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Abstract 

Selectins, namely E-, P-, and L-selectin, are carbohydrate-recognizing proteins that mediate 

the initial step of leukocyte recruitment to sites of inflammation. This vital process can turn 

deleterious in case of acute and chronic states of inflammation like stroke, reperfusion injury, 

and psoriasis or rheumatoid arthritis, respectively. In addition, cancer cells have been shown 

to exploit this selectin mediated pathway to metastasize. Blocking of the selectins is 

consequently considered a promising therapeutic approach. 

The tetrasaccharide sialyl Lewisx (sLex) was identified as the minimum binding epitope of all 

three selectins and became the lead structure for various drug discovery programs. SLex itself 

suffers from the typical downsides of carbohydrate leads, namely complex structure and 

synthesis, and poor pharmacokinetic and pharmacodynamic properties, which impede the 

development of selectin antagonists. The rational design of antagonists is furthermore 

hampered by the lack of information on the thermodynamics of the selectin-ligand 

interactions. However, these information are of vital importance for successful lead 

optimization.  

Inter alia, this thesis addresses these major issues in the design of glycomimetic selectin 

antagonists. 

• A fast and efficient synthetic route to the D-GlcNAc mimic (1R,2R,3S)-3-

methylcyclohexane-1,2-diol was developed, which allows the multigram scale synthesis 

of this key intermediate (chapter 2.2.).  

• Similarities and differences between E- and P-selectin were exploited to develop less 

polar, structurally simplified P- and E-selectin antagonists with increased binding affinity 

compared to sLex (chapter 2.3.). 

• A series of glycomimetic amides and sulfonamides was developed to target a hitherto 

unexplored binding pocket of P-selectin. The structurally simplified, and non-charged 

mimetics exhibited up to threefold higher binding affinities than sLex (chapter 2.4.). 

• A synthetic route to derivatives of 2,2-dialkyl-2-O-glycosyl glycolic acid was developed 

and the resulting glycomimetics were tested as E-selectin antagonists (chapter 2.5). 

• Thermodynamic binding parameters of sLex and E-selectin antagonists were analyzed. It 

was found that a combination of reduced polarity of weakly binding residues and 

enhanced pre-organization is the key to overcome enthalpy entropy compensation 

(chapter 2.6.). 



• Literature known antagonists were synthesized to evaluate their potential in established 

in-house assays (chapter 2.7.). 

 
 



Abbreviations 
 
AcOH Acetic acid 
aq. Aqueous 
Ar  Aryl 
ax Axial 
bb Backbone 
cat. catalytic amount 
CR  Complement regulatory-like domains 
CRD Carbohydrate recognition domain 
CSA Camphor sulfonic acid 
Cy Cyclohexyl 
d Days 
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 
DCE 1,2-Dichlorethane 
DDQ 2,3-Dichloro-5,6-dicyano-1,4-

benzoquinone 
DIC N,N’-Diisopropylcarbodiimide 
DMAP 4-Dimethylaminopyridine 
DME  Dimethoxyethane 
DMF N,N-Dimethylformamide 
DMSO Dimethylsulfoxide 
DMTST  Dimethyl(methylthio)sulfonium 

triflates 
dppf 1,1!-Bis(diphenylphosphino) 
 ferrocene 
DTBMP 2,6-Di-tert-butyl-4-methylpyridine 
DTBP 2,6-Di-tert-butylpyridine 
ee Enantiomeric excess 
EGF Epidermal growth factor 
eq Equivalent 
ESL-1 E-selectin ligand 1 
FBDD Fragment based drug discovery 
Fuc Fucose 
Gal Galactose 
GlcNAc N-Acetylglucosamine 
Glc Glucose 
Gly-CAM-1 Glycosylation-dependent cell 

adhesion molecule-1 
h Hour(s) 
HAc Acetic acid 
HBtU O-(Benzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium-hexafluoro-
phosphate 

HEV High endothelial venules 
HOBt N-Hydroxybenzotriazol 
HPLC High performance / pressure liquid 

chromatography 
IC50 Inhibitory concentration 50% 
ICAM-1 Intercellular cell adhesion molecule 

1 
Ig Immunglobulin 
IL-1 Interleukine-1 
IL-8 Interleukine-8 
IR  Infrared spectroscopy 

kDa  Kilo Dalton 
Lac  Lactic acid  
LAD Leukocyte adhesion deficiency 
Lea Lewisa 
Lex Lewisx 
LPS Lipopolysaccharide 
mAb  Monoclonal antibody 
MadCAM-1 Mucosal vascular addressin cell 

adhesion molecule 1 
MAN  
MC Monte-Carlo 
MCPBA Meta chloroperbenzoic acid 
MD Molecular dynamics 
min Minute(s) 
mol. Molecular 
MS Mass spectrometry 
mW Microwave (heating) 
NBS N-Brom succinimide 
Neu5Ac N-Acetyl neuraminic acid, sialic acid 
NHS N-Hydroxysuccinimide 
NMR Nuclear magnetic resonance  
NOE Nuclear Overhauser effect 
Nu Nucleophile 
o.n. Overnight 
pdb Protein data bank 
PCC Pyridinium chlorochromate 
PE Petrol ether 
pg Protecting group 
PSGL-1 P-selectin glycoprotein ligand 1 
p-TsOH p-Toluenesulfonic acid 
py Pyridine 
rac Racemic 
rIC50 Relative IC50 
RT Room temperature 
s seconds 
SAR Structure-activity relationship 
satd. Saturated 
SCR  Short consensus repeats 
Sia Sialic acid  
sLea Sialyl Lewisa 
sLex Sialyl Lewisx 
sc Side chain 
SEC Size exclusion chromatography 
SPR Surface plasmon resonance 
SSL Staphylococcal superantigen-like 

protein 
STD Saturation transfer difference 
TBAB Tetrabutylammonium bromide 
TBAF Tetrabutylammonium fluoride 
TBAHS Tetrabutylammonium 

hydrogensulfate 
TBS tert-Butyldimethylsilyl 
TBSOTf tert-Butyldimethylsilyl triflate 



 

 

TEMPO 2,2,6,6-Tetramethylpiperidine-1-oxyl 
TES Triethylsilane 
Tf  Triflate, (triflouromethanesulfonate) 
TFA Trifluoroacetic acid 
THF Tetrahydrofuran 
TIS Triisopropylsilane 
TLC Thin-layer chromatography 
TMEDA N,N,N!,N!-Tetramethyl 
 ethylenediamine 
TMS Trimethylsilyl 
TMSE Trimethylsilylethyl 
TMSOTf Trimethylsilyl triflate 
TNF-"  Tumor necrosis factor " 
Trt Trityl 
Ts Tosyl 
TsCl Tosyl chloride 
VCAM-1 Vascular cell-adhesion molecule 1 
 
 



 

 1 

Table of Contents 
 

1 INTRODUCTION 1 

1.1 Structure and function of selectins 1 
1.1.1 Structure of selectins 1 
1.1.2 Natural selectin ligands 2 
1.1.3 Physiological role of selectins 3 
1.1.4 Pathophysiological role of selectins 5 

1.2 Binding properties of selectins 6 
1.2.1 Kinetic properties 6 
1.2.2 Catch bond behavior of selectins 6 
1.2.3 Binding of sLex to E- and P-selectin 8 
1.2.4 Binding of PSGL-1 to P-selectin 10 

1.3 E- and P-selectin: differences, similarities and implications for the design of P-selectin 
antagonists 14 

1.4 Ligand pre-organization and rational design of E-selectin antagonists 19 
1.4.1 Pre-organization of sLex 19 
1.4.2 Rational design of E-selectin antagonists 20 

2 RESULTS AND DISCUSSION 29 

2.1 General strategy for the synthesis of sLex, sLex mimetics and key building blocks 29 
2.1.1 Synthesis of sLex and sLex mimetics with sialic acid or cyclohexyllactic acid 29 
2.1.2 Synthesis of sLex mimetics with novel sialic acid mimics 32 

2.2 Fast and efficient route to [(1R,2R,3S)-1-hydroxy-3-methyl-cyclohex-2-yl] 2,3,4-tri-O-
benzyl-! -L-fucopyranoside 1.3b – a key building block in the synthesis of glycomimetic 
selectin antagonists 33 
2.2.1 Exploratory synthetic route to 1.3b 33 
2.2.2 Fast and efficient synthesis of a carbocyclic D-GlcNAc mimic, a key building block for 

the synthesis selectin antagonists 35 
2.3 Development of selectin antagonists based on differences and similarities between E- 

and P-selectin 45 
2.3.1 E- and P-selectin: Differences and similarities guide the way to selectin antagonists 45 
2.3.2 Further selectin antagonists and synthesis of building blocks 76 

2.4 P-selectin specific replacements for sialic acid 96 
2.4.1 Towards a new class of non-charged, sialic acid free P-selectin antagonist 96 
2.4.2 Replacement of sialic acid with esters 118 

2.5 Derivatives of 2,2-dialkyl-2-O-glycosyl glycolic acid as E-selectin antagonists 128 
2.5.1 Design, synthesis, and characterization of 2,2-dialkyl-2-O-glycosyl glycolic acid 

derivatives as E-selectin antagonists 128 
2.5.2 Approaches towards the synthesis of 2,2-dialkyl-2-O-glycosyl glycolic acid  
 derivatives. 148 

2.6 Sialyl LewisX: A “Pre-organized Water Oligomer”? 161 

 



 

 2 

2.7 Synthesis of literature known small molecule selectin antagonists 168 
2.7.1 Synthesis of TBC1269 (7.1) 169 
2.7.2 Synthesis of compound 7.2 170 
2.7.3 Synthesis of compound 7.3 171 

3 OUTLOOK 178 

4 FORMULA INDEX 179 

 

 

 



 

 1 

1 Introduction 

1.1 Structure and function of selectins 

1.1.1 Structure of selectins 

The selectins, namely E-, P-, and L-selectin,a are cell adhesion molecules that mediate the 

adhesion of leukocytes and platelets to vascular surfaces. They are classified as C-type 

lectins, since they recognize carbohydrate ligands in a Ca2+-dependent manner. Overall, 

selectins share about 50% sequence homology. They are composed of a N-terminal 

carbohydrate recognition domain (CRD), also called lectin domain, an epidermal growth 

factor like domain (EGF), several short consensus repeats (SCR), a transmembrane domain 

and a cytoplasmic tail (Figure 1.1.1).[1] 

 

 
Figure 1.1.1 Schematic presentation of the selectins. 

The lectin domain hosts the binding epitope for physiological carbohydrate ligands. It is 

conformationally stabilized by a Ca2+ ion, which is required for recognition.[1] Though the 

exact function of the EGF domain is not completely clear yet, it is essential for the binding 

process and is involved in binding either directly, or by allosteric modulation of the CRD.[2] 

Recent discussions also propose its role in the catch bond behavior of selectins (see section 

                                                
a The selectins have alternative names: E-selectin: CD62E, ELAM-1, LECAM-2; P-selectin: CD62P, 

LECAM-3; L-selectin: CD62L, LAM-1, LECAM-1. 
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1.2.2). SCRs serve as a spacer between the lectin domain and the cell membrane to reach 

through the glycocalix and allow cell-cell interactions. Their number differ between the 

selectins and different species. Human L-selectin contains two, E-selectin six, and P-selectin 

nine SCRs.[3] The transmembrane domain anchors the selectins to the cell membrane.[4,5] The 

final cytoplasmic tail is involved in signal transduction.[6]  

1.1.2 Natural selectin ligands 

The natural selectin ligands are glycoproteins and glycolipids with typically sialylated and 

fucosylated glycan epitopes. The tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa 

(sLea) were identified as common carbohydrate motifs recognized by all three selectins 

(Figure 1.1.2).[7,8] Furthermore, sulfated analogs of sLex were reported to act as selectin 

ligands.[9] 

 

O

HO
HO

OH
O

CO2H

OH
AcHN

HO
OH

OH
O

O

HO
OH

OH

O
O
O

sLex

OR

OH

NHAc

O
O
O

OR

OH

NHAc

O

OHHO

OH

O

OH

OH OH

O

sLea

O

OH

CO2H

AcHN

HO
OH

OH

 

Figure 1.1.2 Common carbohydrate motifs recognized by all three selectins. 

Although all selectins share common carbohydrate binding motifs, they differ in their ligand 

specificity (Figure 1.1.3).  

The most important ligand to P-selectin is the 250 kDa, homodimeric type-I transmembrane 

P-selectin glycoprotein ligand 1 (PSGL-1),[10] which also binds to E- and L-selectin, but with 

different affinity and kinetics.[11] Besides the sLex moiety which is essential for recognition, 

PSGL-1 bears three sulfated tyrosine residues which ensure high binding affinity to P-

selectin (see section 1.3.).  

Glycoproteins identified as ligands to L-selectin comprise MadCAM-1,a [12] CD34,b [13] 

endomucin,[14] endoglycan,[15] podocalyxin-like protein,[16] PSGL-1,[15] and the sialo-mucin 

GlyCAM-1,c [17] which is the best characterized L-selectin ligand to date. GlyCAM-1 is 

                                                
a Mucosal vascular addressin cell adhesion molecule 1 
b Cluster of differentiation molecule 34 
c Glycosylation-dependent cell adhesion molecule-1 



 

 3 

described as regulatory protein involved in the recruitment of lymphocytes into peripheral 

lymphnodes.[3]  

In contrast to P- and L-selectin, E-selectin does not require sulfation of ligands.[7,18] E-

selectin ligand-1 (ESL-1), is a non-sulfated glycoprotein, which lacks binding to P- and L-

selectin.[19] Furthermore, E-selectin binds to PSGL-1 and to carbohydrate structures on L-

selectin of human neutrophils.[20] 

Besides these glycoproteins, P- and L-selectin, but not E-selectin, recognize various 

polyanions like sulfatides, fucoidan and heparin. These are bound in a Ca2+ independent 

manner by a second binding site rich in positively charged amino acids (see section 1.3). 

 

 

Figure 1.1.3 The selectins and their natural glycoprotein ligands (adapted from [3]). 

1.1.3 Physiological role of selectins 

Inflammation is a vital defense and protection mechanism in case of tissue injury and 

invasion of pathogens, which is characterized by the invasion of leukocytes from the 

bloodstream to the site of inflammation. Selectins are key players of this multistep process, 

which is described by the inflammatory cascade (Figure 1.1.4).[21]  

Upon an inflammatory stimulus, pro-inflammatory mediators are released which stimulate 

endothelial cells of post-capillary venules to display E- and P-selectin on their surface. 
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Circulating leukocytes interact with the endothelium via selectin ligands like PSGL-1 and 

ESL-1, and are slowed down. The resulting rolling of leukocytes along the endothelial layer 

allows for the cytokine mediated activation of "2-integrins on the leukocytes.[22] Integrins 

interact with endothelial ligands from the IgG superfamily like ICAM-1a and VCAM-1b, 

which leads to firm adhesion and finally to extravasation and migration of the leukocytes to 

the site of inflammation.[22] 

 

 

Figure 1.1.4 Schematic presentation of the inflammatory cascade (by courtesy of A. Vögtli). 

Though all three selectins have been shown to mediate rolling of leukocytes,[3] they differ in 

their function and in their spatial and temporal expression.[21,23] 

L-selectin is constitutively expressed on most leukocytes and primarily serves as lymphocyte 

homing receptor, i.e. it mediates the attachment of lymphocytes to high endothelial venules 

(HEV) of peripheral lymph nodes, and thereby allows lymphocyte recirculation.[23] Besides, 

L-selectin is involved in the “secondary tethering” of free-flowing leukocytes to already 

adherent ones, which allows the recruitment of further leukocytes to sites of inflammation. 

This process is mediated by the L-selectin-PSGL-1 interaction.[24] 

E-selectin is exclusively expressed on stimulated endothelial cells after de novo synthesis, 

three to four hours after activation. Its expression is stimulated by transcription factors such 

                                                
a Intercellular cell adhesion molecule 1 
b Vascular cell adhesion molecule 1 
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as tumor necrosis factor ! (TNF-!), interleukin-1 (IL-1) and lipopolysaccharides (LPS).[25] It 

mediates slow rolling of leukocytes, which is the prerequisite for further activation of 

leukocytes by chemo-attractants.[26] 

P-selectin is constitutively stored in !-granules of platelets and Weibel-Palade bodies of 

endothelial cells. Upon stimulation by thrombin, histamine, or other agonists, it is 

translocated to the cell surface within minutes.[27] In addition, LPS, TNF-!, and IL-1 can 

induce de novo synthesis of P-selectin, which leads to its expression on the cell surface two to 

four hours later.[28] P-selectin is thought to initiate the capturing of leukocytes and to mediate 

the fast rolling of leukocytes. 

The physiological relevance of selectins has been confirmed by several knockout 

experiments. L-selectin deficient mice show reduced leukocyte rolling and defects in 

lymphocyte homing.[29] Mice deficient in P-selectin[30] and mice deficient in P- as well as E-

selectin[31] exhibit elevated levels of neutrophils in the blood. Even more, P- and / or E-

selectin deficient mice suffered from increased mortality after infection with Streptococcus 

pneumoniae.[32] The relevance of selectins for the human immune system was first evidenced 

by cases of the leukocyte adhesion deficiency syndrome type 2 (LAD-2). This rare genetic 

disorder is caused by a mutation in the GDP-fucose transporter gene, leading to a lack of 

fucosylation in glycoconjugates, which goes along with reduced rolling of leukocytes. LAD-2 

is characterized by recurrent infections, mental retardation, and the Bombay Blood group.[33]  

1.1.4 Pathophysiological role of selectins 

Besides their fundamental role in physiological processes, selectins are also involved in a 

plethora of severe disease states. In these cases, the actions of leukocytes are misdirected, as 

they no longer only fight bacteria and decompose damaged tissue, but also cause injury and 

breakdown of healthy cells.[34] A hallmark of many acute and chronic inflammatory diseases 

is the excessive recruitment of leukocytes to inflamed tissue. Examples of these diseases 

include asthma,[35] rheumatoid arthritis,[36] reperfusion injury,[37] and host versus graft 

disease[38]. Using antibodies, recombinant selectin counter-receptors or low molecular weight 

antagonists, selectins have been evaluated as promising pharmacological targets to tackle 

theses diseases.[39] 

Furthermore, there is growing evidence that cancer cells, coated with sLex and sLea exploit 

the selectin mediated inflammatory pathway to escape the bloodstream and metastasize.[40,41] 

The pathophysiological role of selectins and their relevance as pharmacological targets is 

covered by several excellent reviews: [34,39,41-43] 
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1.2 Binding properties of selectins 

1.2.1 Kinetic properties 

Given the physiological role of selectins, namely the transient tethering of fast flowing 

leukocytes to endothelial cells, relatively weak binding and fast binding kinetics are to be 

expected. Indeed, surface plasmon resonance (SPR) experiments revealed fast association 

and dissociation kinetics for all three selectins. 

For the interaction of E-selectin and ESL-1, Vestweber and coworkers found a dissociation 

rate constant koff of 4.6 s-1 and calculated an association rate constant kon of 7.4 ·104 M-1s-1. 

The dissociation constant KD was determined to be 62 µM. Given the temperature 

independence of the binding affinity, they concluded that the interaction between ESL-1 and 

E-selectin must be entropy driven.[44] With a KD of 0.3 µM, the P-selectin-PSGL-1 

interaction displays the highest affinity of the measured selectin-ligand interactions. 

Association was very fast with a kon of 4.4 ·106 M-1s-1. The koff was 1.4 s-1.[45] The kinetics of 

the L-selectin-GlyCAM-1 interaction were too rapid for precise measurements. Nevertheless, 

it was shown that the koff was # 10 s-1 and the kon was # 105 M-1s-1, with a KD of 108 µM.[46]  

The lower kon of the E-selectin-ESL-1 interaction compared to the kon of the P-selectin-

PSGL-1 interaction points to different roles of the two selectins. It is assumed that P-selectin 

mediates the initial capturing of leukocytes, while E-selectin probably serves to further 

strengthen the contact with the endothelium.[44] This reasoning is supported by the relatively 

poor ability of E-selectin to capture free-flowing leukocytes.[23] 

1.2.2 Catch bond behavior of selectins 

It has been observed that rolling of all three selectins requires a minimum shear threshold to 

become efficient.[47] With increasing shear, higher numbers of leukocytes tether and roll until 

a peak is reached beyond which the rolling of leukocytes decreases again. This observation 

was rationalized by increased formation of bonds between leukocytes and endothelial cells 

with increasing shear[48] and a catch bond behavior of selectins. In contrast to slip bonds, 

catch bonds initially get stronger with increasing tensile force before they break, a finding 

that was demonstrated for the P-selectin/PSGL-1 interaction using atomic force 

microscopy.[49] Two models have been developed to explain this counterintuitive binding 

behavior, an allosteric model and a sliding rebinding model. 
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The allosteric model proposes a single binding site that can adopt a high affinity and a low 

affinity state which can be modulated allosterically by the lectin-EGF interface.[50] This 

model is based on the two different conformations of P-selectin observed in crystal 

structures. Apo P-selectin (pdb code 1g1q) and P-selectin soaked with sLex (1g1r) favor a 

bent conformation while P-selectin cocrystallized with a PSGL-1 fragment (1g1s) adopts an 

extended conformation.[51] These two conformations do not only differ in the orientation of 

the EGF domain relative to the lectin domain, but also in the lectin domain itself (Figure 

1.2.1; more detailed information is given in section 1.2.4).  

 

Figure 1.2.1 Bent conformation of apo-P-selectin (left) and extended conformation of P-selectin 
cocrystallized with a PSGL-1 fragment (right). Figure adapted from [50] 

Binding studies with a glycan wedge at the interface of the lectin- and the EGF-domain, 

which stabilizes the extended conformation of P-selectin, revealed a 5 fold increased affinity 

towards PSGL-1.[52] The same effect on binding affinity was observed upon mutation of an 

amino acid in the lectin domain intended to favor the extended, high affinity conformation.[50] 

The authors concluded that the high and low affinity state are in an equilibrium, which is 

shifted to the high affinity state upon directional force.[50]  

In contrast, in the sliding rebinding model, ligand binding does not induce a conformational 

change in the lectin domain. Instead, it is proposed that force favors the extended 

conformation which enables alignment of ligand and selectin parallel to the applied force, 

and thereby allows the ligand to slide along the selectin surface from one binding site to the 

next.[53] 
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Although more data is needed to verify the allosteric model, allosteric modulation of selectin 

affinity might become a powerful tool for the design of selectin antagonists that overcome the 

typical drawbacks of competitive selectin antagonists.  

1.2.3 Binding of sLex to E- and P-selectin  

SLex was identified as the minimum binding epitope of all three selectins[54] and consequently 

was the lead for most small molecule selectin antagonists developed to date.[55] Towards both 

E- and P-selectin, it exhibits only weak binding of 0.3 to 1.1 mM and 7 to 9 mM, 

respectively.[56]  

Initial structure activity relationship (SAR) studies mainly focused on E-selectin and allowed 

for the identification of the pharmacophoric groups described in Figure 1.2.2. Various studies 

suggested that the D-GlcNAc moiety is not directly involved in binding,[57] but rather acts as a 

spacer ensuring the right spatial orientation of L-fucose (L-Fuc) relative to D-galactose (D-

Gal).[58] The saturation transfer difference NMR (STD-NMR) pattern of sLex on E-selectin 

agreed with the identified pharmacophoric groups, giving strong signals for groups involved 

in binding and only weak signals for protons of N-acetyl-D-glucosamine (D-GlcNAc) and 

sialic acid.[59] 
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Figure 1.2.2  Pharmacophoric groups of sLex identified by SAR studies: hydroxyl of L-
fucose,[51,60,61] hydroxyl groups in 4- and 6- position of D-galactose,[62-64] and the carboxylic acid 
residue of sialic acid[61].  

Only limited SAR data is available for the P-selectin-sLex interaction. Brandley et al. 

reported that the 3-hydroxyl group of L-Fuc is essential, while either the 2- or the 4-hydroxyl 

group can be removed without loss in affinity. He further reported, that the carboxylate of 

sialic acid could be replaced by different charged groups resulting in comparable affinities.[61] 

Hasegawa and coworkers studied the binding of various deoxy sLex gangliosides to P-

selectin and found, that the 6-hydroxyl group of D-Gal is essential, while the 4-hydroxyl 

group of D-Gal was dispensable.[64]  
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The conformation of sLex bound to E- and P-selectin, and consequently the pharmacophore 

of sLex, was deduced from several NMR studies.[56,65,66] The conformation of sLex bound to 

E-selectin found by Scheffler et al.[65,67] was confirmed subsequently by the crystal structures 

of E- and P-selectin in complex with sLex.[51] These crystal structures, solved by Somers and 

Camphausen in 2000, were also in excellent agreement with the pharmacophoric groups 

identified earlier and finally gave a precise picture of the interactions at molecular level 

(Figure 1.2.3 and Figure 1.2.4).  
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Figure 1.2.3 Schematic presentation of interactions between sLex and E-selectin (left) and sLex 
and P-selectin (right) as observed in the crystal structures.[51] sc = side chain; bb = backbone. 

The contacts observed in the crystal structures can be summarized as follows. 

E-selectin: The hydroxyl groups 3 and 4 of L-Fuc directly coordinate to Ca2+ and are 

involved in further hydrogen bonding with protein side chains coordinating to Ca2+. The 

hydroxyl group 2 of L-Fuc forms water mediated hydrogen bonds to the side chains of Asn83 

and Glu107. The hydroxyl groups 4 and 6 of D-Gal bind to the side chains of Tyr94 and 

Glu92, respectively. The carboxylate of the sialic acid moiety forms a hydrogen bond to the 

side chain of Tyr48 and a salt bridge to the side chain of Arg97. The guanidinium moiety of 

Arg97 furthermore binds to the oxygen of the glycosidic bond between D-Gal and sialic acid. 

P-selectin: The hydroxyl groups 3 and 4 of L-Fuc directly coordinate to Ca2+ and are 

involved in further hydrogen bonding with protein side chains coordinating to Ca2+. In 

contrast to E-selectin, Asn83 does not coordinate to Ca2+, and does not mediate the hydrogen 

bond network between water, Glu107, and L-Fuc. Identically to E-selectin, the hydroxyl 

groups 4 and 6 of D-Gal bind to the side chains of Tyr94 and Glu92, respectively. One of the 

major differences between the two proteins is the mutation of Arg97 in E-selectin to Ser97 in 

P-selectin, which goes along with the loss of a charge-charge interaction and a favorable 

hydrogen bond. It is assumed that this mutation is one of the major reasons for the 

approximately tenfold lower binding affinity to P-selectin compared to E-selectin. 
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Furthermore, a hydrogen bond between Ser99 and the 4-hydroxyl group of sialic acid is 

postulated for the P-selectin-sLex complex.  

 

Figure 1.2.4 SLex bound to E-selectin (left) and sLex bound to P-selectin (right).[51] 

Overall, the core of sLex (Gal("1-4)[Fuc(!1-3)]GlcNAc) is coordinated almost identically by 

both proteins, which can be rationalized by the highly conserved amino acid sequence in this 

part of the binding site (Figure 1.2.4).[68] The high degree of similarity is also reflected in the 

nearly identical conformation of sLex bound to P- and E-selectin. Differences, however, exist 

in the protein epitopes near sialic acid. The side chains of Arg97, Glu98, Lys99, and Asp100 

in E-selectin form a rather wide pocket, which is stabilized by the guanidine moiety of Arg97 

stacking against Tyr94 and interacting with Asp100. Ser97, Pro98, Ser99, and Ala100 of P-

selectin in contrast form a binding pocket stabilized by a highly ordered H-bond network. 

Comment on the crystal structures: 

Apo-E-selectin had already been crystallized by Graves et al. in 1994.[69] The crystal 

structure solved by Somers et al. is nearly identical with this earlier one.[51] It is important to 

note that the sLex-P-selectin complex and the sLex-E-selectin complex were both formed by 

soaking sLex into preformed crystals of E- and P-selectin. 

1.2.4 Binding of PSGL-1 to P-selectin  

The physiological ligand to P-selectin, PSGL-1 binds to P-selectin with a KD of 

approximately 0.3 µM,[45] which is about 20 000 fold stronger than the binding affinity of 

sLex alone.[56] While various publications point out the importance of tyrosine sulfation for 

high affinity binding,[70] Somers et al. found that non-sulfated PSGL-1 binds already 200 fold 
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stronger than sLex,[51] suggesting that the protein part of PSGL-1 significantly contributes to 

the increase in binding affinity.  

A highly truncated form of PSGL-1, SGP-3, was used for crystallization with P-selectin, 

since PSGL-1 itself was considered too complex for co-crystallisation.[51] The SGP-3 

construct comprises the 19 N-terminal aminoacids of mature PSGL-1 including sLex 

modified Thr16 and the three tyrosine sulfates (Tys6, Tys8, Tys11) essential for high affinity 

binding. In SPR experiments with SGP-3 and P-selectin kinetics almost identical to the one 

of a soluble recombinant form of PSGL-1 were observed, providing evidence that SGP-3 is a 

functional mimetic of full-length PSGL-1. [51]  

The crystal structure of SGP-3 and P-selectin revealed a combination of hydrophobic and 

electrostatic interactions for the protein part of SGP-3 and P-selectin. Tyrosine sulfates were 

found to bind in a region of positive electrostatic potential, while the sLex part bound to the 

same epitope as in the sLex-P-selectin complex. Nevertheless, striking differences were found 

when comparing the overall conformations of P-selectin bound to SGP-3 with the ones of 

apo-P-selectin and sLex-P-selectin (Figure 1.2.5 and Figure 1.2.6). 

Firstly, the loop formed by Asn83 to Asp89 is moved near the Ca2+ site upon binding of 

PSGL-1, and thereby allows additional interactions. Glu107 now forms a hydrogen bond to 

the 2-hydroxyl group of L-Fuc, and Glu88 simultaneously coordinates Ca2+ and binds to L-

Fuc (Figure 1.2.5). Furthermore, Arg85 is now involved in hydrogen bonds to Tys10 and 

Pro14 of SGP-3. Secondly, the Arg54-Glu74 loop is moved. Thirdly, the orientation of the 

lectin domain relative to the EGF domain is changed. This last observation supports the 

allosteric model for the catch bond behavior of selectins (see section 1.2.2).[50] The authors 

concluded that P-selectin exists in two conformational states, a high-affinity state and a low 

affinity state.[51] However, one should take into consideration that the observed 

conformational changes might be an artifact caused by the crystallisation conditions.[51] 
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Figure 1.2.5 Schematic representation of the interactions between sLex and P-selectin (left) and 
sLex-SGP-3 and P-selectin (right) as observed in the crystal structures.[51] sc = side chain; bb = 
backbone. 

    

Figure 1.2.6 Left: superposition of apo-P-selectin (blue) and P-selectin in complex with SGP-3 
(purple and orange). Right: zoom into the shift of the Asn83-Asp89 loop. Adapted from Somers et 
al.[51] 

Comment on the crystal structures: 

In their publication describing the crystal structures of E- and P-selectin, Somers and 

Camphausen claim that the movement of the loop defined by Asn83 to Asp89 enables Asn83 

to coordinate to Ca2+ and L-Fuc simultaneously (Figure 1.2.6). A closer look at the crystal 

structure submitted at the RCSB protein data bank (1g1s) in contrast reveals that Asn83 does 

not form this claimed interaction, but rather stabilizes the loop via a hydrogen bond to the 

backbone of Glu88 (Figure 1.2.7). 
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Figure 1.2.7 Conformation and interaction of Asn83 as observed in the crystal structure 1g1s.
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1.3 E- and P-selectin: differences, similarities and implications for the 

design of P-selectin antagonists 

A review on selectin antagonists was published in CHIMIA. The main focus of this article is 

set on P-selectin antagonists and how their development is influenced by structural 

differences and similarities between E- and P-selectin. 

 

Binder, F.P.C.; Ernst, B. CHIMIA 2011, 65, 210-213. 

 

Copyright © Swiss Chemical Society: CHIMIA 

 



 

 15 
 



 

 16 



 

 17 

 



 

 18 
 



 

 19 

1.4 Ligand pre-organization and rational design of E-selectin antagonists 

Pre-organization describes the correlation between solution conformation and bioactive, i.e. 

bound conformation of a molecule. The closer the solution conformation resembles the 

bioactive conformation, the higher is the degree of pre-organization. A high degree of pre-

organization is expected to reduce the loss of conformational entropy upon binding and 

consequently to increase the binding affinity. Carbohydrates are mostly flexible,[71] which is 

reflected in the unfavorable conformational entropies reported for a broad range of lectin-

carbohydrate interactions[71] and accounts for their weak binding affinities. Carver 

consequently suggested to increase the binding affinity of carbohydrates by increasing their 

pre-organization.[72] Interestingly, carbohydrate ligands that were pre-organized by covalent 

means showed no increase in binding affinity, which could be traced back to 

enthalpy/entropy compensation.[73] Even more, ligands that were covalently pre-organized in 

the wrong conformation suffered from significant loss in affinity.[74] 

In the case of E-selectin antagonists, progress was made by successively replacing 

carbohydrate moieties with mimics that were tuned to improve the pre-organization of the 

ligand and thereby its binding affinity. 

1.4.1 Pre-organization of sLex  

SLex mediates the recognition of physiological selectin ligands by selectins. As this process 

takes place under flow conditions, it requires fast binding kinetics and consequently a high 

degree of pre-organization is expected to be beneficial.  

The solution conformation and the conformation of sLex bound to E-selectin have extensively 

been studied by NMR spectroscopy and molecular dynamics (MD) simulations.[5,56,65-67,75] 

Overall, the data suggest a high degree of pre-organization of the LewisX core, while 

conformational changes of the sialic acid residue upon binding to E-selectin are discussed 

controversially. However, the conformation of sLex bound to E-selectin was identified as one 

of two low energy solution conformations of sLex, and molecular modeling studies predicted 

a high degree of pre-organization for sLex.[76,77] Moreover, recently published crystal 

structures of the staphylococcal toxins SSL5 and SSL11 revealed that these lectins bind 

essentially the same conformation of sLex as E- and P-selectin,[78] again pointing to a strong 

similarity between solution conformation and bound conformation of sLex. 
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1.4.2 Rational design of E-selectin antagonists 

Carbohydrate leads typically suffer from low affinities, high polarity, and complex structure, 

which strongly limits their direct application as drugs. A common strategy to overcome these 

limitations is to eliminate unnecessary polar groups and carbohydrate moiety or to replace 

them with less polar mimics. [43] 

This concept was also applied to the development of E-selectin antagonists based on sLex. D-

GlcNAc, known to act as a spacer between L-Fuc and D-Gal, was replaced with numerous 

linkers.[58,79] Ernst and coworkers showed that the affinity of the resulting mimetics correlated 

with the ability of the linker to pre-organize the Lewisx core.[58] Conformationally restricted 

linkers like (R,R)-cyclohexane-1,2-diol were better suited than more flexible ones like 

ethane-1,2-diol. Sialic acid was typically replaced by glycolic acid, lactic acid, or derivatives 

thereof.[80] Pre-organization also turned out to be essential for the carboxy group of sialic 

acid, i.e. (S)-lactic acid derivatives were superior to (R)-lactic acid derivatives. Efforts to 

replace both D-GlcNAc and sialic acid culminated in the substitution with (R,R)-cyclohexane-

1,2-diol and (S)-cyclohexyllactic acid, respectively, resulting in the lead CGP69669, which 

was 15-fold more potent than sLex (Figure 1.4.1).[81]  
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Figure 1.4.1 Systematic replacement of carbohydrate moieties of sLex resulted in the lead 
CGP69669. 

To easily compare the conformational preferences of different ligands, Ernst and Kolb 

defined two internal dihedral angles. The core conformation, i.e. the orientation of D-Gal 

relative to L-Fuc, and the acid orientation, i.e. the tilting angle of the sialic acid C1-C2 bond 

relative to the core (Figure 1.4.2). Furthermore, they developed a molecular modeling tool 
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that allowed to assess the conformational preference of a ligand in solution based on a Monte 

Carlo (jumping between wells)/stochastic dynamics [MC(JBW)/SD] simulation.[76,77] 

Calculated conformations were weighed with their probability and plotted in an internal 

coordinate system (Figure 1.4.3). The conformational preference found for sLex closely 

resembled the conformation determined by tr-NOE NMR,[65,67] which was used to define the 

bioactive window. Ligands populating this window were predicted to have a high degree of 

pre-organization and consequently superior binding affinity compared to ligands outside the 

window. Indeed, it was shown for a set of E-selectin ligands, that the predicted degree of pre-

organization correlates with relative affinities measured in bioactivity assays.  

 

 

Figure 1.4.2 Graphical representation of the internal dihedral angles that define core orientation and 
acid conformation. 
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Figure 1.4.3 Left: conformation of sLex bound to E-selectin as determined by tr-NOE NMR; right 
conformational preference calculated for sLex: the highest probability for the core conformation and 
the acid orientation were calculated as -20° to -50° and 110° to 140°, respectively; the red square 
indicates the bioactive window (adapted from [76]). 

Based on the lead CGP69669, numerous E-selectin antagonists have been synthesized. To 

date, cyclohexyllactic acid was identified as the best mimic of sialic acid,[82,83] and several 

attempts to improve the affinity via additional lipophilic interactions at the sLex binding site 

failed.[63,83,84] However, it was found that various substituents in 2-position of D-Gal enhance 

the binding affinity (Table 1.1).[85,86] STD NMR experiments indicated direct contact of these 

substituents to the protein,[86] while the crystal structure of sLex bound to E-selectin 

suggested no contact at all. To unambiguously identify the binding mode of these antagonists, 

a crystal structure is required. 

Significant improvements were made by enhancing the pre-organization of the core and 

thereby the affinity of E-selectin antagonists.[58,87] Most importantly, it was found that D-

GlcNAc mimics bearing substituents vicinal to L-Fuc enhance the pre-organization via steric 

compression of the core.[58] Ernst, Wagner, and Schwizer systematically studied the influence 

of various alkyl groups and identified (1R,2R,3S)-3-methyl-1,2-cyclohexanediol and 

(1R,2R,3S)-3-ethyl-1,2-cyclohexanediol as superior mimics of D-GlcNAc (Table 1.1).[87] A 

beneficial effect was also reported for substituents at the former ring oxygen position of D-

GlcNAc. Since these should not directly bind to E-selectin according to the crystal structure 

of sLex bound to E-selectin, stabilization of the chair conformation was discussed.[87]  
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Table 1.1 SAR studies of E-selectin antagonists.[84] 

O
O

O

HO
OH

OR2
CO2R1

R3
O

HO
OH

OH

O
R4

 
 

Compound R1 R2 R3 R4 rIC50
a) 

CGP69669 Na H H H 0.080 

BW408-0 
DS4115 H H Me H 0.013 

DS226h Na H Et H 0.009 

LT2_036 H Bz H H 0.040 

GMI 1077 
DS226a 

Na Bz Me H 0.005 

DS226e Na Bz Et H 0.007 

DS226b Na Bz nBu H 0.009 

DS226c Na Bz cPr H 0.032 

DS244 H Bz Me CO2Me 0.002 

a) rIC50 values are referenced to sLex (IC50 = 1 mM, rIC50 = 1.0) 

 

Finally, Jonas Egger and Céline Weckerle used a fragment based drug discovery (FBDD) 

approach to identify nanomolar E-selectin antagonists.[86,88] 
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2 Results and discussion 

2.1 General strategy for the synthesis of sLex, sLex mimetics and key 

building blocks 

Depending on the target molecule and site of modification, different synthetic strategies were 

applied. In general, synthetic routes were designed convergent to require a minimum number 

of building blocks and steps, as well as to introduce modifications at the latest stage possible. 

The following section gives an overview on synthetic strategies and key building blocks used 

throughout this work. The synthesis of building blocks and final compounds is covered by the 

corresponding chapters. 

Nomenclature: Each compound number is composed of the chapter number and a 

consecutive number (left). Compounds that appear in paper draft sections are given simple 

consecutive numbers in this section (middle). If paper draft compounds are referred to in 

another chapter, they are complemented by the chapter number and marked with an asterisk 

(right). A formula index is provided in chapter 4. 

 
2.3

compound number
chapter  

2.3*
compound number
chapter

2.3
compound number
chapter

=
  

2.1.1 Synthesis of sLex and sLex mimetics with sialic acid or cyclohexyllactic acid 

For the synthesis of sLex mimetics with sialic acid (Scheme 2.1.1) or cyclohexyllactic acid 

(Scheme 2.1.2), as well as for the synthesis of sLex (Scheme 2.1.3), a 2+2 strategy was 

applied. This strategy is ideally suited to introduce different derivatives and mimics of D-

GlcNAc with a minimum number of steps and building blocks.  

SLex mimetics with sialic acid were dissected into sialylgalactoside 1.2 and 

pseudodisaccharides 1.3a-c (Scheme 2.1.1). Disaccharide 1.2 was further cleaved into sialic 

acid donor 1.4 and galactoside 1.5, while the pseudodisaccharides were dissected into 

thiofucoside 1.6 and the four D-GlcNAc mimics 1.7a-d.  

SLex mimetic 1.8 was synthesized form galactoside 1.9 and the disaccharides 1.10. The latter 

ones were available from thiofucoside 1.6 and the corresponding N-acetyl-D-glucosamine 

building block 1.11. 

Trimethylsilylethyl (TMSE) protected sLex (1.12) was dissected into donor 1.2 and acceptor 

1.10a (Scheme 2.1.3).  
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Scheme 2.1.1 Retrosynthesis of sLex mimetics with sialic acid.  



 

 31 

OH

1.10a

HO O
O

O

OBnBnO

OBn
NHAc

O
HO
HO

OH
O

OH
AcHN

HO
OH

OH
O

O

HOOH
OH

O
OO

NHAc

1.12

O
AcO
BzO

OAc
O

OAc
AcHN

AcO
OAc

OAc
O SEt

ONaO

OBnO

1.2

OTMSE

OTMSE

OBn

 

1.10

HO O
O

OBnBnO

OBn
NHAc

OMe

OBn

O
O

O

HO
HO

OH
CO2Na

O

NHAc
O

HOOH
OH

O

OH

OMe

O
HO

NHAc

O
OPh

OMe

1.8

SEt
O

O

BzO
OBz

OBz
CO2Bn

1.9

O

OBnBnO

OBn

SEt

1.6 1.11  

Scheme 2.1.2 Retrosynthesis of a sLex mimetic with (S)-cyclohexyllactic 
acid. 

 
 
 
 
 
 
 

 
 
 
Scheme 2.1.3 Retrosynthesis of TMSE-sLex 1.12. 
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2.1.2 Synthesis of sLex mimetics with novel sialic acid mimics 

Mimetics of sLex with novel sialic acid replacements were derived from one of the three key building blocks 1.13, 1.14, or 1.15, applying a 1+3 

strategy (Scheme 2.1.4). These building blocks only differ in the D-galactose part and were obtained from 1.3b and the corresponding galactosides 

1.16, 1.17 and 1.18. 
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Scheme 2.1.4 Retrosynthesis of sLex mimetics with novel sialic acid mimics. 



 

33 

2.2 Fast and efficient route to [(1R,2R,3S)-1-hydroxy-3-methyl-cyclohex-

2-yl] 2,3,4-tri-O-benzyl-!-L-fucopyranoside 1.3b – a key building 

block in the synthesis of glycomimetic selectin antagonists 

2.2.1 Exploratory synthetic route to 1.3b 

In his PhD thesis, Daniel Schwizer studied the influence of various substituents in 3-position 

of D-GlcNAc mimics on the binding affinity of E-selectin antagonists (section 1.4.2.). He 

found, that a simple methyl group is best suited to improve the affinity. The corresponding 

building block 1.3b consequently became the standard for the design of novel selectin 

antagonists and was therefore needed in gram amounts (Figure 2.2.1). 
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Figure 2.2.1 (1R,2R,3S)-3-methyl-cyclohexane-1,2-diol was identified as potent mimic of D-
GlcNAc and made 1.3b the standard building block for the synthesis of novel selectin antagonists. 

The synthetic route originally developed by Daniel Schwizer was designed to introduce 

substituents at the latest stage possible, in this case via epoxide opening (Scheme 2.2.1, step 

f). Although perfectly suited for the exploration of the best alkyl substituent, the route turned 

out to be quite unpractical for the large-scale synthesis of disaccharide mimic 1.3b. 

Especially the costly enantioselective Corey-Bakshi-Shibata reduction[1] and the low 

temperature epoxide opening with the higher order cyanocuprate Me2Cu(CN)Li2
[2] impeded 

the scale up. Besides, the bulky trityl group, which is needed to ensure regio- and 

stereoselectivity of epoxide formation and opening, hampered effective fucosylation. Steric 

hindrance and lack of stability under acidic conditions of the trityl group led to various side 

products and decreased yields substantially. Finally, in larger scale, detritylation with zinc 

bromide as Lewis acid and triethylsilane as hydride donor led to silylation of 1.3b and made 

an additional deprotection step necessary. 
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Scheme 2.2.1 a) i. Br2, CH2Cl2, 0°C, 2.5 h; ii. Et3N, CH2Cl2, r.t., 2 h (60%); b) (S)-!,!-
diphenylprolinol, B(OMe)3, BH3·N,N-diethylaniline, THF, -10°C to 0°C, 3 h, 93%; c) i. t-BuLi, Et2O, 
-78°C to -20°C, 3 h; ii. aq. NaHCO3, -20°C to r.t., 1 h (79%); d) Ph3CCl, CH2Cl2, DBU, r.t., 14 h 
(91%); e) m-CPBA, NaHCO3, CH2Cl2, 0°C to r.t., 5 h (72%); f) MeLi, CuCN, BF3·Et2O, THF, -78°C 
to -30°C, 2 h (91%); g) i. Br2, CH2Cl2, 0°C, 1h; ii. Et4NBr, MS 3 Å, CH2Cl2, DMF, r.t. 16 h, 30% to 
43%; h) ZnBr2, TES, CH2Cl2, r.t., 32 h, 66%. 

Without the need to introduce different substituents in 3-position of the D-GlcNAc mimic, we 

were able to develop a more efficient route to 1.3b, which is described in the following 

section. 
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2.2.2 Fast and efficient synthesis of a carbocyclic D-GlcNAc mimic, a key building 

block for the synthesis selectin antagonists 

 

Author contributions: F.P.C. Binder: synthetic route, all experiments except determination 

of enantiomeric excess using chiral HPLC; Dr. E. Francotte (Novartis): determination of the 

enantiomeric excess using chiral HPLC. 
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Abstract  

For the synthesis of selectin antagonists, a fast and efficient approach to a D-GlcNAc mimic 

was developed. Starting from racemic seudenol, it permits the gram-scale synthesis of 

(1R,2R,3S)-1-[(tert-butyldimethylsilyl)oxy]-3-methyl-cyclohexan-2-ol in 4 steps with only 

two chromatographic purifications.  
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Introduction  

Lectins, such as selectins,1 galectins,2 or siglecs3 have gained increasing attention as drug 

targets. Although valuable leads for the development of new drugs, carbohydrates themselves 

rarely find therapeutic application, as they typically suffer from complex synthesis and poor 

pharmacokinetic and pharmacodynamic properties. As a consequence, small molecules 

mimicking the carbohydrate epitope, e.g. the sialidase inhibitor oseltamivir,4 have been 

developed to overcome these unfavorable properties. A common strategy for the design of 

glycomimetics is the substitution of a carbohydrate moiety with a carbocyclic scaffold, which 

offers increased hydrolytic and metabolic stability and reduced polarity. In addition, the 

facile synthetic accessibility of the mimetic structures, which as a consequence of the 

chirality of the parent carbohydrate compound include stereochemical challenges, is of 

cardinal importance. 

In the case of selectin antagonists, stepwise modification of the natural ligand sialyl LewisX 

(sLeX, 1, Figure 1) led to the new lead structure CGP69669 (2),5 where N-acetyl-D-

neuraminic acid (Neu5Ac) was replaced with (S)-cyclohexyl lactic acid and the N-acetyl-D-

glucosamine (D-GlcNAc) unit with (R,R)-cyclohexane-1,2-diol. When (R,R)-cyclohexane-

1,2-diol, on its part, was replaced by (1R,2R,3S)-3-methylcyclohexane-1,2-diol (! 3),6 

affinity could be further improved. The reported synthetic route for D-GlcNAc mimetic 46 

allows the introduction of different alkyl substituents R via epoxide opening with higher 

order cyanocuprates. However, this route is not feasible for the gram scale synthesis of 4. 

Since larger amounts of building block 4 were required for a broad exploration of its potential 

for a new class of selectin antagonists, a more convenient synthetic route had to be 

developed. 
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Figure 1. Selectin antagonists 1-3: The natural carbohydrate epitope sLeX (1), selectin antagonists 2 
(CGP69669)5 and 36, and the D-GlcNAc mimetic 4. 



 

39 

Results and discussion 

Starting from commercially available racemic seudenol (3-methyl-2-cyclohexenol, 5) the 

stereoselective enzymatic acylation (! 6) and the subsequent hydrolysis with aqueous 

sodium hydroxide leading to enantiomerically pure (R)-seudenol (7) is described by ter Halle 

et al.7 Using optimized conditions for the butanoylation with immobilized Candida 

antarctica lipase C (Novozym 435),7 we could easily isolate (R)-seudenolester (6) in 46% 

yield in 10 g scale.8 Subsequent saponification afforded (R)-seudenol in 84% yield and 97.5% 

enantiomeric excess (ee) as determined by HPLC using a Chiracel OD-H column. Since the 

protection group of the hydroxy group in 7 has to be stable under strongly basic and acidic 

conditions, should not hamper fucosylation by steric bulk, and finally allow cleavage under 

mild conditions orthogonal to benzyl protecting groups, a tert-butyldimethylsilyl (TBS) ether 

(! 8) was chosen. Hydroboration followed by oxidation yielded all-trans 9 in 81% over two 

steps. Starting from racemic seudenol, this short sequence allowed the gram scale synthesis 

of 9 in 31% overall yield, requiring only two chromatographic purifications.  

