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Abstract 

In this study we present a simple algorithm which allows accurate estimates of the 

similarity between peptide fingerprint mass spectra from matrix assisted laser 

desorption/ionization (MALDI) spectrometers. The algorithm, which is a combination 

of mass correlation and intensity rank correlation, was used to cluster similar spectra 

and to generate consensus spectra from a data store of more than 100,000 spectra. The 

resulting first spectra library of 1248 unambiguously identified different protein digests 

was used to search for missed cleavage patterns that have not been reported so far and 

to shed light on some peptide ionization characteristics. The findings of this study could 

directly be applied to a peptide mass fingerprint search algorithm to decrease the false 

positive error rate to <0.25%. Furthermore, the results contribute to the understanding 

of the peptide ionization process in MALDI experiments. 

The reference library of consensus spectra was also used to identify MALDI peptide 

mass fingerprint spectra by comparison of the experimental spectra with the spectra in 

the library. We report the potential of this method to achieve an identification rate of 

almost 100%. 

In a second step, the information derived from the clustering of similar spectra was 

used to match similar spectra content on different two-dimensional polyacrylamid gel 

electrophoresis (2D-PAGE) gels. This is to our knowledge the first attempt to match 

different gels on the level of mass spectrometric information. 

A newly established method that makes use of the new techniques is compared to a 

proteomics study carried out employing traditional proteomics strategies. 
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1. Introduction to proteomics 

1.1. The proteome 

About ten years ago, the term proteomics was introduced by Marc Williams, a post-doc 

in Canberra, Australia. Proteomics is a hallmark technology of the post-genome era. 

Since the antecedent of the proteome is the genome, it is a generic term used to 

assemble the whole complexity of protein expression in one word. However, unlike the 

genome, the proteome does not denote a unique and permanent feature of a given 

organism. It is changing with the state of development, the tissue, or even the 

environmental conditions under which an organism finds itself. Thus, there are many 

more forms of proteins expressed in a cell than the number of genes makes us believe.  

The importance of proteome investigations is given by the fact that there is only a weak 

correlation between the abundance of a protein and its level of mRNA transcription1,2. 

Proteins can be present in a cell although the corresponding mRNA is not found. Even 

if there was a relation between the level of mRNA expressed and protein abundance, 

the complexity of a proteome is additionally defined through other means of 

modification. In higher organisms, synthesized proteins can undergo several 

modification steps starting from tissue specific alternative splicing to the post-

translational modifications of proteins. These modifications change the look of the 

proteome and are of high importance for protein function. The modifications can alter 

depending on the state of the cells. This complexity not only differentiates the proteome 

from the genome, it also changes the way of capturing knowledge from it. While study 

of gene expression on the mRNA level is extremely powerful and useful3, a number of 

questions cannot be answered studying that level of regulation. A technology is 

demanded that is able to cope with the many different gene products, on the level of 

proteins. This technology is what we call proteomics. 

Since the proteome can be regarded as the complement of proteins at a given time 

point, it is necessary to have a technology at hand that is able to provide a picture of the 

actual protein content. 
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1.2. Proteomics technologies 

The key to the development of proteomics has been Mass spectrometry (MS). It can be 

used to identify and, increasingly, quantify large numbers of proteins from complex 

samples. Mass spectrometers consist of an ion source, a mass analyzer and a detector. 

There are four main types of mass analyzer currently in use: ion trap, time-of-flight, 

quadrupole, and Fourier transform ion cyclotron.  

Ion traps are often used in combination with electrospray ionization. ESI ionizes the 

analytes out of a solution and thus, can be coupled to liquid-based separation systems. 

Time-of-flight (TOF) analyzers measure the mass of intact peptides with high accuracy 

and resolution and are often used for high-throughput protein identification by peptide 

mapping (peptide mass fingerprinting). Typically, the soft ionization method is matrix-

assisted laser desorption/ionization (MALDI) in combination with delayed ion 

extraction. 

A quite different approach to probing protein activity and function is the protein 

microarray. The analytical microarray contains an ordered array of protein-specific 

ligands, typically antibodies, spotted onto a derivatized solid surface. They can be used 

to monitor differential protein expression, protein profiling and clinical diagnostics. 

However, progress here is constrained by a lack of comprehensive sets of high-

specificity, high-affinity antibodies4. 

1.3. Protein isolation and separation for proteomics 

Proteomics cannot be realized without generic, sensitive and selective methods to 

isolate and separate proteins from cells or tissues. One of the best methods to separate 

proteins is electrophoresis, invented by Tiselius. For proteomics, special popularity was 

obtained by a high resolution variant of that technology: two-dimensional 

polyacrylamid gel electrophoresis (2D-PAGE). In the first dimension, proteins are 

separated on the basis of their charges, followed by a separation in size in the second 

dimension. The technique of separating the proteins by charge is called isoelectric 

focusing. The second dimension separation uses sodium-dodecyl-sulfate poly 
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acrylamid gel electrophoresis (SDS-PAGE) to separate proteins by size5-8. Since 

manufactured immobilized pH gradients9 and precast SDS-PAGE gels became 

commercially available, the 2D-PAGE methodology has become a routine separation 

technique. 

Other separation techniques are serial liquid chromatography and capillary 

electrophoresis. Chromatographic processes can be defined as separation techniques 

involving mass-transfer between stationary (solid) and mobile (liquid) phases. The 

analytes are first dissolved in a solvent, and then forced to flow through a 

chromatographic column under a high pressure. In the column, the mixture is resolved 

into its components. The amount of resolution is important, and is dependent upon the 

extent of interaction between the solute components and the stationary phase. Liquid 

chromatography is mainly used to pre-separate complex protein mixtures (e.g a cell 

homogenate) into different fractions of interest. This allows reaching a higher dynamic 

range of separation than with 2D-PAGE alone. Several labs have successfully explored 

couplings of LC with 1D-PAGE. 

1.4. Protein identification methods 

Since up to 2-5000 spots can be visualized on a single 2D gel, proteomics requires 

techniques to identify and quantify the proteins in a high throughput manner. Usually, 

the spots of interest are excised from the gel and further processed. Historically, this has 

been done by the cumbersome techniques of N-terminal sequencing and amino acid 

analysis. With the advent of high resolution mass spectrometry of peptides, a more 

appropriate method was introduced to identify proteins from a spot. This technique is 

called peptide mass fingerprinting. The idea behind this approach is that enzymatically 

digested proteins from a spot result in an assembly of peptides of which the masses are 

measured by mass spectrometry. The spectrum derived from the measurement of such a 

peptide assembly denotes a unique fingerprint that in turn allows the identification by 

searching the database of virtually digested proteins for a matching combination of 

peptide masses. 

 6
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Cleveland et al.10 proposed in 1977 to use a set of peptide masses obtained by 

enzymatic cleavage as a unique fingerprint. This fingerprint allows the identification of 

a protein in database searches. The concept of peptide mass fingerprinting as an 

alternative to peptide sequencing was then re-introduced by Henzel in 1989. It 

remained unused until 1993 when 5 groups independently presented methods and 

algorithms to search databases using mass spectrometric data11-15. Three of the 

algorithms use a simple scoring scheme to order the proteins according to the 

decreasing number of matching peptides. A pre-filter that considers the approximate 

molecular weight of the intact protein eliminates random matches. Highly modified 

proteins or proteolytic fragments are not identified, because the method assumes that 

the protein being analyzed does not greatly differ from the virtual protein in the 

database. This problem was circumvented by using a sliding window that regards 

masses only occurring in the current range of the window.  

Two other papers presented scoring schemes based on probability, where the 

probability of a random hit in the database is calculated 12,15.  

All approaches have in common that the mass accuracy plays an important role. The 

tighter the mass tolerance, the more stringent the identification. Today’s technical 

improvements in mass spectrometry led to development of machines that produce 

highly accurate peak masses while maintaining a high level of sensitivity.  

Thus, mass spectrometry and peptide mass fingerprinting have become ideal tools for 

reliable and fast protein identification. For high throughput operation, methods and 

techniques are demanded to automate the steps from gel handling and mass 

spectrometric measurements to the identification by database searches. Nowadays, the 

gels are analyzed by image software that automatically annotates the spots. Information 

from this procedure is given on to a gel picker, which automatically excises the gel 

pieces that have been annotated by the gel image analysis software. Another automated 

step provides for the washing and digestion of the gel pieces to prepare the proteins for 

mass spectrometric measurements. In order to achieve the highest possible level of 

reproducibility, standard operation procedures are developed. Modern data acquisition 

software allows the mass spectrometer to operate without operator intervention, 

meaning the peptide fingerprint is scanned until a useful spectrum is achieved. Thus, 
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most of the spectra measured contain valid data that can be used to identify the 

proteins. Every spectrum measured is then analyzed and resulting peaks are annotated.  

For protein identification, the peak list is compared to peptide masses derived from 

theoretical enzymatic digestion of the protein sequence in the databases. The 

combination of possible peptide arrangements yields a match probability that can be 

judged for significance. Significance can be tested using spectra whose masses have 

been shifted so that identification of proteins would not be possible. It is important to 

consider realistic sets of peptides and their possible modifications. In terms of 

probability, it is not helpful to consider too many possible peptide hits. While including 

well known missed cleavages increases the probability of a match, the loss in 

specificity when considering all possible modifications is dramatic. This is due to the 

10-fold increased size of the database. 

