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ABSTRACT

Arabidopsis microRNA (miRNA) genes (MIR) give
rise to 20- to 22-nt miRNAs that are generated pre-
dominantly by the type Ill endoribonuclease Dicer-
like 1 (DCL1) but do not require any RNA-dependent
RNA Polymerases (RDRs) or RNA Polymerase IV (Pol
IV). Here, we identify a novel class of non-conserved
MIR genes that give rise to two small RNA species, a
20- to 22-nt species and a 23- to 27-nt species, at
the same site. Genetic analysis using small RNA
pathway mutants reveals that the 20- to 22-nt
small RNAs are typical miRNAs generated by DCLA1
and are associated with Argonaute 1 (AGO1). In
contrast, the accumulation of the 23- to 27-nt
small RNAs from the miRNA-generating sites is de-
pendent on DCL3, RDR2 and Pol IV, components of
the typical heterochromatic small interfering RNA
(hc-siRNA) pathway. We further demonstrate that
these MIR-derived siRNAs associate with AGO4
and direct DNA methylation at some of their target
loci in trans. In addition, we find that at the miRNA-
generating sites, some conserved canonical MIR
genes also produce siRNAs, which also induce
DNA methylation at some of their target sites. Our
systematic examination of published small RNA
deep sequencing datasets of rice and moss
suggests that this type of dual functional MIRs
exist broadly in plants.

INTRODUCTION

Small non-coding RNAs (sRNAs) serve as sequence-
specific negative regulators that control expression of a

wide variety of genes in almost all cellular processes of
eukaryotes (1,2). In plants, sRNAs are classified into
microRNAs (miRNAs) and small interfering RNAs
(siRNAs) based on their precursor structures and biogen-
esis pathways. miRNAs are originated from hairpin-folded
single-stranded RNAs transcribed from miRNA genes
(MIR) (3-5), while siRNAs are produced usually from
long double-stranded RNAs (dsRNAs) (6-8).

miRNAs are 20- to 22-nt in length and are processed
predominantly by the type III endoribonuclease
Dicer-like 1 (DCL1) in Arabidopsis (3-5). A recent work
also identified 23- to 27-nt long miRNAs (ImiRNAs)
generated by DCL3 (9). Canonical miRNAs mediate
gene silencing mainly at the post-transcriptional level by
mRNA cleavage or translational repression (3-5), while
the function of the long miRNAs has not yet been un-
raveled. The role of miRNA in mediating DNA methyla-
tion was observed only in a few cases. The only example
reported in Arabidopsis is miR165/166, which induces
DNA methylation downstream of its target sites (10). In
moss Physcomitrella patens, miRNAs induce DNA methy-
lation under the hormone abscisic acid treatment or in the
DCLI1b mutant that abolished the cleavage activity of
miRNAs. The authors proposed that this epigenetic gene
silencing is triggered by miRNA to target RNA
ratios (11).

Several classes of plant endogenous siRNAs have been
documented (1). Among them, the heterochromatic
siRNAs (hc-siRNAs) are predominantly 24-nt in length
and are mainly derived from repeats or transposons
(8,12,13). They safeguard genome integrity by promoting
heterochromatin formation via DNA methylation and/or
histone modifications. The biogenesis of hc-siRNAs is de-
pendent on DCL3, RDR2 and Pol IV (12,13).

Here, we present the discovery of a novel class of
Arabidopsis MIR genes that give rise to both 20- to
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22-nt and 23- to 27-nt sSRNAs at the same site. Biogenesis
analysis shows that the 20- to 22-nt species are miRNAs
that are DCL1 dependent and RDR- or Pol IV independ-
ent, whereas the 23- to 27-nt species are siRNAs that
depend on DCL3, RDR2 and Pol IV, components of a
typical hc-siRNA pathway. We further demonstrate that
these 23- to 27-nt siRNAs generated from the miRNA
sites can associate with AGO4 and guide DNA methyla-
tion at some of their target loci in trans. In agreement with
this finding, some canonical MIR genes could also
generate both sRNA classes and the 23- to 27-nt
siRNAs could also mediate de novo DNA methylation in
trans at their target site. Our systematic analysis of pub-
lished sSRNA deep sequencing datasets shows that 43% of
rice (Oryza sativa) miRNA sites and 36% of moss (P.
patens) miRNA sites produce 23- to 26-nt sSRNAs, sug-
gesting that this type of siRNAs from miRNA loci exist
broadly in plants.

MATERIALS AND METHODS

Plant materials, small RNA library construction and
deep sequencing

A total number of 13 small RNA libraries were prepared
from 4- to 5-week-old short-day grown Arabidopsis Col-0
inoculated with mock (10 mM MgCl,) and a series of bac-
terial pathogen Pseudomonas syringae pv. tomato (Pst)
DC3000 strains, a type III secretion system mutated
strain Pst DC3000 hrcC, a virulent strain Pst DC3000
carrying an empty vector (EV) and an avirulent strain
Pst DC3000 carrying an effector gene (avrRpt2).
Bacteria infiltration was carried out on the leaves as
described previously (14) at a concentration of 2 x 10’
cfu/ml. Plants were grown in the green house at 22°C
with 12 h light and infiltrated leaves were harvested at 6-
and 14-h post-inoculation (hpi).

From the harvested leaves, total RNA was isolated
using Trizol reagent (Invitrogen) and it was fractionated
on 15% denaturing polyacrylamide (PAGE) gel. The
sRNA library for deep sequencing was constructed using
RNA molecules ranging from 18- to 26-nt and ligated to
5- and 3-RNA adaptors by 5-phosphate-dependent
method as described in detail (15). The sRNA libraries
were sequenced by Illumina Inc. and UCR core facility.

