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Background. The human immunodeficiency virus type 1 reverse-transcriptase mutation K65R is a single-point
mutation that has become more frequent after increased use of tenofovir disoproxil fumarate (TDF). We aimed
to identify predictors for the emergence of K65R, using clinical data and genotypic resistance tests from the Swiss
HIV Cohort Study.

Methods. A total of 222 patients with genotypic resistance tests performed while receiving treatment with
TDF-containing regimens were stratified by detectability of K65R (K65R group, 42 patients; undetected K65R
group, 180 patients). Patient characteristics at start of that treatment were analyzed.

Results. In an adjusted logistic regression, TDF treatment with nonnucleoside reverse-transcriptase inhibitors
and/or didanosine was associated with the emergence of K65R, whereas the presence of any of the thymidine
analogue mutations D67N, K70R, T215F, or K219E/Q was protective. The previously undescribed mutational
pattern K65R/G190S/Y181C was observed in 6 of 21 patients treated with efavirenz and TDF. Salvage therapy after
TDF treatment was started for 36 patients with K65R and for 118 patients from the wild-type group. Proportions
of patients attaining human immunodeficiency virus type 1 loads !50 copies/mL after 24 weeks of continuous
treatment were similar for the K65R group (44.1%; 95% confidence interval, 27.2%–62.1%) and the wild-type
group (51.9%; 95% confidence interval, 42.0%–61.6%).

Conclusions. In settings where thymidine analogue mutations are less likely to be present, such as at start of
first-line therapy or after extended treatment interruptions, combinations of TDF with other K65R-inducing
components or with efavirenz or nevirapine may carry an enhanced risk of the emergence of K65R. The finding
of a distinct mutational pattern selected by treatment with TDF and efavirenz suggests a potential fitness interaction
between K65R and nonnucleoside reverse-transcriptase inhibitor–induced mutations.

The nucleoside reverse-transcriptase inhibitor (NRTI)

tenofovir disoproxil fumarate (TDF) has become an

important component of HIV combination therapy in
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Switzerland because of its potency and once-daily dos-

ing [1, 2]. However, emergence of resistance and viral

breakthrough can occur quickly, such as when TDF is

used in combination with didanosine (ddI) and efa-

virenz (EFV) [3–5] or with abacavir (ABC) and lami-

vudine (3TC) [6]. The key mutation for resistance
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against TDF is a lysinerarginine switch at position 65 in the

reverse-transcriptase (RT) gene (i.e., K65R), which requires

only 1 nucleotide base change [7, 8]. But contrary to other

single-point mutations inducing HIV drug resistance, such as

the RT mutation M184V, the prevalence of K65R in TDF-

exposed individuals is limited, rarely 12%, despite the wide-

spread use of TDF and other drugs, such as ABC and ddI [9,

10], that also select for K65R. Some increases in the prevalence

of K65R may, however, have occurred in recent years [11, 12].

Thymidine analogue mutations (TAMs) selected by zido-

vudine or stavudine counteract the selection of the K65R mu-

tation, as shown both in vitro [13] and in patients [10, 12, 14,

15]. Parikh et al. [16] elucidated the biochemical mechanisms

and further demonstrated that TAMs and K65R do not appear

on the same viral genome because of competing mutational

pathways [17]. In contrast, inclusion of TDF in first-line ther-

apy [2, 18, 19] or combination therapy with TDF and ddI [14,

20] promotes the emergence of K65R. Our aim was to confirm

and extend current knowledge about baseline predictors for the

K65R mutation and to identify mutational correlates.

METHODS

Data and patient selection. Our analysis included clinical and

genotypic data collected until July 2007. The Swiss HIV Cohort

Study (SHCS) is a nationwide, clinic-based cohort study with

continuous enrollment and semiannual study visits [21]. The

SHCS has been approved by ethical committees of all partic-

ipating institutions, and written informed consent was obtained

from participants. The SHCS resistance database contains all

genotypic HIV resistance tests performed by the 4 authorized

laboratories in Switzerland, stored in SmartGene’s (Zug, Swit-

zerland) Integrated Database Network System (IDNS, version

3.4.0) [22].