In our lab, most of the spectra are measured by matrix assisted laser desorption 

ionization time of flight mass spectrometers. A short introduction to this method is 

given below. 

1.4.1. Matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry 

Typical applications of Matrix-assisted laser desorption ionization (MALDI16) are the 

investigation of complex samples and the direct characterization of cellular material. 

After a two-dimensional gel electrophoresis in order to separate proteins in a multi-

component sample, MALDI is the technique of choice for characterization. Among the 

most attractive properties of MALDI-TOF are its high sensitivity and the possibility of 

using it as high throughput method. MALDI has been evolved from the rather old 

technology of laser desorption ionization (LDI). This technology, which is still being 

used, is based on the approach of air–drying analyte solutions on a metal target. The 

spots on the metal plate are ionized using an ultraviolet laser pulse. The resulting ions 

can be detected by e.g. time-of-flight (TOF) mass analyzers. The limitation of LDI is 

that only light absorbing molecules are accessible, whereas non-absorbing molecules 

cannot be ionized (or only by extensive fragmentation).  
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In order to overcome the disadvantages, the analyte molecule is prevented from being 

directly involved in the energetic process necessary for desorption and ionization. 

Instead, the energy transfer takes place on an intermediate matrix rather than on the 

analyte molecule itself. The successful ionization of the previously non-absorbing 

molecule alanine in conjunction with the high absorbing molecule tryptophan as energy 

acceptor demonstrated the feasibility of this approach. Alanine as a non-absorbing 

molecule alone was not accessible by LDI. Tryptophan, a highly absorbing molecule 

due to its delocalized electron system, acted as an intermediate energy acceptor and 

both components could be detected. This observation led to the development of 

MALDI by using special UV-absorbing materials (matrix substances) that have the 

purpose of accepting and forwarding energy in order to ionize the analyte17. 

Matrix substances provide for the separation of the analyte molecules from each other 

and allow only small interactions between the analyte molecules and the target 

substance. They are usually volatile in contrast to the analyte molecules. There are 

many pathways of ion formation, but usually ion formation happens due to protonation 

and de-protonation via interactions between energy carrying molecules and neutral 

molecules. Thus, most probably the first event in MALDI ion formation is the 

protonation of the matrix, induced by the generation of radicals.  

Good MALDI matrices are characterized by high UV spectral absorption, a high level 

of proton acceptance in order to allow the protonation of co-desorbed material and a 

good mixing compatibility with the analyte molecule. Useful matrices have been found 

rather empirically than systematically.  

Different techniques are used to prepare the samples for MALDI measurements. The 

most commonly used is the “dried-droplet” method18. Approximately 0.5µl of a matrix-

analyte solution are dropped onto a metal target plate are dried before measuring it with 

the mass spectrometer. The drying is either done slowly at room temperature or quickly 

on a preheated target plate. Usually the matrix to analyte concentration ratio is around 

1:1000 and the matrix is saturated. Slowly drying of the solution leads to the formation 

of large matrix crystals and a high level of incorporated analyte substance. This process 

yields an additional purification effect on the analyte, however, a negative effect of 

drying slowly is the rather high sample inhomogeneity across the spot on the target. 
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Quickly drying the spot causes the formation small spots, which are homogenous. 

These crystals lack the purification effect due to its size. Typically, sample amounts 

necessary for analysis are in the range of a few femtomoles. 

The most common type of ion source uses a pulsed nitrogen laser at 337 nm for 

desorption ionization. This is a balance between the UV absorption of the most useful 

matrices and the wavelengths-dependent ionization behavior. MALDI is typically 

coupled to TOF mass analyzers. Reflectron instruments are used to compensate the 

initial energy spreads and improve the mass resolution and mass accuracy16. 

However, the breakthrough of MALDI TOF came with the broad introduction of a 

technique called delayed ion extraction19,20. The principle of delayed ion extraction 

(DE) is rather old and was occasionally used in the early days of TOF mass analysis21. 

The primary contribution to mass resolution loss in conventional (i.e., continuous ion 

extraction) linear MALDI TOF-MS is attributed to a range of flight times of identical 

m/z ions due to different initial velocities. No compensation is made with continuous 

ion extraction linear TOF-MS for ions with the same m/z but different initial ion 

velocities. Improvements in mass resolution can be achieved by utilizing delayed 

pulsed ion extraction, which can compensate for the initial velocity distribution of the 

MALDI generated ion packet such that ions having identical m/z values arrive 

simultaneously at a space focal plane located at the detector. Broadening of the ion 

velocity distribution due to collisional processes in the ion source can also be 

minimized by allowing the dense plume of MALDI generated ions/neutrals to dissipate 

and cool prior to ion drawout from the ion source. This results in narrower ion arrival 

time distributions and provides better mass resolution when compared to continuous 

ion extraction. 

1.5. Two different proteomics strategies using 2D-PAGE 

The two experimental pillars of proteomics technology are protein separation and mass 

spectrometry. These technologies can be used in a variety of ways. For labs that use 

2D–PAGE gels as ultimate protein separation step, two different approaches commonly 

employed. The first, more common approach is based on the differences found when 
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comparing and quantifying images derived from two-dimensional polyacrylamid gel 

electrophoresis of two different samples22,23. Only the spots that are found to be 

differentially expressed on either gel are further processed. These spots are cut out and 

the underlying protein is enzymatically digested and prepared for mass spectrometric 

measurement. The resulting peptide mass fingerprint is then identified by database 

searches23. The result of such an analysis is a set of all differentially expressed proteins.  

The second approach is also based on the separation of the protein mixtures of a sample 

by two-dimensional gel electrophoresis. However, the second step is not gel 

comparison or spot quantification. Instead, differences between two samples are 

derived by differential identification, completely lacking an in depth gel comparison. 

Thus, every spot detected by image analysis is picked, washed and enzymatically 

digested. A mass spectrum is generated and the underlying protein is identified using 

the peptide mass fingerprinting technology24,25. 

The first approach is widely used and has been shown to be successfully applied in 

different contexts of proteomic research. Nevertheless, applying this method is not free 

of problems. The main disadvantage using this strategy is that it is very difficult to 

accurately compare 2D-PAGE images in order to find differentially expressed proteins. 

Thus, eventual differences are not observed. Secondly, any gel comparison software is 

unable to compare more than a few gels in reasonable time, so that this methodology is 

not applicable for high throughput proteomics. 

The second approach is a method less often applied, simply because the capacity to 

carry out such kind of massive mass spectrometric spot evaluation is not given. While 

the outcome when comparing different identifications instead of different spots is more 

robust and accurate in comparison to gel image analysis, its main drawback lays in the 

fact that only 40 – 60 percent of the spots and their corresponding proteins are 

identified. However, the gain in information content by identification of a whole set of 

spots and their proteins is remarkable. Figure 1 shows a summary of the two strategies. 
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Figure 1: This figure outlines two strategies employed for proteomics studies. Both 
methods separate protein mixtures using two-dimensional gel electrophoresis. In the first 
approach, differences in protein content of two samples are quantified by identification of 
the differentially expressed proteins using gel comparison software. Using the second 
approach, all spots and proteins are identified and differences are quantified on the level 
of identifications. 

1.6. Application of proteomics 

The idea of the proteomics approach is the parallel analysis of expressed proteins at a 

given time point. As proteomics studies can be conducted at a high level of 

reproducibility, comparative protein expression pattern analysis can be carried out. 

Proteomics technology is used to study the influence of toxins or drug treatment on 

metabolic pathways and the resulting change in protein expression. Quantitative protein 

expression changes due to exogenous substances can be measured accurately. Recent 

published works on the use of mass spectrometry as a tool for image analysis shows 

another field of application. The mass spectrometry laboratory of Caprioli, R.M. 

demonstrated the use of mass spectrometric data derived from scanning tissues of any 

kind in order to generate a picture of the tissue26,27. The spectra measured from the 

tissue are used to derive a protein pattern for a scanned region on the tissue that allows 

a histological classification. While previous histological classification methods where 

based on the staining of only a few peptides, classification based on mass spectrometric 

data in addition allows a more robust determination of differences when comparing two 

tissues.  

Post-translational modifications of proteins are known to play an important role in the 

function of biological pathways. Hence, it is desirable to have a technique at hand that 
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is able to produce results proving a possible modification attached to a protein 

sequence. Mass spectrometry is a possible tool to detect such modifications28,29.  
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2. Aims of the study 

As it is outlined in the previous chapter, two different strategies are followed to carry 

out comparative proteomics studies. However, both technologies have limitations (see 

chapter 1.3). The aims of this study are the development of a novel methodology in 

order to overcome the limitations given by the two strategies mentioned in chapter 1.3.  

