*In-vitro-*Modelle zur Erforschung des Absorptionsverhaltens von (Cyclo-)Peptiden im Magen-Darm-Trakt

Quantitative Studien über zelluläre Aufnahme, Transport und Metabolisierung von Cyclosporin A und Analogen mit Hilfe von LC-LC-ESI-MS/MS

Inauguraldissertation

zur Erlangung des philosophischen Doktorgrades vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von

Olivier M. R. Wenger

aus Neuchâtel (NE) und Blumenstein (BE)

Basel, 2005

Genehmigt von der Philosophisch-Naturwissenschftlichen Fakultät auf Antrag von:

Prof. Dr. A.N. Eberle Prof. Dr. J. Drewe Dr. M. Lemaire

Vorsitz: Prof. Dr. H. Leuenberger

Basel, den 13.04.2005

Prof. Dr. H-J. Wirz Dekan

« Der erste Schluck aus dem Becher der Natur führt zum Atheismus, aber auf dem Grund wartet Gott. »

Werner Heisenberg (1901-1976), Physiker

« Sachez écouter, et soyez sûr que le silence produit souvent le même effet que la science. »

> Napoléon Bonaparte (1769-1821), Empereur Instructions pour le Prince Eugène (7 juin 1805)

« Le plus sûr est donc de n'être sûr de rien. »

Voltaire (1694-1778), Philosophe Singularités de la Nature

A ma famille

Inhaltsverzeichnis

ABKÜRZUNGEN	
ZUSAMMENFASSUNG	XI
ABSTRACT	XIV
I. EINLEITUNG	1
1. Biopharmazeutische Aspekte	2
1.1. Pharmazeutische Technologie	3
1.2. Biopharmazie	4
1.3. Permeabilität	5
1.4. Pharmakokinetik	6
1.4.a. Absorption (Resorption)	7
Bioverfügbarkeit (<i>Bioavailability</i>)	8
AUC	10
1.4.b. Distribution (Verteilung), Speicherung und Bind	lung 12
Verteilungsvolumen	12
I.4.C. Elimination	12
Metabolisierung (Biotranstormation)	13
Cylochlom-r-450 Extration (Ausscheidung)	15
Clearance	19
1.5. Pharmakodynamik	19
1.6. Spezielle Absorptionsbarrieren	20
1.6.a. Blut-Hirn-Schranke (BBB)	20
1.6.b. Blut-Liquor-Schranke	20
1.6.c. Placentaschranke	20
1.3.d. Magen-Darm-Trakt (MDT)	21
Der MDT, mit CYP3A4 und P-gp als Absorptionsbarriere	en 22
2. Modellsubstanzen	25
2.1. Cyclosporin A und D-MeAla ³ EtVal ⁴ cyclosporin	25
2.1.a. Entdeckung der Cyclosporine (Cs)	25
2.1.b. Charkterisierung von CsA	26
2.1.c. Wirkungsmechanismus von CsA	26
2.1.d. Vermarktung von CsA	27
2.1.e. CsA und D-MeAla³EtVal₄cyclosporin gegen HI	√ 27
2.1.f. Metabolisierung und Affinität von CsA	28
2.2. Cyclosporin D (CsD)	28
3. Analytischer Teil	29
3.1. Massenspektrometrie (MS)	29
3.1.a. Grundlagen	29
3.1.b. ESI-Ion-Trap Massenspektrometrie	30
Elektro-Spray-Ionisation (ESI)	30
Analysatoren	32
Elektrische Ionenfalle (ion trap)	32
Ianaem-Massenspektrometrie (MS/MS)	36
3.1.d. Online-Verfahren: LC-LC-ESI-MS/MS	38

4. Biologi	ischer Teil	40
4.1. Ze	ellinien	40
4.1.a.	LS-180-Zellen	40
4.1.b.	Caco-2-Zellen	40
4.2. Tr	answell Permeabilitätsmodell	41
II. ZIELE		43

III.	EXPERIMENTELLER TEIL	45
1.	Chemikalien	45
2.	Material und Geräte	47
3.	Analytischer Teil	48
3	.1. Methodenaufbau und Optimierung	48
	3.1.a. Allgemeiner Methodenaufbau und Optimierung	48
	3.1.b. Ionen-Suppression (<i>ion suppression</i>)	49
3	.2. Methodenbeschreibung und Validierung	50
	3.2.c. Methodenbeschreibung	51
	3.2.d. Herstellung der Lösungen	55
	Stocklösungen	55
	CsA	55
	AM1, AM9, AM4N	55
	CsD: Interner Standard (IS)	55
	Arbeitsiosungen	55 55
	CSD: Interner Standard	55
	Arbeitslösungen zur Herstellung der Standards für die Kalibriergerade	56
	Arbeitslösungen zur Herstellung der QCs	56
	Extraktionslösungen	56
	3.3. CsA-Validierung in HBSS	56
	Spezifizität (<i>specificity</i>)	57
	Richtigkeit (<i>accuracy</i>) und Präzision (<i>precision</i>)	57
	3.4. Valialerung in Zellextrakt und Kalibrierung in HBSS	58
	Kalibrierung in HBSS für den biologischen Teil III.4.2	58 59
	OCs in 7ellextrakt (in 11.4.1.)	58
	Spezifizität (specificity)	59
	Wiederfindung (<i>recovery</i>) aus Zellextrakt	59
	Richtigkeit (accuracy) und Präzision (precision)	59
4.	Biologischer Teil	60
4	.1. CYP3A4-mRNA Expression und CsA- Metabolisierung	
	in LS-180-Zellen: Ein Vergleich	60
	4.1.a. Zellkultur	60
	4.1.b. Herstellung der Lösungen	60
	CsA-Inkubationslösungen	60
	Calcitriol-Stock- und Inkubationslösung	60
	Ketoconazol- und Talinolol-Stock- und Inkubationslösung	61
	4.1.c. Versuchsanoranung	61
	Pra-Inkubation mit Calcitriol	61
	Überstand der Zellinkubation	01 61
	Zellextraktion	62
	Real-Time quantitative RT-PCR	63

	Statist	ische Analyse	64
	4.2. CsA	- und D-MeAla ³ EtVal ⁴ Cs-Formulierungen: Permeabilitätsversuche	65
	4.2.a.		65
	4.2.b.	Herstellung der Dispersionen und Lösungen	65
	Disper	gieren der Formulierungen in HBSS Putter	65
	CSA CsA	A-Formulierung 1: Dispersion 1	60 66
	D-N	1eAla ³ EtVal ⁴ Cs-Formulieruna 3: Dispersion 3	66
	D-N	1eAla ³ EtVal ⁴ Cs-Formulierungen 4, 5, 6: Dispersionen 4, 5, 6	66
	D-N	1eAla ³ EtVal ⁴ Cs-Formulierung 7: Dispersion 7	66
	D-N	1eAla ³ EtVal ⁴ Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8	67
	CsA	(in HBSS mit 0.1% (V/V) Ethanol: Losung 9	6/
	FD-/	4 in HBSS FORM. S ONNE WIRSTON (200 µg/mi). Praceboalspersion 10 4 in HBSS mit 0.1% (v/v) Ethanol: Lösung 11	67 67
	4.2.c.	Versuchsanordnung <i>in-vitro</i>	67
	Caco	-2-Zellaussaat auf Transwell® Membranen	67
	Vor	versuche	67
	Peri	meabilitätsversuche	67
	Prol	benentnahme, Aufarbeitung und LC-LC-ESI-MS/MS-Injektion	69
	Kalı	brierkurven und QC Samples	/0
		Versuchsanordnung <i>in vivo</i>	70 71
	4.2.u. Verah		71
	Verab	preichung p.o.	71
w	DECIII	IATE	72
1 .			73
١.	Analytisc	cher Tell	/3
	1.1. Me	noaenautbau una Optimierung	/3
	1.1.d.		/3
	I.I.D.	Ionen-Suppression (<i>ion suppression</i>)	/5
	1.2. Vali		/6
	1.2.a.	CsA-Validierung in HBSS	/6
	Allger		/6 77
	Spezifi	irat, LLOQ UNA LOD izität (specificity)	77
	Richtic	akeit (<i>accuracy</i>) und Präzision (<i>precision</i>)	77
	1.2.b.	Validierung in Zellextrakt und Kalibrierung in HBSS	79
	Allger	neines	79
	Linear	ität, LLOQ und LOD	79
	Spezifi	zität (specificity)	80
	Wiede	erfindung (recovery) aus Zellextrakt	80
2	Biologisc	gken (<i>accuracy</i>) ond Fidzision (<i>precision</i>) Ther Teil	80 84
۲۰		23A4-mRNA Expression und CsA- Metabolisierung	04
	in 19	S-180-7ellen: Fin Veraleich	84
	210	CsA-Metabolisierung und CYP3A4-Versuche	84
	211.0. 21 h	Hinweise für die Rildung eines unbekannten	U T
	Z.I.U.	N-Desmethyl-CsA-Metaboliten	87
	210	Gesantübersicht der CsA-Metabolisierung und CYP3A4 Versuche	90
	2.1.C.)) CcA	und D-MeAla3EtVal4Cs-Formulierungen: Permegbilitätsversuche	92
	∠. ⊂sr 22 a		92
	2.2.U. 2.2.h	Kalibrierkunzen und OC Samplas	7∠ 00
	Z.Z.U.		12

REFEREN	EN	121
AUSBLIC		119
2.2	c. Vergleich <i>In-vitro-/In-vivo-</i> Studien	116
2.2	b. <i>In-vivo-</i> Studien	115
2.2	a. In-vitro-Permeabilitätsversuche	114
2.2.	CsA- und D-MeAla ³ EtVal ⁴ Cs-Formulierungen: Permeabilitätsversuche	114
2.1	c. Schlußfolgerungen	113
2.1	b. Bislang unbekannter N-Desmethyl-CsA-Metabolit	112
2.1	a. CsA-Metabolisierung und CYP3A4-Versuche	110
	in LS-180-Zellen: Ein Vergleich	110
2.1.	CYP3A4-mRNA Expression und CsA- Metabolisierung	
2. Bio	ogischer Teil	110
1.2.	Methodenbeschreibung und Validierung	107
1.1.	Ionen-Suppression (<i>ion suppression</i>)	107
1. An	lytischer Teil	107
V. DIS	USSION	107
2.2	e. Gesamtübersicht der In-vitro- und In-vivo-Studien	106
	D-MeAla ³ EtVal ⁴ Cs Formulierung 7: Dispersion 7	104
	D-MeAla ³ EtVal ⁴ Cs Formulierung 6: Dispersion 6	103
	D-MeAla ³ EtVal ⁴ Cs Formulierung 5: Dispersion 5	102
	D-MeAla ³ EtVal ⁴ Cs Formulierung 4: Dispersion 4	100
	CsA-Formulierung 1: Dispersion 1	99 100
١	erabreichung p.o.	99
	D-MeAla³EtVal₄Cs i.v.	98
	CsA i.v.	97
2.2	erabreichung i v	97
2.2		97
22	In-vitro-Permeghilitätsversuche	93

REFERENZEN

•	1			
•	I			

APPENDIX	133
1. Biologischer Teil	133
1.1. CsA- und D-MeAla ³ EtVal ⁴ Cs-Formulierungen: Permeabilitätsversuche	133
1.1.a. Rohdaten: Kalibrierkurven und QC Samples	133
Rohdaten der Kalibrierkurven aus LCQuan	134
CsA-Formulierung 1: Dispersion 1	134
CsA-Formulierung 2: Dispersion 2	135
D-MeAla ³ EtVal ⁴ Cs Formulierung 3: Dispersion 3	136
D-MeAla ³ EtVal ⁴ Cs Formulierung 4: Dispersion 4	137
D-MeAla ³ EtVal ⁴ Cs Formulierung 5: Dispersion 5	138
D-MeAla ³ EtVal ⁴ Cs Formulierung 6: Dispersion 6	139
D-MeAla ³ EtVal ⁴ Cs Formulierung 7: Dispersion 7	140
D-MeAla³EtVal⁴Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8	141
CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9	142
QC Rohdaten aus LCQuan	143
1.1.b. Rohdaten: Permeabilitätsversuche	145
Allgemeine Legende zu den nachfolgenden Tabellen	145
CsA-Formulierung 1: Dispersion	146
CsA-Formulierung 2: Dispersion 2	147
D-MeAla ³ EtVal ⁴ Cs Formulierung 3: Dispersion 3	148

D-MeAla ³ EtVal ⁴ Cs Formulierung 4: Dispersion 4	149
D-MeAla ³ EtVal ⁴ Cs Formulierung 5: Dispersion 5	150
D-MeAla ³ EtVal ⁴ Cs Formulierung 6: Dispersion 6	151
D-MeAla ³ EtVal ⁴ Cs Formulierung 7: Dispersion 7	152
D-MeAla³EtVal₄Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8	152
CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9	153
FD-4 in HBSS mit 200 µg/ml Form. 3 ohne Wirkstoff: Placebodispersion	10 154
FD-4 in HBSS mit 0.1% (v/v) Ethanol: Lösung 11	154
LEBENSLAUF	155
DANKSAGUNG	159

VI INHALTSVERZEICHNIS

Abkürzungen

AGC	Automatic gain control
AM1	1-Hydroxycyclosporin A (CsA-Metabolit)
AM4N	4-N-Desmethylcyclosporin A (CsA-Metabolit)
AM9	9-Hydroxycyclosporin A (CsA-Metabolit)
APCI	Atmospheric pressure chemical ionization
	(Chemische-Ionsisation bei Atmospärendruck)
AS	Analytische Säule (<i>analytical column</i>)
ATCC	American type culture collection
AUC	Area under the curve
	(Fläche unter der Blutspiegel-Zeit-Kurve)
BBB	Blood brain barrier (Blut-Hirn-Schranke)
Blank	Blindprobe (reine Matrix)
Caco-2	(Established human) Colon carcinoma cell line
Calcitriol	1a,25-Dihydroxy-Vitamin D3
CAD	Collison activated decomposition (= CID)
	(aktivierter Zerfall)
CAR	Constitutive androstane receptor
	(konstitutiver Androstan-Rezeptor)
CDER	Center for drug evaluation and research (FDA)
cDNA	<i>Complementary DNA</i> (komplementäre DNA)
CI	Chemical ionisation
CID	<i>Collision induced dissociation</i> (= CAD)
	(Kollisionsinduzierter- Zerfall)
Cl	Cl earance
CLEM4	Constitutive liver enhancer module
	(konstitutiver Leber-Genverstärker)
CN	Calcineurin
CPMP	Committee for proprietary medicinal products
CRM	Charged residue model (= SIDT)
Cs	Cyclosporin(e)
CsA	Cyclosporin A
CsD	Cyclosporin D
CTI	The innovation promotion agency (= KTI)
	(Commission for technology and innovation)
CV	Variations-Koeffizient (coefficient of variation)
CVM	Center for veterinary medicine (FDA)

CYP	Cytochrom P450
CYP3A4	Cytochrom P450 3A4
СуР	Cyclophilin
СуРА	Cyclophilin A
Da	Dalton (atomare Masseneinheit)
N-DES-Metab	N-Desmethyl-CsA-Metabolit
DMSO	<i>Dimethyl sulfoxide</i> (Dimethylsulfoxid)
DNA	Deoxyribonucleic acid (Desoxyribonukleinsäure)
EDTA	Ethylene diamine tetra acetate
EI	Elektronenstoss-Ionisation
ESI	Elektrospray-Ionisation (<i>electrospray ionisation</i>)
ext. SV	Externes Schaltventil (external switching valve)
FAB	Fast atom bombardment
	(Beschuss mit schnellen Atomen)
FD	Feld-Desorption
FD-4	FITC-Dextran (Permeabilitätsmarker)
FDA	Food and drug administration
FT-ICR/FT-MS	Ionen-Cyclotron-Resonanz-Zelle/
	Fourier Transform Massenspektrometer
GAPDH	Glycerialdehyde-3-phosphate-dehydrogenase
HBSS	Hank's balanced salt solution
HIV	Human immunodeficiency virus
HKS	High Kalibrierstandard
HPLC	High pressure/performance liquid chromatography
HQC	High quality control
HWZ	Halbwertszeit
ICH	International conference on harmonisation
ICIS	Interactive chemical information system
i.d.	Innendurchmesser
IEM	lon evaporation model
IS	Interner Standard (<i>internal standard</i>)
i.v.	intra-venös
KS	Kalibrierstandard (<i>calibration standard</i>)
KTI	Kommision für Technologie und Innovation
	(= CTI) (alte Bezeichnung)
KTI/CTI	Die Förderagentur für Innovation (neu)
LADME-Modell	Liberation (Freisetzung), Absorption (Resorption),
	Distribution (Verteilung), Elimination, (Metabolismus
	und Exktretion (Ausscheidung))

LC	Liquid Chromatography
LKS	Low Kalibrierstandard
LLOQ	Lower limit of quantification
LM	Lösungsmittel
LOD	Limit of detection
LQC	Low quality control
LS-180	One established human colon carcinoma cell line
MALDI	Matrix assisted laser desorption ionization
	(Matrix unterstützte Laserdesorption)
MDR	Multidrug resistance
MDR1	P-gp Genlokus
MDT	Magen-Darm-Trakt
MEM	Minimal essential medium
MKS	Mid Kalibrierstandard
MQC	Mid quality control
mRNA	Boten RNA (<i>messenger RNA</i>)
MRP	Multidrug resitance related protein
MRP2	Multidrug resitance related protein 2
MS	Massenspektrometer (<i>mass spectrometer</i>)/
	Massenspektrometrie (mass spectrometery)
ms	Millisekunde
MS/MS oder	Tandem-Massenspektrometrie
MS ²	
MS ⁿ	n-Fach gekoppelte MS-Experimente
MS SV	MS Schaltventil (<i>MS switching valve</i>)
m/z	Massen-zu-Ladung-Verhältnis (von Ionen)
NFAT	Nuklear-Faktor-aktivierte T-Lymphozyte
NIM-811	Ein CsA-Derivat ohne immunsuppresive Wirkung
NMR	Nuclear magnetic resonance
	(Nukleare-Magnetische-Resonanz)
PBS	Phosphate buffer solution
PC	Personal computer
P.C.	Polycarbonat
PCR	Polymerase chain reaction
PD	Plasam-Desorption
PET	Polyethylen
P-gp	P-Glykoprotein (<i>P-glycoprotein</i>)
p.o.	per os, <i>per oral</i>

PS	Anreicherungs-/Aufreinigungssäule
	(purification column)
PXR	Pregnane X receptor (Pregnan-X-Rezeptor)
QC	Quality control (Qualitätskontrolle)
Re-TOF	Reflector-time-of-flight
	(Reflektor-Flug-Zeit-Massenspektrometer)
RNA	Ribonucleic acid (Ribonukleinsäure)
RP	<i>Reverse Phase</i> (Umkehrphase)
RT	Retention time (Retentionszeit)
RTP	Room temperature and pressure (Raumtemperatur
	und Druck)
RT-PCR	Reverse transcriptase-polymerase chain reaction
SD	Sprague-Dawley (rat)
S.D.	Standard-Abweichung (standard deviation)
SEV	Sekundär-Elektronenvervielfacher
SIDT	Single ion droplet theory (= CRM)
SIM	Selected ion monitoring
SIMS	Sekundär-Ionen-Massenspektrometrie
SRM	Selected reaction monitoring
TEER	Transepithelial electric resistance (transepithelialer
	elektrischer Widerstand)
TFA	Trifluoressigsäure (<i>trifluoroacetic acid</i>)
TIC	Total ion current
TOF	<i>Time-of-flight</i> (Flug-Zeit-Massenspektrometer)
TS	Termosprayverfahren
Zero	Matrix (blank, Blindprobe) mit internem Standard
	gespiket
ZNS	Zentrales Nervensystem

Zusammenfassung

Der Weg eines Wirkstoffs, von seiner Entdeckung bis zu seiner Vermarktung, ist ein langwieriger und mit vielen Hindernissen behafteter Prozess. Zu diesen gehören neben der Applikationsform (Formulierung) auch der Applikationsweg. Bei per oraler Applikation ist die Absorption meist der zeit- und ausmasslimitierende Faktor, bis ein Pharmakon die systemische Zirkulation erreicht. Die epitheliale Darmwand stellt eine sowohl aktive, als auch passive Barriere im Absorptionsprozeß von Peptiden, Proteinen und Xenobiotika im Allgemeinen dar. Das metabolisierende Enzym CYP3A4 und die Effluxpumpe P-Glycoprotein stellen dabei die zwei wichtigsten aktiven Barrieren für die intestinale Absorption dar.

Ziel dieser Dissertationsarbeit war es, die am intestinalen Absorptionsprozess beteiligten limitierenden Faktoren *in vitro* zu unter-suchen, um zur Entwicklung einer Strategie beizutragen, welche die Permeabilität (Absorption) von Wirkstoffen verbessern kann.

Es wurde eine spezifische, sensitive, akkurate, und präzise bioanalytische LC-LC-ESI-Methode mit guter Wiederholbarkeit entwickelt, welche es ermöglichte, die Modellsubstanz (Cyclosporin A) und deren drei Hauptmetabolite (AM1, AM9, AM4N), sowie einen neuen Anti-HIV-Wirkstoff (D-MeAla³EtVal⁴Cs) quantitativ im Zellüberstand und Zellextrakt zu messen. Die LC-LC-ESI-MS/MS-Methode, welche für die nachfolgenden biologischen Teile verwendet wurde, konnte quantitativ 0.3 ng/ml CsA in HBSS (linearer Bereich: 0.3 – 80 ng/ml, LOD: 40 pg/ml), sowie 0.6 ng/ml CsA und dessen Metabolite in LS-180-Zellextrakt bestimmen (linearer Bereich: 0.6 – 10 ng/ml, LOD: 0.2 resp. 0.3 ng/ml, r \geq 0.99, Präzisions- (*inprecision*) und Richtigkeitsabweichung \leq 15 resp. 20% at LOD).

Damit ist sie die erste unveröffentlichte LC-MS(/MS)-Methode, welche die drei CsA-Hauptmetabolite (AM1, AM9 und AM4N) quantitativ in HBSS und Zellextrakt (LS-180-Zellen) bestimmt und weist dabei die tiefste Detektions-(LOD) und Quantifikationsgrenze (LLOQ) auf.

Im ersten biologischen Teil der Arbeit konnte in drei unabhängigen Versuchen gezeigt werden, daß in mit Calcitriol behandelten (induzierten) LS-180-Zellen, verglichen zu unbehandelten LS-180-Kontrollzellen, eine signifikante Zunahme des CYP3A4-Genprodukts stattfand. Diese CYP3A4-mRNA-Zunahme erfolgte parallel zu einem signifikanten Anstieg der CsA-Metabolisierung, in mit Calcitriol behandelten (induzierten) LS-180-Zellen, verglichen zu unbehandelten LS-180-Kontrollzellen. In den mit Calcitriol induzierten Zellen wurde ein signifikanter intraund extrazellulärer Anstieg der CsA-Haupthydroxymetaboliten (AM1, AM9) beobachtet. AM4N der N-Desmethylmetabolit von CsA wurde in geringeren Mengen extra-, aber fast nicht intrazellulär gemessen. Analog zu den zwei Hydroxy-CsA-Hauptmetaboliten (AM1, AM9) stieg die AM4N-Menge in Calcitriol behandelten LS-180 Zellen auch signifikant an (verglichen mit unbehandelten Kontrollzellen). Die Inkubation mit Ketoconazol (CYP3A4- und P-gp-Inhibitor) von mit Calcitriol induzierten Zellen führte zu einer signifikanten Senkung der Gesamtmenge an CsA-Metaboliten AM1, AM9 und AM4N auf das Niveau von nicht induzierten Kontrollzellen zurück. Talinolol, ein P-gp-Substrat veränderte die Metabolisation von CsA zu AM1, AM9 und AM4N oder deren Aufnahme, sowie der von CsA, nicht signifikant. Diese Arbeit führt zum ersten Mal diese oft voneinander getrennt beschriebenen Sachverhalte zusammen (CYP3A4-mRNA-Anstieg und Anstieg in der CsA-Metabolisierung).

Damit stellen LS-180-Zellen, welche mit Calcitriol behandelt werden, ein interessantes Modell zur Untersuchung von intestinalen Interaktionen mit CYP3A4 und in bedingten Mass mit P-Glykoprotein dar. Zudem deuten die aus der Arbeit gewonnen Resultate darauf hin, daß ein oder mehrere bislang unbekannte N-Desmethyl-CsA-Metabolit(en) in LS-180-Zellen gebildet werden. Weiter scheint, daß dieser bislang unbekannte N-Desmethyl-CsA-Metabolit zusätzlich über einen zum CYP3A4-Pathway alternativen Metabolisierungspathway gebildet wird.

Im zweiten biologischen Teil dieser Arbeit konnte gezeigt werden, dass CsA und D-MeAla³EtVal⁴Cs, ein in der klinischen Phase II befindlicher Anti-HIV-Kandidat und CsA-Derivat, direkt aus Formulierungen heraus mittels LC-LC-ESI-MS/MS (unter Berücksichtigung von Ionensuppressionseffekten) gemessen werden können. Weiter wurden im Rahmen eines KTI-Projekts¹ mit der Firma Debiopharm (Galenic Unit) *In-vitro-* und *In-vivo-*Permeabilitätsstudien verschiedener Formulierungen von Cyclosporin A und D-MeAla³EtVal⁴Cs untersucht. Ein Transwellsystem mit Caco-2-

¹ KTI: Kommission für Technologie und Innovation (BBT (2005) Bundesamt für Berufsbildung und Technologie, KTI/CTI, Effingerstrasse 27, CH-3003 Bern.).

Monolayer als *In-vitro-*Modell und SD Ratten als *In-vivo-*Modell wurden verwendet.

Beide Studienarten, *in vitro* und *in vivo*, konnten zwischen sehr schlechten und guten Formulierungen unterscheiden und lagen im selben relativen Bereich zur Referenzformulierung. In beiden Fällen wurden zwei Formulierungen mit einer Referenzformulierung gleichgestellt. Zwei andere Formulierungen hingegen wurden in beiden Studienarten unterschiedlich bewertet. Während die *In-vitro-Methode* diese Formulierungen besser als die Referenzformulierung einstufte, stufte sie die *In-vivo-*Studie als schlechter ein.

Aus Kostengründen wurde die *In-vivo-*Studie nur einmal durchgeführt und es bleibt unklar, welche Studie nun die wahre Antwort liefert. Wenn c_{max} als Parameter zum Beschreiben der « Absorption » genommen wird, sind alle gemessenen Formulierungen equivalent einzustufen, bis auf die Scheinformulierung 7, welche schlechter aufgenommen wird (die Referenzformulierung wird fast doppelt so gut « aufgenommen » als alle anderen).

Nach wie vor wäre es von hohem Nutzen, eine Alternative zu den heute zeit-, und kostenenintensiven Studien am Tier zu haben, um aus vielen Formulierungskandidaten denjenigen mit der besten Bioverfügbarkeit zu selektieren. Die in dieser Arbeit beschriebene *In-vitro-*Methode stellt ein humanes *In-vitro-*Zellmodell (Caco-2) dar, welches sehr schlechte von guten Formulierungen unterscheiden kann und ein schnelles und sparsames *Screening* ermöglicht.

Abstract

The course of a drug, from its discovery to its commercialisation is a long and difficult process which a lot of candidates end in a cul-de-sac. Among its difficulties are the form of administration (formulation) and the route of application. Absorption is mostly the time and extent determining parameter during oral administration until a drug reaches the systemic circulation. The intestinal epithelium is a passive as well as an active barrier to drug absorption of peptides, proteins and xenobiotics in general. The metabolic enzyme CYP3A4 and the efflux pump P-glycoprotein play a crucial role in this process in limiting actively intestinal absorption.

The goal of this thesis was to study *in vitro* the factors limiting the intestinal absorption to help develop a strategy that could optimise drug permeability (absorption).

A specific, sensitive, accurate and precise LC-LC-ESI-MS/MS-method with a good degree of reproducibility was developed for the quantitative measurement of the model substance (Cyclosporin A, CsA) and its three metabolites, as well as a new anti-HIV drug (D-MeAla³EtVal⁴Cs) in cell supernatant and cell extract. The bioanalytical method which was used to analyse the biological measurements described below, was capable of estimating quantitatively 0.3 ng/ml CsA in HBSS (linear range: 0.3 – 80 ng/ml, LOD: 40 pg/ml), as well as 0.6 ng/ml CsA and its three major metabolites in LS-180 cell extract (linear range: 0.6 – 10 ng/ml, LOD: 0.2 resp. 0.3 ng/ml, r \geq 0.99, inprecision and accuracy-deviation \leq 15 resp. 20% at LOD).

This bioanalytical method is the first unpublished LC-MS(/MS) method that can measure quantitatively the major CsA metabolites (AM1, AM9 und AM4N) in HBSS and in cell extract (LS-180 cells) with the lowest yet reported LOD and LLOQ.

In the first biological part of this work, we were able to show in three independent experiments that LS-180 cells cultured in the presence of calcitriol (induction) demonstrated a significant increase in CYP3A4 activity compared to untreated control cells. Significantly elevated metabolism of CsA in the calcitriol-treated cells (compared to untreated control cells) correlated with an elevated CYP3A4 activity and formed metabolites consistent with CYP3A4-mediated metabolism. The two

major CsA hydroxy-metabolites AM1 and AM9 (AM1 > AM9) were predominantly detected in the cells and in their supernatants, whereas the CsA N-desmethyl metabolite AM4N (<< AM1/AM9) was found almost exclusively in cell supernatants and not inside the cells. Amounts of extracellular AM4N were significantly higher in calcitriol treatet cells too. Ketoconazole, a well known CYP3A4 inhibitor, significantly decreased the formation of AM1, AM9 and AM4N back to the level of untreated control cells. Talinolol a P-gp substrate didn't significantly affect the CsA metabolisation of AM1, AM9 and AM4N or their cellular uptake.

Our data demonstrate for the first time the direct correlation between CsA metabolite formation and CYP3A4 mRNA formation in calcitriol treated LS-180 cells compared to non-induced control cells.

These results indicate that LS-180 cells treated with calcitriol represent an interesting model to study intestinal interactions with CYP3A4 and conditional P-glycoprotein. Furthermore we found evidence for the formation of one or several not yet known CsA N-desmethyl metabolites in LS-180 cells, maybe by an alternative pathway to CYP3A4.

In the second biological part of this work, it will be shown that it was feasible to measure quantitatively CsA and D-MeAla³EtVal⁴Cs (an anti-HIV clinical trial phase II candidate and CsA derivate) directly in formulations by LC-LC-ESI-MS/MS (taking ion suppression into account). Furthermore a joined project with an industrial partner (Debiopharm Galenic Unit) was performed under the banner of the CTI. In this project *in vitro* and *in vivo* permeability studies of different formulations of CsA and D-MeAla³EtVal⁴Cs were investigated. A transwell system with Caco-2 cell monolayers was used as an *in vitro* model and SD rats were used as an *in vivo* model.

Both studies, *in vitro* and *in vivo*, were capable of differentiating bad from good formulation candidates: the « absorptions » lay in the same relative range as compared to the reference formulation. Two formulations were considered equal when comparing *in vitro* with *in vivo* data. Two other formulations were not. In the *in vitro* study these two formulations seemed to be better « absorbed » than the reference formulation whereas in the *in vivo* study they were less absorbed (compared to the reference formulation).

For reasons of economy the *in vivo* study was performed only once and it remains unclear which study from the *in vitro* or the *in vivo* study has

got the true answer. It has also to be said that when c_{max} is taken as « absorption » marker all formulations are equivalent. Only the « bad » formulation remains bad and the reference formulation is almost two times better. However it would be a big advantage to have an alternative to the time and cost intensive animal studies to evaluate formulation candidates for good bioavailability. The *in vitro* method described in this thesis is a human *in vitro* cell model (Caco-2) that can distinguish bad formulations from good ones and constitutes an interesting alternative to animal studies. The method allows a quick and easy screening of formulation candidates.

I. Einleitung

Nach einer Einführung in die biopharmazeutischen Aspekte, mehrheitlich als Kurzdefinitionen, werden die Modellsubstanzen historisch und in die für diese Dissertation wichtigen Eigenschaften beleuchtet. Es folgt ein kurzer Einblick in die Massenspektrometrie mit einer Gewichtung auf Elektrosprayionisation und die Ionenfalle, sowie die Kopplung des Massenspektrometers mit zwei HPLCs. Im letzten Abschnitt dieses Kapitels liegt der Schwerpunkt auf den eigentlichen *In-vitro-M*odellen zur Untersuchung des Absorptionsverhaltens von Peptiden, mit einer Überleitung auf die Zielsetzungen der Arbeit.

1

1. Biopharmazeutische Aspekte

In der pharmazeutischen Entwicklung eines Wirkstoffes, von der Entdeckung bis zum fertigen Medikament, sind eine Vielzahl von Prozessen beteiligt (Abbildung 1). Im Folgenden soll auf die für die Dissertation wichtigen Prozesse eingegangen werden.

Abbildung 1. Pharmazeutische Forschung und Entwicklung eines Wirkstoffes bis zum fertigen Medikament (Langguth, 2004).

1.1. Pharmazeutische Technologie

Die pharmazeutische Technologie befaßt sich mit der Aufgabe, den Wirkstoff in ein fertiges Medikament (Applikationsform) zur Applikation (Formulierung) am Patienten zu verarbeiten. Abbildung 2 und Abbildung 3 zeigen die wichtigsten Parameter, um eine geignete Formulierung des Pharmakons zu erarbeiten, damit der Wirkstoff zum Zielort gelangt und den gewünschten Effekt erreicht. Abbildung 3 zeigt noch zusätzlich die biologisch relevanten Parameter (Forth, 1998; Hunnius, 2004; Langguth, 2004; Pschyrembel, 2004; Voigt, 2000).

Abbildung 2. LADME-Modell und biopharmazeutisch relevante Substanzparameter, die einen Einfluß auf die einzelnen Prozesse haben können (Langguth, 2004).

Abbildung 3. Physiologisch-biochemische und physikochemische/formulierungstechnische Faktoren, welche die Absorption von Wirkstoffen aus dem Magen-Darm-Trakt beeinflussen (Langguth, 2004).

1.2. Biopharmazie

Unter Biopharmazie wird die Lehre der Zusammenhänge zwischen physikalisch-chemischen Eigenschaften von Wirk- und Hilfsstoffen (Darreichungsform) einerseits und dem Verhalten dieser im *In-vivo-*System anderseits verstanden (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 4 veranschaulicht die Stellung der Biopharmazie bezüglich Wirkstoff und Organismus. Sie kann als Bindeglied zwischen pharmazeutischer Technologie und Pharmakokinetik angesehen werden (die Pharmakokinetik ist so zu sagen ihr Werkzeug).

Abbildung 4. Biopharmazeutische Prozesse (Langguth, 2004).

1.3. Permeabilität

Als Permeabilität wird die Durchlässigkeit von Substanzen (z.B. Wirkstoffe) durch eine Membran verstanden. Sie ist u.a. abhängig von der jeweiligen Membranstruktur im Organismus (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 5 zeigt die verschiedenen Möglichkeiten für einen Wirkstoff, um durch eine biologische Membran zu gelangen.

In Kapitel 1.6 werden speziell wichtige (Membran)Barrieren des menschlichen Organismus und Permeationsverhinderer vorgestellt.

1.4. Pharmakokinetik

Unter Pharmakokinetik versteht man alle Einflüsse des Organismus auf das Pharmakon, d.h. alle Vorgänge, die der Organismus auf den Wirkstoff ausübt (Forth, 1998; Hunnius, 2004; Langguth, 2004). Die wichtigsten pharamkokinetischen Prozesse sind in Abbildung 6 dargestellt: Absorption (Resorption), Distribution (Verteilung), Speicherung und Bindung, sowie die Elimination, welche sich aus Metabolisation (Biotransformation) und Exkretion (Ausscheidung) zusammensetzt.

Abbildung 6. Pharmakokinetische Prozesse (Forth, 1998).

1.4.a. Absorption (Resorption)

Die Absorption, im deutschen oft auch als Resorption oder seltener als Invasion bezeichnet, versteht sich als den Übertritt eines Stoffes aus einem peripheren Kompartiment (z.B. Magen-Darm-Trakt) in die systemische Zirkulation. Im engeren Sinne würde die per os Absorption den Übergang eines Wirkstoffs vom Magen-Darm-Trakt in die Portalvene bedeuten (systemisch unveränderter verfügbarer, d.h. nicht metabolisierter Wirkstoffanteil). Da dieses Kompartiment zum Messen meist nicht zur Verfügung steht, wird auf Plasma- resp. Vollblutmessung ausgewichen. Die Absorption ist eine entscheidende Voraussetzung für eine Arzneistoffwirkung (wenn man sie auch als lokale Absorption am Wirkort versteht). Sie stellt meist (mit der Liberation (Freisetzung)) den geschwindigkeitsbestimmenden Schritt dar (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 7. Vereinfachte Darstellung wichtiger Parameter, welche die Absorption (Resorption) im Blutkreislauf beeinflussen (Forth, 1998).

Bioverfügbarkeit (Bioavailability)

Die Bioverfügbarkeit ist das Ausmaß und die Geschwindigkeit, mit der ein Wirkstoff vom Applikationsort aus unverändert in den systemischen Kreislauf aufgenommen wird (Riegelman, 1972). Eine alternative Definition der Bioverfügbarkeit zieht den Wirkort in Betracht und meint damit die Geschwindigkeit und das Ausmaß, mit denen ein Wirkstoff (Arzneistoff) aus der Formulierung (Arzneiform) absorbiert (resorbiert) wird und am Wirkort (oder im systemischen Kreislauf) gelangt (CPMP, 2001) (Abbildung 8).

Die erste Definition der Bioverfügbarkeit beinhaltete ausschließlich das Ausmaß, d.h. den prozentualen Anteil einer Dosis, welche im systemischen Kreislauf nach Applikation unverändert auftaucht. Sie wird heute als absolute Bioverfügbarkeit bezeichnet (die Geschwindigkeit wird vernachlässigt) und vergleicht das Ausmaß einer nicht intravenös applizierten Darreichungsform (Formulierung) mit der einer i.v. Verabreichung (vgl. Formel 1 und Abbildung 9).

$BV_{abs} (\%) = \frac{AUC_{e.v.}}{AUC_{i.v.}} \cdot 100 \% = f \cdot 100 \%$

Formel 1. AUC_{e.v.}: Fläche unter der Blutspiegel-Zeit-Kurve nach extravasaler Applikation; AUC_{i.v.}: Fläche unter der Blutspiegel-Zeit-Kurve nach intravasaler Applikation; **f**: resorbierter Anteil der Dosis (Pschyrembel, 2004).

Abbildung 8. Schematische Darstellung der Bioverfügbarkeit und der präsystemische Elimination (Forth, 1998).

Definitionsgemäß beträgt die Bioverfügbarkeit einer intravenösen Applikation 100%, da der gesamte Wirkstoff direkt und unverändert im systemischen Kreislauf injiziert wird; d.h. es wurde noch kein u.a. hepatischer Kreislauf durchlaufen. Als relative Bioverfügbarkeit wird der Vergleich der Bioverfügbarkeit (Geschwindigkeit und Ausmaß) einer neuen Formulierung mit einer gleich applizierten Referenzformulierung des gleichen Wirkstoffs verstanden (Abbildung 9).

Da die Bestimmung der Konzentration am Wirkort meist nicht möglich ist, geht man meist von Blutspiegelkurven aus. Dem liegt die Annahme zu Grunde, daß zwischen dem Blutspiegel eines Wirkstoffs und dessen Wirkung ein enger Zusammenhang besteht, was jedoch nicht immer der Fall ist. Der quantitative Aspekt der Bioverfügbarkeit (Ausmaß) wird durch die Parameter AUC (*area under the curve*) und der maximalen Konzentration an Wirkstoff (cmax), der zeitliche Aspekt (Geschwindigkeit) durch cmax und tmax (Zeitpunkt des Auftretens von cmax) wiedergegeben (Abbildung 9) (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 9. Vergleich zweier Formulierungen A (**AUC**_A) und B (**AUC**_B) hinsichtlich der Blutspiegelparameter **AUC** (Fläche unter der Blutspiegel-Zeit-Kurve, area under the curve), **C**_{max} (Blutspiegel-maximum) und **t**_{max} (Zeitpunkt des Auftretens von **C**_{max}) (Hunnius, 2004).

<u>AUC</u>

Die Fläche unter der Blutspiegel-Zeit-Kurve (*area under the curve*), als AUC abgekürzt, ist ein Maß für die total systemisch verfügbare Menge eines Wirkstoffes im Körper nach Applikation einer Einfachdosis (Abbildung 10) (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 10. Area under the curve (AUC) nach intravenöser (i.v.) und per-oraler (p.o.) Wirkstoffapplikation (die Messung der Werte im Vollblut statt im Plasma kann in seltenen Fällen zwingend sein, z.B. bei der CsA-Bestimmung) (Forth, 1998).

Die AUC ist bei linearer Kinetik (Kinetik 1. Ordnung) ein Maß für den resorbierten Anteil eines gegebenen Arzneistoffes und wird im offenen Einkompartimentmodell mittels der Batman-Funktion (Formel 2 und 3, sowie Abbildung 11) beschrieben, welche die Überlagerung von Absorption (Resorption) und Elimination mathematisch beschreibt (Formel 2).

$$C = \frac{\mathbf{f} \cdot \mathbf{D}}{V_d} \cdot \frac{\mathbf{k}_a}{\mathbf{k}_a - \mathbf{k}_e} \cdot (e^{-\mathbf{k}_e t} - e^{-\mathbf{k}_a t})$$

Formel 2. Batman-Funktion mit **C**, Konzentration des Arzneistoffs im Blut (Blutspiegel) zur Zeit t; **f**, absorbierter (resorbierter) Anteil der Dosis ($0 \le 1$); **D**, verabreichte Dosis; **V**_d, Verteilungsvolumen; **k**_a, Geschwindigkeitskonstante der Absorption (Resorption); **k**_e, Geschwindigkeitskonstante der Elimination; **t**, Zeit (Hunnius, 2004).

Abbildung 11. Bateman-Funktion: Verlauf der Wirkstoffkonzentration im Blut nach p.o. Applikation (Hunnius, 2004).