For the sRNA biogenesis, the following Arabidopsis
thaliana mutants dcl2-1, dci3-1, dcl4-2, henl-1, hyll-2,
dell-7)fwf2, rdrl-1, rdr2-2, rdr6-15, nrpdl-3, agol-27,
ago4-1 and their corresponding wild-type ecotypes,
Columbia-0 and Landsberg erecta (Ler) were used in
this study.

Processing of deep sequencing data

The 13 libraries of sequencing reads have been deposited
into NCBI/GEO databases (GSE19694). Raw sequence
reads were parsed to remove the 3’-adaptors. The
sequencing reads from each of the small RNA libraries,
with adaptors trimmed, were mapped to the Arabidopsis
nuclear, chloroplast and mitochondrial genome sequences
and cDNA sequences, which were all retrieved from TAIR
(version 9, http://www.arabidopsis.org). The reads that

match to these sequences with 0 mismatch (the raw
labeled ‘mapped’ in Supplementary Table S1) were
retained for further analysis. Sequencing reads were
aligned to the precursors of the annotated Arabidopsis
miRNAs in miRBase (release 13.0, http://microrna.
sanger.ac.uk), with Novoalign version 2.04 (http://www.
novocraft.com). Those sequencing reads that can be
mapped to a miRNA precursor with 0 mismatch were
retained for further analysis.

MIR2831-derived long siRNA cloning

MIR2831 gene-derived long siRNA cloning was achieved
by fractionating 26- to 40-nt RNAs from total RNAs and
ligated to 5'- and 3’-RNA adaptors using the same SRNA
cloning protocol as the construction of sSRNA library, and
reverse transcribed using 5'-miR2831 specific primers and
3’-reverse complementary sequence of adapters. Primer
pairs for amplifying 5-end of the long siRNA were:
Y-adaptor-F: CAGAGTTCTACAGTCCGACGA and
miR2831 specific reverse complementary primer
miRNA2831R: AGAAGTGGATGGGCCAAGAAAA.
Primer pairs for amplifying 3-end of the long siRNA
were: miRNA2831F: TTTTCTTGGCCCATCCACTTCT
and 3’-adaptor-R: CAAGCAGAAGACGGCATACGA.
The sRNA PCR fragments were cloned and sequenced.

Northern blot analysis

RNA was separated on 15% denaturing PAGE gel and
blotted onto Hybond-NX membrane (GE Health Care).
RNA was cross-linked to membrane using EDC as
described (16). Pre-hybridization and hybridization were
carried out in PerfectHyb Plus Hybridization Buffer
(Sigma) supplemented with sheared salmon sperm DNA
(100 pg/ml). LNA or DNA oligos complementary to
miRNAs were labeled at their 5'-end with gamma P-32
ATP (6000 Ci/mmol; Perkin Elmer) using T4 polynucleo-
tide kinase (NEB). After overnight hybridization,
post-hybridization washes were performed in 2 x SSC
and 0.1% SDS, two washes each 20 min. Blots were
exposed to phosphorscreens, scanned using
PhosphorImager (Molecular dynamics).

The following LNA oligos were used to detect new
miRNAs.
CandNew_2883: c+tt ct+gt t+gt ct+at ctac ataa g+tt
CandNew_2328: ctcg atgt ct+gt ct+at t+tt g+ct t+ct
CandNew_2831-5P: gaa+gtg+gatt+gggt+ccatagataaa

The following DNA oligos were used to detect known
miRNAs.
miR156-AS: GTGCTCACTCTCTTCTGTC
miR390-AS: GGCGCTATCCCTCCTGAGCTT
miR164-AS: TGCACGTGCCCTGCTTCTCCA
miR402-AS: CAGAGGTTTAATAGGCCTCGAA

Target gene expression analysis by quantitative RT-PCR

Total RNA was extracted with phenol/chloroform and
was treated with DNase I (Invitrogen) to remove DNA
contamination. About 5pg of RNA was used for reverse
transcription with oligo dT primer using Superscript II
(Invitrogen). Quantitative PCR was performed using

Downl oaded from https://academ c. oup. conf nar/articl e-abstract/38/20/ 6883/ 1310570/ si RNAs-from mi RNA-si t es- nedi at e- DNA- met hyl at i on- of
by WAZ Bi bl iothek (Ceffentliche Bibliothek der UniversitAat Basel) user
on 10 Cctober 2017



SensiMix SYBR (Quantace) using specific pair of primers
listed below. Minimum cycles were carried out based on
their expression levels as we standardized to see the detec-
tion. The comparative threshold cycle (C,) method was
used for determining relative transcript levels (Bulletin
5279, Real-time PCR applications Guide, Bio-Rad).
Actin was used as an internal control.

At5g08490F: CACAGATGCCAGTTGAACCT
At5g08490R: CACCACAGGCTCTTTCATCT
Atdgl6580F: TGTATCTGGTCCGGCCTTTC
At4gl6580R: CTCTGAGTCTCATACTGATT
ActinF: AGTGGTCGTACAACCGGTATT
ActinR: GATGGCATGAGGAAGAGAGAA

Bisulfite sequence analysis

Total genomic DNA was isolated from Arabidopsis leaves
using CTAB method from Col-0 and nrpdI-3 mutant. The
total DNA was subjected to bisulfite treatment as
described in (17). Primers are designed to amplify
specific regions flanking the miRNA-binding sites. The
following primers were used to amplify target regions
for newly identified miRNAs.

