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Abstract

We compiled a library of integrated properties of stellar populations called BLoIS (Basel
Library of Integrated Spectra) with the help of evolutionary synthesis algorithms developed
by Gustavo Bruzual and Stéphane Charlot, using the theoretical stellar spectral library
called BaSel., which was constructed by Francois Cuisinier, Thibault Lejeune, and Pieter
Westera.

By building up BLoIS we were able to study the effects of the different input parameters
on the integrated properties (mainly spectra and colours) of synthetic stellar populations.
We find that the slope of the Initial Mass Function (IMF') produces the largest effects,
followed by the SFR, and the mass range of the IMF. Different stellar evolutionary tracks
and different spectral libraries have only moderate effects.

The analysis of BLolS showed that all population spectra and most of the population
colours are unique, because the metallicity characterizes the spectra in a unique way.
Comparisons amongst model populations confirmed that the IMF affects the integrated
spectra and colours in the most sensitive way.

Furthermore, there is no absolute degeneracy between age and metallicity in BLolS, but
certain combinations of these parameters can lead to similar spectra and colours. However,
we can confirm that these similarities are more pronounced at older ages and we can state
that the degree of similarity depends on the position in the age-metallicity plane.

As a theoretical application we developed a least-squares algorithm to derive subpopula-
tions from a composed population spectrum. In the framework of model populations this
algorithm is able to recover the individual contributions of subpopulations to the total
spectrum.

To put constraints on observations we developed Monte Carlo simulation programmes.
Using those we found that the observations of old populations must be more accurate
than observations of young populations in order to achive the same confidence level in
recovering the correct population.
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1 Introduction

Research taught us that stars are born in groups and that stars live in groups. This lead
to the concept of stellar populations, such as associations, open and globular clusters,
population I and II stars, and the whole variety of galaxies. Since instrumental progress
enormously improved the observations of stellar populations over the last decade, it’s
theory’s turn to develop more refined models and more efficient methods for the analysis
of stellar populations. This thesis is dedicated to synthetic stellar populations.

In the seventies of the last century astronomers (e.g., Spinrad & Taylor 1971; Faber 1972;
O’Connell 1976; Turnrose 1976; Pritchet 1977) came up with the method of population
synthesis, which composed the properties of stellar populations by building linear combin-
ations of stellar properties. In a trial-and-error sense the models then were tested on the
observations. Others (e.g., Renzini 1981; Renzini & Buzzoni 1983; Buzzoni 1990) used the
fuel consumption theorem to put the models on a more physical basis. But it was Bruzual
& Charlot 1993 who introduced evolutionary synthesis, which assumes stellar evolution-
ary tracks, a star formation rate, and an initial mass function to evolve the properties
of stellar populations temporally. In addition, one needs empirical or theoretical stellar
spectra. The latter are provided by BaSel. (Basel Spectral energy distribution Library)
developed by our research group. The method of evolutionary synthesis is briefly explained
in Chapter 2.

The first goal of this thesis consists in studying the effects of different parameters on the
integrated properties (mainly spectra and colours) of synthetic stellar populations. As we
can take advantage of the evolutionary synthesis code from Bruzual and Charlot the first
step is to build up a library of these properties by using this code. The library should be as
complete as possible but with as few redundancies as possible. Thus, its compilation goes
along with the study of the different effects of the parameters on the integrated properties.
The library is called ”BLoIS”, which stands for ”Basel Library of Integrated Spectra”, and
is presented in Chapter 3.

The second goal of this thesis is the analysis of the theoretical library BLolS, again fo-
cussing on integrated spectra and integrated colours. Apart from the uniqueness and the
parameter sensitivity in the library we treat the age-metallicity degeneracy, derive sub-
populations from composed model populations, and put constraints on observations by
Monte Carlo simulations. To achieve this we have to develop different methods. Those
methods along with the corresponding software are described in Chapter 4. The results
and the conclusions are compiled in Chapter 5 and Chapter 6, respectively.

To define the scope of this thesis we would like to mention that building up a library



of integrated properties of stellar populations by varying all the input parameters in a
systematic way (as we have done for BLolS) leads to primary applications that lie in
the theoretical framework. Based on the results of this thesis one will be able to treat
questions concerning the realism of these models.



2 Evolutionary Synthesis

The integrated light of a stellar population is composed of the contributions of the single
stars. In the 1970’s one tried to derive e.g. the integrated spectrum of galaxies by com-
bining individual stellar spectra. This technique was called population synthesis. By trial
and error, a weighted mix of stellar spectra of various types were calculated such as to
obtain a model that fitted the observations the best. This method contained only a limited
amount of physics and was far from producing unambiguous results.

In the 1980’s one tried to overcome these inadequacies by the so-called evolutionary syn-
thesis. In this approach, assumptions of stellar evolutionary tracks, Initial Mass Function,
Star Formation Rate, and stellar spectra lead to the computation of an age-dependent
integrated spectrum of a stellar model population.

In this chapter we shall briefly recapitulate the basics of evolutionary synthesis of stellar
populations. The necessary ingredients as well as the principle of the method is presented.

It is to be mentioned that at the Astronomical Institute of the University of Basel we can
take advantage of an evolutionary synthesis software package called GISSEL (Galaxy Iso-
chrone Synthesis Spectral Evolution Library) developed by Prof. Dr. Gustavo A. Bruzual
and Dr. Stéphane Charlot. This code is presented in a separate chapter called ”GISSEL
User Manual” after Appendix A.

2.1 Stellar Evolutionary Tracks

The first ingredients to evolutionary synthesis are the so-called evolutionary tracks. Based
on evolutionary models of the stellar interior the basic goal is to describe the path of a
star in the theoretical Hertzsprung-Russell-Diagramme (HRD) during its lifetime.

In Figure 2.1 we give an example of a set of evolutionary tracks published by the Geneva
group. At every grid point in the theoretical HRD a set of the following stellar properties
is provided: chemical composition Z, effective temperature Teg , mass M, age ¢, and
luminosity L. Apart from the Geneva group there are evolutionary tracks by the Padova
and the Yale groups. For details see e.g. Schaller et al. 1992 (Geneva), Girardi et al. 1996
(Padova) or Kim et al. 2002 (Yale).

In the context of evolutionary synthesis (dealing with the calculation of integrated spectra
up to ages of 20 Ga) the tracks have to be completed for post-AGB phases of the stars
because they are not included in the original tracks. For details see Charlot & Bruzual
1991 or Bruzual 2003. In Figure 2.2 we show the same Geneva tracks as in Figure 2.1
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Figure 2.1: Stellar evolutionary tracks for different stellar masses published by the Geneva
group
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Figure 2.2: Geneva tracks as in Figure 2.1 but completed for post-AGB phases



Name Z [Fe/H]

Geneva 1992 0.02 0.1060

Padova 1994 0.0001 —2.2490
0.0004 -1.6464
0.004 —-0.6329
0.008 -0.3300

0.02 0.0923
0.05 0.5595
0.1 1.0090

Padova 2000 0.0004 -—1.6464
0.001 —1.2486
0.004 -0.6329
0.008 -0.3300
0.019 0.0660
0.03 0.2883

Table 2.1: Different stellar evolutionary tracks implemented in the GISSEL code.

but this time completed with all the known stellar evolutionary phases.

As stellar evolutionary codes are far from being identical the tracks in Table 2.1 are all
implemented in the GISSEL code to allow for comparison (see Appendix C in the chapter

"GISSEL User Manual”).

2.2 Stellar Spectral Libraries

The second ingredients are the stellar spectra. Basically, they can either be observed or
theoretical. For the latter there are several libraries compiled at the Astronomical Institute
of the University of Basel. One example is shown in Figure 2.3. They are based on stellar
atmosphere models and can be either purely theoretical or so-called semi-empirical if the
models have been calibrated. For a general discussion on such libraries see Buser & Kurucz
1992. For details on the Basel libraries see Appendix A in chapter ” GISSEL User Manual”;
Lejeune 1997; Lejeune et al. 1997, 1998; Westera 2001; Westera et al. 2002.

Empirical libraries for their part can either stem from a single survey or can be compiled
from different sources. Generally speaking the advantage of empirical spectra is their
higher resolution whereas the theoretical spectra cover a larger parameter range. For the
empirical libraries see e.g. Le Borgne et al. 2002 (STELIB) or Pickles 1998 (Pickles).

The libraries implemented in the GISSEL code are listed in Table 2.2 along with their
properties. As the two observational libraries cover a shorter wavelength range compared
to the theoretical models, the former can be extended to shorter and longer wavelengths
using the BaSel. 3.1 library. This allows for a consistent modelling of spectral properties.
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Figure 2.3: Stellar spectra for different Teg from the Basel Spectral Energy Distribution
Library BaSelL 3.1 (main sequence spectral types at Z = Zg).



Name Type A-range Resmax 7 Fluxpoints Met.-range
[nm] [nm] [Z6)]
BaSel. 1.0  theoret. 9.1 — 160000 2.0 1221 0.0001 — 10
BaSel. 2.2 semi-empir. ? ” ” ”
BaSel 3.1 7 ” 7 ” 7
STELIB observ. 320 — 950 0.3 6900 0.01-3
Pickles ? 120.5 — 2500 ” ” 1

Table 2.2: Different stellar spectral libraries implemented in the GISSEL code

2.3 Initial Mass Function (IMF)

The IMF gives us the number of stars per mass interval at the birth of a stellar population.
In principle it can be derived from the luminosity function LF and the mass-luminosity

relation. We define the IMF (M) as:

dN = €&(M) d(In M) (2.1)
where  dN :  number of stars in a logarithmic mass interval
M : mass of stars (in Mg )

€M) : IMF

Thus, the total number of stars Ny, can be written as:

Niw= [ &My dnm) = [ - €0m) dm) (2.2)

The total mass Mg is calculated by:

Mtot:/Mf(M)d(lnM)z/f(M)d(M) (2.3)

According to Salpeter 1955, the IMIF can be written as follows:

EM)=cM™® (2.4)



where c constant
x : slope of IMF

Salpeter gives ¢ = 0.03 and z = 1.35 as an approximation. Note that positive values for
x result in negative slopes. This nomenclature is consistent with the one in the GISSEL
code. The constant ¢ can be used for the normalisation (total mass = 1 Mg ) of the
IMF. It’s calculated by the following equation, which gives us the total amount of mass
Mot between the upper and the lower mass limits in a stellar population.

Mu
Mo = / M d(M) =1 Mg (2.5)
My
where  M; : lower mass limit of the IMF
My ' upper mass limit of the IMF

This normalisation is used in the GISSEL code. All stellar populations calculated there
are normalized to 1 Mg .

The different IMF types available in the GISSEL code are presented in Figure 2.4. Here
are the corresponding references: Chabrier 2001, Kroupa 2001 (universal and present day),
Salpeter 1955, Scalo 1998, Scalo 1986, Miller and Scalo 1979, Kennicutt 1983, Lequeux
1979, Ferraro et al. 1997, Piotto et al. 1997. The characteristics of these IMF's are listed
in Appendix D in the chapter 7GISSEL User Manual”.

Note that the IMF's are derived from different observed stellar populations as e.g. the solar
neighbourhood or Globular Clusters. Furthermore, the slope of the IMF is z = 2.35 if we
define dN in Equation 2.1 as the number of stars in a linear instead of a logarithmic mass

interval, i.e., dN = {(M) dM.

2.4 Star Formation Rate (SFR)

The SFR provides the amount of stars that are born at a certain age of a stellar population.
In complex populations we can more generally speak of the so-called star formation history
(SFH).

In Figure 2.5 we reproduce the famous compilation of SFRs from Sandage 1986. Note
that these SFRs are analytic functions that describe in a qualitative way the stellar birth
activity of different galaxy types.

In Figure 2.6 we show the different SFR types that are implemented in the GISSEL code.
The corresponding analytic functions are explained in Section 3.2 below.

If we are interested in calculated SFHs we have to look for galaxy models as e.g. by
Samland 2003 (see next section).
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Figure 2.4: Different IMF's used in the GISSEL code (see Appendix D in chapter ”GISSEL
User Manual”). The IMF's are normalized to 1 Mg, .

2.5 Age-Metallicity Relation (AMR)

The last ingredient needed for evolutionary synthesis is the knowledge of the chemical
evolution of a stellar population. Like the SFR we can simply assume analytic functions
to describe this evolution. But for a more realistic description of the AMR chemical models
have to be calculated.

One possibility is to use the chemo-dynamical galaxy models by Markus Samland. For
details see Samland 2003. An example of such a model AMR is shown in Figure 2.7.
In this particular case the stars of the galaxy are represented by 650 000 stellar particles
which are evolved both dynamically and chemically. In Figure 2.8 we can see the basic
processes and interplays considered in these galaxy models.

2.6 Synthesis Algorithm

Evolutionary synthesis tries to calculate the properties of a model population along its
temporal evolution. In Figure 2.9 we explain the principles of evolutionary synthesis for
the example of spectra. So the goal in this case is to derive the integrated spectra of a
model population for a certain number of time steps. We start with the tracks providing
Z, Tegg, M, L, and t of the stars. If we join the points of equal ages in the theoretical
HRD we get the so-called isochrones, one per time step. For each metallicity we can thus
calculate a set of isochrones.



Total Birthrate

Time

Figure 2.5: Total stellar birthrate in galaxies of different Hubble-types according to Sand-
age 1986.
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Figure 2.6: Different types of SFRs implemented in the GISSEL code (see Section 3.2)
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Figure 2.7: AMR and SFR calculated by chemo-dynamical galaxy models of Samland
2003.
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Figure 2.8: Processes considered by the chemo-dynamical galaxy models of Samland 2003.

11



Stellar Spectrumj

Isochrone; AN Initial Mass Function
w
|

/

/

+

+

Stellar Spectrum,

Integrated Spectrum;

Simple Stellar Population (SSP)

Figure 2.9: The principle of evolutionary synthesis

From each grid point in these isochrones we know the values for Z, Teg, M, and L. Z can
be transformed to [Fe/H]and Teg, M, and L are used to derive logg. With the triple
([Fe/H], Temr, log g ) we can then search the library of stellar spectra in order to assign a
proper spectrum to each of these grid points. This has to be done for each isochrone.

So we know what type of stars we have to consider. The IMF then tells us about their
number. Assuming that the IMF is time independent, which is still a matter of debate,
we can weight the different spectra. So we end up with building the sum of the mass-
weighted stellar spectra for each isochrone which represent the integrated spectra of the
model population at the time steps given by the isochrones. This set of integrated spectra
is called a simple stellar population (SSP) because we assume that the star formation took
place in an initial instantaneous burst; a so-called §-burst.

The programme that performs this evolutionary synthesis is called ”bc03” (see Section 3.1
in chapter ”GISSEL User Manual”). Amongst others it calculates the following properties
of a stellar population for 221 ages between 0 and 20 Ga:

e integrated spectra (of total - and partial populations)
e integrated colours (of total - and partial populations)
e bolometric magnitude

e absolute magnitudes in different passbands

e amplitude of the 912 A (Lyman) discontinuity

e amplitude of the 4000 A break

12



e mass to light ratio in different colour bands

e total mass in stars, gas and remnants

e star formation rate

o different spectral line indices

e supernova and planetary nebula birth rate

e number of black holes, neutron stars and white dwarfs
e percentage of the light in different colour bands

e isochrones in parameters and colours

If we want to take a different SFH into account we can select the spectra of an SSP and
convolve them with a chosen SFR as follows:

¢
Fosp (1) = / SFR (t — 7) Fssp (7) dr (2.6)
0
where  Fogp (1) :  integrated spectra of the CSP at time ¢
SFR (t—17) : Star Formation Rate
Fgsp (1) :  integrated spectra of the SSP at age 7

If we convolve an SSP with an SFR in this manner we get a so-called composite stellar
population (CSP). Schematically this procedure is shown in Figure 2.10. The programme

that performs this convolution is called ”csp” (see Section 4.1 in chapter "GISSEL User
Manual”).

Now if we’d like to consider the chemical evolution of the model population we first have
to build several SSPs, each for a different metallicity. According to a given AMR we create
individual SFRs for each metallicity as shown in Figure 2.11. Then we convolve these
individual SFRs with the corresponding SSPs as described above, resulting in as many
CSPs as we have metallicities. Now we take the first two CSPs and add them considering
the different burst strengths calculated from a given over all SFR. This leads to a new
CSP which can be added to the third CSP. We repeat this procedure until the last CSP is
added and one single CSP is generated. Note that this procedure does not calculate the
chemical evolution of a model population in a self consistent way. It just takes the SFR
and the AMR as analytic input functions. The programme that performs this procedure
is called "evochem” (see Section 4.3 in chapter "GISSEL User Manual”).

13
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3 The Basel Library of Integrated
Spectra BLolS

One main output of evolutionary synthesis is the integrated spectrum of an evolved stellar
population. In order to study the effects of the different input parameters (like IMF
or SFR) on these integrated properties, to treat the Age-Metallicity degeneracy (AMD),
to derive subpopulations from composed model populations, and to put constraints on
observations by Monte Carlo simulations, we built up a library of integrated properties
called BLolIS, which stands for Basel Library of Integrated Spectra. It does not only
contain spectra but all the properties listed in Section 1.1 of the chapter ”GISSEL User
Manual”.

On the one hand we’d like to make this library as complete as possible, i.e., we should
consider every combination of input parameters to the evolutionary synthesis. On the
other hand, we don’t want to keep redundant data. So the aim is to reduce parameter
space without losing information, thus to rule out those parameter ranges that have either
no or only negligible effects on the spectra and the colours. Moreover, we can build certain
spectra by combining or interpolating other spectra. This reduces the number of possible
parameter combinations, too.

In the first section we show the effects of the different input parameters on Simple Stellar
Populations (SSPs) and on Composite Stellar Populations (CSPs) in the second section.
The third section is dedicated to an example of the chemo-dynamical galaxy models by
Markus Samland and the last to the file structure of BLolS.

3.1 Simple Stellar Populations (SSPs)

We have seen in Section 2.6 that an SSP is defined as a stellar population that built all its
stars at the very beginning of its life in one single, instantaneous burst of star formation.
The SFR is described as a so-called §-burst. Then we assume that the population evolves
passively, i.e., neither dynamical nor chemical evolution.
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3.1.1 Initial Mass Function (IMF)

The IMF gives us the number of stars per mass interval at the birth of a stellar population
(see Section 2.3).