Aus der Batman-Funktion lassen sich die wichtigen Parameter wie c_{max} , t_{max} und AUC graphisch ermitteln (Abbildung 11) oder berechnen (Formel 3).

$$C_{\max} = \frac{D}{V_d} \cdot \left(\frac{k_a}{k_e}\right)^{\frac{k_e}{k_e - k_a}}$$
$$t_{\max} = \frac{l}{k_a - k_e} \cdot \ln \frac{k_a}{k_e}$$
$$AUC = \frac{D \cdot f}{V_d \cdot k_e}$$

Formel 3. Parameterbestimmung mittels Batman-Funktion: C_{max} , Blutspiegelmaximum; t_{max} , Zeitpunkt des Auftretens von C_{max} ; AUC, Fläche unter der Blutspiegel-Zeit-Kurve. Weitere Zeichen gleich wie in Formel 2 (Hunnius, 2004).

1.4.b. Distribution (Verteilung), Speicherung und Bindung

Die Distribution folgt der Absorption oder der intravenösen Applikation des Wirkstoffes und stellt die Verteilung des Arzneistoffs zwischen den verschiedenen Körperkompartimenten (Körperflüssigkeiten, Gewebe, Organe) dar. In Abhängigkeit der physikalisch-chemischen Eigenschaften des Wirkstoffes kann die Verteilung nur im Vollblut (oder Plasma), im Extra- oder im gesamten Extra- und Intrazellularraum erfolgen (vgl. Verteilungsvolumen). Wichtige Faktoren, die die Distribution beeinflussen, sind u.a. die Bindung an Plasma- und Gewebeproteine, Barrieren des Organismus (vgl. Kapitel 1.6.a-c), Gewebeaffinität, sowie zyklische pharmakokinetische Prozesse (z.B. enterohepatischer Kreislauf) (Forth, 1998; Hunnius, 2004; Langguth, 2004).

Verteilungsvolumen

Das Versteilungsvolumen ist eine fiktive Grösse, welche demjenigen Volumen entspricht, welches von einem Wirkstoff eingenommen werden würde, wenn dieser sich in gleicher Konzentration wie im Plasmavolumen verteilen würde. Somit verknüpft das Verteilungsvolumen die applizierte Dosis mit der Plasmakonzentration (Forth, 1998; Hunnius, 2004; Langguth, 2004).

1.4.c. Elimination

Als Elimination wird die Entfernung eines Stoffes aus dem betrachteten Kompartiment verstanden. Der Begriff Elimination umfaßt im weitesten Sinne alle Prozesse, die zu einer Konzentrationsabnahme im Blutplasma führen, d.h. Distribution (für das Plasmakompartiment betrachtet), Metabolismus und Ausscheidung (Exkretion) aus dem Körper. Im engeren Sinne bezeichnet der Begriff nur die Ausscheidung. Plasmaspiegelkurven geben Ausskunft über die gesamte Elimination, während Harnspiegel (unter Vernachlässigung der geringeren u.a. fäkalen Ausscheidung) nur Aussagen bezüglich Ausscheidung liefern. Als Maßstab für die Elimination wird die Eliminationshalbwertszeit, kurz Halbwertszeit (HWZ t_{1/2}) benutzt. Die Halbwertszeit ist die Zeit, welche ein Pharmakon braucht, um im Plasma auf die Hälfte seiner Konzentration zu sinken (Plasmahalbwertszeit). Sie korreliert häufig nicht mit der Wirkungsdauer. Als weitere Eliminationsparameter sind die Metabolisierung (Biotransformation) und
die Clearance von Wichtigkeit, welche in die HWZ einfließen (Forth, 1998; Hunnius, 2004; Langguth, 2004).

Abbildung 12. Schematische Darstellung der Parameter, welche Bioverfügbarkeit beeinflussenden (Langguth, 2004).

Metabolisierung (Biotransformation)

Die Metabolisierung beinhaltet die Umwandlung von Wirkstoffen durch verschiedene Enzymsysteme des Körpers, mit dem Ziel, lipophile Xenobiotika in hydrophilere, leichter ausscheidbahre Stoffe überzuführen. Die Metabolisierung erfolgt grösstenteils in der Leber und z.T. auch in anderen Organe, wie z.B. in der Darmwand des Magen-Darm-Trakts. Die Reaktionen der Biotransformation werden in Phase-I-Reaktionen und Phase-II-Reaktionen unterteilt. Phase-I-Reaktionen sind Biotransformationen des Wirkstoffs oxidativer, reduktiver oder hydrolytischer Art (z.B. Hydroxylierung von Pharmaka am Cytochrom-P-450-System) und ermöglichen z.T. erst Phase-II-Reaktionen, welche durch Einfügen oder Abänderung funktioneller Gruppen gekennzeichnet sind. Die wichtigsten Phase-II-Reaktionen sind die Konjugation mit Glucuronsäure (Glucuronidierung), von Glycin oder Schwefelsäure (Sulfatierung)). Als Phase-III (-Reaktion) wird die bei der biliären Elimination vorkommende Spaltung und Rückresorption von Xenobiotika bezeichnet (enterohepatischer Kreislauf).

In der Regel resultieren aus den Phase-I- und Phase-II-Reaktionen hydrophilere Metabolite, die rasch ausgeschieden werden. Dadurch erfolg im Allgemeinen eine Entgiftung oder ein Wirkungsverlust des Arzneistoffes. Der umgekehrte Fall (Bildung toxischer oder wirksamer Metabolite) kann auch vorkommen. Entsteht aus einem wirkungslosen Arzneistoff erst nach Metabolisierung ein aktiver Wirkstoff, so spricht man von einem sogenannten « Prodrug ». Erfolgt die Metabolisierung bereits vor dem Eintritt in die systemische Zirkulation (Leber, Darm), spricht man von einem sogenannten « Firstpass-Effekt » (Abbildung 13) (Forth, 1998; Hunnius, 2004; Langguth, 2004; Voigt, 2000).

Abbildung 13. Schematische Darstellung der wichtigsten Metabolisierungssorte und des First-Pass-Effektes (Langguth, 2004).

Cytochrom-P-450

Das Cytochrom-P-450-(CYP)-Enzymsystem ist eine der Cytochrom-B-Gruppe angehörende Monooxygenase, welche vor allem in Leber- und Nebennierenrinde, sowie im Magen-Darm-Trakt lokalisiert ist. Die von ihr verursachten Metabolisierungsreaktionen übertragen oft ein Sauerstoffäquivalent auf das Wirkstoffmolekül. CYP-abhängige Oxidationsreaktionen sind auf die Beteiligung von NADPH, einem Flavinenzym (NADPH-Cytochrom-P-450-Reduktase) und anderen Komponenten angewiesen, die die Elektronen zur Reduktion des Fe³⁺ zum Fe²⁺ im CYP liefern. Die reduzierte Form bindet molekularen Sauerstoff, von dem ein Sauerstoffatom auf das Substrat übertragen wird, bildet aber auch Kohlenmonoxidkomplexe (daher der Name). CYP spielt eine bedeutende Rolle bei der Metabolisierung von vielen lipophilen endogenen (z.B. Biosynthese von Steroiden) und exogenen Stoffen (Forth, 1998; Hunnius, 2004; Langguth, 2004). Abbildung 14 zeigt schematisch die Oxidation durch CYPs, z.B. durch CYP3A4 welches in Kapitel 1.6.d. besprochen wird.

Die Metabolisierung (Phase-I-Reaktionen) erfolgt wie vorgängig beschrieben durch Hydroxylierung oder O-, N- und S-Desalkylierung, N-Oxidation, Dehalogenierung, Sulfoxidation, Desaminierung, sowie Epoxidierung. CYP existiert in verschiedenen Formen mit verschiedenen Substratspezifitäten (Tabelle 1), sowie in verschiedenen genetischen polymorphen Formen (Tabelle 2 und 3).

Tabelle 1.	Substratspezifizität von CYP und CYP-Inhibitoren zur In-vitro-Charakterisierung von CYPs
(Langguth, 2004).	

СҮР	Substrate	Inhibitoren
1A2	Ethoxyresorufin, Phenacetin, Coffein, Theophyllin, Acetanilid, Methoxyresorufin	Furafyllin, α -Naphthoflavon ¹
2A6	Coumarin	Coumarin
2B6	S-Mephenytoin, Bupropion	Sertralin ²
2C8	Paclitaxel	Troglitazon ³
2C9	S-Warfarin, Diclofenac, (Tolbutamid)	Sulphaphenazol
2C19	S-Mephenytoin, Omeprazol	Ticlopidin ² , Nootkaton ²
2D6	Bufuralol, Dextromethorphan, Metoprolol, Debrisoquin, Codein	Chinidin
2E1	Chlorzoxazon, 4-Notrophenol, Laurinsäure	4-Methylpyrazol
3A4	Midazolam, Testosteron, Nifedipin, Felodipin, Cyclosporin, Terfenadin, Erythromycin, Simvastatin, Tacrolimus	Ketoconazol, Troleandomycin, Tacrolimus, Cyclosporin A

¹Kann auch CYP3A4 aktivieren und inhibieren; ²Inhibiert auch CYP2D6; ³Inhibiert auch CYP2C9.

СҮР	Substrate	Inhibitoren
1A2	Coffein, Theophyllin	Enoxacin, Ofloxacin
2B6	Bupropion	Sertralin ²
2C8	Paclitaxel ¹	Troglitazon ³
2C9	Tolbutamid, Flurbiprofen, Diclofenac, Phenytoin	Sulphaphenazol, Fluconazol ⁴
2C19	Mephenytoin, Omeprazol	Ticlopidin
2D6	Debrisoquin, Dextromethorphan, Metoprolol, Desipramin, Codein	Chinidin
2E1	Chlorzoxazon	Disulfiram
3A4	Midazolam, Erythromycin, Simvastatin, Atorvastatin	Grapefruit Saft, Ketoconazol ⁵ , Itraconazol

¹Kann nicht an gesunde Freiwillige verabreicht werden;

² Inhibiert auch CYP2D6 bei Dosen > 150 mg/Tag;

³Inhibiert auch CYP2C9;

⁴ Inhibiert auch geringfügig CYP3A4;

⁵ Auch ein Inhibitor von CYP2C19.

Polymorphismus	Formen	Substrate zur Bestimmung des Phänotyps	Klinisch wichti ge Beispiel- substanzen ¹
ja	PM, EM, UEM ²	Debrisoquin, Dextro- methorphan, Spartein	Antiarrhythmika, Codein, Tramadol
Möglich	Unbekannt	Cyclosporin A, Erythromy- cin, Lidocain, Midazolam	Unbekannt
Möglich	Unbekannt	Coffein, Theophyllin	Unbekannt
Ja	PM, EM	Naproxen, Phenytoin, Tolbutamid	S-Warfarin
Ja	PM, EM	Proguanil	Cyclophosphamid, Ifosfamid
Ja	Unbekannt	Chlorzoxazon	Anaesthetika
	Polymorphismus ja Möglich Möglich Ja Ja	PolymorphismusFormenjaPM, EM, UEM2MöglichUnbekanntJaPM, EMJaPM, EMJaUnbekannt	PolymorphismusFormenSubstrate zur Bestimmung des PhänotypsjaPM, EM, UEM2Debrisoquin, Dextro- methorphan, SparteinMöglichUnbekanntCyclosporin A, Erythromy- cin, Lidocain, MidazolamMöglichUnbekanntCoffein, TheophyllinJaPM, EMNaproxen, Phenytoin, TolbutamidJaPM, EMProguanilJaUnbekanntChlorzoxazon

Tabelle 2. Polymorphismus von CYP und Substrate zu deren Bestimmung (Langguth, 2004).

¹Bei diesen Substanzen muss bei langsamen Metabolisierern in der üblichen Dosierung mit schweren Nebenwirkungen gerechnet werden; ² PM = poor metabolizer, langsamer Metabolisierer, EM = extensive metabolizer = schneller Metabolisierer, UEM = ultra extensive metabolizer = besonders schneller Metabolisierer

Tabelle 3.	CYP- sowie weitere klinisch relevante genetische

Polymorphismen (Langguth, 2004).

Enzym		Häufigkeit in Kauka- siern	Substrate
CYP2D6	Poor Metabolizer Extensive Metabolizer Ultrarapid Metabolizer	7,5%, aber nur 0–2% Japaner und schwarze Bevölkerung 3–5%, aber 15–20% Orientalen	Spartein, Debrisoquin, β -Blocker (z. B. Propra- nolol), Antiarrhythmika, Haloperidol, trizyklische Antidepressiva, SSRIs, Codein (O-Demethy- lierung zu Morphin), Losartan
CYP2C9	Reduzierte Affinität zur P450-Reduktase	8-13%	Warfarin, Losartan, Tolbutamid
	Geringere Substratspezifitat	/-9%	
CYP2C19	Poor Metabolizer	1-3%	Mephenytoin, Omeprazol (Egan et al. 2000) Diazepam
СҮРЗА4 СҮРЗА5	Reduzierte Substrat- affinität (höhere K _M)	3%	Vielzahl von Arzneistof- fen, z. B. Nifedipin, Ery- thromycin, Cyclosporin, Ketoconazol
CYP1A2	Höhere Induzierbarkeit	68%	Coffein, Triamteren
CYP2A6			Nicotin
Dihydropyrimidin- Dehydrogenase	Reduzierte Enzymaktivität		5-Fluoruracil
N-Acetyltransferase (NAT2)	Poor Metabolizer	52 –58% Ka ukasier, 7–12 % Japane r	Isoniazid, Dapson, Hydralazin, Sulfasalazin, Sulfonamide, Proca- inamid
Thiopurinmethyl- Transferase	Poor Metabolizer Extensive Metabolizer	14%	6-Mercaptopurin, Azathioprin
Pseudocholin- esterase	Poor Metabolizer		Succinylcholin
MDR-1 bzw. P-gp	Veränderter AS-Transport		Cyclosporin, Verapamil

Die Enzym-Aktivität von CYP ist durch Wirkstoffe induzierbar (Tabelle 4, Tabelle 3) und inhibierbar (Tabelle 5, Tabelle 1). Die Konkurrenz von (Wirk-)Stoffen und endogenen/exogenen Substraten um das gleiche Enzym ist die Ursache von zahlreichen Sekundärwirkungen von Wirkstoffen und von vielen Arzneimittelinteraktionen (Bjornsson et al., 2003; Kane and Lipsky, 2000; Pfrunder et al., 2003b).

Tabelle 4.Liste von CYP-Induktoren (Langguth, 2004).

Induktor	Cytochrom P450 (betroffene Isoformen)	Beispiele für Arzneistoff mit erhöhter Elimination
Rifampicin	2B6, 2C9, 2C19 3A4, 3A5, 3A7	Glibenclamid, Orale Kontrazeptiva
Phenobarbital	2B6, 3A4, 3A5, 3A7	Orale Kontrazeptiva, Phenytoin, Anticoagulantien vom Cumarin-Typ
Phenytoin	3A4, 3A5, 3A7	Disopyramid, Cyclosporin, Corticosteroide
Johanniskraut	3A4, 3A5, 3A7	Anticoagulantien vom Cumarin-Typ, Cyclosporin, Indinavir

http://medicine.iupui.edu/flockhart/

Tabelle 5.Liste von CYP-Inhibitoren (Langguth, 2004).

Inhibitor	Cytochrom P450 (betroffene Isoformen)	Beispiele für Arzneistoff mit reduzierter Elimination
Amiodaron	1A2, 2C9, 2D6, 3A4, 3A5, 3A7	Orale Anticoagulantien, Phenytoin, Digoxin, Cyclosporin
Cimetidin	1A2, 2C19, 2D6, 3A4, 3A5, 3A7	Nifedipin, Phenytoin, Theophyllin, Propranolol, Chlordiazepoxid
Indinavir	3A4, 3A5, 3A7	Itraconazol, Sildenafil
Itraconazol	3A4, 3A5, 3A7	Simvastatin, Chinidin, Triazolam

Eine Liste der wichtigsten Inhibitoren mit Literaturangaben findet sich unter: http://medicine.iupui.edu/flockhart/

In Kapitel 1.6.d. wird, wie bereits gesagt, speziell auf die Isoform CYP3A4 eingegangen.

Exkretion (Ausscheidung)

Unter Exkretion wird die (unveränderte) Entfernung einer Substanz aus dem Körper, über den Urin, die Faeces, die Galle, den Schweiß oder der Lunge verstanden (Forth, 1998; Hunnius, 2004; Langguth, 2004).

<u>Clearance</u>

Unter Clearance versteht man das Plasmavolumen, das pro Zeiteinheit von einem bestimmten Wirkstoff unverändert befreit wird (Formel 4). Sie ist synonym zur Gesamtclearance (*total clearance*), welche sich aus der Summe renaler (CL_R, Formel 1), hepatischer, pulmonaler etc. Clearance errechnet (Forth, 1998; Hunnius, 2004; Langguth, 2004).

$$CL = k_e \cdot V_d = \frac{f \cdot D}{AUC}$$

$$\mathbf{CL}_{\mathbf{R}} = \frac{\mathbf{C}_{\mathbf{U}} \cdot \mathbf{V}_{\mathbf{U}}}{\mathbf{C}_{\mathbf{P}}} = \mathbf{CL} \cdot \frac{\mathbf{U}_{\infty}}{\mathbf{D}}$$

Formel 5. Renale Clearence mit C_u , Konzentration des Arzneistoffs im Urin; V_u , Harnzeitvolumen; C_P , Konzentration des Arzneistoffs im Blutplasma; U_{\sim} , Gesamtmenge des im Urin ausgeschiedenen Arzneistoffs (Hunnius, 2004).

1.5. Pharmakodynamik

Die Pharmakodynamik beinhaltet alle Prozesse, die ein Pharmakon auf den Organismus ausübt (Wirkungen). Genauere Angaben sind entsprechender Fachliteratur zu entnehmen (Forth, 1998; Hunnius, 2004; Langguth, 2004).

1.6. Spezielle Absorptionsbarrieren

1.6.a. Blut-Hirn-Schranke (BBB)

Die Blut-Hirn-Schranke (blood brain barrier, BBB) ist eine selektiv durchlässige, lipophile Barriere zwischen Blutkreislauf und Hirn. Sie dient zusammen mit der Blut-Liquor-Schranke als Schutzeinrichtung, um schädliche Stoffe vom empfindlichen zentralen Nervensystem (ZNS) fern zu halten. Sie enthält eine Vielzahl an ABC-Transportern, wie z.B. die Effluxpumpen, Mrp2 und P-Glycoprotein (P-gp) (de Boer et al., 2003; Desrayaud et al., 1998; Kusuhara et al., 1997; Miller et al., 2000).

1.6.b. Blut-Liquor-Schranke

Wie ihr Name es schon sagt, bildet die Blut-Liquor-Schranke eine Barriere zwischen Blut und dem Liquor cerebrospinalis. Sie ist im Plexus choroideus (und weiteren ZNS-Blutgefässen) lokalisiert (Hosoya et al., 2004). Wie die Blut-Hirnschranke verfügt auch sie über eine Anzahl an Effluxpumpen (Graff and Pollack, 2004; Rao et al., 1999; Wijnholds et al., 2000).

1.6.c. Placentaschranke

Die Placentaschranke stellt eine Barriere zwischen dem heranwachsenden Foetus und der mütterlichen systemischen (Blut)Zirkulation dar, auf die an dieser Stelle nicht weiter eingegangen werden soll (Kitano et al., 2004; Liu et al., 2005; Roberts et al., 2001).

1.3.d. Magen-Darm-Trakt (MDT)

Der Magen-Darm-Trakt (MDT) oder Gastrointestinaltrakt (GIT) ist die Barriere, welche im Fokus dieser Dissertationsarbeit lag. Der MDT ist ein Sammelbegriff für alle anatomischen Strukturen zwischen Magenmund und Anus. Im MDT werden die meisten Medikamente und deren Wirkstoffe im Körper aufgenommen und z.T. auch metabolisiert (Forth, 1998; Hunnius, 2004; Langguth, 2004).

In Abbildung 15A sind die anatomischen Bestandteile, sowie die Passagezeiten des MDT dargestellt; Abbildung 15B zeigt die die Resorption von Medikamenten (resp. deren Wirkstoffe) beeinflussenden Kenngrößen.

Abbildung 15 A: Anatomische Bestandteile des menschlichen Magen-Darm-Trakts unter Angabe der Passagezeiten. B: Biopharmazeutisch wichtige Einflußgrößen im Magen-Darm-Takt (Gastrointestinaltrakt). I, Länge; F, Fläche; V, durchschnittliche Flüssigkeitsmenge; t: Entleerungszeit (Hunnius, 2004).

Wie eingangs bereits erwähnt, werden die meisten Medikamenten per oral (per os, p.o.) appliziert. Abbildung 16A zeigt die Flächenverhältnisse im MDT und Abbildung 16B die Beschaffenheit des oberen Dünndarms, welcher Hauptresorptionsort im menschlichen Körper ist.

Abbildung 16. Flächenverhältnisse im MDT(A) (Forth, 1998) und Oberflächenvergrößerung im oberen Dünndarm (B) (Langguth, 2004).

Der MDT, mit CYP3A4 und P-gp als Absorptionsbarrieren

Jahrzehntelang dachte man, daß das intestinale Epithelium mehrheitlich eine passive Barriere im Absorptionsprozeß zwischen dem Darmlumen und der systemischen Zirkulation darstellt. Die Entdeckung von epithelialen Transportproteinen und metabolisierenden Enzymen öffnete eine neue Ära in der Erforschung von Absorptionsprozessen von Wirkstoffen (Thiebaut et al., 1987; Watkins et al., 1987).

Unter den verschiedenen Transportproteinen im Darm scheinen die ABC-Transporter (*ATP-binding cassette family*), wie die *Multidrug-resistance*-(MDR)-Effluxpumpe P-Glykoprotein (P-gp) eine entscheidende Rolle zu spielen (Demeule et al., 1997; Seelig and Landwojtowicz, 2000). Es wurde gezeigt, daß P-gp, das MDR1 Genprodukt (Abbildung 17), konstitutiv in der apikalen Membran der intestinalen Epithelzellen exprimiert wird (Cordon-Cardo et al., 1990; Thiebaut et al., 1987), von wo aus es eine Vielzahl von Wirkstoffen vom Zellinneren zurück in das Darmlumen pumpt (Tabelle 6). In klinischen Studien konnte gezeigt werden, daß die Variabilität (z.B.) in der Absorption von Cyclosporin A mit Änderungen in der Expression von MDR1 (mRNA-Level) korrelierte (Fricker et al., 1996).

Abbildung 17. Vereinfachte Darstellung der Effluxpumpe P-gp (MDR1 Genprodukt). NBD, Nukleotid-Bindungsdomäne; TMD, Transmembrandomäne (Jones and George, 2000).

Ein weiterer limitierender Faktor in der intestinalen Absorption von Wirkstoffen sind die Monooxygenasen der Cytochrom P450-Familie (vgl. Metabolisation), wie die Isoform CYP3A4 (Watkins et al., 1987), welche in Enterocyten exprimiert wird.

Organ	Zelltyp	Lokalisation des Proteins	Transportrichtung
Darm	Enterozyten	apikale Membran	in das Darmlumen
Leber	Hepatozyten	kanalikuläre Membran	in die Galle
Niere	Epithelzellen der proximalen Nierentubuli	<i>apikale</i> Membran	in das Tubuluslumen
Gehirn	Endothelzellen der Gehirn- kapillaren (Blut-Hirn Schranke)	luminale Membran	in das Blut
Gehirn	Epithelzellen des Choroid Plexus	apikale Membran	in das Lumen der Ventrikel
Placenta	Syncytiotrophoblasten	apikale Membran	in das mütterliche Blut

abelle 6.	Lokalisation von P-gp und Mrp2 im Menschen (Langguth, 2004	4).
-----------	--	-----

CYP3A4 ist im menschlichen Darm das häufigste Cytochrom P450 Isoenzym und metabolisiert insgesamt 50-70% aller Wirkstoffe, so auch CsA (de Wildt et al., 1999; Dresser et al., 2000; Kenworthy et al., 1999). Damit stellt es eine metabolische Barriere zur Wirkstoffabsorption dar (Hebert et al., 1992; Watkins et al., 1987; Zhang and Benet, 2001).

Die Regulation der Transkription von CYP3A4 und P-gp involviert die *Nuclear hormone receptor family* (Geick et al., 2001; Gnerre et al., 2004; Goodwin et al., 1999; Lehmann et al., 1998; Schuetz et al., 2002).

Es wurde gezeigt, daß der Pregnan-X-Rezeptor (*pregnane X receptor*, PXR) sowie der konstitutive Androstan-Rezeptor (*constitutive androstane receptor*, CAR) die Aktivierung von CYP3A4 auf induzierende Substanzen vermitteln (Goodwin et al., 2002; Maglich et al., 2002; Pascussi et al., 2001). Kürzlich beschrieben (Matsumura et al., 2004) eine Genregion,

welche als konstitutiver Leber-Genverstärker (*constitutive liver enhancer module*, CLEM4) wirken und somit einen wichtigen Ort für die Kontrolle der CYP3A4-Transkriptionsaktivität darstellen könnte. Zudem konnte gezeigt werden, daß der Vitamn-D-Rezeptor (*vitamin D receptor*, VDR) in der Regulation der CYP3A4-Genexpression involviert ist (Schmiedlin-Ren et al., 2001; Thummel et al., 2001). Es wurde berichtet, dass Caco-2 und LS-180-Zellen, welche in Anwesenheit von Calcitriol (1a,25-Dihydroxy-vitamin D₃) kultiviert wurden, eine höhere Menge an CYP3A4-mRNA (Pfrunder et al., 2003a; Schmiedlin-Ren et al., 2001; Thummel et al., 2001) verglichen zu nicht behandelten Kontrollzellen exprimierten.

Zusammenfassend kann gesagt werden, daß eine Vielzahl von Wirkstoffen von CYP3A4 metabolisiert (vgl. Metabolisation) und/oder durch P-gp transportiert (Tabelle 7) werden, was zu etlichen Wirkstoff/Wirkstoff (*drug/drug*) und Wirkstoff/Nahrung(szusätze) (*drug/food*) Interaktionen führen kann (Benet et al., 1999; Ekins et al., 2002; Hebert et al., 1992; Huisman et al., 2001; Lown et al., 1997; Wacher et al., 1998; Watkins, 1997).

Tabelle 7.	Beispiele von Wirkstoffen, die entweder an P-gp/Mrp2 binden oder transportiert werden
(Forth, 1998).	

Wirkstoffklasse	Substanzen	Transporter
Zytostatika	Vinca-Alkaloide	p-GP; Mrp2
	Paclitaxel	p-GP
	Anthrazykline (Doxorubicin, Daunorubicin, Epirubicin)	p-GP
Immunsuppressiva	Cyclosporin A, Rapamycin, Tacrolimus (FK506)	p-GP
Alkaloide	Colchizin, Reserpin	p-GP
Antiarrhythmika	Amiodaron, Chinidin	p-GP
Antibiotika	Actinomycin D, Puromycin, Mitomycin C	p-GP
Lipidsenker	Atorvastatin, Fluvastatin, Pravastatin	p-GP
β-Adrenozeptorenblocker	Cepiprolol, Pafenolol, Talinolol, Acebutolol	p-GP
HIV-Protease-Inhibitoren	Ritonavir, Saquinavir, Indinavir, Nelfinavir	p-GP; Mrp2
Ca ²⁺ -Kanalblocker	Bepridil, Diltiazem, Verapamil, Nicardipin, Nifedipin	p-GP
Verschiedene	Octreotid (Somatostatin-Analogon)	p-GP, Mrp2
	Digoxin (Herzglycosid)	p-GP
	Ivermectin (Anthelmintikum)	p-GP
	Morphin, Morphin-6-glucuronid, Loperamid (Opiate)	p-GP
	Bilirubindiglucuronid	Mrp2
	17β -Östradiol, 17β -Östradiol-D-Glucuronid	Mrp2
Pharmazeutische Hilfsstoffe	Cremophor EL	p-GP
	Pluronic F68, Pluronic L61	p-GP, Mrp2

2. Modellsubstanzen

2.1. Cyclosporin A und D-MeAla³EtVal⁴cyclosporin

2.1.a. Entdeckung der Cyclosporine (Cs)

Seit 1958 war es in der Firma SANDOZ in Basel üblich, aus Erdproben Mikroorganismen zu isolieren, zu kultivieren und sie auf unbekannte Antibiotika zu testen.

Im Rahmen einer wissenschaflichen Reise (1969) brachte ein Sandoz Wissenschaftler Erde aus Hardanger Vidda (Norwegen) in das Zellkulturlabor nach Basel mit. Aus einer Kultur des in diesem Erdemuster enthaltenen Pilzes « *Tolypocladium inflatum Gams* » (heute ist bekannt, daß es mehrere Pilzarten gibt, die Cyclosporine bilden) wurde eine Familie von Substanzen (Pilzmetaboliten) isoliert, welche *in vitro* und *in vivo* eine fungizide und antibiotische Aktivität zeigten. Diese Pilzmetabolite wurden in grösseren Mengen produziert, um die antibiotische Aktivität besser zu charakterisieren (Dreyfuss, 1976).

1970 war noch genügend Substanz vorhanden, um die Pilzmetabolite einem *Drug screening* zu unterziehen. Diese Pilzmetabolite zeigten eine selektive immunosuppressive Wirkung und wurden daher von der Firma Sandoz weiterentwickelt. Das Substanzgemisch wurde isoliert, gereinigt, analysiert und der Hauptpilzmetabolit Cyclosporin A (CsA) genannt (Dreyfuss, 1976).

1976 wurde die chemische Struktur von CsA von Ruegger (Ruegger et al., 1976) und später die Stukturen der anderen Mitglieder der Cyclosporin Familie von Traber (Traber et al., 1977a; Traber et al., 1977b; Traber, 1982) publiziert. Die immunologischen Eigenschaften von CsA wurden von Borel (Borel et al., 1976) 1976 und von Wiesinger (Borel and Wiesinger, 1979; Wiesinger, 1979) 1979 als selektive immubosuppressive Wirkungen auf T Lymphozyten, ohne Knochenmark-Toxizität beschrieben. Eine Röntgenstrukturanalyse eines Jodo-Derivates von CsA, 1976 durch Petcher sicherte die Struktur von CsA definitiv (Petcher et al., 1976).

2.1.b. Charkterisierung von CsA

CsA ist ein Cyclopeptid (Abbildung 18A) das aus 11 Aminosäure-Resten (Abbildung 18B) besteht, wovon sieben N-methyliert sind. Seine Struktur in Deutero-Chloroform, durch Nukleare Magnetische Resonanz (NMR) (Kessler, 1985; Loosli, 1985) bestimmt, entspricht der in der Röntgenstrukturanalyse gefundenen Kristallstruktur (Petcher et al., 1976). Das Cyclopeptid besteht aus zehn Amiden in TRANS-Konformation und einem Amid in CIS-Konformation (MeLeu 9 und 10). Die cyclische Struktur ist durch drei intramolekulare Wasserstoff Brücken stabilisiert. Ein wasserlösliches CsA-Derivat, in Stellung 3 mit einem Alkyl-Rest substituiert, zeigte im Wasser eine Struktur mit allen Amiden in TRANS-Konfigurationen (Wenger et al., 1994).

Abbildung 18. Chemische Struktur von CsA (A) und schematische Darstellung der Konformation von CsA mit Aminosäuren (B).

2.1.c. Wirkungsmechanismus von CsA

Um immunosuppressiv zu wirken bindet CsA zuerst an das Enzym Cyclophilin A (CyPA, eine cis/trans Isomerase) (Fluckiger et al., 2002; Galat, 1999) und bildet einen binären Komplex [CyPA-CsA]. Anschliessend und nur dann, bindet dieser an das Enzym Calcineurin (CN, eine Phosphatase)(Rusnak and Mertz, 2000), so dass ein ternärer Komplex [CyPA-CsA-CN] entsteht. Calcineurin wird durch dessen Bildung unfähig zu dephosphorylieren. Die Phosphat-Gruppe der Nuklear-Faktor-aktivierten T-Lymphozyten (NFAT) (Day et al., 2005)kann damit nicht mehr dephosphoryliert werden. Damit ist die durch den dephosphorylierten NFAT katalysierte Synthese von Interleukin-2 (IL-2) nicht mehr möglich, was zur Immunsupprimierung führt (Cardenas et al., 1995; Matsuda and Koyasu, 2000; Morris, 1995). Eine NMR-Analyse (Weber et al., 1991) und eine Röntgenstrukturanalyse (Pflugl et al., 1993; Theriault et al., 1993) des binären Komplexes CyPA-CsA zeigten eine Struktur vom gebundenen CsA mit allen Amiden in einer TRANS-Konformation. Diese Konformation von CsA wurde auch im ternären Komplex CyPA-CsA-CN durch Röntgenstruktuanalyse nachgewiesen (Huai et al., 2002). CsA bindet Cyclophilin A mit den Aminosäuren 1, 2, 3, 10 und 11 und Calcineurin mit den Aminosäuren 4, 5, 6, 7, 8 und 9.

2.1.d. Vermarktung von CsA

1983 wurde CsA unter den Namen (trade name) SANDIMMUN(E)[®] als Therapeutikum gegen die Organabstossung (inkl. *host-versus-graftsyndrom*) nach einer Organtransplantation (Borel et al., 1996) auf dem Markt eingeführt. Später wurde SANDIMMUN[®] auch zur Behandlung von Autoimmunkrankheiten zugelassen (Borel et al., 1996; Wenger, 1986).

Zur Stabilisierung der *Intra-* und *Inter-patient-*Bioverfügbarkeitsvariabilität von CsA (Girault et al., 1995; Humbert, 1997; Kelles et al., 1999; Pollak et al., 1999; Superina et al., 1994) wurde eine verbesserte CsA-Formulierung, unter dem Namen Sandimmun NEORAL[®], auf den Markt gebracht.

2.1.e. CsA und D-MeAla³EtVal⁴cyclosporin gegen HIV

CsA zeigt auch eine Wirkung gegen die Vermehrung von HIV (Andrieu, 1989). Leider kann SANDIMMUN[®] (NEORAL), wegen seiner gleichzeitig immunosuppressiven Wirkung, nicht als Therapeutikum für AIDS-Patienten eingesetzt werden.

Für eine Behandlung gegen HIV ist ein Cyclosporin-Derivat mit einer guten Affinität zu Cyclophilin A, aber ohne Affinität zu Calcineurin (Klasse et al., 1993; Luban et al., 1993) nötig, da HIV Cyclophilin A in seiner Vermehrung benötigt. Die Weiterentwicklung des ersten CsA-Derivats NIM-811 mit guter CyPA-Affinität, ohne immunosuppresive Wirkung, wurde von SANDOZ 1996 eingestellt (Steinkasserer et al., 1995). Zur Zeit wird ein neues Cyclosporin-Derivat D-MeAla³EtVal⁴cyclosporin (Mw: 1216.6 Da) (Hubler, 2000; Wenger, 2000) in der Klinik (vereinfachte Phase II) als Anti-HIV für die Behandlung von AIDS-Patienten durch die Firma Debiopharm (Lausanne) evaluiert.

2.1.f. Metabolisierung und Affinität von CsA

CsA (Mw: 1202.6 Da) wird im Menschen in eine Vielzahl von (Di-)Hydroxymetaboliten und einem N-Desmethylmetaboliten (Abbildung 19), vorwiegend durch das Isoenzym CYP3A4 metabolisiert. CsA bildet drei Hauptmetabolite, nämlich AM1 (Mw: 1217.6 Da), AM9 (Mw:1217.6 Da) und AM4N (Mw=1188.6 Da) (Fahr, 1993; Wenger, 1990; Wenger, 1992), die über 90% der Gesamtmetaboliten ausmachen,

Abbildung 19. Metabolisierungsprofil von CsA im Menschen (in Klammer alte Nomenklatur der Metabolite). Die drei Hauptmetabolite **AM1**, **AM9** und **AM4N** sind fett gekennzeichnet.

2.2. Cyclosporin D (CsD)

Cyclosporin D (L-Valin²Cs) ist ein natürliches Derivat (Mw= 1216.6 Da) von CsA und wird oft anstelle von deuteriertem CsA als interner Standard (IS) verwendet (Serkova et al., 2000).

3. Analytischer Teil

3.1. Massenspektrometrie (MS)

J. J. Thompson (Griffiths, 1997) eröffnete 1907 mit dem Nachweis positiv geladener Kathodenstrahlen (Thompson, 1907; Thompson, 1913) den Weg zur Messung von Molekülmassen, was 1945 F. W. Aston mit der Messung von Atommassen gelang (Aston, 1942). Die massenspektrometerische Messung von schwer verdampfbaren und labilen Peptiden und Proteinen blieb den ersten Ionisationsverfahren (chemische Ionisation, Elektronenstoß-Ionisation) verwehrt (Harrison, 1990). Erst die Entwicklung so genannter «sanften» Ionisationsverfahren, wie *Fast-Atom-Bombardment* (FAB) (Barber, 1981), *Matrix-Assisted-Laser-Desorption-Ionization* (MALDI) (Karas and Hillenkamp, 1988) und *Electro-Spray-Ionization* (ESI) (Harrison, 1990), ermöglichte es, auch biogene Moleküle in die Gasphase zu überführen und der Massenspektrometrie zugänglich zu machen.

Die Massenspektrometrie stellt ein schnelles, reproduzierbares Analysenverfahren dar. In Kopplung mit der Flüssigchromatgraphie (*liquid chromatography*) (LC), ermöglicht sie eine verläßliche und hochempfindliche Detektion von Verunreinigungen und Abbauprodukten. Mit dem Einsatz von ESI-Massenspektrometern, die mit Quadrupol- oder linearen Ionenfallen-Analysatoren (Hager and Le Blanc, 2003; Wu et al., 2004) arbeiten, lassen sich Metabolite von Arzneiwirkstoffen in biologischen Proben quantifizieren, wobei auch klassische Ionenfallen-Analysatoren bis zu einem gewissen Grad gute quantitative Messungen ermöglichen. Mit dieser sensiblen und sensitiven Detektion, kann die Bioverfügbarkeit von Wirkstoffen, sowie die Verteilung und die Art deren Metabolite, in den verschiedensten Körper-Kompartimenten in pharmakologischen *In-vivo*-Studien bestimmt werden.

3.1.a. Grundlagen

Unter dem Begriff Massenspektrometrie versteht man das « Wiegen » von ionisierten Molekülen in der Gasphase. Ein Massenspektrometer besteht im Wesentlichen aus drei Komponenten: der Ionisationskammer, dem Massenanalysator und dem Detektor. Damit Ionen in der Gasphase analysieren werden können, müssen die Analytmoleküle zunächst verdampft und ionisiert werden. Dies kann durch die Ankopplung eines Gaschromatographen oder durch ein direktes Verdampfen der Moleküle erreicht werden. Im Analysator werden die Ionen durch magnetische oder elektrische Felder unterschiedlichster Geometrie aufgetrennt. In den Anfängen der Massenspektrometrie dienten Photoplatten der Detektion. Heute stellt der Detektor in modernen Geräten ein Sekundärelektronenvervielfacher dar. Die Daten werden dann mittels PC akquiriert und in interpretierbare Spektren umgewandelt.

In den Anfängen der in der analytischen Chemie gängigen Verfahren, ließen sich nur solche Substanzen massenspektrometrisch analysieren, welche sich unzersetzt verdampfen ließen. Aufgrund der Thermolabilität von Proteinen und Peptiden konnten, wie eingangs bereits gesagt, die klassischen Methoden wie die Elektronenstoß-Ionisation (EI) oder die chemische Ionisation (CI), nicht angewendet werden. Zu deren Analyse mußten neue, schonende Ionisationsverfahren entwickelt werden. Diese sanfteren Ionisationsverfahren werden in homogene Ionisationsverfahren und Energy-sudden, oder Hot-spot Methoden unterteilt. Zu den homogenen Verfahren, welche die Analyte keinem Temperaturgradienten aussetzen, werden die « Chemische Ionisation bei Atmosphärendruck » (atmospheric pressure chemical ionization) (APCI), das «Thermosprayverfahren » (TS), die «Elektro-Spray-Ionisation » (ESI) und die « Feld-Desorption » (FD) gezählt. Zu den Hot-spot-Verfahren, welche die Analyte einem kurzzeitig extremen Temperaturgradienten aussetzen, gehören die « Sekundär-Ionen-Massenspektrometrie » (SIMS), die « Plasma-Desorption » (PD), der « Beschuß mit schnellen Atomen » (fast atom bombardment, FAB), sowie die « Matrix unterstützte Laser-desorption » (matrix assisted laser desorption ionization, MALDI) (Bush, 1995). MALDI und ESI haben sich in der Biochemie als sanfte Ionisationsverfahren durchgesetzt und ein breites Anwendungsspektrum in der Strukturaufklärung (MALDI/ESI) und der Quantifizierung (ESI) von Biomolekülen, wie Peptide und Proteine geschaffen.

3.1.b. ESI-Ion-Trap Massenspektrometrie

Elektro-Spray-Ionisation (ESI)

Wie vorgängig behandelt, gehört der Ionisationsprozess, der dem ESI zu Grunde liegt, zu den sanften, homogenen Ionisationsverfahren. Die gelösten Analytmoleküle werden über eine Stahlkapillare, an welcher ein elektrisches Feld anliegt, in die Ionisationskammer « gesprüht » und ionisiert. Wie in Abbildung 20 zu sehen, entsteht am Ende der Kapillare ein Spray-Kegel (Taylor-Konus), welcher sich zu einem Flüssigkeitsfilament aus vielen Tröpfchen verlängert. Aus diesem Filament bilden sich nach Überwindung der Oberflächenspannung viele kleine Tröpfchen mit geladenen Analyten. Durch die Luftverwirbelungen verbreitert sich dieser Flüssigkeitsstrom zu einem Tröpfchennebel, aus dem durch Verdampfung des Lösungsmittels desolvatisierte Analytionen entstehen. Diese können mehrfach geladen sein (*ion trap MS*).

Abbildung 20. Makroskopischer ESI-Ionisationssprozess zur Generierung positiv geladener AnalytI-Ionen. Zwischen Stahlkapillare und Massenspektrometer-Einlaß liegt eine Gleichspannung (2-8 kV) an. Um negativ geladene Analyt-Ionen zu erzeugen muß die Spannung umgepolt werden (Kebarle, 2000).

