Web Service Composition as Al Planning —a Survey. Second
revised version, 2005.

Chris Peltz. Web services orchestration and choreography. Computer,
36:46-52, 2003.

http://www.opengalen.org
http://www.w3.org/Submission/CBD

254

BIBLIOGRAPHY

[Pep08]
[Per82]

[PHO3]

[PKPS02]

[Pre04]

[PSMO09]

[PSSA07]

[PT09]

[Put94]

[Qui67]

[QZCY07]

[Rah11]

Pavlos Peppas. Handbook of Knowledge Representation, chapter 8 - Belief
Revision, pages 317-359. Elsevier, 2008.

Alan]. Perlis. Epigrams on programming. SIGPLAN Notices, 17:7-13,
September 1982.

Jeft Z. Pan and Ian Horrocks. Web Ontology Reasoning with Datatype
Groups. In Proceedings of the 2nd International Semantic Web Conference
(ISWC), pages 47-63. Springer, 2003.

Massimo Paolucci, Takahiro Kawamura, Terry Payne, and Katia Sycara.
Semantic matching of web services capabilities. In The Semantic Web —
ISWC 2002, pages 333-347, 2002.

Chris Preist. A conceptual architecture for semantic web services. In
Sheila A. Mcllraith, Dimitris Plexousakis, and Frank van Harmelen, edi-
tors, The Semantic Web — ISWC 2004, volume 3298 of LNCS, pages 395-409.
Springer, 2004.

Peter F. Patel-Schneider and Boris Motik, editors. OWL 2 Web On-
tology Language Mapping to RDF Graphs. ~ W3C Proposed Recom-
mendation, September 2009. Available at http://www.w3.0org/TR/
owl2-mapping-to-rdf/.

Maja Pesic, Helen Schonenberg, Natalja Sidorova, and Wil M.P. van der
Aalst. Constraint-based Workflow Models: Change Made Easy. In Robert
Meersman and Zahir Tari, editors, On the Move to Meaningful Internet Sys-
tems 2007: CooplS, DOA, ODBASE, GADA, and IS, volume 4803 of LNCS,
pages 77-94. Springer, 2007.

Graham Priest and Koji Tanaka. Paraconsistent Logic. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, CSLI, Stanford University, summer 2009 edi-
tion, 2009. Available at http://plato.stanford.edu/archives/
sum2009/entries/logic—-paraconsistent/.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1994.

Ross M. Quillian. Word concepts: A theory and simulation of some basic
semantic capabilities. Behavioral Science, 12:410-430, 1967.

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the
theoretical foundation of choreography. In Proceedings of the 16th interna-
tional conference on World Wide Web, WWW “07, pages 973-982, New York,
NY, USA, 2007. ACM.

Erhard Rahm. Towards Large-Scale Schema and Ontology Matching. In
Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, editors, Schema
Matching and Mapping, Data-Centric Systems and Applications, pages 3—
27. Springer, Berlin, Heidelberg, 2011.

http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://plato.stanford.edu/archives/sum2009/entries/logic-paraconsistent/
http://plato.stanford.edu/archives/sum2009/entries/logic-paraconsistent/

BIBLIOGRAPHY 255

[RBRO6]

[RD98]

[Rei88]

[Rei01]

[RH95]

[Rin04]

[RPZ10]

[RRDO09]

[RRWO08]

[RS04]

[SABS02]

[SCO3]

Stefanie Rinderle, Sarita Bassil, and Manfred Reichert. A Framework for
Semantic Recovery Strategies in Case of Process Activity Failures. In Pro-
ceedings of the 8th Int’l conference on Enterprise Information Systems (ICEIS),
pages 136-143, 2006.

Manfred Reichert and Peter Dadam. ADEPTflex—Supporting Dynamic
Changes of Workflows Without Losing Control. Journal of Intelligent Infor-
mation Systems, 10:93-129, 1998. 10.1023/ A:1008604709862.

Raymond Reiter. On integrity constraints. In Proceedings of the 2nd con-
ference on Theoretical aspects of reasoning about knowledge, TARK ’88, pages
97-111, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press, Massachusetts, MA, illus-
trated edition edition, 2001.