Slope of the IMF

First of all we’d like to investigate the effects on the integrated spectra and the integrated
colours caused by different slopes of the IMF. For this purpose we took the BaSel. 3.1
stellar spectral library and the Padova 2000 tracks at a metallicity of Z = 0.0004. We
selected the maximum mass range of 0.1 to 100 Mg for the IMF and, according to the
definition of the IMF in Equation 2.4, we chose the following slopes:

z € {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}

The effects on the integrated spectra and their temporal evolution is shown in Figure 3.1.
Note that these are rest-frame spectra. As the absolute flux values can differ up to seven
orders of magnitude, we normalized them by dividing all flux values by the mean of all
flux values (see Equation 4.25), in order to be able to compare the spectra. Besides, the
letters in the upper part of each panel indicate the central wavelengths A. of the passbands
that were used to calculate the synthetic colours (see below). Furthermore, the ages of
the spectra are indicated in the panels in a.

The results show that there are four distinctive groups of slopes that have approximately
the same effect on the integrated spectra: {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, {3.5}, {4.0}, and
{4.5, 5.0}. For clarity reasons we display only one spectrum of a representative of these
groups. Note that the spectrum of the steep slopes do not show a significant temporal
evolution. The reason for this is that at such high slope values red low luminosity stars —
which evolve only very slowly — dominate the integrated light from the very beginning.

Now we’d like to know in which way the integrated colours of these very same populations
are affected. To do so, we took advantage of the fact that the evolutionary synthesis
code "bc03” can derive the colours by synthetic photometry (see Section 3.1 in chapter
"GISSEL User Manual”) using the filters listed in Table 3.1. Note that this is only a
selection of filters (for the full list see Appendix F in chapter "GISSEL User Manual”)
and in principle, it is possible to choose any known photometric system.

The integrated colours of the spectra in Figure 3.1 are shown in Figure 3.2. Note that
these are rest-frame colours. We can confirm two of the conclusions we drew for the
integrated spectra, i.e., (a), there are some minor changes between slopes from 0.0 to
2.0 and (b), steep slope populations don’t evolve much. For steeper slopes however, the
integrated colours can differ as much as 1 mag, depending on the colour and on the age
of the population. We’d like to mention the trend that steeper slopes lead to redder
colours and the over-all trend of most of the colours turning red during the temporal
evolution of the populations. There are exceptions to the latter statement: the distinctive
uprise towards bluer colours between 4 and 6 Ma and the sudden decrease towards redder
colours at around 100 Ma (for some colours only). The former is due to hot O- and B-stars

developing a maximum in luminosity at 100 nm and the latter to the sudden decrease of
the 4000 A break at 100 Ma.

For comparison the same investigation has been executed at a high metallicity Z = 0.03.
The result is shown in Figure 3.3. Comparing Figures 3.1 and 3.3, there are no qualitative
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Figure 3.2: Temporal evolution of integrated colours calculated for different IMF-slopes z
at Z = 0.0004 (Padova 2000 tracks, BaSel. 3.1 stellar library). Corresponding spectra in
Figure 3.1.
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Name Ac Remarks
14 141 nm ST-UV14 filter (STFOC)
17 174 nm  ST-UV1T7 filter (STFOC)
22 221 nm  ST-UV22 filter (STFOC)
27 276 nm  ST-UV27 filter (STFOC)
U’ 370 nm  Koo-Kron U+ filter (Koo’s thesis)
J 410 nm  Koo-Kron J+ filter (Koo’s thesis)
F’ 690 nm Koo-Kron F+ filter (Koo’s thesis)
N’ 780 nm Koo-Kron N+ filter (Koo’s thesis)
U 375 nm  Buser’s U filter (R. Buser)
B 421 nm  Buser’s B filter (R. Buser)
\Y 530 nm  Buser’s V filter (R. Buser)
R 600 nm Cousins R filter (Bessell 1983, PASP, 95,480)
1 790 nm  Cousins I filter (Bessell 1983, PASP, 95,480)
J 1280 nm IR J filter + Palomar 200 IR detectors + atmosphere.55
H 1660 nm IR H filter + Palomar 200 IR detectors + atmosphere.56
K 2220 nm IR K filter + Palomar 200 IR detectors + atmosphere.57

Table 3.1: Selection of filters in the evolutionary synthesis code ”bc03” along with the
corresponding central wavelengths A.. For the full list see Appendix F in chapter ”GISSEL
User Manual”.

differences between the low and the high metallicity set of spectra. This holds true for the
integrated colours, too; so we shall not display them.

For completeness we calculated the spectra and the colours for positive slopes, i.e.:
z € {0.0,-1.0, -2.0, -3.0, —4.0, -5.0}

The results are very much the same as if we’d take a bimodal IMF with a positive slope
until 1 Mgand a negative slope from there on. This will be shown later. Thus the
resulting figures do look quite similar to Figure 3.4 where the upper mass limit has been
altered.

As for the negative slopes above we calculated spectra and colours for positive slopes at
high metallicity Z = 0.02. As there were no significant differences compared to the low
metallicity case we skip those plots.

For the different slopes of the IMF we conclude that:

e Slope values between 0.0 and 2.0 affect the integrated spectra and the integrated
colours only mildly (0.1 mag for extreme cases).

e Slope values higher than 2.0 do show distinctive differences up to 8 mag, depending
on colour and age of the population.

e Steeper slope values result in redder colours.
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e Positive slopes result in similar effects as IMFs with different upper mass cut-offs
(see below).

o There are no substantial differences to these conclusions as far as different metalli-
cities are concerned.

Upper and lower mass limits of the IMF (M, , M;)

Now we investigate the influence of different mass ranges of the IMF on the integrated
spectra; first for the upper mass limits M, . We chose the following values:

M, € {100, 75, 50, 25, 20, 10, 5, 2}

The lower mass limit M;j remained at 0.1 Mg , the metallicity was set to Z = 0.0004
(Padova 2000 tracks), we chose the BaSel. 3.1 stellar library, and for the slope we took z
= 1.35, the value of the Salpeter IMF'.

The effects of the different upper mass limits on the integrated spectra are shown in
Figure 3.4. First of all we can see that all the spectra look the same after about 1 Ga, so
changing the upper mass limit affects young stellar populations. The further evolution of
the spectra is the same as for low-slope populations in Figure 3.1. In Figure 3.4 we show
4 distinctive values for the upper mass limit which correspond to the 4 groups of similar
effects on the spectra: {100, 75, 50}, {25, 20, 10}, {5}, and {2}. At the beginning the 2
M cut-off population is dominated by A-stars simply because there are no earlier stars.
Again there are no substantial differences when we look at other metallicities.

So we check the integrated colours of the population from Figure 3.4 in Figure 3.5. With
this figure we can confirm that there are literally no differences in the colours after 1 Ga.
Apart from H-K the colours are nearly identical between upper cut-offs of 100 to 50 M, .
Other than for spectra each cut-off step between 2 and 25 Mg can be distinguished quite
well. The constant (red) colours for low upper mass limits at early ages are due to the
non-existing hot (blue) stars. In general, lower values of the upper mass limit result in
redder colours.

Now we go for the lower mass limits M . All the input parameters were the same as for
the investigation about the lower mass limit. The upper mass limit was set to 100 Mg ,
whereas the values for the lower mass limit were assumed as:

My € {0.1,0.2,0.4,0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}

The influence on the integrated spectra is seen in Figure 3.6. Contrary to the upper
mass limit, the change in the lower mass limit affects the spectra of old populations, since
the spectra look the same up to an age of nearly 1 Ga. Here we can distinguish 2 groups
of cut-off values, namely 0.1 to 0.6 and 0.8 to 2.0 Mg . The first group is characterized
by mild variations, i.e., some minor differences at old ages. All the values from the second
group each have their distinctive effect on the spectra. After 1 Ga the population with
2.0 Mg cut-off reaches the phase of White Dwarfs. Those can dominate the integrated
spectra since there are no red low mass stars. With higher cut-off mass the populations
reach the White Dwarf phase earlier, i.e., 1 Ga for the 2.0 Mg cut-off and 14 Ga for the
0.8 Mg cut-off.
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library). Corresponding colours in Figure 3.5.
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All the statements for the spectra can be confirmed by looking at the integrated colours
in Figure 3.7. The dramatically increasing colours to the blue can be explained by the
sudden entry into the White Dwarf phase. The step-shaped decrease afterwards is due to
the cooling sequence being represented by only a few points in the evolutionary tracks.
Generally, higher values of the lower mass limits result in slightly (< 0.01 mag) bluer
colours.

And now we’d like to see the effect caused by changes of both the upper and lower mass
limits. The other input parameters were again the same as above. For the different IMF
mass-ranges we took:

My =M, € {0.1-100, 0.4 —75, 0.6 —50,0.8—25,1.0—20,1.2—10, 1.4—5, 1.6 — 2}

First we analyse the influence on the integrated spectra in Figure 3.8. Over all, we can
describe the spectra as a combination of Figure 3.4 and Figure 3.6; the change of the
upper and the lower mass limit affects the spectra of young and old stellar populations,
respectively, whereas the intermediate aged populations remain untouched. At young ages,
the spectra look similar to the spectra with upper mass cut-off in Figure 3.4. According
to the cut-off value, hot O- and B-stars dominate the spectra more or less. After 800 Ma
there are no differences amongst the spectra. Then White Dwarfs begin to dominate the
spectra of populations with lower mass cut-offs as seen in Figure 3.6.

Now for the effects on the integrated colours in Figure 3.9. The above statement that
the spectra can be seen as a combination of populations having different upper or lower
mass limits, can be confirmed for the colours. Note that the scales of the colour axis in
Figures 3.5, 3.7, and 3.9 are all different.

For the different cut-offs of the IMF we conclude that:

e The upper mass limit affects young stellar populations (< 1 Ga).

¢ Upper mass limits between 100 and 50 M have few effects on colours (< 0.01 mag).
o Lower values of the upper mass limits result in redder colours (< 4 mag).

o The lower mass limit affects old stellar populations (> 1 Ga).

o Lower mass limits between 0.1 and 0.6 Mg have few effects on colours (< 0.01 mag).
o Higher values of the lower mass limits result in bluer colours (< 4 mag).

e Changing both limits doesn’t affect intermediate age populations (0.1 to 1 Ga).

o There are no substantial differences to these conclusions as far as different metalli-
cities are concerned.

Two segmented IMF

In this subsection we’d like to investigate the effects of a two segmented IMF. For the
spectra in Figure 3.10 we took IMFs where the slopes between 0.1 and 1 Mg , defined
as 4, are all 1.0 whereas the ones between 1 and 100 Mg , defined as z3, are taken as 1.0,
3.0, and 5.0. For comparison we show the spectra of a population with a slope 1.0 IMF
which has a lower and an upper mass limit of 0.1 and 2.0 Mg , respectively. The other
input parameters were the same as above.
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Comparison to Figure 3.4 shows that a two segmented IMF can be seen as a combination
of a non segmented IMF with the full mass range and an IMF with a cut-off at roughly
the same point where the former is segmented. As Figure 3.4 and 3.10 do look very similar
we skip the effects of segmented IMI's on integrated colours.

For the two segmented IMF we conclude that:

o The effects of a segmented IMF are similar to the ones of a non segmented IMF with
a full mass range combined with an IMF with an upper cut-off.

e No changes to this statement can be made at other metallicities.

Bimodal IMF

We calculated the spectra for a bimodal IMF segmented at 1.0 Mg, . Here the slopes have
different signs from 0.0 to 5.0, i.e., a negative slope z, between 0.1 and 1 Mg and a positive
slope z between 1 and 100 Mg . The resulting spectra are shown in Figure 3.11. They
look quite similar to the ones calculated for different lower mass limits M (see Figure 3.6).
So the statements made for the spectra with lower cut-offs can be applied to this situation.
Again the effects on the integrated colours are suppressed here.

For curiosity we generated spectra for the same bimodal IMFs as above but for a positive
slope until 1 Mg and a negative slope afterwards (z, = —x3). The results are very similar
to the cut-off of the upper mass limit M, in Figure 3.4.

For the bimodal IMF we conclude that:

e An IMF with a negative and a positive slope interval result in spectra and colours
similar to the cases of lower mass cut-offs.

e An IMF with a positive and a negative slope interval result in spectra and colours
similar to the cases of upper mass cut-offs.

o There are no differences to these conclusions at other metallicities.

3.1.2 Stellar Evolutionary Tracks

To investigate on these effects we chose the three evolutionary track types that are cur-
rently available in the GISSEL code (see Table 2.1): Geneva 1992, Padova 1994, and
Padova 2000 tracks. The results are presented in Figure 3.12 for solar metallicity 7Z
= 0.02. There are some minor differences between the Geneva and the Padova tracks
especially at younger ages. The two sets of Padova tracks nearly look the same, however.

Now we show same picture for the integrated colours in Figure 3.13. First, we can
see that the two Padova tracks are quite similar. They can differ up to 0.1 mag for
some intermediate ages. The Geneva tracks however show larger differences compared
to the Padova tracks. At 10 Ma the former can be 0.4 mag redder than the latter,
depending on which colour. At 20 Ma Geneva tracks can be 0.3 mag bluer than the
Padova tracks. Nevertheless, between 0 and 2.5 Ma and between 0.1 and 20 Ga the
differences are moderate (< 0.1 mag) for most colours. Of course these effects are due to
the different schools of stellar evolutionary models.

For comparison we calculated the same for a low metallicity value, i.e., for Z = 0.0004. For
this metallicity, the Geneva tracks are not implemented in the code, so we compare just
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Figure 3.11: Temporal evolution of normalized integrated spectra calculated for bimodal
IMFs segmented at 1.0 Mg with slopes z, and —z; (Padova 2000 tracks, Z = 0.0004,
BaSeL 3.1 stellar library).
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the two versions of the Padova tracks. First for the integrated spectra in Figure 3.14.
Comparing this figure with Figure 3.12 the spectra based on the two tracks are roughly of
the same kind. The differences are not very dramatic apart from the area between 0 and
200 nm at 20 Ga.

So we have a look at the integrated colours in Figure 3.15. Between 25 and 250 Ma
the colours can differ up to 0.05 mag, while the Padova 1994 tracks seem to be redder
(in general) than the Padova 2000 tracks. Above 4 Ga there is a 1.5 mag difference in
14-V. As already mentioned, we can see the upturn of the spectrum at that ages and in
the corresponding wavelength area in Figure 3.14.

For the effects of the different track types we conclude:

o Geneva 1992 tracks can result in colour differences between +0.4 and —0.3 mag for
intermediate ages (2.5 to 100 Ma) compared to Padova tracks.

e Padova 1994 tracks differ moderately (< 0.1 mag) to Padova 2000 tracks only at
intermediate ages.

e No changes to these statements can be found at other metallicities.

3.1.3 Stellar Spectral Libraries

The last item to be investigated for the SSPs is the choice of the different stellar spectra.
For this comparison we chose three theoretical and one empirical library (see Table 2.2):
BaSel. 2.2 (o: original and c: corrected), BaSel. 3.1, and STELIB.

In Figure 3.16 there are the integrated spectra for the corresponding libraries calculated
at Z = 0.02. The other input parameters stayed the same as above. Note that the STELIB
spectra come at a higher resolution than the BaSeL spectra (see Table 3.1). To be able to
compare the spectra we didn’t normalize them. This lead to different scales of the y-axis
for different ages. In general, there are slight differences amongst the theoretical libraries
and some differences to the empirical library. The most obvious difference is at 50 nm and
at 2.9 Ma. Note that we don’t have a filter at that wavelength area available. Afterwards
the STELIB spectra appear to have larger fluxes compared to the theoretical libraries,
but this is due to the higher resolution which lead to deeper absorption lines. This, by
the way, shows the difficulty of comparing spectra with different resolutions.

The corresponding integrated colours are shown in Figure 3.17. Apart from some cases
(e.g. H-K) the colours show very few differences between 0 and 10 Ma. Afterwards the
colours can differ up to 0.1 mag until roughly 400 Ma. We have minor differences again
on to 1.5 Ga. Then they start to grow up to 0.1 mag at 20 Ga for some colours.

Analogous to above we made the same investigation for a metallicity value of Z = 0.0004.
In Figure 3.18 there are the corresponding integrated spectra. Again the most obvi-
ous difference occurs at an early age. Then the flux values show more or less the same
behaviour as for the low metallicities above.

The corresponding integrated colours are shown in Figure 3.19. There we can see that the
differences are of the same order of magnitude as for the high metallicity case (Figure 3.17).
Contrary to this case, we can not make any statements as far as uniform trends are
concerned. But we can say that the largest difference is 0.1 mag.

For the effects of the different libraries we conclude:
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Property Choice

IMF slope 1.35 (Salpeter), 2.0, 3.0
My 100, 50, 10, 2 Mg

My 0.1, 1.0, 2.0 Mg

track type Padova 1994

metallicity Z:  0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05, 0.1
stellar libraries BaSel. 3.1, STELIB

Table 3.2: Properties of SSPs in BLolS 1.1

o In general the differences in spectra and colours are small.

e Lor high metallicity the biggest differences (0.1 mag) are at intermediate and oldest
ages.

o For low metallicity the differences are of the same order of magnitude but do not
follow any specific trend.

3.1.4 Consequences for BLolS 1.1

For the slope of the IMF we select the Salpeter IMF because there are only mild differences
between slope 0.0 and slope 1.35. But as steeper slopes do lead to major differences we
select slopes 2.0 and 3.0, too.

The different upper mass limits of the IMF are chosen at values that lead to distinctively
different results, i.e., at 2, 10, 50, and 100 Mg . The lower mass limits for their part are
selected at 0.1, 1.0, and 2.0 Mg . This results in 11 different combinations for the IMF
mass ranges.

Since a two segmented IMF population can be derived by combining a full range IMF
with a truncated IMF population, and a bimodal IMF population can be built by putting
together IMF's with different mass limits, we skip those IMF types.

As the differences between the theoretical stellar libraries are not huge, we’ll select only
the BaSel. 3.1 library. For the empirical library we choose the STELIB due to its higher
resolution.

Because the Padova 1994 tracks provide the largest parameter range and the differences
to other tracks are not very pronounced we select this one.