It is crucial for any proteomics study to achieve a maximum identification rate when 

employing peptide mass fingerprinting. Thus, this study addresses the issues of 

improving algorithms to obtain better performing peptide mass fingerprinting 

algorithms. This can be done in two ways. First of all, as the PMF algorithm calculates 

the probability of a match based on the size of the peptide database, it is crucial to 

determine a realistic subset of digestion products for the theoretical digest of sequence 

databases. Thus, the match probability is increased by searching only for peptides that 

are often observed in mass spectra and neglecting peptides that are rarely or never 

observed. A second approach to address this problem would be the inclusion of the 

second dimension of a mass spectrum, namely the peak intensity. So far, no PMF 

algorithm is known that includes a measure of the intensity of a peak when calculating 

match probabilities. 

As it was mentioned in chapter 1.3 it is very difficult to compare gels accurately using 

just the images and spot locations. In order to improve the accuracy of gel matching, 

we are searching for a method to compare gels on the level of mass spectrometric 

content and not on the level of spot distribution or identification. 

The new method we aim to develop is a combination of the two previously employed 

methods. It should comprise a methodology to carry out comparisons of two-

dimensional gel electrophoresis images on the level of the mass spectrometric 

measurements of the peptides derived from the detected spots. Instead of comparing 

identifications, comparisons are directly carried out on the spectra itself. Thus, the new 

schema uses the full information content from MALDI, because the information 

content of a spectrum is much higher than the information that is abstracted in its 

identification and much higher than what is contained in an image of a 2D gel. 
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3. Mass spectrometric data processing 

This chapter covers the description of the algorithms and methods we used to measure 

the spectra and annotate its peaks. It also describes the method employed for searching 

the protein sequence databases in order to identify the spectra. 

3.1. Raw data processing 

Spectra were taken from a database of mass spectra of tryptic digests of proteins picked 

from 2D gels. All protein spots were automatically excised and digested using 

established protocols30. The mass spectrometric measurements were carried out on 

Bruker Ultraflex instruments (Bruker Daltonics, Bremen, Germany), using ACTH and 

Bradykinin as internal mass standards. These standard masses have a well defined mass 

of ~904.5 Da and ~2465.2 Da and are later on used to calibrate the spectra. All spectra 

were acquired in reflector mode in a mass range between 850 Da and 4200 Da. A 

spectrum was accepted if after 100–200 scans a minimum peak height and resolution 

was obtained. This is done using an automated data acquisition method. As explained 

below, monoisotopic peptide masses were automatically detected from the mass spectra 

by an in-house peak annotation method. The spectra are filtered for known keratin, 

trypsin, and matrix fragments. Peak hits are then compared to theoretical masses of 

peptides derived from an in-silico tryptic digest of all proteins from protein sequence 

databases (e.g. UniProt31, or NCBI human, mouse, or rat genome draft, as appropriate), 

in order to identify the protein. 

3.2. Peak Annotation 

The peaks in spectra derived from MALDI mass spectrometric measurements were 

annotated as follows: In order to determine the instrument baseline, the mass 

spectrometric data was two times filtered using a low-pass median parametric spline 

filter. The smoothed residual mean standard deviation from the baseline is used as an 
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estimate of the instrument noise level in the data. After baseline correction and 

rescaling of the data in level-over-noise coordinates, the data point with the largest 

deviation from the baseline is used to seed a non-linear (Levenberg-Marquardt) data 

fitting procedure32 to detect possible peptide peaks. Levenberg-Marquardt is an 

alternative to the Gauss-Newton method of finding the minimum of a function F(x) that 

is a sum of squares of non-linear functions. Specifically, the fit procedure attempts to 

produce the best fitting average theoretical peptide isotope distribution parameterized 

by peak height, resolution, and monoisotopic mass. The convergence to a significant fit 

is determined tracking sigma values32. Convergence is reached if sigma does not 

change more than 0.1 for five successive iterations. After a successful convergence, an 

estimate for the errors of the determined parameters is produced. This is done by 

applying a bootstrap procedure using sixteen repeats, for each repeat exchanging 

randomly 1/3 of the data points. The resulting fit is subtracted from the data, the noise 

level in the vicinity of the fit is adjusted to the sum of the extrapolated noise level and 

the deviation from the peak fit. The process is iterated to find the next peak as long as a 

candidate peak more than five times over level of noise can be found. The peak 

annotation is stopped when 50 data peaks have been found. The zero and first order of 

the time-of flight to mass conversion are corrected using linear extrapolation from 

detected internal standard peaks, and confidence intervals for the monoisotopic mass 

values are estimated form the mass accuracies of the peaks and standards. 

3.3. Probabilistic matching of spectra peaks 

Peak mass lists for mass spectra are directly compared to theoretical digests for whole 

protein sequence databases. For each theoretical digest, [ ]cMatches
ipNP ))(1(1 ∏ −−  is 

calculated33. In this formulation N is the number of peptides in the theoretical digest, 

P(pi) is the number of peptides that match the confidence interval for the monoisotopic 

mass of the peak divided by the count of all peptides in the sequence database, and 

cMatches is the number of matches between digest and mass spectrum. It can be shown 

that this value is proportional to the probability of obtaining a false positive match 
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between digest and spectrum. Probability values are further filtered for high 

significances of the spectra peaks that produce the matches. After a first round of 

identifications, deviations of the identifications for mass spectra acquired under 

identical conditions are used to correct the second and third order terms of the time-of-

flight to mass conversion. The resulting mass values have mostly absolute deviations 

less than 10 ppm. These mass values are then used for a final round of matching, where 

all matches having a Pmism less than 0.01/NProteins are accepted. 
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4. Algorithms and Methods 

4.1. Spectra similarity 

4.1.1. Derivation of the spectra similarity 

All spectra we analyzed have been treated as described in chapter 3. The peaks have 

been annotated and the spectra with its peaks have been calibrated using internal 

standards. After completion of these procedures, we assumed that all deviations from 

true values in the data were due to non-systematic deviations. Thus we can treat the 

measured monoisotopic mass value as a sampling from a normally distributed 

population of possible mass values for a measurement. 

The probability density of the distribution of monoisotopic masses is therefore the 

Gaussian function.  

A Gaussian34 is defined as follows: 22
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Figure 2: This Figure shows a Gaussian shape of a peak with monoisotopic mass m0. Full 

width at half maximum is defined as )2ln(2s± . The amplitude of the curve is defined 
by a. 
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s denotes the standard deviation, which is defined as follows: 
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The discrete correlation theorem states that the discrete correlation of two real functions 

g and h is one member of the discrete Fourier transform pair Corr(g,h)  GkHk* where 

Gk and Hk are discrete Fourier transforms of gj and hj, and the asterix denotes complex 

conjugation35. Therefore, the correlation between two spectra is the inverse Fourier 

transform of the product of the Fourier transform of the first spectrum with the complex 

conjugate of the Fourier transform of the second spectrum. Foruier transforms in signal 

processing are usually evaluated using the well known Fast Fourier Transform (FFT) 

algorithm. However, calculating FFT’s with resolutions of <10 ppm requires millions 

of data bins and is not very efficient. Since it is obvious that a Gaussian transformed in 

Fourier space again yields a Gaussian, we decided to calculate the correlation explicitly 

(see Appendix). This can be used to yield the mass correlation function mc(x) for sums 

of Gaussians. The following formulation denotes the mass correlation function mc(x). 
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Formula 3 is the final formulation of the mass correlation function that treats the 

amplitudes of the peaks as height a and is depending on the size of the standard 

deviations si and sj respectively as well as the difference in monoisotopic masses m0i 

and m0j respectively. As it is observed, the exponent is getting large as the difference in 

mass of the two compared mass grows. Thus, large differences in the compared 

monoisotopic masses result in very small correlation values. The exponential term 

reaches its maximum of 1 when the difference in monoisotopic masses is equal to zero, 

and so does the function in general, when the two peaks perfectly match. 

In this formulation, each peak (i) from one spectrum is compared to all the peaks (j) of 

the other spectrum. Spectrum one contains Ni peaks and spectrum two Nj. The 

exponent becomes zero when the monoisotopic masses (m0) of peak i and j are exactly 

the same at a lag x = 0. si and sj denote the standard deviations of the peaks. For 
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calibrated mass spectra, as it is always the case regarding the data we analyzed, the lag 

x is zero per definition. However, we derived the formula for the general case. The 

above formalism also includes the amplitudes of the compared peaks represented by ai 

and aj respectively. We can treat spectra assuming that all the peaks have the same 

intensity. Thus, the height ai and aj respectively are set to 1. Formulation (3) then yields  
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which denotes the actual mass correlation function mc(x). 

4.1.2. Normalizing the mass correlation function 

As it is realized when calculating the autocorrelation, the mass correlation in its raw 

form is not normalized. The auto-correlated form yields a sigma dimension, which 

means that the correlation function has to be made dimension less in order to yield 

similarity values normalized from 0 to 1. The correlation function is usually normalized 

by dividing it with the geometric average of the two individual autocorrelations36. This 

formulation is shown on equation (1). 

∑ ∑∑∑

∑∑

=

=

=

=

+

−−−
=

=

=

=

+

−−−

=

=

=

=

+

−−−

++

+
=

j j
jj

jj
i j

ii

ii

i j
ji

ji

Nj

j

Nj

j

ss

xmm

jj

jj

Ni

i

Nj

i

ss
xmm

ii

ii

Ni

i

Nj

j

ss

xmm

ji
ji

e
ss

sse
ss

ss

e
ss

ss

xjicorr

1 1

)(2

)(

22
1 1

)(2
)(

22

1 1

)(2

)(

22

22

2
00

22

2
00

22

2
00

11

1

),,( (1) 

To calculate the normalization factor, only overlapping peaks are taken into account. 

