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Abstract

The present experimental study addresses turbu-
lence and exchange processes in the urban rough-
ness sublayer, namely the region from street
canyon floor up to 2.5 times the mean building
height. Measurements with ultrasonic anemometer-
thermometers from three urban full-scale towers
provided new insights into vertical profiles of
mean flow, Reynolds stress, turbulent kinetic en-
ergy (TKE), dissipation rate, as well as exchange
processes of heat, and partially water vapor and
CO2. With the help of ensemble profiles, which are
a surrogate for a real horizontal average, results are
discussed in the frame of an ‘urban family portrait’.

For the majority of realizations, the plane mixing
layer analogy matches processes in the urban rough-
ness sublayer much better than the classical bound-
ary layer theory. The observed patterns suggest a
conceptual division of the urban roughness sublayer
into three parts, namely thecanyon layer, the roof
layer, and anabove-roof layer.

In the canyon layer, local mechanical and thermal
turbulence production are of minor importance. Tur-
bulence is dominated by large coherent structures,
it is very intermittent and highly uncorrelated. The
majority of TKE is imported by turbulent and pres-
sure transport from the roof layer. The well known
street canyon vortex is only found on average and
only for selected configurations. Upwind roof shape
was determined as an important factor affecting its
dynamics.

In the roof layer, profiles are characterized by
strongest gradients and exchange is more efficient.
Here, local shear production is a strong source of
TKE. The skimming flow over the street canyons
creates an inflected mean wind profile, from which
instabilities evolve. Notable amounts of TKE and
temperature variance are exported from the roof
layer by sweeps into the upper street canyon and
by ejections into the above-roof layer. As a con-
sequence, dissipation rate is lower than locally pro-
duced turbulence and neutral limits of velocity vari-
ances are slightly lower than predicted with classical
(local) approaches.

In the above-roof layer, the mean wind profile ap-
proximates the well known logarithmic form valid
in the inertial sublayer. And, integral statistics ap-
proach surface layer values. Turbulent transport
processes of momentum and heat are dominated by
ejections. While shear production is the main source
of TKE in the roof layer below, here both, buoyancy
and shear production are important.

Finally, a network of spatially distributed energy
balance measurements allowed a quantitative esti-
mation of the urban energy balance modification.
For this purpose, the surface energy balance was si-
multaneously measured over different land uses (ur-
ban, suburban, rural).

The impact of a lower urban albedo is roughly coun-
terbalanced by a stronger long-wave emission, re-
sulting in a nearly equivalent net radiation over ur-
ban and rural surfaces. Urban surfaces are character-
ized by a strong storage term and a high Bowen ra-
tio. At night, turbulent flux densities remain upward
directed in dense urban environments. This is ex-
plained by a strong nocturnal release of stored heat.
As a consequence, the urban inertial sublayer and
the roughness sublayer are thermally unstable most
of the time.
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Zusammenfassung

Die vorliegende Arbeit analysiert Turbulenz und
Austauschprozesse in der urbanen Rauhigkeits-
schicht, welche von Strassenhöhe bis auf die
2.5-fache Geb̈audeḧohe beprobt wurde. An
drei Masten wurden extensive Messungen
mit Ultraschallanemometer-Thermometern
durchgef̈uhrt, welche neuartige Einsichten in
die vertikale Struktur der mittleren Strömung,
des turbulenten Impulsflusses, der turbulenten
kinetischen Energie (TKE) und der Dissipationsrate
ermöglichten. Weiter wurden Austauschprozesse
von Wärme, Wasserdampf und CO2 analysiert.
Mit Hilfe geeigneter Verfahren konnten räumliche
Mittel angen̈ahert werden und die Resultate im
Rahmen eines ‘urbanen Familienportäts’ diskutiert
werden.

In den meisten Situationen erlaubt dieplane mixing
layer Analogie eine weit angemessenere Beschrei-
bung der Situation als die Theorie einer klassi-
schen Grenzschicht. Die beobachteten Charak-
teristika liefen auf eine konzeptionelle Dreiteilung
der urbanen Rauhigkeitsschicht hinaus, und zwar
in Strassenschlucht (canyon layer), Dachḧohe (roof
layer) und eine durch Strukturen nicht mehr block-
ierte Schichẗuber den ḧochsten D̈achern (above-roof
layer).

In der Strassenschlucht sind lokale mechanische und
thermische Produktion nur von untergeordneter Be-
deutung. Die Turbulenz ist stark intermittent, höchst
unkorreliert und dominiert von grossen kohärenten
Strukturen. Der Grossteil an TKE wird von der
Dachḧohe durch turbulenten Transport und Druck-
transport importiert. Der bekannte Wirbel in der
Strassenschlucht wird nur als mittlerer Zustand er-
fasst. Die Dachgeometrie der Gebäude beeinflusst
massgebend seine Ausprägung.

Auf der mittleren Dachḧohe sind die Profile durch
starke Gradienten charakterisiert. Der Austausch
ist effizienter. In diesem Bereich ist mecha-
nische Turbulenzproduktion die Hauptquelle für
TKE. Die abscherende Strömungüber den Strassen-
schluchten resultiert in einem mittleren Windprofil
mit Wendepunkt, welcher weiter Instabilitäten initi-

iert. Ein bedeutender Anteil der lokal produzierten
TKE und auch der Temperaturvarianz wird ex-
portiert. Dies geschieht in Form von ‘Sweeps’,
welche in die Strassenschlucht hineindringen, aber
auch durch ‘Ejections’, welche Varianz in höhere
Luftschichten transportieren. Auf Dachhöhe ist fol-
glich die Dissipationsrate geringer als die lokal pro-
duzierte Turbulenz und auch die neutralen Grenz-
werte der normierten Geschwindigkeitskomponen-
ten sind tiefer als mit der klassischen (lokalen)
Skalierung vorhergesagt.

In den Schichtenüber den ḧochsten D̈achern
gleicht sich das mittlere Windprofil der logarith-
mischen Form der Inertialschicht an. Die in-
tegralen Statistiken erreichen die vorhergesagten
Grenzschichtwerte. Turbulente Austauschprozesse
von Impuls und Ẅarme sind charakterisiert durch
‘Ejections’. Während auf Dachḧohe die Produk-
tion fast ausschliesslich mechanisch dominiert ist,
gewinnt weiter oben auch thermische Produktion
von TKE zunehmend an Bedeutung.

Durch ein Messnetz von Energiebilanzstationen
wurde die Ver̈anderung der städtischen Energiebi-
lanz auch quantitativ erfasst. Die Energiebilanz
verschiedener Oberflächen (urban, suburban, rural)
wurde dazüuber einen Monat simultan beprobt.

Der Einfluss einer bedeutend tieferen Albedo im
Stadtzentrum wird durch die stärkere langwellige
Emission der sẗadtischen Oberfl̈ache ausgeglichen,
was in einer im Mittel etwa gleich grossen
Strahlungsbilanz in der Stadt und im Umland re-
sultiert. Sẗadte sind geprägt von einem weitaus
bedeutenderen Speicherwärmestrom und einem ho-
hen Bowen-Verḧaltnis. In den dicht bebauten Ge-
bieten beliben nachts die turbulenten Wärmestr̈ome
nach oben gerichtet. Dies wird durch die effizien-
tere Speicherung und Freisetzung von Energie in
den Strukturen der Stadt erreicht. Die bodennahe
sẗadtische Atmospḧare ist daher rund um die Uhr
vorwiegend instabil geschichtet.
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H ′ Hyperbolic hole size above which half of the flux occurs
Ii Turbulence intensity of velocity componenti = {u, v, w}
k von Karman number
K↓ Incoming short-wave radiation flux density at the surface W m−2

K↑ Outgoing short-wave radiation flux density at the surface W m−2

K∗ Net short-wave radiation flux density (in vertical direction to the surface) W m−2

Kua Kurtosis of variablea
KX Turbulent transfer coefficient (Eddy diffusivity) for propertyX = {M,H,Q,C} Var.
L Obukhov length m
L Characteristic length scale of the surface m
L↓ Incoming long-wave radiation flux density at the surface W m−2

L↑ Outgoing long-wave radiation flux density at the surface W m−2

L∗ Net long-wave radiation flux density (in vertical direction to the surface) W m−2

L·ab One-point integral length scale m
L··ab Two-point integral length scale m
Ls Shear length scale m
Lv Latent heat of vaporization J kg−1

M Mean 3d scalar wind speed m s−1

m Mean scalar horizontal wind speed m s−1

M ij Velocity correlation tensori = {u, v, w} m2 s−2

Mij(ab) Joint moments ofa andb Var.
n Natural frequency s−1

p Pressure Pa
P (â, b̂) Joint probability density function ofa andb
Q∗ Net all-wave radiation flux density (in vertical direction to the surface) W m−2

Q∗
i Net all-wave radiation flux density ini-th Cartesian direction W m−2

QE Latent heat flux density (in vertical direction to the surface) W m−2
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QF Anthropogenic heat flux density W m−2

QH Sensible heat flux density (in vertical direction to the surface) W m−2

r Distance vector between two points m
rab Correlation coefficient between two variablesa andb Var.
Rab Correlation tensor Var.
s Any scalar,s = {θ, ρv, ρc} Var.
Si Flux or stress fraction of quadranti
Ska Skewness of variablea
St Strouhal number
Sui(n) Spectral density of velocity componentsui = {u, v, w} m2 s−1

T Number of time steps in a discrete time series
t Time s
Ta Averaging time s
Tab Integral time scale ofa andb s
U 3d vector wind velocity m s−1

u Wind vector m s−1

u Longitudinal wind velocity component m s−1

u∗(IS) Friction velocity in the inertial sublayer m s−1

u∗ Scaling velocity, square of local vertical Reynolds stress m s−1

u0 Wind velocity component perpendicular to the street canyon atz/zh = 2 m s−1

uc Characteristic convective velocity m s−1

ui Wind component ini-th Cartesian direction,ui = {u, v, w} m s−1

ul Local horizontal wind velocityul = (u2 + v2)0.5 m s−1

us Characteristic velocity difference m s−1

v Lateral wind component m s−1

Vb Building volume density m3 m−3

w Vertical wind component m s−1

x Position vector m
x Distance in longitudinal wind direction m
xb Characteristic building breadth m
xc Canyon width m
xd Characteristic spacing of roughness elements m
xi Distance ini-th Cartesian direction,xi = {x, y, z} m
y Distance in lateral wind direction m
yc Canyon length m
z Height above ground level m
z′ Scaling length according to Eq. 4.28 m
z∗ Blending height, height of the roughness sublayer m
z0 Aerodynamic roughness length m
zd Zeroplane displacement height m
ze Height of the principal inflection point, ’effective’ canopy height m
zf Height of maximal local Reynolds stress m
zh Mean obstacle / building height m
zi Mixed layer height m

α Albedo
αk Kolmogorov constant for longitudinal velocity
β Bowen ratio
γH(ab) Ratio of sweeps and ejections at holesizeH
δ Characteristic flow width m
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∆QS Storage heat flux density of a surface W m−2
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ε Dissipation rate of turbulent kinetic energy m2 s−3

εθ Dissipation rate of temperature variance K2 s−1

ε Long-wave emissivity
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θ Virtual acoustic temperature K
θ∗ Scaling temperature K
θt Potential thermodynamic temperature K
ϑi Time fraction of quadranti
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κ Wavenumber vector m−1
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σa Standard deviation ofa Var.
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τ Shear stress kg m−1 s−2
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1 Introduction

Air pollution in urban areas is an environmental
problem of major concern. Furthermore, knowl-
edge of pollutant dispersion in cities is important
for public security, e.g. in case of accidental re-
leases. Both, the prediction of pollutant concentra-
tions for planning, and emergency response, heavily
rely on numerical modelling. However, the state of
the art in most urban dispersion models is still to use
turbulence and surface exchange parameterizations,
which are designed for non-urban terrain, partially
with slight urban adjustments, but without taking
into account the effects of the extremely rough sur-
faces of cities (Hanna et al., 1993; Chang and Hanna,
2004).

Moreover, increasing computational power allows
operational meso-scale meteorological models to be
run at higher spatial resolution. Today, the small-
est nesting domain of numerical weather prediction
models has a typical horizontal resolution of 2 to
10 km, resulting in more grid points that will rep-
resent urban areas. Parameterizations that take into
account urban surface characteristics and exchange
processes are needed for these grid points. Most
operational models ignore urban land use, or sim-
ply use modified values for a number of surface-
characterizing variables without any modification
due to the high roughness (Craig and Bornstein,
2002).

In an urban environment, most human activities take
place within a shallow air volume reaching from
street level up to roughly two times the average
building height. Dispersion and energy exchange
processes in this atmospheric layer, which is par-
tially confined by buildings, are not well understood.
This so calledroughness sublayerdoes not allow
the application of classical surface layer simplifi-
cations. For instance, the widely applied Monin-
Obukhov similarity theory fails in the lower part of
the roughness sublayer, and it is unknown, to what
extent it is still appropriate. Further, material proper-
ties, three dimensional configuration, reduced water
availability and human energy input strongly alter
the urban energy balance partitioning at the surface-
atmosphere interface. As a consequence, the ther-

modynamics of the whole urban boundary layer are
modified.

State of current research

Up to the year 2000, experimental activities in
the field of urban micrometeorology were relatively
sparse. The early ‘St. Louis study’ (Clarke et al.,
1982) was one of the first large efforts to address
atmospheric turbulence in urban areas. Most subse-
quent urban field experiments focused on momen-
tum transport and velocity variances in the rough-
ness sublayer and were short-term case studies or
activities limited to a single location (e.g. Rotach,
1993a; Feigenwinter et al., 1999; Louka et al.,
2000). However, they revealed many important fea-
tures, including the fact that the vertical profile of
Reynolds stress in the roughness sublayer is not con-
stant with height. Velocity variances have also been
addressed in a number of early studies (Brook, 1972;
Steyn, 1982; Ḧogstr̈om et al., 1982). Most results
are presented in a local scaling frame and suggested
slightly modified parameters in the similarity rela-
tionships (Roth, 2000).

Parallel to the investigation of atmospheric turbu-
lence, in the 1990s, a number of full-scale ex-
perimental studies have significantly increased the
knowledge on energy exchange of urban surfaces
(Arnfield, 2003). Most of the studies investigated
the surface energy balance over suburban residen-
tial areas, because they cover the largest areas of to-
day’s cities (e.g. Grimmond and Oke, 1995, 1999b).
Due to methodological problems, only a few cam-
paigns probed the dense and predominantly impervi-
ous city centers (Oke et al., 1999; Grimmond et al.,
2004). There is little information on turbulent ex-
change characteristics of heat and water vapor (e.g.
Roth and Oke, 1993a). Another field of growing in-
terest is the urban CO2 budget. Up to now, informa-
tion on turbulent exchange of CO2 over urban areas
is very sparse (Grimmond et al., 2002; Moriwaki and
Kanda, 2004; Vogt et al., 2005).
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In the last five years, the urban roughness sublayer
became a major focus of a number of collaborative
field experiments. The increasing interest is mainly
driven by the enhanced computational power of to-
day’s models and the lack of experimental knowl-
edge and verification data. The political concern on
air pollution, and finally the prevention of emergen-
cies – or at least an adequate response – attributed
a high priority to these topics. A number of inter-
national field campaigns were launched, which all
address urban meteorology simultaneously at differ-
ent spatial scales and apply manifold approaches:
URBAN 2000 in Salt Lake City focused on pollu-
tant dispersion processes at different scales in a city
in complex terrain (Allwine et al., 2002). In Mar-
seilles (France), the international ESCOMPTE/UBL
project in summer 2001 was embedded in a larger
scale effort to investigate the meteorological con-
ditions leading to high ozone concentrations in the
complex environment of the Mediterranean coast
(Mestayer et al., 2005). The present work is part
of the international BUBBLE - the Basel Urban
Boundary Layer Experiment (2001-2002). BUB-
BLE is probably the most detailed European urban
boundary layer experiment with a number of exper-
imental activities in the city of Basel, Switzerland
(Rotach et al., 2005). Recently, Joint 2003 in Ok-
lahoma City started, which is a large U.S. project
devoted to the dispersion of harmful substances in
urban areas, including entrainment of pollutants into
buildings (Allwine et al., 2004). DAPPLE is another
effort in central London to address dispersion of pol-
lutants at a street canyon intersection (Arnold et al.,
2004).

Parallel to these experimental activities, there were
many successful attempts to modify dispersion mod-
els for urban applications (Rotach, 2001; de Haan
et al., 2001; Warner et al., 2004). Further, a number
of sophisticated urban parameterizations for meso-
scale models were developed (Masson, 2000; Mar-
tilli et al., 2002; Otte et al., 2004). Many approaches
are not yet verified, and there is need for further im-
provements. It is an ongoing process to enhance the
performance of these models, and to translate newest
experimental results into appropriate turbulence and
surface exchange parameterizations.

Experimental framework

The present thesis is embedded in BUBBLE, which
was founded by the Swiss Ministry of Education and
Science with the active contribution of 20 institu-
tions from 10 different countries. It was directly as-
sociated with the European COST 715 action, de-
voted to ‘Meteorology applied to urban air pollu-
tion’ (Fisher et al., 2002, 2005). The general phi-
losophy of BUBBLE was to involve simultaneously
different scales and methods: numerical modelling,
remote sensing, a large field measurement campaign
and a wind tunnel investigation have been combined
to gain a more detailed and complete picture of the
urban boundary layer and to contribute to the un-
derstanding of exchange and dispersion processes in
urban areas.

The present thesis covers the BUBBLE near sur-
face measurements, addressing atmospheric turbu-
lence in the urban roughness sublayer as well as its
impact on diffiusion and momentum, mass and en-
ergy exchange. In contrast to nearly all previous
field studies, the spatial domain of interest combines
both, above roof measurements, and simultaneous
measurements in the urban street canyons. This
was done with the help of three micrometeorolog-
ical profile towers, reaching from street level up to
approximately two times the mean building height.
Further, the experimental investigation of the urban
surface energetics at seven different sites allowed to
investigate the surface energy partitioning over dif-
ferent land-use (rural, suburban, urban) under the
same synoptic forcing.

Objectives

The fluid mechanical processes explaining the ex-
change of air between canyon/backyard air masses
and the ambient flow are of essential interest in all
above applications. In recent years, intermittency
and turbulent exchange in plant canopies have been
successfully addressed with the help of theplane
mixing layer analogy(Section 2.4.2). The vertical
wind profile (Section 4.1), turbulent structures (Sec-
tion 4.2) and the associated turbulence length scales
(Section 4.3) are important indications to assess the
applicability of the plane mixing layer analogy over
urban surfaces. Coupled with this question is the
search of adequate scaling parameters in the urban
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roughness sublayer. It must be kept in mind that the
permeability of plant canopies does not allow a di-
rect analogy with the stiff urban surface, and that
many urban specific flow patterns like street canyon
vortices are not found in natural canopies.

Previous studies already resulted in valuable infor-
mation on the vertical profile ofReynolds stress, but
there are still a number of open questions. Strategies
to upscale and generalize specific results are needed
and the profiles have to be related to the urban mor-
phometry. For example, the reported height of max-
imum Reynolds stress is different in most wind tun-
nel studies and full scale studies. Further, Rotach
(1991) reported a dominance of downward directed
sweeps in the momentum transport whereas Feigen-
winter (2000) found upward directed ejections more
relevant. The present data set allows to resolve these
inconsistencies. The analysis ofprobability density
functionsand higher order moments is an important
issue in order to determine relevant exchange struc-
tures and intermittency (Section 4.2).

Dissipation rateof turbulent kinetic energy (TKE) is
one of the key parameters in numerical models, but
little is known about its vertical profile within the ur-
ban roughness sublayer. The question of the applica-
bility of the inertial subrange method, i.e. the prac-
tical procedure to determine dissipation rate from
spectra, has to be addressed. Additionally, the analy-
sis of all terms of the TKE budget will lead to in-
sight into processes that create, relocate and destroy
turbulence (Section 4.3). The TKE budget builds the
basis for the discussion of velocity variances and tur-
bulent exchange processes.

The vertical profiles ofturbulent flux densities of
heat and massand corresponding exchange mech-
anisms in the urban roughness sublayer are mostly
unknown. The COST 715 action identifies ”a need
to understand the physical processes driving the tur-
bulent exchange in the urban roughness sublayer
and to parameterize the typical vertical profiles for
variables of interest therein.” (Rotach, 2005). Espe-
cially, the knowledge on vertical profiles, higher or-
der moments, and length scales of heat and mass will
help to further identify driving processes and should
clarify if transfer of momentum, heat, water vapor
and CO2 are similar or to what extent dissimilarities
are revealed (Section 4.4).

Not only the physical exchange processes are im-

portant, but simply the magnitude of meteorological
variables needed in air quality models are of high
practical need. Many input parameters such as the
surface flux are not routinely measured. Hence, it is
of interest to present parameterizations and relate the
urban energy balance partitioningto simple surface
properties. In a climatological frame, the urban ra-
diation and energy balance modification is analyzed
in its diurnal and annual variation (Section 4.5).

3



stratus

4



2 Theory

2.1 Fundamental concepts

2.1.1 Layer structure of the atmospheric
boundary layer

Observations as well as theoretical considerations
suggest that the atmospheric boundary layer can be
separated into different vertical layers where ex-
change mechanisms and turbulence are dominated
by different parameters. A number of scalings have
been developed, each simplifying processes of a cer-
tain layer and scale. Some scalings are only applica-
ble to particular stratifications (stabilities), while
others cover all states of the atmosphere.

Theatmospheric boundary layer(ABL) refers to the
whole vertical domain directly above the Earth’s sur-
face in which surface forcing influences the thermo-
dynamics and flow properties of the atmosphere on
time scales less than a day (Garratt, 1993). The ABL
depth is variable and typically between 100–3000 m
deep.

The vertical structure of the ABL is shortly outlined
in this section. In the present work, we focus on
processes in the (urban) surface layer and especially
on its roughness sublayer, which are therefore pre-
sented in more detail.

In analogy to wall boundary layers, the ABL can
be separated into anouter regionand aninner re-
gion. In the outer region, turbulence is assumed to
be independent of surface roughness. The Coriolis
force is important and friction forces are neglected.
The outer region is separated, depending on strati-
fication and driving processes, into a daytime, con-
vectivemixed layerand into thenocturnal boundary
layer.

The mixed layer — The mixed layer develops
during daytime and is characterized by strong con-
vection. The height of the mixed layer, the bound-

*

Figure 2.1: Concept of sublayers in the daytime convective
ABL. zh is the mean height of the roughness elements,z∗ is
the roughness sublayer height andzi is the atmospheric bound-
ary layer height. Slightly modified from Rotach (1999).

ary layer heightzi∗, is usually growing as the mixed
ABL air entrains the free atmosphere driven by a
continuous heating up of the surface. Mixed layer
similarity theory applies with its scaling lengthzi.
Fluxes usually decrease with height.

The nocturnal boundary layer — The nocturnal
boundary layer is the stable counterpart of the mixed
layer, which typically forms at night. Turbulence
and mixing often decay as radiative cooling of the
surface generates the development of a shallow noc-
turnal boundary layer characterized by statically sta-
ble air with weak and intermittent turbulence. Dur-
ing periods with weak turbulence, the flow aloft is
found to be decoupled from the surface. Over ur-
ban areas, an elevated inversion layer is often found
several hundred meters above the surface, while the
layer below stays in unstable stratification (cf. Sec-
tion 4.5.7).

In boundary layer meteorology, the inner region is

∗ All mathematical symbols used in this thesis are defined in
the list of symbols on page xxi.
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called surface layer. Here, Coriolis force is ne-
glected in favor of friction forces. The surface layer
is the region wherez � zi and usually covers the
lowest 10% of the ABL. The surface layer above a
rough surface can be further divided into aninertial
sublayerand aroughness sublayer(Raupach et al.,
1991). The inertial sublayer is the region where
z0 � z � zi, but where the flow is not influenced
by single roughness elements.

Inertial Sublayer — Within the inertial sublayer,
shear stress is nearly constant with height, and
hence, it is also called theconstant flux layer.
Monin−Obukhov similarity theory often applies
and the principal scaling length is the height above
groundz. Here, mean profiles of turbulence statis-
tics obey the semi-logarithmic laws and their dia-
batic extensions (cf. Section 2.4.1).

Roughness Sublayer — The roughness sublayer
(sometimes referred to asinterfacial layer) is the
lowest part of the surface layer beneath the iner-
tial sublayer. It extends up to the blending height
z∗ where influences from single roughness elements
vanish. The depth of the roughness sublayer is typ-
ically 1.5 to 4 times the mean obstacle height. With
increasing height of the roughness elements, the
roughness sublayer is of increasing practical inter-
est. Above relatively smooth surfaces such as sand,
ice or open water, the roughness sublayer may be ne-
glected. The roughness sublayer depth is less than
a meter above shallow crops, but it reaches up to
tens of meters in urban areas or old-grown forests.
As a consequence, the inertial sublayer extent is re-
duced, or may even vanish (Rotach, 1999). This is
especially important in the nocturnal boundary layer
whenzi is small (Fig. 2.1).

Within the roughness sublayer, local advection and
horizontal turbulent transports are not negligible and
time averaged turbulence statistics and flux densi-
ties are vertically and horizontally inhomogeneous.
Moreover, the flow is not in local equilibrium, i.e.
transport terms in the conservation equations (Sec-
tion 2.3.1) are important.

In an urban area, we spend most of our lives within
the roughness sublayer and also, the majority of
emissions take place here. This underlines the im-

portance to understand, generalize and parameter-
ize dispersion and turbulent exchange in the urban
roughness sublayer. Many turbulence statistics and
exchange processes in the urban roughness sublayer
are not fully understood, due to its complex nature,
and the inevitable experimental difficulties to retain
a generalized view from single point measurements.
Therefore, the urban roughness sublayer was in the
focus of different field experiments in recent years
— including the present one.

The lowest part of the roughness sublayer from
ground up to the mean obstacle heightzh is re-
ferred to ascanopy layer(Oke, 1987). It is partly
confined by the presence of roughness elements
such as buildings and vegetation. The mean flow
is severely channelled and altered by the geome-
try of the roughness elements. The few data avail-
able suggest that the mean wind velocity profile in
the canopy layer obeys an exponential decay law
(Cionco, 1965; Macdonald, 2000). Turbulence is ex-
pected to be controlled by coherent structures at the
same scale as the canopy height. Further, for vegeta-
tion canopies, abasal layeris suggested within the
canopy layer, which is the layer closest to the ground
(Villani et al., 2003). Due to the different geometry
of an urban canopy, this term is not used in urban
studies.

2.1.2 Horizontal scales and resolution

Most atmospheric processes are limited to a cer-
tain time- and length scale, which is reflected in
the famous classification into macro-, meso- and mi-
croscale processes and the respective subgroups (Or-
lanski, 1975). The overlapping between the chosen
scale of interest and the scale of any physical process
determines whether the process may be neglected,
parameterized (empirically or physically) or directly
solved in a model. It is obvious that all scales are
interrelated. Kinetic energy is passed down from
larger scales to smaller scales and is finally dissipat-
ing to heat. On the other hand, small scale processes
in their quantity initiate and evolve larger structures
and patterns.

The classification into different scales is especially
important for scale-dependent simplifications. The
grid cell size of Eulerian models are limited to re-
solve only a certain level of detail, and have a lower
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and upper resolution limit. Unresolved processes
that are below the lower limit of the chosen scale
are calledsubscale processes. In all applications
concerning dispersion and transport processes in the
atmospheric boundary layer, the unresolved (tur-
bulent) processes are of essential importance. We
try to parameterize the unresolved turbulent fluctu-
ations by appropriate forcings at the resolved scale,
which we have to identify first. Important subscale
processes are tried to be solved under certain closure
assumptions (parameterizations).

Unresolved processes that are above the upper limit
of the chosen scale, e.g. larger than the whole do-
main of interest, are calledsuperscale processes.
They are implemented by variation of the bound-
ary conditions (e.g. by model nesting). In turbulence
research, superscale effects are often eliminated by
spectral trend removal. Any remaining energy from
larger scales that does not affect fluxes is referred
to as inactive turbulence. Turbulence in any surface
layer can be divided into active scales that transport
momentum, heat and mass, and into inactive scales
that are superimposed and do not affect the turbulent
transport. Townsend’s hypothesis states that these
two kinds of turbulence do not interact, which al-
lows us to conceptually separate them (Townsend,
1961; McNaughton and Brunet, 2002).

This view underlines that the terms homogeneity
and stationarity are always scale dependent. Vari-
ables that are stationary at a certain time scale (e.g.
wind velocity at the scale of hours) may be instation-
ary in other scales (wind velocity at the scale of sec-
onds or synoptic driven events at the scale of days).
The same applies to homogeneity.

Britter and Hanna (2003) suggest four conceptual
ranges of length scales in the urban context: re-
gional (up to 100 or 200 km), city scale (up to 10 or
20 km), neighborhood scale (up to 1 or 2 km), and
street canyon scale (less than 100 m). In fact, the at-
mospheric layer concept, the scale concept and also
the typical duration of processes are all linked.

Street canyon scale — At street canyon scale,
detailed flow and dispersion within street canyons
and around single buildings or intersections are ad-
dressed. The nature of the urban roughness sub-
layer is a consequence of inhomogeneities at the
street canyon scale. Practically, the street canyon

street canyon scale neighbourhood scale

regional scalecity scale

Figure 2.2: Illustration of urban scales and related surface het-
erogeneity in the city of Basel. Photos by courtesy of M. Roth,
NUS Singapore, and R. Vogt, University of Basel.

scale is important in architecture (wind load), mi-
croscale dispersion and in air pollution applications.
The flow at this scale can be directly modelled
in CFD applications (e.g. large eddy simulations).
When modelling at this scale, a detailed knowledge
on the three-dimensional structure is needed, but
many parameterizations are obsolete, because most
processes are resolved with immense computational
power. There are a number of wind tunnel studies,
and some few field experiments focussing explicitly
on processes on street canyon scale. Nearly all sur-
face measurements are carried out at this scale, even
if their representativeness is interpreted at larger
scales.

Neighborhood scale — The neighborhood scale
restores horizontal homogeneity of the surface at
a larger scale by horizontal averaging over a ho-
mogeneous area of the city, large enough to filter
out (repetitive) surface inhomogeneities at the street
canyon scale (Fig. 2.2). The formation of an iner-
tial sublayer is a consequence of the homogeneity
at the neighborhood scale. The neighborhood scale
is currently reached by experimental mesoscale nu-
merical models, and sophisticated urban canopy pa-
rameterizations have been developed (e.g. Masson,
2000; Martilli et al., 2002; Otte et al., 2004). Fur-
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ther, the neighborhood scale is the preferred level of
detail where urban Lagrangian near-field dispersion
models are run (e.g. Rotach, 2001; de Haan et al.,
2001). The restored horizontal homogeneity allows
many simplifications, but also needs important para-
meterizations of the underlying urban roughness and
canopy sublayer. Finally, the neighborhood scale is
the scale of choice for flux monitoring sites.

City scale and regional scale — These scales
both focus on the modification of the whole bound-
ary layer (mixed layer). This is of interest in NWP,
since today’s models already include many grid cells
that are100% urban, and especially urban areas need
appropriate predictions due to the high number of
human activities. On the other hand, urban areas
modify the whole boundary layer, its stability, ther-
modynamic properties, and the mixed layer height.
The modified urban surface exchange results in typ-
ical urban climate phenomena like the urban heat
island. At this scale, many processes in the urban
roughness sublayer and the canopy sublayer are not
of central importance anymore. There are many at-
tempts that simply alter the surface exchange para-
metrization of models to incorporate effects at the
city scale (Taha, 1999a).

In the present work, we focus on the street canyon
and neighborhood scales. Knowledge of processes
at these scales is important to develop, test and
support general or urban specific parameterizations,
which are of high need in today’s models.
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2.2 Statistical description of turbulence

Single motions in a turbulent flow are chaotic and
unpredictable. Luckily, they are seldom of impor-
tance, and any prediction focuses on resulting in-
tegral effects of turbulence on dispersion and ex-
change processes. A statistical view allows quan-
tifying integral effects by already incorporating a
huge number of single events. A statistical analy-
sis of turbulence significantly reduces the amount of
data and simultaneously retains basic information.

This chapter introduces statistical tools and con-
cepts. The continuum assumption (Section 2.2.1)
and the Reynolds decomposition (Section 2.2.2)
provide both basics for a statistical description. The
relevant statistic moments are defined in Section
2.2.3, and Sections 2.2.4 and 2.2.5 present sophisti-
cated probabilistic approaches like probability den-
sity functions and quadrant analysis. Finally, inte-
gral time- and length scales as well as spectral analy-
sis (Sections 2.2.6 and 2.2.7) allow to highlight tur-
bulent motions and exchange processes from a dif-
ferent view. They allow a quantitative determination
of the characteristic scales of processes.

2.2.1 Continuum assumption

The ratio between the free molecular path length to
the characteristic length scale of turbulent motions
is calledKnudsen-number Kn(Brown, 1991). In the
troposphere,Kn � 1 and typically is in the order
≈ 10−8 to 10−10 (Prölss, 2001). This allows us
to treat the atmosphere as a continuum. Any vari-
able can already be described as an integral state of
a homogeneous fluid parcel without having the full
knowledge of all single motions and states resolved
down to the molecular level.

2.2.2 Reynolds decomposition

The Reynolds decompositionsplits any instanta-
neous variablea(x, t) at a given locationx and time
t into a resolved mean value (denoted by an over-
bar) and an unresolved fluctuating part (denoted by
a prime),

a = a+ a′. (2.1)

Commonly, the splitting is done in the time domain
with a, the temporal average over an averaging time
Ta, which fulfills the assumption of (i) stationarity
and (ii) the condition thatTa lies in the region of the
spectral gap:

a =
1
Ta

Ta∫
t=0

a(t)dt. (2.2)

The concept of stationarity, which results in∂/∂t =
0, is seldom fulfilled, since superscale forcings (e.g.
inactive turbulence, diurnal and synoptic effects) re-
sult in continuously changing boundary conditions.
For the same reason, the presence of a spectral gap,
which theoretically results from an energetic separa-
tion of the energy input at the synoptic scale and the
energy produced at the turbulent scale (Stull, 1988),
is in doubt. There are numerous procedures that try
to remove trends in order to restore stationarity in
real atmospheric data, which all have the disadvan-
tage to break the rule of energy conservation.

2.2.3 Integral statistics

With Eq. 2.3 we can define higher order statistical
moments wherei is called their order (Scḧonwiese,
1992):

a′i =
1
Ta

Ta∫
t=0

a′i(t)dt. (2.3)

The second moment withi = 2 is the variance and
its square rootσu is the standard deviation:

σa =
√
a′2. (2.4)

The higher order moments are usually non-
dimensionalized and the nondimensional moments
are called skewness

Ska =
a′3

σ3
a

(2.5)

and kurtosis

Kua =
a′4

σ4
a

− 3. (2.6)

In isotropic Gaussian turbulence, both,Ska andKua

are zero. The more general form of two-variable
mixed moments for any variablesa andb with a 6= b
is

a′ib′j =
1
Ta

Ta∫
t=0

a′i(t)b′j(t)dt. (2.7)

9
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The most important case is the covariance withi = 1
andj = 1. Again, i + j define the order of the mo-
ment. The correlation coefficient is the covariance
scaled by the two standard deviations. According to
the Schwarz’s inequality, it is in the range between
−1 and+1. If a andb are completely uncorrelated,
rab is zero, and (minus) unity if they are perfectly
(negatively) correlated.

rab =
a′b′

σaσb
. (2.8)

Using Reynolds decomposition, the total kinetic en-
ergy of the flow can be separated into mean kinetic
energy and turbulent kinetic energy0.5u′2i (TKE):

1
2
u2

i =
1
2
u2

i +
1
2
u′2i . (2.9)

We see that TKE is the sum of the diagonal com-
ponents of the velocity covariance tensorM ij , and
therefore is invariant to any arbitrary orientation of
the coordinate axis.

M ij = u′iu
′
j =

 u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

 (2.10)

Analoguous, higher order tensors can be defined,
e.g. the third order velocity trippelcovariance tensor
M ijk.

2.2.4 Probability density functions

We defineâ(a) as a measure of the fluctuating de-
viation from the mean of any parametera (veloc-
ity component, pressure, heat or scalar) scaled by its
corresponding standard deviation, i.e.â(t) = a′/σa.
The probability density functionP (â) is defined as
the derivative of the cumulative distribution function
D(â) of â in a stationary time series of lengthTa,
namely,

D(â) = lim
Ta→∞

1
Ta

Ta∫
0

I(t)dt =

â∫
−∞

P (â)dâ (2.11)

whereI(t) is an indicator function,

I(t) =

{
1 if a′(t)/σa ≤ â

0 if a′(t)/σa > â
(2.12)
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Figure 2.3: Sample joint probability functionsP (û, ŵ) and
P (ŵ, θ̂) illustrating the graphical and the quadrant numbering
convention used in this work. The isolines incorporate 95, 90,
75 (thick), 50 and 25% of all realizations.

The probability density function satisfies

∞∫
−∞

P (â)dâ = 1. (2.13)

In isotropic, uncorrelated Gaussian turbulence, the
probability density function of̂a is

G(â) =
1√
2π
e(−

1
2
â2). (2.14)

If â andb̂ are two parameters (velocity components,
enthalpy or scalars) that are scaled by their standard
deviations, we can define a joint probability density
functionP (â, b̂), which again satisfies

∞∫∫
−∞

P (â, b̂)dâdb̂ = 1. (2.15)

In the case of Gaussian turbulence, the joint proba-
bility density function of two parameters is

G(â, b̂) =
1

2π
√

1− r2ab

ek

with

k = − â
2 + 2rabâb̂+ b̂2

2(1− r2ab)
(2.16)

whererab is the correlation coefficient, which has
been already defined in Eq. 2.8, and can be also writ-
ten as

rab = âb̂. (2.17)

2.2.5 Quadrant analysis

Definitions and Method — By applying quad-
rant analysis, we separate the joint probability den-
sity functionsP (â, b̂) of two parametersa and b

10
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into the four quadrantsQi of the Cartesian plane
with i = {1, 2, 3, 4} (Wallace et al., 1972; Lu and
Wilmarth, 1973; Antonia, 1981). For each of the
quadrants, a time fractionϑi can be calculated,

ϑi =

ua∫
la

ub∫
lb

P (â, b̂)dadb. (2.18)

ϑi is the relative total duration of events in quadrant
i. The lower (la, lb) and upper (ua,ub) integration
limits of the four quadrants are summarized in the
following table.

Quadrant Definition
a = u b = w 1 2 3 4
a = t, ρv, ρc b = w 2 1 4 3

la 0 −∞ −∞ 0
ua ∞ 0 0 ∞
lb 0 0 −∞ −∞
ub ∞ ∞ 0 0

Note that the definition of quadrant numbering for
momentum fluxu′w′ is different from the number-
ing of all other flux densities (w′θ′, w′ρ′v or w′ρ′c).
Usually,u′w′ is directed towards the surface, while
all other flux densities typically transport energy or
mass away from the surface. In order to attribute the
same physical processes to each quadrant, numbers
are arranged in a way that assumes the mean ver-
tical wind gradient to be opposite to the mean (un-
stable) vertical temperature gradient, humidity and
CO2-gradient∗.

i = 1 : outward interactions
i = 2 : ejections or bursts
i = 3 : inward interactions
i = 4 : sweeps or gusts

From Eq. 2.15 and 2.18, we conclude that

4∑
i=1

ϑi = 1. (2.19)

Further, a flux (or stress) fractionSi can be calcu-
lated with same definitions (Raupach, 1981):

Si =
1
rab

ua∫
la

ub∫
lb

âb̂P (â, b̂)dadb. (2.20)

∗ Some authors flip the orientation of the axis to account for the
different signs ofu′w′ and the other flux densities (Katul et al.,
1997). This is not necessary with the present definitions.

The flux fractions represents the contribution from
this particular quadrant to the overall flux density.
From Eq. 2.15 and 2.20, we see that

4∑
i=1

Si = 1. (2.21)

Quadrant Measures — Different quantities can
be calculated from the flux (or stress) fractions. Im-
portant measures are the difference∆S0 between
sweeps and ejections

∆S0 = S4 − S2 (2.22)

and their ratio

γ0 =
S2

S4
. (2.23)

If ∆S0 is other than zero (orγ0 not equal unity), this
is an indication that moments of order 3 or higher are
also non-zero. The joint probability density function
P (â, b̂) is completely specified by an infinite set of
joint momentsMij (Nakagawa and Nezu, 1977):

Mij = âib̂j . (2.24)

Assuming that only third order moments explain
∆S0, Raupach (1981) showed that∆S0 can then be
described by a third order cumulant expansion of the
joint probability functionP (â, b̂):

∆S0 =

rab + 1
rab

√
2π

(
2C1

(1 + rab)2
+

C2

1 + rab

)
(2.25)

where

C1 = (1 + rab)
(
M03 −M30

6

+
M21 −M12

2

)
(2.26)

C2 = −
(

(2− rab)(M03 −M30)
6

+
M21 −M12

2

)
. (2.27)

A further measure in quadrant analysis is the exu-
berance introduced by Shaw et al. (1983), which de-
scribes the ratio of (unorganized) counter flux con-
tributions to (organized) contributions in direction of
the average flux:

Ex =
S1 + S3

S2 + S4
. (2.28)
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Holesize — By introducing an additional hole-
size functionOH(â, b̂) in 2.20, we exclude contribu-
tions from small and frequent structures in the near-
isotropic range and focus on contributions of large
and sparse structures, which is done by

Si,H =
1
rab

ua∫
la

ub∫
lb

âb̂P (â, b̂)OH(â, b̂)dadb (2.29)

with

OH(â, b̂) =

{
1 if âb̂ ≥ |rab|
0 otherwise

(2.30)

The holesize function defines a hyperbolic hole. Val-
ues within this hole are excluded from analysis. By
varying the holesizeH, contributions from large and
sparse structures in regions outside the hole can be
investigated. Raupach et al. (1986) defined a hole-
sizeH ′ above which half of the flux density occurs,
hence where

4∑
i=1

Si,H′ =
1
2
. (2.31)

With the holsizeH ′, another set of parameters can
be deduced, e.g. we can rewrite 2.22 and 2.23 and
calculate the difference∆S0 between sweeps and
ejections larger thanH ′:

∆SH′ = S4,H′ − S2,H′ (2.32)

and their ratio

γH′ =
S2,H′

S4,H′
. (2.33)

And finally, the holesize functionOH(â, b̂) can be
inserted into Equation 2.18

ϑi,H =

ua∫
la

ub∫
lb

P (â, b̂)OH(â, b̂)dadb (2.34)

and applied to defineϑ′ as the relative time fraction
of events in which half of the flux density occurs,

ϑ′ =
4∑

i=1

ϑi,H′ . (2.35)

2.2.6 Characteristic length and time scales

Again,a andb represent any velocity components or
scalars. We can define a general form of an Eulerian

covariance tensor that relates the value ofa′ at any
point x and any timet to the value ofb′ at location
x(1)in a distancer = x(1) − x and a timet(1) that is
shifted by the time-lagτ = t(1) − t (Rotta, 1972):

Cab(x, t, r , τ) = a′(x, t)b′(x + r , t+ τ). (2.36)

The special case withτ = 0 and r = 0 is the
(co)variance, which has been already defined in Eq.
2.7. The corresponding normalized correlation ten-
sor is given by

Rab(x, t, r , τ) =
a′(x, t)b′(x + r , t+ τ)(

a′2 (x, t) b′2 (x + r , t+ τ)
)1/2

.

(2.37)
For both,|r | → ∞ or |τ | → ∞, a′ andb′ become
statistically independent,

lim
|r |→∞

Rab(x, t, r , τ) = 0 (2.38)

and
lim

|τ |→∞
Rab(x, t, r , τ) = 0. (2.39)

A special case of 2.36 is the Eulerian autocovariance
functionRaa(x, t, 0, τ), wherea = b, and r = 0.
This leads to the definition of the Eulerianintegral
length scales(or outer length scales, see Fig. 2.4)

L··ab,k(x, t) =

1
2a′(x, t)b′(x, t)

∞∫
−∞

Rab(x, t, rk, 0)drk (2.40)

with k the k-th Cartesian direction, i.e.k =
{x, y, z}. Similarly, the Eulerianintegral time
scales(or outer time scales) are

Tab(x, t) =

1
2a′(x, t)b′(x, t)

∞∫
−∞

Rab(x, t, 0, τ)dτ. (2.41)

In practice, for a finite and stationary time series,
Tab is calculated by numerically integrating up to the
first zero-crossing.

Taylor’s Hypothesis — With point measure-
ments, we are only able to determineRab for cases
wherer = 0 and hence,L··ab,k can not be determined
directly from measurements at a single point. The
Taylor hypothesis surrogates spatial measurements
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Figure 2.4: Conceptual spatial autocorrelation function and
corresponding integral length scaleL··

uu,u. λT is the Taylor-
microscale, which could be derived from the curvature of the
autocovariance function att = 0 if instrument resolution (very
small path length) would allow its measurement. Modified from
Rotta (1972).

by time series from one point. Under some circum-
stances, turbulence can be considered frozen, which
implies that the total Lagrangian derivativeda/dt
of any variablea is zero. A continuous time series
of measurements from a single point can be folded
back into space by simply assuming advection as the
only process that changesa in this Eulerian point of
view (Stull, 1988), which can be expressed by

∂a

∂t
≈ −ui

∂a

∂xi
. (2.42)

In the atmosphere, Taylor’s Hypothesis is seldom
fulfilled. It works well in the surface layer, but its
application is problematic in canopies. If temporal
variations in a moving frame of reference are strong
and different wavenumbers are transported in differ-
ent velocities, the Taylor hypothesis fails (Wyngaard
and Clifford, 1977). But at certain scales, it is a
valuable approximation. Taylor’s hypothesis allows
calculating integral length scales from integral time
scales by

L·ab(x, t) = ui Tab(x, t). (2.43)

To distinguish between integral length scales that
have been transformed using Taylor’s hypothesis
and length scales directly derived from spatial sep-
arated measurements, the first ones are calledone
point length scalesand the latter ones aretwo point
length scales. One-point length scales only provide
information in the directionru of the advecting wind

ū, while two-point length scales can be formed for
each direction ofrk in space. Following Raupach
et al. (1996), the difference between one-point and
two-point length scales is indicated by the number
of dots inL·ab andL··ab,k, respectively.

2.2.7 Spectral analysis

Turbulence can be viewed as a superposition of
many single eddies (coherent events of velocity, vor-
ticity and scalar properties). The Fourier transfor-
mation provides the basic tool for the separation of
eddies by scale. It allows to represent TKE of a con-
tinuous and stationary time series as the sum of an
infinite number of sine and cosine terms:

Sab(x, κ) =
1

(2π)3

∞∫∫∫
−∞

Cab(x, r)e−iκrdr . (2.44)

Cab is a special case of the covariance tensor of Eq.
2.36 of a stationary time series, wherea = b =
{u, v, w} and τ = 0. κ is the wavenumber vec-
tor, andSab is the resulting two point spectrum ten-
sor that is complex. Its real part is the amplitude
of the cosine wave whereas the imaginary part de-
scribes the sine wave. The resulting spectra tell us
how much a given frequency band contributes to the
total TKE (or the variance of a single velocity com-
ponent). In this phase space, the absolute physical
reference — time or location — is lost. Instead of
the timing of an eddy, statistical information on the
energy of all eddies of similar size (duration) can be
extracted from a spectrum.