The database was screened for resistance tests performed

from January 2002 through July 2007 for patients receiving

treatment with TDF or �30 days after end of treatment. Be-

cause tests were obtained under various circumstances (e.g., at

therapy initiation or in salvage settings), we further restricted

selection to reduce confounding. First, we excluded samples

from patients who had previously experienced a virological

failure during treatment with TDF, ABC, or ddI without re-

sistance testing, because the K65R mutation may have already

emerged in those patients. Moreover, we included only resis-

tance tests that had been performed after ample exposure to

TDF, to allow for selection of the K65R mutation, which can

occur as early as after 12 weeks of treatment [3, 6, 23]. Thus,

we considered only tests that were performed after �90 days

of continuous therapy with TDF or, in cases in which patients

already had exposure to TDF, tests done after 30 days of con-

tinuous treatment with the current regimen and �90 days of

prior cumulative treatment with TDF. Only the first test per

patient fulfilling all inclusion criteria was considered.

Throughout this project, virological failure was defined as

an on-treatment HIV RNA level 1500 copies/mL after �180

days of continuous treatment. Moreover, the study baseline was

set at the start of the TDF-containing regimen for which a

genotypic test was available, which did not necessarily corre-

spond with the initiation of TDF.

Furthermore, we retrieved all available resistance tests con-

ducted before the study baseline for included patients. The

resistance database was complemented by retrospective se-

quencing of the virus from frozen plasma samples in the SHCS

repository (full protease gene and codons 29–225 of the RT

gene) [24]. For this, plasma specimens with a viral load 1250

copies/mL were selected according to a predefined algorithm.

Initially, we searched for specimens obtained while the partic-

ipant was receiving treatment with TDF, ddI, or ABC. If none

were available, we further considered plasma samples taken near

the time of the latest virological failure events before the study

baseline. For the remaining patients, we obtained pretreatment

specimens.

Analysis. Patients were grouped according to the presence

or absence of the K65R mutation. With use of the Mann-

Whitney U test for continuous variables and Fisher’s exact test

for categorical variables, as well as univariable and multivariable

logistic regression models, the following factors at the start of

the TDF treatment were compared between the 2 groups: so-

ciodemographic characteristics; presence of TAMs, M184V,

protease inhibitor (PI) mutations, or nonnucleoside reverse-

transcriptase inhibitor in (NNRTI) mutations; HIV-1 subtype;

previous exposure to ddI, ABC, or TDF; number of previous

regimens; number of previous virological failures; and current

treatment with ddI, ABC, NNRTI, PI, or thymidine analogues.

In a secondary analysis, we further included viral factors po-

tentially linked to the presence or absence of TAMs (RT mu-

tations 214L and 83K) [25–27].

Associations of K65R with other RT mutations from on-

treatment tests were assessed using Fisher’s exact test, with

adjustments for multiple testing (0.05 false-discovery rate, by

the Benjamini-Hochberg method) [28]. Mutations selected for

analysis were based on the 2006 International AIDS Society–

USA drug mutation list [29]. TAMs were stratified into TAMs

group 1 (M41L, L210W, and T215Y) and TAMs group 2 (D67N,

K70R, T215F, K219E, and K219Q).

We compared treatment response to the first therapy (after

treatment with TDF) between the K65R and the wild-type

groups by calculating the group-wise proportion of individuals

attaining an HIV RNA level !50 copies/mL at week 12 or week

24. If such salvage treatment lasted !12 weeks, the patient was

included in the week 12 analysis but was excluded from the

week 24 analysis.
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Figure 1. Flow chart of patient selection and calculation of prevalence of K65R. ABC, abacavir; ART, antiretroviral therapy; GRT, genotypic resistance
test, TDF, tenovofir; ddI, didanosine.

Statistical analyses were performed with Stata 10 SE software

(StataCorp). All tests of significance were 2 sided, and P values

!.05 were considered to be statistically significant.

RESULTS

Prevalence of K65R. By July 2007, the SHCS drug resistance

database contained samples from 70 patients with the K65R

mutation, corresponding to a cumulative prevalence of 2.2%

among all SHCS participants with at least 1 genotypic resistance

test (figure 1). We found no time trend for the prevalence of

K65R for the period 2002–2007 ( , by Cochran-Ar-P p .154

mitage test; data not shown), although we noted an increase

in prevalence, from 0.7% in 2002 to 2.0% in 2003, that co-

incided with the registration of TDF in Switzerland. Among

patients with a resistance test performed on TDF, the prevalence

of K65R was 10.1%.

Clinical and genotypic correlates at baseline with K65R.