Zusammenfassend läßt sich der Ionisationsprozeß also wie folgt in vier Schritte unterteilen:

- Bildung kleiner, hoch geladener Elektrolyttröpfchen
- Abnahme des Tröpfchendurchmessers durch Verdampfen von Lösungsmittelmolekülen unter Erhöhung der Ladungsdichte an der Tröpfchenoberfläche
- Abgabe kleiner, hoch geladener Tröpfchen
- Komplette Desolvatisierung der Analytmoleküle

Für die eigentliche Bildung der Analytionen in der Gasphase wurden zwei Theorien entwickelt (Kerbarle, 1993), das *Charged-residue-model* (CRM) bzw. die *Single-ion-in-droplet-theory* (SIDT) (Dole, 1968) und das *Ionevaporation-model*, (IEM) (Iribarne, 1976; Thomson, 1979) auf die an dieser Stelle nicht näher eingegangen werden sollen. Beide beschreiben die Stabilität der geladenen Tröpfchen über die Rayleigh-Gleichung. Ein geladenes Tröpfchen ist so lange stabil, wie die Ladung *Q* die Oberflächenspannung *g* ausgleicht. Unterschreitet der Tröpfchenradius die kritische Grenze durch Desolvatation, so kommt es durch die Abstoßung gleicher Ladungen zu sogeannten Coulomb-Explosionen, welche die einzelnen Analytionen freisetzen (Abbildung 21) (Fenn, 1993).

Abbildung 21. Theorie der Ionenbildung mittels ESI (Lottspeich, 1998; Thermo.).

Analysatoren

Zum Analysieren der erzeugten Analytionen werden Sektorfeldgeräte, Quadrupolsysteme, elektrische (*ion-trap*) oder magnetische (Ionen-Cyclotron-Resonanz-Zelle/Fourier Transform, FT-ICR/FT-MS) Ionenfallen und Flug-Zeit-Massenspektrometer (*time-of-flight*, TOF) oder Hybride davon benutzt.

Elektrische Ionenfalle (ion trap)

1953 legten Wolfgang Paul und Hans Steinwedel den Grundstein für eine Erfindung, die in den 60er Jahren beschrieben und zum Patentieren eingereicht wurde: die Ionenfalle (Paul, 1960). Erst 1983 erlaubte die Weiterentwicklung durch George C. Stafford, Jr. den Gebrauch eines benutzbaren Ionenfallengeräts (Stafford G. C., 1984). In Abbildung 22 ist der Aufbau der elektrischen Ionenfalle dargestellt. Diese besteht aus einer ringförmigen Elektrode, die von oben und unten mit einer perforierten Endkappe abgeschlossen wird, durch welche die Ionen in die Falle einund wieder austreten können. Im Prinzip funktioniert die Ionenfalle wie ein « kreisförmiger » Quadrupol, arbeitet aber diskontinuierlich. Analytionen werden in die Falle eingelassen, gespeichert und beim Herauskommen analysiert. Über ein Hochfrequenzfeld, welches an der Ringelektrode angelegt ist, können zunächst Ionen über einen großen Bereich (m/z 4000) auf kreisähnliche Bahnen (« Lissajous-Figuren ») stabilisiert werden. Helium als Hilfsgas in der Ionenfalle, dient als Kollisionsgas und dämpft die Ionen zur Mitte der Falle ab. Es erhöht damit die Stabilität der Ionen im Inneren der Ionenfalle.

Abbildung 22. Schematischer Aufbau einer Ionenfalle mit fokussierendem Oktapol als Ioneneinlass (Thermo.).

Für die Ionen im Inneren der Ionenfalle gilt das Stabilitätsdiagramm in Abbildung 23, welches durch die Mathieuschen Gleichungen gegeben ist. Diese beschreiben, unter welchen angelegten Spannungen die Ionen in der Ionenfalle stabil sind. Der Unterschied zum Quadrupol liegt in dem erweiterten Stabilitätsbereich der Ionen. Durch Erhöhung der Spannung (kontinuierliche Modifikation der Amplitude) des an der Ringelektrode angelegten Wechselspannungsfeldes, werden die Kreisbahnen für die Ionen unterschiedlicher Masse sukzessive destabilisiert. Ein zusätzliches dipolares Feld zwischen den Endkappen wird erzeugt, um die Scan-Rate für die Aufnahme eines Spektrums zu erhöhen. Durch die kumulierte Überlagerung des quadrupolaren und des dipolaren Feldes entstehen Felder höherer Ordnung (hexa-, octa-, dodecapolare Felder), durch welche die Ionen resonant Energie aufnehmen können. Mit der Zunahme der Wechselspannungsamplitude q (Abbildung 23) überschreiten die Ionen die Instabilitätslinie, so daß sie innerhalb kürzester Zeit die Ionenfalle über die Öffnung an der Endkappe verlassen können.

Abbildung 23. Stabilitätsdiagramm der Mathieu'schen Gleichungen für die Ionenfalle (Lottspeich, 1998; Thermo.).

Abbildung 24A und B zeigt den Aufbau eines ESI-Ion-Trap-Massenspektrometers, wie das später verwendete LCQ^{Deca}-Gerät von Thermo. Es besteht aus Ionisationskammer (ESI), Massenanalysator (*ion trap*) und Detektor. In der Regel besteht der Detektor aus einem Sekundär-Elektronenvervielfacher (SEV), der am Ende des Trichters eine negative Spannung besitzt, von der die positiv geladenen Analytionen angezogen werden. Bei ausreichend hoher kinetischer Energie werden aus der mit Bleioxid überzogenen Kathode der emittierten Ionen, Elektronen herausgeschlagen und aufgrund des negativen Potentials in den Trichter hinein beschleunigt. Diese Sekundärelektronen erzeugen eine Elektronenkaskade, die dann als Elektronenstrom mit einem Voltmeter als Signal ausgewertet und mittels eines geeigneten Interfaces an den PC weitergeleitet wird.

Abbildung 24. A & B: Schematische Darstellung eines ESI-Ion-Trap-Massenspektrometer (wie das später verwendete LCQDeca von Thermo) (B, gemäss (Thermo.).

In der Praxis wird ein Vor-Spektrum aufgenommen, aus welchem die Zeit ermittelt wird, welche nötig ist, um eine optimale (vorher festgelegte) lonenmenge zu isolieren (*automatic gain control*, AGC). Erst dann wird das eigentliche Spektrum aufgenommen, wobei üblicherweise drei einzelne Spektren (*micro-scans*) zu einem Spektrum (*scan*) summiert werden. Je nach erzeugter lonenmenge und Kontinuität des lonenstroms ist es empfehlenswert, die Daten mehrerer *Scans* über einen bestimmten Zeitraum zu akkumulieren. Neben der schon beschriebenen schonenden lonisationen ist für die Peptidanalytik die Fragment-Ionenanalyse von Wichtigkeit.

Tandem-Massenspektrometrie (MS/MS)

Unter Tandem-Massenspektrometrie (MS/MS oder MS²) ist eine zweifache massenspektrometrische Messung zu verstehen, wobei der Begriff historisch bedingt ist. In den Anfängen der Massenspektrometrie wurden als erste Versuchsanordnungen zur Fragmentionenanalyse zwei Massenspektrometer mit einer dazwischenliegenden Stoßkammer verwendet. Im ersten Massenspektrometer werden die Ionen, Mutterionen, Elternionen (*parent ions*), oder Vorläuferionen (*precursor ions*) genannt, für die Fragmentierung isoliert. Durch Zusammenstöße mit einem Kollisionsgas (Helium) zerfallen sie in Fragmente, sogenannte Fragment- oder Tochterionen (*fragment ions*), welche dann von einem zweiten Massenspektrometer analysiert werden (Abbildung 25).

Durch die Ankopplung weiterer Massenspektrometer oder wie weiter unten beschrieben mittels Ionenfallen, können auch noch MS/MS/MS (MS³)-Experimente resp. MSⁿ-Experimente durchgeführt werden. Die durch Stöße mit einem Reaktandgas verursachte Fragmentierung wird auch als « kollisionsinduzierter Zerfall » (*collision-induced dissociation*, CID), früher auch als « aktivierter Zerfall » (*collision activated decomposition*, CAD) bezeichnet. Die heute verwendeten Tandem-MS-Experimente werden durch veränderte, aber ähnliche Gerätegeometrien realisiert. Am verbreitesten sind Triple-Quadrupol-Geräte (*triple quad*), Ionenfallen und Reflektor-*Time-of-Flight* (ReTOF) Instrumente (Yates, 1998).

Abbildung 25. Schematische Analytionisation mit Fragmentierung zu Tochterionen mit Helium als Kollisionsgas (*collision-induced decomposition, CID*) und anschließender spezifische Detektion (selected reaction monitoring, SRM).

Zum Durchführen Tandem-Massenspektrometrie-Experimenten von (Louris, 1990) müssen die Bedingungen so gewählt werden, daß eine bestimmte Gesamtintensität an Ionen in der Falle akkumuliert wird (< 200 ms). Durch die Wechselspannung zwischen den Endkappen und die Hochfrequenzspannung an der Ringelektrode werden lonen eines bestimmten m/z-Wertes isoliert und auf einer Kreisbahn stabil gehalten, während alle übrigen Ionen anderer m/z-Werte destabilisiert und an den Elektroden entladen werden. Durch die Wahl der geeigneten Isolationsbreite (isolation width) können entweder nur einzelne Isotopenpeaks oder die gesamte Isotopenpeakbreite isoliert werden. Die Fragmentierung selbst wird durch eine resonannte Anregung der isolierten Ionen und durch Zusammenstösse mit dem Kollisionsgas (CID) erreicht (Abbildung 25).

Die gebildeten Fragmentionen (Tochterionen) des MS²-Experiments werden nach der oben beschriebenen Methodik stabilisiert. Der Vorteil einer Ionenfalle ist, dass der Vorgang der Isolierung und der resonanten Anregung mehrmals bzw. n-fach wiederholt werden kann. Der limitierende Faktor ist dabei die Menge der sich in der Falle befindenden Tochterionen. Wird ein gewisser Wert unterschritten, so nimmt das Signal/Rausch-Verhältnis im aufgenommenen Massenspektrum dermassen zu, dass eine reproduzierbare Quantifizierung unmöglich wird. Dies ist auch für den umgekehrten Fall gültig, indem eine Übersättigung der Ionenfalle stattfindet und eine grössere Menge an Analytionen zu keinem höheren Signal führt. Die abschließende Aufnahme des Tochter-Ionenspektrums geschieht durch sukzessive Erhöhung der Wechsel-spannung, die ein normales Massenspektrum der entstandenen Fragmentionen erzeugt. Dabei können für den Analyten spezifische Fragmentionen (und damit auch m/z-Bereiche) nach obigem Prinzip, isoliert und nur diese quantifiziert werden, was zu einem günstigeren Signal/Rausch-Verhältnis führen kann. Dies wird als *Selected-reaction-monitoring* (SRM) bezeichnet (vgl. Abbildung 25). SRM-Peaks können auch nachträglich rechnerisch mit einer geeigneten Software (z.B. LCQuan) aus einem Massenspektrum heraus erzeugt werden.

Ionensuppression (ion suppression)

Die Ionensuppression stellt wohl zusammen mit der Ionisation an sich das wichtigste Hindernis zur qualitativen und vor allem zur quantitativen Bestimmung von Analyten in der Massenspektometrie dar (Annesley, 2003; Bonfiglio et al., 1999). Es handelt sich dabei um die Beinflussung der Bildung der Analytionen während des Ionisationsprozesses. Dies kann entweder zu einer erniedrigten oder erhöhten Bildung der Analytionen führen. Letzteres ist deshalb möglich, weil nur in den allerseltensten Fällen der Analyt zu 100% ionisiert wird (Annesley, 2003; Kemmochi et al., 2002; Schuhmacher et al., 2003).

Jeder Matrixbestandteil, Eluentzusatz oder gleichzeitig gemessener anderer Analyt kann zu Ionensuppression führen, wie dies z.B. schon oft für TFA in der Literatur beschrieben wurde (Annesley, 2003). Die ESI-Methode ist für die Ionensuppression besonders anfällig und deshalb muß die Ionensuppression immer untersucht werden.

3.1.d. Online-Verfahren: LC-LC-ESI-MS/MS

Wie vorgängig beschrieben, kann MS mit der klassischen HPLC gekopplet werden. Analytische HPLC-Säulen, sogenannte Micro- oder Kapillarsäulen, ermöglichen es, sehr geringe Analytmengen bis im Atto-/Femtomolbereich (Kane et al., 2005; Leonard et al., 2005; Masuda et al., 2005; Sabatini et al., 2005) zu detektieren und sogar im unteren Picomolbereich resp. im Femtomolbereich zu quantifizieren (Kane et al., 2005).

Werden zwei HPLC Systeme aneinader gekoppelt (LC-LC), so kann eine direkte Probenaufarbeitung auf der ersten Säule (Aufreinigungs-/Anreicherungssäule) und auf der zweiten (analytische Säule) die Trennung durchgeführt werden (Online-Aufarbeitung)(Canarelli et al., 2002; Liu et al., 1998). Die in dieser Arbeit verwendeten Lichrospher ADS Anreicherungssäulen haben einen lipohilen Kern und einen hydrophilen Mantel, was ein Einfangen von lipohilen Substanzen im Kern und ein Auswaschen von hydrophilen Substanzen ermöglicht (Baeyens et al., 1999; Souverain et al., 2004).

Auf bekannte (LC-LC-MS/MS-)CsA-Analysenmethoden basierend (Christians et al., 2000; McMahon et al., 2000; Zhou et al., 2001) wurde die hier angewendete analytische LC-LC-ESI-MS/MS-Methode (vgl. Kapitel III.3.2) weiterentwickelt und für die Quantifizierung von CsA und dessen drei Hauptmetabolite, AM1, ASM9 und AM4N validiert.

Der Vergleich der analytischen Methoden zum Bestimmen von CsA und dessen Metabolite ist in der Diskussion des analytschen Teils (V.1.2.) zu finden.

4. Biologischer Teil

Im Folgenden sollen die verwendeten Zelllinien und das Transwell-Permeabilitätsmodell charakterisiert werden. Für genauere Angaben wird auf die entsprechende fachspezifische Literatur verwiesen.

4.1. Zelllinien

4.1.a. LS-180-Zellen

Die LS-180-Zellinie ist eine, von humanen Kolon-Karzinoma abgeleitete Zelllinie, welche Mikrovilli exprimiert (Tom et al., 1976). Es wurde gezeigt, daß die Genexpression (mRNA) von CYP3A4 und MDR1 in dieser Zellinie durch verschiedene Substanzen, wie Calcitriol oder Rifampicin, unterschiedlich induziert werden kann. Das heißt, daß durch geeignetes Behandeln der Zellen mit einem Induktor der mRNA-Anteil von CYP3A4 resp. MDR1 gegenüber nicht behandelten Zellen (Kontrolle) zunimmt (Pfrunder et al., 2003a; Schmiedlin-Ren et al., 2001; Schuetz et al., 1996; Thummel et al., 2001).

4.1.b. Caco-2-Zellen

Die Caco-2-Zelllinie ist auch eine von humanen Kolon-Karzinoma abgeleitete Zelllinie. Die Caco-2-Zellen differenzieren sich bei geeigneten Bedingungen innerhalb von 10-24 Tagen Kulturzeit zu dünndarmähnlichen Epithelialzellen (Monolayer) und werden für Permeabilitäts- und Transportstudien von Wirkstoffen verwendet (Anderle et al., 1998; Balimane and Chong, 2005; Braun et al., 2000; Rothen-Rutishauser et al., 2000; Terasaki and Hosoya, 2001). Auch Studien zur Untersuchung von « relativer (*In-vitro-*)Bioverfügbarkeit » wurden durchgeführt (Artursson and Karlsson, 1991; Garberg et al., 1999; Lindgren et al., 2004; Stewart et al., 1995), z.B. für CsA (Dias and Yatscoff, 1996).

4.2. Transwell Permeabilitätsmodell

Das verwendete Transwell[®]-System-Permeabiltätsmodell mit einem Caco-2-Zellmonolayer für *In-vitro-* Formulierungsstudien sind in Abbildung 26A schematisch und in Abbildung 26B real wiedergegeben.

Abbildung 26. Schema des Transwell®-Systems, welches für die *In-vitro-*Formulierungsstudien von CsA verwendet wurde (Costar, 1999).

Im oberen Donor-Kompartiment wird der in ein darmähnliches Medium (oder Puffermedium, z.B. HBSS) vorgelöste Wirkstoff oder die dispergierte Formulierung temperiert zu den Zellen gegeben und inkubiert. Das untere Akzeptor-Kompartiment enthält das entsprechende Medium ohne Wirkstoff/Formulierung. Die Platten können während der Inkubation mechanisch gerührt werden (z.B. mittels Shaker).

Nach der Inkubation werden die beiden Kompartimente getrennt und eine Probe aus der oberen und der unteren Kammer entnommen, aufgearbeitet und analytisch (LC-LC-ESI-MS/MS) die Konzentration an Analyt (in dieser Arbeit Cyclosporin A und dessen Metabolite) gemessen.

Neben diesem Modell gibt es noch viele weitere *In-vitro-*Modelle, um die Permeabilität resp. die « *In-vitro-*Absorption » zu bestimmen (z.B. Netwells[®], Ussing-Chambers, Snappwells[®], Perfusionsmodelle), welche Zelllinien, Gewebeproben (Abbildung 27) oder ganze Organe verwenden (Balimane and Chong, 2005; Bronaugh, 2000; Legen et al., 2005; Lennernas, 1997; Norta and Schopke, 1996).

Zelllinien haben den Vorteil, daß sie relativ schnell und kostengünstig (im Vergleich zu Studien am Tier) in großen Mengen kultiviert werden können und falls es sich um humane Zelllinien handelt, entsprechend für den Menschen als Modell am nächsten stehen (Braun et al., 2000; Dias and Yatscoff, 1996; Miret et al., 2004; Stewart et al., 1995).

Abbildung 27. Alternative *In-vitro-Modelle zum Transwell®-Modell: Snapwells® mit Anwendung* von Zellmonolayer oder Gewebe als Permeabilitätsmembran (Costar, 1999).

II. Ziele

In der Einleitung wurde vorgestellt, wie kompliziert der Weg eines Wirkstoffs sein kann, bis er die systemische Zirkulation erreicht (und von da zum Wirkort gelangt). Dies gilt bei oraler Applikation für Peptide und Proteine um so mehr, da diese meist schon im Magen-Darm-Trakt enzymatisch abgebaut werden. Überstehen sie diesen Verdau, so stellt die epitheliale Darmwand eine, wie wir heute wissen, sowohl aktive als auch passive Barriere im Absorptionsprozeß von Peptiden, Proteinen und Xenobiotika im Allgemeinen dar.

Ziel dieser Dissertationsarbeit ist es nun, die an diesem intestinalen Absorptionsprozeß beteiligten limitierenden Faktoren *in vitro* zu untersuchen, sowie Strategien zu entwickeln und zu testen, die diese limitierenden Faktoren umgehen oder in Schach halten können, um eine verbesserte Permeabilität (Absorption) des Wirkstoffes zu gewährleisten.

Der erste Teil dieser Arbeit hat zum Ziel, eine geeignete analytische Methode (LC-LC-ESI-MS/MS) zu entwickeln und zu validieren, die es ermöglicht, die gewählte Modellsubstanz (Cyclosporin A) und dessen drei Hauptmetabolite (AM1, AM9, AM4N), sowie einen neuen anti-HIV-Wirkstoff (D-MeAla³EtVal⁴Cs) quantitativ im Zellüberstand und Zellextrakt zu messen.

Im zweiten Teil sollten LS-180-Zellen, die mit oder ohne Calcitriol behandelt werden (Induktion), als intestinales Modell dienen, welches verschiedene Mengen an CYP3A4-mRNA (und MDR1-mRNA) exprimiert. Damit soll der Zusammenhang zwischen CYP3A4-mRNA-Menge und CYP3A4-vermittelte Metabolisierung von Cyclosporin A untersucht werden. Um diese Zielsetzung zu erfüllen, sollten die CYP3A4-mRNA-Spiegel mittels quantitativer RT-PCR und die intra- und extrazelluläre Menge an Cyclosporin A und dessen drei Hauptmetabolite mittells LC-LC-ESI-MS/M gemessen werden. Des weiteren sollte die CYP3A4-vermittelte Metabolitenbildung und P-Glykoproteinimplikation mittels Inhibition dieser mit Ketoconazol (P-gp- und CYP-3A4-Inhibitor) und Talinolol (P-gp-Substrat) untersucht werden. Im dritten und abschliessenden Teil dieser Arbeit sollten im Rahmen eines KTI-Projekts² mit der Firma Debiopharm (Galenic Unit) *In-vitro-* und *In-vivo-* Permeabilitätsstudien verschiedener Formulierungen von Cyclosporin A und des neuen Anti-HIV-Cyclosporinderivats MeAla³EtVal⁴Cs untersucht werden.

Als *In-vitro-*Modell sollte das Transwellsystem mit Caco-2-Monolayeren verwendet werden und als *In-vivo-*Modell SD Ratten. Ziel war es, erstens zu untersuchen, ob erstens CsA und D-MeAla³EtVal⁴Cs aus Formulierungen heraus direkt mittels LC-LC-ESI-MS/MS gemessen werden können und ob zweitens die *In-vitro-*Methode potentiell gute von schlechten Formulierungen (bezüglich Permeabilitäts-/Absorptions-verhalten) unterscheiden kann.

Zur Auswahl der Formulierung, welche die beste Bioverfügbarkeit aufweist, müssen heute zeit- und kostenenintensive Studien am Tier durchgeführt werden. Ein schnelles und sparsames *Screening* mittels eines humanen *In-vitro-*Zellmodells wäre von Vorteil.

² KTI: Kommission für Technologie und Innovation (BBT, 2005).

III. Experimenteller Teil

1. Chemikalien

Cyclosporin A (Reinheit ≥99.7%) und dessen Metabolite AM1, AM9, AM4N (Reinheit ≥98%), sowie Cyclosporin D (CsD) und D-MeAla³EtVal⁴cyclosporin (D-MeAla³EtVal⁴Cs) (Reinheit ≥98%) wurden von Dr. R. Wenger, EPFL, Lausanne, Schweiz zur Verfügung gestellt.

Talinolol wurde von AWD Pharma GmbH & Co., Dresden, Deutschland überreicht. Ketoconazol (Sigma-Aldrich, Reinheit ≥98%) und Calcitriol (1a,25-Dihydroxy-Vitamin D₃)(Biochemika, Reinheit ≥99%) wurden von Fluka AG (Buchs, Schweiz) geordert.

Bei der Formulierung 1 (Kapitel III.4.2.) handelte es sich um die kommerziell erhältlichen Sandimmun Neoral[®] 10 mg Soft Gelatine-Kapseln der Novartis Pharma AG (Basel, Schweiz). Die CsA-Formulierung 2 (Kapitel III.4.2.), sowie die D-MeAla³EtVal⁴Cs Formulierungen 3 bis 7 (Kapitel III.4.2.) wurden freundlicherweise von der Firma Debiopharm SA Galenic Unit (Gland, Schweiz) zur Verfügung gestellt. FITC-Dextran (FD-4) Phosphoreszenzmarker (4,000 Da) wurde bei Sigma-Aldrich (St. Louis, MO, USA) gekauft. Alle Zellkulturreagenzien waren Gibco[®] Produkte von Invitrogen AG (Basel, Schweiz). Weitere Reagenzien und Lösungsmittel sind in der Tabelle 8 aufgelistet.

Bezeichnung	Qualität/Reinheit	Lieferant
Acetonitril	LC-MS Chromosolv [®] RdH	Fluka, Buchs, Schweiz
Ammoniumacetat	≥ 99%, p.a., für MS	Fluka, Buchs, Schweiz
Ameisensäure	88 – 91%, für MS	Fluka, Buchs, Schweiz
Essigsäure	p.a.	Fluka, Buchs, Schweiz
Ethanol	abs., p.a.	Fluka, Buchs, Schweiz
Hanks balanced salt	10 × konzentrierte	Gibco, Invitrogen AG, Basel,
solution	Stocklösung, ohne Phenolrot	Schweiz
(HBSS=verdünnt)		
Methanol	LC-MS Chromosolv® RdH	Fluka, Buchs, Schweiz
Methanol	abs., p.a.	Fluka, Buchs, Schweiz
TFA	p.a. , Ampullen	Fluka, Buchs, Schweiz
Wasser	0.2 µm filtriert, für	Fluka, Buchs, Schweiz
	Gradientenelution	
Wasser für Zellkultur	Aqua ad inject. Bichsel,	Laboratorien Dr. G. Bichsel AG,
	pyrogenfrei	Interlaken, Schweiz
Zinksulfat heptahydrat	p.a.,≥99%	Fluka, Buchs, Schweiz

Tabelle 8.Verwendete Lösungsmittel und weitere Reagenz	zien.
--	-------

2. Material und Geräte

In der Tabelle 9 sind die verwendeten Materialien und Geräte mit Typ und Herkunft wiedergegeben.

	_	
Bezeichnung	Тур	Lieterant
Autosampler	Intelligent Simpler 851-	Jasco GmbH, Groß-Umstadt,
·	AS	Deutschland
Autosamplervials	Low adsorbance,	Omnilab AG, Mettmenstetten,
	Teflon screwcaps	Switzerland
Fluoreszensmessgerät	Bio Assay Reader HTS 7000 Plus	Perkin Elmer, Norwalk, CT, USA
HPLC Degaser zu isokr.	Labauatec Gastor GT-	Omnilab AG, Mettmenstetten,
Pumpe	103	Schweiz
HPLC-Spritzen	Manual LC, Gas tight	SGE GmbH, Darmstadt,
	with Teflon-Plunger	Germany
lsokratische HPLC-Pumpe	Merck-Hitachi LS-6000	VWR International AG, Dietikon,
		Schweiz
Massenspektrometer	LCQ DECA ion trap	Thermo, San Jose, CA, USA
Messkolben	Klasse A	GlasKeller, Basel, Schweiz
Messzylinder	Hohe Form	GlasKeller, Basel, Schweiz
Mikroanalysenwaage	UM3	Mettler, Greifensee, Schweiz
Mini-Shaker	Mini-Shaker, Typ MSR	Adolf-Kühner AG, Birsfelden,
		Schweiz
Quatärnere Pumpe/HPLC-	HP 1100 System	Agilent Technologies AG, Basel,
Anlage		Schweiz
Säulenofen 1	Column chiller 7956	Jones Chromatography,
		Glamogan, UK
Säulenofen 2	LC-228A	Bioanalytical Systems Inc., La
		Fayette, IN, USA
Switching Valve	i-Valve EV700-100	Rheodyne LLC, Rohnert Park,
		CA, USA
Vollpipetten	2-Marken, Klasse AS	GlasKeller, Basel, Schweiz
Vorsäulen Splitter	IC-CU Acurate 1:40	LC Packings, Amsterdam,
		Holland
Waage	AT 261 Delta range	Mettler-Toledo, Greifensee,
		Schweiz
Widerstandsmessgerät	Millicell-ERS Ohm Meter	Millipore AG, Volketswil, Schweiz
Zellkulturplatten	Falcon [®] , 6 Well	BD AG, Schweiz
Zellkulturplatten für	Transwells® 12 Wells,	Corning Costar Germany,
Permeabilitätsversuche	1.1cm ² /Well, PC	Bodenheim, Deutschland
Zellkulturflasks	Falcon®	BD AG, Schweiz

Tabelle 9.Verwendete Materialien und Geräte.

3. Analytischer Teil

3.1. Methodenaufbau und Optimierung

3.1.a. Allgemeiner Methodenaufbau und Optimierung

Die zur Analyse von CsA und dessen Metaboliten verwendete LC-LC-ESI-MS/MS Methode wurde in mehreren Schritten erarbeitet. Hierzu wurden vier verschiedene Säulen zur Auftrennung der Analyten getestet: Eine Microbore Säule Nucleosil AB 250 × 1mm i.d., 5 μ m, 100Å Partikel (Macherey-Nagel AG, Oensingen, Schweiz); eine Phenomenex Jupiter Proteo 250 × 1 mm i.d., 4 μ m, 90 Å Partikel (Brechbühler, Schlieren, Schweiz); eine Hypersil BDS, 150 × 0.8 mm i.d., 5 μ m, 130 Å Partikel (LC Packings); eine Hypersil BDS, 50 × 0.8 mm i.d., 5 μ m, 130 Å Partikel (LC Packings). Es wurden drei verschiedene Anreicherungs-/ Aufreinigungssäulen mit gleicher Dimension, aber verschiedenen lipophilen Phasen getestet: Lichrospher RP-4, RP-8 und RP-18, alle ADS 25 × 2 mm i.d., 25 μ m, 60 Å Partikel (VWR International AG).

Um eine optimale Aufreinigung zu erhalten, wurden verschiedene Eluente auf der Anreicherungs-/Aufreinigungssäule mit einem Wasseranteil von > 90% und einem Methanol- bzw. Acetonitrilanteil von < 10% (v/v), sowie mit oder ohne TFA, Essigsäure, Ammoniumacetat oder Ameisensäure (1-5 mM resp. < 0.1-1% v/v) ausgetestet. Zum Transferieren der Analyten von der Anreicherungs-/Aufreinigungssäule auf die analytische Säule kamen zum Austesten unterschiedliche Eluente mit verschiedener Acetonitril/Wasser (v/v) Zusammensetzung, sowie mit oder ohne Zusatz von TFA, Essigsäure, Ammoniumacetat oder Ameisensäure (1-5 mM resp. < 0.1-1% v/v) zum Einsatz.

Zur Auftrennung auf den einzelnen zu testenden analytischen Säulen Zuerst wurden wurden zwei Eluentsysteme verwendet. binäre Wasser/Acetonitril-(supplementiert mit TFA 0.1% (v/v))-Gradienten mit verschiedenen Steigungen und 100% Acetonitril Plateaus verschiedener Zeitlängen getestet. Anschließend wurden verschiedene ternäre Methanol/Acetonitril/Wasser-Gradienten mit verschiedenen Steigungen getestet. Zur Förderung der Ionisation beim ESI-Prozess wurden verschiedene Eluentenzusätze in Mengen zwischen 1-5 mM getestet: TFA, Essigsäure, Ammoniumacetat und Ameisensäure. Zur Auftrennung wurden verschiedene ternärere Gradienten bestehend aus zwei Eluenten ausprobiert. Der Ausgangseluent bestand jeweils aus 95%
Wasser/5% Methanol, der andere setzte sich aus verschiedenen Methanol/Acetonitril/Wasser-Anteilen zusammen, mit wie oben beschrieben verschiedenen Zusätzen zur Ionisationsförderung. Die Optimierung bezog sich auf CsA und den internen Standard (IS) CsD.

3.1.b. Ionen-Suppression (ion suppression)

Um eine mögliche Ionen-Suppression der jeweiligen Analyte durch Matrixbestandteile während der LC-LC-ESI-MS/MS Messung auszuschließen, wurden verschiedene Blanks (gleiche Aufarbeitung ohne Analyten und IS oder nur mit IS) eingespritzt und mit den Retentionszeiten (RT) der Analyten verglichen, oder es wurden verschiedene Matrices in das LC-LC-ESI-MS/MS-System eingespritzt (Autosampler) und gleichzeitig der jeweilige Analyt infundiert. Wie in Kapitel III.3.2 beschrieben, wurden verschiedene Matrices – HBSS Puffer und Zellextrakt – mit und ohne Zugabe der Analyten, sowie mit den Analyten in reinem Lösungsmittel verglichen. Zur Untersuchung der Ionen-Suppression in der jeweiligen Formulierung (Kapitel III.4.2), verursacht durch Formulierungsbestandteile (« Matrix »), wurde wie nachfolgend beschrieben eine Lösung von Analyt in den LC-Flow infundiert. Eine methanolige 16 µg/ml CsA-Lösung wurde mit einem Fluß von 1 µL/min infundiert und 1 ml Probe mit 10 mg/ml Formulierung 1 in HBSS mittels Autosampler, wie schematisch in Abbildung 28 zu sehen, eingespritzt.

3.2. Methodenbeschreibung und Validierung

Die LC-LC-ESI-MS/MS Methode wurde in zwei Schritten validiert. In einem ersten Schritt wurde die Methode für CsA in HBSS validiert, mit dem Ziel, sowohl Messungen im Zellüberstand des biologischen Teils {III.2.a}} als auch in den beiden Transwell-Kompartimenten des biologischen Teils {III.2.b}} zu ermöglichen. In einem zweiten Schritt wurde die Methode für CsA und dessen drei Hauptmetabolite in gespikten LS-180-Zellen mit den Kalibriergeraden der Versuche des biologischen Teils {III.2.a}} validiert.

3.2.c. Methodenbeschreibung

Das aus den Optimierungsschritten hervorgegangene analytische LC-LC-ESI-MS/MS Meßsystem setzte sich aus zwei Einheiten zusammen. Einer Anreicherungs-/Aufreinigungseinheit und einer Auftrennungseinheit. Beide waren über eine externen Switching Valve (ext. SV) miteinander verbunden.

Die Anreicherungseinheit bestand aus einer isokratischen Pumpe mit Degaser, einem Autosampler und einer Anreicherungssäule mit Säulenmaterial Lichrospher RP-4 ADS 25 × 2 mm i.d., mit 25 µm, 60 Å Partikeln. Die Säule wurde mit einem Säulenofen (LC-228A) auf 54°C temperiert.

Die Auftrennungseinheit bestand aus einem HP 1100 System, einem Säulenofen (Jones 7956) und einem IC-CU Acurate pre-column flow splitter 1:40. Als analytische Säule kam eine Hypersil BDS, 50 × 0.8 mm i.d., 5 µm, 130 Å Partikel zum Einsatz. Diese Säule wurde auf 65.5°C temperiert. Abbildung 29 zeigt den schematischen Aufbau des LC-LC-ESI-MS/MS Systems mit dessen verschiedenen Komponenten. Die Aufreinigungseinheit mit der Aufreinigungssäule (PS) und die Auftrennungseinheit mit der analytischen Säule waren über ein externes Schaltventil (switching valve) (ext. SV) und das Schaltventil des Massenspektrometers (MS SV) miteinander gekoppelt. In Abbildung 29A ist der Weg des Eluentenflußes zu sehen, während das ext. SV und das MS SV in Position 1 sind. In dieser ext. SV Position wird die Probe mittels Autosampler eingespritzt und mit dem Fluß der isokratischen Anlage gewaschen, während die Analyten am Anfang der PS zurückgehalten werden. Gleichzeitig wird die AS mit dem Fluß der guaternären Pumpe (HP 1100) equillibriert. Wenn das MS SV in Position 1 ist, wird der Fluß der isokratischen Säule mit dem Autosampler verbunden und der von der quaternären Pumpe kommende 39:40 Splitterflußanteil zum Abfall geleitet. Abbildung 29B zeigt den Weg des Flusses mit dem ext. SV und dem MS SV in Position 2, in welcher PS und AS miteinander verbunden sind und die Analyten in Backflush mit dem Fluß der quaternären Pumpe von der PS auf die AS überführt werden. Dabei werden die Analyten bis zum Starten des Gradienten dank der lipophileren AS festgehalten. Die Auftrennung der Analyten erfolgt nach Aktivierung des ext. SV zurück in die Position 1 unter Umgehung der PS. Während der Trennung wird die PS (MS SV in Position 2, Abbildung 29B) mit dem 39:40 Splitter Flußanteil der guaternären Pumpe gewaschen. Gleichzeitig erfolgt mit dem 1:40 Flußanteil die Gradienten-Elution auf der AS.

Nach Abschluß der Optimierung bestanden die Eluenten aus folgenden Gemischen: Der isokratische Eluent bestand aus 92% Wasser und 8% Acetonitril (V/V) supplementiert mit 1.2 mM Ameisensäure (P). Der Eluent zum Transferieren der Analyten von der PS auf die AS bestand aus 50% Acetonitril und 50% Wasser (V/V), supplementiert mit 1.2 mM Ameisensäure (A). Für die Trennung wurde ein Gradient mit zwei Eluenten gefahren, mit (B) bestehend aus 95% Wasser und 5% Methanol (V/V), supplementiert mit 1.2 mM Ameisensäure und (C) bestehend aus 80% Methanol, 15% Acetonitril und 5% Wasser (V/V/V), supplementiert mit 1.2 mM Ameisensäure. Tabelle 10 zeigt die genauen *Time-events* während eines Analysenzykluses und Abbildung 30 graphisch den zur Trennung verwendeten Gradienten (überlappend mit dem isokratischen Fluß auf der PS).

Abbildung 29. LC-LC-ESI-MS/MS System mit seinen Komponenten: Ext. SV, externe Switching Valve; PS, Anreicherungs-/Aufreinigungssäule; AS, analytische Säule; MS SV, Switching Valve des Massenspektrometers. A: Weg des Flußes zur Anreicherung/Aufreinigung (fett, PS) und zur Auftrennung der Analyte auf der AS (beide SVs in Position 1); MS SV (in Position 2) zeigt den alternativen Weg für den Fluß zur Reinigung der PS, während der Auftrennung auf der AS (ohne Pfeile) B: Weg des Flusses zur Überführung der Analyten, im Backflush-Modus von der PS auf die AS (beide SVs in Position 2).

Tabelle 10."Time events" während einem LC-LC-ESI-MS/MS Analysenzyklus: Mit EluentP: 92% Wasser/8% Acetonitril (V/V) supplementiert mit 1.2 mM Ameisensäure; mit Eluent A: 50% Acetonitril/50%Wasser (V/V) supplementiert mit 1.2 mM Ameisensäure; mit Eluent B: 95% Wasser/5% Methanol (V/V)supplementiert mit 1.2 mM Ameisensäure und mit Eluent C: 80% Methanol/15% Acetonitril/ 5% Wasser (V/V/V)supplementiert mit 1.2 mM Ameisensäure.

Time	Analytis	che	Aufreinigungs		SV Position		MS
(min)	Säule	9	Säule				
	Eluent	Flow	Eluent	Flow	External	on MS	
		(µL/min)		(ml/min)			
- 1.00	100% A	30	0	0	1	1	aus
00.00	100% A	30	100% P	2.0	1	1	aus
05.80	100% A	30	100% P	2.0	1	1	aus
06.15	100% A	30	100% A	30	2	1	aus
15.50	100% A	30	100%A	30	1	1	aus
16.00	75% C/25% B	30	0	0	1	1	an
16.50	75% C/25% B	30	0	0	1	1	an
19.25	75% C/25% B	30	75% C/25% B	1.17	1	2	an
28.50	100% C	30	100 % C	1.17	1	2	an
30.50	100% C	30	100 % C	1.17	1	2	an
31.25	100% C	30	0	0	1	1	an
31.50	100% A	30	0	0	1	1	aus
32.00	100% A	30	0	0	1	1	aus

Abbildung 30. Verwendeter Gradient für die Auftrennung auf der analytischen Säule (überlappend mit der isokratischen Elution auf der Anreicherungssäule: Mit Eluent **P**: 92% Wasser/8% Acetonitril (V/V) supplementiert mit 1.2 mM Ameisensäure; mit Eluent **A**: 50% Acetonitril/50% Wasser (V/V) supplementiert mit 1.2 mM Ameisensäure; mit Eluent **B**: 95% Wasser/5% Methanol (V/V) supplementiert mit 1.2 mM Ameisensäure und mit Eluent **C**: 80% Methanol/15% Acetonitril/ 5% Wasser (V/V/V) supplementiert mit 1.2 mM Ameisensäure.

Die massenspektrometrische Detektion erfolgte mittels eines Ionenfallenmassenspektrometers (LCQ^{DECA} ion trap), welches mit einer Elektrospray-Ionisationsquelle (ESI) ausgerüstet war und im positiven Ionenmodus (4.0 kV) eingesetzt wurde. Der *Sheath-gas*-(N₂)-Druck wurde auf 60 *Arbitraryunits* gesetzt. Die Temperatur der Kapillare wurde auf 200°C gehalten.

Die Quantifizierung von CsD, CsA und dessen Metabolite erfolgte im SRM (MS/MS) Modus als [M+H]⁺ Addukte. Die Precursor-Ionen wurden in der Ionenfalle gehalten und mit einer Kollisionsenergie (CID) fragmentiert, welche eine genügende Fragmentierung der ausgesuchten Ionen ermöglichte. Vier *Scan-events* wurden verwendet: 1) im full MS Modus zwischen m/z 1170.0 und 1300.0, 2) in SRM (MS/MS) Modus m/z 1203.0 um CsA zu messen, 3) in SRM (MS/MS) Modus m/z 1219.0 um die Metabolite AM9, AM1, sowie CsD zu messen, 4) in SRM (MS/MS) Modus m/z 1189.0 um AM4N zu messen. Die relative Kollisionsenergie wurde für jede Komponente auf 40%, die Isolationsweite auf 6 Da gesetzt. Die Fragmentierungsprodukte wurden dabei unter Verwendung *Automatic-gain-control*, zwei *Microscans* und eine maximale Injektionszeit von 400 ms (800 ms im MS eins Modus) von gescannt. Als Kollisionsgas wurde Helium verwendet.

Die HPLC-Anlage, sowie das MS-System wurden durch die Software Xcalibur 1.2 (Thermo) gesteuert. Die Quantifizierung erfolgte mittels der in Xcalibur 1.2 enthaltenen Software LCQuan (Thermo), unter Verwendung des *ICIS-peak-detection*-Algorithmus. Dabei wurde das Verhältnis der Flächen zwischen gemessenem Analyt und internem Standard gegen die Konzentration aufgetragen. AM9 und AM1 wurden gemeinsam quantifiziert. Folgende ausgewählte Fragmentierungsmassenbereiche wurden zur Quantifizierung verwendet: m/z 1182.0-1188.0 und 1069.0-1075.0 für CsA, m/z 1198.0-1204.0, 1112.0-1118.0 und 1085.0-1090.0 für AM9 und AM1, m/z 1196.0-1202.0 und 1083.0-1089.0 für CsD, m/z 1068.0-1074.0, 1055.0-1060.0 und 659.0-664.0 für AM4N. Die Regressionskurven wurden mit einer Gewichtung von 1/X² berechnet.