BisAt4gl6580Fp-TTGTTGATTAACGAAAGGAGG
AAT

BisAt4gl16580Rp-GCTGATTCAAATAAATCCATCT
CTTA

BisAt5g08490-F: GGAAACCACGTTCTAATATCG
AATATGTAT G

BisAt5g08490-R: AGGCTCTTTCATCTGAAGATAT
AAAGCATTTA

BisAt5g43270-SPL2F: AAGTTCGAAGCACGTACC
ATCAAGAGTG

BisAt5g43270-SPL2R: GTAGTTTTCATTAAACTGG
CCTACCCCATT

To analyze the methylation status of the target genes,
we selected three locations—at the binding site, 50—100-bp
up- and downstream of the miRNA target sites—for
investigation.

Identification of putative miRNNA precursor loci

We extended the method that we developed previously
(18) to identify novel miRNA genes based on the reads
in the 13 small RNA sequencing libraries, which are avail-
able at NCBI/GEO under accession number GSE19694.
Briefly, in our method, all SRNA reads were first mapped
to the Arabidopsis genome. The genome loci that have
reads mapped to were clustered if they were overlapped
or adjacent to each other. For each cluster with no longer
than 50 nt, we extracted two sequences to further analyze
their folding structures; one extended from 160-nt
upstream to 30-nt downstream of the cluster, and the
other started from 30-nt upstream and ended at 160-nt
downstream of the cluster. These parameters were
chosen based on the lengths of the known Arabidopsis
miRNA precursors, which range from 63- to 689-nt,
with a mean of 171-nt. More than 80% of these precursors
are shorter than 210-nt. Hence we extract ~210-nt se-
quences surrounding the (clustered) reads for further
analysis of their secondary structures using the
RNA-fold program (19). The rest steps of our method
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followed the same procedure in (18), except the features
used to build the support vector machines (SVM) classifi-
cation model. All the features that we used in our miRank
method (20) were adopted in the current study. In
addition, we introduced several extra features based on
the patterns of sRNA reads mapped to the known
miRNA precursors. The first feature was the ratio
between the number of the most frequent reads mapped
to the two arms of a hairpin structure and the total
number of reads on the precursor. The second feature
was the ratio between the numbers of reads mapped to
both arms (the larger number over the smaller one). The
third and the fourth features were the width of the (clus-
tered) reads on the arm with majority reads and the width
of the (clustered) reads on the opposite arm.

Identification of MIRs generating two sSRNA species
from deep sequencing data

We extensively searched for mature miRNA loci generating
two types of sRNAs in publicly available small RNA
deep-sequencing datasets on O. sativa (rice, GEO Access
number: GSE14462, 2 datasets) and P. patens [moss, (21)
six datasets). Raw sequence reads were parsed to remove
low quality reads and the 3’-adaptors. The mature miRNAs
of the annotated miRNA precursors of the corresponding
species in miRBase release 14.0 (http://microrna.sanger.ac.
uk) were extended 50-nt upstream and 50-nt downstream.
The sRNA reads from sRNA sequencing libraries on rice
and moss, with adaptors trimmed, were mapped (with no
mismatch) separately to these ~120-nt regions of the cor-
responding genomes. Two criteria were used to select
mature miRNAs that have potential siRNA and miRNA
generated at the same loci. First, there are 23- to 26-nt
sequencing reads that overlap with mature miRNAs by
>18-nt. Second, reads mapped to mature miRNAs do
not form a laddering pattern.

Prediction of putative SRNA targets

We implemented a target prediction algorithm for plant
miRNA and siRNAs, which extended and improved upon
the methods proposed by Zhang (22) and Jones-Rhoades
and Bartel (23), which is in principle similar to the
TargetFinder method (24). Briefly, a score function was
first used to minimize the number of mismatches, G-U
wobbles and bulges along the alignment of miRNAs and
their putative target sites, where the penalty for a G:U
wobble pairing is 0.5, the penalty for a insertions/deletions
is 2.0, and that for a mismatch is 1.0. The algorithm then
considered all possible arrangements of mismatches and
bulges. Random permutations of each miRNA or siRNA
with first-order hidden Markov model were applied to test
the signal-noise ratio of its putative target sites. We used
the cutoff of maximal score of 4.5 for target prediction.

RESULTS
Identification of candidate new MIR genes

Most MIR genes are transcribed by RNA polymerase 11
and the resulting miRNA precursors can fold back to
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form hairpin structures that are recognized and processed
predominantly by DCLI to generate miRNAs. A few
young miRNAs derived from precursors with long
stem-loop structures are processed by DCL4 (25),
whereas the 23- to 27-nt ImiRNAs are processed by
DCL3 (9). To identify new MIR genes in Arabidopsis,
we first searched for putative miRNA precursor loci that
could fold into stem-loop structures from the Arabidopsis
intergenic, intronic and UTR regions (see ‘Materials and
Methods’ section). We then mapped the small RNA
sequencing reads that we obtained from bacterial
pathogen-challenged Arabidopsis leaves onto the newly
predicted hairpin regions. We chose the candidate MIR
genes that have perfectly matched small RNA reads that
predominantly mapped at the stem regions of the hairpin
structures with no or very low reads matching the negative
strand (Supplementary Figure S1). We followed in general
the proposed criteria for miRNA annotation (26),
although a few of the candidate miRNAs we identified
did not have corresponding miRNA* reads. We found a
total of 10 candidate MIR genes, eight of which were from
intergenic regions, one from intron and one from 5" UTR,
respectively (Supplementary Figure S1). Notably, eight
out of the 10 candidate MIR genes have 23- to 27-nt
reads at the same site of the 20- to 22-nt reads
(Supplementary Figure S1 and Table S1; Table 1).