In this analysis, we included 222 patients (42 in the K65R group

and 180 in the wild-type group). For 32 (14.4%) of those 222

patients, the treatment under consideration was their first an-

tiretroviral therapy (table 1). A total of 71 patients (32.0%) had

already been exposed to TDF during a previous treatment pe-

riod without virological failure (median exposure time, 5.7

months [interquartile range, 2.9–11.3 months]). Genotypic re-

sistance tests performed before the start of the TDF-containing

regimen were available for 186 of 222 patients (in the K65R

group, 36 [85.7%]; in the wild-type group, 152 [84.4%]). No

K65R mutation was detected in those samples.

Among 36 patients in the K65R group with a genotypic

resistance test before the start of TDF, 1 (2.8%) harbored viruses

with TAMs group 2, compared with 30 (19.7%) in the wild-

type group (table 1). No such difference was observed for TAMs

group 1, which were detected in 4 patients (11.1%) from the

K65R group and 25 patients (16.4%) from the wild-type group.

Moreover, patients of the K65R group were more frequently

receiving first-line therapy (28.6%) than were patients in the

wild-type group (11.1%), and a higher proportion was receiving

combination therapy containing ddI (59.5% vs. 37.8% in wild-

type group). Of note, no instance of K65R was observed in 25

patients who received zidovudine or stavudine with TDF. Ther-

apies are detailed in table 2. We identified strong associations

of K65R with the additional drug class included in combination



Table 1. Characteristics at the start of the tenovofir-containing regimen (baseline).

Characteristic

Mutation type

P
K65R

(n p 42)
Wild type
(n p 180)

Female sex 16 (38.1) 58 (32.2) .472
Age, median years (IQR) 40.5 (37–47) 41 (37–46.5) .759
Mode of HIV acquisition

Heterosexual intercourse 16 (38.1) 74 (41.1) .871
Injection drug use 10 (23.8) 40 (22.2)
Male homosexual intercourse 14 (33.3) 61 (33.9)
Other 2 (4.8) 5 (2.8)

Ethnicity
White 33 (78.6) 137 (76.1) .656
Black 6 (14.3) 34 (18.9)
Other 3 (7.1) 9 (5)

HIV subtype
B 33 (78.6) 134 (74.4) .124
CRF01_AE 2 (4.8) 1 (0.6)
C 2 (4.8) 8 (4.4)
Other 5 (11.9) 37 (20.6)

Nadir CD4 cell count, median (IQR)a 132 (60–241) 142 (50–220) .980
Baseline CD4 cell count, median (IQR)a 191 (90–288) 266 (153–407) .016
Baseline log10 HIV RNA level, median (IQR)a 4.6 (2.3–5.3) 3.8 (1.2–5.2) .095
Previous CDC C event 30 (71.4) 108 (60) .216
Baseline mutation
Baseline test available 36 (85.7) 152 (84.4) 1.000

TAMs (any) 5 (13.9) 45 (29.6) .061
TAMs group 1b 4 (11.1)b 25 (16.4) .608
TAMs group 2c 1 (2.8)c 30 (19.7) .011
NNRTI mutations 9 (25) 30 (19.7) .497
PI mutations 4 (11.1) 31 (20.4) .241
RT184V/I 11 (30.6) 54 (35.5) .698
RT214L 7 (19.4) 36 (23.7) .665
RT83K 10 (27.8) 31 (20.4) .371

On first-line antiretroviral therapy 12 (28.6) 20 (11.1) .007
Current treatment, combined with tenofovir

NNRTI 38 (90.5) 56 (31.1) .000
PI 0 (0) 108 (60) .000
Didanosine 25 (59.5) 68 (37.8) .014
Lamivudine or emtricitabine 17 (40.5) 99 (55) .122
Abacavir 3 (7.1) 18 (10) .772
Zidovudine or stavudine 0 (0) 25 (13.9) .006

195% Adherentd 13 (41.9) 82 (50) .439
Treatment historye

Previous regimens, median no. (IQR) 4.5 (3.0–7.0) 5.0 (3.0–7.0) .794
Previous exposure to didanosine or abacavir 17 (56.7) 93 (58.1) .882
Previous exposure to tenofovir 9 (30.0) 62 (38.8) .363
Experienced previous virological failure(s)

0 failure 16 (53.4) 81 (50.6) .745
1 failure 10 (33.3) 56 (35.0)
�2 failures 4 (13.3) 23 (14.4)

Virological failure with treatment of zidovudine or stavudine 13 (43.3) 80 (50.0) .503

(continued)
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Table 1. (Continued.)