Fucosylation of 9 under in situ anomerisation conditions9 gave 11, which was smoothly 

deprotected with tetrabutylammonium fluoride (TBAF), affording pseudodisaccharide 126 in 

excellent yield over two steps. Galactosylation with donor 1310 promoted by 

dimethyl(methylthio)sulfonium triflate (DMTST) afforded 14 "-selectively.6 Debenzylation 

by hydrogenolysis followed by saponification with lithium hydroxide and ion exchange 

chromatography finally gave 3.6 
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Scheme 2. a) Novozyme 435, vinylbutyrate, heptane, 23°C, 200 rpm, 2 h 25 min, 46%; b) aqueous 
NaOH, MeOH, 0°C, 5 h, 84%; c) TBSCl, imidazol, DMAP, CH2Cl2, r.t., 15 h; d) i. BH3!THF, THF, 
0°C to r.t., 2 h; ii. H2O2, aqueous NaOH, 0°C to r.t., 1 h, 81% from 7; e) CuBr2, DTBMP, TBAB, 
CH2Cl2, DMF, MS 4 Å, r.t., 10 h, 87%; f) TBAF, THF, r.t., 20 h, quant. g) DMTST, MS 3Å, CH2Cl2, 
r.t., 43 h, 59%;6 h) i. Pd/C, H2, EtOH, cat. AcOH, r.t., ii. LiOH, MeOH/H2O, r.t., 2 d, iii. Dowex 
(Na+), Sephadex-G15, 74%.6 

Overall, we developed a fast and efficient route to (1R,2R,3S)-1-[(tert-

butyldimethylsilyl)oxy]-3-methylcyclohexan-2-ol (9) starting from racemic seudenol. By 

subsequent fucosylation and galactosylation, a novel class of selectin antagonists can easily 

be explored.  

 

Experimental Part 

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer. The 

assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, HSQC). 

Chemical shifts are given in ppm and were assigned in relation to the solvent signals on the 

!-scale11 or to tetramethylsilane (0 ppm) as internal standard. Coupling constants J are given 

in Hertz (Hz). Multiplicities were specified as follows: s (singlet), d (doublet), dd (doublet of 

a doublet), t (triplet), q (quartet), m (multiplet). Optical rotations were measured using a 

Perkin-Elmer Polarimeter 341. Electron spray ionization mass spectra (ESI-MS) were 

obtained on a Waters Micromass ZQ. HRMS analysis were carried out using a Agilent 1100 

LC equipped with a photodiode array detector and a Micromass QTOF I equipped with a 4 

GHz digital-time converter. The elemental analysis was performed at the Institute of Organic 

Chemistry at the University of Basel, Switzerland. Reactions were monitored by TLC using 

glass plates coated with silica gel 60 F254 (Merck) and visualized by using UV light and/or by 

charring with a molybdate solution (a 0.02 M solution of ammonium cerium sulfate dihydrate 
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and ammonium molybdate tetrahydrate in aqueous 10% H2SO4). Column chromatography 

was performed on silica gel (Fluka, 40-60 mesh). Tetrahydrofurane (THF) was freshly 

distilled under argon over sodium and benzophenone. Dichloromethane (CH2Cl2) was dried 

by filtration over Al2O3 (Fluka, type 5016 A basic). Enantiomeric excess (ee) was determined 

by HPLC: Agilent 1200 instrument with DAD detection equipped with a Chiralcel OD-H 

column (250 mm x 4.6 mm); Eluent: hexane/isopropanol (99/1 vol); flow rate 1.0 mL/min; 

temperature 23°C; detection, signals measured at 210 nm. Typical retention times: 12.9 (S)-

seudenol, 14.1 (R)-seudenol. 

 

(R)-3-Methylcyclohex-2-en-1-yl butyrate (6). 

Immobilized Novozyme 435 (222 mg, 444 U, EC 232-619-9) was added to a solution of 5 

(10.0 g, 89 mmol) and vinyl butyrate (22.6 mL, 20.3 g, 178 mmol) in heptane (90 mL). The 

mixture was stirred at 23°C and 200 rpm. After 2 h 25 min the mixture was filtered and 

volatiles were evaporated at 60°C and 10 mbar to give 12 g of a clear oil. Column 

chromatography on silica (CH2Cl2) yielded pure 6 (7.50 g, 41 mmol, 46%). 
1H NMR (500.1 MHz, CDCl3): !  5.44 (m, 1H, H-2), 5.23 (m, 1H, H-1), 2.24 (t, 3J = 7.4Hz, 

2H, COCH2CH2CH3), 2.02-1.84 (m, 2H, H-4a, H-4b), 1.81-1.56 (m, 9H, H-5a, H-5b, H6-a, 

H6-b, -CH3, COCH2CH2CH3), 0.92 (t, 3J = 7.4Hz, 3H, COCH2CH2CH3); 13C NMR (125.8 

MHz, CDCl3): ! 173.5 (COCH2CH2CH3), 141.0 (C-3), 120.2 (C-2), 68.6 (C-1), 36.7 

(COCH2CH2CH3), 30.0 (C-4), 28.1 (C-6), 23.8 (-CH3), 19.1, 18.7 (2C, C-5, 

COCH2CH2CH3), 13.7 (COCH2CH2CH3); ["]D +168.7 (c 9.28, CHCl3); MS (ESI) m/z: calcd 

for C11H18NaO2
+ [M+Na]+: 205.12; found: 204.83; elemental analysis calcd (%) for C11H18O2 

(182.26): C 72.49, H 9.95; found: C 72.87, H 9.65. 

 

(R)-seudenol (7). A solution of NaOH in H2O (10.3 mL, 4N) was slowly added to a solution 

of seudenol butyrate 6 (3.50 g, 19 mmol) in MeOH (30 mL) at 0°C and stirred at 0°C for 5 h. 

The mixture was diluted with H2O (25 mL) and extracted with CH2Cl2 (25 mL + 20 mL + 15 

mL). The combined organic layers were washed with brine (25 mL) and dried over Na2SO4. 

Filtration and evaporation of volatiles (200 mbar, 40°C) gave spectroscopically pure (R)-

seudenol (7) (1.81 g, 16 mmol, 84%) as a clear oil, which was directly used in the next step. 

["]D +91.7 (c 0.74, CHCl3); HPLC: 97.5% ee, 98% purity; NMR data were in accordance 

with literature.7 
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(R)-1-[(tert-butyldimethylsilyl)oxy]-3-methylcyclohex-2-en (8). Imidazol (4.40 g, 65 

mmol) was added to a solution of (R)-seudenol 7 (3.50 g, 31 mmol), DMAP (cat.), and 

TBSCl (7.31 g, 48 mmol) in anhydrous CH2Cl2 (65 mL) at r.t. under argon. After stirring for 

15 h, the reaction mixture was quenched with satd. aqueous NaHCO3 (50 mL) and extracted 

with CH2Cl2 (20 mL). The organic layer was washed with aqueous HCl (20 mL, 0.01 N), 

satd. aqueous NaHCO3 (20 mL), and brine (20 mL) and dried over Na2SO4. Filtration and 

evaporation of volatiles (200 mbar, 40°C) gave the TBS ether 8 as clear oil.  

 

(1R,2R,3S)-1-[(tert-butyldimethylsilyl)oxy]-3-methylcyclohexan-2-ol (9). A solution of 

BH3!THF (60 mL, 1M in THF) was slowly added to a solution of the crude TBS ether (8) in 

anhydrous THF (60 mL) under argon at 0°C. After stirring for 2 h at r.t., the reaction mixture 

was cooled to 0°C again and aqueous NaOH (180 mL, 3N) followed by aqueous H2O2 (180 

mL, 30%) were slowly added via dropping funnel (CAUTION: strong gas development). 

The mixture was stirred at 0°C for 1 h, subsequently acidified to pH 3 by slow addition of 

10% aqueous HCl via dropping funnel (CAUTION: strong gas development) and extracted 

with CH2Cl2 (2 · 300 mL). The extracts were dried over Na2SO4, filtered, concentrated (100 

mbar, 40°C) and purified by column chromatography (PE/Et2O 98.5/1.5) to yield pure 9 (6.20 

g, 25 mmol, 81%) as clear oil. 
1H NMR (500.1 MHz, CDCl3): " 3.34 (m, 1H, H-1), 2.92 (dd, 3J = 8.5 Hz, 10.0 Hz, 1H, H-

2), 2.47 (s, 1H, OH), 1.81 (m, 1H, H-6a), 1.63-1.56 (m, 2H, H-4a, H-5a), 1.41 (m, 1H, H-3), 

1.34-1.99 (m, 2H, H-5b, H-6b), 1.04-0.92 (m, 4H, H-4b, -CH3), 0.91-0.83 (m, 9H, 

SiC(CH3)3), 0.07 (s, 3H, SiCH3), 0.05 (s, 3H, SiCH3); 13C NMR (125.8 MHz, CDCl3): " 81.0 

(C-2), 77.0 (C-1), 37.0 (C-3), 33.4, 33.9 (2C, C-4, C-6), 25.9 (3C, SiC(CH3)3), 23.6 (C-5), 

18.5 (-CH3), 18.1 (SiC(CH3)3), -3.9, -4.6 (SiCH3); [#]D - 13.7 (c 3.14, CHCl3); HR-MS (ESI) 

m/z: calcd for C13H28NaO2Si+ [M+Na]+: 267.1751; found: 267.1752. 

 

[(1R,2R,3S)-1-((tert-Butyldimethylsilyl)oxy)-3-methyl-cyclohex-2-yl] 2,3,4-tri-O- 

benzyl-# -L-fucopyranoside (11). Ethylthio fucoside 1012 (3.90 g, 8.15 mmol) and TBAB 

(4.00 g, 12.41 mmol) were dried at high vacuum overnight. Powdered activated molecular 

sieves 4 Å (5.0 g), compound 9 (1.00 g, 4.09 mmol), 2,6-di-tert-butyl-4-methylpyridine (2.50 

g, 12.17 mmol), anhydrous CH2Cl2 (35 ml) and DMF (5 ml) were added and the mixture was 

stirred for 4 h at r.t. under argon. CuBr2 (2.70 g, 12.09 mmol), dried under high vacuum 

overnight at 70°C, was added and the resulting dark mixture was stirred at r.t. under argon. 

After completion of the reaction (17 h), the solution was filtered through a pad of celite and 
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the filtrate was washed with a solution of satd. aqueous NH4Cl and aqueous NH3 (9/1 (v/v), 2 

x 200 mL) and brine (100 mL). The aqueous layers were extracted with CH2Cl2 (2 x 200 mL) 

and the combined organic layers were dried (Na2SO4) and concentrated. Column 

chromatography on silica (PE/EtOAc 98/2 to 97/3) gave the pseudodisaccharide 11 as clear 

oil (2.34 g, 3.54 mmol, 87%). 
1H NMR (500.1 MHz, CDCl3): ! 7.47-7.27 (m, 15H, 3 C6H5), 5.16 (d, 3J = 3.4 Hz, 1H, Fuc 

H-1), 5.03 (A of AB, 2J = 11.6Hz, 1H, CH2Ph), 4.89, 4.85, 4.78, 4.76 (4d, 2J = 11.8Hz, 4H, 

CH2Ph), 4.70 (B of AB, 2J = 11.6Hz, 1H, CH2Ph), 4.26 (q, 3J = 6.4 Hz, 1H, Fuc H-5), 4.10 

(dd, 3J = 3.4, 10.2 Hz, 1H, Fuc H-2), 4.05 (dd, 3J = 2.6, 10.2 Hz, 1H, Fuc H-3), 3.75 (m, 1H, 

H-1), 3.70 (m, 1H, Fuc H-4), 3.36 (t, 3J = 6.4 Hz, H-2), 1.88-1.77 (m, 2H, H-3, H-6a), 1.76-

1.68 (m, 2H, H-4a, H-5a), 1.43 (m, 1H, H-6b), 1.34-1.11 (m, 8H, Fuc-H6, -CH3, H-4b, H-

5b), 0.93 (s, 9H, SiC(CH3)3), 0.09 (s, 3H, SiCH3), 0.06 (s, 3H, SiCH3); 13C NMR (125.8 

MHz, CDCl3): ! 139.1, 138.9, 138.8, 128.4, 128.3, 128.2, 127.6, 127.5 (18C, 3 C6H5), 96.8 

(Fuc C-1), 81.5 (C-2), 79.3 (Fuc C-3), 78.2 (Fuc C-4), 76.7 (Fuc C-2), 74.9 (CH2Ph), 73.6 

(CH2Ph), 73.3 (C-1), 73.0 (CH2Ph), 66.4 (Fuc C-5), 35.6 (C-3), 33.2 (C-6), 31.1 (C-5), 26.1 

(3C, SiC(CH3)3), 19.8 (C-4), 18.9 (Fuc C-6), 18.2 (SiC(CH3)3), 17.0 (CH3), -3.9, -5.0 (2C, 

SiCH3); ["]D - 53.7 (c 2.1, CHCl3); HR-MS (ESI) m/z: calcd for C40H56NaO6Si+ [M+Na]+: 

683.3738; found: 683.3740. 

 
[(1R,2R,3S)-1-Hydroxy-3-methyl-cyclohex-2-yl] 2,3,4-tri-O-benzyl-" -L- 

fucopyranoside (12). Compound 11 (2.10 g, 3.18 mmol) was dissolved in a solution of 

TBAF in THF (20 mL, 1M) and stirred for 24 h at r.t.. The solution was diluted with CH2Cl2 

(50 mL) and washed with H2O (100 mL). The aqueous layer was extracted with CH2Cl2 (2 x 

50 mL) and the combined organic layers were dried (Na2SO4) and concentrated. Column 

chromatography on silica (PE/EtOAc 80/20) gave 12 as white solid (1.74 g, 3.18 mmol, 

quant.); ["]D - 42.0 (c 0.45, CHCl3); NMR data were in accordance with literature.6 
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2.3 Development of selectin antagonists based on differences and 

similarities between E- and P-selectin 

2.3.1 E- and P-selectin: Differences and similarities guide the way to selectin 

antagonists 
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Abstract 

Selectins are key players in the inflammatory cascade as they initiate the migration of 

leukocytes to sites of inflammation. However, excessive invasion of leukocytes can cause 

acute and chronic inflammatory diseases. Consequently, blocking of selectins is regarded as a 

potential therapeutic approach. Based on the common binding epitope of all selectins, sialyl 

Lewisx (sLex), we developed potent selectin antagonists, which exploit similarities and 

differences in the binding of sLex to P- and E-selectin. The nearly identical core conformation 

of sLex bound to P- and E-selectin allowed to introduce the D-GlcNAc mimic (1R,2R,3S)-3-

methylcyclohexane-1,2-diol to the design of P-selectin antagonists. Replacement of the 

carboxy group of sialic acid with a methylamide moiety was found to significantly reduce the 

affinity to E-selectin, while affinity to P-selectin was conserved. Finally, sialic acid was 

successfully replaced with small mimics resulting in structurally simplified E- and P-selectin 

antagonists with up to 20-fold improved binding affinity compared to the lead sLex. 
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Introduction 

The selectin family consists of E, P-, and L-selectin. All members contain a Ca2+-dependent 

carbohydrate recognition domain (CRD). Upon an inflammatory stimulus, two of these key 

components of our immune system, namely P- and E- selectin are up-regulated on endothelial 

cells and platelets. They mediate the rolling of leukocytes on the endothelial surface, which is 

followed by firm adhesion via integrins and extravasation to the site of the inflammatory 

stimulus. However, this important defense mechanism becomes harmful in acute and chronic 

inflammatory diseases like stroke, reperfusion injury, psoriasis, or rheumatoid arthritis, since 

in these states, the excessive extravasation of leukocytes leads to the destruction of tissues.[1] 

Inhibiting the interaction of selectins with their physiological ligands and thereby disabling 

the whole inflammatory cascade is considered a promising therapeutic approach.[2]  

Most of the small molecule antagonists developed to date were derived from the 

tetrasaccharide sialyl Lewisx (sLex, Neu5Ac(!2-3)Gal("1-4)[Fuc(!1-3)]GlcNAc, (1), Figure 

1),[3,4] which is the minimum binding epitope of all three selectins. Since sLex (1) itself 

exhibits only weak binding (0.3-1.1 mM E-selectin, 7-9 mM P-selectin),[5] poor 

pharmacokinetics and complex synthesis, efforts were directed to identify drug-like 

glycomimetics, i.e. mimetics with appropriate pharmacodynamic and pharmacokinetic 

properties, especially with high affinity and oral availability. Although numerous high 

affinity antagonists have been reported,[3,6] none of them has been successful in therapeutic 

applications to date.[7] 
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Figure 1. The tetrasaccharide sialyl Lewisx (1) and its pharmacophoric groups: hydroxyl groups of L-
fucose[8-10], hydroxyl groups in 4- and 6- position of D-galactose[11] and the carboxylic acid residue of 
sialic acid[10,12]. 

Results and discussion 

1. Similarities: Same core, same effect 

In a rational approach towards selectin antagonists, carbohydrate residues were subsequently 

replaced with mimics conserving the pharmacophoric groups.[4,13] In the case of E-selectin 

antagonists, sialic acid (N-acetyl-D-neuraminic acid, D-Neu5Ac) was successfully replaced 
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with (S)-cyclohexyllactic acid for instance, which significantly improved binding affinity to 

E-selectin, but abrogated binding to P-selectin. N-Acetyl-D-glucoseamine (D-GlcNAc) 

obviously does not contain pharmacophoric groups and was replaced by various mimics. It 

turned out, that it serves as a spacer to ensure the right core conformation, i.e. the right spatial 

orientation of L-fucose (L -Fuc) relative to D-galactose (D-Gal).[10,12,14-16] In fact, Ernst et al. 

showed, that mimics of D-GlcNAc can increase the binding affinity by pre-organizing the 

core of E-selectin antagonists, forcing the molecule in a conformation closer to the bioactive 

conformation.[17,18] Following this concept, introduction of a methyl group vicinal to L-fucose 

afforded 3, which is six-fold more potent than the lead 2 (Figure 2).[19]  
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Figure 2. Selectin antagonists 2, 3, 5, 6, and 7 and the reference TMSE-sLex 4. IC50 values are given 
as relative IC50 values (rIC50) scaled on 4 (rIC50= 1.0). 

As a starting point for the development of novel selectin antagonists, we chose 5 (Figure 2), 

which is known to bind to both P- and E-selectin.[20] Since the core conformation of sLex 

bound to P-selectin is almost identical to the one of sLex bound to E-selectin,[5,9] we reasoned 

that introduction of a methyl group vicinal to L-fucose should be beneficial for P-selectin 

antagonists as well. The rIC50 values determined for 5 nicely reproduced the relative affinities 

reported by Toepfer et al.[20] The additional methyl group in 6 improved binding to E-selectin 

by factor ten, which is consistent with the improved binding of 3 compared to 2. Towards P-

selectin, binding affinity was improved by factor six, which demonstrates that the concept of 
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pre-organization works for P-selectin antagonists as well. Overall, 6 exhibited a 20-fold 

higher binding affinity to P-selectin than sLex (1), making it a solid starting point for further 

modifications. 

2. Differences: The sialic acid binding domain 

2.1. The carboxy group of sialic acid 

Structure activity relationship (SAR) studies suggest that the carboxylic acid moiety is the 

most important functional group of D-Neu5Ac contributing to P- and E-selectin binding[10,12] 

and various models have been developed to rationalize the importance of the carboxylate. For 

E-selectin, a salt bridge with the guanidinium moiety of Arg97 was predicted.[5,21] For P-

selectin, data were more conflicting[22] and either a salt bridge with the side chain of 

Lys113[14,23] or a hydrogen bond to Tyr48[5] were predicted. In 2000, Somers et al. published 

the crystal structures of E- and P-selectin in complex with sLex, which gave a precise picture 

of the interactions at molecular level.[9] For E-selectin, the crystal structure (pdb code 1g1t) 

confirmed the predicted salt bridge between the guanidinium moiety of Arg97 and the 

carboxylate of D-Neu5Ac and revealed an additional hydrogen bond to Tyr48 (Figure 3). 

However, in the case of P-selectin (pdb code 1g1r), the carboxylate of D-Neu5Ac was found 

not to be involved in a salt bridge but rather in a water mediated hydrogen bond to Ser97 and 

a hydrogen bond to Tyr48 (Figure 3).  

We reasoned that this significant difference in interaction should allow the design of selective 

and less polar P-selectin antagonists, e.g. replacement of the carboxylate of D-Neu5Ac with a 

non-charged isosteric amide should result in loss of affinity to E-selectin, while affinity to P-

selectin should be conserved. To test this hypothesis, we synthesized and tested the 

methylamide analogue of 6, antagonist 7 (Figure 2). Indeed, binding affinity to P-selectin was 

conserved, while binding to E-selectin was reduced by factor ten. Interestingly, this relative 

change in affinity nicely correlates with the different binding affinities of sLex to P-selectin 

and sLex to E-selectin, indicating that the different type of interaction of the carboxylate is 

the major course for the different binding affinities for sLex to E- and P-selectin. 

Our findings underline the importance of the charge-charge interaction for E-selectin 

antagonists and are in strong contrast to the computational modeling studies of Pichierri and 

Matsuo,[24] who reported that the carboxylic acid moiety of D-Neu5Ac was binding in the 

protonated state. Finally, we could demonstrate that negative charge is no prerequisite for P-

selectin antagonists mimicking sLex (1), which is an important step towards selective and less 

polar P-selectin antagonists. 
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Figure 3. SLex bound to E-selectin (left) and sLex bound to P-selectin (right).[9] 

2.2. Mimics of sialic acid 

An obvious step for the design of sLex mimetics as selectin antagonists is the replacement of 

D-Neu5Ac, as it is expensive, polar, and apparently contributes to binding with the 

carboxylate only. Exclusively anionic groups like sulfates,[12,25] phosphates,[3,26] glycolic 

acid,[15,27] lactic acid,[17,28] and derivatives thereof were used for its replacement. Although 

effective -it is known that sulfates for example can fully replace sialic acid[12]- the 

replacement with sulfates and phosphates goes along with various drawbacks. First, the 

binding mode or even the binding site can change, which impedes the rational design of 

antagonists. It was demonstrated that 3-sulfo Lewisx binds to P-selectin Ca2+ 

independently,[12] clearly pointing to a binding mode different from the one observed in the 

crystal structure. Second, introduction of highly polar residues counteracts the optimization 

of the pharmacokinetic properties. Consequently, we decided to replace D-Neu5Ac with 

derivatives of lactic acid, as lactic acid itself already proved successful in the development of 

potent E-selectin antagonists.[17,28,29] With the results of section 2.1 in mind, we reasoned that 

amide analogues might pave the way to structurally simplified, non-charged P-selectin 

antagonists.  

Besides the importance of the carboxylic acid residue of D-Neu5Ac, it is known that 

modifications of the glycerol side chain and the N-acetyl group of D-Neu5Ac have no 

influence on binding affinity.[12,30] While no SAR information is available for the 4-hydroxy 

group, the crystal structure of sLex (1) bound to P-selectin suggests a hydrogen bond to 



 

52 

Ser99, a hydrogen bond not available in the complex of E-selectin and sLex (1). 

Consequently, we developed antagonist 8, which comprises a hydroxyl group to mimic the 4-

hydroxyl group of D-Neu5Ac (Figure 4). Antagonist 8 had the same relative binding affinity 

to P- and E-selectin as 7, providing evidence that the sialic acid mimic can fully replace sialic 

acid in E- and P-selectin antagonists. Replacement of the methylamide of 8 with a carboxylic 

acid residue once more enhanced binding affinity to E-selectin (10). Compound 9 served to 

explore the scope of further modifications that might increase binding affinity via additional 

lipophilic interactions. It turned out, that the bulky benzyl group is well tolerated by E-

selectin, but does not enhance binding. Deletion of the hydroxyl group in the sialic acid 

mimic of 10 went along with a small drop in binding affinity for E-selectin (11). 
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Figure 4. Relative IC50 values (rIC50) of selectin antagonists 8 to 11. IC50 values are scaled on sLex 4 
(rIC50=1); n.d. = binding affinity not determined. 

3. Synthesis 

As it is known that minor amounts of ion exchange resin can lead to false positive results in 

selectin assays,[31] no ion exchange resin was used throughout the synthesis.  
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3.1. Synthesis of TMSE-sLex 4  

Thio fucoside 12[18] and D-GlcNAc acceptor 13[32] were coupled under in situ anomerisation 

conditions[33] to give disaccharide 14, which upon regioselective opening of the benzylidene 

acetal[34] yielded acceptor 15. SLex precursor 17 was synthesized via DMTST[35] promoted 

coupling of 16[36] and 15. Hydrogenolytic debenzylation and saponification finally afforded 

TMSE protected sLex 4. 
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Scheme 1. a) Br2, Bu4NBr, CH2Cl2, MS 4 Å, 0°C to r.t., 12 h, 55%; b) Me3N·BH3, AlCl3, H2O, THF, 
r.t., 5 h, 78%; c) DMTST, CH2Cl2, MS 4 Å, r.t., 5 d, 20%; d) H2, Pd(OH)2/C, dioxane, H2O, r.t., 24 h; 
e) aq. NaOH, MeOH, r.t., 20 h, 43% from 17. 

3.2. Synthesis of sLex mimetics 5 - 7  

Pseudodisaccharides 18 and 19, synthesized as reported recently,[15,37] were coupled to donor 

16 using DMTST as promotor (Scheme 2). Hydrogenolytic debenzylation followed by 

saponification with sodium hydroxide afforded 5 and 6 in good to excellent yields. 

Aminolysis of the benzyl ester of 6 afforded methylamide 7 quantitatively.  
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Scheme 2. a) DMTST, CH2Cl2, MS 4 Å, r.t., 3 d (20: 85%, 21: 55%); b) H2, Pd(OH)2/C, dioxane, 
H2O, r.t., 12 h; c) aq. NaOH, MeOH, r.t. (5: 79% from 20, 6: 81% from 21); d) BnBr, KF, DMF, r.t., 
2 d; e) MeNH2, THF, EtOH, r.t., 12 h, quant. from 6. 

3.2. Synthesis of sLex mimetics 8 - 11  

Mimetics 8-11 were synthesized by alkylation of the core building block 28 with triflates 23 

and 25[38] (Scheme 4), which were available from lactone 22 and ester 24, respectively 

(Scheme 3). 
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Scheme 3. Tf2O, DTBMP, CH2Cl2, -18°C to r.t., 3 h, (23: 74%, 25: 66%). 

Building block 28 was synthesized in two steps from 19 and galactoside 26[39] via DMTST 

promoted coupling and debenzoylation under Zemplén conditions (Scheme 4). 

Regioselective alkylation of the 3-position of the D-Gal moiety in 28 with triflates 23 and 25 

was achieved via tin acetal formation of 28 with Bu2SnO. Alkylation with 23 afforded 

lactone 29, which was deprotected and subsequently opened with benzylamine or sodium 

hydroxide to yield antagonists 9 and 10, respectively. Compound 11 was synthesized 

analogously, using 25 instead of 23. Finally, for 8, alkylation with 23 and lactone opening 

with methylamine were combined to a one-pot reaction yielding 31 in 51% and allowing 

recovery of unreacted starting material 28 in 33%. Hydrogenolytic debenzylation finally 

afforded 8. 
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Scheme 4. a) DMTST, CH2Cl2, MS 4 Å, r.t., 16 h, 67%; b) NaOMe, MeOH, r.t., 22 h, 87%; c) 
Bu2SnO, toluene, MeOH, 60°C, 4 h; d) CsF, DME, r.t., 24 h, (29: 52%, 28: 17%); e) H2, Pd(OH)2/C, 
dioxane, H2O, r.t., 21 h; f) BnNH2, THF, 20 h, (9: 76% from 29) or aq. NaOH, dioxane, (10: 69% 
from 29); g) Bu2SnO, toluene, MeOH, 60°C, 4 h; h) CsF, DME, r.t., 24 h, 75%; i) H2, Pd(OH)2/C, 
dioxane, H2O, r.t., 17 h; j) aqueous NaOH, dioxane, 14% from 30; k) Bu2SnO, toluene, MeOH, 50°C, 
4 h; l) CsF, DME, MeNH2, r.t., (31: 51%, 28: 33%); m) H2, Pd(OH)2/C, dioxane, H2O, r.t., 5 h, 37%. 

 

4. Biological Evaluation 

The affinity of selectin antagonists to E- and P-selectin was evaluated in a competitive 

binding assay, utilizing a polyacrylamide-type glycoconjugate as synthetic ligand for 

immobilized E-/P-selectin.[40] Briefly, microtiter plates were coated with either E-

selectin/IgG, or P-selectin/IgG, blocked with BSA, and incubated with a fixed concentration 

of sLea-polyacrylamide (sLea-PAA) either in presence or absence of the antagonists. The 
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binding reaction was revealed by the addition of TMB substrate reagent and quantified 

spectrophotometrically at 450 nm. The IC50 defines the molar concentration of the test 

compound that reduces the maximal specific binding of sLea-PAA polymer to E-selectin/P-

selectin by 50%. To ensure comparability of different antagonists, the reference compounds 2 

(E-selectin)/5 (P-selectin) were tested in parallel on each individual microtiter plate. The 

affinities are reported relative to 4 as rIC50. The relative IC50 (rIC50) is the ratio of the IC50 of 

the test compound to the IC50 of 4. 

 

Conclusion  

Taking advantage of the similar binding mode of the sLex core to P- and E-selectin, the 

concept of pre-organization was applied successfully to the design of P-selectin antagonists. 

The D-GlcNAc mimic (1R,2R,3S)-3-methylcyclohexane-1,2-diol improved the binding 

affinity 20-fold for P- and 30-fold for E-selectin. The isosteric exchange of the negatively 

charged carboxylate of D-Neu5Ac with the methylamide had no effect on P-selectin binding, 

while binding to E-selectin was weakened ten-fold. These results clearly demonstrate that 

negative charge is not essential for P-selectin antagonists mimicking sLex (1) and provide the 

opportunity to design selective and less polar P-selectin antagonists. Finally, D-Neu5Ac was 

successfully replaced with (S)-2,4-dihydroxybutyric acid and its methylamide analogue, 

resulting in the potent and structurally less complex selectin antagonists 8 and 10.  

 

Experimental part 

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer. 

Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, HSQC, 

HMQC, HMBC). Chemical shifts are given in ppm and were assigned in relation to the 

solvent signals on the !-scale[41] or to tetramethylsilane (0 ppm) as internal standard. 

Coupling constants J are given in Hertz (Hz). Multiplicities were specified as follows: s 

(singlet), d (doublet), dd (doublet of a doublet), t (triplet), q (quartet), m (multiplet). For 

assignment of resonance signals to the appropriate nuclei the following abbreviations were 

used: Cy (cyclohexyl), Fuc (fucose), Gal (galactose), GlcNAc (N-acetylglucosamine), Lac 

(lactone), MeCy (3-methylcyclohexane-1,2-diol), Sia (sialic acid). Reactions were monitored 

by TLC using glass plates coated with silica gel 60 F254 (Merck) and visualized by using UV 

light and/or by charring with a molybdate solution (a 0.02 M solution of ammonium cerium 

sulfate dihydrate and ammonium molybdate tetrahydrate in aqueous 10% H2SO4. Column 

chromatography was performed manually using silica gel 60 (40-63 "m) from Fluka or using 
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automated systems (RediSep Companion or RediSep Rf) from Teledyne Isco with normal 

phase RediSep columns from the same manufacturer or reversed-phase columns containing 

LiChroprep RP-18 (40-63 !m) from Merck KGaA, Darmstadt, Germany. LC-MS separations 

were carried out using Sunfire C18 columns (19 x 150 mm, 5.0 !m) on a Waters 2525 LC, 

equipped with Waters 2996 photodiode array and Waters micromass ZQ MS for detection. 

Size exclusion chromatography was performed with Bio-Gel® P-2 Gel (45-90 mm) from Bio-

Rad. 

Solvents were purchased from Sigma-Aldrich or Acros. Solvents were dried prior to use 

where indicated. Tetrahydrofurane (THF) was dried by refluxing with sodium/benzophenone 

and distilled immediately before use. Dichloromethane (CH2Cl2) and dimethoxyethane 

(DME) were dried by filtration over Al2O3 (Fluka, type 5016 A basic). Methanol was dried 

by distillation from sodium methoxide, DMF by distillation from calcium hydride. Optical 

rotations were measured using a Perkin-Elmer Polarimeter 341. Electron spray ionization 

mass spectra (ESI-MS) were obtained on a Waters micromass ZQ. HRMS analysis were 

carried out using a Agilent 1100 LC equipped with a photodiode array detector and a 

Micromass QTOF I equipped with a 4 GHz digital-time converter. Microanalysis was 

performed at the Institute of Organic Chemistry at the University of Basel, Switzerland. 

Purity of final compounds was determined on an Agilent 1100 HPLC; detector ELS, Waters 

2420; column: Waters Atlantis dC18, 3 µm, 4.6 x 75 mm; eluents: A: water + 0.1% TFA; B: 

90% acetonitrile + 10% water + 0.1% TFA; linear gradient: 0 - 1 min 5% B; 1 - 20 min 5 to 

70% B; flow: 0.5 mL/min. 

 

2-(Trimethylsilyl)ethyl (2,3,4-tri-O-benzyl-! -L-fucopyranosyl)-(1"3)-2-acetamido- 

4,6-O-benzylidene-2-deoxy-#-D-glucopyranoside (14). 
Bromine (0.180 mL, 3.50 mmol) was slowly added to a stirred solution of fucose donor 12 

(1.52 g, 3.18 mmol) in anhydrous CH2Cl2 (90 mL) at 0°C under argon. After 10 min, excess 

bromine was quenched by addition of cyclohexene. Powdered activated molecular sieves 4 Å 

(9 g), TBAB (1.54 g, 4.78 mmol) and 13[32] (0.65 g, 1.59 mmol) were added and the mixture 

was stirred at 0°C for 2 h before warming to r.t. and stirring at r.t. overnight. The reaction 

mixture was filtered (celite) and washed with water (100 mL) and brine (100 mL). The 

organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. 

Column chromatography on silica (PE/Et2O) afforded 14 as white foam (0.72 g, 0.87 mmol, 

55%). 
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1H NMR (500.1 MHz, CDCl3): ! 7.51-7.23 (m, 20H, Ar-H), 5.59 (d, 3J = 6.7Hz, 1H, 

NHCOCH3), 5.49 (s, CHPh), 5.04 (d, 3J = 3.2Hz, Fuc-H1), 4.99 (d, 3J = 8.3Hz, GlcNAc-

H1), 4.96-4.88 (m, 2H, CH2Ph), 4.75 (s, 2H, CH2Ph), 4.65 (B of AB, J = 11.7Hz, CH2Ph), 

4.58 (B’ of A’B’, J = 11.5Hz, CH2Ph), 4.39-4.31 (m, 2H, GlcNAc-H3, GlcNAc-H6a), 4.12-

4.04 (m, 2H, Fuc-H2, Fuc-H5), 3.98-3.86 (m, 2H, Fuc-H3, CH2CH2Si(CH3)3), 3.76 (dd, 3J = 
2J = 10.0Hz, GlcNAc-H6b), 3.63-3.45 (m, 4H, Fuc-H4, GlcNAc-H4, GlcNAc-H5, 

CH2CH2Si(CH3)3), 3.28 (m, 1H, GlcNAc-H2), 1.62 (s, 3H, COCH3), 1.01-0.82 (m, 2H, 

CH2CH2Si(CH3)3), 0.80 (d, 3J = 6.4Hz, Fuc-H6), 0.01 (s, 9H, CH2CH2Si(CH3)3); 13C NMR 

(125.8 MHz, CDCl3): ! 170.6 (COCH3), 138.9, 138.8, 138.7, 129.2, 128.8, 128.5, 128.4, 

128.3, 128.0, 127.9, 127.7, 127.5, 126.4 (24C, C6H5), 101.8 (CHPh), 100.1 (GlcNAc-C1), 

98.5 (Fuc-C1), 81.0 (GlcNAc-C4), 80.0 (Fuc-C3), 77.7, 77.4 (Fuc-C2, Fuc-C4), 75.0 

(CH2Ph), 74.9 (GlcNAc-C3), 74.3, 72.6 (CH2Ph), 69.1 (GlcNAc-C6), 67.5 

(CH2CH2Si(CH3)3), 66.9 (Fuc-C5), 66.3 (GlcNAc-C5), 59.1 (GlcNAc-C2), 23.4 (COCH3), 

18.2 (CH2CH2Si(CH3)3), 16.4 (Fuc-C6), -1.3 (3C, CH2CH2Si(CH3)3); ["]D -73.3° (c 0.96, 

CHCl3); MS (ESI) m/z: calcd for C47H59NNaO10Si [M+Na]+: 848.4; found: 848.4; Elemental 

analysis calcd (%) for C47H59NO10Si: C 68.34, H 7.20, N 1.70; found: C 68.46, H 7.27, N 

1.66. 

 

2-(Trimethylsilyl)ethyl (2,3,4-tri-O-benzyl-" -L-fucopyranosyl)-(1!3)-2-acetamido- 

6-O-benzyl-2-deoxy-"-D-glucopyranoside (15). 
To a solution of benzylidene acetal 14 (600 mg, 0.73 mmol) in anhydrous THF (14 mL) were 

added Me3N#BH3 (212 mg, 2.91 mmol) and anhydrous AlCl3 (580 mg, 4.35 mmol) with 

stirring under argon at r.t. Once all reagents were dissolved, H2O (26 µL) was added and the 

mixture was stirred for 5 h. The reaction was quenched by addition of H2O (12 mL) and 1 N 

aq HCl (12 mL) and extracted with CH2Cl2 (3 · 30 mL). The organic layers were washed with 

brine (30 mL), dried over Na2SO4, and concentrated. Column chromatography on silica gel 

(PE/EtOAc 7/3 to 1/1) afforded 15 as white foam (470 mg, 0.57 mmol, 78%). 
1H NMR (500.1 MHz, CDCl3): ! 7.43-7.23 (m, 20H, Ar-H), 5.51 (d, 3J = 7.1Hz, 1H, 

NHCOCH3), 4.96 (m, 2H, Fuc-H1, CH2Ph), 4.91 (d, 3J = 8.2Hz, GlcNAc-H1), 4.86-4.57 (m, 

7H, CH2Ph), 4.13-4.04 (m, 2H, Fuc-H2, Fuc-H5), 4.02-3.89 (m, 3H, Fuc-H3, GlcNAc-H3, 

CH2CH2Si(CH3)3), 3.83 (m, 1H, GlcNAc-H6a), 3.73-3.66 (m, 2H, Fuc-H4, GlcNAc-H6b), 

3.59-3.47 (m, 2H, GlcNAc-H5, CH2CH2Si(CH3)3), 3.43 (dd, 3J = 8.8Hz, 1H, GlcNAc-H4), 

3.26 (m, GlcNAc-H2), 1.60 (s, 3H, COCH3), 1.15 (d, 3J = 6.3Hz, Fuc-H6), 1.02-0.84 (m, 2H, 

CH2CH2Si(CH3)3), -0.01 (s, 9H, CH2CH2Si(CH3)3); 13C NMR (125.8 MHz, CDCl3): ! 170.9 
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(COCH3), 138.6, 138.4, 128.7, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6 

(24C, C6H5), 99.4, 99.3 (Fuc-C1, GlcNAc-C1), 84.1 (GlcNAc-C3), 79.3 (Fuc-C3), 77.4 (Fuc-

C4), 76.0 (Fuc-C2), 75.1 (CH2Ph), 75.0 (GlcNAc-C5), 74.1, 73.6, 73.0 (CH2Ph), 70.7 

(GlcNAc-C4), 69.8 (GlcNAc-C6), 68.1 (Fuc-C5), 67.0 (CH2CH2Si(CH3)3), 56.7 (GlcNAc-

C2), 23.4 (COCH3), 18.2 (CH2CH2Si(CH3)3), 16.8 (Fuc-C6), -1.3 (3C, CH2CH2Si(CH3)3); 

[!]D -36.7° (c 0.55, CHCl3); MS (ESI) m/z: calcd for C47H61NNaO10Si [M+Na]+: 850.4; 

found: 850.5. 

 

2-(Trimethylsilyl)ethyl (benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D- 

glycero-!-D-galacto-2-nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-"-D-

galactopyranosyl-(1!4)-[2,3,4-tri-O-benzyl-! -L-fucopyranosyl-(1!3)]-2-acetamido-6-

O-benzyl-2-deoxy-"-D-glucopyranoside (17). 

16 (300 mg, 0.31 mmol) and 15 (380 mg, 0.46 mmol) were dissolved in anhydrous CH2Cl2 (8 

mL). Powdered activated molecular sieves 4 Å (0.8 g) were added and the mixture was 

stirred at r.t. under argon. After 3.5 h, a solution of DMTST (200 mg, 0.77 mmol) in 

anhydrous CH2Cl2 (2.0 mL) that had been stirred with molecular sieves 4 Å (0.2 g) for 3.5 h, 

was added. After stirring for 5 d, the solution was diluted with CH2Cl2 (10 mL), filtered and 

successively washed with satd aq NaHCO3 (20 mL) and brine (20 mL). The aqueous layers 

were extracted with CH2Cl2 (3 · 20 mL) and the combined organic layers were dried over 

Na2SO4 and concentrated under reduced pressure. Column chromatography on silica 

(PE/EtOAc/MeOH 8/5/0.5 to 8/5/0.9) afforded 17 as white solid (110 mg, 0.06 mmol, 20%). 
1H NMR (500.1 MHz, CDCl3): # 8.09-721 (m, 30H, Ar-H), 6.22 (d, 3J = 8.1Hz, 1H, 

GlcNAc-NH), 5.62 (ddd, 3J = 2.5, 5.9, 8.7Hz, 1H, Sia-H8), 5.43-5.32 (m, 2H, Sia-H7, 

PhCH2), 5.22 (d, 3J = 3.5Hz, 1H, Fuc-H1), 5.20 (d, 3J = 3.5Hz, 1H, Gal-H4), 5.07-4.95 (m, 

3H, Gal-H2, PhCH2), 4.92 (m, 1H, Sia-H4), 4.88-4.72 (m, 7H, Gal-H1, Gal-H3, GlcNAc-H1, 

PhCH2), 4.68 (B of AB, J = 11.8Hz, 1H, PhCH2), 4.61 (A of AB, J = 12.0Hz, 1H, PhCH2), 

4.61 (B of AB, J = 12.0Hz, 1H, PhCH2), 4.41-4.29 (m, 2H, Gal-H6a, Sia-H9a), 4.23 (dd, 3J 

= 7.0Hz, 2J = 11.0Hz, 1H, Gal-H6b), 4.20-3.96 (m, 8H, Fuc-H2, Fuc-H5, Gal-H5, GlcNAc-

H3, GlcNAc-H4, GlcNAc-H6a, Sia-H5, Sia-H9b), 3.93-3.78 (m, 5H, Fuc-H3, GlcNAc-H2, 

GlcNAc-H5, GlcNAc-H6b, CH2CH2Si(CH3)3), 3.56-3.47 (m, 3H, Fuc-H4, Sia-H6, 

CH2CH2Si(CH3)3), 2.64 (dd, 3J = 4.5, 2J = 12.6Hz, 1H, Sia-H3eq), 2.27, 2.15, 2.11, 2.03, 

2.00, 1.94, 1.88, (7s, 24H, 8 COCH3), 1.75 (dd, 3J =2J = 12.4Hz, 1H, Sia-H3ax) 1.13 (d, 3J = 

6.5Hz, 3H, Fuc-H6), 1.06-0.77 (m, 2H, CH2CH2Si(CH3)3), 0.00 (s, 9H, CH2CH2Si(CH3)3); 
13C NMR (125.8 MHz, CDCl3): # 170.7, 170.6, 170.5, 170.4, 170.1, 169.8 (8C, COCH3), 
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167.5 (Sia-C1), 165.8 (ArCO), 139.2, 139.1, 138.8, 138.6, 134.8, 133.4, 129.8, 129.0, 128.8, 

128.6, 128.5, 128.4, 128.3, 127.8, 127.7, 127.6, 127.5, 127.3 (36C, Ar-C), 99.2, 99.1 (Gal-

C1, GlcNAc-C1), 97.0 (Sia-C2), 96.5 (Fuc-C1), 79.5 (Fuc-C3), 77.7 (Fuc-C4), 76.6 (Fuc-

C2), 74.6 (PhCH2), 74.2, 73.5, 73.4 (3C, GlcNAc-C3, GlcNAc-C4, GlcNAc-C5), 73.0, 72.9 

(3C, CH2Ph), 72.2 (Sia-C6), 71.2, 70.7, 70.4, (3C, Gal-C2, Gal-C3, Gal-C5), 69.5 (GlcNAc-

C6), 69.4 (Sia-C4), 68.5 (PhCH2), 67.8, 67.7, 67.2 66.9 (4C, Fuc-C5, Gal-C4, Sia-C7, Sia 

C8), 66.6 (CH2CH2Si(CH3)3), 62.6 (Sia-C9), 61.7 (Gal-C6), 53.4 (GlcNAc-C2), 49.0 (Sia-

C5), 37.6 (Sia-C3), 23.3, 23.2, 21.5, 21.0, 20.9, 20.8, 20.7 (8C, COCH3), 18.0 

(CH2CH2Si(CH3)3), 16.8 (Fuc-C6), -1.3 (3C, CH2CH2Si(CH3)3); [!]D -24.3° (c 0.58, CHCl3); 

MS (ESI) m/z: calcd for C90H110N2NaO30Si [M+Na]+: 1749.7; found: 1749.8. 

 

2-(Trimethylsilyl)ethyl (sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2- 

nonulopyranosynate)-(2!3)-"-D-galactopyranosyl-(1!4)-[! -L-fucopyranosyl-(1!3)]-2-

acetamido-2-deoxy-"-D-glucopyranoside (4). 

Compound 17 (90 mg, 0.052 mmol) was dissolved in dioxane/water (4/1, 10 mL) under 

argon. Pd(OH)2/C (20 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (4 bar H2) at r.t. After 24 h, the mixture was filtered and the solvent was 

removed under reduced pressure. The residue was redissolved in 1 N aq NaOH (10 mL) and 

MeOH (2 mL) and stirred at r.t. After 20 h the mixture was neutralized with 1 N HCl, 

volatiles were removed under reduced pressure, and crude product was purified via SEC and 

RP chromatography (H2O/MeOH). Lyophilization from water afforded 4 as white fluffy solid 

(21 mg, 0.022 mmol, 43%). 
1H NMR (500.1 MHz, D2O, CD3OD): # #5.09 (d, 3J = 4.0Hz, 1H, FucH-1), 4.86-4.74 (m, 

Fuc-H5), 4.56 (d, 3J = 8.1Hz, 1H, GlcNAc-H1), 4.52 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.08 (dd, 
3J = 3.1, 9.8Hz, 1H, Gal-H3), 4.06-3.55 (m, 22H, (CH2CH2Si(CH3)3), Fuc-H2, Fuc-H3, Fuc-

H4, Gal-H4, Gal-H5, Gal-H6a, Gal-H6b, GlcNAc-H2, GlcNAc-H3, GlcNAc-H4, GlcNAc-

H5, GlcNAc-H6a, GlcNAc-H6b, Sia-H4, Sia-H5, Sia-H6, Sia-H7, Sia-H8, Sia-H9a, Sia-

H9b), 3.52 (dd, 3J = 7.8, 9.8Hz, Gal-H2), 2.76 (dd, 3J = 4.6Hz, 2J = 12.1Hz, 1H, Sia-H3eq), 

2.03, 2.01 (2s, 6H, COCH3), 1.79 (t, 2J =3J = 12.1Hz, 1H, Sia-H3ax), 1.17 (d, 3J = 6.6Hz, 3H, 

Fuc-H6), 1.05-0.80 (m, 2H, (CH2CH2Si(CH3)3), 0.00 (s, 9H, (CH2CH2Si(CH3)3); 13C NMR 

(125.8 MHz, D2O, CD3OD): # 176.0, 175.1, 174.8 (3C, NHCOCH3, Sia-C1) 102.6 (Gal-C1), 

101.2, 100.6 (2C, GlcNAc-C1, Sia-C2), 100.6 (Fuc-C1), 99.6, 76.6, 76.3, 76.0, 75.9, 74.4, 

73.9, 72.9, 72.8, 70.2, 69.3, 69.1, 68.7, 68.3, 67.7, 63.6, 62.4, 60.6, 56.7, 52.7, 40.8 (Sia-C3), 

23.3, 23.0 (2C, NHCOCH3) 18.1 (CH2CH2Si(CH3)3), 16.2 (Fuc-C6), -1.5 (3C, 
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CH2CH2Si(CH3)3); [!]D -43.9° (c 0.70, MeOH); HR-MS (ESI) m/z: calcd for 

C36H64N2NaO23Si+ [M+H]+: 943.3561; found: 943.3553; HPLC purity: > 99.5 %. 

 

(Benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-!-D-galacto-2- 

nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-"-D-galactopyranosyl-(1!1)-

[2,3,4-tri-O-benzyl-! -L-fucopyranosyl-(1!2)]-(R,R)-cyclohexane-1,2-diol (20). 