Novel MIR genes that give rise to both miRNAs
and siRNAs at the same site

To confirm these candidate MIR genes, we examined the
expression of these candidate miRNAs in various mutants
of DCLs, RDRs and the Pol 1V large subunit NRPDI.
The biogenesis of miRNAs is predominantly dependent
on DCL1 and does not require RDRs and Pol IV.
Interestingly, for some of the candidates, we detected
two sRNA species, a 20- to 22-nt species and a 23- to
27-nt species, using a single probe. Figure 1 shows three
such examples, MIR2328, MIR2883 and MIR2831. The
accumulation of the 21-nt bands of these three candidates
was unaffected in rdri-1, rdr2-2, rdr6-15, nrpdl-3.
However, they were drastically reduced in the dc/l-7/
fwf2 double mutant (Figure 1D, E and F), heni-1 and
hyll-2 as compared with the wild-type (Figure 1E and
F). The dcl1-7/fwf2 double mutant rescued the pleiotropic
phenotype of dc/1-7 (27), which ruled out the possibility
that the dependence on DCL1 was due to a secondary
effect of the strong morphological phenotype of dcll.
HYLI encodes a dsRNA-binding protein that functions
with DCL1 for miRNA processing and HENI encodes a

methyltransferase that methylates plant SRNAs, including
miRNAs (28-30). Thus, the 21-nt species were bona fide
new miRNAs that require DCL1 but not any RDRs or
Pol IV. However, to our surprise, the 24-nt SRNA species
of miR2883 and miR2328 (Figure 1D and E) were absent
not only in dci3-1, but also in rdr2-2 and nrpdi-3. These
results clearly indicate that the 24-nt sSRNA species are not
miRNAs, but rather siRNAs generated by DCL3/RDR2/
Pol IV that represent the typical hc-siRNA pathway. For
miR2831, we could only detect miR2831-5P but not
miR2831-3P by northern blot analysis (Figure 1F;
Supplementary Figure S2). We observed a larger sSRNA
band of ~26-30nt in length at miR2831-5P site in
addition to the 21-nt miRNA band (Figure 1F).
Biogenesis analysis showed that this ~26- to 30-nt
sRNA was also dependent on DCL3, RDR2 and Pol IV
(Figure 1F). Note that ~26- to 30-nt reads were not
obtained from the deep sequencing data because the
sRNA libraries were prepared from the size-fractionated
sRNAs of 18-26nt in length. To determine the sequence
of the long siRNA, we performed sRNA cloning by RNA
adapter ligation-based RT-PCR and sequencing
(see ‘Materials and Methods’ section) and identified a
27-nt siRNA at the miR2831-5P site (Supplementary
Figure S3). Thus, our results suggest that there is a
novel class of MIR genes that give rise to two sRNA
species, a 20- to 22-nt miRNA species and a 23- to 27-nt
siRINA species.

MIR-derived siRNAs associate with AGO4

hc-siRNAs are preferentially associated with AGO4,
whereas miRNAs are mainly associated with AGOI1
(13,31,32). To determine whether these siRNAs generated
from miRNA sites are also loaded into AGO4, we
examined their accumulation in AGOl and AGO4
mutants. While the 20- to 22-nt bands were mainly de-
pendent on AGOI1 (Figure 2), the level of the 23- to
27-nt siRNAs was clearly reduced in ago4-/ mutant, sug-
gesting that these siRNAs were mainly associated with
AGO4 (Figure 2). We also confirmed this result by
analyzing the published Arabidopsis datasets of
AGO-associated small RNAs (33-35). Out of the 10
newly identified MIR candidates, 7 have 23- to 26-nt
reads found in these datasets and six of them were
associated exclusively with AGO4, including both
miR2012 and miR2012* (Table 2; Supplementary
Table S2). While the number of reads for these siRNAs
in the AGO4-coimmunoprecipitation were generally small
such that we cannot rule out the possibility that they may

Table 1. Summary of total number of MIR genes that give rise to 23- to 26-nt sSRNAs in our Arabidopsis dataset, and in published rice and

moss datasets as indicated in the respective columns

Arabidopsis Rice Moss
Known MIR Known MIRs with 23- to New MIR New MIRs with 23- to MIR MIR with 23- to MIR MIR with 23- to
26-nt reads (%) 26-nt reads (%) 26-nt reads (%) 26-nt reads (%)
191 81 (42%) 10 8 (80%) 414 176 (43%) 230 83 (36%)
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Figure 1. New MIR genes give rise to both miRNAs and siRNAs. (A-C) Candidate M/R genes MIR2883, MIR2328 and MIR2831,

and the

predicted precursor sequence with perfectly matched sSRNA sequences. Solid arrows indicate 24-nt siRNAs and open arrows indicate the most
abundant 21-nt miRNA used for probing. No sRNAs matched negative strand of these regions. (D-F) Accumulation of miR2883, miR2328 and
miR2831-5P in various sSRNA pathway mutants. U6 RNA and ethidium bromide-stained tRNA were used as the loading control.

also associate with other AGOs. For example, miR2812
was also associated with AGO7 (Table 2; Supplementary
Table S2). These observations taken together suggest
strongly that these siRNAs can associate with AGO4.
Thus, these MIR-derived siRNAs are bona fide
hc-siRNAs that are dependent on DCL3/RDR2/Pol
IV/AGO4 for their biogenesis and function.