3.2.d. Herstellung der Lösungen

Alle Lösungen wurden mittels Vollpipetten, HPLC-Spritzen und in Meßkolben hergestellt. Alle Arbeitslösungen, Kalibrierlösungen, *Quality control* (QC) und HBSS-Lösungen (pH 7.4, von einer 10× konzentrierten Stocklösung hergestellt) wurden jeweils am Tag des Versuchs frisch hergestellt.

Stocklösungen

<u>CsA</u>

Eine CsA-Stocklösung mit 1.6 mg/ml (A1) wurde in Ethanol hergestellt.

<u>AM1, AM9, AM4N</u>

Drei Stocklösungen der Metabolite AM1, AM9 und AM4N wurden in Ethanol mit je 60 μ g/ml hergestellt. Aus diesen Stocklösungen wurde eine gepoolte Stocklösung mit je 30 μ g/ml (P1) der Metabolite AM1, AM9 und AM4N, sowie 30 μ g/ml CsA (aus A1) in Ethanol hergestellt.

CsD: Interner Standard (IS)

Eine CsD (IS) Stocklösung mit 0.1 mg/ml (A2) wurde in Ethanol hergestellt.

Alle Stocklösungen wurden bei -20°C unter Lichtausschluß gelagert.

Arbeitslösungen

<u>CsA</u>

Folgende CsA-Arbeitslösungen wurden durch Verdünnen der Stocklösung A1 in Ethanol hergestellt: 320 µg/ml (W1), 64 µg/ml (W2) und 80 µg/ml (W3). Weiter wurden durch Verdünnen der Arbeitslösung W3 folgende <u>CsA-Standardlösungen</u> in Ethanol hergestellt: 3200, 1600, 800, 400, 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 ng/ml.

<u>CsD: Interner Standard</u>

Durch Verdünnen der Stocklösung **A2** wurde eine CsD-Arbeitslösung in Ethanol mit 5 µg/ml (**W4**) hergestellt. Durch Verdünnen der Arbeitslösung **W4** wurde eine IS Lösung mit 100 ng/ml (**D1**) in Methanol und eine weitere CsD-Arbeitslösung mit 1000 ng/ml (**D2**) in Ethanol hergestellt.

Arbeitslösungen zur Herstellung der Standards für die Kalibriergerade

Aus der gepoolten Stocklösung (**P1**), welche CsA, AM1, AM9 und AM4N enthält, wurden fünf Arbeitslösungen in Ethanol zur Herstellung der Standards für die Eichgerade hergestellt: 4000, 2000, 1000, 500 and 250 ng/ml (pro Analyt).

Arbeitslösungen zur Herstellung der QCs

Aus der gepoolten Stocklösung **P1**, welche CsA, AM1, AM9 und AM4N enthält, wurden durch Verdünnen Arbeitslösungen in Ethanol zur Herstellung der QC Standards für die Eichgerade hergestellt: 4000, 2000 and 500 ng/ml (pro Analyt).

Alle Arbeitslösungen wurden bei -20°C unter Lichtausschluß gelagert.

Extraktionslösungen

Eine 0.4 mol/L Zinksulfatlösung wurde in Wasser hergestellt. Zu einem Volumen Zinksulfatlösung wurden vier Volumen Methanol zugegeben, um eine Extraktionslösung herzustellen. Diese Extraktionslösung wurde mit IS aus der Arbeitslösung **W4** zu einer 16.67 ng/ml CsD-Extraktionslösung (E1) gespiket.

3.3. CsA-Validierung in HBSS

Wie eingangs Kapitel III.3.2 beschrieben, wurde zuerst eine Validierung von CsA in HBSS durchgeführt. Diese hatte zum Ziel, Messungen von CsA und später auch dessen drei Hauptmetabolite im biologischen Teil {III.2.a}} und {III.2.b} zu ermöglichen.

100 μL der jeweiligen CsA-Kalibrierstandardlösung (siehe Arbeitslösungen) wurden verwendet, um die entsprechende Konzentration in 18% Methanol in HBSS (V/V) herzustellen. In diesen 18% enthalten waren 100 μL Arbeitslösung **D2** (10 ng/ml IS). Folgende CsA-Endkonzentrationen der Kalibrierstandards (KS) zur Messung der Kalibriergerade wurden im oben beschriebenen HBSS Puffer hergestellt: 160, 80, 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.313, 0.156, 0.078, 0.039 ng/ml.

Spezifizität (specificity)

Um zu bestimmen, in welchem Maß HBSS-Puffer-Bestandteile mit den Analyten und dem IS zu deren RT interferieren könnten, wurden 6 nach Zufallsprinzip ausgesuchte HBSS Blindproben (*blank samples*) (mit = *zero* und ohne IS) dem gleichen Extraktionsprozedere, wie weiter unten in Kapitel III.3.2d. beschrieben, unterzogen und chromatographiert.

Richtigkeit (accuracy) und Präzision (precision)

Um die Intra-day-Richtigkeit und Präzision zu bestimmen, wurden am selben Tag wiederholt CsA-Kalibrierstandards in HBSS gemessen. Die Meßreihe bestand aus einer Kalibriergeraden mit sechsfach Messung pro Kalibrierstandard (n=6, Konzentrationen vgl. oben). Die inter-day Richtigkeit und Präzision wurde mittels wiederholter Messung von zwei intra-day Meßreihen, eine in derselben Woche (gleiche Stocklösungen) und eine in der darauffolgende Woche (neue CsA- und CsD-Stocklösungen) bestimmt (n=18). Die Präzision der Methode wurde mittels Berechnung des prozentualen Variationskoeffizienten (*coefficient of variation*) (%CV) der erhaltenen Konzentrationen verschiedener Bestimmungen gewonnen. Gemäss FDA (FDA, 2001) und ICH-Richtlinien (ICH, 1996) sollte die Abweichung jedes Kalibrierstandards (KS) von der nominalen Konzentration innerhalb von ±15.0% liegen, außer für die Bestimmungsgrenze (lower limit of quantifcation, LLOQ), für welche der CV nicht größer als 20% sein sollte und das Signal-Rauschverhältnis (signal-to-noise) mindestens 10:1 sein sollte. Entsprechend sollte die Richtigkeit (accuracy) nicht um mehr als ±15.0% von der nominalen Konzentration abweichen, außer für den LLOQ, welcher nicht mehr als ±20.0% von der nominalen Konzentration abweichen sollte. Die Detektionsgrenze (limit of detection, LOD) wurde als ein Signal-Rauschverhältnis (signal-to-noise) von mindestens 3:1 definiert.

3.4. Validierung in Zellextrakt und Kalibrierung in HBSS

Kalibrierung in HBSS für den biologischen Teil III.4.2

In Autosamplervials, welche 150 µL Methanol ,150 µL IS Lösung D1 und 1.2 ml HBSS enthielten, wurden je 3.8 µL von jeder der fünf gepoolten Arbeitslösungen in Ethanol zur Herstellung der KS für die Kalibriergerade zugegeben. Für manche Versuche wurden zusätzlich 5.6 µL der konzentriertesten Arbeitslösung zugegeben. Die Vials wurden geschüttelt und ein Milliliter wurde mittels Autosampler in das LC-LC-ESI-MS/MS System eingespritzt. Damit wurden folgende Konzentrationen an KS in 25% Methanol/75% HBSS (V/V) erreicht: 0.625, 1.25, 2.5, 5.0, 10 ng/ml jedes Analyten und in manchen Versuchen zusätzlich noch 15 ng/ml. Die Konzentration des IS betrug 10 ng/ml. Jeder KS wurde pro Konzentration dreifach hergestellt (n=3) und gemessen.

Kalibrierung in Zellextrakt (Kalibrierung in III.4.1.)

Unbehandelte LS-180-Kontrollzellen wurden, wie später im biologischen Teil III.4.1.c. beschrieben, mittels 800 µL EDTA von den Wells gelöst. Zu 750 µL Zellextrakt in 2 ml Tubes wurde je 5.0 µL der entsprechenden gepoolten KS Arbeitslösungen in Ethanol zugegeben. Für manche Versuche wurde zusätzlich ein Zellextrakt mit 7.5 µL der konzentriertesten Arbeitslösung gespiket. Die Zellsuspensionen wurden 30 s im Vortex aufgewirbelt und 1h lang bei 37°C inkubiert. Die Zellen wurden, wie später im biologischen Teil III.4.1.c. beschrieben, extrahiert, und 1 ml des Überstands wurde mittels Autosampler in das LC-LC-ESI-MS/MS System eingespritzt. Damit wurden folgende Konzentrationen an KS für die Erstellung der Kalibriergeraden in Kapitel III.4.1. in Zellextrakt eingesetzt: 0.625, 1.25, 2.5, 5.0, 10 ng/ml jedes Analyten und in manchen Versuchen zusätzlich noch 15 ng/ml. Die Konzentration des IS betrug 10 ng/ml. Jeder Kalibrierstandard wurde pro Konzentration dreifach hergestellt (n=3) und gemessen.

QCs in Zellextrakt (in III.4.1. verwendet)

Zu 750 µL Zellextrakt, welcher wie später im biologischen Teil III.4.1.c. beschrieben erhalten wurde, wurden je 5.0 µL der entsprechenden gepoolten QC-Arbeitslösung zugegeben. Zusätzlich wurde in manchen Versuchen ein Zellextrakt mit 7.5 µL der höchsten QC-Arbeitslösung gespiket. Diese Zellen wurden wie in Kapitel III.4.1.c. beschrieben inkubiert und extrahiert. Damit kamen folgende QC Konzentrationen zum Einsatz: high QC (HQC): 10 ng (15 ng)/ml, mid QC (MQC): 5 ng/ml, and low QC (LQC): 1.25 ng/ml (pro Analyt).

Spezifizität (specificity)

Um bestimmen zu können, in welchem Maß Zellextraktbestandteile mit den Analyten und dem IS zu deren RT interferieren könnten, wurden 6 nach Zufallsprinzip ausgesuchte Blind-Zellextrakt-Kontrollproben (*blank samples*) (mit = *zero* und ohne IS) dem gleichen Extraktionsprozedere, wie in Kapitel III.4.1.c. beschrieben, unterzogen und chromatographiert, Zum Vergleich der Analyte nur in LM wurden die in Kapitel III.3.2.c. beschrieben Proben in HBSS und Wasser verwendet.

Wiederfindung (recovery) aus Zellextrakt

Die Wiederfindung von CsA und dessen Metabolite AM4N und AM1 und AM9 aus LS-180-Zellen wurde bestimmt, indem die mittlere Detektorantwort (*response*) (Analyt/IS Verhältnis) von 9 *Inter-day*-Kalibrierstandards in Zellextrakt (1.25 ng/ml, low KS; 5 ng/ml, mid KS und 10 ng/ml, high KS) mit 9 *Inter-day*-Kalibrierstandards entsprechender Konzentration in HBSS verglichen wurden. Als Akzeptanzkriterium (FDA, 2001) muß die Wiederfindung nicht 100% sein: Jedoch sollte die Wiederfindung eines Analyten konsistent, präzise und wiederholbar sein.

Richtigkeit (accuracy) und Präzision (precision)

Um die *Intra-day*-Richtigkeit und Präzision zu bestimmen, wurden am selben Tag wiederholt CsA-KS in Zellextrakt gemessen. Die Meßreihe bestand aus einer Kalibriergeraden mit dreifacher Messung pro KS (n=3, Konzentrationen vgl. oben) und mindestens je fünf Iow (1.25 ng/ml, LQC), mid (5 ng/ml, MQC) und high (10 ng/ml, HQC) QC-Proben. Die *Inter-day*-Richtigkeit und Präzision wurde durch die Auswertung der Richtigkeit und Präzision von drei Kalibrier- und QC-Meßreihen (n=9 pro KS und n≥15 pro QC) innerhalb von 6 Monaten ermittelt. Weiter wurden für Richtigkeit und Präzision der Methode im Zellextrakt dieselben FDA- und ICH-Kriterien wie unter III.4.c., « Richtigkeit und Präzision » beschrieben, angewendet. Zusätzlich durfte die Präzision und Richtigkeit des LQC ±20% vom nominalen Wert abweichen.

4. Biologischer Teil

4.1. CYP3A4-mRNA Expression und CsA-Metabolisierung in LS-180-Zellen: Ein Vergleich

4.1.a. Zellkultur

Die LS-180-Zelllinie (zwischen den Passagen 54 und 68 verwendet) wurde von der ATCC (Manassas, VA, USA) bezogen. Die Zellsubkultur wurde wie in der Literatur beschrieben (Pfrunder et al., 2003a) in Dulbecco's MEM with Glutamax-I, supplementiert mit 10% (v/v) foetal calf serum, 1% nicht essentielle Aminosäuren, 1% Natriumpyruvat (100 mM) und Penicillin-Streptomycin (100 U/ml-100 μ g/ml) betrieben. Alle Zellkulturen wurden in feucht und 5% CO₂ betriebenen Inkubatoren bei 37°C gehalten. Um die Zellen von den Kulturplatten zu lösen, wurde EDTA (0.2 g/L) in Phosphat-Puffer-Lösung (PBS, pH 7.4) verwendet.

4.1.b. Herstellung der Lösungen

CsA-Inkubationslösungen

Drei verschiedene Konzentrationen an CsA (Stock- und Arbeitslösungen siehe III.3.1.b.) wurden in HBSS hergestellt, um die Lösungen mit vorbereiteten LS-180-Zellen zu inkubieren: eine mit 12 μ g/ml (10 μ M) (hergestellt mit **A1**), eine mit 2.4 μ g/ml (2 μ M) (hergestellt mit **W1**) und eine mit 0.48 μ g/ml (0.4 μ M) (hergestellt mit **W2**). Zusätzlich wurde von allen drei Inkubationslösungen eine doppelt so konzentrierte Lösung hergestellt (20, 4, 0.8 μ M) wie die Konzentration, die schließlich im jeweiligen Well angewendet wurde (10, 2, 0.4 μ M). Diese doppelt-konzentrierten Inkubationslösungen kamen bei der Co-Inkubation mit Ketoconazol und Talinolol zum Einsatz.

Calcitriol-Stock- und Inkubationslösung

Eine Stocklösung in DMSO mit 20.83 µg/ml Calcitriol (1a,25-Dihydroxy-Vitamin D₃) wurde hergestellt und bei -20°C unter Lichtausschluß gelagert. Aus dieser Stocklösung wurde, in Zellkulturmedium verdünnt eine 104.2 ng/ml (0.25 µM) Inkubationslösung an Calcitriol mit ≤0.5% DMSO hergestellt.

Ketoconazol- und Talinolol-Stock- und Inkubationslösung

Eine Stocklösung in DMSO mit 2.66 mg/ml Ketoconazol wurde hergestellt. 200 µL davon wurden auf 50 ml HBSS aufgefüllt, so daß eine 10.63 µg/ml (20 µM) Inkubationslösung in HBSS entstand. Für Talinolol wurde eine 18.12 mg/ml Stocklösung in DMSO hergestellt. 200 µL davon wurden auf 50 ml HBSS aufgefüllt. Die Konzentration an Talinolol in der Inkubationslösung betrug 76.35 µg/ml (200 µM). In beiden Inkubationslösung betrug die DMSO-Konzentration ≤0.5%.

4.1.c. Versuchsanordnung

Prä-Inkubation mit Calcitriol

LS-180-Zellen wurden mit 500.000 Zellen/cm² in 6-Well-Zellkulturplatten ausgesät. Nachdem die Zellen Konfluenzstadium erreichten (2-3 Tage), wurden sie über 72 h mit 3 ml 0.25 μ M Calcitriol Inkubationslösung inkubiert. Jeden Tag wurden 2 ml 0.25 μ M Calcitriol Inkubationslösung durch frische Inkubationslösung ersetzt. Als Kontrolle wurden unbehandelte (kein Calcitriol) LS-180-Zellen, mit der gleichen Menge DMSO in Zellkulturmedium inkubiert.

CsA-Inkubation und Probenaufarbeitung

Vor der Inkubation mit CsA wurden alle LS-180-Zellen ein Mal mit PBS gewaschen und während 90 Minuten mit HBSS gespült (37°C).

Zu den 72 h lang mit 0.25 µM Calcitriol prä-inkubierten LS-180-Zellen wurden drei CsA-Konzentrationen in HBSS (1.5 ml/well) zugegeben: 10, 2 and 0.4 µM und eine Stunden lang bei 37°C inkubiert. Parallel dazu wurden als Kontrollen unbehandelte LS-180-Zellen mit den gleichen drei CsA-Lösungen inkubiert. Jede CsA-Konzentration wurde dreifach (n=3) gemessen. Ein Well pro Platte wurde zur RT-PCR Messung mit 1.5 ml HBSS inkubiert. Anschliessend wurden die Platten mit den Zellen sofort auf Eis gelegt. Zur quantitativen Bestimmung von CsA und dessen Metabolite im Zellüberstand bzw. im Zellextrakt kamen folgende Aufarbeitungen zur Anwendung:

Überstand der Zellinkubation

150 μL Methanol und 150 μL Standard Lösung D1 (siehe III.3.1b) wurden in Autosamplervials vorgelegt. 1.2 ml oder 30 μL Überstand der Zellinkubation wurden zugegeben. Zu den 30 μL Proben (zur quantitativen CsA- Bestimmung) wurde 1.17 ml HBSS zugegeben. Alle Vials wurden vorsichtig geschüttelt. Wie im analytischen Teil unter III.3.2.b. und III.3.2.c. beschrieben, wurde eine Kalibriergerade mittels Standards in HBSS aufgenommen.

Zellextraktion

Der restliche Überstand der Zellinkubation wurde entfernt und die Zellen in den Wells einmal mit 4°C kaltem PBS gewaschen. Die Zellen wurden 5 bis 10 min mit 800 µL EDTA (0.2g/L in PBS) behandelt. Diese Zellsuspension wurde mit Tip und Pipette durch Auf- und Abziehen homogenisiert. 10 µl der Probe wurde mit einer isotonischen 0.16% Trypanblaumischung versetzt und die Zellen bezüglich ihrer Viabilität untersucht. 750 µL der Zellsuspension wurden entnommen und in ein 2 ml Röhrchen (tube) gegeben. 1.2 ml der Extraktionlösung E1 (siehe Kapitel III.3.2.c.) und 50 µL der Extraktionslösung ohne IS (Methanol/0.4 M ZnSO₄ 4:1 (V/V)) wurden zur Zellsuspension zugegeben. Die Mischung wurde während 45 s mittels Vortex geschüttelt, bis eine milchige Suspension entstand. Diese wurde dann bei 8000 g während 5 min zentrifugiert. 1.5 ml des Zentrifugierüberstandes wurde anschließend in ein Autosamplervial überführt. Um die CsA-Konzentration in den Zellen zu messen, wurde in einem weiteren Autosamplervial 150 µL Zentrifugierüberstand zu vorgelegten 1.350 ml 50% Methanol/50% Wasser (V/V) gegeben. Von allen Proben, inkl. KS und QC wurden 1 ml in das LC-LC-ESI-MS/MS eingespritzt (Kapitel III.3.2.). Vor und während der Analyse wurden alle Proben auf 4°C temperiert. HBSS-Zellextrakt-Kontrollproben (nicht mit CsA inkubiert) und wurden gleichermaßen behandelt mit (zero) und ohne 10 ng/ml IS als »blanks« eingespritzt. Um sicherzustellen, dass keine Veränderungen während einer Messreihe stattfinden, wurden in Abständen von 20 Proben drei QCs gemessen: QC low (LQC), mid (MQC) und high (HQC).

Des Weiteren wurde derselbe Versuch in der Anwesenheit von 10 μ M Ketoconazol (n=3) und 100 μ M Talinolol (n=3) in mit Calcitriol induzierten LS-180-Zellen und unbehandelten Kontrollzellen durchgeführt. Hier die Änderungen zum oben beschriebenen Protokoll: Vor der Inkubation mit den drei CsA-Inkubationslösungen wurde 750 μ L HBSS per well zu den LS-180-Zellen gegeben und 750 μ L 20 μ M Ketoconazol in HBSS oder 750 μ L 200 μ M Talinolol in HBSS zugegeben. Dann wurden die Platten mit den Zellen vorsichtig geschwenkt und 1 h lang bei 37°C inkubiert. Nach Inkubationsende wurden die Inkubationslösungen entfernt und 750 μ L 20 μ M Ketoconazol in HBSS oder 750 μ M Talinolol in HBSS

zugegeben. Zu diesen Lösungen wurde dann entweder 750 μ L CsA-Inkubationslösungen mit 20, 4, oder 0.8 μ M für die Ketoconazol-Inkubationslösungen oder nur 750 μ L 4 μ M CsA-Inkubationslösung für die Talinolol-Inkubationslösungen zugegeben. Anschließend wurden die Platten mit den Zellen vorsichtig geschwenkt und wie oben beschrieben inkubiert und extrahiert.

Die Calcitriol Induktionsexperimente in LS-180-Zellen wurden an drei verschiedenen Tagen und dreifach pro Inkubationskonzentration durchgeführt (n=9). Die Ketoconazol-Inhibitionsexperimente wurden an zwei verschiedenen Tagen und dreifach mit der 2 μ M CsA-Inkubationskonzentration bestätigt (n=9). Aufgrund biologischer Variabilität war die Gesamtmenge an Metaboliten in den nicht behandelten und den mit Calcitriol behandelten Gruppen in beiden Bestätigungsversuche höher als im Ausgangsversuch und wurden nicht in der Berechnung der Mittelwerte einbezogen. Das Talinolol-Inhibitionsexperiment wurde dreifach an einem Tag mit der 2 μ M CsA-Inkubationskonzentration durchgeführt (n=3).

Real-Time quantitative RT-PCR³

Nach der CsA-Inkubation wurde das Inkubationsmedium entfernt und die Gesamt-RNA aus den LS-180-Zellen mittels RNeasy Mini Kit (Qiagen, Hilden, Germany) extrahiert. Die RNA wurde mittels eines GeneQuant Photometers (Pharmacia, Uppsala, Sweden) quantifiziert. Die Reinheit der RNA-Aufarbeitungen war hoch, wie mit dem 260 nm/280 nm Verhältnis (Bereich 1.8-2.0) charakterisiert, Nach dem DNase-I-Verdau (Gibco, Life Technologies, Basel Switzerland) wurde 1 µg Gesamt-DNA, mit Random-hexamers als Primers gemäß dem Hersteller-Protokoll mittels Superscript (Gibco) revers transkribiert. TagMan-Analysen wurden mit einem 7900HT Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland) durchgeführt. PCR Bedingungen waren 10 min 95°C gefolgt von 40 Zyklen mit 15 s 95°C und 1 min 60°C. Jede TaqMan Reaktion enthielt 25 ng cDNA in einem totalen Volumen von 25 µl. TagMan Universal PCR Mastermix von Applied Biosystems wurde verwendet. Die Konzentrationen der Primer und der Probes waren 900 nM und 225 nM. Die Primers und die Probes für CYP3A4-, MDR1- und GAPDH-mRNA

³ Die PCR-Messungen wurden von Dr. H. Gutmann im Labor von Prof. J. Drewe, Division of Clinical Pharmacology & Toxicology, University Hospital of Basel, CH-4031 Basel, Switzerland durchgeführt.

wurden gemäß den Richtlinien von Applied Biosystems mit Hilfe der Software Primer Express 2.0 (Applied Biosystems) erstellt. Die Primers wurden hauseigen von Invitrogen (Basel, Switzerland) und die Pobes von Eurogentec (Seraing, Belgium) synthetisiert. Die Sequenzen der verwendeten Primer und Probes GAPDH: waren: GGTGAAGGTCGGAGTCAACG & ACCATGTAGTTGAGGTCAATGAAGG mit CGCCIGGICACCAGGGCIGC: der Probe MDR1: CIGIAIIGIIIGCCACCACGA & AGGGIGICAAAIIIAIGAGGCAGI mit AAGCIGICAAGGAAGCCAAIGCCIAIGACII; CYP3A4: der Probe TCTGGGATGAGAGCCATCACTA und AGCCCAGCAAAGAGCAACAC mit der Probe ICCITACITATCICICICCICIGAGICIICCIIICAGC.

Die Identität der PCR Produkte wurde mittels Sequenzierung überprüft. Alle Proben wurden mittels Standardkurve quantifiziert (n=3). Eine relative Standardkurve wurde mittels fortlaufender cDNA Verdünnungen generiert. Die cDNA mit der höchsten Konzentration wurde als 2x Konzentration gesetzt. Die Verdünnung dieser letzteren cDNA wurde vom resepktiven Verdünnungswert beschrieben. Die Ct-Werte der Standards wurde gegen den log der respektiven Verdünnungsfaktoren aufgetragen. Steigung und y-Achsenschnittpunkt der Standardkurve wurde dann mittels linearer Regression ermittelt und verwendet, um die Eingangsmengen der unbekannten Proben der respektiven Gene zu errechnen. Um die zur Reaktion zugegebene cDNA Menge zu standardisieren, wurde die berechnete Menge des Genes von Interesse durch die berechnete Menge an Gen der konstitutiv exprimierten Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) in der Probe dividiert. Diese auf GAPDH normalisierten Mengen wurden dann zum Vergleichen der relativen Mengen der Zielgene in verschiedene Proben benutzt. Die Expressionsmenge des endogenen Kontrollgens GAPDH wurde durch keine der unterzogenen Behandlungen beeinflußt. Etwaige genomische DNA Kontaminationen würden durch die Zugabe von RNA zum PCR Reaktionsgemisch als Template überprüft. In diesen Wells wurde keine signifikante Amplifikation beobachtet.

Statistische Analyse

One-way ANOVA mit anschließendem Mehrfachvergleich nach Bonferroni wurde mittels der Software GraphPad Prism Version 4.02 für Windows (GraphPad Software, San Diego, CA, USA) durchgeführt.

4.2. CsA- und D-MeAla³EtVal⁴Cs-Formulierungen: Permeabilitätsversuche

4.2.a. Zellkultur

Die Caco-2-Zelllinie (verwendet zwischen den Passagen 30-42) wurde von der ATCC (Manassas, VA, USA) bezogen. Die Zellsubkultur wurde wie in der Literatur beschrieben (Rothen-Rutishauser et al., 2000) in Dulbecco's MEM mit Earl's salts, mit L-Glutamin, supplementiert mit 10% (v/v) foetal calf serum, 1% nicht essentielle Aminosäuren, 1% Natriumpyruvat 100 mM und Penicillin-Streptomycin 100 U/ml-100 µg/ml betrieben. Alle Zellkulturen wurden in feucht und 5% CO₂ betriebenen Inkubatoren bei 37°C gehalten. Um die Zellen von den Kulturplatten zu lösen wurde 0.02 % (m/v) EDTA/0.05% (m/v) Trypsin EDTA 0.2 g/L in PBS (pH 7.4) ohne Ca²⁺, Mg²⁺ verwendet.

4.2.b. Herstellung der Dispersionen und Lösungen

Dispergieren der Formulierungen in HBSS Puffer

Die Lösungen und Dispersionen wurden mit 20 µg/ml Wirkstoff in HBSS hergestellt. Alle Formulierungen wurden in mit ³/₄ HBSS (pH 6.8) gefüllten Meßkolben im Ultraschallbad (35°C) während 1 h angelöst. Nach Erreichen von Umgebungstemperatur wurden die angelösten Formulierungen fertig mit HBSS zu Inkubierdispersionen verdünnt. Um den Zustand des Zellmonolayers zu überprüfen, wurde vor dem Auffüllen mit HBSS, ein fluoreszierender Marker (FD-4) mit einer Endkonzentration von 250 µg/ml zugegeben (aus einer konzentrierten wäßrigen Lösung zu 250 mg/ml). Vor Inkubation mit den Caco-2-Zellmonolayern wurden die Inkubierdispersionen während 20 min auf 37°C temperiert.

CsA-Formulierung 1: Dispersion 1

Die Dispersion 1 wurde folgendermassen hergestellt: eine 10.0 mg Sandimmun Neoral[®] Soft Gelatine-Kapsel wurde wie oben beschrieben in 500 ml HBSS gelöst (noch keine FD-4 Zugabe). 5 ml dieser Dispersion wurden in einen 10 ml Meßkolben mittels Vollpipette gegeben, mit 10 µL FD-4 Lösung versetzt (250.0 mg/ml) und mit HBSS aufgefüllt.

CsA-Formulierung 2: Dispersion 2

Die Dispersion 2 wurde wie oben beschrieben hergestellt. Im ersten und zweiten Versuch wurden 5 µL Formulierung 2 in 25 ml dispergiert (dieselbe Dispersion für beide Versuche). In Versuch 3, 4 und 5 wurden 5 mg in 25 ml dispergiert.

D-MeAla³EtVal⁴Cs-Formulierung 3: Dispersion 3

Die Dispersion 3 wurde wie oben beschrieben hergestellt. Im ersten und zweiten Versuch wurden 5 µL Formulierung 3 in 25 ml dispergiert (dieselbe Dispersion für beide Versuche). In Versuch 3, 4 und 5 wurden 5 mg in 25 ml dispergiert.

D-MeAla³EtVal⁴Cs-Formulierungen 4, 5, 6: Dispersionen 4, 5, 6

Die Dispersionen 4, 5 und 6 wurden alle wie oben beschrieben hergestellt. Die Dispersionen wurden in den Versuchen 3, 4 und 5 angewendet. Es wurden jeweils 5 mg Formulierung in 25 ml dispergiert.

D-MeAla³EtVal⁴Cs-Formulierung 7: Dispersion 7

Dispersion 7 wurde wie oben beschrieben hergestellt und nur in Versuch 5 angewendet. 250 mg wurden in 25 ml dispergiert (die Formulierung enthielt 50-Mal weniger Wirkstoff als die anderen Formulierungen).

<u>D-MeAla³EtVal₄Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8</u>

2 mg D-MeAla³EtVal⁴Cs wurden in 100 µL Ethanol als Stocklösung gelöst und unter Lichtausschluß bei -20°C gelagert. 25 µL der Stocklösung wurde in 25 ml HBSS verdünnt. Wie oben beschrieben wurde FD-4 als Fluoreszenzmarker zugegeben.

CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9

2 mg CsA wurden in 100 µL Ethanol als Stocklösung gelöst und unter Lichtausschluß bei -20°C gelagert. 25 µL der Stocklösung wurden in 25 ml HBSS verdünnt. Wie oben beschrieben, wurde FD-4 Marker zugegeben.

FD-4 in HBSS Form. 3 ohne Wirkstoff (200 µg/ml): Placebodispersion 10

5 mg Formulierung 3 ohne Wirkstoff (Placebo) wurden wie oben beschrieben in 25 ml gelöst.

FD-4 in HBSS mit 0.1% (v/v) Ethanol: Lösung 11

25 μL FD-4 Stammlösung (250.0 mg/ml) und 25 μL Ethanol wurden mit HBSS in 25 ml gelöst.

4.2.c. Versuchsanordnung in-vitro

Caco-2-Zellaussaat auf Transwell® Membranen

<u>Vorversuche</u>

In einem Doppel-Vorversuch wurden zum einen 6 Well mit 12 Well Transwell[®] Platten, zum anderen Polycarbonat (PC) mit Polyethylen (PET) Transwell[®] Platten miteinander verglichen. Des Weiteren wurde auch der transepitheliale elektrische Widerstand (*transepithelial electric resistance*, TEER) und ein fluoreszierendes Dextran (FD-4) als Marker für einen intakten Zellmonolayer untersucht. Es wurden im entsprechenden Verhältnis, die gleichen Bedingungen wie später in den Versuchen eingesetzt.

<u>Permeabilitätsversuche</u>

Caco-2-Zellen wurden mit 150'000 Zellen/cm² auf 12-Well-Transwell[®] Platten aus PC ausgesät und bis zum Permeabilitätsversuch 21 bis 23 Tage gezüchtet. Das Zellkulturmedium wurde während den ersten zwei Wochen alle 2 bis 3 Tage und danach alle 1-2 Tage ausgewechselt. Die weiter oben beschriebenen Dispersionen 1 bis 7, die Placebodispersion 10 und die Lösungen 8,9 und 11 wurden, wie weiter unten angegeben, in 5 Versuchen eingesetzt und alle während 1 h bei 37°C unter horizontal kreisendem Schwenken inkubiert. Das obere Donor-Kompartiment enthielt 0.5 ml (1.5 ml in den Vorversuchen) der jeweiligen auf 37°C vortemperierten Dispersion oder Lösung. Das untere Akzeptor-Kompartiment enthielt 1.5 ml (2.5 ml im Vorversuch) auf 37°C vortemperierten HBSS Puffer (pH 6.8 bei RTP). Es wurden 5 Versuche an verschiedenen Tagen durchgeführt. Die Dispersionen und Lösungen im ersten und zweiten Versuch waren dieselben und wurden an zwei aufeinanderfolgenden Tagen gemessen. Für alle anderen Versuche (3, 4 und 5) wurden die Dispersionen und Lösungen jeweils frisch hergestellt. In den Versuchen 1 und 2 wurden die Dispersionen 1 bis 3 und die Lösung 8 acht Mal mit Zellmonolayer (8 Transwells[®], 2 Wells pro Platte) und zwei Mal ohne Zellmonolayer gemessen. Die Dispersion 10 und die Lösung 11 wurden vier Mal mit Zellmonolayer (4 Transwells[®], 1 Well pro Platte) und ein Mal ohne Zellmonolayer gemessen.

Im Versuch 3 und 4 wurden die Dispersionen 1 bis 6 acht Mal mit Zellmonolayer (8 Transwells[®], 2 Wells pro Platte) und zwei Mal ohne Zellmonolayer gemessen.

Im Versuch 5 wurden die Dipsersionen 3/7 und die Lösung 8 acht Mal (8 Transwells[®]) mit Zellmonolayer gemessen und zwei Mal ohne Zellmonolayer gemessen. Die Dispersionen 1, 4, 5 und 6 wurden sechs Mal (6 Transwells[®]) mit Zellmonolayer gemessen und zwei Mal ohne Zellmonolayer gemessen.

Probenentnahme, Aufarbeitung und LC-LC-ESI-MS/MS-Injektion

Nach dem Inkubationsversuch wurde das obere Donor-Kompartiment (Transwell[®]) vom unteren Akzeptor-Kompartiment entfernt und in eine andere Platte gesetzt, so daß kein Austausch zwischen beide Kompartimente mehr erfolgen konnte.

Eine 0.5 µL Probe des oberen Donor-Kompartiments und eine 3.0 µL Probe des unteren Akzeptor-Kompartiments wurde entnommen. Es wurde jeweils auch eine 0.5 µL Probe der Inkubations-Dispersion/Lösung vor der Inkubation entnommen. Die Proben wurden direkt in ein Autosamplervial, welches 1.5 ml einer Lösung bestehend aus 25% Methanol/75% Wasser (v/v)) gespiket mit 10 ng/ml IS enthielt, gegeben. Dies entsprach einer 1:3000 resp. einer 1:500 Verdünnung.

Nach Schütteln der Autosamplervials wurde jeweils 1 ml in das LC-LC-ESI-MS/MS System eingespritzt und gemessen. Die Proben der oberen Donor-Kammer wurden für den Fall einer Nachuntersuchung bei -20C unter Lichtausschluß aufbewahrt aber nicht gemessen.

Folgende Änderungen zur weiter oben beschriebenen LC-LC-ESI-MS/MS Methode wurden angewendet. Die Scan-Events zur Messung der Metabolite wurden gestrichen. Drei Scan-Events wurden angewendet: 1) im Full MS Modus zwischen m/z 1170.0 und 1300.0, 2) in SRM (MS/MS) Modus m/z 1203.0 um CsA zu messen, 3) in SRM (MS/MS) Modus m/z 1217.0 (Isolationsweite 6 Da) um D-MeAla³EtVal⁴Cs, sowie CsD zu messen. Zur Quantifizierung von D-MeAla³EtVal⁴Cs wurden die ausgewählten Fragmentierungs-Massenbereiche m/z 1083.00-1089.00 und 1196.00-1202.00 verwendet. Alle anderen Parameter wurden gleich wie oben beschrieben beibehalten.

Kalibrierkurven und QC Samples

Von jeder Formulierung wurde eine eigene 500-fach konzentrierte Kalibrierkurve aufgenommen (40, 20, 10, 5, 2.5, 1.25, 0.625 ng/ml), welche wie für die oben beschrieben 3.0 µL Proben 1:500 verdünnt wurde.

Während der gesamten Meßzeit wurden alle 20 Proben drei QC Samples gemessen: 30 ng/ml, 7.5 ng/ml und 1.5 ng/ml CsA in 25% Methanol/ 75% Wasser (v/v) gespiket mit 10 ng/ml IS (CsD). Die QC Limiten wurden auf ±20% des nominalen Wertes für die tiefste (QC1: 1.5 ng/ml), auf ±15% für die mittlere (QC2: 7.5 ng/ml) und auf ±35% für die höchste (QC3: 30 ng/ml) Konzentration gesetzt.

Insgesamt wurden innerhalb von 10 Tagen ca. 400 Proben, Kalibrierstandards, *Blanks* mit und ohne IS gemessen. Die analytische Methode zur Messung von D-MeAla³EtVal⁴Cs und CsA in verdünnten Formulierungen/Dispersionen wurde in dieser Arbeit weder für CsA noch für D-MeAla³EtVal⁴Cs validiert.

Fluoreszenzmessung

Die Fluoreszenz wurde mittel einem Bio-Assay-Reader (HTS 7000 Plus) gemessen (*excitation*: 485 nm, *emssion*: 535 nm, *integration time*: 40 µs, *manual gain*: 40, *flashes*: 3). 100 µl unverdünnter Probe des jeweiligen Kompartiments wurden gemessen.

4.2.d. Versuchsanordnung in vivo4

Zur Bestimmung der *In-vivo-*Bioverfügbarkeit der in Kapitel {III.2.b)cc)} beschriebenen Formulierungen in männlichen Sprague-Dawley (SD) Ratten, wurden CsA und D-MeAla³EtVal⁴Cs intra-venös (i.v.) verabreicht und mit den verschiedenen per os (p.o.) verabreichten Formulierungen verglichen. Die Flächen unter den Kurven (*area under the curve*) (AUC) wurden mittels der Trapezregel und/oder mittels der Software GraphPad Prism Version 4.02 für Windows berechnet.

Verabreichung i.v.

Zwei Gruppen mit je sechs männlichen SD Ratten (300-400g), 24 h präund 8 h *post*-Administrierung nüchtern wurden eine Dosis CsA (10 mg/kg i.v.) oder D-MeAla³EtVal⁴Cs (10 mg/kg i.v.) injiziert. Der ersten Gruppe wurden Blutproben zu den Zeiten 5, 30 min, 3, 24 und 72 h entnommen. Der zweiten Gruppe wurden Blutproben zu den Zeiten 15 min, 1, 8, 48 und 96 h entnommen. Die Bestimmung der Analyten erfolgte im Vollblut mittels LC-MS (externe Firma, LOQ: 3 ng/ml).

Verabreichung p.o.

Zwei Gruppen mit je sechs männlichen SD Ratten (300-400 g), 24 h präund 8 h *post*-Administrierung nüchtern wurden eine Dosis CsA (10 mg/kg p.o.) oder D-MeAla³EtVal⁴Cs (10 mg/kg p.o.) verabreicht. Als Dosis wurde die jeweilige Formulierung in einer geeigneten Flüssigkeitsmenge verdünnt (5 ml/kg). Die Formulierung 4 wurde unverdünnt verabreicht. Für die Studie der Formulierung 1 und 6 wurden der ersten Gruppe Blutproben zu den Zeiten 15 min, 1, 4, 24 und 72 h entnommen. Der zweiten Gruppe wurden Blutproben zu den Zeiten 30 min, 2, 8, 48 und 96 h entnommen. Für die Studien der Formulierungen 3, 4 und 5 wurden nur 6 SD Ratten (nur eine Gruppe) verwendet. Es wurden Blutproben nach 15, 30 min, 1, 2, 4, 6, 8, 24, 48 und 72 h entnommen.

⁴ Die *In-vivo-*Studien wurden im gemeinsamen KTI Projekt (Nr. 6571.2 BTS-LS) mit der Firma Debiopharm SA Galenic Unit (Gland, Schweiz) von Seiten der Firma durchgeführt.

Die Bestimmung der Analyten in den Studien mit den Formulierungen 1 bis 6 erfolgte im Vollblut mittels LC-MS (externe Firma, LOQ: 3 ng/ml). Für die Studie der Formulierung 7, welche als erste durchgeführt wurde, wurde ein anderes Protokoll angewandt. Die Blutentnahme erfolgte nur über 24 h (Gruppe 1: nach 15 min, 1, 4 und 8 h; Gruppe 2: nach 30 min, 2, 6 und 24 h). In dieser Studie (Formulierung 7) wurde auch evaluiert, ob D-MeAla³EtVal⁴Cs im Plasma oder im Vollblut gemessen werden sollte. Bei jeweils einer Ratte pro Gruppe wurde auch im Vollblut gemessen. In dieser ersten Studie wurden i.v. und p.o. 10mg/kg D-MeAla³EtVal⁴Cs gegeben. Die i.v. Daten für D-MeAla³EtVal⁴Cs wurden wie oben unter « Verabreichung i.v. » beschrieben wiederholt. Diese unter « Verabreichung i.v. » beschrieben i.v. AUCs (D-MeAla³EtVal⁴Cs und CsA) wurden für den Vergleich mit allen p.o. verabreichten Formulierungen verwendet. Die Lösungen 8 und 9, sowie die Formulierung 2 wurden (bisher) nicht untersucht.

IV. Resultate

1. Analytischer Teil

1.1. Methodenaufbau und Optimierung

1.1.a. Allgemeiner Methodenaufbau und Optimierung

Anfangs lieferte die Nucleosil AB Säule eine sehr gute Trennung der Analyte. Leider ging diese Trennungseffizienz innerhalb von einigen Monaten stark zurück und das Hintergrundrauschen (*background*) im Massenspektrum nahm zu, was auf einen Materialzerfall der Säule hindeuten ließ. Die Jupitersäule ermöglichte überhaupt keine Messung von Cyclosporinen. Unabhängig vom Anteil an organischer Phase (Methanol, Acetonitril oder Mischungen der beiden LM) oder der Zeit bzw. Fluß der Eluierphase angewendet wurde, konnte kein Signal im MS erreicht werden. Beide Säulen wurden deshalb nicht weiter verwendet.