The normalizing factor yields then: 
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The normalization factor contains an inverted sigma term that is multiplied by the 

square root of 2. The normalized mass correlation is then the product of the mass 

correlation with the normalization factor. This formulation looks as follows: 
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By setting i = j, which evaluates the autocorrelation, it can be seen that now the 

normalized form lost its sigma dimension and results to one. If none of the peaks from 

either spectrum overlap when calculating the similarity between two different spectra, 

the mass correlation yields zero. Thus, the minimum value for similarity is 0 and the 

maximum value is 1. The formalism shown in formula (3) can be further simplified. As 

we are only interested in the fraction of peaks from two different spectra that are 

overlapping and assuming that the spectra are calibrated (lag x = 0), the formula can be 

reduced to: 
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Noverlap is the fraction of peaks that overlap. Overlapping peaks are two peaks from two 

different spectra that are defined by their monoisotopic masses m0i and m0j respectively 

that are within two times of their confidence interval 



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 +
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2
200
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ss
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An estimate of the error of this simplification is given as follows: Consider a case 

where two spectra are compared each having 50 peaks. The peaks of one spectrum are 

all shifted by 1.0 Da and the standard deviation of the peaks is 0.2 for all peaks. The 

resulting correlation value for these two spectra is ~0.015. This is a very weak 

correlation value even though the masses are shifted by only 1.0 Da. Given the fact that 

the distribution of peaks in real spectra is much broader, the error of the simplified 

mass correlation function is small and thus, can be neglected. 

We have already stated that the individual peak intensities have been consciously 

excluded from the correlation function. As it is obvious from Formula 4 of the previous 

chapter, the contribution of the peak intensities amounts to the cross product of 

amplitudes for overlapping peaks (and can be normalized in the usual way to unit 

vector in the Npeak-dimensional space). The contribution of amplitudes is 
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multiplicatively connected to the correlation of masses. It is shown in the results section 

that the inclusion of the peak heights decreases the robustness of the correlation 

function. In the case of MALDI mass spectrometric data, reproducing exact intensities 

over a whole spectrum is very difficult, as slight changes in laser power, acquisition 

parameters, or crystallization parameters can alter the spectrum. Instead of neglecting 

the intensity of a peak, we replaced the information about the height of a peak by its 

ordered rank. We therefore introduced the more robust rank order correlation 

coefficient, described by Spearman 37. 

4.1.3. Spearman rank order correlation coefficient 

The concept of rank correlation is the following: We are given N pairs of measurements 

(xi and yi). If we replace the value of xi by the value of its rank among all the other xi’s 

in the sample, that is, 1,2,3,…N, then the resulting list of numbers will be drawn from a 

perfectly known distribution function, namely uniformly from the integers between 1 

and N, inclusive 37. If some of the ranks have identical values, it is conventional to 

assign to all these “ties” the mean of the ranks that they would have had if their values 

had been slightly different. These tied ranks are called midranks. The sum of all 

assigned ranks will be the same as the sum of the integers from 1 to N, namely 

)1(
2
1

+NN . The same procedure is done for the yi’s, replacing each value by its rank. 

A statistical measure of the rank correlation has been described by Spearman. The 

Spearman rank order correlation is defined by 
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Ri is the rank of peak i in spectrum one and Si is the rank of peak i in spectrum two. R  

and S  are the midranks. In our procedure, if two peaks have intensities that are within 

10% of each other, the same rank (tie) is assigned and for all ties, the corresponding 

midrank is calculated. The exact relation of the ranks including ranks with the same 

value is shown in the following formula (2). 
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fk is the number of ties in the kth group of ties among the Ri’s, and gm is the number of 

ties in the mth group of ties among the Si’s. If all the fk’s and all the gm’s are equal to 

one, meaning that there are no ties, then equation (2) reduces to equation (3). 

NN
Drs −

−= 3
61  (3) 

D , the so called sum-squared difference in ranks, is closely related to rs and is defined 

as  
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4.1.4. Weighting of the correlations 

Mass and rank correlation are supposed to be orthogonal (as they use different 

information from the spectrum). Thus, they should be equally weighted. We have 

evaluated the exact relation between the two correlations by the following formulation, 

k
mcrck

ecv +
+

= 1
)log()log(

 (1), 

where k is the weighting factor, rc the rank correlation and mc the mass correlation. By 

assigning the weighting factor k values from 0 to 2, we evaluated different weightings 

of the two correlations. The most accurate relation is shown to be at k = 1, which 

means the two correlations have to be equally weighted (see results section). Setting k 

to 1 yields the correlation value to become the geometric mean of the two correlations. 

rcmccv ⋅=  (2) 
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4.2. Hierarchical clustering methods 

We used our newly established similarity measure to compare large datasets of 

experimental mass spectrometric data. All the spectra compared have been measured 

and treated as described in section 3. We have been employing two different kind of 

hierarchical clustering methods, trees and graphs, to gather spectra together. Spectra are 

clustered together based on the score derived from pair wise comparison of the spectra 

using the correlation function described in section 4.1. 

4.2.1. Tree-based clustering 

Among the many possible methods to generate a tree from pairwise similarity scores, 

we chose a method that builds a tree by iteratively calculating the average distance 

between nodes and leafs. Other tree building algorithms differ only in the way of 

calculating the distance between two clusters. We used the method that is described in 

detail below as a proof of concept. 

This clustering procedure described by Sokal and Michener 38 is called UPGMA, which 

stands for unweighted pair group method using arithmetic averages. It works by 

clustering the spectra, at each level amalgamating two clusters and at the same time 

creating a new node on the tree. The tree can be imaged as being assembled upwards 

and each node being added above the others, and the edge lengths being determined by 

the difference of the heights at the bottom and the top of an edge39. 

The distance d between two clusters Ci and Cj is defined as the average distance 

between pairs of spectra from each cluster. 

∑
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pq
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1  (1) 

iC  and jC  denote the number of spectra in clusters i and j, respectively. If Ck is the 

union of the two clusters Ci and Cj (C jik CC ∪= ) and Cl is any other cluster, then the 

distance between the two clusters is defined by: 
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The clustering procedure is: 

 

Initialization: 

Assign each spectrum i to a cluster Ci. 

For each spectrum define one leaf of the tree and place it at height zero. 

Iteration: 

Determine the two clusters i, j, for which the distance dij is minimal. 

Define a new cluster k by jik CCC ∪= , and define dkl for all l according to 

formula (2). 

Define a node k with daughter nodes i and j, and place it at height dij/2 

Add k to the current clusters and remove i and j 

Termination: 

When only two clusters i, j remain, place the root at height dij/2. 

 

A detailed cartoon of the UPGMA clustering algorithm and tree construction is given 

on Figure 2. Once a complete tree of the sample set is built, we can begin to disjoint it 

back into pieces, equivalent to generate sub trees or clusters from the whole tree 

structure. We used a threshold parameter in order to cut a tree separate clusters. This 

process is evaluated iteratively by checking the cluster consistency using a user 

supplied estimate of cluster count and the total number of spectra clustered. 
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Figure 3: This figure demonstrates how UPGMA produces a rooted tree by clustering 
spectra. An example set consisting of five spectra is given. Distances between spectra are 
measured using the spectra similarity algorithm described in chapter 4.1, while the 
UPGMA algorithm derives distances between clusters. 

4.2.2. Graph theoretical clustering 

A graph is defined as a set of nodes and a set of lines that connect the nodes. We call V 

the vertex set and E the edge set of G. The degree of a node is the number of nodes that 

a given node is connected to40. 

Using the correlation values, we construct a graph by connecting spectra with the 

highest available correlation value from a set of unconnected nodes that will not 

connect to a spectrum that has already been linked to spectra in the current component 

of the graph. As our means of constructing a graph includes only highly similar spectra 

not yet clustered, the resulting graph is a non-circular graph. 

Thus, our procedure constructs a forest of minimal spanning trees with primitive 

natural chain breaks. A minimal spanning tree data structure allows walking along the 

graph, from the shortest distance between two nodes to the farthest node, visiting each 
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node at least once. The algorithm we employ for the clustering of spectra sets also 

reduces the dimensionality of the problem from two dimensions (the trigonal matrix) to 

one dimension, allowing for highly efficient processing of large amounts of data41. 

 

The clustering procedure is: 

Initialization: 

Construct of the trigonal matrix n*(m-1)/2 

Evaluate the similarity measure for each pair of spectra where n < m. 

Construct of a list of connections according to the following procedure: For column 

i in the trigonal matrix pick i  k with max (R) and add it to list L(i,j). 

Iteration:  

Build the graph by iterating through list L and connect the nodes stepwise. 

Edges are only taken into account when the similarity value is larger than a 

specified threshold. 

Termination: 

The graph(s) are constructed when all the nodes contained in list L are connected. 

 

We argue that this list describes one or more directed graphs with the following 

properties: 

1) It contains only nodes that have at least one connection. 