MIR-derived siRNAs can direct DNA methylation at
some of their target loci

It is known that hc-siRNAs are generated by the Pol 1V/
DCL3/RDR2 pathway and subsequently associate with
AGO4 to direct DNA methylation. To study the potential
function of these Pol IV/DCL3/RDR2-dependent siRNAs
generated from the miRNA sites, we predicted their
putative targets (see ‘Materials and Methods’ section).
The dependence of these MIR-derived siRNAs on Pol
IV/DCL3/RDR2 and the association of these siRNAs
with AGO4 suggested that they might also guide DNA
methylation at their sites of origin in cis or their target
sites in trans. We analyzed the DNA methylation level
of the three new MIR gene loci and their predicted
target sites in both wild-type and nrpdI-3 by bisulfite
sequencing (17). If these MIR-derived siRNAs indeed
direct DNA methylation, we would expect reduced
DNA methylation in the nrpdI-3 mutant, where these

MIR gene-derived siRNAs were absent. We did not
observe an obvious reduction in DNA methylation at
the siRNA-generating sites of the new MIR genes,
MIR2883 and MIR2831, in nrpdl-3 (Supplementary
Figure S4), suggesting these siRNAs had little effect on
the methylation level of their generating sites. MIR2328
gene was hardly methylated in both wild-type and nrpdi-3
(Supplementary Figure S4). On the contrary, DNA
methylation at some of their target sites was clearly
affected. DNA methylation level, especially the asymmet-
ric CHH methylation level of At4gl6580 (a target of
miR2328) and At5g08490 (a target of miR2831-5P) was
clearly reduced or eliminated at the siRINA target sites in
nrpdi-3 (Figure 3A and B). In At4gl16580, the upstream
region of the target site was hardly methylated, and the
methylation level of the downstream region was modestly
reduced in nrpdi-3 (Figure 3A). In At5g08490, reduction
in CHH and CHG methylation was observed in both the
upstream and downstream regions of the target sites in
nrpdl-3, although to a lesser degree as compared with
the reduction at the target site (Figure 3B). These results
suggest that the MIR-derived siRNAs direct the DNA
methylation at their target sites.

We then asked whether DNA methylation mediated by
these MIR-derived siRNAs has an effect on the expression
of the target genes. We examined the expression of
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At4gl16580 and At5g08490 in nrpdl-3 mutant using quan-
titative real-time RT-PCR. Expression level of these
targets in dc/l, where the 21-nt miRNAs were absent,
was examined and used as a positive control. Increased
level of the two targets was observed in nrpdl-3 mutant,
as compared with the corresponding wild-type
(Figure 3C), similar results were observed in dc// mutant
(Figure 3C). This result suggests that these MIR genes
could regulate target expression in dual modes, possibly
via  siRNA-mediated = DNA  methylation  and
miRNA-mediated RNA degradation.

Some canonical MIR genes can also give rise to
siRNAs at the miRNA sites

The involvement of DCL3 in generating 23- to 26-nt
so-called long miRNAs from 41 known miRNA families
was reported in Arabidopsis (9). However, the dependency
of these 23- to 26-nt SRNAs on RDRs and Pol IV was not

miR2883

miR2328

— e — e U6

\ee.
(o i
= |
21nt —— . — . miR2831-5P

- We Us

J

Figure 2. AGO4 is required for the accumulation of siRNAs from the
newly identified MIR genes MIR2883 (A), MIR2328 (B) and MIR2831-
5P (C). AGOI and AGO4 are essential for the accumulation of 21-nt
and 23- to 27-nt sRNA species, respectively. U6 and ethidium
bromide-stained tRNA served as the loading control.

examined, and these sSRNAs were presumed to be long
miRNAs according to their biogenesis exclusively from
the positive strand of MIR genes. From our sRNA
dataset, we detected the expression of 191 of the 207
Arabidopsis miRNAs listed in miRBase release 11.0
(data not shown), and 81 of them (42%) have 23- to
26-nt sSRNA reads (Table 1; Supplementary Table S3).
We examined the accumulation of the 23- to 26-nt
sRNA species of miR156, miR164, miR390 and miR402
in the mutants of RDR2 and NRPDI using the corres-
ponding antisense probes. We found that the 23- to
26-nt SRNA bands were absent in rdr2-2 and nrpdI-3
(Figure 4), which indicates that these sSRNA species
from the canonical miRNA loci are also siRNAs rather
than long miRNAs. Furthermore, to determine which
AGO proteins these canonical MIR-derived siRNAs are
mainly associated with, we analyzed the published
Arabidopsis datasets of AGO-associated small RNAs
(33-35). The result showed that these 23- to 26-nt
siRNAs were preferentially associated with AGO4
(Table 2; Supplementary Table S2). Out of 81 known
MIR genes with 23- to 26-nt reads, 51 MIRs have 23- to
26-nt reads in the AGO pull down datasets. Out of 51
(78%), 40 MIR genes have AGO4-associated sRNA
reads, and 13 of them (26%) were only present in
AGO4. In addition, 28, 1, 9 and 22 MIR genes had 23-
to 26-nt reads co-immunoprecipitated with AGOI,
AGO2, AGOS5 and AGO7, respectively (Table 2;
Supplementary Table S2). For those MIR genes with 23-
to 26-nt SRNAs associated with more than one AGO, the
majority of the reads were associated with AGO4. These
results suggest that these canonical MIR-derived siRNAs
likely function through AGO4.