Characteristic

Mutation type

P
K65R

(n p 42)
Wild type
(n p 180)

Duration of previous exposure to zidovudine or stavudine, median years (IQR) 2.7 (1.1–5.3) 3.6 (1.0–6.3) .364
Virological failures on NNRTI 2 (6.7) 15 (9.4) .633
Virological failures on lamivudine 11 (36.7) 73 (45.6) .365

NOTE. Data represent no. (%) of patients, unless otherwise indicated. CDC, Centers for Disease Control and Prevention; IQR, interquartile
range; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor; RT, reverse transcriptase; TAMs, thymidine analogue
mutations.

a Baseline laboratory parameters available for 34 and 179 of the K65R and the wild-type groups, respectively.
b TAMs group 1, any RT gene mutation of the following: 41L, 210W, or 215Y; 3 of 4 present as mixture in K65R group.
c TAMs group 2, any RT gene mutation of the following: 67N, 70R, 215F, 219E, or 219Q; present as mixture in K65R group.
d Adherence measure available only for 31 and 164 of the K65R and the wild-type groups, respectively.
e Comparison only for patients not receiving first-line therapy (30 in the K65R group and 160 in the wild-type group).

Table 2. Antiretroviral therapy combinations with tenofovir.

Treatment combinations including tenofovir

No. (%) of patients

First-line regimens Later regimens

K65R Wild type K65R Wild type

Efavirenz and lamivudine-emtricitabine 5 (36) 9 (64) 2 (17) 10 (83)
Efavirenz and didanosine 0 0 13 (46) 15 (54)
Efavirenz and abacavir 0 0 1 (100) 0
Nevirapine and lamivudine-emtricitabine 4 (100) 0 3 (60) 2 (40)
Nevirapine and didanosine 3 (100) 0 7 (54) 6 (46)
Boosted atazanavir and lamivudine-emtricitabine 0 0 0 18 (100)
Lopinavir and lamivudine-emtricitabine 0 6 (100) 0 10 (100)
Lopinavir and didanosine 0 1 (100) 0 12 (100)
Other NNRTI and NRTI 0 0 0 7 (100)
Other boosted PI and NRTI 0 0 0 36 (100)
Other unboosted PI and NRTI 0 0 0 13 (100)
3-Class combination (PI, NNRTI, and NRTI) 0 0 0 4 (100)
Single-class NRTI 0 4 (100) 4 (17) 20 (83)
Other 0 0 0 7 (100)

NOTE. Percentages were calculated on the basis of the number of patients on a specific regimen, stratified
by the 2 treatment groups (patients receiving first-line therapy and patients receiving later treatments). NNRTI,
nonnucleoside reverse-transcriptase inhibitor; NRTI, nucleoside reverse-transcriptase inhibitor; PI, protease
inhibitor.

therapy other than NRTIs. No instance of K65R emergence was

observed for treatments including PI. Conversely, 91% of pa-

tients in the K65R group were receiving a combination therapy

with NNRTIs. Accordingly, use of NNRTI arose as the most

predictive factor associated with the emergence of K65R in a

multivariable logistic regression analysis (OR, 23.6; 95% CI,

7.3–76.3) (table 3). Other associations observed in this model

were treatment with first-line therapy (OR, 3.6; 95% CI, 1.1 to

12.2) or treatment with combination therapy containing ddI

(OR, 3.6; 95% CI, 1.3–9.9). No association of K65R with HIV

subtype C was observed [30, 31].

Other RT mutations associated with K65R. We performed

2 analyses for the identification of mutational associations of

RT mutations with K65R. First, we considered only the 222

genotypic tests performed while patients were receiving treat-

ment with TDF (cross-sectional approach); later, we also con-

sidered all preceding resistance tests, if available, assuming that

all mutations ever detected before the start of the TDF-con-

taining regimen would still be present at time of resistance

testing during treatment with TDF (cumulative approach; data

not shown). A comparison of these 2 approaches allowed us

to draw conclusions about the viral evolution of HIV-1 within

patients.