Compound 16 (720 mg, 0.75 mmol) and 18 (460 mg, 0.86 mmol) were dissolved in 

anhydrous CH2Cl2 (12 mL). Powdered activated molecular sieves 4 Å (1.2 g) were added and 

the mixture was stirred at r.t. under argon. After 3.5 h a solution of DMTST (510 mg, 1.97 

mmol) in anhydrous CH2Cl2 (8 mL) that had been stirred with molecular sieves 4 Å (0.8 g) 

for 3.5 h was added. After stirring for 60 h, the solution was diluted with CH2Cl2 (40 mL), 

filtered and successively washed with satd aq NaHCO3 (60 mL) and brine (60 mL). The 

aqueous layers were extracted with CH2Cl2 (2 · 60 mL) and the combined organic layers were 

dried over Na2SO4 and concentrated under reduced pressure. Column chromatography on 

silica (PE/EtOAc/MeOH 8/5/0.3 to 8/5/0.7) afforded 20 as white foam (912 mg, 0.64 mmol, 

85%). 
1H NMR (500.1 MHz, CDCl3): # 8.05-7.11 (m, 25H, Ar-H), 5.47 (ddd, 3J = 2.6, 6.1, 9.0Hz, 

1H, Sia-H8), 5.25-5.18 (m, 2H, Sia-H7, PhCH2), 5.02 (d, 3J = 3.2Hz, 1H, Gal-H4), 4.90 (A’ 

of AB, J = 11.9Hz, 1H, PhCH2), 4.87-4.78 (m, 5H, Fuc-H1, Gal-H2, SiaNH, PhCH2), 4.75 

(m, 1H, Sia-H4), 4.71-4.58 (m, 5H, Gal-C1, PhCH2), 4.50 (dd, 3J = 3.4, 10.2Hz, 1H, Gal-

H3), 4.46 (m, 1H, Fuc-H5), 4.26 (dd, 3J = 2.6, 2J = 12.4Hz, 1H, Sia-H9a), 4.22 (dd, 3J = 

6.3Hz, 2J = 10.8Hz, 1H, Gal-H6a), 4.08-3.83 (m, 6H, Fuc-H2, Fuc-H3, Gal-H6b, Sia-H5, 

Sia-H9b), 3.60 (m, 1H, Cy), 3.57 (m, 1H, Fuc-H4), 3.52 (m, 1H, Cy), 3.39 (dd, 1H, 3J = 2.7, 

10.7Hz, Sia-H6), 2.52 (dd, 3J = 4.6, 2J = 12.6Hz, 1H, Sia-H3eq), 2.10, 2.04, 1.99, 1.94, 1.90, 

1.82, 1.75, (7s, 21H, COCH3), 2.13-1.11 (8H, Cy), 1.62 (m, 1H, Sia-H3ax) 1.07 (d, 3J = 

6.5Hz, 3H, Fuc-H6); 13C NMR (125.8 MHz, CDCl3): # 170.7, 170.6, 170.4, 170.0, 169.9, 

169.6 (7C, COCH3), 167.5 (Sia-C1), 165.8 (ArCO), 139.5, 139.0, 134.9, 133.3, 130.0, 129.9, 

128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 128.1, 127.6, 127.4, (30C, Ar-CH), 99.2 (Gal-C1), 

96.8 (Sia-C2), 94.8 (Fuc-C1), 80.1 (Fuc-C3), 78.9 (Cy), 78.0 (Fuc-C4), 76.8 (Fuc-C2), 75.6 

(Cy), 74.5, 73.2, (3C, PhCH2), 72.1, 71.8 (Gal-C3, Sia-C6), 70.1 (2C, Gal-C2, Gal-C5), 69.4 

(Sia-C4), 68.4 (PhCH2), 67.8, 67.7, 67.2 (Gal-C4, Sia-C7, Sia-C8), 66.2 (Fuc-C5), 62.8 (Sia-

C9), 61.6 (Gal-C6), 49.0 (Sia-C5), 37.5 (Sia-C3), 29.5, 29.0 23.2, 23.1 (4C, Cy), 23.3, 21.5, 

21.0, 20.9, 20.8 (7C, COCH3), 16.8 (Fuc-C6); [!]D -24.4° (c 0.89, CHCl3); MS (ESI) m/z: 
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calcd for C76H89NNaO26 [M+Na]+: 1454.6; found: 1454.7; elemental analysis calcd (%) for 

C76H89NO26 + H2O (1450.53): C 62.93, H 6.32, N 0.97; found: C 63.09, H 6.20, N 0.81.  

 

(Benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-!-D-galacto-2- 

nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-"-D-galactopyranosyl-(1!1)-

[2,3,4-tri-O-benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 

(21). 

Compound 16 (300 mg, 0.31 mmol) and 19 (256 mg, 0.47 mmol) were dissolved in 

anhydrous CH2Cl2 (6.0 mL). Powdered activated molecular sieves 4 Å (0.6 g) were added 

and the mixture was stirred at r.t. under argon. After 3.5 h a solution of DMTST (246 mg, 

0.95 mmol) in anhydrous CH2Cl2 (1.9 mL) that had been stirred with molecular sieves 4 Å 

(0.19 g) for 3.5 h, was added. After stirring for 3 d, the solution was diluted with CH2Cl2 (40 

mL), filtered, and successively washed with satd aq NaHCO3 (50 mL) and brine (50 mL). 

The aqueous layers were extracted with CH2Cl2 (2 · 50 mL) and the combined organic layers 

were dried over Na2SO4 and concentrated under reduced pressure. Column chromatography 

on silica (PE/EtOAc/MeOH 8/5/0.5 to 8/5/0.7) afforded 21 as white foam (248 mg, 0.17 

mmol, 55%). 
1H NMR (500.1 MHz, CDCl3): # 8.04-7.14 (m, 25H, Ar-H), 5.48 (ddd, 3J = 2.6, 6.2, 9.1Hz, 

1H, Sia-H8), 5.21 (A of AB, 2J = 12.0Hz, 1H, PhCH2), 5.20 (dd, 3J = 2.8, 9.4Hz, 1H, Sia-

H7), 5.01 (d, 3J = 3.7Hz, 2H, Fuc-H1, Gal-H4), 4.90 (A’ of A’B’, J = 12.0Hz, 1H, PhCH2), 

4.88-4.64 (m, 10H, Fuc-H5, Gal-H2, SiaNH, Sia-H4, 3 PhCH2), 4.56 (d, 3J = 8.0Hz, 1H, Gal-

H1), 4.48 (dd, 3J = 3.3, 10.2Hz, 1H, Gal-H3), 4.25 (dd, 3J = 2.6Hz, 2J = 12.4Hz, 1H, Sia-

H9a), 4.17 (dd, 3J = 6.4Hz, 2J = 10.8Hz, 1H, Gal-H6a), 4.05 (dd, 3J = 3.7, 10.3Hz, 2H, Fuc-

H2), 4.02-3.93 (m, 3H, Fuc-H3, Gal-H6b, Sia-H5), 3.90-3.83 (m, 2H, Gal-H5, Sia-H9b), 3.59 

(m, 1H, Fuc-H4), 3.50 (m, 1H, MeCy-H1), 3.37 (dd, 1H, 3J = 2.7, 10.8Hz, Sia-H6), 3.18 (t, 
3J = 9.2Hz, MeCy-H2), 2.50 (dd, 3J = 4.6Hz, 2J =12.7Hz, 1H, Sia-H3eq), 2.09, 2.05 (2s, 6H, 

2 COCH3), 1.99 (m,1H, MeCy), 1.99, 1.94, 1.90, 1.74, 1.72 (5s, 15H, 5 COCH3), 1.65-1.47 

(m, 4H, Sia-H3ax, MeCy) 1.21-1.11 (m, 5H, Fuc-H6, MeCy), 1.03 (d, 3J = 6.4Hz, 3H, MeCy-

CH3), 0.98 (m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3): # 170.8, 170.7, 170.6, 170.4, 

169.9, 169.5 (7C, COCH3), 167.5 (Sia-C1), 165.8 (ArCO), 139.3, 139.1, 138.7, 134.9, 133.3, 

128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 127.6, 127.4, 127.3 (30C, Ar-C), 99.4 (Gal-C1), 

98.3 (Fuc-C1), 96.9 (Sia-C2), 82.2 (MeCy-C2), 80.6, 80.5 (Fuc-C3, MeCy-C1), 77.8 (Fuc-

C4), 76.7 (Fuc-C2), 74.6, 74.3, 72.7 (3C, PhCH2), 72.0, 71.9 (Gal-C3, Sia-C6), 70.0, 69.8 

(Gal-C2, Gal-C5), 69.4 (Sia-C4), 68.4 (PhCH2), 67.8 (2C, Gal-C4, Sia-C8), 67.1 (Sia C7), 
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66.3 (Fuc-C5), 62.8 (Sia-C9), 61.5 (Gal-C6), 49.0 (Sia-C5), 39.2 (MeCy-C3) 37.5 (Sia-C3), 

33.6 (MeCy-C4), 30.9 (MeCy-C6), 23.3 (CH3CO), 23.1 (MeCy-C5), 21.5, 21.0, 20.9, 20.8 

(6C, COCH3), 18.9 (MeCy-CH3), 17.1 (Fuc-C6); [!]D -18.9° (c 1.01, CHCl3); MS (ESI) m/z: 

calcd for C77H91NNaO26 [M+Na]+: 1468.6; found: 1468.6; elemental analysis calcd (%) for 

C77H91NO26 + 0.5 H2O (1455.55): C 63.54, H 6.37, N 0.96; found: C 63.58, H 6.35, N 0.80. 

 

(Sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynate)- 

(2!3)-"-D-galactopyranosyl-(1!1)-[! -L-fucopyranosyl-(1!2)]-(R,R)-cyclohexane-1,2-

diol (5). 

Compound 20 (912 mg, 0.64 mmol) was dissolved in dioxane/water (4/1, 50 mL) under 

argon. Pd(OH)2/C (100 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (4 bar H2) at r.t. After 24 h, the mixture was filtered and the solvent was 

removed under reduced pressure. The residue was redissolved in 1 N aq NaOH (9 mL) and 9 

mL MeOH and stirred at r.t. After 3 h the mixture was neutralized with aqueous 1 N HCl, 

volatiles were removed under reduced pressure, and the crude product was purified via SEC 

and RP chromatography (H2O/MeOH). Lyophilization from water afforded 5 as a white 

fluffy solid (371 mg, 0.50 mmol, 79%). Analytical data were in accordance with literature[20]; 

HR-MS (ESI) m/z: calcd for C29H48NNa2O19 [M+Na]+: 760.2610; found: 760.2608; HPLC-

purity: > 99.5 %. 

 

(Sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynate)- 

(2!3)-"-D-galactopyranosyl-(1!1)-[! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-

cyclohexane-1,2-diol (6). 

Compound 21 (310 mg, 0.21 mmol) was dissolved in dioxane/water (4/1, 10 mL) under 

argon. Pd(OH)2/C (40 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (4 bar H2) at r.t. After 24 h, the mixture was filtered and the solvent removed 

under reduced pressure yielding 220 mg of a white solid, which was directly used for 

saponification. The crude product (75 mg) was stirred in aqueous NaOH (1 N, 1.5 mL) for 24 

h at r.t., lyophilized and purified via SEC and RP chromatography (H2O/MeOH). 

Lyophilization from water afforded 6 as white fluffy solid (42 mg, 0.056 mmol, 81%). 
1H NMR (500.1 MHz, D2O): # "5.07 (d, 3J = 3.6Hz, 1H, Fuc-H1), 5.05-4.71 (m, Fuc-H5), 

4.53 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.05 (dd, 3J = 2.4, 9.6Hz, 1H, Gal-H3), 3.92 (m, Gal-H4), 

3.90-3.50 (m, 15H, Fuc-H2, Fuc-H3, Fuc-H4, Gal-H2, Gal-H5, Gal-H6a, Gal-H6b, MeCy-

H1, Sia-H4, Sia-H5, Sia-H6, Sia-H7, Sia-H8, Sia-H9a, Sia-H9b), 3.20 (t, 3J = 9.6Hz, 1H, 
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MeCy-H2), 2.73 (dd, 3J = 4.4Hz, 2J = 12.1Hz, 1H, Sia-H3eq), 2.13 (m, 1H, MeCy-H6a), 2.00 

(s, 3H, COCH3), 1.78 (t, 3J =2J = 12.1Hz, 1H, Sia-H3ax) 1.69-1.52 (m, 3H, MeCy-H3, 

MeCy-H4a, MeCy-H5a), 1.33-1.17 (m, 2H, MeCy-H5b, MeCy-H6b), 1.15 (d, 3J = 6.4Hz, 

1H, Fuc-H6), 1.11-0.99 (m, 4H, MeCy-CH3, MeCy-H4b); 13C NMR (125.8 MHz, D2O, 

CD3OD): ! 176.0 (COCH3), 175.0 (Sia-C1), 100.8 (Sia-C2), 100.5 (Gal-C1), 99.8 (Fuc-C1), 

85.0 (MeCy-C2), 79.4 (MeCy-C1), 76.9 (Gal-C3), 75.5 (Gal-C5), 73.8 (Sia-C6), 73.0 (Fuc-

C4), 72.7 (Sia-C8), 70.2 (Fuc-C3), 69.9 (Gal-C2), 69.4, 69.2, 69.1 (3C, Fuc-C2, Sia-C4, Sia-

C7), 68.5 (Gal-C4), 67.5 (Fuc-C5), 63.6 (Sia-C9), 62.6 (Gal-C6), 52.7 (Sia-C5), 40.6 (Sia-

C3), 39.8 (MeCy-C3), 34.2 (MeCy-C4), 31.1 (MeCy-C6), 23.6 (MeCy-C5), 23.0 (COCH3), 

19.2 (MeCy-CH3), 16.4 (Fuc-C6); ["]D -47.4° (c 0.89, MeOH); HR-MS (ESI) m/z: calcd for 

C30H50NNa2O19 [M+Na]+: 774.2767; found: 774.2768; HPLC-purity: > 99.5 %. 

 

(5-Acetamido-3,5-dideoxy-N-methyl-D-glycero-"-D-galacto-2-nonulopyranosynylamide)-

(2!3)-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-

cyclohexane-1,2-diol (7).  

A solution of 6 (40 mg, 0.053 mmol), BnBr (0.019 mL, 0.160 mmol) and KF (8 mg, 0.138 

mmol) in anhydrous DMF (3.0 mL) was stirred at r.t. under argon for 2 d. Water (3 mL) was 

added and the mixture was lyophilized to yield the crude benzyl ester as white solid (80 mg), 

which was directly used in the next step. The crude ester (20 mg) was dissolved in MeNH2 in 

THF (2 M, 4 mL) and MeNH2 in EtOH (8 M, 3 mL) and stirred at r.t. under argon for 12 h. 

Volatiles were removed under reduced pressure and purification via RP chromatography 

(H2O/MeOH) and lyophilization from water afforded 7 as white fluffy solid (10 mg, 0.013 

mmol, quant.). 
1H NMR (500.1 MHz, D2O): !  5.04 (d, 3J = 3.7Hz, 1H, Fuc-H1), 4.97-4.70 (m, Fuc-H5), 

4.50 (d, 3J = 7.9Hz, 1H, Gal-H1), 3.97 (dd, 3J = 2.8, 9.7Hz, 1H, Gal-H3), 3.87-3.53 (m, 15H, 

Fuc-H2, Fuc-H3, Fuc-H4, Gal-H4, Gal-H5, Gal-H6a, Gal-H6b, MeCy-H1, Sia-H4, Sia-H5, 

Sia-H6, Sia-H7, Sia-H8, Sia-H9a, Sia-H9b), 3.49 (m, 1H, Gal-H2), 3.17 (t, 3J = 9.6Hz, 1H, 

MeCy-H2), 2.74 (s, 3H, CONHCH3), 2.70 (dd, 3J = 4.4Hz, 2J = 12.3Hz, 1H, Sia-H3eq), 2.08 

(m, 1H, MeCy-H6a), 1.98 (s, 3H, COCH3), 1.87 (t, 3J = 2J = 12.3Hz, 1H, Sia-H3ax) 1.66-1.47 

(m, 3H, MeCy-H3, MeCy-H4a, MeCy-H5a), 1.27-1.14 (m, 2H, MeCy-H5b, MeCy-H6b), 

1.11 (d, 3J = 6.5Hz, 1H, Fuc-H6), 1.07-0.96 (m, 4H, MeCy-CH3, MeCy-H4b); 13C NMR 

(125.8 MHz, D2O, CD3OD): ! 176.1 (COCH3), 170.8 (Sia-C1), 100.8 (Sia-C2), 100.4 (Gal-

C1), 99.8 (Fuc-C1), 84.9 (MeCy-C2), 79.6 (MeCy-C1), 76.7 (Gal-C3), 75.3 (Gal-C5), 74.5 

(Sia-C6), 73.0 (Fuc-C4), 72.0 (Sia-C8), 70.2 (Fuc-C3), 69.8 (Gal-C2), 69.2 (2C, Fuc-C2, 
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Gal-C4), 68.5 (Sia-C7), 68.2 (Sia-C4), 67.4 (Fuc-C5), 64.0 (Sia-C9), 62.3 (Gal-C6), 52.5 

(Sia-C5), 39.8 (MeCy-C3), 38.4 (Sia-C3), 34.1 (MeCy-C4), 31.2 (MeCy-C6), 26.7 

(CONHCH3), 23.6 (MeCy-C5), 23.0 (COCH3), 19.1 (MeCy-CH3), 16.4 (Fuc-C6); [!]D -

52.0° (c 0.66, MeOH); HR-MS (ESI) m/z: calcd for C31H54N2NaO18 [M+Na]+: 765.3264 ; 

found: 765.3260; HPLC-purity: > 99.5 %. 

 

(R)-2-Oxotetrahydrofuran-3-yl trifluoromethanesulfonate (23). 

 (R)-3-Hydroxydihydrofuran-2(3H)-one (150 mg, 1.47 mmol) and 2,6-di-tert-butyl-4-

methylpyridine (512 mg, 2.49 mmol) were dissolved in anhydrous CH2Cl2 (7.0 mL) under 

argon. The solution was cooled to -18°C and triflic anhydride (0.37 mL, 0.62 mmol) was 

added slowly. The solution was stirred at -18°C for 3 h, warmed to r.t., diluted with CH2Cl2 

(13 mL), and washed with aqueous KH2PO4 (2 M, 20 mL). The aqueous layer was extracted 

with CH2Cl2 (2 · 20 mL) and the combined organic layers were dried over Na2SO4, filtered, 

and concentrated under reduced pressure. Column chromatography on silica (PE/EtOAc) 

afforded the triflate as slightly orange solid (255 mg, 1.09 mmol, 74%), which was directly 

used in the next step. 
1H NMR (500.1 MHz, CDCl3):  " 5.42 (t, 3J = 8.8Hz, H-3), 4.56 (ddd, 2J = 3J = 9.5Hz, 3J = 

2.8 Hz, H-5a), 4.36 (ddd, 2J = 3J = 9.5Hz, 3J = 6.4Hz, H-5b), 2.85 (m, 1H, H-4a), 2.62 (m, 

1H, H-4b); 13C NMR (125.8 MHz, CDCl3): " 168.6 (CO), 118.5 (q, J = 320Hz, CF3), 77.7 

(C3), 64.8 (C5), 29.4 (C4); MS (ESI) m/z: calcd for C5H5F3NaO5S+ [M+Na]+: 257.0; found: 

256.8. 

 

(R)-Methyl 2-(((trifluoromethyl)sulfonyl)oxy)butanoate (25). 

In analogy to 23, (R)-methyl 2-hydroxybutanoate (200 mg, 1.69 mmol) was reacted with 

triflic anhydride (0.430 mL, 2.56 mmol) and DTBMP (560 mg, 2.72 mmol) in anhydrous 

CH2Cl2 (8.0 mL) under argon. Workup and column chromatography on silica (PE/EtOAc) 

afforded the triflate as clear oil (280 mg, 1.12 mmol, 66%), which was directly used in the 

next step. Analytical data were in accordance with literature.[38] 

 

2,3,4-Tri-O-benzoyl-6-O-benzyl-!-D-galactopyranosyl-(1"1)-[2,3,4-tri-O-benzyl-! -L-

fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (27) 

Powdered activated molecular sieves 4 Å (3.0 g) were added to a solution of 19 (1.50 g, 2.74 

mmol) and galactoside 26[39] (2.60 g, 4.15 mmol) in anhydrous CH2Cl2 (20 ml) and the 

mixture was stirred at r.t. under argon for 4 h. DMTST (2.12 g, 8.21 mmol) was dissolved in 
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anhydrous CH2Cl2 (6.0 ml), powdered activated molecular sieves 4 Å (0.6 g) were added and 

the suspension was stirred at r.t. under argon for 4 h as well. Subsequently, the two 

suspensions were combined and stirred at r.t. under argon for 16 h. The mixture was diluted 

with CH2Cl2 (30 mL), filtered (celite), and washed with satd. aqueous NaHCO3 (100 mL) and 

brine (100 mL). The aqueous layers were extracted with CH2Cl2 (3 · 50 mL) and the 

combined organic layers were dried over Na2SO4 and concentrated. Column chromatography 

on silica (PE/EtOAc 5/1) afforded 27 as white foam (2.03 g, 1.83 mmol, 67%). 
1H NMR (500.1 MHz, CDCl3): !   7.98, 7.94, 7.80 (3m, 6H, Ar-H), 7.56-7.07 (m, 29H, Ar-

H), 5.97 (d, 3J = 3.4Hz, Gal-H-4), 5.71 (dd, 3J = 8.2, 10.3Hz, Gal-H2), 5.52 (dd, 3J = 3.5, 

10.3Hz, Gal-H3), 5.12 (d, 3J = 3.3Hz, 1H, Fuc-H1), 4.94 (A of AB, 2J = 11.5Hz, 1H, 

CH2Ph), 4.90 (q, 3J = 6.5, 6.4Hz, 1H, Fuc-H5), 4.84-4.79 (m, 2H, CH2Ph, Gal-H1), 4.74 (B’ 

of A’B’, 2J = 11.5Hz, 1H, CH2Ph), 4.70 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.94 (A of AB, 
2J = 11.5Hz, 1H, CH2Ph), 4.58-4.53 (m, 2H, CH2Ph), 4.48 (A of AB, 2J = 11.9Hz, 1H, 

CH2Ph), 4.35 (B of AB, 2J = 11.9Hz, 1H, CH2Ph), 4.12-4.03 (m, 3H, Fuc-H2, Fuc-H3, Gal-

H5), 3.75-3.64 (m, 3H, Fuc-H4, Gal-H6a, MeCy-H1), 3.60 (m, 1H, Gal-H6b), 3.29 (t, 3J = 

9.2Hz, 1H, MeCy), 2.03 (m, 1H, MeCy), 1.70-1.49 (m, 3H, MeCy), 1.43 (d, 3J = 6.5Hz, 3H, 

Fuc-H6), 1.29-1.10 (m, 2H, MeCy), 1.07 (d, 3J = 6.6Hz, 3H, MeCy-CH3), 0.92 (m, 1H, 

MeCy); 13C NMR (125.8 MHz, CDCl3): ! 165.8, 165.7, 165.1 (3C, COC6H5), 139.3, 139.1, 

138.6, 137.6133.6, 133.3, 129.9, 129.8, 129.7, 129.1, 128.7, 128.5, 128.4, 128.3, 127.9, 

127.8, 127.7, 127.5, 127.3 (42 C, Ar-C), 100.0 (Gal-C1), 97.9 (Fuc-C1), 81.3 (MeCy-C2), 

81.0, (MeCy-C1), 80.4 (Fuc-C3), 79.6 (Fuc-C4), 76.4 (Fuc-C2), 75.2, 74.4, 73.8 (3C, 

CH2Ph), 72.8 (2C, CH2Ph, Gal-C5), 72.4 (Gal-C3), 69.8 (Gal-C2), 68.8 (Gal-C4), 67.8 (Gal-

C6), 66.6 (Fuc-C5), 39.0 (MeCy-C3), 33.0 (MeCy-C4), 30.9 (MeCy-C6), 22.8 (MeCy-C5), 

18.9 (MeCy-CH3), 17.1 (Fuc-C6); ["]D +1.22° (c 1.28, CHCl3); MS (ESI) m/z: calcd for 

C68H70NaO14
+ [M+Na]+: 1133.5; found: 1133.5; elemental analysis calcd (%) for C68H70O14 + 

0.5 H2O: C 72.90, H 6.39; found: C 73.03, H 6.59. 

 

6-O-Benzyl-!-D-galactopyranosyl-(1"1)-[2,3,4-tri-O-benzyl-" -L-fucopyranosyl-(1"2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (28). 

A freshly prepared solution of NaOMe in MeOH (3 N, 0.18 mL) was slowly added to a 

solution of 27 (500 mg, 0.45 mmol) in anhydrous MeOH (7.0 mL) under argon at r.t. After 

22 h, the mixture was neutralized with aqueous 1 N HCl and concentrated under reduced 

pressure. Column chromatography on silica (CH2Cl2/MeOH 35/1) afforded 28 as white foam 

(311 mg, 0.39 mmol, 87%). 
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1H NMR (500.1 MHz, CDCl3): ! 7.31-7.14 (m, 20H, Ar-H), 5.03 (d, 3J = 3.6Hz, 1H, Fuc-

H1), 4.86 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.74 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 

4.71-4.64 (m, 2H, CH2Ph), 4.60 (B of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.54-4.43 (m, 4H, Fuc-

H5, CH2Ph), 4.25 (1H, 3J = 6.8Hz, Gal-H1), 4.00 (dd, 3J = 3.6, 10.3Hz, 1H, Fuc-H2), 3.96-

3.90 (m, 2H, Fuc-H3, Gal-H4), 3.75-3.57 (m, 4H, Fuc-H4, Gal-H6a,b, MeCy-H1), 3.55-3.45 

(m, 3H, Gal-H2, Gal-H3, Gal-H5), 3.17 (t, 3J = 9.4Hz, 1H, MeCy-H2), 2.06 (m, 1H, MeCy), 

1.64-1.47 (m, 3H, MeCy), 1.29-1.08 (m, 2H, MeCy), 1.06 (d, 3J = 6.5Hz, 3H, Fuc-H6), 1.02 

(d, 3J = 6.3Hz, 3H, MeCy-CH3), 0.94 (m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3): ! ! 

139.0, 138.5, 137.9, 128.7, 128.5, 128.3, 128.0, 127.7, 127.6, 127.5, 127.4 (24C, Ar-C), 99.7 

(Gal-C1), 98.0 (Fuc-C1), 84.1 (MeCy-C2), 79.9 (Fuc-C3), 78.7 (MeCy-C1), 78.3 (Fuc-C4), 

76.5 (Fuc-C2), 75.0, 74.4, 73.6 (3C, CH2Ph), 73.6 73.1, 71.5 (Gal-C2, Gal-C3, Gal-C5), 72.7 

(CH2Ph ), 69.5 (Gal-C6), 68.7 (Gal-C4), 66.7 (Fuc-C5), 38.8 (MeCy-C3), 33.7 (MeCy-C4), 

31.1 (MeCy-C6), 23.2 (MeCy-C5), 19.1 (MeCy-CH3), 17.0 (Fuc-C6); ["]D - 56.1° (c 0.94, 

CHCl3); MS (ESI) m/z: calcd for C47H58NaO11
+ [M+Na]+: 821.4; found: 821.5; elemental 

analysis calcd (%) for C47H58O11: C 70.66, H 7.32; found: C 70.50, H 7.56. 

 

6-O-Benzyl-3-O-((S)-2-oxotetrahydrofuran-3-yl)-#-D-galactopyranosyl-(1"1)-[2,3,4-tri-

O-benzyl-" -L-fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (29). 

Compound 28 (600 mg, 0.75 mmol) and Bu2SnO (300 mg, 1.21 mmol) were suspended in 

anhydrous toluene (5.3 mL) and anhydrous MeOH (2.7 mL) and stirred at 60°C under argon 

for 4 h. Volatiles were evaporated under reduced pressure and the resulting white solid was 

dried in high vacuum overnight. The residue was dissolved in anhydrous DME (10 mL) 

under argon, and extensively dried CsF (345 mg, 2.27 mmol) and 23 (530 mg, 2.26 mmol) 

were added. After 24 h, the solution was diluted with CH2Cl2 (100 mL) and washed with a 

20% aqueous solution of KF (2 · 100 mL) and brine (100 mL). The aqueous layers were 

extracted with CH2Cl2 (2 · 100 mL) and the combined organic layers were dried over Na2SO4 

and concentrated under reduced pressure. Column chromatography on silica (CH2Cl2/i-

propanol) afforded 29 (360 mg, 0.39 mmol, 52%) as white fluffy solid. 28 was recovered in 

17% (100 mg, 0.13 mmol). 
1H NMR (500.1 MHz, CDCl3): ! 7.30-7.13 (m, 20H, Ar-H), 5.00 (d, 3J = 3.4Hz, 1H, Fuc-

H1), 4.86 (A of AB, 2J = 11.4Hz, 1H, CH2Ph), 4.74 (A’ of A’B’, 2J = 11.7Hz, 1H, CH2Ph), 

4.70-4.59 (m, 3H, CH2Ph), 4.55 (dd, 3J = 6.5Hz, 1H, Fuc-H5), 4.51 (B of AB, 2J = 11.4Hz, 

CH2Ph), 4.48-4.43 (m, 3H, CH2Ph, Lac-H-2), 4.34 (m, 1H, Lac-H-4a), 4.24 (d, 3J = 7.7Hz, 

1H, Gal-H1), 4.12 (m, 1H, lac-H-4b), 4.07 (d, 3J = 2.6Hz, 1H, Gal-H4), 3.99 (dd, 3J = 3.4, 
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10.3Hz, 1H, Fuc-H2), 3.95 (dd, 3J = 2.6, 10.3Hz, 1H, Fuc-H3), 3.74 (dd, 3J = 6.4Hz, 2J = 

9.5Hz, 1H, Gal-H6a), 3.71-3.60 (m, 4H, Gal-H2, Gal-H6b, MeCy-H1, Fuc-H4), 3.58 (dd, 3J 

= 2.6, 9.3Hz, 1H, Gal-H3), 3.51 (q, 3J = 6.4Hz, 1H, Gal-H5), 3.16 (t, 3J = 9.4Hz, 1H, MeCy-

H2), 2.53 (m, 1H, lac-H-3a), 2.32 (m, 1H, lac-H-3b), 2.04 (m, 1H, MeCy), 1.61-1.49 (m, 3H, 

MeCy), 1.29-1.08 (m, 2H, MeCy), 1.06 (d, 3J = 6.4Hz, 3H, Fuc-H6), 1.03 (d, 3J = 6.3Hz, 3H, 

MeCy-CH3), 0.93 (m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3): !! 176.8 (CO), 139.1, 

138.6, 138.0, 128.6, 128.5, 128.4, 128.3, 127.9, 127.8, 127.6, 127.5, 127.4 (24C, Ar-C), 

100.1 (Gal-C1), 98.3 (Fuc-C1), 83.8 (MeCy-C2), 82.9 (Gal-C3), 80.0 (Fuc-C3), 79.0 (MeCy-

C1), 78.3 (Fuc-C4), 76.3 (Fuc-C2), 75.1, 74.5, 74.3 (3C, CH2Ph), 73.8 (lac-C2), 73.1 (Gal-

C5), 72.6 (CH2Ph), 70.8 (Gal-C2), 69.2 (Gal-C6), 67.3 (Gal-C4), 66.6 (Fuc-C5), 65.4 (lac-C-

4), 39.0 (MeCy-C3), 33.7 (MeCy-C4), 31.2 (MeCy-C6), 30.1 (lac-C3), 23.2 (MeCy-C5), 19.1 

(MeCy-CH3), 16.9 (Fuc-C6); ["]D -56.5 (c 0.90, CHCl3); MS (ESI) m/z: calcd for 

C51H62NaO13
+ [M+Na]+: 905.41; found: 605.64; elemental analysis calcd (%) for C51H62O13 

(883.03): C 69.37, H 7.08; found: C 69.14, H 6.93. 

 

3-O-(Sodium (S)-1-carboxy-3-hydroxypropyl)-#-D-galactopyranosyl-(1"1)- 

[" -L-fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (10) 

and 

3-O-((S)-4-Hydroxy-1-(benzylamino)-1-oxobutan-2-yl)-#-D-galactopyranosyl-(1"1)-[" -

L-fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (9). 

Compound 29 (270 mg, 0.31 mmol) was dissolved in dioxane/water (4/1, 3.5 mL) under 

argon. Pd(OH)2/C (30 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (1 bar H2) at r.t. After 21 h, the mixture was filtered and the solvent removed 

under reduced pressure to give the debenzylated intermediate as white foam, which was 

directly used in the next step (160 mg, 0.31 mmol). 

10: The intermediate (23 mg, 0.044 mmol) was stirred in dioxane (0.5 mL) and aqueous 

NaOH (1 N, 0.5 mL) for 24 h. Dioxane was removed under reduced pressure and the residue 

was purified via RP chromatography (H2O/MeOH) and lyophilized from water to afford 10 

as white fluffy solid (17 mg, 0.03 mmol, 69%). 
1H NMR (500.1 MHz, CD3OD): !! 5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.93-4.85 (m, 1H, Fuc-

H5), 4.30 (d, 3J = 7.9Hz, 1H, Gal-H1), 3.93 (dd, 3J = 3.3, 9.9Hz, 1H, COCHCH2CH2OH), 

3.89-3.79 (m, 3H, COCHCH2CH2OH, Fuc-H3, Gal-H4), 3.78-3.61 (m, 7H, 

COCHCH2CH2OH, Fuc-H2, Fuc-H4, Gal-H2, Gal-H6a,b, MeCy-H1), 3.44 (m, 1H, Gal-H5), 

3.27 (t, 3J = 3.1, 9.5Hz, 1H, Gal-H3), 3.21 (t, 3J = 9.3Hz, 1H, MeCy), 2.14-2.02 (m, 2H, 
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COCHCH2CH2OH, MeCy), 1.88 (m, 1H, COCHCH2CH2OH), 1.71-1.58 (m, 3H, MeCy), 

1.39-1.22 (m, 2H, MeCy), 1.19 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-

CH3), 1.06 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 182.0 (COCHCH2CH2OH), 

102.2 (Gal-C1), 100.3 (Fuc-C1), 85.6 (Gal-C3), 84.5 (MeCy-C2), 81.4 (COCHCH2CH2OH), 

79.8 (MeCy-C1), 75.9 (Gal-C5), 73.8 (Fuc-C4), 71.3, 71.1 (Fuc-C3, Gal-C2), 70.3 (Fuc-C2), 

67.6 (Fuc-C5, Gal-C4), 63.2 (Gal-C6), 61.0 (COCHCH2CH2OH), 40.4 (MeCy-C3), 37.7 

(COCHCH2CH2OH), 35.0 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-

CH3), 16.7 (Fuc-C6); ["]D -89.0 (c 0.67, MeOH); HR-MS (ESI) m/z: calcd for C23H39Na2O14
+ 

[M+Na]+: 585.2130 ; found: 585.2127; HPLC-purity: > 99.5 %. 

 

9: Benzyl amine (0.063 mL, 0.577 mmol) was added to a stirred solution of the intermediate 

(25 mg, 0.048 mmol) in anhydrous THF (1.0 mL) at r.t. under argon. After 20 h, volatiles 

were evaporated under reduced pressure, the residue was purified via RP chromatography 

(H2O/MeOH) and lyophilized from water to afford 9 as white fluffy solid (23 mg, 0.037 

mmol, 76%). 
1H NMR (500.1 MHz, CD3OD):  ! 7.35-7.23 (m, 5H, C6H5), 5.00 (d, 3J = 4.0Hz, 1H, Fuc-

H1), 4.93-4.83 (m, 1H, Fuc-H5), 4.45 (A of AB, 2J = 14.8Hz, 1H, CH2Ph), 4.38 (B of AB, 2J 

= 14.8Hz, 1H, CH2Ph), 4.28 (d, 3J = 7.7Hz, 1H, Gal-H1), 4.25 (dd, 3J = 3.8, 8.9Hz, 1H, 

COCHCH2CH2OH), 3.88-3.79 (m, 3H, COCHCH2CH2OH, Fuc-H3, Gal-H4), 3.78-3.61 (m, 

6H, COCHCH2CH2OH, Fuc-H2, Fuc-H4, Gal-H2, Gal-H6a, MeCy-H1), 3.58 (dd, 3J = 4.8, 

11.4Hz, Gal-H6b), 3.38-3.32 (m, 2H, Gal-H3, Gal-H5), 3.20 (t, 3J = 9.3Hz, 1H, MeCy), 2.09 

(m, 1H, MeCy), 2.03 (m, 1H, COCHCH2CH2OH), 1.88 (m, 1H, COCHCH2CH2OH), 1.72-

1.55 (m, 3H, MeCy), 1.40-1.21 (m, 2H, MeCy), 1.17 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J 

= 6.3Hz, 3H, MeCy-CH3), 1.07 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 176.0 

(COCHCH2CH2OH), 139.8, 129.6, 128.6, 128.4 (6C, C6H5), 102.2 (Gal-C1), 100.4 (Fuc-C1), 

84.8, 84.6 (Gal-C3, MeCy-C2), 80.3, 79.9 (COCHCH2CH2OH, MeCy-C1), 75.9 (Gal-C5), 

73.8 (Fuc-C4), 71.5, 71.4 (Fuc-C3, Gal-C2), 70.3 (Fuc-C2), 68.3 (Gal-C4), 67.5 (Fuc-C5), 

62.9 (Gal-C6), 59.4 (COCHCH2CH2OH), 43.8 (CH2Ph), 40.4 (MeCy-C3), 37.3 

(COCHCH2CH2OH), 34.9 (MeCy-C4), 31.8 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-

CH3), 16.7 (Fuc-C6); ["]D -77.6 (c 0.86, MeOH); HR-MS (ESI) m/z: calcd for 

C30H47NNaO13
+ [M+Na]+: 652.2945 ; found: 652.2940; HPLC-purity: > 99.5 %. 
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6-O-Benzyl-3-O-((S)-1-methoxy-1-oxobutan-2-yl)-!-D-galactopyranosyl-(1!1)-[2,3,4-tri-

O-benzyl-" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (30). 

Compound 28 (150 mg, 0.19 mmol) and Bu2SnO (70 mg, 0.28 mmol) were suspended in 

anhydrous toluene (1.4 mL) and anhydrous MeOH (0.6 mL) and stirred at 60°C under argon 

for 4 h. Volatiles were evaporated under reduced pressure and the resulting white solid was 

dried in high vacuum overnight. The residue was dissolved in anhydrous DME (3.0 mL) 

under argon, and extensively dried CsF (90 mg, 0.59 mmol) and 25 (130 mg, 0.52 mmol) 

were added. The reaction was monitored by TLC (CH2Cl2/i-propanol 95/5) and after 18 h, the 

solution was diluted with CH2Cl2 (30 mL) and washed with a 20% aqueous solution of KF (2 

· 30 mL) and brine (30 mL). The aqueous layers were extracted with CH2Cl2 (2 · 30 mL) and 

the combined organic layers were dried over Na2SO4 and concentrated under reduced 

pressure. Column chromatography on silica (CH2Cl2/i-propanol) afforded 30 (126 mg, 0.14 

mmol, 75%) as white fluffy solid. 
1H NMR (500.1 MHz, CDCl3): # 7.31-7.13 (m, 20H, Ar-H), 5.01 (d, 3J = 3.3Hz, 1H, Fuc-

H1), 4.87 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.74 (A’ of A’B’, 2J = 11.7Hz, 1H, CH2Ph), 

4.70-4.64 (m, 2H, CH2Ph), 4.64-4.56 (m, 2H, CH2Ph, Fuc-H5), 4.53 (B of AB, 2J = 11.5Hz, 

CH2Ph), 4.49-4.41 (m, 2H, CH2Ph), 4.22 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.06 (dd, 3J = 4.1, 

8.2Hz, COCHCH2CH3), 3.99 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H2), 3.95 (dd, 3J = 2.4, 10.3Hz, 

1H, Fuc-H3), 3.86 (d, 3J = 2.9Hz, 1H, Gal-H4), 3.76-3.58 (m, 8H, Fuc-H4, Gal-H2, Gal-

H6a,b, MeCy-H1, COCH3), 3.47 (t, 3J = 6.1Hz, 1H, Gal-H5), 3.23 (dd, 3J = 3.2, 9.3Hz, 1H, 

Gal-H3), 3.17 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.03 (m, 1H, MeCy), 1.86-1.64 (m, 2H, 

COCHCH2CH3), 1.60-1.48 (m, 3H, MeCy), 1.29-1.10 (m, 2H, MeCy), 1.07 (d, 3J = 6.5Hz, 

3H, Fuc-H6), 1.02 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 0.96 (t, 3J = 7.4Hz, 3H, COCHCH2CH3), 

0.91 (m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3):  # 174.7 (CO2CH3), 139.2, 138.6, 

138.2, 128.6, 128.5, 128.4, 128.3, 128.2, 127.8, 127.7, 127.6, 127.5, 127.4 (24C, Ar-C), 

100.2 (Gal-C1), 98.1 (Fuc-C1), 83.5 (MeCy-C2), 82.9 (Gal-C3), 80.2 (COCHCH2CH3), 80.0 

(Fuc-C3), 78.8 (MeCy-C1), 78.5 (Fuc-C4), 76.2 (Fuc-C2), 75.1, 74.3, 73.7 (3C, CH2Ph), 73.2 

(Gal-C5), 72.7 (CH2Ph), 70.9 (Gal-C2), 69.2 (Gal-C6), 66.8, 66.7 (Fuc-C5, Gal-C4), 52.3 

(CO2CH3), 38.9 (MeCy-C3), 33.7 (MeCy-C4), 31.2 (MeCy-C6), 26.9 (COCHCH2CH3) 23.2 

(MeCy-C5), 19.1 (MeCy-CH3), 16.9 (Fuc-C6), 10.0 (COCHCH2CH3); ["]D -59.1 (c 1.44, 

CHCl3); MS (ESI) m/z: calcd for C52H66NaO13
+ [M+Na]+: 921.44; found: 921.50; elemental 

analysis calcd (%) for C52H66O13 (899.07): C 69.47, H 7.40; found: C 69.38 , H 7.38. 
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3-O-(Sodium (S)-1-carboxypropyl)-!-D-galactopyranosyl-(1"1)-[! -L- 

fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (11). 

Compound 30 (95 mg, 0.11 mmol) was dissolved in dioxane/water (4/1, 5 mL) under argon. 

Pd(OH)2/C (30 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated (1 

bar H2) at r.t. After 17 h, the mixture was filtered and the solvent removed under reduced 

pressure yielding 57 mg of a white solid, which was directly used for saponification. The 

crude product was stirred in a solution of aqueous NaOH (1 N, 0.5 mL) and dioxane (1.5 mL) 

at r.t. for 24 h, lyophilized from water and purified via HPLC. Lyophilization from water 

afforded 11 as white fluffy solid (8 mg, 0.015 mmol, 14%). 
1H NMR (500.1 MHz, CD3OD):  "  5.00 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.93-4.77 (m, 1H, Fuc-

H5), 4.27 (d, 3J = 7.7Hz, 1H, Gal-H1), 4.16 (dd, 3J = 4.3, 7.7Hz, 1H, COCHCH2CH3), 3.91 

(d, 3J = 2.2Hz, 1H, Gal-H4), 3.84 (dd, 3J = 3.2, 10.2Hz, 1H, Fuc-H3), 3.78-3.60 (m, 6H, Fuc-

H2, Fuc-H4, Gal-H2, Gal-H6a,b, MeCy-H1), 3.41 (t, 3J = 5.8Hz, 1H, Gal-H5), 3.34-3.26 (m, 

1H, Gal-H3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.10 (m, 1H, MeCy), 1.90, 1.77 (2m, 2H, 

COCHCH2CH3), 1.71-1.55 (m, 3H, MeCy), 1.38-1.22 (m, 2H, MeCy), 1.19 (d, 3J = 6.5Hz, 

3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.11-1.01 (m, 4H, COCHCH2CH3, 

MeCy); 13C NMR (125.8 MHz, CD3OD): " 102.4 (Gal-C1), 100.4 (Fuc-C1), 84.6, 84.4 (Gal-

C3, MeCy-C2), 80.0 (MeCy-C1), 75.9 (Gal-C5), 73.8 (Fuc-C4), 71.8, 71.4 (Fuc-C3, Gal-C2), 

70.3 (Fuc-C2), 68.1 (Gal-C4), 67.5 (Fuc-C5), 62.9 (Gal-C6), 40.4 (MeCy-C3), 34.9 (MeCy-

C4), 31.9 (MeCy-C6), 27.6 (COCHCH2CH3), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.7 

(Fuc-C6), 10.1 (COCHCH2CH3); [!]D -79.1 (c 0.62, MeOH); HR-MS (ESI) m/z: calcd for 

C23H40NaO13
+ [M+Na]+: 547.2361 ; found: 547.2363; HPLC-purity: > 99.5 %. 

 

6-O-Benzyl-3-O-((S)-4-hydroxy-1-(methylamino)-1-oxobutan-2-yl)-#-D-

galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-

methyl-cyclohexane-1,2-diol (31). 

Compound 28 (60 mg, 0.075 mmol) and Bu2SnO (28 mg, 0.112 mmol) were suspended in 

anhydrous toluene (1.4 mL) and anhydrous MeOH (0.6 mL) and stirred at 50°C under argon 

for 4 h. Volatiles were evaporated under reduced pressure and the resulting white solid was 

dried in high vacuum overnight. The residue was dissolved in anhydrous DME (1.0 mL) 

under argon, and extensively dried CsF (35 mg, 0.23 mmol) and 23 (53 mg, 0.226 mmol) 

were added. The reaction was monitored by TLC (CH2Cl2/i-propanol 95/5) and upon 

completion NH2Me in THF (2 M, 4 mL) was added. The solution was stirred for 30 min, 

diluted with CH2Cl2 (30 mL) and washed with a 20% aqueous solution of KF (2 ·30 mL) and 
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brine (30 mL). The aqueous layers were extracted with CH2Cl2 (3 · 30 mL) and the combined 

organic layers were dried over Na2SO4 and concentrated under reduced pressure. Column 

chromatography on silica (CH2Cl2/i-propanol) afforded 31 (35 mg, 0.038 mmol, 51%) as 

white fluffy solid. Starting material 28 was recovered in 33% (20 mg, 0.025 mmol). 
1H NMR (500.1 MHz, CDCl3): ! 7.49 (d, 3J = 4.1Hz, CONHCH3), 7.29-7.14 (m, 20H, Ar-

H), 5.01 (d, 3J = 3.6Hz, 1H, Fuc-H1), 4.56 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.76-4.63 

(m, 3H, CH2Ph), 4.56 (B of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.52-4.45 (m, 3H, Fuc-H5, 

CH2Ph), 4.40 (B of AB, 2J = 11.9Hz, 1H, CH2Ph), 4.26 (1H, 3J = 7.7Hz, Gal-H1), 4.04 (m, 

1H, COCHCH2CH2OH), 3.99 (dd, 3J =3.6, 10.3Hz, 1H, Fuc-H2), 3.95-3.89 (m, 2H, Fuc-H3, 

Gal-H4), 3.84-3.61 (m, 6H, Gal-H2, Gal-H6a,b, MeCy-H1, COCHCH2CH2OH), 3.57 (m, 1H, 

Fuc-H4), 3.38 (m, 1H, Gal-H5), 3.16 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.75 (d, 3J = 4.1Hz, 3H, 

CONHCH3), 2.11-2.01 (m, 2H, MeCy, COCHCH2CH2OH), 1.84 (m, 1H, 

COCHCH2CH2OH), 1.61-1.49 (m, 3H, MeCy), 1.30-1.10 (m, 2H, MeCy), 1.08 (d, 3J = 

6.4Hz, 3H, Fuc-H6), 1.01 (d, 3J = 6.2Hz, 3H, MeCy-CH3), 0.92 (m, 1H, MeCy); 13C NMR 

(125.8 MHz, CDCl3): !! 174.0 (CONHCH3), 139.0, 138.4, 137.4, 128.7, 128.5, 128.4, 128.3, 

128.2, 127.7, 127.6, 127.5, 127.3 (24C, Ar-C), 100.1 (Gal-C1), 97.9 (Fuc-C1), 84.1, 83.9 

(Gal-C3, MeCy-C2), 81.1 (COCHCH2CH2OH), 79.9 (Fuc-C3), 78.8 (MeCy-C1), 78.4 (Fuc-

C4), 76.4 (Fuc-C2), 75.0, 74.3, 73.9 (3C, CH2Ph), 72.8 (CH2Ph ), 72.5 (Gal-C5), 70.3 (Gal-

C6), 69.7 (Gal-C2), 67.8 (Gal-C4), 66.8 (Fuc-C5), 59.9 (COCHCH2CH2OH), 38.6 (MeCy-

C3), 35.7 (COCHCH2CH2OH), 33.7 (MeCy-C4), 31.0 (MeCy-C6), 26.0 (CONHCH3), 23.2 

(MeCy-C5), 19.0 (MeCy-CH3), 17.0 (Fuc-C6); ["]D -50.9 (c 0.66, CHCl3); MS (ESI) m/z: 

calcd for C52H67NaNO13
+ [M+Na]+: 936.45; found: 936.63; elemental analysis calcd (%) for 

C52H67NO13 + 0.5 H2O (923.10): C 67.66, H 7.43, N 1.52; found: C 67.65, H 7.43, N 1.68. 

 

3-O-((S)-4-hydroxy-1-(methylamino)-1-oxobutan-2-yl)-#-D-galactopyranosyl-(1"1)-[" -

L-fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (8). 

Compound 31 (90 mg, 0.098 mmol) was dissolved in dioxane/water (4/1, 3.5 mL) under 

argon. Pd(OH)2/C (5 mg, Pd(OH)2) was added and the resulting mixture was hydrogenated (1 

bar H2) at r.t. After 5 h the mixture was filtered and the solvent removed under reduced 

pressure. Purification via HPLC and lyophilization from water afforded 8 as white fluffy 

solid (20 mg, 0.036 mmol, 37%). 
1H NMR (500.1 MHz, CD3OD): !! 5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.93-4.84 (m, 1H, Fuc-

H5), 4.30 (d, 3J = 7.7Hz, 1H, Gal-H1), 4.19 (dd, 3J = 3.8, 8.7Hz, 1H, COCHCH2CH2OH), 

3.88 (d, 3J = 2.8Hz, Gal-H4), 3.86-3.80 (m, 2H, COCHCH2CH2OH, Fuc-H3), 3.77-3.63 (m, 
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7H, COCHCH2CH2OH, Fuc-H2, Fuc-H4, Gal-H2, Gal-H6a,b, MeCy-H1), 3.40 (m, 1H, Gal-

H5), 3.37-3.27 (m, 1H, Gal-H3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy), 2.78 (s, 3H, NHCH3), 2.11 

(m, 1H, MeCy), 2.02 (m, 1H, COCHCH2CH2OH ), 1.87 (m, 1H, COCHCH2CH2OH), 1.73-

1.55 (m, 3H, MeCy), 1.40-1.23 (m, 2H, MeCy), 1.19 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J 

= 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 176.7 

(COCHCH2CH2OH), 102.3 (Gal-C1), 100.4 (Fuc-C1), 84.8, 84.6 (Gal-C3, MeCy-C2), 80.0 

(COCHCH2CH2OH, MeCy-C1), 76.0 (Gal-C5), 73.9 (Fuc-C4), 71.5 (Fuc-C3, Gal-C2), 70.3 

(Fuc-C2), 68.0 (Gal-C4), 67.5 (Fuc-C5), 62.8 (Gal-C6), 59.5 (COCHCH2CH2OH), 40.4 

(MeCy-C3), 37.2 (COCHCH2CH2OH), 34.9 (MeCy-C4), 31.9 (MeCy-C6), 26.1 (NHCH3), 

24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D -73.0 (c 0.70, MeOH); HR-MS 

(ESI) m/z: calcd for C24H45NNaO13 [M+Na]+: 576.2627; found: 576.2627; HPLC-purity: > 

99.5 %. 
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2.3.2 Further selectin antagonists and synthesis of building blocks 

In the course of our studies on selectin antagonists presented in the previous section, further 

antagonists were developed that have not been described to date. In this section, the rational 

for their development, biological data, and synthesis are discussed. Furthermore, the 

synthesis of building blocks used in, but not covered by section 2.3.1 is outlined.  