2) Each outgoing connection points to a higher target node number. 

3) It does not contain paths that are circular. 

The non-circularity is shown as follows: If we assume that it would be possible to 

construct a circular graph under these conditions we could find the node with the 

smallest node number that has an incoming connection. Assuming circularity, we could 

reach this node from another directly connected node. This node has to have a node 

number greater than the node number of the original node. However, for this node the 

connection to the original node would be an outgoing connection, and would have to 

point to a node with a higher node number. Therefore, construction of circular paths is 

impossible if conditions 1 and 2 are to be met. 
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As only the highest scorers (spectra that have no spectrum that is more similar to any of 

them in the spectra set) get the chance to be connected, we will obtain clusters that are 

maximal consistent. Nevertheless, we encountered problems in the grouping process 

due to spectra that contained peptide peaks from two different proteins. Protein mixture 

spectra act as links between two independent clusters. In order to prevent such 

inconsistent cluster formation due to protein mixtures we have introduced an optional 

variable threshold parameter. This parameter setting is varied in an iterative process 

where the cluster consistency is evaluated each time. Iteration is stopped when all 

resulting clusters are uniform. 

A simple example of the graph constructing algorithm is shown on Figure 4. Table 1 

gives an example of a trigonal matrix calculated from a sample set of 10 spectra. The 

correlation values are obtained by evaluation of the similarity algorithm. The trigonal 

matrix is transformed into a list of most similar pairs of spectra. This list is then 

evaluated in order to build the graph. 

 

 1 2 3 4 5 6 7 8 9 10 
0 0.5 0.4 0.4 0 0 0.3 0.2 0.4 0 0 
1  0.5 0.6 0 0 0.3 0.2 0.5 0 0 
2   0.5 0 0 0.4 0.2 0.5 0 0 
3    0 0 0.3 0.2 0.6 0 0 
4     0.5 0 0 0 0 0 
5      0 0 0 0 0 
6       0.2 0.4 0 0 
7        0.2 0 0 
8         0 0 
9          0 

Table 1: This Figure shows a trigonal matrix generated from pair-wise comparisons of 10 
spectra. The highest correlation value per column is marked and added to list L(i,j). 
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Figure 4: The graph is build by iteration through list L(i,j) and successively addition of new 
nodes to the graph. Only vertices with a value of 0.3 and above are drawn. 

4.3. Generation of consensus spectra 

The clustering process resulted in a list of clusters each representing a group of similar 

spectra from the sample set. The ideal case would be one cluster for every protein. The 

latter is frequently not realized because there are spectra that contain peptides from 

more than one protein. These protein mixture spectra denote link clusters containing 

spectra describing each part of the mixture spectrum. Clusters linked via mixture 

spectra are usually large and contain both, mixture spectra and “pure” spectra. 

An obvious exertion of a database of clusters would be the generation of consensus 

spectra which contain the most abundant peaks occurring in measured spectra as 

assembled in each cluster. Each resulting consensus spectrum is the representative 

spectrum for this kind of peptide assembly. For example, a cluster that contains spectra 

that are eventually identified as protein X would yield a consensus spectrum that is 

representing a robust and averaged empirical mass spectrometric representation of 

protein X. 
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We experimented with different definitions of consensus spectra and came to the 

decision to take the 50 most abundant overlapping peaks that occur in spectra from the 

cluster. As we are able to collect more than one experimentally measured monoisotopic 

mass per peptide, the average of the experimental monoisotopic masses is more exact 

than each individual sampling. Additionally, we are able to define realistic standard 

deviations for the peak masses, as the standard deviation can now be estimated from 

statistical sampling, as opposed to the assumption that the measured variance in peak 

definition is the main determinant of deviations for monoisotopic masses. 

More accurate standard deviations play an important role in peptide mass fingerprinting 

protein identification – they allow to sample a realistic set of peptides from a mass 

range. However, probably the biggest advantage is that we are able to define a rank 

order that reflects the real rank of any specified peptide as accurate and as robust as 

possible. 

 

Algorithm for the construction of consensus spectra: 

Initialization: 

Pair–wise comparison of all spectra in a cluster  

Create a list L(pi) of overlapping peaks. An overlap occurs when 








 +
≤−

2
200

ji
ji

ss
mm . This will miss less than 1% of the real overlaps. 

Calculate average masses, new standard deviations, and occurrence of these peaks. 

Iteration: 

Iterate through list L(pi) and compare each mass mij to all the other masses in the 

list. 

Iterate through all the spectra and score the order of each pair of masses according 

to their height relation in the spectrum. If the height of peak with mass i is larger 

than the height of peak with mass j, it is scored 1, if it is smaller it is scored -1. If 

this pair does not occur or if they are tied in height the relation is scored 0. 

Termination: 

Calculate the sum and sort descending according to the sum. The highest score is 

ranked first, second highest ranked second and so on. 
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4.4. Database of consensus spectra 

We generated datasets of totally 100,000 spectra and evaluated them as described in the 

previous chapters. The samples were derived from four different organisms: 

~ 35000 spectra from Human HEK293 cell line 

~ 15000 spectra from B. subtilis 

~ 14000 spectra from Paracoccus z. 

~ 18000 spectra from Rat insulinoma cell line INS1 

~ 18000 spectra from Human blood plasma 

The cell line samples used came from conventional, untreated, log-phase cultures. All 

spectra have been treated as described in chapter 3. 

We clustered MALDI mass spectra from different sample sets and generated consensus 

spectra out of the resulting clusters as described in section 4.3. All consensus spectra 

that were derived from clusters containing more than two spectra were analyzed by 

peptide mass fingerprinting and peak peptide matching after identification. Peak 

peptide matching is a procedure which tries to assign additional candidate sequences to 

peaks in spectra that are identified. These peptides include miscleaved peptides, 

modified peptides, as well as peaks that have standard deviations too large to be 

matched. All the identified consensus spectra were stored in a database along with the 

matched and the unmatched peptides. A matched peptide is a peptide that has been 

found to match the monoisotopic mass of a peak in peptide mass fingerprinting or in 

peak/peptide matching. On the other hand, unmatched peptides denote peptides that 

could not be assigned to peaks in the consensus spectrum by employing either method. 

In general, we see only forty percent of the theoretically occurring peptides in a 

spectrum.  

In Chapter 2 we described the need for a realistic peptide set for peptide mass 

fingerprinting in order to reduce the number of possible peptide matches. It was 

mentioned that in terms of probability it is favorable to consider only a minimal set of 

peptides. As stated above, only 40% of the peptides in theoretical digests are observed. 

Therefore, there should be a reasonable potential for rules that can recognize peptides 

that should not occur in practice. 
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4.5. Peptide Analysis 

We used the previously described database of consensus spectra to compare the 

matching peptides with the unmatched in order to test different peptide properties like 

missed cleavages, hydrophobicity, hydrophobicity gradient, and distributions of amino 

acid in peptide sequences. 

4.5.1. Missed cleavages 

For the analysis of missed cleavages, we used consensus spectra from clustering of 

Bacillus subtilis and Human samples. With the peak lists of the consensus spectra we 

carried out database searches in order to identify the underlying proteins. This first 

identification cycle was done without considering missed cleavages or posttranslational 

modifications. If a spectrum was identified, it was compared to the theoretical digest of 

the identified protein again, allowing this time two missed cleavages within the 

sequences. The resulting peak / peptide matches were recorded and analyzed for 

predictive features. 

4.5.2. Hydrophobicity and hydrophobicity gradient 

The hydrophobicity of a peptide was calculated by summing per amino acid 

hydrophobicity scores according to Kyte and Doolittle42. This procedure scores each 

amino acid from a given sequence with scores ranging from 0 for Arginine to 9.0 for 

Isoleucine. We also evaluated the hydrophobicity gradient of the peptide sequences by 

estimating the slope of the hydrophobicity score along the sequence. 

4.5.3. Amino acid distribution in peptide sequences 

To obtain information on the amino acid distribution at every position in a peptide 

sequence, we calculated the relative entropy of each amino acid at every position. 

Relative entropy can be seen as information content in ‘bits’ when the distribution of 
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the experimentally determined amino acid frequency at a certain position is compared 

to its background distribution e.g. the amino acid composition of the SWISS-PROT 

database43. The concept of entropy was described by Shannon44. It can be used to 

measure the degree of conservation at a site in a peptide sequence alignment. For two 

distributions P and Q the relative entropy is defined by 

( ) ∑=
i i

i
i xQ

xPxPQPH
)(
)(log)(||  (1), 

where P(xi) is the measured amino acid frequency and Q(xi) describes the background 

frequency. The entropy of a given distribution is always positive. 

4.6. Noise reduction in mass spectrometric data 

Despite the quality of mass spectrometric measurements using today’s technical 

equipment, there are still components in the spectra that are not derived from measured 

proteins. These components are called noise components. Unfortunately, they interfere 

with identifications carried out by peptide mass fingerprint algorithms. Noise 

components are known peaks derived from enzymatic cleavage (autolysis peaks), 

matrix peaks and other substances, including polymers or peaks derived from improper 

treatment of measured samples (e.g. kreatine peaks). All peaks that disturb the 

spectrum should be excluded in order to decrease the probability false positive 

assignments.  