On the basis of unadjusted P values !.05 from the cross-

sectional analysis, we identified 4 NNRTI mutations (L100I,

K103N, G190S, and Y181C) that were more frequently observed

in the K65R group and 3 TAMs (M41L, D67N, and T215Y)

that were much rarer or absent in the K65R group (table 4).



Table 3. Factors associated with the presence of K65R in univariable and multivariable
logistic regression analyses ( ).n p 222

Variable(s)

ORa (95% CI)

Univariable Multivariable

Baseline mutations
TAMs group 1 presentb 0.63 (0.21–1.95) 1.11 (0.20–6.03)
No TAMs group 1 present 1 (Reference) 1 (Reference)
No baseline resistance test 0.85 (0.32–2.23) 0.79 (0.19–3.33)
TAMs group 2 presentc 0.12 (0.02–0.92) 0.07 (0.01–0.64)
No TAMs group 1 present 1 (Reference) 1 (Reference)
No baseline resistance test 0.75 (0.29–1.96) Not doned

NNRTI mutations present 1.36 (0.58–3.18) …
No NNRTI mutations present 1 (Reference) …
No baseline resistance test 0.97 (0.37–2.57) …
PI mutations present 0.49 (0.16–1.48) …
No PI mutations present 1 (Reference) …
No baseline resistance test 0.81 (0.31–2.12) …

Female sex 1.29 (0.64–2.60) 2.43 (0.71–8.33)
Age, years, per year increase 1.00 (0.97–1.04) 1.02 (0.97–1.07)
Mode of HIV acquisition

Heterosexual contact 1 (Reference) 1 (Reference)
Injection drug use 1.16 (0.48–2.78) 3.08 (0.80–11.89)
Homosexual bisexual contact 1.06 (0.48–2.35) 2.30 (0.60–8.74)
Other 1.85 (0.33–10.40) 0.66 (0.06–7.25)

Previous CDC stage C event 1.67 (0.80–3.47) 2.87 (1.05–7.84)
Baseline CD4 cell count, per 10-cell increase 0.85 (0.71–1.02) …
Baseline log10 HIV RNA level, per log increase 1.14 (0.97–1.35) …
Ethnicity

White 1 (Reference) 1 (Reference)
Black 0.73 (0.28–1.89) 0.96 (0.15–6.18)
Other 1.38 (0.35–5.40) 0.74 (0.08–7.12)

HIV subtype …
B 1 (Reference) …
CRF01_AE 8.12 (0.71–92.29) 27.08 (0.57–1,282)
C 1.02 (0.21–5.01) 0.94 (0.09–9.45)
Other 0.55 (0.20–1.50) 0.64 (0.10–4.15)

Adherence
!95% 1.38 (0.64–3.01) …
�95% 1 (Reference) …
No information available 4.34 (1.65–11.39) …

On first-line antiretroviral therapy 3.20 (1.42–7.23) 3.64 (1.08–12.24)
Current treatment, in combination with tenofovir

Zidovudine or stavudinee 0.11 (0–0.62) Not done
Lamivudine 0.56 (0.28–1.10)
Abacavir 0.69 (0.19–2.47)
Didanosine 2.42 (1.22–4.81) 3.62 (1.32–9.94)
NNRTI 21.04 (7.16–61.79) 23.59 (7.29–76.28)
PIe 0.01 (0–0.06) Not done

Previous exposure to didonasine or abacavir 0.64 (0.32–1.26) …
Previous exposure to tenofovir 0.52 (0.23–1.15) …
Previous failure event(s) …

No previous virological failure 1 (Reference) …
1 Previous virological failure 0.64 (0.29–1.42) …
�2 Previous virological failures 0.63 (0.20–1.96) …

(continued)
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Table 3. (Continued.)

Variable(s)

ORa (95% CI)

Univariable Multivariable

Previous virological failure on lamivudine 0.52 (0.25–1.10) …
Previous virological failure on NNRTI 0.55 (0.12–2.50) …
Previous virological failure on zidovudine or stavudine 0.56 (0.27–1.15) …

NOTE. CDC, Centers for Disease Control and Prevention; NNRTI, nonnucleoside reverse-transcriptase inhib-
itor; PI, protease inhibitor; RT, reverse transcriptase; TAMs, thymidine analogue mutations.

a By logistic regression analysis.
b TAMs group 1, any RT gene mutation of the following: 41L, 210W, or 215Y.
c TAMs group 2, any RT gene mutation of the following: 67N, 70R, 215F, 219E, or 219Q.
d Not included in multivariable model because of collinearity.
e OR from exact logistic regression. For computational reasons, only univariable estimates could be obtained.