2.3.2.1 Rational and biological data 

Table 2.3.1 Relative IC50 values (rIC50) of selectin antagonists. IC50 values were measured by 
Katrin Lemme and GMI using 1.1a (P-sel) and CGP69669 (E-sel) as reference compounds on each 
microtiter plate; n.d. = binding affinity not determined. 
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Entry Compound R1 R2 R3 
rIC50 

(E)  
rIC50 

(P)  

1 1.12 - - - 1.0 1.0 

2 1.1b ONa H H 0.08 0.05 

3 3.7* NHCH3 H H 0.25 0.07 

4 3.1 NH2 H H 0.27 0.22 

5 3.2 ONa COCH3 H 0.03 0.03 

6 3.3 ONa H CO2Na 0.06 0.06 

7 3.4 ONa COCH3 CO2CH3 n.d. n.d. 

8 3.5 ONa H CO2NH(CH2)2NHCOCH2(O(CH2)2)2NH2 n.d. n.d. 

 

All IC50 values of selectin antagonists are referenced to TMSE protected sLex (1.12, entry 1 

in Table 2.3.1). To evaluate the impact of the different modifications, affinity data is also 

provided for 1.1b. 

Compound 3.7*: Design and synthesis of 3.7* are described in section 2.3.1. 
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Compound 3.1: To study the influence of the methyl group in methylamide 3.7*, amide 3.1 

was synthesized. While binding affinity to E-selectin was identical, three-fold weaker binding 

was observed for P-selectin. This difference might result from the higher quality of the 

hydrogen bond formed by the methylamide compared to the amide. 

Compound 3.2: Various esters and amides in 2-position of D-Gal were found to exert a 

positive effect on binding affinity to E-selectin (see section: 1.4.2.). However, this effect was 

only observed for cyclohexyllactic acid derivatives of sLex. We wondered if it can also be 

observed for antagonists containing sialic acid and if it can be found for P-selectin 

antagonists as well. Consequently, mimetic 3.2 was synthesized and tested. Affinity to both 

E- and P-selectin was increased approximately two fold, which is in the same range as 

observed for E-selectin antagonists containing cyclohexyllactic acid. These results suggest, 

that modifications of the 2-position of D-Gal which are beneficial for E-selectin antagonists, 

can be transferred to P-selectin antagonists as well. 

Compound 3.3: Structure activity relationship studies revealed that a methyl ester at the 

position of the former ring oxygen of D-GlcNAc could significantly improve the binding 

affinity of E-selectin antagonists (see section 1.4.2.). According to the crystal structure of 

sLex bound to E-selectin, this part of the mimic has no contact to the protein. Therefore, it 

was reasoned that the gain in affinity is due to stabilization of the ring conformation. To 

explore the effect of an additional substituent on the binding affinity to E- and P-selectin, 3.3 

was synthesized. However, 3.3 did not exhibit a significant improvement in affinity for both 

selectins. Possible explanations might be the compensation of favorable conformational 

stabilization by unfavorable changes in the solvation properties, or a change in the binding 

mode.  

Compound 3.4: No data was available for 3.4, which combines the acetyl ester in position 2 

of D-Gal and the methyl ester at the former ring oxygen position of D-GlcNAc. 

Compound 3.5: Linker modified 3.5 was synthesized for the preparation of an affinity 

column, as well as for immobilization on a Biacore chip (inverse experiment, see thesis of 

Céline Weckerle[1]). The linker was attached to the D-GlcNAc mimic, since SAR studies of 

similarly modified selectin ligands had revealed no negative influence on the binding affinity 

compared to unmodified ligands.[1] 
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2.3.2.2 Synthesis 

2.3.2.2.1 Synthesis of (5-Acetamido-3,5-dideoxy-D-glycero-! -D-galacto-2-

nonulopyranosynylamide)-(2!3)-"-D-galactopyranosyl-[! -L-fucopyranosyl-(1!2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (3.1). 

Amide 3.1 was obtained from the benzyl ester of 1.1b (Scheme 2.3.1). Ester formation 

proceeded chemoselectively with benzyl bromide in presence of KF and aminolysis with NH3 

afforded 3.1 in 95% over two steps. 
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Scheme 2.3.1 a) BnBr, KF, DMF, r.t., 2 d; b) NH3, dioxane, MeOH, r.t., 12 h, 95% from 1.1b. 

2.3.2.2.2 Synthesis of (Sodium 5-acetamido-3,5-dideoxy-D-glycero-! -D-galacto-2-

nonulopyranosynate)-(2!3)-2-O-acetyl-" -D-galactopyranosyl-(1!1)-[! -L-

fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol (3.2). 

Debenzylation by hydrogenolysis of 3.21* followed by mild transesterification with NaOMe 

in methanol afforded monoacetylated 3.2 in 44% yield over two steps (Scheme 2.3.2). 
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Scheme 2.3.2 a) H2, Pd(OH)2/C, dioxane, H2O, r.t., 24 h; b) NaOMe, MeOH, r.t., 4.5 h, 44%. 



 

79 

2.3.2.2.3 Synthesis of (Sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-

nonulopyranosynate)-(2"3)-#-D-galactopyranosyl-(1"3)-[a-L-fucopyranosyl-(1"4)]-

(1R,3R,4R,5S)-1-sodium carboxylate-5-methyl-cyclohexane-3,4-diol (3.3) and (Sodium 

5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynate)-(2"3)-2-O-

acetyl-#-D-galactopyranosyl-(1"3)-[! -L-fucopyranosyl-(1"4)]-(1R,3R,4R,5S)-1-

methoxycarbonyl-5-methyl-cyclohexane-3,4-diol (3.4). 

DMTST promoted coupling of 1.2 with 1.3c afforded 3.7 in 65% yield (Scheme 2.3.3). 

Debenzylation by hydrogenolysis of 3.7 was either followed by saponification with aqueous 

sodium hydroxide to yield 3.3, or by mild transesterification to give 3.4. 

 

a)

O

BnOOBn
OBn

O
HO

O
HO
HO

OR1

O

CO2Na

OH
AcHN

HO
OH

OH
O

O

HOOH
OH

O
O

SEt
O

AcO
OBz

OAc
O

CO2Bn

OAc
AcHN

AcO
OAc

OAc
O

1.2

CO2Me

CO2R2
b) c) or 
d) e)

1.3c

3.3 (R1= H, R2= Na) 
3.4 (R1= Ac, R2= Me)

+

O
AcO
BzO

OAc
O

CO2Bn

OAc
AcHN

AcO
OAc

OAc
O

O

BnOOBn
OBn

O
O CO2Me

3.7
 

Scheme 2.3.3 a) DMTST, CH2Cl2, MS 4 Å, r.t., 42 h, 65%; b) H2, Pd(OH)2/C, dioxane, water, 24 h; 
c) NaOH, H2O, r.t., 8 h, 85% 3.3 from 3.7; d) H2, Pd(OH)2/C, dioxane, water, 2 d; e) NaOMe, MeOH, 
r.t., 2 h, 84% 3.4 from 3.7. 

2.3.2.2.4 Synthesis of (5-Acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-

nonulopyranosidonic acid)-(2"3)-#-D-galactopyranosyl-(1"3)-[a-L-fucopyranosyl-

(1"4)]-(1R,3R,4R,5S)-1((2-(2-(2-(2-aminoethoxy)ethoxy)acetamido)ethyl)carbamoyl)-5-

methyl-cyclohexane-3,4-diol (3.5). 

In analogy to the synthesis of GMI1070,[2] 3.4 was first reacted with 1,2-diaminoethane at 

80°C to cleave the acetyl ester and to introduce an amino side chain at the D-GlcNAc mimic 

(Scheme 2.3.4). To remove side products that might hamper coupling of 3.8 to the linker, 3.8 

was purified via size exclusion chromatography before coupling to Fmoc protected 

succinimidyl ester 3.11 (Scheme 2.3.5) in 26% over two steps. Finally, Fmoc was cleaved 

with piperidine to give 3.5, which was directly used for coupling. 
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Scheme 2.3.4 a) 1,2-diaminoethane, 80°C, 5 h; b) 3.11, aq. NaHCO3, MeCN, r.t., 5 h, 26% from 
3.4; c) piperidine, MeCN, r.t., 2 h. 
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Scheme 2.3.5 NHS, DIC, THF, r.t., 14 h, 97%. 

2.3.2.2.5 Synthesis of ethyl (benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-

D-glycero-! -D-galacto-2-nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-1-

thio-"-D-galactopyranoside (1.2). 

In analogy to the synthesis of methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-

dideoxy-D-glycero-!-D-galacto-2-nonulopyranosylonate)-(2"3)-2,4,6-tri-O-benzoyl-1-thio-

#-D-galactopyranoside,[3,4] building block 1.2[5] was synthesized from sialic acid donor 1.4 

and galactoside 1.5 (Scheme 2.3.6). Using NIS-TfOH as promoter, the glycosyl donor 1.4 

was successfully introduced in 3-position of 1.5. Cumbersome purification was avoided by 

direct acetylation of roughly purified 3.12, giving 3.13 in 28% yield. Cleavage of the TMSE 

group with BF3·Et2O in presence of acetic anhydride afforded 3.14, which was further 

transformed to the title compound 1.2 using BF3·Et2O as promoter. 
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Scheme 2.3.6 a) NIS, TfOH, MeCN, CH2Cl2, MS 3 Å, -70 to -30°C, 12 h; b) Ac2O, DMAP, 
pyridine, r.t., 24 h, 28% from 1.4; c) Ac2O, toluene, MS 3 Å, BF3·Et2O, r.t., 16 h, quant.; d) EtSH, 
BF3·Et2O, CH2Cl2, r.t., 2 h, 88%. 

2.3.2.2.6 Synthesis of O-Ethyl S-(benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-

dideoxy-D-glycero-! -D-galacto-2-nonulopyranosynate)dithiocarbonate (1.4). 

Following a procedure developed by Gan-Pang Gao,[6] sialyl 2-xanthate 1.4 was synthesized 

in four steps starting from sialic acid 3.15 (Scheme 2.3.7). DMAP catalyzed acetylation with 

acetic anhydride in pyridine followed by esterification with benzyl bromide in presence of 

KF afforded fully protected 3.17 in good yield. Treatment with acetyl chloride and conc. 

hydrochloric acid afforded the 2-!-chloro derivative 3.18, which was promoted to 1.4 using 

tetrabutylammonium hydrogensulfate (TBAHS) in aqueous NaHCO3 and ethyl acetate. 
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Scheme 2.3.7 a) Ac2O, DMAP, pyridine, 0°C to r.t., 16 h; b) BnBr, KF, DMF, r.t., 21 h, 72% from 
3.15; c) AcCl, HCl (conc.), CH2Cl2, -20°C to r.t., 27 h; d) K-xanthogenate, TBAHS, NaHCO3 (aq., 
satd.), EtOAc, r.t., 3 h, 60% from 3.17. 
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2.3.2.2.7 Synthesis of 2-(trimethylsilyl)ethyl 6-O-benzoyl-! -D-galactopyranoside 

(1.5). 

Starting from per acetylated D-galactose 3.19, the TMSE group was introduced via galactosyl 

bromide 3.20 using Helferich conditions (Scheme 2.3.8). Deprotection of 3.21 under 

Zemplén conditions afforded 3.22. Following a procedure published by Murase et al,[3] 

selective benzoylation in 6-position of 3.22 was done in a three step sequence. Regioselective 

benzylation in 3-position via the tin-acetal (" 3.23) was followed by low temperature 

benzoylation (" 3.24) and subsequent hydrogenolytic debenzylation to afford 1.5. 
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Scheme 2.3.8 a) HBr, AcOH, CH2Cl2, 0°C to r.t., 2.5 h, 92%; b) 2-(Trimethylsilyl)ethanol, HgO, 
HgBr2, CaSO4, CH2Cl2, r.t., 12 h, 85%; c) NaOMe, MeOH, r.t., 1 h, quant.; d) BnBr, Bu2SnO, 
Bu4NBr, toluene, 80°C to 60°C, 8 h, 82%; e) BzCl, pyridine, CH2Cl2, -50°C to -20°C, 1.5 h, 60%; f) 
H2, Pd(OH)2/C, dioxane, H2O, 12 h, quant. 

2.3.2.2.8 Synthesis of 2,3,4-Tri-O-benzyl-# -L-fucopyranosyl-(1!2)-(R,R)-

cyclohexane-1,2-diol (1.3a). 

Thio fucoside 1.6[7] was reacted with commercially available (R,R)-cyclohexane-1,2-diol 1.7a 

under Lemieux in situ anomerisation conditions affording 1.3a[8] #-selectively in 67% yield 

(Scheme 2.3.9). 
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Scheme 2.3.9 Br2, CH2Cl2, DMF, Bu4NBr, 0°C to r.t., 12 h, 67%. 
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2.3.2.2.9 Synthesis of [(1R,3R,4R,5S)-1-methoxycarbonyl-5-methyl-cyclohex-4-yl] 

2,3,4-tri-O-benzyl-! -L-fucopyranosid (1.3c). 

Pseudodisaccharide 1.3c was synthesized from in-house building block 3.25 following 

literature procedures (Scheme 2.3.10).[9] Epoxidation of 3.25, followed by Lewis acid 

catalyzed epoxide opening with the higher-order cyanocuprate Me2Cu(CN)Li2 afforded 

compound 1.7c, which was fucosylated with 1.6[7] under in situ anomerisation conditions. 

Cleavage of the TBS protecting group with tetrabutylammonium fluoride finally afforded 

1.3c.  
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Scheme 2.3.10 a) m-CPBA, CH2Cl2, 10°C to r.t., 2 h (81%); b) MeLi, CuCN, BF3·Et2O, THF, -78°C, 
5 h (52%); c) Bu4NBr, DTBMP, MS 4 Å, CuBr2, DMF, CH2Cl2, r.t., 20 h (56%); d) TBAF, THF, r.t., 
24 h (88%). 

2.3.2.3 Experimental 

General experimental conditions are described in section 2.3.1. 

 

(5-Acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynylamide)-(2!3)-"-

D-galactopyranosyl-[! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-

diol (3.1). 

A solution of 1.1b (40 mg, 0.053 mmol), BnBr (0.019 mL, 0.160 mmol) and KF (8 mg, 0.138 

mmol) in anhydrous DMF (3.0 mL) was stirred at r.t. under argon for 2 d. Water (3 mL) was 

added and the mixture was lyophilized to yield the crude benzyl ester as white solid (80 mg), 

which was directly used in the next step. The crude ester 3.6 (20 mg) was dissolved in NH3 in 

dioxane (0.5 M, 2 mL) and NH3 in MeOH (7 M, 2 mL) and stirred at r.t. under argon. 

Volatiles were evaporated under reduced pressure and purification via SEC and 

lyophilization from water afforded 3.1 as white fluffy solid (9.2 mg, 0.013 mmol, 95%). 
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1H NMR (500.1 MHz, D2O): !  5.05 (d, 3J = 3.6Hz, 1H, Fuc-H1), 5.01-4.72 (m, Fuc-H5), 

4.51 (d, 3J = 7.9Hz, 1H, Gal-H1), 4.02 (dd, 3J = 2.8, 9.7Hz, 1H, Gal-H3), 3.93 (m, Gal-H4), 

3.89-3.54 (m, 14H, Fuc-H2, Fuc-H3, Fuc-H4, Gal-H5, Gal-H6a, Gal-H6b, MeCy-H1, Sia-

H4, Sia-H5, Sia-H6, Sia-H7, Sia-H8, Sia-H9a, Sia-H9b), 3.51 (m, 1H, Gal-H2), 3.18 (t, 3J = 

9.6Hz, 1H, MeCy-H2), 2.68 (dd, 3J = 4.4Hz, 2J = 12.4Hz, 1H, Sia-H3eq), 2.09 (m, 1H, 

MeCy), 1.99 (s, 3H, COCH3), 1.87 (t, 3J = 2J = 12.4Hz, 1H, Sia-H3ax) 1.70-1.46 (m, 3H, 

MeCy), 1.31-1.13 (m, 2H, MeCy), 1.11 (d, 3J = 6.5Hz, 1H, Fuc-H6), 1.04 (m, 4H, MeCy-

CH3, MeCy); 13C NMR (125.8 MHz, D2O, CD3OD): ! 176.0 (COCH3), 173.1 (Sia-C1), 

100.7 (Sia-C2), 100.4 (Gal-C1), 99.8 (Fuc-C1), 84.9 (MeCy-C2), 79.6 (MeCy-C1), 76.8 

(Gal-C3), 75.3 (Gal-C5), 74.6 (Sia-C6), 73.0 (Fuc-C4), 72.0 (Sia-C8), 70.2 (Fuc-C3), 69.9 

(Gal-C2), 69.2 (2C, Fuc-C2, Gal-C4), 68.6 (Sia-C7), 68.3 (Sia-C4), 67.4 (Fuc-C5), 64.0 (Sia-

C9), 62.4 (Gal-C6), 52.5 (Sia-C5), 39.8 (MeCy-C3), 38.4 (Sia-C3), 34.1 (MeCy-C4), 31.2 

(MeCy-C6), 23.6 (MeCy-C5), 23.0 (CH3CO), 19.1 (MeCy-CH3), 16.4 (Fuc-C6); ["]D -49.6° 

(c 0.61, MeOH); HR-MS (ESI) m/z: calcd for C30H52N2NaO18 [M+Na]+: 751.3107 ; found: 

751.3105; HPLC-purity: > 99.5 % (B). 

 

(Sodium 5-acetamido-3,5-dideoxy-D-glycero-"-D-galacto-2-nonulopyranosynate)- 

(2!3)-2-O-acetyl-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-

3-methyl-cyclohexane-3,4-diol (3.2). 
3.21* (310 mg, 0.21 mmol) was dissolved in dioxane/water (4/1, 10 mL) under argon. 

Pd(OH)2/C (40 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated (4 

bar H2) at r.t. After 24 h, the mixture was filtered and the solvent removed under reduced 

pressure yielding 220 mg of a white solid. 50 mg of this residue were dissolved in anhydrous 

MeOH (5 mL) under argon. A solution of NaOMe in anhydrous MeOH (1 N, 125 mL) was 

added under stirring. After 4.5 h, the solution was neutralized with 1 N HAc in MeOH. 

Volatiles were evaporated under reduced and the crude product was purified via SEC. 

Lyophilization from water afforded 3.2 as white fluffy solid (17 mg, 0.021 mmol, 44%). 
1H NMR (500.1 MHz, D2O): "! 5.02 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.95-4.76 (m, 2H, Fuc-H5, 

Gal-H2), 4.71 (d, 3J = 8.1Hz, 1H, Gal-H1), 4.25 (dd, 3J = 2.9, 10.1Hz, 1H, Gal-H3), 3.94-

3.81 (m, 4H, Fuc-H3, Gal-H4, Sia-H8, Sia-H9a), 3.79-3.55 (m, 10H, Fuc-H2, Fuc-H4, Gal-

H5, Gal-H6a, Gal-H6b, MeCy-H1, Sia-H4, Sia-H5, Sia-H7, Sia-H9b), 3.40 (dd, 3J = 1.8, 

10.3Hz, 1H, Sia-H6), 3.13 (t, 3J = 9.5Hz, 1H, MeCy-H2), 2.65 (t, 3J = 4.6Hz, 2J = 12.4Hz, 

1H, Sia-H3eq), 2.19 (s, 3H, COCH3), 2.09 (m, 1H), 2.00 (s, 3H, COCH3), 1.66-1.61 (m, 4H, 

MeCy, Sia-H3ax), 1.25-1.10 (m, 3H, Fuc-H6, MeCy), 1.08-0.95 (m, 4H, MeCy-CH3, MeCy); 
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13C NMR (125.8 MHz, D2O, CD3OD): ! 176.3, 175.0 (2C, COCH3), 174.9 (Sia-C1), 100.4 

(Sia-C2), 99.8 (Fuc-C1), 99.5 (Gal-C1), 84.5 (MeCy-C2), 80.7 (MeCy-C1), 75.6 (Gal-C5), 

74.5 (Gal-C3), 73.9 (Sia-C6), 73.1 (Fuc-C4), 72.8 (Sia-C8), 71.8 (Gal-C2), 70.3 (Fuc-C3), 

69.2 (3C, Fuc-C2, Sia-C4, Sia-C7), 68.7 (Gal-C4), 67.5 (Fuc-C5), 63.6 (Sia-C9), 62.6 (Gal-

C6), 52.9 (Sia-C5), 40.7 (Sia-C3), 39.7 (MeCy-C3), 34.1 (MeCy-C4), 31.7 (MeCy-C6), 23.5 

(MeCy-C5), 22.9, 21.8 (CH3CO), 19.1 (MeCy-CH3), 16.4 (Fuc-C6); ["]D -58.82 (c 0.91, 

MeOH); HR-MS (ESI) m/z: calcd for C32H52NNa2O20 [M+Na]+: 816.2873 ; found: 816.2874; 

HPLC-purity: > 99.5 % (B). 

 

(Benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-"-D-galacto-2- 

nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-#-D-galactopyranosyl-(1!3)-

[2,3,4-tri-O-benzyl-" -L-fucopyranosyl-(1!4)]-(1R,3R,4R,5S)-1-methoxycarbonyl-5-

methyl-cyclohexane-3,4-diol (3.7). 

1.2 (160 mg, 0.17 mmol) and 1.3c (200 mg, 0.33 mmol) were dissolved in anhydrous CH2Cl2 

(14 mL). Powdered activated molecular sieves 4 Å (1.4 g) were added and the mixture was 

stirred at r.t. under argon. After 3.5 h, a solution of DMTST (130 mg, 0.50 mmol) in 

anhydrous CH2Cl2 (1.0 mL) that had been stirred over powdered activated molecular sieves 4 

Å (0.1 g) for 3.5 h was added. After stirring for 42 h, the solution was diluted with CH2Cl2 

(30 mL), filtered and successively washed with satd aq NaHCO3 (50 mL) and brine (50 mL). 

The aqueous layers were extracted with CH2Cl2 (2 · 50 mL) and the combined organic layers 

were dried over Na2SO4 and concentrated under reduced pressure. Column chromatography 

on silica (MTBE) afforded 3.7 as white foam (167 mg, 0.11 mmol, 65%). 
1H NMR (500.1 MHz, CDCl3): ! 8.10-7.20 (m, 25H, Ar-H), 5.52 (ddd, 3J = 2.9, 5.6, 8.8Hz, 

1H, Sia-H8), 5.32-5.25 (m, 2H, PhCH2, SiaH-7), 5.10 (d, 3J = 3.1Hz, 1H, Gal-H4), 5.06 (d, 
3J = 3.8Hz, 1H, Fuc-H1), 5.00-4.70 (m, 11H, Fuc-H5, Gal-H2, SiaNH, Sia-H4, 4 PhCH2), 

4.64 (d, 3J = 8.0Hz, 1H, Gal-H1), 4.58 (dd, J = 3.3, 10.1Hz, 1H, Gal-H3), 4.31 (dd, 3J = 

2.8Hz, 3J = 12.4Hz, 1H, Sia-H9a), 4.24 (dd, 3J = 6.3Hz, 3J =10.8Hz, 1H, Gal-H6a), 4.13 (dd, 
3J = 3.7, 10.3Hz, 1H, Fuc-H2), 4.08-4.00 (m, 3H, Fuc-H3, Gal-H6b, Sia-H5), 4.00-3.92 (m, 

2H, Gal-H5, Sia-H9b), 3.69-3.59 (m, 5H, CO2CH3, Fuc-H4, MeCy-H3), 3.45 (dd, 1H, 3J = 

2.7, 10.7Hz, Sia-H6), 3.27 (t, 3J = 9.6Hz, MeCy-H4), 2.57 (dd, 3J = 4.6Hz, 3J = 12.7Hz, 1H, 

Sia-H3eq), 2.39-2.28 (m, 2H, MeCy), 2.18, 2.12, 2.07, 2.01, 1.97, 1.85, 1.81 (7s, 21H, 

COCH3), 1.85 (m, 1H, MeCy) 1.72-1.63 (m, 2H, Sia-H3ax, MeCy), 1.45 (m, 1H, MeCy) 1.23-

1.19 (m, 4H, Fuc-H6, MeCy), 1.12 (d, 3J = 6.5Hz, 3H, MeCy-CH3); 13C NMR (125.8 MHz, 

CDCl3): ! 174.8, 170.8, 170.7, 170.5, 170.4, 169.9, (8C, 7 COCH3, CO2Me), 167.5 (Sia-C1), 
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165.8 (ArCO), 139.3, 139.1, 138.6, 134.9, 133.4, 130.0, 129.9, 128.9, 128.8, 128.7, 128.6, 

128.5, 128.4, 128.3, 127.7, 127.6, 127.4, 127.3 (30C, Ar-C), 99.5 (Gal-C1), 98.5 (Fuc-C1), 

96.9 (Sia-C2), 81.6 (MeCy-C4), 80.6 (Fuc-C3), 79.4 (MeCy-C3), 77.7 (Fuc-C4), 76.5 (Fuc-

C2), 74.8, 74.3, 72.7 (3C, PhCH2), 72.1 (Sia-C6), 71.8 (Gal-C3), 70.1, 69.8, 69.4 (Gal-C2, 

Gal-C5, Sia-C4), 68.5 (PhCH2), 67.8, 67.7 (Gal-C4, Sia-C8), 67.1 (Sia C7), 66.4 (Fuc-C5), 

62.4 (Sia-C9), 61.5 (Gal-C6), 51.9 (CO2CH3), 49.0 (Sia-C5), 40.5 (MeCy), 38.4, 37.5, (2C, 

MeCy, Sia-C3), 36.4, 33.2 (2C, MeCy), 23.3, 21.5, 21.0, 20.9, 20.8 (7C, COCH3), 18.7 

(MeCy-CH3), 17.0 (Fuc-C6); [!]D -7.7 (c 0.75, CHCl3); MS (ESI) m/z: calcd for 

C79H93NNaO28 [M+Na]+: 1526.6 ; found: 1526.6; elemental analysis calcd (%) for 

C79H93NO28 + H2O (1522.59): C 62.32, H 6.29, N 0.92; found: C 62.12, H 6.31, N 0.83. 

 

(Sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynate)- 

(2!3)-"-D-galactopyranosyl-(1!3)-[! -L-fucopyranosyl-(1!4)]-(1R,3R,4R,5S)-1-sodium 

carboxylate-5-methyl-cyclohexane-3,4-diol (3.3). 

3.7 (80 mg, 0.053 mmol) was dissolved in dioxane/water (4/1, 5 mL) under argon. 

Pd(OH)2/C (30 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated (4 

bar H2) at r.t. After 24 h, the mixture was filtered and the solvent was removed under reduced 

pressure. The residue was redissolved in 1 N aq NaOH (2 mL) and stirred at r.t. for 8 h. The 

mixture was lyophilized and the resulting solid was dissolved in 1.0 mL water. The pH was 

adjusted to 9.0 with 1 N aq HAc and the crude product purified via SEC. Lyophilization from 

water afforded 3.3 as white fluffy solid (37 mg, 0.045 mmol, 85%). 
1H NMR (500.1 MHz, D2O): #  4.97 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.79-4.64 (m, Fuc-H5), 

4.45 (d, 3J = 7.9Hz, 1H, Gal-H1), 3.96 (dd, 3J = 3.0, 9.8Hz, 1H, Gal-H3), 3.82 (d, 3J = 

3.0Hz, 1H, Gal-H4), 3.80-3.62 (m, 7H, Cy-H3, Fuc-H3, Fuc-H4, Sia-H4, Sia-H5, Sia-H8, 

Sia-H9a), 3.61-3.40 (m, 8H, Fuc-H2, Gal-H2, Gal-H5, Gal-H6a,b, Sia-H-6, Sia-H7, Sia-

H9b), 3.14 (t, 3J = 9.7Hz, 1H, Cy-H4), 2.62 (dd, 3J = 4.6Hz, 2J = 12.4Hz, 1H, Sia-H3eq), 

2.16 (m, 2H, Cy-H2a, Cy-H6a), 1.90 (s, 3H, COCH3), 1.69 (m, 2H, Cy-H1, Sia-H3ax), 1.56 

(m, 1H, Cy-H5), 1.30 (q, J = 12.4Hz, 1H, Cy-H2b), 1.11 (q, J = 12.8Hz, 1H, Cy-H6b), 1.05 

(d, 3J = 6.6Hz, 1H, Fuc-C6), 0.99 (d, 3J = 6.5Hz, 1H, MeCy-CH3); 13C NMR (125.8 MHz, 

D2O): # 184.7 (Cy-CO2Na), 175.9 (COCH3), 175.1 (Sia-C1), 100.8 (Sia-C2), 100.4 (Gal-C1), 

99.8 (Fuc-C1), 84.4 (Cy-C4), 78.4 (Cy-C3), 76.7 (Gal-C3), 75.4 (Gal-C5), 73.7 (Sia-C6), 

73.0 (Fuc-C4), 72.7 (Sia-C8), 70.2 (Fuc-C3), 69.9 (Gal-C2), 69.4, 69.2, 69.1 (3C, Fuc-C2, 

Sia-C4, Sia-C7), 68.5 (Gal-C4), 67.5 (Fuc-C5), 63.5 (Sia-C9), 62.5 (Gal-C6), 52.6 (Sia-C5), 

40.5 (Sia-C3), 38.7 (Cy-C5), 37.7 (Cy-C6), 34.4 (Cy-C2), 23.0 (COCH3), 19.0 (Cy-CH3), 
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16.4 (Fuc-C6); [!]D -58.3 (c 0.94, MeOH); HR-MS (ESI) m/z: calcd for C31H50NNa2O21 

[M+H]+: 818.2665; found: 818.2664; HPLC-purity: > 99.5 % (E). 

 

(Sodium 5-acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosynate)- 

(2!3)-2-O-acetyl-"-D-galactopyranosyl-(1!3)-[! -L-fucopyranosyl-(1!4)]-

(1R,3R,4R,5S)-1-methoxycarbonyl-5-methyl-cyclohexane-3,4-diol (3.4). 

Pd(OH)2/C (5 mg, 10% Pd(OH)2/C) was added to a solution of 3.7 (40 mg, 0.027 mmol) in 

dioxane/H2O (4/1, 10 mL) and the resulting mixture was hydrogenated (4 bar H2) at r.t. After 

2 d, the reaction mixture was filtered, concentrated, and dried at high vacuum 12 h The 

residue was redissolved in absolute MeOH (4.0 mL) and a freshly prepared solution of 

NaOMe in MeOH (1M, 0.160 mL) was added. The solution was stirred under argon for 2 h, 

neutralized with HCl in MeOH (1 M, 0.160 mL), and concentrated under reduced pressure. 

Purification via RP chromatography (H2O/MeOH) afforded 3.4 (19 mg, 0.022 mmol, 84%) as 

white fluffy solid. 
1H NMR (500.1 MHz, CD3OD): #  5.03 (dd, 3J = 8.0, 9.8Hz, Gal-H2), 4.97 (d, 3J = 4.0Hz, 

1H, Fuc-H1), 4.95-4.85 (m, Fuc-H5), 4.51 (d, 3J = 8.0Hz, 1H, Gal-H1), 4.19 (dd, 3J = 3.0, 

9.8Hz, 1H, Gal-H3), 3.98 (m, 1H, Sia-H8), 3.90 (d, 3J = 3.0Hz, 1H, Gal-H4), 3.89-3.83 (m, 

2H, Fuc-H3, Sia-H9a), 3.78-3.58 (m, 11H, Fuc-H2, Fuc-H4, Gal-H6a,b, Cy-H3, Cy-CO2CH3, 

Sia-H4, Sia-H5, Sia-H9b), 3.51-3.43 (2H, Gal-H5, Sia-H7), 3.39 (dd, 3J = 2.0, 10.3Hz, Sia-

H6), 3.17 (t, 3J = 9.6Hz, 1H, Cy-H4), 2.78 (dd, 3J = 4.8Hz, 2J = 12.3Hz, 1H, Sia-H3eq), 2.46 

(m, 1H, Cy-H1), 2.29 (m, 1H, Cy-H2a), 2.17 (s, 3H, COCH3), 2.01 (s, 3H, COCH3), 1.84 (m, 

1H, Cy-H6a), 1.69 (m, 1H, Cy-H5), 1.55 (t, 3J = 12.3Hz, 1H, Sia-H3ax), 1.33 (m, 1H, Cy-

H2b), 1.26-1.21 (m, 2H, Cy-H6b, Fuc-H6), 1.14 (d, 3J = 6.5Hz, 1H, Cy-CH3); 13C NMR 

(125.8 MHz, CD3OD): # 176.5 (Cy-CO2CH3) 175.7, 175.4 (2C, CH3CO, Sia-C1), 172.7 

(COCH3), 100.6, 100.5, 100.4 (3C, Fuc-C1, Gal-C1, Sia-C2), 83.0 (Cy-C4), 79.4 (Cy-C3), 

76.3 (Gal-C5), 75.5 (Gal-C3), 74.8 (Sia-C6), 73.9 (Fuc-C4), 72.9 (Sia-C8), 71.9 (Gal-C2), 

71.3 (Fuc-C3), 70.3, 69.4 (3C, Fuc-C2, Sia-C4, Sia-C7), 68.8 (Gal-C4), 67.7 (Fuc-C5), 64.7 

(Sia-C9), 63.3 (Gal-C6), 54.1 (Sia-C5), 52.3 (CyCO2CH3), 42.3 (Sia-C3), 41.4 (Cy-C1), 39.3 

(Cy-C5), 37.3 (Cy-C6), 34.5 (Cy-C2), 22.5, 21.6 (2C, COCH3), 19.3 (Cy-CH3), 16.7 (Fuc-

C6); [!]D -13.9 (c 0.47, MeOH); HR-MS (ESI) m/z: calcd for C34H54NNa2O22
+ [M+Na+]+: 

874.2927; found: 874.2929; HPLC purity: 99% (B). 
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(5-Acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosidonic acid)- 

(2!3)-"-D-galactopyranosyl-(1!3)-[! -L-fucopyranosyl-(1!4)]-(1R,3R,4R,5S)-1-((1-

(9H-fluoren-9-yl)-3,12-dioxo-2,7,10-trioxa-4,13-diazapentadecan-15-yl)carbamoyl)-5-

methyl-cyclohexane-3,4-diol (3.9). 

A solution of 3.4 (13 mg, 15.7 µmol) in 1,2-diaminoethane (2.0 mL, 30 mmol) was stirred in 

a sealed vessel under argon at 80°C for 5 h. The solution was concentrated under reduced 

pressure, roughly purified via SEC, and lyophilized from water to give still impure amine 3.8 

(7.0 mg), which was directly used in the next step. The residue was dissolved in aqueous 

NaHCO3 (50 mM, 2.0 mL) and MeCN (1.0 mL) and a solution of 3.11 (4.0 mg, 8.3 µmol) in 

MeCN (1.0 mL) was added. The reaction mixture was stirred at r.t. for 5 h, lyophilized and 

purified via RP chromatography (H2O/MeOH) to give 3.9 (4.9 mg, 4.1 µmol, 26%) as white 

fluffy solid. 
1H NMR (500.1 MHz, CD3OD): #  7.80, 7.65, 7.40, 7.31 (4m, 8H, Ar-H), 4.98 (d, 3J = 

3.9Hz, 1H, Fuc-H1), 4.96-4.85 (m, 1H, Fuc-H5), 4.40-4.32 (m, 3H, Gal-H1, 2H linker), 4.21 

(t, 3J = 6.7Hz, 1H, Fmoc-H2), 4.02-3.96 (m, 3H, Gal-H3, 2H linker), 3.92-3.26 (12H linker), 

3.92-3.52 (Fuc-H2, Fuc-H3, Fuc-H4, Gal-H2, Gal-H4, Gal-H6a, Gal-H6b, Cy-H3, Sia-H4, 

Sia-H5, Sia-H6, Sia-H8, Sia-H9a, Sia-H9b), 3.48 (m, 1H, Sia-H7), 3.41 (m, 1H, Gal-H5), 

3.23 (t, 3J = 9.5Hz, 1H, Cy-H4), 2.85 (m, 1H, Sia-H3eq), 2.24 (m, 2H, Cy-H2a, Cy-H6a), 

2.00 (s, 3H, COCH3), 1.79-1.63 (m, 3H, Cy, Sia-H3ax), 1.53 (q, J = 12.3Hz, 1H, Cy), 1.31 

(m, 1H, Cy), 1.17 (d, 3J = 6.5Hz, 1H, Fuc-C6), 1.13 (d, 3J = 6.2Hz, 1H, MeCy-CH3); 13C 

NMR (125.8 MHz, CD3OD): # 177.6, 127.5, 175.2, 173.2 (4C, Cy-CONH, 2 CONH, Sia-

C1), 159.0 (NHCO2CH2), 145.3, 142.6 (4C, Ar-Ci), 128.8, 128.2, 126.2, 121.0 (8C, Ar-CH), 

102.2, 101.0, 100.4 (Fuc-C1, Gal-C1, Sia-C2), 83.6 (Cy-C4), 78.7 (Cy-C3), 77.9 (Gal-C3), 

76.3 (Gal-C5), 74.8, 73.8, 73.0, 72.0, 71.2, 71.0, 70.4, 70.3, 70.1, 69.5, 68.9 (13C, Fuc-C2, 

Fuc-C3, Fuc-C4, Gal-C2, Gal-C4, Sia-C4, Sia-C6, Sia-C7, Sia-C8, 4C linker), 67.7 (Fmoc-

C1), 67.5 (Fuc-C5), 64.6 (Sia-C9), 63.3 (Gal-C6), 53.9 (Sia-C5), 48.4 (Fmoc-C2), 43.2 (Cy-

C1), 42.1 (Sia-C3), 41.7, 39.8, (3C, linker), 39.2 (Cy-C5), 37.6 (Cy-C6), 34.9 (Cy-C2), 22.6 

(COCH3), 19.4 (Cy-CH3), 16.7 (Fuc-C6); MS (ESI) m/z: calcd for C54H78N4NaO25 [M+Na]+: 

1205.48; found: 1205.46. 
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(5-Acetamido-3,5-dideoxy-D-glycero-!-D-galacto-2-nonulopyranosidonic acid)- 

(2!3)-"-D-galactopyranosyl-(1!3)-[! -L-fucopyranosyl-(1!4)]-(1R,3R,4R,5S)-1((2-(2-

(2-(2-aminoethoxy)ethoxy)acetamido)ethyl)carbamoyl)-5-methyl-cyclohexane-3,4-diol 

(3.5). 

A solution of 3.9 (1.0 mg, 0.85 µmol) in MeCN/piperidine (20% v/v piperidine, 0.5 mL) was 

stirred at r.t. for 2 h. Volatiles were evaporated under reduced pressure and the residue was 

redissolved in H2O (4 mL) and washed with CH2Cl2 (2 · 4 mL). Lyophilization of the 

aqueous layer afforded 3.5, which was directly used.  

MS (ESI) m/z: calcd for C39H69N4O23 [M+H]+: 961.43; found: 961.51. 

 

2,5-Dioxopyrrolidin-1-yl 1-(9H-fluoren-9-yl)-3-oxo-2,7,10-trioxa-4-azadodecan-12-oate 

(3.11). 

A solution of 8-(Fmoc-amino)-3,6-dioxaoctanoic acid 3.10 (60 mg, 0.156 mmol), NHS (24 

mg, 0.208 mmol) and DIC (40 µL, 0.258 mmol) in anhydrous THF (3.0 mL) was stirred 

under argon at r.t. for 16 h. The solution was diluted with THF (5 mL) and washed with satd. 

aq NaHCO3 (10 mL) and brine (10 mL). The aqueous layers were extracted with Et2O (3 · 10 

mL), dried over Na2SO4 and the organic layers were concentrated under reduced pressure. 

The residue was dissolved in MeCN (4 mL) to precipitate diisopropyl urea, filtered and the 

filtrate was concentrated under reduced pressure to give 3.11 (73 mg, 0.151 mmol, 97%), 

which was directly used in the next step. 

MS (ESI) m/z: calcd. for C25H26N2NaO8 [M+Na]+: 505.16; found: 505.11 

 

2-(Trimethylsilyl)ethyl (benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D- 

glycero-"-D-galacto-2-nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-#-D-

galactopyranoside (3.13). 

1.4 (5.00 g, 7.44 mmol) and 1.5 (3.00 g, 7.80 mmol) were dissolved in anhydrous 

MeCN/CH2Cl2 (3/2, 150 mL). Powdered activated molecular sieves 3 Å (15 g) were added 

and the mixture was stirred under argon at r.t. for 3 h. The mixture was then cooled to -70°C 

and NIS (3.20 g, 14.22 mmol) in MeCN was added. Within 20 min, 5.7 mL of a 0.4 N 

solution of trifluormethanesulfonic acid in MeCN was added dropwise and the solution was 

stirred at -70°C for 20 min. After stirring overnight at -30°C the mixture was diluted with 

CH2Cl2, filtered and successively washed with 20% aq Na2S2O3, satd aq NaHCO3, and brine. 

The organic layer was dried over Na2SO4 and concentrated under reduced pressure. Column 

chromatography on silica (CH2Cl2/i-propanol 30/1) afforded still impure 3.12 (2.92 g), which 
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was directly used in the next step. The residue (2.50 g) and Ac2O (3.0 mL, 31.7 mmol) were 

dissolved in anhydrous pyridine (6.0 mL) and catalytic amounts of DMAP were added. After 

stirring for 24 h at r.t., volatiles were evaporated under reduced pressure. The residue was 

dissolved in EtOAc and washed with water, aqueous HCl (1M), satd. aqueous NaHCO3 and 

brine. The aqueous layers were extracted with CH2Cl2 (2 ·50 mL), the combined organic 

layers were dried with Na2SO4 and concentrated under reduced pressure. Column 

chromatography on silica (MTBE) afforded 3.13 (1.80 g, 2.47 mmol, 28% over 2 steps) as 

white foam. 
1H NMR (500.1 MHz, CDCl3): ! 8.08-7.28 (m, 10H, Ar-H), 5.51 (ddd, 3J = 2.6, 5.4, 8.4Hz, 

1H, Sia-H8), 5.32-5.26 (m, 2H, PhCH2, Sia-H7), 5.15 (d, 3J = 10.3Hz, 1H, Sia-NH), 5.13 (d, 
3J = 3.0Hz, 1H, Gal-H4), 5.03 (dd, 3J = 8.1, 10.0Hz, 1H, Gal-H2), 4.94 (B of AB, J = 

12.1Hz, 1H, PhCH2), 4.81 (td, 3J = 4.6, 11.9Hz, 1H, Sia-H4), 4.61 (d, 3J = 8.1Hz, 1H, Gal-

H1), 4.60 (dd, 3J = 3.0, 10.0Hz, 1H, Gal-H3), 4.42 (dd, 3J = 6.8Hz, 2J = 11.1Hz, 1H, Gal-

H6a), 4.30 (dd, 3J = 2.4Hz, 2J = 12.4Hz, 1H, Sia-H9a), 4.21 (dd, 3J = 6.8Hz, 2J = 11.1Hz, 

1H, Gal-H6b), 4.05-3.94 (m, 4H, Gal-H5, Sia-H5, Sia-H9b, OCH2CH2), 3.58 (td, J = 4.6, 

12.6Hz, 1H, OCH2CH2), 3.47 (dd, 1H, 3J = 2.6, 10.8Hz, Sia-H6), 2.59 (dd, 3J = 4.6Hz, 2J = 

12.4Hz, 1H, Sia-H3eq), 2.18, 2.09, 2.06, 2.03, 2.00, 1.94, 1.79 (7s, 21H, 7 COCH3), 1.66 (dd, 
2J =3J = 12.4Hz, 1H, Sia-H3ax), 1.06-0.86 (m, 2H, OCH2CH2), -0.03 (s, 9H, Me3Si); 13C 

NMR (125.8 MHz, CDCl3): ! 170.6, 170.6, 170.4, 170.3, 169.7, 169.7 (7C, CH3CO), 167.4 

(Sia-C1), 165.8 (ArCO), 134.8 (Bn, Ar-Ci), 133.2 (Ar-CH), 129.8 (Ar-Ci), 129.7, 128.8, 

128.6, 128.4 (9C, Ar-CH), 100.6 (Gal-C1), 96.8 (Sia-C2), 72.0 (Sia-C6), 71.7 (Gal-C3), 70.3 

(Gal-C5), 70.0 (Gal-C2), 69.3 (Sia-C4), 68.4 (PhCH2), 67.8, 67.6 (Gal-C4, Sia-C8), 67.5 

(OCH2CH2Si), 67.0 (Sia C7), 62.4 (Sia-C9), 61.9 (Gal-C6), 48.9 (Sia-C5), 37.5 (Sia-C3), 

23.1, 21.4, 21.1, 20.8, 20.8 (7C, CH3CO), 18.0 (OCH2CH2), -1.4 (3C, Si(CH3)3); ["]D -0.5° (c 

1.08, CHCl3); MS (ESI) m/z: calcd for C48H63NNaO21Si [M+Na]+: 1040.4; found: 1040.5; 

elemental analysis calcd (%) for C48H63NO21Si (1018.10): C 56.63, H 6.24, N 1.38; found: C 

56.58, H 6.32, N 1.26.  

 

(Benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-"-D-galacto-2- 

nonulopyranosynate)-(2!3)-1,2,4-tri-O-acetyl-6-O-benzoyl-"-D-galactopyranoside 

(3.14). 

3.13 (1.00 g, 0.98 mmol) and Ac2O (1.39 mL, 14.7 mmol) were dissolved in anhydrous 

toluene (16 mL). Powdered activated molecular sieves 4 Å (2.0 g) were added and the 

mixture was stirred at r.t. under argon for 30 min. Freshly distilled BF3·Et2O (0.50 mL, 3.98 
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mmol) was added dropwise and stirring was continued for 16 h. After dilution with CH2Cl2 

(30 mL), the reaction mixture was filtered and the filtrate was washed with satd. aqueous 

NaHCO3 (30 mL) and brine (30 mL). The aqueous layers were extracted with CH2Cl2 (2 ·30 

mL) and the combined organic layers were dried over Na2SO4 and concentrated. Column 

chromatography on silica (MTBE/acetone 4/1) afforded 3.14 as white foam (0.94 g, quant.). 
1H NMR (500.1 MHz, CDCl3): ! 8.09-7.32 (m, 10H, Ar-H), 5.87 (d, 3J = 8.3Hz, 1H, Gal-

H1), 5.52 (ddd, 3J = 2.4, 6.4, 8.8Hz, 1H, Sia-H8), 5.34 (A of AB, J = 12.0Hz, 1H, PhCH2), 

5.30 (dd, 3J = 2.4, 8.7Hz, 1H, Sia-H7), 5.23-5.17 (m, 2H, Gal-H2, Gal-H4), 4.98 (m, 2H, Sia-

NH, PhCH2), 4.88-4.79 (m, 2H, Gal-H3, Sia-H4), 4.45-4.36 (m, 2H, Gal-H6a, Sia-H9a), 

4.27-4.19 (m, 2H, Gal-H5, Gal-H6b), 4.05 (dd, 3J =3J = 10.5Hz, 1H, Sia-H5), 3.94 (dd, 3J = 

6.4Hz, 2J =12.4Hz, 1H, Sia-H9b), 3.49 (dd, 1H, 3J = 2.4, 10.5Hz, Sia-H6), 2.63 (dd, 3J = 

4.6Hz, 2J =12.6Hz, 1H, Sia-H3eq), 2.22, 2.14, 2.12, 2.11, 2.06, 2.05, 1.98, 1.82 (8s, 24H, 8 

COCH3), 1.69 (m, 1H, Sia-H3ax); 13C NMR (125.8 MHz, CDCl3): ! 170.9, 170.8, 170.6, 

170.5, 170.2, 169.9, 169.8, 169.1 (8C, COCH3), 167.4 (Sia-C1), 165.9 (ArCO), 134.8, 129.9, 

129.8, 129.1, 128.8, 128.5 (12C, Ar-C), 97.0 (Sia-C2), 92.3 (Gal-C1), 72.4 (Sia-C6), 71.5, 

71.4 (Gal-C3, Gal-C5), 69.3 (Sia-C4), 68.9 (Gal-C2), 68.6 (PhCH2), 68.2 (Sia-C8), 67.5, 67.3 

(Gal-C4, Sia-C7), 62.7 (Sia-C9), 61.8 (Gal-C6), 49.0 (Sia-C5), 37.6 (Sia-C3), 23.3, 21.6, 

21.1, 21.0, 20.9 (8C, COCH3); ["]D 13.4° (c 1.27, CHCl3); MS (ESI) m/z: calcd for 

C45H53NNaO22 [M+Na]+: 982.3; found: 982.6; elemental analysis calcd (%) for C45H53NO22 

(959.90): C 56.31, H 5.57, N 1.46; found: C 56.15, H 5.68, N 1.41. 

 

Ethyl (benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-"-D-galacto-2-

nonulopyranosynate)-(2!3)-2,4-di-O-acetyl-6-O-benzoyl-1-thio-#-D-galacto 

pyranoside (1.2). 