We describe two different approaches to clean the spectra from noise. By applying the 

first approach, spectra are filtered by information extracted from the spectrum itself. 

That means that no additional information is needed. The second approach uses 

additional information given by images of 2D-gels and spot locations mapped on them. 

It is clear that the second method is applicable only for experiments that used the 

separation of proteins by 2D-PAGE. 
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4.6.1. Noise filtering on a single spectrum 

While it is trivial to eliminate noise peaks that regularly appear in spectra (for example 

the mentioned kreatine peaks whose exact monoisotopic mass is known), it is slightly 

more complicated to filter noise peaks with unpredicted monoisotopic masses (e.g. 

matrix peaks or polymer peaks). 

To detect polymer peaks in the spectrum it is possible to make use of the oligomeric 

nature of polymers. Peaks from polymer chains of various lengths are separated by 

regular, repeating mass differences (usually the mass of the monomer). The technique 

of choice to detect adjacent peaks with a defined difference in mass is to use 

autocorrelation (correlation of a spectrum with itself). To search for polymer specific 

differences, the autocorrelation has to be calculated for a range of different shifts in 

masses. For example, to detect a polymer with a monomer mass of ~22, the spectrum 

for which the autocorrelation is to be evaluated has to be shifted by a lag of 22 to detect 

a peak in the resulting correlation evaluation. In order to detect potential polymers, we 

evaluated the autocorrelation for a spectrum about a hundred times, each time 

increasing the mass shift of the spectrum by one. The frequency of polymer peaks (the 

mass of a monomer) is than observed by plotting the autocorrelation versus the mass 

shifts. Once the mass-difference is known, polymer peaks in the spectrum can be found 

by searching for chains of this mass difference between peaks. 

4.6.2. Noise filtering using information from 2D-PAGE 

Matrix peaks and small chemical noise peaks are by far the most abundant species that 

should be filtered out of the spectrum. The monoisotopic masses of these noise peaks 

are often not known and therefore cannot be eliminated a priori. As it is impossible to 

distinct such noise peaks in a single spectrum, we were looking to use statistical 

properties of a set of several samples to find out suspect peaks. Reproducible 

assemblies of noise peaks will cluster into one or more consensus spectra per definition. 

While it is impossible to differentiate these consensus spectra based on their mass 

information alone, it is well possible to compare the spatial distribution of the spots the 
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spectra were derived from with the spatial distribution of all spots excised from the gel. 

Real protein spots should show a spatial distribution that is inconsistent with random 

sampling from the spot set, while noise spectra should be distributed as a random 

sampling from the spots. To differentiate between noise clusters and “good” clusters, 

we compare the distribution of spots the spectra were originated from to the distribution 

of the spectra in the clusters. While the randomness of the sampling could be shown 

using exact statistical criteria (Komolgorov-Smirnov)45, by a simple calculation of the 

area where the spots originally have been excised, we are able to determine whether the 

cluster is a noise cluster or not. 

This is illustrated schematically on Figure 5. The resulting consensus spectrum of such 

a cluster contains a majority of peaks that are noise peaks. By excluding these peaks 

from the dataset, the spectra in general become cleaner and the overall clusterability of 

the spectra is improved. 

„good“ cluster – Non-
uniform spot distribution

„bad“ cluster – uniform 
spot distribution

2D gel image with spots from 
two different clusters

 
Figure 5: This figure illustrates how we are able to tell whether a cluster is a noise cluster 
or not by comparison of the spot distributions. As the spots from the bad cluster are 
uniformly distributed, the region cannot be deterministic for a single protein. Peaks in 
consensus spectra from noise clusters can be excluded from the dataset. 
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4.7. Use of clusters of mass spectra for gel image analysis 

We compared the assemblies of spots derived from their peptide mass fingerprinting 

identifications with the information on the spot locations derived from the clustering of 

similar spectra. As already stated, we know the location of every spot on the gel and 

therefore, we know for every spectrum where it has been measured from. Such an 

analysis is shown on Figure 6, illustrating all spots for which the measured spectra have 

been identified as fibrinogen beta chain precursor. This Figure also shows the spots 

whose spectra were clustered together using the clustering algorithm and similarity 

measure described in chapter 4.1. The resulting consensus spectrum of this cluster was 

also identified as fibrinogen beta chain precursor. As shown on the Figure, there is a 

strong correspondence between the results of peptide mass fingerprint identification 

and clustering, however, the clustering procedure identifies a more comprehensive set 

of spots. 

Spectra from these spots have been identified as fibrinogen beta chain precursor
by peptide mass fingerprinting.

Spectra from these spots have been clustered together and the resulting consensus 
spectrum has been identified as fibrinogen beta chain precursor.

Figure 6: This figure illustrates the mapping of spectra to their spots resulting from 
clustering and from peptide mass fingerprint identifications. The lower two gels show the 
spots of spectra assembled in a single cluster whose consensus spectrum has been 
identified as fibrinogen beta chain precursor. The upper gels show spots whose spectra 
have been identified as fibrinogen beta chain precursor. On the upper gel images, some 
outlying spots, probably protein mixture spectra were not clustered with the “pure” 
fibrinogen beta chain precursor spectra.  

FIBB_HUMAN

FIBB_HUMAN

FIBB_HUMAN

FIBB_HUMAN

Mapping the cluster information onto the gel(s) can be done for all the clusters. To aid 

visualization of gel regions identified by the clusters, we used the Voronoi46 algorithm 

to partitionate the gel and its spots into separate areas. This algorithm spans a network 
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of polygons on the gel, with each spot having its own area that is not intersected by 

another area.  

As spectra information is rarely complete, not every spot on the gel will be included 

into an identified region. Missing spot information is then added in two ways. First, 

polygons or its spots are added to a cluster defined region when the undefined polygon 

is fully surrounded by polygons that are assigned to the same cluster. We assume in that 

case that the missing spot belongs to the same cluster. 

While this is certainly possible, only few spots can be assigned using this simple 

approach. 

A more powerful way of complementing missing spot information is to draw on 

redundancies between replicate gels. With the second method, we try to add missing 

spot information by searching and comparing the immediate surrounding of a non-

clustered spot to surroundings of clustered spots on other gels. We employed a simple 

k-Means47 method to determine whether a non-clustered spot can be assigned to a 

cluster, of which similar clusters surround the same region. The method is described as 

follows: After creation of a raw picture with all the clusters on the gel, we generate a 

list of surrounding polygons of all non-clustered spots. In order to add the non-clustered 

spots to a cluster, the surroundings of all the other spots located on different gels are 

searched for the best matching neighborhood. If there is such a match, the non-

clustered spot is assumed to belong to the same cluster as the nearest clustered neighbor 

of that matching surrounding. A sketch of this method is given on Figure 7. 

Non-clustered spot

Gel A Gel B

Matching spot

 
Figure 7: This figure demonstrates the use of k-means criterion to decide whether two 
surroundings match or not. Same color means same cluster and therefore same protein. 
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The neighborhood found to match the surrounding of the non-clustered spot on gel B is 
used to identify the spot on gel A. 

4.8. Comparative gel set analysis 

The comparative approach outlined above can be extended to difference analysis of sets 

of gels, a very frequently employed approach to proteomics data processing. 

In the following chapter, it is explained how we are able to compare two different sets 

of spectra (so called gel/spectra sets) accurately, and how we can extract valuable 

information in terms of differences in expressed proteins or even changes in protein 

expression levels. 

A gel set is defined as collection of 2D-gels showing protein expression of a single 

sample. These sets include different slices of the proteome under investigation as 

derived by sample preparation, which are measured usually in replicates. All the spots 

from gels in a set will be automatically excised and tryptically digested, and resulting 

peptide mass fingerprints measured two or more times on MALDI-TOF mass 

spectrometers. It is important that gel sets contain many redundant gels. This 

redundancy is the statistical background that allows such an analysis.  

Consider the simple case where two gel sets were generated from the same tissue, with 

the difference that one sample has been treated with a substance (e.g. a drug), whereas 

the other sample acts as a control. Traditionally employed methods to compare such gel 

sets were based on the analysis of differences in protein expression, as observed by gel 

image comparisons. 

With our method to compare the two gel sets, their spectra have to be clustered 

separately and a consensus spectrum has to be generated for every resulting cluster. In a 

second step, all the regions on the gels, assigned to the same consensus, have to be 

calculated to evaluate the sum of spot volumes for every region. In order to find similar 

regions on gels that belong to another gel set, all the consensus spectra from one gel set 

are compared to the consensus spectra of the other gel set. The result of this comparison 

consists of three sets of consensus spectra. The first set contains consensus spectra that 

have at least one similar consensus spectrum in the compared gel set(s). For these 

matching spectra, the degree of change in spot volumes can be calculated from spot 
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intensities on the gel images, which gives an estimate for protein expression 

differences. The second and third set contains consensus spectra that are unique in the 

sense that there is no similar counterpart found in either of the gel sets. This could be 

due to insufficient coverage by PMF measurements, or due to large differences in 

expression levels. However, sampling of more than three replicates will reduce the 

chances of annotating a false positive expression difference to less than 5% if the 

identification rate is larger than 70%.  Only after the pair–wise comparison of the 

consensus spectra, spectra are identified using the peptide mass fingerprinting 

technique or using the reference spectra library. 