Im Gegensatz dazu lieferte die Hypersil BDS Säule von Anfang an gute Resultate bezüglich Trennung und niedrigem Hintergrundrauschen. Deshalb wurden die weiteren Optimierungen auf dieser Säule vorangetrieben. Um eine kürzere Auftrennungszeit der Analyte zu ermöglichen, wurde eine kürzere Hypersil BDS Säule (5 cm statt 15 cm) getestet. Diese lieferte, unter Anpassung der Bedingungen an die Säulenlänge, immer noch eine gute Trennung, etwas schwächere, aber immer noch gute Peak-Signale im MS/MS. Die Auftrennungszeit verkürzte sich so, je nach gewählten Bedingungen um 20-30%. Alle drei Lichrospher Anreicherungs-/Aufreinigungssäulen lieferten gute Ergebnisse. Die am RP-4 Phase hielt alle Cs weniasten lipophile während dem Waschvorgang mit hydrophilem Eluenten genügend stark zurück, so daß keine Migration auf der Anreicherungs-/Aufreinigungssäulen stattfand. Mit dieser RP-4 Phase konnte der organische LM Anteil so tief gehalten werden (von 70% auf 50% (v/v) Acetonitril/Wasser reduziert), daß bei der Überführung (*backflushing*) der Analyten von der Anreicherungssäule auf die analytische Säule, die Analyten auf der analytischen Säule praktisch nicht migrierten und statt dessen am Säulenanfang festgehalten und angereichert wurden (inline enrichment).

Als erstes wurde den Eluenten TFA zugesetzt, wie dies für die klassische HPLC-UV-Chromatographie üblich ist. Dies führte zu Ionensupression, weshalb TFA durch Ammoniumacetat ersetzt wurde um die Ionenbildung der Analyten zu erhöhen. Ammoniumacetat lieferte zwar eine gute lonisation der Analyte, leider führte dieses zu Verstopfungen der Tubings, welche die Säulen miteinander verbanden. Deshalb wurde auf Essigsäure umgestellt, was aber wiederum zu einer schlechteren Ionisation der Analyten führte. Zu guter Letzt wurden die kritischen Tubings, welche die Anreicherungs-/Aufreinigungssäule mit der analytischen Säule verbanden durch Titantubings, sowie Essigsäure durch Ameisensäure ersetzt. Ameisensäure führte zu einer sehr guten Ionisation der Analyten und es wurden keine Verstopfungsprobleme der Tubings mehr beobachtet. Die auf CsA und CsD optimierte LC-LC-ESI-MS/MS Methode wurde in Kapitel III.3.2.a. beschrieben.

1.1.b. lonen-Suppression (ion suppression)

Nach der Etablierung der analytischen Methode mit Ameisensäure wurde kein wesentlicher Einfluß des Puffers oder der Zell-Matrix auf die Analyten bezüglich Ionen Suppression beobachtet. Hingegen konnte dies von den Formulierungen nicht behauptet werden. Als Beispiel sei dies anhand der Abbildung 31 dargestellt. Eine massive CsA-Ionen-Suppression, bis fast auf die Basislinie zurück, wurde bei einer Injektion von 1% Placeboformulierung, was theoretisch 10 mg/ml Wirkstoff entsprechen würde (Formulierung 3 ohne Wirkstoff), ab 4 min im Chromatogramm beobachtet.

Abbildung 31. A: Effekt der Ionen-Supression verursacht durch die Injektion (30 μ L/min) von 1% der Placeboformulierung 3 in HBSS (in rot), verglichen mit der Injektion mit reinem HBSS Puffer (in schwarz und grün) im MS/MS Modus während einer kontinuierlichen 1 μ L/min Infusion von 16 μ g/ml CsA. **B:** MS/MS Massenspektrum mit allen Fragmentiermassen von CsA zwischen m/z 330.0 – 1400.0.

1.2. Validierung

1.2.a. CsA-Validierung in HBSS

Allgemeines

CsA eluierte bei 9.97 (1±0.15) min (Abbildung 32A) und der interne Standard CsD bei 10.62 (±0.15) min (Abbildung 32B). Das Fragmentierungsprofil ist für CsA in Abbildung 32C und das für CsD in Abbildung 32D dargestellt. Abbildung 33A zeigt die am Tag 1 erzeugte *Intra-day*-Kalibrierkurve und die Abbildung 33B die *Inter-day*-Kalibrierkurve aller 3 Tage.

Abbildung 32. A: Chromatogramm von CsA als [H⁺]-Addukt im SRM (MS/MS) Modus m/z 1203.0 (±3 Da) und ausgewählter Fragementier-Massen-Bereiche (m/z 1182.0-1188.0 and 1069.0-1075.0) zum Quantifizieren an der LLOQ (313 pg/ml). B: Chromatogramm von CsD (IS) als [H⁺]-Addukt im SRM (MS/MS) Modus m/z 1219.0 (±3 Da) und ausgewählter Fragementier-Massen-Bereiche (m/z 1196.0-1202.0 and 1083.0-1089.0) zum Quantifizieren an der LLOQ (313 pg/ml). C: CsA-Massenspektrum im SRM (MS/MS) Modus m/z 1203.0 (±3 Da) mit allen Fragmentiermassen zwischen 330.0 und 1400.00 D: CsD-Massenspektrum im SRM (MS/MS) Modus m/z 1219.0 (±3 Da) mit allen Fragmentiermassen zwischen 335.0 und 1400.00.

Abbildung 33. Intra-day- 1 (**A**) (n=6) und Inter-day- (**B**)(n=18) Kalibriergeraden im Bereich 0.313–80 ng/ml als Mittelwert \pm SD. Die eingerahmte Abbildung, mit gestricheltem Pfeil (\rightarrow) angezeigt, beschreibt den unteren Konzentrationsbereich 0.313–5 ng/ml.

Linearität, LLOQ und LOD

Die *Intra-day-* und *Inter-day-*CsA-Kalibrierkurven waren im Bereich zwischen 0.3 – und 80.0 ng/ml linear. Die Bestimmungsgrenze (LLOQ) lag bei 0.3 ng/ml und die Detektionsgrenze (LOD) bei 40 pg/ml. Die Korrelationskoeffizienten (r²) waren > 0.99 für alle aufgenommenen *Intra-day-* und *Inter-day-*Kalibriergeraden (Tabelle 11).

Spezifizität (specificity)

In sechs verschiedene HBSS Blindproben (*blank samples*) und *Zero*-Proben wurden keine Interferenzen zwischen dem Puffer und den Analyten (inkl. IS) zu deren Retentionszeiten beobachtet (dies gilt auch für nur mit IS gespikte *Zero*-Proben).

Richtigkeit (accuracy) und Präzision (precision)

Die erhaltenen Daten zeigten, daß die Methode eine angemessene Wiederholbarkeit (*repeatability*) besaß. Die *Intra-day*-Richtigkeit der Methode lag zwischen 94.7 und 106.6% mit einer Präzision von 4.2–9.5% (Tabelle 11). Die *Inter-day*-Richtigkeit lag zwischen 96.4 und 103.5% mit einer Präzision von 5.7–10.2% (Tabelle 11).

Tabelle 11.	Validierungsresultate für CsA mit CsD als IS (10 ng/ml) in HBSS. Kalibrierstandards (n=6) wurden
an drei verschi	edenen Tagen (n=3) hergestellt. Die Intra-day-1- (n= 6) und Intra-day-2-Validierungsversuche
(n= 6) teilten sic	ch dieselbe Stocklösung (gleiche Woche gemessen), der Intra-day-3-Validierungsversuch (n=6)
verwendete ne	u hergestellte Stocklösungen (darauffolgende Woche gemessen). Die Inter-dayDaten (n=18)
wurden aus der	n <i>Intra-day</i> -Daten 1, 2 und 3 über zwei Wochen gewonnen.

	Intra-day 1	Intra-day 2	Intra-day 3	Inter-day (1-3)
Kalibrierung				
Bereich (ng/ml)	0.16 - 80	0.3 - 80	0.3 - 80	0.3 - 80
Steigung (% CV)	0.10 (1.1)	0.10 (1.2)	0.10 (1.2)	0.10 (0.8)
Schnittpunkt	0.008	0.006	0.007	0.008
r ²	0.99	0.99	0.99	0.99
ng/ml	Richtigkeit (%)			
0.313	98.8	101.2	100.0	97.4
0.625	96.3	96.0	100.3	96.4
1.250	104.6	103.5	98.3	102.0
2.50	101.3	98.9	102.4	100.9
5.00	99.5	99.7	100.5	100.2
10.0	98.3	100.9	98.3	99.6
20.0	106.6	99.1	96.6	101.3
40.0	96.7	105.9	106.5	103.5
80.0	97.0	94.7	97.1	96.7
ng/ml	Präzison (%CV)			
0.313	4.3	6.5	4.8	6.3
0.625	5.8	4.9	5.9	5.7
1.250	7.7	5.4	5.1	9.1
2.50	5.5	8.0	4.2	6.8
5.00	6.9	7.2	7.3	8.2
10.0	4.6	4.3	9.4	8.6
20.0	7.0	7.2	7.5	10.2
40.0	7.1	4.2	6.0	8.5
80.0	7.7	9.5	7.1	8.9

1.2.b. Validierung in Zellextrakt und Kalibrierung in HBSS

Allgemeines

Die CsA-Hauptmetabolite AM1/AM9 eluierten zu den Retentionszeiten 6.85±0.15 min und AM4N bei 8.70±0.15 min (Abbildung 34). Der interne Standard CsD hatte eine Retentionszeit von 10.60±0.15 min (Abbildung 34) und CsA von10.00±0.15 min.

Eine Kalibriergerade (n=3) in HBSS wurde für jedes Experiment mit LS-180-Zellen mit Resultaten gleicher Art gemessen.

Abbildung 34. Chromatogramm der CsA-Hauptmetabolite AM1/AM9 (RT: 6.88), AM4N (RT: 8.73) und des IS (RT: 10.63) extrahiert aus gespikten (10 ng/ml pro Substanz) LS-180-Zellen.

Linearität, LLOQ und LOD

*Die Intra-day- und Inter-day-*CsA- und Metaboliten-Kalibrierkurven waren im Bereich zwischen 0.6 und 10.0 ng/ml linear. Die Bestimmungsgrenze (LLOQ) lag bei 0.6 ng/ml und die Detektionsgrenze (LOD) bei 0.2 ng/ml (156 pg/ml) für CsA und 0.3 ng/ml für AM1, AM9 und AM4N. Die Korrelationskoeffizienten (r²) aller aufgenommenen *Intra-day-* und *Interday-*Kalibrierkurven sind in Tabelle 12 für CsA, in Tabelle 13 für AM4N und in Tabelle 14 für AM1/AM9 zu finden.

Spezifizität (specificity)

In sechs verschiedenen Zellextrakt-Blindproben (*blank cell extracts*) und *Zero*-Proben wurden keine Interferenzen zwischen dem Zellextrakt und den Analyten (inkl. IS) zu deren Retentionszeiten beobachtet (dies gilt auch für nur mit IS gespikten *Zero*-proben).

Wiederfindung (recovery) aus Zellextrakt

Die Wiederfindung von gespikten LS-180-Zellen lag für CsA zwischen 69.9 und 84.7% (Tabelle 12), für AM4N zwischen 74.5 und 85.8% (Tabelle 13) und für AM1/AM9 zwischen 69.9 und 83.3% (Tabelle 14).

Richtigkeit (accuracy) und Präzision (precision)

Die erhaltenen Daten zeigten, daß die Methode eine angemessene Wiederholbarkeit (*repeatability*) besaß. Die *Intra-day*-Richtigkeit der Methode lag für CsA zwischen 88.9 und 102.7% (116.2% LQC), für AM4N zwischen 90.2 und 103.2% (114.2%, LQC) und für AM1/AM9 zwischen 91.1 (84.2, LLOQ) und 114.7% mit einer Präzision für CSA von 0.7–10.3%, für AM4N von 1.7–15.3% (LLOQ) und für AM1/AM9 von 2.3–14.5% (Tabelle 12 – Tabelle 14). Die *Inter-day*-Richtigkeit lag für CsA zwischen 90.1 und 101.2% (116.2%, LQC), für AM4N und AM1/AM9 zwischen 94.1 und 114.2% mit einer Präzision für CsA von 5.3–10.1%, für AM4N von 5.4–15.3% (LLOQ) und für AM1/AM9 von 5.4–15.3% (LLOQ) und für AM1/AM9 von 5.4–15.3% (LLOQ)

	Intra–day 1	Intra–day 2	Intra–day 3	Inter-day 1-3
Kalibrierung				
Bereich (ng/ml)	0.625 – 10.0	0.625 – 10.0	0.625 – 10.0	0.625 – 10.0
Steigung (%CV)	0.069 (3.3)	0.074 (3.2)	0.077 (6.7)	0.073 (2.9)
Schnittpunkt	0.018	0.020	0.009	0.016
r ²	0.99	0.99	0.96	0.97
Richtigkeit (%)				
LKSª (0.625 ng/ml)	95.4	95.2	89.3	93.3
MKS (5 ng/ml)	99.6	100.6	102.7	101.2
HKS (10 ng/ml)	90.8	90.6	88.9	90.1
LQC (1.25 ng/ml)	116.2	114.1	116.2	116.2
MQC (5 ng/ml)	102.3	99.6	107.0	100.9
HQC (10 ng/ml)	110.5	110.6	90.7 ^b	108.8
Präzision(%CV)				
LKSa	5.1	3.1	5.8	10.3
MKS	5.5	7.1	6.2	7.5
HKS	3.3	4.7	4.8	5.3
LQC	9.3	6.3	7.5	8.2
MQC	5.4	7.9	2.1	7.5
HQC	5.3	5.0	0.7 ^b	6.4
Wiederfindung ($\%$)				
LKS (1.25 ng/ml)				84.7 (7.9)
MKS (5 ng/ml)				76.0 (13.0)
HKS (10 ng/ml)				69.9 (15.2)

Tabelle 12.Validierungs-Resultate für CsA in gespiketen LS-180-Zellen: Intra-day-Richtigkeit (accuracy)und Präzision (precision) der KS (n=3) und der QCs (n≥5). Inter-day-Richtigkeit (accuracy) und Präzision(precision) der KS (n=9) und der QC (n≥15). CsA-Wiederfindung aus früher (IV.b)aa)) gewonnen Daten.

° LKS bei LLOQ; ^b 15 ng/ml statt 10 ng/ml.

	Intra–day 1	Intra–day 2	Intra–day 3	Inter–day 1-3
Kalibrierung				
Bereich (ng/ml)	0.625 – 10.0	0.625 - 10.0	0.625 – 10.0	0.625 – 10.0
Steigung (%CV)	0.021 (4.4)	0.024 (2.8)	0.018 (6.2)	0.021 (6.0)
Schnittpunkt	0.001	0.001	0.000	0.001
r ²	0.99	0.99	0.97	0.99
Richtigkeit (%)				
LKSª (0.625 ng/ml)	93.6	97.4	90.2	94.1
MKS (5 ng/ml)	95.1	97.2	103.2	98.3
HKS (10 ng/ml)	95.2	96.3	91.8	94.6
LQC (1.25 ng/ml)	97.8	106.7	103.9	108.8
MQC (5 ng/ml)	104.7	98.5	105.9	108.0
HQC (10 ng/ml)	112.2	113.1	91.9 ^b	114.2
Präzision(%CV)				
LKSa	7.7	6.6	9.1	15.3
MKS	5.1	7.0	9.5	10.7
HKS	2.0	5.3	4.7	13.6
LQC	7.4	9.4	6.5	13.8
MQC	8.2	8.5	13.9	9.7
HQC	1.7	11.6	14.5 ^b	5.4
Wiederfindung ($\%$)				
LKS (1.25 ng/ml)				85.8 (15.8)
MKS (5 ng/ml)				80.5 (28.5)
HKS (10 ng/ml)				74.5 (33.0)

Tabelle 13.Validierungs-ResultatefürAM4NingespiketenLS-180-Zellen:Intra-day-Richtigkeit(accuracy)undPräzision (precision)der KS (n=3)undder QCs (n \geq 5).Inter-day-Richtigkeit (accuracy)undPräzision (precision)der KS (n=9)undder QC (n \geq 15).inter-day-Richtigkeit (accuracy)und

° LKS bei LLOQ; ▷ 15 ng/ml statt 10 ng/ml.

83 IV. RESULTATE

-	Intra–day 1	Intra–day 2	Intra–day 3	Inter–day 1-3
Kalibrierung				
Bereich (ng/ml)	0.625 - 10.0	0.625 - 10.0	0.625 – 10.0	0.625 – 10.0
Steigung (%CV)	0.053 (5.0)	0.056 (5.4)	0.052 (5.1)	0.054 (2.8)
Schnittpunkt	0.002	0.006	-0.005	-0.001
r ²	0.97	0.96	0.97	0.97
Richtigkeit (%)				
LKSª (0.625 ng/ml)	91.2	97.0	93.4	91.1
MKS (5 ng/ml)	108.0	112.3	99.2	107.4
HKS (10 ng/ml)	95.8	100.3	100.9	99.4
LQC (1.25 ng/ml)	91.5	108.8	84.2	108.8
MQC (5 ng/ml)	98.6	110.4	96.1	111.3
HQC (10 ng/ml)	105.5	114.7	94.0 ^b	114.2
Präzision(%CV)				
LKSa	12.9	2.3	3.6	11.7
MKS	4.8	6.8	9.6	12.5
HKS	6.1	3.9	5.8	7.0
LQC	3.7	11.9	3.6	14.5
MQC	8.5	10.4	13.9	14.4
HQC	8.1	4.7	9.8 ^b	9.1
Wiederfindung (%)				
LKS (1.25 ng/ml)				83.3 (12.6)
MKS (5 ng/ml)				71.2 (12.8)
HKS (10 ng/ml)				69.9 (12.4)

Tabelle 14.Validierungs-Resultate für AM1/AM9 in gespiketen LS-180-Zellen: Intra-day-Richtigkeit(accuracy) und Präzision (precision) der KS (n=3) und der QCs ($n\geq 5$). Inter-day-Richtigkeit (accuracy) undPräzision (precision) der KS (n=9) und der QC ($n\geq 15$). Konzentration jedes Metaboliten.

° LKS bei LLOQ; ▷ 15 ng/ml statt 10 ng/ml.

2. Biologischer Teil

2.1. CYP3A4-mRNA Expression und CsA-Metabolisierung in LS-180-Zellen: Ein Vergleich

2.1.a. CsA-Metabolisierung und CYP3A4-Versuche

Mit Calcitriol behandelte und unbehandelte LS-180-Zellen (Kontrolle) wiesen dieselbe Menge an toten Zellen auf (≤30%).

Abbildung 35 stellt nochmals kurz die Formel von CsA und dessen drei im Menschen gebildeten Hauptmetabolite dar. AM1 wurde gegenüber AM9 vorwiegend gebildet. Von den drei Hauptmetaboliten wurde AM4N am wenigsten gebildet. Andere Metabolite mit, gleichen Massen und gleichen oder sehr ähnlichem Fragmentationsmuster, entstanden in sehr viel geringeren Mengen und wurden zu anderen Retentionszeiten beobachtet.

Abbildung 35. Chemische Struktur von CsA sowie dessen drei Hauptmetabolite AM1, AM9 und AM4N (in Klammer alte Nomenklatur der Metabolite). Unterhalb schematische Darstellung der Konformation von CsA mit Aminosäuren.

Die Bildung des Metaboliten AM4N im Zellüberstand als totale Menge (pmol) pro Well, sowie bei Zugabe von verschiedenen CsA-Konzentrationen und in An- oder Abwesenheit von CYP3A4- und P-gp-Modulatoren (Ketoconazol, Talinolol), ist in der Abbildung 36C dargestellt. Nur in einem Versuch, bei der die CsA-Inkubationskonzentration
10 µM betrug, konnte eine sehr kleine Menge von AM4N in extrahierten LS-180-Zellen gemessen werden. Sonst wurde inrazellulär kein AM4N gemessen.

Abbildung 36. CYP3A4-gebundene CsA-Metabolisierung (0.4, 2, 10 μ M) in LS-180-Zellen (intra- und extrazellulär), als Funktion von Induktion durch Calcitriol und Inhibierung durch Ketoconazol und Talinolol. **A:** Metabolite AM1/AM9 Menge (pmol) im Zellüberstand. Mittelwert ± S.D. von drei unabhängigen Versuchen mit Calcitriol vorbehandelten (induzierten) und nicht vorbehandelten Kontrollzellen (je n=9) und eines (n=3) für die Ketoconazolgruppe dreimal wiederholten Versuchs (Talinololgruppe ein Versuch). Signifikante Differenz zwischen Calcitriol vorbehandelten Zellen (***p < 0.001) verglichen mit unvorbehandelten Kontrollzellen, sowie zwischen diesen und der Talinololgruppe (***p < 0.001). **B:** Metabolite AM1/AM9 in den Zellen (pmol). Mittelwert, S.D. (n=9 und n=3) und Signifikanz (***p < 0.001) wie in A beschrieben.**C:** Metabolit AM4N im Zellüberstand. Mittelwert, S.D. und Signifikanz wie in A beschrieben.

In Analogie zum Metaboliten AM4N in Abbildung 9A wurden die Metabolite AM1 und AM9 gleichzeitig und im selben experimentellen Design wie AM4N bestimmt. Die Gesamtmenge per Well an AM1 und AM9 in extrahierten LS-180-Zellen ist in Abbildung 36B wiedergegeben. Deren Gesamtmenge im Zellüberstand ist in der Abbildung 36A zu sehen. Die zelluläre CsA-Aufnahme wurde auch bestimmt. Einer dieser Versuche ist in Abbildung 37A und der Mittelwert von drei Versuchen (inkl. dem Versuch in Abbildung 37A) in Abbildung 37B wiedergegeben (pmol).

Abbildung 37. Zelluläre CsA-Aufnahme in LS-180-Zellen (0.4, 2, 10 μM). Mittelwert ± SD.
A: Mittelwert ± SD (n=3) eines für die Ketoconazolgruppe mindestens dreimal wiederholten Versuchs.
B: Drei unabhängige Versuche (n=9).

Parallel dazu wurde die mRNA-Expression von CYP3A4 und MDR1 mittels RT-PCR bestimmt. Die mRNA-Mengen für CYP3A4 sind der Abbildung 11A und die für MDR1 Abbildung 11B zu entnehmen. Alle Zellen welche mit Calcitriol inkubiert wurden, zeigten verglichen mit nicht inkubierten Kontrollzellen einen signifikanten CYP3A4-mRNA-Anstieg. Die MDR1mRNA in Calcitriol inkubierten Zellen war gegenüber nicht inkubierten Kontrollzellen leicht, aber nicht signifikant erhöht.

Abbildung 38. RT-PCR von CYP3A4 und MDR.

A: CYP3A4-mRNA in LS-180-Zellen normalisiert auf GAPDH. Mittelwert \pm S.D. (n=3) von einem, für die Ketoconazolgruppe dreimal wiederholten Versuch. Signifikanter (***p < 0.001) mRNA-Anstieg in allen mit Calcitriol vorbehandelten Gruppen verglichen mit nicht vorbehandelten Kontrollzellen. **B:** MDR1-mRNA in LS-180-Zellen normalisiert auf GAPDH. Mittelwert \pm S.D. (n=3) von einem, mindestens dreimal wiederholten Versuch. Leichter nicht signifikanter mRNA-Anstieg in allen mit Calcitriol vorbehandelten Gruppen verglichen mit unvorbehandelten Gruppen verglichen.

2.1.b. Hinweise für die Bildung eines unbekannten N-Desmethyl-CsA-Metaboliten

Die folgenden Abbildung 39A-F und 13 sollen Belege für die Bildung eines bislang unbekannten CsA-N-Desmethyl-Metaboliten liefern. In Abbildung 39A und Abbildung 39B ist der einzige Versuch wiedergegeben, indem der Metabolit AM4N in kleinsten Mengen, zur Retentionszeit (RT) 8.60 (Chromatogramm, Abbildung 39A) im Zellextrakt mittels LC-LC-MS/MS (Massenspektrum, Abbildung 39B) detektiert werden konnte (10 µM CsA). Dabei sind Referenz-Chromatogramm (Abbildung 39D) und Referenz-Massenspektrum (Abbildung 39E) des mit 10 ng AM4N gespikten Kalibrierstandards in LS-180-Zellen identisch mit denen der Abbildung 39A und Abbildung 39B. Die Referenz-RT (Abbildung 39D) stimmt auch mit der in Abbildung 39A überein (8.63 min in Abbildung 39D gegenüber 8.60 in Abbildung 39A). Der bislang unbekannte N-Desmethyl-Metabolit eluiert bei der RT 9.34 min (Abbildung 39A) und weist ein ähnliches Massenspektrum (Abbildung 39C) zum Referenz-Massenspektrum (Abbildung 39E) auf. Die beiden N-Desmethyl-Metabolite unterscheiden sich im m/z Bereich 600 bis 780. Um jeglichen Artefakt auszuschließen, wurde das Chromatogramm von einer mit Calcitriol behandelten Blind-Zellextrakt-Kontrollprobe im SRM MS/MS Modus zur Messung von AM4N aufgenommen (Abbildung 39F) und mit dem Chromatogramm der 10 µM CsA-Inkubation (Abbildung 39A) verglichen. Praktisch kein Signal (nur Hintergrundrauschen) konnte im Chromatogramm der Blind-Zellextrakt-Kontrollprobe (Abbildung 39F) detektiert werden, was klar aufzeigte, daß keine zellendogene Substanz für das Signal in Abbildung 39A verantwortlich ist.

Abbildung 39. Hinweise für die Bildung eines bislang unbekannten N-Desmethyl-CsA-Metaboliten in LS-180-Zellen. A: MS/MS-Chromatogramm zum Messen von AM4N (10 μM CsA-Inkubationsversuch, intrazellulär). B: MS/MS-Massenspektrum von AM4N im Chromatogramm A (RT: 8.60).
C: MS/MS-Massenspektrum des bislang unbekannten N-Desmethyl-CsA-Metaboliten im Chromatogramm A (RT: 9.34). D: MS/MS-Referenzchromatogramm für AM4N in gespikten LS-180-Zellen (10 ng/ml Kalibrierstandard). E: MS/MS-Referenzmassenspektrum für AM4N in D (RT: 8.63). F: MS/MS-Massenspektrum von einer Zellextrakt-Blindprobe von mit Calcitriol vorbehandelten LS-180-Zellen (gemessen im selben MS/MS-Modus wie AM4N).

Um weiter auch RT-Verschiebungen als Peakursache auszuschließen, wurde die RT des IS und des gemeinsamen Peaksignals der Metabolite AM1 und AM9 in der Referenz (Kalibrierstandard) (Abbildung 40A) und der Probe (Abbildung 40B) verglichen. Die RT des IS war 10.61 min (Abbildung 40A) resp. 10.51 min (Abbildung 40B) und 6.85 (Abbildung 40A) resp. 6.82 (Abbildung 40B) für den gemeinsamen Metabolitenpeak (AM1/AM9).

Abbildung 40. Chromatogramm des IS (CsD) und der Metabolite AM1/AM9. **A:** Gleiche Referenz wie in Abbildung 39D verwendet (10 ng/ml Kalibrierstandard in gespikten LS-180-Zellen) im CsD und AM1 und AM9 MS/MS-Meßmodus (AM1/AM9 RT: 6.85; CsD RT: 10.61). **B:** Selbe Probe wie in Abbildung 39A verwendet im CsD und AM1/AM9 MS/MS Meßmodus (AM1/AM9 RT: 6.82; CsD RT: 10.51).

Gleich wie für die Metabolite AM4N, AM1 und AM9 weiter oben, wurde der bislang unbekannte N-Desmethyl-CsA-Metabolit im gleichen experimentellen Design aufgenommen. Die Gesamtmenge pro Well an unbekanntem N-Desmethyl-CsA-Metabolit in LS-180-Zellextrakt ist in Abbildung 41A und in Zellüberstand in Abbildung 41B dargestellt.

 Abbildung 41. CYP3A4-gebundene CsA-Metabolisierung (0.4, 2, 10 μM) in LS-180-Zellen (intraund extrazellulär), als Funktion von Induktion durch Calcitriol und Inhibierung durch Ketoconazol und Talinolol.
 A: Bislang unbekannter N-Desmethyl-CsA-Metabolit: Menge (pmol). in den Zellen. Mittelwert ± S.D. von drei unabhängigen Versuchen mit Calcitriol vorbehandelten (induzierten) und unvorbehandelten Kontrollzellen (je n=9) und eines (n=3) für die Ketoconazolgruppe mindestens dreimal wiederholten Versuchs (Talinololgruppe ein Versuch). B: Bislang unbekannter N-Desmethyl-CsA-Metabolit: Menge (pmol) im Zellüberstand. Mittelwert, und S.D. (n=9 und n=3) wie in A beschrieben.

2.1.c. Gesamtübersicht der CsA-Metabolisierung und CYP3A4-Versuche

Anhand der Abbildung 42 und der Abbildung 43 kann eine Gesamtübersicht der Metabolisierungs- und CYP3A4-mRNA-Versuche gewonnen werden.

Abbildung 42 zeigt die Gesamtübersicht für die Metabolisierungsversuche für eine CsA-Inkubationskonzentration (2 μ M) als Mittelwert ± S.D., von einem mindestens dreimal wiederholten Versuch.

Abbildung 42. Gesamtübersicht der CYP3A4-gebundenen CsA-Metabolisierungs-Versuche anhand einer CsA-Inkubationskonzentration (2 μ M) in LS-180-Zellen. Mittelwert ± S.D. von drei unabhängigen Versuchen mit Calcitriol vorbehandelten (induzierten) und nicht vorbehandelten Kontrollzellen (je n=9) und eines (n=3) für die Ketoconazolgruppe dreimal wiederholten Versuchs (Talinololgruppe ein Versuch). Signifikante Differenz zwischen Calcitriol vorbehandelten Zellen (***p < 0.001) verglichen mit unvorbehandelten Kontrollzellen, sowie zwischen diesen und der Talinololgruppe (***p < 0.001). 3000 pmol entsprichen der pro Well eingesetzten CsA-Menge, was somit 100% entspricht.

Abbildung 43 zeigt die RT-PCR Resultate der CYP3A4- und MDR1-mRNA-Versuche als Mittelwert ± S.D. von einem, mindestens dreimal wiederholten Versuchs für: a) mit Calcitriol vorbehandelten (induzierte) LS-180-Zellen, b) mit Ketoconazol behandelten und Calcitriol vorbehandelten (induzierte) LS-180-Zellen, sowie c) mit unbehandelten LS-180-Zellen (Kontrollzellen).

Abbildung 43. RT-PCR von CYP3A4 und MDR1. A: CYP3A4-mRNA in LS-180-Zellen normalisiert auf GAPDH. Mittelwert ± S.D. (n=3)von einem, mindestens dreimal wiederholten Versuch. Signifikanter (***p < 0.001) mRNA-Anstieg in allen mit Calcitriol vorbehandelten Gruppen verglichen mit unvorbehandelten Kontrollzellen.
B: MDR1-mRNA in LS-180-Zellen normalisiert auf GAPDH. Mittelwert ± S.D. (n=3)von einem, mindestens dreimal wiederholten Versuch. Leichter nicht signifikanter mRNA-Anstieg in allen mit Calcitriol vorbehandelten Gruppen verglichen mit Unvorbehandelten Gruppen verglichen mit Calcitriol vorbehandelten Gruppen verglichen mit Calcitriol vorbehandelten Gruppen verglichen mit Unvorbehandelten Gruppen verglichen mit Unvorbehandelten Kontrollzellen.

2.2. CsA- und D-MeAla³EtVal⁴Cs-Formulierungen: Permeabilitätsversuche

2.2.a. Vorversuche

In den Vorversuchen konnte festgestellt werden, daß die kleineren 12 Well Transwell® Platten genügend Material lieferten, um eine quantitative Bestimmung von Cyclosporinen mittels LC-LC-ESI-MS/MS im oberen und unteren Transwell-Kompartiment zu ermöglichen. Es zeigte sich, daß Polycarbonat (PC) Transwell[®] Platten bessere Resultate bezüglich Zellmonolayerintegrität und Versuchsvariabilität lieferten verglichen mit Polyethylen (PET) Transwell® Platten. Der transepitheliale elektrische Widerstand (TEER) konnte nicht immer mit Sicherheit durchlässige Monolayer (Monalyer nicht mehr intakt) ausfindia machen, im Gegensatz zum fluoreszierenden Dextran-(FD-4)-Marker. Ein weiterer Vorteil des FD-4-Markers gegenüber TEER war, daß bei einem durchlässigen Zellmonolayer unterschieden werden konnte, ob das «Leck» während dem Versuch entstand, oder ob dies durch eine spätere Manipulation bzw. durch die Messung der TEER nach dem Trennen der Transwell[®] Kammer selbst entstand. Daher wurde in den Hauptversuchen FD-4 als Marker für einen intakten Zellmonolayer verwendet.

2.2.b. Kalibrierkurven und QC Samples

Der höchste KS (40 µg/ml) lag für alle Kalibrierkurven außerhalb des linearen Bereichs und wurde daher ausgeschlossen. Manche als Ausreißer vermuteten Werte wurden auch ausgeschlossen (Methoden nicht validiert!). Die Kalibrierkurven und deren Rohdaten sind im Anhang (1.1.a.) zu finden. Die Kalibrierkurven versagten für folgende Formulierungen:

CsA-Formulierung 1

Durch die Kalibrierkurven für die **CsA-Formulierung 2** ersetzt (ähnlichste Formulierung).

D-MeAla³EtVal⁴Cs Formulierung 5

D-MeAla³EtVal⁴Cs Formulierung 6

Beide durch die Kalibrierkurven für die **D-MeAla³EtVal⁴Cs Formulierung 3** ersetzt (ähnlichste Formulierung).

CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9

Durch die Kalibrierkurven für die D-MeAla³EtVal⁴Cs in HBSS mit 0.1% Ethanol: Lösung 8 ersetzt (ähnlichste Formulierung).

Nur zwei QC Messwerte innerhalb der QC1 und QC2 fielen aus den gesetzten Grenzwerten heraus; diese lagen insgesamt aber immer noch innerhalb den von der FDA vorgelegten Richtlinien (Guidance for Industry, Bioanalytical Method Validierung, USA, FDA, CDER, CVM; 2001). Alle QC3 lagen innerhalb der FDA Richtlinien für eine nicht FDA Limite von 35% (es wurde Willkürlich ein 35% Toleranzlimite gesetzt, da die QC3-Konzentration ausserhalb des linearen Bereichs lag und die Methode nicht validiert war). Die QC Rohdaten sind im Appendix zu finden.

2.2.c. In-vitro-Permeabilitätsversuche

Die Resultate aller dispergierter Formulierungen und Lösungen in den fünf Versuchen sind in den Tabelle 15 und Tabelle 16 zusammengefasst. Die Daten berücksichtigen die Ergebnisse des FD-4-Zellmonolayerintegrietätsmarkers und schließen die undichten Monolayer aus. Der vierte Versuch wurde ausgeschlossen, weil durch Fremdeinwirken das mechanisierte Schwenken während des Inkubationsversuchs ausgeschaltet wurde. Dies führte zu einer unberechenbaren Permeabilität durch die Zellmonolayer. Es ist anzumerken, daß es der dispergierten Formulierung 3 ohne Schwenken interessanterweise praktisch nicht möglich war, durch die Zellmonolayer hindurch in die untere Akzeptor-Kammer zu gelangen (keine Permeabilität). Alle Rohdaten der Versuche und Formulierungen, inklusive der ausgeschlossenen Werte, sind im Appendix zu finden.

Formulierung/ Versuch	Α	В	С	D	E
	×10-3	×10-3			
1-CsA					
Versuch 1	82	728	364.0	15.4	100.0
Versuch 2	30	364	182.0	22.4	100.0
Versuch 3	32	403	201.5	22.8	100.0
Versuch 5	65	745	346.0	22.1	100.0
Mittelwert V1-5	52	560	280	36.6	100.0
2-CsA					
Versuch 1	203	2025	1012.5	38.8	-
Versuch 2	44	465	232.5	30.8	127.7
Versuch 3	48	578	289.0	30.7	143.4
Mittelwert V1/V2/V3	98	1023	511.5	85.0	182.7
Mittelwert V2/V3	46	522	261.0	15.3	93.2
3-D-MeAla ³ EtVal ⁴ Cs					
Versuch 1	90	975	487.5	47.6	133.9
Versuch 2	80	875	437.5	13.6	240.4
Versuch 3	77	854	427.0	26.5	211.9
Versuch 5	88	971	485.5	36.7	140.3
Mittelwert V1-5	84	919	459.4	6.9	164.1
Mittelwert V2-V5	82	900	450.0	6.9	161.0

Tabelle 15.Resultate der 5 Permeablitätsversuche mit den dispergierten Formulierungen 1-3 von CsAund D-MeAla³EtVal⁴Cs durch Caco-2-Zellmonolayer in Transwells[®].

A, korrigierter Mittelwert des Flächenverhältnisses Analyt zu IS (korrigiert bedeutet, daß der genannte Mittelwert mit dem Flächenverhältnis des Analyten in der Inkubationslösung oder Dispersion vor der Inkubation zum IS normalisiert wurde. Als Formel: (Fläche Analyt ÷ Fläche IS) ÷ (Fläche Analyt zur Zeit 0 ÷ Fläche IS zur Zeit 0)

B, Korrigierte Konzentration an Analyt im Vial in ng/ml , Korrektur analog A (Konzentration 500 geringer als im unteren Akzeptor-Kompartiment)

C, Korrigierte Konzentration in ng/ml im unteren Akzeptor-Kompartiment. Korrektur analog A.

D, Intra- und Inter-Versuch-(relative)-Standardabweichung in %

E, Relative Permeabilität bezogen auf Formulierung 1 (willkürlich als 100% gesetzt) in %

Tabelle 16.	Resultate der 5 Permeablitätsversuche mit den dispergierten Formulierungen 4-7 und den
Lösungen 8 und 9	von CsA und D-MeAla ³ EtVal ⁴ Cs durch Caco-2-Zellmonolayer in Transwells® (Legende gleich
wie in Tabelle 4).	

Formulierung/ Versuch	Α	В	С	D	E
	×10-3	×10-3			
4-D-MeAla ³ EtVal ⁴ Cs					
Versuch 3	30	713	356.5	26.9	176.9
Versuch 5	24	543	271.5	24.5	78.5
Mittelwert V3/V5	27	628	314.0	19.1	112.4
5-D-MeAla ³ EtVal ⁴ Cs					
Versuch 3	46	596	298.0	26.2	147.9
Versuch 5	89	1030	515.0	19.1	148.8
Mittelwert V3/V5	67	813	406.5	37.8	145.4
6-D-MeAla ³ EtVal ⁴ Cs					
Versuch 3	41	547	287.0	31.1	142.4
Versuch 5	47	610	305.0	27.8	88.2
Mittelwert V3/V5	44	579	289.5	7.7	103.4
7-D-MeAla ³ EtVal ⁴ Cs					
Versuch 5	80	69	34.5	45.3	12.3
8-D-MeAla ³ EtVal ⁴ Cs	EtOH 0.1%				
Versuch 1	123	137	68.5	7.4	18.8
Versuch 2	160	144	72.0	7.4	39.6
Versuch 5	42	29	14.5	1.2	8.0
Mittelwert V1/V2/V5	108	103	51.7	32.0	18.4
9-CsA EtOH 0.1%					
Versuch 1	205	124	62.0	27.2	22.7
Versuch 2	114	119	59.5	26.0	21.8
Mittelwert V1/V5	160	122	60.8	2.9	21.8

Im Folgenden sind die Resultate der fünf Versuche in gestraffter Form dargestellt. Die angegebenen Prozentzahlen stellen die Mengen an Wirkstoff dar, welche die Caco-2-Zellmonolayer passieren und sich im unteren Akzeptor-Kompartiment wiederfinden lassen. Es handelt sich hierbei um relative « Absorptions-Angaben » bezogen auf die Formulierung 1 (Sandimmun Neoral[®]). Da alle Werte auf Formulierung 1 bezogen wurden, welcher die fiktive Permeabiltät von 100% zugewiesen wurde.

1-CsA als **100%** (**±37%)** gesetzt würde bei den anderen dispergierten Formulierungen und Lösungen zu folgenden relativen prozentualen Mengen führen:

2-CsA	93% ±15%
3- D-MeAla³EtVal4Cs	1 64 % ± 7%
4- D-MeAla³EtVal4Cs	112% ±19%
5- D-MeAla³EtVal4Cs	1 45 % ± 38%
6- D-MeAla³EtVal4Cs	103% ± 8%
7- D-MeAla³EtVal4Cs	12% ±45%
8- D-MeAla³EtVal4Cs	18% ±32%
9-CsA	22% ± 3%

2.2.d. In-vivo-Versuche

Verabreichung i.v.

Abbildung 44 und Abbildung 45 zeigen die Konzentrations-Zeit-Kurven in Vollblut nach Verabreichungen i.v. von 10 mg/kg CsA oder 10 mg/kg D-MeAla³EtVal⁴Cs.

<u>CsA i.v.</u>

Abbildung 44 zeigt die Blutspiegel-Zeitkurve von CsA nach der Verabreichung einer intravenösen Dosis von 10 mg/kg in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 5 min (t_{max}) auf und betrug 8838 ng/ml. Alle weiteren Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 44. CsA-Verabreichung (10mg/kg) i.v. in SD-Ratten als Mittelwert und S.D.. In rot Gruppe 1 (n=6) (AUC: 83487 ng/mlh), in blau Gruppe 2 (n=6) (AUC: 89196 ng/mlh) und in schwarz Gruppe 1 und 2 zusammengefasst (AUC: 73220 ng/mlh).

D-MeAla³EtVal⁴Cs i.v.

Abbildung 45 stellt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer intravenösen Dosis von 10 mg/kg in SD-Ratten dar. Das Blutspiegelmaximum C_{max} trat nach 5 min (t_{max}) auf und betrug 7757 ng/ml. Alle weiteren Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 45. D-MeAla³EtVal⁴Cs-Verabreichung i.v. (10 mg/kg) in SD Ratten als Mittelwert und S.D.. In rot Gruppe 1 (n=6) (AUC: 78197 ng/mlh), in blau Gruppe 2 (n=6) (AUC: 80795 ng/mlh) und in schwarz Gruppe 1 und 2 zusammengefasst (AUC: 78691 ng/mlh).