The Fourier transformation can be similarly applied
to scalars (a = b = {θ, ρv, ρc}). If in Eq. 2.44a 6= b
we retain cospectra. A detailed overview of the theo-
retical background of the Fourier transformation and
its manifold applications in micrometeorology can
be found in Stull (1988), Sorbjan (1989) or Kaimal
and Finnigan (1994).

Using Taylor’s Hypothesis (Eq. 2.42), we can con-
vert wavenumbersk into frequencyn by

k =
2πn
ū
. (2.45)

When drawing spectra from one-point time series,
natural frequencyn — the independent variable —
is typically plotted against frequency multiplied by
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Figure 2.5: Conceptual spectra of a velocity componentui il-
lustrating (1) energy containing range, (2) inertial subrange and
(3) dissipation subrange.nmax is the peak frequency.

spectral energynS(n) (Fig. 2.5). The total spectral
energyS(n) integrated over all frequencies again is
equal the (co)variance and twice the TKE in the case
of the TKE spectra, hence we write

a′b′ =
∫

n
Sab(n)dn. (2.46)

Equation 2.46 is used to normalize spectral density
by the variance, i.e. the y-axis is set tonS(n)/u′2i .

Atmospheric velocity spectra (TKE, velocity com-
ponents) can be divided into three subranges: the en-
ergy containing subrange (1), the inertial subrange
(2), and the dissipation subrange (3) at the high-
frequency end (Fig. 2.5).

Energy containing range — This is the range of
large scale eddies, which contain most of the energy.
At this scale, energy is converted from the mean
flow into TKE. The forcing mechanisms that extract
TKE from the mean flow are shear, buoyancy and
potentially pressure perturbations (which may pro-
duce TKE in smaller ranges, see McBean and Elliott
(1975)). The energy containing range is dominated
by the integral length scaleL··aa (Eq. 2.40).Eab(κ)
reaches its maximum at a wavenumber roughly cor-
responding to the Eulerian integral length scaleL··ab.

Inertial subrange — This is the range of
wavenumbers that are smaller than the smallest en-
ergy input (≈ 101m) but larger than the Kolmogorov
microscaleλK (≈ 10−3m). In this range, TKE is
neither produced nor dissipated. Eddies do not in-
teract with the mean flow anymore, and turbulence
at this scale is statistically uncorrelated to the mean

flow. It is isotropic and does not contribute to tur-
bulent flux densities. Energy is passed down from
larger scales to smaller ones, and according to Kol-
mogorov (1941), the spectral density decays with
n−5/3 (which results in the−2/3 slope in Fig. 2.5
where the y-axis is multiplied byn). Eij(κ) is the
three dimensional velocity spectrum as function of
wavenumberκ, andau is the Kolmogorov-constant
(0.52),

S(κ) = αkε
2/3κ−5/3. (2.47)

Applying the Taylor hypothesis and solving Eq. 2.47
for spectral energy results in

nSu(n) = (2π)−2/3αkε
2/3n−5/3u2/3. (2.48)

The 4/3-law of Kolmogorov (1941) relates the one-
dimensional lateral and vertical velocity spectra in
the inertial subrange to the one-dimensional longi-
tudinal velocity spectra, whereκ1 is the component
of the wavenumber vector in longitudinal direction.
If local isotropy exists, he showed that

E33(κ1) = E22(κ1) =
4
3
E11(κ1). (2.49)

Dissipation subrange — In the dissipation sub-
range, TKE is transformed by dissipation into heat.
Dissipation of TKE starts roughly at wavenumbers
that are smaller than the Kolmogorov microscale
λK ,

λK =
(
ν3

ε

)1/4

. (2.50)

ν is the kinematic molecular viscosity andε the dis-
sipation rate of TKE. With ultrasonic anemometers,
this part of the spectra can not be measured directly,
because the frequency response of these instruments
is too slow and the measurement volume is too large.
Indirectly, dissipation can be calculated from the in-
ertial subrange slope (Eq. 2.48).

Spectral analysis became an important tool in at-
mospheric turbulence research. It allows the quan-
titative determination of the dominant scales of a
process and relates them to the scale of the ap-
plication (Section 2.1.2). Further, the characteris-
tic scales determined from spectral analysis can be
used to identify driving mechanisms and to develop
meaningful scalings and simplifications.
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2.3 Analytical description and budget con-
cepts

The analytical approach predicts integral effects of
a turbulent flow. This is performed with Reynolds
decomposed conservation equations. The equations
for mean flow and higher order moments are pre-
sented in Section 2.3.1. Unfortunately, the resulting
set of equations have the big disadvantage that — up
to now — no solution exists and simplifications and
closure schemes are needed (Section 2.3.2). Finally,
Section 2.3.3 focuses on the energy conservation at
the surface-atmosphere interface.

2.3.1 Turbulent flow equations

Mean properties — With the Reynolds decompo-
sition (Eq. 2.1) applied to the conservation equations
of mass, momentum and heat, we get the Boussi-
nesq equations for the mean motions in the turbu-
lent atmosphere (see Panofsky and Dutton (1984),
Stull (1988) or Kaimal and Finnigan (1994) for de-
tails). In the inner region, Coriolis forces are ne-
glected, and we rewrite the Reynolds decomposed
conservation of momentum as

∂ui

∂t
+ uj

∂ui

∂xj
=

−δi3g −
1
ρ

∂p

∂xi
+
ν∂2ui

∂x2
j

−
∂u′iu

′
j

∂xj
. (2.51)

The terms from left to right are: storage of mean
momentum, advection of mean momentum, gravity
acceleration in the vertical direction, pressure gradi-
ent forces, viscous stress on the mean motions and
Reynolds stress. Note thati andj indicate summa-
tion according to Einstein’s convention for the three
Cartesian axisi, j = {1, 2, 3}.

The conservation equations of any scalar quantity
s = {θ, ρv, ρc} is

∂s

∂t
+ uj

∂s

∂xj
=
νs∂

2s

∂x2
j

+ Ss −
∂u′js

′

∂xj
. (2.52)

The terms from left to right are: storage, advection,
mean molecular diffusion, net source or sink term,
and the divergence of turbulent flux densities. In the
case of virtual temperatureθ, the net source or sink

termSθ can be written as

Sθ = − 1
ρcp

∂Q∗
j

∂xj
− LvE

ρcp
. (2.53)

where the first term represents the effects of radia-
tion divergence, and the second term is the heat pro-
duced / destroyed by condensation / evapotranspira-
tion withLv, the latent heat of vaporization of water,
cp, the specific heat at constant pressure for moist
air, andE, the phase change rate in J kg−1 due to
evaporation.

Variances — The last terms in Eq.2.51 and 2.52
contain both second order moments. In order to
solve the equations, we have to predict these second
order moments. In the next step, prognostic equa-
tions for variances are introduced, which are needed
to understand prognostic equations of kinematic flux
densities and turbulent kinetic energy later in this
section. The prognostic equation for the velocity
component varianceu′iu

′
i is

∂u′iu
′
i

∂t
+ uj

∂u′iu
′
i

∂xj
=

−2u′iu
′
j

∂ui

∂xj
+ 2δi3

g

θ
u′iθ

′

−
∂u′ju

′
iu

′
i

∂xj
− 2
ρ

∂u′ip
′

∂xi
− 2ε. (2.54)

The two terms on the left hand side are again local
rate of change (storage) and advection of variance by
the mean wind. The third term is the production of
turbulence by wind shear. The fourth term describes
production or destruction of variance by a buoy-
ancy flux density. The fifth term describes turbu-
lent transport of a turbulent fluctuation. This is done
by lager scale eddies, which incorporate air masses
with smaller scale turbulent motions. If we observe
a turbulent transport, variances of the smaller eddies
embedded in the larger ones are correlated with the
transport direction of the large eddy. The sixth term
is called pressure transport and describes the redis-
tribution of variances by pressure perturbations. The
last termε is the viscous dissipation of variance.

We get the turbulent kinetic energy budget by sum-
ming three variance equations of type Eq. 2.54 and
dividing the sum by two:

∂u′iu
′
i/2

∂t
+ uj

∂u′iu
′
i/2

∂xj
=
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−u′iu′j
∂ui

∂xj︸ ︷︷ ︸
Ps

+ δi3
g

θ
u′iθ

′︸ ︷︷ ︸
Pb

−
∂u′iu

′
iu

′
j/2

∂xj︸ ︷︷ ︸
Tt

−
∂p′u′j
∂xj︸ ︷︷ ︸
Tp

−ε. (2.55)

In this work, the following nomenclature is used:Ps
is the conversion of resolved scale kinetic energy
into TKE by wind shear. The production (or de-
struction) of turbulence by buoyant effects is called
Pb. The turbulent transport and pressure transport
are referred to asTt andTp, respectively.

The prognostic equations for variances of scalar
quantitiess = {θ, ρv, ρc} are

∂s′s′

∂t
+ uj

∂s′s′

∂xj
=

−2u′js′
∂s

∂xj
−
∂u′js

′s′

∂xj
− 2εs − εR (2.56)

with (from left to right) storage, advection, variance
production of variance associated by perturbation of
a mean scalar gradient, turbulent flux of the scalar
variance, and molecular dissipation.εR is the radi-
ation destruction term of heat. It is only important
in the equation ofs = θ and is zero for any other
scalar.

Turbulent kinematic fluxes — By combining
two equations of the type of Eq. 2.54, we retain
the budget equations of momentum flux. We again
neglect Coriolis effects, and additionally molecular
diffusion is assumed to be negligible small (Stull,
1988), namely

∂u′iu
′
k

∂t
+ uj

∂u′iu
′
k

∂xj
=

−u′iu′j
∂uk

∂xj
− u′ku

′
j

∂ui

∂xj
−
∂u′iu

′
ju

′
k

∂xj

+
g

θ

(
δk3u

′
iθ
′ + δi3u′kθ

′
)

−1
ρ

[
∂u′kp

′

∂xi
+
∂u′ip

′

∂xk
− p′

(
∂u′i
∂xk

+
∂u′k
∂xi

)]
−2εuiuk

(2.57)

The prognostic equations of any kinematic flux den-
sity of a scalar quantitys = {θ, ρv, ρc} are obtained
by multiplying any set of Eq. 2.54 and 2.56,

∂u′is
′

∂t
+ uj

∂u′is
′

∂xj
=

−u′js′
∂ui

∂xj
− u′iu

′
j

∂s

∂xj
−
∂u′iu

′
js
′

∂xj

+δi3g
(
s′θ′

θ

)
− 1
ρ

[
∂s′p′

∂xi
− p′∂s′

∂xi

]
− 2εuis.

(2.58)

2.3.2 Turbulence closure

Unfortunately, by introducing prognostic equations
for the previously unknown second moments in Eq.
2.51 and 2.52, we get new third-order terms in Eq.
2.57 and 2.58, which we are still not able to predict.
With each higher order set of equations, we have
even more unknown terms than equations. This is
calledclosure problem. Practically, the process of
continuously introducing new prognostic equations
for even higher moments has to be stopped at a cer-
tain level of detail. Any turbulence closure scheme
considers only a finite set of equations and approxi-
mates the missing higher order moments in terms of
known moments.

There are local and non-local closure schemes. Lo-
cal closure schemes approximate any unknown pa-
rameter by known parameters at the same point in
space. A common local scheme is the K-theory,
which approximates turbulent transports with a
transfer coefficientK, which is proportional to the
local mean gradient. We can approximate the turbu-
lent flux density of a scalars by

u′is
′ = −Ks

∂s̄

∂xi
. (2.59)

A slightly modified approach is the mixing-length
theory, which introduces a mixing length̀simi-
lar to the free molecular path length. An example
for higher order is the well known TKE−ε closure
(Stull, 1988; Versteeg and Malalasekera, 1995; Ce-
beci, 2004). These basic gradient-diffusion closures
are not valid close to rough surfaces such as in the
urban canopy layer — because their assumption that
the length scale of the mixing process should be
much smaller than the inhomogeneities in the mean
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scalar or momentum gradient is not fulfilled any-
more (Corrsin, 1974).

In nonlocal closure schemes, unknown parameters
can be parameterized by known parameters at an-
other point in space. An example is the turbulence
transilient theory by Stull (1984). There is still lack
of information that would be needed to fill in tran-
silient matrices and consequently, this approach is
not widely used. Another group of closures use
probabilistic approaches with PDFs (Pope, 2000).

2.3.3 Surface boundary conditions

At the air-surface interface, many important energy
exchange processes take place. The concept of the
surface plane that has no volume implies that energy
must be directly converted. Further any exchange
at the surface can be treated one-dimensional in the
normal direction of the surface and advection is not
possible∗.

Surface energy balance — The relevant energetic
exchange processes at the surface are surface net
all-wave radiationQ∗, sensible heat flux density at
ground levelQH , latent heat flux density at ground
levelQE , and heat diffusion into ground and build-
ings ∆QS (Oke, 1987). In the urban context, an
additional termQF , called the anthropogenic heat
flux density, includes all additional energy input pro-
duced by human activities such as the energy re-
leased by combustion of fuels and electric heat e.g.
in industry, traffic, firing and air conditioning per
surface area.QF must be either converted to radi-
ation, sensible or latent heat, or be stored:

Q∗ +QH +QE + ∆QS +QF = 0 (2.60)

with
QH = ρcp(w′θ′T )0. (2.61)

and
QE = Lv(w′ρ′v)0 (2.62)

Their ratio is calledBowen ratio

β =
QH

QE
. (2.63)

∗ Practically, the surface energy balance can not be measured
directly at the surface and it has to be derived from measure-
ments in the inertial sublayer (cf. Section 4.5)

Here, a simple budget view is applied with the fol-
lowing sign convention: all positive terms transport
energy towards the surface, while negative terms in-
dicate an energy loss of the surface. Note that this
is in contrast to the conventional sign convention in
flux-gradient relationships. Here, upward directed
turbulent flux densities are negative because they
represent an energy loss of the surface. This has the
advantage that all terms have a consistent sign con-
vention, which defines whether a term is currently
an energy gain (+) or loss (−) of the surface.

Surface radiation balance — The net all-wave
radiationQ∗ is the result of incoming and outgoing
radiative fluxes at the surface. It is partitioned into
solar short-wave (K) and terrestrial long-wave (L)
components:

Q∗ = K↓ +K↑ + L↓ + L↑. (2.64)

The arrows denote the directions of the radiation flux
densities, and the same sign convention as above is
applied: Components transporting energy to the sur-
face are positive, those removing energy are nega-
tive. The equation is sometimes rewritten as

Q∗ = (1− α)K↓ + L↓ − εσBT
4
s (2.65)

whereα is the albedo, defined as the absolute value
of the ratioα = |K↑/K↓|, ε the long-wave emis-
sivity of the surface, andσB the Stefan-Boltzmann
constant.
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2.4 Simplifications and scalings

2.4.1 Monin-Obukhov similarity theory

Monin-Obukhov similarity theory (Monin and
Obukhov, 1958) can be viewed as a type of zero-
order closure for the special case of a turbulent
boundary layer. It is framed in terms of local pa-
rameters only. It simplifies the processes in the in-
ertial sublayer by assuming that turbulent flux den-
sities of heat, mass, and momentum are almost con-
stant with height (Section 2.1.1). Together with the
assumption of homogeneity, and stationarity we can
approximate

∂u′is
′

∂xi
≈ 0 (2.66)

Local gradients and the magnitude of second order
moments are then believed to be driven by only four
key parameters, which are (1) surface shear stressτ ,
(2) surface kinematic heat flux densityw′θ′0, (3) ef-
fective height above groundz, and (4) the ratiog/θ,
which accounts for the buoyancy. The coordinate
system is aligned in a way thatx points into direc-
tion of the mean windu, and hence,̄v = 0, and
w̄ = 0. This allows us to treat the problem one-
dimensional.

Above rough surfaces,z is replaced byz−zd, where
zd is the zeroplane displacement height. When in-
dividual roughness elements are packed close to-
gether, the tops of the elements begin to act like a
displaced surface.zd is introduced to account for
this shift in order to retain the logarithmic form of
the wind profile.

The chosen scaling variables are the friction velocity
u∗

u∗ =
(
τ

ρ̄

)1/2

=
(
−u′w′

)1/2
(2.67)

and the temperature scaleθ∗

θ∗ =
−w′θ′

u∗
(2.68)

The Obukhov LengthL (introduced by Obukhov
in 1946) describes the ratio between mechanical
produced turbulence and buoyancy produced turbu-
lence, wherek is the von Karman number.

L =
θu2

∗
kgθ∗

(2.69)

L is roughly constant through the inertial sub-
layer. Dimensional analysis returns the dimension-
less group(z − zd)/L. It is a measure of stability.

ζ =
z − zd
L

(2.70)

By definition, in similarity theory, every other pa-
rameter nondimensionalized by an appropriate vari-
able can now be explained as a universal function of
ζ. For instance, the dimensionless wind shear is a
fuction of ζ, namely

k(z − zd)
u∗

∂ū

∂z
= φm(ζ). (2.71)

Equation 2.71 is the differential form of the loga-
rithmic wind profile under neutral stratification. The
dimensionless temperature gradient is

k(z − zd)
θ∗

∂θ̄

∂z
= φh(ζ) (2.72)

Under the above assumptions for the inertial sub-
layer, the equation for turbulent kinetic energy
(2.55) can be simplified. The driving parameters that
create turbulence are local shear production, which
is proportional tou′w′, and local buoyancy produc-
tion which is described byw′θ′.

0 = −u′w′∂u

∂z
+
g

θ
w′θ′ − ε (2.73)

dividing all terms byk(z−zd)/u3
∗ results in the cor-

respondingφ-functions, which are all a function of
ζ,

0 = φm + φb − φε (2.74)

with
φb ≡ ζ. (2.75)

From measurements, the semi-empirical relation-
ships are determined to be

φm(ζ) =

{
(1− 16ζ)−1/4 for ζ ≤ 0
(1 + 5ζ) for 0 ≤ ζ

(2.76)

φh(ζ) =

{
(1− 16ζ)−1/2 for ζ ≤ 0
(1 + 5ζ) for 0 ≤ ζ

(2.77)

and

φε(ζ) =

{
(1− 0.5|ζ|2/3)3/2 for ζ ≤ 0
(1 + 5ζ) for 0 ≤ ζ

(2.78)
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Table 2.1: Semi-empirical constantsai, bi, ci and fi in the
(locally-scaled) Monin-Obukhov similarity theory. Surface-
layer values (SL) are compiled from Panofsky et al. (1977),
Panofsky and Dutton (1984), de Bruin et al. (1993) and Wyn-
gaard et al. (1971), urban values are taken from Roth (2000)
who compiled urban measurements in heightsz/zh > 2.5.

ai bi ci fi

i = u SL 2.2 3 1/3
urban 1.88 0.15 0.94

i = v SL 1.9 3 1/3
urban 1.52 3.34 0.31

i = w SL 1.25 3 1/3 1.8
urban 1.15 2.09 0.33

i = θ SL −2.9 28.4 −1/3 0.95
urban −4.10 65.0 −0.33

Integral statistics — If TKE production and de-
struction can be described as a function ofζ only,
velocity variances and variances of scalars must
also be a function ofζ. A general form of the
semi-empirical relationships for variances was in-
troduced by de Bruin et al. (1993), wherei =
{u, v, w, θ, ρv, ρc, ...}

Ai = σi/i∗ (2.79)

and i∗ stands foru∗ (Eq. 2.67) in the casesi =
{u, v, w} and

i∗ =
−w′i′

u∗
(2.80)

for scalars (i = {θ, q, c}). The relations are usually
approximated with (Panofsky and Dutton, 1984):

Ai(ζ) =

{
ai(1− biζ)ci for ζ ≤ 0
ai for 0 ≤ ζ

(2.81)

Relationship 2.81 suggests a constantAi(ζ) for sta-
ble conditions. A special case is the free convection
limit for ζ → −∞ wherew′θ′ � u′w′ andAi(ζ)
simplifies to (Wyngaard et al., 1971)

Ai(ζ) = fi(±ζ)ci (2.82)

Table 2.1 summarizes empirically determined values
of the constantsai, bi, ci andfi in the surface layer
over flat and homogeneous terrain (SL) and typical
values in the urban inertial sublayer. The sign ofζ
in Eq. 2.82 is equal the sign ofci.

Monin-Obukhov similarity theory can neither be
used to explain inactive turbulence nor effects of tur-
bulent or pressure transport close to the surface. Its
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Figure 2.6: Sketches of (a) a turbulent boundary layer and (b)
a turbulent plane mixing layer. Modified from Pope (2000).

applications are limited above urban surfaces to the
inertial sublayer under homogeneous and stationary
conditions. In the urban roughness sublayer, the as-
sumption 2.66 does not hold.

2.4.2 Plane mixing layer analogy

Raupach et al. (1989) proposed that flows within
and in the layer directly above plant canopies show
analogies to the turbulent plane mixing layer. A tur-
bulent plane mixing layer forms, when two uniform
and nearly parallel flows of different free-stream ve-
locitiesu1 andu2 are allowed to mix (Pope, 2000).
In fluid mechanics, the turbulent plane mixing layer
is initiated at a single point (origin), usually at the
end of a thin splitter plate, which separates two flows
(Fig. 2.6b).

The mean vertical flow profile and turbulence sta-
tistics in a neutral stratified turbulent plane mixing
layer depend on the characteristic convective veloc-
ity

uc =
1
2
(u1 + u2) (2.83)

and the characteristic velocity difference

us = (u2 − u1) (2.84)
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The turbulent plane mixing layer is self-similar.
The flow is not symmetric around the x-axis and it
spreads preferentially into the low velocity stream.

Inflected velocity profile — A characteristic fea-
ture of the turbulent plane mixing layer is an in-
flected profile of the mean velocity. In plant
canopies, this inflection point is typically found at
canopy topzh (Raupach and Thom, 1981; Kaimal
and Finnigan, 1994; Finnigan, 2000).

A Kelvin Helmholtz instability is arising from the
inflected velocity profile. It creates vortex streets,
which further determine the vorticity thickness and
length scales of the flow. The vortices are detected
as quasi-periodic coherent structures at a fixed loca-
tion in space. The characteristic turbulent vorticity
thicknessδ (Fig. 2.6b) is increasing with longitudi-
nal distance to the origin, while simultaneously the
maximum velocity gradient∂ū/∂z is decreasing.

δ =
us

∂ū
∂z |max

(2.85)

In the mixing layer analogy of (plant) canopies, the
turbulent plane mixing layer is repetitively initial-
ized, and the flow is a superposition of many in-
stabilities created at the roughness elements. The
slower flow roughly corresponds to the average flow
through the permeable canopy space where initial
(external) acceleration forces are decelerated by the
presence of obstacles. The flow abovezh corre-
sponds to the fasteru2 with an unchanged exter-
nal acceleration. In real canopies, there is a tran-
sition to a boundary layer flow above the canopy,
which makes the estimation of the characteristic
free-stream velocities,u1, u2, and the correspond-
ing scaling velocitiesuc (Eq. 2.83) andus (Eq. 2.84)
very difficult. Within and at top of canopies, the
mean Eulerian velocityu(zh) is a poor estimate
of the convection velocityuc, which is underlined
by results from a wind tunnel study, where two-
point length scales are not equal one-point length
scales anymore in the canopy space (Shaw et al.,
1995). Typically, the translation velocity of struc-
tures is faster than the mean wind velocity at given
height. Finnigan (1979) empirically found thatuc ≈
1.8u(zh).

Scaling parameters — Raupach et al. (1996)
introduced a characteristic shear length scaleLs,

which is equal half the vortices thicknessδ. It
is easier to retrieve from real-world measurements.
Ls is the ratio between the mean wind velocity at
canopy topū(zh) and the mean wind gradient at
same height∗.

δ

2
≈ Ls =

ū(zh)
∂ū
∂z |z=zh

(2.86)

Raupach et al. (1996) observed that the canopy shear
scaleLs is independent of wind velocity.Ls nor-
malized by canopy heightzh is a function of canopy
density only. They foundLs/zh to be in the order
of 0.1 for dense, 0.5 for moderate, and 1 for sparse
canopies under neutral stratification.

Further, the Strouhal NumberSt represents a mea-
sure of the ratio of inertial forces due to the unsteadi-
ness of the flow or local acceleration to the inertial
forces due to changes in velocity from one point to
an other in the flow field. In the turbulent plane mix-
ing layer,St is

St =
δnmax

uc
≈ Ls

Λx
(2.87)

wherenmax is the peak frequency of vortices in the
vortex street, typically determined from fluctuations
in w. Using the Taylor hypothesis we can write for
the mean longitudinal separation of coherent struc-
tures

Λx =
uc

nmax(zh)
. (2.88)

Replacingδ by 2Ls (Eq. 2.86) and using the approx-
imation ū(zh) ≈ 2uc we get the term on the right
hand side of Eq. 2.87. According to Raupach et al.
(1996) the inverse of the Strouhal numberSt−1 for
neutral conditions should result in≈ 8.1.

Applications — The mixing layer analogy has
been successfully addressed to the flow in and
over a number of wind tunnel and real-world plant
canopies (e.g. Brunet et al., 1994; Raupach et al.,
1996; Katul et al., 1998; Brunet and Irvine, 2002).
The characteristic density, the non-permeability and
stiffness of buildings that form an urban canopy
compared to the flexible and highly fractal structures
that are present in permeable plant canopies do not
imply a direct applicability of the results from plant

∗ Eq. 2.86 assumes that the height of the inflection pointze is
equal the mean height of the canopyzh, which can be on the
other hand seen as a definition of the ‘effective canopy height’.
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canopies to urban environments. However, Roth
(2000) suggested that the strong similarities of pro-
files in and above urban canopies to flow over plant
canopies indicate that many features observed in the
urban roughness sublayer could be interpreted in the
framework of a plane mixing layer analogy. Up to
now, no study tested this approach.
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3 Measurements

3.1 Observational sites

The experimental phase of BUBBLE started in sum-
mer 2001 and ended in summer 2002. Between June
10 and July 10, 2002, an intensive observation pe-
riod (IOP) was carried out, which embedded many
activities from international research groups. The
overall framework and the experimental activities
during BUBBLE are documented in Rotach et al.
(2005).

The BUBBLE data set involves 30 experimental or
permanent sites from the greater Basel area (Tab.
3.1). Basel is a mid-size town at the border of
Switzerland, France and Germany. The region has
a built-up area of approximately130 km2 (30 km2

dense urban,80 km2 suburban and20 km2 industrial
areas), and a population of approximately 400’000.
The map in Fig. 3.2 shows the topography and set-
ting of the experimental activities in city of Basel.
Site labels are coded according to surface character-
istics (U: urban, S: suburban, R: rural).

Profile Towers — The investigation of turbu-
lence parameters and turbulent momentum, mass
and heat-exchange within the urban roughness sub-
layer is of essential interest in this work. Highest
relevant differences, and hence strongest gradients
at least in a horizontally averaged view, are expected
along the vertical axis in the roughness sublayer.
Therefore, three experimental sites (U1, U2 and S1)
were set up with towers supporting profiles of ul-
trasonic anemometers, cup anemometers and tem-
perature / humidity sensors through the roughness
sublayer, as well as radiation balance measurements
well above the urban surface. The vertical profiles
address the domain from street level up to approxi-
mately 2.5 times the mean building heightzh.

Energy Balance Network — During the IOP, the
three profile tower sites were extended by a network
of four additional experimental sites (U3, R1, R2
and R3). Three of them were equipped with eddy

Figure 3.1: Photo of the street canyon at Basel-Sperrstrasse
(U1) with profile tower. Ultrasonic anemometer levels are la-
belled by letters A to H. View in direction NE. Photo by cour-
tesy of M. Roth, NUS.

correlation instrumentation at one level (U3, R1 and
R2). These sites were installed in areas of different
land use, mainly in the rural surrounding of the city
(Fig. 3.2 and Tab. 3.6). Together with the profile
towers, this network of total seven surface energy
balance sites provides the basis for a detailed inves-
tigation of the urban modification of mean and tur-
bulent properties, especially turbulent flux densities,
under the same synoptic forcing.

Additional Observations — Further, a number
of remote sensing systems (RASS, SODARs, wind
profiler, tethered balloon) are indicated by squares
on the map in Fig. 3.2) and are described in detail
in van Gorsel (2005). The standard meteorological
surface sites — small triangles on the map — were
mainly permanent observations, operated by public
and private institutions. The white area in the city
center indicates the domain of SF6 tracer release ex-
periments during the IOP (Rotach et al., 2004).

In the present work, the three profile towers (U1,U2
and S1) and the additional energy balance sites (U3,
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Figure 3.2: Map of all sites operated during the BUBBLE IOP in June / July 2002.

Table 3.1: Directory of all sites operated during the IOP. Sites marked by an asterisk are located outside the map in Fig. 3.2. An ‘E’
marks experimental sites.

Code Name Operated by Easting Northing Height (m)
U1 E Basel-Sperrstrasse U Basel, ETHZ, UBC, NUS, UWO 611890 268365 255
U2 E Basel-Spalenring U Basel, MeteoSwiss, Obs. NE 610360 267140 278
U3 E Basel-Messe TU Dresden, U Freiburg 612200 268070 255
U4 E Basel-Horburg U Basel, Risø 611695 269040 254
U5 E Basel-Kleinḧuningen Metek GmbH 612465 270475 265
U6 Basel-Feldbergstrasse LHA b. Basel 611775 268500 255
U7 Basel-Leonhard City Colleges 611200 267055 273
U8 Basel-Klybeck Indust. Firepatrol Roche 612000 270125 255
U9 Basel-Novartis Indust. Firepatrol Roche 610840 269775 257
U10 Basel-Roche Indust. Firepatrol Roche 612775 267748 255
U11 Basel-St. Johann LHA b. Basel 610750 268375 260
S1 E Allschwil ETHZ, U Basel, Bulg. Met. Inst. 609250 267180 277
S2 Basel-B̈aumlihof City Colleges 614130 268540 289
S3 Basel-Binningen MeteoSwiss, U Basel, LHA 610850 265620 316
S4* Dornach Kt. Solothurn 613080 258930 325
S5* Liestal-Rheinstrasse LHA b. Basel 621800 259950 320
S6* Rheinfelden UMEG 626360 268045 285
S7 Schweizerhalle LHA b. Basel 616725 264550 270
S8 Weil am Rhein UMEG 614250 270905 250
R1 E Grenzach U Basel, ETHZ 617830 265130 265
R2 E Village Neuf U Basel 608940 274240 240
R3 E Lange Erlen U Basel 615835 271310 275
R4* E Gempen U Basel 617640 257965 710
R5 E St. Louis U Freiburg 608100 271500 250
R6* Aesch-Schlatthof LHA b. Basel 610375 258775 353
R7 Airport Meteo France 606300 272750 256
R8 Oetlingen U Basel 614770 274270 450
R9 Pratteln-Hardwasser LHA b. Basel 619625 264500 272
R10 Scḧonenbuch Inst. f. Pflanzenökologie 604775 264325 400
R11 St. Chrischonaturm MeteoSwiss, LHA b. Basel 618700 269025 493
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Table 3.2: Turbulence instrumentation at Basel-Sperrstrasse
(U1). Listed are ultrasonic anemometers and corresponding
open path gas analyzers. The capital letters denote the labels
on Fig 3.1

z z/zh Instrument type Variables
A 3.6 0.25 Gill R2Oa ui, θ
B 11.3 0.77 Gill R2Oa ui, θ
C 14.7 1.01 Gill R2O, ui, θ

Licor 7500b ρv, ρc

D 17.9 1.23 Gill R2O ui, θ
E 22.4 1.53 Gill R2A ui, θ
F 31.7 2.17 Gill HS, ui, θ

CSI KH20, ρv
Licor 7500c ρv, ρc

G 11.5 0.78 CSI CSAT 3d ui, θ
H 19.3 1.32 Young 81000e ui, θ

a From May 23 to July 15, 2002 these instruments were re-
placed by Metek USA-1 for logistic reasons.
b operated June 24 to July 14, 2002 only.
c operated June 15 to July 15, 2002 only.
d operated July 3 to 14, 2002 only.
e operated July 1 to 14, 2002 only.

R1, R2, R3) are of interest. These sites are docu-
mented in the subsequent sections.

3.1.1 Basel-Sperrstrasse (U1)

Site — The main urban experimental site U1 is lo-
cated in a heavily built-up part in the city center (Fig.
3.1). The station surrounding is characterized by a
typical European urban surface with residential row
houses (zh = 14.6 m), enclosing large inner court-
yards. The backyards are either open (green spaces)
or built-up by one-storey garages, parking lots and
flat commercial-industrial buildings. The neighbor-
hood has a high population density between 200 and
300 inhabitants ha−1, a high plan aspect ratio of
buildingsλP = 0.54, and a small plan aspect ra-
tio of vegetationλV = 0.16 (Tab. 3.6). The shape of
the roofs is a mixture of approximately 50% flat and
50% pitched roofs. The roof and building materials
are summarized in Tab. 3.6, the three-dimensional
morphometric parameters are listed in Tab. 3.3. Fig-
ure 3.5 shows a map of the street canyon configura-
tion.

Instrumentation — A triangular lattice tower was
set up in October 2001 reaching up to32 m (2.2 zh).
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Figure 3.3: Schematic view of the tower at Basel-Sperrstrasse
(U1) with sonic levels (A–H), cup anemometer levels (1–
12) and psychrometer levels (i–vi). View into direction40◦

(roughly along the canyon axis). The location of Sensor G on
the nearby roof is not shown.
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Figure 3.4: Photo of the tower at Basel-Sperrstrasse (U1)
viewed from inside the street canyon in direction SSW. The in-
strumentation is shown in the long-term configuration.

The tower was installed inside the13 m wide street
canyon of the ‘Sperrstrasse’,3 m off the northern
building wall (Fig. 3.3 and 3.4). Measurements were
continuously carried out from November 1, 2001 to
July 15, 2002, with intensified activities during the
IOP. The tower supported a profile of six ultrasonic
anemometer-thermometers (sonics, labels A–F, Tab.
3.2). The sonics were mounted on booms reach-
ing into the center of the canyon, except the instru-
ment at tower top which was aligned towards NNE
to allow an optimal measurement in the predominant
wind directions. The lower instruments measured
inside the northern half of the street canyon (x/xc =
0.13 withx: distance to canyon center,xc: canyon
width). The orientation of the canyon is along the
axis 67◦ to 247◦. During the IOP, two additional
sonics were placed by the University of Birming-
ham, Great Britain and the National University of
Singapore for a short period. One sonic (G) was op-
erated at rooftop of an adjacent roof3.5 m above lo-
cal roof height and one0.65 m off the northern wall.
Additionally, these institutions run two scintillome-
ters (Scintec SLS20, not used in the present work),
one over the street canyon and one over the roof top
of the northern building row. See Salmond et al.
(2004) or Roth (2004) for details on the scintillome-
try experiment.

A total of twelve cup anemometers (Vaisala
WAA15) were mounted at heights3.2, 7.1, 11.1,

Figure 3.5: Map of the station surrounding at Basel-Sperrtrasse
(U1), with the tower in the central section of the Sperrstrasse
canyon. Map base data from GVA Basel-Stadt.

13.1, 14.6, 16.1, 18.1, 20.1, 22.1, 24.1, 26.1 and
33.0 m∗ (x/xc = 0.28). Six levels of actively ven-
tilated psychrometers measured at2.6, 13.9, 17.5,
21.5, 25.5 and 31.2 m. All four components of
the radiation balance were recorded twice, inside
the canyon at3.2 m (z/zh = 0.22, Kipp & Zonen
CG2 and 2 x Kipp & Zonen CM 11), and at31.5 m
(z/zh = 2.16, Kipp & Zonen CNR 1). Further, a
number of sensors during the IOP focused on the
investigation of thermal properties of the urban sur-
face: a total of 11 infrared thermometers, 20 thermo-
couples and heat flux plates were placed to observe
surfaces of different configurations and materials.
The canyon was scanned with two thermal cameras
and an experimental infrared dual channel radiome-
ter. All measurements focusing on thermal prop-
erties were carried out by the University of British
Columbia, Canada, the University of Western On-
tario, Canada, and the Remote Sensing Group at the
Institute of Meteorology, Climatology and Remote
Sensing of the University of Basel. The analysis of
these systems is not part of the present work, and
therefore, these systems are not described in detail.

There were a number of activities to investigate car-
bon dioxide exchange at U1. For a limited pe-
riod during the IOP, two Licor 7500 open path
analyzers were installed at the site together with

∗ Heights always denote the height of the measurement
volume.
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Table 3.3: Integral three-dimensional morphometric parameters of the city surface derived from the 1m digital building model of the
city of Basel for a circle of 250 m around the three profile towers.

U1 U2 S1
Mean building height zh 14.6 m 12.5 m 7.5 m
Standard deviation of building height σh 6.9 m 5.4 m —
Standard deviation considering only buildings> 0.5zh σh 4.9 m 4.1 m —
Frontal aspect ratio λF 0.37 0.31 0.12
Complete aspect ratio λC 1.92 1.75 1.31
Sky view factor atz = 0 ma ψS0 0.36 0.51 0.62
Characteristic length (spectral)b L 63 m 44 m 42 m
Characteristic spacingc xd 24.5 m 23.5 m 16.5 m
Characteristic canyon widthc xc 11.3 m 14.8 m 11.9 m
Characteristic canyon width to height ratioc xc/zh 0.77 1.19 1.59
Local canyon width to height ratio xc/zh 1 1.8 —
Characteristic building breadthc xb 13.2 m 8.7 m 4.6 m
Building breadth to height ratioc xb/zh 0.91 0.70 0.61

a ψS0 is the average sky view factor at ground level averaged over all open spaces (i.e. streets, parks, backyards), which was calculated
for each non-building-raster-element taking local horizon angles into account.
b Spectral method: Characteristic length is the size where the FFT of the city surface has its maximal normalized spectral energy. It
corresponds to the size of the blocks surrounded by streets.
c Characteristic length scales were calculated under the assumption that the surface represents infinite long canyons. Then, the average
ψS0 in the canyon is related to the inverse of the canyon height to width ratio byzh/xc = 0.5 tan(cos−1(ψS0)) (Oke, 1981) and
xb = xcλP /(1 − λP ).

the National University of Singapore. The open
path analyzers were coupled with sonics atz/zh
= 1.01 and 2.17 (Tab. 3.2). Additionally, from
January to July 2002 profiles of mean CO2/H2O-
concentrations were sampled at 10 heights from
street level up to the tower top with a closed path
gas-multiplexer system (Licor 6262) that sucked se-
quentially air from 10 inlets at0.1, 1.5, 3.1, 6.8,
10.8, 13.6, 17.2, 21.2, 25.2 and31.0 m. The system
is similar to the one described in Xu et al. (1999) and
details of the current setup can be found in Vogt et al.
(2005). Traffic in the canyon was registered by an
automatic traffic counter (Tiefbauamt Basel-Stadt).
Traffic load was determined to be 2000 vehicles per
day, with a peak in the late afternoon (one-way street
out of the city).

3.1.2 Basel-Spalenring (U2)

Site — The experimental site U2 is located in the
western part of the city in an area of similar build-
ing structure, but a smaller plan aspect ratio of build-
ings and with more vegetation compared to U1 (Tab.
3.6). The site is located beside a tree-lined avenue
(Spalenring) with a high traffic intensity (Fig. 3.6).

Figure 3.6: Photo of the avenue canyon at Basel-Spalenring
(U2) with profile tower and canyon measurements. Ultrasonic
anemometer levels are labelled with letters A to F. Photo taken
in direction N.
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Figure 3.7: Schematic view of the tower at Basel-Spalenring
(U2) with sonic levels (A–F), cup anemometer levels (1–5) and
psychrometer levels (i–vii, iii in the backyard is not shown).
View into direction350◦ (along the canyon axis). Note that the
horizontal distance between the canyon and the backyard side
is not in scale (dash-dotted separation line).

Table 3.4: Turbulence instrumentation at Basel-Spalenring
(U2). The capital letters denote the labels on Fig. 3.6.

z z/zh Instrument type Variables
A 5.6 0.37 Metek USA-1a ui, θ
B 13.9 0.92 Metek USA-1a ui, θ
C 16.6 1.10 Metek USA-1a ui, θ
D 21.8 1.44 Metek USA-1 ui, θ
E 29.9 1.98 Metek USA-1 ui, θ

CSI KH20 ρv

F 37.6 2.49 Metek USA-1 ui, θ

a operated from September 1, 2001 to July 13, 2002

In this neighborhood, the average roof heightzh is
15.1 m, with a mixture of 70% pitched and 30% flat
roofs. Building and roof materials are summarized
in Tab. 3.6.

Instrumentation — Measurements are available
since 1992 from a tower on the roof of the former
building of the Institute of Meteorology, Climatol-
ogy and Remote Sensing of the University of Basel.
In the framework of BUBBLE, the instrumentation
has been enhanced by a profile of six sonics, a wind
profiler and a LIDAR. The sonic profile at U2 was a
combination of measurements from the18 m tower
on top of the building and measurements from the
building’s adjacent street canyon (Spalenring 145).
The orientation of the canyon is along the axis169◦

to 349◦.

In contrast to the tower at U1, the profile was not
probing the same vertical column: three sonics mea-
sured within the vegetated street canyon (A to C,
Fig. 3.7). The instruments in the street canyon were
mounted on4 m booms reaching from the balconies
into the street canyon (positionx/xc = 0.34, Fig.
3.7). The two upper sensors (B and C) were lo-
cated in the vicinity of two tree tops (Platanus sp.,
Fig. 3.6). The tower part (D to F) was shifted by
20 m towards East (backyard). The tower prolonged
the setup up to38 m above ground. Here, son-
ics were mounted on booms reaching1.75 m away
from the tower (D and E) in direction50◦, and one
instrument was installed on an extension tube on
top of the tower (F). At level E, a fast hygrometer
was installed. The turbulence profile was continu-
ously operated from September 1, 2001 to August
20, 2002. Prior to September 2001, one sonic was
installed for long-term measurements at34 m (Gill
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Table 3.5: Turbulence instrumentation at Allschwil (S1). The
capital letters denote the labels on Fig 3.9.

z z/zh Instrument type Variables
A 8.3 1.11 CSI CSAT3 ui, θ
B 12.1 1.61 Metek USA-1 ui, θ
C 15.8 2.11 Metek USA-1 ui, θ

CSI KH20 ρv

Enhanced, August 1994 – June 2000, replaced by a
Metek USA-1, June 2000 to August 2001). A to-
tal of 7 actively ventilated psychrometers were run
at U2, two levels in the street canyon (i and ii), two
levels in the backyard (iii and iv) and three levels at
the tower (v to vii, Tab. 3.17). A profile of 5 cup
anemometers (Vaisala WAA15) was available above
roof level (1–5;22.3, 24.9, 27.8, 30.9 and32.4 m).
Radiation instrumentation included a Kipp & Zonen
CM 21 (short-wave downwelling), a Kipp & Zonen
CM11 (short-wave upwelling), and two Eppley PIR
(long-wave up- and downwelling), all operated at
33 m (z/zh = 2.19).

Further, the site U2 hosted a 1290 MHz wind pro-
filer, installed on the backyard side and run by Me-
teoSwiss (Ruffieux et al., 2002). A LIDAR con-
structed by the Observatiore de Neuchâtel allowed
detecting the variation of atmospheric aerosol in the
PBL and the troposphere. From the LIDAR signal,
an aerosol mixed layer height (AML height) could
be derived (Martucci et al., 2004). These remote
sensing systems are not used in the present work.

3.1.3 Allschwil (S1)

Site — The suburban tower S1 was installed in
a vegetated backyard within a uniform residential
neighborhood. It completes the BUBBLE data set
with information from a less dense built-up area
(Fig. 3.10). The suburban area around the site
Allschwil consists of old 2–3 storey, single and
semi-detached houses constructed at the beginning
of the 20th century. The tower is about1 km west-
ward of the urban site U1, and at least1 km away
from any rural area. In the backyards, there are many
trees and scrubs. Surface characteristics are summa-
rized in Tab. 3.6.

2m

6m

4m

8m

12m

14m

10m

16m

A

B

C

1 m

Figure 3.8: Schematic view of the tower at Allschwil (S1) with
sonic levels (A–C). View into direction W.

Figure 3.9: Photo of the hydraulic profile tower at Allschwil
(S1) with the three ultrasonic anemometer levels labelled. Photo
taken in direction W.
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Figure 3.10: Aerial orthophoto of the site Allschwil (S1). The
location of the tower is indicated by the white circle. The subset
is aligned to North (top) and covers an area of 200 by 200 m
around the site. Data source: Aerial photo copyright by the
Swiss Fed. Office of Topography, Wabern, 213NE268-4097 /
213NE268-4094.

Instrumentation — The hydraulic tower was op-
erated for 6 weeks from July 4 to July 12, 2002 (Fig.
3.8 and 3.9). It was set up in cooperation with the
Institute for Atmospheric and Climate Science of
the ETH Z̈urich and the National Bulgarian Mete-
orological and Hydrological Institute. It supported
three sonics, and a fast hygrometer at tower top (Tab.
3.5). All four radiation components were measured
at tower top (15.1 m) by a Kipp & Zonen CNR 1.
An actively ventilated temperature and humidiy sen-
sor provided data from11.5 m. There are no mea-
surements available from below the mean build-
ing heightzh, which was determined to be roughly
7.5 m.

3.1.4 Basel-Messe (U3)

Site — The urban energy balance site U3 was
placed near U1, on a large, 170 by 80 m roof in a
recently developed downtown area characterized by
big building blocks (Fig. 3.11). The roof is used as
a parking lot, but was closed to public during the
period of measurements. The site provides very lo-
cal information from this 100% impervious surface.
The site U3 was set up and run by the Institute of
Hydrology and Meteorology of the Technical Uni-

Figure 3.11: Aerial photo of site Basel-Messe (U3) located on
a large concrete roof. The marker ‘A’ indicates the location of
the sonic and radiation instrumentation. Photo by courtesy of
R. Vogt, University of Basel. View from NW.

versity of Dresden.

Instrumentation — A sonic anemometer and a
fast hygrometer were operated3.3 m above a con-
crete roof (CSI CSAT 3 and CSI Krypton KH20).
Full radiation components over the concrete surface
were measured by a Kipp & Zonen CNR 1. Storage
heat flux was experimentally determined using heat
flux plates, attached to the surface, and modified to
represent surface materials. This site provides data
only for a limited period during the IOP from June
24 to July 10, 2004.

3.1.5 Grenzach (R1)

Site — The rural surface energy balance station
R1 is located5 km East of the city inside the plain
of the river Rhine. The land use is mainly agricul-
ture (non-irrigated grassland and crops), with some
building complexes (farm, dumping site)200 m to
the East, and the river Rhine300 m to the South.