Fernando de Ferreira Rezende and Theo Harder. Concurrency Control in
Nested Transactions with Enhanced Lock Models for KBMSs. In DEXA’95,
pages 604-613, London, UK, 1995. Springer.

Jussi Rintanen. Complexity of Planning with Partial Observability. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS), pages 345-354. AAALI, 2004.

Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Closed World Reasoning for
OWL2 with NBox. Tsinghua Science & Technology, 15(6):692-701, 2010.

Manfred Reichert, Stefanie Rinderle-Ma, and Peter Dadam. Flexibility in
Process-Aware Information Systems. In Kurt Jensen and Wil van der Aalst,

editors, Transactions on Petri Nets and Other Models of Concurrency II, vol-
ume 5460 of LNCS, pages 115-135. Springer, 2009.

Stefanie Rinderle-Ma, Manfred Reichert, and Barbara Weber. Relaxed
Compliance Notions in Adaptive Process Management Systems. In Qing
Li, Stefano Spaccapietra, Eric Yu, and Antoni Olivé, editors, Conceptual
Modeling, volume 5231 of LNCS, pages 232-247. Springer, 2008.

Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Com-
position Methods. In Proceedings of the 1st Workshop on Semantic Web Ser-
vices and Web Process Composition (SWSWPC), pages 43-54, San Diego, Cal-
ifornia, USA, 2004.

Heiko Schuldt, Gustavo Alonso, Catriel Beeri, and Hans-Jorg Schek.
Atomicity and Isolation for Transactional Processes. ACM Transactions on
Database Systems (TODS), 27(1):63-116, 2002.

Stefan Schlobach and Ronald Cornet. Non-standard reasoning services
for the debugging of description logic terminologies. In Proceedings of the
18th international joint conference on Artificial intelligence, pages 355-360, San
Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

256

BIBLIOGRAPHY

[SchO1]

[Sch09]

[SCMEFO06]

[SGAO07]

[She98]

[SHF11]

[SHS08]

[Sir06]

[SM10]

[Smi04]

[SMM10]

[SMR08]

Heiko Schuldt. Process Locking: A Protocol based on Ordered Shared
Locks for the Execution of Transactional Processes. In Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 289-300, New York, NY, USA, 2001. ACM.

Michael Schneider, editor. OWL 2 Web Ontology Language RDF-Based
Semantics. W3C Recommendation, October 2009. Availabel at http:
//www.w3.0rg/TR/owl2-rdf-based-semantics/.

Michael Stollberg, Emilia Cimpian, Adrian Mocan, and Dieter Fensel. A
Semantic Web Mediation Architecture. In Mamadou Tadiou Koné and
Daniel Lemire, editors, Canadian Semantic Web, volume 2 of Semantic Web
and Beyond, pages 3-22. Springer US, 2006.

Rudi Studer, Stephan Grimm, and Andreas Abecker, editors. Semantic Web
Services: Concepts, Technologies, and Applications. Springer, Berlin, 2007.

Amit P. Sheth. Changing Focus on Interoperability in Information Sys-
tems: From System, Syntax, Structure to Semantics. In M.F. Goodchild,
M.]J. Egenhofer, R. Fegeas, and C.A. Kottman, editors, Interoperating Geo-
graphic Information Systems, pages 5-30. Kluwer Academic, 1998.

Michael Stollberg, Jorg Hoffmann, and Dieter Fensel. A caching technique
for optimizing automated service discovery. International Journal of Seman-
tic Computing, 5(1):1-31, 2011.

Michael Schumacher, Heikki Helin, and Heiko Schuldt, editors. CAS-
COM: Intelligent Service Coordination in the Semantic Web. Whitestein Series
in Software Agent Technologies and Autonomic Computing. Birkhduser,
2008.

Evren Sirin. Combining Description Logic reasoning with Al planning for com-
position of Web Services. PhD thesis, University of Maryland at College
Park, College Park, MD, USA, 2006. AAI3241437.

Shirin Sohrabi and Sheila Mcllraith. Preference-Based Web Service Com-
position: A Middle Ground between Execution and Search. In Peter Patel-
Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Pan, Ian
Horrocks, and Birte Glimm, editors, Proceedings of the 9th International
Semantic Web Conference (ISWC), volume 6496 of LNCS, pages 713-729.
Springer, 2010.