3.14 (1.71 g, 1.78 mmol) and ethanethiol (0.20 mL, 2.70 mmol) were dissolved in anhydrous 

CH2Cl2 (40 mL) under argon. Freshly distilled BF3·Et2O (0.47 mL, 3.74 mmol) was added 

dropwise and the reaction was stirred at r.t. for 2 h. After dilution with CH2Cl2 (60 mL), the 

reaction mixture was washed with satd. aqueous NaHCO3 (100 mL) and brine (100 mL). The 

aqueous layers were extracted with CH2Cl2 (2 ·100 mL) and the combined organic layers 

were dried over Na2SO4 and concentrated under reduced pressure. Column chromatography 

on silica (MTBE) afforded 1.2 as white foam (1.51 g, 1.57 mmol, 88%). 
1H NMR (500.1 MHz, CDCl3): ! 8.10-7.32 (m, 10H, Ar-H), 5.52 (ddd, 3J = 2.7, 5.4, 8.5Hz, 

1H, Sia-H8), 5.36-5.31 (m, 2H, Sia-H7, PhCH2), 5.20 (d, 3J = 3.0Hz, 1H, Gal-H4), 5.11 (dd, 
3J =3J = 9.9Hz, 1H, Gal-H2), 4.97 (B of AB, J = 11.4Hz, 1H, PhCH2), 4.94 (d, 3J = 10.4Hz, 
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1H, Sia-NH) 4.84 (ddd, 3J = 4.6, 12.4Hz, 1H, Sia-H4), 4.71 (d, 3J = 7.6Hz, 1H, Gal-H1), 

4.69 (dd, 3J = 3.0, 9.9Hz, 1H, Gal-H3), 4.43 (dd, 3J = 6.8Hz, 2J = 11.2Hz, 1H, Gal-H6a), 

4.33 (dd, 3J = 2.7Hz, 2J =12.5Hz, 1H, Sia-H9a), 4.22 (dd, 3J = 6.8, 2J =11.2Hz, 1H, Gal-

H6b), 4.09-4.03 (m, 2H, Gal-H5, Sia-H5), 3.99 (dd, 3J = 5.4Hz, 2J =12.5Hz, 1H, Sia-H9b), 

3.48 (dd, 1H, 3J = 2.7, 10.8Hz, Sia-H6), 2.83-2.68 (m, 2H, SCH2CH3), 2.62 (dd, 3J = 4.6Hz, 
2J =12.4Hz, 1H, Sia-H3eq), 2.22, 2.13, 2.10, 2.06, 2.04, 1.98, 1.83 (7s, 21H, 7 COCH3), 1.70 

(dd, 2J =3J =12.4Hz, 1H, Sia-H3ax), 1.30 (t, 3J = 7.4Hz, 3H, SCH2CH3); 13C NMR (125.8 

MHz, CDCl3): ! 170.7, 170.6, 170.4, 170.0, 169.8 (7C, COCH3), 167.5 (Sia-C1), 166.0 

(ArCO), 134.9, 133.4, 129.9, 129.0, 128.8, 128.8, 128.5 (12C, Ar-C), 96.7 (Sia-C2), 83.9 

(Gal-C1), 74.3 (Gal-C5), 72.5 (Gal-C3), 72.2 (Sia-C6), 69.4 (Sia-C4), 68.5 (PhCH2), 68.4 

(Gal-C2), 68.0 (Gal-C4, Sia-C8), 67.1 (Sia C7), 62.5 (Sia-C9), 62.2 (Gal-C6), 49.1 (Sia-C5), 

37.6 (Sia-C3), 24.7 (S-CH2CH3), 23.3, 21.6, 21.1, 20.9, (7C, COCH3), 15.2 (S-CH2CH3); 

["]D 1.2° (c 0.70, CHCl3); MS (ESI) m/z: calcd for C45H55NNaO20S [M+Na]+: 984.3; found: 

984.6; elemental analysis calcd (%) for C45H55NO20S (961.98): C 56.19, H 5.76, N 1.46; 

found: C 56.14, H 5.79, N 1.33.  

 

Benzyl 5-acetamido-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-D-glycero-# -D-galacto-2- 

nonulopyranosynate (3.17). 

N-Acetyl neuraminic acid 3.15 (2.00 g, 6.5 mmol) and DMAP (cat.) were dissolved in 

anhydrous pyridine (10 mL) under argon at 0°C. Acetic anhydride (5.0 mL, 6.2 mmol) was 

added slowly and the mixture was stirred at r.t. for 16 h. After completion of the reaction 

(TLC: CH2Cl2/MeOH/H2O 13:7:1.6), it was quenched with MeOH (4 mL) and stirred for 1 h. 

Evaporation of volatiles yielded crude 3.16 (3.91 g), which was used without further 

purification.  

The crude product was dissolved in anhydrous DMF (35 mL) and KF (932 mg, 16.0 mmol) 

and BnBr (1.14 mL, 9.6 mmol) were added. After stirring for 21 h, DMF was evaporated 

under reduced pressure, the residue was dissolved in CH2Cl2, filtered and washed with water. 

Column chromatography on silica (CH2Cl2/MeOH) yielded 3.17 as a white foam (72%). 

Analytical data were in accordance with literature.[10] 

 

O-Ethyl S-(benzyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-"-D-  

galacto-2-nonulopyranosynate)dithiocarbonate (1.4). 

3.17 (2.0 g, 3.28 mmol) was dissolved in anhydrous CH2Cl2 (12 mL) in a sealed vessel and 

cooled to -20°C. Acetyl chloride (4.0 mL, 56.3 mmol) and concentrated HCl (0.50 mL) were 
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added dropwise under stirring. After stirring at r.t. for 27 h, the mixture was cooled to -20°C 

again, diluted with CH2Cl2 and washed with water, satd. aq NaHCO3, and brine. The organic 

layer was dried (Na2SO4), filtered and concentrated under reduced pressure to yield the 

chloro derivative 3.18 as white foam (1.92 g, 3.28 mmol, quant.), which was directly used in 

the next step.  

A solution of satd. aqueous NaHCO3 (10 ml) was slowly added to a stirred solution of the 

chloro intermediate (1.0 g, 1.71 mmol), potassium ethyl xanthogenate (0.33 g, 2.06 mmol) 

and TBAHS (0.58 g, 1.71 mmol) in EtOAc (10 mL). The resulting mixture was stirred at r.t. 

for 3 h, diluted with EtOAc and washed with water and brine. The organic layer was dried 

(Na2SO4), filtered and concentrated under reduced pressure. Column chromatography on 

silica (PE/EtOAc 1/1 to 0/1) afforded 1.4 as white foam (0.96 g, 1.03 mmol, 60%). Analytical 

data were in accordance with literature.[6] 

 

2,3,4,6-Tetra-O-acetyl-!-D-galactopyranosyl bromide (3.20). 

HBr in acetic acid (33% solution, 90 mL) was added to a stirred solution of pentaacetyl-"-D-

galactose 3.19 (10.0 g, 25.6 mmol) in anhydrous CH2Cl2 (40 mL) at 0°C over the course of 1 

h. The mixture was stirred at 0°C for another 1.5 h and subsequently poured on an ice/water 

mixture. The aqueous layer was extracted with CH2Cl2 and the organic layers were washed 

with satd. aqueous NaHCO3 and brine. The combined organic layers were dried over Na2SO4, 

filtered and concentrated. Column chromatography on silica (PE/EtOAc) afforded 3.20 as 

white solid (9.66 g, 23.5 mmol, 92%). Analytical data were in accordance with literature.[11] 

 

2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-"-D-galactopyranoside (3.21). 

A suspension of 3.20 (9.18 g, 22.3 mmol), HgO (4.84 g, 22.3 mmol), HgBr2 (40mg, 0.11 

mmol), powdered activated molecular sieves 3 Å (10 g) and 2-(trimethylsilyl)ethanol (6.50 

mL, 45.0 mmol) in CH2Cl2 was stirred with light exclusion at r.t. for 12 h. The mixture was 

filtered (Celite) and the Celite was washed with CH2Cl2. The filtrate was concentrated and 

the resulting residue was purified by column chromatography on silica (PE/EtOAc 1/0 to 1/1) 

to afford 3.21 as white foam (8.50 g, 19.0 mmol, 85%). Analytical data were in accordance 

with literature.[12] 

 

2-(Trimethylsilyl)ethyl "-D-galactopyranoside (3.22). 

To a stirred solution of 3.21 (1.34 g, 2.99 mmol) in anhydrous MeOH (14 mL) was added a 

freshly prepared solution of NaOMe in MeOH (1M, 1.4 mL) under argon at r.t. The mixture 
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was stirred for 2 h, neutralized with Amberlyst 15 ion exchange resin and filtered (Celite). 

Celite was washed with MeOH and the combined filtrates were concentrated to afford 3.22 

(0.836 g, 2.98 mmol, quant.) as white foam, which was used in the next step without further 

purification. Analytical data were in accordance with literature.[13] 

 

2-(Trimethylsilyl)ethyl 3-O-benzyl-!-D-galactopyranoside (3.23). 

A suspension of 3.22 (0.62 g, 2.21 mmol) and Bu2SnO (0.83 g, 3.33 mmol) in anhydrous 

toluene (15 mL) was stirred under argon at 80°C for 4 h. TBAB (0.36 g, 1.12 mmol) and 

BnBr (3.20 mL, 26.90 mmol) were added and the solution was stirred at 60°C for 4 h. 

Concentration under reduced pressure followed by column chromatography on silica 

(PE/EtOAc 1/1 to 0/1) afforded 3.23 as sticky white solid (0.67 g, 1.81 mmol, 82%). 

Analytical data were in accordance with literature.[14] 

 

2-(Trimethylsilyl)ethyl 6-O-benzoyl-3-O-benzyl-!-D-galactopyranoside (3.24). 

A solution of benzoyl chloride (0.088 mL, 0.76 mmol) in anhydrous CH2Cl2 (10 mL) was 

slowly added to a stirred solution of 3.23 (0.20 g, 0.54 mmol) in anhydrous pyridine (2 mL) 

and anhydrous CH2Cl2 (8 mL) at -50°C under argon. After 1 h, the reaction mixture was 

warmed to -20°C, quenched with MeOH (0.5 mL) and stirred at -20°C for 0.5 h. The reaction 

was warmed to r.t., volatiles were evaporated, the mixture was redissolved in CH2Cl2 and 

washed with water. The organic layer was dried (Na2SO4), filtered, and concentrated. 

Column chromatography on silica (PE/EtOAc) afforded 3.24 (0.154 g, 0.32 mmol, 60%) as 

white crystalline solid. Analytical data were in accordance with literature.[14] 

 

2-(Trimethylsilyl)ethyl 6-O-benzoyl-!-D-galactopyranoside (1.5). 

A suspension of 3.24 (5.0 g, 10.5 mmol) and Pd(OH)2/C (0.20 g, 10% Pd(OH)2) in 

dioxane/water (4/1, 50 mL) was hydrogenated at (4 bar H2) at r.t. After 12 h, the mixture was 

filtered (Celite) and concentrated to afford 1.5 (4.05 g, 10.5 mmol, quant.) as white foam. 

Analytical data were in accordance with literature.[14] 

 

2,3,4-Tri-O-benzyl-" -L-fucopyranosyl-(1"2)-(R,R)-cyclohexane-1,2-diol (1.3a). 

Bromine (0.113 mL, 2.20 mmol), was slowly added to a stirred solution of fucose donor 

1.6[18] (0.96 g, 2.00 mmol) in anhydrous CH2Cl2 (70 mL) and DMF (3 mL) at 0°C under 

argon. After 10 min, excess bromine was quenched by addition of cyclohexene. Powdered 

activated molecular sieves 4 Å (6.0 g), TBAB (1.93 g, 5.99 mmol), and (R,R)-cyclohexane-
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1,2-diol (0.70 g, 6.03 mmol) were added and the mixture was stirred at 0°C for 2 h before 

warming to r.t. and stirring at r.t. for 12 h The reaction mixture was filtered (celite) and 

washed with water and brine. The organic layer was dried over Na2SO4, filtered, and 

concentrated under reduced pressure. Column chromatography on silica (CH2Cl2/MTBE 

40/1) afforded 1.3a as clear oil (0.716 g, 1.34 mmol, 67%). Analytical data were in 

accordance with literature.[18] 
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2.4 P-selectin specific replacements for sialic acid 

2.4.1 Towards a new class of non-charged, sialic acid free P-selectin antagonist 

 

Author contributions: F.P.C. Binder: design and synthesis of selectin antagonists, 

manuscript; M. Smie!ko: design of selectin antagonists, molecular modeling studies; K. 

Lemme: biological characterization of selectin antagonists. 

 

Manuscript  



 

 97 

Towards a new class of non-charged, sialic acid free  

P-selectin antagonist 
 

Florian P.C. Binder,a Martin Smie!ko,a Katrin Lemme,a Beat Ernsta* 

 

aInstitute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstr.50, 4056 

Basel, Switzerland 

* Corresponding author. Tel.: 0041 267 15 51; fax.: 0041 267 15 52; e-mail: 

beat.ernst@unibas.ch 

 

Keywords 

Glycomimetics, P-selectin, sialic acid replacement, sialyl Lewisx,  



 

 98 

Abstract 

A small series of amides and sulfonamides was synthesized to target a hitherto unexplored 

binding pocket of P-selectin. The structurally simplified and non-charged mimetics of the 

lead sialyl Lewisx (sLex) exhibited up to threefold higher binding affinities than sLex. 
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Introduction 

Numerous chronic and acute inflammatory diseases like asthma, psoriasis, and rheumatoid 

arthritis are characterized by an excessive influx of leukocytes into inflamed tissue.[1] 

Selectins are lectins that mediate the initial step of leukocyte recruitment to sites of 

inflammation and consequently became attractive targets for the development of anti-

inflammatory agents.[2] The minimum carbohydrate motif recognized by all selectins is the 

tetrasaccharide sialyl Lewisx (sLex, 1, Figure 1),[3] which has been the lead structure for the 

design of most selectin antagonists.  
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Figure 1. Left: the tetrasaccharide sialyl Lewisx (1) and its pharmacophoric groups: hydroxyl groups 
of L-fucose[4,5], hydroxyl groups in 4- and 6- position of D-galactose[6] and the carboxylic acid residue 
of sialic acid[7]. Right: Exchange of GlcNAc by (1R,2R,3S)-3-methyl-cyclohexane-1,2-diol enhances 
binding affinity on E- and P-selectin 30- and 20-fold, respectively. 

Since sLex itself is binding only weakly to the selectins and suffers from poor 

pharmacokinetic properties as well as complex synthesis, huge efforts were made both by 

academic and industrial research groups to improve the drug-likeness of sLex.[8] A common 

and successful strategy is the stepwise replacement of single or several carbohydrate residues 

by mimics.[9] The replacement of N-acetyl-D-glucosamine (D-GlcNAc), which merely serves 

as a spacer between L-fucose (L-Fuc) and D-galactose (D-Gal),[5,10] with (1R,2R,3S)-3-

methyl-cyclohexane-1,2-diol for instance enhanced binding affinity towards E- and P-selectin 

30-fold and 20-fold, respectively (2, Figure 1).[11] The comparable effect of this modification 

on the affinity to both selectins was rationalized by the almost identical conformation of the 

Lewisx core upon binding to P- and E-selectin and the high degree of similarity of the core 

binding sites of both selectins. A major difference however exists in the sialic acid (N-acetyl-

D-neuraminic acid, D-Neu5Ac) binding site formed by the loop of amino acids 94 to 100 

(Figure 2).[12] In the complex with E-selectin, the carboxylate of sLex forms a salt bridge with 

Arg97 and a hydrogen bond with Tyr48, interactions of utmost importance for the affinity of 

the antagonists. In P-selectin, Arg97 is replaced with Ser97 and the salt bridge is no longer 

possible. Instead, a water-mediated hydrogen bond with Ser97 is formed. The additional H-
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bond to Tyr48 contributes similarly to binding as in E-selectin. In line with this binding 

mode, we could recently show that the negative charge of the carboxylic acid residue of sialic 

acid is no prerequisite for affinity to P-selectin, while it is essential for binding to E-

selectin.[11] 

The side chains of Glu98, Lys99 and Asp100 in E-selectin form a rather wide and lipophilic 

binding pocket, which is partially occluded by the guanidinium moiety of Arg97 (Figure 2). 

In contrast, Ser97, Pro98, Ser99, and Ala100 of P-selectin form a rigid groove, stabilized by a 

highly ordered H-bond network. As this well defined binding pocket is only occupied by 

water, we reasoned that D-Neu5Ac could be replaced with appropriate mimics to directly 

target the pocket and gain additional interactions.  

 

              

Figure 2. Sialic acid residue of sLex binding to E-selectin (left) and to P-selectin (right).[5] 

Results and discussion 

1. Design 

A closer look at the crystal structures of apo-P-selectin (1g1q) and P-selectin co-crystallized 

with a fragment of the physiological P-selectin ligand PSGL-1 (SGP-3, pdb-code: 1g1s) 

reveals that a water molecule positioned above Tyr94 is present in both crystal structures.[5] 

In apo-P-selectin, it binds to Ser97, in the P-selectin SGP-3 complex, it mediates a hydrogen 

bond between Ser97 and the carboxy group of D-Neu5Ac. Replacement of this structure 

water with a properly positioned heteroatom consequently offers the possibility to increase 

the affinity of P-selectin antagonists, especially since this water molecule is only weakly 

anchored in the binding pocket. Additional affinity might also result from lipophilic 

interactions with the aromatic side chain of Tyr94. Based on the core of 2, two small series of 
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mimetics were designed to target the D-Neu5Ac binding pocket of P-selectin (Table 1). 

Amides 12 and 13 were designed to replace the water molecule with the side chain oxygen, 

while amide 16 served to evaluate the effect of the amide moiety itself. Since molecular 

modeling studies indicated that sulfonamides were better suited to target the aromatic moiety 

of Tyr48, sulfonamide 15 was synthesized as well. Finally, sulfonamides 18 to 20 were 

designed to target both Tyr94 and Ser97 (Figure 3). Methyl sulfonamide 14 served as a 

control to study the effect of the sulfonamide moiety itself. 

 

Figure 3. Predicted binding mode of sulfonamide 19 designed to occupy the pocket formed by Tyr48, 
Tyr94, Ser97, Pro98, and Ser99. 

2. Synthesis 

Azide 7 was obtained from 3 in analogy to a double inversion route developed by Öberg et 

al. (Scheme 1).[13] The 4,6-benzylidene acetal of ethyl thio-!-D-galactoside (3) was 

successively treated with triflic anhydride in pyridine/CH2Cl2 and acetyl chloride to yield 

triflate 4. Nitrite mediated inversion of 4 afforded guloside 5 in 55% yield, which was again 

activated as triflate 6. A second inversion using tetrabutylammonium azide under microwave 

conditions afforded 3-azido-3-deoxy-!-D-galactoside 7, which upon DMTST[14] promoted 

coupling to pseudo disaccharide 8 provided 9. Subsequent hydrolysation of the acetate 

followed by reduction of azide 10 to amine 11 proceeded in excellent yields.  

Pseudotrisaccharide 11 was coupled to carboxylic acids using standard coupling conditions. 

Subsequent debenzylation by hydrogenolysis afforded 12 and a 1:1 diastereomeric mixture of 

13. Sulfonylation of 11 with methansulfonyl chloride and furan-3-sulfonyl chloride at 0°C 

yielded the corresponding sulfonamides, which were directly deprotected under reducing 

conditions to afford 14 and a diastereomeric mixture (58 : 42) of 15. 
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Scheme 1. a) i. Tf2O, pyridine, CH2Cl2, -20°C, ii. AcCl; b) n-Bu4NNO2, DMF, 50°C, 55% from 3; c) 
Tf2O, pyridine, CH2Cl2, -20°C; d) n-Bu4NN3, DMF, mw 80°C, 46% from 5; e) DMTST, CH2Cl2, MS 
4 Å, r.t., 81%; f) aq. NaOH, dioxane, r.t., 94%; g) Pd(OH)2/C, H2, dioxane, H2O, r.t., 92%; h) RCO2H, 
HBtU, HOBt, DIPEA, CH2Cl2, r.t.; i) Pd(OH)2/C, H2, CH2Cl2/MeOH/H2O/ HAc, r.t., (12: 51%, 13: 
51% from 11); j) RSO2Cl, DIPEA, DCE, 0°C to r.t.; k) Pd(OH)2/C, H2, CH2Cl2/MeOH/H2O/HAc, r.t., 
(14: 56%, 15: 28% from 11); l) Pd(OH)2/C, H2, CH2Cl2/MeOH/H2O/HAc, r.t., 26%; m) Pd(OH)2/C, 
H2, CH2Cl2/MeOH/H2O/HAc, r.t., 93%; n) RSO2Cl, DIPEA, DCE, DMF, -78°C to r.t., 18: 39% ; or 
RSO2Cl, MgO, DIPEA, THF/H2O, r.t., (19: 30%, 20: 31%). 

Initially, we planned to study the influence of an acetyl ester in 2-O position of D-galactose in 

addition to modifications in 3-O position. The reaction conditions for the combined 

reduction/debenzylation of 9 however caused acetyl group migration and directly provided 

acetamide 16. 

The aromatic sulfonamides 18, 19, and 20 were obtained from deprotected 17, as the applied 

conditions for debenzylation were considered to be incompatible with furan and thiophene 
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moieties. Chemoselective sulfonylation of 17 was achieved either by low temperature 

reaction with the sulfonyl chlorides in presence of DIPEA in a CH2Cl2/DMF mixture or by a 

modified version of the magnesium oxide mediated procedure reported by Kang et al.[15]. 

 

3. Biological Evaluation 

The affinity of selectin antagonists to E- and P-selectin was evaluated in a competitive 

binding assay, utilizing a polyacrylamide-type glycoconjugate as synthetic ligand for 

immobilized E-/P-selectin.[16] Briefly, microtiter plates were coated with either E-

selectin/IgG, or P-selectin/IgG, blocked with BSA, and incubated with a fixed concentration 

of sLea-polyacrylamide (sLea-PAA) either in presence or absence of the antagonists. The 

binding reaction was revealed by the addition of TMB substrate reagent and quantified 

spectrophotometrically at 450 nm. The IC50 defines the molar concentration of the test 

compound that reduces the maximal specific binding of sLea-PAA polymer to E-selectin/P-

selectin by 50%. To ensure comparability of different antagonists, the reference compounds 

22 (P-selectin) / 23 (E-selectin) were tested in parallel on each individual microtiter plate. 

The affinities are reported relative to 21 as rIC50 in Table 1. The relative IC50 (rIC50) is the 

ratio of the IC50 of the test compound to the IC50 of 21. 

 

The biological results can nicely be correlated to the modeling studies. As expected, none of 

the compounds bound to E-selectin up to 15 mM (Table 1). Neither the free amine in 17 

(entry 4), nor the amide or sulfonamide moiety alone (14 entry 8, 16 entry 5) supported 

binding up to 15 mM on P-selectin. This is in accordance with the expected binding mode for 

14 (entry 8) and 16 (entry 5), which predicts no direct interaction of these moieties with the 

protein. In contrast, compound 12 (entry 6), which bears an oxygen atom in the side chain to 

replace the water molecule, was four-fold more potent than sLex. Its rigid analogues 13 (entry 

7), a 1:1 mixture of diastereomers, bound slightly worse than 12 (entry 6), which can be 

explained by the unfavorable configuration of one of the two diastereomers. The same holds 

true for sulfonamide analogue 15 (entry 9), a 6:4 mixture of diastereomers. Thiophene 

derivatives 19 (entry 11) and 20 (entry 12) bound in the same range as 12 (entry 6). The 

weaker hydrogen bond between the thiophene sulfur and a hydroxyl group was obviously 

compensated by packing of the thiophene sulfur against Tyr94. 
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Table 1. Relative IC50 values (rIC50) of P-selectin antagonists 12 to 20. IC50 values were measured 
using 22 (P-sel) and 23 (E-sel) as reference compounds on each microtiter plate and are scaled on 
TMSE-sLex 21 (rIC50= 1.0); n.b. = no binding observed up to 15 mM; n.d. = binding affinity not 
determined. 
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Entry Compound R1 R2 rIC50 (P-sel) rIC50 (E-sel) 

1 22 
 

H 0.3 0.4 

2 
23 

(CGP69669) 

 
H n.b. 0.08 

3 2 
 

Me 0.05 0.03 

4 17  Me n.b. n.b. 

5 16  Me n.b. n.b. 

6 12  Me 0.3 n.b. 

7 13  Me 1.1 n.b. 

8 14  Me n.b. n.b. 

9 15 
 

Me 1.0 n.d. 

10 18 
 

Me n.d. n.d. 

11 19 
 

Me 0.3 n.b. 

12 20 
 

Me 0.3 n.d. 
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Conclusion 

A small series of amides and sulfonamides, designed to target a potential binding pocket of 

P-selectin, was synthesized and evaluated in a competitive binding assay. Though it was not 

possible to fully replace sialic acid, the affinity of these structurally simplified and non-

charged antagonists was improved up to three-fold compared to sLex. 

 

Experimental Part 

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer. 

Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, HSQC, 

HMQC, HMBC). Chemical shifts are given in ppm and were assigned in relation to the 

solvent signals on the !-scale[17] or to tetramethylsilane (0 ppm) as internal standard. 

Coupling constants J are given in Hertz (Hz). Multiplicities were specified as follows: s 

(singlet), d (doublet), dd (doublet of a doublet), t (triplet), q (quartet), m (multiplet). For 

assignment of resonance signals to the appropriate nuclei the following abbreviations were 

used: Fuc (fucose), Gal (galactose), MeCy (3-methylcyclohexane-1,2-diol), THF 

(tetrahydrofuran), Thio (thiophene), Fur (furan). Reactions were monitored by TLC using 

glass plates coated with silica gel 60 F254 (Merck) and visualized by using UV light and/or by 

charring with a molybdate solution (a 0.02 M solution of ammonium cerium sulfate dihydrate 

and ammonium molybdate tetrahydrate in aqueous 10% H2SO4). Column chromatography 

was performed manually using silica gel 60 (40-63 "m) from Fluka or using automated 

systems (RediSep Companion or RediSep Rf) from Teledyne Isco with normal phase 

RediSep columns from the same manufacturer or reversed-phase columns containing 

LiChroprep RP-18 (40-63 "m) from Merck KGaA, Darmstadt, Germany. LC-MS separations 

were carried out using Sunfire C18 columns (19 x 150 mm, 5.0 "m) on a Waters 2525 LC, 

equipped with Waters 2996 photodiode array and Waters micromass ZQ MS for detection. 

HRMS analysis were carried out using a Agilent 1100 LC equipped with a photodiode array 

detector and a Micromass QTOF I equipped with a 4 GHz digital-time converter. Size 

exclusion chromatography was performed with Bio-Gel® P-2 Gel (45-90 mm) from Bio-Rad. 

Solvents were purchased from Sigma-Aldrich or Acros. Solvents were dried prior to use 

where indicated. Dichloromethane (CH2Cl2) and dichlorethane (DCE) were dried by filtration 

over Al2O3 (Fluka, type 5016 A basic). DMF was dried by distillation from calcium hydride. 

Optical rotations were measured using a Perkin-Elmer Polarimeter 341. Electron spray 

ionization mass spectra (ESI-MS) were obtained on a Waters micromass ZQ. IR spectra were 

recorded on a Perkin Elmer Spectrum One FT-IR spectrometer as KBr pellets. Microanalysis 
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was performed at the Institute of Organic Chemistry at the University of Basel, Switzerland. 

Compound purity was determined on an Agilent 1100 HPLC; detector ELS, Waters 2420; 

column: Waters Atlantis dC18, 3 µm, 4.6 x 75 mm; eluents: A: water + 0.1% TFA; B: 90% 

acetonitrile + 10% water + 0.1% TFA; depending on the polarity of analytes, gradients were 

applied as indicated. A) linear gradient: 0 - 1 min 5% B; 1 - 20 min 5 to 70% B; flow: 0.5 

mL/min; B) linear gradient: 0 - 1 min 5% B; 1-20 min 5 to 50% B; flow: 0.5 mL/min; C) linear 

gradient: 0 - 1 min 5% B; 1 - 20 min 5 to 40% B; flow: 0.5 mL/min. 

 

Ethyl 2-O-acetyl-4,6-O-benzylidene-3-O-trifluoromethansulfonyl-1-thio-!-D- 

galactopyranoside 4. 

Ethyl 4,6-O-benzylidene-1-thio-!-D-galactopyranoside 3 (9.00 g, 28.8 mmol) was dissolved 

in anhydrous CH2Cl2 (140 mL) and anhydrous pyridine (4.7 mL, 58.1 mmol) under argon. 

The solution was cooled to -20°C and Tf2O (5.60 mL, 33.2 mmol) was slowly added. After 

2.5 h, AcCl (2.25 mL, 31.7 mmol) was added and the reaction was slowly warmed to r.t. 

Additional pyridine (2.33 mL, 28.8 mmol) and AcCl (1.64 mL, 23.1 mmol) were added after 

1 h and stirring was continued for another 1 h. The solution was diluted with CH2Cl2 (150 

mL) and washed with aqueous HCl (5%, 200 mL), aqueous satd. NaHCO3 (200 mL) and 

brine (200 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under 

reduced pressure to give crude 4 as orange sticky solid, which was directly used in the next 

step. 

 

Ethyl 2-O-acetyl-4,6-O-benzylidene-1-thio-!-D-gulopyranoside 5. 

To a stirred solution of crude 4 (! 28.8 mmol) in anhydrous DMF (100 mL) at 50°C under 

argon was added tetrabutylammonium nitrite (25.0 g, 86.7 mmol). After 24 h, volatiles were 

evaporated and the residue was dissolved in CH2Cl2 (350 mL) and washed with aqueous HCl 

(5%, 350 mL), aqueous satd. NaHCO3 (350 mL) and brine (350 mL). The organic layer was 

dried over Na2SO4, filtered, and concentrated under reduced pressure. Column 

chromatography on silica (PE/EtOAc) afforded 5 as white foam (5.69 g, 16.1 mmol, 56%). 
1H NMR (500.1 MHz, CDCl3): " 7.53-7.33 (m, 5H, Ar-H), 5.53 (s, 1H, CHPh), 5.31 (dd, 3J 

= 3.0, 10.2Hz, 1H, H-2), 4.89 (d, 3J = 10.2Hz, 1H, H-1), 4.34 (d, 2J = 12.5, 1H, H-6a), 4.20 

(dd, 3J = 3.0Hz, 1H, H-3), 4.13 (d, 3J = 3.0Hz, 1H, H-4), 4.03 (dd, 3J = 1.5, 2J =12.5Hz, 1H, 

H6b), 3.83 (s, 1H, H-5), 2.85-2.71 (m, 2H, SCH2CH3), 2.14 (s, 3H, COCH3), 1.29 (t, 3J = 

7.5Hz, 3H, SCH2CH3); 13C NMR (125.8 MHz, CDCl3): " 169.2 (CH3CO), 137.8 (Ar-Ci), 
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129.4, 128.5, 126.5 (5C, Ar-CH), 101.5 (PhCH), 79.0 (C1), 76.1 (C4), 69.6 (C6), 68.7 (C3), 

68.4 (C2), 67.6 (C5), 23.0 (SCH2CH3), 21.2 (COCH3), 15.0 (SCH2CH3); [!]D -76.4 (c 1.44, 

CHCl3); MS (ESI) m/z: calcd for C17H22NaO6S [M+Na]+: 377.1 ; found: 377.1; elemental 

analysis calcd (%) for C17H22O6S (354.42): C 57.61, H 6.26; found: C 57.75, H 6.38. 

 

Ethyl 2-O-acetyl-4,6-O-benzylidene-3-O-trifluoromethansulfonyl-1-thio-"-D- 

gulopyranoside 6. 

To a stirred solution of 5 (2.37 g, 6.72 mmol) in anhydrous CH2Cl2 (30 mL) and anhydrous 

pyridine (1.08 mL, 13.3 mmol) at -20°C under argon was slowly added Tf2O (1.35 mL, 8.02 

mmol). After 6 h, the solution was warmed to r.t., diluted with CH2Cl2 (60 mL) and washed 

with aqueous HCl (5%, 100 mL), aqueous satd. NaHCO3 (100 mL) and brine (100 mL). The 

organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure to 

afford crude 6 as slightly orange foam (2.93 g), which was directly used in the next step. 

 

Ethyl 2-O-acetyl-3-azido-4,6-O-benzylidene-3-deoxy-1-thio-"-D-galactopyranoside 7. 

Crude 6 (1.00 g, 2.06 mmol) and tetrabutylammonium azide (1.17 g, 4.71 mmol) were 

dissolved in anhydrous DMF (6.0 mL) under argon in a sealed microwave vial. After 

microwave irradiation at 200W and 80°C for 1 h, volatiles were removed under reduced 

pressure. Column chromatography on silica (PE/EtOAc) afforded 7 as white foam (0.40 g, 

1.05 mmol, 46%). 
1H NMR (500.1 MHz, CDCl3): 7.54-7.31 (m, 5H, Ar-H), 5.59 (s, 1H, CHPh), 5.46 (dd, 3J = 

9.9Hz, 1H, H-2), 4.44 (dd, 3J = 9.9Hz, 1H, H-1), 4.38-4.33 (m, 2H, H-4, H-6a), 4.06 (m, 1H, 

H6b), 3.52 (s, 1H, H-5), 3.40 (dd, 3J = 3.2, 9.9Hz, H-3), 2.91-2.67 (m, 2H, SCH2CH3), 2.15 

(s, 3H, COCH3), 1.28 (t, 3J = 7.5Hz, 3H, SCH2CH3); 13C NMR (125.8 MHz, CDCl3): # 169.6 

(CH3CO), 137.3 (Ar-Ci), 129.3, 128.4, 126.3 (5C, Ar-CH), 101.4 (PhCH), 83.2 (C1), 75.6 

(C4), 70.5 (C5), 69.4 (C6), 67.1 (C2), 62.7 (C3), 23.0 (SCH2CH3), 21.1 (COCH3), 14.9 

(SCH2CH3); [!]D + 2.6 (c 0.88, CHCl3); IR (KBr): 2111 (s, N3), 1730 (s, C=O) cm-1; MS 

(ESI) m/z: calcd for C17H21N3NaO5S [M+Na]+: 402.11; found: 402.06; elemental analysis 

calcd (%) for C17H21N3O5S (379.43): C 53.81, H 5.58, N 11.07; found: C 54.00, H 5.66, N 

10.88. 

 

2-O-Acetyl-3-azido-4,6-O-benzylidene-3-deoxy-"-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-

benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 9. 
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Compounds 9 (533 mg, 1.40 mmol) and 8 (640 mg, 1.17 mmol) were dissolved in anhydrous 

CH2Cl2 (25 mL). Powdered activated molecular sieves 4 Å (2.5 g) were added and the 

mixture was stirred at r.t. under argon. After 3.5 h a solution of DMTST (725 mg, 2.81 

mmol) in anhydrous CH2Cl2 (15 mL) that had been stirred with molecular sieves 4 Å (1.5 g) 

for 3.5 h, was added. After stirring for 26 h, the solution was filtered and the filtrate was 

concentrated under reduced pressure. Column chromatography on silica (PE/EtOAc) afforded 

9 as white foam (820 mg, 0.95 mmol, 81%). 
1H NMR (500.1 MHz, CDCl3): ! 7.56-7.07 (m, 20H, Ar-H), 5.63 (s, 1H, CHPh), 5.28 (dd, 3J 

= 7.8, 10.8Hz, 1H, Gal-H2), 4.89 (d, 3J = 3.3Hz, 1H, Fuc-H1), 4.82 (q, 3J = 6.5Hz, 1H, Fuc-

H5), 4.74 (A of AB, J = 11.6Hz, 1H, PhCH2), 4.63 (B of AB, J = 11.6Hz, 1H, PhCH2), 4.56-

4.49 (m, 2H, PhCH2), 4.44 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.29 (d, 2J = 12.2Hz, 1H, Gal-H6a), 

4.25 (d, 3J = 3.2Hz, 1H, Gal-H4), 4.13 (A of AB , J = 11.3Hz, 1H, PhCH2), 4.05 (d, 2J = 

12.2Hz, 1H, Gal-H6b), 3.91-3.82 (m, 2H, Fuc-H2, Fuc-H3), 3.53 (B of AB , J = 11.3Hz, 1H, 

PhCH2), 3.50 (m, 1H, MeCy-H1), 3.36 (s, 1H, Gal-H5), 3.20-3.11 (m, 3H, Fuc-H4, Gal-H3, 

MeCy-H2), 2.05 (s, 3H, COCH3), 1.90 (m, 1H, MeCy), 1.60-1.50 (m, 3H, MeCy), 1.21-1.13 

(m, 2H, MeCy), 1.09 (d, 3J = 6.5Hz, 3H, Fuc-H6), 1.00 (d, 3J = 6.4Hz, 3H, MeCy-CH3), 0.94 

(m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3): ! 168.1 (CH3CO), 138.6, 138.5, 137.7, 

136.4 (4C, Ar-Ci), 127.9, 127.6, 127.2, 127.1, 126.8, 126.5, 126.4, 126.1, 125.8, 124.8 (20C, 

Ar-CH), 99.4 (PhCH), 98.6 (Gal-C1), 97.4 (Fuc-C1), 80.6 (MeCy-C2), 79.6 (MeCy-C1), 78.7 

(Fuc-C3), 78.0 (Fuc-C4), 75.0 (Gal-C4), 74.6 (Fuc-C2), 73.9, 73.5, 70.3 (3C, PhCH2), 68.4 

(Gal-C6), 67.5 (Gal-C2), 65.8 (Gal-C5), 65.2 (Fuc-C5), 60.6 (Gal-C3), 38.5 (MeCy-C3), 32.6 

(MeCy-C4), 30.2 (MeCy-C6), 22.3 (MeCy-C5), 19.8 (CH3CO), 17.7 (MeCy-CH3), 15.2 

(Fuc-C6); ["]D -71.3 (c 1.20, CHCl3); IR (KBr): 2102 (s, N3), 1756 (s, C=O) cm-1; MS (ESI) 

m/z: calcd for C49H57N3NaO11 [M+Na]+: 886.4; found: 886.5; elemental analysis calcd (%) 

for C49H57N3O11 (863.99): C 68.12, H 6.65, N 4.86; found: C 68.03, H 6.85, N 4.79. 

 

3-Azido-4,6-O-benzylidene-3-deoxy-#-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-" -

L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 10. 

A solution of 9 (600 mg, 0.69 mmol) in aqueous NaOH (1 M, 7.0 mL) and dioxane (14 mL) 

was stirred at r.t. for 16 h. Dioxane was evaporated under reduced pressure, the mixture was 

diluted with CH2Cl2 (30 mL), and washed with brine (30 mL). The aqueous layer was 

extracted with CH2Cl2 (2 · 25 mL) and the combined organic layers were dried over Na2SO4, 

filtered and concentrated under reduced pressure. Column chromatography on silica 

(PE/EtOAc) afforded 10 as white foam (540 mg, 0.66 mmol, 95%). 
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1H NMR (500.1 MHz, CDCl3): ! 7.70-7.13 (m, 20H, Ar-H), 5.66 (s, 1H, CHPh), 4.97 (d, 3J 

= 2.2Hz, 1H, Fuc-H1), 4.85-4.79 (m, 2H, Fuc-H5, PhCH2), 4.71 (B of AB, J = 11.6Hz, 1H, 

PhCH2), 4.63-4.58 (m, 2H, PhCH2), 4.38 (d, 3J = 7.6Hz, 1H, Gal-H1), 4.34 (dd, 3J = 1.0Hz, 
2J = 12.2Hz, 1H, Gal-H6a), 4.23 (d, 3J = 3.2Hz, 1H, Gal-H4), 4.11 (dd, 3J = 1.5, 2J = 

12.2Hz, 1H, Gal-H6b), 4.01 (dd, 3J = 7.6, 10.5Hz, Gal-H2), 3.98-3.92 (m, 2H, Fuc-H2, Fuc-

H3), 3.70-3.62 (m, 2H, MeCy-H1, PhCH2), 3.45 (s, 1H, Gal-H5), 3.32 (dd, 3J = 3.2, 10.5Hz, 

Gal-H3), 3.26-3.16 (m, 2H, Fuc-H4, MeCy-H2), 2.07 (m, 1H, MeCy), 1.71-1.54 (m, 3H, 

MeCy), 1.39-1.16 (m, 2H, MeCy), 1.09 (d, 3J = 6.5Hz, 3H, MeCy-CH3), 1.08-0.97 (m, 4H, 

Fuc-H6, MeCy); 13C NMR (125.8 MHz, CDCl3): ! 139.7, 139.5, 138.7, 137.8 (4C, Ar-Ci), 

129.0, 128.8, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 127.5, 127.3, 127.1, 125.9 (20C, Ar-

CH), 101.2 (Gal-C1), 100.4 (PhCH), 98.7 (Fuc-C1), 82.6 (MeCy-C2), 80.0, 79.8 (MeCy-C1, 

Fuc-C3), 78.8 (Fuc-C4), 75.6, 75.5 (Fuc-C2, Gal-C4), 75.0, 74.7, 71.6 (3C, PhCH2), 69.6 

(Gal-C6), 68.4 (Gal-C2), 67.2 (Gal-C5), 66.3 (Fuc-C5), 62.6 (Gal-C3), 39.6 (MeCy-C3), 33.8 

(MeCy-C4), 31.5 (MeCy-C6), 22.4 (MeCy-C5), 18.9 (MeCy-CH3), 16.7 (Fuc-C6); ["]D -94.6 

(c 0.72, CHCl3); MS (ESI) m/z: calcd for C47H55N3NaO10 [M+Na]+: 844.4; found: 844.5; 

elemental analysis calcd (%) for C47H55N3O10 (821.95): C 68.68, H 6.74, N 5.11; found: C 

68.71, H 6.56, N 5.13; 

 

3-Amino-4,6-O-benzylidene-3-deoxy-#-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-" -

L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 11.  

10 (190 mg, 0.23 mmol) was dissolved in dioxane/H2O (4/1, 3.5 mL) under argon. 

Pd(OH)2/C (40 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated (4 

bar H2) at r.t. After 3 h, the mixture was filtered and the solvent removed under reduced 

pressure. The residue was dissolved in CH2Cl2 (25 mL) and washed with satd. aqueous 

NaHCO3 (2 · 25 mL). The organic layer was dried over Na2SO4, filtered and concentrated 

under reduced pressure to give 11 (170 mg) as slightly grey solid, which was directly used in 

the next step. 

 

3-(3-Methoxy-propanamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 12. 

To a solution of HOBt (14 mg, 0.10 mmol) and HBtU (33 mg, 0.09 mmol) in anhydrous 

DMF (1.0 mL) under argon was added DIPEA (0.035 mL, 0.02 mmol) and 3-methoxy 

propionic acid (0.010 mL, 0.11 mmol). After 10 min, a solution of 11 (27 mg, 0.034 mmol) 

in CH2Cl2/DMF (1/1, 1.0 mL) was added and the resulting solution was stirred for 1 h. The 
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solution was concentrated under reduced pressure, roughly purified via column 

chromatography (PE/EtOAc) and directly used in the next step. The residue was dissolved in 

CH2Cl2/MeOH/H2O/HAc (1/1/2/2, 2.0 mL) under argon. Pd(OH)2/C (10 mg, 10% Pd(OH)2) 

was added and the resulting mixture was hydrogenated (5 bar H2) at r.t. After 42 h, the 

mixture was filtered and the solvent removed under reduced pressure. Purification via RP 

chromatography (H2O/MeOH) and lyophilization from water afforded 12 as white fluffy 

solid (9.0 mg, 0.017 mmol, 51%).  
1H NMR (500.1 MHz, CD3OD): !  5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.93-4.86 (m, 1H, Fuc-

H5), 4.62 (s, 1H, NH), 4.35 (d, 3J = 7.6Hz, 1H, Gal-H1), 3.86-3.82 (m, 3H, Fuc-H3, Gal-H3, 

Gal-H4), 3.74 (dd, 3J = 4.0, 10.3Hz, 1H, Fuc-H2), 3.71-3.61 (m, 6H, COCH2CH2OCH3, Fuc-

H4, Gal H6a, Gal-H6b, MeCy-H1), 3.56 (dd, 3J = 7.6, 10.3Hz, 1H, Gal-H2), 3.50 (t, 3J = 

6.0Hz, 1H, Gal-H5), 3.35 (s, 3H, COCH2CH2OCH3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy-H2), 

2.53 (m, 2H, COCH2CH2OCH3), 2.13 (m, 1H, MeCy), 1.72-1.54 (m, 3H, MeCy), 1.39-1.25 

(m, 2H, MeCy), 1.20 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.07 

(m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 174.1 (CONH), 103.0 (Gal-C1), 100.4 

(Fuc-C1), 84.7 (MeCy-C2), 80.0 (MeCy-C1), 77.3 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 

70.4 (Fuc-C2), 69.8 (2C, COCH2CH2OCH3, Gal-C2), 68.4 (Gal-C4), 67.5 (Fuc-C5), 63.0 

(Gal-C6), 58.9 (COCH2CH2OCH3), 56.7 (Gal-C3), 40.4 (MeCy-C3), 37.3 (COCH2CH2CH3), 

34.9 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D 

-48.5 (c 1.12, MeOH); HR-MS (ESI) m/z: calcd for C23H41NNaO12 [M+Na]+: 546.2521; 

found: 546.2532; HPLC-purity: > 99.5% (A). 

 

3-(Tetrahydrofuran-3-carboxamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-

fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 13.  

To a solution of HOBt (14 mg, 0.10 mmol) and HBtU (33 mg, 0.09 mmol) in anhydrous 

DMF (1.0 mL) under argon was added DIPEA (0.035 mL, 0.02 mmol) and tetrahydro-3-

furoic acid (0.010 mL, 0.10 mmol). After 10 min, a solution of 11 (27 mg, 0.034 mmol) in 

CH2Cl2/DMF (1/1, 1.0 mL) was added and the resulting solution was stirred for 1 h. The 

solution was concentrated under reduced pressure, roughly purified via column 

chromatography (PE/EtOAc), and directly used in the next step. The residue was dissolved in 

CH2Cl2/MeOH/H2O/HAc (1/1/2/2, 2.0 mL) under argon. Pd(OH)2/C (50 mg, 10% Pd(OH)2) 

was added and the resulting mixture was hydrogenated (1 bar H2) at r.t. After 2 d, the mixture 

was filtered and the solvent removed under reduced pressure. Purification via RP 
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chromatography (H2O/MeOH) and lyophilization from water/acetonitrile afforded 13 as 

white fluffy solid (9.0 mg, 0.017 mmol, 51%). 
1H NMR (500.1 MHz, CD3OD): !  5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.95-4.85 (m, 1H, Fuc-

H5), 4.62 (s, 1H, NH), 4.35 (2d, 3J = 7.6Hz, 1H, Gal-H1), 3.96 (td, J = 3.9, 8.2Hz, 1H, 

THF), 3.89 (m, 1H, THF), 3.86-3.76 (m, 5H, Fuc-H3, Gal-H3, Gal-H4, THF), 3.74 (dd, 3J = 

4.0, 10.3Hz, 1H, Fuc-H2), 3.71-3.55 (m, 5H, Fuc-H4, Gal-H2, Gal-H6a, Gal-H6b, MeCy-

H1), 3.50 (t, 3J = 5.9Hz, 1H, Gal-H5), 3.21 (t, 3J = 9.3Hz, 1H, MeCy-H2), 3.13 (m, 1H, 

THF), 2.17-2.09 (m, 3H, MeCy, THF), 1.71-1.59 (m, 3H, MeCy), 1.39-1.24 (m, 2H, MeCy), 

1.21 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 1H, MeCy); 
13C NMR (125.8 MHz, CD3OD): ! 176.3 (CONH), 103.1 (Gal-C1), 100.4 (Fuc-C1), 84.7 

(MeCy-C2), 80.1 (MeCy-C1), 77.4 (Gal-C5), 73.9 (Fuc-C4), 72.1, 72.0 (1C, THF), 71.4 

(Fuc-C3), 70.4 (Fuc-C2), 69.7 (Gal-C2), 69.5 (THF), 68.5, 68.4 (Gal-C4), 67.5 (Fuc-C5), 

63.0 (Gal-C6), 56.7 (Gal-C3), 45.9, 45.8 (1C, THF), 40.3 (MeCy-C3), 34.9 (MeCy-C4), 31.9 

(MeCy-C6), 31.5 (THF), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D -49.5 (c 

0.86, MeOH); HR-MS (ESI) m/z: calcd for C24H41NNaO12 [M+Na]+: 558.2521; found: 

558.2522; HPLC-purity: > 99.5%; diastereomeric ratio: 1:1 (B). 

 

3-(Methylsulfonamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 14.  

To a solution of 11 (20 mg, 0.025 mmol) and DIPEA (0.008 mL, 0.046 mmol) in anhydrous 

DCE (0.40 mL) under argon was added a solution of methansulfonyl chloride (0.005 mL, 4.4 

mg, 0.038 mmol) in anhydrous DCE (0.06 mL) at 0°C. After 30 min, the reaction was 

quenched with MeOH (2 mL) and concentrated under reduced pressure to yield a white foam, 

which was directly used in the next step. The residue was dissolved in 

CH2Cl2/MeOH/H2O/HAc (1/1/2/2, 2.5 mL) under argon. Pd(OH)2/C (30 mg, 10% Pd(OH)2) 

was added and the resulting mixture was hydrogenated (5 bar H2) at r.t. After 48 h, the 

mixture was filtered and the solvent removed under reduced pressure. Purification via HPLC 

and lyophilization afforded 14 as white solid (7.2 mg, 0.014 mmol, 56%). 
1H NMR (500.1 MHz, CD3OD): ! 5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.95-4.83 (m, 1H, Fuc-

H5), 4.63 (s, 1H, NH), 4.32 (d, 3J = 7.6Hz, 1H, Gal-H1), 3.83 (dd, 3J = 3.3, 10.4Hz, 1H, Fuc-

H3), 3.81 (d, 3J = 2.8Hz, 1H, Gal-H4), 3.73 (dd, 3J = 4.0, 10.4Hz, 1H, Fuc-H2), 3.71-3.66 

(m, 3H, Fuc-H4, Gal H6a, MeCy-H1), 3.64 (dd, 3J = 5.1Hz, 2J = 11.3Hz, 1H, Gal-H6b), 

3.52-3.46 (m, 2H, Gal-H2, Gal-H5), 3.31 (m, 1H, Gal-H3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy-

H2), 3.06 (s, 3H, NHSO2CH3), 2.15 (m, 1H, MeCy), 1.73-1.57 (m, 3H, MeCy), 1.41-1.23 (m, 
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2H, MeCy), 1.19 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 

1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 103.1 (Gal-C1), 100.4 (Fuc-C1), 84.7 

(MeCy-C2), 80.0 (MeCy-C1), 77.2 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 70.7, 70.5, 70.3 

(Fuc-C2, Gal-C2, Gal-C4), 67.5 (Fuc-C5), 62.9 (Gal-C6), 60.8 (Gal-C3), 41.8 (NHSO2CH3), 

40.4 (MeCy-C3), 34.8 (MeCy-C4), 32.0 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 

16.8 (Fuc-C6); ["]D -61.9 (c 0.44, MeOH); HR-MS (ESI) m/z: calcd for C20H37NNaO12S 

[M+Na]+: 538.1929 ; found: 538.1936; HPLC-purity: > 99.5% (B). 