Instrumentation — A sonic was mounted on
an existing110 m radio tower at a height of28 m
(Metek USA-1). A fast hygrometer at same height
(CSI Krypton KH20) provided information on hu-
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Figure 3.12: Photo of the rural reference site Grenzach (R1).
Radiation components, soil temperatures and soil heat flux as
well as standard meteorological parameters are measured over
grassland at the small mast in the foreground. The marker ‘A’
indicates the location of the sonic and fast hygrometer at28 m
on the radio tower in the background.

midity fluctuations. Additionally, surface measure-
ments were carried out100 m north of the tower base
over grassland, where all radiation components were
monitored with two Eppley PIR and two Kipp & Zo-
nen CM11 at1.4 m (Fig. 3.12). Soil temperatures
were available from−2,−5,−10 and−15 cm. Soil
heat flux was monitored with three heat flux plates
in a depth of−3 cm. One temperature / humidity
sensor (Vaisala HMP 35A,1.5 m) and a wind wave /
wind direction sensor (Vaisala WAC15,3.6 m) com-
pleted the setup. The turbulence and surface energy
balance measurements were operated from April 24,
2002 until July 12, 2002. During the IOP, a Scintec
FAS64 SODAR was operated approximately200 m
NW of the radio tower base (June 5 to July 12,
2002).

3.1.6 Village-Neuf (R2)

Site — This rural surface energy balance station is
located 4 km North of the city in the Upper Rhine
River Plain. The station was placed over flat and
homogeneous non-irrigated agricultural land (bare
soil).

Figure 3.13: Photo of the rural reference site at Village-Neuf
(R2) over the bare soil surface. The marker ‘A’ indicates the
location of the sonic and fast hygrometer. View from N.

Instrumentation — Turbulence was monitored
on a small5 m mast (Fig. 3.13). One sonic (CSI
CSAT 3,3.3 m) and a co-located fast hygrometer at
same height (CSI Krypton KH20) recorded turbu-
lent fluctuations and fluxes. Temperature / humidity
was monitored at three heights (0.5, 2 and5 m). The
measurement at2 m was actively ventilated. Radia-
tion components were sampled at1.4 m by two Pyra-
nometer Kipp & Zonen CM11 and a net radiome-
ter (Schenk). Additionally during the IOP, all four
components of the radiation balance have been mea-
sured by a Kipp & Zonen CNR 1 at same height
(only the latter system is used in the present work).
Soil temperature probes were placed in a profile of
4 depths (−2,−5,−10,−15 cm) and three soil heat
flux plates were burried into the bare soil (−3 cm).
The station was set up for the IOP and operated from
May 6, 2002 to July 12, 2002.

3.1.7 Lange Erlen (R3)

Site — The surface energy balance station R3 is
located in the valley of the river Wiese to the NE
of the city. In the vicinity of the tower (500 m ra-
dius), the topography is flat and the land-use is dom-
inated by non-irrigated grassland. To the SE and
NE, the site is surrounded by built-up areas. The
larger scale topographic setting in the Wiese valley
results in thermal wind systems (mainly nocturnal
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Figure 3.14: Photo of the long-term surface energy balance site
Lange Erlen (R3), viewed from NW.

cold air drainage from NE) and forced mesoscale
channelling effects.

Instrumentation — A 10 m profile tower, origi-
nally set up in 1991 for a regional energy balance
network (Parlow, 1996), has been operated continu-
ously since that time by the University of Basel (Fig.
3.14). It provides data for the full observation period
of BUBBLE. The tower hosts 4 levels of temper-
ature / humidity measurements (one level actively
ventilated at2 m) and 4 levels of wind speed at1, 2,
5 and10 m. All four radiation components are mea-
sured at2 m over grassland. Soil measurements in-
clude a profile of 4 soil temperatures (−2,−5,−10,
−15 cm) and three soil heat flux plates (−4 cm).
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3.2 Instruments, calibrations and
corrections

3.2.1 Ultrasonic anemometer-thermometers

3d-ultrasonic anemometers (sonics) are widely ap-
plied in the field of atmospheric turbulence mea-
surement. Their principle is based upon the ex-
act determination of the transit time of ultrasonic
sound pulses measured along three nonparallel
paths. From forward and backward transit times, the
3d-wind vectoru and hence the componentsu, v and
w can be reconstructed (Foken, 2003). Sonics addi-
tionally provide a measurement of acoustic temper-
atureθ. The speed of sound depends on static pres-
surep, the air densityρ, and the Poisson ratio. With
the ideal gas law, the acoustic temperatureθ can be
derived from these parameters. The acoustic temper-
atureθ is strictly not equal the virtual temperatureθv

needed for the buoyancy flux density. Differences
are small, and we assumeθ ≈ θv.

During BUBBLE, a total of 22 sonics were oper-
ated: 5 Gill R2 (4 omnidirectional / 1 asymmetric),
11 Metek USA-1, 4 CSI CSAT3, 1 Gill HS and 1
Young 81000. Sonics are the central instruments in
this work, and with this variety of models, it is es-
sential to know the reliability and problems of all
the different models and individual instruments. The
sonics were run with the settings summarized in Tab.
3.7.

Data sampling and processing — All sonics in-
volved in BUBBLE provided digital data output. At
U1, U2, S1 and R1 the serial output data from the
sonics was continuously monitored and collected us-
ing industrial PCs (PIP 6-1, PIP 5 by MPL) equipped
with a LabView-based software programmed by the
author. The software streams data from up to 10
sonics directly and synchronous into 30 min files.
During the experiment, a total of approx. 100’000
hours of raw were collected and archived. At R2
and U3, sonic data were processed on site by data
loggers (CSI 21x at R2, CSI 23x at U3). At these
sites, only 10 min averages and second order mo-
ments over 10 min were stored.

Propeller Vane

Sonic Head

Pitot tube

Rotation and
tilting device

Inclinometer

Figure 3.15: Front view of a METEK USA-1 instrument at-
tached to the rotation and tilting device in the wind tunnel.

Flow distortion correction — Sonics neither
have threshold nor overspeeding effects, so they can
resolve atmospheric turbulence with high temporal
resolution. However, flow distortion by the head it-
self, the spars, and the mounting of a sonic may at-
tenuate (or speed up) wind (Wyngaard, 1988). Fur-
thermore, if wind blows exactly along a path, a ve-
locity loss in the wakes of the transducers is ob-
served, which is known astransducer shadow ef-
fect. The transducer shadow effect was especially a
problem with early sonic models when the transduc-
ers were arranged inside a horizontal plane (Grant
and Watkins, 1989). Today, this effect has been re-
duced by designs with a path-inclination to the hor-
izontal. All sonics in the present study have in-
clined paths. However, the problem reencounters in
strong deformed flows, e.g. within a street canyon,
where sonic heads are not necessary aligned into the
streamlines of the flow.

Hence, to minimize errors of flow distortion and the
transducer shadow effect, a matrix correction was
applied to most sonics. For this purpose, 16 of the
23 sonics were checked and calibrated in the wind
tunnel of the Institute of Fluid Dynamics at the ETH
Zürich in two calibration campaigns (Apr. 2001 and
Aug. 2002) and compared with data from a pre-
vious wind tunnel campaign in March 1999. The
tunnel has a test section of4 m length and is3 by
2 m in diameter. In the tunnel, the instruments were
mounted upside down attached to a rotation and tilt-
ing device (Fig. 3.15). The individual sonics were
each exposed in 4 runs to different wind velocities
(2, 4, 6 and8 m s−1). During the runs, instruments
were continuously rotated around their vertical axis
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Table 3.7: Settings of the different sonics involved in BUBBLE.

Sampling rate
No. Manufact. Model Operation mode Internal (Hz) Output (Hz)

5 Gill R2 Internal calibration off (Mode 2) 166.6 20.8
1 Gill HS Internal calibration off (uvw uncal) 100 20
4 CSI CSAT 3 Internal calibration on 60 10/20a

12 Metek USA-1 Head correction on (HC=1) 40/20b 20
1 Young 81000 Internal calibration on 160 20

a Instruments at U3 and R2 were operated with 10 Hz output rate and data were collected with a datalogger.
b Instruments at U2 (29.9 m) and R1 (28.0 m) were operated with 20 Hz, all others with 40 Hz internal sampling rate.

at eleven tilt positions between−25 and+25◦. One
rotation at one tilt position lasted five minutes, so a
single instrument was in the tunnel during 4 hours.
Additionally, a reference propeller vane (Meteolabor
ONZ), temperature and humidity were continuously
sampled. The alignment was checked by a digital
inclinometer. The sonic raw data and all additional
sensors were collected at 20 Hz on a computer with
a software written by the author for this calibration.
The wind vectors recorded by the sonics were com-
pared to the wind velocity in the tunnel. Differences
were analyzed as a function of wind velocity, az-
imuth, and instrument tilt.

From the wind tunnel data, instrument individual
correction matricesAij andBi were calculated with
a horizontal azimuth resolution ofω = 4 degrees.
The correction was performed according methods
described in Vogt (1995) and Vogt et al. (1997),
namely

ui(corr.) = Aij(ω)uj + Bi(ω). (3.1)

Figure 3.16 shows an example of wind tunnel data.
The upper plot visualizes the difference between the
sonic measurement and tunnel velocity as a function
of horizontal azimuth and tilt (angle of attack). Sig-
nificant flow distortion errors are visible associated
with the geometry of the three transducer pairs of
the Metek USA-1, where the dark regions indicate
a lower wind velocity measurement. The lower plot
illustrates the vanishing differences with the matrix-
correction applied. Note that this illustration is sta-
tistically not independent because the run shown in
Fig. 3.16 was one of four involved in the calculation
of the linear matrix.

The matrix-correction was applied during post-
processing for all instruments during BUBBLE
where raw data was available, and the corresponding

Figure 3.16: Sample data from the wind tunnel for instrument
METEK USA-1 200104018 at4ms−1.

instrument was calibrated at least once in the tunnel
before or after the experiment. Table 3.8 summa-
rizes the applied calibrations. The column ”Calibr.”
refers to the postprocessing, where ”Matrix” indi-
cates that the 2d-matrix obtained from the wind tun-
nel was applied, and ”Manuf.” is the (instrument-
individual) correction for Gill R2 provided by the
manufacturer (Gill Instruments, 1992). ”None” in-
dicates that no further flow distortion correction was
applied to the sonic during postprocessing.

The wind tunnel investigations, as well as earlier
studies (Christen et al., 2000, 2001) indicate that
different classes of instrument performance can be
formed: CSI CSAT3 and Gill HS show highest
agreement, followed by USA-1 and Gill R2. The

35



stratus

Table 3.8: Summary of calibrations and field intercomparisons of all sonics involved in BUBBLE. ”ETH99”, ”ETH01”, ”ETH02”
denote calibrations of the sensors in the wind tunnel in the corresponding years. ”Sv99” refers to a field intercomparison in an
experiment prior to BUBBLE at San Vittore, Map Riviera 1999 (Christen et al., 2000), ”Ae01” denotes instruments involved in a field
intercomparison in the frame of BUBBLE at Aesch-Neuhof, South of Basel in August 2001 (see text).

Site Level Model No. Calibr. Wind tunnel Field Intercomparison
U1 A Gill R2O 0208 Manuf. — Sv99

Metek USA-1 200104017 Matrix ETH01 —
B Gill R2O 0107 Manuf. — —

Metek USA-1 200104018 Matrix ETH01 —
C Gill R2O 0160 Matrix ETH99 Sv99
D Gill R2O 0212 Matrix ETH99 Sv99
E Gill R2A 0043 Matrix ETH99 Sv99
F Gill HS 000046 Matrix ETH99, ETH01 Sv99
G CSI CSAT3 0545 None — —
H Young 81000 00545 None —

U2 A Metek USA-1 200104016 Matrix ETH01 Ae01
B Metek USA-1 200104015 Matrix ETH01 Ae01
C Metek USA-1 200104014 Matrix ETH01 Ae01
D Metek USA-1 200104012 Matrix ETH01 Ae01
E Metek USA-1 9903006 Matrix ETH01 Ae01, Sv99
F Metek USA-1 200104013 Matrix ETH01 Ae01

U3 A CSI CSAT3 0530 None — —
S1 A CSI CSAT3 0199 Matrix ETH99 Sv99, Ae01

B Metek USA-1 200103001 Matrix ETH02 —
C Metek USA-1 200204003 Matrix ETH02 —

R1 A Metek USA-1 200204004 Matrix ETH02 —
R2 A CSI CSAT3 0118 None ETH99 Sv99

METEK USA-1 instruments can be substantially
improved in most cases by applying a matrix cali-
bration.

Generally, an angle of attack less than10◦ from the
horizontal plane (tilt) leads to more precise wind ve-
locity values than higher tilts, where systematic er-
rors are increasing due to flow distortion. Strong an-
gles of attack — as encountered in the street canyons
— are not covered by the calibration. The above
technique is limited to an angle of attack between
±25◦. In a recent wind tunnel campaign, Vogt and
Feigenwinter (2004) measured all possible angles of
attack with different sensors. They concluded that
the above matrix-calibration procedure does not en-
hance data from regions above or below±25◦, but
on the other hand, data from this region are not fur-
ther falsified. They showed that larger uncertainties
are associated with data from high angels of attack
with all instruments.

Field intercomparison — Nevertheless, a wind
tunnel can not reproduce all possible wakes and
waves in the flow around an instrument (Grelle and
Lindroth, 1994). The wind tunnel is creating a quasi-
laminar flow, and is not able to simulate real at-
mospheric conditions. In order to test instruments
under atmospheric conditions, six Metek USA-1
(later installed at U2) have been compared with a
reference instrument (CSI CSAT3 199) between Au-
gust 20 and 22, 2001. All instruments were in-
stalled 1.90 m above ground on an open grassland
site (Aesch, Neuhof, 259000/611300, 310 m, Fig.
3.17) and were compared under wind velocities up
to 4 m s−1. The results are encouraging and support
the enhancement of Metek USA-1 data by applying
an instrument individual matrix (Tab. 3.9). Espe-
cially, the agreement of the second order moments
with the high-end reference instrument is substan-
tially increased by the matrix.
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Figure 3.17: Photo of the sonic field intercomparison setup at
Aesch-Neuhof. August 21, 2001.

Error sources — All instruments have been cor-
rected for crosswind either internally by the sen-
sor electronics or in the postprocessing (Schotanus
et al., 1983). This crosswind correction is of minor
impact onw′θ′ with less than 1% at all sites. The
transit time measured by sonics can be further seri-
ously altered by liquid water or snow on transducers.
A liquid water film or ice on the transducers changes
significantly the speed of sound (Laubach and Te-
ichmann, 1996). Since none of the instruments in-
volved in BUBBLE have been heated, data from pe-
riods of heavy rain and snow is excluded from analy-
sis.

3.2.2 Open path gas analyzers

CSI KH20 — At all energy balance sites with
eddy correlation instrumentation, a CSI KH20
Krypton hygrometer was operated (Tab. 3.10). The
principle of this fast open-path hygrometer is to
measure extinction of H2O at the ultraviolet wave-
length of 123.6 nm and at a secondary band at
116.5 nm. Practically, the extinction is directly re-
lated to the water vapour densityρv in the measure-
ment volume (CSI, 1995) by

ρv =
log(V0)− log(V )

xpkw
(3.2)

wherexp is the path length, andV is the measured
voltage at the photodetector. Two calibration ranges
were applied, a low range forρv < 9 g m−3, and a
high range for conditions withρv > 9 g m−3. For

Table 3.9: Summarized results from the three-day sonic field
intercomparison at Aesch-Neuhof. The CSI CSAT3 reference
instrument was compared to 6 Metek USA-1. The difference
between the Metek USA-1 and the reference instrument∆ is
listed in terms of the slope of a linear regression (USA-1=
aCSAT3, with∆ = (a − 1) in %). The average of the square
of the Pearson correlation coefficients, once with Matrix cali-
bration applied to the USA-1 and once without are indicated by
r2.

without Matrix with Matrix
Parameter ∆ r2 ∆ r2

m̄ +1.2% 0.99 -0.8% 0.99
σu +3.8% 0.99 +1.5% 0.99
σw -8.2% 0.98 +3.5% 0.98
σθ -6.5% 0.98 —a —
u∗ +11.2% 0.75 +2.5% 0.73
w′θ′ -16.9% 0.97 -6.8% 0.97

a Matrix calibration does not affect acoustic temperature mea-
surement.

Table 3.10:CSI KH20 Krypton hygrometers involved in BUB-
BLE. Calibrations and average effects of O2-correction onw′ρ′v
for the period June 10 to July 10, 2002 and situations with
|Lvw′ρ′v| > 20 W m−2. ”Separ.” is the sensor separation be-
tween the KH2O and the sonic measurement volume.

Site L. No. Calibr. Separ. O2-Corr.
U1 F 1448 Dec-98 0.5 m +20.8%
U2 E 1094 May-01 0.5 m +11.5%
U3 A 1123 Feb-96 0.2 m +5.0%
S1 C 1461 Oct-01 0.3 m +7.7%
R1 A 1096 Dec-01a 0.5 m +1.5%
R2 A 1199 Oct-01 0.2 m +2.4%

a Internal calibration by Indiana University, Bloomington IN,
USA. All other calibrations were performed by the manufac-
turer.

each instrument and both ranges, the output signal
in absence of any gasV0, and the extinction coef-
ficient for H2O kw are determined in a calibration
procedure by the manufacturer.

Unfortunately, the wavelengths are not only sensi-
tive to H2O, but also slightly to O2. Tanner and
Greene (1989) suggested that the output of the hy-
grometer can be corrected by multiplyingρv by a
correction factor, which accounts for the absorption
by O2, namely

ρv corr. =
COmO

cpma

kO

kw

Lvβ

T
ρv uncorr.. (3.3)

CO is the atmospheric concentration of oxygen,mO

andma are the molecular weights of O2 and dry air,
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Table 3.11:LICOR 7500 open path analyzers operated at U1.

L. No. Calibr. Separ. Axis
F 75H-0332 19-Apr-02 0.40 ma 165◦

0.26 mb 165◦

C 75H-0254 11-Oct-01 0.24 m 7◦

a before July 5 2002 09:30 CET
b after July 5 2002 09:30 CET

respectively.kO is the extinction coefficient for O2
for which a global value of0.45 m3 g−1 m−1 was
used (Tanner et al., 1993). The impact of the O2-
correction is most pronounced at the urban sites,
where it increases the magnitude ofw′ρ′v between
5% and 20%, compared to the smaller influence at
the rural sites (around 2%). The large urban cor-
rection term is a consequence of the extremely high
Bowen ratiosβ measured over the urban surfaces
(cf. Section 4.5.6).

Licor 7500 — The Licor 7500 is an infrared open
path gas-analyzer designed to measure fluctuations
of CO2 and H2O at 150 Hz, with a path length
of 12.5 cm and a 1 cm diameter optical beam. It
measures quasi-simultaneously at4.26µm (CO2),
2.59µm (H2O), and at two non-absorbing wave-
lengths (3.95µm and2.40µm ). During BUBBLE,
two Licor 7500 were operated at U1 (Section 3.1.1).

After the field phase of BUBBLE, a timing error
of the analyzer was published by the manufacturer
(Licor, 2003). The error affects the time delay (lag)
between the measurement and the digital and analog
outputs of the analyzer in the firmware version used
during BUBBLE. This time delay error results in an
underestimation of the flux density, since the wind
measurement and the concentration measurements,
which were supposed to be simultaneously during
BUBBLE, are not simultaneously taken in reality.
They suggested that ”customers who have collected
raw time-series data may be able to minimize this
timing error by performing a time-shift to the gas
density data relative to the vertical wind data.”

The correlation functionRwt(τ) between vertical
windw and concentrations of CO2 or H2O was cal-
culated as a function of the time lagτ for all data.
For each half-hourly run, the measured time lagτm
was determined by maximizingRwt(τ). Due to
the physical sensor separation, the measured lagτm
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Figure 3.18: Average time lagτm for different wind directions
between LICOR 7500 analyzer and sonic at U1 level F (June 15
to July 5, 2002). The labels up- and downwind indicate the axis
of the separation which wasxd = 0.40 m.

Table 3.12: Average impact of the lag-correction on flux den-
sities of CO2 and H2O at U1 for situations with|w′ρ′c| >
2µmol m2 s−1, and |w′ρ′v| > 0.01 mmol m2 s−1. Time peri-
ods: 14.7 m: June 25 – July 13, 2002; 31.7 m : July 5 – July 15,
2002. ”glob.” indicates that the covariance was calculated with
a global lagτe determined as the averagea0 with the regression
method. ”indiv.” denotes a covariance that was calculated with
individual lagsτm for each run separately.

Level C F
w′ρ′c indiv. / w′ρ′c old +1.44% +0.86%
w′ρ′c glob. / w

′ρ′c old +0.37% +0.71%
w′ρ′v indiv. / w′ρ′v old +1.28% +0.85%
w′ρ′v glob. / w

′ρ′v old -0.46% +0.30%

shows a strong relation to wind direction and wind
velocity. The influence of the sensor separation, i.e.
the time needed for an air parcel to travel from the
sonic to the analyzer, is dominating over the effect of
the electronic lagτe, making it difficult to separate
these two effects. We assume the Taylor hypothesis
to be valid over the distance of the sensor separa-
tion and writeτm = τe + xd/ud, wherexd is the
sensor separation andud the wind component along
the axis sonic - analyzer. Practically, two methods
were applied to separate the electronic lagτe from
the effects of the sensor separation.

Equalization Method: Here, for each level, data are
classified into 8 wind direction classes. An average
lag was determined for each class separately (Fig.
3.18). Then, the electronic lagτe is equal the equal-
ized weighted average of all 8 wind direction aver-
ages, because the sensor separation effect will be
counterbalanced by opposite wind directions as il-
lustrated in Fig. 3.18. This method does not take
into account wind velocity, and assumes the same
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Table 3.13: Average impact of different flux corrections ap-
plied toQH andQE . Statistics are calculated for situations
with |QH |or |QE | > 20 W m−2

QH QE QE

Humidity WPL Sensor
Site Level Corr. Corr. Separation
U1 F -2.2% +26.7% +1.7%
U2 E -2.7% +17.8% +2.1%
U3 A -0.9% +8.4% +8.5%
S1 C -5.4% +11.5% +2.2%
R1 A -14.2% +3.5% +1.7%
R2 A -13.6% +5.2% +6.7%

velocity histogram in each wind direction class. For
CO2, it results in aτe of 100 msec (Level F) and
410 msec (Level C).

Regression-Method: Since sensor separationxd and
the position of instruments are exactly known, the
travelling time (xd/ua) for an air parcel between
the sonic and the closest point of its trajectory to the
analyzer can be calculated from the sonic data. By
applying a linear regression between travelling time
and total lagτm, the offseta0 of the linear regression
τm = a1(xd/ud) + a0 (i.e. for a travelling time of 0
sec) returns directly the electronic lagτe whereasa1

should be around 1. For CO2, the regression mode
results in aτe of 110 msec (Level F) and 400 msec
(Level C).

Table 3.12 shows that effects of the corrections on
vertical flux densities of CO2 and H2O are very
small and in average below 2%. The corrections
are higher with the instrument mounted closer to the
surface because of the higher peak frequency of the
co-spectra. This agrees with results from other ex-
periments (Christen, 2003). For further calculations,
the global values ofτe from the regression method
were applied.

3.2.3 Corrections of turbulent flux densities

Humidity correction for QH — The direct deter-
mination ofQH by a sonic (Eq. 2.61) is influenced
by humidity in the measurement volume. The mea-
sured speed of sound from the sonic is converted into
acoustic temperatureθ, which is not equal the ther-
modynamic temperatureθT . Schotanus et al. (1983)
introduced a humidity correction to convert the mea-
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Figure 3.19: Individual impact of the WPL-correction on mass
flux densities of CO2 at U1 level F.

suredw′θ′ into w′θ′T , using simultaneous measure-
ments ofw′ρ′v:

w′θ′T = w′θ′ − 0.51w′ρ′v. (3.4)

This conversion was applied to the levels, where a si-
multaneous humidity flux density is available for the
energy balance investigations. By applying the con-
version, the resulting magnitude ofQH is reduced
only slightly at the urban sites, but more pronounced
at the rural sites (Tab. 3.13). The higher impact at the
rural sites is because of their higher evapotranspira-
tion.

WPL-Correction — A non-zero turbulent flux
density of sensible heat results in continuous
changes in air density correlated with vertical wind.
If we measure a non-zerow′θ′v, this implies a small
vertical wind component, which is too small to be
measured by the eddy correlation system. Webb
et al. (1980) suggested a correction for this small
vertical wind component

w′ρ′scorr. =(
1 +

ma

ms

ρs

ρa

) (
w′ρ′suncorr.+

ρs

ρ

QH

cpT̄

)
(3.5)

whereρs is the concentration of any trace-gas,ms

its molecular weight andρa is the density of dry air.
This so called WPL-correction was applied to both
mass flux densities,w′ρ′v. andw′ρ′c. The correction
results in a significant higher relative impact to the
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small urban values ofQE compared to rural sites,
where generallyQE > QH (Tab. 3.13). The impact
on the mass flux density of CO2 is stronger, and may
even result in a change of the direction, as shown in
Fig. 3.19.

Sensor separation — Furthermore, a spectral cor-
rection was calculated taking into account sensor
separation according to Moore (1986). The cor-
rection is based on classical surface layer spectra.
Therefore, it is only applied to the top most mea-
surements over the urban surfaces, and only forQE

in the study of the surface energy balance. The im-
pact onQE is strongest when sensor separation is
large and measurement height is low (Tab. 3.13).

3.2.4 Radiation instruments

A detailed description of radiation instruments op-
erated during BUBBLE, the field intercomparisons
and calibrations, and the resulting effects can be
found in a technical report by Christen and Vogt
(2005).

Kipp & Zonen CNR 1 — The Kipp & Zonen
CNR 1 operated at the energy balance sites were
intercompared side-by-side during a field intercom-
parison in July 2002 in Southern Italy, just after the
BUBBLE experiment ended. There, four of the five
CNR 1 used in this work were compared to a high-
end Kipp & Zonen CM21 (Pyranometer) and an Ep-
pley PIR (Pyrgeometer), which were both recently
calibrated by the World Radiation Centre (WRC) in
Davos, Switzerland. The calibration factors derived
from this week long intercomparison confirmed that
shortwave downward radiationK↓ measured with a
CNR 1 is generally underestimated by 2%. The un-
derestimation can be attributed to instrumental prob-
lems, since it was observed systematically and sig-
nificantly with all four instruments involved.

Longwave downward radiationL↓ measured by
CNR 1 instruments show a small, systematic depen-
dence onK↓ (pers. comm. R. Vogt). Hence, an ad-
ditional factorfk is introduced to correct this short-
wave sensitivity of the long-wave sensor

Lcorr
↓ = Luncorr

↓ + fkK↓. (3.6)

Table 3.14: Kipp & Zonen CNR 1 net radiometer involved in
BUBBLE, andfk correction factors determined from the field
calibration data.

Site z No. Calib. fk

U1 31.5 m 980098 Jul-02 -0.018
U3 3.3 m 980126 Jul-02 -0.021
S1 15.1 m 010285 Jul-02 -0.018
R2 1.4 m 020419 Jul-02 -0.023
R3 2 m 980080 — -0.019a

a Average value of above instruments used
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Figure 3.20: Impact of thefk-correction to measurements of
L↓ during BUBBLE with sample data from Sites S1 and U2 for
the period June 4 to July 13 2002.

fk was determined for each instrument individually
and is in the order of−0.02 (Tab. 3.14). Figure 3.20
illustrates the successfulfk correction with indepen-
dent measurements taken during BUBBLE. The av-
erage diurnal course of the difference inL↓ between
two sites (S1 and U2) is drawn. The sites are sup-
posed to have the sameL↓ in average, despite their
spatial separation of 1 km. At S1, values were mea-
sured with a CNR1 and at U2 with an Eppely PIR
pyrgeometer. The manufacturer calibration is drawn
with open (white) symbols whereas the values cor-
rected with thefk factors are shown with filled sym-
bols.

Table 3.15:Eppley PIR Pyrgeometers involved in BUBBLE.

Site z No. WRC Field
Calib. Interc.

U2 L↓ 33 m 30323F3 Jun-98 Jun-03
L↑ 33 m 28961F3 Mar-97 Jun-03

R1 L↓ 1.4 m 31207F3 May-98 Jul-02
L↑ 1.4 m 28962F3 Jan-02 Jul-02
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Table 3.16: Average Impact of the overspeeding correction on
cup anemometer data at U1. Sonic values have been linearly
interpolated between levels, due to the vertical shift between
cups and sonics.

z mraw− mcorr.− (msonic−mcup)
msonic msonic /msonic

a

m m s−1 m s−1 %
32.40 0.16 0.02 1.5
26.10 0.05 -0.12 -5.9
24.10 0.02 -0.17 -9.1
22.10 -0.11 -0.33 -18.5
20.10 0.09 -0.13 -7.5
18.10 -0.09 -0.35 -22.5
16.10 0.02 -0.26 -16.9
14.60 -0.10 -0.45 -30.1
13.10 -0.34 -0.75 -52.0
11.10 0.07 -0.21 -16.4
7.10 -0.08 -0.34 -25.4
3.20 -0.47 -0.77 -61.8

a Situations withmsonic> 1ms−1

Eppley PIR Pyrgeometer — The upward-
looking instruments were modified with three dome
thermistors separated by120◦ and were corrected
according to Philipona et al. (1995). The downward-
looking instruments have only 1 dome thermistor.
The instruments were all calibrated at the WRC and
were intercompared after BUBBLE in two different
field campaigns in 2002 and 2003 (Tab. 3.15).

Dewfall — Periods with dew on the sensors - a
phenomenon mainly observed at the rural sites -
were detected using the differences between dew
point and case temperature and masked out by visual
inspection. The resulting missing data were linearly
interpolated for gaps shorter than 2 h. Gaps with
a longer duration are homogenized with a box-car
type of linear regression with data from other sites
of similar land use.

3.2.5 Cup anemometers

Over 20 Vaisala WAA15 cup anemometers have
been operated at the sites of interest in this work.
The WAA15 is an opto-electronic cup anemometer
which creates 14 pulses per revolution.
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Figure 3.21: Absolute (top) and relative (bottom) impact of the
overspeeding correction on the topmost cup anemometer at U1
(33m). Uncorrected data are drawn with open circles, over-
speed corrected data with black circles. The grey shaded area
indicate the range where 90% of all data are.

Overspeeding — Cup anemometers have a non-
linear response to fluctuating winds. They respond
faster to increasing wind speeds than to a decrease
of same magnitude, an effect of their inertia. This
leads to a general overestimation of the determined
wind speed, especially if turbulence intensities are
high, which is expected close to an urban surface.
Overspeeding is important if time scalesTx of the
energy containing eddies, and the response time of
the cup anemometer (expressed by the distance con-
stant`0) overlap. This is addressed in the correction
method described in Busch and Kristensen (1976),
where∆m is the overspeeding, andm is the mea-
sured mean (scalar) wind speed, both inm s−1:

mcorr. = m(1 + I2
s (1 + L·x/`0)

−1 + cI2
w). (3.7)

The WAA15 has à 0 of 1.5 m (Vaisala, 1991).L·x
was retrieved from the sonic velocity spectra at cor-
responding height, andc was set to 1.Is and Iw
are the horizontal and vertical turbulence intensities,
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Table 3.17: Psychrometers used in temperature-humidity pro-
file measurements during BUBBLE.

Site Level z No. Calibration
U1 i 2.6 m FK13 02-Jun-01

ii 13.9 m FK15 02-Jun-01
iii 17.5 m FK24 28-May-01
iv 21.5 m FK25 30-May-01
v 25.5 m FK26 28-May-01
vi 31.2 m FK30a 30-May-01

U2 i 5.0 m FK04 13-May-01
ii 15.8 m FK05 13-May-01
iii 3.0 m FK08 13-May-01
iv 15.8 m FK06 13-May-01
v 22.9 m FK21 28-May-01
vi 27.8 m FK14 13-May-01
vii 32.9 m FK19 28-May-01

a Only temperature measured

which were derived from the simultaneously oper-
ated sonics and linearly interpolated between two
measurement levels.

Figure 3.21 illustrates the overspeed correction ap-
plied to the most ideal measurement at tower top at
U1. Here, the correction reduces the error-source as-
sociated with overspeeding. However with decreas-
ing height, wind speed measurements from the cup
anemometers are significantly overcorrected com-
pared to the corresponding sonic wind speed, espe-
cially under low wind conditions. At most levels,
uncorrected values match better sonic values (Tab.
3.16). This may be attributed to model failure due
to the high turbulence intensities, but also to the
fact that sonics and cups were horizontally sepa-
rated at the tower. The separation becomes impor-
tant in the street canyon, where cup anemometers
were operated close to the wall. Further, all cup-
anemometers are affected by a mechanical threshold
problems, which lower the measured wind speed un-
der low wind conditions as encountered in the street
canyon. Due to all these problems, whenever possi-
ble, sonic measurements were considered the more
reliable source for wind speed data in the present
work.

3.2.6 Temperature / humidity sensors

At the two urban profile towers U1 and U2, ac-
tively ventilated psychrometers were operated (Tab.
3.17). The instruments constructed by the Institute
of Meteorology, Climatology and Remote Sensing
use Pt100 thermistors. All instruments were cal-
ibrated in the range−15◦ to +40◦ in the labora-
tory prior to the BUBBLE field experiments. In-
strumental design and the calibration procedure are
described in Vogt and Reber (1992).
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3.3 Data processing

3.3.1 Sonic block averaging

Statistical moments are calculated and stored for
blocks over 10 min. Neither a linear detrending nor
another low-frequency filter was applied, in order to
conserve energy and to allow an appropriate upscal-
ing of higher-order moments to longer averaging pe-
riods. For instance, six consecutive 10-min covari-
ancesa′b′

10(t) can then be upscaled to an hourly

flux covariancea′b′
60

by

a′b′
60 =

1
6

6∑
t=1

a′b′
10(t)+

1
6

6∑
t=1

(
ā10(t)− ā60

) (
b̄10(t)− b̄60

)
(3.8)

whereā60 andb̄60 are the averages over 60 minutes.

Further, any detrending would not ensure that at all
tower levels the same amount of energy is removed
(or re-attributed to the mean flow). This would not
only violate energy conservation but also inhibit the
possibility to calculate vertical flux density diver-
gences in the prognostic equations of higher order
moments introduced in Section 2.3.1.

It is shown later (Section 4.4), that the average co-
spectra of the relevant vertical flux densities signifi-
cantly drop off in the low-frequency range (over 5 to
10 minutes), so that omitting any low-frequency fil-
tering does not influence vertical flux densities in av-
erage. However, it may affect horizontal wind com-
ponents and any higher order moments with hori-
zontal components involved. To test the impact of
omitting a linear detrending, the total kinetic en-
ergy per unit mass of all three wind components
E = 0.5u2

i is split into a mean part̄E, a part which
would classically be removed by the detrendingẼ,
and the remaining turbulent partE′:

E = Ē + Ẽ + E′. (3.9)

Table 3.18 illustrates the relative partitioning of the
kinetic energy according to Eq. 3.9 with data from
the tower at U1 for all three components separately.
Detrending over 60 minutes does only marginally af-
fect the variancew′2. Spectral energy ofw is low in
the low-frequency band affected by the detrending.

But in the horizontal wind componentsu andv, the
energy removed by a linear detrending may be up to
twice the remaining turbulent kinetic energy in the
street canyon.

Table 3.18:Separation of kinetic energy for a componenti (Ei

per unit mass in J) into a mean kinetic energyĒi, a part removed
by the detrending̃Ei, and the resulting turbulent partE′

i.

Absolute Relative
z/zh E3 Ē3 Ẽ3 E′

3

2.17 0.30 1.3% 0.6% 98.0%
1.53 0.28 1.6% 0.6% 97.8%
1.23 0.26 1.5% 0.6% 97.9%
1.01 0.25 2.8% 0.8% 96.5%
0.75 0.22 13.5% 1.7% 84.8%
0.23 0.14 20.1% 1.5% 78.4%
z/zh E1,2 Ē1,2 Ẽ1,2 E′

1,2

2.17 7.49 73.9% 3.5% 22.6%
1.53 4.52 62.0% 5.9% 32.1%
1.23 2.99 54.7% 8.4% 36.9%
1.01 1.62 41.6% 16.2% 42.2%
0.75 1.36 27.7% 49.6% 22.7%
0.23 1.40 31.6% 48.0% 20.4%

3.3.2 Sonic coordinate rotations

In most micrometeorological studies, the coordinate
systems of sonics with the base vectorsei are ro-
tated in a way thate1 is aligned collinear to the mean
wind vectoru, ande3 is then believed to be normal
to the surface. This rotation is calleddouble rota-
tion and was first introduced by Tanner and Thurtell
(1969). Typically, the rotation is performed for each
run and each height level independently. The result-
ing frame of reference is very popular in experimen-
tal micrometeorology because it allows many sim-
plifications asv andw both become zero, and the
termsu′v′ andv′w′ usually vanish. The rotation as-
sumes small vertical wind components to be an ef-
fect of sensor misalignment only.

For the present study, this procedure is highly ques-
tioned, because (i) the individual rotation of the co-
ordinate system at each level of a tower does not en-
sure anymore that vertical wind gradients and verti-
cal flux density divergences are referring to the same
coordinate direction in space, and (ii) two rotations
are not sufficient to ensure that the coordinate sys-
tem is independent of the original orientation of the
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sonic. The directions of the resultinge2 ande3 base
vectors are not defined by the double rotation (Finni-
gan, 2000). These concerns are not of practical im-
portance, as long as the flow is mainly parallel to
the surface and the sonic is originally aligned with
e3 approximately normal to the surface, an assump-
tion which is fulfilled in most ‘classical’ applica-
tions. To have a correct definition of the frame of
reference, McMillen (1988) introduced a third rota-
tion in which thev′ − w′ tensor is diagonalized. In
practice, the third rotation often results in even more
unphysical orientations and it is therefore rarely ap-
plied. Recently, Wilczak et al. (2001) introduced a
planar fit technique, which reduces the run-to-run
variability, but must again be applied to each level
separately and secondly assumes a horizontally ho-
mogeneous non-curved mean flow with planar and
parallel streamlines.

Since the flow in the urban roughness sublayer is
highly three dimensional, all above rotation tech-
niques are not suitable and the simplifications are
often not fulfilled. There is no physical reason for
w to be zero at all points in the roughness sublayer.
Especially around obstacles, a mean up- or down-
wind is the normal case. Any rotation would falsify
results especially within the street canyon in a dra-
matic manner. The termsu′v′ andv′w′ do not nec-
essary vanish in this highly deformed flow field.

During BUBBLE, instruments were assumed to be
correctly aligned in the vertical (7 instruments were
checked with continuously recording inclinome-
ters). Only a single rotation around thee3-axis into
mean wind at tower top was applied for all levels si-
multaneously. In this semi-fixed frame of reference,
e3 is always oriented strictly vertical to the surface.
e1 is aligned into the horizontal mean wind at tower
top, ande2 is the resulting lateral component. This
coordinate system allows the calculation of vertical
gradients and flux densities as needed for example
in the conservation equations (Section 2.3.1). With
this procedure, all three base vectorsei are parallel at
all levels. But neither̄w nor v̄ are mandatorily zero.
This further questions the interpretation of flux den-
sities. Ifw is other than zero, any vertical flux den-
sity of mass, momentum or heat does split up into an
advective mean flux density (which would be other-
wise zero) and a turbulent flux density:

Q = w s+ w′ s′. (3.10)

Again, s denotes any scalar. In order to reduce the

complexity back to one dimension (the vertical) and
to eliminate the problem of mean flux densities in
the vertical, we introduce the concept of horizontal
spatial averages.

3.3.3 Horizontal averaging

The horizontal spatial average〈a(t)〉 of any variable
a within an indefinite slice at heightz and timet is
defined by

〈a(t, z)〉 =

1
Lx1,2

x1,2+Lx1,2/2∫∫
x1,2−Lx1,2/2

I(x, y, z) a(x, y, z, t) dx dy

(3.11)
whereI(x, y, z) is an indicator function according
to Miguel et al. (2001), which is 1 if the point (x,y,z)
lies within airspace and 0 otherwise (building, veg-
etation). The horizontal domainLx andLy of the
averaging volume must be both larger than the char-
acteristic scale of the surface inhomogeneitiesL (cf.
Tab. 3.3). In the case of an urban surface, this corre-
sponds to the characteristic length scale of repetitive
building-blocks.

This horizontally averaged view allows further im-
plications. If the flow is horizontally homogeneous
at scales larger thanLx then 〈∂ā/∂xj〉 = 0 and
〈∂a′u′j/∂xj〉 = 0 for any i andj = {1, 2}, and for
parametersa which are constant at the air-building
interface. Ifa is constant at the interface, a com-
mutation of the horizontal averaging operator and
the horizontal spatial differentiation operator is al-
lowed, i.e. 〈∂ā/∂xi〉 = ∂〈ā〉/∂xi for i = {1, 2}
(Raupach and Shaw, 1982). This becomes impor-
tant when applying the horizontal averaging opera-
tor to the conservation equations. All wind compo-
nents fulfill this condition, but especially pressurep
and strictly speaking concentrationsρs and temper-
atureθ are not mandatory constant at the interface
and hence, do not allow this simplification.

Averaging procedure — Directly measuring spa-
tial averages in full scale is nearly impossible. It
would require huge arrays of simultaneously mea-
suring instruments. As already suggested by Rotach
(1993a, 1995) for urban surfaces, spatial horizon-
tal averages can be approximated from a large en-
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Figure 3.22: Illustration of the horizontal averaging procedure, with data from the sonic profile at U1. Details see text. The numbers
below the profiles indicate the number of hourly data blocks involved.

semble of measured profiles under different condi-
tions, which reflect different flow geometries. The
real horizontal average, deduced from simultaneous
measurements at different locations under a particu-
lar ambient flow may converge with the ensemble
average of many realizations measured at one lo-
cation with varying ambient flow. The huge data
set collected during BUBBLE, allows a systematical
procedure to retrieve horizontally averaged vertical
profiles from different wind directions of approach-
ing flow. In the present work, the following proce-
dure is applied to turbulence tower data at U1, U2
and S1:

1. Any term or parameter of interest̄a(z, t) is
scaled by an appropriate local or global scaling
parametera∗(z, t) or a∗(t), respectively. This
eliminates effects of different boundary condi-
tions (e.g. different wind velocity). If appropri-
ate, only cases within a certain stability range
ζ(t) measured at tower top are included in fur-
ther analysis. The instruments at tower top are
assumed to measure within the inertial sublayer
and hence to deliver an appropriate information
on overall stability.

2. The scaled profiles of̄a/a∗(t, z) are then clas-
sified into N equally spaced wind direction
classesω based upon wind direction at tower
top.

3. For each of the wind direction classesω, a con-
ditional average[ā/a∗](ω, z) is calculated from
the full time series ofT averaged blocks. The
conditional average is denoted by square brack-
ets and describes the average value at given

height with wind from given directionω,

[ā/a∗](ω, z) =
1
T J̄

T∑
t=1

(ā/a∗)(t, z)J(t)

(3.12)
whereJ(t) is an indicator function that is 1 if at
the corresponding time stept, wind blows from
the wind direction sectorω and 0 otherwise.̄J
is the temporal average ofJ(t) over the whole
data set and denotes the frequency of wind from
given sector.

4. Now, the equally weighted average over all
[(ā/a∗)](ω, z) at a given heightz is taken as a
surrogate of a horizontal average and is denoted
by angle brackets:

〈ā/a∗〉(z) =
1
N

N∑
ω=1

[(ā/a∗)](ω, z). (3.13)

All terms in angle brackets in the present work are
evaluated with the above procedure, with a resolu-
tion ofN = 16 wind direction classes. Figure 3.22
illustrates an example of the above procedure. The
covarianceu′w′(t, z) has been normalized byu2

∗(t)
at tower top for each time step. Based on this, the 16
conditional averages[u′w′/u2

∗](ω, z) drawn in the
figure have been calculated separately for each wind
direction class. The horizontally averaged profile
〈u′w′/u2

∗〉(z) — illustrated on the right side of Fig.
3.22 — was calculated by equally weighting the 16
single profiles of[u′w′/u2

∗](ω, z).

Dispersive Terms — Extending the concept
Reynolds decomposition (Section 2.2.2), any vari-
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ablea(x, t) at any point and any time can be sep-
arated into a spatial-temporal mean part, a tempo-
ral mean deviation from the spatial-temporal mean
(dispersive part) and a turbulent part (Raupach and
Shaw, 1982),

ā(x, t) = 〈a〉+ a′′(x) (3.14)

and hence

a(x, t) = 〈a〉+ a′′(x) + a′(x, t). (3.15)

From 3.14 and 3.15 it follows

〈ā′′〉 = 0. (3.16)

Note that the product of two dispersive terms〈a′′ b′′〉
(called adispersive flux density) does not have to be
mandatory zero. The problem encountered in Eq.
3.10, due to the fact that̄w may be other than zero,
can now be rewritten using dispersive terms as

Q = 〈w〉〈s〉+ 〈w′′s′′〉+ w′ s′. (3.17)

With the assumption that〈w〉 = 0 due to mass con-
tinuity on a larger scale, the first term on the right
hand side of Eq. 3.10 vanishes. Any remaining lo-
cal mean vertical flux density is now interpreted as
a dispersive contribution, which is only of any im-
portance if the horizontally averaged dispersive flux
density〈w′′s′′〉 is non-zero.
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4 Results and Discussion

4.1 Mean flow

In this chapter, the mean flow within and above an
urban canopy is addressed in different levels of de-
tail: First in Section 4.1.1, the three dimensional
flow in the urban street canyon is analyzed. Then, in
Section 4.1.2, we construct the mean vertical wind
profile in a horizontally averaged view (which cor-
responds to the neighborhood scale). Finally, in Sec-
tion 4.1.3, the specific features of the wind profile in
the roughness sublayer are neglected, and the flow in
the inertial sublayer above is simply described by an
appropriate set ofzd andz0. Results in this chapter
are rather descriptive. We will analyze the driving
processes more deeply in the subsequent chapters
addressing momentum and turbulent kinetic energy.
Further, we mainly focus on results from site U1.
Here, conditions are close to ideal, and with a pro-
file of six instruments in the same vertical column,
this site provides the most comprehensive data set.

4.1.1 Flow patterns in the street canyon

The flow within urban street canyons is of partic-
ular interest in air pollution. Table 4.1 lists aver-
age concentrations of CO2 and NO2 for a period of
two weeks at different heights at U1. Highest con-
centrations for both pollutants are observed at street
canyon floor where they are emitted by motor ve-
hicles. Gradients are strong at street canyon floor,
but continuously decrease with height in the street
canyon. Abovezh, again, stronger vertical gradi-
ents are measured for both trace gases. The rea-
son for this pattern is found in the exchange mech-
anisms: The whole street canyon shelters and traps
pollutants. This results in higher local gradients at
roof top than in the upper street canyon part, a phe-
nomena well known from wind tunnel experiments
and numerical street canyon models (Vardoulakis
et al., 2003). The key parameters that determine
flow within any street canyon are the canyon width
to height ratioxc/zh and canyon length to height ra-
tio yc/zh. xc is the local street canyon width, and

Table 4.1: Vectical profiles of mean concentrations of NO2 and
CO2 through the street canyon at U1. Values in brackets de-
note the average gradients to the next lower level. Data source:
NO2 was monitored with passive sampler tubes (analyzed by
the Lufthygieneamt beider Basel), CO2 data was averaged from
the gas-multiplexer profile. Averaging period is June 14 to July
28, 2002.