David E. Smith. Choosing objectives in over-subscription planning. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS, pages
393-401. AAAI, 2004.

Marco Luca Sbodio, David Martin, and Claude Moulin. Discovering Se-
mantic Web services using SPARQL and intelligent agents. Web Semantics:
Science, Services and Agents on the World Wide Web, 8(4):310-328, 2010.

Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and
Wil M.P. van der Aalst. Towards a Taxonomy of Process Flexibility. In

http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

BIBLIOGRAPHY 257

[SP04]

[SPO7]

[SPG+07]

[SPL104]

[SS77]

[SS83]

[SS04]

[SST+05]

[SVV11]

[SWO01]

[SWKLO2]

[SWSS03]

Zohra Bellahsene, Carson Woo, Ela Hunt, Xavier Franch, and Remi Co-
letta, editors, CAiSE Forum, volume 344 of CEUR Workshop Proceedings,
pages 81-84. CEUR-WS.org, 2008.

Evren Sirin and Bijan Parsia. The OWL-S Java APIL. In Proceedings of the
Third International Semantic Web Conference (ISWC), 2004.

Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-
DL. In Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors,
OWLED, volume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: Science,
Services and Agents on the World Wide Web, 5(2):51-53, 2007.

Jeff Shneidman, Peter Pietzuch, Jonathan Ledlie, Mema Roussopoulos,
Margo Seltzer, and Matt Welsh. Hourglass: An Infrastructure for Connect-
ing Sensor Networks and Applications. Technical report, Harvard Univer-
sity, 2004.

John Miles Smith and Diane C. P. Smith. Database Abstractions: Aggrega-
tion and Generalization. ACM Transactions on Database Systems, 2(2):105—
133, 1977.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an ap-
proach to designing fault-tolerant computing systems. ACM Transactions
on Computer Systems, 1:222-238, August 1983.

Karsten Schmidt and Christian Stahl. A Petri net semantic for BPEL4WS
— validation and application. In Ekkart Kindler, editor, Proceedings of the
11" Workshop on Algorithms and Tools for Petri Nets (AWPN), pages 1-6,
Paderborn, Germany, 2004.

Christoph Schuler, Heiko Schuldt, Can Tiirker, Roger Weber, and Hans-
Jorg Schek. Peer-to-Peer Execution of (Transactional) Processes. Interna-
tional Journal of Cooperative Information Systems (IJCIS), 14(4):377-405, 2005.

Thanos Stavropoulos, Dimitris Vrakas, and Ioannis Vlahavas. A Survey
of Service Composition in Ambient Intelligence Environments. Artificial
Intelligence Review, pages 1-24, 2011.

Khodakaram Salimifard and Mike Wright. Petri net-based modelling of
workflow systems: An overview. European Journal of Operational Research,
134(3):664-676, 2001.

Katia Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. Larks:
Dynamic Matchmaking Among Heterogeneous Software Agents in Cy-
berspace. Autonomous Agents and Multi-Agent Systems, 5:173-203, 2002.

Christoph Schuler, Roger Weber, Heiko Schuldt, and Hans-J. Schek. Peer-
to-Peer Process Execution with OSIRIS. In Maria Orlowska, Sanjiva Weer-
awarana, Michael Papazoglou, and Jian Yang, editors, Service-Oriented
Computing - ICSOC, volume 2910 of LNCS, pages 483—498. Springer, 2003.

258

BIBLIOGRAPHY

[SWSS04]

[SYS09]

[Tar56]

[THO6]

[Thi05]

[Thill]

[Tob01]

[TPR10]

[TRBD11]

[TSBM10]

[TTMO09]

[Tur02]

[vdA97]

[VHBS98]

Christoph Schuler, Roger Weber, Heiko Schuldt, and Hans-Jorg Schek.
Scalable Peer-to-Peer Process Management — The OSIRIS Approach. In
Proceedings of the IEEE International Conference on Web Services, pages 26—
34, July 2004.

SYSTAP. Bigdata Architecture Whitepaper. Technical report, SYSTAPD,
LLC, 2009. Available at http://www.bigdata.com/whitepapers/
bigdata_whitepaper_10-13-2009_public.pdf.