We asked whether these 23- to 26-nt siRNAs from ca-
nonical MIR genes could also direct DNA methylation at
their generating sites in cis or their target sites in trans. We
chose miR156 and a miR156 target, SPL2 as a case study.
We found that the level of DNA methylation, especially the
asymmetric CHH methylation, at the target site of SPL2
was clearly reduced in nrpdI-3 where the generation of 23-
to 26-nt siRNA was impaired (Figure 5A and B). Reduced
DNA methylation was detected also within the 81-bp
upstream and 100-bp downstream regions of the miR156
target site of SPL2 in nrpdl-3 mutant (Figure 5A and B).
This result suggests that the 23- to 26-nt siRNAs from ca-
nonical miRNA sites could also direct DNA methylation at
their target sites. However, the DNA methylation level at
most MIR loci are generally very low (based on Anno-J
database http://neomorph.salk.edu/epigenome/epigenome
.html), we chose MIRI56a that has the highest DNA

Table 2. MIR gene-derived siRNAs are mainly associated with AGO4 in Arabidopsis

Total MIRs with
sRNAs from our

MIR gene-derived 23- to 26-nt siRNAs that associated with AGOs

dataset Total AGOI AGO2 AGO4 AGOS AGO7
191 known MIR 51 28/51 (55%) 1/51 (2%) 40/51 (78%) 9/51 (18%) 22/51 (43%)
10 new MIR 7 0/7 (0%) 0/7 (0%) 7/7 (100%) 0/7 (0%) 1/7 (14%)

The Arabidopsis datasets of AGO-associated small RNAs from (33-35) were used in this analysis.
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Figure 3. MIR-derived siRNAs direct DNA methylation at their target sites. (A and B) Cytosine methylation was examined by bisulfite sequence
analysis at the siRNA-targeting sites of At4gl6580 (miR2328 target) and At5g08490 (miR2831-5P target). About 50-100 bp up- and downstream
regions of the target sites in wild-type and nrpdl-3 mutant were also analyzed. Percentage of methylation level of each cytosine is indicated in the
table and sRNA target sites are in blue. For Atd4gl6580 (miR2328 target), 15 clones for each wild-type and nrpdi-3 were analyzed. In the case of
At5g08490 (miR2831-5P target), 15 and 13 clones were used for wild-type and nrpdi-3, respectively. Overall average percentage of cytosine methy-
lation status in each context at the binding sites, and up- and downstream regions is present in the diagrams below. (C) Relative expression levels of
At4gl16580 (miR2328 target) and At5g08490 (miR2831-5P target) in dc/l-7/fwf2 and nrpdl-3 mutants as compared to their respective controls. The
comparative threshold cycle (C;) method was used for calculating relative transcript levels (Bulletin 5279, real-time PCR applications Guide,

Bio-Rad). Actin was used as an internal control.
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Figure 4. miR164 (A), miR390 (B), miR156 (C) and miR402 (D) give rise to both 21-nt miRNAs and 23- to 26-nt siRNAs. Accumulation of the
siRNAs at these miRNA loci was abolished in rdr2-2 and nrpdi-3 mutants. U6 RNA served as the loading control.

methylation level among all the MIR156 genes for bisulfite
sequence analysis. We found that DNA methylation level
at MIRI56a was not reduced in nrpdI-3 (Supplementary
Figure S4D), suggesting that these MIRI156-derived

siRNAs had little effect on the DNA-methylation level at
their own generating site.

Thus, in addition to our newly identified candidate MIR
genes, some conserved canonical MIR genes also have
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dual function of generating both miRNAs and siRNAs,
which mediate gene silencing using dual modes of action—
mRNA cleavage/degradation and DNA methylation.

MIR genes generate siRNAs predominantly at
the miRNA-generating loci

In general, hc-siRNAs are generated by DCL3 from both
DNA strands and can spread along the heterochromatic
regions. To determine whether the siRNAs we detected in
MIR genes are just part of the hc-siRNAs generated from
these genomic regions that overlap with the MIR genes,
we examined SRNA sequence reads mapped to the regions
of 60-nt up- and downstream of the miRNA generating
sites (Supplementary Figures S5 and S6). We found that
the reads of 23-26-nt were only from the positive strand of
miRNA precursors and predominantly originated from
the miRNA-generating sites instead of spreading along
the surrounding regions. To confirm this result, we per-
formed northern blot analysis to detect any sRNAs
generated from 100-bp up- and downstream of miR2831
site, as well as the loop region within MIR2831 precursor.
Both sense and antisense probes were used and no signal
was detected in these regions (Supplementary Figure S2).
These results suggest that these dual-function MIR genes

give rise to siRNAs only at the same sites from which the
canonical miRNAs are produced.

Dual function MIR genes in rice and moss

To determine whether such MIR genes that give rise to
both 20- to 22-nt and 23- to 27-nt SRNA species exist in
other plant species, we analyzed publicly available small
RNA deep-sequencing datasets from two additional
plants: O. sativa (rice, GSM361264) and P. patens (moss,
GSM313212) (21). We found that 176 of the 414 rice
miRNA loci (43%) and 83 of the 230 moss miRNA loci
(36%) can generate 23- to 26-nt sSRNA reads (Table 1;
Supplementary Tables S4 and S5). Among them, 54 rice
miRNA loci (49.1%) have more 23- to 26-nt reads than
21-nt reads, whereas Arabidopsis and moss have fewer
miRNA loci with more 23- to 26-nt reads than 21-nt
reads. This result suggests that these 23- to 26-nt SRNAs
may play more important roles in rice than in Arabidopsis
and moss. An alignment analysis further confirmed that,
just like in Arabidopsis, these 23- to 26-nt sSRNAs in rice
and moss also predominantly localized to the miRNA-
generating sites and were derived from the positive
strand of the miRNA precursors (Supplementary
Figures S7 and S8), which suggests that these 23- to
26-nt sRNAs are likely generated from MIR genes.