NO2 CO2

z/zh µg m−3 µg m−4 ppm ppm m−1

1.45 28.6 (-0.66) 392.2 (-0.31)
1.03 32.7 (-0.45) 394.1 (-0.19)
0.74 34.6 (-0.55) 394.9 (-0.10)
0.47 36.8 (-0.84) 395.3 (-0.27)
0.21 39.9 (-4.94) 396.3 (-1.75)
0.10 47.8 399.1

yc is the length of the street canyon between two ad-
jacent intersections (Hunter et al., 1992). For am-
bient wind perpendicular to the street canyon axis
and wind velocities> 1.5 m s−1, Oke (1988) distin-
guishes three flow regimes with decreasingxc/zh:
(i) isolated roughness flow, (ii) wake interference
flowand (iii)skimming flow. Isolated roughness flow
is found in sparsely built-up areas. Here, the dis-
turbed flow of a first roughness element can readjust
to the surface before it encounters the next element.
With closer spacing, there is insufficient space for a
readjustment. In skimming flow, which is found in
narrow canyons (xc/zh < 1.5), the bulk of the over-
lying flow skims over the cavity. The skimming flow
regime is most critical in air pollution management,
since it is least efficient in removing pollutants. Fur-
ther, Kastner-Klein and Plate (1999) concluded in
their wind tunnel study that roof shape is another
important factor determining flow in canyons.

In contrast to numerical models and wind tunnel ex-
periments, there is no control of the geometry in
a real-world street canyon, hence the profile mea-
surements at U1 and U2 provide only point mea-
surements from a specific configuration. At U1, the
configuration is close to an ideal street canyon with
xc/zh = 1.0 andyc/zh = 11. The position of the
tower is exactly in the center between two intersec-
tions (refer to map in Fig. 3.5). The configuration in
the avenue at U2 is more complicated, not only be-
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Figure 4.1: Channeling of flow into the street canyon at U1.
Data source: Sonics A to F, 10 min averages classified into
16 different wind direction classes, November 1, 2001 to July
15, 2002,n=1600 h. Only data with wind velocity at2.2zh >
1 m s−1 are included.

cause of the separation of the street canyon and the
tower profile, but also because of interactions be-
tween trees and the flow. Here,xc/zh ≈ 1.8 and
yc/zh = 6 with an asymmetric T-intersection to the
South. No information is available from the open
backyard at S1 where no instruments were operated
belowzh.

It is not possible to reconstruct the full three dimen-
sional flow from a limited number of measurement
locations in the street canyon. Nevertheless, average
properties can be interpreted by analyzing the large
number of realizations with different wind velocity,
wind direction and thermal stratification of the am-
bient flow.

Channeling — It is no surprise that flow chan-
nelling increases continuously with decreasing
height into the street canyon. This is illustrated
for U1 in Fig. 4.1 where the average local hori-
zontal wind direction from the 6 levels is drawn.
The figure shows 16 realizations classified by am-
bient wind direction measured at2.2zh. Following
down a line, one can see how wind from a starting
direction at tower top is deflected and forced into
the street canyon axis. Below mean building height,
the majority of all cases show wind directions chan-
nelled either into direction67 or 247◦, which cor-
responds to the axis of the street canyon indicated
by the grey bars in the figure. An asymmetry in the
channelling effect is observed because instruments
were mounted closer to one building wall (cf. Fig.
3.3), and roof shapes are different at both sides of

z/
z h
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Figure 4.2: Inclinationξ of mean wind as a function of ambi-
ent wind direction at U1. Data source: Sonics A to F, 10 min
averages classified into10◦ classes, November 1, 2001 to July
15, 2002, all stabilities,n=1600 h.

the street canyon. Flow from NW passes flat-roofs
(buildings 95 and 97, cf. Fig. 3.5) whereas from
SE, pitched roofs are overflown (buildings 98 and
100). channelling is also observed in the wide street
canyon at U2, but the corresponding flow patterns
are more complex.

Vertical motions — Fig. 4.2 illustrates the incli-
nation of mean windξ as a function of ambient wind
direction. ξ describes the vertical angle of attack of
the mean wind vector as defined by

ξ = − arctan
(

w̄√
ū2 + v̄2

)
. (4.1)

First, it can be seen that flow at the topmost level
is nearly horizontal. With decreasing height, a non-
negligible vertical wind is observed. Along-canyon
flow results in small vertical motions. Stronger up-
winds are measured when the tower is located in
the leeward wall (flow over flat roofs from NNW).
Downwinds are found in the majority of cases when
instruments measure closer to the windward wall
(oblique flow over the pitched roofs from E and
SSW). ξ does not describe the expected well be-
haved sine-curve. There is a region between130
and150◦ that shows unexpected upwinds instead of
downwinds, despite the fact that the tower measured
closer to the windward wall in this configuration.
We will discuss this phenomena later in this section,
but will first address the simpler situation with flow
from NNW.
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Figure 4.3: Ensemble street canyon cross-section of measured
wind vectors at U1 for flow situations in a sector perpendicular
to the street canyon (flow from315 − 360◦). Numbers denote
corresponding buildings labelled on the map in Fig. 3.5. Data
source: Sonics A to H, 10 min averages, June 15 to July 15,
2002, all stabilities,n=250 h.

Vortex — Wind tunnel results show that high pol-
lution in street canyons are typically associated with
low wind velocities and/or situations with an am-
bient wind perpendicular to the street canyon axis
(Kastner-Klein et al., 2001). Flow situations per-
pendicular to a street canyon withxc/zh ≈ 1 and
yc/zh > 8 result in a primary vortex (Sini et al.,
1996). Figure 4.3 (top) shows average wind compo-
nents in the street canyon at U1 for situations with
flow perpendicular to the street canyon (flow from
NNW). The arrows indicate the mean vector wind
components in thexz-plane normalized by wind ve-
locity at tower top. The labels A to G refer to the
instrument locations in thisxz-plane, withx as the
lateral axis in the street canyon (point of origin in
the street canyon center) andz as the vertical axis.
In the example of Fig. 4.3, the observed wind direc-
tion at street level is opposite to the direction above
the roofs, and a primary vortex in the street canyon
can easily be interpreted from the measurements.
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Figure 4.4: Average rotational frequency of the street canyon
vortex Ωc at U1 against wind component̄u0 perpendicular to
the street canyon at tower top (flow315 − 360◦). Data source:
Sonics A to C, hourly averages, November 1 to July 15, 2002,
all stabilities.

Table 4.2: Stability dependent linear regressions ofΩc against
ū0 for flow situations drawn in Fig. 4.4. The letters denote cor-
responding regression lines.

Ω / ū0 r2 Stability n

a 0.0036 m−1 0.67 −10 < ζ ≤ −1 67
b 0.0032 m−1 0.69 −1 < ζ ≤ −0.4 132
c 0.0026 m−1 0.70−0.4 < ζ ≤ −0.1 178
d 0.0024 m−1 0.45 −0.1 < ζ ≤ 0 38

This approach simplifies the problem by reducing
the flow field to two dimensions, and the third
y-component (which is small in this case) is not
shown. This is justified by the lengthyc of the street
canyon and the position of the tower. If the street
canyon would be shorter, or if the tower would have
been installed closer to an intersection, we would
be in a region of edge vortices caused by the build-
ing corners (Hoydysh and Dabberdt, 1988). These
edge vortices have a vertical axis that result in non-
negligible along-canyony-components, even if the
flow is exactly perpendicular to the street canyon.
With increasing distance to the intersection, the edge
vortices transform into a primary vortex with a hor-
izontal axis (Baik and Kim, 2004). At the tower lo-
cation, we are far enough from the vertical edge vor-
tices and uniquely a vortex with a horizontal axis is
observed. Nevertheless, the non-uniform roof geom-
etry (different building heights and shapes) may
cause deflections of the primary vortex.

From each of the four instruments operated in the
street canyon (A, B, C and H), a local vortex ro-
tational frequencyΩ can be calculated in thisxz-
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plane. Givenr = x−xc, the vector between the loca-
tion x(x, z) of the instrument and the street canyon
centerline atxc(0, zh/2), andr its length (Fig. 4.3,
bottom), we write

Ω =
ūr

2πr
. (4.2)

ūr is the measured average wind velocity component
in the rotational direction of a circular vortex at the
instrument locationx(x, z), namely

ūr = I(z) (cos(ϕ)ū− sin(ϕ)w̄) (4.3)

whereI(z) determines the sign to account for the
direction of the vortex rotation.I(z) is equal 1 for
z > zh/2, and−1 otherwise.̄u andw̄ are the lateral
and vertical wind components atx(x, z) in the fixed
street canyon system.ϕ is the inclination angle be-
tweenr and the horizontal plane (Fig. 4.3, bottom):

ϕ = arctan
(
z − zh/2

y

)
. (4.4)

This approach includes many simplifications. The
axis of the vortex is assumed to be in the street
canyon center. Numerical and physical scale studies
show that the axis of the vortices are typically asym-
metric and slightly shifted to the downwind-building
(Baik and Kim, 1999; Baik et al., 2000). Further,
flow close to walls and especially in the corners of
the street canyon is described completely unrealistic,
since no roughness and blocking effects are consid-
ered.

Visualization experiments in a water channel show
that the average flow field (but not the instantaneous
motions) resembles a solid body rotation (Caton
et al., 2003). If we have a solid body rotation, an
average rotational vortex frequencyΩc can be cal-
culated. Ωc determines the time of an air parcel to
complete a full circuit in the vortex. It is approxi-
mated by averaging the individualΩ from the four
instruments at different positions within the street
canyon. Ωc is drawn against reference velocitȳu0

in Fig. 4.4. Typically, the reference velocitȳu0 is
measured upwind in a wind tunnel before the flow
encounters the roughness elements. In a real city,
its determination is problematic. Hence, we define
the referencēu0 as the wind vector component per-
pendicular to the canyon axis atz/zh = 2. For
flow from 315 − 360◦, the average ratioΩc/ū0 was
found to be fairly constant. Table 4.2 illustrates that

ambient wind direction (°)

C
V

I

secondary
vortex

primary vortex

along
canyon

cross canyon
(pitched roofs)

along
canyon

cross canyon
(flat roofs)

     
 

 

 

 

 

0 90 180 270 360

-1.0

-0.5

0.0

0.5

1.0

Figure 4.5: Average street canyon vorticity index (CVI) at U1
according Eq. 4.4 as a function of ambient wind direction at
tower top. Data source similar to Fig. 4.4.
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Figure 4.6: Ensemble street canyon cross-section at U1 for the
specific flow situation in a sector with75◦ inclination to the
street canyon. Data source: similar to Fig. 4.3 for flow from
130 − 140◦, n=143 h).

the value ofΩc/ū0 is related to stability. With in-
creasing stability∗, the ratio becomes lower, which
is mainly attributed to the shape of the wind pro-
file above the roofs and hence affectsū0. There is
a slight tendency forΩc/ū0 to be smaller towards
higher wind velocities, which is an indication that
the vortex becomes more decoupled from the ambi-
ent flow.

For each measurement level and time step, a canyon
vorticity index (CVI) was calculated by relating the
component̄ur to the mean 3d wind velocitȳU . The
CVI is a measure how similar the measured three

∗ If not indicated, stability is always calculated at the topmost
tower level byζ = (z − zd)/L, which is assumed to represent
conditions in the overlying inertial sublayer.
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dimensional wind direction (not the velocity) com-
pares to the above simplified model of a primary vor-
tex with a horizontal axis:

CVI =
ū0

|ū0|
ūr

Ū
. (4.5)

The first term accounts for the sign, according to the
direction of the ambient flow. A positive sign in-
dicates that in the upper street canyon, air flows in
the direction of the ambient wind and flows in the
opposite direction at street level. A negative sign
indicates a counter-rotating vortex. SinceŪ is al-
ways greater or equal̄ur, the CVI is between−1
and+1. The closer the absolute value is to 1, the
more the flow field resembles a perfect, symmetric
primary vortex. Numbers around zero indicate that
the mean flow at the point is completely different
from the vortex-model.

Figure 4.5 illustrates the average CVI at U1 (from
levels A, B and C) for different ambient wind direc-
tions. As expected, CVI is close to zero with flow
along the street canyon axis. Flow perpendicular to
the street canyon over the flat roofs from NW show
a CVI which is up to+0.5. This corresponds to the
text-book case of the primary vortex illustrated in
Fig. 4.3 (top). In situations where the wind blows
from SE (120 − 150◦), the air first overflows the
high pitched roof of building 100, which reaches up
to 1.7 zh. These conditions result in a CVI that is is
strongly negative, indicating similarity to a counter-
rotating vortex in the street canyon. Here, we have
a ‘step-down’ situation. Air flows from the high
pitched roof with75◦ inclination to the street canyon
axis over the cavity and then over the lower flat roofs
in the NW. Figure 4.4 illustrates the wind vectors in
a cross-section for this specific flow situation. The
building heights have been readjusted to represent
the cross-section with75◦ to the street canyon, be-
cause building heights vary along the street canyon.
The observed wind direction at street level (A) is
parallel to the ambient wind whereas in the upper
canyon (B), wind blows slightly in the opposite di-
rection. The grey circle in the lower street canyon
is an interpretation of a secondary weak counter-
rotating vortex. The observed wind velocity in the
street canyon (normalized bȳu0) is low compared
to the situation in Fig. 4.3 (top) with flow over the
flat roof. This fits well to observations reported from
wind tunnels where secondary vortices are typically
weak (Kovar-Panskus et al., 2002). In the upper
street canyon, no well defined primary vortex can be

found. Upwinds and channelling along the canyon
dominate.

The present observations have similarities with re-
sults presented by Longley et al. (2004). They
investigated the flow field in a street canyon in
Manchester, U.K. with different wall heights at the
two sides. They concluded that if air flows first over
the building row with the lower wall (‘step-up’ situ-
ation), this results in a clear primary vortex, as ob-
served in the present dataset. But if air flows first
over the higher row (‘step-down’), they interpreted
an elevated vortex from the measurements, and only
upwinds were measured in the street canyon. There
was little evidence for a secondary counter-rotating
vortex.
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Figure 4.7: Sample three-minute time period illustrating (a)
instantaneous values of wind velocity at tower top (thick line)
and within the street canyon (3 thin lines from levels A, B, C)
and (b) instantaneous CVI and rotational frequencyΩc. Data
source: Sonics A to C and F, 1 s averages.

Intermittency — The vortex can be found only in
the average wind field. Looking at high-frequency
instantaneous data, the vortex is highly intermittent.
It builds up and decays continuously. Figure 4.7b il-
lustrates a three-minute time series of average vortex
rotational frequencyΩc and the CVI with an ambi-
ent wind direction from the flat roof perpendicular
to the street canyon (333◦). In the time-series, 30
to 40 second blocks of high CVI can be found, as-
sociated with higherΩc. Quasi-periodic events of
shorter duration destroy the vortex and letΩc drop
down, or even change the sign of the rotation. This
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can not be attributed to the ambient flow, because
wind velocityŪ neither at tower top nor in the street
canyon does show the same pattern (Fig. 4.7a). In-
stationarities have their typical peak frequency in the
order of 30 to 60 s (all data with ambient wind from
NNW), and no dependence on peak frequency from
the wind velocity aloft can be seen. This supports
that instationarities are determined through Kelvin-
Helmholtz instabilities arising from the shear at roof
top and not from larger organized structures in the
flow aloft. Instationarities and intermittency of the
vortex is also reported from wind tunnel studies ad-
dressing flow in cavities (Rambert et al., 2000) and
from real-world measurements (Louka et al., 2000;
Nielsen, 2000).

4.1.2 Vertical wind profile

Definitions — In many applications, the specific
flow pattern in the street canyon are not of central
interest. Instead, a horizontally averaged wind pro-
file is preferred in the urban roughness sublayer. We
can address the mean wind profile in the roughness
sublayer with different parameters. In the present
study, the following definitions are applied:

• Thelongitudinal wind velocity(or justwind ve-
locity) ū is the average vector wind component
pointing in the direction of the mean horizontal
wind at tower top. It is assumed that the mea-
surement at tower top reflects the ambient wind
direction in the inertial sublayer. The individ-
ual ū-component at lower measurement levels
all point to the same direction in space, en-
abling the calculation of gradients. Therefore,
ū can be negative, for example within a vortex
where the local wind direction is opposite to the
wind at tower top.

• The horizontallocal wind velocityūl is defined
asūl = (ū2 + v̄2)1/2. It is always positive, and
is equal the length of the horizontal projection
of the average wind vector at given height.

• m̄ is the scalar horizontalwind speedand
is close to the speed measured by a cup
anemometer. m̄ is important in questions
addressing wind load and wind comfort in
canyons. It is always positive and̄m ≥ ūl ≥ ū.
Note thatm̄ is incompatible with the Reynolds

decomposition in the present Cartesian frame.
It already includes energy, which is attributed
to turbulent motions.

• Ū is the3d wind velocity. It is always positive,
and corresponds to the length of the local aver-
age wind vector.̄U = (ū2 + v̄2 + w̄2)1/2

• Analogous,M̄ is the mean3d wind speed.

The horizontally averaged profile — Figures
4.8a to c illustrate that the different definitions lead
to significant differences in the average vertical wind
profile. When addressing dispersion and advection
in the urban roughness sublayer, a horizontally av-
eraged view is preferred. In a horizontally aver-
aged view, only the profile of the topmost definition,
the longitudinal wind velocity〈ū〉(z), is of interest.
〈ū〉(z) describes the average longitudinal advection
velocity. 〈w̄〉 = 0 and — assuming an isotropic ur-
ban configuration — also〈v̄〉 = 0. This results in
〈Ū〉(z) = 〈ū〉(z). All exchange processes associ-
ated with a local, non-zerōw or v̄ are addressed as
dispersive motions, i.e.̄w = w̄′′ andv̄ = v̄′′ respec-
tively. In the horizontally averaged view, they affect
exchange of mass, momentum or energy only if cor-
responding dispersive covariances are non-zero (cf.
Section 3.3.3). Hence, we try to conceptually sep-
arate the average profile of horizontal wind〈ū〉(z)
from the local three dimensional wind vectorsŪ(z).

The profiles in Fig. 4.8a show the longitudinal wind
velocity 〈ū(z)〉 normalized by its value at tower top.
Profiles from the three towers are compared. To al-
low a comparison between sites, profiles are further
normalized to coincide atz/zh = 2. The profiles
are averaged using the procedure described in Sec-
tion 3.3.3. They include selected data with neutral
stability andū(top) > 1.0 m s−1.

The average profile of〈ū(z)〉 can be conceptually
divided into three layers: At the bottom there is the
canyon layer, where channelling and partially vor-
tices result in high variability between data from dif-
ferent ambient wind directions, as indicated by the
error bars. However, the horizontally averaged pro-
files from the two sites with measurements in the
street canyon are surprising similar. In the middle
of the street canyon, gradients are rather low, and
they increase in the upper street canyon. Except, in
the very lowest part (z < 0.2zh), the street canyon
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Figure 4.8: Neutral wind profiles of (a) horizontal longitudinal
wind velocity 〈ū/ū(2zh)〉, (b) local horizontal wind velocity
〈ūl/ū(2zh)〉 and (c) mean horizontal wind speed〈m̄/m̄(2zh)〉
at U1, U2 and S1. Data source: Sonics, hourly averages, full
measurement period (differs between sites), neutral stability at
tower top.

part of the profile resembles the exponential function
suggested by Cionco (1965) for canopies. Theroof
layer around roof top is characterized by highest
gradients due to the skimming flow over the street
canyon. Similarly to profiles measured over and
within plant canopies (Finnigan, 2000), an upper∗

inflection point is found around canopy top. The in-
flection point is of central interest, because it creates
an instability, which further dominates turbulent ex-
change in this part of the roughness sublayer. In the
open backyard at S1, the gradient just above roof
level is less pronounced. Here, a wake interference
flow is expected due to the lower building density.
Finally, theabove-roof layeris expected to approxi-
mate the well known logarithmic wind profile of the
inertial sublayer.

Figure 4.8c shows the vertical profile of̄m. Anal-
ogously,m̄ is normalized by its value at tower top
and the average profiles are normalized to coincide
at z/zh = 2. Only data with windm̄(2zh) >
1.0 m s−1 are considered. Differences between〈ū〉
and 〈m̄〉 are significant in the street canyon where
lateral and vertical deviations from the wind direc-
tion at tower top are frequent. In the street canyon,
the vertical profile of〈m̄〉 is nearly constant with
height (〈m̄〉canyon≈ 0.35m̄(2zh) for neutral condi-
tions). Further, the scatter for〈m̄〉 is smaller in the
street canyon, compared to〈ū〉.

Variability — When analyzing single profiles, a
variety of local features are revealed that evolve un-
der specific conditions. These features include addi-
tional elevated inflection points, reversal of the flow
direction in the street canyon, or local deflections.
They are lost by the above averaging procedure.

Figure 4.9 shows six selected 3d views of the street
canyon at U1. Each panel shows the average profile
from the indicated wind direction andn refers to the
number of observations (60 min blocks). Black dots
represent the exact values at measurement heights.
In between a cubic spline interpolation was per-
formed.

Profiles with cross-canyon flow (a and b) show
stronger gradients towards rooftop, and the vortex
with flow from NNW results in the counter directed

∗ Considering the lower boundarȳu = 0 at z = 0, there is a
weak first inflection point in Fig. 4.8a where curvature changes
from negative to positive in the lower street canyon.
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Figure 4.9: 3d visualization of the horizontal local wind velocitȳul(z) = (ū(z)2 + v̄(z)2)1/2, and corresponding horizontal wind
direction in the street canyon at U1 for selected cases. Data source: Sonics level A to F, hourly averages, November 1, 2001 to July
15, 2002, all stabilities.
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Figure 4.10: Profiles of the average scalar wind speed
m̄/m̄(top) as a function of ambient wind direction at U1. Iso-
lines denote heights of similar scaled wind speedm̄/m̄(top).
The dashed areas indicate the street canyon axis. Important in-
flection points are marked by triangles. Data source: 12 cup
anemometers, 10 min averages, November 1, 2001 to July 15,
2002, all stabilities.

flow in the street canyon. The figure illustrates the
fundamental differences between flow over flat roofs
and flow over pitched roofs, as already discussed in
the previous section. Generally, flow over pitched
roofs results in much lower wind velocities in the
street canyon than flow over flat roofs. Wind tun-
nel results support this observation and show that
vortices do not develop in canyons with pitched-
roof buildings (Kastner-Klein et al., 2004). As a
consequence, vertical exchange is significantly re-
duced during these conditions. A similar pattern can
be observed for ambient wind oblique to the street
canyon. Here, the situation where wind first blows
over the flat roofs (c) can be interpreted as a helix-
shaped vortex with an along-canyon component.
Oblique flow over the pitched roofs mainly results in
along-canyon channelling. The weak counter rotat-
ing secondary vortex observed for a specific sector
can not be found in Fig. 4.9. The cases (e) and (f)
with along-canyon flow are characterized by a nearly
linear wind profile. The profile in panel (f) shows a
distinct deflection into the street canyon at the third
and fourth level, attributed to a very local phenom-
ena: The next downwind building (95) is slightly
higher but at measurement location, we are already
above the adjacent roof (97). Further upwind, build-
ings of the adjacent row are even lower. With this
narrowing configuration, the flow is forced to con-

0A 1A 2A 3A 4A

0B 1B 2B 3B 4B

z

u(z)

Figure 4.11: Wind profile classification with number of inflec-
tion points.

verge into the street canyon.

Figure 4.10 addresses again the same topic, but with
data from the cup anemometer profile. The cup
anemometer profile with its 12 levels provides an
enhanced vertical resolution and highlights a region
closer to the walls. Abovezh, the normalized pro-
files m̄/m̄(top) show no difference between flow
over the flat roof and flow in an along-canyon con-
figuration, and the corresponding isolines are nearly
parallel. Different patterns are associated with flow
over the pitched roof row. Here, the inflection point
is elevated and gradients are stronger. Horizontal
wind speed in the middle and upper street canyon
is significantly higher with along-canyon flow com-
pared to the two cross-canyon situations. These
differences vanish at pedestrian levels wherem̄ is
nearly constant with ambient wind direction.

Classification — Due to the high number of indi-
vidual profiles, an automated classification was per-
formed. The classification sorts profiles ofū(z) and
m̄(z) according their number of inflection points
and their sequence in the curvature. Figure 4.11 il-
lustrates the notation with the number denoting the
number of inflection points and the letters indicat-
ing, if the first section from ground to the first in-
flection point has a negative (A) or a positive (B)
curvature∂2ū/∂z2.

In practice, the measured profiles ofū(z) andm̄(z)
(aggregated over 10 min) were vertically interpo-
lated by a parametric cubic spline interpolation. As a
lower boundary condition, wind velocity at ground
level z = 0 was set to zero. The upper boundary
was described by minimizing tension. From the in-
terpolation, the gradient and the curvature were cal-
culated. Further, the number, height and sequence
of inflection points were detected. The strength of
inflection points is not considered. Conditions with
a nearly linear wind increase with height are associ-
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Table 4.3: Absolute frequency for wind profile types detected
in the range0 < z < 2zh. Data source: Sonics A to F (U1 and
U2), 10 min averages, November 1, 2001 to July 15 2002, all
stabilities.

U1 U2
n = 28635 n = 24298

m̄(z) ū(z) m̄(z) ū(z)
0A 0.0% 0.0% 0.0% 0.0%
1A 0.7% 0.4% 0.6% 0.2%
2A 53.3% 46.0% 16.6% 10.9%
3A 17.7% 6.2% 44.6% 24.7%
4A 27.9% 17.6% 38.2% 17.8%
0B 0.0% 0.0% 0.0% 0.0%
1B 0.0% 0.0% 0.0% 0.0%
2B 0.0% 8.4% 0.0% 2.4%
3B 0.0% 13.0% 0.0% 25.5%
4B 0.0% 4.7% 0.0% 12.7%
Others 0.4% 3.7% 0.0% 6.0%

ated with higher error-sensitivity, and small changes
in the curvature may trigger artifact inflections in the
interpolated profile.

For the shape of̄u andm̄, Tab. 4.3 separately lists the
frequency of the different profile types. At U1, the
most frequent type is 2A, followed by 4A. Type 2A
profiles reflect the shape of the mean wind profile
〈ū〉(z) with two inflection points (Fig. 4.8a). Type
2A profiles are similarly to the ones observed in
most plant canopies. 4A are staggered wind pro-
files with two steps, both typically abovezh. Fig-
ure 4.13 (left) illustrates the profile classification as
a function of ambient wind direction for U1. It illus-
trates that for the majority of flow directions, 2A is
the predominant profile type. 4A-profiles are mainly
observed in along-canyon flow where wind is nearly
linear with height. Here, the first step corresponds to
the street canyon profile, the second step is found at
the canyon top, and the last one at the height of the
highest pitched roofs.

For m̄, no profiles of the type ‘B’ exist (Tab. 4.3).
All profiles first start with a stronger gradient, which
then is continuously decreasing with height in the
lowest section below the first inflection point. Pro-
files of type ‘B’ are observed for̄u, which is due to
the fact that the street canyon vortex may result in
a negativēu at the first measurement height. Figure
4.13 illustrates that profiles of type ‘B’ are mainly
associated with flow over the flat roof from NNW
where the primary vortex develops. At U2, ‘B’-
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Figure 4.12:Height of the strongest inflection point in the mean
wind profileze relative to mean building heightzh at U1 against
wind direction of the ambient flow. Data source: Sonics A to F,
hourly averages, November 1, 2001 to July 15 2002, all stabili-
ties.

profiles are more frequent with cross-canyon flow
from both over the pitched roof and from the back-
yard (not shown). These observations underline the
importance of recirculations in the canopy layer.

At U1, types 1A, 3A, 0B, 2B and 4B are less fre-
quent (< 20%). They have an increasing wind gra-
dient at the topmost section. Since the wind gradi-
ent is supposed to decrease with height in the iner-
tial sublayer, there must be another inflection point
above the topmost measurement, which is not cov-
ered by the vertical extent of the tower. In contrast,
these profiles are more frequent at U2 ( 40%), and
are mainly associated with overflow over the pitched
roof which separates the profile. The roof extends up
to 1.5zh, and it is likely that the flow at tower top is
still influenced by the roof geometry.

Figure 4.13 (right) illustrates that with increas-
ing wind velocity, profiles with simpler geometry
evolve.

Height of inflection points — We defineze∗ as
the height of the inflection point with the strongest
local wind gradient∂ū/∂z. ze was detected in the
range0.5zh < ze < 2zh. Figure 4.12 illustrates
the height ofze for all data available at U1. The
highest frequency is found between 1 and 1.2zh.
ze is slightly higher with wind from the pitched

∗ ‘e’ stands for ‘effective building height’. The observed dis-
similarity betweenzh andze may be an indication that many
low buildings do not influence the flow, since typically over
roughness elements of uniform height,ze = zh (see Section
4.2.2)
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Figure 4.13: Relative frequency for wind profile types at U1 as a function of ambient wind direction (left) and wind velocity (right).
Data source: Sonics A to F, hourly averages, November 1, 2001 to July 15, 2002, all stabilities.

Table 4.4: Stability classification in the present study according
the stability parameterζ measured at tower top.

Class Range
Convective −10 < ζ ≤ −0.5
Unstable −0.5 < ζ ≤ −0.1
Neutral −0.1 < ζ ≤ +0.1
Stable +0.1 < ζ ≤ +10

roof row. Here, another elevated group of inflec-
tion points is observed at roughly1.4zh. These re-
gions are characterized with two co-existing bands
of ze. Note that this corresponds exactly to the flow
directions with highest frequency of staggered 4A-
profiles (Fig. 4.13).

Stability influence — Figure 4.14 shows mean
wind profiles〈ū(z)/ū(top)〉 at U1 for different over-
lying stabilities measured at tower top. The stabil-
ity classification used in the present work is summa-
rized in Tab. 4.4. First of all, normalized gradients
are strongest during neutral runs and decrease fur-
ther with increasing instability. Stable runs do not
show strongest gradients as expected. Stable strati-
fication is measured at tower top, while simultane-
ously street canyon air masses are slightly unsta-
ble. Within the street canyon as well, profiles are
strongest under neutral conditions and decrease with
destabilization. Again, during seldom observed sta-
ble runs, gradients in the street canyon are smallest
or even negative, which is due to a complete decou-
pling of the street canyon air masses during these
low wind situations.

4.1.3 Determination ofz0 and zd

If the roughness sublayer is not explicitly simulated
in a model, i.e. if the lowest model level is higher
than the roughness sublayer height, the urban sur-
face is typically addressed by an appropriate set of
zeroplane displacementzd and roughness lengthz0.
There is a number of approaches to determinez0
andzd from profiles of wind velocity and/or turbu-
lence measurements (Grimmond et al., 1998). These
methods typically need input data from instruments
operated in the inertial sublayer and do not work
correctly within the roughness sublayer. However,
with increasing height, we are leaving the neigh-
borhood scale internal boundary layer, because ur-
ban surfaces are rarely homogeneous over large ar-
eas. The question “how high is low enough?” ex-
presses this dilemma. To investigate this problem,
a method taking into account a variable Reynolds
stress with height, the temperature variance method
(Rotach, 1994) and a new spectral method are evalu-
ated. Results are compared to simple rule-of-thumb
expressions and empirical relationships betweenzd,
z0 and surface morphometry.

Logarithmic fit with local u∗ — At least three
sonics were operated above mean building heightzh
at all turbulence towers, U1, U2 and S1. These mea-
surement levels at heightszj provide all local mean
vector wind velocityū(zj) and localu∗(zj) (for the
definition cf. Section 4.2.1). 30 min block averages
of ū(zj) andu∗(zj) were calculated from runs that
have (i) neutral stability, (ii) a continuously increas-
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Figure 4.14: Averaged profiles of (a) mean horizontal wind ve-
locity and (b) mean horizontal wind speed normalized by cor-
responding values at canopy top for different stabilities at U1.
Data source: Sonics A to F, hourly median values. Only values
with ū(zh) or m̄(zh) > 0.5m s−1 are considered.

ing wind velocity with height, and (iii) a mean wind
velocity ū at the topmost level> 1.5 m s−1.

The integration constantr from the logarithmic wind
profile equation was evaluated for each measure-
ment heightzj by varying the parameterd between 0
and 1.5zh. The logarithmic wind profile is extrapo-
lated down with an explicitly localu∗(zj) from each
measurement level separately:

r(zj , d) = (zj − d) exp
(
−kū(zj)
u∗(zj)

)
. (4.6)

The variability ofr determined from the three mea-
surement heights for givend is calculated by

E(d) =

 1
N

N∑
j=1

(r(zj , d)− {r}(d))2
 1

2

(4.7)
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Figure 4.15: Zeroplane displacement (top) and roughness
length (bottom) determined separately for different wind direc-
tions of the ambient flow at U1. Values were determined with a
localu∗-fit. Symbols indicate monthly values and the thick line
indicates the average value over the full year. Data source: Son-
ics D to F, hourly values, November 2001 to July 2002, neutral
stability only. The number of runs is indicated in the lower plot
separately for the different wind direction classes.

where {r} is the averager of all measurement
heights for givend,

{r}(d) =
N∑

j=1

r(zj , d). (4.8)

The functionE(d) in Equation 4.7 is minimized to
E|min by varying d. d and {r} at its minimum
are taken as the overall zeroplane displacementzd
and roughness lengthz0. The value ofE|min is a
measure of how appropriate the logarithmic law de-
scribes the profile with givenzd andz0.

This procedure was applied separately for 16 equally
spaced wind direction sectors. The separation of the
data into different wind direction classes allows the
identification of surface inhomogeneities. For each
wind direction sector, an individualzd andz0 was
calculated by minimizing Equation 4.7.

Figure 4.15 illustrates the variability ofz0 andzd for
different wind directions at site U1. If we observe a
cross-canyon flow,zd is between0.8 and0.9zh, and
z0 typically between1 and 2.5 m. Along-canyon
flows result in a very lowzd (1–3 m above street
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Table 4.5: Spatial averagez0 andzd determined with the log-
arithmic fit using local friction velocity. Data source: Sonics E
to F (U1,n=1920 h), E to F (U2,n =4777 h) and A to C (S1,
n=386 h), hourly values, full operation periods, neutral stability
andū(top) > 1.5 m s−1 only.

Site 〈z0〉 〈z0〉/zh 〈zd〉 〈zd〉/zh
U1 2.05m 0.14 10.8m 0.74
U2 1.41m 0.09 14.0m 0.93
S1 2.04m 0.27 1.3m 0.17

level) and a remarkably higher roughness lengthz0.
Here, the logarithmic profile extends down into the
street canyon and the friction at the walls addition-
ally increasesz0.

These sector-individualz0 andzd are then equally
weighted averaged to a global〈z0〉 and〈zd〉, which
are a surrogate for the spatial average. The proce-
dure results in realistic and sound estimates of〈z0〉
and〈zd〉, which correspond to the range reported in
literature and from calculations with morphometric
methods.

Gempeler (1995) calculatedz0 and zd for the site
U2 with only one level ofu∗ atz/zh = 2.25 and the
profile of cup anemometers. His average values are
zd = 14.7 m andz0 = 1.78 for the direction range0
to 180◦, andzd = 19.2 m andz0 = 0.34 for western
flow direction over the roof (180 to 360◦), where the
first pair agrees with values obtained with the above
method.

Temperature variance method (TVM) — The
TVM uses the empiric relationship of the dimen-
sionless temperature variance (Eq. 2.81) to solve
for zd, if σθ(z)/θ∗(z) is measured (Rotach, 1994).
Practically, the error between measuredσθ(z)/θ∗(z)
and the prediction according Eq. 2.81 is minimized
by varyingzd in Eq. 2.81. The method only works
if the urban surface is thermally homogeneous and
zd is the same for momentum and temperature ex-
change.

The TVM method has been applied to all above roof
levels at the profile towers. Results were calculated
once with classical surface layer values, and once
with the urban modified values proposed by Roth
(2000) (Tab. 2.1). Values ofzd from the topmost
levels are summarized in Tab. 4.6. Unfortunately,
the determined values are highly unrealistic, and in

Table 4.6: Zeroplane displacement determined by the tempera-
ture variance method. Data source: Sonics F (U1), F (U2) and C
(S1), hourly averages, June 10 to July 10, 2002, unstable cases
only.

Site z/zh 〈zd/zh〉SL 〈zd/zh〉urban n

U1 2.17 2.06 1.98 575
U2 2.49 2.22 2.09 560
S1 2.11 1.89 1.41 433

the majority of caseszd(TVM) > zh. Also, the in-
troduction of the urban values does not significantly
decreasezd.

There are several explanations for this failure. First,
the thermal roughness of the present urban surfaces
may be higher than the roughness of momentum.
Secondly, low-frequency contributions produced in
larger scales (inactive turbulence) may enhanceσθ,
which do not scale with surface exchange. The long
averaging period over 60 min and the fact that no
detrending was applied may support the overestima-
tion. The most important reason for the failure of
the TVM is the fact that temperature variance is ver-
tically relocated, i.e. the import by turbulent trans-
portw′θ′2 at this height is stronger than in the sur-
face layer. Excess temperature variance from lower
regions affects the sensors at tower top. Hence, tem-
perature variance can not be described by local pro-
duction of variance. Interestingly, and this supports
the latter explanation, the TVM results in significant
better estimates closer tozh where temperature vari-
ance is exported (see Section 4.4.1). At U1, the esti-
mates ofzd(TVM) are 0.87, 0.91 and 1.31 timeszh
for z/zh = 1.01, 1.23 and 1.53 (urban values).

Feigenwinter (2000) reported from a measurement
tower located 400 m to the south-east of U1 in
1995/96 that the TVM applied to levels closer to
zh provided realistic estimates ofzd. But his top-
most measurement atz/zh = 3.2 resulted in simi-
lar unrealistic values forzd. Grimmond et al. (1998)
found the TVM only useful at one of four sites inves-
tigated. Hence, we seek for a more suitable alterna-
tive, which is neither affected by inactive turbulence
nor by vertically relocated temperature variance.

Spectral method — Spectral analysis of the wind
velocity components provides an independent ap-
proach to determinezd. The spectral method in-
troduced and tested here uses the fact that peak fre-

59



stratus

Table 4.7: Spatial average ofzd determined from peak frequen-
cies ofu, v, w andθ - power spectra. Data source: Sonics F
(U1), F (U2) and C (S1), hourly averages, June 10 to July 10,
2002, neutral cases only.

Site U1 U2 S1
n 821 2123 302
〈zd(nmax(u))〉 13.3 m 15.3 m 6.3 m
〈zd(nmax(v))〉 12.0 m 15.2 m 5.0 m
〈zd(nmax(w))〉 11.8 m 13.0 m 3.5 m
〈zd(nmax(u))〉/zh 0.91 1.01 0.84
〈zd(nmax(v))〉/zh 0.82 1.01 0.67
〈zd(nmax(w))〉/zh 0.81 0.86 0.47

quencies of neutral power spectranmax(u), nmax(v)
and nmax(w) scale only with height above zero-
plane displacement. This height dependent shape
of spectra is known from surface layer scaling, but
has also been observed above a number of plant
canopies, provided that the measurement location
is far enough above the surface i.e. in the inertial
sublayer. The neutral limits of normalized peak fre-
quencies seem to be fairly constant in the inertial
subalyer above all types of surfaces, with values of
nmax(u) = 0.08, nmax(v) = 0.22 andnmax(w) =
0.55 (Kaimal and Finnigan, 1994).

nmax is defined as the natural peak frequencyfmax

scaled by a scaling length (z − zd) and mean wind
velocity ū. This is used to solve forzd from the
measured peak frequenciesfmax of a large ensemble
of neutral power spectra by

zd = z − nmaxū

fmax
. (4.9)

Peak frequenciesfmax were determined with a poly-
nominal fit through spectra, namely

fmax = exp
(
− c1

2c2

)
(4.10)

with

log (fS(f)) = c2 log f2 + c1 log f + c0. (4.11)

Estimations ofzd by the spectral method are encour-
aging, and values are summarized in Tab. 4.7 for the
topmost measurement levels and separately for the
spectra ofu, v andw. The spectra ofw result in
most realistic estimates, which is supported by the
fact that fluctuations inw are uniquely determined
by near-field surface processes, andu andv incor-
porate — likeθ — inactive turbulence from far field

Table 4.8: Ratio between zeroplane displacementzd and mean
building heightzh calculated with different morphometric ap-
proaches.

U1 U2 S1
Kutzbach (1961) 0.84 0.75 0.69
Counihan (1971) 0.73 0.48 0.36
(Raupach, 1994) 0.62 0.59 0.45
Macdonald et al. (1998) 0.79 0.63 0.53
Kastner-Klein and Rotach
(2004)

0.92 0.81 0.71

Jackson (1981) 0.90 0.78 0.70

processes. This explains the higherzd values deter-
mined from spectra ofu andv compared tow. Close
to the roofs, the method fails. Here, length scales
of turbulent fluctuations are no longer depending on
height abovezd (cf. Section 4.3.1).

Morphometric methods — If zd would be un-
known from measurements, it could be estimated
using morphometric parameters of the urban sur-
face. For an increasing number of cities, authori-
ties provide digital 3d building data sets, which are
a powerful tool for the analysis of urban surface
forms. Such high resolution models can provide
detailed measures of three dimensional parameters.
Many empirical relations are described in literature
to relate morphometric parameters to aerodynamic
properties of the urban surface. A comprehensive
overview of methods is presented in Grimmond and
Oke (1999a).

For the present calculations, morphometric input
data were deduced from a high resolution digital
building model with 1 m raster size and for a cir-
cle of 250 m around the sites (cf. Tab. 3.3). Ta-
ble 4.8 presents calculated values ofzd for three
urban surfaces. The method of Jackson (1981) de-
termineszd from a combination of measured pro-
files of Reynolds stress and morphometric parame-
ters. The given values are calculated from neutral
runs according the formulation in Kastner-Klein and
Rotach (2004).

Many empiric relationships between morphometry
and flow are the result of extensive wind tunnel stud-
ies. In most wind tunnel studies, regular arrays of
obstacles are investigated and related to the mea-
sures of building breadthxb and canyon widthxc.
For the urban surface, these measures are not avail-
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able, and are replaced bycharacteristic length mea-
sures. The characteristic measures were calculated
using geometric methods. For U1 and U2, the as-
sumption that the surface represents infinitely long
canyons gives the most realistic assumption. These
values and the corresponding formulas are summa-
rized in Tab. 3.3.

4.1.4 Summary

• The mean wind profile is conceptually divided
into three regions: At bottom there is the
canyon layer, where channelling and partially
vortices result in high variability between data
from different ambient wind directions. The
street canyon wind profile shows similarities to
an exponential profile. Theroof layer around
roof top is characterized by strongest gradients,
and an inflection point is found in the region
1 < z/zh < 1.4. Finally, theabove-roof layer
approximates the logarithmic wind profile of
the inertial sublayer.

• The various definitions of mean wind, namely
〈ū〉(z), 〈ūl〉(z) and〈m̄〉(z), result in distinctly
different profiles, especially within the street
canyon. For applications in dispersion mod-
elling, it is highly recommended to use〈ū〉,
since only this vector component in its global
frame of reference allows a correct calculation
of a (horizontally) averaged longitudinal advec-
tion within a given height layer.

• It is no surprise that the individual wind pro-
files are strongly determined by the direction of
the ambient wind relative to the street canyon:
flow channelling increases continuously with
decreasing height. Flow perpendicular to the
street canyon is characterized by strong gra-
dients at rooftop whereas the profile in along-
canyon flow is nearly linear with height.

• Roof shape is an important factor determining
flow in canyons. Flow over flat roofs results in
a clear primary vortex in the street canyon and
is characterized by higher wind speed at street
level. Flow over pitched roofs results in low
wind speed in the street canyon and no clear
vortex develops.

• The observed vortex at U1 is intermittent, and
only found in the average wind field. The high-

frequency flow is uncorrelated with processes
above roofs, indicating that intermittency is
mainly driven by Kelvin-Helmholtz instabili-
ties.

• For the dense urban surfaces,zd is higher com-
pared to flexible plant canopies where the rule-
of-thumb is typically2/3zh. The higher urban
values ofzd can be attributed to the stiffness
of the urban surface, which prevents the mean
flow to penetrate deep into canyons. At U1
and U2,zd is in the order of0.8 to 0.9zh. For
the suburban surface,zd = 0.6zh is suggested,
but a high variability is found between different
methods.

• The less dense suburban surface at S1 (λP =
0.28) shows a higher roughness length ofz0 =
0.3zh compared to the two dense urban sur-
faces (λP = 0.54 at U1 and0.37 at U2) with a
z0 in the order of0.1zh.
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4.2 Momentum exchange

In this chapter, momentum transfer in the urban
roughness sublayer is addressed. After introductory
definitions (Section 4.2.1), the vertical profile of tur-
bulent momentum transport and its parameterization
is discussed in Section 4.2.2 and 4.2.3, respectively.
Further, in Section 4.2.4, structures contributing to
turbulent momentum transfer are analyzed with the
help of quadrant analysis. Finally, in Section 4.2.5,
the magnitude of the dispersive stress is estimated.

4.2.1 Definitions and restrictions

A main characteristic of the urban roughness sub-
layer is a profile of turbulent momentum transport,
which is not constant with height (Rotach, 1999).
To account for this, the notationu∗(z) denotes ex-
plicitly height-dependent local values in the present
study. A globalfriction velocityis only valid within
the inertial sublayer and is denotedu∗(IS).

Further, local wind direction at any height can dif-
fer from the direction at tower top. Therefore, the
classical surface-layer calculation ofu∗ (Eq. 2.67)
is extended by taking into account local lateral con-
tributions fromv′w′:

u∗(z) =
(
u′w′2(z) + v′w′2(z)

)1/4
. (4.12)

The two covariancesu′w′(z) andv′w′(z) incorpo-
rate the total turbulent transport of horizontal mo-
mentum. Unfortunately, in the street canyon, values
of u′w′ and v′w′ are not only affected by vertical
transport of horizontal momentum, but also contam-
inated by local horizontal transport of vertical mo-
mentum in direction towards the walls. There is
no possibility to separate these effects without hav-
ing lateral and longitudinal gradients simultaneously
measured. Hence, the local three dimensional turbu-
lent momentum transport is not covered by the one-
dimensional parameteru∗(z).

However, in the horizontally averaged view, posi-
tive and negative horizontal turbulent transport is as-
sumed to counterbalance.

Table 4.9: Frequencyf for each of the measurement levels at
U1, U2 and S1 to measure highestu∗(z) in the profile. Data
source: All sonics, full operation periods, all stabilities.

U1 U2 S1
n=3752h n=4416h n=595h

z/zh f(%) z/zh f(%) z/zh f(%)
2.17 19.3 2.49 23.1 2.11 51.3
1.53 61.5 1.98 9.8 1.61 36.8
1.23 11.9 1.44 58.6
1.01 4.4 1.10 5.4 1.11 11.9
0.77 1.1 0.92 2.9
0.25 1.7 0.37 0.3

4.2.2 Vertical profile of Reynolds stress

At U1 and U2, the vertical profile ofu∗ (Fig. 4.16a)
is characterized by a maximum well abovezh and
by a strong reduction with height below. This agrees
qualitatively with previous urban full-scale studies
(Rotach, 1991; Oikawa and Meng, 1995; Feigenwin-
ter et al., 1999). Also at S1,u∗(z) decreases with
height, but the limited vertical resolution does not
allow an identification of a clear maximum. The up-
per two levels indicate a nearly constant Reynolds
stress with height.