Alfred Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938.
Oxford University Press, 1956.

Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner:
System Description. In Ulrich Furbach and Natarajan Shankar, editors,
Automated Reasoning, volume 4130 of LNCS, pages 292-297. Springer, 2006.

Michael Thielscher. Reasoning Robots: The Art and Science of Programming
Robotic Agents. Number 33 in Applied Logic. Springer, 2005.

Michael Thielscher. A unifying action calculus. Artificial Intelligence Jour-
nal, 175(1):120-141, 2011.

Stephan Tobies. Complexity Results and Practical Algorithms for Logics
in Knowledge Representation. CoRR, ¢s.LO/0106031, 2001.

Edward Thomas, Jeff Pan, and Yuan Ren. TrOWL: Tractable OWL 2 Rea-
soning Infrastructure. In Lora Aroyo, Grigoris Antoniou, Eero Hyvonen,
Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania Tu-
dorache, editors, The Semantic Web: Research and Applications, volume 6089
of LNCS, pages 431-435. Springer, 2010.

Eran Toch, Iris Reinhartz-Berger, and Dov Dori. Humans, semantic ser-
vices and similarity: A user study of semantic Web services matching and
composition. Web Semantics, 9:16-28, March 2011.

Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity Con-
straints in OWL. In Maria Fox and David Poole, editors, AAAI, Atlanta,
Georgia, USA, July 2010. AAAI Press.

Vuong Xuan Tran, Hidekazu Tsuji, and Ryosuke Masuda. A new QoS on-
tology and its QoS-based ranking algorithm for Web services. Simulation
Modelling Practice and Theory, 17(8):1378-1398, 2009.

Hudson Turner. Polynomial-Length Planning Spans the Polynomial Hier-
archy. In Proceedings of the European Conference on Logics in Artificial Intelli-
gence, JELIA '02, pages 111-124, London, UK, UK, 2002. Springer.

Wil M.P. van der Aalst. Verification of Workflow Nets. In Pierre Azéma
and Gianfranco Balbo, editors, Application and Theory of Petri Nets 1997,
volume 1248 of LNCS, pages 407-426. Springer, 1997.

Radek Vingralek, Haiyan Hasse-Ye, Yuri Breitbart, and Hans-Jorg Schek.
Unifying Concurrency Control and Recovery of Transactions with Seman-
tically Rich Operations. Theoretical Computer Science, 190(2):363-396, 1998.

http://www.bigdata.com/whitepapers/bigdata_whitepaper_10-13-2009_public.pdf
http://www.bigdata.com/whitepapers/bigdata_whitepaper_10-13-2009_public.pdf

BIBLIOGRAPHY 259

[VKVEF08]

[Vog09]

[VIWSO08]

[W3(C]

[W3C09]

[WCBO01]

[Wel94]
[Wes07]

[WHM10]

[Wie92]

[Win88a]

[Win88b]
[Win90]

[WS92]

Tomas Vitvar, Jacek Kopecky, Jana Viskova, and Dieter Fensel. WSMO-
Lite Annotations for Web Services. In Sean Bechhofer, Manfred
Hauswirth, Jorg Hoffmann, and Manolis Koubarakis, editors, The Seman-
tic Web: Research and Applications, volume 5021 of LNCS, pages 674-689.
Springer, 2008.

Werner Vogels. Eventually consistent. Communications of the ACM, 52:40—
44, January 2009.

Roman Vaculin, Kevin Wiesner, and Katia Sycara. Exception Handling
and Recovery of Semantic Web Services. In Fourth International Conference
on Networking and Services, pages 217-222, march 2008.

W3C Wiki Page. Literals as Subjects. http://www.w3.0rg/2001/sw/
wiki/Literals_as_Subjects. Visited on July 27, 2012.

W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview. W3C Recommendation, October 2009. Available at http:
//www.w3.0rg/TR/owl2-overview/.

Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. In Proceedings of the eigh-

teenth ACM Symposium on Operating Systems Principles (SOSP), pages 230-
243, New York, NY, USA, 2001. ACM.

Daniel S. Weld. An Introduction to Least Commitment Planning. Al Mag-
azine, 15(4):27-61, 1994.