As far as the SSPs are concerned we’ll end up with 231 low resolution (theoretical stellar
library) and 231 high resolution (empirical stellar library) populations corresponding to
the parameter combinations listed in Table 3.2.

3.2 Composite Stellar Populations (CSPs)

In Section 2.6 we explained that a Composite Stellar Population can be derived by con-
volving a Simple Stellar Population with a given Star Formation Rate (see Figure 2.10 and
Equation 2.6). Throughout this section we’ll only investigate populations with respect to
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the BaSel. 3.1 stellar spectral library and the Padova 1994 evolutionary tracks along with
a Salpeter IMF between 0.1 and 100 Mg . The metallicity is set to Z = 0.0001 in any
case because comparison with other values didn’t show any qualitative differences.

There are several possibilities for the kind of SFRs that are implemented in the GISSEL
code (see Figure 2.6 and Appendix D in chapter ”GISSEL User Manual”). We start with
the simplest case; the constant SFR.

3.2.1 Constant SFR

Two CSPs have been calculated, according to the values of 1 and 5 Mg /a. The integrated
spectra of these CSPs are the same, except that all the flux values of one CSP are five
times larger compared to the other. We have to mention that the GISSEL code provides
the spectra for a population with increasing total mass for the case of a constant SFR.
This is an exception because normally, the total mass of a synthetic population is scaled
to 1 Mg . After all, we only keep the spectra and colours for the 1 Mg, /a population.

Let’s compare the spectra of the SSP with the one of the CSP calculated for a constant SF'R
in Figure 3.20. While the SSP’s spectrum shows its typical changes along its temporal
evolution, the spectrum of the CSP doesn’t change a lot. After 20 Ga we can clearly see
that the spectrum is still dominated by O- and B-stars while the contribution of F-stars
is quite weak (compare spectral types in Figure 2.3).

If we compare the corresponding colours in Figure 3.21 we can see that the temporal
evolution of the two populations is more or less similar up to an age of about 2.5 Ma.
Then the SSP gets redder first just to turn bluer than the CSP between 5 and about 50
Ma. The reason for this is the behaviour of the double peaked spectrum (one peak at 50
and another at 100 nm) of hot stars. At 3 Ma the peak at 50 nm of the CSP is higher
than the one of the SSP, thus the CSP is bluer. At 10 Ma the peak at 100 nm of the SSP
is higher than the one of the CSP, thus the SSP is bluer. But as time goes by the SSP will
evolve to redder colours again due to the constant feeding of the CSP with hot blue stars.

3.2.2 Short Burst SFR

Here, the SFR is considered as a short burst of finite length at birth of the population.
The parameter to be chosen is the duration of the burst #;, in Ga. We took the following
values:

t € {0.1, 0.5, 1.0, 2.0, 5.0}

All the other parameters are the same as for the constant SFR. The resulting integrated
spectra are presented in Figure 3.20 for the 0.5 and the 5.0 Ga burst along with the
corresponding SSP and the population with a constant SFR (see previous subsection).
One can recognize that, shortly after the 0.5 Ga burst has ended, the corresponding
spectrum starts to differ from the spectrum of the CSP with a constant SFR. The same
behaviour can be seen for the 5.0 Ga burst spectrum. Once the burst has ended, the
spectra become similar to the one of an SSP. Generally we can conclude, that the spectra
of a short burst population show a temporal evolution, which is delayed by the duration
of the burst (e.g., the spectrum of a 0.1 Ga burst population after 1 Ga looks the same as
the spectrum of an SSP after 0.9 Ga).
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We now have a look at the colours in Figure 3.21 where their temporal evolution is shown
for all the five short burst populations along with the SSP and the CSP of the former
subsection. Not very surprising, the colours for the short bursts show the same evolution
as the constant SFR until the bursts end. Then the colours pass quite rapidly (~0.5
Ga) into the SSP colours. Qualitatively, these statements hold true for all the colours
presented here, leaving us with some minor quantitative variations from one colour to
another. Generally, the evolution for the constant SFR case is smoother than for the SSP
or the short burst SFR populations.

For the constant and the short bursts of finite length SFRs we conclude that:

o Apart from ages around 10 Ma the constant SFR results in redder colours (up to 5
mag) than the SSP.

e Short burst SFR populations show a temporal evolution, which is delayed by the
duration of the burst compared to an SSP.

e The colours of short burst SFR populations follow the same evolution as a constant
SFR population until the bursts end. Then they pass into the evolution of an SSP
within roughly 0.5 Ga.

3.2.3 Linearly decreasing SFR

Now we treat the case when the SFR decreases linearly. The parameter to provide is the
time (in Ga) in which the SFR decreased to zero; let’s call it the decrease time 4. To
make things comparable we chose the same values as for the short burst SFRs:

ta € {0.1, 0.5, 1.0, 2.0, 5.0}

The integrated spectra are shown in Figure 3.22 for the 0.5 and 5.0 Ga case along with the
corresponding two short burst SFR populations from Figure 3.20. If we compare the 0.5
Ga short burst SFR spectrum with the 0.5 Ga linearly decreasing SFR spectrum, we can
see that the latter has evolved a bit further than the former after 0.5 Ga. Around 1.0 Ga
of age, the two spectra get nearly identical. The same holds true for the spectra belonging
to SFRs of 5.0 Ga burst duration and decrease time, respectively. However, it takes about
10.0 Ga for the decreasing SI'R spectrum to look similar to the short burst SFR spectrum.
As a rule of thumb, we can say that the linearly decreasing SFR spectrum starts to evolve
rapidly after half the decrease time and resembles more or less to a spectrum of a short
burst SFR spectrum (ant thus to an SSP spectrum) after twice the decrease time.

We turn to the integrated colours of linearly decreasing SFR populations in Figure 3.23.
In principle the statements about the integrated spectra can be verified by the integrated
colours. If we compare Figure 3.23 and 3.21 we can see two things: First, there is no
qualitative change from linearly decreasing SFR populations to short burst SFR popula-
tions. Second, the colours for the linearly decreasing population don’t change as abruptly
as for the short burst population once the bursts have ended, but they sort of move away
smoothly from the colour evolution of an SSP.

Thus, we conclude for the linearly decreasing SFR populations:

e The spectra evolve after half of the decrease time and look similar to SSP spectra
after twice the decrease time.
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Figure 3.21: Temporal evolution of integrated colours calculated for a é-burst, a constant,
and two short burst of 0.5 and 5.0 Ga duration SFRs (Padova 1994 tracks, Z = 0.0001,
BaSel.3.1 library, Salpeter IMF'). Corresponding spectra in Figure 3.20.
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Figure 3.22: Temporal evolution of normalized integrated spectra calculated for two short

Ga decrease time (Padova 1994 tracks, Z

Corresponding colours in Figure 3.23.
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e The evolution of integrated colours is smoother than the one of short burst SFR
populations.

e The spectral and the colour evolution is similar to the populations generated by
short burst SF'Rs.

3.2.4 Exponentially decreasing SFR

The next shape of the SFR to be investigated is the exponentially decreasing SFR. Here,
we have to choose the e-folding time ¢, in Ga according to the following parametrisation:

SFR (t,t.) % exp(;—;)

For the third time we took the same values for t. as before:
te € {0.1, 0.5, 1.0, 2.0, 5.0}

In Figure 3.24 we show the temporal evolution of the spectra for a linearly decreasing,
an exponentially decreasing, and a short burst SR population. The decrease time, the e-
folding time, and the burst duration is 1.0 Ga. We can see that between 0.5 and 1.0 Ga the
exponentially decreasing SFR population evolves like the linearly decreasing with a short
delay, though. As already mentioned in the section above, the short burst model looks
similar to the linearly decreasing one at 2.0 Ga. The exponential model, however, stays
blue, because there are still stars to be born. But after about ten times the e-folding time,
the spectrum of the exponential model is similar to the two other spectra. So as a rule
of thumb we can state that the spectrum of an exponentially decreasing SFR population
starts to evolve after half of the e-folding time and looks similar to the spectrum of an
SSP after ten times the e-folding time.

Now we have a look at the integrated colours of exponentially decreasing SFR populations
in Figure 3.25. Again the statements about the integrated spectra can be confirmed by
the integrated colours. The change in colours due to the decrease in the SR is as smooth
as in the case with linearly decreasing SI'Rs. Because the exponentially decreasing SFR
doesn’t decrease to zero after one e-folding time, the further evolution of the colours is
delayed compared to the linearly decreasing SR models. But in general, one can say that
there isn’t a dramatic difference in both spectra and colours if we compare short burst,
linearly decreasing, and exponentially decreasing SF'R populations.

For the exponentially decreasing SFR populations we conclude:

e The spectra evolve after half of the e-folding time and look similar to SSP spectra
after ten times the e-folding time.

e The evolution of integrated colours is smoother than the one of short burst SFR
populations.

e The spectral and the colour evolution is quite similar to the populations generated
by linearly decreasing and short burst SFRs.
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Figure 3.24: Temporal evolution of normalized integrated spectra calculated for a linearly
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library, Salpeter IMI'). Corresponding colours in Figure 3.25.
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Figure 3.25: Temporal evolution of integrated colours calculated for a é-burst, a constant,
and 5 exponentially decreasing SFRs (Padova 1994 tracks, Z = 0.0001, BaSeL3.1 library,
Salpeter IMF'). Corresponding spectra in Figure 3.24.
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3.2.5 Delayed SFR

The last SFR we’d like to consider is the delayed one. According to Bruzual & Kron 1980
this SFR is parameterized as follows where 7 is the time of maximum star formation:

SFR (t,7) x % L eXp(_Tt)

T

Again we chose 7 in Ga as before:
€ {0.1, 0.5, 1.0, 2.0, 5.0}

The corresponding temporal evolution of the spectra is presented in Figure 3.26 along
with the spectra for a linearly decreasing, a short burst, and an exponentially decreasing
SFR population. The decrease time, the e-folding time, the burst duration, and the delay
time is set to 0.5 Ga. We can see that after 0.25 Ga the spectra start to evolve. At 0.5 Ga
the linearly decreasing SFR population shows the fastest evolution, followed by the short
burst, the exponentially decreasing, and the delayed SFR population. After 1.0 Ga the
spectrum for the linearly decreasing case looks similar to the short burst case, as stated
above. At that time the exponentially decreasing SI'R population starts to evolve before
the delayed SFR population. After 10 Ga all the four spectra look similar again. So in
general we can state, that the delayed SFR case is quite analogous to the exponential one:
the spectra start to evolve after twice the delay time and look similar to the exponential
case (and thus to the SSP case) after ten times the delay time.

If we look at the colours in Figure 3.27 we can see that their temporal evolution is
very similar to the case of the exponentially decreasing SFR in Figure 3.25. Thus the
statements about the spectra we’ve just given hold true for the integrated colours as well.

So we conclude for the delayed SR populations:

e The spectra evolve after twice the delay time and look similar to SSP spectra after
ten times the delay time.

e The evolution of integrated colours is analogous to that of the exponentially decreas-
ing SFR populations.

e In general, the spectral and colour evolutions are quite similar to those of the linearly
decreasing, the short burst, and the exponentially decreasing SR cases.

3.2.6 Consequences for BLolS 1.1

Surely, we’ll select the constant SFR population for BLolS. It is worth mentioning that
the other four SR types all lie between this SFR type and the §-burst case.

Because the short burst SFR population shows a temporal evolution, which is delayed by
the duration of the burst compared to an SSP, we can in principle derive the latter from
the former. So there’s no need to incorporate this SFR type into BLolS.

Since there are no dramatic differences between the linearly decreasing, the delayed, and
the exponentially decreasing case, we chose the delayed SFR. The reason for this is that
the delayed SFR is the most versatile of all the presented analytic functions.

As far as the CSPs are concerned, we’ll end up with the SFRs and the parameters listed
in Table 3.3. Together with the SSPs of Section 3.1 this leads to a total of 1155 low
resolution and 1155 high resolution populations.

51



T T ‘
4 4
o o
4o | o
o o
© © o w © © o w
o o S - o S
[ 0 0 [=} 0 0
3 o o 8 o o
3 ]
© - o —_
=) g 8 B 3 S d @ b 3
@ g 5 5 B g 3 SR B g
§ 2 & 2 i § 2 & 2
c:c:#_g c:c:#_g
5% 5%
X X
i ¢ T ¢ E
R R
o < o <
o | o
S S
-z -z
& &
~ ~
> g L > g
e} e}
a5 a5
2 D 2 D
~ ~
Nw Nw
8 . 1 .
« 5 I « 5
I I I o I I I o
° ° o ° ° ° o °
F o [Lg Myt 871 F o [Lg Myt 871
A Lo Mo A Lo Mo
T T
4 4
o o
4 e |- 1o
o o
© © © ® © © © | =
- o S © o S |
o 0 0 - 0 0 |
g S S § S S ‘
3 S 3 B g S § 8 B % ‘
o s % 5 2 3 S & 3 5 8 |
g 2 8 18 I g 2 8 ne
£ 2 - 3 g g - 9 \
5% 5%
X X
i ¢ T ¢ E
R R
o < o <
o | o
S S
-z -z
& &
~ ~
> 7g L > g
e} e}
a5 a5
2 D 2 D
& &
8 8
S: — S: _é—'"/{ii B
L L \fi* o L L L I — o
° ° o ° ° ° o °
F o [Lg Myt 871 F o [Lg Myt 871
A Lo Mo A Lo Mo

Figure 3.26: Temporal evolution of normalized integrated spectra calculated for a linearly
decreasing, a short burst, an exponentially decreasing, and a delayed SFR. Decrease time,
burst duration, e-folding time, and delay time is set to 0.5 Ga (Padova 1994 tracks, 7 =
0.0001, BaSel.3.1 library, Salpeter IMI'). Corresponding colours in Figure 3.27.
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Figure 3.27: Temporal evolution of integrated colours calculated for a é-burst, a constant,
and 5 delayed SFRs (Padova 1994 tracks, Z = 0.0001, BaSeL.3.1 library, Salpeter IMT").
Corresponding spectra in Figure 3.26.
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SFR

constant with 1 Mg /a

delayed with maximum at 7 = 0.1 Ga
delayed with maximum at 7 = 1.0 Ga
delayed with maximum at 7 = 5.0 Ga

Table 3.3: Properties of CSPs in BLolS 1.1

3.3 Samland-models

In Figure 3.28 we show an example of a galaxy model calculated by SAMLAND. Re-
specting all the processes presented in Figure 2.8 and including dynamics, the evolution
of 650000 stellar particles is computed in a self consistent way. In the top left panel of
Figure 3.28 the view of this model at the age of 13.5 Ga is shown face-on and edge-on in
the panel to the right of it.

Because we are able to easily follow any stellar particle of interest we can decompose the
model galaxy in subpopulations, e.g. according to their metallicity. This has been done
for the 7 Padova 1994 metallicities (see Table 2.1) resulting in 7 subpopulations which
are presented in the first two columns. Note that ”z” stands for Zg and correspond to
the 7 values of the Padova 1994 metallicities which mark the centers of metallicity ranges
indicated in the panels.

The SFRs of the whole galaxy and of all the 7 subpopulations are shown in the third
column. These 7 SFRs together with a set of 7 SSPs from BLoIS (in this case we took
the Padova 1994 tracks, SALPETER IMF between 0.1 and 50 Mg , and BaSel. 3.1 stellar
spectral library), we are able to calculate the corresponding 7 CSPs using the programme
"csp” (see Section 2.6 and chapter "GISSEL User Manual”). The integrated spectra
of those CSPs, also at age 13.5 Ga, are presented in the fourth column. Besides the
corresponding metallicity Z the proportionality factor p for each subpopulation (calculated
from the masses of the subpopulations) is also indicated. Those factors help us to derive
the total spectrum of the model galaxy presented in the top right panel.

The properties of this particular model are currently located in
/neptun/usr4/stellarpop/Samland/Scd.

3.4 File structure of BLolIS 1.1

The folder BLoIS is currently located in /pluto/usr3/westera/stellarpop. The files
containing the integrated spectra and the integrated colours are all on the same level of a
hierarchically structured directory tree. The hierarchy is shown in Figure 3.29.

The folder names are coded with numbers (bold in Figure 3.29), e.g., the spectra of a
stellar population calculated with the STELIB library, with Padova 1994 tracks, at a
constant SFR, with a 3.00 IMF slope, and an IMF mass range between 1 and 2 Mg are
located in the folder named BLoIS/02/01/02/03/05.

The metallicity is coded in the filenames, e.g., file named
bc2003_1r m22_salp_ssp MLO10_MU0O2.ised corresponds to Z = 0.0001. For the different
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Figure 3.28: Scd-galaxy model at 13.5 Ga by Samland (Samland 2003). The first row
shows the properties of all stars, whereas in row 2 to 8 the properties of 7 subpopula-
tions corresponding to the metallicity ranges indicated in the panels. The SFRs in the
third column were also calculated by Samland and were used to derive the spectra of the

subpopulations in the last column. See text for details.
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metallicities see Table 2.1.

The integrated spectra can be found in the *.ised files. To economise on disc space they
are in binary format. One file contains 221 spectra corresponding to the 221 different
ages of the population (see chapter ”GISSEL User Manual”). The filenames for the low
resolution spectra contain the string 1r_ and the high resolution spectra files come with
hr..

The 6 files with the integrated colours (*.ABmag, *.*color) are in ASCII-format. For the
high resolution spectra there are 6 additional line strength index files (*.*1sindx*).
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4 Fitting Methods

Data fitting and parameter estimation is one of the most widely spread tasks in natural
sciences. A straightforward method to fit theory to observations is the so-called chi-square
fit. It will be presented in the first section. One method of parameter estimation is the
so-called least-squares adjustment technique which we shall recapitulate in the second
section. There, an adapted version of this approach will be proposed. In the third section
we shall present the software that will be used for the analysis of the spectral library
BLolIS. Although we shall not fit models to real data within the framework of this thesis
the software for this purpose is similar to the one developed for the analysis of BLolS.

4.1 Chi-Square Fitting

One of the easiest fitting procedures is the so-called x? fit. The goal of this method is
to minimize the sum of squared and weighted residuals, which can be calculated as the
differences between observed data and an assumed model function.