Rotach (2001) suggests that the height of maximum
u∗(z) may be used as a definition for the roughness
sublayer height over urban areas. Further, its value
referred to asumax

∗ , can be regarded the basis for
a velocity scale for the whole roughness sublayer.
Its magnitude is interpreted as the result of the total
drag the surface exerts on the ambient flow.

Height of maximum u∗ — In the present work,
the height of maximumu∗(z) is denotedzf and
is not mandatorily equal to the blending heightz∗
(which may be different for momentum exchange,
scalars, and flux densities of mass and heat). The
blending heightz∗ is defined as the height where in-
fluences from single roughness elements vanish, and
hence for a parametera, the height where〈ā〉 = ā.
Wind tunnel results from the modelled city surface
around U1 show that horizontal inhomogeneities are
measurable up to a height of3.5zh (Feddersen et al.,
2004). The blending heightz∗ is rather a gradual
transition and difficult to define whereaszf can be
easily determined from the profiles.
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Figure 4.16: Vertical profiles of (a)〈u∗(z)/u∗(top)〉, (b) 〈u∗(z)/ū(z)〉, (c) 〈u′lw′/u2
∗(top)〉, (d) 〈v′lw′/u2

∗(top)〉, (e) 〈rulw〉 and (f)
〈KM/kz′u∗(z)〉 at all three profile towers. SL and ML denote the surface layer and the mixing layer values, respectively. Error bars
in this and subsequent figures are defined in Fig. 4.8. Data source: All sonics, hourly averages, full operation periods, neutral stability
only.
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Figure 4.17: Histograms of the height ofumax
∗ at the two urban

profile towers. Data source: Sonics A to F at U1 and U2, hourly
averages, November 1, 2001 to July 15, 2002, all stabilities and
all wind directions.

Table 4.9 lists the relative frequency ofumax
∗ to be

measured at the different tower levels. If highest
u∗(z) is found at tower top, there is evidence for an
elevatedumax

∗ that is above tower top, and not cap-
tured by the present setup. Ifu∗(z) decreases from
the fifth to the topmost measurement level, there
is no second maximum assumed above the highest
tower level. In that case, the maximalu∗(z) in the
profile corresponds toumax

∗ . Highest frequency for
umax
∗ is measured at U1 atz/zh = 1.53, and at U2 at
z/zh = 1.44. There are nearly no runs whereumax

∗
is found atzh or even in the street canyon. At S1,
the majority of runs show highestumax

∗ at tower top.
There is a remarkable number of profiles withumax

∗
at the middle level (z/zh = 1.61). These situations
are associated with wind from sector N to E. Flow
from this direction overflows an adjacent building
row with pitched roofs reaching up to roughly same
height (see Fig. 3.10).

To determinezf with enhanced vertical resolution, a
parametric cubic spline interpolation was performed
through all individual profiles ofu∗(z) at U1 and
U2. The interpolation is similar to the procedure de-
scribed for mean wind in Section 4.1.2. The actual
height ofzf was calculated as the height where the
interpolatedu∗(z) shows its maximum, and hence
is somewhat influenced by the vertical resolution of
the instruments and the parameters of the interpo-
lation. Runs where maximalu∗(z) was determined
abovez/zh = 2 were removed from analysis. This
affected approximately 20% of all data. Figure 4.17
illustrates the histogram forzf in the range0 to 2zh.
Data include all wind directions, all wind veloci-
ties and all stabilities at both urban towers. High-
est frequency forumax

∗ is found atz/zh = 1.6 at
U1 and atz/zh = 1.5 at U2. The height is sur-

prisingly constant for different flow directions. The
valuezf = 1.55zh is taken for all three profile tow-
ers, all stabilities and all wind directions in the sub-
sequent analysis. There are local features that alter
this height. For example, wind over the flat roof at
U1 results in a small number of profiles that show
their umax

∗ at roughly1.1zh. zf is neither sensitive
to wind velocity nor to ambient stability.

Abovezf , most profiles are characterized by a slight
reduction of u∗(z) to the topmost measurement
level. This decrease is in the order of 10 to 15% at
U1 and U2, but not found at S1. The magnitude of
∂u∗/∂z is significantly lower abovezf compared to
gradients below. Hence, the region abovezf can be
approximated by a constantu∗(z) with height. This
is an indication for the transition to the inertial sub-
layer, as suggested by Rotach (2001) and Kastner-
Klein and Rotach (2004)

Relations to morphometry — The roughness
sublayer below the highest roughness elements cor-
responds to a less permeable layer where momen-
tum is absorbed by form and viscous drag. In con-
trast to plant canopies, the characteristic pattern of
permeable and non-permeable regions is dominated
by larger structures in the order of the characteristic
length scaleL (Tab. 3.3) in the urban canopy.L cor-
responds roughly to the size of repetitive building-
blocks. The plane mixing layer analogy is therefore
not suitable per se.

With stationary and horizontal homogeneous condi-
tions on the neighborhood scale, and with a negligi-
ble horizontal pressure gradient, the simplified hori-
zontally averaged equation of motion (Eq. 2.51) re-
sults in (Raupach and Shaw, 1982):

∂〈u′w′〉
∂z

+
∂〈ū′′w̄′′〉
∂z

= −1
ρ̄
〈∂p̄

′′

∂x
〉+ fv. (4.13)

Hence, the observed negative∂〈u′w′〉/∂z can be at-
tributed to either a positivedispersive stress diver-
gence(second term), canopy drag due to the non-
hydrostatic pressure field around obstacles (form
drag, third term) or the effect ofviscous drag(fv).
Rotach (1991) concluded that for an urban street
canyon, fv can be neglected. The third term is
relevant in a layer that incorporates building vol-
umes. Typically, windward walls of buildings show
a positive, leeward walls a negativēp′′, and hence,
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Figure 4.18: Vertical profiles of morphometric properties of the surface in a 250 m circle around the tower U1. The average sky-view
factorψs(z) was calculated for all open spaces at given heightz taking local horizon angles into account. The dash-dotted line denotes
the height ofumax

∗ . The dotted line indicates the average buildings heightzh. Data source: High-resolution digital building model, 1
by 1 m horizontal resolution, provided by GVA Basel-Stadt.

〈∂p̄′′/∂x〉 is positive. Note that̄p′′ is not constant
at the air-building interface. As a consequence, the
commutation of the horizontal averaging operator
and the horizontal spatial differentiation operator is
not allowed (see Section 3.3.3). The influence of the
dispersive stress divergence∂〈ū′′w̄′′〉/∂z will be ad-
dressed later in Section 4.2.5.

Wind tunnel experiments with obstacles of uniform
height show theirumax

∗ directly atzh (Macdonald,
2000; Cheng and Castro, 2002). Analogous, in many
plant canopies with uniform height, a decrease in
u∗(z) is only found belowzh (Kaimal and Finnigan,
1994). Why do we find an elevatedumax

∗ over urban
surfaces?

The term〈∂p̄′′/∂x〉 in Eq. 4.13 can be only non-
zero, if there are solid roughness elements present at
a given height layerz. Hence, an important aspect is
the definition ofzh. In urban areas, the mean build-
ing heightzh is calculated as the plan-area-weighted
average roof height of the surface fraction occu-
pied by individual buildings, regardless of whether
roofs are high-rise or even belowzd. In contrast, in
canopies with a nearly uniform height, such as many
forests,zh is equal or close to the height of the high-
est obstacles. In most calculations, for example un-
derstorey scrubs and young trees in a forest are not
incorporated. In contrast, in an urban canopy, sin-
gle storey buildings in backyards (commercial build-
ings, garages) lower the averagezh, but aerodynam-
ically, they are not important. Martilli et al. (2002)
demonstrated in numerical experiments with non-

uniform roof heights thatumax
∗ will occur abovezh,

and that the exact height depends on the standard
deviation of the building height distribution. Britter
and Hanna (2003) suggest that the height ofumax

∗
corresponds to the height of the highest obstacles ex-
tending into the urban roughness layer.

Figure 4.18 shows vertical profiles of morphometric
properties of the surface at site U1. There are numer-
ous building obstacles present above the averagezh.
These obstacles result in a non-zero form drag term,
and as a compensation,∂〈u′w′〉/∂z becomes nega-
tive in these height layers. At the present sites, these
initial roughness elements are mainly formed by the
higher pitched roofs. Further, exposed roofs form an
initial point for the development of local shear lay-
ers. The height of the prominent obstacles can be
interpreted analogously to the location of the split-
ter plate in the classical wind tunnel plane mixing
layer, where low (canyon) and a high-speed flow are
initially separated, and instabilities evolve behind.

In an urban canopy with non-uniform building
height, the above definitions ofzh allows form drag
to start well abovezh whereas in a canopy with uni-
form height, it can be only non-zero belowzh. In
extreme cases, the above definition ofzh in urban
environments would even justify thatzd > zh.

Contributions from v′w′ to u∗ — If the local co-
ordinate system is rotated by a single rotation around
the z-axis into local horizontal mean wind veloc-
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Table 4.10: Relative difference betweenu∗ calculated with
locally rotatedu′lw

′ only (ulon
∗ ) and with taking lateral con-

tribution into account (Eq. 4.12,uboth
∗ ), expressed as∆ =

(〈uboth
∗ 〉 − 〈ulon

∗ 〉)/〈uboth
∗ 〉. Data source: All sonics, full oper-

ation periods, neutral stability.

U1 U2 S1
n=3733h n=5249h n=679h

z/zh ∆(%) z/zh ∆(%) z/zh ∆(%)
2.17 4.1 2.49 5.4 2.11 5.5
1.53 6.1 1.98 7.0 1.61 3.2
1.23 6.3 1.44 15.7
1.01 8.6 1.10 7.8 1.11 6.5
0.77 12.0 0.92 11.6
0.25 26.0 0.37 24.7

ity at given height, we retrieveu′lw
′ andv′lw

′ (Fig.
4.16c and d). In single profiles, we often do not find
v′lw

′ to be zero, as it is supposed in the surface layer.
The magnitude of|v′lw′| compared to|u′lw′| is small
at tower top. Atz/zh = 1, the contribution tou∗ is
typically in the order of 10%, and at street level —
where overallu∗(z) are small — in the order of 25%
(Tab. 4.10). These non-zero values are either caused
by a rotation of the wind direction with height as an
effect of flow-channelling into the street canyon (re-
visit Fig. 4.1) or by contamination from lateral flux
densities of vertical momentum.

The sign ofv′l and hencev′lw
′(z) does not reveal the

direction of the associated Reynolds stress. In Eq.
4.12, we implicitly assume momentum to be trans-
ported towards the surface. The profile of mean hor-
izontal wind velocity justifies this, and there is no
change of sign in∂〈ū〉/∂z(z). Hence, in a hori-
zontally averaged view, momentum has to be trans-
ported downwards in the whole vertical profile.

In the horizontally averaged view, negative and pos-
itive v′lw

′ counterbalance each other, assuming that
right-handed and left-handed rotations with height
are of the same frequency. Indeed, the horizontally
averaged profile of〈v′lw′〉 in Fig. 4.16d is close to
zero, and only〈u′lw′〉 is relevant. The incorpora-
tion of v′lw

′ in the calculation ofu∗(z) according to
Eq. 4.12 does not nullify these contributions. Due to
the square, any non-zerov′lw

′ is assumed to enhance
the Reynolds stress in direction towards the surface.
Strictly spoken,u∗ must be seen as the upper limit
of the turbulent transport of horizontal momentum,
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Figure 4.19:Neutral correlation coefficientrulw in dependence
on ambient wind direction atz/zh = 1.53 at U1. SL and ML
denote the surface layer and the mixing layer values, respec-
tively. Data source: Sonic E, hourly average values, November
1, 2001 to July 15, 2002, neutral stability only,n=1010 h.

and(
〈u′w′〉2 + 〈v′w′〉2

)0.25 ≤ 〈
(
u′w′2 + v′w′2

)0.25
〉.

(4.14)

Efficiency — The correlation coefficient (Eq. 2.8)
is a measure of the efficiency of turbulent exchange.
At street level,ul andw are completely uncorrelated
(Fig. 4.16e). With increasing height in the street
canyon,〈rulw〉 becomes relevant and its maximum
is typically found at1.25zh (U1) and at1.45zh (U2).
The horizontally averaged profile is nearly constant
with height abovezh and close to the surface layer
prediction of−0.32 in the upper levels.

Individual profiles from different wind directions re-
veal a consistent pattern, illustrated for U1 in Fig.
4.19. The figure showsrulw at an above-roof level
(z/zh = 1.53) at U1. Smallrulw are found for
along-canyon flow. With this flow configuration, the
magnitude ofrulw is around−0.25 at all heights
abovezh. This indicates a low efficiency, which is
even below the surface layer prediction. The pattern
is different for cross-canyon flow. Here, strong cor-
relations up to−0.5 are measured, exceeding even
proposed plane mixing layer values. In the individ-
ual profiles, the highest magnitude ofrulw (rmax

ulw
)

is found in profiles with flow over the pitched roofs
at z/zh = 1.5 (−0.52) and atzh = 1.0 (−0.41)
for flow over the flat roofs. At street level,rulw

is slightly positive for situations with a vortex (not
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Figure 4.20: Stability dependence ofruw at the towers U1, U2 and S1 in comparison to the rural surface layer at R1. Data source:
Sonics F (U1), F (U2), C (S1) and A (R1), full operation periods.

shown). Here, higher longitudinal fluctuations are
correlated with an upwind. At S1, several regions of
higherrmax

ulw
(on average, up to−0.55) are associ-

ated with upwind flow over exposed pitched roofs in
this neighborhood.

In plant canopies,rmax
ulw

is typically found directly
or even belowzh (Raupach et al., 1996; Kruijt et al.,
2000; van Gorsel et al., 2003). The urban roughness
sublayer shows an elevatedrmax

ulw
, which is found

distinctly abovezh, aroundzf . This may be re-
garded again an effect of the definition ofzh.

Figure 4.20 illustrates the stability dependence of
ruw for the topmost measurements at U1, U2, S1
and R1. The magnitude ofu′w′ decreases with de-
creasing stability, while simultaneouslyσu andσw

are enhanced by buoyancy. In the surface layer,ruw

can be predicted by the empirical functions for the
standard deviations,Au andAw (Eq. 2.81) by

ruw(ζ) = (Au(ζ)Aw(ζ))−1. (4.15)

In unstable conditions, applying the SL-values for
Au andAw (dashed line) leads to a good agreement
with rural values at R1. At the urban sites how-
ever, ruw is above the prediction in neutral condi-
tions, and lower (stronger correlation) during unsta-
ble runs. This cannot be an effect of the scaling
height. A reduction of the local stability by a factor
0.1 would be needed to bring the curves to an over-
lap. The difference is attributed to non-local trans-
port of velocity variance, which vertically relocate
u′2 and/orw′2. To seek for possible explanations, we
need to look at higher order moments of typeu′2i u

′
j

for i, j = {1, 3} (see Sections 4.2.4 and 4.3.3).

4.2.3 Parameterization of Reynolds stress

Drag coefficient — Many practical applications
simply use the drag coefficientCD = (u∗/ū)2,
which is inherently related to the wind profile. Fig-
ure 4.16b shows profiles of the square root ofCD,
〈u∗(z)/ūl(z)〉 for all three profile towers. High-
est values are found at both urban stations between
z/zh = 0.8 and1.0, and are up to 0.33 on the hor-
izontal average in this region. From the integration
of the neutral logarithmic wind profile (Eq. 2.71),
we rewrite

C
1/2
D = u∗(z)/ū(z) =

k

ln((z − zd)/z0)
. (4.16)

This relation is expressed in Fig. 4.22. Note that val-
ues in this graph are not independent, since both,zd
andz0, are already based on the neutral wind profile
itself. In all above roof measurements,C1/2

D follows
the prediction, but is larger than the calculated line.
Close to the roofs, values drop off. In the roughness
sublayer, localu∗(z) is larger than values in the in-
ertial sublayer, which corresponds to the region of
umax
∗ . With decreasing height towards roofs,u∗ de-

cays andu∗(z)/ū(z) becomes smaller.

Based on a review of different urban data sets, Roth
(2000) suggests an empirical fit of the form

u∗(z)/ū(z) = c0 + c1 exp (c2(z/zh)) (4.17)

wherec0 = 0.094, c1 = 0.353 andc2 = 0.094. This
fit is drawn in Fig. 4.16b. Values of〈u∗(z)/ūl(z)〉
from the two urban towers U1 and U2 are higher
than values reported from previous studies (Rotach,
1995; Feigenwinter et al., 1999), and hence, the
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wind profile (Tab. 4.5), the spectral method, and a globalzd of
0.8zh. Data source: Sonics C to F (U1), B to F (U2) and A to C
(S1), hourly averages, full operation periods, neutral stabilities.

empirical fit from Roth (2000) underestimates the
present values in the roughness sublayer. Data at
the three towers are more adequately described with
a modifiedc2 ≈ 0.6.

The above relationships assume a local equilib-
rium between〈u′w′〉 and〈∂ū/∂z〉, as observed over
smooth surfaces. The neutral wind profile implies
that the turbulent transfer coefficient for momentum
Km = −u′w′/(∂ū/∂z) is equalku∗(z)z′† . The
normalized profiles ofKm in Fig. 4.16f show that if

† z′ is a scaling length which is equalz − zd above the roofs.
For the definition in the canopy see Eq. 4.28.

we introduce a localu∗(z), Km is higher than pre-
dicted towards the canopy in neutral conditions, and
is associated with higher scatter between different
wind directions.

The ratiou∗(z)/ūl(z) strongly depends on ambient
wind direction relatively to the street canyon (Fig.
4.21). High drag is caused by configurations with
skimming flow over the cavities. Betweenzh andzf ,
an ambient flow perpendicular to the street canyon
increasesu∗(z)/ūl(z) compared to flow along the
street canyon. Flow over the pitched roof row re-
sults in a maximumu∗(z)/ūl(z) at 1.23zh, while
flow over the flat roofs show maximumu∗(z)/ūl(z)
directly atzh.

At tower top, the ratiosu∗(z)/ūl(z) are between
0.15 and 0.2 at the different sites and nearly inde-
pendent of wind direction. Individual roughness el-
ements and the street canyon orientation do not in-
fluence momentum exchange anymore, and we can
interpret the response as an integral effect of the un-
derlying urban surface. This is another independent
indication for the transition to the inertial sublayer.

Height-dependent u∗(z)-profile — To account
for the observed height dependence of local
Reynolds stress, Rotach (2001) proposed an empir-
ical parametrization for the vertical profile ofu∗(z)
in the roughness sublayer, namely

(
u∗(z)
umax
∗

)b

= sin
(
π

2
(z − zd)
(zf − zd)

)a

for zd < z < zf

(4.18)
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and

u∗(z) = umax
∗ for z > zf (4.19)

wherea and b are empirical constants, which are
1.28 and 3.0 respectively. Figure 4.23 shows the pa-
rameterized profile according to Equations 4.18 and
4.19 in comparison to measured data from U1, U2,
and S1. The parameterization fits well the observed
data below and aroundzf .

Below zf , the decreasingu∗(z) with height modi-
fies the wind profile, and lowers the gradient∂ū/∂z.
Figure 4.24 shows the measured vertical wind pro-
file close to the roofs in comparison to the parame-
terized wind profile (solid line). At level C (z/zh =
1.01), the parameterization results in significantly
better estimations compared to the assumption of a
constantu∗(IS) through the whole roughness sub-
layer (dashed line). However, the wind profile is still
underestimated.

In the context of BUBBLE, the above parametriza-
tion has been independently evaluated to estimate
the shape of the urban wind profile. With the help of
this parameterization, a procedure was successfully
tested to estimate a reference wind velocity from
wind velocity measurements at any other height
(Christen and Rotach, 2004; Rotach and Christen,
2005).

4.2.4 Quadrant analysis of Reynolds stress

Joint probability density functions — Joint
probability density functions (JPDFs) were calcu-
lated with a resolution of 32 by 32 bins for the
scaled turbulent velocity deviationŝui = u′i/σui

in the range−4 to +4 times the standard devia-
tion. Events witĥui greater than 4 are excluded from
JPDFs. This cuts off extremely large contributions,
but on the other hand, reduces the error-sensitivity
in situations with small turbulence intensity. All
JPDFs have been calculated with one local rotation
around thez-axis into longitudinal mean wind at
given height, as indicated by the subscriptl in the
componentŝul andv̂l. The panel in Fig. 4.25 illus-
trates horizontally averaged JPDFs from the tower
at U1. Quadrant measures were deduced directly
from the JPDFs. To facilitate the interpretation, Fig.
4.27 summarizes some conceptual JPDFs and relates
them to higher order moments.
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Figure 4.27: Conceptual influence from higher order mixed
moments on the shape of JPDFs. In reality, a superposition of
the different types is found.

At street level, u andw are uncorrelated. The JPDFs
are characterized by a nearly rotational symmetric
shape (Fig. 4.25) and∆S0 is close to zero (Fig.
4.26). All quadrants have roughly same time frac-
tions, an indication that higher order moments are
nearly negligible. There is evidence for a small
positive u′3, since JPDFs are slightly skewed to-
wards higher̂u. Further, with increasinĝu, ŵ shows
stronger excursions. The JPDFs resemble a very
weak form of Fig. 4.27e, which indicates a slightly
positiveu′w′2.

Further up, in theupper canyon, a ‘quadratic shape’
is observed, but simultaneously,rulw is low. A
‘quadratic shape’ is an indication that fourth order
moments can be of importance. The quadratic shape
is characterized by negligibleu′w′, negligible (or
counteracting) third order moments, but a positive
forth order momentu′2w′2 (Type (g) in Fig. 4.27).

Around roof level, JPDFs are well correlated, indi-
cating thatruw becomes significant. In the whole
layer betweenzd andzf , a significant dominance of
sweeps over ejections is found at all three towers.
This results in a strongly positive∆S0 (Fig. 4.26a).
Highest dominance of sweeps are measured directly
atzh. With increasing height abovezh, the influence
of sweeps is reduced. This compares well to the ur-
ban full scale experiment from Rotach (1991).

Above zf , in the transition to the inertial sublayer,
ejections are of increasing importance. On aver-
age, ejections start to slightly dominate over sweeps.
∆S0 becomes negative (Fig. 4.26a). The dominance
of ejections is even more pronounced higher up, as
earlier measurements 400 m to the South-East of U1
from Feigenwinter (2000) suggest. The BUBBLE
wind tunnel experiments from the surface around
U1 support an increasing dominance of ejections in
the inertial sublayer (Feddersen et al., 2004). In the
present data set, the crossover from negative to posi-
tive ∆S0 is at roughlyzf on average. This indicates
a transition to the inertial sublayer. In the rough-
ness sublayer, sweeps dominate (Raupach, 1981)
whereas the inertial sublayer is characterized by a
dominance of ejections. For comparison, the rural
surface layer value from R1 (z = 28 m) is indicated
by the arrow symbol above the plots in Fig. 4.26.
The ratioγ0 is another way to look at the relative
importance of ejections and sweeps and reveals the
same pattern with a change from< 1 below to> 1
abovezf (Fig. 4.26c).

Exuberance — The exuberanceEx (Fig. 4.26b)
is related to the correlation coefficientruw. An Ex
close to zero show a high efficiency, while values
towards−1 indicate a less efficient momentum ex-
change. Similar toruw, Ex is rather constant above
zh with a value around−0.4. There is a tendency
for a reduction with increasing height, approaching
the rural value of R1. An exuberance< −1 is only
found at street level. Here, turbulence is dominated
by small scale motions, and the very weak Reynolds
stress is slightly directed upwards on average.

Intensity and intermittency of events — The
holesizeH ′ and the corresponding time fraction
ϑ′ address the intensity (size) and intermittency of
structures dominating momentum exchange (cf. Eq.
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Figure 4.28: Profiles of triple correlationsu′iu
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j at all three towers. Error bars are defined in Fig. 4.8. Data source: All sonics,

hourly averages, full operation periods, neutral stability only.
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2.31 and 2.35). If holesizeH ′ is low, small scale
turbulence determines the exchange. With increas-
ingH ′, larger and non-local processes contribute to
the exchange. In Gaussian turbulence,H ′ is 1.7 and
ϑ′ ≈ 0.1.

In the vertical profile, holesizeH ′ is lowest atzf
(Fig. 4.26d). This can be interpreted as an indi-
cation of an initial shear layer where instabilities
evolve. Here, momentum exchange is efficient and
locally determined. Time fractionsϑ′ are largest and
perturbations that contribute tou′w′ are common
(Fig. 4.26e). With increasing distance tozf , local
(small) structures that contribute to the momentum
exchange become less frequent andH ′ is larger. The
flow is more intermittent, both above and belowzf ,
as indicated by a decreasingϑ′ in both directions. At
street level, flow is again less intermittent and small
scale dominated.

In Fig. 4.26d to f, additionally data from a wind tun-
nel study with uniform height (Raupach et al., 1986)
are drawn. Curves from the wind tunnel study show
similar trends, but (i) differences are more dominant,
and (ii) generally curves are shifted towards lower
heights. The first difference can be explained by the
averaging procedure. Differences inH ′ andϑ′ are
much more prominent in individual profiles and for
different stabilities separately. The averaging pro-
cedure over all stabilities and wind directions blurs
these trends. The lower height of the wind tunnel
curves can be again related to the definition ofzh.

Modification by buoyancy effects — The effect
of a non-zero buoyancy flux density on quadrant
measures is analyzed in terms of stability at the top-
most measurement level. Effects are summarized in
Fig. 4.29 for U1. The crossover from negative to
positive∆S0 strongly depends on stability. In con-
vective situations, the crossover is atz/zh = 1.5.
It is higher during unstable runs (z/zh = 1.9) and
above the tower in neutral runs (approximated at
z/zh = 2.5). Figure 4.30 draws∆S0 from the
topmost measurement level at U1 against stability.
With destabilization, momentum transfer turns from
sweep based exchange in near-neutral conditions to
strongly ejection based transfer. Buoyancy creates
mainly small scale ejections. The destabilization
lowersu′3. In free convection,u′3 is — as expected
– close to zero. On the other hand, buoyancy en-
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Figure 4.29: Stability dependence of quadrant measures (a)
∆S0, (b) Ex, (c) H ′ and (d)ϑ′ for u′w′ at U1. Data source:
Sonics A to F, hourly values, November 1, 2001 to July 15,
2002, median profiles. Stability determined at tower top.

hancesw′3. The figure further underlines that effects
of u′2w′ andu′w′2 are of opposite sign.

Earlier in this chapter, the strong stability depen-
dence ofruw was addressed. Hence, it is no surprise
that the relatedEx is driven by stability. At above
roof levels,Ex ranges from neutral values around
−0.35 to−0.5 during convective runs (Fig. 4.29b).

Non-Gaussian contributions — Since the asym-
metry in the ejection-sweep character is related to
higher order moments, it is of interest to separate
these higher order effects from an ideal Gaussian
turbulence. In Gaussian turbulence,∆S0 is zero,γ0

is 1 and the JPDFs can be completely described by
the Gaussian functionG(û, ŵ), which is determined
by ruw only (cf. Eq. 2.16).

Non-Gaussian time and stress fractionsNGT(û, ŵ)
andNGS(û, ŵ) are introduced.NGT(û, ŵ) are cal-
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culated as the difference between the actual JPDF
P (û, ŵ) and the Gaussian modelG(û, ŵ) (Eq. 2.16)
at givenruw:

NGT(û, ŵ) = P (û, ŵ)−G(û, ŵ). (4.20)

The non-Gaussian time fractions satisfy

+∞∫∫
−∞

NGT(û, ŵ) du dw = 0. (4.21)

Positive regions inNGT(û, ŵ) have an enhanced
temporal frequency due to higher order moments.
Negative regions are less represented in the current
JPDFs compared to a Gaussian distribution. The
non-Gaussian stress fractionNGSis calculated by

NGS(û, ŵ) = |ûŵ|NGT(û, ŵ). (4.22)

Positive regions in theNGS indicate an enhanced
magnitude∗ of the stress contribution from the given
quadrant to the overall Reynolds stress. Negative
regions lower the contribution in the current JPDF
compared to a Gaussian distribution with sameruw.
Note that both measures address the internal distrib-
ution. There is no relation to the magnitude ofu′w′

anymore.

Figure 4.32 showsNGS(û, ŵ) for all three tow-
ers and all levels. Around roof level and in
the upper street canyon, there are significant non-
gaussian contributions from large-scale (far-field)
sweeps (positive contributions in the lower right cor-
ners). On the other hand, ejections are found closer
to the origin in the 2nd quadrant. Ejections are
shifted towards small scale (near-field) processes.
This mainly reflects the positively skewedu and a
negatively skewedw under neutral conditions (Fig.
4.28a and i). With increasing height abovezh, non-
Gaussian sweeps become less relevant, but ejections
are roughly constant with height. Mainly the de-
creasing magnitude of non-Gaussian sweeps explain
the decrease of∆S0 with height.

With increasing buoyancy, more small scale ejec-
tions are produced whereas the contribution from far
field sweeps is not altered. This has been previously
expressed by the decreasing height of the crossover
from negative to positive∆S0 with increasing sta-
bility. A new aspect of this shift is the size of the

∗ The magnitude of̂uŵ is taken to simplify the graphical
interpretation. The missing information on the direction of
the Reynolds stress can be deduced from the corresponding
quadrant.
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structures involved. The size of structures contribut-
ing to momentum change is smaller with destabiliza-
tion. With the relative shift from large-scale sweeps
to small-scale ejections,H ′ becomes smaller (Fig.
4.29c).

In all above roof measurements, a slight dominance
of inward interactions over outward interactions is
found. As a consequence, higher non-Gaussian time
fractions are found in quadrant 3. The positively
skewed distribution ofu lowers the time fractions
of û in quadrants 2 and 3 compared to 1 and 4. In
the upper street canyon, the opposite situation is en-
countered. Here, a dominance of time fractions of
outward interactions over inward interactions is ob-
served (Fig. 4.25).

It is obvious that at least third order moments are
necessary to describe all above patters — especially
close to the roofs. But are third-order moments suf-
ficiently or do we need to evaluate fourth or even
higher order moments?

Cumulant expansion method — The cumulant
expansion method (CEM) relates analytically the
departure of the JPDFs from the Gaussian distribu-
tion to higher order moments. The third-order CEM
in Eq. 2.25 to 2.27) reproduces∆S0 with second and
third order moments only. Figure 4.31 plots the mea-
sured∆S0 against predicted∆S0 by the third or-
der CEM for all stabilities. Any difference between
these two∆S0 values are an indication for the exis-
tence of non-zero moments of order≥ 4.

Within the street canyon, the CEM reproduces well
∆S0 in most cases. Atzh and above roof level,
there is a strong overestimation of∆S0 by the CEM.
This suggests that moments of higher order work
against the asymmetry between sweeps and ejec-
tions. Differences are decreasing with height above
the canopy. At the tower top level, a systematical
underestimation of∆S0 by the third order CEM is
found in unstable situations (lower left corner in Fig.
4.31).

Above zf and in the street canyon, differences are
not crucial. An implementation of third order mo-
ments in a model is adequate to reproduce the key
processes in turbulent momentum exchange. At
canopy top however (z/zh = 1.01 and1.23), higher
order moments (≥ 4) are important for a correct de-

scription of momentum transfer.

4.2.5 Estimation of dispersive stress

In this section, the magnitude of the dispersive stress
divergence term in Eq. 4.13 is estimated. This is im-
portant to decide whether the decrease of Reynolds
stress with height can be attributed to a dispersive
stress divergence or to form drag.

Wind tunnel results suggest that dispersive stress is
insignificant above and in the upper part of canopies
(Raupach et al., 1986; Cheng and Castro, 2002).
LES simulations however demonstrated that disper-
sive stress may be relevant in the upper part of the
urban canopy layer (Kanda et al., 2004).

Recently, physical scale model studies investigated
the dispersive stress in the bottom layers of model
canopies. It was found that they can have the same
magnitude as Reynolds stress (Böhm et al., 2000).
Poggi et al. (2004b) concluded that dispersive stress
is only important in sparse canopies. Dispersive
stress directly measured in the trunk space of a plant
canopy showed that it is statistically reliable in the
order of≈ 15% of Reynolds stress (Christen and
Vogt, 2004a).

Directly measuring dispersive stress divergence in
an urban full scale experiment is nearly impossi-
ble and would require huge arrays of simultaneously
measuring instruments at different locations. There
is no possibility to directly determine the dispersive
stress divergence with the present setup.

The precedent analysis of momentum exchange in
the urban roughness sublayer may be interpreted in
a way that the inertial sublayer starts atz/zh = 2.
Hence, we can write〈ū0〉 = ū0 for all realizations
of the approaching flow. Based on this assumption,
we approximate the dispersive covariance〈ū′′w̄′′〉
with the help of the constructed horizontally aver-
aged profile of〈ū/ū0〉, which was calculated by ap-
plying the procedure described in Section 3.3.3:

〈ū/ū0〉(z) = 〈ū〉(z)/ū0 (4.23)

and hence

ū′′ = ū− 〈ū〉 = ū− ū0〈ū/ū0〉(z). (4.24)

Further, assuming for neutral conditionsw′ρ′ = 0
andw̄′′ρ̄′′ = 0, mass continuity leads to〈w̄〉 = 0,
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and it followsw̄ = w̄′′ and

ū′′w̄′′

ū2
0

=
ū′′

ū0

w̄

ū0
. (4.25)

Table 4.11 summarizes the estimation of〈ū′′w̄′′〉(z)
for U1. A dispersive stress is existent and con-
sistently negative. In the canopy space, it con-
tributes strongest to the overall (weak) momen-
tum exchange. Abovezh, the relative impact of
〈ū′′w̄′′〉(z) decreases fast, as expressed byδū′′w̄′′

in Tab. 4.11. The present estimation results in a
positive∂ū′′w̄′′/∂z in the whole profile at U1, and
hence, the dispersive stress divergence term in Eq.
4.13 is counter directed to∂u′w′/∂z. ∂ū′′w̄′′/∂z
is roughly constant with height and in the order of
2 · 10−4 u2

0 m s−2. Figure 4.34 shows the average
magnitude of all terms in Eq. 4.13 for neutral condi-
tions. Terms are normalized by wind speedu0 and
zh for dimensional consistency.

As a consequence of the above estimation, the dis-
persive stress divergence term may be regarded neg-
ligible for the description of the overall momentum
transfer, and — at least abovezd — we can approx-
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2
0. The residuum is interpreted as form drag.

Viscous drag is neglected. Error bars denote the 25 and 75%
percentile from all 16 wind direction classes. Data source simi-
lar to Fig. 4.33.

Table 4.11: Estimation of the dispersive stress at U1 for neu-
tral conditions.δū′′w̄′′ = 〈ū′′w̄′′〉/(〈u′w′〉+ 〈ū′′w̄′′〉), rū′′w̄′′

according Eq. 4.26. Data source similar to Fig. 4.33.

〈ū′′w̄′′〉/ū2
0 〈u′w′〉/ū2

0 δū′′w̄′′ rū′′w̄′′

1.53 -0.0007 -0.0298 2% -0.26
1.23 -0.0024 -0.0255 8% -0.48
1.01 -0.0027 -0.0182 13% -0.51
0.77 -0.0042 -0.0048 46% -0.57
0.25 -0.0054 -0.0004 93% -0.81

imate Eq. 4.13 by

∂(u′w′)
∂z

≈ −1
ρ̄
〈∂p̄

′′

∂x
〉. (4.26)

In analogy to quadrant analysis, which investigates
time series and classifies instantaneous values into
outward interactions, ejections, sweeps, inward in-
teractions, the method of quadrant analysis can be
also applied to dispersive terms (Christen and Vogt,
2004a). Instead of̂u(t) andŵ(t), we drawū′′/ū0(k)
againstw̄′′/ū0(k) wherek is a given wind direction
sector (Fig. 4.33). This results in ascending accel-
erated realizations (Q1), ascending decelerated re-
alizations (Q2), descending decelerated realizations
(Q3) and descending accelerated realizations (Q4).
By calculating the dispersive correlation coefficient

rū′′w̄′′ =
〈ū′′w̄′′〉

〈ū′′2〉0.5〈w̄′′2〉0.5
(4.27)
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Table 4.12: Summary of measured and calculated character-
istics affecting momentum exchange at the urban towers, sepa-
rately for the canyon layer (CAL), the roof layer (ROL), and the
above-roof layer (ARL) which is a gradual transition towards
the inertial sublayer.

Parameter z < zd zd < z < zf zf < z
CAL ROL ARL

∂〈u′w′〉/∂z ≈ 0 < 0 ≈ 0
Sku ≥ 0 � 0 ≥ 0
Skw ≈ 0 < 0 ≥ 0
∆S0 ≈ 0 > 0 < 0
Ex ≈ −1 ≈ −0.4 ≈ −0.4
〈ū′′w̄′′〉 < 0 < 0 ≈ 0
δū′′w̄′′ 50-90% 10% 0%

we retain a measure for the importance of descend-
ing accelerated realizations and ascending deceler-
ated realizations, and hence, information on the ef-
ficiency of 〈ū′′w̄′′〉. With increasing depth in the
canopy,rū′′w̄′′ increases (Tab. 4.11).

4.2.6 Summary

• Reynolds stress in the roughness sublayer is
not constant with height. At the two urban
canyons, the profile is characterized by a max-
imum at zf and by a strong reduction with
height below.zf corresponds to the height of
highest obstacles of the urban surface. Above
zf , Reynolds stress is roughly constant with
height. The empirical parameterization accord-
ing to Rotach (2001) fits well the observed ver-
tical profile ofu∗(z) at all sites.

• Momentum transfer in the roughness sublayer
can be conceptually separated into three re-
gions. The lower canopy layer (CAL,z < zd),
the roof layer (ROL,zd < z < zf ) and the
above-roof layer (ARL,z > zf ) which forms
a gradual transition towards the inertial sub-
layer. Table 4.12 summarizes characteristics of
each layer based on observations in the present
study.

• At zf , flow perpendicular to the street canyon
is characterized by an enhanced efficiency of
Reynolds stress and a stronger drag coefficient
compared to along-canyon flow. Cross-canyon
flow shows analogies to a plane mixing layer.

• Momentum exchange is sweep dominated in

the roof layer and ejection dominated in the
above-roof-layer. The height of the crossover
from sweep to ejection dominated turbulence
increases with increasing stability. It is found
at zf under the dominant unstable conditions.
At zf , turbulent exchange is small scale and lo-
cally determined whereas below, large far field
sweeps transport momentum and penetrate into
the roof region and upper street canyon. Small
scale ejections dominate the exchange above
zf .

• Hence, for an adequate description of turbulent
exchange processes in the urban roughness sub-
layer, at least third order moments are required.
Higher order moments (≥ 4) are only of impor-
tance in the roof layer.

• The dispersive stress〈ū′′w̄′′〉 is negligible
abovezh. In the street canyon, dispersive stress
can be in the same order as Reynolds stress.
The dispersive stress divergence〈ū′′w̄′′〉/∂z is
negligible compared to Reynolds stress diver-
gence and hence, is not an explanation for the
increasingu∗(z) with height. In the roof layer
and above, the dispersive term in the horizon-
tally equation of motion can be neglected.
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4.3 Turbulent kinetic energy

Any accurate prediction of dispersion within and
close to urban canopies is inherently coupled with
an appropriate knowledge on the magnitude of
turbulent fluctuations and the underlying physical
processes that create, relocate and destroy turbulent
kinetic energy (TKE). First, the analysis of time and
length scales of TKE in Section 4.3.1 is the basis
for the development of an appropriate scaling length
in the urban roughness sublayer. In Section 4.3.2,
we evaluate the magnitude of the different terms of
the TKE-budget. The TKE-budget is used to fur-
ther discuss velocity variances in Section 4.3.3. Fi-
nally, an alternate approach to velocity variances is
tested which is based on the eigenvalues of the ve-
locity correlation tensor (Section 4.3.4).

4.3.1 Length and time scales

In surface layer scaling, the dominant length scale
is the distance above groundz or the height above
zeroplane displacementz − zd. This scaling fails
in the lower roughness sublayer, and would result in
absurd negative scaling lengths belowzd. The scal-
ing of spectra by local wind velocitȳu(z) andz−zd
does not result in a coincidence of the spectral peaks
at same normalized frequency. Within canopies,
turbulence properties are mainly dependent on size
and configuration of roughness elements and not
on height above ground (Amiro, 1990). In plant
canopies, turbulence is expected to be mainly con-
trolled by coherent structures of the scale of the
whole canopy heightzh (Raupach, 1989). This is ex-
plained by the dominating structures shed at canopy
top. Velocity fluctuations within vegetation canopies
may be scaled withzh andū(zh) rather thanz − zd
andū(z) (Raupach et al., 1996; Finnigan, 2000).

Figure 4.35a shows spectral length scales de-
duced from peak frequency of neutral TKE-spectra.
Length scales were determined according Eq. 4.10
and 4.11. Length scales within the street canyon
do not vary significantly with height. The length
scales of longitudinal fluctuations even increase with
depth, and to some extent, the same can be found for
lateral fluctuations (Fig. 4.35c). Nevertheless, scal-
ing by a constant length scale over the whole canopy
layer is appropriate compared to a height dependent
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Figure 4.35: (a) Length scaleL·
TKE(z) deduced from peak fre-

quency of TKE-spectra (L·
TKE = ū/nmax), (b) normalized peak

frequency of TKE-spectra at U1, U2 and S1, and (c) Individual
length scalesLui(z) scaled withzh for neutral runs at U1. Data
source: Sonics, all levels, hourly spectra, full operation period,
neutral stability. Error bars in this and the subsequent plots are
similar to Fig. 4.8.
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length scale. Above roofs, the height-dependence is
restored, and length scales increase nearly linearly
with height.

Scaling length — To account for this, the scaling
parameterz′ is introduced. It incorporates the street
canyon scaling and surface layer scaling simultane-
ously:

z′ =

{
z − zd for z > (xs + zd)

xs for z < (xs + zd)
(4.28)

Here,xs is the distance between the instrument and
the nearest canyon wall or floor.xs corresponds to
the largest eddies that fit into the street canyon at
given instrument location. If we use our simplified
urban geometry with infinitely long canyons, the
horizontally averaged〈xs〉 can be related to the char-
acteristic street canyon widthxc by 〈xs〉 ≈ xc/4. In
the street canyon,〈xs〉 is the spatial average distance
to the nearest wall.

This scaling is applied to normalize neutral peak fre-
quenciesnmax of TKE spectra in Fig. 4.35b. The
normalized peak frequencies of the individual com-
ponents are summarized in Tab. 4.13. The scaling
length z′ allows a successful normalization of the
TKE spectra and an adequate normalization ofu-
spectra andv spectra. Therefore,z′ is further used
to substitutez − zd. The different normalizedw-
spectra do not overlap well withz′ as scaling length
in the roof layer and in the street canyon. Here,
a scaling in the order twicez′ or zh/2 would re-
sult in an overlap of spectra of the different heights.
This failure may be attributed to the contamination
of w by longitudinal components, which are rotated
into the canyon by the vortex-like flow situations.
Indeed, under cross-canyon flow, when a vortex is
present, normalized frequencies inw are lower than
for along-canyon flow suggesting that fluctuations
in w reflect previouslyu-components above the roof
level, which have been rotated by the solid body ro-
tation into the upper canyon.

4.3.2 Turbulent kinetic energy budget

TKE budgets of the flow within and above plant
canopies have been addressed in a number of
field experiments (e.g. Leclerc et al., 1990; Mey-
ers and Baldocchi, 1991; Frenzen and Vogel, 2001).

Table 4.13: Neutral limits of normalized maximum peak fre-
quencynmax = fmaxz

′/ū. SL denotes the surface layer values.
Data source: hourly spectra, neutral stability (at given height).

Site z′ (m) nmax(u) nmax(v) nmax(w)
U1 2.17 0.08 0.21 0.59

1.53 0.09 0.17 0.52
1.23 0.09 0.17 0.39
1.01 0.07 0.15 0.26
0.77 0.05 0.19 0.21
0.25 0.04 0.12 0.25

U2 2.49 0.08 0.27 0.61
1.98 0.11 0.34 0.81
1.44 0.20 0.37 0.59
1.10 0.13 0.34 0.21
0.92 0.10 0.24 0.11
0.37 0.09 0.25 0.15

S1 2.11 0.07 0.16 0.44
1.61 0.06 0.14 0.39
1.11 0.07 0.16 0.36

R1 0.05 0.12 0.46
SL 0.08 0.22 0.55

The characteristic density, the non-permeability and
stiffness of buildings that form an urban canopy
compared to the flexible and highly fractal struc-
tures that are present in plant canopies do not im-
ply a direct applicability of these results from plant
canopies to urban environments. Up to now, no
study measured the terms of the TKE budget within
and above an urban canopy. Nevertheless, there are
several physical scale studies addressing the TKE
budget (Raupach et al., 1986; Poggi et al., 2004a),
and also a number of numerical studies (e.g. Wilson
and Shaw, 1977; Dwyer et al., 1997), but all focus
on plant canopies.

By first applying temporal and then spatial averag-
ing, the total kinetic energy of a unit mass is split
up into a temporally and spatially resolved-scale tur-
bulent kinetic energy (MKE) and two terms in the
unresolved scale. The two unresolved parts are the
dispersive (DKE) and the turbulent kinetic energy
(TKE) (Raupach and Shaw, 1982):

1
2
〈uiui〉 =

1
2

(
〈ui〉〈ui〉+ 〈ui

′′ui
′′〉+ 〈u′iu′i〉

)
.

(4.29)
In the subsequent analysis, we focus on the budget of
TKE only. For horizontal homogeneous conditions,
the general three dimensional TKE budget equation
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(Eq. 2.55) is rewritten according to Finnigan (2000):

∂〈u′iu′i〉/2
∂t

= −〈u′w′〉∂〈u〉
∂z︸ ︷︷ ︸

Ps

−〈u′w′′′∂u
′′

∂z
〉︸ ︷︷ ︸

Pd

+
g

T
〈w′θ′〉︸ ︷︷ ︸
Pb

+Pt−
∂〈u′iu′iw′〉/2

∂z︸ ︷︷ ︸
Tt

−
∂〈w′′u′iu

′
i

′′〉/2
∂z︸ ︷︷ ︸
Td

− ∂〈p′w′〉
∂z︸ ︷︷ ︸
Tp

+ υ
∂2〈u′iu′i〉/2
∂xjxj︸ ︷︷ ︸

Tv

−ε. (4.30)

Compared to Eq. 2.55, new terms arise from the hor-
izontal averaging, namely the dispersive shear pro-
duction term (Pd) and the dispersive turbulent trans-
port term (Td). Pt is an extra term, which accounts
for turbulence created by moving vehicles in the
street canyon (Di Sabatino et al., 2003). In sum-
mary, turbulence is locally produced by turbulent
shear production (Ps), dispersive shear production
(Pd), buoyancy production (Pb) and traffic (Pt). The
locally produced turbulent kinetic energy can be ver-
tically relocated by turbulent (Tt), dispersive (Td),
pressure (Tp), and viscous transport (Tv). Finally,
dissipation of turbulent kinetic energy (ε) is always
a sink.