A SPL2 (miR156 target) Target site
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Figure 5. The

siRNA from miR156 site directs DNA methylation of its target SPL2. (A) Cytosine methylation was examined for SPL2 at the

siRNA-target site, as well as the neighboring regions of 100-bp upstream and 100-bp downstream from the target site in wild-type and nrpdi-3.
miRNA target site is indicated in blue. Table shows percentage methylated cytosines at each position. Nineteen clones for wild-type and 18 clones for
nrpdI-3 were analyzed. (B) Overall average percentage of cytosine methylation in each context at the binding sites, and up- and downstream regions.
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Thus, it is likely that it is a widespread phenomenon in
plants that many MIR genes have the dual function of
generating two sRNA species, each of which may
require its own biogenesis pathway and have its own
mode of function in gene regulation.

DISCUSSION

In this study, we have identified new MIR genes in
Arabidopsis that play a dual role of generating both 20-
to 22-nt miRNAs and 23- to 27-nt siRNAs at the same
sites. The biogenesis of these 23- to 27-nt siRNAs is de-
pendent on the DCL3/RDR2/Pol IV pathway. As pre-
sented in the model, we proposed based on our results
(Figure 6), the miRNA precursors are recognized and pro-
cessed by two major pathways generating two species of
sRNAs: miRNAs (20-22nt) are processed by the DCL1/
HYLI/SERRATE pathway and siRNAs (23-27nt) are
produced by the Pol IV/RDR2/DCL3 pathway. From
our RNA-gel blot analyses, it is clear that mutations in
any of the genes in each pathway would affect the accu-

mulation of the corresponding sRNAs species.
Furthermore, the DCLI-dependent 20- to 22-nt
miRNAs are  associated  with  AGOIl and

DCL3-generated 23- to 27-nt siRNAs associate with
AGO4, which are indicative of their difference in modes
of action on the same targets. AGO]l-associated 20- to

Nucleic Acids Research, 2010, Vol. 38, No. 20 6891

22-nt  miRNAs repress gene expression at the
post-transcriptional level by mRNA cleavage or transla-
tion inhibition, whereas the 23- to 27-nt siRNAs

associated with AGO4 regulate gene expression at the
transcriptional (36) level by directing de novo DNA methy-
lation (Figure 6). After the submission of this article, three
classes of AGO4-associated 24-nt miRNAs were identified
in rice (37). They can guide DNA methylation at some of
their generation sites and their target sites. Two classes of
these 24-nt miRNAs arise from the 21-nt miRNA sites,
one class requires both DCL1 and DCL3 for its biogen-
esis, while the other requires only DCL3. The level of rice
ImiRNAs was not reduced in RDR2 RNAI lines, which
suggests that their biogenesis does not require RDR2. It is
not clear whether these ImiRNAs also depend on Pol IV.
In Arabidopsis, MIR-derived 23- to 27-nt siRNAs that we
identified required RDR2 and PollV. These studies
suggest that Arabidopsis and rice have distinct biogenesis
pathways for generating M1R-derived small RNAs for dir-
ecting DNA methylation. Although we cannot absolutely
rule out the possibility that some of these ImiRNAs from
rice may still be siRNAs because it is not clear if other
Rice RDRs function redundantly with RDR2 for
generating hc-siRNAs for guiding DNA methylation.
Our initial hypothesis was that the dual-function MIR
genes may be transcribed by both Pol II and Pol IV. The
Pol II transcripts form fold-back structures and are

MIR-gene
5' 3
Pol I 3 V 5'
5. 3" mRNA

> Y

i DLl -

miR:AGO1

miR:AGO1
mRNA Cleavage/Translational Repression

V 5 3 5'