Mathias Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 1 edition, November 2007.

Ingo Weber, Jorg Hoffmann, and Jan Mendling. Beyond Soundness: On
the Verification of Semantic Business Process Models. Distributed and Par-
allel Databases, 27:271-343, 2010.

Gio Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38-49, March 1992.

Marianne Winslett. A framework for comparison of update semantics.
In Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, PODS ‘88, pages 315-324, New York, NY,
USA, 1988. ACM.

Marianne Winslett. Reasoning about Action Using a Possible Models Ap-
proach. In AAAI, pages 89-93, 1988.

Marianne Winslett. Updating logical databases. Cambridge University Press,
New York, NY, USA, 1990.

Gerhard Weikum and Hans-Jorg Schek. Concepts and Applications of Mul-
tilevel Transactions and Open Nested Transactions, chapter 13. In: Database
Transaction Models for Advanced Applications. Morgan Kaufmann Pub-
lishers, 1992.

http://www.w3.org/2001/sw/wiki/Literals_as_Subjects
http://www.w3.org/2001/sw/wiki/Literals_as_Subjects
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

260

BIBLIOGRAPHY

[WV02]

[WVKS08]

[WVVT01]

[WWWD96]

[ZBN*04]

[ZLW10]

[ZML*06]

[ZNBO1]

[ZNBB94]

[Zol]

[ZW97]

Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, San Francisco, CA, 2002.

Kevin Wiesner, Roman Vaculin, Martin Kollingbaum, and Katia Sycara.
Recovery Mechanisms for Semantic Web Services. In René Meier and
Sotirios Terzis, editors, Distributed Applications and Interoperable Systems,
volume 5053 of LNCS, pages 100-105. Springer, 2008.

H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, and S. Hiibner. Ontology-Based Integration of Information — A
Survey of Existing Approaches. In Proceedings of the IJCAI-01 Workshop on
Ontologies and Information Sharing, Seattle, USA, 2001.

Dirk Wodtke, Jeanine Weissenfels, Gerhard Weikum, and Angelika Kotz
Dittrich. The Mentor Project: Steps Towards Enterprise-wide Workflow
Management. In Proceedings of the Twelfth International Conference on Data
Engineering (ICDE), pages 556-565, 1996.

Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. QoS-aware Middleware for
Web Services Composition. I[EEE Transactions on Software Engineering,
30(5):311-327, May 2004.

Xiaowang Zhang, Zuoquan Lin, and Kewen Wang. Towards a Paradoxi-
cal Description Logic for the Semantic Web. In Sebastian Link and Henri
Prade, editors, Foundations of Information and Knowledge Systems, volume
5956 of LNCS, pages 306-325. Springer, 2010.

Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue Pan. Min-
erva: A Scalable OWL Ontology Storage and Inference System. In Riichiro
Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia, editors, The Semantic
Web — ASWC 2006, volume 4185 of LNCS, pages 429-443. Springer, 2006.

Aidong Zhang, Marian Nodine, and Bharat Bhargava. Global Schedul-
ing for Flexible Transactions in Heterogeneous Distributed Database Sys-
tems. IEEE Transactions on Knowledge and Data Engineering, 13:439—450,
May 2001.

Aidong Zhang, Marian Nodine, Bharat Bhargava, and Omran Bukhres.
Ensuring Relaxed Atomicity for Flexible Transactions in Multidatabase
Systems. SIGMOD Record, 23:67-78, May 1994.

Evgeny Zolin. Description logic complexity navigator. http://www.cs.
man.ac.uk/~ezolin/dl/. Visited on July 27, 2012.

Amy Moormann Zaremski and Jeannette M. Wing. Specification matching
of software components. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6:333-369, October 1997.