In the stationary inertial sublayer, individual terms
of the TKE budget are typically normalized by
k(z − zd)/u3

∗(IS). This results in the well known
φ-functions (Frenzen and Vogel, 1992)

φm + φb + φt + φp = φε (4.31)

whereφm is the normalized shear production,φb the
normalized buoyancy production (φb ≡ (z−zd)/L),
φt andφp are the normalized turbulent and pressure
transport terms, andφε is the normalized dissipa-
tion rate. Theφ-functions are interrelated and are
assumed to depend only upon(z − zd)/L. Under
neutral conditions,φm = φε = 1, andφt, φp are
close to zero. These simplifications are not adequate
in the roughness sublayer.

Turbulent shear production — The vertical gra-
dient of wind velocity∂ū/∂z has been approxi-
mated by the local derivative of a parametric cubic
spline interpolation with the lower boundary set to
zero atz/zh = 0 and a relaxed upper boundary at

z/
z h

       

0 1 2 3 4

       0

0.5

1.0

1.5

2.0

2.5

  - k z
h
 〈u’w‘〉 (∂〈u〉/∂z) / u

*
3(IS)

 

Ps

U1 (993h)

U2 (1567h)

S1 (219h)

Figure 4.36: Vertical profiles of the shear production term at
U1, U2 and S1. Data source: all sonics, hourly averages, full
operation periods, neutral stability.

the topmost measurement level by minimizing ten-
sion.

Figure 4.36 shows the turbulent shear production
term Ps for neutral conditions at U1, U2 and S1.
Values are normalized bykzh/u3

∗(IS), where the
topmost measurement ofu∗(z) is taken asu∗(IS).
This global normalization allows us to compare sit-
uations with varying mechanical forcing. On aver-
age, shear production is strongest at roof layer in the
range1.2 < z/zh < 1.5. Here, shear production
is by far the most important source in the budget of
TKE (see also the upcoming Fig. 4.43). Shear pro-
duction decreases rapidly within the street canyon,
both in absolute and relative numbers. At S1, the
profile ofPsis nearly constant with height, and only
half the magnitude compared to the dense urban sur-
faces. At S1, the mean wind profile is characterized
by smaller gradients, andzd is located significantly
deeper in the canopy (cf. Section 4.1.2).

The height of strongest shear production as well as
its magnitude depend on wind direction of the ap-
proaching flow, which is illustrated for U1 in Fig.
4.37. Wind over the flat roofs from NW result in
a maximum between 1 and1.2zh. Flow over the
pitched roofs from SE shows a strong elevated shear
layer at1.5zh, associated with values that are more
than twice the magnitude observed with wind over
the flat roof. This can be mainly attributed to the ver-
tical wind profile (cf. Section 4.1.2). If air flows first
over the pitched roof row, this results in strong gra-
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Figure 4.37: Profiles of the scaled shear production term(kz′/u3
∗(z))u′w′(∂ū/∂z) at U1 for different ambient wind directions. Data

source: Sonics A to F, hourly values, November 1, 2001 to July 15, 2002, all stabilities.

dients and low winds in the street canyon. Weaker
gradients are found with flow first over the flat roofs
(where the vortex was observed). Along-canyon
flow is characterized by slightly smaller shear pro-
duction rates on average.

Dispersive shear production — The dispersive
termPd was not directly measured. It is approxi-
mated with a procedure analogous to the estimation
of the dispersive stress described in Section 4.2.5,
namely

u′w′′′(z)
u2
∗(IS)

≈ u′w′(z)
u2
∗(IS)

− 〈 u
′w′

u2
∗(IS)

〉(z). (4.32)

The dispersive gradient was approximated by

1
u2
∗(IS)

∂ū′′

∂z
≈

∂(ū(z)/u2
∗(IS)− 〈ū/u2

∗(IS)〉(z))
∂z

. (4.33)

The horizontally averaged dispersive shear produc-
tion term was found10−5 to10−7 times smaller than
turbulent shear production at all levels at U1 (not
shown) and is therefore neglected in the subsequent
analysis.

Buoyancy production / destruction — Over a
compact and densely built-up urban surface, mainly
roof areas contribute to buoyant production (see also
the upcoming Section 4.4.1). In absolute numbers,
buoyant production of TKE is small within the street
canyon. Above the roofs, buoyancy production is
typically five to ten times less important than shear
production (Fig. 4.43). The lower importance of

Table 4.14: Characteristics of the buoyant production term at
U1. Data source: Sonics A to F, hourly average, November
1, 2001 to July 15, 2002, all stabilities and flow situations,
n=3709h.

Median Cases Cases
z/zh |Pb/Ps| |Pb| > |Ps| Pb< 0
2.17 0.28 26.9% 9.8%
1.53 0.13 16.8% 6.4%
1.23 0.12 8.8% 6.6%
1.01 0.27 25.3% 6.7%
0.77 0.71 41.5% 9.2%
0.25 0.30 22.2% 14.6%

the buoyant production term results in a dominating
neutral and slightly unstable stratification of the ur-
ban roughness sublayer. The ratio shear production
to buoyancy production changes with height, and
this results in a variable stability with height (Tab.
4.14).

It is not surprising that strongest buoyant production
rates are found during summer days when sensible
heat flux densities are large and typically in the or-
der of 300 − −400 W m−2. Figure 4.38 illustrates
vertical profiles ofPb for convective runs with a sta-
bility at tower top in the range−10 < z′/L < −0.5.
At the two dense urban sites, there is an increas-
ing buoyancy production from street canyon floor up
to approximatelyz/zh = 1.2 and a nearly constant
production with height above.

Dissipation of TKE — The very small eddies in-
volved in viscous dissipation of TKE can not be
measured directly with ultrasonic anemometers. In-
stead, dissipation was deduced from the inertial sub-
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Figure 4.38: Vertical profiles of buoyancy production for con-
vective runs at U1, U2 and S1. Data source: all sonics, hourly
averages, full operation periods, convective runs only.

Table 4.15: Average properties of the inertial subrange (ISR)
of longitudinal velocity spectra relevant for the calculation of
ε. For definitions see text. Data Source: Sonics A to F at U1,
hourly spectra, all stabilities.SLrefers to the theoretical surface
layer values.

z/zh Iu ISR Slope Su/Sw Err.
2.17 0.45 -1.63 1.14 12.8%
1.53 0.52 -1.64 1.07 13.6%
1.23 0.51 -1.62 1.03 14.0%
1.01 0.48 -1.60 1.15 15.2%
0.77 0.40 -1.59 1.05 15.3%
0.25 0.40 -1.52 1.05 19.5%
SL -5/3 4/3 0%

range (ISR) of longitudinal velocity spectra using
Kolmogorov’s similarity approach and Taylor’s hy-
pothesis. Solving Eq. 2.48 forε returns

ε =
2πn
u

(
nSu(n)
αu

)3/2

. (4.34)

A correct estimation ofε is only achieved if (i) an
undisturbed ISR with local isotropy exists and (ii)
the Taylor hypothesis is applicable (Section 2.2.7).
From studies in plant canopies, it is known that ef-
fects like ‘spectral shortcut’ — a direct bypass of
large scale turbulent kinetic energy to small scales
by small canopy elements (leafs, branches) — may
significantly alter spectra in high frequency bands.
In the non-vegetated urban canopy at U1, such ef-
fects are supposed to be less relevant, since the
highest spectral densities in the size of roughness
elements (10−2 to 10−1 m−1) are larger than the
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Figure 4.39: Vertical profiles of dissipation rateε of TKE at
U1, U2 and S1. Data source: all sonics, hourly averages, full
operation periods, neutral stability.

corresponding wave numbers in the ISR (10−1 to
100 m−1). However, one can not exclude the pos-
sibility of an overlapping of these two scales. In
this case, the range whereε is determined would
be slightly contaminated by kinetic energy directly
produced in this small scale overlap-region. Mea-
surements in the vegetated canyon at U2 and in the
backyard at S1 are more error-sensitive due to the
small scale vegetation structures. Here, results have
to be interpreted with caution.

Critical for the dissipation calculation in the urban
canopy layer may be the applicability of the Tay-
lor hypothesis. Errors are not unlikely since strong
wind shear creates turbulence intensitiesIu = σu/ū
that are typically around 0.5 (Tab. 4.15), a value
usually given as the threshold above which Taylor’s
hypothesis becomes inapplicable (Willis and Dear-
dorff, 1976). Additionally, a strong pressure trans-
port term may result in different propagation veloci-
ties for different wave numbers.

Dissipation was calculated in bands between 0.1 and
1 s−1, which were identified as the most appropriate
since higher frequencies are contaminated by back-
folding and limited by instrument path length. The
ISR-slope was calculated as the average slope of
the longitudinal spectra converted to wave numbers
in the ISR (Tab. 4.15 for U1). At U1 at all mea-
surement levels, the slope is slightly lower than the
theoretical value of−5/3, which is interpreted as
an indication that small production rates still ex-

84



Results and Discussion / Turbulent kinetic energy

-100 -10 -1 -0.1 -0.01 

 

 

0.4

1

2

10

+0.01 +0.1 +1 +10 

 

 

0.4

1

2

10

z/zH = 0.77
4311h

z/zH = 1.01
4509h

z/zH = 2.17
4190h

Kaimal & Finnigan
(1994)

z‘ / L (z)

φ E

Figure 4.40: Locally scaled dissipation rate (φε = kz′ε(z)/u3
∗(z), class median) against local stability determined byz′/L at U1.

Data source: Sonics A, C and F, hourly values, November 1, 2001 to July 15, 2002, all stabilities.

0.001 0.010 0.100 1.000 10.000 100.000

f = nz’/u

f = nz’/u

0.001

0.010

0.100

1.000

n
 S

u(
n

)/
σ u

2

-2/3

0.001 0.010 0.100 1.000 10.000 100.000

0.0

0.5

1.0

1.5

S w
(n

)/
S u(

n
)

z/h = 2.17

z/h = 1.53

z/h = 1.23

z/h = 1.01

z/h = 0.77

z/h = 0.25
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(4/3). Data source: sonics A to F, hourly spectra, November 1,
2001 to July 15, 2002, neutral stability.

ist in this range. Moreover, the ratioSw/Su is
below 4/3, the theoretical value for local isotropy
(Fig. 4.41). Both values suggest an increase of ISR-
contamination with decreasing height. However,
the values show that the contamination levels are
still small compared to the energy passed down in
the cascade and therefore, dissipation is affected by
small errors. However, a calculation is not impos-
sible per se. The inertial subrange of spectra in the
street canyons is — compared to spectra from plant
canopies — not significantly different from the sur-

face layer prediction. The error in Tab. 4.15 can be
interpreted as the average quality of estimating the
−5/3 slope fit at given height. It is calculated as the
RMS deviation of band individualεi relative to the
averageε of all bands (n = 13). Dissipation rates
have only been calculated for runs with an ISR-slope
between−1.4 and−1.8.

The resulting dissipation rates are highest between
z/zh = 1.2 and 1.5 and decrease in both direc-
tions (Fig. 4.39). The dissipation rate is significantly
smaller at S1 where shear production creates less
TKE compared to the dense urban surfaces at U1
and U2.

Figure 4.40 illustrates the locally scaledφε(z) =
kz′ε(z)/u3

∗(z). Local scaling explains dissipation
as a function of onlyz′, (local)u∗, and (local) kine-
matic heat flux. Any transport terms are neglected.
As a consequence, local dissipation is believed to
depend only on production by shear and buoyancy.
At tower top (filled circles), values are higher than
predicted in neutral runs and lower than the empiri-
cal function in unstable runs. This is mainly because
transport termsTt andPt are not zero. Close to roof
top (triangles),φε is systematically lower than pre-
dicted by the local scaling approach because large
amounts of TKE are exported byTt and Tp from
this layer and are not longer available for dissipa-
tion as we will see in the subsequent analysis. On
the other hand, in the upper street canyon, dissipa-
tion is higher than predicted in most cases because
of the import of TKE. In order to better predictε in
the urban roughness sublayer, transport terms have
to be analyzed more deeply.
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Figure 4.42: Vertical profiles of turbulent transport of TKE at
U1, U2 and S1. Data source: all sonics, hourly averages, full
operation periods, neutral stability.

Turbulent transport — Over the whole vertical
profile, the TKE budget is not in local equilibrium,
thus, locally produced turbulent kinetic energy does
not equal local dissipation. TKE has to be verti-
cally relocated by transport processes. Roth and Oke
(1993a) suggested in their analysis of a suburban
data set that large organized structures are involved
in the relocation and transfer of turbulent kinetic en-
ergy. The only transport term that can be measured
directly is the turbulent transport term (Tt). The
gradient∂(u′iu

′
iw

′/2)/∂z has been approximated by
a cubic spline interpolation similar to the one de-
scribed for the turbulent shear production term.

In neutral runs, on average all three third order mo-
ments of typew′u′2i transport variances downwards,
and strongest transport of TKE is measured around
zh (cf. Fig. 4.28c, f and i). Abovez/zh = 2, Tt
is small in neutral runs (Fig. 4.43). With decreas-
ing height, the transport term becomes important.
The divergence results in a layer with a net export of
TKE above the roofs and in a layer with a net import
of TKE in the upper street canyon (Fig. 4.42). In
other words,Tt transports excess TKE from the re-
gion above rooftop (1.2 < z/zh < 2) down into the
upper part of the street canyon. The crossover from
export to import coincide roughly with the inflection
point of the wind profile at U1 and U2 (z/zh ≈ 1.2).
At S1, the crossover is higher (atz/zh ≈ 1.6), and
the overall magnitude of the transport term is less
pronounced, but note that all other terms of the TKE
budget are also smaller. At U1, in the upper canopy,

Table 4.16: Turbulent transport (Tt) of TKE and estima-
tion of the dispersive transport (Td) of TKE normalized by
kzh/u

3
∗(IS) for neutral conditions at U1. Data source: Son-

ics A to F, hourly values, November 1, 2001 to July 15, 2002,
neutral stability at tower topn = 1107h.

z/zh Tt Td |Td|/(|Tt|+ |Td|)
2.17 -0.05 — —
1.53 -0.37 -0.05 11%
1.23 -0.73 -0.09 11%
1.01 +0.89 -0.08 9%
0.77 +1.65 +0.06 4%
0.25 +0.01 +0.02 80%

Tt is the most important source of TKE and 10 times
more important than local shear and buoyant pro-
duction together (neutral and unstable, Fig. 4.43).
Layers with a positive turbulent transport term in
the upper street canyon correspond to the observed
region of dominating large scale sweeps in the mo-
mentum JPDFs (Section 4.2.4). Down at street level,
the magnitude ofTt is not relevant. This pattern fits
well to the mixing layer analogy where turbulence is
vertically relocated down into the canopy, the ”low
speed flow” (Brunet et al., 1994). The present re-
sults are in qualitative agreement with observations
in forests (Leclerc et al., 1990; Meyers and Bal-
docchi, 1991) and simulations (Shen and Leclerc,
1997). Plant canopies show a slightly lower height
of minimum Tt, which typically coincidences with
zh.

In the upper part of the profile, in the above-roof
layer (z > zf ), the normalizedTt becomes stronger
negative with increasing destabilization (Fig. 4.43),
which is mainly an effect of the normalization by a
(smaller)u3

∗(IS).

Dispersive transport — The dispersive term
u′iu

′
i

′′
in Td has been approximated by

u′iu
′
i

′′
(z)

u2
∗(IS)

≈
u′iu

′
i(z)

u2
∗(IS)

− 〈
u′iu

′
i

u2
∗(IS)

〉(z) (4.35)

and since〈w̄〉 = 0, we again assumēw′′(z) = w̄(z).
The estimated dispersive transport termTd is sum-
marized in Tab. 4.16. Except at roof top (z/zh =
1.01), the dispersive transport has the same sign as
the turbulent transport, but is typically 10 times less
important. The small values ofTd in the TKE bud-
get allow to neglectTd.
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Figure 4.43: Normalized terms (X) of the TKE-budget for dif-
ferent stabilities (tower top) at U1. R denotes the residual term.
Data source: Sonics A to F, hourly average values, November
1, 2001 to July 15, 2002, stability classification according Tab.
4.4.

Residual Term — Pressure transport is likely the
most important non-measured term. Experimental
results from pressure fluctuations are sparse (e.g. El-
liott, 1972; Katul et al., 1996). Efforts to measure
Tp directly by eddy-correlation are associated with
instrumental problems (Wilczak et al., 1992). In the
present setup, no attempts were made to measure the
pressure transport directly. Here, the residual term is
mainly interpreted as pressure transport. The results
have to be interpreted with care since a residual term
includes all errors of the measurements and all sim-
plifications.

The analysis of the residual term suggests that pres-
sure disturbances are primarily created in the region
around roof top and in the upper street canyon (Fig.
4.43). Pressure transport relocates TKE from the
roof layer and exports it up into higher layers and
also down into the very bottom of the street canyon.
In relative numbers, the pressure transport is an im-
portant source only in the lowest part of the street
canyon. The observed pattern where pressure trans-
port is a sink at roof top and a source in the lower
street canyon is in qualitative agreement with the
few indirect measurements of the pressure term in
plant canopies (Maitani and Seo, 1985; Shaw et al.,
1990) and with numerical model results (Shen and
Leclerc, 1997; Dwyer et al., 1997).

The results from the LES study by Dwyer et al.
(1997) suggest that thermal stability affectsTp by
increasing it substantially under unstable stratifica-
tions. Stability mainly affects the higher above-roof
layer (z > zf ) where pressure transport and turbu-
lent transport are of opposite sign. This corresponds
to observations in the surface layer (McBean and El-
liott, 1975).

Turbulence produced by moving vehicles — In
the bottom of the street canyon, the traffic produced
turbulent kinetic energyPt is part of the residual
term. However, no correlation is found between the
magnitude of the residual term and the traffic load at
U1. Here, traffic load was counted over 4 weeks dur-
ing the measurement campaign. The moderate traf-
fic load (2000 vehicles per day) and the low speed
limit (30 km/h) do not seem to strongly influence
street canyon turbulence.
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4.3.3 Velocity variances

The ratio between turbulent kinetic energy and mean
kinetic energy increases with decreasing height. The
ratio shows a maximum betweenzd andzh and stays
roughly constant in the lower street canyon (Fig.
4.44). Abovezf , slightly higher values are observed
at S1 compared to U1 and U2. This reflects the ef-
fect of the higher roughness of the suburban surface
with single buildings, expressed by the higherz0/zh
value.

Local scaling — Many early urban studies
demonstrated that velocity variances well above ur-
ban surfaces do only vary marginally from the pre-
diction of Monin-Obukhov similarity theory (Brook,
1972; Ḧogstr̈om et al., 1982; Steyn, 1982). Because
in the roughness sublayer, velocity variances do not
scale with a globalu∗(IS) as they do in the iner-
tial sublayer, Ḧogstr̈om et al. (1982) introduced a
local scaling concept. In local scaling, the Obukhov
lengthL(z) is calculated with explicitly local val-
ues ofu∗(z) andw′θ′(z). Local advection, turbu-
lent transport and pressure transport of velocity vari-
ances are neglected.

Most previous studies address velocity variances
with this local scaling approach, and report slightly
different constants in the similarity relationships
(e.g. Rotach, 1993b; Roth and Oke, 1993b; Feigen-
winter, 2000). For a comparison with these exper-

iments, the local scaling approach has been applied
to the present data set. To provide a comparable data
set, the coordinate system has been rotated into lo-
cal horizontal wind direction, hence addressing vari-
ances oful andvl.

Frequency, intensity, and life span of turbulent struc-
tures all determine the integral variance of a time se-
ries. Local production of TKE (expressed in neu-
tral conditions byu∗(z) only) does indirectly de-
scribe the product of intensity and frequency of dis-
turbances. A well behaved shape of velocity spec-
tra links life span and intensity, i.e. strong excur-
sions are related to large structures, which have a
longer life span. Up to this point, the argumenta-
tion agrees with classical Monin-Obukhov similar-
ity theory. But if transport of TKE is considered rel-
evant, and transport processes export TKE before it
can dissipate ad locum, this may reduce the ratio be-
tween TKE and local production and hence lower
anyσui(z)/u∗(z).

In the previous section, we concluded that above
zf , Tp is counter-directed toTd, and that in neutral
conditions, the transport terms are small compared
to shear production. This supports the partial suc-
cess of a local scaling, but also attributes the slight
differences in the similarity constants to transport
processes.

Neutral limits — Variances ofu andv are typi-
cally contaminated by low frequency contributions
from the outer layer. This results in larger scatter
of u andv in the similarity functions than forw, as
indicated by the error bars in Fig. 4.45 and 4.48.

Close to the inflection point of the wind profile,
aroundze, the neutral limit ofσul(z)/u∗(z) is lower
compared to surface layer values (Fig. 4.45a, Tab.
4.17). On the other hand, in this roof layer, the neu-
tral limit of σul(z)/u∗(z) is still higher than plane
mixing layers values, which are typically 1.7 (Rau-
pach et al., 1996). Individual values from selected
flow sectors reach the plane mixing layer limit of
1.7. Figure 4.46 illustrates that there is a strong de-
pendence of the neutral limit ofσul(z)/u∗(z) on the
ambient wind direction above roofs. For example,
flow over the flat roofs at U1 has an average neu-
tral σul(z)/u∗(z) = 1.69 at zh and flow over the
pitched roof row shows average values around 1.73
atzh = 1.53.
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Variances created at roof level do not stay in this
layer for a long time and are transported down in
the street canyon before they are dissipated. These
sweeps enhanceσul(z)/u∗(z) in the whole street
canyon, because here, local production byu∗(z) is
small.

The slightly higher values ofσul(z)/u∗(z) at tower
top may reflect either an enhanced contribution from
inactive turbulence, or might be an effect of pres-
sure transport. In the previous section, we stated that
there is some evidence for pressure transport to re-
locate TKE fromzf into higher layers.

Generally, for locally scaledσvl(z)/u∗(z), neu-
tral limits fit adequately to surface layer predic-
tions. Similarly toσul(z)/u∗(z), σvl(z)/u∗(z) is
also characterized by a slight reduction close toze.
The channelling into the street canyon suppresses
lateral deviations, and, in contrast toσul(z)/u∗(z),
σvl(z)/u∗(z) is not substantially enhanced in the
street canyon.

For σw(z)/u∗(z), profiles show good agreement to
the surface layer values down to 1.2zh. No reduc-
tion is observed atzf . In both street canyons, be-
low 1.2zh, σw(z)/u∗(z) increases significantly to-
wards a maximum at0.8zh. Here, in the upper street
canyon, two processes enhanceσw(z)/u∗(z). First,
the above turbulent downward transport of variance
from the roof layer, and secondly, variances that
were previously in the longitudinal may be rotated
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and deflected and hence channelled into a measured
σw in the street canyon. At street level,σw(z)/u∗(z)
is again decreasing at both street canyon sites.

Stability dependence — The graphs in Fig. 4.48
illustrate the locally scaled similarity relationships
for σui(z)/u∗(z). Similar to other studies above
urban surfaces (Rotach, 1993b; Feigenwinter et al.,
1999), all three normalized standard deviations are
below the classical SL-values in the unstable range.
The differences between measured values and the
SL-prediction increase with distance to the roofs.
Revisiting the TKE-budget in Fig. 4.43, an in-
creased magnitude of the normalized turbulent trans-
port term is found (i) with increasing destabilization
and (ii) with increasing height above roofs. Hence
— always relative tou∗ — variances are exported
and local values are reduced.

Some studies report decreasing values forai with in-
creasingz0. The review by Roth (2000) can not con-
firm such a trend. It is likely that with higher rough-
ness, stronger mixing layers are formed. These mix-
ing layers enhance turbulent and pressure transport,
and hence remove variances in layers close to the
roofs compared to local production.

4.3.4 Eigenvalue analysis

In this section, an alternative approach to velocity
variances is tested. The above classification intoσul,
σvl andσw is problematic within the street canyon.

Table 4.17: Neutral limits ai (Eq. 2.79) for locally scaled
σul/u∗(z), σvl/u∗(z) and σw/u∗(z). Values ofai and bi
are determined with a numerical approximation in the unsta-
ble range−10 < z′/L(z) < 0 to minimize the RMS of the
logarithm ofAi.

Site z/zh au av aw n

U1 2.17 2.48 1.94 1.34 547
1.53 2.30 1.87 1.28 1029
1.23 2.13 1.94 1.36 1044
1.01 2.20 1.79 1.46 1012
0.77 3.00 2.03 2.00 611
0.25 2.58 1.85 1.47 1059

U2 2.49 2.37 1.82 1.31 1250
1.98 2.40 1.94 1.33 1258
1.44 1.93 1.63 1.30 2919
1.10 1.98 1.62 1.53 2056
0.92 1.86 1.50 1.67 2052
0.37 2.30 1.76 1.71 1995

S1 2.11 2.25 1.97 1.08 150
1.61 2.26 1.96 1.17 163
1.11 2.12 1.80 1.32 240

SL 2.2 1.9 1.25
urban 1.88 1.52 1.15

If approaching the three dimensional surface, the
question of the local (scale dependent) direction of
the surface becomes evident. For example close to
a wall — in a local context — horizontal and verti-
cal axis are swapped. Hence, what we se inσvl or
σul corresponds toσw over a flat surface, which is in
that case the wall.

Eigenvalues are independent of the frame of refer-
ence. Their value is therefore not influenced by any
arbitrary configuration of the coordinate system. We
retain an independent information on (i) the orien-
tation of the eigenvectors in space (principal axis)
and (ii) the relative importance of all velocity vari-
ances in the direction of these three principal axis.
The eigenvaluese and eigenvectorsg of the velocity
correlation tensorM ij (cf. Eq. 2.10) are defined by

M ijg = eg. (4.36)

The solutions of 4.36 are

det{M ij − eI}, (4.37)

whereI is the identity matrix. There are exactly 3
eigenvalues and eigenvectors that fulfill 4.36. The
three eigenvectors are all perpendicular. By defini-
tion, the eigenvalues are ordered by their magnitude,

e1 ≥ e2 ≥ e3. (4.38)
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Table 4.18: Eigenvaluesei of the velocity correlation tensor
M ij at U1., normalized by twice the TKE. Data source: Son-
ics A to F, hourly values, November 1, 2002 to July 15, 2002,
neutral stability only,n =1010h.

z/zh e1/u′2i e2/u′2i e3/u′2i
2.17 0.61 0.31 0.12
1.53 0.56 0.31 0.12
1.23 0.52 0.32 0.13
1.01 0.55 0.32 0.17
0.77 0.57 0.25 0.19
0.25 0.58 0.25 0.14
R1 0.62 0.29 0.09
R2 0.60 0.34 0.06
SL 0.55 0.32 0.14

Their sum is equal twice the TKE, which is equal
the trace ofM ij

e1 + e2 + e3 = u′2i . (4.39)

Eigenvectors — The polar plots in Fig. 4.49 illus-
trate the orientation of the eigenvectors at U1, and
additionally for a rural measurement close to the sur-
face (R2). The plots can be interpreted similar to a
map of a globe, as seen from the North pole. The
center point of the plot corresponds to the North pole
and the outer border is the equatorial axis. The lon-
gitude corresponds to the horizontal direction of the
eigenvector relative to the mean wind direction at
given height (which flows from top to bottom, as in-
dicated by the arrow in the top left).ξ denotes the
latitude, which is the inclination of the principal axis
to the horizontal plane. On this ‘map’, the piercing
point between the eigenvector and our globe is in-
dicated by a dot. Figure 4.49 shows piercing points
from all data sampled at U1.

At the topmost level, the first eigenvectorg1 roughly
points in the direction ofx (at the equatorial plane
top and bottom).g2 is the lateral component, and
g3 points to the vertical (and is therefore close to
the pole). With decreasing height, the orientation of
the principal axis become more and more unordered,
reflecting different realizations of the approaching
flow.

Eigenvalues — In isotropic turbulence,e1 = e2 =
e3 . If e1 � e2 ≥ e3 we encounter a cigar shaped
distribution, with one axis contributing most to the
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total TKE. In the casee1 ≈ e2 � e3, we have a
pancake shaped distribution. Figure 4.50 illustrates
sketches of the associated distributions. The trian-
gle drawse1/u′2i againste3/u′2i . The hatched region
is excluded due to the condition in Eq. 4.39. Un-
der neutral conditions in the surface layer,e1/u′2i =
0.55, e2/u′2i = 0.32 ande3/u′2i = 0.14 (which cor-
responds to the ratioa2

u : a2
v : a2

w = 2.52 : 1.92 :
1.252, Tab. 4.18)

With decreasing height, there is a tendency of the
flow to be more isotropic. Whilee1/u′2i slightly

decays,e2/u′2i and especiallye3/u′2i become more
important towards roof top (Fig. 4.51). Deeper in
the street canyon, the opposite trend is observed.
Due to channelling, the flow is mechanically forced
into one principal direction, and excursions are sup-
pressed by walls and the street floor. This results
in a highere1/u′2i . Here, the distribution resembles
the ‘cigar’. A special case is found close to the wall
(Sonic H) where we observe a ‘pancake’ distribu-
tion. The third eigenvaluee3 is small compared to
e1 ande2 andg3 is directed normal to the wall.

4.3.5 Summary

• Length scales of TKE within the street canyon
do not vary significantly with height. The
length scales of longitudinal fluctuations in-
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creases with depth. Above the roofs, length
scales increase nearly linear with height. This
is considered in a modified scaling lengthz′,
which is equalz − zd above the roofs and con-
stant in the street canyon (Eq. 4.28).

• Shear production of TKE peaks above roof top
and is by far the most important source in the
budget of TKE above the roofs. Shear produc-
tion decreases rapidly within the street canyon.
Dispersive shear production can be neglected.
The overall production / destruction of TKE by
buoyancy is small compared to shear produc-
tion, resulting in a predominantly neutral sta-
bility of the roughness sublayer. In unstable
runs, buoyancy production increases nearly lin-
ear with height in the canyon layer, stronger in
the roof layer and is constant with height above
z/zh = 2.

• The inertial subrange of spectra in the street
canyons is — compared to spectra from plant
canopies — not significantly different from the
surface layer prediction. This allows the cal-
culation ofε by the inertial subrange method.
The resultingε are highest atzh and decrease
in both directions. In most height layers,ε does
not counterbalance local production.

• Turbulent transport exports TKE from the re-
gion above rooftop down into the upper part of
the street canyon. In the upper street canyon,
turbulent transport is the most important source
of TKE. Pressure transport relocates TKE from
the roof layer and put it up into higher layers
and also down into the very bottom of the street
canyon. Dispersive transport can be neglected.

• Velocity variances are not completely different
from surface layer values by applying a local
scaling approach. Differences can be mainly
attributed to transport processes. In the roof
layer, standard deviations normalized by shear
production are lowest, which is interpreted as
an indication that structures shed at this shear
layer transport TKE in lower regions of the ur-
ban canopy.

• The introduced eigenvalue analysis illustrates
that close to roofs, TKE is more isotropically
distributed. In the street canyon, due to chan-
nelling, TKE is mainly put into one component.
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4.4 Exchange processes of heat and mass

In this chapter, we focus on turbulent exchange
processes of heat (Section 4.4.1), water vapor (4.4.2)
and CO2 (4.4.3). First in each section, the ver-
tical profiles of flux densities through the urban
roughness sublayer are analyzed. Then, exchange
processes are investigated using quadrant analysis
and cospectra. The analysis focuses on processes
rather than corresponding magnitudes of flux densi-
ties. The climatological variations of the two turbu-
lent heat flux densities in terms of the surface energy
balance are addressed in the subsequent Chapter 4.5.

4.4.1 Turbulent exchange of heat

The vertical profile of w′θ′ — Assuming horizon-
tal homogeneous conditions on a larger scale, and a
negligible molecular diffusion, we can simplify the
conservation of virtual acoustic temperature from
Eq. 2.52 to∗

∂〈θ〉
∂t

= 〈Sθ〉 −
∂〈w′θ′〉
∂z

− ∂〈w̄′′θ̄′′〉
∂z

. (4.40)

Sθ is the source or sink term, which is mainly driven
by the surface energy balance at the building-air in-
terfaces enclosed in the layer. It may further in-
clude net radiation divergence and evapotranspira-
tion / condensation in the air volume (Eq. 2.53), but
both effects are small compared to the impact of the
building-air interfaces. In Eq. 4.40 we relate the
measured turbulent flux density divergence to these
sources (or sinks) in a given layer, to a temperature
change in this layer or to a counter-directed disper-
sive flux density divergence. The dispersive flux
density 〈w̄′′θ̄′′〉 may be responsible for additional
heat transport in the street canyon. It could not be
measured with the present setup and attempts to es-
timate its magnitude similar to the procedure applied
for momentum fail due to the lack of an appropriate
scaling of the temperature profile.

The good agreement between the three profile tow-
ers encountered in the analysis of momentum ex-
change is not found in the vertical profiles ofw′θ′.
At U2, the vertical profile differs significantly from

∗ For simplicity, we assume that̄θ is constant at the air-build-
ing interface, which is not mandatorily true, especially when
sun position is low and radiative heating systematically favors a
particular wall-exposition.
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Figure 4.52: Horizontally averaged vertical profiles ofw′θ′

normalized by its value at tower top at all three towers for con-
vective situations. The thick gray line denotes the parametriza-
tion according to Eq. 4.41 withze = 1.2zh and ch = 1.4.
Data source: All sonics, hourly averages, median profiles, full
operation periods,z′/L < −0.5. Error bars in this and the
subsequent plots are similar to Fig. 4.8.

U1 and S1 (Fig. 4.52). Particularly, level D shows
a reducedw′θ′ compared to corresponding heights
at U1 and S1. The setup at U2 results in a num-
ber of situations in the afternoon, when the avenue
canyon and the building-wall close to the sonics A
to C are heated by direct solar irradiance. Simulta-
neously, the backyard to the East is shadowed (refer
to the plan in Fig. 3.7). Due to the horizontal shift of
the tower and the street canyon profile, level D mea-
sured exchange over the shadowed backyard during
these conditions whereas sonics A to C probed the
heated street canyon. The horizontal averaging pro-
cedure fails, because not only wind direction, but
also sun-orientation affects the different realizations.
The horizontally shifted profiles and the associated
different source areas do not allow a calculation that
can substitute a real horizontal average. Hence, we
mainly focus on results of the thermally more ideal
sites U1 and S1.

At U1 and S1,∂〈w′θ′〉/∂z is close to zero above
most relevant building structures, namely in the
layerz/zh > 1.2 (Fig. 4.52). This suggests thatSθ

and the local dispersive heat flux density divergence
are negligible. The absence of building interfaces
does not allow additional heat input in these layers.

Nevertheless, between1.2 < z/zh < 2.0, a slight
reduction ofw′θ′(z) with height is observed at U1
and S1. A decrease with height has been also re-
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ported from earlier urban studies (Rotach, 1991;
Roth, 1991; Feigenwinter, 2000). The two latter
studies argued that their decrease is an effect of
different source areas∗. The source areas of dif-
ferent levels do not incorporate mandatorily the
same surface energy balance partitioning. In the
present study, at least for U1, the slight reduction
of w′θ′(z) with height is counterbalanced by an in-
creasingw′ρ′v(z) (Section 4.4.3), suggesting that

∗ Rotach (1991) observed a more complex vertical profile of
w′θ′(z) with first a decrease with height abovezh, and a con-
tinuous increase with height abovezh = 1.5. His observations
show similarity to the profile at U2, but the theoretical frame
given in Eq. 4.52 does not support an increase in the highest
layers, if dispersive fluxes are small, temperature change and
radiation divergence in the column is negligible and no build-
ings structures may act as heating surfaces anymore.

moisture availability is not homogeneously distrib-
uted. The overall impact of this heterogeneity at
U1 is not crucial, and abovez/zh = 1.2, the hor-
izontally averaged profile can be approximated by
∂〈w′θ′〉/∂z = 0. For nearly all wind directions, the
measured divergence∂w′θ′/∂z reaches values close
to zero abovez/zh = 1.5 (Fig. 4.53), an indication
that roughly the blending heightz∗ for the sensible
heat flux is reached.

The profiles ofw′θ′ suggest that strongest gradi-
ents are found around roof top (Fig. 4.54). This
is indirectly supported by model calculations for
the short-wave radiation divergence (cf. upcoming
Fig. 4.68): the dense urban surface with its nar-
row street canyons absorbs mainly short-wave radi-
ation in the roof layer and in the upper canopy. At
U1, only about 15% ofK↓ gets directly through to
the ground level in the yearly average. As a conse-
quence, sourcesSθ are strongest in the roof layer.
These sources explain the strong vertical gradient
w′θ′/∂z in the range0.8 < z/zh < 1.5. Below, gra-
dients slightly decrease, and the rate of the decrease
depends on the flow configuration. Hence, the roofs
and the upper street canyon can be regarded theac-
tive surface, even though a notable part of〈w′θ′〉
origins from the deeper canyon.

From the present observations, a simple empirical
parametrization of〈w′θ′〉 is suggested, namely

〈w′θ′〉(z) =

{
w′θ′(IS) for z ≥ ze

w′θ′(IS)e−k for z < ze

(4.41)
with

k = ch
(ze − z)
ze

(4.42)
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This parametrization is drawn in Fig. 4.52.
〈w′θ′〉(IS) is the heat flux in the inertial sublayer
above.ze is the effective building height (previously
encountered as the height of the inflection point of
the mean wind profile). In the case of a hypothetical
surface with uniform buildings, it would be expected
thatze ≈ zh. For the present urban surface with non-
uniform building height,ze = 1.2zh leads to best re-
sults. ch is an empirical constant, which was deter-
mined for each run at U1 and U2 separately by min-
imizing the RMS error of the levels belowze (only
runs withw′θ′(IS) > 0.05 K m s−1 have been con-
sidered).〈w′θ′〉(IS) was approximated by the mea-
surement at tower top. On the horizontal average,
ch is around1.4 at both urban sites. The values of
ch might depend on morphometric configuration, es-
pecially on the vertical distribution of surfaces con-
tributing to a sensible heat flux.

Gradients of∂〈w′θ′〉/∂z are less pronounced during
along-canyon flow compared to cross-canyon flow
(Fig. 4.53). This can be seen as an indication that
street canyon air masses are better coupled with the
air aloft under along-canyon-flow, or that dispersive
flux densities are larger for cross-canyon flow with
a vortex, if assuming an exchange of similar magni-
tude. As a consequence,ch for along-canyon flow
is smaller (ch ≈ 1) compared to cross-canyon flow
(ch ≈ 2.5) at U1. A further separation can be ob-
served for cross-canyon flow. If the profile measures
at the leeward wall, significantly stronger gradients
of 〈w′θ′〉 and a higherch are observed at both urban
sites.

Implications for stability — The vertical flux
density divergence ofw′θ′(z) and the vertical di-
vergence ofu∗(z) (Section 4.2.2) together with the
height-dependent scaling lengthz′(z), result in a
local Obukhov-LengthL(z), which is not constant
with height.

During the day, in the roof layer, the air typically
shows a tendency towards more neutral stabilities,
which is a consequence of the strong shear produc-
tion (Fig. 4.55). With increasing height above roofs,
ζ(z) tends towards more unstable classes. A similar
destabilization with height is observed at U2 and S1
(not shown).

During the night,w′θ′ transports energy away from
the surface in the majority of runs. This phenom-
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Figure 4.55: Histogram of locally scaled stability classes at
different heights at U1, separately calculated for (a) daytime
and (b) nocturnal situations. Data source: Sonics A to F, hourly
block averages, November 1, 2001 to July 15, 2002,n =3620h.

ena is mainly driven by high storage release and is
discussed more deeply in Section 4.5.7. As a con-
sequence, the nocturnal atmosphere close to the sur-
face remains unstable. Belowzh, convective classes
are most pronounced due to low shear production in
the street canyon. In the roof layer, stable situations
rarely occur (< 3%). At tower top, only10% stable
cases are recorded.

Temperature variance — Variance of virtual
acoustic temperatureσθ is roughly constant with
height (Fig. 4.56a). This suggests thatσθ is
equally distributed over the whole roughness sub-
layer, mainly because of efficient mixing and trans-
port processes. From the vertical profile at U1 and
S1, there is some evidence for a slight increase ofσθ

around roof level. At U1, a decrease ofσθ down into
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the street canyon can be seen. The profile at U2 does
not support much vertical variation.

Figure 4.57 illustrates locally scaled standard devi-
ation of virtual acoustic temperatureσθ(z)/θ∗(z).
The figure displays values from the four above-
roof levels at U1 against stability. At all levels,
the locally scaledσθ(z)/θ∗(z) is stronger than pre-
dicted by the surface layer scaling (solid line). Also,
previous urban studies reported higher values for
−σθ(z)/θ∗(z) (Oikawa and Meng, 1995; Feigen-
winter, 2000). Modified parameters in the semi
empirical relationship suggested by Feigenwinter
(2000) better fit the values (dash-dotted line). Close
to neutral stability, values take off, which is mainly
an effect of the smallθ∗, whereas simultaneouslyσθ

is still higher than zero due to a contamination by
large scale (inactive) temperature variance.

Interestingly, local scaling close to the roofs shows
better agreement to the surface layer prediction than
at the topmost tower level (Fig. 4.57). A similar
pattern was observed by Feigenwinter (2000), who
interpreted the higherσθ(z)/θ∗(z) as an indication
that thermal homogeneity is not given at his topmost
measurement level.

The mixed momentw′θ′2 describes the turbulent
vertical transport of temperature variance. If its
divergence∂〈w′θ′2〉/∂z is non-zero, temperature
variance is exported or imported from other layers.
Figure 4.56f illustrates the vertical profile ofw′θ′2

for all three towers. In surface layer scaling, the
normalized third-order momentsw′2θ′/(σ2

wσθ) and
w′θ′2/(σwσ

2
θ) can be expressed as empirical func-

tions ofζ only (see Appendix in Katul et al., 1997).
In the unstable and neutral surface layer,w′θ′2 is
greater than zero, hence indicating that tempera-
ture variance is transported upward (Wyngaard and
Cote, 1971). The expected ranges for the normal-
ized third-order moments in the convective situation
are labelled ‘CSL’ in Fig. 4.56d and f.

w′θ′2 is close to zero or negative in the street canyon
(sweeps), small around roof level (equilibrium be-
tween sweeps and ejections), but large at tower top
(ejections). Hence, there is a strong upward directed
vertical flux of temperature variance at tower top
and a downward directed one in the street canyon, at
least at U1. As a consequence, around roof-topσθ is
exported, and in the upper canopy, as well as above
tower top,σθ is imported. This may explain the fail-
ure of the temperature variance method at tower top,
and the fact that it delivers better results close to
the roofs, wherew′θ′2/(σwσ

2
θ) is smaller (Section

4.1.3). Note that the measured varianceσθ is further
enhanced by inactive turbulence at all levels. The
integralσθ may be regarded a superposition of (i)
locally produced temperature variance described by
w′θ′∂(θ̄/∂z), (ii) vertical import or export of vari-
ance as described by∂w′θ′2/∂z, and (iii) inactive
contributions from larger scales.

Organized structures — To identify the rele-
vant structures contributing to the turbulent heat ex-
change, joint probability density functions (JPDFs)
P (ŵ, θ̂) were calculated similar to the procedure de-
scribed for momentum flux (Section 4.2.4). In the
case of a positivew′θ′, ejections denote warm up-
ward motions (quadrant 2∗) and sweeps are cool
downward events (quadrant 4).

Figure 4.59 illustrates the vertical profile of JPDFs
at U1 for unstable runs. In the right column, the
corresponding non-Gaussian flux fractions (NGF)
are drawn. NGFs are the counterpart of the non-
Gaussian stress fractions (NGS) introduced in Sec-
tion 4.2.4. NGFs show the difference between the
actual JPDF and a Gaussian distributionG(ŵ, θ̂)
with samerwθ.

Well above roofs, the exchange ofw′θ′ is clearly
dominated by ejections, and∆S0 is negative (Fig.
4.58a). At U1, ejections dominate down to 1.2zh.

∗ Note that quadrant numbering for momentum and scalars dif-
fer, see Fig. 2.2.5 for definitions.
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Figure 4.59: Left column: Normalized JPDFs ofw′θ′ for un-
stable conditions at U1. The numbers in the individual quad-
rants denote the average time fractions.n is the number of
hourly runs included in the average,k is the number of the
16 wind direction classes included in the horizontal average.
Right column: Non-Gaussian flux fractionsNGF(ŵ, θ̂) in the
normalized joint probability density functions. ‘E’ and ‘e’ de-
note non-Gaussian large and small-scale ejections, respectively.
‘S’ and ‘s’ are non-Gaussian large and small-scale sweeps. Data
source: sonics A to F (U1), horizontally averaged JPDFs, hourly
values, November 1, 2001 to July 15.

Hence, an ejection-dominated regime is found in a
layer where momentum exchange is already clearly
dominated by sweeps (see Section 4.2.4). A dissimi-
larity between heat and momentum exchange is also
reported from forests, for example in the experiment
of Bergstr̈om and Ḧogstr̈om (1989), where ejection
contribution was also stronger for heat than for mo-
mentum.

At roughlyze, ejections and sweeps contribute equal
to the turbulent heat exchange and∆S0 crosses zero
(Fig. 4.58a). The skewness of temperature is smaller
compared to the layers above and also compared to
the deep street canyon (Fig. 4.56c). A similar pat-
tern is reported from a wind tunnel study, where flux
fractions of sweeps and ejections are equal around
zh (Coppin et al., 1986). This layer was therefore
referred to asequilibrium layer. The wind tunnel
study indicated for large hole-sizes that sweeps were
dominant. The NGF atz/zh = 1.01 support this
observation. In the NGFs atz/zh = 1.01, simulta-
neously large scale sweeps (S) and small scale ejec-
tions (e) characterize the exchange. At U1, the ex-
change is most efficient in this layer, as values of the
exuberanceEx (Fig. 4.58b) and an increased corre-
lation coefficient (Fig. 4.56b) suggest. An increased
efficiency is not found at U2 and S1.

Below zh, cool air structures (sweeps) exchange
heat by penetrating into the street canyon. At U1,
strongest∆S0(w′θ′) is found in the upper street
canyon, which is similar to momentum exchange. In
the NGFs, there are no indications for non-Gaussian
ejections in the two lower levels.

Intermittency — In the street canyon, hole sizes
H ′ are largest (Fig. 4.58d). The corresponding time
fractionsϑ′ (Fig. 4.58e) illustrate that the exchange
of heat takes place in sporadic events. In the roof
layer, close to the inflection point of the mean wind
profile, exchange is dominated by smaller (small
H ′) and more frequent structures (largeϑ′). With in-
creasing height above roofs, the hole sizeH ′ slightly
increases, and simultaneously, the time fractionϑ′

decreases, indicating that exchange tends again to-
wards higher intermittency.

Stability influence — The magnitude of∆S0

clearly increases with destabilization (Fig. 4.60a). In
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contrast to momentum exchange, the height of the
crossover from sweep-dominated exchange in the
street canyon to ejection-dominated exchange above
the roofs is not affected by destabilization. For all
stability classesz′/L < 0, the crossover is found at
ze at U1. It is no surprise that the efficiency of the
exchange is enhanced with destabilization, as illus-
trated by the exuberance (Fig. 4.60b).

Above roofs, unstable runs show that the hole size
H ′ is smaller during unstable than during stable runs
(Fig. 4.60c). The corresponding stable time frac-
tionsϑ′ illustrate that exchange in these infrequent
cases is strongly intermittent (Fig. 4.60d).