The vectorial model function G describes the mathematical relations between the obser-
vations and the parameters:

L = G(X) (4.1)
where L observations
G model function
X :  parameters

From theory we choose a set of parameters and define the parameter vector X:
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where m : number of parameters

From actual measurements we obtain a set of observations along with their errors. So we
can denote the observation vector I and the error vector e:

I €1
I = l; e = & (4.3)
I 6:”
where n @ number of observations

We assume that the errors of the measurements are normally distributed:

g) = 0
el (4.4)
(ef) = of

where o? :  a priori variance of the i-th observation

Thus, we can denote x? — the sum of the squared and weighted residuals — as:

¢x) = ) {—[“‘G(X”Q} (1.5

0;2

The goal of x? fitting is to minimize this expression by assuming not only different model
functions but also different sets of parameters.

Usually, our observations come as data points measured with respect to another quantity
(e.g. time). This argument quantity is considered as error free. So the observation vector
l in Equation 4.3 becomes:

(t1,11)
l = (t“lz) (4.6)

(1)
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G(X,t)

Figure 4.1: Schematic drawing of the observational situation where [;, ¢;, and ¢; are the
observations, the arguments, and the errors, respectively. G (X,t) is the model function.

where t; :  i-th argument

In Figure 4.1 we explain this situation with a schematic drawing. With this notation,
the expression for x? in Equation 4.5 becomes:

C(X) = Z{[(tiyli)—G(X,ti)]Q} (4.7)

n
.2

g

=1 ?

Note that G is an analytic function and that the expression G (X ,t;) provides the value
of this function at the position {;.

As we have seen in Section 2.6 evolutionary synthesis uses a set of input parameters to
calculate a particular model. In this sense the model represents the input parameters.
But there is no model function G that would describe the relations between the input
parameters and the models. In the context of x? fitting this is not a problem because we
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can simply replace the value of the model function at a certain position by the value of
the model at this position.

Analog to the observation vector we define the model vector M as:

(t1, My)
M = (ti,ﬂ/[i) (48)

(tn, M)

With these definitions the formula for x? looks like this:

XQ(M) _ zn: {[(tﬁli)_(tivﬂ/[i)] } (49)

0;2

Now there is not just one model. Instead, we have different sets of input parameters that
lead to different models. So we replace the model vector by the model matrix M;:

(t1, M11) ... (t1,My;) ... (t1, M)
M, = (ti, Myr) ... (8, My) ... (L, M) (4.10)
(tny, Mp1) oo (o, Myj) oo (o, M)
where m : number of models (or sets of input parameters)

Note that m no longer represents the number of parameters. The number of input para-
meters for the evolutionary synthesis algorithm has no importance to the x? fit.

In the context of evolutionary synthesis we end up with the final expression for the y? of
the j-th model:

a;

() = Y {[(t“li)_(?’M’j)]Q} (4.11)

The goal of minimizing this expression can be achived by assuming different models, i.e.,
different sets of input parameters for the evolutionary synthesis algorithm.
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4.2 Least-Squares Adjustment (LSA)

As explained in the former section , we can assume a model function G that describes the
functional relations between the observations and the parameters (see Equation 4.1):

L = G(X) (4.12)
where L observations
G model function
X :  parameters

For the most simple case, i.e., where there is a linear relation between the observations
and the parameters, we can formulate the observation equation system as follows:

Az =1+ (4.13)
where A = ( % ) : first design (or Jacobi) matrix
a1
r = x; : solution vector
LTm
m : number of parameters
L
I = l; :  observation vector
L
V1
v = v; : residual vector
Uy,
n : number of observations
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The solution vector & can be written as:

z = (ATA) AT (4.14)

As for the y? fit we assume that the errors ¢; of the observations are normally distributed:

g) = 0
el (4.15)
(ef) = of

where o? : a priori variance of the i-th observation

If the errors are not correlated the stochastic model for the observations can be described
by a diagonal weight matrix P:

1
oz 0
P =7 -5 (4.16)
0 7
where ol : a priori variance of unit weight
o? : a priori variance of the i-th observation
Thus, the solution vector  in Equation 4.14 becomes:
z = (ATPA)TATPI (4.17)

The estimated standard deviation of unit weight mg (or root mean square error "RMS”)
is computed as:

my = (4.18)
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where vTPv = 1TPl - 2 ATPI
f = n—m > 0 : degree of freedom

The estimated standard deviations of the individual model parameters m, are:

my = Mo \/4;; (4.19)

where q;; @ Jj-th diagonal element of the matrix @
Q = (ATP A)~' : cofactor matrix of the model parameters
(or inverse normal equation matrix)

The goal of the least-squares adjustment is to minimize the expression »” P v by assuming
different model functions. Unlike to the x? fitting technique, we don’t have to assume
parameters because they are estimated in the adjustment process.

As we have mentioned in the former section, evolutionary synthesis uses input parameters
to calculate models. But there is no model function that would describe the relations
between the input parameters and the models. As the least-squares adjustment technique
calculates the unknown parameters of an assumed model function, this approach seems
useless in the context of evolutionary synthesis.

But still there’s a way of fitting models to observations taking advantage of the parameter
estimation technique just presented; let’s call it ”least-squares fitting”.

We denote the observation equation system like in Equation 4.13, but replace the first
design matrix by the model matrix (see Equation 4.10):

Mz =1+wv (4.20)

In explicit form the new observation equation system looks like this:

(tl, A/lll) Ca (tl, [141]) Ca (tl, A/Ilm) . ll Gl
T1
(ti, ﬂfﬂ) - (ti, IV[Z']') - (ti, 1\/.Im) zj = l; + v (4.21)
: .
(tn, Ma1) oo (tns Myj) oo (tny Mup) I, Uy
where m : number of models (or sets of input parameters)
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Instead of the partial derivatives of the function model with respect to the unknown
parameters, we directly assign the models that were calculated using different sets of
input parameters. Thus, the solution vector # in Equation 4.20 does no longer represent
the unknown parameters of an assumed model function. Instead, we can treat the model
spectra as model vectors (see Equation 4.8) and state:

On condition that all the model vectors are linearly independent, the j-th element in the
solution vector x is equal to one, if the j-th model is identical to the observation.

Here’s a simple example:

15 9 0 5
2 6 10 6
3 7 11 é |7 (4.22)
4 8 12 8

In practice no model will fit the observation exactly. So we will have to search for the one
element in the solution vector that is closest to one.

Like for the x? fit we achieve the goal of minimizing the expression »7 P v by assuming
different models, i.e., different sets of input parameters for the evolutionary synthesis
algorithm.

4.3 Software

Both methods of the former sections have been applied to analyse BLolS, treat the age-
metallicity degeneracy, and to put constraints on observations. The first subsection deals
with chi-square fitting and the second with least-squares techniques. All programmes are

written in FORTRAN.

4.3.1 SPECFIT, SPECFITSIM, COLFIT, COLFITSIM
SPECFIT

In Chapter 2 we saw that one important output quantity of the evolutionary synthesis
algorithm GISSEL is the integrated spectrum of a stellar population; the so-called integ-
rated spectral energy distribution ISED. Each model population consists of 221 ISEDs
corresponding to 221 ages from 0 to 20 Ga. Fach ISED consists of 1221 or 6 900 flux val-
ues, depending on the chosen stellar spectral library. For an example of a low resolution
spectrum see Figure 4.4.

The purpose of the programme ”SPECFIT” is to fit model spectra to observations. Follow-
ing the x? fitting scheme of Section 4.1 we set the observation vector f from Equation 4.6
as follows:
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(A1s fr)

f = (Ai, fi) (4.23)
(Ans f)
where A; ¢ i-th wavelength value of the observation
fi +  i-th flux value of the observation
n : number of observed flux values

Then we denote the model matrix F; according to Equation 4.10 as:

(M, Fi1) oo (ML F) s (A, i)
F;, = Ny F) oo (A EF) oo (M B) (4.24)
Ay Fp1) oo Ay Fg) oo (A )
where F;; @ 1-th flux value of the j-th model
m : number of models (or sets of input parameters)

From Equation 4.11 we get the expression for x? of the j-th model:

a;

CE) =Y {[(Ai’fi)_(zAi’Ej)]Q} (4.25)

It is worth noting that the observed flux values correspond to the same wavelength values
as the models. In practice this won’t be the case; so there will be the need for choosing a
homogeneous wavelength sequence.

Next we’d like to explain the programme "SPECFIT” by the flow chart in Figure 4.2.
We start with reading the observed spectrum and the corresponding errors. Then we can
normalize the observed spectrum if necessary. The normalized spectrum f is produced by
scaling all flux values by the mean of all flux values as follows:

Sk
1
<

(4.26)

3=
pn)

o
Il
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number of model populations

read observed spectrum from observation file

l

normalize observed spectrum (optional)

l

set observation vector: f

l

set errors vector of observations: €

l

set weights: o’

l

start big loop over i model populations

'

end big loop over i model populations

l

search output file for over-all min. )(2

Figure 4.2: Flow chart of SPECFIT
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Whether we have to normalize the spectra depends on the kind of question we’d like to
answer. Apart from the model populations calculated with a constant SFR the unit of the
ISEDs is Ls/Mg /A. If one likes to fit the integral spectrum of an observed population
one would have to know the exact mass of this population in order to scale the model
spectrum correctly. Most of the time this is not the case, so we’ll end up with normalizing
both observed and model flux first and then perform the fit.

The next two steps of the programme consist in setting the observation vector f as in
Equation 4.23 and the error vector € as in Equation 4.3.

Then we define the proper weights to be used for the residuals. According to Equations 4.15
and 4.16 the weights 1/0? are set as:

(4.27)

Sy
|
e

Measurements with larger errors will result in smaller weights to the corresponding residua
and vice versa.

Now we are ready to start the big loop over all 7 model populations. It begins with reading
(and optionally normalizing) all j spectra of the i-th model population in order to set the
model matrix F; as in Equation 4.24. So i is the number of model populations (up to
1155) and j is the number of ages (here 221) of one model population.

Afterwards we can start the small loop over all j ages to calculate the corresponding j x?
values of the i-th population according to Equation 4.25.

Having left the small loop, the minimum x? value of the i-th population is written to the
output file. The reason for keeping only the smallest y? value of one model population is
that we’d like to compare model populations and not spectra within one model population.
Here’s an example of such an output list showing the y? values, the age number, and the
name of the model file:

.040890973 221  /BLoIS/01/01/01/01/01/bc2003_l1r_m22_salp_ssp_MLO10_MU002.ised
.097598152 221  /BL0oIS/01/01/01/01/01/bc2003_1r_m32_salp_ssp_MLO10_MU002.ised
.110467956 138  /BL0IS/01/01/01/01/01/bc2003_1r_m42_salp_ssp_MLO10_MU002.ised
.150373758 139  /BL0oIS/01/01/01/01/01/bc2003_1r_m52_salp_ssp_MLO10_MU002.ised
.195036394 139  /BL0IS/01/01/01/01/01/bc2003_1r_m62_salp_ssp_MLO10_MU002.ised
.283086573 139  /BL0IS/01/01/01/01/01/bc2003_1r_m72_salp_ssp_MLO10_MU002.ised
.154152581 131  /BL0oIS/01/01/01/01/01/bc2003_lr_m82_salp_ssp_MLO10_MU002.ised
.040890800 221  /BL0oIS/01/01/01/01/02/bc2003_1r_m22_salp_ssp_MLO10_MUO10.ised
.097598138 221  /BL0oIS/01/01/01/01/02/bc2003_1r_m32_salp_ssp_MLO10_MU010.ised
.110259606 138  /BLoIS/01/01/01/01/02/bc2003_lr_m42_salp_ssp_MLO10_MU010.ised

O O O O O O O O O O

The output file will then be searched for the over-all minimum x? after leaving the big
loop. The best fitting model spectrum along with it’s properties is written on the screen
in the end.

The calculation of a maximum of 1155 model populations (i.e. 255255 model spectra) x>

fit to a low resolution spectrum (1221 flux values) takes about 10 minutes on an Alpha
500 MHz workstation.
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Figure 4.3: Probability density function f(I) for the normal distribution.

SPECFITSIM

There is a version of ?SPECFIT” for Monte Carlo simulation called "SPECFITSIM”. The
purpose of this programme is to add artificial noise to a model spectrum which will be
treated as an observed spectrum in order to study the effects on the behaviour of the x?
fit. After setting the observation vector f like in "SPECFIT” normally distributed noise
can be applied to f. One can enter the percentage p that leads to individual relative
1 ¢ noise values for each absolute flux value: 1 o = p f; (please don’t confuse o, with
o; in Equation 4.27). As shown in Figure 4.3 69 % of the simulated flux values will lie
between the positive and the negative 1 o/ boundary. Note that we have chosen the general
notation for the observation vector l in order to avoid confusion between the observed flux
values f and the probability density function f. The percentage p can be used to calculate
the more common term ”signal to noise” by S/N = 100/p. In Figure 4.4 we show an
illustrative example of a low resolution spectrum from BLolS without and with noise at a
level of p = 0.1 or S/N = 10.

It is questionable, though, whether choosing absolute noise would be better than relative
noise. But as the flux values cover a large range (up to orders of magnitudes) within one
population, relative noise is considered as adequate enough. Besides one always has to be
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Figure 4.4: Example of a model spectrum from BLolS without and with noise at a level

of S/N = 10.

aware of negative flux values.

The simulation then is done by performing a chosen number of very big loops (here 1000)
over the whole x? fit procedure writing only one over-all minimum y? value per loop to
an output file. Then the statistics in interest can be done by analysing this file.

A 1000 runs simulation including 7 model populations (1547 spectra) takes about 5
minutes on a 500 MHz Alpha workstation.

COLFIT

Analogously to "SPECFIT” we have written "COLFIT”, which performs a x? fit on the
basis of integrated colours. In principle colour magnitudes can be regarded as reduced
integrated spectra. Instead of having e.g. 1221 flux values at certain wavelength points
we only have a handful of colour magnitudes to characterize the energy distribution of
a population in a certain wavelength area. The actual colours are then calculated as
magnitude differences. For an illustrative example see Figure 4.6.

With this in mind we can denote the observation vector ¢ in Equation 4.6 as:
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(Aml, Cl)

c = (Amg, ¢;) (4.28)
(Amy,, c,)
where Am; :  i-th magnitude difference of the observation
¢ : i-th colour value of the observation
n :  number of observed colour values

According to Equation 4.10 we can set the model matrix C; as follows:

(Amqy,Ci1) ... (Amq,Cqj) ... (Amy,Cip)
C;, = (Am;, Cin) ... (Am;,Cy) ... (Amy,Cip) (4.29)
(Amy,Cr1) ... (Amy,Chj) ... (Amy,Chp)
where Ci; : i-th colour value of the j-th model
m : number of models (or sets of input parameters)

Equation 4.11 then provides the expression for x? of the j-th model:

ei@) - 3 {amer-amcir) o

1=1 g

Note that both the observed and the model colours have to be defined in the same pho-
tometric system. If this isn’t the case one will first have to derive the model colours by
synthetic photometry of the model spectra, using the same passbands as the observed
colours.

Then we are set for the programme "COLFIT” which is explained in the flow chart in
Figure 4.5. The structure of this programme is quite identical to ?SPECFIT”. One differ-
ence though is that we do not have to normalize the colours because they are independent
of the mass (and the distance) of an observed population. The second difference is, that
we don’t have a model spectrum with a certain amount of flux values but a set of colours
(here 24) per model population and per age.

A full x? fit over 1155 model populations (255 255 sets of colours, 24 colours per set) takes
about 1 minute on a 500 MHz Alpha workstation.
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number of model populations

read observed colours from observation file

l

set observation vector: ¢

l

set errors vector of observations: €

l

set weights: 0’ :

l

start big loop over i model populations

'

end big loop over i model populations

l

search output file for over-all min. X2

Figure 4.5: Flow chart of COLFIT
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Figure 4.6: Example of a set of model colours from BLoIS without and with noise at a
level 1 ¢/ = 0.1 mag.

COLFITSIM

Analogously to "SPECFITSIM” we generated ”COLFITSIM”. This Monte Carlo simu-
lation code follows the same pattern as the first, i.e. it adds artificial noise to a set of
model colours which will be used as observed colours. Here we neither have the problem
of large differences in colour values nor the problem of negative values. So we can add
one single absolute noise value to all observations: 1 ¢’ = p ¢. In Figure 4.6 we show an
illustrative example of a set of 24 integrated colours once with the original values and once
with a noise of 1 6/ = 0.1 mag (see Table 3.1 and chapter ”GISSEL User Manual” for the
definition of the colours). Apart from a different file reading subroutine "COLFITSIM”
performs the same 1000 runs simulation as ”SPECFITSIM”.

A 1000 runs simulation including 7 model populations (1547 colour sets, 24 colours per
set) takes less than 1 minute on a 500 MHz Alpha workstation.

The four programmes that perform x? fits are listed in Table 4.1.
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Purpose Spectra Colours

simple search SPECFIT COLFIT
Monte Carlo simulation SPECFITSIM COLFITSIM

Table 4.1: Programmes performing x? fitting

4.3.2 SPECLSA, COLLSA, SPECSUBPOP, COLSUBPOP
SPECLSA

In Section 4.2 we proposed a method to fit models to observations by least-squares ad-
justment techniques. The programme that applies this method to spectra fitting is called
"SPECLSA” which we’d like to present now.

In analogy to the x? fit we set the observation vector f as in Equation 4.23. The same is
done with the model matrix F (see Equation 4.24). The observation equation system in
Equation 4.20 is then set to:

Fz = f+wv (4.31)
Or explicitly:
(AlaFll) (AlyFlj) (AlaFlm) fl (1
1
(/\Z',Fﬂ) (/\Z,F”) (/\Z,Em) z; = Ji + Uy (4.32)
Ay 1) oo Qs ) oo Dy Fn) In Uy
where m :  number of models (or sets of input parameters)

number of observed flux values

3

One could now have the idea of solving the corresponding normal equation system re-
garding all possible model populations. For fitting a low resolution spectrum (1221 flux
values) this would lead to a 1221 x 255255 model matrix. Apart from the ridiculously
large normal equation matrix to be inverted (see Equation 4.14 and 4.19) the method
would fail for theoretical reasons:

e The number of parameters to determine is larger than the number of observations.

e There are identical spectra within one model population (neighbouring ages) which
contradicts the condition, that the model vectors have to be linearly independent.
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To overcome these problems one could now think of the opposite idea, i.e., just taking one
model spectrum and conduct the adjustment 255255 times solving for just one scalar z
instead of a solution vector . This on the other hand is too sophisticated a method to fit
a spectrum because this problem is more efficiently solved by a x? fit.