 

3-(Tetrahydrofuran-3-sulfonamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-

fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 15. 

To a solution of 11 (25 mg, 0.031 mmol) and DIPEA (0.006 mL, 0.035 mmol) in anhydrous 

DCE (0.40 mL) under argon was added a solution of furan-3-sulfonyl chloride (5.8 mg, 0.035 

mmol) in anhydrous DCE (0.075 mL) at 0°C. After 30 min, the reaction was quenched with 

MeOH (1.0 mL) and concentrated under reduced pressure to yield a white solid, which was 

directly used in the next step. The residue was dissolved in CH2Cl2/MeOH/H2O/HAc 

(1/1/2/2, 6 mL) under argon. Pd(OH)2/C (25 mg, 10% Pd(OH)2) was added and the resulting 

mixture was hydrogenated (5 bar H2) at r.t. After 2 d, the mixture was filtered and the solvent 

removed under reduced pressure. Purification via HPLC and lyophilization afforded 15 as 

white solid (5.0 mg, 0.009 mmol, 28%). 
1H NMR (500.1 MHz, CD3OD): !  5.00 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.94-4.84 (m, 1H, Fuc-

H5), 4.63 (s, 1H, NH), 4.30, 4.29 (2d, 3J = 7.5Hz, 1H, Gal-H1), 4.16-3.88 (m, 4H, THF), 

3.86-3.62 (m, 5H, Fuc-H4, Gal-H4, Gal-H6a, MeCy-H1, THF), 3.83 (dd, 3J = 2.9, 10.3Hz, 

1H, Fuc-H3), 3.74 (dd, 3J = 4.0, 10.3Hz, 1H, Fuc-H2), 3.64 (dd, 3J = 5.3Hz, 2J = 11.3Hz, 

1H, Gal-H6b), 3.52-3.44 (m, 2H, Gal-H2, Gal-H5), 3.34-3.24 (m, 1H, Gal-H3), 3.19 (t, 3J = 

9.3Hz, 1H, MeCy-H2), 2.30 (m, 2H, THF), 2.13 (m, 1H, MeCy), 1.74-1.57 (m, 3H, MeCy), 

1.42-1.22 (m, 2H, MeCy), 1.19 (d, 3J = 6.5Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-

CH3), 1.06 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 103.2 (Gal-C1), 100.4 (Fuc-

C1), 84.7 (MeCy-C2), 80.1 (MeCy-C1), 77.2 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 70.7, 

70.3, 70.1, 69.5, 69.2, 69.0 (5C, Fuc-C2, Gal-C2, Gal-C4, THF), 67.5 (Fuc-C5), 62.9 (Gal-

C6), 62.6, 62.1 (1C, THF), 60.7, 60.6 (Gal-C3), 40.4 (MeCy-C3), 34.9 (MeCy-C4), 32.0 

(MeCy-C6), 29.9, 29.1 (1C, THF), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D -

46.5 (c 0.55, MeOH); HR-MS (ESI) m/z: calcd for C23H41NNaO13S [M+Na]+: 594.2191; 

found: 594.2196; HPLC-purity: > 99.5%; diastereomeric ratio 58:42 (C). 
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3-Acetamido-3-deoxy-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 16. 

9 (68 mg, 0.08 mmol) was dissolved in CH2Cl2/MeOH/H2O/HAc (1/1/2/2, 4 mL) under 

argon. Pd(OH)2/C (80 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (2.5 bar H2) at r.t. After 14 h, the mixture was filtered and the solvent removed 

under reduced pressure. Purification via HPLC and lyophilization from water/acetonitrile 

afforded 16 as white solid (10.0 mg, 0.02 mmol, 26%). 
1H NMR (500.1 MHz, CD3OD): #  5.00 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.93-4.86 (m, 1H, Fuc-

H5), 4.62 (s, 1H, NH), 4.35 (d, 3J = 7.6Hz, 1H, Gal-H1), 3.86-3.79 (m, 3H, Fuc-H3, Gal-H3, 

Gal-H4), 3.74 (dd, 3J = 3.9, 10.5Hz, 1H, Fuc-H2), 3.71-3.65 (m, 3H, Fuc-H4, Gal H6a, 

MeCy-H1), 3.63 (dd, 3J = 5.9Hz, 2J = 11.4Hz, 1H, Gal-H6b), 3.57 (dd, 3J = 7.6, 10.3Hz, 1H, 

Gal-H2), 3.50 (t, 3J = 5.9Hz, 1H, Gal-H5), 3.21 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.14 (m, 1H, 

MeCy), 2.00 (s, 3H, COCH3), 1.72-1.57 (m, 3H, MeCy), 1.41-1.23 (m, 2H, MeCy), 1.20 (d, 
3J = 6.5Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 1H, MeCy); 13C 

NMR (125.8 MHz, CD3OD): # 173.7 (CONH), 103.0 (Gal-C1), 100.3 (Fuc-C1), 84.7 

(MeCy-C2), 80.0 (MeCy-C1), 77.3 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 70.3 (Fuc-C2), 

69.7 (Gal-C2), 68.4 (Gal-C4), 67.5 (Fuc-C5), 63.0 (Gal-C6), 56.7 (Gal-C3), 40.3 (MeCy-C3), 

34.9 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-C5), 22.6 (COCH3), 19.6 (MeCy-CH3), 16.8 

(Fuc-C6); ["]D -60.4 (c 0.94, MeOH); HR-MS (ESI) m/z: calcd for C21H37NNaO11 [M+Na]+: 

502.2259; found: 502.2260; HPLC-purity: > 99.5% (A). 

 

3-Amino-3-deoxy-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-

3-methyl-cyclohexane-1,2-diol 17. 

10 (250 mg, 0.30 mmol) was dissolved in CH2Cl2/MeOH/H2O/HAc (1/1/2/2, 6 mL) under 

argon. Pd(OH)2/C (250 mg, 10% Pd(OH)2) was added and the resulting mixture was 

hydrogenated (4 bar H2) at r.t. After 48 h, the mixture was filtered and the solvent removed 

under reduced pressure. Purification via HPLC and lyophilization from water/acetonitrile 

afforded 17 as white solid (123 mg, 0.28 mmol, 93%). 
1H NMR (500.1 MHz, CD3OD): # 4.99 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.96-4.84 (m, 1H, Fuc-

H5), 4.35 (d, 3J = 7.6Hz, 1H, Gal-H1), 3.98 (d, 3J = 2.8Hz, 1H, Gal-H4) 3.82 (dd, 3J = 3.2, 

10.3Hz, 1H, Fuc-H3), 3.74 (dd, 3J = 3.9, 10.3Hz, 1H, Fuc-H2), 3.72-3.61 (m, 5H, Fuc-H4, 

Gal-H2, Gal H6a, Gal-H6b, MeCy-H1), 3.51 (t, 3J = 6.1Hz, 1H, Gal-H5), 3.23-3.13 (m, 2H, 

Gal-H3, MeCy-H2), 2.12 (m, 1H, MeCy), 1.72-1.57 (m, 3H, MeCy), 1.40-1.23 (m, 2H, 

MeCy), 1.20 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.14 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 1H, 
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MeCy);13C NMR (125.8 MHz, CD3OD): ! 102.5 (Gal-C1), 100.5 (Fuc-C1), 84.7 (MeCy-C2), 

80.4 (MeCy-C1), 76.8 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 70.3 (Fuc-C2), 68.7 (Gal-

C2), 67.5 (Gal-C4), 66.5 (Fuc-C5), 62.2 (Gal-C6), 57.0 (Gal-C3), 40.4 (MeCy-C3), 34.9 

(MeCy-C4), 32.0 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.7 (Fuc-C6); ["]D -72.4 

(c 1.04, MeOH); HR-MS (ESI) m/z: calcd for C19H35NNaO10 [M+Na]+: 460.2153; found: 

460.2161; HPLC-purity: > 99.5% (A). 

 

3-(Furan-3-sulfonamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 18. 

To a solution of 17 (10 mg, 0.023 mmol) in DIPEA (0.30 mL), THF (0.60 mL) and DMF 

(0.30 mL) was added a solution of furan-3-sulfonyl chloride (5.7 mg, 0.034 mmol) in DCE 

(0.075 mL) at -78°C under argon. The solution was stirred at -78°C for 10 min and slowly 

warmed to r.t. Concentration under reduced pressure and purification via HPLC afforded 18 

as white solid (5.0 mg, 0.009 mmol, 39%). 
1H NMR (500.1 MHz, CD3OD): ! 8.11 (s, 1H, Fur-H2), 7.61 (t, J = 1.7Hz, 1H, fur-H5), 6.75 

(d, J = 1.7Hz, Fur-H4), 4.99 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.86 (m, 1H, Fuc-H5), 4.63 (s, 1H, 

NH), 4.28 (d, 3J = 7.6Hz, 1H, Gal-H1), 3.82 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H3), 3.79 (d, 3J 

= 2.8Hz, 1H, Gal-H4), 3.73 (dd, 3J = 3.9, 10.3Hz, 1H, Fuc-H2), 3.70-3.62 (m, 3H, Fuc-H4, 

Gal H6a, MeCy-H1), 3.60 (dd, 3J = 6.0Hz, 2J = 11.3Hz, 1H, Gal-H6b), 3.46 (dd, 3J = 7.6, 

10.5Hz, 1H, Gal-H2), 3.42 (t, 3J = 6.0Hz, 1H, Gal-H5), 3.22 (dd, 3J = 2.8, 10.5Hz, 1H, Gal-

H3), 3.18 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.10 (m, 1H, MeCy), 1.70-1.54 (m, 3H, MeCy), 

1.37-1.20 (m, 2H, MeCy), 1.18 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.12 (d, 3J = 6.3Hz, 3H, MeCy-

CH3), 1.05 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): ! 146.7 (Fur-C2), 145.8 (fur-

C5), 130.2 (fur-C3), 109.7 (fur-C4), 102.8 (Gal-C1), 100.4 (Fuc-C1), 84.7 (MeCy-C2), 79.9 

(MeCy-C1), 76.9 (Gal-C5), 73.8 (Fuc-C4), 71.4 (Fuc-C3), 70.3 (Fuc-C2), 69.8 (Gal-C2), 

69.5 (Gal-C4), 67.5 (Fuc-C5), 62.9 (Gal-C6), 60.8 (Gal-C3), 40.3 (MeCy-C3), 34.9 (MeCy-

C4), 31.9 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D -51.6 (c 

0.34, MeOH); HR-MS (ESI) m/z: calcd for C23H37NNaO13S [M+Na]+: 590.1878; found: 

590.1885; HPLC-purity: > 99.5% (B). 

 

3-(Thiophene-3-sulfonamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 19. 

To a suspension of 17 (10 mg, 0.023 mmol) and MgO (4 mg, 0.10 mmol) in THF/H2O (4/1, 

0.30 mL) that had been stirred at r.t. for 40 min, was added a solution of 3-thiophenesulfonyl 



 

 115 

chloride (4 mg, 0.022 mmol) in THF (0.04 mL). After 1 h, DIPEA (0.005 mL, 0.03 mmol) 

was added and the mixture was stirred for 22 h. Subsequent filtration (celite), concentration 

under reduced pressure, and purification via HPLC afforded 19 as white solid (4.0 mg, 0.007 

mmol, 30%). 
1H NMR (500.1 MHz, CD3OD): !  8.14 (dd, J = 1.2, 3.0Hz, 1H, Thio-H5), 7.54 (dd, J = 3.0, 

5.1Hz, 1H, Thio-H2), 7.43 (dd, J = 1.2, 5.1Hz, Thio-H3), 4.98 (d, 3J = 3.9Hz, 1H, Fuc-H1), 

4.85 (dd, 3J = 6.6, 13.3Hz, 1H, Fuc-H5), 4.63 (s, 1H, NH), 4.27 (d, 3J = 7.6Hz, 1H, Gal-H1), 

3.81 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H3), 3.72 (dd, 3J = 3.9, 10.3Hz, 1H, Fuc-H2), 3.69 (d, 3J 

= 2.8Hz, 1H, Gal-H4), 3.68-3.60 (m, 3H, Fuc-H4, Gal H6a, MeCy-H1), 3.57 (dd, 3J = 6.0Hz, 
2J = 11.3Hz, 1H, Gal-H6b), 3.46 (dd, 3J = 7.6, 10.4Hz, 1H, Gal-H2), 3.39 (t, 3J = 6.0Hz, 1H, 

Gal-H5), 3.22 (dd, 3J = 2.8, 10.4Hz, 1H, Gal-H3), 3.17 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.09 

(m, 1H, MeCy), 1.71-1.56 (m, 3H, MeCy), 1.37-1.20 (m, 2H, MeCy), 1.17 (d, 3J = 6.6Hz, 

3H, Fuc-H6), 1.12 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.05 (m, 1H, MeCy); 13C NMR (125.8 

MHz, CD3OD): ! 143.1 (Thio-C4), 131.0 (Thio-C5), 128.8 (Thio-C3), 126.9 (Thio-C2), 

102.8 (Gal-C1), 100.3 (Fuc-C1), 84.6 (MeCy-C2), 79.9 (MeCy-C1), 76.9 (Gal-C5), 73.8 

(Fuc-C4), 71.4 (Fuc-C3), 70.3 (Fuc-C2), 69.9 (Gal-C2), 69.5 (Gal-C4), 67.5 (Fuc-C5), 62.9 

(Gal-C6), 60.8 (Gal-C3), 40.3 (MeCy-C3), 34.9 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-

C5), 19.6 (MeCy-CH3), 16.8 (Fuc-C6); ["]D -44.0 (c 0.22, MeOH); HR-MS (ESI) m/z: calcd 

for C23H37NNaO12S2 [M+Na]+: 606.1649; found: 606.1649; HPLC-purity: > 99.5% (B). 

 

3-(2-(Methoxycarbonyl)thiophene-3-sulfonamido)-3-deoxy-#-D-galactopyranosyl-(1!1)-

[" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 20. 

To a suspension of 17 (15 mg, 0.034 mmol), DIPEA (0.012 mL, 0.07 mmol) and MgO (6 mg, 

0.15 mmol) in THF/H2O (4/1, 0.30 mL) that had been stirred at r.t. for 90 min, was added a 

solution of 2-carboxymethoxy3-thiophenesulfonyl chloride (6 mg, 0.025 mmol) in THF (0.04 

mL). After 5 h, the mixture was filtered (celite), concentrated under reduced pressure and 

purified via HPLC to yield 20 as white solid (5.0 mg, 0.008 mmol, 31%). 
1H NMR (500.1 MHz, CD3OD): ! 7.77 (d, J = 5.2Hz, 1H, Thio-H5), 7.52 (d, J = 5.2Hz, 1H, 

Thio-H4), 4.96 (d, 3J = 3.9Hz, 1H, Fuc-H1), 4.81 (q, 3J = 6.4Hz, 1H, Fuc-H5), 4.63 (s, 1H, 

NH), 4.21 (d, 3J = 7.5Hz, 1H, Gal-H1), 3.92 (s, 3H, CO2CH3), 3.80 (dd, 3J = 3.3, 10.3Hz, 

1H, Fuc-H3), 3.76 (d, 3J = 2.9Hz, 1H, Gal-H4), 3.72 (dd, 3J = 3.9, 10.3Hz, 1H, Fuc-H2), 

3.69-3.55 (m, 4H, Fuc-H4, Gal H6a, Gal-H6b, MeCy-H1), 3.40-3.34 (m, 2H, Gal-H2, Gal-

H5), 3.25 (dd, 3J = 3.1, 10.4Hz, 1H, Gal-H3), 3.13 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.04 (m, 

1H, MeCy), 1.68-1.53 (m, 3H, MeCy), 1.36-1.18 (m, 2H, MeCy), 1.15 (d, 3J = 6.6Hz, 3H, 
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Fuc-H6), 1.11 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.04 (m, 1H, MeCy); 13C NMR (125.8 MHz, 

CD3OD): ! 162.5 (CO2CH3), 147.4 (Thio-C2, Thio-C3), 131.9 (Thio-C5), 131.2 (Thio-C4), 

102.4 (Gal-C1), 100.5 (Fuc-C1), 84.8 (MeCy-C2), 79.6 (MeCy-C1), 76.9 (Gal-C5), 73.8 

(Fuc-C4), 71.4 (Fuc-C3), 70.6, 70.3 (Fuc-C2, Gal-C2), 69.5 (Gal-C4), 67.5 (Fuc-C5), 62.8 

(Gal-C6), 61.0 (Gal-C3), 53.5 (CO2CH3), 40.3 (MeCy-C3), 34.9 (MeCy-C4), 31.7 (MeCy-

C6), 24.2 (MeCy-C5), 19.5 (MeCy-CH3), 16.7 (Fuc-C6); ["]D -8.9 (c 0.08, MeOH); HR-MS 

(ESI) m/z: calcd for C25H39NNaO14S2 [M+Na]+: 664.1704; found: 664.1715; HPLC-purity: > 

99.5% (B). 
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2.4.2 Replacement of sialic acid with esters 

To initially validate the concept of sialic acid free antagonists described in the previous 

section, a small library of carboxylic acid esters was synthesized and tested (Table 2.4.1). In 

contrast to amides and sulfonamides, these esters could be synthesized from readily available 

building blocks and gave a first impression of suitable substituents. 

Table 2.4.1. Relative IC50 values (rIC50) of P-selectin antagonists 4.1a-4.1d (determined by Katrin 
Lemme). IC50 values are scaled on TMSE-sLex 1.12 (rIC50=1); n.b. = no binding observed up to 15 
mM. 
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entry Compound R rIC50 (P-selectin) 
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3 4.1b  2.1 

4 4.1c  0.4 

5 4.1d 
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2.4.2.1 Biological evaluation 

The results of this first small library (Table 2.4.1) nicely agreed with the results of molecular 

modeling studies. Compound 4.1a (entry 2), which lacks a heteroatom essential for 

interaction with P-selectin, did not bind up to 15 mM. Introduction of an oxygen atom 

increased the binding affinity dramatically as it allows interaction with either Ser97 or Ser99. 

In addition, affinity depended on the position of the heteroatom. As expected from docking 

studies, 4.1c (entry 4) was more potent than 4.1b (entry 3), since it was better suited to 

properly position the oxygen atom. The cyclic analogue of 4.1b (entry 3), 4.1d (entry 5) 

bound slightly stronger which can be explained by a higher degree of pre-organization, or the 
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reduced number of rotatable bonds. Though it was not possible to fully replace sialic acid (! 

1.1b) with any of the ester side chains, the results obtained for this series strongly supported 

our concept and laid the basis for the P-selectin antagonists presented in the previous section. 

2.4.2.2 Synthesis 

Esters 4.1a to 4.1d were synthesized by acylation of tin acetal activated building blocks 1.13 

or 1.14 with acyl chlorides and subsequent hydrogenolytic debenzylation (Scheme 2.4.2 and 

Scheme 2.4.3). Acyl chlorides not commercially available were synthesized from the 

corresponing acids via DMF catalyzed chlorination with oxalyl dichloride (Scheme 2.4.1).  
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Scheme 2.4.1 (COCl)2, DMF, CH2Cl2, r.t., 0.5 h, (4.3: 57%, 4.5: 43%). 

Acylation of the tin acetal of 1.13 with 3-methylbutyryl chloride repeatedly proceeded with 

poor regioselectivity even at -78°C, leading to very poor yields of 4.1a (Scheme 2.4.2).  
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Scheme 2.4.2 a) i. Bu2SnO, toluene, MS 4 Å, 80°C, 12 h; ii. 3-methylbutyryl chloride, toluene, -
78°C, 2 h, 32%; b) Pd(OH)2/C, H2, dioxane, H2O, 9 h, 45%. 

As it is known, that the tin acetal of 4,6 benzylidene-galactosides can be benzoylated with 

high regioselectivity in 3-position,[1] esters 4.1b to 4.1d were synthesized from building block 

1.14, which was available from 4.3* in three steps (Scheme 2.4.3). Though acylation of tin 

acetal activated 1.14 proceeded quite smoothly then, overall yields were still poor. To 

increase the regioselectivity of the acylation reaction and the stability of the final antagonists, 

as well as to broaden the range of substituents, amide and sulfonamide analogues were 

synthesized (see section 2.4.1). 
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Scheme 2.4.3. a) BzCl, pyridine, r.t., 2 h, 96%; b) DMTST, CH2Cl2, MS 4 Å, r.t., 16 h, (4.7: 76%, 
1.3b: 22%); c) NaOMe, MeOH, r.t., 22 h, 82%; d) i. Bu2SnO, toluene, MS 4 Å, 80°C, 12 h; ii. 
RCOCl, toluene, r.t., (4.8b:77%, 4.8c: 40%, 4.8d: 69%); b) Pd(OH)2/C, H2, dioxane, H2O, (4.1b: 
32%, 4.1c: 25%, 4.1d: 21%). 

2.4.2.3 Experimental 

General experimental conditions are described in section 2.4.1. 

 

3-Methoxypropanoyl chloride 4.3. 

To a stirred solution of 3-methoxypropionic acid (2.0 mL, 21.1 mmol) in anhydrous CH2Cl2 

(30 ml) under argon were added oxalyl dichloride (4.0 mL, 46.6 mmol) and DMF (cat.). The 

solution was stirred at r.t. for 30 min, concentrated and distilled to yield 4.3 (1.47 g, 12.0 

mmol, 57%) as clear oil, which was directly used in the next step. 

 

(R)-Tetrahydrofuran-2-carbonyl chloride 4.5. 

To a stirred solution of (S)-tetrahydrofuroic acid (2.0 mL, 20.7 mmol) in anhydrous CH2Cl2 

(30 ml) under argon were added oxalyl dichloride (4.0 mL, 46.6 mmol) and DMF (cat.). The 

solution was stirred at r.t. for 30 min, concentrated and distilled to yield 4.5 (1.20 g, 8.9 

mmol, 43%) as clear oil, which was directly used in the next step. 

 

6-O-Benzyl-3-O-(3-methylbutanoyl)-!-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-" -

L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.6. 

A suspension of 1.13 (120 mg, 0.150 mmol), dibutyltin oxide (56 mg, 0.225 mmol), and 

activated powdered molecular sieves 4 Å (0.2 g) in anhydrous toluene (2.0 mL) was stirred in 
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a sealed vessel under argon at 80°C for 19 h. The mixture was cooled to -78°C and 

isovaleroyl chloride (0.030 mL, 0.244 mmol) was added slowly. After 2 h, the reaction was 

quenched with MeOH, the mixture was filtered (celite) and concentrated under reduced 

pressure. Column chromatography on silica afforded (PE/EtOAc) 4.6 as white solid (43 mg, 

0.049 mmol, 32%), which was directly used in the next step. 

 

General procedure A for the hydrogenolytic debenzylation 

The corresponding intermediate was dissolved in dioxane/water (4/1, 5.0 mL) under argon. 

Pd(OH)2/C (25 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated 

(3.5 bar H2) at r.t. After 9 h, the mixture was filtered and the solvent removed under reduced 

pressure. Purification via HPLC and lyophilization from water/acetonitrile afforded the 

corresponding products. 

 

3-O-(3-methylbutanoyl)-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.1a. 

According to general procedure A, 4.6 (43 mg, 0.049 mmol) was hydrogenated and purified 

to give 4.1a as a white fluffy solid (12 mg, 0.023 mmol, 45% from 1.13). 
1H NMR (500.1 MHz, CD3OD): #  5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.93-4.86 (m, 1H, Fuc-

H5), 4.72 (dd, 3J = 3.2, 10.2Hz, 1H, Gal-H3), 4.36 (d, 3J = 7.7Hz, 1H, Gal-H1), 3.97 (d, 3J = 

2.9Hz, 1H, Gal-H4), 3.84 (dd, 3J = 3.3, 10.2Hz, 1H, Fuc-H3), 3.77-3.60 (m, 6H, Fuc-H2, 

Fuc-H4, Gal-H2, Gal-H6a, Gal-H6b, MeCy-H1), 3.49 (t, 3J = 6.0Hz, 1H, Gal-H5), 3.20 (t, 3J 

= 9.3Hz, 1H, MeCy-H2), 2.37-2.20 (m, 2H, (CH3)2CHCH2CO), 2.16-2.07 (m, 2H, MeCy, 

(CH3)2CHCH2CO), 1.73-1.57 (m, 3H, MeCy), 1.41-1.23 (m, 2H, MeCy), 1.20 (d, 3J = 6.6Hz, 

3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.10-1.03 (m, 1H, MeCy), 0.99, 0.98 (2s, 

6H, (CH3)2CHCH2CO); 13C NMR (125.8 MHz, CD3OD): # 174.5 ((CH3)2CHCH2CO), 102.5 

(Gal-C1), 100.4 (Fuc-C1), 84.6 (MeCy-C2), 80.1 (MeCy-C1), 77.1 (Gal-C3), 76.1 (Gal-C5), 

73.8 (Fuc-C4), 71.4 (Fuc-C3), 70.4 (Fuc-C2), 69.7 (Gal-C2), 67.8 (Gal-C4), 67.5 (Fuc-C5), 

62.7 (Gal-C6), 44.2 ((CH3)2CHCH2CO), 40.4 (MeCy-C3), 34.9 (MeCy-C4), 31.9 (MeCy-

C6), 26.8 ((CH3)2CHCH2CO), 24.2 (MeCy-C5), 22.8 (2C, (CH3)2CHCH2CO), 19.6 (MeCy-

CH3), 16.7 (Fuc-C6); ["]D -57.4 (c 0.87, MeOH); HR-MS (ESI) m/z: calcd for C24H42NaO12 

[M+Na]+: 545.2568 ; found: 545.2569. 

 

Ethyl 2,3-di-O-benzoyl-4,6-O-benzylidene-1-thio-! -D-galactopyranoside 1.17. 

A solution of ethyl 4,6-O-benzylidene-1-thio-!-D-galactopyranoside 4.3* (1.40 g, 4.48 mmol) 
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and benzoyl chloride (1.24 mL, 10.69 mmol) in anhydrous pyridine (15 mL) was stirred for 2 

h at r.t. under argon. The solution was concentrated under reduced pressure and the resulting 

residue was redissolved in CH2Cl2 (50 mL) and washed with cold aqueous HCl (1 N, 50 mL), 

aqueous satd. NaHCO3 (5%, 50 mL) and brine (50 mL). The aqueous layers were extracted 

with CH2Cl2 (3 · 50 mL) and the combined organic layers were dried over Na2SO4, filtered, 

and concentrated. Column chromatography on silica afforded 1.17 as white solid (2.23 g, 

4.28 mmol, 96%). 
1H NMR (500.1 MHz, CDCl3): !   7.97, 7.50, 7.37 (3m, 15H, Ar-H), 5.96 (t, 3J = 9.9Hz, 1H, 

H2), 5.54 (s, 1H, CHPh), 5.40 (dd, 3J = 3.5, 9.9Hz, 1H, H3), 4.74 (d, 3J = 9.9Hz, 1H, H1), 

4.63 (d, 3J = 3.5 Hz, 1H, H-4), 4.42 (d, 2J = 11.3Hz, 1H, H-6a), 4.09 (d, 2J = 11.3Hz, 1H, H-

6b), 3.73 (s, 1H, H-5), 2.95, 2.81 (2m, 2H, SCH2CH3), 1.30 (m, 3H, SCH2CH3); 13C NMR 

(125.8 MHz, CDCl3): ! 166.3, 165.5 (2C, COC6H5), 137.8, 133.5, 133.3, 130.1, 129.9, 129.7, 

129.2, 128.5, 128.3, 126.4 (18C, Ar-C), 101.2 (CHPh), 83.1 (C-1), 74.0 (2C, C-3, C-4), 70.1 

(C-5), 69.4 (C-6), 67.4 (C-2), 23.1 (SCH2CH3), 15.0 (SCH2CH3); ["]D 103.0 (c 0.82, CHCl3); 

MS (ESI) m/z: calcd for C29H28NaO7S+ [M+Na]+: 543.14; found: 543.10; elemental analysis 

calcd (%) for C29H28O7S + 0.25 H2O (525.10): C 66.33, H 5.47; found: C 66.45, H 5.40. 

 

2,3-Di-O-benzoyl-4,6-O-benzylidene-#-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-" -

L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.7. 

Powdered activated molecular sieves 4 Å (3.0 g) were added to a solution of 1.3b (0.70 g, 

1.28 mmol) and galactoside 1.17 (0.89 g, 1.71 mmol) in anhydrous CH2Cl2 (30 ml) and the 

mixture was stirred at r.t. under argon for 4 h. DMTST (1.29 g, 5.00 mmol) was dissolved in 

anhydrous CH2Cl2 (10 ml), powdered activated molecular sieves 4 Å (1.0 g) were added, and 

the suspension was stirred at r.t. under argon for 4 h as well. Subsequently, the two 

suspensions were combined and stirred at r.t. under argon for 16 h. The mixture was diluted 

with CH2Cl2 (30 mL), filtered (celite), and washed with satd. aqueous NaHCO3 (100 mL) and 

brine (100 mL). The aqueous layers were extracted with CH2Cl2 (3 · 50 mL) and the 

combined organic layers were dried over Na2SO4 and concentrated. Column chromatography 

on silica (PE/EtOAc 4/1 to 2/1) afforded 4.7 as white foam (0.98 g, 0.98 mmol, 76%). 1.3b 

was recovered in 22% (0.16 g, 0.29 mmol). 
1H NMR (500.1 MHz, CDCl3): !   7.98, 7.91, 7.51, 7.44 (4m, 8H, Ar-H), 7.37-7.04 (m, 22H, 

Ar-H), 5.80 (dd, 3J = 8.1, 10.4Hz, Gal-H2), 5.55 (s, 1H, CHPh), 5.25 (dd, 3J = 3.5, 10.4Hz, 

Gal-H3), 4.96 (q, 3J = 6.4, 6.5Hz, Fuc-H5) 4.90 (d, 3J = 3.8Hz, 1H, Fuc-H1), 4.78-4.70 (m, 

2H, Gal-H1, CH2Ph), 4.63 (B of AB, 2J = 11.7Hz, 1H, CH2Ph), 4.57-4.51 (m, 3H, Gal-H4, 



 

 123 

CH2Ph), 4.34 (m, 1H, Gal-H6a), 4.17 (A of AB, 2J = 11.3Hz, 1H, CH2Ph), 4.08 (m, 1H, Gal-

H6b), 3.93 (dd, 3J = 2.6, 10.4Hz, Fuc-H3), 3.87 (dd, 3J = 3.8, 10.4Hz, Fuc-H2), 3.61-3.53 

(m, 3H, Gal-H5, MeCy-H1, CH2Ph), 3.23 (m, 1H, Fuc-H4), 3.12 (t, 3J = 9.6Hz, MeCy-H2), 

1.89 (m, 1H, MeCy), 1.67-1.37 (m, 3H, MeCy), 1.24 (d, 3J = 6.5Hz, 3H, Fuc-H6), 1.20-1.01 

(m, 2H, MeCy), 0.97 (d, 3J = 6.5Hz, 3H, MeCy-CH3), 0.84 (m, 1H, MeCy); ! 13C NMR 

(125.8 MHz, CDCl3): ! 166.3, 165.2 (2C, COC6H5), 139.9, 139.7, 138.9, 138.0, 133.6, 133.2, 

130.1, 129.9, 129.8, 129.3, 129.0, 128.8, 128.6, 128.5, 128.3, 128.2, 128.0, 127.7, 127.5, 

127.2, 127.0, 125.9 (36C, Ar-C), 99.8 (CHPh), 99.6 (Gal-C1), 98.5 (Fuc-C1), 81.6 (MeCy-

C2), 80.9, (MeCy-C1), 79.9 (Fuc-C3), 79.2 (Fuc-C4), 75.8 (Fuc-C2), 75.1, 74.6 (2C, CH2Ph), 

73.7 (Gal-C4), 73.2 (Gal-C3), 71.4 (CH2Ph), 69.4 (Gal-C6), 69.1 (Gal-C2), 66.4, 66.3 (2C, 

Fuc-C5, Gal-C5), 39.6 (MeCy-C3), 33.6 (MeCy-C4), 31.3 (MeCy-C6), 23.5 (MeCy-C5), 

18.8 (MeCy-CH3), 16.6 (Fuc-C6); ["]D -40.6 (c 1.50, CHCl3); MS (ESI) m/z: calcd for 

C61H64NaO13
+ [M+Na]+: 1027.4; found: 1027.5; elemental analysis calcd (%) for C61H64O13: 

C 72.89, H 6.42; found: C 72.81, H 6.37. 

 

4,6-O-Benzylidene-#-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl-" -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 1.14. 

A freshly prepared solution of NaOMe in anhydrous MeOH (3 N, 0.47 mL) was slowly 

added to a solution of 4.7 (920 mg, 0.92 mmol) in anhydrous MeOH (20 mL) under argon at 

r.t. After 22 h, the mixture was neutralized with HCl in MeOH (3 N, 0.47 mL) and 

concentrated under reduced pressure. Column chromatography on silica (EtOAc) afforded 

1.14 as white foam (600 mg, 0.75 mmol, 82%). 
1H NMR (500.1 MHz, CDCl3): ! 7.56-6.93 (m, 20H, Ar-H), 5.49 (s, 1H, CHPh), 4.90 (d, 3J 

= 2.6Hz, 1H, Fuc-H1), 4.80 (q, 3J = 6.3Hz, Fuc-H5), 4.74 (A of AB, 2J = 11.6Hz, 1H, 

CH2Ph), 4.63 (B of AB, 2J = 11.6Hz, 1H, CH2Ph), 4.56-4.49 (m, 2H, CH2Ph), 4.62 (A of AB 

, 2J = 11.3Hz, 1H, CH2Ph), 4.22-4.16 (m, 2H, Gal-H1, Gal-H6a), 4.04 (d, 3J = 2.9Hz, 1H, 

Gal-H4), 3.93 (m, 1H, Gal-H6b), 3.96-3.90 (m, 2H, Fuc-H2, Fuc-H3), 3.69-3.59 (m, 3H, 

CH2Ph, Gal-H2, Gal-H3), 3.55 (m, 1H, MeCy-H1), 3.24 (m, 1H, Fuc-H4), 3.21 (m, 1H, Gal-

H5), 3.13 (t, 3J = 9.5Hz, MeCy-H2), 1.96 (m, 1H, MeCy), 1.61-1.42 (m, 3H, MeCy), 1.32-

1.05 (m, 2H, MeCy), 1.04-0.85 (m, 7H Fuc-H6, MeCy); 13C NMR (125.8 MHz, CDCl3): ! " 

139.6, 139.4, 138.7, 138.0, 128.9, 128.7, 128.3, 128.2, 128.1, 128.0, 127.5, 127.4, 127.2, 

125.8 (24C, Ar-C), 101.0 (Gal-C1), 100.0 (CHPh), 98.5 (Fuc-C1), 82.4 (MeCy-C2), 80.1 

(MeCy-C1), 79.7 (Fuc-C3), 78.8 (Fuc-C4), 75.6, 75.5 (2C, Fuc-C2, Gal-C4), 74.9, 74.5 (2C, 

CH2Ph), 72.6 (Gal-C3), 71.4, 71.3 (Gal-C2, CH2Ph), 69.5 (Gal-C6), 66.4, 66.22 (Fuc-C5, 
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Gal-C5), 39.5 (MeCy-C3), 33.7 (MeCy-C4), 31.4 (MeCy-C6), 23.4 (MeCy-C5), 19.9 

(MeCy-CH3), 16.7 (Fuc-C6); [!]D -83.0 (c 1.18, CHCl3); MS (ESI) m/z: calcd for 

C47H56NaO11
+ [M+Na]+: 819.4; found: 819.4; elemental analysis calcd (%) for C47H56O11 + 

0.5 H2O (805.95): C 70.04, H 7.13; found: C 69.80, H 7.00. 

 

General procedure B for acylations of 1.14 

A suspension of 1.14, dibutyltin oxide, and activated powdered molecular sieves 4 Å in 

anhydrous toluene was stirred in a sealed vessel under argon at 80°C for 19 h. The mixture 

was cooled to r.t. and the corresponding acyl chloride was added slowly. After 30 min, the 

reaction was quenched with MeOH, the mixture was filtered (celite) and concentrated under 

reduced pressure. Column chromatography on silica afforded the corresponding products 

esters. 

 

4,6-O-Benzylidene-2-O-(2-methoxyacetyl)-"-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-

benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.8b. 

According to general procedure B, 1.14 (80 mg, 0.100 mmol), dibutyltin oxide (33 mg, 0.133 

mmol) and molecular sieves (0.05 g) were reacted in anhydrous toluene (0.5 mL). 

Methoxyacetyl chloride (17 mg, 0.157 mmol) was added. Column chromatography on silica 

afforded 4.8b as white solid (67 mg, 0.077 mmol, 77%), which was directly used in the next 

step. 

 

4,6-O-Benzylidene-3-O-(3-methoxypropanoyl)-"-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-

benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.8c. 

According to general procedure B, 1.14 (70 mg, 0.088 mmol), dibutyltin oxide (33 mg, 0.133 

mmol) and molecular sieves (0.05 g) were reacted in anhydrous toluene (0.5 mL). 4.3 (16 

mg, 0.131 mmol) was added. Column chromatography on silica afforded 4.8c as white solid 

(31 mg, 0.035 mmol, 40%).  
1H NMR (500.1 MHz, CDCl3): # 7.57-7.04 (m, 20H, Ar-H), 5.50 (s, 1H, CHPh), 4.92-4.85 

(m, 2H, Fuc-H1, Gal-H3), 4.80 (q, 3J = 6.4Hz, Fuc-H5), 4.75 (A of AB, 2J = 11.6Hz, 1H, 

CH2Ph), 4.64 (B of AB, 2J = 11.6Hz, 1H, CH2Ph), 4.56-4.52 (m, 2H, CH2Ph), 4.33 (d, 3J = 

7.8Hz, 1H, Gal-H1), 4.30 (d, 3J = 3.4Hz, 1H, Gal-H4), 4.28-4.20 (2H, m, Gal-H6a, CH2Ph), 

4.02-3.98 (m, 1H, Gal-H6b), 3.94-3.84 (m, 3H, Fuc-H2, Fuc-H3, Gal-H2), 3.69-3.52 (m, 4H, 

CH2CH2OCH3, MeCy-H1, CH2Ph), 3.40 (s, 1H, Gal-H5), 3.25 (s, 3H, CH2CH2OCH3), 3.18 

(s, 1H, Fuc-H4), 3.14 (t, 3J = 9.5Hz, MeCy-H2), 2.66 (td, J =1.8, 6.2Hz, 2H, CH2CH2OCH3), 
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2.00 (m, 1H, MeCy), 1.65-1.43 (m, 3H, MeCy), 1.20-1.17 (m, 2H, MeCy), 1.06-0.90 (m, 7H 

Fuc-H6, MeCy); 13C NMR (125.8 MHz, CDCl3): ! ! 171.6 (COCH2CH2OCH3), 139.7, 139.5, 

138.7, 138.1, 128.9, 128.8, 128.3, 128.2, 128.0, 127.6, 127.5, 127.2, 127.0, 125.9 (24C, Ar-

C), 101.2 (Gal-C1), 99.7 (CHPh), 98.6 (Fuc-C1), 82.4 (MeCy-C2), 80.2 (MeCy-C1), 79.7 

(Fuc-C3), 78.8 (Fuc-C4), 75.6 (Fuc-C2), 74.9, 74.6 (2C, CH2Ph), 73.9 (Gal-C3), 73.6 (Gal-

C4), 71.4 (CH2Ph), 69.4 (Gal-C6), 68.3 (Gal-C2), 68.1 (CH2CH2OCH3), 66.3, 66.2 (Fuc-C5, 

Gal-C5), 58.9 (CH2CH2OCH3), 39.6 (MeCy-C3), 35.2 (CH2CH2OCH3), 33.8 (MeCy-C4), 

31.5 (MeCy-C6), 23.4 (MeCy-C5), 18.9 (MeCy-CH3), 16.7 (Fuc-C6); MS (ESI) m/z: calcd 

for C51H62NaO13
+ [M+Na]+: 905.41; found: 905.47.  

 

4,6-O-Benzylidene-3-O-((R)-tetrahydrofuran-2-carboxyl)-"-D-galactopyranosyl-(1"1)-

[2,3,4-tri-O-benzyl-# -L-fucopyranosyl-(1"2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 

4.8d. 

According to general procedure B, 1.14 (70 mg, 0.088 mmol), dibutyltin oxide (33 mg, 0.133 

mmol) and molecular sieves (0.05 g) were reacted in anhydrous toluene (0.5 mL). 4.5 (15 

mg, 0.111 mmol) was added. Column chromatography on silica (CH2Cl2/MeOH) afforded 

4.8d as white foam (54 mg, 0.060 mmol, 69%).  
1H NMR (500.1 MHz, CDCl3): ! 7.56-7.00 (m, 20H, Ar-H), 5.49 (s, 1H, CHPh), 4.93-4.85 

(m, 2H, Fuc-H1, Gal-H3), 4.78 (m, 1H, Fuc-H5), 4.75 (A of AB, 2J = 11.6Hz, 1H, CH2Ph), 

4.64 (B of AB, 2J = 11.6Hz, 1H, CH2Ph), 4.59-4.51 (m, 3H, CH2Ph, THF-H1), 4.33-4.29 (m, 

2H, Gal-H1, Gal-H4), 4.28-4.22 (2H, m, Gal-H6a, CH2Ph), 4.06-3.97 (m, 2H, Gal-H6b, 

THF-H4a), 3.95-3.83 (m, 4H, Fuc-H2, Fuc-H3, Gal-H2, THF-H4b), 3.64-3.54 (m, 2H, 

MeCy-H1, CH2Ph), 3.41 (s, 1H, Gal-H5), 3.19 (s, 1H, Fuc-H4), 3.13 (t, 3J = 9.5Hz, MeCy-

H2), 2.26 (m, 1H, THF-H2a), 2.05 (m, 1H, THF-H2b), 1.99 (m, 1H, MeCy), 1.95-1.80 (m, 

2H, THF-H3a,b), 1.62-1.47 (m, 3H, MeCy), 1.31-1.09 (m, 2H, MeCy), 1.06-0.86 (m, 7H 

Fuc-H6, MeCy); 13C NMR (125.8 MHz, CDCl3): ! ! 173.7 (THF-CO), 139.6, 139.5, 138.7, 

138.1, 128.9, 128.8, 128.3, 128.2, 128.0, 127.6, 127.5, 127.2, 127.0, 125.8 (24C, Ar-C), 

101.2 (Gal-C1), 99.7 (CHPh), 98.6 (Fuc-C1), 82.5 (MeCy-C2), 80.3 (MeCy-C1), 79.7 (Fuc-

C3), 78.8 (Fuc-C4), 76.7 (THF-C1), 75.6 (Fuc-C2), 74.9, 74.6 (2C, CH2Ph), 73.8, 73.6 (2C, 

Gal-C3, Gal-C4), 71.5 (CH2Ph), 69.7 (THF-C4), 69.4 (Gal-C6), 68.4 (Gal-C2), 66.3, 66.2 

(Fuc-C5, Gal-C5), 39.6 (MeCy-C3), 33.7 (MeCy-C4), 31.5 (MeCy-C6), 30.7 (THF-C2), 29.8 

(THF-C3), 23.4 (MeCy-C5), 18.9 (MeCy-CH3), 16.7 (Fuc-C6); MS (ESI) m/z: calcd for 

C52H62NaO13
+ [M+Na]+: 917.4; found: 917.5. 
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3-O-(2-methoxyacetyl)-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.1b. 

According to general procedure A, 4.8b (53 mg) was hydrogenated and purified to give 4.1b 

as a white fluffy solid (10 mg, 0.020 mmol, 32%). 
1H NMR (500.1 MHz, CD3OD): # "5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.94-4.86 (m, 1H, Fuc-

H5), 4.79 (dd, 3J = 2.8, 10.1Hz, 1H, Gal-H3), 4.39 (d, 3J = 7.7Hz, 1H, Gal-H1), 4.16 (s, 2H, 

COCH2OCH3), 4.02 (d, 3J = 2.8Hz, 1H, Gal-H4), 3.84 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H3), 

3.77-3.64 (m, 6H, Fuc-H2, Fuc-H4, Gal-H2, Gal H6a, Gal-H6b, MeCy-H1), 3.52 (t, 3J = 

6.0Hz, 1H, Gal-H5), 3.44 (s, 3H, COCH2OCH3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.14 

(m, 1H, MeCy), 1.72-1.57 (m, 3H, MeCy), 1.40-1.22 (m, 2H, MeCy), 1.19 (d, 3J = 6.6Hz, 

3H, Fuc-H6), 1.14 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.11-1.02 (m, 1H, MeCy); 13C NMR 

(125.8 MHz, CD3OD): # 171.9 (COCH2OCH3), 102.3 (Gal-C1), 100.5 (Fuc-C1), 84.6 

(MeCy-C2), 80.1 (MeCy-C1), 78.0 (Gal-C3), 75.9 (Gal-C5), 73.8 (Fuc-C4), 71.4 (Fuc-C3), 

70.3 (2C, COCH2OCH3, Fuc-C2), 69.6 (Gal-C2), 67.7 (Gal-C4), 67.5 (Fuc-C5), 62.6 (Gal-

C6), 59.5 (COCH2OCH3), 40.4 (MeCy-C3), 34.9 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-

C5), 19.6 (MeCy-CH3), 16.7 (Fuc-C6); ["]D -62.2 (c 0.60, MeOH); HR-MS (ESI) m/z: calcd 

for C22H38NaO13 [M+Na]+: 533.2205 ; found: 533.2205. 

 

3-O-(3-Methoxypropanoyl)-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl-(1!2)]-

(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.1c. 

According to general procedure A, 4.8c (30 mg, 0.034 mmol) was hydrogenated and purified 

to give 4.1c as a white fluffy solid (4.5 mg, 0.009 mmol, 25%). 
1H NMR (500.1 MHz, CD3OD): # "4.99 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.97-4.86 (m, 1H, Fuc-

H5), 4.71 (dd, 3J = 3.1, 10.1Hz, 1H, Gal-H3), 4.37 (d, 3J = 7.7Hz, 1H, Gal-H1), 3.99 (d, 3J = 

2.6Hz, 1H, Gal-H4), 3.84 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H3), 3.79-3.62 (m, 8H, Fuc-H2, 

Fuc-H4, Gal-H2, Gal H6a, Gal-H6b, MeCy-H1, COCH2CH2OCH3), 3.50 (t, 3J = 6.0Hz, 1H, 

Gal-H5), 3.34 (s, 3H, COCH2CH2OCH3), 3.20 (t, 3J = 9.3Hz, 1H, MeCy-H2), 2.68 (t, 2H, 

COCH2CH2OCH3), 2.12 (m, 1H, MeCy), 1.72-1.57 (m, 3H, MeCy), 1.39-1.22 (m, 2H, 

MeCy), 1.19 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.06 (m, 1H, 

MeCy); 13C NMR (125.8 MHz, CD3OD): # 172.9 (COCH2CH2OCH3), 102.4 (Gal-C1), 100.5 

(Fuc-C1), 84.6 (MeCy-C2), 80.1 (MeCy-C1), 77.8 (Gal-C3), 76.0 (Gal-C5), 73.9 (Fuc-C4), 

71.4 (Fuc-C3), 70.4, 69.7 (2C, Fuc-C2, Gal-C2), 69.1 (COCH2CH2OCH3), 67.6, 67.5 (2C, 

Fuc-C5, Gal-C4), 62.6 (Gal-C6), 59.0 (COCH2CH2OCH3), 40.4 (MeCy-C3), 35.7 

(COCH2CH2OCH3), 34.9 (MeCy-C4), 31.9 (MeCy-C6), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 



 

 127 

16.7 (Fuc-C6); [!]D -63.1 (c 0.76, MeOH); HR-MS (ESI) m/z: calcd for C23H40NaO13 

[M+Na]+: 547.2361; found: 547.2365. 

 

3-O-((R)-tetrahydrofuran-2-carboxyl)-"-D-galactopyranosyl-(1!1)-[! -L-fucopyranosyl-

(1!2)]-(1R,2R,3S)-3-methyl-cyclohexane-1,2-diol 4.1d. 