4.4.2 Turbulent exchange of water vapor

Water vapor fluctuations (ρ′v) were measured only
once per site, except at U1, where two H2O/CO2
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Figure 4.61: One-point integral length scales of heat, water
vapor and CO2 under unstable conditions from tower top at U1.
Data source: Sonic and Licor 7500 at level F, hourly values,
linearly detrended, June 15 to July 15, 2002.

gas-analyzers were operated simultaneously at two
levels for a limited period from June 24 to July 13,
2002.

The vertical profile of w′ρ′v — The lower gas-
analyzer at U1 (z/zh = 1.01) probed the top
of the completely vegetation-free street canyon.
Here, flux densitiesw′ρ′v are extremely small (2 ·
10−3 g m−2 s−1 on average). In one third of all
cases,w′ρ′v is slightly downward directed. The
downward directed flux densities indicate that small
amounts of humid air are put into the warmer and
drier street canyon. These situations are most fre-
quent during midday. The average daytime Bowen
ratioβ at this height shows typical values around 6.

At tower top where the measurement responds
to the whole neighborhood, fluxes are still small
(see also Section 4.5.6), but on average they are
four times more important than at canyon top (8 ·
10−3 g m−2 s−1). The averageβ at tower top is2.6.
Here, air masses are more mixed and the source ar-
eas include vegetation in backyards and open soil
patches. The positive∂w′ρ′v/∂z between canyon
top and tower top may be an explanation for the
small negative∂w′θ′/∂z in this layer as discussed in
the previous Section 4.4.1. Over an inhomogeneous
surface, a patchy moisture availability influences the
vertical profiles of both turbulent flux densities, even
if available energy is equally distributed.
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Table 4.19: Peak frequencyfmax = (nmaxz
′)/ū(z) of cospec-

tra determined from the peak of the median normalized spectra
over all runs with given stability. Data source: Sonics: F (U1),
F (U2), C (S1) and A (R1), hourly values, linear detrended, June
10 to July 10, 2002.

z/zh u′w′ a w′θ′ b w′ρ′v
b w′c′ c

U1 2.17 0.05 0.11 0.11 0.13
U2 2.49 0.08 0.10 0.11
S1 2.11 0.11 0.11 0.15
R1 28 m 0.08 0.09 0.05
SL 0.07 0.09

a Neutral runs,−0.1 < z′/L < +0.1
b Unstable runs,−0.5 < z′/L < −0.1
c All runs z′/L < 0

Length scales and cospectra — Figure 4.61
presents one point integral length scales for temper-
ature, water vapor and CO2. Values are determined
from autocorrelation functions. The three variables
were simultaneously measured at tower top (U1)
during the IOP. Integral length scales of CO2 and
temperature have more similarity and are smaller
than length scales of water vapor. This reflects the
fact that the urban surface is more homogeneous for
heat and CO2 than for water vapor. CO2-fluctuations
and temperature are driven by surface emissions and
heating. Vertical fluxes of water vapor are small
compared to the distinct and dominantly upward di-
rected flux densities of heat and CO2.

The cospectra of the corresponding vertical fluxes
of heat, water vapor and CO2 do not reveal a pro-
nounced difference. At tower top, all three cospec-
tra show a pronounced peak and a marked roll-off
in the low frequency end. The normalized peak fre-
quenciesfmax = (nmaxz

′)/ū(z) are summarized in
Tab. 4.19. fmax match well to corresponding val-
ues in the surface layer and also to previous urban
studies (Roth, 1991; Feigenwinter, 2000). In par-
ticular, the cospectra do not imply a contribution of
large scale fluctuations to the flux density in low fre-
quency bands.

Organized structures — Roth (1991) points out
that there are two modes in water vapor exchange. In
the classical textbook case of the moistening bound-
ary layer,w andρv are well correlated and the flux
is mainly driven by moist updrafts. Here, the la-
tent heat flux from the surface is the main source
of moisture fluctuations.θ andρv are highly similar
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Figure 4.62: Band median values of all cospectra ofw′θ′ (solid
line),w′ρ′v (dotted line) andw′ρ′c (dashed line) from tower top
and canyon top at U1. Data source: Sonics and Licor 7500 at
level C and F, hourly spectra, 64 logarithmic bands, June 15 to
July 15, 2002, all situations.

and hencerθρv is close to 1. This mode is predom-
inantly found at rural sites, which are characterized
by a strong evapotranspiration. At R1 for example,
ejections dominate, and∆S0(w′ρ′v) is negative most
of the time (Tab. 4.20).rwρv shows midday val-
ues around0.35 andrθρv is above0.5 (Fig. 4.63).
These indicators imply an efficient water vapor ex-
change and high similarity between the flux density
of water vapor and heat. The surface layer at R1 has
a consistent positivew′ρ′2v /(σwσ

2
ρv

), which further
underlines that water vapor variance is transported
upwards, and active surface processes (ejections†)
dominate. The water vapor fluctuations at the subur-
ban site S1 also are driven in this mode.

† Forw′ρ′v directed away from the surface, ”ejections” denote
humid air correlated with upward motions (quadrant 2) and
”sweeps” are dry air directed downward (quadrant 4).
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Figure 4.63: Average diurnal course ofrwθ, rwρv andrθρv at
U1, U2, S1 and R1 during the summertime IOP. Data source:
Sonics F (U1), F (U2), C (S1), A (R1), hourly block averages,
June 10 to July 10, 2002, all situations.

Table 4.20:Horizontally averaged median of quadrant analysis
measures for turbulent fluxes of momentum, heat, water vapor
and carbon dioxide at two levels at U1, in comparison to surface
layer values from R1. Data source: Soncis C and F (U1), A
(R1), median values from hourly JPDFs, full operation periods,
all stabilities.

z/zh u′w′ w′θ′ w′ρ′v w′c′

∆S0 R1 -0.01 -0.08 -0.08
2.17 -0.03 -0.13 +0.01 -0.01
1.01 +0.33 +0.20 +0.04 +0.14

γ0 R1 1.15 1.18 1.14
2.17 1.04 1.25 0.96 1.54
1.01 0.69 0.78 0.94 2.05

Ex R1 -0.62 -0.89 -0.62
2.17 -0.39 -0.59 -0.67 -0.50
1.01 -0.47 -0.50 -0.93 -0.59

H ′ R1 1.94 2.07 1.88
2.17 2.07 2.05 1.92 1.81
1.01 2.31 2.09 2.03 1.88

ϑ′ R1 0.077 0.068 0.081
2.17 0.066 0.065 0.063 0.063
1.01 0.054 0.068 0.074 0.056

In the second mode described by Roth (1991), water
vapor fluctuations are mainly driven by large scale
entrainment processes in the whole atmospheric
boundary layer, and not by surface evapotranspira-
tion. In this second mode, dry downdrafts dominate
the water vapor regime. There are several indica-
tions that water vapor fluctuations at U1 and U2 are
mainly driven by the second mode. Both, the mag-
nitude of the latent heat flux and the correlation co-
efficientsrwρv are small (Fig. 4.63). At the dense
urban sites,rwρv shows no stability-dependence and
stays constant between 0 and 0.1. The normal-
ized vertical flux density of water vapor variance,
w′ρ′2v /(σwσ

2
ρv

), is negative most of the day (Fig.
4.65). This implies that water vapor variance is
transported downwards at tower top and at canyon
top. Further, water vapor exchange at U1 is slightly
sweep dominated over the whole profile (Tab. 4.20
and Fig. 4.64). The exuberance suggests a much less
efficient exchange compared to heat and CO2. This
pattern fits to results from Roth and Oke (1993b),
who found that efficiency ofw′ρ′v is least efficient
over urban surfaces.

104



Results and Discussion / Exchange processes of heat and mass

75%

95%

25%

50%

90%

20-2
ρc

ρc

20-2
ρv

z/
z h

=
2.

17
z/

z h
=

1.
01

H
2
O CO

2

H
2
O CO

2

0.260.22

0.30 0.22

n= 417k = 16

 

 

 
 

 

 
 

      
 

 

 
0.260.27

0.30 0.16

n= 274k = 15  
 

 

 
 

 

    
 

 

 
-2

0

2
 0.270.27

0.24 0.22

n= 279k = 15  
 

 

 
 

 
 

-2

0

2
 

0.260.21

0.28 0.24

n= 406k = 16  
 

 

 
 

 
  -2 0 2   

ρv

  -2 0 2   

w

w

 
-2

0

2
 

w

 
-2

0

2
 

w

Figure 4.64: Normalized JPDFs of the vertical flux of H2O and
CO2 for neutral, unstable and convective conditions at U1. The
numbers labelling the individual quadrants denotes the average
time fractions. Data source: sonics C and F (U1), horizontally
averaged JPDFs, hourly values, June 15 to July 15, 2002.

4.4.3 Turbulent exchange of CO2

The dominant sources for CO2 in this neighborhood
are the motor vehicles, which emit deep in the street
canyon. Minor sources are fixed roof level emis-
sions, and also the respiration of the sparse urban
vegetation during night. A daytime CO2-uptake by
the vegetation is included in the flux at tower top,
but is likely absent at top of the vegetation free street
canyon.

The vertical profile of w′ρ′c — During the sum-
mertime IOP, the daily averaged (WPL-corrected)
CO2-flux is 12.3µmol m−2 s−1 at canyon top and
10.5µmol m−2 s−1 at tower top (Fig.4.66a). The
intensity of the flux density, especially at canyon
top, is related to the traffic load in the street canyon
(Fig.4.66b). As we intuitively expect, the street
canyon at U1 can be regarded a local spot of higher
CO2-emissions compared to the area average of the
urban surface. The measurement at tower top inte-
grates over larger areas and is more representative
for an area average at neighborhood scale. It incor-
porates vegetated backyards as well as other street
canyons with different traffic frequency.

During the night, the pattern changes. The low traf-
fic load in the Sperrstrasse results in an almost zero
flux of CO2 at canyon top. The sparse vegetation in
the backyards and roof level emissions release small
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Figure 4.65: Diurnal courses of third order moments
w′θ′2/(σwσ

2
θ), w′ρ′2v /(σwσ

2
ρv

), andw′ρ′2c /(σwσ
2
ρc

) at tower
top and canyon top (U1). Data source: Sonics and Licor 7500
at levels C and F, hourly block averages, June 24 to July 12,
2002, all stabilities.

amounts of CO2. This results in a positive nocturnal
flux at tower top. The (local) nocturnal flux density
divergence above roof level is slightly positive. The
interactions between the urban biosphere, roof level
emissions, and the inhomogeneous traffic load of the
different streets in this neighborhood do not allow
to derive general profiles from only those two mea-
surement heights, which have completely different
source areas. Vogt et al. (2005) discuss variations in
fluxes and the vertical concentration profile of CO2

at U1, and relate the pattern to traffic load, urban
vegetation and mixed layer height.

CO2 variance — Not only temperature and water
vapor variances, but also the scaled standard devia-
tions of CO2 are distinctly higher than predicted by
surface layer scaling (Fig. 4.67). The vertical flux
of CO2-variancew′ρ′2c /(σwσ

2
ρc

) is upward directed
at both levels (Fig. 4.65). All over the day, variances
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Figure 4.66: Average diurnal courses of (a) CO2-flux densities
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all data measured (a: top level only). Data source: Sonics and
Licor 7500, levels C and F, traffic counter, hourly averages, June
15 to July 12, 2002, all situations. Modified from Vogt et al.
(2005).

of CO2 are transported out of the street canyon. This
underlines that the active surface for CO2 is found
deep in the canyons, where concentration variances
are produced by motor vehicles. The exception is
the very early morning, when overall flux densities
w′ρ′c are close to zero at canyon top. At tower top,
w′ρ′2c /(σwσ

2
ρc

) is reduced during midday.

Similar to heat variance transport, the negative
∂w′ρ′2c /∂z between the two layers may explain (part
of) the enhanced CO2 variance measured at tower
top. Again, the scaled standard deviations ofσρc/c∗
is closer to the surface layer prediction atz/zh =
1.01, compared to the measurement at tower top (not
shown).

Organized structures — The JPDFs of turbulent
CO2-flux densities reveal fundamental differences
between the exchange at canyon top and at tower
top (Fig. 4.64). At tower top, the CO2-flux density is
nearly in equilibrium between sweeps and ejections.
At street canyon top, the flux is strongly skewed to-
wards the 4th quadrant, suggesting that the dominant
structures are sweeps which transport ‘clean air’ into
the street canyon.
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Figure 4.67: Locally scaled standard deviationsσs(z)/s∗(z)
of heat, water vapor and CO2 during unstable conditions from
tower top at U1. Data source: Sonic F, Licor 7500, hourly aver-
ages, June 15 to July 15, 2002, unstable conditions.

CO2-exchange is more effective than water vapor
exchange. At both levels,rwρc slightly decreases
with destabilization (not shown). The correlation is
likely affected by the diurnal course of the buoyancy
flux. Usually, strong unstable situations are encoun-
tered during afternoon, when simultaneously traffic
load is small and uptake by vegetation is strong. As
a consequence, emissions of CO2 are reduced, and
variations in CO2 are more dominated by inactive
processes on larger scales, which reducesrwρc .

The cospectra of CO2 at tower top coincide with
those of the two other scalars (Fig.4.62). They agree
well with those from measurements in the homo-
geneous surface layer (Ohtaki, 1985). However, at
canyon top, a dissimilarity between heat and CO2 is
found: heat is transported by smaller structures than
CO2. CO2 is exchanged by large sweeps, which
mix-up the whole street canyon, while tempera-
ture may also be exchanged by weaker and smaller
sweeps that only affect the upper part of the street
canyon. Here, the exchange of CO2 is more inter-
mittent compared to heat (Tab. 4.20). This again
supports the different heights of the active surfaces
of the two scalars (heat: roof region and upper street
canyon, CO2: street level).

4.4.4 Summary

• The vertical profiles of the turbulent heat flux
w′θ′(z) suggest a nearly continuous increase
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Table 4.21:Summary of characteristics affecting heat and mass
exchange at the three urban towers, separately for the canyon
layer (CAL), the roof layer (ROL), and the above-roof layer
(ARL) for convective situations.

Parameter z < zd zd < z < zf zf < z
CAL ROL ARL

Heat
∂〈w′θ′〉/∂z > 0 � 0 ≈ 0
∆S0(w′θ′) > 0 ≈ 0 < 0
w′2θ′/(σ2

wσθ) < 0 Crossovera > 0
w′θ′2/(σwσ

2
θ) ≈ 0 Crossovera > 0

rwθ
b ≈ 0.2 ≈ 0.5 ≈ 0.35

Water vaporc

∆S0(w′ρ′v) < 0 < 0
w′ρ′2v /(σwσ

2
ρv

) < 0 ≤ 0
rwρv ≈ 0 ≈ 0.1
CO2

c

∆S0(w′ρ′c) > 0 < 0
w′ρ′2c /(σwσ

2
ρc

) > 0 ≥ 0
rwρc ≈ 0.2 ≈ 0.15

a Change of sign associated with strong gradients.
b Convective conditions at U1 only. U2 and S1 differ.
c Observations from U1 only.

up toze (≈ 1.2zh, inflection point of the mean
wind profile) and a constant value above. Gra-
dients ofw′θ′(z) are slightly stronger around
zh compared to the lower street canyon, leading
to the exponential parametrization suggested in
Eq. 4.41.

• Information on the vertical profiles of turbulent
water and CO2 flux densities are limited in the
present data set, since the resolution with only
two levels of direct flux measurements at U1 is
low. The larger source areas at tower top result
in both cases in more representative measure-
ments. At the top of the vegetation-free street
canyon,w′ρ′c(z) is stronger than at tower top,
andw′ρ′v(z) is smaller.

• The normalized standard deviations of virtual
acoustic temperature, water vapor and CO2 are
all distinctly higher than predicted by surface
layer scaling. For temperature and CO2, dif-
ferences to the surface layer prediction even in-
crease with height above roof level. The en-
hanced variances are explained by (i) far-field
contributions from large scale inactive turbu-
lence and by (ii) a near-field vertical divergence
of turbulent variance transport. The analysis in-

dicates that water vapor fluctuations are mostly
driven by inactive turbulence while standard
deviations of virtual acoustic temperature, and
CO2 are more characterized by active fluctua-
tions created by the surface exchange.

• The heat flux is characterized by ejections
above the heightze and by sweeps below. In
the region1.2 < z/zh < 1.6, a dissimilarity
between the turbulent heat flux and Reynolds
stress is observed. While Reynolds stress
is dominated by sweeps, heat flux is mainly
driven by ejections in this layer. Deep in the
street canyon and well above roofs, processes
qualitatively coincide.

• The different scalars do not have the same ac-
tive surfaces, and as a consequence, exchange
processes between heat, water vapor, and CO2

are different (Tab. 4.21). Sources forw′θ′ are
mainly found at roof level and in the upper
street canyon. In contrast, there is evidence
for water vapor and especially CO2 that their
active surfaces are deeper, since the majority
of sources (vegetation, vehicles) are found in
lower layers of the urban canopy.

• At tower top, cospectra ofw′θ′, w′ρ′v andw′ρ′c
show high agreement, and peak frequencies
are similar to the ones observed in the surface
layer. The cospectra suggest that roughly the
same scales dominate turbulent exchange. At
roof level, the scales of the exchange are differ-
ent, which is explained by the different heights
of the active surfaces.
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4.5 Surface energy balance†

In this last chapter, we shift the focus from phys-
ical exchange processes to a more ‘climatological’
approach, and address the urban surface energy bal-
ance modification. The energy balance network op-
erated during the IOP allows the simultaneous com-
parison of urban, suburban, and rural energy bal-
ance partitioning during one month of summertime
measurements. The partitioning is analyzed together
with long-term data to evaluate the magnitude of
the urban flux density modification, and to docu-
ment characteristic values in their diurnal and yearly
course. After introductory definitions (4.5.1), the
first three sections address the radiative processes,
namely the short-wave components (Section 4.5.3),
the long-wave components (4.5.4) and implications
on net-radiation (4.5.5). Then, latent heat flux den-
sities (4.5.6), sensible heat flux densities (4.5.7) and
the storage term (4.5.8) are analyzed. Finally, the es-
timation of the anthropogenic heat input (4.5.9), and
the calculation of the overall energy balance modifi-
cation (4.5.10) summarize the topic.

4.5.1 Definitions and concepts

The general approach to estimate the urban energy
balance is not to measure close to ground level, but
to observe the turbulent fluxes high above the mean
building heightzh in order to avoid local effects
of single roughness elements, i.e. the measurement
height zm has to be above the roughness sublayer
height (Rotach, 2002). Therefore, calculations of
the surface energy budget have been done with the
highest available measurements at each tower, which
then refer to the upper marginzm of an imaginary
box enclosing all buildings and vegetation of the
urban surface from ground up to this measurement
height.

The measured turbulent flux densities at heightzm
are an area-averaged response of the surface, where
the flux source areas depend on wind direction and
stability (Schmid and Oke, 1990). The instruments
at any urban site measure an integrated flux from
an array of buildings, streets, backyards, and veg-
etation, which is representative of the neighborhood
scale (Section 2.1.2).

† Part of this chapter has been published in Christen and Vogt
(2004b)

The ‘box view’ of the urban surface simplifies the
storage by enclosing all surface elements (ground,
buildings, and vegetation), but it also incorporates
the air volume between the ground and the measure-
ment level, within which a small amount of energy,
∆QT , can be stored (removed) by warming (cool-
ing) the air. This energy change is not part of the
ground storage heat flux density∆QS and not a
component of thesurfaceenergy balance. It is a con-
sequence of our concept of an elevated surface when
measuring flux densities atzm and not at ground
level. In the present work, it is assumed thatQT

is mainly driven by sensible heat flux density diver-
gence∂QH/∂z from ground up tozm. Therefore, in
order to reduce the surface down to a theoretically
flat ground level,∆QT is incorporated intoQH .
Most of the time,∆QT is below 10% of∆QS and
its magnitude is always less than20 W m−2. More-
over, ∆QT nearly vanishes when calculating daily
totals and therefore does not affect the long-term en-
ergy partitioning.

The source areas of the down-looking radiation in-
struments and the variable source areas of the eddy
correlation instrumentation usually do not refer to
the same area. Therefore, such a setup has to as-
sume horizontal homogeneity of the surface proper-
ties and flux densities at ground level.

4.5.2 Schedule of observations

In summary, data from three observations periods
are presented in this chapter. First, thesummer-
time IOP (June 10 to July 10, 2002) allows for
the detailed comparison of the diurnal variation of
urban-rural differences during a period of high en-
ergy availability. During this period, the mean solar
radiation was23 MJ d−1 m−2, mean air temperature
20◦C and precipitation65 mm (mostly from thun-
derstorms). The IOP includes 10 clear-sky days and
is significantly warmer and slightly dryer than the
30 year average (16.8◦C and89 mm, respectively).
Winds 10 m abovezh were in average2.0 m s−1,
and due to a thermal circulation in the Rhine Val-
ley mainly from the sectors W to N (51%, day) and
E to S (36%, night). Second, measurements taken
during thefull year period(Sep 2001 – Aug 2002)
are presented. Data are available for U1, U2 and
R3. This period is characterized by an annual mean
temperature of10.7◦C and826 mm of precipitation
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(30-year average:9.0◦C and791 mm). Winds10 m
abovezh were2.1 m s−1 in average and sectors SW
to NW (44%) and E to SE (34%) dominated. Finally,
at U2 and R3, several parameters like radiation and
temperature / humidity profiles are available since
1994. This urbanlong-term data-set1994–2002 is
used to compare the findings from the IOP and year
long data with climatological values.

4.5.3 Short-wave flux densities

Table 4.23 summarizes the daily total of all radia-
tion flux densities at the seven energy balance sites
for the summertime IOP period. The solar irradiance
K↓ during this period is nearly of similar magnitude
at all urban and rural sites. This is in contrast to ear-
lier urban climate studies, which concluded thatK↓
is significantly attenuated in the city due to higher
aerosol concentrations (Landsberg, 1981). This ef-
fect is not found in the mid-size town of Basel. It
may be masked by instrument resolution and the fact
that all rural reference sites are located close to the
urban core.

At the built-up sites,K↓ is not equally distributed
within individual layers of the urban canopy. Shad-
ing and exposition of the building structures highly
influence its vertical distribution and therefore, a
vertical divergence of the short-wave radiation flux
density∂K↓/∂z > 0 is observed. The three dimen-
sional morphometric structure of the urban surface
is important when determining where radiation in-
teracts with buildings and vegetation. This identi-
fies layers where net-radiation can be converted into
storages, or put into latent or sensible heat flux den-
sities. Figure 4.68 illustrates∂K↓/∂z within the ur-
ban canopy based on calculations with a 1 m digi-
tal building model of the urban canopy around U1.
The curves show the short-wave irradiance reaching
different layers of the canopy under different sun el-
evation angles relative to the irradiance reaching a
horizontal plane under the same sun elevation an-
gle. The calculation neglects reflections and dif-
fuse radiation. Under realistic sun elevations around
30◦, only about 15% of the incoming solar radiation
reaches the ground unmodified as directK↓. 50% is
absorbed and reflected by building parts abovezh.
With increasing sun elevation, more radiance pene-
trates directly to the ground level, e.g. 30% at60◦.
∂K↓/∂z determines the locations where energy is

Figure 4.68: Relative amount of the short-wave input radiation
into different height layers of the urban canopy at U1 as a func-
tion of sun elevation. Values are normalized to the short-wave
input on a horizontal plane assuming similar sun elevation. The
partitioning was calculated from the 3d model with 1 m resolu-
tion and for a box of 500 by 500 m around the tower location.

available and exchanged within the urban canopy,
and therefore the magnitude and the partitioning of
the urban energy flux densities in the urban canopy
layer (see also Section 4.4.1).

Table 4.22: Yearly totals of the radiation balance components
for the full-year period (September 2001 – August 2002).

Urban Rural Difference
(U1,U2) (R3) (U1,U2) - (R3)
GJ yr−1 GJ yr−1 GJ yr−1 Wm−2

m−2 m−2 m−2

K↓ +4.17 +4.17 +0.00 +0.1
K↑ -0.47 -0.91 +0.44 +14.0
K∗ +3.70 +3.25 +0.44 +14.1
L↓ +10.05 +10.16 -0.12 -3.7
L↑ -11.94 -11.61 -0.33 -10.5
L∗ -1.89 -1.44 -0.45 -14.2
Q∗ +1.81 +1.81 -0.00 -0.1

Most urban surfaces have a significantly lower mag-
nitude ofK↑ compared to the rural sites and there-
fore a higher short-wave inputK∗. The observed
mean albedoα = K↑/K↓ in the city center (U1,
U2) are around 10%, rural values are all around
20% (Tab. 4.23). The parking lot (U3) is an ex-
ception. As aerial photos and satellite images show,
the very high value of 32% is not representative of
large urban areas because the spatial extent of this
concrete surface is limited. The field of view of the
down facing sensor at U3 includes only a concrete
surface, while the other urban measurements inte-
grate over larger areas (Tab. 4.23). At U1, U2 and
S1, the large field of view includes different surface
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Table 4.23:Average daily totals of all radiation fluxes in MJ m−2 d−1 for the summertime IOP period (June 10 to July 10, 2002).

Site U1 U2 U3a S1 R1 R2 R3
FOVb 100 m 100 m 5 m 50 m 5 m 5 m 5 m
Short-wave K↓ (MJ m−2 d−1) +22.8 +22.7 +22.7 +22.6 +22.9 +22.8 +22.9

K↑ (MJ m−2 d−1) -2.4 -2.6 -7.1 -3.0 -4.8 -4.5 -4.5
K∗ (MJ m−2 d−1) +20.4 +20.1 +15.6 +19.6 +18.1 +18.4 +18.4

Long-wave L↓ (MJ m−2 d−1) +30.7 +30.6 +30.7 +30.5 +30.6 +30.8 +30.9
L↑ (MJ m−2 d−1) -38.4 -37.7 -39.8 -37.9 -37.9 -36.8 -36.7
L∗ (MJ m−2 d−1) -7.7 -7.1 -9.1 -7.4 -7.3 -6.0 -5.8

Net Radiation Q∗ (MJ m−2 d−1) +12.6 +13.0 +6.4 +12.3 +10.8 +12.3 +12.6
Albedoc α % 10.4 10.9 31.7 13.1 21.9 20.2 19.5

a only June 24 to July 10 2002.
b approximate radii of the field of view of the downlooking sensors.
c median albedo forK↓ > 50 W m−2

materials and the complex morphometric configura-
tion (orientations, density, height) results in multiple
reflections and shading, which all lower the reflec-
tivity of the surface. The measured albedo in the
city center is significantly lower compared to val-
ues applied in numerical models, which are typically
in the order of 15 to 20% for residential neighbor-
hoods (Sailor and Fan, 2001), suggesting that dense
European city centers are better absorbers ofK↓
than most North American city surfaces. Compara-
bly low values of∼8% were recently reported from
a dense urban canopy in Lodz, Poland (Offerle et
al., 2003a) and from the city center of Marseilles,
France (Lemonsu et al., 2004). In the long-term
mean, the lower albedo of the city leads to a surplus
in K↑ in the order of0.44 GJ yr−1 m−2 compared
to rural surfaces.K↑ is the most strongly modified
term of all four radiation components (Tab. 4.22).

The present study suggests that the albedo decreases
with increasing height and density of buildings. The
mean summertime albedo is highest at the suburban
site (13.1%), lower at U2 (10.9%) and again slightly
lower at the most compact urban canopy U1 (10.4%)
(Tab. 4.23).

Daily variations — Similar to most natural sur-
faces, the urban albedo also shows a dependence on
sun elevation. Figure 4.69 illustrates this angular de-
pendency for the city center (U1), suburban (S1) and
one of the rural (R1) surfaces. For the urban and sub-
urban surfaces, angular dependency becomes impor-
tant when sun elevation is below20◦, due to highly
directional reflectance of horizontal surfaces. In

Figure 4.69: Angular variation of the average measured albedo
for an urban (U1), the suburban (S1) and a rural surface (R1,
grassland).

contrast to physical models (Li et al., 1995) and ob-
servations over vegetated surfaces (R1), the albedo
of both urban and suburban surfaces is fairly con-
stant between20◦ and65◦ sun elevation under both,
clear-sky and overcast conditions. No difference be-
tween clear and overcast conditions is observed for
the urban surfaces (Fig. 4.69) in contrast to plant
canopies, where clear-sky situations in general in-
crease albedo (e.g. R3 at low sun elevation angles).

Yearly variations — The long-term measure-
ments at U2 (1996–2002) show little monthly varia-
tion of urban albedo values during snow-free condi-
tions. In the long-term average, the albedo at U2
is 10.7% (snow excluded). All monthly averages
lie within 2%. The urban albedo increases slightly
throughout the summer from an average value of
10.2% in March to 11.8% in October (not shown).
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Figure 4.70: Net radiationQ∗ (thick lines) and albedo (thin
lines) during a clear winter day with a 20 cm snow cover. Solid
lines are measurements over the urban surface (U1), dashed-
dotted lines are simultaneously measured rural values (R3).

This small increase can be mainly attributed to urban
trees, since similar increases — but higher in mag-
nitude — are observed over forests (Lehn, 1991). In
general, changes in the urban albedo due to differ-
ent sun elevation angles are more important com-
pared to monthly variations due to phenological in-
fluences. The most dramatic urban-rural difference
∆K↑U−R is observed in winter during periods with
snow cover. Figure 4.70 shows data from one clear
day with a 20 cm snow cover in the rural area. The
mid-day albedo values in the city center are around
17% (U1) and 15% (U2, not shown). These val-
ues are surprisingly low compared to the simultane-
ously measured rural value of 70% (R3). The snow-
free vertical walls, shading, faster snow melt, and
removal (road maintenance) all work to reduce the
impact of snow on urban albedo.

4.5.4 Long-wave flux densities

Most of the time, urbanL↑ values are higher in mag-
nitude thanL↑ measured over rural surfaces (Tab.
4.23). This implies a higher urban radiation sur-
face temperatureTs and/or a different emissivityε.
Moreover, the radiation trapping in street canyons
affectsL↑ significantly.

UrbanL↓ values are slightly lower than rural val-
ues (except R1) all around the day (Tab. 4.23). Air
masses close to the sensor at the urban sites are dryer
than the air masses measured over the rural surfaces,
resulting in a reduction ofL↓. However,L↓ is also
affected by aerosol content and ABL temperatures,
which are both supposed to enhanceL↓ in urban ar-

eas. Note thatL↓ differs also between rural sites and
the observed urban-rural differences are in the order
of the instrumental errors. Measurements ofL↓ are
surely affected by larger uncertainties compared to
the short-wave irradiance.

Daily variations — In the diurnal course, urban-
rural differences∆L↑U−R are strongest in the
evening when the city emits much more long-wave
radiation than the rural surrounding and∆L↑U−R

reaches values of about20W m−2 (Fig. 4.71c).
∆L↑U−R decreases during night to about10W m−2

in the early morning, primarily an effect of the
different cooling rates due to radiation trapping in
street canyons. The intensity of the nocturnal heat
island displayed as air temperature (Fig. 4.72) shows
a close relationship withL↑, i.e. the highest urban
heat island intensity (∼ +3K) is observed just af-
ter sunset, with continuously decreasing values dur-
ing night. The lower daytime urban-rural differ-
ences in air temperature again correspond well to
the observed daytime∆L↑U−R, which reaches its
smallest values with only−5W m−2 around noon
(Fig. 4.71c). Note that the measurement height of
urban temperatures significantly influences urban-
rural temperature differences. At street-level, the
heat island is found all over the day, but at roof level
during midday, slightly cooler air temperatures are
measured compared to the rural surroundings (Fig.
4.72). This (roof level) urban cool island is espe-
cially prominent during summer (−0.5 K) and also
reported from other studies (Unwin, 1980; Jauregui
et al., 1992).

The summertime absolute humidity content in the
city center (U1, U2) is around0.6 g m−3 less com-
pared to the humidity at the rural sites (R1, R2,
R3). This urban dry island is most pronounced in
the evening and almost disappears in the early morn-
ing (Fig. 4.72). The influence of the dryer urban at-
mosphere onL↓ is not negligible. This humidity dif-
ference corresponds to a reduction of the total water
vapor content by about 10%. The urban dry-island is
also shown in the long-term 1994–2003 data, where
the average daytime humidity difference U1 - R3 is
−0.5 g m−3 (-6% of the total water content).

Annual variations — In the yearly total, the city
center at U1 and U2 looses0.33 GJ yr−1 m−2 more
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Figure 4.71: upper row: Daily variation (a) and annual variation (b) of the radiation balance components for the period Sep. 2001 to
Aug 2002 at U2.Lower row : Differences of radiation components between the dense urban surfaces (U1,U2) and one rural reference
site (R3) in the daily variation (c) and annual variation (d) for the same period. Negative values indicate components with a relative
energy loss of the city, positive terms are components where the city can achieve an energy surplus compared to the rural reference.

energy throughL↑ than the rural reference R3. The
energy loss throughL↑ is slightly higher in summer
(Fig. 4.71d). The observed urban reduction ofL↓ is
in the order of0.12 GJ yr−1 m−2 (Tab. 4.22).

4.5.5 Net radiation

The larger short-wave energy inputK∗ of the urban
surfaces due to the lower albedo is mostly offset by
largerL∗ loss. This results in a more or less equal
daily total of the net all-wave radiationQ∗ over the
urban, suburban and rural surfaces, except at the
parking lot U3 (Tab. 4.23). In the yearly average
(day and night),∆Q∗

U−R even vanishes (Tab. 4.22).

Daily variations — During daytime,∆Q∗
U−R is

greater and positive (Fig. 4.71c), i.e. the city cen-

ter gains more energy compared to the rural sites,
an effect mainly controlled by the low urban albedo
(Section 4.5.3). The mid-day∆Q∗

U−R is typically
around+40W m−2. Throughout the night on the
other hand, the city loses more energy throughQ∗

than any of the rural sites (∆Q∗
U−R ≈ 15W m−2).

During nighttime, the higher long-wave emission
and the partly dryer atmosphere in the city enhance
the loss (Section 4.5.4).

Annual variations — The yearly variations
show little difference between urban and rural
sites. Daily totals ofQ∗ lie in average between
±0.5 MJ d−1 m−2 (Fig. 4.71). Neglecting snow con-
ditions, wintertime dailyQ∗ totals are slightly more
negative than rural ones, i.e. the long nights cause
the city to lose more radiation than it can gain due
to its lower albedo during the shorter daylight pe-
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Figure 4.72: Urban-rural differences in air temperature
∆TU−R and absolute humidity∆aU−R. Temperature and hu-
midity values are an average of U1 and U2 (urban) and R1,
R2 and R3 (rural) over the summertime IOP period from June
10 to July 10 2002. Roof level temperatures are measured 5m
abovezh, street level are from instruments operated inside street
canyons at U1 and U2 (2–3 m above ground).

riod. The highest daytime differences∆Q∗
U−R are

observed in winter when the contrasting albedo of
snow-covered rural surfaces and the darker urban
surfaces are dramatically increasing∆K↑U−R, and
hence,∆Q∗

U−R up to 200W m−2 can be measured
(Fig. 4.70). The sample day with snow cover illus-
trates thatQ∗ at the urban site is positive most of
the day, compared to the values of the snow covered
rural surface that is either negative or around zero.
The enhancedQ∗ accelerates urban snow-melt (Tod-
hunter et al., 1992; Semadeni-Davies et al., 2001).

4.5.6 Latent heat flux densities

Mid-latitude cities with negligible irrigation show
less evapotranspiration than their rural surroundings
sinceQE is mainly driven by vegetation and in
cities, vegetation covers only a small fraction of the
surface. Additionally, a faster run-off at the built-
up areas lowers the water availability. Therefore, it
is not surprising that the city center (U1, U2) with
its low vegetation aspect ratioλV , its large imper-
vious surfaces, and its negligible irrigation shows
smallQE values (Table 4.24).

Daily variations — Figure 4.75 shows the aver-
age diurnal course of all energy balance compo-
nents for each site measured during the summer-
time IOP. All weather conditions from clear to com-
pletely overcast and rainy days are included. The

Figure 4.73: a: Relationship between daytimeQE /Q∗ ratio
and vegetation aspect ratioλV . b: Daytime Bowen ratioβ as a
function of the vegetation aspect ratioλV . Points represent the
average values from the summertime IOP between June 10 and
July 10 2002. Error bars enclose 50% of all hourly data; their
ends indicate the 25% and 75% quartile.

average daytime partitioning during the IOP is il-
lustrated in Fig. 4.74. The triangle shows the par-
titioning of Q∗ into QH , QE and∆QS . The ratios
QH /Q∗, QE /Q∗, and∆QS /Q∗ are useful parame-
ters for the detection of diurnal trends in the parti-
tioning ofQ∗ and for comparing situations with dif-
ferent magnitudes ofQ∗ forcing.

During summer days, the magnitude ofQE in the
city center is around 20% ofQ∗. With increas-
ing green space,QE becomes more important. The
magnitude of the simultaneously measuredQE at
the suburban site is 30% ofQ∗ and about 60% of
Q∗ at the rural sites (Tab. 4.24). The relationship
between daytimeQE /Q∗ and the vegetation aspect
ratio λV is illustrated in Fig. 4.73a. It is not sur-
prising that vegetation in the urban environment sig-
nificantly enhances daytimeQE and reducesQH , a
result also supported by other studies where simul-
taneous measurements were carried out in neighbor-
hoods with differentλV (Grimmond et al., 1996).
λV can be easily retrieved from aerial photos and
satellite pictures and is therefore a useful surface pa-
rameter to estimate the daytimeQE .
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Table 4.24: Average energy balance components of the daytime and nocturnal hours during the IOP. Daytime values are averaged
from 1100–1500 CET, nocturnal values from 2200–0400 CET. Sites are sorted according to increasing plan aspect ratio of buildings
λP . Positive (negative) fluxes are directed towards (away) from the surface. At the sites where all components of the energy balance
are measured directly, any missing energy — i.e. the gap to close the balance — was used to increase the two turbulent flux densities
slightly, and force the closure without changingβ.

Q∗ QH QE ∆QS QF QH /Q∗ QE /Q∗ ∆QS /Q∗ β
W m−2 W m−2 W m−2 W m−2 W m−2

Daytime
R1 +423 -101 -260 -62 -0.24 -0.61 -0.15 +0.39
R2 +443 -123 -251 -69 -0.28 -0.57 -0.15 +0.49
R3 +455 -122a -282a -51 -0.27 -0.62 -0.11 +0.43
S1 +453 -168 -134 -153b +5c -0.37 -0.30 -0.34 +1.23
U2 +481 -228 -100 -163b +10d -0.47 -0.21 -0.34 +2.28
U1 +482 -230 -88 -184b +20d -0.48 -0.18 -0.38 +2.62
U3e +322 -193 -45 -104 +20c -0.60 -0.14 -0.32 +4.27
Night
R1 -57 +18 +13 +26 -0.31 -0.23 -0.46 +1.35
R2 -45 +4 +9 +32 -0.09 -0.20 -0.71 +0.45
R3 -41 +12a +8a +21 -0.29 -0.20 -0.50 +0.43
S1 -56 +7 -9 +53b +5c -0.13 +0.16 -0.95 -0.78
U2 -62 -8 -4 +64b +10d +0.13 +0.06 -1.03 +1.94
U1 -65 -23 -13 +80b +20d +0.35 +0.19 -1.23 +2.62
U3e -81 -10 -5 +76 +20c +0.13 +0.06 -0.94 +2.08

a values determined by profile method.
b values determined as residual term of the energy balance equation.
c constant anthropogenic heat fluxQF estimated.
d constant anthropogenic heat fluxQF determined according to Section 4.5.9
e site only operated from June 24 to July 10 2002.

Figure 4.73b illustrates the average daytime Bowen
ratio β = QH/QE during the summertime IOP as
a function of the vegetation aspect ratioλV . Typi-
cal daytime values ofβ are around 2.5 at urban sites
and 0.5 over the rural surfaces. The measurement
values suggest that the daytime Bowen ratio can be
parameterized as a function ofλV . This has been
formulated in relationship 4.43. The relationship is
shown in Fig 4.73b (dashed curve). It simplifies the
response of a patchy urban surface to a linear su-
perposition of the rural Bowen ratioβrural weighted
by the fraction of vegetated surfacesλV and a hy-
pothetical Bowen ratio for a completely impervious
surfaceβimp weighted by the fraction of impervious
surfaces (1− λV = λI + λP ):

β(λV ) =
1

λV − λV k + k
+ βrural − 1 (4.43)

with

k =
1

βimp − βrural + 1
(4.44)

and the condition

βimp > βrural. (4.45)

β(λV ) is the average daytime Bowen ratio for a
given vegetation aspect ratioλV , i.e. for a particu-
lar urban or suburban neighborhood.βrural is the
(known) Bowen ratio over grassland in the rural sur-
roundings of the city (λV = 1). Becauseβimp is usu-
ally not available, the global parameterk between
0 and 1 is introduced, which is valid for the whole
rural-urban region.k may depend on various factors
like climatic setting of the city, precipitation, phe-
nology and the difference between rural and urban
discharge coefficients. This empirical relationship
works well for Basel where the long-term value of
k is surprisingly constant around 0.2 (see below). It
would certainly cause problems in cities with exten-
sive irrigation.

Site U2 is dryer than the vegetation aspect ratio sug-
gests (Fig. 4.73b). This is because the relationship
does not accurately represent the forcing or because
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Figure 4.74: Ensemble daytime variation of the energy balance partitioning at the different sites for the IOP (June 10 to July 10,
2002). The symbols show howQ∗ is partitioned intoQH ,QE and∆QS for all sites. Any point fulfilsQH +QE + ∆QS = 0. The
trajectories in the triangle show the temporal evolution of the partitioning throughout the day, as indicated by the time labels.

eitherβ or λV are erroneous. Indeed, a large city
park can be found 150 m to the S and SW of the
tower and increasesλV of that particular neighbor-
hood by nearly 10%. This wind direction is rarely
observed (< 7%) and therefore does not affect the
overall moisture availability. If the flow is from that
particular wind direction, aβ of 1.5 is measured
compared to the average valueβ = 2.3 when tak-
ing all wind directions into account.

The rural surfaces show increasing evapotranspira-
tion towards the evening and therefore a decreas-
ing β throughout afternoon. In the early morning,
rural values start aroundβ ≈ 0.5. β is continu-
ously decreasing throughout the day toβ ≈ 0.2 at
1700 (Fig. 4.74). This decrease ofβ is most pro-
nounced in summer (March to October). An increas-
ing vapor pressure deficit which is caused by the di-
urnal course of temperature and the growth of the
mixed layer and the associated entrainment of dryer
air from the free troposphere enhancesQE . At the
built-up sites, there is also a small decrease ofβ, but
the overall partitioning is less affected. In the city
center,β stays close to 2 all the day (see also 4.5.7).

Nocturnal values ofQE in the city center are gener-

ally low. QE is directed upward most of the time
(Fig. 4.76c). Exceptions are early morning hours
whenQE can be directed downward.

Annual variations — Figure 4.78b illustrates the
monthly averages over six years of daytime (1100–
1500) urban and ruralβ. Here,β is calculated from
vertical gradients of potential temperature,∂θ/∂z,
and specific humidity,∂q/∂z. The temperature and
humidity gradients were continuously measured at
an urban (U2) and a rural (R3) site. Both sites show
a nearly similar yearly course, but with distinctly
different magnitudes. The higher precipitation dur-
ing summer, together with an increased transpira-
tion activity, lowers the summertimeβ of both urban
and rural surfaces. On the other hand, when vegeta-
tion activity is low in winter and spring, values are
generally higher at both sites. Highest values are
measured in March, when available energy is large
(6 MJ d−1 m−2) but precipitation is moderate and
vegetation activity still low. A similar annual course
of β has been recently reported from long-term mea-
surements in the city center of Lodz, Poland (Offerle
at al., 2003b). Relationship 4.43 to estimateβ as a
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Figure 4.75: Ensemble diurnal course of energy balance at 3 urban (U1-U3), 1 suburban (S) and 2 rural (R1,R2) sites during the IOP
(June 10 to July 10, 2002). U3 has been only operated for part of the IOP (July 24 to June 12, 2002).

function of λV is capable of modelling the annual
variation of the urbanβ in the present dataset, if the
variation of rural is known from e.g. measurements,
climatology, or models. The factork (Eq. 4.44) is re-
trieved for each month and is included in Fig. 4.78a.
For most of the year,k is constant at around 0.2.
However, between January and March when transpi-
ration is low but additional human water vapor input
by combustion is artificially increasingQE , the per-
formance of a constantk=0.2 is poor. The year-long
eddy-correlation measurements carried out between
September 2001 and August 2002 show a similar an-
nual variation inβ (see also Tab. 4.25). The eddy
correlation measurements suggest a slightly higher
yearly average of the daytimeβ of around 2.5 com-
pared to the average urban value retrieved from the
1997–2002 profile data, where the average urban
value isβ = 1.8. There is evidence that the over-
estimation ofβ is due to a more patchy distribution
of water vapor sources in the urban neighborhoods,
and hence mainly attributed to an inappropriate flux-
gradient relationship of water vapor.

During winter nights, both the absolute magnitude
and the nocturnal ratioQE /Q∗ at the urban sites in-
dicate a higher energy loss throughQE than in sum-
mer nights. The wintertime nocturnalβ in the city

center is surprisingly low (β ≈ 0.5) compared to
summertime nocturnal values whereQH is typically
twice as large asQE andβ is nearly identical with
its daytime value (β ≈ 2). The lowβ indicates that
the energy input by combustion throughQF affects
QE during winter nights.

Figure 4.77 summarizes typical daily totals of all
energy balance components in the city center for
each month of the year. Positive values indicate
an energy surplus of the city, negative values an
energy loss of the city. The yearly total ofQ∗ is
+1.9 GJ yr−1 m−2. Its yearly course has already
been discussed in Section 4.5.5. Neglecting the fact
thatQE contains marginal amounts of dewfall, the
yearly total ofQE corresponds to an urban evapo-
transpiration of approximately300 mm yr−1. This
is a reasonable value compared to the value over
grassland of700 mm yr−1 obtained from long-term
lysimeter measurements close to Basel (precipita-
tion800 mm yr−1). The urban evapotranspiration in-
cludes human water vapor input.
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Figure 4.76: Isofluxdiagrams of annual (x-axis) and daily (y-axis) variation of (a)Q∗, (b)QH , (c)QE and (d) the residual∆QS in
the city center measured at U2 for the period September 2001 to August 2002. Plots are smoothed (boxcar-type filter of±15 days and
1h, respectively) in order to remove noise and generalize results. Missing data are interpolated. Note that the contour lines are not
equidistant.

Figure 4.77: Average daily totals of the energy balance components in the city center for each month. Data are an average of U1 and
U2 (Dec–Jul) and U2 (Aug–Nov). Flux densities directed towards the surface are positive (energy gain) and away from the surface
negative (energy loss).
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Table 4.25:Average daytime partitioning (1100–1500 CET) of
the energy balance for the full year period Sep 2001 – Aug 2002.
The chosen periods are: Fall: Sep - Nov 2001, Winter: Dec
2001 – Feb 2002, Spring: Mar – May 2002, Summer: Jun –
Aug 2002.