Target Gene

5' mmm 3
——
siR:AGO4

Target DNA methylation

A

siR:AGO4

7

23-27nt
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Figure 6. A model for the MIR genes of dual function. The miRNA precursors generate two species by following two pathways: (i) 20- to 22-nt
miRNAs are processed predominantly by DCLI/HYLI1/SE pathway from pri-miRNA transcripts, and (ii) siRNAs of 23- to 27-nt species are
generated by the activities of Pol IV/RDR2/DCL3 pathway. Impairment of any protein in the pathway would affect the biogenesis and function
of the particular species of sSRNAs. The miRNAs are associated with AGO1 and mediated target mRNA cleavage or translational repression,
whereas the siRNAs are associated with AGO4 and direct de novo DNA methylation at target loci.
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processed by DCL1 to produce miRNAs, whereas the Pol
IV transcripts serve as templates for RDR2 to generate
dsRNAs, which are subsequently processed by DCL3 to
produce siRNAs. However, our systemic analysis in
Supplementary Figures S5-S8 showed that these MIR
gene-derived siRNAs were generated predominantly at
the miRNA generation sites from the positive strand.
This result cannot be well explained by our initial hypoth-
esis because the majority of DCL3/RDR2/Pol IV pathway
products are known to originate from both DNA strands
and spread along the precursor region rather than exhibit-
ing such site-specific patterns as those shown in
(Supplementary Figures S5 and S6). It is possible that
these MIR-derived siRNAs could be generated from the
whole MIR regions, but only the siRNAs at the miRNA
sites are protected and stable. The mature miRNA may
help determine the position of the stable siRNAs.
Alternatively, it is likely that the miRNA precursors or
the mature miRNAs help determine the site-specific gen-
eration of these siRNAs (Figure 6). We suggest that
generation of these MIR-derived siRNAs is initiated
from Pol II transcripts, which serve as templates for
Pol IV and RDR2. The secondary structures of miRNA
precursors generated by Pol II may limit the siRNA
generation by Pol IV/RDR2/DCL3 to the site of
miRNAs; or the miRNAs may interact with the Pol 1V/
RDR2-generated dsRNAs and this interaction may
somehow limit DCL3-mediated generation of siRNAs to
the site of miRNA interaction. Recent report revealed the
influence of precursor structures in plant primary-miRNA
processing (36,38—41). Pol 11 has been shown to recruit Pol
IV to type II heterochromatic loci with low copy-number
repeats to generate siRNAs (42). It is plausible that Pol 1T
could also recruit Pol IV to these MIR gene loci to
generate siRNAs. To determine whether Pol II-generated
pri-miRNA transcripts could be exploited by the
hc-siRNA biogenesis pathway to form these siRNAs, we
checked the accumulation levels of these MIR-derived
siRNAs in the recently identified weak allele of the
second largest subunit of Pol II (nrph2-3) (42). However,
nrpb2-3 is too weak, and we did not detect any expression
change of either the MIR-derived siRNAs or the 21-nt
miRNAs from the same loci at the dual function new
MIRs or canonical MIRs we tested (data not shown).
This question remains open until a stronger Pol II
mutant becomes available.

Many MIR genes were shown to generate DCL3-
dependent 23- to 27-nt long miRNAs in Arabidopsis (9),
although their dependence on RDRs and Pol IV was not
tested. Subsequently, 11 families of atypical MIR genes
were found to generate 21- to 22-nt miRNAs and 23- to
26-nt sSRNAs from the opposite strand of the hairpin in
Medicago (43). However, the biogenesis feature of these
23- to 26-nt sSRNAs was not examined either. We speculate
that some of these 23- to 26-nt SRNAs might be siRNAs.
miR165/166 were shown to direct DNA methylation down-
stream of their target sites on PHABULOSA (PHB) and
PHAVOLUTA (PHV)coding regions, and the methylation
level was not affected in dc/l and agol mutants (10). Both
MIR165 and MIRI66 can give rise to 23- to 26-nt SRNAs,
and the majority of which are associated with AGO4 and

AGOT7 (Supplementary Table S2). Furthermore, the exist-
ence of both sSRNA species at miR 165 site has been revealed
by northern blot analysis (9). It is likely that the real players
that are responsible for DNA methylation in PHB and
PHYV genes are the 23- to 26-nt siRNAs generated from
the miR165/miR 166 sites, which explained why the DNA
methylation level was not altered in dc/l and agol mutants.
The miRNAs and siRNAs derived from these dual role
MIR genes likely have different modes of action. The
21-nt miRNAs are mainly associated with AGO1 and
may mediate post-transcriptional gene silencing by
mRNA cleavage or translational inhibition. On the other
hand, the MIR gene-derived siRNAs are mainly associated
with AGO4 and likely mediate DNA methylation at some
of their target loci.

We previously reported that AtlsiRNA-1 is generated
by DCLI and requires RDR6 and Pol IV for its biogenesis
(27). AtlsiRNA-1 suppresses gene expression by triggering
mRNA decapping and 5-3’-degradation. Here, we found
another 27-nt IsiRNA, which was generated from the
MIR2831-5P locus and was DCL3 dependent. This
result suggests that different DCL proteins could be po-
tentially involved in generating IsiRNAs. These 1siRNAs
are unlikely to be generated by the imprecise dicing
activity of DCLs because if that were the case, we would
expect to have precise dicing products in the same region.
However, no precise dicing products were observed: no
21-nt band products were observed in the case of the
DCLI1-dependent AtlsiRNA-1 (27), and no 24-nt band
products were observed in the case of the
DCL3-dependent IsiRNA from the MIR2831-5P locus
(Figure 1C). Thus, these IsiRNAs appear to be true
products of DCL proteins. DCL proteins may be
involved in processing one end of the IsiRNAs, and the
other end of IsiRNAs may involve other unidentified ribo-
nucleases. piRNAs are good examples of products from
two different ribonucleases (44—46).

Here, we show that a significant number of MIR genes
in Arabidopsis have the dual function of generating both
miRNAs and siRNAs from the same site. Our systematic
analysis using rice and moss sRNA deep sequencing
datasets suggests that these dual-function MIR genes are
broadly present in plant species. Note that moss is among
the earliest land plants on earth, and Arabidopsis and rice
are evolutionarily distant from each other—the former is a
dicotyledonous plant while the latter belongs to mono-
cotyledons. The existence of dual-function MIR genes in
these three plants suggests that the underlying mechanism
is conserved. The fact that such genes exist in moss alludes
to their possible evolutionary origin in this ancient land
plant. These dual-function MIRs should be evolutionally
beneficial, because they regulate target gene expression at
both transcriptional and post-transcriptional levels by
using dual modes of action—siRNA-mediated DNA
methylation and miRNA-mediated mRNA degradation
and translational inhibition.

After this paper was published on line new names were
assigned by miRBASE for the following microRNAs:

ath-MIR2883a has changed to ath-MIR3932a
ath-MIR2883b has changed to ath-MIR3932b
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ath-MIR2328 has changed to ath-MIR3933
ath-MIR2831 has changed to ath-MIR3440b
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