Verabreichung p.o.

In den folgenden Unterkapiteln sind die Konzentrations-Zeit-Kurven in Vollblut nach Verabreichungen p.o. von 10 mg/kg CsA oder 10 mg/kg D-MeAla³EtVal⁴Cs wiedergegeben (Abbildung 46 – 51).

CsA-Formulierung 1: Dispersion 1

Abbildung 46 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 1 in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 1 h (t_{max}) auf und betrug 2414 ng/ml. Die absolute Bioverfügbarkeit betrug 54%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 46. CsA-Verabreichung p.o. (10 mg/kg) in SD Ratten als Mittelwert und S.D.. In rot Gruppe 1 (n=6) (AUC: 46118 ng/mlh), in blau Gruppe 2 (n=6) (AUC: 47737 ng/mlh) und in schwarz Gruppe 1 und 2 zusammengefasst (AUC: 39245 ng/mlh).

D-MeAla³EtVal⁴Cs Formulierung 3: Dispersion 3

Abbildung 47 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 3 in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 1 h (t_{max}) auf und betrug 1320 ng/ml. Die absolute Bioverfügbarkeit betrug 33%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 47. D-MeAla³EtVal⁴Cs (10 mg/kg) p.o. Verabreichung in SD Ratten als Mittelwert und S.D. In rot einzige Gruppe (n=6) (AUC= 26129 ng/mlh).

D-MeAla³EtVal⁴Cs Formulierung 4: Dispersion 4

Abbildung 48 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 4 (unverdünnte Gabe) in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 4 h (t_{max}) auf und betrug 1333 ng/ml. Die absolute Bioverfügbarkeit betrug 42%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 48. D-MeAla³EtVal⁴Cs (10 mg/kg) p.o. Verabreichung in SD Ratten als Mittelwert und S.D. In rot einzige Gruppe (n=6) (AUC: 32974 ng/mlh).

D-MeAla³EtVal⁴Cs Formulierung 5: Dispersion 5

Abbildung 49 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 5 in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 30 min (t_{max}) auf und betrug 1341 ng/ml. Die absolute Bioverfügbarkeit betrug 24%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 49. D-MeAla³EtVal⁴Cs(10 mg/kg) p.o. Verabreichung in SD Ratten als Mittelwert und S.D. In rot einzige Gruppe (n=6) (AUC: 18711 ng/mlh).

D-MeAla³EtVal⁴Cs Formulierung 6: Dispersion 6

Abbildung 50 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 6 in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 30 min (t_{max}) auf und betrug 1397 ng/ml. Die absolute Bioverfügbarkeit betrug 51%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 50. D-MeAla³EtVal⁴Cs (10 mg/kg) p.o. Verabreichung in SD Ratten als Mittelwert und S.D. In rot Gruppe 1 (n=6) (AUC: 40381 ng/mlh), in blau Gruppe 2 (n=6) (AUC: 43175 ng/mlh) und in schwarz Gruppe 1 und 2 zusammengefasst (AUC: 41707 ng/mlh).

D-MeAla³EtVal⁴Cs Formulierung 7: Dispersion 7

Abbildung 51 zeigt die Blutspiegel-Zeitkurve von D-MeAla³EtVal⁴Cs nach der Verabreichung einer per oralen Dosis von 10 mg/kg der Dispersion 7 in SD-Ratten. Das Blutspiegelmaximum C_{max} trat nach 2 h (t_{max}) auf und betrug 520 ng/ml. Die absolute Bioverfügbarkeit betrug 10%. Weitere Werte sind der Abbildung und der Abbildungslegende zu entnehmen.

Abbildung 51. D-MeAla³EtVal⁴Cs (10 mg/kg) p.o. Verabreichung in SD Ratten als Mittelwert und S.D. In rot Gruppe 1 (n=6) (AUC: 3086 ng/mlh), in blau Gruppe 2 (n=6) (AUC: 8584 ng/mlh) und in schwarz Gruppe 1 und 2 zusammengefasst (AUC: 7826 ng/mlh).

In Tabelle 17 sind die *In-vivo-*Daten zusammengefasst. Wie in den *In-vitro-*Versuchen wurden die Daten auf die Formulierung 1 bezogen.

Formulierung (F)		AUC		Cmax	t _{max}	BV abs	R1	R2
				_				
	0-72h	0/0.25-96h	0-96h					
CsA i.v.	83487	89196	73220	8838	5'			
D-MeAla ³ EtVal ⁴ Cs i.v.	78197	80795	78691	7757	5'			
1 (CsA)	46118	47737	39245	2414	1 h	54%	100%	1 00%
3	26129	-	-	1320	1 h	33%	62 %	55%
4	32974	-	-	1333	4 h	42 %	81%	55%
5	18711	-	-	1341	30'	24 %	47%	56%
6	40381	43175	41707	1397	30'	51%	96 %	58%
-	0-8h	0.25-24h	0-24h	_				
7	3086	8584	7826	590	2 h	10%	1 9 %	24%

Tabelle 17.In-vivo-Daten der Formulierungen 1-7 (ohne 2) bei i.v. und p.o. Verabreichung von 10mg/kg CsA oder D-MeAla³EtVal⁴Cs an SD Ratten

AUC, Area under the curve

 C_{max} , Blutspiegelmaximum

tmax, Zeit-punkt des Auftretens von Cmax

BVabs, Absolute Bioverfügbarkeit (Berechnet mit den fettgedruckten Werten)

R1, Relative Permeabilität, verglichen mit der Referenzformulierung 1 in % (berechnet mit BV_{abs})

R2, Relative Absorbtion/Permeabilität, verglichen mit der Referenzformulierung 1 in % (Berechnet mit cmax)

2.2.e. Gesamtübersicht der In-vitro- und In-vivo-Studien

Tabelle 18 zeigt zusammenfassend die Daten der *In-vitro-*Permeabilitätsversuche sowie diejenigen der *In-vivo-*Studien.

Tabelle 18. Gesamtübersicht der In-vitro-Permeabilitätsversuche und In-vivo-Studien. Perr	neabilität	jeweils
relativ zur Formulierung 1 angegeben.		

	Relative In-vitro-		Relative In-vivo-		
Formulierung/ Versuch	Permeabilität	CV(%)	Permeabilität		CV (%)
			R1(BV _{abs})	R2 (Cmax)	
1-CsA	100 %	37	100 %	100%	-
2-CsA	93 %	15	nd	nd	-
3-D-MeAla³EtVal4Cs	1 64 %	7	62 %	55%	-
4-D-MeAla³EtVal4Cs	112 %	19	81 %	55%	-
5-D-MeAla³EtVal4Cs	145 %	38	47 %	56%	-
6-D-MeAla³EtVal⁴Cs	103 %	8	96 %	58%	-
7-D-MeAla³EtVal4Cs	12 %	45	19 %	24%	-
8-D-MeAla³EtVal4Cs	18 %	32	nd	nd	-
9-CsA EtOH 0.1%	22 %	3	nd	nd	-

nd, not determined (nicht bestimmt)

 C_{max} , Blutspiegelmaximum

 BV_{abs} , Absolute Bioverfügbarkeit

R1, Relative Permeabilität, verglichen mit der Referenzformulierung 1 in % (berechnet mit BV_{abs})

R2, Relative Absorbtion/Permeabilität, verglichen mit der Referenzformulierung 1 in % (Berechnet mit c_{max}) **CV**, *Coefficient of variation*

V. Diskussion

1. Analytischer Teil

1.1. Ionen-Suppression (ion suppression)

Die Ionen-Suppression von CsA durch Formulierungsbestandteile schien ein unüberwindbares Problem darzustellen, wurde doch das MS/MS Signal von CsA im Infundierversuch (*post-column infusion*) um fast 100% unterdrückt. Jedoch konnte dieses Problem durch Verdünnen (1:500) der Proben und Zusetzen von CsD als internem Standard (proportionales Unterdrücken des Signals) umgangen werden, so daß ein zum Quantifizieren der Analyten ausreichendes Signal erhalten wurde. Jede Formulierung konnte aus Zeitgründen nicht eigens validiert werden, aber zumindest eine Kalibriergerade wurde aufgenommnen, um eine Quantifizierung zu ermöglichen. Manche Kalibriergeraden versagten zwar, konnten aber mit einer Kalibriergerade einer ähnlichen anderen Formulierung ersetzt werden.

Um Wirkstoffe in Formulierungen messen zu können, ist es besonders wichtig, für jede Formulierung und für jeden Wirkstoff eine eigene Validierung durchzuführen. Auch der biologische Teil sollte so weit möglich validiert werden.

1.2. Methodenbeschreibung und Validierung

Die in dieser Arbeit entwickelten und verwendeten bioanalytischen Methoden waren spezifisch (*specific*), sensitiv (*sensitive*), akkurat (*accurate*) und präzise (*precise*). Die Methode setzte sich aus einer partiellen Online-HPLC-Extraktion, gekoppelt mit einer Elektrosprayionisation-Massen-Spektrometrischen-Detektion (LC-LC-ESI-MS/MS) zusammen. Weiter verwendete die Methode einen einfachen Aufarbeitungsschritt der Probe mittels Fällungsextraktion (Zellextrakte) oder ohne Fällung (Zellüberstand) mit nachfolgender chromatographischer LC-LC-Aufreinigung (isokratische Elution) und Auftrennung (Gradienten Elution). Die Kalibrierkurven von CsA waren in HBSS linear im Bereich zwischen 0.3 – 80 ng/ml (LOD: 40 pg/ml) und in LS-180 Zellextrakt im Bereich zwischen 0.6 – 10 ng/ml (LOD: 160 pg/ml). Die LC-LC–ESI-MS/MS Methode ermöglichte eine quantitative Bestimmung (LLOQ) von 0.3 ng/ml CsA in HBSS, sowie von 0.6 ng/ml CsA und dessen drei Hauptmetabilite AM1, AM9 und AM4N in LS-180-Zellextrakt (linearer Bereich: 0.6 – 10 ng/ml, LOD: 0.3 ng/ml). Dabei konnte ein hohes Maß an Genauigkeit (*precision und accuracy*) und Wiederholbarkeit (*repeatability*) erreicht werden (Publikation in Vorbereitung).

Zur Messung von CsA werden in der Klinik und in der pharamakokinetischen Forschung meist Immunoassays verwendet (z.B. EMIT, Syva EMIT, Dade Behring Inc., TDx/TDxFLX and AxSYM, Abbott Laboratories). Es wurde berichtet, dass eine Cross-Reaktivität von CsA mit dessen drei Hauptmetabilten (AM1, AM9 und AM4N) von bis zu 50% stattfinden kann (Lensmeyer et al., 1990; Masri et al., 2003; Morris, 2000; Murthy et al., 1998). Der Messbereich der verschiedenen Testes liegt je nach Test zwischen 15 und 600 ng/ml (resp. 40 und 1500 ng/ml für manche) und die Wiederfindung liegt zwischen 93% (100 ng/ml) und 119% (95 ng/ml). Die Intra-day-imprecision liegt zwischen 2% (450 ng/ml) und 11% (50 ng/ml) und die Inter-day-imprecision liegt zwischen 3% (450 ng/ml) und 11% (100 ng/ml) (Andrews and Cramb, 2002; Schutz et al., 1998; Tredger et al., 2000). Gängige HPLC-UV-Methoden weisen einen linearen Meßbereich zwischen 40 und 1500 ng/ml auf und die Intra-day-imprecision liegt zwischen 5 – 12% und die Inter-day-imprecision liegt zwischen 7 und 14%(LOD: 15-25 ng/ml) (Rustum, 1990; Zeng et al., 1999). Die Wiederfindung liegt dabei zwischen 95 und 110% (Rustum, 1990; Schutz et al., 1998; Tredger et al., 2000; Zeng et al., 1999). Weiter können CsA und dessen Metabolite AM4N, AM1 und AM9 auch mittels HPLC-UV zwischen 25 und 1000 ng/ml (LOD: about 1.6 ng on column resp. 8 ng/ml) gemessen werden, mit einer Intra-day- und Inter-day-Standardabweichung für CsA < 15% und für dessen Metabolite < 21% (Hermann et al., 2002).

Die Kopplung von HPLC mit MS-Geräten erlaubt es einen Meßbereich von 1 und 1000/1500 ng/ml ($r \ge 0.99$) CsA, mit einer Wiederfindung zwischen 72 – 96%, mit einer *Inra-day-* und *Interday-Imprecision* (CV%) zwischen 2 - 14% und mit einer Richtigkeit zwischen 95 – 114% abzudecken (Ceglarek et al., 2004; Kirchner et al., 1999a; Kirchner et al., 1999b; Magni et al., 2001; McMahon et al., 2000; Mendonza et al., 2004). Die tiefst angegebene Detektionslimite für CsA lag bei 0.695 ng/ml im Vollblut, wobei ein *Triple-quad-Massenspektrometer verwendet wurde* (McMahon et al., 2000).

Die Quantifizierung der CsA-Metabolite AM4N, AM1 und AM9 wurde nur in sehr wenigen Arbeiten mittels HPLC-UV oder LC-MS(/MS) dargestellt (Gan et al., 1996; Kelly et al., 1999; Prueksaritanont et al., 1993). Meist wurde die Quantifizierung der CsA-Hauptmetabolite mittels Immunoassay oder gar nicht bestimmt. Oft ist auch nur von Detektion die Rede (Simpson et al., 1998). In den Arbeiten von Prueksaritanont et al. (1993), Gan et al. (1996) und Kelly et al. (1999) wird keine Validation der Metabolite angegeben, sondern es werden nur Metabolitmengen dargestellt.

Somit bleibt die Arbeit von Hermann et al. (2002) eine der wenigen, wenn nicht die einzige veröffentlichte HPLC-UV-Arbeit, welche eine Validation der CsA-Hauptmetabolite AM1, AM9 und AM4N angibt.

Schlussfolgernd kann damit gesagt werden, dass die in dieser Dissertationsarbeit entwickelte LC-LC-ESI-MS/MS-Methode die erste unveröffentlichte LC-MS(/MS) Methode ist, welche die drei CsA-Hauptmetabolie (AM1, AM9 und AM4N) quantitativ in HBSS und Zellextrakt (LS-180-Zellen) bestimmt. Dabei liegt die Bestimmungsgrenze (LLOQ) von CsA und dessen drei Metabolite (AM1, AM9, AM4N) mit 0.6 ng/ml um ein 30-faches und die Detektionsgrenze (LOD) mit 0.3 ng/ml (resp. 0.2 ng/ml für CsA) um ein 25-faches (resp. um ein 50-faches für CsA) tiefer als in der/den oben beschriebenen Arbeit/en. Der lineare Bereich ist zwar deutlich kleiner und die Auftrennung der beiden Hydoxymetabolite AM1 und AM9 ist noch Optimierungsbedürftigt, beide Parameter liegen jedoch in den für diese Dissertationsarbeit notwendigen Bereich. Die *Intra-day-* und *Inter-day-*Präzision und Richtigkeit in Zellextrakt ist dabei gleich gut oder besser als in der Arbeit von Hermann et al. (2002).

2. Biologischer Teil

2.1. CYP3A4-mRNA Expression und CsA-Metabolisierung in LS-180-Zellen: Ein Vergleich

2.1.a. CsA-Metabolisierung und CYP3A4-Versuche

In der Literatur gib es viele Hinweise darauf, daß CYP3A4 und P-gp eine Absorptionsbarriere für viele verschiedene Wirkstoffe im gastro-intestinalen Trakt darstellen könnten (Hebert et al., 1992; Zhang and Benet, 2001). Einer dieser Wirkstoffe ist CsA. Er wurde vielfach als P-gp-Inhibitor benutzt, u.a. auch in mit Calcitriol vorbehandelten Zellen, welche einen erhöhten Level an CYP3A4-mRNA aufwiesen, verglichen zu nicht vorbehandelten Kontrollzellen (Pascussi et al., 2001; Pfrunder et al., 2003a; Schmiedlin-Ren et al., 1997; Schmiedlin-Ren et al., 2001). Auch wurde in Zellen, welche eine erhöhte CYP3A4-mRNA-Menge verglichen mit nicht induzierten Kontrollzellen zeigten, ein Anstieg in der Metabolitenbildung von CsA, hauptsächlich von AM1 beobachtet (Gan et al., 1996). In frühren Publikationen konnte gezeigt werden, daß Arzneimittelinteraktionen mit CsA nicht nur von CYP3A4-Interaktionen in der Leber hervorgerufen wurden, sondern daß diese möglicherweise auch durch eine intestinale Wechselwirkung mit CYP3A4 und P-gp hervorgerufen wurden (Fricker et al., 1996; Hebert et al., 1992). Es wurde gezeigt, daß Calcitriol vorwiegend CYP3A4 in LS-180-Zellen und in geringerem Masse CYP3A5 und 3A7 in Caco-2-Zellen induziert (Pfrunder et al., 2003a; Schmiedlin-Ren et al., 1997). MDR1-mRNA war in diesen Arbeiten durch Calcitriol-Vorbehandlung in Caco-2- und LS-180-Zellen nur zu einem geringeren Maß induzierbar oder wurde schon in unterschiedlichen Mengen natürlich exprimiert (Pfrunder et al., 2003a; Schmiedlin-Ren et al., 2001; Thummel et al., 2001). Somit stellen diese beiden Zellsysteme ein intestinales Modell dar, in welchem sowohl CYP3A4 als auch P-gp exprimert werden und in denen die mRNA-Produktion von CYP3A4 und MDR1 in unterschiedlichem Maß mit Wirkstoffen wie Calcitriol induziert werden können. Das LS-180-Zellmodell sollte daher ein geeignetes Modell darstellen, um die Rolle von CYP3A4 und P-gp in Interaktionsprozesse mit Wirkstoffen (z.B. CsA) im menschlichen Darm zu untersuchen.

Unsere Beobachtungen bestätigen diese Hypothese, indem sie zum ersten Mal eine direkte Verbindung zwischen dem Anstieg an CsA-Metaboliten und dem Anstieg an CYP3A4-mRNA in einem Calcitriol induzierten LS-180-Zellmodell herstellen. Die mittlere Gesamtmenge der CsA-Hydroxymetaboliten AM1 und AM9, aus drei unabhängigen Versuchen, stieg intrazellulär und extrazellulär (Zellüberstand) in mit Calcitriol induzierten (72 h) gegenüber nicht induzierten LS-180-Zellen signifikant an. Dieser Anstieg konnte für alle benutzten CsA-Konzentrationen der Zellinkubationen festgestellt werden. Die Metabolisierung schien saturierbar zu sein, d.h. ab einer gewissen mRNA-Menge ergab mehr mRNA nicht noch mehr CsA-Metabolite. Dies könnte entweder darauf hindeuten, dass der Aufnahmeprozeß von CsA in die Zelle saturierbar ist (so weit noch nicht beobachtet) oder aber, dass die Enzymaktivität saturierbar ist. Eine andere mögliche Erklärung wäre, daß nicht die gesamte Menge an erhöhter CYP3A4-mRNA in funktionelle CYP3A4-Enzyme resultiert. Falls dies der Fall wäre, so wäre die Sachlage noch komplexer, denn es wurde nicht mit allen drei benutzten CsA-Inkubationskonzentrationen die Bildung der gleichen Metabolitenmenge beobachtet, was man aber erwarten könnte. Also wäre ein komplexes Zusammenspiel vieler Faktoren zu berücksichtigen. Eine Induktion von LS-180-Zellen mit Calcitriol führte, verglichen mit nicht induzierten Kontrollzellen, in allen drei unhängigen Versuchen zu einem signifikanten CYP3A4-mRNA-Anstieg. Ein schwächerer (verglichen mit CYP3A4-mRNA), jedoch nicht signifikanter Anstieg konnte auch für MDR1 beobachtet werden, wobei schon der Anfangswert der Gesamtmenge an MDR1mRNA um ein vielfaches des Wertes der induzierten CYP3A4-mRNA höher war.

Um die Beteiligung von CYP3A4 im Metabolisationsprozeß zu bestätigen, wurden Ketoconazol, ein bekannter CYP3A4- und P-gp-Inhibitor (Eagling et al., 1998; Ekins et al., 2002), sowie Talinolol, ein P-gp- aber kein CYP3A4-Substrat (Schwarz et al., 2000) eingesetzt. Die Inkubation mit Ketoconazol von mit Calcitriol induzierten Zellen führte zu einer signifikanten Senkung der Gesamtmenge an CsA-Metaboliten AM1/AM9 auf das Niveau von nicht induzierten Kontrollzellen zurück. Dieses Resultat wurde in zwei unabhängige Versuche mit 2 µM CsA-Inkubationen bestätigt. Talinolol veränderte die Metabolisation von CsA zu AM1 und AM9 oder deren Aufnahme, sowie der von CsA nicht signifikant. Die intra- und extrazelluläre CsA-Mengen und die der Metabolite AM1 und AM9 wurden durch Talinolol also nicht beeinflußt. Die zelluläre CsA-Aufnahme wurde auch nicht signifikant von der angewandten CsA-Konzentration beeinflußt, sondern blieb sowohl in den Calcitriol induzierten wie in den nicht induzierten Zellen gleich. Die zelluläre Aufnahme von CsA wurde auch nicht von Ketoconazol oder Talinolol signifikant verändert. Unsere Daten sind im Einklang mit etlichen, bereits publizierten Resultaten die entweder von einer CYP3A4-/MDR1-mRNA-Zunahme (Schmiedlin-Ren et al., 1997; Schmiedlin-Ren et al., 2001; Thummel et al., 2001) oder von der Zunahme der CsA-Metabolitenmenge (Gan et al., 1996; Kelly et al., 1999) in CYP3A4(/P-gp) induzierten In-vitro- oder In-vivo-Modelle berichten. Der N-Desmethyl-CsA-Metabolit AM4N zeigte im Zellüberstand ein gleichartiges Verhalten wie die Hydroxymetaboliten AM1 und AM9 für alle drei verwendeten CsA-Inkubationskonzentrationen. Der inhibitorische Effekt von Ketoconazol auf dessen Bildung konnte gleichfalls beobachtet werden. Auch wurde keine Beeinflussung durch Talinolol festgestellt. Anderseits wurde in den Zellen praktisch kein AM4N Metabolit gefunden und die extrazelluläre AM4N Menge war etwa um den Faktor 10 geringer als AM1 und AM9 (Menge beider Metabolite zusammen). Nur in einem Versuch mit einer CsA-Inkubationskonzentration von 10 µM konnte eine geringe Menge an AM4N in mit Calcitriol induzierten Zellen detektiert werden. Der Unterschied in der Lokalisation des N-Desmethyl Metaboliten AM4N, verglichen mit den Hydroxymetaboliten, könnte möglicherweise durch die Anwesenheit einer andere Pumpe erklärt werden, welche AM4N aus der Zelle exportieren würde (Gutmann et al., 1999; Pfrunder et al., 2003a).

2.1.b. Bislang unbekannter N-Desmethyl-CsA-Metabolit

Die im Rahmen dieser Arbeit gewonnen Resultate lassen darauf schliessen, daß neben den bekannten CsA-Metaboliten auch ein weiterer neuer N-Desmethyl-CsA-Metabolit in LS-180-Zellen gebildet werden könnte. Dieser konnte in allen durchgeführten CsA-Inkubations-Versuche im Zellüberstand, wie auch in den Zellen entdeckt werden, sowohl in Calcitriol induzierten Zellen, wie auch in nicht Calcitriol behandelten Kontrollzellen. Dieser neue N-Desmethyl-CsA-Metabolit wurde weder in mit Calcitriol inkubierten Zell-Blindproben (nicht mit CsA inkubiert), noch in mit CsA und dessen drei Hauptmetaboliten gespikten Kalibrierstands detektiert. Dies schließt die Möglichkeit eines zellulären Artefakts oder einer Verunreinigung von CsA (oder dessen Hauptmetabolite) aus. Retentionszeitverschiebungen als Ursache für eine Deutung des Metaboliten AM4N als neuer Metabolit, konnte damit ausgeschlossen werden, daß beide N-Desmethyl-CsA-Metabolite (neue entdeckter Metabolit und AM4N) in derselben Probe gleichzeitig detektiert wurden und dabei die Retentionszeit der anderen Analyte und IS in der Probe konstant blieben. Als wichtigster Hinweis für die Bildung eines bislang unbekannten N-Desmethyl-CsA-Metaboliten gilt, daß dieser im gleichen Massenbereich wie für AM4N detektiert wurde und ein sehr ähnliches MS/MS Fragementierungsmuster aufweist wie AM4N.

Weiter konnte beobachtet werden, daß dieser bislang unbekannte N-Desmethyl-CsA-Metabolit in den CsA-Inkubationsversuche in LS-180-Zellen, nicht gleich gebildet wurde, wie die weiter oben beschriebenen Metabolite AM1 und AM9. Der zelluläre Metabolitanteil blieb in allen Gruppen konstant. Sowohl in den mit Calcitriol, wie auch in den mit Calcitriol vorbehandelten und Ketoconazol oder Talinolol behandelten blieb die intrazelluläre Menge des bislang unbekannten Zellen N-Desmethyl-CsA-Metaboliten gleich hoch wie in der nicht-vorbehandelten Kontrollgruppe der LS-180-Zellen. Der extrazelluläre Anteil verhielt sich hingegen in allen drei Gruppen gleich wie für AM1, AM9 und AM4N. In den mit Calcitriol vorbehandelten Zellen nahm der extrazelluläre Anteil des unbekannten N-Desmethyl-CsA-Metaboliten, verglichen mit nicht-vorbehandelten Kontrollzellen signifikant zu und konnte durch die Zugabe von Ketoconazol, in der dritten mit Calcitriol behandelten Gruppe signifikant reduziert werden (auf dem Niveau der Kontrollgruppe). In den mit Calcitriol vorbehandelten und mit Talinolol behandelten Zellen blieb die Menge an bislang unbekanntem N-Desmethyl-CsA-Metaboliten nicht wie für AM1, AM9 und AM4N gleich hoch wie in der mit Calcitriol vorbehandelten Gruppe, sondern wurde verglichen zur Kontrollgruppe signifikant reduziert (unter dem Niveau der Kontrollgruppe und der Ketoconazol-Gruppe). Damit wäre es denkbar, daß dieser unbekannte N-Desmethyl-CsA-Metabolit nicht ausschließlich durch CYP3A4 aebildet wird.

Außerdem scheint es so, daß neben dem beschriebenen unbekannter N-Desmethyl-CsA-Metaboliten noch mehrere (in kleineren Mengen) weitere gebildet werden. Im MS/MS Chromatogramm war dies durch mehrere Peaks mit ähnlichem Fragmentiermuster (Elution nach dem hier oben beschriebenen bisher unbekannten N-Desmethyl-CsA-Metabolit) zu erkennen.

2.1.c. Schlußfolgerungen

Zusammenfassend läßt sich sagen, daß in drei unabhängigen Versuchen gezeigt werden konnte, daß in mit Calcitriol behandelten (induzierten) LS-180-Zellen verglichen mit unbehandelten LS-180-Kontrollzellen eine signifikante Zunahme des CYP3A4 Genprodukts festgestellt werden konnte. Diese CYP3A4-mRNA-Zunahme erfolgte parallel zu einer signifikanten Zunahme in der CsA-Metabolisierung in mit Calcitriol behandelten (induzierten) LS-180-Zellen, verglichen mit unbehandelten LS-180-Kontrollzellen. In diesen mit Calcitriol induzierten Zellen wurde mittels LC-LC-ESI-MS/MS ein signifikanter intra- und extrazellulärer Anstieg der drei CsA-Hauptmetabolite AM1, AM9 und AM4N beobachtet, verglichen mit nicht induzierten Kontrollzellen. Diese Erkenntnisse stehen im Einklang mit früher beschriebenen Resultaten, welche entweder einen Anstieg der CYP3A4-mRNA oder einen Anstieg der CsA-Metabolisierung für sich alleine maßen (Gan et al., 1996; Kelly et al., 1999; Pascussi et al., 2001; Schmiedlin-Ren et al., 2001; Thummel et al., 2001). Diese Arbeit bringt zum ersten Mal diese oft separat beschriebenen Sachverhalte zusammen (Publikation in Vorbereitung). Weiter weisen diese Ergebnisse darauf hin, daß LS-180-Zellen, welche mit Calcitriol behandelt werden, ein interessantes Modell zum Untresuchen von intestinalen CYP3A4-Interaktionen darstellen konnte. Zudem deuten die Resultate darauf hin, daß ein oder mehrere bislang unbekannte N-Desmethyl CsA-Metabolit(e) in LS-180-Zellen gebildet werden. Weitere Ergebnisse deuten darauf hin, daß dieser untersuchte und bislang unbekannte N-Desmethyl-CsA-Metabolit möglicherweise einen zusätzlichen, alternativen Metabolisierungspathway zum CYP3A4-Pathway besitzen könnte. Dies würde mit früheren Beobachtungen (Gan et al., 1996; Kelly et al., 1999; Prueksaritanont et al., 1993) im Einklang stehen, welche zeigten, daß in vitro andere CsA-Metabolite gebildet werden können, als die beim Menschen isolierten und daß zusätzliche Enzyme für die Metabolisierung von CsA verantwortlich sein könnten, als CYP3A4 (zumindest in anderen Modellen als das humane).

2.2. CsA- und D-MeAla³EtVal⁴Cs-Formulierungen: Permeabilitätsversuche

2.2.a. In-vitro-Permeabilitätsversuche

Die in diesem Projekt gewonnen Daten zeigen, daß Formulierungen von CsA und D-MeAla³EtVal⁴Cs im Transwell[®]-System mittels der im analytischen Teil beschriebenen LC-LC-ESI-MS/MS Methode und unter Berücksichtigung der in Kapitel V1.1. gemachten Diskussion gemessen werden können. Es wurde gezeigt, daß ein guter Marker zum Testen der Zellmonolayerintegrität unumgänglich ist. Der zu diesem Zweck verwendete Marker FD-4 konnte in fast allen vermuteten Fällen dichte von undichten Zellmonolayer unterscheiden.

Was die eigentlichen Permeabiltätsversuche der Formulierungen angeht, so konnte zwischen echten Formulierungen (Formulierungen 1-6) und Scheinformulierungen (Formulierung 7 und Lösungen 8 und 9) unterschieden werden. Diese Scheinformulierungen zeigten eine relative « Absorption » (verglichen mit der Formulierung 1) von <25%. Während die übrigen « echten » Formulierungen eine relative « Absorption » (verglichen mit der Formulierung 1) von > 80% aufwiesen. Weiter scheint es, daß manche Formulierungen zu einer grösseren Variabilität neigen als andere (z.B. Formulierung 4 und 6), wie dies für Sandimmun[®], verglichen mit dem neuen Sandimmun[®] Neoral, in vivo beobachtet wurde (Humbert, 1997; Kelles et al., 1999; Pollak et al., 1999). Dies waren aber nur Hinweise, welche bestätigt werden müssen oder noch bestätigt werden müssten. Es scheint so, daß die Formulierungen 2, 4 und 6 gleich gut aufgenommen werden, wie die Referenzformulierung 1, während die Formulierung 3 und 5 eine (etwas) bessere »Absorption« als die Letztere zu haben scheinen. Es wurde auch gezeigt, wie groß der Einfluß der Ionen-Suppression für die Messung von Formulierungen und die Wahl eines geeigneten IS sein kann (Kapitel V.1.1.). Um die Ergebnisse solcher Studien zu beurteilen, ist es deshalb besonders wichtig, für jede Formulierung und für jeden Wirkstoff jeweils eine eigene Validierung durchzuführen, was den Rahmen dieser Arbeit gesprengt hätte und deshalb leider nicht durchgeführt werden konnte. Selbstverständlich sollte auch der biologische Teil so weit möglich validiert sein. Deshalb sind alle Angaben dieses Projekts als Hinweise anzusehen, welche sich nach erfolgten Optimierungs- und Validierungsschritten bestätigt werden sollten. Dies könnte somit zu einer geeigneten In-vitro-Methode zum Unterscheiden von geeigneten Formulierungen (hier die >80% relativer « Absorption ») von ungeigneten (hier die <25% relativer « Absorption ») führen.

2.2.b. In-vivo-Studien

Auch in den *In-vivo-*Studien konnte zwischen echten Formulierungen (Formulierungen 1,3-6) und der Scheinformulierung (Formulierung 7) unterschieden werden. Diese Scheinformulierung zeigte auch eine relative « Absorption » (verglichen mit der Formulierung 1) von <25%.

Während die übrigen « echten » Formulierungen eine relative « Absorption » (verglichen mit der Formulierung 1) von > 47% aufwiesen. Es scheint so, daß die Formulierungen 4 und 6 fast gleich gut wie die Referenzformulierung 1 aufgenommen werden, während die Formulierung 3 und 5 eine (etwas) schlechtere « Absorption » als die letztere zu haben scheinen. Nimmt man c_{max} als Parameter um die « Absorption » zu beschreiben (bei c_{max} ist die Elimination noch nicht überlagert), so sind alle, bis auf die Scheinformulierung 7 (< 25%) gemessenen Formulierung 1 aufgenommen 1 aufgenommen zu wie die Referenzformulierung 1 aufgenommen (ca. 56%).

2.2.c. Vergleich In-vitro-/In-vivo-Studien

Beide Studienarten, in vitro und in vivo, können zwischen sehr schlechten und guten Formulierungen unterscheiden und liegen im selben relativen Bereich zur Referenzformulierung 1 (<25% « Absorption »). In beiden Fällen werden die Formulierungen 4, 6 mit der Referenzformulierung 1 gleichgestellt. Die Formulierungen 3 und 5 hingegen werden nicht gleich gesehen. Während die In-vitro-Methode die Formulierungen 3 und 5 besser als die Referenzformulierung 1 einstuft, stuft sie die In-vivo-Studie als schlechter ein. Unklar bleibt, welche Studie nun die wahre Antwort liefert, denn aus Kostengründen wurde die In-vivo-Methode, welcher sonst stets der Vorrang gegeben wird, nur einmal durchgeführt. Nimmt man zudem cmax als Parameter um die « Absorption » zu beschreiben (bei cmax ist die Elimination noch nicht überlagert), so sind alle, bis auf die Scheinformulierung 7 (< 25%), gemessenen Formulierungen equivalent und werden nur halb so gut (ca. 56% verglichen mit der Referenzformulierung 1) wie die Referenzformulierung 1 aufgenommen. Ausserdem sind die Formulierungen von CsA dafür bekannt, dass sie eine hohe Intra- und Interpatient-Bioverfügbarkeitsvariabilität (zumindest bei der ersten Sandimmun[®] Formulierung) aufweisen (Humbert, 1997; Kelles et al., 1999; Pollak et al., 1999) und mehrmals gemessen werden sollten.

Die *In-vitro*-Versuche hingegen wurden mehrmals durchgeführt und stellen zudem ein humanes Modell (Caco-2-Zellen) dar. Hinzu kommt, daß interessanterweise in dem verworfenen *In-vitro*-Versuch, in welchem während der Inkubation die Wells nicht geschwenkt wurden, die beobachtete relative « Absorption » der Formulierung 3 praktisch 0% betrug. Weitere Studien müßten geplant und durchgeführt werden, um ein definitives Urteil fällen zu können, welche Methode die bessere ist.

117 V. DISKUSSION

Immerhin können aber beide, gute von sehr schlechten Formulierungen unterscheiden.

Ausblick

Die Absorption im Magen-Darm-Trakt ist, wie in dieser Dissertation dargelegt, von großer Bedeutung für die Entfaltung der Wirkung eines Pharmakons im menschlichen Organismus, da die meisten Medikamente per oral verabreicht werden.

Effluxpumpen, wie das P-Glykoprotein, und metabolisierende Enzyme, wie das CYP3A4, werden dabei immer mehr in den Mittelpunkt der Forschung rücken. Damit liegt es nahe, nach Methoden zur Vorhersage dieser Interaktionen zu suchen, um ein besseres Verständnis der Absorption und der anschließenden Bioverfügbarkeit zu gewinnen. Die in dieser Arbeit vorgestellten *In-vitro-*Modelle verstehen sich als Beitrag dazu, nämlich zur Erforschung des Absorptionsverhaltens von (Cyclo-) Peptiden und Xeno-biotika im Allgemeinen im Magen-Darm-Trakt.

Diesen quantitativen Studien über die zelluläre Aufnahme, den Transport und die Metabolisierung von Cyclosporin A und Analogen mit Hilfe von LC-LC-ESI-MS/MS werden hoffentlich viele folgen, um die Absorption, sowie die Drug/Drug-Interaktionen im Magen-Darm-Trakt zu untersuchen. Dies wird wahrscheinlich dazu beitagen, ein besseres Verständnis von Membranpermeabilität an sehr vielen anderen Orten im menschlichen Körper zu gewinnen.

Die in dieser Arbeit entwickelte analytische Methode ist die erste unveröffentlichte (LC-)LC-MS/MS Methode, welche die drei CsA-Hauptmetabolite (AM1, AM9 und AM4N) quantitativ in HBSS und Zellextrakt (LS-180-Zellen) bestimmt. Die Bestimmungsgrenze von CsA und dessen drei Metabolite (AM1, AM9, AM4N) mit 0.6 ng/ml und die Detektionsgrenze (LOD) mit 0.3 ng/ml (resp. 0.2 ng/ml für CsA) liegen tiefer als in allen zuvor publizierten HPLC-Arbeiten. Damit stehen neue Wege offen, um u.a. Arzneimittelinteraktionen mit Cyclosporin A zu untersuchen.

Auf jeden Fall wird die « quantitative Spurenanalytik » in biologischem Material mittels LC-MS/MS eine große Herausforderung für die Zukunft darstellen, welche hoffentlich neue Erkenntnisse hervorbringen wird. Damit wird aber auch die damit verbundene intensive Validationsarbeit – die strikt eingehalten werden muß, um aussagekräftige Daten zu generieren – zunehmen. 120 AUSBLICK
Referenzen

- Anderle P, Niederer E, Rubas W, Hilgendorf C, Spahn-Langguth H, Wunderli-Allenspach H, Merkle HP and Langguth P (1998) P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. *J Pharm Sci* **87**:757-62.
- Andrews DJ and Cramb R (2002) Cyclosporin: revisions in monitoring guidelines and review of current analytical methods. *Ann Clin Biochem* **39**:424-35.
- Andrieu JM, Even, P., Venet, A. (1989) Cyclosporins for treatment and prevention of AIDS and other disorders induced by the LAV/HTLV-III virus, USA.
- Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041-4.
- Artursson P and Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. *Biochem Biophys Res Commun* **175**:880-5.

Aston FW (1942) Mass Spectra and Isotopes. Eckward Arnold and Co., London.

- Baeyens WR, Van der Weken G, Haustraete J, Aboul-Enein HY, Corveleyn S, Remon JP, Garcia-Campana AM and Deprez P (1999) Direct HPLC analysis of ketoprofen in horse plasma applying an ADS-restricted access-phase. *Biomed Chromatogr* 13:450-4.
- Balimane PV and Chong S (2005) Cell culture-based models for intestinal permeability: A critique. *Drug Discov Today* **10**:335-43.
- Barber M, Bordoli, R. S., Sedgwick, R. D., Tyler, A. N. (1981) Fast atom bombardment of solids as an ion source in mass spectroscopy. *Nature* **293**:270-275.
- BBT (2005) Bundesamt für Berufsbildung und Technologie, KTI/CTI, Effingerstrasse 27, CH-3003 Bern.
- Benet LZ, Izumi T, Zhang Y, Silverman JA and Wacher VJ (1999) Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. *J Control Release* **62**:25-31.
- Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J and Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. *Drug Metab Dispos* **31**:815-32.
- Bonfiglio R, King RC, Olah TV and Merkle K (1999) The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. *Rapid Commun Mass Spectrom* **13**:1175-1185.
- Borel JF, Baumann G, Chapman I, Donatsch P, Fahr A, Mueller EA and Vigouret JM (1996) In vivo pharmacological effects of ciclosporin and some analogues. *Adv Pharmacol* **35**:115-246.
- Borel JF, Feurer C, Gubler HU and Stahelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. *Agents Actions* **6**:468-75.
- Borel JF and Wiesinger D (1979) Studies on the mechanism of action of cyclosporin A [proceedings]. *Br J Pharmacol* **66**:66P-67P.
- Braun A, Hammerle S, Suda K, Rothen-Rutishauser B, Gunthert M, Kramer SD and Wunderli-Allenspach H (2000) Cell cultures as tools in biopharmacy. *Eur J Pharm Sci* **11 Suppl 2:**S51-60.