QH/Q
∗ U1 U2 R3a

Fall -0.66 -0.34
Winter -0.56 -0.56 -0.41
Spring -0.56 -0.50 -0.27
Summer -0.49 -0.46 -0.23
Year -0.54b -0.55 -0.31

QE/Q
∗ U1 U2 R3a

Fall -0.27 -0.59
Winter -0.28 -0.29 -0.51
Spring -0.19 -0.18 -0.59
Summer -0.20 -0.20 -0.66
Year -0.22b -0.24 -0.59

∆QS/Q
∗ U1c U2c R3a

Fall -0.17 -0.08
Winter -0.34 -0.36 -0.08
Spring -0.31 -0.37 -0.14
Summer -0.36 -0.37 -0.11
Year -0.34b -0.37 -0.10

β U1 U2 R3a

Fall 2.46 0.58
Winter 2.01 1.98 0.81
Spring 3.13 3.18 0.45
Summer 2.50 2.27 0.35
Year 2.55b 2.47 0.55

a values determined by profile method. All other turbulent
fluxes are directly determined by eddy covariance.
b yearly values of U1 are calculated with fall values of U2.
c values determined as residual term.

Figure 4.78: a: Annual variation of precipitation (grey shaded
area) andk-factor (diamonds) for the period 1997–2002.b:
Annual variation of daytime Bowen ratioβ over a rural (R3) and
an urban surface (U2).β is retrieved from continuous profile
measurements of∂θ/∂z and∂q/∂z. The error bars indicate the
maxima and minima of the six years 1997–2002. At the urban
sites temperature and humidity profiles were calculated from
measurements sufficiently far above roof top to reduce effects
of the roughness sublayer, i.e. between1.8 < z/zh < 2.5.
Rural profiles are retrieved from differences between 2 and 10
m.

4.5.7 Sensible heat flux densities

The reducedQE at the urban sites is counterbal-
anced by increased magnitudes ofQH and ∆QS .
QH is the most significant energy loss of all
built-up sites. The yearly total of measuredQH

(−1.6 GJ yr−1 m−2) is twice the magnitude of mea-
suredQE (−0.8 GJ yr−1 m−2) (Fig. 4.77).

Daily variations — DaytimeQH values are typi-
cally twice as large in the city compared to the rural
surroundings. During the IOP, the magnitude ofQH

is characteristically around 50% ofQ∗ in the city
center, 40% ofQ∗ at the suburban site, and below 30
% of Q∗ over rural surfaces. BecauseQH is large
whenλV is low, meaning impervious surfaces and
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Figure 4.79: Near surface stability histogram for nighttime
(22–04h) during the summertime IOP. Stability was calculated
from sonic-measurements atz/zh > 2 at the built up sites.

buildings are occupying larger area fractions, there
are relationships between all these land-use parame-
ters and the daytimeQH .

In contrast to rural surfaces whereQH is directed to-
wards the surface all night (up to+20 W m−2), both
turbulent flux densities remain negative in the city
on average, i.e. energy is transported away from the
surface. The nocturnal urban atmosphere close to
the surface remains unstable, an effect mainly driven
by the large storage release (see Section 4.5.8). In
contrast to the city stations, the nocturnalQH at the
suburban site is positive (Tab. 4.24). Here, the sur-
plus energy from the storage release is channelled
into an upward directedQE flux due to higher water
availability. The intensity of the nocturnal upward
directedQH is linearly related to the complete as-
pect ratioλC (Fig. 4.81b). During the IOP, highest
nocturnalQH are measured at the dense urban site
U1 with −23 W m−2 in average. Note that even if
the averageQH is negative in the city center, there
are periods with positiveQH . The first 3 hours after
sunset are characterized by the highest frequency of
positiveQH (U1: 20%, U2: 39% of all cases dur-
ing IOP). Throughout night, the frequency of peri-
ods with positiveQH decreases (not shown).

The sign ofQH determines the stability of the
near surface air layers. Figure 4.79 shows the
near surface stability histogram for night-time sit-
uations during the summertime IOP. At the built up
sites, stability was calculated from measurements at
z/zh > 2. The number of nighttime stable situations
is dramatically decreasing with increasing building
density and unstable situations are more commonly
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Figure 4.80: Joint probability density function betweenu∗ and
w′θ′ simultaneously measured at the topmost measurements at
U1, U2, S1 and R1. Black lines denote values of the stability
parameterζ = (z − zd)/L according the labels in the lower
right plot. Data source: Sonics F (U1), F (U2), C (S1) and A
(R1), 30 min values, June 10 to July 10, 2002,n=1346h.

measured in the city center. However, remote sens-
ing instruments and tethered balloon measurements
during BUBBLE show that this nocturnal unstable
layer is only found very close to the urban surface.
An elevated inversion layer is observed over the city,
often at heights between50− 250 m.

Over the whole 24 hours, at the urban sites, the ma-
jority of cases are neutral to slightly unstable strati-
fied, not because of a loww′θ′(z), but as the effect of
a an enhancedu∗(z). Figure 4.80 illustrates this pat-
tern with simultaneously measured data from four
sites. The plots drawu∗(z) againstw′θ′(z). Corre-
sponding contours indicate the joint probability den-
sity for a givenu∗(z) and a givenw′θ′(z) according
to the labels in the upper right plot. The black lines
denote the corresponding stability parameters deter-
mined as(z − zd)/L. The dominant difference be-
tween urban and rural sites is an enhancedu∗, and
simultaneously a strongw′θ′, which compensate the
effect on stability.

The upward directed turbulent flux densities and a
modified turbulent exchange finally result in a noc-
turnal urban heat island, with∆TU−R between+2
to+3K in the city of Basel (Section 4.5.4, Fig. 4.72).
The combination of reduced urban moisture avail-
ability, nocturnal heat island, and unstable near sur-
face layer explains the often observed reduction of
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dewfall (Richards and Oke, 2002; Richards, 2004)
and reduction of radiation fog within cities (Sach-
weh and Koepke, 1995).

Annual variations — DaytimeQH /Q∗ is higher
in fall and winter and lower in summer (Tab.
4.25), an effect mainly driven by water availabil-
ity as already discussed in Section 4.5.6. The av-
erage nocturnalQH is fairly constant between−5
and−10 W m−2 throughout the year (Fig. 4.76b).
Slightly higher magnitudes ofQH are recorded in
winter, possibly because of higher anthropogenic
heat inputQF .

4.5.8 Storage heat flux densities

A problem arises from the determination of the ur-
ban storage heat flux density into the ground and
buildings,∆QS . In contrast to rural surfaces,∆QS

of an urban surface can not be measured easily. The
large number of surface materials, orientations and
their interaction makes direct measurements very la-
borious and nearly impossible. Therefore,∆QS is
usually modelled or determined as the residual term
of the energy balance equation, assuming complete
closure of the energy balance.

A typical feature of the urban energy balance is an
increased magnitude of the storage heat flux density
∆QS (Grimmond and Oke, 1995, 1999b). Thermal
properties like heat capacity and thermal conductiv-
ity of the urban fabrics are different from soils and
vegetated surfaces (Oke, 1987). Moreover, the three
dimensional surface-area in the city center is nearly
doubled compared to a plane surface. This surface
enlargement — described by the complete aspect ra-
tio λC — adds additional surface, where other flux
densities can be converted into storage and increases
the volume of shallow depth layers where energy can
be temporary stored.

Daily variations — Values of∆QS are two to
three times higher in the city center compared to
rural sites. During the IOP,∆QS ranges between
−30% and−40% of Q∗ at the built-up sites. An av-
erage∆QS / Q∗ of −0.32 is measured with the heat
flux plates at the parking lot (U3, Tab. 4.24). Previ-
ous experiments with a direct measurement of∆QS

Table 4.26: Coefficients of the objective hysteresis model
(OHM) for the summertime IOP period. Correlation coeffi-
cientsr2 and RMS are calculated between the hourly measured
or residual∆QS and the modelled∆QS of all individual hourly
blocks of the IOP.

a1 a2 a3 r2 RMS
h W m−2 W m−2

R1 -0.17 -0.05 14 0.89 12
R2 -0.22 -0.34 26 0.83 22
R3 -0.14 0.02 9 0.80 9
S1 -0.41 -0.45 32 0.88 36
U2 -0.44 -0.12 26 0.82 43
U1 -0.40 -0.17 38 0.81 41
U3 -0.41 -0.10 50 0.94 21

report a similar range around−0.3 (Nunez and Oke,
1977). Rural sites show smaller∆QS values that lie
between−10% and−15% ofQ∗ (Tab. 4.24).∆QS-
values that are derived as residual terms have to be
interpreted carefully and are an estimation of the up-
per limit, since any underestimation of the turbu-
lent flux densities (closure gap) would consequently
lower∆QS .

∆QS shows a pronounced temporal hysteresis at all
sites (Fig. 4.75 and 4.74). The daily peak values
are reached 1 to 2 hours before the maximum in-
tensity ofQ∗ is recorded. At all sites,∆QS / Q∗

decreases during afternoon hours. In order to keep
the balance, the two turbulent flux densities increase
their relative magnitudes towards the evening. The
surface starts to release stored energy one to three
hours beforeQ∗ changes sign. The hysteresis ef-
fect is more pronounced at the urban sites because
of the higher magnitude of∆QS (Fig. 4.74). When
estimating∆QS in its diurnal course, it is impor-
tant taking into account the hysteresis effects. Grim-
mond and Oke (1991, 1999b) suggested the objec-
tive hysteresis model (OHM) for urban storage heat
flux parametrization, namely

∆QS = a1Q
∗ + a2

∂Q∗

∂t
+ a3. (4.46)

The parametersa1, a2 anda3 were determined at all
sites and are summarized in Tab. 4.26. They were
retrieved by a multiple linear regression between
the diurnal course of∆QS in relation withQ∗ and
∂Q∗/∂t during the summertime IOP. Sites where
∆QS is determined as residual term, the model re-
sults in higher hourly errors, i.e. enhance the root
mean square error (RMS), compared to sites where
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(a)

(b)

Figure 4.81: a: Relationship between storage heat flux
∆QS /Q∗ and complete aspect ratioλC for different times of
the day.∆QS at the rural sites and U3 are measured directly.
At U1, U2 and S1,∆QS was determined as a residual.b: Aver-
age nocturnal sensible heat fluxQH /Q∗ in function of complete
aspect ratioλC . In both figures, points represent the average of
hourly block values from the summertime IOP between June 10
and July 10 2002.

∆QS was directly measured (R1-3, U3). This can
be seen as an indication that errors from other flux
densities are accumulated in the residual∆QS .

a1 describes the overall strength of∆QS relatively
to Q∗. This parameter is closely related with the
daytime∆QS / Q∗. It is strong over built-up sur-
faces (≈ −0.4) and smaller in magnitude at the rural
sites (≈ −0.2). a1 shows a significant relationship
with λP andλV . a2 determines the strength of the
phase shift betweenQ∗ and∆QS . The present data
set indicates no clear relationship between any land
use parameter or moisture availability anda2, a fact
already concluded in Grimmond and Oke (1999b).
Highest values ofa2 were retrieved at the suburban
and the ”bare-soil” site (R2). The sites in the city
center (U1-3) show values around−0.15. The off-
seta3 corrects the fact that the absolute values of
the daytime∆QS / Q∗ and the nocturnal∆QS / Q∗

are not identical.a3 is stronger at the built-up sites
in the city center (30 to 50 W m−2) than over rural
surfaces (9− 25 W m−2).

In the morning,∆QS is of nearly similar magnitude
in the city center (Fig. 4.81a). It seems to be pri-
marily the different materials and the sunlit area that
determine∆QS and not the complete aspect ratio
during this part of the day. During morning, most of
Q∗ is available at roof level in the city center and the
majority of energy exchange processes take place in
this layer. The radiative benefit of the roofs relative
to walls and ground surfaces is especially prominent
when sun elevation is low and shading effects con-
strict the storage to upper parts of the canopy (see
also Section 4.5.3). Measurements of the roof sur-
face temperatures at U1 show typical heating rates
between5 and10 Kh−1 in the early morning. The
heating and cooling rates at roof level are much
stronger (diurnal amplitude≈ 30 K) compared to in-
side the street canyon (amplitude≈ 15 K). Further,
the heating rate is much higher in the first morn-
ing hours compared to the rest of the day. Roofs
are thin and designed to thermally insolate. They
have a higher thermal conductivity than vegetated
plant surfaces. This results in large urban storage
heat fluxes in the morning but also fast saturation ef-
fects. Early in the morning, strongest∆QS-values
are determined at the suburban site (Fig. 4.74). In
the suburban neighborhood, a significant part of the
wall and ground surfaces have also directK↓ due to
the lower building density (single houses). It is inter-
esting that differences are also observed between the
different rural surfaces in the morning. The agricul-
tural surface with bare soil (R2) has morning peak
values of∆QS /Q∗ = 0.24 at 0900, compared to the
simultaneously measured values at the sites with a
thick grass cover, R1 and R3 (∆QS /Q∗ = 0.10).
These inter-rural differences are vanishing through-
out the day.

At midday, roofs achieve quicker equilibrium be-
tween storage and radiative loss compared to veg-
etated and bare soil surfaces. But throughout the
day, the three-dimensional urban surface can pro-
gressively store additional energy into newly illumi-
nated surfaces due to a changing relative position of
the sun. Previously shaded surfaces can be made ac-
cessible for efficient storage in the afternoon when
horizontal surfaces (rural sites) are already in equi-
librium. Also redistribution of the energy within
the urban canopy by radiative or turbulent transport
processes can enhance the storage into lower layers
of the UCL. In the evening, a pronounced relation-
ship between∆QS /Q∗ andλC is found. At this time

121



stratus

of the day,λC seems to be a suitable parameter to ex-
plain differences in∆QS between sites (Fig. 4.81a).

The huge daytime∆QS into buildings is counter-
balanced by an extremely high nocturnal release of
∆QS at U1, U2, and S1. The nocturnal∆QS in
the city center can be even higher in magnitude than
the radiative loss. In summer nights,∆QS ranges
between+50 and+80 W m−2 at the built-up sites
(Tab. 4.24). The strong nocturnal∆QS is mainly
channelled intoL↑ (Section 4.5.4), and a small part
is put into upward directedQE andQH . The re-
lease of stored heat reaches its maximum 1-2 hours
after sunset and then slightly decays throughout the
night to a value around 80% of its maximum. In gen-
eral, nocturnal ratios of∆QS /Q∗ in the city center
are between 0.9 and 1.3, a range already reported in
previous studies (Grimmond and Oke, 1999b).

Annual variations — Typical daytime peak val-
ues of∆QS are−50 W m−2 in winter and above
−200 W m−2 in summer (Fig. 4.76d). The monthly
totals of∆QS in Fig. 4.77 reflect the energy stored
(lost) in the urban fabrics by warming (cooling) from
day to day and month to month. The directions
of the daily totals shown in Fig. 4.77 are plausi-
ble. However, most months show magnitudes of
∆QS that are too large (especially Nov – Jan and
Jun – Aug). The measured daily totals of∆QS dur-
ing summertime months are typically2 MJ d−1m−2.
This energy would increase the temperatures of the
urban materials by 0.1 to0.5 K d−1, depending on
thermal and morphometric properties of the surface.
Because the heating rates are far from realistic as-
sumptions, it must be assumed that errors of the
other flux densities are accumulated in∆QS . All
daily totals of∆QS are affected with large errors
because∆QS changes sign in its diurnal course.
The daily totals of∆QS (and alsoQF , see Section
4.5.9) are therefore very sensitive to small errors in
the other flux densities. The overestimation of∆QS

may be an indication that the two turbulent flux den-
sities are slightly — but systematically — under-
estimated because of theoretical, methodical or in-
strumental errors. Any underestimation ofQE and
QH would lead to an overestimation of∆QS . Fur-
ther, the large errors in winter are an indication that
winter-time values ofQF are possibly larger than as-
sumed (Section 4.5.9). But a larger wintertimeQF

would conversely increase the summertime daily to-

Table 4.27: Estimated urban energy balance modification for
the summertime IOP period. Positive (negative) values indicate
an energy surplus (loss) of the city by the particular term relative
to the rural surroundings. Urban values are an average of sites
U1 and U2. Rural values are an average of R1, R2 and R3.

Daily total Daytime Night
∆U−R ∆U−R ∆U−R

GJ yr−1 m−2 W m−2 W m−2

K↓ - 0.1 -5 0
K↑ + 1.9 +51 0
L∗ - 1.0 - 10 - 15
QH - 5.0 - 106 - 26
QE + 6.1 + 168 -18
∆QS - 1.5 - 122 + 46
QF

a + 1.3 + 15 + 15

a Based on the estimation for the full year total (Section 4.5.9)

tals of∆QS , which are already overestimated.

4.5.9 Anthropogenic heat flux densities

At both city center sites, the residual term of
the energy balance equation (Q∗ + QH + QE)
shows a small surplus in the yearly total. This
suggests a missing energy source in the order of
−0.5 GJ yr−1 m−2 at U1 and−0.3 GJ yr−1 m−2 at
U2. This missing source is only attributed to the
anthropogenic heat flux densityQF , because the
yearly total of∆QS has to be zero by definition, i.e.
the city can not be expected to cool down or heat up.
We can only determine the yearly total ofQF , but
not its time-dependent values. Inventory data and/or
models (Taha, 1999a) would be needed to simulate
annual and daily variations. Here, simply a constant
QF throughout the year has been assumed. The
determined ‘constant’ anthropogenic emission im-
plies aQF of approximately+20 W m−2 at U1 and
+10 W m−2 at U1 in the annual average. These are
realistic values compared to calculations and studies
in literature (Taha, 1999b; Oke, 1987). Especially
during winter,QF is surely enlarged due to firing,
as inventory methods in other European cities show
(Klysik, 1996).

4.5.10 Urban energy balance modification

Table 4.27 summarizes the estimated urban energy
balance modification for the summertime IOP pe-
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riod. During daytime, the city has a higher en-
ergy input due its lower albedo (+51 W m−2) and
due to the significantly reduced evapotranspiration
(+168 W m−2). In absolute numbers, the reduced
QE is the most severe modification in the city cen-
ter. Its local magnitude is highly dependent on the
total vegetation cover of the neighborhood. On the
other hand, the surface enlargement and the ther-
mal properties of the urban surface allow additional
storage into buildings, an effect that typically in-
creases∆QS by a factor of two to three compared
to rural values. The increased urban∆QS drains
an additional−122 W m−2. The remaining surplus
of −106 W m−2 is put into the increase ofQH . Its
magnitude is doubled compared to the rural mea-
surements. Modification of long-wave radiation
components and the effects ofQF are small. Ur-
ban modifications ofQE , ∆QS andQH were in
similar direction, but slightly lower in magnitude in
a study reported from Vancouver, which addressed
rural-suburban differences (Cleugh and Oke, 1986).

The nocturnal release of heat storage∆QS in the
city center is typically twice the value over rural
surfaces (+46W m−2). ∆QS is the most signifi-
cant modification in the nocturnal energy balance.
In the city center, the available energy through∆QS

is often higher in magnitude than the radiative loss
throughQ∗. Therefore, both turbulent flux densities
have to transport this excess energy away from the
surface, i.e. they are directed upward. The sign and
intensity of the nocturnalQH is roughly related to
the building density.

The magnitude of the residual term,∆QS , calcu-
lated for the full year is not well defined. Further
investigation of the temporal variation ofQF and a
deeper analysis of∆QS would be needed to enhance
the significance of the estimation.

4.5.11 Summary

• The simultaneous operation of seven energy
balance sites in different urban and rural en-
vironments allowed a detailed and successful
investigation of the urban energy balance mod-
ification.

• K↑ is strongly reduced in urban environments.
The three dimensional configuration of build-
ings, the associated shading, and dark surface

materials result in a low albedo. The average
albedo are in the order of 10% over the dense
urban surfaces, and 13% over the suburban sur-
face.

• In the radiation budget, the lowerK↑ and a
strongerL↑ counterbalance. As a consequence,
net radiation measured over the investigated ur-
ban surfaces is not significantly different from
the one measured in the rural environment.
During day, net radiation is slightly higher at
the urban sites. During night, long-wave loss is
enhanced in the urban environment.

• The Bowen ratioβ is clearly related to the veg-
etation fractionλv of the different urban neigh-
borhoods. The proposed relationship in Eq.
4.43 reproduces adequately urban-rural differ-
ences most of the year.

• Urban surfaces are characterized by a strong
storage term in the energy balance. Typically,
at the urban sites,∆QS is increased by a factor
of two to three compared to rural values.

• During night, turbulent flux densitiesQH and
QE are directed upwards in dense urban envi-
ronments. This is a consequence of a strong
nocturnal release of stored heat, which is typi-
cally twice as strong as over rural surfaces. As
a consequence, the urban inertial sublayer and
the roughness sublayer are unstable most of the
time.
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5 Conclusions

The turbulence measurements at the three full-
scale profile towers provided valuable insights into
mean flow, turbulent kinetic energy, and exchange
processes of momentum, energy and mass within
the urban roughness sublayer, namely the region
from street level up to 2.5 times the mean building
height. Further, the network of spatially distributed
energy balance measurements not only yielded in-
formation on exchange processes, but also allowed
a study of the surface energy partitioning simultane-
ously measured over different land use (urban, sub-
urban, rural).

5.1 Methodology

Individual profiles — With the term ‘roughness
sublayer’, we inherently associate the fact that indi-
vidual values of any property strongly depend on lo-
cation and specific flow configuration. Indeed, indi-
vidual profiles measured at the towers show a strong
dependence on the direction of the ambient flow rel-
ative to the local street canyons and building struc-
tures. Close to the roofs and in the street canyon, a
large variability is measured, which further camou-
flage any other driving processes known from sur-
face layer scaling, in particular thermal stratifica-
tion.

Horizontally averaged profiles — In order to
reduce complexity, ‘horizontally averaged’ profiles
have been introduced by averaging over different
wind directions (equally weighted). These ensem-
ble profiles of turbulence parameters agree in nearly
all cases, i.e. most profiles (with the exception of
heat flux densities) show a similar shape at the three
different towers. This underlines that the averaging
procedure described in Section 3.3.3, together with
the large number of realizations measured, can be
successfully regarded as a surrogate for a real hor-
izontal average. In other words, the real horizontal
average, deduced from simultaneous measurements
at different locations under a particular ambient flow
may converge with this ensemble average of many

realizations measured at one location with varying
ambient flow. Horizontal averaging does not only
provide the advantage of representing a generalized
flow field at neighborhood scale, it additionally al-
lows many simplifications. For example, measured
〈v′w′〉 nullifies, even if particular situations are char-
acterized by a consistent nonzerov′w′, due to a ro-
tation of the wind direction with height as an effect
of flow channelling into the street canyon.

Urban family portrait — The three vertical pro-
files of selected mean flow and turbulence charac-
teristics can be summarized in a generalized ‘urban
family portrait’ (Fig. 5.1). The family portrait is
an approach known from plant canopy studies, as
compiled by (Raupach et al., 1996) and (Finnigan,
2000), and summarizes vertical profiles from a vari-
ety of wind tunnel and full-scale experiments. Many
features found in our small urban family consisting
of ‘only’ three towers reflect processes that are char-
acteristic for flow over rough surfaces, and resem-
ble flow properties measured within and above plant
canopies.

5.2 Synthesis

5.2.1 Vertical structure of the urban roughness
sublayer

In previous work, the roughness sublayer is typically
separated into an urban canopy layer (UCL) con-
fined by buildings, and a layer above (Oke, 1987).
The present results from a surface with non-uniform
building height suggest a further conceptual divi-
sion into three layers, namely the deepcanyon layer
(CAL, z < zd), theroof layer (ROL, zd < z < zf ),
and theabove-roof layer(ARL, z > zf ), wherezf is
the height of maximum Reynolds stress. As a practi-
cal approximation, we can writezf = ze+σh, where
ze is the height of the principal inflection point in the
mean wind profile, referred to aseffective building
height. In the present results,ze ≈ 1.2zh. However,
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if we would omit the one storey backyard buildings
in the calculation ofzh because these flat and en-
closed structures are aerodynamically not important,
we could even simplifyze ≈ zh

∗.

Canyon layer (CAL) — At least in its upper part,
the horizontally averaged wind profile can be well
approximated by an exponential decay law, which
supports the findings of Macdonald (2000). Large
differences between the (global) longitudinal wind
velocity 〈ū〉 and horizontal mean wind speed〈m̄〉
are found. Roof shape was determined as an impor-
tant factor affecting exchange in the street canyon.
Flow over flat roofs results in a clear primary vortex
and is characterized by higher wind speed at street
level compared to flow over pitched roofs, which
shows no clear vortex. This supports findings from
wind tunnel studies (Kastner-Klein et al., 2004).

Reynolds stress and turbulent heat flux both are of
minor importance in the CAL.

Turbulence in the canopy layer is very intermittent,
and the well known street canyon vortex is only
found on average and only for selected configura-
tions. The major part of TKE is imported by sweeps
from the ROL. This is expressed by strongly nega-
tive Skw andM12. Fluctuations of velocity compo-
nents and scalars are rather uncorrelated. Further,
there is evidence from the present data set that TKE
could be transported down in the very bottom of the
street canyon by pressure fluctuations.

In the canopy layer, one point length scales slightly
increase with depth. However, the most appropriate
scaling length was determined as the average dis-
tance to the nearest obstacles, which in the canyon
may be approximated byz′ ≈ 〈xc〉/4, where〈xc〉 is
the characteristic street canyon width.

Roof layer (ROL) — Around roof top, the pro-
files in the ‘urban family portrait’ are characterized
by strongest gradients. Generally, cross-canyon flow
results in stronger gradients and more efficient ex-
change, whereas along-canyon flow is characterized
by a nearly linear wind profile with height and a less
efficient exchange around roof top.

∗ Note that for an appropriate calculation ofσh, it should also
by calculated with the exclusion of the one-storey backyard
buildings (see Tab. 3.3).

In the ROL, shear production is a strong source
of TKE. The inflectional mean wind profile cre-
ates instabilities, which export a notable amount of
TKE and temperature variance by sweeps into the
upper street canyon and by ejections into the sur-
face layer above. Aroundze, temperature is less
skewed. With increasing height — but also down
into the street canyon — skewness is enhanced. Fur-
ther, there is evidence that pressure fluctuations may
transport TKE from the ROL and the upper street
canyon down into the deep street canyon. Hence,
the ROL can be seen as an export region. As a con-
sequence, dissipation is lower than locally produced
turbulence, and neutral limits of horizontal velocity
variances are slightly smaller than predicted by local
scaling.

Length scales are smallest in the ROL. Further, cor-
relation coefficients are often higher, exchange is
more efficient, and takes place in larger time frac-
tions.

All these results fit well with features of flow over
plant canopies. This suggests that — at least for
cross-canyon flow — the plane mixing layer anal-
ogy of Raupach et al. (1996) is valid. There are
many indicators that for along-canyon flow, the anal-
ogy is less appropriate. Therefore, many values lie
between surface and mixing layer values on aver-
age, and effects are blurred in the horizontal average.
However, the consequences of the inflected veloc-
ity profiles still dominate the ‘family portrait’. Note
that the height of the inflection pointze of the urban
canopies is slightly higher than the calculated mean
building heightzh, as discussed above.

Above-roof layer (ARL) — Above highest roofs,
the wind profile approximates the well-known log-
arithmic form of the inertial sublayer. Here, all
flow characteristics approach surface layer values.
The lower boundary of the ARL is defined as
zf , the height of the maximum Reynolds stress.
Most flow situations show a minor decrease of
Reynolds stress with height abovezf . In particular,
flow over pitched roofs results in more pronounced
peaks of Reynolds stress and decay stronger above,
whereas flow over flat roofs shows a nearly con-
stant Reynolds stress profile with height in the ARL.
Kastner-Klein and Rotach (2004) argue that peaks in
Reynolds stress are reported mainly from smooth-
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rough transitions where the flow is not readjusted.
Over horizontally homogeneous surfaces, peaks are
less pronounced or vanish. In a generalized view,
Reynolds stress and turbulent heat flux can be re-
garded constant with height in the ARL.

The scaling length in the ARL is clearly the height
above zeroplane displacement. While shear produc-
tion is the main source in the ROL, both buoyancy
and shear production of turbulence are important in
the ARL. In the temporal mean, local stability is
shifted from neutral towards more unstable / stable
with increasing height, and many parameters show a
clear stability dependence.

Turbulent transport processes of momentum and
heat are dominated by ejections. These ejections re-
locate temperature variance from the ROL and ex-
port it into higher layers where they enhance tem-
perature variance. Local scaling neglects this turbu-
lent transport divergence. Simultaneously, inactive
turbulence, which originates from larger scales and
is not related to surface exchange, enhances corre-
sponding values. This explains why the normalized
standard deviations of temperature, water vapor, and
CO2 are all distinctly higher in the ARL than pre-
dicted by the classical semi-empirical functions de-
veloped for the surface layer.

The question of the upper boundary of the rough-
ness sublayer is more difficult to answer, since the
transition to the inertial sublayer is rather gradual.
Any exact height depends on the definition of the
blending heightz∗, originally defined as the height
where the flow is ‘blended’, i.e. where for any pa-
rametera, we may write〈ā〉 ≈ ā at any horizontal
location. In reality, we have to define an arbitrary
threshold value for the horizontal variation, which is
highly sensitive for the resultingz∗, and different for
different parameters.

In terms of scaling, indeed, there are many indica-
tors that would allow a surface layer scaling with
modified constants already in the ARL. Or can the
ARL even be interpreted as the inertial sublayer, i.e.
may we writez∗ = zf? In order to prevent confu-
sion, the author suggests usingzf as the lower limit
in which surface layer scaling is valid in the hori-
zontal average, i.e. above which∂〈u′w′〉/∂z ≈ 0.
z∗ should be reserved for the ‘blending’ definition,
which is typically encountered higher up.

5.2.2 Exchange processes

The present dense urban surfaces are characterized
by surprisingly low albedo values in the order of
10%. The lowK↑ however is counterbalanced by
a strongerL↑, resulting in a nearly equivalent net ra-
diation measured over urban surfaces and rural envi-
ronments on average. During the day, net radiation
is slightly higher at urban locations whereas during
night, long-wave loss is enhanced at the urban sites.

The daytime urban energy balance is characterized
by a strong storage term, a strong upward directed
sensible heat flux, and a weak evapotranspiration.
The situation at night is different from that in rural
environments: on average, both turbulent flux densi-
ties remain upward directed in dense urban environ-
ments. This is a consequence of a strong nocturnal
release of stored heat, which is typically twice as
strong as over rural surfaces. As a consequence, the
urban inertial sublayer and the roughness sublayer
are thermally unstable most of the time. Close to the
roofs, the high shear production shifts local stability
towards neutral values.

In the ARL, cospectra of vertical flux densities
of temperature, water vapor and CO2 show high
agreement, and peak frequencies are similar to the
ones observed in the surface layer. This suggests
that roughly the same scales dominate turbulent ex-
change. At roof level, the scales of exchange are
different, which is explained by different heights of
the active surfaces.

The efficiency of the exchange over the urban sur-
faces is lowest for water vapor and stronger for
heat and CO2. Water vapor fluctuations are mostly
driven by inactive turbulence, while variances of vir-
tual acoustic temperature and CO2 are more char-
acterized by active fluctuations created at the local
surface-atmosphere interface.

5.3 Implications

Implications for models — These presented re-
sults are of particular importance for air pollution
and near-field dispersion modelling. The roughness
sublayer hosts the majority of pollutant sources, but
also most human activities take place in this layer.
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As already underlined by Rotach (1991) and Rotach
(1999), it is therefore essential to appropriately re-
solve the roughness sublayer in these applications.

If the inertial sublayer values ofu∗(IS) andw′θ′(IS)
are known, their average vertical profiles belowzf
can be parameterized with the empirical formula
suggested for〈u∗〉(z) by Rotach (2001) (Eq. 4.18)
and by the suggested exponential decay belowze of
〈w′θ′〉 in Eq. 4.41.

However, the local scaling approach propagated by
many urban studies (Roth, 2000) does only work
partially. Velocity variances follow rather well the
surface layer scaling in the higher ARL. As with
decreasing height, turbulent transport processes be-
come increasingly important and even dominate in
the street canyon. Therefore, in these layers tur-
bulence is inappropriately described by local pro-
duction. It is again notable that locally scaled vari-
ances of temperature and CO2 better match the sur-
face layer predictions close toze than above and be-
low, where they underestimate measured values due
to variance import by turbulent transport.

When exchange is modelled in the roughness sub-
layer, either in a large eddy simulation or in a
mesoscale model, moments of at least order three
have to be considered. Hence, many classical local
turbulence closure schemes like theK-theory or the
mixing length are only applicable well abovezf and
fail below. For most applications, considering a third
order closure scheme seems to be appropriate, and
influences of higher order moments (≥ 4) are only
important in the upper street canyon (tested for mo-
mentum exchange only). If third order moments are
not solved, they have to be appropriately parame-
terized. Further, non-local closures could promise
enhanced performance.

If the roughness sublayer is not explicitly simulated
in a model, the urban surface may be described by
modified surface properties. The following proper-
ties have been evaluated to be characteristic for the
investigated ‘European urban’ surfaces: zeroplane
displacementzd = 0.8 − 0.9zh, roughness length
z0 = 0.1zh, albedoα = 10%, vegetation frac-
tion λV = 0.2, and sky view factor at ground level
ψS0 = 0.4. For the ‘European suburban’ surface,
zd = 0.6zh, z0 = 0.3zh, α = 13%, λV = 0.5,
andψS0 = 0.6. The measured Bowen ratioβ can be
related to the vegetation fractionλv (Eq. 4.43), mak-

ing vegetation fraction a suitable input parameter for
the estimation of the partitioning in simple models
if irrigation is low and the partitioning at a rural ref-
erence is known. Vegetation fraction can be easily
derived from maps, aerial photos, or from NDVI de-
duced from satellite images.

Implications for measurements — In many ap-
plications, standardized urban wind observations are
requested. Currently, reference heights are in dis-
cussion (Oke, 2004). From the present data set it fol-
lows that if ever possible, wind speed measurements
should be performed abovezf to avoid not only spa-
tial inhomogeneity but also the strong gradients and
high turbulence intensities in the ROL. This height
is a good compromise between a feasible setup and
reasonably representative results.

Currently undertaken attempts to start long-term
flux monitoring sites for CO2 and other trace gases
in urban environments (Grimmond et al., 2004) call
for appropriate estimations of their upwind influence
regions (footprints) in order to assess the represen-
tativeness of monitoring sites. Because most emis-
sions of interest are released at street level, back-
ward Lagrangian dispersion models should cope
with probability density functions incorporating the
mixing layer analogy.

Flux-gradient approaches fail in the roughness sub-
alyer, and correspondingφ-functions are altered in
the ARL. The Bowen-ratio method is roughly ap-
plicable in the ARL, even if there is evidence that
it overestimatesβ due to a more patchy distribu-
tion of water vapor sources in the urban neighbor-
hoods. The strong asymmetric exchange (skewed
PDFs) and associated turbulent transport further
questions any parameterized flux measurement tech-
nique, for example the relaxed eddy accumulation
method (Businger and Oncley, 1990).

The inertial subrange method, which derives dissi-
pation rateε from velocity spectra, worked reason-
ably in the urban roughness sublayer, in particular
because there are no indications for relevant small
scale turbulence production rates, which is an advan-
tage compared to highly fractal plant canopies. In
order to find more support, the applicability of Tay-
lor’s hypothesis calls for further research (see be-
low).
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5.4 Outlook and future research

The present results incorporate large potential to
test model improvements and turbulence closure
schemes. They already allowed to validate urban
surface parameterizations in mesoscale meteorolog-
ical models (Roulet, 2004; Hamdi and Schayes,
2004) and dispersion models, in particular combined
with the near-field tracer experiment data (Rotach
et al., 2004; Gryning et al., 2005).

Possible exploration of the present data set —
Most approaches in the present thesis integrate a
large number of cases, but do not focus on single
events. There is still much potential in the present
data set to analyze and visualize the fluid mechani-
cal structures explaining the exchange in the urban
roughness sublayer, as for example recently demon-
strated by Feigenwinter and Vogt (2005) for the up-
per urban roughness sublayer. Since data were sam-
pled at each tower in a quasi-synchronized mode, the
BUBBLE data would allow the investigation of spa-
tial vertical cross-correlations as well as conditional
sampling of time-height cross sections through co-
herent structures (micro-fronts). For carefully se-
lected cases, turbulent air movements could be vi-
sualized, and ensembles of these events would pro-
vide further insights and understanding of exchange
structures above rough surfaces.

Wavelet analysis allows detecting the number, mag-
nitude, and periodicity of structures in a turbulent
time series. This is of major interest at the height of
the inflection point, in order to further support the
applicability of the mixing layer analogy, together
with the length scaleLs suggested by Raupach et al.
(1996).

Future experimental areas — Shaw et al. (1995)
demonstrated that for plant canopies one-point
length scales in the canopy are not equal to two point
length scales and hence, the convection velocityuc

is larger than the Eulerian velocity. The magnitude
of this dissimilarity is important for the application
of Taylor’s hypothesis. This field could be experi-
mentally addressed for urban areas in wind tunnel
experiments or with simultaneously operated arrays
of instruments at a given height layer.

Eddy correlation measurements of pressure fluctua-
tions are still and instrumental challenge. The resid-
ual term in the TKE budget gives evidence that pres-
sure fluctuations are important in the lower street
canyon, but up to now, neither direct nor indirect
measurements support this observation in urban en-
vironments.

Further, the transfer from Eulerian to Lagrangian
statistics is rather neglected in experimental studies.
‘Lagrangian micro-sensors’ are currently in early
stages of development (e.g. Manobianco et al., 2004)
but promise new insights and new approaches to dis-
persion characteristics.

Concluding remarks — There are still many de-
tails and steps to be done for a successful implemen-
tation and transfer of these results into applications,
mainly numerical models. These models will hope-
fully provide a sound basis for actions to increase
health and safety by forecasting dispersion and me-
teorological processes in tomorrow’s urban environ-
ments. Both, an adequate short-term response to
releases of chemical and biological agents, and the
long-term impacts of pollutants from routine sources
will be of increasing relevance in urban areas with
ongoing urbanization.

130



Bibliography

Allwine, J. K., Leach, M. J., Stockham, L. W.,
Shinn, J. S., Hosker, R. P., Bowers, J. F. and Pace,
J. C. (2004), Overview of Joint Urban 2003. An
atmospheric dispersion study in Oklahoma City,
in ‘Symposium on Planning, Nowcasting, and
Forecasting in the Urban Zone, Seattle WA. Janu-
ary 10 to 12, 2004’, Am. Met. Soc.

Allwine, J. K., Shinn, J. H., Streit, G. E., Clawson,
K. L. and Brown, M. (2002), ‘Overview of UR-
BAN 2000’, Bull. Amer. Meteorol. Soc.83, 521–
536.

Amiro, B. D. (1990), ‘Drag coefficients and turbu-
lence spectra within three boreal forest canopies’,
Boundary-Layer Meteorol.52, 227–246.

Antonia, R. A. (1981), ‘Conditional sampling in tur-
bulence measurements’,Annu. Rev. Fluid Mech.
13, 131–156.

Arnfield, A. J. (2003), ‘Two decades of urban cli-
mate research: A review of turbulence, exchanges
of energy and water, and the urban heat island’,
Int. J. Climatol.23, 1–26.

Arnold, S. J., ApSimon, H., Barlow, J., Belcher,
S., Bell, M., Boddy, J. W., Britter, R., Cheng,
H., Clark, R., Colvile, R. N., Dimitroulopoulou,
S., Dobre, A., Greally, B., Kaur, S., Knights, A.,
Lawton, T., Makepace, A., Martin, D., Neophy-
tou, M., Neville, S., Nieuwenhuijsen, M., Nick-
less, G., Price, C., Robins, A., Simmonds, D.
S. P., Smalley, R. J., Tate, J., Tomlin, A. S.,
Wang, H. and Walsh, P. (2004), ‘Introduction to
the DAPPLE air pollution project’,Science of the
Total Environment332, 139–153.

Baik, J. J. and Kim, J. J. (1999), ‘A numerical
study of flow and pollutant dispersion character-
istics in urban street canyons’,J. Appl. Meteorol.
39, 1576–1589.

Baik, J. J. and Kim, J. J. (2004), ‘A numerical study
of the effects of ambient wind direction on flow
and dispersion in urban street canyons using the
RNG k-epsilon turbulence model’,Atmos. Envi-
ron. 38, 3039–3048.

Baik, J. J., Park, R. S., Chun, H. Y. and Kim,
J. J. (2000), ‘A laboratory model of urban street
canyon flows’,J. Appl. Meteorol.39, 1592–1600.
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mospḧare, Statistische Theorie der Turbulenz,
Akademie Verlag, Berlin, pp. 199–226.

Moore, C. J. (1986), ‘Frequency response correc-
tions for eddy correlation systems’,Boundary-
Layer Meteorol.37, 17–35.

Moriwaki, R. and Kanda, M. (2004), ‘Seasonal and
diurnal fluxes of radiation, heat, water vapor, and
carbon dioxide over a suburban area’,J. Appl.
Clim. 43, 1700–1710.

Nakagawa, H. and Nezu, I. (1977), ‘Prediction of the
contributions to the Reynolds stress from burst-
ing events in open channel flow’,J. Fluid Mech.
80, 99–128.

Nielsen, M. (2000), ‘Turbulent ventilation of a street
canyon’, Environ. Monitoring and Assessment
65, 389–396.

Nunez, M. and Oke, T. R. (1977), ‘The energy bal-
ance of an urban canyon’,J. Appl. Meteor.16, 11–
19.

Offerle, B., Grimmond, C. S. B., Fortuniak, K., Oke,
T. R. and Klysik, K. (2003), ‘Temporal variabil-
ity in heat fluxes over a northern European down-
town’, Proc. 5th Int. Conf. Urb. Clim., September
1-5 2003, Lodz, Poland.

Offerle, B., Grimmond, C. S. B. and Oke, T. R.
(2003), ‘Parameterization of net all-wave radia-
tion for urban areas’,J. Appl. Meteor.42, 1157–
1173.

Ohtaki, E. (1985), ‘On the similarity in atmospheric
fluctuations of carbon dioxide, water vapour and
temperature over vegetated fields’,Boundary-
Layer Meteorol.32, 25–37.

Oikawa, S. and Meng, Y. (1995), ‘Turbulence char-
acteristics and organized motion in a suburban
roughness sublayer’,Boundary-Layer Meteorol.
74, 289–312.

Oke, T. R. (1981), ‘Canyon geometry and the noc-
turnal heat island: comparison of scale model and
field observations’,J. Climatol.1, 1–16.

Oke, T. R. (1987),Boundary layer climates, Rout-
ledge, London.

Oke, T. R. (1988), ‘Street design and urban canopy
layer climate’,Energ. Bldg.11, 103–113.

136



Bibliography

Oke, T. R. (2004), ‘Initial guidance to obtain rep-
resentative meteorological observations at urban
sites’, IOM Report, World Meteorological Orga-
nization Geneva, 2004.

Oke, T. R., Spronken-Smith, R. A., E, E. J. and
Grimmond, C. S. B. (1999), ‘The energy balance
of central Mexico City during the dry season’,At-
mos. Environ.33, 3919–3930.

Orlanski, I. (1975), ‘A rational subdivision of scales
for atmospheric processes’,Bull. Amer. Meteor.
Soc.56, 529–530.

Otte, T. L., Lacser, A., Dupont, S. and Ching, J.
K. S. (2004), ‘Implementation of an urban canopy
parameterization in a mesoscale meteorological
model’,J. Appl. Meteorol.43, 1648–1665.

Panofsky, H. A. and Dutton, J. A. (1984),At-
mospheric turbulence, John Wiley and Sons, New
York.

Panofsky, H. A., Tennekes, H., Lenschow, D. H.
and Wyngaard, J. C. (1977), ‘The characteristics
of turbulent velocity components in the surface
layer under convective conditions’,Boundary-
Layer Meteorol.11, 355–361.

Parlow, E. (1996), ‘The regional climate project
REKLIP - An overview’, Theor. Appl. Clim.
53, 355–361.

Philipona, R., Fr̈ohlich, C. and Betz, C. (1995),
‘Characterization of pyrgeometers and the ac-
curance of atmospheric long-wave radiation mea-
surements’,Appl. Opt.34, 1598–1605.

Poggi, D., Katul, G. G. and Albertson, J. D. (2004a),
‘Momentum transfer and turbulent kinetic energy
budgets within a dense model canopy’,Bound.-
Layer Meteorol.111, 589–614.

Poggi, D., Katul, G. G. and Albertson, J. D. (2004b),
‘A note on the contribution of dispersive fluxes
to momentum transfer within canopies’,Bound.-
Layer Meteorol.111, 615–621.

Pope, S. B. (2000),Turbulent flows, Cambridge Uni-
versity Press, Cambridge.

Prölss, G. W. (2001),Physik des erdnahen Wel-
traums, Springer, Berlin.

Rambert, A., Elcafsi, A. and Gougat, P. (2000), Op-
tical flow velocimetry inside an entrained cavity,
in ‘10th Int. Sym. Appl. Laser Tech. Fluid Mech.’.

Raupach, M. R. (1981), ‘Conditional statistics
of Reynolds stress in rough wall and smooth-
wall turbulent boundary layers’,J. Fluid Mech.
108, 363–382.

Raupach, M. R. (1989), ‘Applying lagrangian fluid-
mechanics to infer scalar source distributions
from concentration profiles in plant canopies’,
Agric. For. Meteorol.47, 85–108.

Raupach, M. R. (1994), ‘Simplified expressions for
vegetation roughness length and zero-plane dis-
placement as functions of canopy height and area
index’, Boundary-Layer Meteorol.71, 211–216.

Raupach, M. R., Antonia, R. A. and Rajagopalan,
S. (1991), ‘Roughwall turbulent boundary layers’,
Applied Mechanics Reviews44, 1–25.

Raupach, M. R., Coppin, P. A. and Legg, B. J.
(1986), ‘Experiments on scalar dispersion within
a model-plant canopy. I. The turbulence struc-
ture’, Boundary-Layer Meteorol.35, 21–52.

Raupach, M. R., Finnigan, J. J. and Brunet, Y.
(1989), ‘Coherent eddies in vegetation canopies’,
4th Proc. Australasian Conf. Heat Mass Trans-
fer, May 9-12 1989, Christchurch, New Zealand
pp. 75–90.

Raupach, M. R., Finnigan, J. J. and Brunet, Y.
(1996), ‘Coherent eddies and turbulence in veg-
etation canopies: the mixing-layer analogy’,
Boundary-Layer Meteorol.78, 351–382.

Raupach, M. R. and Shaw, R. H. (1982), ‘Averaging
procedures for flow within vegetation canopies’,
Bound.-Layer Meteorol.22, 79–90.

Raupach, M. R. and Thom, A. S. (1981), ‘Turbu-
lence in and above plant canopies’,Annu. Rev.
Fluid Mech.13, 97–129.

Richards, K. (2004), ‘Observation and simulation
of dew in rural and urban environments.’,Prog.
Phys. Geogr.28, 76–94.

Richards, K. and Oke, T. R. (2002), ‘Validation and
results of a scale model of dew deposition in ur-
ban environments.’,Int. J. Climatol. 22, 1915–
1933.

137



stratus

Rotach, M. W. (1991), ‘Turbulence within and
above an urban canopy’,Zürcher Geographische
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