After adjustment for multiple testing, only T215Y, G190S, and

Y181C reached statistical significance (table 4). The latter 2

mutations, together with K65R, were identified as a distinct

mutational pattern in 6 patients treated with EFV and TDF.

The cumulative approach confirmed that G190S and Y181C

were not present at study baseline and must have been cose-

lected with K65R (data not shown).

In a secondary analysis, we investigated associations of

grouped TAMs with K65R (TAMs group 1 or TAMs group 2),

again using the cross-sectional and the cumulative methods. In

the cross-sectional analysis, TAMs group 1 were found in 2

patients from the K65R group and in 41 patients from the wild-

type group. In contrast, the cumulative approach showed that

5 patients in the K65R and 44 patients in the wild-type group

harbored viruses with TAMs group 1. TAMs group 2 were

detected in 1 and 45 patients from the K65R and the wild-type

group, respectively, with the cross-sectional method and 2 and

53 patients, respectively, with the cumulative approach. Thus,

viruses of 4 patients with K65R had lost TAMs between the

baseline sample and the detection of the K65R mutation (3

with TAMs group 1 and 1 with TAMs group 2). Three of these

patients had extended treatment breaks, with a range of 1.5–

4.8 years, before beginning the TDF-containing regimen. The

fourth patient had a 1-year respite from therapy but resumed

treatment with stavudine, ddI, and nevirapine and achieved

viral suppression before switching to therapy with TDF. Taken

together, virus populations these 4 patients demonstrated shifts

toward wild-type status once selection pressure by antiretroviral

drugs was removed.

Clinical outcomes of TDF-containing regimens. We fur-

ther studied treatment outcomes of the TDF-containing regi-

mens and of continuation of drug histories (figure 1). As of

the database closure for this analysis, 168 patients had stopped

the TDF-containing regimen. For 112 patients—that is, 33 pa-

tients (78.6%) from the K65R group and 79 patients (43.9%)

from the wild-type group—immunologic or virologic failure

was cited as the reason for stopping. Antiretroviral therapy–

related toxicities were reported as being the cause for stopping

the TDF-containing regimen in 16 patients (8.9%) of the wild-

type group, and 1 patient of the K65R group died while being

treated with TDF. All other stop reasons (for 6 patients in the

K65R group and for 33 patients in the wild-type group) were

either unknown or not clearly specified.

In total, 154 patients switched to a new therapy (from the

K65R group, 36 patients; from the wild-type group, 118 pa-

tients). In the K65R group, 31 patients switched to a PI, of

whom 26 patients received a ritonavir boosted regimen and 23

had a regimen with a combination of zidovudine or stavudine.

Moreover, 4 patients switched to a single-class NRTI therapy

with ABC, and 1 patient continued with NNRTI treatment but

replaced TDF with a different NRTI. At week twelve, 38.9% of

the K65R group and 41.5% of the wild-type group showed a

virological response to those new treatments ( , byP p .848

Fisher’s exact test) (figure 1). At week 24, virological response

was 44.1% for patients with K65R and 51.9% in the wild-type

group ( , by Fisher’s exact test). An intent-to-treat ap-P p .556

proach yielded similar results (data not shown). We repeated

these analyses with logistic regression models adjusted for base-

line HIV RNA level, the inclusion of enfuvirtide, and the num-

ber of active drugs in the new regimen with a genotypic sen-

sitivity score !15, as calculated by the Stanford algorithm on

the basis of cumulative drug resistance information [32]. We

found no evidence that patients harboring viruses with the

K65R mutation had a worse treatment outcome at week 12

(OR, 1.2; 95% CI, 0.50–2.70) and week 24 (OR, 0.92, 95% CI,

0.40–2.12), when compared with the wild-type group.

DISCUSSION

Of 222 patients receiving a TDF-containing antiretroviral treat-

ment, combinations of TDF with NNRTIs and/or ddI were

highly associated with the emergence of the K65R mutation.

In contrast, not a single patient receiving TDF combined with

PI or thymidine analogues harbored viruses with the K65R



Table 4. Reverse-transcriptase mutations associated with K65R in genotypic resistance tests
performed on combination therapy with tenofovir.