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/

Index

A

ABox, 20

abstract operation, 46

abstract role, 18

action, 45, 111
information-providing, 116
parametrized, 113

acyclic, see Petri net

acyclic TBox, 20

add operation, see update operation

ALC, 18

annotation, see OWL annotation

annotation property, 36

answer set variable, see distinguished

variable

assertion, 16, 20

assertional knowledge, 20

assumption
determinism (A1), 43
discrete data (A2), 44
effect consistency (A6), 69
fail-safe operation (A8), 102
failure detector, reliable messag-

ing (A7), 99

service description (A4), 51
stateless operation (A3), 45
TBox protected (A5), 57

atomic service, 75

atomicity, 153

axiom, 16

axiom pinpointing, 73

B

backward recovery, 4
belief revision, 32
belief update, 32, 59
binding, 46

blank node closure, 165
business process, 3

C
changeset, 154

choreography, 50
class, see concept
classification task, 29
closed world assumption, 23, 58
commit pipe, 161
commit-projection, 155
commutativity, 152
compensatable, 136
complex service, 75
composite service, 75
concept, 16, 18
atomic, 18
complex, 18
defined, 19
primitive, 19
concept assertion, 20
concept constructor, 18
concomitant update, 63
concrete domain, 24
concrete parameter, see profile parame-
ter
concrete role, 26
concurrency control, 147
conditional effect, 60, 68
conflict
update operation, 154
conjunctive ABox query, 29, 190
conjunctive normal form, 159
consistency
knowledge base, 21
continuous operation mode, see opera-
tion mode
control flow, 49
patterns, 83
control flow graph, 75, 79
interface, see Petri net interface
sound, 84
subflow, 80
unfolding, 79
control state, 81

262

INDEX

cut-and-replace process modification,
103
cyclic TBox, 20

D
data flow, 49

divide, fork, merge, 86
data flow graph, 75, 89
data item, 150

OWL, 150
data property, see concrete role
data range, 26
datatype, 25
datatype map, 25
default graph, see RDF dataset
defined concept/role, 19
degree of match, 107, 108
delete operation, see update operation
description logic, 15
direct KB update, 33
discrete operation mode, see operation

mode

disjoint match, 108
disjunctive normal form, 159
distinguished variable, 30
distributed execution, 178
divide operator, 86
DL-Lite, 68
domain constraint, 57
dry-run, 82

E

effect, 48, 59
conditional, see conditional effect
forward, see forward effect
information-providing, see knowl-

edge effect

effect system, 59

empty profile, 73

entity, see OWL entity

equivalent execution, 121
structure-aware, 122
structure-nescient, 124

exact match, 108

execution engine, 3, 98

execution failure, 101

execution state, 81, 128
initial, 85

expression conflict, 159

external nondeterminism, 44

F

facet expression, 26

failure recovery path, 137

filler, see role filler

final marking, 82

final place, 77, 78

finite model property, 23

first committer wins, 155

first updater wins, 157

flow relation, see Petri net

forward effect, 127, 130

forward recovery, 4

frame, 193

frame caching, 189

functional unit, 43
compensatable, retriable, pivot, 136

G
general concept inclusion axiom, 19
general parameter, see profile parameter
general TBox, see cyclic TBox
goal, 112,124,127

state, 114

temporally extended, 114
grounding, 46

H

hard goal, 115, 134
heartbeat, 181
history, 154

I

implementation of an operation, 46
implication, 19, 38

individual, 16

individual equality, 20
individual inequality, 20

initial marking, 78

initial place, 77, 78

input, 47

input node, 77

integrity constraint, 22, 162, 171

INDEX

263

Integrity Isolation, 171

internal nondeterminism, 44, 83
intersection match, 108

inverse role, 17

invocation failure, 101
isolation, 153

J
join node, 79, 86

K
knowledge base, 21

direct update, 33

update problem, see belief update
knowledge effect, 126

L

lexical space, 25
literal, see RDF literal
logical update, 62

M

marked Petri net, 78

marking, see Petri net

matchmaking, 106
domain, 106
preference-based, 107
problem, 106

maximum degree of parallelism, 83, 179

merge operator, 86
model-theoretic semantics, 21, 50, 53
monolithic matchmaking, 108
monotonicity

DL, 28

N
named graph, see RDF dataset
negation normal form, 159
no-op operation, 75
node

Petri net, 77

RDF graph, 34
notational conventions, 18

o
object, see RDF triple
object property, see abstract role

occlusion, 61
W, 36
ontology, see OWL ontology
open world assumption, 23, 58
operation, 45, 74
operation mode, 44
operator, see parametrized action
orchestration, 50
ordinary node, 79
output, 47
output node, 77
OWL, 35
annotation, 36
DL, 37
EL, 37
entity, 36
Full, 37
import closure, 36
knowledge base, see W
mapping to RDF, 38
ontology, 35
profiles, 37
QL, 38, 68
RL, 38
syntactic instance closure, 36
OWL data item, see data item