The solution to the problem is to adequately choose the set of models to be fed into the
normal equation system. First there’s the absolute upper limit of 1221 low resolution or
6900 high resolution models mentioned above. Then one has to avoid identical models be-
cause of their linear dependence as vectors. Two or more spectra of one model population
can be identical if they are time neighbours. This, however, is not much of a problem, be-
cause we don’t really want to compare the spectra within one model population but rather
compare the spectrum of a model population to spectra of other model populations. So
we shall only compare spectra of the same ages which would lead to 221 model matrices
each 1221 x 1155 of dimension. Thus we’d have to invert a 1155 x 1 155 normal equation
matrix 221 times. This is theoretically possible but computationally too expensive. So we
have to go even further.

The search strategy that has finally been chosen is the following: Because one particular set
of input parameters for the evolutionary synthesis algorithm (i.e. library type, track type,
SFR, IMF, IMF mass range) leads to a certain subset of model populations (e.g. choosing
Padova 1994 tracks leads to 7 model populations corresponding to 7 different metallicities),
we select this subset for the adjustment. Following the example just mentioned, we would
choose only 7 model populations and compare the corresponding model spectra with the
observed spectrum time step after time step. This means that we’d have to invert a 7 x 7
normal equation matrix 221 times for this model subset; and this 165 times because that’s
the number of model subsets of this kind in BLoIS 1.1. So we end up with 36 465 inversions
of a 7 x 7 matrix which is computationally feasible. A search for a low resolution spectrum
with this least-squares adjustment method takes about 15 minutes on a 500 MHz Alpha
workstation.

So we’d like to explain the flow chart of ”"SPECLSA” in Figure 4.7. We start with the
reading (and optionally normalizing) of the observed spectra along with their errors. Then
we can set the vectors of the observation, the errors and the weights as above. Now we
are ready to read (and optionally normalize) the model spectra. After this the small loop
over all the ages is started. It begins with setting the model matrix. After that all the
necessary steps for solving the normal equation system are made, i.e., the calculations of
B, N, Q, x, and v. The normal equation matrix IV is normalized before its inversion in
order to avoid computation problems with small and large numbers. After the inversion,
the cofactor matrix @ is then renormalized, of course. Having left the small loop the
minimal estimated standard deviation of unit weight mg along with the corresponding
solution vector @ are written to the output file. When the big loop over all model subsets
is terminated the output file is searched for the over-all minimal my.

COLLSA

As in the subsection above, we compiled a version of the least-squares adjustment al-
gorithm for integrated colours called "COLLSA”. Apart from the file reading routines it
follows the same pattern as ”"SPECLSA”. The observation vector ¢ is filled with 24 colour
values per model, and the model matrix M; is of dimension 24 x 7 corresponding to the
7 metallicities. A simple search for the best fitting model takes less than one minute on a
500 MHz Alpha workstation.
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number of model subsets

read (and optionally normalize) observed spectrum

l

set vectors of observations, errors, and weights: f, €, o’

l

start big loop over i model subsets

'

end big loop over i model subset

l

search output file for over-all min. m,

Figure 4.7: Flow chart of SPECLSA
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SPECSUBPOP

But finding the best fitting model spectrum or colour set is not the actual purpose of the
adjustment technique, for y? fitting is perfectly enough for this task. Besides the y? fit
provides a goodness of fit parameter for each single spectrum whereas the least-squares
adjustment algorithm calculates only an "RMS” error for an ensemble of several (here 7)
spectra. However, the advantage of the proposed method is that we can derive subpopula-
tions because the solution vector @ includes information about how much one particular
model spectrum (belonging to a certain metallicity, thus stellar population) contributes to
a total spectrum of an observed population consisting of different subpopulations. E.g. if
two elements of the solution vector are 0.5 and all the other elements are 0 we can state
that the observed spectrum is composed of those two subpopulation spectra which the
solution vector indicates. Here’s a simple example:

15 9 3
0.5

2 6 10 4

3 0 1 0(.)5 = (4.33)

4 8 12 6

So we have written ”SPECSUBPOP” for the purpose of deriving subpopulations on the
basis of spectra. To test this method we generated an observed spectrum by summing up
different (here 7) model spectra each of a different age and with an own proportionality
factor p as:

p=pi, D p=1 (4.34)
j=1
where m :  number of model subpopulations (or metallicities)

An example of the spectrum of such a composed population is shown in Figure 5.8. Then
we applied the least-squares adjustment method as described above to see, whether we are
able to recover all the proportionality factors correctly. The details of the successful test is
written in Section 5.3. The reason for this success is that metallicity makes each spectrum
unique, thus linearly independent from others. It can well be that for one single wavelength
point different combinations of the (7) model flux values lead to the same observed flux
value. But this does not hold for all the other flux values, i.e. the whole spectrum. We
can state that the metallicity characteristics of the spectra of model populations are so
unique that putting them in one single normal equation system leads to an unambiguous
solution which describes the extent of the contribution of the different subpopulations to
the composed spectrum of an observation.

Now CSPs can’t be characterized by one single age. In this context we define the age of
a subpopulation as the time span since the first appearance of stars of the corresponding
metallicity. CSPs are therefore composed of subpopulations of different ages. So compar-
ing only subpopulations of the same age (as "SPECLSA”) is not adequate. The picture
to have in mind is sketched in Figure 4.8, where S P(Z;) is the subpopulation of the j-th
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Figure 4.8: Contributions of different subpopulations to the total light

metallicity. The scetch shows the different contributions of the different subpopulations
to the total light of a CSP at different ages.

Schematically this CSP consists of one single subpopulation (thus one single metallicity
71) at the beginning. Then this first generation produced a second population of a higher
metallicity Z,. After the total disappearance of the first generation this second generation
was the only one to contribute to the total light of the CSP for a while. Then it produced
a third generation of even higher metallicity Z3 with which it shared its contribution in
the end. Of course, real CSPs would show smooth changes of the different contributions.
But as the GISSEL code provides spectra at discrete age steps the chosen approach is
adequate.

If we’d like to derive subpopulations without any assumptions we’d have to consider all
possible combinations of ages, metallicities, tracks, stellar spectral libraries, etc. So let’s
focus on just one set of subpopulations that varies only in age and metallicity. For m
subpopulations (or metallicities) and ¢ ages we can write the total number of possible age
and metallicity combinations: ne = t™. In spite of the least-squares algorithm calculating
m subpopulations at once, it is clear that we have to limit the number of combinations to
a reasonable size.

One possibility of reduction is to think of a stellar population as a closed box model (no
infall, no merging etc.). So we can assume that higher metallicity stars evolved from
lower metallicity stars and we can thus exclude all combinations where higher metallicity
subpopulations are older than lower metallicity subpopulations. In this case the total
number of possible combinations nc is reduced to:
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read (and optionally normalize) observed spectrum

. . 2
set vectors of observations, errors, and weights: f, €,0

read (and optionally normalize) model spectra

start nested loops over all model subsets

set model matrix: I«;

B=F'Pf, N=F'PF, Q=N x=QB, v=Fx-f

number of model subsets

build top ten ranking for m,

end nested loops over all model subsets

write top ten ranking on screen

Figure 4.9: Flow chart of SPECSUBPOP

ne = H(l—l— E) (4.35)

where m :  number of model subpopulations (or metallicities)
t : number of age steps

This does not mean that a lower metallicity subpopulation is not allowed to rise its contri-
bution again after falling. It simply means that a higher metallicity subpopulation can’t
appear for the first time before a lower metallicity subpopulation.

Now we are ready to explain the flow chart of ”SPECSUBPOP” in Figure 4.9. As for
"SPECLSA” it begins with reading the observations and setting of the vectors f, e, and
o~2. Then we read all the spectra of the model subpopulations. In principle any model
subset can be chosen. But in the context of deriving subpopulations we select 7 models
(according to the 7 different Padova 1994 metallicities) with a constant SFR because
subpopulations can produce stars at every age after first appearance. Now we have to

start m nested loops where m is the total number of model subpopulations. There, one
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Purpose Spectra Colours

simple search SPECLSA COLLSA
deriving subpopulations SPECSUBPOP COLSUBPOP

Table 4.2: Programmes performing least-squares adjustment

can choose whether to allow every possible age-metallicity combination or just the ones as
explained above (see Equation 4.35). During the inner most loop the model matrix F; is
set, the parameter estimation is done, and a top ten list according to the "RMS” error mq
is built up. After leaving all the loops we are ready to write the top ten list (containing
the 10 most probable solutions) on the screen.

Taking into account 10 age steps and assuming a closed box model population a search
for an observed spectrum consisting of 7 subpopulations lasts about one minute on a 500
MHz Alpha workstation.

COLSUBPOP

Analogously to the subsection above we have written a version of "SPECSUBPOP” for
deriving subpopulations on the basis of integrated colours named "COLSUBPOP”. Again
they both follow the same patterns except for the reading routines.

If we are dealing with 24 integrated colours per subpopulation we can perform a search
for 20 ages and 7 metallicities in about one minute on a 500 MHz Alpha workstation.

Attention: Contrary to Equation 4.28 the observation vector ¢ should be:

mq
c = m; (4.36)
mn
where m; :  t-th colour magnitude of the observation
n  : number of observed colour magnitudes

And, as a consequence, the model matrix C; in Equation 4.29 should also be filled with
colour magnitudes of the models instead of the colours. So ?COLSUBPOP?” has only been
written to test, whether the least-squares adjustment routine still works with 24 values.
It has to be adapted for colour magnitudes first if one wants to use it for real data.

The four programmes that perform least-squares adjustments are listed in Table 4.2.
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5 Results

In this chapter we’d like to present some theoretical applications of the integrated library
established in Chapter 3 with the help of the software developed in Chapter 4. In the first
section we investigate the characteristics of BLoIS. The second section is dedicated to the
famous age-metallicity degeneracy, the third to the task of deriving subpopulations from
a composed stellar population, and the fourth to Monte Carlo simulations, giving us an
idea of the constraints to observations.

5.1 Characteristics of BLolIS 1.1

Two major topics concerning libraries in general are the uniqueness and the similarities
of their contents. So we’d like to know, whether there are identical spectra and colour
sets in BLolIS 1.1. Furthermore, we want to investigate to which extent the populations
differ from each other. Fach model population in BLolS 1.1 can be characterized by a
parameter vector with the following elements:

a Star Formation Rate

b IMF Slope (5.1)
c IMF Mass Range

d

Metallicity Z

Along with a stellar library parameters @ through d define a population. Each population
consists of 221 spectra corresponding to 221 ages between 0 and 20 Ga (see ”GISSEL User
Manual”). For each spectrum a set of 24 default colours are available (see Table 3.1).

Because it would be computationally too expensive to compare e.g. all 255255 low-
resolution spectra to each other, we had to focus on a representative test sample. This
has been done by choosing 9 populations as follows:
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delayed 1.0 6 — burst constant

2.00 2.00 2.00
! 1-10 2 1-10 3 1-10
0.008 0.008 0.008
delayed 1.0 delayed 1.0 delayed 1.0
1.35 3.00 2.00
1 1-10 b 1-10 6 0.1-2 (5.2)
0.008 0.008 0.008
delayed 1.0 delayed 1.0 delayed 1.0
2.00 2.00 2.00
7 2 —100 B 1—-10 9 1-10
0.008 0.0001 0.1

Population 1 corresponds to parameters which lie somewhere in the middle of the para-
meter space, whereas the other 8 populations each have one parameter that is at the edge
of the parameter space.

5.1.1 Uniqueness

Although we tried to avoid identical spectra while creating BLolS, we’d like to test the
uniqueness of the populations in the library.

In a first step we took the low resolution spectra of the 9 populations corresponding to the
parameters in (5.2) and compared them at the ages 0, 5, and 20 Ga to all the other 1155
low resolution populations in BLoIS using the programme "SPECFIT” (see Subsection
4.3.1). Thus 27 spectra were to be compared, resulting in 27 output lists each containing
the 1155 x2-values, the ages, and the names of the best fitting populations (see Subsection
4.3.1 for an example of such a list). The analysis of these lists showed that for no other
than the test spectrum y? = 0, thus the 9 populations all had different spectra. This
means that the parameters for building up BLolS were chosen in a way that, as a first and
general statement, the spectra do vary significantly from population to population. The
fact that the y2-values in each of the 27 output lists were unique supports this statement.
Furthermore, we can already state that there is no such thing as a 100 % degeneracy in
age and metallicity as far as the model spectra in BLoIS are concerned (see Section 5.2

below).

The next step was to compare the 221 spectra of one population to see whether there are
identical spectra at different ages within this population. To investigate this we took the
same 9 populations as above. Here we could see that each of the 8 CSPs (population 1
and 3 to 9) had different spectra at any age, whereas the only SSP (population 2) had an
identical spectrum for the first 50 ages i.e. for 4 Ma. This held true when we changed the
slope of the IMF, i.e. z € {1.35,3.00}.

So we varied the IMF mass range while leaving all the other input parameters as in
population 2. The results are shown in Figure 5.1. For a maximum mass range of 0.1 -
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Figure 5.1: Identical spectra of an SSP with different IMF mass ranges. lLines connect
ages with identical spectra. Note that the age-scale is not uniform.

100 Mg the first 31 ages (i.e. for 1.7 Ma) have identical spectra. This can be explained
by the fact that even O- and B-stars need some time to develop. When we decrease the
upper mass cut-off the identical spectra persist even longer (e.g. up to 102 Ma for a mass
range of 0.1 - 2 Mg).

For the mass ranges with lower cut-offs at 1 Mg and different upper cut-offs we find the
same pattern just mentioned. And when we look at the spectra of a young SSP with an
even higher lower cut-off (i.e. at 2 M ) we can state that it is the upper mass limit of the
IMF which decides on the persistence of the spectra to be identical. In addition to this
we state for old SSPs with a 2 Mg lower cut-off that their spectra don’t change much,
because there are only 6 different spectra between 2.6 and 13.5 Ga. Here we can recognize
the White Dwarf cooling sequence (see the step-shaped behaviour of the colour evolution
in Figure 3.7).

Since the same comparisons as above but done with high resolution spectra (STELIB)
showed the very same results as with low resolution spectra (BaSeL 3.1), we now investigate
the uniqueness of the integrated colours in BLolS. Although we could calculate as many
integrated colours as available filters, a set of colours in BLolS consists of 24 values per
spectrum. If we compare this to the number of flux-values per spectrum (1221 or 6 900)
it is plausible that we can’t expect the same degree of uniqueness for the colours as for
the spectra.

By using the programme COLFIT (see Subsection 4.3.1) the comparison of the 27 colour
sets of the 9 populations to all the other 1155 populations in BLoIS showed that, at age
0, none of the colour sets was unique. For all the 9 populations there were 5 identical
colour sets corresponding to the 5 different SFRs available in BLolIS. This is not much of
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Figure 5.2: Identical colours for the populations as defined in (5.2). Lines connect ages
with identical colours. Note that the age-scale is not uniform.

a surprise because at early ages all the CSPs look similar to an SSP and the important
wavelengths in the spectrum of a young population are lying outside most implemented
filters (see Figure 3.6).

Furthermore, the colour sets are not unique at high metallicity. Population 9 with Z = 0.1
has the same colours as the populations with an IMF mass range of 1 — 50 and 1 — 100
Mg at 5 and 20 Ga (the case of 0 age has already been treated above). The same behaviour
can be detected for the SSP at those two ages. Although the IMF mass range parameter
is sensitive to the integrated properties of stellar populations (see Subsection 5.1.2 below)
the decrease from 100 to 50 Mg for the upper mass limit is too small to produce much of
a difference in high-metallicity.

Besides these cases of identical colour sets, there are 231 other colour sets on the average
that have exactly the same y2-values as others, which makes it likely that they are identical,
too.

As for the spectra we’d like to know whether there are identical colours at different ages
within one population. The results of this investigation is shown in Figure 5.2. The
populations have either identical or very similar colours up to an age of roughly 4 Ma (see
Figure 3.27). Here we can repeat the statement we made for the spectra, i.e., even very
hot stars do need some time to develop. As we have seen in Figure 5.1 the population
with an IMF mass range of 2 — 100 M (population 7) evolves faster than the one with
0.1 - 2 Mg (population 6). Interesting, however, is that the population with the highest
metallicity (population 9) is the fastest to evolve. Another remarkable fact is that the
colours of population 3 (constant SFR) don’t change much at old ages.
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At the end of this subsection we’d like to mention once more that the investigations above
were made with a test sample. There is no guarantee that the identical spectra and colour
sets found here are the only ones in BLolS.

For the uniqueness of the spectra and the colours in BLoIS we can state:

e All the populations have different spectra.

e At young (< 100 Ma) and old (> 2 Ga) ages the spectra and the colours within one
particular population can be identical.

e Colours of young (< 100 Ma) populations with different SFRs are identical at the
same ages.

o At the same ages the colours of SSPs and high-metallicity populations may not be
unique.

5.1.2 Sensitivity with respect to parameters

The goal of this subsection is to answer the question, which parameters have the largest
impacts on the spectra and the colours. So we don’t look for identical populations but at
the differences from one population to another.

First we took the 3 low resolution spectra of population 1 (see 5.2) according to the ages
0.1, 2, and 15 Ga. This choice is based on the fact just mentioned, that ages around 0 and
20 Ga can lead to identical spectra. As in the subsection above we then compared these 3
spectra to all the other low resolution spectra in BLolS using the programme "SPECFIT”.
This resulted in 3 lists each containing 1155 x2-values and the corresponding ages and
populations (see example in Subsection 4.3.1).

After sorting these 3 output lists according to the y%-values, we looked at the first 100
entries giving us the model populations with the 100 lowest x2-values. Then we made
the statistics of how many times the correct and incorrect values for age, metallicity, IMF
slope, SFR-type, and IMF mass range were found by the y?-fitting algorithm "SPECFIT”.

In Figure 5.3 we show the results for the low resolution models. From the top panel we
can conclude, that for age 0.1 Ga of the test population the scatter around the correct
value is quite large (£0.1 Ga) and that the most findings are at 0.036 Ga. A similar
situation is at the intermediate age (2 Ga): the scatter around the correct age is + 2 Ga
and peak-value is at 1.3 Ga. And at the oldest age (15 Ga) we have to realize, that a
majority of the 100 found model populations were around 8.5 Ga with a scattering of +
4 Ga.