Mutation

Proportion of patients
with mutation (%)

P a Critical P b SignificantK65R Wild type

NNRTI
100I 6/40 (15) 5/137 (3.6) .018 .009
103N 16/40 (40) 31/137 (22.6) .041 .014
106M 2/40 (5) 2/137 (1.5) .220 .027
106A 1/40 (2.5) 0/137 (0) .226 .029
108I 3/40 (7.5) 7/137 (5.1) .696 .042
181Cc 19/40 (47.5) 7/137 (5.1) .000 .002 Yes
188L 1/40 (2.5) 4/137 (2.9) 1 .044
188C 2/40 (5) 1/137 (0.7) .128 .018
188H 0/40 (0) 2/137 (1.5) 1 .045
190A 6/40 (15) 8/137 (5.8) .090 .015
190S 8/40 (20) 2/137 (1.5) !.001 .003 Yes
190E 1/40 (2.5) 1/137 (0.7) .402 .030
225H 1/40 (2.5) 1/137 (0.7) .402 .032

TAMs group 1
41L 1/30 (3.3) 32/155 (20.6) .020 .011
210W 0/30 (0) 15/155 (9.7) .136 .020
215Y 0/30 (0) 29/155 (18.7) .005 .006 Yes
Any 1/30 (3.3) 37/155 (23.9) .012 .008

TAMs group 2
67N 1/30 (3.3) 31/155 (20) .032 .012
70R 1/30 (3.3) 20/155 (12.9) .207 .023
215F 0/30 (0) 12/155 (7.7) .220 .024
219Q 0/30 (0) 12/155 (7.7) .220 .026
219E 0/30 (0) 6/155 (3.9) .592 .035
Any 1/30 (3.3) 42/155 (27.1) .004 .005 Yes

NRTI (other than TAMs)
115F 2/42 (4.8) 1/180 (0.6) .093 .017
116Y 0/42 (0) 1/180 (0.6) 1 .047
70Ed 2/42 (4.8) 7/180 (3.9) .680 .039
151M 0/42 (0) 1/180 (0.6) 1 .048
62V 2/42 (4.8) 2/180 (1.1) .163 .021
74V 2/42 (4.8) 7/180 (3.9) .680 .041
184V/I 14/40 (35) 59/168 (35.1) 1 .050

Other (not drug-resistance related)
214L 7/42 (16.7) 38/180 (21.1) .671 .038
68G 2/42 (4.8) 5/180 (2.8) .619 .036
83K 9/42 (21.4) 30/180 (16.7) .501 .033

NOTE. Percentages were calculated on the basis of the number of patients in each group who were ever exposed
to the respective drug class (e.g., NNRTI, thymidine analogues, or NRTIs without thymidine analogues). NNRTI, non-
nucleoside reverse-transcriptase inhibitor; NRTI, nucleoside reverse-transcriptase inhibitor; RT, reverse transcriptase;
TAMs, thymidine analogue mutations.

a By Fisher’s exact test.
b Benjamini-Hochberg critical value, with the assumption of a false-discovery rate of 0.05.
c For 6 patients treated with efavirenz, a distinct mutational pattern consisting of G190S and Y181C was observed,

which always appeared in combination with K65R. Those patients are all infected with subtype B viruses.
d In the 2 patients from the K65R group, K65R and K70E were present as mixtures.
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mutation. The presence of 1 or several mutations of the TAMs

group 2 (D67N, K70R, 215F, 219Q, and 219E) at the start of

the TDF-containing regimen appeared to have a protective ef-

fect against the emergence of K65R. Among 4 patients who

had lost TAMs because of extended therapy interruptions, we

noted that K65R could still be selected, despite the likely pres-

ence of TAMs in minor viral populations. However, in none

of these patients did the TAMs reemerge, which further sup-

ports the hypothesis that TAMs and the K65R mutation cannot

exist on the same genome [17].

We further observed a previously undescribed pattern of

NNRTI mutations (G190S and Y181C) and K65R in EFV-

treated patients. Those NNRTI-specific mutations were not

present at the start of combination therapy with TDF and EFV

and must have been coselected with K65R.