According to general procedure A, 4.8d (43 mg, 0.048 mmol) was hydrogenated and purified 

to give 4.1d as white fluffy solid (5.4 mg, 0.010 mmol, 21%). 
1H NMR (500.1 MHz, CD3OD): # "4.99 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.95-4.86 (m, 1H, Fuc-

H5), 4.76 (dd, 3J = 3.2, 10.1Hz, 1H, Gal-H3), 4.57 (dd, 3J = 5.1, 8.6Hz, 1H, THF-H1), 4.37 

(d, 3J = 7.7Hz, 1H, Gal-H1), 4.04-3.95 (m, 2H, Gal-H4, THF-H4a), 3.92-3.86 (m, 1H, THF-

H4b), 3.83 (dd, 3J = 3.3, 10.2Hz, 1H, Fuc-H3), 3.77-3.62 (m, 6H, Fuc-H2, Fuc-H4, Gal-H2, 

Gal H6a, Gal-H6b, MeCy-H1), 3.51 (t, 3J = 6.1Hz, 1H, Gal-H5), 3.20 (t, 3J = 9.3Hz, 1H, 

MeCy-H2), 2.35-2.24 (m, 1H, THF-H2a), 2.19-2.08 (m, 2H, MeCy, THF-H2b), 2.01-1.87 

(m, 2H, THF-H3a,3b), 1.73-1.57 (m, 3H, MeCy), 1.38-1.23 (m, 2H, MeCy), 1.19 (d, 3J = 

6.6Hz, 3H, Fuc-H6), 1.13 (d, 3J = 6.3Hz, 3H, MeCy-CH3), 1.10-1.02 (m, 1H, MeCy); 13C 

NMR (125.8 MHz, CD3OD): # 174.8 (THF-CO), 102.5 (Gal-C1), 100.4 (Fuc-C1), 84.6 

(MeCy-C2), 80.2 (MeCy-C1), 77.8 (2C, Gal-C3, THF-C1), 76.0 (Gal-C5), 73.8 (Fuc-C4), 

71.4 (Fuc-C3), 70.4 (2C, Fuc-C2, THF-C4), 69.8 (Gal-C2), 67.8 (Gal-C4), 67.5 (Fuc-C5), 

62.6 (Gal-C6), 40.4 (MeCy-C3), 34.9 (MeCy-C4), 32.0 (MeCy-C6), 31.2 (THF-C2), 26.0 

(THF-C3), 24.2 (MeCy-C5), 19.6 (MeCy-CH3), 16.7 (Fuc-C6); [!]D -68.7 (c 0.87, MeOH); 

HR-MS (ESI) m/z: calcd for C24H40NaO13 [M+Na]+: 559.2361; found: 559.2365. 
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2.5 Derivatives of 2,2-dialkyl-2-O-glycosyl glycolic acid as E-selectin 

antagonists 

2.5.1 Design, synthesis, and characterization of 2,2-dialkyl-2-O-glycosyl glycolic acid 

derivatives as E-selectin antagonists 

 

Author contributions: F.P.C. Binder: design and synthesis, manuscript; M. Smie!ko: 

molecular modeling studies; K. Lemme: static binding assay.  
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Abstract 

Selectins have been recognized as promising targets for the development of anti-

inflammatory drugs. Since the carbohydrate lead structure sialyl Lewisx (sLex) exhibits poor 

pharmacokinetic and pharmacodynamic properties and requires a complex synthesis, efforts 

were directed to replace carbohydrate residues with less complex and less polar mimics. For 

E-selectin antagonists, mostly derivatives of (S)-lactic acid were used to replace the sialic 

acid moiety of sLex. As molecular dynamics simulations indicated that derivatives of 2,2-

dialkyl glycolic acid might be suited as replacements as well, two glycomimetic derivatives 

were synthesized and tested for their ability to block E-selectin in a competitive binding 

assay. 
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1. Introduction 

Selectins, namely E-, P-, and L-selectin, are Ca2+-dependent carbohydrate binding proteins 

that mediate the initial step of leukocyte recruitment to sites of inflammation. Blocking the 

interaction of selectins with their physiological ligands is consequently considered a 

promising therapeutic approach to tackle chronic and acute inflammatory diseases like stroke, 

psoriasis or reperfusion injuries.[1] Most drug discovery programs started from the 

tetrasaccharide sialyl Lewisx (1, Figure 1), as it is the common carbohydrate binding epitope 

recognized by all three selectins.[2] However, the development of carbohydrate derived drugs 

is strongly hampered by the intrinsic properties of carbohydrates, as these typically exhibit 

poor pharmacokinetic and pharmacodynamic properties and require complex synthesis. A 

typical strategy to overcome these drawbacks is the stepwise replacement of carbohydrate 

residues with (carbocyclic) mimics. In the ideal case, this leads to glycomimetics of reduced 

complexity, increased affinity, and improved pharmacokinetic properties. This strategy was 

also applied to the rational design of selectin antagonists.[3] 
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Figure 1 Left: the tetrasaccharide sialyl Lewisx (1) and its pharmacophoric groups: hydroxyl groups 
of L-Fuc[4], hydroxyl groups in 4- and 6- position of D-Gal[5] and the carboxylic acid residue of sialic 
acid[6]. Right: E-selectin antagonist 2.[7] 

N-Acetyl-D-glucosamine (D-GlcNAc), which does not bear pharmacophoric groups, but 

rather acts as a spacer between L-fucose (L-Fuc) and D-galactose (D-Gal), was replaced by 

numerous linkers.[8,9] It was shown that the affinity of the resulting mimetics correlated with 

the ability of the linker to pre-organize the Lewisx core.[9] Conformationally restricted linkers 

like (R,R)-cyclohexane-1,2-diol were better suited than more flexible ones like ethane-1,2-

diol. Sialic acid, which contributes to binding mainly with its carboxy group, [6,10] was 

typically replaced by glycolic acid, lactic acid, or derivatives thereof.[11] Pre-organization also 

turned out to be essential for the carboxy group of sialic acid, i.e. derivatives of (S)-lactic acid 

were superior to derivatives of (R)-lactic acid and to glycolic acid. Efforts to replace both D-

GlcNAc and sialic acid simultaneously resulted in antagonist 2 (Figure 1), which showed a 

80-fold improvement of affinity compared to the lead structure sLex (1).[7]  
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Though derivatives of lactic acid have been studied extensively as mimics of sialic acid,[12,13] 

no replacements with 2,2-dialkyl substituted glycolic acid or derivatives thereof have been 

reported. Given the fact that neither the glycerol side chain nor the acetamide moiety of sialic 

acid contribute to binding,[6,10] we wondered if sialic acid could be replaced by a simple 

carbocyclic mimic (! 3, Figure 2) as well. In this short communication, we report on the 

design, synthesis, and biological evaluation of 2,2-dialkyl substituted glycolic acids as 

replacements for sialic acid. 

2. Results and Discussion 

The ability to properly orient the carboxylic acid residue of sialic acid in the bioactive 

conformation is a key prerequisite for novel sialic acid mimics. Consequently, we used a 

molecular modeling tool developed by Ernst and Kolb[13] to assess the degree of pre-

organization of potential sialic acid replacements. 

Based on a Monte Carlo (jumping between wells)/stochastic dynamics [MC(JBW)/SD] 

simulation,[13] this tool allows to compare the calculated conformational preference of the 

mimetic with the experimentally observed conformation of sLex bound to E-selectin,[14] 

which defines the bioactive window. For a graphical presentation, two internal coordinates, 

the acid orientation and the core conformation were defined and the relative population of the 

conformations was indicated with a color code (Figure 2). Mimetics populating the bioactive 

window are predicted to be better selectin ligands than those outside the window.  

To rule out conformational bias caused by a ring flip of 3, we also planned the synthesis of 

non-cyclic 4. According to the conformational preferences found for 3 and 4, both 

compounds should be very well pre-organized (Figure 2).  
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Figure 2 The conformational preferences calculated for 3 (left) and 4 (right) nicely superimpose with 
the experimentally observed conformation of sLex bound to E-selectin (blue rectangle). Relative 
population of the conformations is indicated with a color code ranging from white to dark red. The 
darker the color, the higher is the population of the conformation. 

Synthesis 

Glycomimetics of type 2 are typically synthesized by SN2-type alkylation of an appropriately 

protected trisaccharide mimic with a lactic acid derivative, activated as triflate. However, this 

strategy could not be applied to the synthesis of compounds 3 and 4, as the sterically 

demanding tertiary triflates are not suited for SN2-type reactions. Since, to the best of our 

knowledge, no method is described for the synthesis of 2,2-dialkyl-2-O-glycosyl-glycolic 

acids, and the harsh conditions usually applied for the ether formation with tert-alcohols were 

considered incompatible with carbohydrate chemistry, an alternative route had to be found 

(Table 1). Alkylation of galactoside 5[15] with spiroepoxide 6[16] was planned to give 7 regio- 

and chemoselectively under acidic conditions. The newly formed primary hydroxy group 

should serve as precursor for the carboxy group. To reduce steric constraints and thereby 

increase the reactivity of the galactoside, the 2-O and 4-O position of galactoside 5 were not 

protected. BF3·Et2O catalyzed alkylation of 5 with spiroepoxide 6 was repeated several times 

with slightly modified conditions (Table 1). Unfortunately, the rate of conversion was rather 

low and several attempts to increase it failed. Higher concentrations of 5 did not affect the 

3 4 
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conversion, and higher temperatures, stronger Lewis acids, or increased concentrations of 6 

led to the enhanced formation of side products (results not shown). Multiple alkylation and 

hemiacetal formation due to hydride shift were observed as main side reactions.  

Table 1 Alkylation of 5 with spiroepoxide 6 using different reaction conditions. 
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(0.12 eq.)
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Entry c(6) 

[M]   

ratio 

5/6 

T [°C ]  t [min]  Recovered 5 Yield  

7 + 8 

Ratio 7/8 

(NMR) 

A 2.9 2/1 -15 to 0 55 75% 7% 1.0/1.2 

B 2.2 1.7/1 -15  50 84% 7% 1.0/1.4 

C 2.3 1.4/1 -15 55 67% 5% 1.0/1.0 

D 0.4 0.7/1 -18 135 72% 8% 1.0/1.5 

 

Finally, the reaction conditions shown in entry D were successfully applied to the synthesis 

of the tetrasaccharide mimetics 11 and 12 (Scheme 1). Yields and conversion of the 

alkylation reactions were comparable to the alkylation of 5 and proved the general 

applicability of the reaction conditions to the synthesis of more complex glycomimetics. 

TEMPO mediated chemoselective oxidation[17] of 11 and 12 provided lactones 13 and 14. 

The oxidation led to a significant low-field shift of the proton in 2-position of D-Gal (!"= 0.8 

ppm), confirming the identity of 13 and 14. Debenzylation by hydrogenolysis finally yielded 

the lactones 15 and 16, which were hydrolyzed to give 3 and 4. The identity of compounds 3 

and 4 was unambiguously confirmed by HMBC, as a crosspeak between the tertiary carbon 

of the sialic acid mimic and H-3 of D-Gal was observed. 
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Scheme 1 a) 6 or 10, BF3·Et2O, CH2Cl2, -18°C, (11: 4%, 9: 74%), (12: 6%, 9: 56%); b) NaOCl, 
TEMPO, NaBr, Bu4NBr, NaHCO3, CH2Cl2, H2O, 0°C to r.t., 45 min to 80 min, (13: 68%, 14: 67%); 
c) H2, Pd(OH)2/C, dioxane, H2O, r.t., 8 h, (15: 81%, 16: 77%); d) NaOH, dioxane, H2O, r.t., 5 h, (3: 
70%, 4: 70%). 

Evaluation of 3 and 4 as E-selectin antagonists 

The affinity of selectin antagonists to E-selectin was evaluated in a competitive binding 

assay, utilizing a polyacrylamide-type glycoconjugate as synthetic ligand for immobilized E-

selectin.[18] Briefly, microtiter plates were coated with E-selectin/IgG, blocked with BSA, and 

incubated with a fixed concentration of sLea-polyacrylamide (sLea-PAA) either in presence 

or absence of the antagonists. The binding reaction was revealed by the addition of TMB 

substrate reagent and quantified spectrophotometrically at 450 nm. The IC50 defines the 

molar concentration of the test compound that reduces the maximal specific binding of sLea-

PAA polymer to E-selectin by 50%. The affinities are reported relative to TMSE protected 

sLex (17) as rIC50 in Table 2. The relative IC50 (rIC50) is the ratio of the IC50 of the test 

compound to the IC50 of 17. To assess the impact of the sialic acid exchange, affinity data is 

also provided for compounds 2 and 18.  

Antagonists 3 (entry C) and 4 (entry D) showed a dramatic loss in affinity compared to 

cyclohexyllactic acid containing analogue 2 (entry A) and sialic acid containing 18 (entry B, 

Table 2). The affinity of 3 was 50 fold weaker than the one of 18. The low affinity of 3 could 

be the consequence of a ring flip of the cyclohexane moiety, resulting in an equatorial 

orientation of the carboxy group. In the bioactive conformation, this orientation leads to a 
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steric clash of the cyclohexane moiety and D-Gal. However, non-cyclic 4 bound in the same 

range as 3, arguing against this hypothesis. Furthermore, both mimetics should be perfectly 

pre-organized and no steric clash of the alkyl substituents with the protein is to be expected 

according to MD simulations. A possible explanation for the unexpectedly poor binding 

affinities might be a binding mode different from the one of sLex, which had been the basis 

for our modeling studies. 

Table 2 Relative IC50 values (rIC50) of compounds 3, 4 and reference compounds 2 and 18. IC50 are 
scaled on TMSE-sLex 17 (rIC50=1; IC50 = 0.88 mM). 
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Entry Compound R rIC50 (E-sel) 

A 2  

O ONa

 

0.01 

B 18 O
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0.03 

C 3 
O ONa

 
1.8 

D 4 
O ONa

 
1.2 

 

3. Conclusion 

Two derivatives of glycolic acid were explored as replacements for sialic acid in E-selectin 

antagonists. According to MD simulations, both mimics should be able to properly pre-

organize the carboxylic acid moiety. Nevertheless, a significant drop in affinity was observed 

compared to sialic acid or (S)-cyclohexyllactic acid bearing derivatives. 
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Experimental Part 

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer. 

Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, HSQC, 

HMQC, HMBC). Chemical shifts are given in ppm and were assigned in relation to the 

solvent signals on the !-scale[19] or to tetramethylsilane (0 ppm) as internal standard. 

Coupling constants J are given in Hertz (Hz). Multiplicities were specified as follows: s 

(singlet), d (doublet), dd (doublet of a doublet), t (triplet), q (quartet), m (multiplet). For 

assignment of resonance signals to the appropriate nuclei the following abbreviations were 

used: Cy (cyclohexyl), Fuc (fucose), Gal (galactose), MeCy (3-methylcyclohexane-1,2-diol).  

Reactions were monitored by TLC using glass plates coated with silica gel 60 F254 (Merck) 

and visualized by using UV light and/or by charring with a molybdate solution (a 0.02 M 

solution of ammonium cerium sulfate dihydrate and ammonium molybdate tetrahydrate in 

aqueous 10% H2SO4.  

Column chromatography was performed using automated systems (RediSep Companion) 

from Teledyne Isco with normal phase RediSep columns from the same manufacturer or 

reversed-phase columns containing LiChroprep RP-18 (40-63 "m) from Merck KGaA, 

Darmstadt, Germany. LC-MS separations were carried out using Sunfire C18 columns (19 x 

150 mm, 5.0 "m) on a Waters 2525 LC, equipped with Waters 2996 photodiode array and 

Waters micromass ZQ MS for detection.  

Solvents were purchased from Sigma-Aldrich or Acros. Solvents were dried prior to use 

where indicated. Tetrahydrofurane (THF) was dried by refluxing with sodium/benzophenone 

and distilled immediately before use. Dichloromethane (CH2Cl2) and dimethoxyethane 

(DME) were dried by filtration over Al2O3 (Fluka, type 5016 A basic). Methanol was dried 

by distillation from sodium methoxide, DMF by distillation from calcium hydride. Optical 

rotations were measured using a Perkin-Elmer Polarimeter 341. Electron spray ionization 

mass spectra (ESI-MS) were obtained on a Waters micromass ZQ. HRMS analysis were 

carried out using a Agilent 1100 LC equipped with a photodiode array detector and a 

Micromass QTOF I equipped with a 4 GHz digital-time converter. Microanalysis was 

performed at the Institute of Organic Chemistry at the University of Basel, Switzerland. 

Purity of final compounds was determined on an Agilent 1100 HPLC; detector ELS, Waters 

2420; column: Waters Atlantis dC18, 3 µm, 4.6 x 75 mm; eluents: A: water + 0.1% TFA; B: 

90% acetonitrile + 10% water + 0.1% TFA; depending on the polarity of analytes, gradients 
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were applied as indicated. A) linear gradient: 0 - 1 min 5% B; 1 - 20 min 5 to 95% B; flow: 0.5 

mL/min; B) linear gradient: 0 - 1 min 5% B; 1 - 20 min 5 to 70% B; flow: 0.5 mL/min. 

 

2-Propen-1-yl 3-O-(1-hydroxymethylcyclohexyl)-6-O-(tert-butyldiphenylsilyl)-! -D- 

galactopyranoside 7  

and  

2-Propen-1-yl 2-O-(1-hydroxymethylcyclohexyl)-6-O-(tert-butyldiphenylsilyl)-! -D- 

galactopyranoside 8 using condition D. 

To a stirred solution of 5 (1.00 g, 2.18 mmol) and 6 (0.150 g, 1.34 mmol) in anhydrous 

CH2Cl2 (5.0 mL) under argon was slowly added freshly distilled BF3 etherate (0.020 mL, 0.16 

mmol) at -18°C. The solution was stirred at -18°C and after 40 min and after 90 min, 

additional 6 (0.100 g, 0.89 mmol) and BF3 etherate (0.020 mL, 0.16 mmol) were added. After 

2 h and 15 min, the reaction was quenched with satd. aqueous NaHCO3 (2.0 mL) and brine 

(30 mL). The aqueous layer was extracted with CH2Cl2 (3 · 30 mL) and the combined organic 

layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. Column 

chromatography on silica (PE/EtOAc) yielded starting material 5 (720 mg, 1.57 mmol, 72%) 

and an impure mixture of 7 and 8 (140 mg), which was purified in a second chromatography 

(PE/MTBE) to give 3-O alkylated 7 (35 mg, 0.06 mmol, 3%) and 2-O alkylated 8 (60 mg, 

0.11 mmol, 5%). 

7: 1H NMR (500.1 MHz, CDCl3): " 7.72-7.64, 7.46-7.34 (2m, 10H, Ar-H), 5.90 (dddd, J = 

5.2, 6.6, 10.4, 17.1Hz, 1H, OCH2CHCH2), 5.27 (m, 1H, OCH2CHCH2), 5.19 (m, 1H, 

OCH2CHCH2), 4.35 (m, 1H, OCH2CHCH2), 4.27 (bd, 3J = 7.8Hz, 2H, Gal-H1, Cy-OH), 4.08 

(m, 1H, OCH2CHCH2), 3.99 (dd, 3J = 6.6Hz, 2J = 10.2Hz, 1H, Gal-H6a), 3.93 (d, 3J = 

3.1Hz, Gal-H4), 3.90 (dd, 3J = 6.0Hz, 2J = 10.2Hz, 1H, Gal-H6b), 3.76-3.66 (m, 2H, Gal-H2, 

Cy-CH2OH), 3.60 (dd, 3J = 3.1, 9.4Hz, 1H, Gal-H3), 3.51 (bt, 3J = 6.3Hz, 1H, Gal-H5), 3.32 

(dd, J = 10.3, 12.3 Hz, 1H, Cy-CH2OH), 3.22 (s, 1H, Gal-C2-OH), 2.71 (s, 1H, Gal-C4-OH), 

1.89 (m, 1H, Cy), 1.65-1.23 (m, 9H, Cy), 1.06 (s, 9H, SiPh2C(CH3)3); 13C NMR (125.8 MHz, 

CDCl3): " 135.7, 133.6, 133.4, 129.9, 127.8 (12C, Ar-C), 133.8 (OCH2CHCH2), 118.2 

(OCH2CHCH2), 101.7 (Gal-C1), 78.9 (Cy-Cq), 75.0 (Gal-C5), 72.2 (Gal-C3), 71.3 (Gal-C2), 

69.9 (OCH2CHCH2), 68.9 (Gal-C4), 65.1 (Cy-CH2OH), 62.6 (Gal-C6), 33.9, 31.3 (2C, Cy), 

26.9 (3C, SiC(CH3)3), 26.0, 22.4, 22.2 (3C, Cy), 19.4 (SiC(CH3)3); [#]D -1.39° (c 0.90, 

CHCl3); HR-MS (ESI) m/z: calcd for C32H46NaO7Si+ [M+Na]+: 593.2905; found: 593.2904.  
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8: 1H NMR (500.1 MHz, CDCl3): ! 7.72-7.64, 7.46-7.34 (2m, 10H, Ar-H), 5.92 (m, 1H, 

OCH2CHCH2), 5.28 (m, 1H, OCH2CHCH2), 5.18 (m, 1H, OCH2CHCH2), 4.36 (m, 1H, 

OCH2CHCH2), 4.23 (d, 3J = 7.5Hz, 1H, Gal-H1), 4.09-3.99 (m, 4H, Cy-OH, Gal-H4, Gal-

C3-OH, OCH2CHCH2), 3.95-3.86 (m, 2H, Gal-H6a, Gal-H6b), 3.70 (dd, 3J = 7.8, 8.9Hz, 1H, 

Gal-H2), 3.64 (d, 2J = 12.4Hz, 1H, Cy-CH2OH), 3.56-3.50 (m, 2H, Cy-CH2OH, Gal-H3), 

3.47 (dd, 3J = 5.6Hz, 2J = 11.3 Hz, 1H, Gal-H5), 3.01 (d, 3J = 4.3Hz, 1H, Gal-C4-OH), 1.76-

1.23 (m, 10H, Cy), 1.05 (s, 9H, SiPh2C(CH3)3); 13C NMR (125.8 MHz, CDCl3): ! 135.7, 

133.2, 133.0, 130.0, 127.9 (12C, Ar-C), 133.8 (OCH2CHCH2), 118.0 (OCH2CHCH2), 102.2 

(Gal-C1), 79.2 (Cq), 74.8 (Gal-C3), 74.2 (Gal-C5), 71.8 (Gal-C2), 70.3 (OCH2CHCH2), 69.5 

(Gal-C4), 64.1 (Cy-CH2OH), 63.4 (Gal-C6), 33.9, 32.3 (2C, Cy), 26.9 (3C, SiC(CH3)3), 26.0, 

23.2, 23.1 (3C, Cy), 19.3 (SiC(CH3)3); ["]D -13.9 (c 2.22, CHCl3); HR-MS (ESI) m/z: calcd 

for C32H46NaO7Si+ [M+Na]+: 593.2905; found: 593.2904. 

 

6-O-Benzyl-3-O-(1-(hydroxymethyl)cyclohexyl)-#-D-galactopyranosyl-(1!1)-[2,3,4-tri-

O-benzyl-" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 11. 

To a stirred solution of 9 (0.265 g, 0.332 mmol) and 6 (0.022 g, 0.196 mmol) in anhydrous 

CH2Cl2 (0.8 mL) under argon was added BF3 etherate (0.004 mL, 0.032 mmol) at -18°C, and 

the solution was stirred at -18°C. After 40 min, additional 6 (0.022 g, 0.196 mmol) and BF3 

etherate (0.004 mL, 0.032 mmol) were added. After another 60 min, the solution was 

quenched with satd. aqueous NaHCO3 (1.0 mL) and brine (10 mL). The aqueous layer was 

extracted with CH2Cl2 (3 · 10 mL) and the combined organic layers were dried over Na2SO4, 

filtered, and concentrated under reduced pressure. Column chromatography on silica 

(PE/EtOAc) afforded starting material 9 (0.195 g, 0.088 mmol, 74%) and impure 11 (25 mg), 

which was further purified via HPLC to yield pure 11 (13 mg, 0.014 mmol, 4%). 
1H NMR (500.1 MHz, CDCl3): ! 7.33-7.12 (m, 20H, Ar-H), 5.04 (d, 3J = 3.4Hz, 1H, Fuc-

H1), 4.87 (A of AB, 2J = 11.4Hz, 1H, CH2Ph), 4.76-4.64 (m, 4H, CH2Ph), 4.61 (B’’ of 

A’’B’’, 2J = 11.5Hz, 1H, CH2Ph), 4.47 (s, 2H, CH2Ph), 4.42 (q, 2J = 3J = 6.3Hz, 1H, Fuc-

H5), 4.27 (m, 1H, Gal-H1), 3.98 (dd, 3J = 3.4, 10.3Hz, 1H, Fuc-H2), 3.92 (dd, 3J = 2.4, 

10.3Hz, 1H, Fuc-H3), 3.75 (s, 1H, Gal-H4), 3.73-3.64 (m, 2H, Gal-H6a, MeCy-H1), 3.64-

3.56 (m, 3H, Fuc-H4, Gal-H6b, Cy-CH2OH), 3.55-3.51 (m, 2H, Gal-H2, Gal-H3), 3.49 (t, 3J 

= 6.1Hz, Gal-H5), 3.25 (d, 2J = 12.8Hz, Cy-CH2OH), 3.17 (t, 3J = 9.3Hz, 1H, MeCy-H2), 

2.06 (m, 1H, MeCy), 1.76 (m, 1H, MeCy), 1.62-1.08 (14H, MeCy, Cy), 1.06 (d, 3J = 6.4Hz, 

3H, Fuc-H6), 1.02 (d, 3J = 6.2Hz, 3H, MeCy-CH3), 0.91 (m, 1H, MeCy); 13C NMR (125.8 

MHz, CDCl3): ! " 139.1, 138.5, 138.2, 128.6, 128.5, 128.4, 128.3, 127.9, 127.8, 127.6, 127.5 
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(24C, Ar-C), 99.8 (Gal-C1), 97.6 (Fuc-C1), 83.9 (MeCy-C2), 79.8 (Fuc-C3), 79.0 (Cy-Cq), 

78.8, 78.4 (2C, Fuc-C4, MeCy-C1), 76.5 (Fuc-C2), 75.1, 74.2, 73.8 (3C, CH2Ph), 73.4 (Gal-

C5), 72.9 (CH2Ph), 72.1 (Gal-C3), 70.6 (Gal-C2), 69.2 (Gal-C4), 69.1 (Gal-C6), 66.9 (Fuc-

C5), 64.8 (Cy-CH2OH), 38.6 (MeCy-C3), 34.1, 33.8, 31.5, 31.4, 26.0, 23.3, 22.6, 22.4 (8C, 

5C Cy, 3C MeCy), 19.2 (MeCy-CH3), 17.0 (Fuc-C6); [!]D - 36.8 (c 0.50, CHCl3); MS (ESI) 

m/z: calcd for C54H70NaO12
+ [M+Na]+: 933.48; found: 933.56; elemental analysis calcd (%) 

for C54H70O12 (911.13): C 71.19 H 7.74; found: C 71.06 , H 7.76. 

 

6-O-Benzyl-3-O-(1-hydroxy-2-methylpropan-2-yl)-"-D-galactopyranosyl-(1!1)-[2,3,4-

tri-O-benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 12. 

To a stirred solution of 9 (0.500 g, 0.626 mmol) and 2,2-dimethyloxirane 10 (0.040 mL, 

0.450 mmol) in anhydrous CH2Cl2 (2.0 mL) under argon was added BF3 etherate (0.009 mL, 

0.072 mmol) at -18°C, and the solution was stirred at -18°C. After 40 min, additional 2,2-

dimethyloxirane (0.040 mL, 0.450 mmol) and BF3 etherate (0.009 mL, 0.072 mmol) were 

added. After another 25 min, the solution was quenched with satd. aqueous NaHCO3 (2.0 

mL) and brine (30 mL). The aqueous layer was extracted with CH2Cl2 (3 · 30 mL) and the 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure. Column chromatography on silica (PE/MTBE) afforded starting material 9 (0.280 

g, 0.350 mmol, 56%) and impure 12 (70 mg), which was further purified via HPLC to yield 

pure 12 (30 mg, 0.034 mmol, 6%). 
1H NMR (500.1 MHz, CDCl3): # 7.39-7.12 (m, 20H, Ar-H), 5.03 (d, 3J = 3.5 Hz, 1H, Fuc-

H1), 4.87 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.75-4.59 (m, 4H, CH2Ph), 4.53 (B of AB, 2J 

= 11.5Hz, 1H, CH2Ph), 4.49-4.45 (m, 2H, CH2Ph), 4.42 (q, 3J = 6.2Hz, 1H, Fuc-H5), 4.28 

(d, 3J = 7.6Hz, 1H, Gal-H1), 3.98 (dd, 3J = 3.5, 10.3Hz, 1H, Fuc-H2), 3.92 (dd, 3J = 2.6, 

10.3Hz, 1H, Fuc-H3), 3.75-3.46 (m, 9H, Fuc-H4, Gal-H2, Gal-H3, Gal-H4, Gal-H5, Gal-

H6a,b, MeCy-H1, C(CH3)2CH2OH), 3.20-3.13 (m, 2H, MeCy-H2, C(CH3)2CH2OH), 2.06 (m, 

1H, MeCy), 1.61-1.48 (3H, MeCy), 1.30-1.03 (m, 11H, Fuc-H6, MeCy, C(CH3)2CH2OH), 

1.00 (d, 3J = 6.2Hz, 3H, MeCy-CH3), 0.92 (m, 1H, MeCy); 13C NMR (125.8 MHz, CDCl3): #" 

139.1, 138.5, 138.2, 128.6, 128.5, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.5 (24C, Ar-

C), 99.9 (Gal-C1), 97.7 (Fuc-C1), 83.9 (MeCy-C2), 79.8 (Fuc-C3), 78.5 (MeCy-C1), 78.4 

(Fuc-C4), 77.8 (C(CH3)2CH2OH), 76.5 (Fuc-C2), 75.1, 74.2, 73.8 (3C, CH2Ph), 73.4 (Gal-

C5), 72.9 (2C, CH2Ph, Gal-C3), 70.4 (Gal-C2), 69.5 (Gal-C4), 69.2 (Gal-C6), 66.9 (2C, Fuc-

C5, C(CH3)2CH2OH), 38.6 (MeCy-C3), 33.8 (MeCy-C4), 31.5 (MeCy-C6), 25.9 

(C(CH3)2CH2OH), 23.3 (MeCy-C5), 22.6 (C(CH3)2CH2OH), 19.2 (MeCy-CH3), 17.0 (Fuc-
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C6); [!]D - 66.0 (c 1.28, MeOH); HR-MS (ESI) m/z: calcd for C51H66NaO12 [M+Na]+: 

893.4446; found: 869.4454. 

 

 

6-O-Benzyl-3-O-(carboxycyclohexyl)-2-O-lactone-"-D-galactopyranosyl-(1!1)-[2,3,4-tri-

O-benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 13. 

To a stirred suspension of 11 (100 mg, 0.110 mmol) in CH2Cl2 (3.0 mL) and H2O (0.430 mL) 

at 0°C were added an aqueous solution of NaBr (1 M, 0.070 mL), an aqueous solution of 

Bu4NBr (0.120 mL), TEMPO (5.0 mg, 0.032 mmol), and satd. aq NaHCO3 (0.330 mL). 

Subsequently, an aqueous solution of NaOCl (0.220 mL, 10 to 15% NaOCl) was added and 

the mixture was stirred vigorously at 0°C. After 45 min, the mixture was warmed to r.t., 

diluted with H2O (40 mL), and extracted with CH2Cl2 (2 · 40 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated under reduced pressure. Column 

chromatography on silica (PE/EtOAc) afforded 13 (68 mg, 0.075 mmol, 68%) as white fluffy 

solid. 
1H NMR (500.1 MHz, CDCl3): # 7.37-7.10 (m, 20H, Ar-H), 5.00 (d, 3J = 3.6Hz, 1H, Fuc-

H1), 4.87 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.74 (A’ of A’B’, 2J = 11.6Hz, 1H, CH2Ph), 

4.69-4.64 (m, 3H, CH2Ph, Fuc-H5), 4.59 (B’’ of A’’B’’, 2J = 11.4Hz, 1H, CH2Ph), 4.51 (B 

of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.46-4.42 (m, 3H, CH2Ph, Gal-H1), 4.25 (m, 1H, Gal-H2), 

4.09 (d, 3J = 2.7Hz, 1H, Gal-H4), 3.99 (dd, 3J = 3.6, 10.3Hz, 1H, Fuc-H2), 3.94 (dd, 3J = 

2.6, 10.3Hz, 1H, Fuc-H3), 3.71 (dd, 3J = 6.7Hz, 2J = 8.9Hz, 1H, Gal-H6a), 3.65-3.55 (m, 4H, 

Fuc-H4, Gal-H5, Gal-H6b, MeCy-H1), 3.48 (dd, 3J = 3.0, 9.5Hz, 1H, Gal-H3), 3.20 (t, 3J = 

9.2Hz, 1H, MeCy-H2), 1.96 (m, 1H, MeCy), 1.91-0.91 (16H, MeCy, Cy), 1.05 (d, 3J = 

6.5Hz, 3H, Fuc-H6), 1.03 (d, 3J = 6.5Hz, 3H, MeCy-CH3); 13C NMR (125.8 MHz, CDCl3): # " 

172.0 (CO), 139.2, 139.1, 138.6, 137.7, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.7, 

127.6, 127.5, 127.4, 127.3 (24C, Ar-C), 98.3, 97.8 (Fuc-C1, Gal-C1), 82.8 (MeCy-C2), 80.3 

(Fuc-C3), 79.5 (MeCy-C1), 79.4 (Cy-Cq), 78.4 (Fuc-C4), 76.4 (Fuc-C2), 75.9 (Gal-C2), 75.0, 

74.4, 73.8 (3C, CH2Ph), 73.1 (Gal-C5), 72.6 (CH2Ph), 71.9 (Gal-C3), 68.5 (Gal-C6), 67.0 

(Gal-C4), 66.2 (Fuc-C5), 39.1, 35.6, 33.5, 31.9, 30.7, 24.8, 22.9, 20.7, 20.6 (9C, 5C Cy, 4C 

MeCy), 19.0 (MeCy-CH3), 16.9 (Fuc-C6); [!]D - 77.9 (c 0.76, CHCl3); HR-MS (ESI) m/z: 

calcd for C54H66NaO12
+ [M+Na]+: 929.4446; found: 929.4447.  

 

6-O-Benzyl-3-O-(dimethylcarboxy)-2-O-lactone-"-D-galactopyranosyl-(1!1)-[2,3,4-tri-

O-benzyl-! -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 14. 
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To a stirred suspension of 12 (30 mg, 0.034 mmol) in CH2Cl2 (0.8 mL) and H2O (0.130 mL) 

at 0°C were added an aqueous solution of NaBr (1 M, 0.020 mL), an aqueous solution of 

Bu4NBr (0.036 mL), TEMPO (2.0 mg 0.013 mmol), and satd. aq NaHCO3 (0.100 mL). 

Subsequently, an aqueous solution of NaOCl (0.065 mL, 10 to 15% NaOCl) was added and 

the mixture was stirred vigorously at 0°C. After 45 min, the mixture was warmed to r.t., 

diluted with H2O (10 mL), and extracted with CH2Cl2 (2 · 10 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated under reduced pressure. Column 

chromatography on silica (PE/EtOAc) afforded 14 (20 mg, 0.023 mmol, 67%) as white fluffy 

solid. 
1H NMR (500.1 MHz, CDCl3): ! 7.33-7.11 (m, 20H, Ar-H), 5.01 (d, 3J = 3.6Hz, 1H, Fuc-

H1), 4.86 (A of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.74 (A’ of A’B’, 2J = 11.6Hz, 1H, CH2Ph), 

4.70-4.62 (m, 3H, CH2Ph, Fuc-H5), 4.59 (B’’ of A’’B’’, 2J = 11.5Hz, 1H, CH2Ph), 4.50 (B 

of AB, 2J = 11.5Hz, 1H, CH2Ph), 4.46 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.43 (m, 2H, CH2Ph), 

4.30 (dd, 3J = 7.9, 9.4Hz, 1H, Gal-H2), 4.06 (d, 3J = 2.1Hz, 1H, Gal-H4), 4.00 (dd, 3J = 3.6, 

10.3Hz, 1H, Fuc-H2), 3.94 (dd, 3J = 2.6, 10.3Hz, 1H, Fuc-H3), 3.71 (dd, 3J = 6.7Hz, 2J = 

9.4Hz, 1H, Gal-H6a), 3.66-3.59 (m, 3H, Fuc-H4, Gal-H6b, MeCy-H1), 3.56 (m, 1H, Gal-

H5), 3.51 (dd, 3J = 3.0, 9.5Hz, 1H, Gal-H3), 3.21 (t, 3J = 9.2Hz, 1H, MeCy-H2), 2.40 (s, 1H, 

Gal-C4OH), 1.98 (m, 1H, MeCy), 1.63-1.47 (6H, MeCy, C(CH3)2CO2), 1.45 (s, 3H, 

C(CH3)2CO2), 1.33 (m, 1H, MeCy), 1.21-0.92 (m, 2H, MeCy), 1.06 (d, 3J = 6.5Hz, 3H, Fuc-

H6), 1.03 (d, 3J = 6.5Hz, 3H, MeCy-CH3); 13C NMR (125.8 MHz, CDCl3): ! ! 172.0 

(C(CH3)2CO2), 139.2, 138.7, 137.7, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 

127.5, 127.4 (24C, Ar-C), 98.4 (Fuc-C1), 97.7 (Gal-C1), 82.9 (MeCy-C2), 80.3 (Fuc-C3), 

79.5 (MeCy-C1), 78.5 (Fuc-C4), 78.2 (C(CH3)2CO2), 76.6, 76.4 (Fuc-C2, Gal-C2), 75.0, 

74.4, 73.8 (3C, CH2Ph), 73.1 (Gal-C5), 72.7 (CH2Ph), 72.3 (Gal-C3), 68.8 (Gal-C6), 67.2 

(Gal-C4), 66.3 (Fuc-C5), 39.1 (MeCy-C3), 33.5 (MeCy-C4), 30.6 (MeCy-C6), 28.0, 25.8 

(2C, C(CH3)2CO2) 22.9 (MeCy-C5), 19.0 (MeCy-CH3), 16.9 (Fuc-C6); ["]D - 75.0 (c 1.08, 

CHCl3); HR-MS (ESI) m/z: calcd for C51H62NaO12
+ [M+Na]+: 889.4133; found: 889.4141. 

 

3-O-(Carboxycyclohexyl)-2-O-lactone-#-D-galactopyranosyl-(1"1)-[" -L-fucopyranosyl-

(1"2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 15. 

13 (45 mg, 0.64 mmol) was dissolved in dioxane/water (4/1, 2.0 mL) under argon. 

Pd(OH)2/C (5 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated (1 

bar H2) at r.t. After 15 h, the mixture was filtered and the solvent was removed under reduced 
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pressure. Column chromatography on silica (CH2Cl2/i-propanol) afforded 15 as white fluffy 

solid (22 mg, 0.040 mmol, 81%). 
1H NMR (500.1 MHz, CD3OD): ! 4.99 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.83 (q, 3J = 6.5Hz, 1H, 

Fuc-H5), 4.64 (d, 3J = 7.9Hz, 1H, Gal-H1), 4.33 (dd, 3J = 7.9, 9.6Hz, 1H, Gal-H2), 4.02 (d, 
3J = 2.4Hz, 1H, Gal-H4), 3.82 (dd, 3J = 3.3, 10.3Hz, 1H, Fuc-H3), 3.78 (dd, 3J = 2.4, 9.6Hz, 

1H, Gal-H3), 3.76-3.67 (m, 5H, Fuc-H2, Fuc-H4, Gal-H6a,b, MeCy-H1), 3.60 (t, 3J = 6.3Hz, 

Gal-H5), 3.22 (t, 3J = 9.3Hz, MeCy-H2), 2.17-1.05 (23H, Cy, MeCy, Fuc-H6); 13C NMR 

(125.8 MHz, CD3OD): ! ! 174.6 (CO), 100.5 (Fuc-C1), 98.7 (Gal-C1), 84.3 (MeCy-C2), 80.0 

(MeCy-C1), 79.9 (Cy, Cq), 78.0 (Gal-C2), 77.0 (Gal-C5), 73.8 (Fuc-C4), 72.7 (Gal-C3), 71.5 

(Fuc-C3), 70.3 (Fuc-C2), 67.9 (Gal-C4), 67.4 (Fuc-C5), 62.4 (Gal-C6), 40.4, 36.8, 34.8, 32.6, 

31.7, 26.1, 21.6, 21.5 (9C, 5C Cy, 4C MeCy), 19.5 (MeCy-CH3), 16.7 (Fuc-C6); ["]D - 99.3 

(c 1.20, MeOH); HR-MS (ESI) m/z: calcd for C26H42NaO12
+ [M+Na]+: 569.5268; found: 

569.2570; HPLC-purity: 97% (A). 

 

3-O-(Dimethylcarboxy)-2-O-lactone-#-D-galactopyranosyl-(1"1)-[" -L-fucopyranosyl-

(1"2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 16. 

14 (20 mg, 0.023 mmol) was dissolved in dioxane (2.0 mL) under argon. Pd/C (10 mg, 10% 

Pd) was added and the resulting mixture was hydrogenated (1 bar H2) at r.t. After 29 h, the 

mixture was filtered and the solvent was removed under reduced pressure. Column 

chromatography on silica (CH2Cl2/i-propanol) afforded 16 as white fluffy solid (9.0 mg, 

0.018 mmol, 77%). 
1H NMR (500.1 MHz, CD3OD): ! 5.00 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.92-4.79 (m, 1H, Fuc-

H5), 4.66 (d, 3J = 7.8Hz, 1H, Gal-H1), 4.36 (dd, 3J = 7.9, 9.5Hz, 1H, Gal-H2), 3.97 (d, 3J = 

2.5Hz, 1H, Gal-H4), 3.84-3.80 (m, 2H, Fuc-H3, Gal-H3), 3.77-3.67 (m, 5H, Fuc-H2, Fuc-H4, 

Gal-H6a,b, MeCy-H1), 3.60 (m, 1H, Gal-H5), 3.22 (t, 3J = 9.3Hz, MeCy-H2), 2.12 (m, 1H, 

MeCy), 1.75-1.58 (m, 3H, MeCy), 1.52 (s, 6H, C(CH3)2CO2), 1.40-1.23 (m, 2H, MeCy), 1.17 

(d, 3J = 6.6Hz, 3H, MeCy-CH3), 1.14 (d, 3J = 6.4Hz, 3H, Fuc-H6), 1.10 (m, 1H, MeCy); 13C 

NMR (125.8 MHz, CD3OD): !! 174.6 (C(CH3)2CO2), 100.5 (Fuc-C1), 98.7 (Gal-C1), 84.4 

(MeCy-C2), 80.0 (MeCy-C1), 78.8 (C(CH3)2CO2), 78.5 (Gal-C2), 76.9 (Gal-C5), 73.8 (Fuc-

C4), 73.0 (Gal-C3), 71.5 (Fuc-C3), 70.3 (Fuc-C2), 67.9 (Gal-C4), 67.4 (Fuc-C5), 62.4 (Gal-

C6), 40.3 (MeCy-C3), 34.8 (MeCy-C4), 31.7 (MeCy-C6), 28.2, 25.8 (2C, C(CH3)2CO2), 24.1 

(MeCy-C5), 19.5 (MeCy-CH3), 16.7 (Fuc-C6); ["]D - 112.9 (c 0.40, MeOH); HR-MS (ESI) 

m/z: calcd for C23H38NaO12
+ [M+Na]+: 529.2255; found: 529.2258; HPLC-purity > 99.5 % 

(B). 
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3-O-(Sodium carboxycyclohexyl)-!-D-galactopyranosyl-(1!1)-[2,3,4-tri-O-benzyl- 

" -L-fucopyranosyl-(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 3. 

A solution of 15 (12.0 mg, 0.020 mmol) in dioxane (1.0 mL) and aqueous 1 N NaOH (0.1 ml) 

was stirred at r.t. for 5 h. The solution was concentrated under reduced pressure and the crude 

product was purified via RP chromatography (H2O/MeOH). Lyophilization from water 

afforded 3 as white fluffy solid (9.0 mg, 0.015 mmol, 70%). 
1H NMR (500.1 MHz, CD3OD): # 5.02 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.95-4.85 m, 1H, Fuc-

H5), 4.31 (d, 3J = 7.8Hz, 1H, Gal-H1), 3.86 (dd, 3J = 3.3, 10.2Hz, 1H, Fuc-H3), 3.83 (d, 3J = 

2.4Hz, 1H, Gal-H4), 3.76-3.62 (m, 6H, Fuc-H2, Fuc-H4, Gal-H2, Gal-H6a,b, MeCy-H1), 

3.52 (dd, 3J = 2.4, 9.7Hz, 1H, Gal-H3), 3.41 (m, 1H, Gal-H5), 3.23 (t, 3J = 9.4Hz, MeCy-

H2), 2.16-1.23 (16H, Cy, MeCy), 1.21 (d, 3J = 6.6Hz, 3H, Fuc-H6), 1.12 (d, 3J = 6.3Hz, 1H, 

MeCy-CH3), 1.08 (m, 1H, MeCy); 13C NMR (125.8 MHz, CD3OD): # 183.4 (CO), 102.9 

(Gal-C1), 100.0 (Fuc-C1), 84.2 (MeCy-C2), 83.4 (Cy-Cq), 79.9 (MeCy-C1), 78.3 (Gal-C3), 

76.0 (Gal-C5), 73.9 (Fuc-C4), 71.4 (Fuc-C3), 70.9, 70.4 (Fuc-C2, Gal-C2), 69.5 (Gal-C4), 

67.5 (Fuc-C5), 63.1 (Gal-C6), 40.3, 35.4, 35.0, 34.4, 31.9, 26.9, 24.2, 23.1, 22.9 (9C, 5C Cy, 

4C MeCy), 19.7 (MeCy-CH3), 16.8 (Fuc-C6); ["]D - 67.7 (c 0.92, MeOH); HR-MS (ESI) 

m/z: calcd forC26H44NaO13
+ [M+H]+: 587.2674; found: 587.2670; HPLC-purity > 99.5 % (B). 

 

3-O-(Sodium carboxyprop-2-yl)-!-D-galactopyranosyl-(1!1)-[" -L-fucopyranosyl- 

(1!2)]-(1R,2R,3S)-3-methylcyclohexane-1,2-diol 4. 

A dispersion of 16 (6.0 mg, 0.012 mmol) in aqueous NaOH (0.03 N, 0.45 ml) was stirred at 

r.t. for 1 h. Purification via RP chromatography (H2O/MeOH) and lyophilization from water 

afforded 4 as white fluffy solid (4.5 mg, 0.008 mmol, 70%). 
1H NMR (500.1 MHz, CD3OD): # 5.01 (d, 3J = 4.0Hz, 1H, Fuc-H1), 4.88 (m, 1H, Fuc-H5), 

4.32 (d, 3J = 7.4Hz, 1H, Gal-H1), 3.88-3.83 (m, 2H, Fuc-H3, Gal-H4), 3.76-3.59 (m, 6H, 

Fuc-H2, Fuc-H4, Gal-H2, Gal-H6a,b, MeCy-H1), 3.57 (dd, 3J = 2.9, 9.6Hz, 1H, Gal-H3), 

3.42 (m, 1H, Gal-H5), 3.23 (t, 3J = 9.3Hz, MeCy-H2), 2.11 (m, 1H, MeCy), 1.71-1.57 (m, 

3H, MeCy), 1.46, 1.43 (2s, 6H, C(CH3)2CO2), 1.41-1.22 (m, 2H, MeCy), 1.20 (d, 3J = 6.6Hz, 

3H, MeCy-CH3), 1.12 (d, 3J = 6.4Hz, 3H, Fuc-H6), 1.08 (m, 1H, MeCy); 13C NMR (125.8 

MHz, CD3OD): # " 183.3 (C(CH3)2CO2), 102.8 (Gal-C1), 100.0 (Fuc-C1), 84.2 (MeCy-C2), 

81.5 (C(CH3)2CO2), 79.8 (MeCy-C1), 78.7 (Gal-C3), 76.0 (Gal-C5), 73.9 (Fuc-C4), 71.4 

(Fuc-C3), 70.8, 70.4, 70.1 (Fuc-C2, Gal-C2, Gal-C4), 67.5 (Fuc-C5), 63.1 (Gal-C6), 40.4 

(MeCy-C3), 35.0 (MeCy-C4), 31.8 (MeCy-C6), 28.1, 26.0 (2C, C(CH3)2CO2), 24.2 (MeCy-
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C5), 19.7 (MeCy-CH3), 16.7 (Fuc-C6); [!]D - 60.9 (c 0.62, MeOH); HR-MS (ESI) m/z: calcd 

for C23H40NaO13
+ [M+H]+: 547.2361; found: 547.2365; HPLC-purity > 99.5 % (B). 
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2.5.2 Approaches towards the synthesis of 2,2-dialkyl-2-O-glycosyl glycolic acid 

derivatives. 

The synthetic route presented in section 2.5.1 was the result of extensive screening and 

optimization efforts, which are described in section 2.5.2.1. Section 2.5.2.2 comprises 

alternative routes, which were discontinued in favor of the spiroepoxide route. 

2.5.2.1 Spiroepoxide opening with carbohydrate building blocks 

When opening an epoxide, especially with a carbohydrate nucleophile, several aspects should 

be considered. Since positive charge is better stabilized on tertiary carbon atoms than on 

secondary or primary ones, epoxides can be opened regioselectively at the higher substituted 

position under acidic conditions (Figure 2.5.1). A typical side reaction under acidic 

conditions is a 1,2-hydride shift, resulting in aldehyde 5.3, which can form hemiacetal 5.4 

with alcohols.  

 

R1 R2

ROH R1 R2
O

HO

RR1 R2

H O

R1 R2

HO O
R3 acid

5.1 5.25.35.4

O

1,2 hydride shift

acidR3OH

 

Figure 2.5.1 Reaction of an asymmetric epoxide and an alcohol under acidic conditions. 

To prevent this side reaction, a highly reactive nucleophile is required. The attacking 

galactoside should consequently offer a reactive 3-OH group and little steric bulk. Protecting 

groups should therefore not reduce the reactivity neither by electronic nor by steric factors 

and must be compatible with the reaction conditions. Lewis or Brønstedt acids can be used 

for the activation of the epoxide. The solvent must allow high substrate concentrations, but 

should not be too polar, as this would decrease the nucleophilicity of the hydroxyl group. 

Low temperatures usually increase selectivity, but might also favor hemiacetal formation via 

hydride shift due to the decreased reactivity of the galactoside. To evaluate the protecting 

group pattern and suitable reaction conditions, several D-Gal derivatives were synthesized 

and reacted with spiroepoxide 5.6* under different reaction conditions. The reactions were 

monitored by TLC and mass spectrometry, which did not allow to distinguish regioisomers. 

In case product isolation was possible, NMR was used for further characterization. The 

results are summarized in Tables 2.5.1 and 2.5.2. 