- Bronaugh RL (2000) In vitro percutaneous absorption models. *Ann N Y Acad Sci* **919**:188-91.
- Bush KL (1995) Desorption Ionization Mass Spectrometry. *Journal of Mass Spectrometry* **30**:233-240.
- Canarelli S, Fisch I and Freitag R (2002) On-line microdialysis of proteins with high-salt buffers for direct coupling of electrospray ionization mass spectrometry and liquid chromatography. *J Chromatogr A* **948**:139-49.
- Cardenas ME, Zhu D and Heitman J (1995) Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. *Curr Opin Nephrol Hypertens* **4**:472-7.
- Ceglarek U, Lembcke J, Fiedler GM, Werner M, Witzigmann H, Hauss JP and Thiery J (2004) Rapid simultaneous quantification of immunosuppressants in transplant patients by turbulent flow chromatography combined with tandem mass spectrometry. *Clin Chim Acta* **346**:181-90.
- Christians U, Jacobsen W, Serkova N, Benet LZ, Vidal C, Sewing KF, Manns MP and Kirchner GI (2000) Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. *J Chromatogr B Biomed Sci Appl* **748**:41-53.
- Cordon-Cardo C, O'Brien JP, Boccia J, Casals D, Bertino JR and Melamed MR (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. *J Histochem Cytochem* **38**:1277-87.
- Costar (1999) Corning 1998/1999 Catalog and Transwell information sheet.
- CPMP (2001) Note for Guidanceon the Investigation of Bioavailability and Bioequivalence, in *CPMP/EWP/QWP1401/98*, Commitee for proprietary medicinal products.
- Day CJ, Kim MS, Lopez CM, Nicholson GC and Morrison NA (2005) NFAT expression in human osteoclasts. *J Cell Biochem*.
- de Boer AG, van der Sandt IC and Gaillard PJ (2003) The role of drug transporters at the blood-brain barrier. *Annu Rev Pharmacol Toxicol* **43**:629-56.
- de Wildt SN, Kearns GL, Leeder JS and van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. *Clin Pharmacokinet* **37**:485-505.
- Demeule M, Wenger RM and Beliveau R (1997) Molecular interactions of cyclosporin A with P-glycoprotein. Photolabeling with cyclosporin derivatives. *J Biol Chem* **272**:6647-52.
- Desrayaud S, De Lange EC, Lemaire M, Bruelisauer A, De Boer AG and Breimer DD (1998) Effect of the Mdr1a P-glycoprotein gene disruption on the tissue distribution of SDZ PSC 833, a multidrug resistance-reversing agent, in mice. *J Pharmacol Exp Ther* **285**:438-43.
- Dias VC and Yatscoff RW (1996) An in vitro method for predicting in vivo oral bioavailability of novel immunosuppressive drugs. *Clin Biochem* **29**:43-9.
- Dole M, Mach, L. L., Hunes, R.L., Mobley, R.C., Ferguson, L.P., Alice, M.B. (1968) Molecular Beams of Macroions. *Journal of Chem Phys* **49**:2240-2249.
- Dresser GK, Spence JD and Bailey DG (2000) Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. *Clin Pharmacokinet* **38**:41-57.
- Dreyfuss M, Harry, E., Hofmann, H., Kobel, H., Pache, W., Tscherter, H. (1976) Cyclosporin A and C. *Eur. J. Appl. Microbiol.* **3**:125-133.

- Eagling VA, Tjia JF and Back DJ (1998) Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. *Br J Clin Pharmacol* **45**:107-14.
- Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH and Wrighton SA (2002) Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. *Mol Pharmacol* 61:964-73.
- Fahr A (1993) Cyclosporin clinical pharmacokinetics. *Clin Pharmacokinet* 24:472-95.
- FDA (2001) Guidance for Industry, Bioanalytical Method Validation/ US Department of Health and Human Services Food and Drug Administration Centre for Drug Evaluation and Research (CDER) Centre for Veternary Medicine (CVM).
- Fenn JB (1993) Ion formation from charged droplets: roles of geometry, energy, and time. *Journal of the American Society of Mass Spectrometry* **4**:524-535.
- Fluckiger S, Fijten H, Whitley P, Blaser K and Crameri R (2002) Cyclophilins, a new family of cross-reactive allergens. *Eur J Immunol* **32**:10-7.
- Forth W, Henschler, D., Rummel, W., Starke, K. (1998) *Allgemeine und spezielle Pharmakologie und Toxikologie*. Spektrum Akademischer Verlag GmbH Heidelberg, Berlin.
- Fricker G, Drewe J, Huwyler J, Gutmann H and Beglinger C (1996) Relevance of pglycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. *Br J Pharmacol* **118**:1841-7.
- Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins. *Arch Biochem Biophys* **371**:149-62.
- Gan LS, Moseley MA, Khosla B, Augustijns PF, Bradshaw TP, Hendren RW and Thakker DR (1996) CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. *Drug Metab Dispos* **24**:344-9.
- Garberg P, Eriksson P, Schipper N and Sjostrom B (1999) Automated absorption assessment using Caco-2 cells cultured on both sides of polycarbonate membranes. *Pharm Res* **16**:441-5.
- Geick A, Eichelbaum M and Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. *J Biol Chem* **276**:14581-7.
- Girault D, Haloun A, Viard L, Bellon G, Gottrand F, Guillemain R, Lenoir G, Ladurie FL, Plouvier E, Storni V and et al. (1995) Sandimmun neoral improves the bioavailability of cyclosporin A and decreases inter-individual variations in patients affected with cystic fibrosis. *Transplant Proc* **27**:2488-90.
- Gnerre C, Blattler S, Kaufmann MR, Looser R and Meyer UA (2004) Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. *Pharmacogenetics* **14**:635-45.
- Goodwin B, Hodgson E, D'Costa DJ, Robertson GR and Liddle C (2002) Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. *Mol Pharmacol* **62**:359-65.
- Goodwin B, Hodgson E and Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. *Mol Pharmacol* **56**:1329-39.
- Graff CL and Pollack GM (2004) Drug transport at the blood-brain barrier and the choroid plexus. *Curr Drug Metab* **5**:95-108.

- Griffiths IW (1997) J. J. Thomson the Centenary of His Discovery of the Electron and of His Invention of Mass Spectrometry. *Rapid Communications in Mass Spectrometry* **11**:2-16.
- Gutmann H, Fricker G, Torok M, Michael S, Beglinger C and Drewe J (1999) Evidence for different ABC-transporters in Caco-2 cells modulating drug uptake. *Pharm Res* **16**:402-7.
- Hager JW and Le Blanc JC (2003) High-performance liquid chromatography-tandem mass spectrometry with a new quadrupole/linear ion trap instrument. *J Chromatogr A* **1020**:3-9.

Harrison AG, Cotter, R.J. (1990) Methods of Ionization. Methods Enzymol. 193:3-37.

Hebert MF, Roberts JP, Prueksaritanont T and Benet LZ (1992) Bioavailability of

cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. *Clin Pharmacol Ther* **52**:453-7.

- Hermann M, Christensen H and Reubsaet JL (2002) Evaluation of essential parameters in the chromatographic determination of cyclosporin A and metabolites using a D-optimal design. *J Pharm Biomed Anal* **30**:1263-76.
- Hosoya K, Hori S, Ohtsuki S and Terasaki T (2004) A new in vitro model for bloodcerebrospinal fluid barrier transport studies: an immortalized choroid plexus epithelial cell line derived from the tsA58 SV40 large T-antigen gene transgenic rat. *Adv Drug Deliv Rev* **56**:1875-85.
- Huai Q, Kim HY, Liu Y, Zhao Y, Mondragon A, Liu JO and Ke H (2002) Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. *Proc Natl Acad Sci U S A* **99**:12037-42.
- Hubler F, Rückle, T., Patiny L., Muamba, T., Guichou, J.F., Mutter M., Wenger R.M. (2000) Synthetic routes to NEtXaa4-cyclosporin A derivatives as potential anti-HIV I drugs. *Tetrahedron Letters* **41**:7193-7196.
- Huisman MT, Smit JW, Wiltshire HR, Hoetelmans RM, Beijnen JH and Schinkel AH (2001) Pglycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. *Mol Pharmacol* **59**:806-13.
- Humbert H (1997) [Variability of the bioavailability of cyclosporine: benefit of the Neoral formulation]. *Therapie* **52**:353-7.
- Hunnius (2004) *Pharmazeutisches Wörterbuch, 9. Auflage*. Walter de Gruyter GmbH & Co. KG, Berlin.
- ICH (1996) Validation of Analytical Procedures: Methodology, EU, Japan, USA.
- Iribarne JV, Thomson, B.A. (1976) On the evaporation of small ions from charged droplets. *Journal of Chem Phys* **64**:2287-2294.
- Jones PM and George AM (2000) Symmetry and structure in P-glycoprotein and ABC transporters what goes around comes around. *Eur J Biochem* **267**:5298-305.
- Kane GC and Lipsky JJ (2000) Drug-grapefruit juice interactions. *Mayo Clin Proc* **75**:933-42.
- Kane MA, Chen N, Sparks S and Napoli JL (2005) Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. *Biochem J*.
- Karas M and Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. *Anal Chem* **60**:2299-301.
- Kebarle P (2000) A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. *J Mass Spectrom* **35**:804-17.

- Kelles A, Herman J, Tjandra-Maga TB and Van Damme-Lombaerts R (1999) Sandimmune to Neoral conversion and value of abbreviated AUC monitoring in stable pediatric kidney transplant recipients. *Pediatr Transplant* **3**:282-7.
- Kelly PA, Wang H, Napoli KL, Kahan BD and Strobel HW (1999) Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. *Eur J Drug Metab Pharmacokinet* **24**:321-8.
- Kemmochi Y, Tsutsumi K and Futami K (2002) Optimization of the ionization conditions for the trace analysis of PCDD/PCDF with ion trap MS/MS. *Chemosphere* **46**:1451-5.
- Kenworthy KE, Bloomer JC, Clarke SE and Houston JB (1999) CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. *Br J Clin Pharmacol* **48**:716-27.
- Kerbarle P, Tang, L. (1993) From ions in solution to ions in the gas phase. *Analytical Chemistry* **65**:972A-986A.
- Kessler H, Loosli H.R., Oschkinat, H. (1985) Peptide conformations. Part 30. Assignment of the 1H-, 13C-, and 15N-NMR spectra of cyclosporin A in CDCl3 and C6D6 by a combination of homo- and heteronuclear two-dimensional techniques. *Helv Chim Acta* 68:661-681.
- Kirchner GI, Vidal C, Jacobsen W, Franzke A, Hallensleben K, Christians U and Sewing KF (1999a) Simultaneous on-line extraction and analysis of sirolimus (rapamycin) and ciclosporin in blood by liquid chromatography-electrospray mass spectrometry. *J Chromatogr B Biomed Sci Appl* **721**:285-94.
- Kirchner GI, Vidal C, Winkler M, Mueller L, Jacobsen W, Franzke A and Sewing KF (1999b) LC/ESI-MS allows simultaneous and specific quantification of SDZ RAD and cyclosporine, including groups of their metabolites in human blood. *Ther Drug Monit* **21**:116-22.
- Kitano T, Iizasa H, Hwang IW, Hirose Y, Morita T, Maeda T and Nakashima E (2004) Conditionally immortalized syncytiotrophoblast cell lines as new tools for study of the blood-placenta barrier. *Biol Pharm Bull* **27**:753-9.
- Klasse PJ, Schulz TF and Willison KR (1993) HIV. Cyclophilins unfold the Gag? *Nature* **365**:395-6.
- Kusuhara H, Suzuki H, Terasaki T, Kakee A, Lemaire M and Sugiyama Y (1997) P-Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. *J Pharmacol Exp Ther* **283**:574-80.
- Langguth P, Fricker, G., Wunderli-Allenspach, H. (2004) *Biopharmazie*. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim (D).
- Legen I, Salobir M and Kerc J (2005) Comparison of different intestinal epithelia as models for absorption enhancement studies. *Int J Pharm* **291**:183-8.
- Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT and Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. *J Clin Invest* **102**:1016-23.
- Lennernas H (1997) Human jejunal effective permeability and its correlation with preclinical drug absorption models. *J Pharm Pharmacol* **49**:627-38.
- Lensmeyer GL, Wiebe DA, Carlson IH and deVos DJ (1990) Three commercial polyclonal immunoassays for cyclosporine in whole blood compared: 2. Cross-reactivity of the antisera with cyclosporine metabolites. *Clin Chem* **36**:119-23.
- Leonard SW, Gumpricht E, Devereaux MW, Sokol RJ and Traber MG (2005) Quantitation of rat liver vitamin E metabolites by LC-MS during high-dose vitamin E administration. *J Lipid Res*.

- Lindgren ME, Hallbrink MM, Elmquist AM and Langel U (2004) Passage of cellpenetrating peptides across a human epithelial cell layer in vitro. *Biochem J* **377**:69-76.
- Liu BY, Wang CC, Lau TK, Chu CY, Phil M, Pang CP, Rogers MS and Leung TN (2005) Meconium-stained liquor during labor is associated with raised neonatal cord blood 8-iso-prostaglandin F2alpha concentration. *Am J Obstet Gynecol* **192**:289-94.
- Liu C, Hofstadler SA, Bresson JA, Udseth HR, Tsukuda T, Smith RD and Synder AP (1998) On-line dual microdialysis with ESI-MS for direct analysis of complex biological samples and microorganism lysates. *Anal Chem* **70**:1797-801.
- Loosli HR, Kessler, H., Oschkinat, H., Weber, H.P. et al. (1985) Peptide conformations. Part 31. The conformation of cyclosporine A in crystal and in solution. *Helv Chim Acta* **68**:682-704.
- Lottspeich F (1998) *Bioanalytik*. Spektrum Akademischer Verlag (H. Zorbas), Heidelberg.
- Louris JN, Brodbelt-Lustig, J.S., Cooks, R.G., Glish, G.L., Van Berkel, G.J., McLuckey, S.A. (1990) Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. *International Journal of Mass Spectrometry and Ion Processes* **96**:117-137.
- Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, Brown MB, Guo W and Watkins PB (1997) Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. *J Clin Invest* **99**:2545-53.
- Luban J, Bossolt KL, Franke EK, Kalpana GV and Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. *Cell* **73**:1067-78.
- Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT and Kliewer SA (2002) Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. *Mol Pharmacol* **62**:638-46.
- Magni F, Pereira S, Leoni M, Grisenti G and Galli Kienle M (2001) Quantitation of cyclosporin A in whole blood by liquid chromatography/stable isotope dilution electrospray ionization mass spectrometry. *J Mass Spectrom* **36**:670-6.
- Masri M, Rizk S, Andrysek T and Matha V (2003) Cyclosporine blood level monitoring. Cross-reactivity of anti-cyclosporine A monoclonal with its sulphate metabolite: an in vitro study. *Mol Immunol* **39**:1059-60.
- Masuda J, Maynard DM, Nishimura M, Ueda T, Kowalak JA and Markey SP (2005) Fully automated micro- and nanoscale one- or two-dimensional high-performance liquid chromatography system for liquid chromatography-mass spectrometry compatible with non-volatile salts for ion exchange chromatography. *J Chromatogr A* **1063**:57-69.
- Matsuda S and Koyasu S (2000) Mechanisms of action of cyclosporine. Immunopharmacology **47**:119-25.
- Matsumura K, Saito T, Takahashi Y, Ozeki T, Kiyotani K, Fujieda M, Yamazaki H, Kunitoh H and Kamataki T (2004) Identification of a novel polymorphic enhancer of the human CYP3A4 gene. *Mol Pharmacol* **65**:326-34.
- McMahon LM, Luo S, Hayes M and Tse FL (2000) High-throughput analysis of everolimus (RAD001) and cyclosporin A (CsA) in whole blood by liquid

chromatography/mass spectrometry using a semi-automated 96-well solidphase extraction system. *Rapid Commun Mass Spectrom* **14**:1965-71.

- Mendonza A, Gohh R and Akhlaghi F (2004) Determination of cyclosporine in saliva using liquid chromatography-tandem mass spectrometry. *Ther Drug Monit* **26**:569-75.
- Miller DS, Nobmann SN, Gutmann H, Toeroek M, Drewe J and Fricker G (2000) Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. *Mol Pharmacol* **58**:1357-67.
- Miret S, Abrahamse L and de Groene EM (2004) Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa. *J Biomol Screen* **9**:598-606.
- Morris RE (1995) Mechanisms of action of new immunosuppressive drugs. *Ther Drug Monit* **17**:564-9.
- Morris RG (2000) Cyclosporin assays, metabolite cross-reactivity, and pharmacokinetic monitoring. *Ther Drug Monit* **22**:160-2.
- Murthy JN, Yatscoff RW and Soldin SJ (1998) Cyclosporine metabolite cross-reactivity in different cyclosporine assays. *Clin Biochem* **31**:159-63.
- Norta M and Schopke T (1996) An in vitro perfusion model for the determination of absorption properties of drugs in isolated rat small intestine. *Pharmazie* **51**:101-3.
- Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P and Vilarem MJ (2001) Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. *Eur J Biochem* **268**:6346-58.
- Paul W, Steinwedel, H.S. (1960) US Patent, 2939952, USA.
- Petcher TJ, Weber H and Ruegger A (1976) Crystal and molecular structure of an iododerivative of the cyclic undecapeptide cyclosporin A. *Helv Chim Acta* **59**:1480-9.
- Pflugl G, Kallen J, Schirmer T, Jansonius JN, Zurini MG and Walkinshaw MD (1993) X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. *Nature* **361**:91-4.
- Pfrunder A, Gutmann H, Beglinger C and Drewe J (2003a) Gene expression of CYP3A4, ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. *J Pharm Pharmacol* **55**:59-66.
- Pfrunder A, Schiesser M, Gerber S, Haschke M, Bitzer J and Drewe J (2003b) Interaction of St John's wort with low-dose oral contraceptive therapy: a randomized controlled trial. *Br J Clin Pharmacol* **56**:683-90.
- Pollak R, Wong RL and Chang CT (1999) Cyclosporine bioavailability of Neoral and Sandimmune in white and black de novo renal transplant recipients. Neoral Study Group. *Ther Drug Monit* **21**:661-3.
- Prueksaritanont T, Correia MA, Rettie AE, Swinney DC, Thomas PE and Benet LZ (1993) Cyclosporine metabolism by rat liver microsomes. Evidence for involvement of enzyme(s) other than cytochromes P-450 3A. *Drug Metab Dispos* **21**:730-7.
- Pschyrembel (2004) *Klinisches Wörterbuch, 260. Auflage*. Walter de Gruyter GmbH & Co. KG, Berlin.
- Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC and Piwnica-Worms D (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and

multidrug resistance-associated protein contribute to the blood-cerebrospinalfluid drug-permeability barrier. *Proc Natl Acad Sci U S A* **96**:3900-5.

- Riegelman S (1972) Physiological and pharmacokinetic complexities in bioavailability testing. *Pharmacology* **8**:118-41.
- Roberts CT, Sohlstrom A, Kind KL, Earl RA, Khong TY, Robinson JS, Owens PC and Owens JA (2001) Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. *Placenta* 22:177-85.
- Rothen-Rutishauser B, Braun A, Gunthert M and Wunderli-Allenspach H (2000) Formation of multilayers in the caco-2 cell culture model: a confocal laser scanning microscopy study. *Pharm Res* **17**:460-5.
- Ruegger A, Kuhn M, Lichti H, Loosli HR, Huguenin R, Quiquerez C and von Wartburg A (1976) [Cyclosporin A, a Peptide Metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity]. *Helv Chim Acta* 59:1075-92.
- Rusnak F and Mertz P (2000) Calcineurin: form and function. *Physiol Rev* 80:1483-521.
- Rustum AM (1990) Estimation of cyclosporin-A in whole blood by simple and rapid reversed-phase HPLC utilizing a salting-out extraction procedure. *J Chromatogr Sci* **28**:594-8.
- Sabatini L, Barbieri A, Tosi M, Roda A and Violante FS (2005) A method for routine quantitation of urinary 8-hydroxy-2'-deoxyguanosine based on solid-phase extraction and micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. *Rapid Commun Mass Spectrom* **19**:147-52.
- Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF, Lown KS and Watkins PB (1997) Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25dihydroxyvitamin D3. *Mol Pharmacol* **51**:741-54.
- Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF and Watkins PB (2001) Induction of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor. *Drug Metab Dispos* **29**:1446-53.
- Schuetz E, Lan L, Yasuda K, Kim R, Kocarek TA, Schuetz J and Strom S (2002) Development of a real-time in vivo transcription assay: application reveals pregnane X receptor-mediated induction of CYP3A4 by cancer chemotherapeutic agents. *Mol Pharmacol* 62:439-45.
- Schuetz EG, Schinkel AH, Relling MV and Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. *Proc Natl Acad Sci U S A* **93**:4001-5.
- Schuhmacher J, Zimmer D, Tesche F and Pickard V (2003) Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: practical approaches to their elimination. *Rapid Commun Mass Spectrom* **17**:1950-7.
- Schutz E, Svinarov D, Shipkova M, Niedmann PD, Armstrong VW, Wieland E and Oellerich M (1998) Cyclosporin whole blood immunoassays (AxSYM, CEDIA, and Emit): a critical overview of performance characteristics and comparison with HPLC. *Clin Chem* **44**:2158-64.

- Schwarz UI, Gramatte T, Krappweis J, Oertel R and Kirch W (2000) P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. *Int J Clin Pharmacol Ther* **38**:161-7.
- Seelig A and Landwojtowicz E (2000) Structure-activity relationship of P-glycoprotein substrates and modifiers. *Eur J Pharm Sci* **12**:31-40.
- Serkova N, Hausen B, Berry GJ, Jacobsen W, Benet LZ, Morris RE and Christians U (2000) Tissue distribution and clinical monitoring of the novel macrolide immunosuppressant SDZ-RAD and its metabolites in monkey lung transplant recipients: interaction with cyclosporine. J Pharmacol Exp Ther **294**:323-32.
- Simpson J, Zhang Q, Ozaeta P and Aboleneen H (1998) A specific method for the measurement of cyclosporin A in human whole blood by liquid chromatography-tandem mass spectrometry. *Ther Drug Monit* **20**:294-300.
- Souverain S, Rudaz S and Veuthey JL (2004) Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. *J Chromatogr B Analyt Technol Biomed Life Sci* **801**:141-56.
- Stafford G. C. KPE, Syka J. E., Reynolds, W. E. (1984) International Journal of Mass Spectrometry and Ion Processes **60**:85.
- Steinkasserer A, Harrison R, Billich A, Hammerschmid F, Werner G, Wolff B, Peichl P, Palfi G, Schnitzel W, Mlynar E and et al. (1995) Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication. J Virol 69:814-24.
- Stewart BH, Chan OH, Lu RH, Reyner EL, Schmid HL, Hamilton HW, Steinbaugh BA and Taylor MD (1995) Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. *Pharm Res* 12:693-9.
- Superina RA, Strong DK, Acal LA and DeLuca E (1994) Relative bioavailability of Sandimmune and Sandimmune Neoral in pediatric liver recipients. *Transplant Proc* **26**:2979-80.
- Terasaki T and Hosoya K (2001) Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. *Biol Pharm Bull* **24**:111-8.
- Theriault Y, Logan TM, Meadows R, Yu L, Olejniczak ET, Holzman TF, Simmer RL and Fesik SW (1993) Solution structure of the cyclosporin A/cyclophilin complex by NMR. *Nature* **361**:88-91.
- Thermo. LCQ MS-Detektor Manual.
- Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. *Proc Natl Acad Sci U S A* **84**:7735-8.
- Thompson JJ (1907) On Rays of Positive Electricity. *The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science* **XLVII**.
- Thompson JJ (1913) *Rays of Positive Electricity and their Application to Chemical Analysis.* Greenand Co. Ltd., London: Longmans.
- Thomson BA, Iribarne, J.V. (1979) Field induced ion evaporation from liquid surfaces at atmospheric pressure. *Journal of Chem Phys* **71**:4451-4463.

- Thummel KE, Brimer C, Yasuda K, Thottassery J, Senn T, Lin Y, Ishizuka H, Kharasch E, Schuetz J and Schuetz E (2001) Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. *Mol Pharmacol* **60**:1399-406.
- Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI and Kahan BD (1976) Human colonic adenocarcinoma cells. I. Establishment and description of a new line. *In Vitro* **12**:180-91.
- Traber R, Kuhn M, Loosli HR, Pache W and von Wartburg A (1977a) [New cyclopeptides from Trichoderma polysporum (Link ex Pers.) Rifai: cyclosporins B, D and E (author's transl)]. *Helv Chim Acta* **60**:1568-78.
- Traber R, Kuhn M, Ruegger A, Lichti H, Loosli RH and von Wartburg A (1977b) [The structure of cyclosporin c (author's transl)]. *Helv Chim Acta* **60**:1247-55.
- Traber R, Loosli, H.R., Hofmann, H., Kuhn, M., von Wartburg, A. (1982) Isolierung und Strukturermittlung der neuen Cyclosporine E, F, G, H und I. *Helv Chim Acta* **65**:1655-1677.
- Tredger JM, Roberts N, Sherwood R, Higgins G and Keating J (2000) Comparison of five cyclosporin immunoassays with HPLC. *Clin Chem Lab Med* **38**:1205-7.
- Voigt R, Fahr, A. (2000) *Pharmazeutische Technologie für Studium und Beruf*. Deutscher Apotheker Verlag, Suttgart.
- Wacher VJ, Silverman JA, Zhang Y and Benet LZ (1998) Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. *J Pharm Sci* **87**:1322-30.
- Watkins PB (1997) The barrier function of CYP3A4 and P-glycoprotein in the small bowel. *Adv Drug Deliv Rev* **27**:161-170.
- Watkins PB, Wrighton SA, Schuetz EG, Molowa DT and Guzelian PS (1987) Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. *J Clin Invest* **80**:1029-36.
- Weber C, Wider G, von Freyberg B, Traber R, Braun W, Widmer H and Wuthrich K (1991) The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. *Biochemistry* **30**:6563-74.
- Wenger RM (1986) Cyclosporine and analogues--isolation and synthesis--mechanism of action and structural requirements for pharmacological activity. *Fortschr Chem Org Naturst* **50**:123-68.
- Wenger RM (1990) Structures of cyclosporine and its metabolites. *Transplant Proc* **22**:1104-8.
- Wenger RM (1992) Structure of Cyclosporine and Its Metabolites: Total Synthesiy of Cyclosporine Metabolites Formed by Oxidation at Positions 4 and 9 of Cyclosporine. Preparation of Leucine-4-cyclosporine, (gama-Hydroxy)-N-methylleucine-9-cyclosporine and Leucine-4-(gamma-hydroxy)-N- methyl-leucine-9cyclosporine. *Chimia* **46**:314-322.
- Wenger RM, France J, Bovermann G, Walliser L, Widmer A and Widmer H (1994) The 3D structure of a cyclosporin analogue in water is nearly identical to the cyclophilin-bound cyclosporin conformation. *FEBS Lett* **340**:255-9.
- Wenger RM, Mutter M., Rückle, T., Debiopharm SA (2000) WO 0001715/CH-Patent (French)/ Chemical Abstract/ 2004/29/P1XXD2, pp 29, CH.
- Wiesinger D, Borel, J.F. (1979) Studies on the mechanism of action of cyclosporin A. *Immunobiology* **156**:454-463.

- Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD and Borst P (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the bloodcerebrospinal fluid barrier. *J Clin Invest* **105**:279-85.
- Wu SL, Jardine I, Hancock WS and Karger BL (2004) A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. *Rapid Commun Mass Spectrom* **18**:2201-7.
- Yates JR, 3rd (1998) Mass spectrometry and the age of the proteome. *J Mass Spectrom* **33**:1-19.
- Zeng L, Huang Y and Peng G (1999) [Measurement of cyclosporine A in whole blood by high performance liquid chromatography(HPLC)]. *Hunan Yi Ke Da Xue Xue Bao* **24**:387-9.
- Zhang Y and Benet LZ (2001) The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. *Clin Pharmacokinet* **40**:159-68.
- Zhou L, Tan D, Theng J, Lim L, Liu YP and Lam KW (2001) Optimized analytical method for cyclosporin A by high-performance liquid chromatography-electrospray ionization mass spectrometry. *J Chromatogr B Biomed Sci Appl* **754**:201-7.

132 REFERENZEN

Appendix

1. Biologischer Teil

1.1. CsA- und D-MeAla³EtVal⁴Cs-Formulierungen: Permeabilitätsversuche

1.1.a. Rohdaten: Kalibrierkurven und QC Samples

Auf der nächsten Seite folgend sind die Rohdaten, direkt aus LCQuan für die Kalibrierkurve der jeweiligen Formulierung/Lösung, sowie die Daten für die QC-Proben wiedergegeben.

Rohdaten der Kalibrierkurven aus LCQuan

CsA-Formulierung 1: Dispersion 1

Identification

Filter:+ c ESI Full ms2 1203.00@40	0.00 [330.00-1400.00]
Expected RT (min):	9.55
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Highest Peak
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	ng/ml

CSA

35 30 30 15 10 10 10 10 10 10 10 10 10				
0		20	30	40
		ng/ml		
Equation	Y = 0.173041+0.8	86156*X	$R^2 = 0.9403$	3

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount	
Level7	0.625	ng/ml
Level6	1.250	ng/ml
Level5	2.500	ng/ml
Level4	5.000	ng/ml
Level3	10.000	ng/ml
Level2	20.000	ng/ml
Level1	40.000	ng/ml

			Standard R	Results				
Sample	Area	Area	Area	Specified	Calculated	%Diff	%RSD	Excluded
		Ratio	ISTD	Amount	Amount			
343	6551919854	23.801	275276787	40.000 ng/ml	26.664 ng/ml	-33.34	0.0	х
344	4050387700	17.181	235746983	20.000 ng/ml	19.193 ng/ml	-4.03	0.0	
345	1696173278	10.664	159058360	10.000 ng/ml	11.839 ng/ml	18.39	0.0	
346	799573684	5.439	147017152	5.000 ng/ml	5.942 ng/ml	18.84	0.0	
347	375773248	1.778	211334713	2.500 ng/ml	1.811 ng/ml	-27.55	0.0	
348	94111559	1.078	87303011	1.250 ng/ml	1.021 ng/ml	-18.30	0.0	
349	51568921	0.797	64702897	0.625 ng/ml	0.704 ng/ml	12.66	0.0	

CsA-Formulierung 2: Dispersion 2

Filter:+ c ESI Full ms2 1203.00@4	0.00 [330.00-1400.00]
Expected RT (min):	9.55
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Highest Peak
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	ng/ml

CSA

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

	4 5-		,
	4.5		
	4.0-		
	3.5-		
~	3.0-		
Ratic	2.5-		
Area	2.0-		
	1.5-		
	1.0-		
	0.5-		
	0.0-		40
		ng/ml	10

Equation:	Y = -0.013431+0.103197*X	R^2 = 0.9939

Cal. Level	Amount	
Level7	0.625	ng/ml
Level6	1.250	ng/ml
Level5	2.500	ng/ml
Level4	5.000	ng/ml
Level3	10.000	ng/ml
Level2	20.000	ng/ml
Levell	40.000	ng/ml

			Standard Res	sults				
Sample	Area	Area	Area	Specified	Calculated	%Diff	%RSD	Excluded
		Ratio	ISTD	Amount	Amount			
301	9153499768	3.486	2625771287	40.000 ng/ml	33.910 ng/ml	-15.22	0.0	х
302	2572761153	1.985	1296251081	20.000 ng/ml	19.363 ng/ml	-3.19	0.0	
303	1393047597	1.114	1250016584	10.000 ng/ml	10.929 ng/ml	9.29	0.0	
304	1658280367	1.070	1549471045	5.000 ng/ml	10.501 ng/ml	110.02	0.0	х
305	247331726	0.234	1058149075	2.500 ng/ml	2.395 ng/ml	-4.19	0.0	
306	78417036	0.109	718285951	1.250 ng/ml	1.188 ng/ml	-4.96	0.0	
307	70368241	0.053	1326907166	0.625 ng/ml	0.644 ng/ml	3.05	0.0	

D-MeAla³EtVal⁴Cs Formulierung 3: Dispersion 3

<u>Identification</u>	
Filter:+ c ESI Full ms2 1217.00@40	.00 [335.00-1400.00]
Expected RT (min):	9.50
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Nearest RT
N/A	
<u>Calibration</u>	

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	

. .

Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount
Level7	0.625
Level6	1.250
Level5	2.500
Level4	5.000
Level3	10.000
Level2	20.000
Level1	40.000

Equation: Y = -0.0139078+0.100011*X R^2 = 0.9698

	S	tandard Result	s				
Area	Area Ratio	Area ISTD	Specified Amount	Calculate d	%Diff	%RSD	Excluded
				Amount			
5017169704	2.580	1944779214	40.000	25.934	-35.16	0.0	х
3331337304	1.951	1707165627	20.000	19.651	-1.75	0.0	
1653694879	1.625	1017672899	10.000	16.387	63.87	0.0	х
390972194	0.547	715280943	5.000	5.604	12.09	0.0	
259987484	0.243	1071021352	2.500	2.566	2.65	0.0	
94598385	0.084	1127294621	1.250	0.978	-21.75	0.0	
46327796	0.054	856784824	0.625	0.680	8.76	0.0	
	Area 5017169704 3331337304 1653694879 390972194 259987484 94598385 46327796	Area Area Ratio 5017169704 2.580 3331337304 1.951 1653694879 1.625 390972194 0.547 259987484 0.243 94598385 0.084 46327796 0.054	Standard Result Area Ratio Area ISTD 5017169704 2.580 1944779214 3331337304 1.951 1707165627 1653694879 1.625 1017672899 390972194 0.547 715280943 259987484 0.243 1071021352 94598385 0.084 1127294621 46327796 0.054 856784824	Standard Results Area Area Area Specified Ratio ISTD Amount 5017169704 2.580 1944779214 40.000 3331337304 1.951 1707165627 20.000 1653694879 1.625 1017672899 10.000 390972194 0.547 715280943 5.000 259987484 0.243 1071021352 2.500 94598385 0.084 1127294621 1.250 46327796 0.054 856784824 0.625	Standard Results Area Ratio Area ISTD Specified Amount Calculate d Amount 5017169704 2.580 1944779214 40.000 25.934 3331337304 1.951 1707165627 20.000 19.651 1653694879 1.625 1017672899 10.000 16.387 390972194 0.547 715280943 5.000 5.604 259987484 0.243 1071021352 2.500 2.566 94598385 0.084 1127294621 1.250 0.978 46327796 0.054 856784824 0.625 0.680	Standard Results Area Ratio Area ISTD Specified Amount Calculate d Amount %Diff d Amount 5017169704 2.580 1944779214 40.000 25.934 -35.16 3331337304 1.951 1707165627 20.000 19.651 -1.75 1653694879 1.625 1017672899 10.000 16.387 63.87 390972194 0.547 715280943 5.000 5.604 12.09 259987484 0.243 1071021352 2.500 2.566 2.65 94598385 0.084 1127294621 1.250 0.978 -21.75 46327796 0.054 856784824 0.625 0.680 8.76	Standard Results Area Ratio Area ISTD Specified Amount Calculate d Amount %Diff %RSD 5017169704 2.580 1944779214 40.000 25.934 -35.16 0.0 3331337304 1.951 1707165627 20.000 19.651 -1.75 0.0 1653694879 1.625 1017672899 10.000 16.387 63.87 0.0 390972194 0.547 715280943 5.000 5.604 12.09 0.0 259987484 0.243 1071021352 2.500 2.566 2.65 0.0 94598385 0.084 1127294621 1.250 0.978 -21.75 0.0 46327796 0.054 856784824 0.625 0.680 8.76 0.0

D-MeAla³EtVal⁴Cs Formulierung 4: Dispersion 4

Identification

Filter:+ c ESI Full ms2 1217.00@40.00) [335.00-1400.00]
Expected RT (min):	9.50
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Nearest RT
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount	
Level7	0.625	
Level6	1.250	
Level5	2.500	
Level4	5.000	
Level3	10.000	
Level2	20.000	
Level1	40.000	

Equation: Y = -0.00950852+0.0500651*X R^2 = 0.9705

		S	tandard Results					
Sample	Area	Area Ratio	Area ISTD	Specified Amount	Calculate d Amount	%Diff	%RSD	Excluded
315	2333251339	2.520	926074823	40.000	50.515	26.29	0.0	х
316	1474388229	1.132	1302368852	20.000	22.802	14.01	0.0	
317	448997807	0.500	897819356	10.000	10.179	1.79	0.0	
318	260624990	0.258	1008654214	5.000	5.351	7.02	0.0	
319	111422884	0.085	1305403382	2.500	1.895	-24.21	0.0	
320	50681853	0.049	1033846360	1.250	1.169	-6.47	0.0	
321	20784981	0.024	857399066	0.625	0.674	7.86	0.0	

D-MeAla³EtVal⁴Cs Formulierung 5: Dispersion 5

<u>Identification</u>	
Filter:+ c ESI Full ms2 1217.00@40.00	[335.00-1400.00]
Expected RT (min):	9.50
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Nearest RT
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos

Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Fauation:	Y = 0 110707+0 104998*X	$R^2 = 0.5079$
Lyounon.	1 = 0.110/0/ 10.104//0 X	K/2 = 0.3077

		_
Cal. Level	Amount	
Level7	0.625	
Level6	1.250	
Level5	2.500	
Level4	5.000	
Level3	10.000	
Level2	20.000	
Level1	40.000	
		_

		S	tandard Resul	ts				
Sample	Area	Area	Area	Specified	Calculate	%Diff	%RSD	Excluded
		Ratio	ISTD	Amount	d			
					Amount			
322	3479682574	2.748	1266264060	40.000	25.117	-37.21	0.0	х
323	1812784876	1.681	1078594138	20.000	14.953	-25.24	0.0	
324	1210059494	1.189	1017535076	10.000	10.272	2.72	0.0	
325	293787805	0.357	823492209	5.000	2.343	-53.13	0.0	
326	200912185	0.879	228691489	2.500	7.313	192.51	0.0	х
327	98627837	0.421	234002115	1.250	2.960	136.79	0.0	
328	53225028	0.136	390748209	0.625	0.243	-61.13	0.0	

Weighting: Calibration Units:

D-MeAla³EtVal⁴Cs Formulierung 6: Dispersion 6

Area Linear Ignore 1/X^2

<u>Identification</u>	
Filter:+ c ESI Full ms2 1217.0	0@40.00 [335.00-1400.00]
Expected RT (min):	9.50
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Nearest RT
N/A	
<u>Calibration</u>	
Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
1 1	

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount	
Level7	0.625	
Level6	1.250	
Level5	2.500	
Level4	5.000	
Level3	10.000	
Level2	20.000	
Level1	40.000	

Equation: Y = 0.268452+0.467685*X R^2 = 0.9954

		St	andard Result	s				
Sample	Area	Area Ratio	Area ISTD	Specified Amount	Calculate d Amount	%Diff	%RSD	Excluded
329	3733003019	8.225	453851304	40.000	17.013	-57.47	0.0	х
330	2471567678	10.030	246418758	20.000	20.872	4.36	0.0	
331	1557659366	8.536	182472348	10.000	17.678	76.78	0.0	х
332	531572778	2.665	199444094	5.000	5.125	2.50	0.0	
333	276863048	1.338	206960221	2.500	2.286	-8.54	0.0	
334	137929787	0.502	274990876	1.250	0.498	-60.12	0.0	х
335	143847669	0.566	254287828	0.625	0.636	1.69	0.0	

D-MeAla³EtVal⁴Cs Formulierung 7: Dispersion 7

Target Component

<u>Identification</u>	
Filter:+ c ESI Full ms2 1217.00@40.0	0 [335.00-1400.00]
Expected RT (min):	9.50
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Nearest RT
N/A	

Calibration Component Type: Number of Cal. Levels:

7
0
CSDisd
Area
Linear
Ignore
1/X^2

r out integration

Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Advanced Component Options Noise Method:	Incos
<u>Advanced Component Options</u> Noise Method: Minimum Peak Width:	Incos 3
Advanced Component Options Noise Method: Minimum Peak Width: Multiplet Resolution:	Incos 3 10
Advanced Component Options Noise Method: Minimum Peak Width: Multiplet Resolution: Area Tail Extension:	Incos 3 10 5

Cal. Level	Amount	
Level7	0.625	
Level6	1.250	
Level5	2.500	
Level4	5.000	
Level3	10.000	
Level2	20.000	
Level1	40.000	

Equation: Y = 0.11849+0.747588*X R^2 = 0.9345

		St	andard Result	ts				
Sample	Area	Area Ratio	Area ISTD	Specified Amount	Calculate d Amount	%Diff	%RSD	Excluded
336	3020328955	16.346	184774409	40.000	21.707	-45.73	0.0	х
337	4230422634	14.190	298130947	20.000	18.822	-5.89	0.0	
338	1766929199	9.362	188728952	10.000	12.365	23.65	0.0	
339	713314104	2.895	246418967	5.000	3.714	-25.73	0.0	
340	249470715	2.389	104429928	2.500	3.037	21.48	0.0	
341	92150173	0.865	106541406	1.250	0.998	-20.12	0.0	
342	44057536	0.617	71448030	0.625	0.666	6.61	0.0	

D-MeAla³EtVal⁴Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8

Identification Filter:+ c ESI Full ms2 121 Expected RT (min): Search window (sec): View width (sec): RT reference Identify by: N/A	7.00@40.00 [335.00-1400.00] 9.50 90.00 2.00 no Nearest RT
Calibration Component Type: Number of Cal. Levels: Number of QC Levels: Internal Standard: Response: Curve: Origin: Weighting: Calibration Units:	Target Component 7 0 CSDisd Area Linear Ignore 1/X^2

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount	
Level7	0.625	
Level6	1.250	
Level5	2.500	
Level4	5.000	
Level3	10.000	
Level2	20.000	
Level1	40.000	
		_

Equation: Y = -1.88318+4.98022*X R^2 = 0.9995

		St	andard Result	s				
Sample	Area	Area Patio	Area	Specified	Calculate d	%Diff	%RSD	Excluded
		Kullo	1310	Amouni	Amount			
350	5198326687	18.112	287008263	40.000	4.015	-89.96	0.0	х
351	2088548020	17.384	120142665	20.000	3.869	-80.66	0.0	х
352	990007923	15.241	64957894	10.000	3.438	-65.62	0.0	х
353	1082335348	14.156	76455833	5.000	3.221	-35.59	0.0	х
354	549978120	10.695	51425106	2.500	2.526	1.02	0.0	
355	612437852	4.247	144219170	1.250	1.231	-1.53	0.0	
356	93523825	1.245	75096630	0.625	0.628	0.51	0.0	

CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9

Filter:+ c ESI Full ms2 1203.00@	40.00 [330.00-1400.00]
Expected RT (min):	9.55
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Highest Peak
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	0
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	ng/ml

CSA

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	

Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

ng/mi

Equation: Y = 1.60046+1.90598*X R^2 = 0.9672

Cal. Level	Amount	
Level7	0.625	ng/ml
Level6	1.250	ng/ml
Level5	2.500	ng/ml
Level4	5.000	ng/ml
Level3	10.000	ng/ml
Level2	20.000	ng/ml
Level1	40.000	ng/ml

Sample	Area	Area Ratio	Area ISTD	Specified Amount	Calculated Amount	%Diff	%RSD	Excluded
357	6001775359	41.393	144994400	40.000 ng/ml	20.878 ng/ml	-47.81	0.0	х
358	1180616550	38.688	30516717	20.000 ng/ml	19.458 ng/ml	-2.71	0.0	
359	1238887915	12.945	95700525	10.000 ng/ml	5.952 ng/ml	-40.48	0.0	х
360	1200117445	10.520	114075572	5.000 ng/ml	4.680 ng/ml	-6.40	0.0	
361	256502991	7.388	34716986	2.500 ng/ml	3.037 ng/ml	21.47	0.0	
362	175081646	3.608	48531249	1.250 ng/ml	1.053 ng/ml	-15.75	0.0	
363	301309218	2.832	106389440	0.625 ng/ml	0.646 ng/ml	3.39	0.0	