P
parameter, see profile parameter

parameter names assumption, 22

parametrized action, 113
path, see Petri net
elementary, 77
PDDL, 114
Petri net, 77
acyclic, 77
flow relation, 77
free choice, 77
interface, 77
marking, 78
path, 77
place, 77
strongly connected, 77
token, 78
transition, 77
pivot, 136

264

INDEX

place
final, see final place
initial, see initial place
place node, see Petri net
plan, 112
optimal, 112
plan checking, 112
plan existence problem, 112
planning
classic, 113
complete, sound, 112
contingency, 116
dynamic, 116
static, 116
planning domain, 112
planning problem, 112
plug-in match, 87, 108
strict, see strict plug-in/subsume
match
weak, see weak plug-in/subsume
match
possible models approach, 60
possible worlds approach, 60
post-set, 77
pre-set, 77
precondition, 47, 58
precondition system, 58
predicate, see RDF triple
predicate lock, 166
prenex normal form, 159
prepared query, 189
primal update, 63
primitive concept/role, 19
process, 49
deterministic, 83
transactional, see transactional pro-
cess
profile, 47, 73
profile parameter, 51, 52
assignment function, 54, 181
link to precondition, effect variable,
57, 66
property, see role
protected part, 57
prudence principle, 58, 66

Q

qualification problem, 102
query answering problem, 30
query entailment problem, 30
query subsumption, 30

R
RBox, 19
RDF, 34

dataset, 35

graph, 34

literal, 34

merge, 35

triple, 34
read operation, 152
read /write model, 150
realization task, 29
replacement, 103
resource, 34
Resource Description Framework, see

RDF

retriable, 136
rigid relation, 61
role, 16,17

defined, 19

filler, 20

primitive, 19
role assertion, 20
role constructor, 18
role inclusion axiom, 17
rule, 38

S

satisfiability, 28

satisfiability conflict, 160

schedule, 154

serializability, 154

server, 98

service, 47,75
application, 178
description, 50
instance, 47
native, 178
system, 178
volatile, 49

SHOIN

INDEX

265

semantics, 21

syntax, 17
simple role, 17
simple service, 75
sink, 86
Snapshot Isolation, 155
soft goal, 115, 134
solution set variable, see distinguished

variable

source, 86
spare input, 109
spare output, 108
split node, 79, 86
SROIQ,23
standard names assumption, 22, 113
state trajectory, 114, 135
stateless operation, 45
strict plug-in/subsume match, 110
STRIPS, 113
strongly connected, see Petri net
structural substitution, 103
structured matchmaking, 107
sub process, 98
sub service, 75
subflow, see control flow graph
subject, see RDF triple
sublanguage, 18
subsume match, 87, 108
syntactic construct, 21
syntactic instance, 21, 36

T
task, 45
TBox, 19
acyclic, see acyclic TBox
cyclic, see cyclic TBox
terminological knowledge, 19
token, see Petri net
transaction, 153
active, 155
transactional process, 135
transition node, 77
transitive role, 17
triple, see RDF triple

U
undistinguished variable, 30
unfolding, see control flow graph
unique name assumption, 20, 22, 68
update operation, 32, 152

add, 152

commutativity, 152

conflict, 154

delete, 152
update transaction, see transaction

\"

value space, 25

vocabulary, 16, 36

volatile service/operation, 49

W
weak plug-in/subsume match, 110
Web Ontology Language, see OWL
well-handled Petri net, 78
well-structured WorkFlow net, 78
workflow, 3
WorkFlow net, 78

bounded, 84

live, 84
world state, 56, 81
write skew, 163

Curriculum Vitae

Thorsten Moller

27.05.1972

1978-1988

1988-1991
1991

1991-1998

1998

1994-1997

1998

1998-2004

2004

2004

2004-2005

2006-2011

Born in Saalfeld /Saale, Deutschland
Son of Christine and Siegfried Moller
German citizenship