In the middle left panel of Figure 5.3 we show the results for the 7 metallicities. Here we
can see that only for age 0.1 Ga the correct metallicity (Z = 0.008) has the most hits.
The intermediate age peaked at Z = 0.004 and the old age at Z = 0.02.

The middle right panel displays the results for the different IMF slopes. Here, too, the
correct value of z = 2 was only in maximum for the youngest age. The intermediate age
peaked at slope x = 3 and the oldest age at z = 1.35.

From the lower left panel we can learn, that the SFR-type is correctly recovered only at
age 2 Ga. For 0.1 and 15 Ga the §-burst are more often.

In the lower right panel we can see that for the IMF mass range the correct value of 1 -
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Population 2 3 4 5 6 7 8 9

X2 0.466 0.278 0.034 0.106 3.545 2.245 0.511 0.254

Table 5.1: y2-fit for spectra. The populations are coded as in (5.2). The y%-values
represent the mean of 221 y2-fits to population 1.

10 Mg peaked for the youngest and the oldest age, whereas for 2 Ga 0.1 — 10 Mg has the
most findings.

The same investigations as above we made with high resolution spectra. The results are
shown in Figure 5.4. Comparing this figure with Figure 5.3 we can conclude that there
are no substantial differences in general. In particular, the youngest age peaked at 0.145
Ga, the correct IMF slope was found at 15 Ga (instead of 0.1 Ga), and the correct IMF
mass range peaked at the oldest age (instead of the youngest).

Finally, we show the same analysis as above for the integrated colours in Figure 5.5.
In general, we can see that the only success is the better recovery of the age at 0.1 Ga.
Nearly all the other panels show worse results compared to the case with spectra (e.g., the
correct SFR never peaked).

So we can conclude for the spectra, that the metallicity is the most important parameter,
because the scattering is the lowest. For both low and high resolution spectra two ages
peaked at the correct value of the IMF mass range. Thus, we consider this parameter
as important, too. Because the age, the IMF slope, and the SFR show quite a large
scattering, we assume those parameters as less important. For the colours we can state
that the SFR and the IMF mass range are a bit bitter defined compared to the spectra
case.

Note that the conclusions made here only hold true for BLolS 1.1, i.e., another parameter-
spacing would lead to other results. E.g. if we had only 3 IMF mass ranges instead of 11,
the probability of finding the correct range would increase.

Besides, a similar investigation as above will be presented in Section 5.4. There, we’ll add
artificial noise to model spectra and colours before trying to recover the parameters. This
will give us an idea of the recovery probabilities rather than the similarities treated here.

Another (more global) way to analyse the degree of similarities between the model popula-
tions is the following: We took population 2 to 9 from (5.2) and calculated the differences
to population 1 by comparing the 221 spectra all at the same 221 ages resulting in 221
x%-values from which a mean x2-value (x?) was calculated. In this way 8 y%-values cor-
responding to population 2 to 9 were derived. They are listed in Table 5.1. We can
already spot the large y2-values of the two populations with different IMF mass ranges
(population 6 and 7). From Table 5.1 we can then calculate the sum of the two y%-values
corresponding to the same input parameter: ()’(%747678 + )’(%757779). Those values together
with the corresponding input parameters are listed in Table 5.2 (values for high resol-
ution spectra are in brackets). We can see that the IMI" mass range is by far the most
sensitive input parameter, both for low and high resolution spectra. On second rank lies
the metallicity that is more important for high resolution spectra than for low resolution
spectra. Third and fourth places are taken by the SFR and slope of the IMF, where the
rank dependens on the resolution of the spectra.
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Parameter Populations ()23’4’6’8 + )23’5’7’9) Percentage
IMF Mass Range 6+ 7 5.790  (5.454) 7.8 (71.5)
Metallicity 8+9 0.765 (1.606) 10.3 (21.1)
SFR 243 0.744 (0.216) 100 (2.8)
IMF Slope 445 0.140 (0.348) 1.9 (4.6)
sum 7.439 (7.624) 100.0 (100.0)

Table 5.2: Sensitivity with respect to parameters for spectra. The y2-values of two popu-
lations corresponding to one input parameter have been taken from Table 5.1. Values in
brackets were calculated with high resolution spectra.

Parameter (723,4,6,8 + 23’5’7’9) Percentage
SFR 2.336 42.8
IMF Mass Range 2.186 40.1
Metallicity 0.868 15.9
IMF Slope 0.068 1.2
sum 5.458 100.0

Table 5.3: Sensitivity with respect to parameters for colours (compare Table 5.2).

We turn to colours and do the same investigation. In analogy to Table 5.2 the results are
listed in Table 5.3. Here the SFR is the most sensitive parameter. Because we can see
a set of colour magnitudes as a very low-resolution spectrum and as the low-resolution
spectra are more sensitive to the SFR than high resolution spectra, the reason for this
behaviour can be found in the number of available data points. Obviously, the chosen
filters are at wavelengths where the changes in the SFR become most important.

As the two investigations showed similar results, we can state for the parameter sensitivity
of the properties in BLolS 1.1:

e High and low resolution spectra are most sensitive to the IMI' mass range parameter,
followed by the metallicity.

e For colours the SFR is the most important parameter closely followed by the IMF
mass range.

o The impact of the parameters depends on the number of available data points (num-
ber of flux values, number of colours).

5.2 Age-Metallicity Degeneracy (AMD)

For integrated spectra and colours of an SSP an increase in age (resulting in redder colours
due to the decreasing number of hot blue stars) can be compensated by a decrease in
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Figure 5.6: The age-metallicity degeneracy for spectra. The 3 ages of the test population
(Z = 0.008; ages: 0.14, 0.9, 2.0 Ga) are marked with circles. The error bars indicate the
age-metallicity grid.

metallicity (resulting in bluer colours because of the decreasing opacity). We have already
stated in Subsection 5.1.1 that there is no such thing as a 100 % degeneracy in age and
metallicity as far as BLolS spectra are concerned, because all population spectra are
unique. However, it is true that certain combinations of age and metallicity lead to very
similar spectra (see Figure 5.8). So we focus on these cases.

First we looked at the AMD in the spectra by generating the following test population:

a 6-burst

b 1.35

c 0.1 —-100 (5.3)
d 0.008

Then we compared the low resolution spectra of this population at the ages 0.14, 0.9,
and 2.0 Ga to all the other spectra of 6 populations with the same input parameters but
different metallicities (i.e. Z = 0.0001, 0.0004, 0.004, 0.02, 0.05, 0.1). The ages and the
metallicity of the test population were chosen around the center of the age-metallicity
parameter space. For each of the 3 ages and each of the 6 metallicities we calculated a
best fit spectrum by using the programme SPECFIT (see Subsection 4.3.1) resulting in 18
best-fit ages. These ages are shown in Figure 5.6 where the 3 ages of the test population
are marked with circles. Note that the error bars don’t represent errors of measurements
but indicate the extent of the grid in age and metallicity as present in parameter space in
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age [Ga] s c

0.14 -3.49 26.18
0.90 —2.50 20.37
2.00 —1.88 15.46

Table 5.4: Estimated AMD parameters according to Equation 5.4 for spectra from Fig-
ure 5.6.

BLoIS 1.1. In Figure 5.6 we can see that there is a power law relationship between age
and metallicity. In logarithmic scale we can write:

log1o(Z) = s-logy(t) + ¢ (5.4)
where VA metallicity
S slope
t age
c constant

The slope and the constant depending on the 3 ages can be calculated by standard curve
fitting routines and are shown in Table 5.4. We can state: the younger the test population
the steeper the slope.

For the quantitative view we show the y2-values of all the spectra of the comparison above
in Figure 5.7. Note that the minima are better defined at younger ages. But the absolute
x?-values are smaller at older ages, thus the AMD is more pronounced at these ages.

As an illustrative example the spectra of the test population at 2.0 Ga and of the best
fit population (Z = 0.004) at 3.0 Ga are presented in Figure 5.8. At this position in
the parameter space a 50 % decrease of the metallicity can be (roughly) compensated by
a 50 % increase of the age.

Finally we made the same investigation as above for the integrated colours of the test
population. In analogy to Figure 5.6, Table 5.4, and Figure 5.7 we present the best fitting
ages in Figure 5.9, the corresponding slopes in Table 5.5, and the complete sets of
Y2-values in Figure 5.10. Generally, the slopes of the AMD are steeper, the minima are
less well defined, and the y?-values are similar compared to the spectra case.

We conclude for the AMD:

e There is no 100 % degeneracy between age and metallicity in BLoIS spectra, but
certain combinations of these parameters can lead to very similar spectra.

o In the age-metallicity plane populations characterized by similar spectra are located
at positions that can be approximated by a power law.

e The slope of this power law depends on the place in the parameter space; it can vary
from —5 for young to —1 for old populations.
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Figure 5.8: Example of the AMD in spectra.
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age [Ga] s c
0.14 —4.68 35.84
0.90 —2.28 18.48
2.00 -2.16 17.90

Table 5.5: Estimated AMD parameters according to Equation 5.4 for colours from Fig-
ure 5.9.
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Figure 5.10: Same as Figure 5.7 but for colours.

o At younger ages the y2-minima are better defined but larger compared to older ages.

e The AMD looks similar for spectra and colours.

5.3 Deriving Subpopulations

Stellar subpopulations can be defined in different ways. One example is the concept of
so-called stellar components of a galaxy such as the bulge or the thin disk. In our approach
a subpopulation is defined as an ensemble of stars having all same metallicity (compare
Subsection 4.3.2). The idea is that a first generation of stars is born from a molecular
cloud with a certain (low) metallicity. From this first generation a second generation with
a higher metallicity is born then. Under the assumption of a closed box model for galaxy
formation (no infall of gas, no merging, etc.) a subpopulation with a higher metallicity
can not appear before a subpopulation with a lower metallicity (see Figure 4.8).

In Subsection 4.3.2 we developed a programme called ”"SPECSUBPOP” that derives the
contribution of subpopulations to the total spectrum by least-squares adjustment tech-
niques. Here we’d like to show an example; we took the normalized low resolution spectra
of 7 SSPs (IMF slope z = 1.35, IMF mass range 0.1 — 100 Mg ) at metallicities (Padova
1994) and ages as indicated in Figure 5.11. These 7 subpopulations were then summed
up according to the following proportionality factors p (see Equations 4.32):

p = (0.1,0.2,0.1,0.2, 0.1, 0.2, 0.1)

To recover these input parameters we ran "SPECSUBPOP” with 10 possible ages (the 7
ages chosen for the composed spectrum were amongst those 10 ages). In Table 5.6 we
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Figure 5.11: The total spectrum composed of 7 normalized subpopulations each at another
age, another metallicity, and with different proportionality factors (contributions to the

total spectrum).
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list the 10 most probable parameter combinations. According to Section 4.2 mq is the
estimated standard deviation of unit weight (indicating the "goodness of fit” here), p are
the proportionality factors, and m, is the estimated standard deviation of an individual
model parameter.

First we can state, that the method developed in Subsection 4.3.2 works because we were
able to recover all the proportionality factors correctly and all the standard deviations
were zero for the first solution. Moreover we have seen in Subsection 5.1.1 above that all
the populations have unique spectra. If we look at the spectra as vectors the condition
of linear independence is fulfilled. So the method will work for any other population in

BLolS.

Then we can see in Table 5.6 that there are negative proportionality factors in 4 cases.
In the context of deriving subpopulations, these solutions are nonsensical because no
population can have a negative contribution to the total spectrum. Thus these solutions
have to be rejected. However, a negative factor close to zero could indicate that the
corresponding subpopulation does not contribute to the total spectrum. In this case the
“negative” population has to be excluded before restarting the programme.

At this point we’d like to mention what happens if a proportionality factor of a subpopula-
tion is set to zero, i.e., if the corresponding subpopulation does not exist: the programme
indicates all ages for that population as correct. In analogy to the case with small neg-
ative factors just mentioned the corresponding subpopulation must be excluded and the
programme has to be restarted.

The 4 youngest subpopulations were all correctly derived in the first 10 solutions. This
is due to the fact that the differences amongst older populations are smaller compared to
younger populations which can easily be seen in Figure 5.11. As a consequence the values
for m, are smaller at younger ages.

A remarkable result is that for the non rejected solutions the proportionality factors do
not scatter a lot. This means that we are able to recover the contributions of the sub-
populations quite well, which adds to the statement made in Subsection 4.3.2 that the
metallicity characterizes a spectrum in a unique way.

We made the same calculations as above for the integrated colours using the programme
"COLSUBPOP”. The only differences were that the values for my became smaller (factor
~ 0.5) and the values for m, larger (factor & 5). So all the statements made for the spectra
case hold true for the colours. Here, we have to repeat the warning made in Subsection
4.3.2: the programme should use colour magnitudes instead of integrated colours. But this
doesn’t matter if we just want to know, whether the method works for 24 colour values
(instead of 1221 flux values).

As a further test of the method we composed a similar spectrum as above using the
programme “evochem” from the GISSEL software (see Subsection 2.6, Figure 2.11, and
Appendix A). The corresponding input parameters are in Table 5.7. Note that the
proportionality factors to be recovered can’t be set; so all the SI'Rs are identical. This
time we allowed for 20 different ages while running "SPECSUBPOP”. The 10 best fit
solutions are shown in Table 5.8. Although the values for mg are quite near to each
other, the one with the lowest mg has the largest number of correct ages. If we look at the
proportionality factors, we can see, that they are not listed in an increasing order. This
was not expected because the youngest subpopulation (Z = 0.1) should provide the largest
contribution to the total spectrum, and the SFR was the same for all subpopulations.
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my Z age P My my Z age P My
[Gal [Gal
0.0000 0.0001 14.75 0.100 0.0000 || 0.0044 0.0001  9.75 0.085 0.0031
0.0004  9.75 0.200 0.0000 0.0004 9.75 0.260 0.0031
0.004 4.75 0.100 0.0000 0.004 1.61 —0.150 0.0027
0.008 1.61 0.200 0.0000 0.008 1.61 0.396 0.0023
0.02 0.16 0.100 0.0000 0.02 0.16 0.111 0.0008
0.05 0.04 0.200 0.0000 0.05 0.04 0.196 0.0010
0.1 0.02 0.100 0.0000 0.1 0.02 0.102 0.0005
0.0010 0.0001 14.75 0.080 0.0009 || 0.0051 0.0001 14.75 0.191 0.0043
0.0004  9.75 0.229 0.0010 0.0004 14.75 0.143 0.0045
0.004 9.75 0.050 0.0002 0.004 1.61 —0.038 0.0021
0.008 1.61 0.239 0.0004 0.008 1.61 0.317 0.0021
0.02 0.16 0.102 0.0002 0.02 0.16 0.080 0.0009
0.05 0.04 0.200 0.0002 0.05 0.04 0.215 0.0012
0.1 0.02 0.100 0.0001 0.1 0.02 0.092 0.0006
0.0018 0.0001  9.75 0.053 0.0010 || 0.0052 0.0001 14.75 0.187 0.0042
0.0004  9.75 0.234 0.0013 0.0004 14.75 0.128 0.0049
0.004 4.75 0.141 0.0009 0.004 4.75 0.043 0.0024
0.008 1.61 0.164 0.0009 0.008 1.61 0.258 0.0025
0.02 0.16 0.110 0.0003 0.02 0.16 0.079 0.0009
0.05 0.04 0.194 0.0004 0.05 0.04 0.216 0.0012
0.1 0.02 0.104 0.0002 0.1 0.02 0.092 0.0006
0.0020 0.0001  9.75 0.034 0.0010 || 0.0052 0.0001 4.75 —-0.144 0.0032
0.0004  9.75 0.270 0.0013 0.0004 4.75 0.422 0.0042
0.004 9.75 0.065 0.0004 0.004 4.75 0.217 0.0024
0.008 1.61 0.223 0.0007 0.008 1.61 0.097 0.0028
0.02 0.16 0.110 0.0003 0.02 0.16 0.109 0.0009
0.05 0.04 0.194 0.0004 0.05 0.04 0.198 0.0012
0.1 0.02 0.103 0.0002 0.1 0.02 0.102 0.0006
0.0029 0.0001 14.75 0.143 0.0025 || 0.0056 0.0001 14.75 0.174 0.0045
0.0004  9.75 0.195 0.0026 0.0004 14.75 0.145 0.0052
0.004 1.61 —0.087 0.0097 0.004 9.75 0.012 0.0012
0.008 1.61 0.352 0.0008 0.008 1.61 0.282 0.0019
0.02 0.16 0.095 0.0006 0.02 0.16 0.077 0.0010
0.05 0.04 0.204 0.0007 0.05 0.04 0.219 0.0012
0.1 0.02 0.097 0.0003 0.1 0.02 0.090 0.0007

Table 5.6: The 10 most probable solutions for derived subpopulations with the method
developed in Subsection 4.3.2 (mg estimated standard deviation of unit weight, p propor-
tionality factors, m, estimated standard deviation of the individual model parameters).
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t SFR Z
[Ga]  [Mg /a]

5.25 1.0 0.0001
10.25 1.0 0.0004
15.25 1.0 0.004
18.39 1.0 0.008
19.84 1.0 0.02
19.96 1.0 0.05
19.98 1.0 0.1

Table 5.7: Input parameters for the GISSEL programme ”evochem?”.

Nevertheless, we can consider this test as a success, too. As for the first test we can state
for the second test that the values for mg of the 10 most probable solutions do not show
a large scatter and that the results are close to the composed spectrum.

Here are the conclusions for the method of deriving subpopulations:

e The least-squares adjustment method is able to recover the contributions of different
model subpopulations correctly.

o The method still succeeds with as less as 24 colour values.

e Care has to be taken with subpopulations of low or no contributions.

5.4 Monte Carlo Simulations

One step towards the comparison of BLolS to observations is the fitting of model spectra
and colours to artificially disturbed model spectra and colours. In this section we’ll answer
the questions: How high is the probability of finding the correct spectrum depending on
the noise level and what are the parameters of the wrong findings? For this we have
written versions of "SPECFIT” and "COLFIT” performing Monte Carlo simulation (see
Subsection 4.3.1).