Therefore, we established a method to compare large datasets of spectra that is 

independent from identifications of the spectra and independent from gel image 

comparisons. We measure the differences directly on the level of mass spectrometric 

information, which results in increased accuracy of comparisons and makes the 

conclusions of the analysis more robust. By addition of the spot intensities, we are able 

to receive a raw estimate for the expression level of the protein that covers the defined 

region on the gel. Spot volumes are still calculated by the 2D-gel image analysis 

software by summing up the per pixel color intensity measured on the gel. 
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5. Results and Discussion 

5.1. Evaluation of the similarity measure 

To test our similarity algorithm we constructed a set of spectra of which the underlying 

protein was well known. The set contained 558 spectra. We tested the performance of 

the algorithm by pair–wise comparisons of spectra in the test set. The resulting 

similarity values were binned either to the true correlation bin when the compared 

spectra had identical identification or to the false correlation bin, when the two spectra 

had a different identification. 

We already stated that the two correlations should be equally weighted because of their 

orthogonality to each other. This is proven by the weighting scheme described in 

section 4.1. We have evaluated the weighting scheme by setting various values for the 

weighting factor k. A small value for k weights the mass correlation more than the rank 

correlation and on the other hand, a larger value of k only considers the rank 

correlation. The outcome of setting k equals to zero is shown on Figure 8. 

 
Figure 8: Pair-wise comparisons were carried out using the mass correlation alone as 
described in Chapter 4.1 without including the amplitudes of peaks. A significant overlap 
between the two bins is observed and false correlations are scored with similarity values 
up to 0.6. 
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When assigning k large values (k >> 1) only the rank correlation is taken into account. 

The evaluation of this procedure is shown on Figure 9. For better performance, if two 

peaks have intensities that are within 10% of each other, the same rank (tie) is assigned 

in our procedure. 

As it is seen on Figure 10, the optimal weighting is achieved when setting k to 1. A k 

value equal to 1 means that both correlations are equally weighted. The weighting 

formula evaluates to form the geometric mean of the two correlations as it is described 

in equation (2) of section 4.1.2. 

 
Figure 9: Pair-wise spectra comparisons of the spectra set were scored using Spearman 
rank correlation coefficient alone. The weighting factor k is set to a very large value k >> 1. 
The separating capability of this method is even lower than the method using mass 
correlation (see Figure 8). 

As shown on Figure 10, using the combination of the two measures as similarity 

criterion achieves almost complete separation. Mass correlation alone, as seen on 

Figure 8, shows significant overlaps between false and true correlations. The same is 

true for pair wise spectra comparisons carried out using the rank order correlation alone 

as it is shown on Figure 9. 
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Figure 10: Combining mass and rank correlation of MALDI mass spectra allows almost 
complete discrimination between truly related spectra and unrelated ones in this sample of 
558 spectra. The difference between the median false correlation bin and its true 
correlation counterpart is around 0.4 

 
Figure 11: Pair wise spectra comparisons using mass spectra with intensities normalized 
to unit vector 36,48 show a significant overlap of scores for true and false correlations for 
the same spectra sample as in Figure 10. The difference between the median false 
correlation bin and its true correlation counterpart is only 0.2. While calculating the 
rotational angle between vectors in mass space is the usual approach to construct mass 
spectra libraries, it is clearly not a satisfactory method for separating MALDI PMF spectra. 

We have compared our algorithm to the known measure of normalized dot product 
36,48,49. In this formulation only the k highest peaks overlapping between two spectra are 

taken into account and normalized to the total intensity of overlapping peaks. As seen 
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on Figure 11, the normalized dot product solution does not work with the same 

accuracy as observed when using the mass correlation in combination with the rank 

order correlation coefficient. Many true correlations are scored with low correlation 

values, meaning that complete separation of the two bins is impossible to achieve. 

MALDI spectra are accurately compared using the algorithm that includes a robust 

measure of the intensities. The combination of mass correlation and rank correlation 

does not show false correlations above a similarity score of 0.3, whereas mass 

correlation alone or correlations with normalized ion current yield false correlations 

with similarity values up to 0.6. On the other hand, our method is the only method 

tested that did not miss true correlations. While it is obvious that adding intensity 

information to a spectra comparison is complementing it with orthogonal information 

content, it is crucial to understand that the absolute height of a MALDI peak does not 

denote a robust measure of its quantity. MALDI data is quantitative only in comparison 

to the other components contained in the same spectrum. Rank order reflects just this 

fact, and it is robust in presence of noise or separate components. 

5.2. Clustering evaluation 

5.2.1. Performance of the tree-based clustering 

The UPGMA-tree building routine was used to build up a tree from a list of pair–wise 

comparisons of MALDI spectra. The list of comparisons and its scores describes a 

trigonal matrix. The similarity measurements were performed with the new spectra 

similarity algorithm described in the previous chapter. Complete sets of rooted trees 

have been built as shown on Figure 12. Clusters are formed by cutting edges of the tree 

to generate separate sub–trees that in turn should represent similar spectra accounting 

for the same protein identification. The separation of clusters is automatically done 

using a threshold parameter that is chosen upon cluster consistency. The threshold 

parameter is set in such a manner that a reasonable number of clusters is obtained and a 

large quantity of the previously compared spectra is assigned to a cluster. 
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We employed both static thresholds and dynamic thresholds (using significance of 

differences from average distance in the data). Static thresholds employed on the 

structure of trees often separate clusters that belong together. On the other hand by 

setting the threshold too low, many spectra are assigned to the wrong clusters.  

Non-static thresholds are more suited to overcome the problem of cluster separation. 

However, there the problem arises by the fact that assumptions on the tree structure 

have to be made that cannot be generalized. In general, it can be stated that a tree 

structure is not an adequate description of the relationship between the spectra. It is 

very hard to disjoin the tree into the correct clusters using a static threshold parameter 

and it is similar difficult to break the tree into clusters by employing a dynamic 

threshold parameter. 

The problem described above arises due to the non-ultrametric and non-additive 

behavior of the distances between two clusters. The ultrametric condition implies when 

two clusters, Ci and Cj are amalgamated that the distances between any leaf in cluster Ci 

and any leaf in Cj are the same. This is not the case when clustering MALDI spectra 

using the algorithm described in chapter 4.1, as well as when using any other measure 

of correlation. Similarly, most other tree constructing algorithms would fail as most of 

them rely on additivity or ultrametry of the distance measure. Therefore, we have to 

devise a different method for the analysis of sets of similar spectra. 
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Figure 12: This figure shows a tree generated from pair wise comparisons of 26 spectra. 
In order to separate the tree in many sub-trees, a threshold parameter has to be defined. 
It can be demonstrated that many spectra fall out of clusters due to a threshold that is too 
harshly operating. 

5.2.2. Performance of the graph based clustering 

Again, correlations for each pair of spectra are calculated and a trigonal matrix is 

formed. The trigonal matrix serves as template to generate the list of highest similar 

pairs of spectra upon which the graphs have been constructed. Similarity graphs were 

generated by connecting spectra nodes to the nearest node whose edge has not been 

visited before. 

As this method of constructing a graph relies only on the order property of correlations 

(stating that higher correlation values mean more similarity), it is robust against any of 

the factors that disturb the performance of tree building algorithms (e.g. noise, weakly 

linked spectra etc.). Moreover, the resulting graph is in general disconnected, 
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containing a forest of trees, each of them representing a cluster of similar MALDI 

spectra. An optimal iterative cluster consistency checking process can even improve 

performance. Cluster consistency is checked by comparing the number of total spectra 

in the data set to the number of spectra that have been assigned to clusters and by 

comparing the total number of different identifications from the data set to the number 

of clusters. A simple check of the selectivity and robustness of our method has been 

carried out by clustering two datasets from two different organisms (data not shown). 

Not even a single spectrum from one dataset appears in a cluster of spectra from the 

other dataset.  

In order to increase performance and accuracy we checked that it is safe to ignore 

spectra comparisons whose number of overlapping peaks is lower than 4. This reduces 

the trigonal matrix to a sparse trigonal matrix. This reduction has positive implications 

on the scalability and therefore performance of the clustering algorithm, since only 

spectra are compared that have the potential to yield a high similarity score. 

An example of such a sub graph is shown on Figure 13. This Figure shows an energy-

minimized drawing of a graph of 38 alpha-enolase spectra. For purposes of drawing, an 

energy minimization is calculated using a 2D spring embedding algorithm. The idea of 

spring embedders is to simulate the graph as a system of mass particles. The nodes are 

the mass particles and the edges are springs between the particles. The algorithm tries 

to minimize the energy of this physical system50. As pointed out above, distances 

obtained by correlation methods do not follow easy metrics, so one should regard the 

drawing just as an illustration of the clusters. 
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Figure 13: Graph of a single cluster of 38 spectra isolated from a set of ca. 1500 MALDI 
PMFs. The core region consists of spectra that have been identified as alpha enolase. 
Smaller distances correspond to stronger similarities. Note that average distances within 
the cluster are similar and very distinct from outbound connection distances. An iterative 
procedure has been implemented that employs this feature to separate self-consisting 
clusters. 