 



 

 149 

Table 2.5.1 Reaction of spiroepoxide 5.6* with galactoside 1.5. 

5.6*

+

O

OH

HO OBz

OTMSE

1.5

O

HO

+
O

OH

HO OBz

OTMSE

5.5

O
HO O

O

HO OBz

OTMSE

5.6

HO

OH

O

OH

HO OBz

OTMSE

5.7

O+ HO

ether hemiacetal  
 

Entry c1.5[M]  Ratio 

1.5 

/5.6* 

Catalyst 

(eq.) 

Solvent T  t [h] Observation 

 

A) 0.5 1:1 Hydrazine 

sulfate (0.1) 

THF 60°C 17 
no reaction 

B) 0.5 1:2 (±)CSA (0.1) THF r.t. 17 hemiacetal 

C) 0.5 1:2 SnCl4 (0.1) THF r.t. 17 ether, 

hemiacetal 

D) 1.0 10:1 DDQ  

(1.0) 

CH2Cl2/ 

THF 

r.t. 48 
no reaction 

E) 2.5 2:1 Hydrazine 

sulfate (1.0) 

CH2Cl2 50°C 17 Ether (NMR) 

hemiacetal 

F) 2.5 1:2 (±)CSA (0.1) CH2Cl2 r.t. 17 Ether 

hemiacetal 

G) 0.9 1:10 (±)CSA (1.0) - r.t. 16 Oligomerisation of 

5.6* 

multiple alkylation  

H) 4.2 2.6:1 i. SnCl4 

ii. (±)CSA 

DMF r.t. 68 
no reaction 

I) 0.1 1:1 i. ZnBr2 (0.1) 

ii. TMSOTf 

(0.3) 

CH2Cl2 -78°C 

to r.t. 

12 

hemiacetal 

J) 0.3 1:1 TBSOTf (0.4) CH2Cl2 -15°C 

to r.t. 

0.2 no product 

red solid 
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The initial attempts presented in Table 2.5.1 allowed to identify 5.5, 5.6, and 5.7, which were 

formed with approximately 10%, 5%, and 4%, respectively (entry E). Starting material 1.5 

could be recovered to 41%. Unfortunately, these reaction conditions did not reproducibly 

yield the three products. All reactions (entry A to J) suffered from poor reaction rates, which 

was partially attributed to the electron pulling, and thereby reactivity decreasing effect of the 

benzoyl protecting group. Using 5.6* as solvent to increase the reaction rate led to 

oligomerisation reactions (entry G). Reactions with silyltriflates (entries I and J), thought to 

quench the newly formed primary alcohol, were hard to control and often led to 

polymerization reactions. 

To increase the reaction rate of the alkylation, galactal 5.8 was synthesized (Table 2.5.2). It 

combines a highly reactive allylic hydroxy group, little steric bulk, and good selectivity, since 

only two hydroxyl groups are available. However, the acid lability of 5.8 strongly limited the 

range of catalysts and no product could be isolated. 

Table 2.5.2 Reaction of galactal 5.8 with spiroepoxide 5.6*. 

5.8

O

HO
OH

TBDPSO

5.6*

+

O

5.9

O

HO
O

TBDPSO

OH

 
Entry cgal 

[M]  

Ratio 

5.8 

/5.6* 

Catalyst 

(eq.) 

Solvent T  t [h] Observation 

 

A) 0.1 1:20 CSA (0.1) THF mw 

40°C 

150W 

24 

r.t. 

2 mw 

Ether + multiple 

alkylation (MS) 

Heating destroyed ether 

B) 0.1 1:6 TMSOTf THF 0°C 0.02 Strong reaction 

No starting material 

No ether 

C) 0.03 1:6 TMSOTf THF -78°C to 

r.t. 

2 

3 

No starting material 

Ether (MS) 

 

Finally, 5.6* was reacted with 5.5* (Scheme 2.5.1, see also section 2.5.1). The anomeric allyl 

protecting group allowed to use BF3·Et2O, which was not possible with TMSE protected D-

Gal derivative 1.5. We assumed that BF3·Et2O would lead to reduced hemiacetal formation 
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compared to Brønstedt acid (±)-camphorsulfonic acid ((±)-CSA). The silyl protecting group 

in 6-O position should increase the reactivity compared to e.g. a benzoate. The identified 

reaction conditions were successfully transferred to the synthesis of more complex 

tetrasaccharide mimetics (section 2.5.1). 

 

5.5*

O
HO

OH
O

OTBDPS

+
HO

5.7*

O
O

OH
O

OTBDPSHO

5.8*

O

O
O

OTBDPSHO

HO

OH

HO

O

5.6*

+

 

Scheme 2.5.1 BF3·Et2O, CH2Cl2, -18°C, 135 min, (5.7*: 3 %, 5.8*: 5%, 5.5*: 72%). 

2.5.2.2 Alternative strategies 

2.5.2.2.1 Substitution 

Regioselective alkylations of galactosides are typically performed by reacting a tin acetal 

activated galactoside with the corresponding alkyl triflates in presence of cesium fluoride. 

These SN2-type reactions proceed nicely with secondary triflates. Tertiary triflates, especially 

with an adjacent carboxy group, are very prone to elimination reactions and consequently not 

suited for substitutions. An alternative approach is the substitution of the triflyl guloside 4.4* 

with the corresponding alcoholate (Scheme 2.5.2). 4.4* has already been successfully 

converted to the corresponding 3-azido galactoside (chapter 2.4.1). Although azides are by 

far better nucleophiles than tertiary alcoholates, we tried to react guloside 4.4* with 

alcoholates 5.10 and 5.12 (Scheme 2.5.2). However, no product formation was observed by 

TLC and mass spectrometry. 

4.4*

O

OAc
SEt

5.10

+

OH
O OMe

O
O

Ph

5.11

O
O

OAc
SEt

O
O

Ph

OMeO

5.12 5.13

O
O

OAc
SEt

O
O

Ph

O OH

O

O
O

O

O

O
O

OTf

 

Scheme 2.5.2 NaH, DMF, 0°C to r.t. 
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2.5.2.2.2 Nucleophilic attack of anhydro carbohydrates 

In analogy to nucleophilic substitutions, epoxide opening can be achieved by two different 

strategies; either by opening a spiroepoxide with a galactoside (sections 2.5.1 and 2.5.2.1) or 

a sugar epoxide with an alcohol. Latter strategy will be discussed in the following section. 

According to the Fürst-Plattner rule,[1] epoxide opening on carbohydrates favors the 

formation of two axial hydroxyl groups. Consequently, epoxide 1,6:2,3-dianhydro-!-D-

gulopyranoside 5.14 should be used to ensure the correct stereochemical outcome.  

Since nucleophilic epoxide opening of the 4-O-benzylated derivative of 5.14 was successful 

with NaN3
[2] and Et2AlCN[3], modified conditions with an alcohol as nucleophile might be as 

well. To compensate for the low reactivity of the tertiary alcohol 5.15, an intramolecular 

reaction with 5.19 was planned (Scheme 2.5.3). This would favor epoxide opening 

entropically and kinetically and would reduce the need for protecting groups. Although ester 

formation on the 4-OH of 5.14 is known[2] and 5.15 can be transformed into esters without 

protection of the "-hydroxy group,[4] no product 5.16 could be isolated. As the sterically 

demanding CH2 group in position 6 as well as epoxide opening via the carbonyl group in 5.16 

might also hamper the formation of 5.17, this strategy was not further pursued. 

 

O OH

OH
O

O

OH

O

HOO

O

HO

O

5.175.14 5.15

CO2Me

O

O

O

O

5.16

O
OH

b)a)
+

 

Scheme 2.5.3 a) DIC, DMAP, CH2Cl2, DMF, r.t., 12 d; b) i. NaH, THF, 0°C to r.t. ii. MeOH. 

2.5.2.2.3 Acetal formation 

Reaction of 5.18 with 5.19 was planned to yield acetal 5.20, which could then be opened 

regioselectively under reducing conditions, e.g. with Et3SiH and TiCl4, to give 5.22 (Scheme 

2.5.4). Acetyl groups were chosen as protecting groups to reduce the electron density of the 

ring and thereby activate the keto group for acid catalyzed acetal formation. The reaction was 

followed by TLC and mass spectrometry. Various conditions a) to e) did not yield the desired 

acetal, although hemiacetal formation was observed by mass spectrometry in case of a) and 

d). These results indicated that condensation might be the rate-limiting factor, and 5.18 was 

reacted with spiroepoxide 5.6*. Mass spectrometry indicated adduct formation, however it 

did not allow to distinguish between hemiacetal and acetal. Due to the extremely slow 

reaction rate and uncertain stereochemical outcome, this route was discontinued. 
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Scheme 2.5.4 a) (±)CSA, CH2Cl2, r.t., 2 d; b) (±)CSA, toluene 70°C to 110°C, 10 h; c) amberlyst 
15, CaSO4, DCE, 75°C to r.t., 10 h; d) p-TsOH·H2O, CaSO4, DCE, 75°C 2 h, r.t. 8 h; e) amberlyst 15, 
DCE, r.t., 7.5 h; f) amberlyst 15, CH2Cl2, r.t., 2 d. 

2.5.2.3 Synthesis of building blocks 

2.5.2.3.1 Synthesis of building block 5.6* 

Peroxidation of alkene 5.23 with 3-chloroperbenzoic acid afforded spiroepoxide 5.6* in 47% 

yield. 

5.6*5.23

O

 

Scheme 2.5.5 MCPBA, CH2Cl2, 0°C to r.t., 47%. 

2.5.2.3.2 Synthesis of building blocks 5.10 and 5.19 

5.15 was reduced to diol 5.19 via methyl ester 5.10 using LiAlH4. 

 

5.15

a)

O OH

OH

5.10

O OMe

OH

5.19

OH

OH
b)

 

Scheme 2.5.6 a) (CH3)3SiCHN2, Et2O, MeOH, 10 min, r.t., quant.; b) LiAlH4, Et2O, r.t., 54%.[5] 

2.5.2.3.3 Synthesis of building block 5.12 

Lactone 5.12 was readily available from (-)-quinic acid 5.24 via acid catalyzed acetal 

formation/lactonisation.[6] 
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Scheme 2.5.7 2,2-DMP, (±) CSA, acetone, 70°C, 3.5 h, 65%. 

2.5.2.3.4 Synthesis of building block 5.18 

5.18 was readily available in three steps from intermediate 3.23. Acetylation of 3.23 and 

hydrogenolytic debenzylation afforded 5.26, which was oxidized with pyridinium 

chlorochromate to 5.18 in 48% overall yield. 
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Scheme 2.5.8 a) Ac2O, pyridine, DMAP, r.t., quant.; b) H2, Pd(OH)2/C, dioxane, H2O r.t., 81%; c) 
PCC, MS 4 Å, CH2Cl2, r.t., 60%. 

2.5.2.3.5 Synthesis of building block 5.17 

Following a procedure of Grindley and Thangarasa, monotosylation of levoglucosan 5.27 

was achieved via the stannylene intermediate.[7] Tosylate 5.28 was then converted to epoxide 

5.29 using Amberlite IRA 400, a strongly basic ion exchange resin.[8] Epoxide migration 

(5.29 ! 5.14) does not take place under these conditions. A method developed by Mubarak 

and Fraser was applied, since a higher yield of 5.14 is expected when using sodium hydride 

in THF instead of sodium hydroxide in MeOH.[3] Direct conversion of tosylate 5.28 to 

epoxide 5.14 under basic reflux conditions[9] mainly led to the hydrolysis of the epoxide. 

However, epoxide formation and Payne rearrangement can be combined in one step using 

sodium hydride in DMF. This procedure allows the synthesis of 5.14 from inexpensive 5.27 

in two steps (steps a & d) and 42% yield. The developed route might further be explored for 

the efficient synthesis of 3-azido-3-deoxy galactosides. 
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Scheme 2.5.9 a) i. Bu2SnO, toluene, MeOH, 70°C; ii. TsCl, Et3N, DME, MS 4 Å, r.t., 51%; b) 
Amberlite IRA400-OH, MeOH, r.t., 3 min, 79%; c) NaH, THF, 0°C to r.t., 63%; d) NaOH, EtOH, 
H2O, reflux (epoxide hydrolysation) or NaH, DMF, 82%. 

2.5.2.3.6 Synthesis of building block 5.8 

Tert-butyldiphenylsilyl protected galactal 5.8 was synthesized from 5.30 in 65% over two 

steps.[10] 

 
O

AcO

OAc

AcO

O
TBDPSO

OH

HO

5.85.30

a) b)

 

Scheme 2.5.10 a) NaOMe, MeOH, r.t., 13 h; b) TBDPSCl, Et3N, DMAP, DMF, r.t., 6 d, 65%. 

2.5.2.3.7 Synthesis of building block 5.5* 

5.5* was synthesized in four steps from peracetylated D-galactose 3.19. The anomeric allyl 

protecting group was introduced via the 2,3,4,6-tetra-O-acetyl-!-D-galactopyranosyl bromide 

3.20 using Koenigs-Knorr conditions. Deacetylation under Zemplén conditions provided allyl 

galactoside 5.31. Selective protection of the 6 position of D-galactose was achieved with the 

sterically demanding tert butyldiphenylsilyl group, which was installed in 77% yield. 
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Scheme 2.5.11  a) HBr, AcOH, CH2Cl2, 0°C to r.t., 2.5 h, 92%; b) allyl alcohol, Ag2CO3, CH2Cl2, 
MS 3 Å, r.t., 3 h; c) NaOMe, MeOH, r.t., 4 h, 86% from 3.20; d) TBDPSCl, Et3N, DMAP, DMF, r.t., 
12 h, 77%. 
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Experimental 

General experimental conditions are given in section 2.5.1.  

 

1-Oxaspiro[2.5]octane 5.6*. 

To a stirred solution of 3-chloroperbenzoic acid (9.00 g, 77%) in anhydrous CH2Cl2 (100 

mL) under argon was slowly added methylene cyclohexene (5.00 g, 52 mmol) at 0°C. The 

solution was stirred at r.t. for 12 h, cooled to 0°C and filtered. The filtrate was washed with 

satd. aqueous Na2S2O3 (100 mL) and satd. aqueous NaHCO3 (100 mL) and checked for 

peroxides. The organic layer was dried over Na2SO4, filtered, and concentrated. Distillation 

afforded 5.6* as clear oil (2.75 g, 24.5 mmol, 47%). Analytical data were in accordance with 

literature.[11] 

 

Methyl 1-hydroxycyclohexanecarboxylate 5.10. 

To a stirred solution of 1-hydroxycyclohexanecarboxylic acid (500 mg, 3.47 mmol) in MeOH 

(10 mL) and Et2O (10 mL) was slowly added a solution of (trimethylsilyl)diazomethane in 

hexanes (2.0 M, 1.80 mL, 3.60 mmol) at r.t. The reaction was monitored by mass 

spectrometry and upon completion volatiles were removed under reduced pressure (40°C, 60 

mbar) to give a slightly yellow oil, which was directly used in the next step (550 mg, 3.48 

mmol).  
1H NMR (500.1 MHz, CDCl3): !! 3.77 (s, 3H, CO2CH3), 1.83-1.73 (m, 2H), 1.72-1.54 (m, 

7H), 1.28 (m, 1H); MS (ESI) m/z: calcd for C8H14NaO3
+ [M+Na+]+: 181.08; found: 180.81.  

 

1-Hydroxycyclohexylmethanol 5.19. 

To a stirred solution of 5.10 (550 mg, 3.48 mmol) in anhydrous Et2O (3.0 mL) under argon 

was slowly added a suspension of LiAlH4 (79 mg, 2.09 mmol) in anhydrous Et2O (2.0 mL). 

The suspension was heated to reflux for 1 h and stirred at r.t. for 12 h. The reaction mixture 

was diluted with Et2O (50 mL) and washed with satd. aqueous NaHCO3 (2 · 50 mL). The 

aqueous layer was extracted with Et2O (2 · 50 mL) and the combined organic layers were 

dried (Na2SO4), filtered, and concentrated under reduced pressure to give 5.19 as white solid 

(245 mg, 1.88 mmol, 54%). Analytical data were in accordance with literature.[5] 

 

3,4-O-Isopropylidene-1,5-quinic lactone 5.12. 

A solution of (-)-quinic acid (10.0 g, 52 mmol), (±)-camphor sulfonic acid (100 mg, 0.43 

mmol), and 2,2-dimethoxypropane (23.0 mL, 188 mmol) in acetone (50.0 mL) was stirred at 
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70 °C. After 3.5 h, the reaction was quenched with Et3N (1.5 mL), and volatiles were 

evaporated under reduced pressure. Column chromatography on silica afforded 5.12 as white 

solid (7.30 g, 34 mmol, 65%). Analytical data were in accordance with literature.[12] 

 

2-(Trimethylsilyl)ethyl 2,4,6-tri-O-acetyl-3-O-benzyl-! -D-galactopyranoside 5.25.  

To a stirred solution of 3.23 (2.59 g, 6.99 mmol) and DMAP (cat) in pyridine (20 mL) was 

added acetic anhydride (4.0 mL, 42.6 mmol). After stirring at r.t. for 15 h, volatiles were 

evaporated under reduced pressure. Column chromatography on silica (PE/EtOAc) afforded 

5.25 as white solid (3.44 g, 6.93 mmol, 99%). Analytical data were in accordance with 

literature.[13] 

 

2-(Trimethylsilyl)ethyl 2,4,6-tri-O-acetyl-!-D-galactopyranoside 5.26.  

5.25 (3.19 g, 6.42 mmol) was dissolved in dioxane/water (4/1, 35 mL) under argon. 

Pd(OH)2/C (100 mg, 10% Pd(OH)2) was added and the resulting mixture was hydrogenated 

(3 bar H2) at r.t. After 20 h, the mixture was filtered and the solvent removed under reduced 

pressure to give 5.26 as clear crystals (2.11 g, 5.19 mmol, 81%). 
1H NMR (500.1 MHz, CDCl3): "  5.31 (d, 3J = 3.1Hz, 1H, H-4), 4.94 (dd, 3J = 7.9, 10.0Hz, 

H-2), 4.43 (d, 3J = 7.9Hz, 1H, H-1), 4.14 (d, 2J = 6.6Hz, 2H, H-6a,b), 3.98 (m, 1H, 

CH2CH2Si(CH3)3), 3.81 (m, 2H, H-3, H-5), 3.56 (m, 1H, CH2CH2Si(CH3)3), 2.16, 2.11, 2.05 

(3s, 9H, COCH3), 1.03-0.86 (m, 2H, CH2CH2Si(CH3)3), 0.00 (s, 9H, CH2CH2Si(CH3)3); 13C 

NMR (125.8 MHz, CDCl3): 171.4, 171.1, 170.7 (3C, COCH3), 100.5 (C-1), 73.0 (C-2), 71.8, 

71.0 (C-3, C-5), 69.9 (CH2CH2Si(CH3)3), 67.6 (C-4), 62.0 (CH2CH2Si(CH3)3), 21.1, 20.9 

20.8 (3C, COCH3), 18.0 (CH2CH2Si(CH3)3), -1.3 (3C, CH2CH2Si(CH3)3); [#]D -16.0 (c 0.88, 

CHCl3); MS (ESI) m/z: calcd for C17H30NaO9Si [M+Na]+: 429.16; found: 429.08. 

 

2-(Trimethylsilyl)ethyl 2,4,6-tri-O-acetyl-!-D-xylo-hex-3-ulopyranoside 5.18. 

To a stirred suspension of PCC (1.326 g, 6.15 mmol) and powdered activated molecular 

sieves 4 Å (2.5 g) in anhydrous CH2Cl2 (20 mL) was slowly added a solution of 5.26 (1.0 g, 

2.46 mmol) in CH2Cl2 (5.0 mL) at r.t. After stirring for 19 h, the reaction mixture was filtered 

(Celite) and run through a short silica column (EtOAc) to give ketone 5.18 as slightly yellow 

oil (600 mg, 1.48 mmol, 60%), which was directly used in the next step. 

 

1,6-Anhydro-4-O-p-tolylsulfonyl-! -D-glucopyranose 5.28. 

A solution of 1,6-anhydro-!-D-glucopyranose (1.00 g, 6.16 mmol) and dibutyltin oxide (2.30 
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g, 9.24 mmol) in anhydrous toluene (50 mL) and anhydrous methanol (10 mL) was stirred at 

60°C under argon. After 5 h, volatiles were removed under reduced pressure and the resulting 

white residue was dried under high vacuum for 12 h. The tin acetal was dissolved in 

anhydrous 1,2-dimethoxyethane (50 mL) and powdered activated molecular sieves 4 Å (3.0 

g), and a solution of p-toluenesulfonyl chloride (1.29 g, 6.77 mmol) in anhydrous 1,2-

dimethoxyethane (20 mL) was added. After stirring vigorously at r.t. for 14 h, the reaction 

mixture was filtered, the filtrate was diluted with CH2Cl2 ( 50 mL) and washed with brine (2 · 

50 mL). The aqueous layers were extracted with CH2Cl2 (2 · 50 mL) and the combined 

organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. 

Column chromatography on silica (PE/EtOAc) afforded 5.28 as white solid (993 mg, 3.14 

mmol, 54%). Analytical data were in accordance with literature.[7] 

 

1,6;3,4-Dianhydro-! -D-galactopyranose 5.29. 

To a solution of 5.28 (100 mg, 0.32 mmol) in anhydrous MeOH (2.0 mL) was added 

Amberlite IRA 400 OH- ® (1.4 mL) and the resulting mixture was shaken at r.t. for 15 min. 

The mixture was filtered, the filter was washed with MeOH, and the combined filtrates were 

concentrated under reduced pressure to give 5.29 as clear oil (36 mg, 0.25 mmol, 79%). 

Analytical data were in accordance with literature.[14] 

 

1,6;2,3-Dianhydro-! -D-gulopyranose 5.14.  

From 1,6;3,4-Dianhydro-!-D-galactopyranose 5.29: A suspension of NaH (56 mg, 60% NaH) 

was washed several times with anhydrous PE under argon. Subsequently, anhydrous THF 

(5.0 mL) was added and the dispersion was cooled to 0°C. A solution of 5.29 (100 mg, 0.69 

mmol) in anhydrous THF (4.0 mL) was added and the reaction mixture was stirred slowly 

warmed to r.t. After stirring for 22 h, the mixture was poured on an ice-water mixture (30 

mL) and the aqueous layer was extracted with EtOAc (30 mL). The organic layer was 

washed with brine (30 mL) and the aqueous layers were extracted with EtOAc (3 · 30 mL). 

The combined organic layers were dried over Na2SO4, filtered, and concentrated under 

reduced pressure. Column chromatography on silica (PE/EtOAc) afforded 5.14 as white solid 

(63 mg, 0.44 mmol, 63%). Analytical data were in accordance with literature.[2] 

From 1,6-Anhydro-4-O-p-tolylsulfonyl-!-D-glucopyranose 5.27: Following the previous 

procedure, 5.28 (40 mg, 0.13 mmol) was reacted with NaH suspension (10 mg) in anhydrous 

THF (2.0 mL) for 14 h to give 5.14 (15 mg, 0.10 mmol, 82%) after workup and column 

chromatography (PE/EtOAc). Analytical data were in accordance with literature.[2] 
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1,5-Anhydro-6-O-(tert-butyl)diphenylsilyl-2-deoxy-D-lyxo-hex-1-enitol 5.8. 

To a freshly prepared solution of NaOMe in MeOH (0.03 M, 50 mL) under argon at r.t. was 

added 3,4,5-tri-O-acetyl-D-galactal 5.30 (4.09 g, 15.0 mmol). The mixture was stirred for 13 

h and subsequently concentrated under reduced pressure to afford the D-galactal as white 

solid (2.20 g, 15.0 mmol, quant.), which was directly used in the next step. The residue (1.0 

g, 6.8 mmol) was dissolved in anhydrous DMF (7.0 mL) under argon at r.t. and DMAP (cat.), 

Et3N (1.90 mL), and tert-butyldiphenylsilyl chloride (1.90 mL, 7.4 mmol) were added. After 

stirring at r.t. for 6 d, the solution was diluted with EtOAc (100 mL) and washed with water 

(4 x 100 mL). The combined organic layers were dried over Na2SO4, filtered, and 

concentrated under reduced pressure. Column chromatography on silica (CH2Cl2/EtOAc) 

afforded 5.9 as clear oil (1.712 g, 4.45 mmol, 65%). Analytical data were in accordance with 

literature.[10] 

 

2-Propen-1-yl ! -D-galactopyranoside 5.31.  

Allyl alcohol (10.0 mL, 146 mmol) and 3.20 (10.0 g, 24.3 mmol) in anhydrous CH2Cl2 (60 

mL) were stirred with powdered activated molecular sieves 3 Å (6.0 g) at r.t. under argon for 

3 h. Ag2CO3 (8.0 g, 29.2 mmol) was added slowly and the mixture was stirred under argon 

for 13 h. The mixture was filtered (celite) and volatiles were evaporated to yield a clear sticky 

solid (9.32 g, 24.0 mmol), which was used in the next step without further purification.  

The crude product was dissolved in anhydrous MeOH (50 mL) under argon and a freshly 

prepared solution of NaOMe in MeOH (1 M, 1.0 mL) was slowly added. After 4 h, the 

solution was neutralized with HCl in MeOH (0.1 M) and concentrated. Column 

chromatography on silica (CH2Cl2/MeOH 9/1 to 8/2) afforded 5.31 as white solid (4.63 g, 

21.0 mmol, 86%). Analytical data were in accordance with literature.[15] 

 

2-Propen-1-yl 6-O-(tert-butyldiphenylsilyl)-! -D-galactopyranoside 5.5*. 

tert-Butyldiphenylsilyl chloride (4.40 mL, 17.2 mmol) was slowly added to a stirred solution 

of 5.31 (3.44 g, 15.5* mmol), Et3N (4.35 mL, 31.0 mmol) and DMAP (cat.) in anhydrous 

DMF (15 mL) under argon. After 12 h, the solution was diluted with EtOAc (100 mL) and 

washed with water (3 ·100 mL). The organic layer was dried (Na2SO4) and concentrated. 

Column chromatography on silica (PE/EtOAc 1/1 to 0/1) yielded 5.5* as white foam (1.50 g, 

12.0 mmol, 77%). Analytical data were in accordance with literature.[16] 
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2.6 Sialyl LewisX: A “Pre-organized Water Oligomer”? 
 
The following article was published as a “very important paper” in Angewandte Chemie: 

Binder, F.P.C.; Lemme, K.; Preston, R.; Ernst, B. Angew. Chem. Int. Ed. 2012, 51, 7327 - 

7331; Angew. Chem. 2012, 142, 7440 - 7444. 

 

Author contributions: F.P.C. Binder: synthesis of selectin antagonists 3, 4, and 5, 

manuscript; K. Lemme: ITC measurements, bioassay, protein expression & purification, 

manuscript; R.C. Preston: generation of the 7A9 antibody column used for the functional 

purification of E-selectin. 
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2.7 Synthesis of literature known small molecule selectin antagonists 

Numerous selectin antagonists have been developed over the past 15 years (see chapter 1.3.). 

To evaluate the potency of some of these small molecule antagonists in our own assays, three 

representative compounds were synthesized (Figure 2.7.1). 

Revotar’s TBC1269 (7.1)[1] is one of the most promising selectin antagonists so far and is 

currently in Phase II clinical trials for the treatment of asthma and psoriasis. Nevertheless, it 

should be noted, that the mechanism of action of TBC1269 (7.1) is controversially discussed. 

Beauharnois et al. for example found Ca2+ independent binding of TBC1269 (7.1) to P-

selectin in a Biacore experiment,[2] and Hicks et al., showed that TBC1269 (7.1) does not 

influence rolling in an intravital microscopy experiment.[3] 

Based on the pharmacophore of TBC1269 (7.1), researchers at Revotar also developed a 

series of polyhydroxyphenols.[4] From this series, 7.2 was selected as it was reported to 

exhibit remarkable IC50 values in a static binding assay (PAA-sLex-TYS) for all three 

selectins (IC50= 0.8 µM E-selectin, IC50 = 1.2 µM P-selectin, and IC50= 1.4 µM L-selectin).[4] 

However, the authors point out that the compound has to be freshly prepared before testing, 

because rapid oxidation by air occurs.  

Wyeth (now Pfizer) developed a series of quinoline salicylic acid derivatives,[5] which led to 

the identification of a clinical candidate which is currently in Phase I clinical trials.[6] 

Compound 7.3 was chosen as representative example of this series.  
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Figure 2.7.1 Small molecule selectin antagonists developed by Revotar and Pfizer. 
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2.7.1 Synthesis of TBC1269 (7.1) 

The published synthesis of TBC1269 (7.1) suffers from an extremely poor overall yield of 

3% starting from 7.7 (Scheme 2.7.1).[1] Compound 7.7 is not commercially available and is 

prepared in two steps in 74% yield. Since the expected overall yield of 2% was considered 

unreasonably low, the synthesis was discontinued after step b) and an alternative route was 

explored (Scheme 2.7.2). 
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Scheme 2.7.1 a) i. TMEDA, n-BuLi, Et2O, -78°C to r.t., ii. B(OMe)3, -10°C to r.t., iii. aq. HCl, r.t.; 
b) CsF, Pd(Ph3)4, DME, mw 100°C; c) adipoyl dichloride, AlCl3, DCE, 0°C to r.t.; d) aq. LiOH, 
MeCN, r.t., then aq. 2N HCl; e) i. N2H4, DMSO, 80°C; ii. KOtBu, DMSO, 80°C, then aq. 2 N HCl; f) 
BBr3, CH2Cl2, -78°C to r.t.; g) H2SO4, MeOH, reflux; h) !-D Man pentaacetate, DCE, BF3·Et2O; i) 
aq. LiOH, MeCN, r.t. 

In contrast to the published route (Scheme 2.7.1), the second route is convergent and allows 

to shift the Suzuki coupling from the beginning of the synthesis to the fourth step (Scheme 

2.7.2). Friedel Crafts acylation of anisole 7.4 ("7.11)[1] followed by reduction ("7.12)[1] 

proceeded in excellent yield. Regiospecific bromination of 7.12 with NBS in acetonitrile[7] 

gave 7.13 ready for Suzuki coupling in 67% yield. Pinacol arylboronate 7.14 was obtained 

from ester 7.6 and bis(pinacolato)diboron in excellent yield using optimized microwave 

conditions[8] of the cross-coupling procedure developed by Miyaura.[9] Subsequent Suzuki 

coupling of 7.13 and 7.14 proceeded quantitatively. Cleavage of the methoxy groups with 

boron tribromide gave diol 7.9. Since dimannosylation with 1,2,3,4,6-penta-O-acetyl-!-D-

mannopyranose and BF3·Et2O proceeded in poor yields, the resulting mixture was reacted 

again with 2,3,4,6-tetra-O-acetyl-!-D-mannopyranosyl trichloroacetimidat to provide 7.10. 
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Final hydrolysation of the ester groups of 7.10 and purification via HPLC afforded 7.1 in 9 % 

overall yield. 
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Scheme 2.7.2 a) adipoyl dichloride, AlCl3, CH2Cl2, -18°C to r.t., 25 min, 98%; b) TFA, TES, 
BF3!Et2O, CH2Cl2, r.t., 2.5 h, quant.; c) NBS, MeCN, r.t., 3 h, 68%; d) bis(pinacolato)diborane, 
KOAc, PdCl2(dppf), dppf, dioxane, mw: 300 W, 120°C, 2 h, 94%; e) Pd(Pph3)4, CsF, dioxane, mw, 
120°C, 3.5 h, quant. ; f) BBr3, CH2Cl2, -78°C to r.t., 2 h, 63%; g) i. 1,2,3,4,6-penta-O-acetyl-"-D-
mannopyranose, BF3·Et2O, CH2Cl2, 0°C to r.t., 12 h; ii. 2,3,4,6-tetra-O-acetyl-"-D-mannopyranosyl 
trichloroacetimidat, TMSOTf, toluene, r.t., 5 h, 68%; h) aq. LiOH, MeCN, r.t., 12 h, 32%.  

2.7.2 Synthesis of compound 7.2 

Compound 7.2 was synthesized in analogy to reference [4] (Scheme 2.7.3). Acid catalyzed 

ester formation of nicotinic acid (7.16) gave 7.17, which was coupled to 7.18 under standard 

coupling conditions. Amide 7.19 was deprotected and transferred to the sodium salt to give 

the title compound 7.2.  

 



 

 171 

OH

NH2

O
Me

NH2

O O OMe

MeO
O

N
H

MeO
O

OMe

OH

HO
O

N
H

HO
O

ONa

7.17 7.19

7.2

7.16

a)

b)

c)

OMe

MeO
O

OHMeO
7.18

 

Scheme 2.7.3 a) H2SO4 (conc.), MeOH, reflux, 2 d, 99%; b) EDC·HCl, Et3N, DMAP, anhyd. 
CH2Cl2, r.t., 24 h, 62%; c) i. BBr3, anhyd. CH2Cl2, -78°C to r.t., ii. H2O, r.t.; iii. ion exchange resin, 
H2O, 27% from 7.19. 

2.7.3 Synthesis of compound 7.3 

Compound 7.3 was synthesized following literature procedures (Scheme 2.7.4).[5] 

Sandmeyer-isatin synthesis with 4-bromo-2-methylaniline 7.20 gave isatin 7.21, which was 

reacted with 7.23 in a Pfitzinger reaction.  
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Scheme 2.7.4 a) i. chloral hydrate, NH2OH!HCl, Na2SO4, 2M HCl (aq), H2O, 55°C, 24 h, ii. H2SO4, 
55°C to 80°C, 81%; b) NaOAc!3H2O, AcOH, H2O, reflux, 2.5 h, 75%; c) 6M KOH (aq), EtOH, 
100°C to reflux, 4 h, 55%. 

Biological evaluation 

Up to date no biological data is available. 
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Experimental 

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer. 

Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, HSQC, 

HMQC, HMBC). Reactions were monitored by TLC using glass plates coated with silica gel 

60 F254 (Merck) and visualized by using UV light and/or by charring with a molybdate 

solution (a 0.02 M solution of ammonium cerium sulfate dihydrate and ammonium 

molybdate tetrahydrate in aqueous 10% H2SO4. Column chromatography was performed on 

automated systems (RediSep Companion) from Teledyne Isco with normal phase RediSep 

columns from the same. LC-MS separations were carried out using Sunfire C18 columns (19 x 

150 mm, 5.0 !m) on a Waters 2525 LC, equipped with Waters 2996 photodiode array and 

Waters micromass ZQ MS for detection. Size exclusion chromatography was performed with 

Bio-Gel® P-2 Gel (45-90 mm) from Bio-Rad. Solvents were purchased from Sigma-Aldrich 

or Acros. Solvents were dried prior to use where indicated. Dichloromethane (CH2Cl2) and 

Dichloroethane (DCE) were dried by filtration over Al2O3 (Fluka, type 5016 A basic). 

Methanol was dried by distillation from sodium methoxide, Electron spray ionization mass 

spectra (ESI-MS) were obtained on a Waters micromass ZQ. HRMS analysis were carried 

out using a Agilent 1100 LC equipped with a photodiode array detector and a Micromass 

QTOF I equipped with a 4 GHz digital-time converter. Microanalysis was performed at the 

Institute of Organic Chemistry at the University of Basel, Switzerland.  

 

1,6-Bis(4-methoxyphenyl)hexane-1,6-dione 7.11. 

Adipoyl dichloride (1.46 mL, 10.0 mmol) and anisole (2.63 mL, 24.0 mmol) were dissolved 

in anhydrous DCE (30 mL) under argon and the resulting solution was cooled to -18°C. 

Aluminium chloride (6.67 g, 50 mmol) was added in small portions. After stirring for 25 min 

at -18°C, the reaction was quenched with ice water and extracted with CH2Cl2. The combined 

organic layers were dried over Na2SO4, filtered, and concentrated. Column chromatography 

on silica (CH2Cl2/MeOH) gave 7.11 as white solid (3.19 g, 9.77 mmol, 98%). Analytical data 

were in accordance with literature.[1] 

 

1,6-Bis(4-methoxyphenyl)hexane 7.12. 

To a stirred solution of diketone 7.11 (3.19 g, 9.77 mmol) in CH2Cl2 (70 mL) was slowly 

added TFA (6.0 mL, 78 mmol), BF3!Et2O (9.8 mL, 79 mmol) and Et3SiH (6.3 mL, 39 mmol). 

The mixture was stirred at r.t. for 165 min, cooled to 0°C and mixed with water. The mixture 

was extracted with CH2Cl2 and the combined organic layers were dried over Na2SO4, filtered, 
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and concentrated under reduced pressure. Column chromatography on silica (PE/EtOAc) 

gave 7.12 as white crystals (3.10 g, 10.4 mmol). Analytical data were in accordance with 

literature.[1] 

 

1,6-Bis(3-bromo-4-methoxyphenyl)hexane 7.13. 

A solution of 7.12 (60 mg, 0.20 mmol) and NBS (80 mg, 0.45 mmol) in MeCN (3.0 mL) was 

stirred at r.t. for 4 h. Volatiles were evaporated under reduced pressure and the resulting 

white crystalline residue was washed with CCl4. Column chromatography on silica 

(PE/EtOAc) gave 7.13 as white crystals (62 mg, 0.14 mmol, 68%). Analytical data were in 

accordance with literature.[1] 

 

Methyl 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate 7.14. 

A microwave tube was charged with methyl 2-(3-bromophenyl)acetate 7.6 (60 mg, 0.26 

mmol), potassium acetate (77 mg, 0.78 mmol), bis(pinacolato)diborane (80 mg, 0.32 mmol), 

PdCl2(dppf) (6.4 mg, 7.8 µmol), and dppf (4.4 mg, 7.9 µmol) and evacuated at high vacuum. 

After 10 min, the tube was flushed with argon and anhydrous dioxane (1.5 mL) was added 

under vigorous stirring. The solution was degassed in an ultrasonic bath for 15 min and 

subsequently flushed with argon for another 10 min. Microwave irradiation at 120°C (300 W) 

for 2 h gave the crude product as red solution. Dioxane was evaporated under reduced 

pressure and the residue was dissolved in CH2Cl2 (50 mL) and washed with brine (2 x 25 

mL). The organic layer was dried over Na2SO4, filtered and concentrated under reduced 

pressure. Column chromatography on silica (CH2Cl2, short column) gave 7.14 as clear oil (68 

mg, 0.25 mmol, 94%). Analytical data were in accordance with literature.[4] 

 

Dimethyl 2,2'-(hexane-1,6-diylbis(2'-methoxy-[1,1'-biphenyl]-5',3-diyl))diacetate 7.15. 

A microwave tube was charged with 7.13 (36 mg, 0.08 mmol), 7.14 (72 mg, 0.26 mmol), 

Pd(PPh3)4 (4 mg, 3.5 µmol), and CsF (790 mg, 5.2 mmol) and evacuated at high vacuum. 

After 10 min, the tube was flushed with argon and anhydrous dioxane (5.0 mL) was added 

under vigorous stirring. The solution was degassed in an ultrasonic bath for 15 min and 

subsequently flushed with argon for another 10 min. Microwave irradiation at 120°C (300 W) 

for 5 h gave the crude product. Dioxane was evaporated under reduced pressure and the 

residue was dissolved in CH2Cl2 (50 mL) and washed with brine (2 x 25 mL). The organic 

layer was dried over Na2SO4, filtered and concentrated under reduced pressure. Column 
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chromatography on silica gave 7.15 as orange oil, which was directly used in the next step 

(47 mg, 0.08 mmol, quant.).  

 

1,6-Bis[3-(3-carbomethoxymethylphenyl)-4-hydroxyphenyl]hexane 7.9. 

To a solution of 7.15 (62 mg, 0.10 mmol) in anhydrous CH2Cl2 (4.0 mL) under argon at -

78°C was slowly added BBr3 (80 µL, 0.8 µmol). The solution was slowly warmed to -20°C 

and stirred at -20°C for 1h. The reaction was quenched with ice-water and extracted with 

CH2Cl2. The organic layer was washed with brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. Column chromatography on silica gave 7.9 (37 mg, 

0.07 mmol, 63%) as slightly yellow oil. Analytical data were in accordance with literature.[1] 

 

1,6-Bis[3-(3-carbomethoxymethylphenyl)-4-(2,3,4,6-tetra-O-acetyl-! -D-manno 

pyranosyloxy)phenyl]hexane 7.10. 

To a stirred solution of 7.9 (25 mg, 0.04 mmol) and 1,2,3,4,6-penta-O-acetyl-!-D-

mannopyranose (52 mg, 0.13 mmol) in anhydrous CH2Cl2 (2.0 mL) under argon at 0°C was 

slowly added BF3"Et2O (65 µL, 0.51 mmol). The solution was stirred at 0°C for 20 min and at 

r.t. overnight. The reaction mixture was diluted with CH2Cl2 and washed with water, satd. aq. 

NaHCO3, and brine. The organic layer was dried over Na2SO4, filtered, and concentrated 

under reduced pressure. Column chromatography on silica gave three still impure fractions. 

The product 7.10 (25 mg, 0.02 mmol), monoglycosylated 7.9, and 7.9. The three fractions 

were combined and reacted again, this time with trichloroacetimidat activated !-D-Man 

tetraacetat. 

To a stirred solution of the three fractions, additional 7.9 (21 mg, 0.04 mmol) and 2,3,4,6-

tetra-O-acetyl-!-D-mannopyranosyl trichloroacetimidat (87 mg, 0.13 mmol) in anhydrous 

toluene (3.0 mL) under argon at r.t. was added TMSOTf (2.6 µL, 0.014 mmol). The solution 

was stirred for 5 h, diluted with toluene (5 mL) and quenched with aq. satd NaHCO3 (5 mL). 

The aq. layer was extracted with toluene and the combined organic layers were dried over 

Na2SO4, filtered, and concentrated under reduced pressure. Column chromatography on silica 

gave 7.10 as slightly yellow foam (68 mg, 0.06 mmol, 68%). Analytical data were in 

accordance with literature.[1] 

 

TBC1269 7.1. 

To a stirred solution of 7.10 (18 mg, 15 µmol) in acetonitrile (0.5 mL) was slowly added a 

solution of LiOH (10 mg, 0.42 mmol) in water (0.5 mL). The mixture was stirred at r.t. for 24 
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h, diluted with water (10 mL), and acidified to pH 3 with conc. HCl. Evaporation of volatiles, 

subsequent purification via HPLC, and lyophilization gave TBC1269 as white powder (4 mg, 

4.6 µmol, 32%). Analytical data were in accordance with literature.[1] 

 

Methyl 3-aminobenzoate 7.17. 

To a stirred solution of 3-aminobenzoic acid 7.16 (296 mg, 2.16 mmol) in MeOH (10.0 mL) 

was added sulfuric acid (0.12 mL) and the reaction mixture was refluxed for 2 d. After 

cooling to r.t., volatiles were removed under reduced pressure, the residue was dissolved in 

EtOAc (50 mL) and washed with satd. aq. NaHCO3 (50 mL). The aq. layer was extracted 

with EtOAc (3 x 50 mL) and the combined organic layers were washed with brine and dried 

over Na2SO4. Solvent was evaporated under reduced pressure to give 7.17 as red oil, which 

was directly used in the next step (320 mg, 2.11 mmol, 98%). 

 

Methyl 3-(2-(3,4,5-trimethoxyphenyl)acetamido)benzoate 7.19. 

To a solution of EDC hydrochloride (604 mg, 3.15 mmol) and Et3N in anhydrous CH2Cl2 

(12.0 mL) was added 3,4,5-trimethoxyphenylacetic acid 7.18 (716 mg, 3.16 mmol) and 

DMAP (cat.). After stirring for 10 min at r.t. under argon, 7.17 (320 mg, 2.11 mmol) was 

added and the reaction mixture was stirred at r.t. overnight. The reaction was quenched by 

addition of a satd. aq. NH4Cl solution (20 mL), which was extracted with CH2Cl2 (3x 20 

mL). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, 

filtered, and concentrated under reduced pressure to afford a brown oil. Column 

chromatography on silica (PE/EtOAc) gave 7.19 as orange sticky solid (476 mg, 1.32 mmol, 

62%). Analytical data were in accordance with literature.[4] 

 

Sodium 3-[2-(3,4,5-trihydroxyphenyl)-acetamido]-benzoate 7.2. 

To a stirred solution of 7.19 (160 mg, 0.45 mmol) in anhydrous CH2Cl2 (2.0 mL) under argon 

at -78°C, was added BBr3 (0.56 mL, 5.8 mmol) within 30 min. The resulting green solution 

was stirred at r.t. for 4 h before it was cooled to 0°C and water (2 mL) was added slowly 

under vigorous stirring. Methanol and CH2Cl2 were added and the mixture was extracted with 

EtOAc (3x). The combined organic layers were dried over Na2SO4, filtered, and concentrated 

under reduced pressure. Purification via HPLC, conversion to the sodium salt via ion 

exchange resin (DOWEX 50X8) and purification via SEC gave the final compound 7.2 (40 

mg, 0.12 mmol, 27%). Analytical data were in accordance with literature.[4] Elemental 
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analysis calcd (%) for C15H13NO6 + 1.1 H2O: C 52.09, H 4.16, N 4.05; found: C 52.02, H 

4.11, N 4.26.  

 

5-Bromo-7-methylindoline-2,3-dione 7.21. 

Chloral hydrate (1.19 g, 7.2 mmol) was added to a stirred suspension of hydroxylamine 

hydrochloride (1.50 g, 21.5 mmol), sodium sulfate (6.80 g, 47.9 mmol), 4-bromo-2-

methylaniline 7.20 (1.12 g, 6.0 mmol) in water (40 mL) and aq. HCl (2N, 2.0 mL). The 

mixture was stirred at 55°C o.n. After cooling to 0°C, the hydroxyiminoacetanilide was 

isolated by filtration, washed with cold water, and dried under high vacuum o.n. The 

cyclisation was carried out by adding the hydroxyiminoacetanilide in small portions to a flask 

containing sulfuric acid (4.0 mL, which had been heated to 55°C. The temperature was 

maintained below 70°C during the addition. After complete addition, the dark solution was 

heated to 80°C for 10 min, cooled to r.t., poured onto crushed ice (20 mL), and allowed to 

stand on the ice for 30 min. The resulting brown precipitate was collected by filtration, 

washed with water (3x 30 mL) and dried under high vacuum over night to give isatin 7.21 as 

brown powder (1.17 g, 4.9 mmol, 81%). Analytical data were in accordance with literature.[5] 

 

2-(4-Chlorophenyl)-2-oxoethyl acetate 7.23. 

To a solution of 2-bromo-4’-chloroacetophenone 7.22 (1.40 g, 6.0 mmol) in ethanol (5.0 mL) 

was added a solution of sodium acetate trihydrate (0.93 g, 6.8 mmol) in water (3.1 mL) and 

acetic acid (0.31 mL). The solution was refluxed for 2.5 h, cooled to r.t. and stored in a 

freezer at -18°C o.n. The white crystalline product was collected by filtration (0.96 g, 4.5 

mmol, 75%). Analytical data were in accordance with literature.[5] 

 

6-Bromo-2-(4-chlorophenyl)-3-hydroxy-8-methylquinoline-4-carboxylic acid 7.3. 

 A suspension of isatin 7.21 (600 mg, 2.50 mmol) in aq. potassium hydroxide (6.0 mL) was 

heated to 100°C. A solution of 7.23 (532 mg, 2.50 mmol) in warm ethanol (4.0 mL) was 

added over the course of 1 h, and upon completion of the addition, the mixture was refluxed 

for 2.5 h. After cooling to r.t., ethanol was removed under reduced pressure, the residue was 

diluted with water (15 mL), treated with charcoal, filtered and the clear solution was acidified 

to pH 1 with aq. HCl (1N). The resulting yellow precipitate was collected by filtration, 

washed with water, and dried under high vacuum. The crude product was purified by column 

chromatography on silica gel (70:2.5 EtOAc/MeCN + 0.5% Et3N) and converted back to the 

free acid by precipitation from an acidic solution of MeCN/H2O (20% MeCN, acidified with 
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HCl) to give the title compound 7.3 as pale yellow solid (537 mg, 1.37 mmol, 55%). 

Analytical data were in accordance with literature.[5] Compound purity was confirmed by 

elemental analysis: calcd (%) for C17H11BrClNO3: C 52.00, H 2.82, N 3.57; found: C 52.13, 

H 2.77, N 3.42. 
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3 Outlook 

Introduction of different amide and ester substituents in position 2 of D-galactose has proven 

beneficial for the design of E-selectin antagonists (see introduction). Since an acetyl ester 

increased binding affinity to P-selectin as well, bulkier substituents like benzoates might be 

used to further enhance the affinity of P-selectin antagonists. 

Lactones between the carboxy group of a sialic acid mimic and the 2-O or 4-O position of D-

galactose could be useful for the development of prodrugs with improved pharmacokinetic 

properties (in analogy to 5.15*, 5.16*). 

Given the unexpectedly poor binding affinity of E-selectin antagonists 5.3* and 5.4*, as well 

as the conflicting data of STD-NMR studies and the crystal structure of sLex in complex with 

E-selectin, crystal structures of E-selectin antagonists in complex with E-selectin are urgently 

needed to overcome roadblocks and promote our understanding in selectin glycomimetic 

interactions. 

The binding of PSGL-1 to P-selectin is associated with conformational changes in both the 

lectin and the EGF domain, shifting P-selectin from a bent to an extended conformation. 

Stabilization of the extended conformation via a glycan wedge between lectin and EGF 

domain was shown to increase the binding affinity towards PSGL-1 (see introduction). These 

information might be used to develop a new class of allosteric selectin antagonists, suited to 

overcome the unfavorable properties of sLex mimetics. 

P-selectin bears a second binding site close to the sLex binding epitope, which ensures the 

high binding affinity of its natural ligand PSGL-1 (see introduction). This second site offers 

promising preconditions for a fragment based drug discovery approach and might be 

explored with small molecules mimicking non-carbohydrate binding epitopes of PSGL-1, e.g. 

tyrosine sulfate. 

Finally, it is well known that the potency of selectin antagonists strongly depends on the 

assay setup. As the natural binding process between selectins and their ligands takes place 

under flow-conditions, a flow assay might prove useful for the characterization of future 

selectin antagonists.  
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