First we treat the effects of the accuracy of a measured spectrum on the fitting process.
For this we took the low resolution spectrum of the SSP population defined in (5.2), i.e.
population 2, at ages 0.1, 2, and 15 Ga to simulate 100 observations per run. As explained
in Subsection 4.3.1 we can enter the percentage which corresponds to a relative one sigma
error, so we don’t simulate the errors but the actual observations by adding noise to the
flux values. This percentage p can be transformed to a signal-to-noise value by S/N =
100/p.

In Figure 5.12 we present the recovery probability calculated from the number of correct
recoveries of the "observed” SSP spectrum (e.g., 50 correct recoveries lead to a recovery
probability of 0.5) using the programme "SPECFITSIM”. Apart from the correct obser-
vation (at Z = 0.008) the 6 populations with different metallicities (Padova 1994) entered
the model matrix, too (see Equation 4.23). Taking more models into account would have
been computationally too expensive. The results in Figure 5.12 show again, that older
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myg Z age P My myg Z age P my
[Ga] [Ga]
0.0073 0.0001 14.75 0.113 0.0060 || 0.0074 0.0001 14.75 0.259 0.0057
0.0004 9.75 0.033 0.0057 0.0004 14.75 —0.155 0.0066
0.004 4.75 0.363 0.0013 0.004 4.75 0.420 0.0021
0.008 0.51 0.156 0.0030 0.008 0.51 0.088 0.0027
0.02 0.51 0.071 0.0024 0.02 0.51 0.119 0.0021
0.05 0.06 0.213 0.0009 0.05 0.06 0.241 0.0007
0.1 0.02 0.051 0.0004 0.1 0.00 0.027 0.0002
0.0073 0.0001 14.75 0.173 0.0057 || 0.0075 0.0001 14.75 0.260 0.0058
0.0004 14.75 —-0.033 0.0066 0.0004 14.75 —0.155 0.0067
0.004 4.75 0.375 0.0021 0.004 4.75 0.420 0.0021
0.008 0.51 0.144 0.0029 0.008 0.51 0.087 0.0027
0.02 0.51 0.079 0.0023 0.02 0.51 0.120 0.0022
0.05 0.06 0.212 0.0009 0.05 0.06 0.241 0.0007
0.1 0.02 0.050 0.0004 0.1 0.00 0.027 0.0002
0.0073 0.0001 14.75 0.115 0.0064 || 0.0076 0.0001 14.75 0.260 0.0058
0.0004  7.25 0.028 0.0055 0.0004 14.75 —0.155 0.0067
0.004 4.75 0.368 0.0013 0.004 4.75 0.420 0.0021
0.008 0.51 0.156 0.0032 0.008 0.51 0.088 0.0027
0.02 0.51 0.070 0.0026 0.02 0.51 0.120 0.0022
0.05 0.06 0.213 0.0009 0.05 0.06 0.241 0.0007
0.1 0.02 0.051 0.0004 0.1 0.00 0.027 0.0002
0.0073 0.0001 14.75 0.175 0.0080 || 0.0076 0.0001 12.25 0.088 0.0057
0.0004 4.75 —0.025 0.0065 0.0004 9.75 0.046 0.0061
0.004 4.75 0.361 0.0019 0.004 4.75 0.373 0.0016
0.008 0.51 0.140 0.0034 0.008 0.51 0.168 0.0029
0.02 0.51 0.086 0.0033 0.02 0.51 0.059 0.0023
0.05 0.06 0.219 0.0009 0.05 0.06 0.213 0.0009
0.1 0.02 0.050 0.0004 0.1 0.02 0.052 0.0004
0.0074 0.0001 14.75 0.140 0.0065 || 0.0076 0.0001 14.75 0.259 0.0058
0.0004 12.25 0.006 0.0069 0.0004 14.75 —0.156 0.0067
0.004 4.75 0.365 0.0018 0.004 4.75 0.421 0.0021
0.008 0.51 0.149 0.0030 0.008 0.51 0.088 0.0027
0.02 0.51 0.076 0.0024 0.02 0.51 0.119 0.0022
0.05 0.06 0.213 0.0008 0.05 0.06 0.241 0.0007
0.1 0.02 0.051 0.0004 0.1 0.00 0.027 0.0002

Table 5.8: The 10 most probable solutions for derived subpopulations for a spectrum
composed by ”evochem” (compare Figure 5.11).
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Figure 5.12: Recovery probabilities for SSP spectra. Relative noise has been added to the
flux values to simulate 100 observations of the same test spectrum at 3 indicated ages.

populations are harder to distinguish than younger populations, e.g., 10 % noise (S/N =
10) leads to a recovery probability of 1.0 at 0.1 Ga, 0.6 at 2 Ga, and 0.1 at 15 Ga. Although
the age spacing for younger populations is narrower compared to older populations (see
chapter "The GISSEL User Manual”) the spectral evolution is obviously faster at younger
ages.

To compare these results with integrated colours we took the same population as above
and did the same simulation at the same 3 ages using the programme "COLFITSIM?”.
Here we don’t introduce a relative but an absolute one sigma error in magnitudes (see
Subsection 4.3.1). In analogy to Figure 5.12 we show the recovery probabilities for the
colours in Figure 5.13. We can see the same pattern as for the spectra; older populations
are harder to distinguish than younger.

In Figure 5.14 and Figure 5.15 we show the same investigation just made but for a
Composite Stellar Population, i.e., for population 1 from (5.2). If we compare these figures
with Figures 5.12 and 5.13, we can state that the recovery probabilities for CSPs are even
lower compared to the SSP case. Quite amazing is the fact that the probabilities for the
CSP spectrum are higher at 2 than at 0.1 Ga. We can’t see this effect while looking at
the colours of the CSP. So except for this case, we can confirm that older populations are
harder to recover than younger.

Now we want to have a closer look at the incorrect findings and their parameters. A
similar investigation (without disturbing the “observation”) has been done in Subsec-
tion 5.1.2. Here, too, we took population 1 at ages 0.1, 2, and 15 Ga. Then we used the
programme "SPECFITSIM”, adding 10 % relative noise to the 3 spectra, and performed
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S/N
10 5 3.3 2.5 2
—
1 B ®
n
_B’ 0.8 r
= +
o=
Q0
o]
S 06
£ el
o +
2
o 0.1 Ga
>
[} 04
O 15 Ga
[
2]
n
o
0.2 r +
n
o + +
n
i
o
0 | T o T 8 m 0 y M= nl
0 10 20 30 40 50
Noise [%]

Figure 5.14: Recovery probabilities for CSP spectra (compare Figure 5.12).
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Figure 5.15: Same as Figure 5.14 but for colours (compare Figure 5.13).

100 simulation runs. This time we allowed all the 1155 model populations. Analogously
to Subsection 5.1.2, we then made the statistics of how many times the correct and the
incorrect parameters have been found.

The results are shown in Figure 5.16 for the low resolution case. As we can see in
Figure 5.14 the probability of finding the correct population at 2 Ga is more than 0.9.
Thus, it’s no surprise that for nearly all the 100 simulation runs the 5 parameters have
been recovered correctly. The 0.1 Ga spectrum has a peak at 0.15 Ga with a scattering of
£ 0.1 Ga. The metallicity is recovered correctly nearly every time, whereas the IMF slope
is only correct for about 60 runs. The SFRs are nearly all at the same level, thus badly
recovered. The IMF mass range, however, has the most number of best fits at the correct
value. The peak for the spectrum at 15 Ga is slightly offset to 14 Ga with a scattering
of £ 3 Ga. As for the 0.1 Ga case the metallicity is very well and the IMF slope quite
well recovered. The SFR is comparable to the 2 Ga case, whereas the IMF mass range is
similar to the 0.1 Ga case.

In Figure 5.17 we show the results for the high resolution spectra. Compared to Fig-
ure 5.16 we can state that there are no substantial differences, except that, in general, the
parameters are better recovered.

We did the same investigation just mentioned for the case of integrated colours, with an
absolute noise of 0.1 mag. The results are shown in Figure 5.18. Over all, we can state
that the parameters have been less well recovered compared to the spectra case. At 2 Ga
all the parameters peak at the correct value but the scattering is larger compared to the
spectra case. The 0.1 Ga colours show a maximum at 0.2 Ga with a scatter of + 0.2 Ga.
All the other parameters, too, never peaked at the correct values. For the colours at 15
Ga the maximum is at 20 Ga. The scattering around the correct value is about £ 5 Ga.
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Figure 5.16: Recovery probabilities for low resolution spectra at 0.1, 2, and 15 Ga.
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Figure 5.17: Same as Figure 5.16 but for high resolution spectra.
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All the other parameters peaked at the correct values, but (as in general) with a higher
scatter compared to the spectra case.

So for the Monte Carlo simulations we can conclude:

e For low resolution SSP spectra and SSP colours younger populations are easier to
distinguish than older.

o Atintermediate age (2 Ga) low resolution CSP spectra are easier recovered compared
to younger (0.1 Ga) and older (15 Ga) ages.

e For CSP colours older populations are harder to distinguish than younger.

e At S/N of 10 for CSP spectra all the parameters can be recovered correctly except
for the youngest (0.1 Ga) and the oldest age (15 Ga), and the SFR at young age.

e For CSP colours with a noise level of 0.1 mag the correct values of all the parameters
of the youngest population can’t be recovered. Except from the age of the oldest
population, all the parameters of the intermediate and the old aged population can
be recovered correctly.
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6 Summary, Conclusions, Outlook

The last chapter is dedicated to the compilation of the results and the discussion. The
first goal of this thesis was the study of the effects of the input parameters to the evolu-
tionary synthesis algorithm on the integrated properties. This has been achieved during
the establishing of an integrated stellar spectral library called BLolS. The second goal of
this thesis was the analysis of BLolS, i.e., the treating of the uniqueness of the model
populations and their parameter sensitivity, the age-metallicity degeneracy, the deriving
of subpopulations from composed model populations, and the constraints on observations
by means of Monte Carlo simulations.

Effects of Input Parameters

Between 0 and 2 the slope of the IMI" has a very small influence on the integrated spectra
and the integrated colours. Slope values higher than 2 do produce differences up to 8 mag
in colours. Generally, steeper slopes result in redder colours (see Figure 3.2). The upper
mass limit of the IMF affects young populations (< 1 Ga) and the lower mass limit old
populations (> 1 Ga). While lower values of the upper mass limit result in redder colours
(< 1 mag), higher values of the lower mass limit result in bluer colours (< 2 mag). A two
segmented IMF population can be derived by combining a full range IMF with a truncated
IMF and a bimodal IMF population by putting together IMF's with different mass limits.
Beyond doubt, the IMF is a very important property of a stellar population and many
astronomers did make great efforts to derive it from observations, resulting in sophisticated
IMFs for different kinds of stellar populations. Thus, one could be disappointed by our
findings, i.e. rather meagre effects of slopes < 2 on the integrated properties. This is not to
say that observers, using evolutionary synthesis methods, should not take attention to the
IMF; if one knows the IMF of an observed population one should use it. Furthermore, our
study has shown that the mass range of the IMF is as important as the slope, for the cut-
offs of the IMF decide on the distribution of the stars in the different mass bins (compare
Figure 3.2 and Figure 3.9). Besides, be aware whether you use linear or logarithmic mass
intervals when you deal with the IMF.

The different evolutionary tracks used in this work (Geneva, Padova) have quite small
effects: 0.5 mag in colours at maximum (see Figures 3.13 and 3.15). On the one hand side
this result sounds very optimistic for consistency reasons. On the other hand one has to
be aware that there are still a lot of uncertainties in the calculations of the tracks. The
recommendation that the older Padova 1994 tracks should be favoured over the newer
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Padova 2000 version only adds to this statement. Furthermore, one wishes some kind
of information on the accuracy of the tracks, because it’s futile to derive e.g. ages of
globular clusters on a sub-Ga level (by isochrone— or spectra fitting), if the tracks are only
accurate on a Ga level. Finally, the a-enhancement shouldn’t be preset in the tracks but
a parameter to choose.

Different stellar spectral libraries, too, have small effects of up to 0.5 mag in colours (see
Figures 3.17 and 3.19). Again, the builders of these libraries could be disappointed by
this statement. But they are not to be discouraged, for it is not much of a surprise that
evolutionary synthesis might ”smear out” the fine details of elaborated theoretical stellar
spectra.

Synthetic populations with a constant SFR have redder colours (< 5 mag) compared
to é-burst populations. All the other SFR types (short burst of finite length, linearly
decreasing, exponentially decreasing, and delayed) have similar effects and all lie between
the two cases just mentioned.

Characteristics of BLoIS 1.1

If we compare populations we find that they all have different spectra but can have the
same colours for some cases (young, SSPs, or high metallicity). Within one particular
population the spectra and the colours can be the same for different ages. The uniqueness
of the population spectra shows that the input parameter to the evolutionary synthesis
(in order to build up BLolS) were chosen in such a way that redundancies were avoided.
Thus, the grids in the parameter space are not too dense and the library itself it not too
large. However, one has to be aware that for some parameter combinations the colours
of the populations are not unique. This is of particular interest when we think of the
least-squares algorithm for deriving subpopulations, because there, we are not allowed to
include identical models in the model matrix. On the other hand we have to mention that
we have only investigated the 24 default colours. In principle, any known photometric
system can be applied. Since the population spectra are unique, it’s quite clear that an
increase of the number of colours would lead to a decrease of the ambiguities. Finally, we
have to mention that we only compared a set of test populations; there is no guarantee
that we have found all the ambiguities.

For high and low resolution spectra the IMF mass range is the most sensitive parameter,
whereas for the colours it’s the SFR. That’s because the sensitivity of the parameters
depends on the number of data points (number of flux values, number of colours). But
the impact of a change of a certain parameter gets biased if only few data points are
influenced by this change, e.g., if a change of an input parameter affects the wavelengths
around 1000 nm we shall not see much of a difference in the colours, because in BLolIS
there is no filter in this wavelength region. Furthermore, the result that the IMF mass
range is the most sensitive parameter is consistent with the statements made above for
the effects of the input parameters. If observers derive the IMF, special care has to be
taken on the mass ranges.

Age-Metallicity Degeneracy

There is no 100 % degeneracy between age and metallicity in BLoIS spectra, but certain
combinations of these parameters can result in very similar spectra. In the age-metallicity
plane the similar populations are located at positions that can be approximated by a power
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law. The slope of this power law depends on the place in the parameter space and can
vary from —5 for young to —1 for old populations. The AMD is more pronounced at older
ages and looks similar for spectra and colours. Obviously, the term ”degeneracy” is not
the adequate expression, because neither observations nor models of stellar populations
that belong to different combinations of age and metallicity can be strictly identical. On
the other hand insufficient observations or models can lead to this degeneracy. In the

literature a rule of thumb for the AMD is found: 6;1%(3%) = —%. Our work showed that
for the populations in BLolS such values hold true 011%y at old ages. At young ages the

slope is considerably steeper.

Deriving Subpopulations

The LSA method to recover the contributions of subpopulations to a composed model
spectrum works for all spectra in BLolIS, because they are unique. Attention has to be
paid on zero or "negative” contributions. As the differences amongst older populations are
smaller compared to younger populations the contributions of the latter are more easily
recovered than the ones of the former. This statement holds true for the case of integrated
colours. The success of the method might surprise at first glance. But it can easily be
explained if one thinks of the spectra or colours as vectors and when you assume that
these vectors are all linearly independent. And since all population spectra in BLolS are
unique the method has to work.

Nevertheless, there are some limitations. If we assume a closed box model for a stellar
population (no infall, no merging etc.) and if we do not allow a higher metallicity to appear
before a lower metallicity, the calculation of the contributions of 7 given subpopulations
to a composed low resolution spectrum for 20 given ages still takes about half an hour on
a 500 MHz Alpha workstation. Now if one likes to decompose a real population spectrum
without knowing anything about the possible subpopulations (metallicities, ages, SFRs,
IMF's etc.) it will take quite a lot of CPU time.

Monte Carlo Simulations

Here too, we found that old populations are harder to distinguish than younger popula-
tions: e.g. the recovery probability for a 15 Ga SSP spectrum is 10 times smaller than
the one for a 0.14 Ga spectrum and about 3 times smaller for the colours. Observers
should be aware of the fact that BLolS hasn’t been compiled for the comparison to ob-
servations. If one wants to fit observations anyway, make sure to properly calibrate them
first (systematic errors included). As observations and model spectra are rarely on the
same wavelength grid one has to decide on some kind of resolution reduction (FWHM,
Gaussian broadening function, interpolations etc.). Galaxies have to be corrected for velo-
city dispersion, redshift, and all the different absorptions. And, finally, have a look at the
statistical errors, because poor astronomy can be made with, e.g., IUE spectra providing
absolute flux values with mean standard deviation of about 30 %. As a matter of fact, for
old populations like globular clusters, the probability of dealing with the correct model
spectrum is only 0.03. Similar caveats arise for observed colours.

To all of the aspects mentioned for the spectra the problem of the photometric system has
to be added. We know e.g. that the original Johnson U filter didn’t respect the absorption
by the atmosphere of the Earth correctly. Although astronomers use terms like ”standard
Johnson system” one has to be aware that in practice, matching standard systems is very
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difficult and that there are at least 4 Johnson photometric systems and 30 different U
filters available. The next problem are the errors in colours: in spite of the capability of
certain instruments to detect colour differences on a level of 0.01 mag, the absolute error
can reach 0.2 mag. For an old population you end up with a probability of 0.1 regardless
of whether or not you deal with the correct model colours. For such extreme cases the age
dating of globular clusters can deliver values from 1 to 20 Ga.

Future Work

If we build up a library of integrated properties of stellar populations by varying all
the input parameters in a systematic way (as we have done for BLolS), the primary
applications lie in the theoretical framework, such as the effect of different SFRs on the
spectra. The question of how realistic these models are, belongs to a secondary application
and is not treated in this thesis. One necessary step towards realistic model spectra of
stellar populations is the development of chemo-dynamical galaxy models (e.g. by Markus
Samland) which provide model SFRs and model AMRs and not just analytic functions.