Primary/Secondary School
Saalfeld /Saale and Probstzella, Germany

Apprenticeship at Deutsche Bahn, Germany
Vocational qualification as Kommunikationselektroniker,
Fachrichtung Informationstechnik

IT Technican
Rosenbauer IT Systems, Neustadt, Germany

Multimedia Developer and Trainer
Connect Telezentrum GmbH & Co. KG , Neustadt, Germany

Evening College Coburg, Germany

Specific higher education entrance qualification
Dresden University of Technology, Germany

Study of Computer Science

Dresden University of Technology, Germany
Diplom-Informatiker (equiv. to M.Sc. in Computer Science)
Dresden University of Technology, Germany

Software Engineer at
Fink & Partner Media Services GmbH, Dresden, Germany

Research Assistant in the group of Prof. Heiko Schuldt
Information and Software Engineering
UMIT Hall in Tyrol, Austria

Research Assistant in the group of Prof. Heiko Schuldt
Database and Information Systems
University of Basel, Switzerland

	Zusammenfassung
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Service-based Applications
	Problem Description
	Thesis Goals and Contributions
	Thesis Outline

	Motivation
	E-Commerce Scenario
	E-Health Scenario
	Application Dynamics and Consequences

	Fundamentals
	Description Logics
	Description Logic SHOIN
	Description Logic SROIQ
	Datatype Maps and Data Ranges
	Reasoning and its Computational Complexity
	Operations on Knowledge Bases

	Resource Description Framework
	Web Ontology Language
	Import Mechanism
	Representation Formats
	Profiles
	Mapping to RDF Graphs

	System Model
	Basic Elements, Relations, and Assumptions
	Functional Unit
	Operation
	Implementation
	Service
	Profile
	Process
	Service Description

	Service Model
	Profile Parameter
	Preconditions and Effects
	Profile, Operation, and Service

	Process Model
	Control Flow
	Data Flow
	Well-formed Processes

	Summary

	Forward Failure Handling using CFI
	The Basic Control Flow Intervention Cycle
	Range of Application
	System Environments
	Failure types

	Replacements and their Structure
	Semantically Equivalent Execution
	The Matchmaking Task
	The Planning Task
	Functional Profile Equivalence
	Functional Equivalent Execution
	Similar Execution and Non-functional Properties

	Integration with Transactional Processes
	Guaranteed Termination
	Integration Strategies

	Repeated Intervention
	Threshold
	Progress
	Possibility to make Progress

	Discussion
	Disambiguating Profile Parameters
	To Plug-in Match or not to Plug-in Match
	Structure-aware versus Structure-nescient Replacements
	Replacement Composition Planning via Translation into PDDL

	Summary

	Concurrency Control for Shared Knowledge Bases
	Motivation
	CC Model for OWL Knowledge Bases
	OWL Data Items
	Basic Operations
	Transactions
	Correct Concurrent Access
	Access Protocol
	Higher Level Conflicts
	Extended Commit Protocol
	Correctness of the Protocol

	RDF Triple Store Integration
	Integration of Inferencing Engines
	Online Computation of Implicit Knowledge
	Materialization of Implicit Knowledge

	CC applied to Semantic Service Execution
	Discussion
	Correctness
	Performance

	Summary

	Implementation
	OSIRIS Next
	Architectural Overview
	Peer-to-Peer Execution
	Control Flow Intervention

	KB Access Optimization Techniques
	Prepared Queries
	Frame Caching

	Snapshot Isolation OWL Data Store
	Interfacing with the OWL API
	Data Structures and Snapshot Management
	Transactions and Conflict Checking

	Experimental Results
	Control Flow Intervention
	Experimental Setup
	Results

	Execution Engine
	Experimental Setup
	Results

	KB Access Optimization Techniques
	Experimental Setup
	Results

	Snapshot Isolation OWL Data Store
	Experimental Setup
	Results

	Related Work
	Adaptation and Exception Handling
	Distributed Execution
	Concurrent Access to Knowledge Bases

	Conclusions and Future Work
	Summary
	Future Work

	Appendix
	Effect System Algorithms
	Conditional Choice for Control Flow Graphs
	Properties of Read and Update Operations

	Bibliography
	Index