QC Rohdaten aus LCQuan

Filter:+ c ESI Full ms2 1203.00@40.	00 [330.00-1400.00]
Expected RT (min):	9.55
Search window (sec):	90.00
View width (sec):	2.00
RT reference	no
Identify by:	Highest Peak
N/A	

Calibration

Component Type:	Target Component
Number of Cal. Levels:	7
Number of QC Levels:	3
Internal Standard:	CSDisd
Response:	Area
Curve:	Linear
Origin:	Ignore
Weighting:	1/X^2
Calibration Units:	ng/ml

Peak Integration	
Peak Detection Algorithm in use:	ICIS
Smoothing points:	15
Baseline Window:	50
Area Noise Factor:	20
Peak Noise Factor:	20
Constrain Peak Width:	Disabled
Advanced Component Options	
Noise Method:	Incos
Minimum Peak Width:	3
Multiplet Resolution:	10
Area Tail Extension:	5
Area Scan Window:	0

Cal. Level	Amount	
Level7	0.625	ng/ml
Level6	1.250	ng/ml
Level5	2.500	ng/ml
Level4	5.000	ng/ml
Level3	10.000	ng/ml
Level2	20.000	ng/ml
Level1	40.000	ng/ml

QC. Level	Amount	% Test
QC1	1.500 ng/ml	20.00
QC2	7.500 ng/ml	15.00
QC3	30.000 ng/ml	35.00

			Standard F	Results				
Sample	Area	Area Ratio	Area ISTD	Specified Amount	Calculated Amount	%Diff	%RSD	Excluded
301	9153499768	3.486	2625771287	40.000 ng/ml	33.910 ng/ml	-15.22	0.0	х
302	2572761153	1.985	1296251081	20.000 ng/ml	19.363 ng/ml	-3.19	0.0	
303	1393047597	1.114	1250016584	10.000 ng/ml	10.929 ng/ml	9.29	0.0	
304	1658280367	1.070	1549471045	5.000 ng/ml	10.501 ng/ml	110.02	0.0	х
305	247331726	0.234	1058149075	2.500 ng/ml	2.395 ng/ml	-4.19	0.0	
306	78417036	0.109	718285951	1.250 ng/ml	1.188 ng/ml	-4.96	0.0	
307	70368241	0.053	1326907166	0.625 ng/ml	0.644 ng/ml	3.05	0.0	

Sample	Area	Area	Area	Specified	Calculated	%Diff	%RSD	Failed
	(10005555	Ratio	ISID	Amount	Amount	0.55	16 -	
QC1-01	612230515	0.147	4166838734	1.500 ng/ml	1.554 ng/ml	3.59	12.7	
QC1-02	3/81824/9	0.145	2601599613	1.500 ng/ml	1.539 ng/ml	2.58	12.7	
QC1-03	316416436	0.116	2/36585691	1.500 ng/ml	1.251 ng/ml	-16.63	12.7	
QC1-04	340881045	0.124	2757195664	1.500 ng/ml	1.328 ng/ml	-11.45	12.7	
QC1-05	557742550	0.147	3799117313	1.500 ng/ml	1.553 ng/ml	3.52	12.7	
QC1-06	315981503	0.127	2488955130	1.500 ng/ml	1.360 ng/ml	-9.31	12.7	
QC1-07	295870538	0.128	2312376025	1.500 ng/ml	1.370 ng/ml	-8.67	12.7	
QC1-08	330225778	0.119	2771889742	1.500 ng/ml	1.285 ng/ml	-14.36	12.7	
QC1-09	147902057	0.118	1250164813	1.500 ng/ml	1.277 ng/ml	-14.90	12.7	
QC1-10	871815622	0.199	4391413681	1.500 ng/ml	2.054 ng/ml	36.93	12.7	х
QC1-11	670866977	0.141	4747059699	1.500 ng/ml	1.500 ng/ml	-0.03	12.7	
QC1-12	701964099	0.153	4587200083	1.500 ng/ml	1.613 ng/ml	7.53	12.7	
QC1-13	604487186	0.144	4201049044	1.500 ng/ml	1.524 ng/ml	1.63	12.7	
QC1-15	501725096	0.161	3116834499	1.500 ng/ml	1.690 ng/ml	12.67	12.7	
QC1-16	390586040	0.135	2885883915	1.500 na/ml	1.442 ng/ml	-3.89	12.7	
QC1-17	257452515	0.139	1856389549	1.500 ng/ml	1.474 ng/ml	-1.73	12.7	
QC1-n1	390330865	0.135	2896880615	1.500 ng/ml	1.436 ng/ml	-4.28	12.7	
Qc1-n2	448347062	0.154	2920093577	1.500 ng/ml	1.618 ng/ml	7.86	12.7	
Qc1-14QC2-14	2790727414	0.671	4156518604	7.500 ng/ml	6 636 ng/ml	-11.52	48	
QC2-01	4424153336	0 741	5968268858	7.500 ng/ml	7.313 ng/ml	-2.49	4.8	
002-07	3887093019	0.796	4884610495	7.500 ng/ml	7.841 ng/ml	4 55	4.8	
002-02	3423485767	0.770	5088974250	7.500 ng/ml	6.649 ng/ml	-11 35	4.8	
002-00	36/0750519	0.073	1990955731	7.500 ng/ml	7 199 ng/ml	-102	4.0	
002-04	3409521537	0.727	4558511003	7.500 ng/ml	7.177 ng/ml	1 43	4.0	
002-05	31407321337	0.740	4330311073	7.500 ng/ml	4.941 ng/ml	-1.05	4.0	
002-00	2000070440	0.703	4470002777	7.500 ng/ml	6.741 ng/ml	-7.45	4.0	
	2100/40022	0.670	442/337300	7.500 ng/ml	6.671 Hg/III	-0.12	4.0	
	3170040233	0.671	40200/0004	7.500 ng/mi 7.500 ng/mi	6.62/ ng/mi	-0.7/	4.0	
QC2-09	27/0347423	0./12	41040200/0	7.500 ng/mi	7.027 ng/mi	-0.31	4.0	
QC2-10	3106457300	0.66/	465/388981	7.500 ng/mi	6.593 ng/mi	-12.09	4.8	
QC2-11	3508422034	0.710	4938389707	7.500 ng/mi	7.014 ng/mi	-6.4/	4.8	
QC2-12	3235086371	0.700	4623958581	7.500 ng/mi	6.910 ng/mi	-/.8/	4.8	
QC2-13	2931881219	0.635	4615591442	7.500 ng/mi	6.285 ng/mi	-16.19	4.8	Х
QC2-15	2505465351	0./04	356022/00/	7.500 ng/ml	6.949 ng/ml	-/.34	4.8	
QC2-16	2110/08804	0./33	28/8498822	7.500 ng/ml	7.236 ng/ml	-3.52	4.8	
QC2-17	1665327239	0.691	2409691305	7.500 ng/ml	6.827 ng/ml	-8.97	4.8	
QC2-n1	1891105133	0.707	2673633465	7.500 ng/ml	6.984 ng/ml	-6.88	4.8	
QC2-n2	2176914663	0.706	3085569972	7.500 ng/ml	6.967 ng/ml	-7.11	4.8	
QC3-01	11639715734	2.058	5654598766	30.000 ng/ml	20.077 ng/ml	-33.08	4.4	
QC3-02	7678326711	2.249	3414187733	30.000 ng/ml	21.923 ng/ml	-26.92	4.4	
QC3-03	9661566890	2.214	4364403063	30.000 ng/ml	21.581 ng/ml	-28.06	4.4	
QC3-04	10256198001	2.237	4584541914	30.000 ng/ml	21.808 ng/ml	-27.31	4.4	
QC3-05	7482928811	2.240	3340268676	30.000 ng/ml	21.838 ng/ml	-27.21	4.4	
QC3-06	8573580630	2.212	3876556446	30.000 ng/ml	21.561 ng/ml	-28.13	4.4	
QC3-07	7593983322	2.219	3422315261	30.000 ng/ml	21.632 ng/ml	-27.89	4.4	
Qc3-08	7228356468	2.313	3125228127	30.000 ng/ml	22.543 ng/ml	-24.86	4.4	
QC3-09	8829256451	2.193	4025815112	30.000 ng/ml	21.382 ng/ml	-28.73	4.4	
QC3-10	10379550504	2.216	4684609252	30.000 ng/ml	21.600 ng/ml	-28.00	4.4	
QC3-11	11068969482	2.100	5270596155	30.000 ng/ml	20.481 ng/ml	-31.73	4.4	
QC3-12	10782272926	2,277	4734282905	30.000 na/ml	22.199 na/ml	-26 00	4 4	
003-13	7745393928	2 100	3198567177	30.000 ng/ml	23.595 ng/ml	-21 35	4 4	
0^{-15}	6497864086	2.422	3051371254	30.000 ng/ml	20.0765 ng/ml	-21.00	4.4	
003-14	0477004200 6316860005	2.127 2 207	2635078250	30.000 ng/ml	20.703 Hy/III 23.340 ng/ml	-00.70	4.4 //	
00317	10000073	2.37/	1017142547	30.000 ng/mi	20.360 ng/m	2010	4.4	
002 n1	40022/1/03	2.000	171/14004/	30.000 ng/ml	20.360 rig/ml	-32.13	4.4	
	50/7/10540	2.113	2003041310	30.000 ng/mi	20.626 ng/mi	-31.23	4.4	

1.1.b. Rohdaten: Permeabilitätsversuche

Allgemeine Legende zu den nachfolgenden Tabellen

Untenstehend ist die allgemeine Legende der nachfolgenden Tabellen wiedergegeben:

- A: Versuchsnummer (V1, V2...), Platte (A, B...), Formulierung (A.1, A.2...), Well auf der Platte (A.1.1, A.1.2...), «E» ist ein Transwell® ohne Zellen, »up« bedeutet im oberen Donor-Kompartiment gemessen, nur eine Zahl ohne weitere Angaben (z.B. 1, 2...) bedeutet die Konzentration der Dispersion/Lösung vor beginn des Inkubationskonzentration (=Ausgangskonzentration C₀).
- B: Durch die Software LCQuan V.1.2 berechnetes Flächenverhältnis zwischen der Analyt in der Probe (Peakfläche Analyt X) geteilt durch den internen Standard Peakfläche IS), in einer Formel ausgedrückt: [Peakfläche Analyt X] ÷ [Peakfläche IS].
- C: Durch die Software LCQuan V.1.2, mittels Kalibriergeraden der jeweiligen Formulierung/Lösung, berechnete Konzentration an Analyt im Autosamplervial in ng/ml.
- D Mittelwert aus der durch die Software LCQuan V.1.2 berechneten Flächenverhältnisse [Peakfläche Analyt X] ÷ [Peakfläche IS]. Kurz: Mittelwet aus Kolonne B.
- E: Mittelwert aus Kolonne D geteilt durch das Verhältnis der jeweiligen Dispersion der Ausgangskonzentration C₀ zu IS <u>oder</u> Mittelwert aus Kolonne D geteilt durch die Konzentration im oberen Donor-Kompartiment bei Inkubationsende (Verhältnis C_{Ende}/IS). In einer Formel ausgedrückt: [Mittelwert aus Kolonne D] ÷ [C₀÷IS] <u>oder</u> [Mittelwert aus Kolonne D] ÷ [C_{Ende}÷IS].]. Zum standardisieren der eingesetzten Dispersions-/Lösungs-Konzentrationen wurde [C₀÷IS] oder[C_{Ende}÷IS] aus Kolonne B benutzt. Die jeweilig höhere Konzentration zwischen C₀ und C_{Ende} wurde ausgewählt.
- F: Kolonne F zeigt dasselbe wie Kolonne E f
 f
 ir Kolonne D, aber f
 ir Kolonne C. Kurz in Formel ausgedr
 ick
 ick
 if the line to the line tot the line
- G: Intra-Versuch-Standardabweichung in Prozent.
- H: Inter-Versuch-Standardabweichung in Prozent (ohne Berücksichtigung der Intra-Versuch-Standardabweichungen).
- I: Anzahl der Fluoreszenz-Counts des Permeabilitätsmarker (FD4) im oberen Donor-Kompartiment nach Inkubationsende.
- K: Anzahl der Fluoreszenz-Counts des Permeabilitätsmarker (FD4) im unteren Akzeptor-Kompartiment nach Inkubationsende.
- L: Anzahl der Fluoreszenz »Background-Counts « der jeweilig verwendeten Platte für die jeweiligen Proben. UP= upper Plate (obere Platte), LP= lower Plate (untere Platte).
- Menge an, in das untere Akzeptor-Kompartiment, permeierte FD4 in Prozent, wie folgt berechnet:
 P%= (3 *([FD4 lower plate])-[Background lower plate])) ÷ (([FD4 upper plate]+([FD4 lower plate]-[Background lower plate])*3-Background upper plate)
 Der Faktor 3 in der Formel kommt daher, daß das untere Kompartiment ein 3 mal größeres Volumen als das Obere hat (1.5 ml gegenüber 0.5 ml)
- N: Die Kolonne N zeigt, ob die jeweilige Probe zur Berechnung der Mittelwerte einbezogen wurde (y=yes) oder nicht (n=no). i= invalidated (entkräftet) und nicht einbezogen. »no« und »i« sind in rot gekennzeichnet. Eine Ausschlußlimite von 10% FD4 Passage in das untere Akzeptor-Kompartiment wurde angewendet, wobei eine Reevaluationstoleranz von ±3% angewendet wurde, falls die jeweilige Probe im Mittewert der anderen lag (falls angenommen, »yes« in blau markiert). Ausnahmen zu diesen Ausschlußkriterien wurden nur in Ausnahmefällen gemacht, falls die jeweilige Probe den Mittelwert nur geringfügig veränderte (»yes« in blau markiert).

CsA-Formulierung 1: Dispersion

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V1-A1.1	107	1168						40328	1764	UP	11.2	У
V1-A1.2	375	3765						41589	1579	81	9.8	n
V1-B1.1	141	1492						48256	1084		5.9	У
V1-B1.2	246	2509						42257	1826		11.1	n
V1-C1.1	184	1914						43025	764	LP	4.6	У
V1-C1.2	1092	10713						41962	8105	115	36.6	n
V1-D1.1	155	1630						42703	829		5.0	У
V1-D1.2	130	1394	143	82	728	15.4		40002	970		6.3	У
V1-E1.1	399	3992						30103	15139		60.2	
V1-E1.1 up	719	7099						30103	15139		60.2	
V1-1	602	5960						47668				
V1-A1.1 up	1740	16987										
V2-A1.1	37	0485						38993	1299	UP	8.7	У
V2-A1.2	43	550						38634	647	125	4.3	У
V2-B1.1	51	623						36946	1187		8.4	У
V2-B1.2	58	694						39318	1365		9.0	У
V2-C1.1	982	9649						17990	14950	LP	71.4	n
V2-C1.2	45	563						39007	1019	68	6.8	У
V2-D1.1	30	417						40511	2455		15.1	n
V2-D1.2	78	881	52	30	364	22.4		38366	752		5.1	У
V3-A1.1	91	1011						41446	1099	UP	6.6	n
V3-A1.2	47	587						41880	1366	125	8.2	У
V3-B1.1	33	447						42856	1329		7.8	У
V3-B1.2	31	431						41547	1577		9.5	У
V3-C1.1	45	562						42905	1859	LP	10.9	У
V3-C1.2	71	815						40659	1533	122	9.5	У
V3-D1.1	55	659						39221	1484		9.5	У
V3-D1.2	42	538	46	32	403	22.8		39889	994		6.2	У
V3-E1.1	231	2368						33756	9437		45.4	
V3-E1.1 up	2061	20100						33756	9437		45.4	
V3-A1.1 up	1586	15496										
V3-1	1433	14012						41176				
V4-A1.1	52	638						34962	760	UP	5.6	i
V4-A1.2	53	641						36249	510	125	3.5	i
V4-B1.1	94	1038						35017	911		6.8	i
V4-B1.2	52	632						34262	866		6.6	i
V4-C1.1	46	578						35392	476	LP	3.4	i
V4-C1.2	81	913						35927	268	68	1.6	i
V4-D1.1	98	1082						35797	2234		15.4	i
V4-D1.2	83	930						33335	703		5.4	i
V4-1	1406	13756						41941				i
V5-A1.1	89	989						35068	1441	UP	10.2	У
V5-A1.2	60	711						36126	935	125	6.4	У
V5-C1.1	39	507						34458	1598		11.5	У
V5-C1.2	67	775						34559	1807		12.9	У
V5-D1.1	73	836						35353	1552	LP	10.9	У
V5-D1.2	54	649	64	65	745		22.1	35648	397	112	2.4	У
V5-1	982	9645						42846				
	V1/V2/\	52	560		36.6							

CsA-Formulierung 2: Dispersion 2

Legende vgl. weiter oben, anfangs Unterkapitel.

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V1-A2.1	511	5086						40094	737	UP	4.7	У
V1-A2.2	575	5703						39393	803	81	5.2	У
V1-B2.1	381	3826						43866	940		5.6	У
V1-B2.2	290	2942						46671	700		3.8	У
V1-C2.1	629	6226						44079	1191	LP	7.1	У
V1-C2.2	137	1454						43752	625	115	3.6	У
V1-D2.1	346	3480						41654	622		3.8	У
V1-D2.2	787	7755	457	203	2025	38.8		41629	644		3.9	У
V1-E2.1	773	7623						30760	12581		55.1	
V1-E2.1 up	2018	19682						30760	12581		55.1	
V1-2	2251	21943						47894				
V1-A2.1 up	2571	25043										
V2-A2.1	79	893						41152	235	UP	1.2	У
V2-A2.2	66	767						39888	448	125	2.8	У
V2-B2.1	52	635						38904	737		4.9	У
V2-B2.2	128	1366						40404	974		6.3	У
V2-C2.1	151	1597						38761	1422	LP	9.5	У
V2-C2.2	138	1468						37130	4004	68	24.2	n
V2-D2.1	1702	16620						18327	14543		70.5	n
V2-D2.2	93	1028	98	44	465	30.8		43730	1554		9.3	У
V3-A2.1	65	761						42820	2228	UP	12.9	У
V3-A2.2	81	918						42144	3530	125	19.6	У
V3-B2.1	39	512						42470	872		5.0	У
V3-B2.2	41	529						42376	1855		11.0	У
V3-C2.1	91	1012						40521	1087	LP	6.7	У
V3-C2.2	55	660						42484	1211	122	7.2	У
V3-D2.1	80	902						41441	1240		7.5	У
V3-D2.2	35	465	61	48	578	30.7		40058	987		6.1	У
V3-E2.1	165	1733						38827	9233		41.4	
V3-E2.1 up	1029	10098						38827	9233		41.4	
V3-A2.1 up	1245	12193										
V3-2	1271	12445						42604				
V4-A2.1	51	624						39532	1107	UP	7.3	y/i
V4-A2.2	49	600						37124	953	125	6.7	y/i
V4-B2.1	28	405						37357	804		5.6	y/i
V4-B2.2	48	597						36577	913		6.5	y/i
V4-C2.1	26	386						38733	297	LP	1.7	y/i
V4-C2.2	41	523						36180	292	68	1.8	y/i
V4-D2.1	265	2703						36803	3727		23.0	n/i
V4-D2.2	119	1285						35351	2590		17.7	n/i
V4-2	1737	16962						43843				
	V1/V2/\	/3		98	1023	85.0						
	V2/V3			46	522	15.3						

D-MeAla³EtVal⁴Cs Formulierung 3: Dispersion 3

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3	_						
V1-A3.1	198	2122						40550	1174	UP	7.5	у
V1-A3.2	524	5378						44809	898	81	5.2	n
V1-B3.1	702	7157						47707	822		4.5	n
V1-B3.2	487	5008						41847	1909		11.6	n
V1-C3.1	144	1583						42672	1358	LP	8.3	у
V1-C3.2	89	1027						47566	382	115	1.9	у
V1-D3.1	123	1366						40192	1547		9.9	у
V1-D3.2	318	3321	174	90	975	47.6		41257	1044		6.6	у
V1-E3.1	829	18424						33885	21590		65.7	
V1-E3.1 up	30	10438						33885	21590		65.7	
V1-3	249	12629						48239				
V1- A3.1 up	932	19460										
V2-A3.1	129	1424						39677	751	UP	4.9	у
V2-A3.2	188	2017						37166	1080	125	7.6	у
V2-B3.1	375	3887						40655	4783		25.9	n
V2-B3.2	457	4712						37887	5724		31.0	n
V2-C3.1	314	3279						39901	4424	LP	24.7	n
V2-C3.2	139	1534						41686	2782	68	16.4	у
V2-D3.1	165	1787						38159	4345		25.2	у
V2-D3.2	156	1695	155	80	875	13.6		38914	827		5.5	у
V3-A3.1	415	4284						42604	3084	UP	17.3	n
V3-A3.2	163	1769						40717	1257	125	7.7	у
V3-B3.1	134	1475						43614	1708		9.9	у
V3-B3.2	106	1199						42640	1336		7.9	у
V3-C3.1	191	2050						40873	1410	LP	8.7	у
V3-C3.2	152	1660						42754	933	122	5.4	у
V3-D3.1	104	1175						41700	1017		6.1	у
V3-D3.2	80	939	133	77	854	26.5		40208	1460		9.1	у
V3-E3.1	396	4101						35718	13772		53.5	
V3-E3.1 up	1169	11830						35718	13772		53.5	
V3-A3.1 up	1203	12164										
V3-3	1718	17317						48508				
V4-A3.1	3	166						38035	1069	UP	7.3	i i
V4-A3.2	2	163						36549	2141	125	14.6	i
V4-B3.1	1	147						37000	672		4.7	i
V4-B3.2	1	152						38051	688		4.7	i i
V4-C3.1	0.1?	142						39089	508	LP	3.3	i
V4- 3.2	1	151						36155	2606	68	17.4	i
V4-D3.1	1	149						37482	5510		30.4	l i
V4-D3.2	1	149						36793	3590		22.4	i
V4-3	0.1?	142						48638				İ
V5-A3.1	67	808						36435	593	UP	3.8	
V5-A3.2	127	1405						36763	746	125	4.9	у
V5-B3.1	323	3366						34612	2506		17.2	n
V5-B3.2	352	3656						36126	1891		12.9	n
V5-C3.1	201	2152						36350	1326	LP	9.1	У
V5-C3.2	332	3454						34764	1936	112	13.6	n
V5-D3.1	0.114	1282			0			37384	686		4.4	У
V5-D3.2	0.194	2078	41	88	971	36.7		36251	722		4.8	У
V5-3	1.591	16047						41939				у
	V1-V	3- (ohne∖	/6)	84	919		6.9					
	D4/D5/D7			82	900		6.9					

Legende vgl. weiter oben, anfangs Unterkapitel.

D-MeAla³EtVal⁴Cs Formulierung 4: Dispersion 4

				antanaa	I lint a rl con	
redender	VII	weiler	oben	CINCINCIS	Unierko	niei
					011101100	×

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V3-A4.1	119	2560						43425	2507	UP	14.2	n
V3-A4.2	64	1460						43188	1422	125	8.3	У
V3-B4.1	56	1302						41285	1694		10.3	У
V3-B4.2	65	1492						40828	1937		11.8	У
V3-C4.1	58	1341						41045	1415	LP	8.7	У
V3-C4.2	24	667						40446	1789	122	11.0	У
V3-D4.1	313	6451						40045	2763		16.6	n
V3-D4.2	97	2118	534	30	713	26.9		39571	1885		11.8	n
V3-E4.1	346	7107						34460	15076		56.6	
V3-E4.1 up	1123	22614						34460	15076		56.6	
V3-A4.1 up	1765	35436										
V3-4	1756	35264						46506				
V4-A4.1	43	1048						38890	437	UP	2.8	
V4-A4.2	89	1961						37085	1625	125	11.2	
V4-B4.1	71	1615						36053	1467		10.5	
V4-B4.2	21	604						34504	841		6.3	
V4-C4.1	226	4695						34234	2961	LP	20.3	
V4-C4.2	26	716						35606	998	68	7.3	
V4-D4.1	286	5912						35600	3405		22.0	
V4-D4.2	100	2189						37971	1769		11.9	
V4-4	1620	32543						45105				
V5-A4.1	87	1934						36583	897	UP	6.1	У
V5-A4.2	75	1697						36837	871	125	5.8	У
V5-B4.1	59	1367						36912	435		2.6	У
V5-B4.2	264	5457						33165	2765		19.4	n
V5-C4.1	69	1570						36475	1737	LP	11.8	У
V5-C4.2	38	956	656	24	543	24.5		36726	716	112	4.7	У
V5-4	2769	55506			376			40234				
	V3/V5			27	628	19.1						

D-MeAla³EtVal⁴Cs Formulierung 5: Dispersion 5

Legende vgl. weiter oben, anfangs Unterkapitel.

In violett markiert sind die Werte, welche mit der Formel aus LCQuan für die Kalibriergerade der Formulierung 3 berechnet wurden.

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V3-A5.1	24	674						39702	1345	UP	8.5	У
V3-A5.2	1066	9095						36824	1546	125	10.4	n
V3-B5.1	28	-787						38268	928		6.0	У
V3-B5.2	42	-654						42050	1373		8.2	У
V3-C5.1	31	-757						36371	840	LP	5.6	У
V3-C5.2	51	-565						35815	992	122	6.8	У
V3-D5.1	37	-705						35547	1993		13.7	У
V3-D5.2	44	-631	37	46	596	26.2		35814	1868		12.8	У
V3-E5.1	203	875						37143	12889		50.9	
V3-E5.1 up	753	6112						37143	12889		50.9	
V3-A5.1 up	1214	10510										
V3-5	804	6600						47694				
V4-A5.1	186	719						35878	587	UP	4.2	i
V4-A5.2	46	-615						36103	567	125	4.0	i
V4-B5.1	108	-27						32718	2819		20.2	i
V4-B5.2	121	99						33801	1844		13.7	i
V4-C5.1	346	2239						35103	873	LP	6.5	i
V4-C5.2	163	0499						34191	1096	68	8.3	i
V4-D5.1	229	1127						34454	2745		19.0	i
V4-D5.2	182	0683						35226	2895		19.5	i
V4-5	1118	9595						47294				i
V5-A5.1	287	1678						31603	1292	UP	10.1	У
V5-A5.2	208	925						33502	702	125	5.0	У
V5-B5.1	303	1830						33784	711		5.1	У
V5-B5.2	1006	8524						32638	1054		8.0	n
V5-C5.1	470	3420						32674	2012	LP	14.9	n
V5-C5.2	322	2015	266	89	1030	19.1		32128	2188	112	16.3	n
V5-5	2986	27386						45399				
	V3/V7			67	813	37.8						

D-MeAla³EtVal⁴Cs Formulierung 6: Dispersion 6

Legende vgl. weiter oben, anfangs Unterkapitel.

In violett markiert sind die Werte, welche mit der Formel aus LCQuan für die Kalibriergerade der Formulierung 3 berechnet wurden.

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V3-A6.1	28	-515						42707	934	UP	5.4	У
V3-A6.2	104	-351						42190	675	125	3.8	n
V3-B6.1	37	-495						39668	1156		7.3	У
V3-B6.2	46	-475						43214	971		5.6	У
V3-C6.1	35	-499						39891	1064	LP	6.6	У
V3-6.2	62	-441						39394	907	122	5.7	У
V3-D6.1	60	-445						41750	1124		6.7	У
V3-D6.2	70	-425	45	41	547	31.1		39785	1769		11.1	n
V3-E6.1	180	-189						34032	11895		51.0	
V3-E6.1 up	468	427						34032	11895		51.0	
V3-A6.1 up	894	1337										
V3-6	1095	1768						49945				
V4-A6.1	219	-107						36026	849	UP	6.1	i
V4-A6.2	90	-382						36885	968	125	6.8	i
V4-B6.1	153	-247						29786	838		7.2	i
V4-B6.2	601	711						33201	1862		14.0	i
V4-C6.1	491	475						33341	3392	LP	23.1	i
V4-C6.2	2190	4108						34172	4466	68	27.9	i
V4-D6.1	2593	4971						35340	5001		29.6	i
V4-D6.2	1824	3326						35577	4582		27.6	i
V4-6	8094	16733						42760				i
V5-A6.1	247	-47						36792	589	UP	3.8	У
V5-A6.2	445	378						36248	879	125	6.0	У
V5-B6.1	488	470						36605	1026		7.0	У
V5-B6.2	304	75						35809	631		4.2	У
V5-C6.1	328	127	362	47	610	27.8		35170	713	LP	4.9	У
V5-C6.2	2164	4053						35801	4327	112	26.2	n
V5-6	7687	15862						47583				
		Ň	V3/V5	44	579	7.7						

D-MeAla³EtVal⁴Cs Formulierung 7: Dispersion 7

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V5-A7.1	0.223	0.14						40499	1177	UP	7.3	У
V5-A7.2	2.865	3.674						36864	4027	125	24.2	n
V5-B7.1	2.993	3.844						38248	1383		9.1	n
V5-B7.2	0.433	0.421						38447	1083		7.1	У
V5-C7.1	1.023	1.21						36636	1165	LP	8.0	n
V5-C7.2	0.815	0.931						37586	673	112	4.3	n
V5-D7.1	0.977	1.148						37658	1845		12.2	n
V5-D7.2	2.339	2.97	328	80	69	45.3		38612	770		4.9	n
V5-7	4.08	5.299						44724				
			V5	80	69	45.3						

Legende vgl. weiter oben, anfangs Unterkapitel.

D-MeAla³EtVal⁴Cs in HBSS mit 0.1% (v/v) Ethanol: Lösung 8

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V1-A8.1	397	458						39314	1022	UP	7.1	У
V1-A8.2	203	419						42196	609	81	4.0	У
V1-B8.1	986	576						44878	1098		6.7	n
V1-B8.2	484	475						46416	707		4.2	У
V1-C8.1	1154	610						43100	1120	LP	7.1	n
V1-C8.2	234	425						40662	756	115	5.1	У
V1-D8.1	623	503						41979	866		5.7	У
V1-D8.2	552	489	416	123	137	7.4		46260	746		4.5	У
V1-E8.1	1596	699						29911	21795		68.6	
V1-E8.1 up	41	386						29911	21795		68.6	
V1-8	1395	658						49069				
V1-A8.1 up	3378	1056										
V2-A8.1	714	522						42805	1491	UP	9.2	У
V2-A8.2	360	450						42780	1006	125	6.3	У
V2-B8.1	771	533						40172	3464		20.4	n
V2-B8.2	510	480						41127	3462		20.0	n
V2-C8.1	543	487						44129	1397	LP	8.4	У
V2-C8.2	455	470						40118	4148	68	23.5	n
V2-D8.1	76	393	539	160	144	7.4		40600	1872		11.9	n
V2-D8.2	906	560						41554	2269		13.9	n
V5-B8.1	801	539						37908	528	UP	3.2	У
V5-B8.2	758	530	780	42	29	1.2		37645	403	125	2.3	У
V5-C8.1	2206	821						6707	5883		72.5	n
V5-C8.2	4494	1281						36429	1869		12.7	n
V5-D8.1	1701	720						33400	1953	LP	14.2	n
V5-D8.2	5267	1436						36399	1748	112	11.9	n
V5-D8.3	3132	1007						33912	1417		10.4	n
V5-D8.4	5279	1438						36279	1319		9.1	n
V5-8	18508	4095						37922				
V1/V2/V3			578		103	32.0						

Legende vgl. weiter oben, anfangs Unterkapitel.

CsA in HBSS mit 0.1% (v/v) Ethanol: Lösung 9

Legende vgl. weiter oben, anfangs Unterkapitel.

In violett markiert sind die Werte, welche mit der Formel aus LCQuan für die Kalibriergerade der Lösung 8 berechnet wurden.

Α	В	С	D	E	F	G	Н	I	K	L	Μ	Ν
	×10-3	×10-3	×10-3	×10-3	×10-3							
V1-A9.1	2832	646						41562	1633	UP	10.4	n
V1-A9.2	298	-683						40710	1691	81	10.9	У
V1-B9.1	499	-578						41357	1659		10.6	n
V1-B9.2	425	-617						41080	2136		13.4	n
V1-C9.1	367	-647						40827	1103	LP	7.3	У
V1-C9.2	228	-720						42365	793	115	5.1	У
V1-D9.1	313	-675	276	205	124	27.2		41596	2478		15.0	У
V1-D9.2	175	-748						41333	615		4.1	
V1-E9.1	453	-602						31721	14438		57.7	
V1-E9.1 up	616	-517						31721	14438		57.7	
V1-9	1345	-134						47717				
V1-A9.1 up	978	-327										
V2-A9.1	141	-766						38845	753	UP	5.2	У
V2-A9.2	138	-767						38912	211	125	1.3	У
V2-B9.1	148	-762						37074	1015		7.3	У
V2-B9.2	155	-758						37724	1044		7.4	У
V2-C9.1	321	-671						37081	2441	LP	16.3	n
V2-C9.2	255	-706						36804	2094	68	14.3	n
V2-D9.1	183	-744	153	114	119	26.0		37833	977		6.9	У
V2-D9.2	242	-713						38917	615		4.2	
				160	121.5	2.9						

FD-4 in HBSS mit 200 µg/ml Form. 3 ohne Wirkstoff: Placebodispersion 10

A	I	K	L	Μ
V1-A4	36390	1791	UP	12.7
V1-B4	38765	952	81	6.7
V1-C4	37950	4501		26.1
V1-D4	39374	5179	LP	28.2
V1-E4	32305	15392	115	58.8
V2-A4	37803	872	UP	6.2
V2-B4	37386	2874	125	18.5
V2-C4	36759	2314		15.6
V2-D4	20762	13229	LP	65.6
V2-E4-1	32006	14992	68	58.4

Legende vgl. weiter oben, anfangs Unterkapitel.

FD-4 in HBSS mit 0.1% (v/v) Ethanol: Lösung 11

A	I	K	L	Μ
V1-A7	43028	1349	UP	8.4
V1-B7	43559	2186	81	13.0
V1-C7	41965	1594		10.1
V1-D7	43366	1227	LP	7.7
V1-E7	31103	17224	115	62.4
V2-A7	n.d.	n.d.	UP	n.d.
V2-B7	n.d.	n.d.	125	n.d.
V2-C7	n.d.	n.d.		n.d.
V2-D7	n.d.	n.d.	LP	n.d.
V2-E7-1	30006	14558	68	59.2

Legende vgl. weiter oben, anfangs Unterkapitel.

Lebenslauf

Name	Wenger
Vorname	Olivier
Geburtsdatum	15.01.1974
Heimatort	Neuchâtel (NE) und Blumenstein (BE), Schweiz

Titel	Dr. in Pharmakologie Eidgenössisch diplomierter Apotheker philnat. der Universität Basel
Zivilstand	ledig
Kontakt	Grenzacherweg 45 4125 Riehen
Tel.	061/643 26 33
Fax	061/643 26 31
e-mail	olivier.wenger@bluewin.ch
I	

Schulbildung

1981 – 1986	Primarschule Erlensträsschen und Niederholzschulhaus, Riehen
1986 – 1994	Pro-Gymnasium und Gymnasium Bäumlihof, Basel
06/1994	Matura Typus C (Mathematik, Naturwissenschaften), Basel
	Studium und Promotion
10/1995 – 11/2000	Pharmaziestudium Departement Pharmazie, Universität Basel
09/1999	Eidgenössische Assistenten-Prüfung für Apotheker, Basel
04-08/2000	Diplomarbeit bei der Solvias AG zum Thema « Substrat- Induzierte Mikrokristallisation: Eine Polymorphiestudie an den Modellsubstanzen Carbamazepin und Sulfathiazol » (Leitung Dr. A. Helg)
11/2000	Staatsexamen Pharmazie, Universität Basel (phil. nat. Fakultät)
seit 01/2001	Dissertation am Departement Forschung, Universitätsspital Basel (Leitung Prof. Dr. Alex N. Eberle, Labor Endokrinologie) Koreferenten: Prof. Dr. J. Drewe, Klinische Pharmakologie, Universitätsspital Basel; Dr. M. Lemaire, Nervous System Projects Leader, Drug Metabolism and Pharmacokinetics, Novartis Pharma AG, Basel
04/2005	Promotion in Pharmakologie
	Berufserfahrung
1997 –1998	Einjähriges Praktikum in der City Apotheke, Basel
1999 – 2001	Vertretungen in der City Apotheke, Basel
	Zusammenarbeit mit der Industrie
10/2003	DEBIOPHARM SA, Galenic Unit, 1196 Gland Annahme durch das Bundesamt für Berufsbildung und Technologie (BBT) des eingereichten KTI Projekts Nr. 6571.2 BTS- LS mit dem Titel <i>« Establishment of a novel combination of</i> <i>methods for the prediction of oral bioavailability of formulated</i> <i>active principles using in vitro cell systems »</i> , welches weitgehend selbst erstellt wurde und Dissertationsbestandteil ist.
Publikations- und Posterliste

09/2000	O. Wenger et al., Postersession: <i>«Microcrystallisation: A study of the influence of the substrate on crystallisation and on the formation of polymorphic forms with the model substances carbamazepine and sulfathiazole»</i> , PhandTA 5, 2000, Pharmacenter, Universität Basel
2004/5	Publikationen zum Dissertations-Thema: in Vorbereitung
	Weiterbildung
08/1991	Workshop « Welt in Basel » zum Thema « <i>Gentechnologie</i> », Biozentrum, Universität Basel (Leitung Prof. Dr. U. A. Meyer)
04/1992	Studienwoche der Stiftung « Schweizer Jugend Forscht » zum Thema <i>« stereoselektive Katalyse mittels Titankatalysatoren »</i> (Leitung Dr. G. Ramos, ehemalige Ciba Geigy AG, Basel)
09/1996	« 24th European Peptide Symposium » in Edinburgh, Schottland
08/2001	BioMedical Transporters Conference, « <i>Membrane Transporters:</i> From Identification to Drug Discovery », Interlaken
06/2001	Trainingskurs <i>« Finnigan LCQ Duo»</i> (LCQ Deca) bei der Firma Spectronex AG, Birsfelden
02/2002	Weiterbildungskurs <i>« Pharma-Business für Einsteiger »</i> , Pharma- center Basel-Zürich, ETH Zürich
09/2002	« 9 th Swiss Workshop on Methodology of Receptor Research », ETH Zürich
10-11/2003	Mehrtägiger Weiterbildungskurs mit Projetkarbeit zum Thema « <i>Qualität und GMP</i> », Pharmacenter Basel-Zürich, Basel
12/2003	« 2003 Congress Understanding biological systems through proteomics », Basel
2003 –2004	Teilnahme an diversen Firmen-Fortbildungskursen und Benutzer- seminaren (30. infoExpo, 09/2003, Basel; Spectronex User Seminar, 11/2003, Basel; Dionex Seminar <i>« LC-MS for Polar</i> <i>Analytes »</i> , 11/2003, Olten; Agilent Technologies LC-MS User Seminar, 04/2004, Basel)

EDV- Kenntnisse

MS-Office, Internet, Adobe Umgebung (Acrobat, Photoshop, Pagemaker, InDesign), diverse HPLC und Massenspektrometer Software (Excalibur, ChemStation, LCQuan), Statistikprogramme (StatView, Prism), Endnote, Harvard Graphics, Chem Draw

Sprachkenntnisse

Französisch, Deutsch (Muttersprachen)

Englisch gut in Wort und Schrift

DANKSAGUNG

Diese Arbeit wurde von Januar 2001 bis August 2004 am Departement Forschung des Universitätsspitals Basel, untergestellt dem Departement Klinisch-Biologische Wissenschaften der Universität Basel (DKBW), im Labor Endokrinologie unter der Leitung von Herrn Prof. Dr. A. N. Eberle durchgeführt.

Mein Dank gilt:

Herrn Alex. N. Eberle für die Vergabe des interessanten Dissertationsthemas und der von Ihm großzügig eingeräumten wissenschaftlichen Freiheit, welche mir ermöglichte diese Arbeit Schritt für Schritt aufzubauen und zu einem Ganzen zusammenzubringen.

Allen Kollegen des Endokrinologie-Labors 302 des Departements Forschung « *past and present* », sowie der Labors 410-411, mit denen ich arbeiten durfte, für ihre tägliche Unterstützung. Ein spezieller Dank an Frau Bettina Link, Frau Heidi Tanner und Herrn Steven Knecht für ihre Aufmunterungen und Hilfe, wenn « Murphy » wieder mal reingepfuscht hatte.

Herrn Dr. R. Falchetto und inbesondere Herrn Erwin Hermes für ihre großzügige Unterstützung bei Problemen mit dem Massenspektrometer und für den Einblick in den analytischen Labors der Novartis Pharma AG. Erwin: Der Massenspektrometer möchte sich an dieser Stelle auch melden und Dir seinen speziellen Dank aussprechen, für all die SOS-Ein-Herz-Für's-MS-Aktionen!

Allen Beteiligten Personen bei der Debiopharm SA und Debiopharm SA Galenic Unit für ihre Unterstützung, Hilfe und Anregungen.

Herrn Dr. Michel Lemaire und Herrn Prof. Dr. Jürgen Drewe für all die Anregungen und dafür, daß sie die Leitung meiner Dissertation mitgetragen haben.

Herrn Prof. Dr. H. Leuenberger für die Übernahme des Vorsitzes der mündlichen Dissertationsprüfung.

160 DANKSAGUNG

Weiter möchte ich all jenen Kollegen, Freunden und Verwandten danken, die stets ein Ohr für mich hatten und ohne die, diese Arbeit in dieser Form, erst gar nicht zustande gekommen wäre! Sie werden sich sicher erkennen...

Pour finir je voudrais remercier ma famille de m'avoir soutenu et encouragé pendant tout ce temps. Merci Papa, merci Maman! Merci à la flamme de ma vie qui a veillé sur moi avec sa douce lumière et qui m'a supporté en tout temps...moi aussi!

Merci...

« – Adieu dit le renard. Voici mon secret. Il est très simple: on ne voit bien qu'avec le cœur. L'essentiel est invisible pour les yeux. »

> Antoine de Saint-Exupéry (1900-1944), Ecrivain et Philosophe Le Petit Prince