Once we have a realistic library of model populations and we want to compare these
to observations, one has to test the method of evolutionary synthesis first. The easiest
case would be to focus on a globular cluster where not only the integrated spectrum has
been observed but also the spectra of as many individual stars as possible. Then we can
synthesize the spectrum and compare it to the observations.
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A Publications

A.1 The Age of M3

The following proceeding and the corresponding poster presentation stem from a confer-
ence on globular clusters:

New Horizons in Globular Cluster Astronomy

24 — 28 June 2002, Padova, Italy
http://menhir.pd.astro.it/newhorizons/

Wenger, E., & Buser, R. 2003, ASP Conference Series, Vol. 296, p. 406

It is to be mentioned that the results in from this publications are not valid anymore.
After fixing severe software errors the estimated age of M3 became larger than 16 Ga for
the spectrum fit. For lack of consistency with the isochrone fit we have to state that we,
too, are not able to decide whether the age of M3 is closer to 12 or to 14 Ga.
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New Horizons in Globular Cluster Astronomy
ASP Conference Series, Vol. 229, 2002
Giampaolo Piotto, Georges Meylan, George Djorgovski and Marco Riello, eds.

The Age of M3

Erich Wenger

Astronomisches Institut der Universitit Basel, Venusstrasse 7, 4102
Binningen, Switzerland

Roland Buser

Astronomisches Institut der Universitit Basel, Venusstrasse 7, 4102
Binningen, Switzerland

Abstract. We used the new BaSeL 3.1 spectral library (WESTERA et
al. 2002) along with the latest version of the population synthesis code
GISSEL (BruzuaL & CHARLOT 1993) making use of the Padova 2000
tracks (GIRARDI et al. 2000) to generate theoretical isochrones and spec-
tra. The best fits to the empirical CMD (Roob et al. 1999) were found
at [Fe/H] = ~1.65 (Z = 0.0004), E(V —I) = 0.00, and (m — M)y =
15.27. We derived a most probable age of 12.00 Gyr for the isochrone fit
and, for comparison, 12.50 Gyt for the fit to the IUE-spectra.

1. Isochrone Fitting

RooD et al. (1999) presented a CMD of M3 containing a sample of roughly
37’000 stars measured by the HST. The mean ridge line (MS to TRGB only) is
represented by the full line in Figure 1a. We calculated two sets of isochrones
for [Fe/H] = -1.65 (Z = 0.0004) and —1.25 (Z = 0.001) using the Ferraro IMF
(mass-interval: 0.09 to 125 Mg). Each set consisted of 25 ages from 10 to 16
Gyr. We interpolated two additional sets of isochrones at [Fe/H] = -1.51 (Z =
0.00055) and [Fe/H] = ~1.41 (Z = 0.0007). To generate the isochrones we used
the V and I filters as defined by LaANDOLT (1992). The best fitting theoretical
isochrone (i.e. at 12.00 Gyr and for [Fe/H| = ~1.65) is represented by the dotted
line in Figure 1a.

2. Spectra Fitting

The empirical spectra were taken from the ITUE-archive. Two observations (from
115 to 198 nm and from 185 to 335 nm) were combined and binned to one
integrated spectrum which is represented by the full line in Figure 1b. In order
to generate synthetic spectra we again used the GISSEL code along with the
same set of input parameters as we assumed for the calculation of the isochrones.
The best fitting synthetic spectrum (i.e. at 12.50 Gyr) is represented by the
dotted line in Figure 1b.
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Figure 1. Isochrone Fit (a) and Spectra Fit (b)

3. Conclusions

One big source of uncertainty stems from the assumption of the metallicity. The
range of possible values reaches from [Fe/H] = -1.70, (Z = 0.00036) to —1.22
(Z = 0.0011). Furthermore, the reddening E(B — V) is proposed by different
authors from 0.00 to 0.02. Therefore we decided to assume the set of parameters
that led to the smallest residuals for the isochrone fit. An extended investigation
would consist in respecting other stellar evolutionary phases and in additional
observations in other passbands. Nevertheless, our derived age of 12.00 Gyr
at [Fe/H] = —1.65 is remarkably consistent with the value of 12.1 Gyr from
SALARIS & WEISs (2002) calculated at [Fe/H]| = —1.66.

Taking only two [UE-observations for the spectra fit represents a data sample
of poor value. One would wish to have more observations of the same kind to
be combined together. Furthermore, the wavelength-range from 130 to 320 nm
is not enough for a meaningful fit.

Due to the relatively good consistency of the two fits we’d like to suggest that
the age of M3 is closer to 12 than to 14 Gyr.
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Abstract

The motivation for this investigation is based on three recent developments: (1) the new BaSeL 3.1 spectral library (WESTERA et al. 2002), (2) the latest version of the population synthesis code GISSEL (BRUZUAL & CHARLOT
1993) using the Padova 2000 tracks (GTRARDI et al. 2000), and (3) the increasing amount of photometric HST-data of globular clusters. We derived the age of M3 by fitting isochrones to the empirical CMD (ROOD et al. 1999) and
by fitting integrated [UE-spectra (ROSE & SHIBING 1999) for comparison, Assuming E(V 1) = 0.02 two sets of isochrones at [Fe/H]= 1.65 (Z = 0.0004) and [Fe/H]= 1.25 (Z = 0.001) have been calculated covering the ages
from 10 to 16 Gyr. For the same parameter combination we produced two sets of integrated spectra. The results show a most probable age of 12,00 Gyr for the isochrone fit and 12.50 Gyr for the corresponding spectra fit.

Methods

Isochrone fitting

Spectra fitting

ROOD et al. (1999) presented a CMD of M3 containing a sample of roughly 37000 stars measured by the HST.
They transformed these measurements to the standard Johnson V and I system using the HOLTZMAN et al.
(1995) recipies. The mean ridge line (MS to TRGB only) is presented in Figure 1

WESTERA et al. (2002) used the latest Padova stellar evolutionary tracks (GIRARDI et al. 2000) for a new
version of the BaSel. models called the "PADOVA 2000" library. We used the so-called GISSEL code (Galaxy
Isochrone Synthesis Spectral Evolution Library) by BRUZUAL & CHARLOT (1993) to generate two sets of
isochrones for [Fe/H]= 1.65 (Z = 0.0004) and 1.25 (Z = 0.001) using the Ferraro IMF (mass-interval: 0.09
to 125 Mg). Each set consisted of 25 ages from 10 to 16 Gyr. We interpolated two additional sets of isochrones
at [Fe/H]= 151 (Z = 0.00055) and [Fe/H]= 141 (Z = 0.0007). To gencrate the isochrones we used the V
and [ filters as defined by LANDOLT (1983). We adopted a reddening value of E(B — V) = 0.02 (GRATTON
et al. 1999) which is comparable to E(V — I). The comparison of the best fitting calculated isochrones (i.c. at
[Fe/H] = -1.65) with the empirical mean ridge line from ROOD et al. (1999) is shown in Figure 1

This comparison led to the calculation of residuals which are presented in Figure 2. According to the best fit
solution at [Fe/H]= 1.65 (Z = 0.0004) the most probable age of M3 is 12.00 Gyr.

Figure 1 : Comparison of isochrones Figure 2 : Residuals of isochrone fit
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The empirical integrated spectral energy distributions (ISEDs) were taken from the IUE archive (ROSE &
SHIBING 1999). Two observations (from 115 to 198 nm and from 185 to 335 nm) were combined and binned to
one integrated spectrum which is shown in Figure 3

In order to generate synthetical ISEDs we again used the GISSEL code along with the same set of input
parameters as we assumed for the calculation of the isochrones, ie. FerraroIMF from 0.09 to 125 Mg, the
"PADOVA 2000 stellar SED library, 25 age steps from 10 to 16 Gyr and the metallicity values [Fe/H] =
165, 151, L4land 1.25 (Z = 0.0004, 0.00055, 0.0007 and 0.001). For consistency reasons we present the
comparison of the best fitting caleulated ISEDs (at [Fe/H]= ~1.65, Z = 0.0004) with the empirical ISED in
Figure 3.

Again we caleulated the corresponding residuals which are shown in Figure 4. Assuming [Fe/H]= 165, Z =
0.0004 (consistent with the isochrone fit) the most probable age of M3 is 12.50 Gyr.

Figure 3 : Comparison of spectra Figure 4 : Residuals of spectra fit
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Comments

Isochrone fitting

Spectra fitting

One of the biggest sources of stems from the fon of the The range of possible
values reaches from [Fe/H]= ~1.70, Z = 0.00036 (BUZZONT et al. 1992) to —1.22, Z = 0.0018 (CARRETTA et
al. 1997). Furthermore the reddening E(B V) is proposed by different authors from 0.0 to 0.02. Keeping in
mind these uncertainties, we decided to assume the set of parameters that led to the smallest residuals for the
isochrone fit

A more careful investigation would consist in the assumption of many different combinations of parameters and
in additional observations in other passbands. This extended search would also lead to the determination of an
age range instead of just one most probable value.

Our derived age of 12.00 Gyr at [Fe/H]= 165 (Z = 0.0004) is in good agreement with the value of 12.1 Gyr
from SALARIS & WEiss (2002) caleulated at a metallicity of [Fe/H] = ~1.66 based on ZINN & WesT (1984)

The spectra fit at [Fe/H]= .41 (Z = 0.0007) resulted in slightly smaller residuals than for [Fe/H]= 165 (Z
= 0.0004), leading to an age of 12.25 Gyr instead of 12,50 Gyr. But for consistency reasons we assumed the same
metallicity for both fits

Taking only two TUE observations for the spectra fit represents a data sample of poor value. One would wish to
have more observations of the same kind to be combined together. Furthermore, the wavelength-range from 130
t0 320 nm is not enough for a meaningful fit. Clearly, spectra covering all the important wavelengths are needed
In spite of the poor data the age of 12.25 Gyr is even closer to the value of 12.1 Gyr derived by SALARTS &
‘WEISS (2002).

Due to the relatively good consistency of the two fits at [Fe/H]= 165 (Z = 0.0004) we'd like to suggest that
the age of M3 is closer to 12 than to 14 Gyr.
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A.2 BLolIS: The Basel Library of Integrated Spectra

The following poster presentation was created for a conference on stellar populations:

Stellar Populations 2003
6 — 10 October 2003, Garching, Germany
http://www.mpa-garching.mpg.de/stelpops/

Here, too, we have to state, that the contents of this poster does not represent the latest
status of the library. The current version incorporates 1155 populations containing both
low and high resolution spectra. These populations are characterized by 5 different SFRs,
3 different IMI" slopes, and 11 different IMF' mass ranges (see Section 3.4). Besides, one
should not use the "Padova 2000” version of the stellar library BaSeL 3.1 anymore (Pieter
Westera, private communication). Furthermore, several incapabilities lead to severe data
loss. Thus, none of the 15 generated galaxy models of Markus Samland could be imple-
mented in BLolS.

121



122



Erich Wenger e Astronomical Institute e University of Basel e Switzerland

Abstract

‘We compiled an extensive library of integrated stellar population properties based on the BaSeL stellar libraries (LEJEUNE et al. 1997, WESTERA et a.l ZUHZ] the evolutionary s’ynth\ms code GISSEL (BRUZUAL &
CHARLOT 2003), and the latest chemodynamical galaxy models (SAMLAND 2003). It has been designed for theoretical studies (such as the ) as well as for to observations. The first
version contains 504 Single Stellar Populations (SSPs), each consisting of integrated spectra for 221 ages between 0 and 20 Ga. We chose 14 different IMFS, varied in slope and shape, as well as 7 different metallicities between
Z =0.0001 and 0.1 (corresponding to the Padova 1994 evolutionary tracks). All SSPs for BLolS 1.0 were created using the latest theoretical BaSeL 3.1 (”Padova 2000”) stellar library. Furthermore, 5'544 Composite Stellar
Populations (CSPs) were calculated with 3 different types of SFRs and the same 7 metallicities as for the SSPs. The IMF however was not varied. Finally, we generated 1’080 CSPs incorporating not only the SFR but also
the chemical evolntion as derived from chemodynamical galaxy models by Samland. Apart from the integrated spectra, the library also provides 18 integrated colonrs, 31 indices, and za other properties for each stellar

population and for each of the 221 timesteps. BLolS 1.0 contains 7128 stellar populations and roughly 1.6 Mio. spectra. It will be made available to the public: ww proji ht
Ingredients
'y Sy -y Tracks Stellar Spectral Libraries  Initial Mass Function IMF  Star ion Rate SFR  Ch i i
We used the 2003 version of the Stellar evolutionary codes provide The Basel group generated stellar ~ Salpeter was the first to derive an  As shown in the panel below, 5 dif-  Because the GISSEL code does
evolutionary synthesis code GIS-  theoretical evolutionary tracks. In  spectral libraries called BaSeL “original mass function” in 1955. ferent types of SFRs can be chosen not account for the chemical
SEL (Galaxy Isochrone Synthesis  the Bruzual & Charlot code the (Basel Spectral Energy Distribu  Various authors then derived IMFs  in the Bruzual & Charlot code: an — evolution of a stellar population in
Spectral Evolution Library) by following 3 track types are im- tion Library). LEJEUNE et al. for various stellar lly d asingle a self tent way, we used the

BRUZUAL & CHARLOT (2003)
As shown in the scheme below,
stellar spectra are added up
corresponding to the loci of the
stars on the theoretical HRD and
weighted by the IMF. Once these
Simple Stellar Populations are
generated one can convolve them
with an SFR to get Composite
Stellar Populations. Finally, we
can account for the chemical

evolution by adding up CSPs with
different SFRs and metallicitics.

plemented: Padova 1994, Padova
2000 (GIRARDI et al. 2000), and
Geneva 1992 (SCHALLER et al.
2000). These tracks were com-
pleted with post-AGB evolution
by Bruzual & Charlot. From the
tracks we can derive theoretical
isochrones which are used for
evolutionary synthesis. For BLoIS
we selected the Padova 1994 tracks

(1997) compiled the first purely
theoretical version and the second
semi-empirical (colour-calibrated)
version, whereas WESTERA et al.
(2002) contributed the third semi-
empirical  (metallicity-calibrated)
version. Basically, the theoretical
stellar spectra are adjusted to
match empirical colours. The next
step will be to incorporate empi-

In the GISSEL code 9 different
TMFs for solar neighborhood stars,
globular culsters, and irregular
galaxies are implemented. Soon, 3
more IMFs will be available, inclu-
ding a universal and a present-day
IMF. In addition one can enter an
arbitrary IMF shape and slope. As
far as the evolutionary synthesis
code is concerned, the IMF is

burst of finite length (constant
first, then dropping instantaneous-
ly to zero), a constant, a delayed,
and a linearly decreasing SFR. We
should mention that the SFR is
treated as an analytical function
which enters the evolutionary
synthesis as an input property.
Therefore, it: does not contain any
physics. Like an arbitrary IMF,

chemodynamical galaxy models
by SAMLAND (2003). There, the
galactic evolution is simulated
with a new three dimensional
code, including dark matter, stars,
and a multi-phase TSM. These
models provide realistic SFRs and
realistic age-metallicity-relations,
instead of just analytical functi-
ons. Of course, the SFR can be

because of their large range in rical high-resolution spectra from a time-independent analytical one can also apply an arbitrary calculated not only for the whole
metallicity and their good match the 2003 version of the Bruzual & function SFR, thus providing the means to population but for each wanted
to observed galaxy colours, Charlot. code into BLolS. include realistic SFRs. metallicity bin
el (1998)
om0 x
St (1998)

log(Lau)

Salpeter.

Log(e)

Kroupa.

Piotto

Matalicity

108(Ter) Vavelength loghit/ At} Time
Principle of Evolutionary Synthesis: N :
SSP csP CcsSPT
> Simple Stellar > Composite Stellar |::> Composite Stellar
Population Population Population™*
Properties
General SSP csp CSP*t

One population contains 221 spectra between 0 and
20 Ga, whereas one spectrum comes at a resolution
of 20 A (1221 flux values between 91 A and 160 ym)
and 3 A for the future high-resolution spectra. For
each spectrum there are 18 integrated colours, 31 line
indices, and 23 other integrated propertics.

We generated 504 SSPs with 3 IMF slapes (1.35, 3.00,
and 4.00), 6 upper IMF mass limits (125, 25, 20, 10,
5, and 2 Mg), 4
1.0, and 2.0 Mg, ), and the Padova 1994 evolutionary
tracks at 7 metallicities (Z = 0.0001
latest theoretical stellar spectral library BaSeL 3.1.

lower IMF mass limits (0.09, 0.8,

0.1) using the

For the 5"

2.0, and 5.0 Ga,

544 CSPs, we have caleulated the same ge-
neral properties as for the SSPs. As far as the SFR is
concerned, we took a constant, 5 exponentially decre-
asing, and 5 bursts of finite length with e-folding time
and burst duration time, respectively, of 0.1, 0.5, 1.0,

Finally we generated 1'080 CSPs*+ using 15 different
evolution histories, i.¢. mean SFR(#) and mean Z(t),
by Samland. For these populations we have again cal-
culated the same properties as for the SSPs and the
CSPs, except that the timesteps can increase from 221

ages up to several hundreds, depending on the SFR.

Application

Below we can see a chemodynamical galaxy model at age 13.5 Ga provided by Samland, first with all stars of all metallcites and then separated to the 7 stellar subpopulations corresponding to the 7 indicated metalicity

ranges. One can clearly recognize the contributions of the different subpopulations, suggesting that a mean SFR and a mean

Tati

can’t be appropy

Furthermore, we can spot the dominance of the stellar subpopulation of roughly solar metallicity and the lack of high metallicity stars for this particular galaxy model.

all stars 030 - 067 Zg
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enough for a realistic galazy model.

>372 70

References

Bruzual A, G., & Charlot, S. 2003, MNRAS, 344, 1000 B
Girardi L., Bressan A., Bertelli G., & Chiosi C. 2000, A&AS, 141, 371

Lejeune T., Cuisinier F., & Buser R. 1997, AZAS, 130, 65
Samland M. 2003, Ap&SS, 284, 841 S

Schaller G., Schaerer D., Meynet G, & Maeder A. 1992, ALAS, 96, 269
Westera P., Lejeune T., Buser R., et al. 2002, AKA, 381, 524

123




124



GISSEL User Manual

In our research group many persons made individual contributions. It became necessary
to merge all of this on a separate computer account called ”stellarpop”. The following
manual does not only contain the description of the GISSEL software by Gustavo Bruzual
and Stéphane Charlot but all the other programmes our research group has implemented.
Note that the main focus of the manual is on the handling of the programmes and not on
the physics. The idea was to ease the initial effort of beginners.
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