Moreover, we investigated therapy success of the subsequent

treatment among patients who had stopped the TDF-contain-

ing regimen and who switched to a new regimen. We did not

observe statistically significant differences between the K65R

group and the wild-type group in the proportion of patients

with HIV RNA levels !50 copies/mL after 12 weeks and 24

weeks of continuous treatment. At week 24, approximately one-

half of the patients reached plasma viremia levels !50 copies/

mL, a result that is in line with or even better than salvage

trials before tipranavir, darunavir, and raltegravir became widely

available [33–37]. Taking due account of small sample size and

short follow-up period, these results suggest that patients who

harbor viruses with the K65R mutation are as likely to attain

viral loads !50 copies/mL as are patients with K65WT.

This study provides support for a protective effect of TAMs—

and in particular TAMs goup 2—against the emergence of

K65R. Thus, it is not surprising that patients who initiate their

first antiretroviral therapy with combination therapy that in-

cludes TDF are at a higher risk of acquiring K65R if their

antiretroviral therapy fails, given the fact that the prevalence

of transmitted resistance and TAMs remains ∼10% in Swit-

zerland [38]. In contrast, patients with extended treatment his-

tories and previous virological failure are more likely to harbor

viruses carrying TAMs [V.v.W. and H.F.G., unpublished data].

Why were there no TAMs at study baseline in the pretreated

patients from the K65R group? Extended treatment interrup-

tions might be one answer, as case reviews from 4 patients

indicated. Furthermore, we investigated viral factors (RT mu-

tations 214L and 83K), which have recently been linked with

the absence of TAMs in pretreated patients [25, 26], but the

analysis results were not conclusive.

We noted that the additional drugs other than TDF that were

included in combination therapy might play an important role

in the emergence of K65R. Combinations of TDF and ddI

appear to be problematic, because ddI and TDF share the same

mutational pathway for selection of K65R.

Moreover, whereas K65R was absent in patients treated with

PI, the use of EFV or nevirapine was highly associated with

the emergence of K65R. This may be due to synergistic fitness

effects with NNRTI-induced mutations on the reverse tran-

scriptase, as our observation of the previously unreported

K65R/G190S/Y181C mutational pattern in 6 EFV-treated pa-

tients suggests. Because G190S is associated with a high fitness

cost relative to the wild type [39], K65R and/or Y181C may

compensate for this. Such fitness synergies have been described

between the NRTI mutation L74V and the NNRTI mutations

K103N and L100I [40].

Alternatively, K65R may occur preferentially with treatment

with EFV or nevirapine compared with PI regimens because

only 1 mutation is required to confer full resistance against

those NNRTIs, whereas PIs often retain residual activity against

HIV-1 despite the presence of PI mutations. Thus, in combi-

nation therapy with TDF and NNRTI, insufficient intracellular

concentrations of combination therapy with TDF can quickly

lead to viral breakthrough and full NNRTI resistance, followed

by the emergence of additional mutations [3, 23]. In line with

this argument, patients with no previous virological failure who

were treated with an NNRTI and TDF ( ) generally hadn p 53

viruses with more resistance mutations (median, 3 mutations;

interquartile range, 1–4 mutations]) than did patients who re-

ceived therapy with a combination of TDF and a ritonavir-

boosted PI ( ) (median, 0 mutations; interquartile range,n p 44

0–1 mutation; data not shown).

Because these data stem from a representative cohort study

reflecting current clinical practice, we consider the conclusions

to be clinically relevant. The study has limitations, however.

We have compared patients with highly diverse treatment his-

tories and who were selected with no randomization; therefore,

we cannot exclude the possibility that there were unmeasured

confounding factors. Patients receiving tenofovir had to have

a genotypic drug resistance test available, implying a selection

bias. However, during this study, genotypic resistance testing

in patients with failing antiretroviral treatment was already clin-

ically routine [33]. The time point of genotypic testing might

also have confounded our results, in particular for the baseline

resistance testing. Predefined stringent selection criteria likely

have minimized the impact on confounding. We also noted no

systematic effect of timing of resistance testing on our results

(data not shown).

Our findings suggest that optimal future treatment regimens

should avoid combining EFV or nevirapine with TDF and ad-

ditional NRTI drugs that favor the selection of the K65R mu-

tation, such as ddI or ABC. Furthermore, the highly protective

effect of boosted PIs and the observed antagonistic effects of

TAMs on the emergence of K65R suggest a potentially pivotal

role of combining thymidine analogues, boosted PIs, and te-
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nofovir in salvage situations. This strategy should be explored

in prospective studies.
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