As seen on Figure 13, the graph is not totally disconnected. There are a few outgoing 

connections to spectra at much larger distance than within the cluster. We have 

implemented a simple filter that removes inconsistent distances from clusters in order 

to obtain maximum cluster consistency. 

The graph-clustering algorithm is much better performing than the tree-based clustering 

algorithm. As the threshold parameter in the case of graph clustering only polishes 

already separated clusters, there are no false assignments due to inadequately chosen 

thresholds.  

Due to the better performance of the graph-clustering algorithm, we used this algorithm 

as the method of choice for all analysis of MALDI spectra samples. 

5.3. Consensus spectra including rank ordered peaks 

For every resulting cluster, a consensus spectrum has been generated. The consensus 

spectrum contains not more than 50 of the most abundant peaks from the clustered 

spectra. All consensus spectra were built following the procedure described in section 
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4.3. In general, a good consensus spectrum can be derived for a cluster that consists of 

more than 10 spectra. In clusters where the number of assembled spectra is greater than 

10, a significant improvement of the peak parameters has been observed. These 

improvements consist of more accurate monoisotopic masses and of a more robust rank 

order of the peaks. 

We conducted database searches for every consensus spectrum extracted from 

clustering in order to identify the protein. Identified proteins were searched again 

against the protein database searching tryptic peptides that were not included into 

Peptide Mass Fingerprint search. In general, these peptides are peptides with more than 

one trypsin cleavage site within the sequence, so called missed cleavages. As already 

stated in section 3, the PMF search procedure we employed does not use missed 

cleavages per default. The peak peptide matching results in an average number of nine 

peptide hits per consensus spectrum. As our means of generating consensus spectra 

tries to include just the most abundant peaks, the number of peaks does not reflect the 

number of theoretical peptides. We have already mentioned that about 80% of the 

spectra from a sample set can be assigned to clusters. 60% of these clusters and their 

consensus spectra are identified as containing peptides from at least one protein. 

Assemblies of protein mixture spectra result in consensus spectra that account for 

different kinds of peptides meaning that two or more identifications result from the 

peptide mass fingerprinting and therefore result in an increased number of peptide 

matches. However, in general, it can be stated that consensus spectra lead to safer and 

more robust protein identifications.  
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Figure 14: Shows a graphical representation of a consensus spectrum with its rank 
ordered peaks. As it is illustrated here, peaks with the highest averaged level over noise 
are not necessarily ranked better than peaks with a smaller level over noise. 

A typical consensus spectrum derived from a cluster containing 14 spectra of the same 

kind is shown graphically on Figure 14. A table of the peptide identifications of the 

peaks assembled in such a consensus spectrum is shown on Table 2. As it is seen on 

this table, peaks with the highest level over noise are not necessarily ranked first 

because we assign ranks according to the prevalence of the peptides but not their ion 

intensity. It is also observed that peak peptide matches are prevalent in the first third of 

the consensus spectrum. Apparently, noise components or minor peaks are much less 

reproducible than well ionizing peptides from a protein digest. 

In order to extract useful information in terms of peptide sequences and peak orders, we 

stored all data derived from consensus spectra in a database system.  
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Table 2: This table shows the top 25 peaks of a consensus spectrum. The cluster is 
assembled from 14 spectra. Only two peaks, ranked 1 and 11, occur in every spectrum. A 
few peaks have a relatively high level over noise but are only occurring in two of the 
spectra. The rank ordering procedure takes care that these peaks get low ranks, despite 
their high level over noise. 

5.4. Reference library of consensus spectra 

We clustered spectra from the data sets described in section 4.4. Around 80% of the 

spectra could be assembled in clusters by our clustering method. Clustering resulted in 

a set of 5167 clusters from which a consensus spectrum could be extracted. 1715 of 

these consensus spectra in turn led to 1827 protein identifications, of which 1248 were 

unique. 933 identifications occurred more than once. As our means of generating 

consensus spectra tries to include the most abundant peaks, the number of peaks in the 

consensus spectrum does not reflect the number of theoretical peptides in the digest. 

This is shown on Figure 15.  

This fact is explained by the overall observed peptide coverage that is in the range of 

20% in peptide mass fingerprints measured by MALDI mass spectrometers. 
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Figure 15: This figure shows how the peptides are distributed in consensus spectra and 
shows that the number of naturally occurring peptides does not correlate with the number 
of peptides in a consensus spectrum 

Considering the completeness of sequence databases employed for searching, we would 

estimate that ~60% of the consensus spectra should yield an identification. Our 

identification rate is somewhat lower, a fact that is explained by the consideration, that 

only for large clusters (where the number of assembled spectra is greater than ~10) a 

significant improvement of the peak parameters can be expected. The peak–peptide 

mappings resulted in a total of 11235 unique peptide sequences, with an average of 9 

peptides per consensus spectrum. 

The reference library of consensus spectra serves for two purposes:  

1) Instead of searching the peptide-database by peptide mass fingerprinting, we can 

compare the spectrum to be identified with the spectra in the consensus spectra 

database.  

2) Consensus spectra can be used to elucidate peptide properties for peaks showing 

consistently high intensities. 

5.5. Performance evaluation of the reference library 

Identification of proteins using a library of consensus spectra has the big advantage of 

automatically considering only a realistic set of observable peptides. Considering that 
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the sequence coverage in MALDI PMF is typically in the range of 20%, this means that 

about 80%-90% of the usually considered peptide masses can be ignored without loss 

of search accuracy. As easily seen from the probabilistic mismatch estimate this will 

lead to several orders of magnitude differences in mismatch probabilities even for few 

matches and thus increase search sensitivity dramatically. The peptide mass 

fingerprinting algorithm has an observed identification rate that is between 40%-60% 

depending on the size of the sequence database.  

Since we are able to cluster all the good spectra from a sample correctly (corresponding 

to 80% of the spectra), it is theoretically possible to identify 100% of the clustered 

spectra. This is because we employ the same strategy for clustering as for searching the 

reference library of consensus spectra. This would yield an increase in sensitivity of 

<60% to reach an identification rate close to 100%. 

We carried out a simple test procedure to check the performance of such a reference 

library of consensus spectra on the one hand and to check the usefulness of our 

similarity algorithm for search the library on the other hand. The same test set was used 

as described in section 5.1 to test the accuracy of the algorithm. All the spectra of this 

data set of which the underlying protein is known were sent to the database of 

consensus spectra and compared to the spectra from the library. We only considered the 

most similar spectrum in order to assign identification to the spectrum. All the spectra 

that have a corresponding consensus spectrum in the library were correctly identified. 

The assignments failed only in cases were no consensus spectrum was available. In 

these cases no identification or a wrong identification was achieved. Additionally, we 

carried out the same test, using the mass correlation alone as the measure of similarity. 

By using the mass correlation alone, the rate of false identifications dramatically 

increased, not only in the case of a missing consensus spectrum (data not shown). 

As mentioned before, a drawback of identifying a spectrum by searching the database 

of consensus spectra is that a consensus spectrum representing the searched protein has 

to be experimentally observed in previous measurements. Current progress in mass 

spectrometry instrumentation makes it likely that the task of establishing complete 

spectra libraries for commonly used laboratory organisms could be feasible in the near 

future.  
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5.6. Results of the peptide analysis 

5.6.1. Missed cleavage patterns 

We used previously established databases of consensus spectra from Bacillus subtilis 

and Human samples. With the obtained peak lists of consensus spectra we carried out 

database searches in order to identify underlying proteins without considering missed 

cleavages or posttranslational modifications. If a spectrum was identified, it was 

compared to the theoretical digest of the identified protein again, allowing this time two 

missed cleavages within the sequences. The latter procedure increases the amount of 

peak peptide matches. 

In total, we have analyzed 3251 theoretical peptide sequences from Bacillus subtilis 

and 6859 theoretical sequences from Human proteins. These 10110 sequences 

contained 5760 missed cleavage sites, which were subjected to an analysis of the two 

cleavage site flanking amino acids. The results of this analysis are shown in Table 3.  

 
Table 3: This table shows the observed missed cleavage pattern. Pattern 1 is explained 
as follows: A missed cleavage pattern is detected when either W or Y or F is followed by R 
or K and the latter are not followed by neither R nor K. These patterns account for more 
than 90% of the missed cleavages. 

As we pointed out above, consensus spectra can be used to elucidate constraints on the 

physico-chemical properties of observed peptides. This serves the purpose of directly 

reducing the set of peptides taken into consideration for identification purposes. 

A dramatic reduction of the size of the peptide database can be achieved by obtaining 

information on missed cleavages and information on the distribution of K-/R-ending 

peptides. The four missed cleavage patterns listed in Table cover 91% of the most often 

occurring detected missed cleavages. Pattern four is well known because trypsin is 

unable to cleave when arginine or lysine is followed by a proline. Pattern two and part 
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of pattern three have been described in literature before51. Pattern one has not been 

described in literature before due to the fact that the three amino acids tryptophan, 

phenylalanine and tyrosine are low abundant amino acids. Part of pattern 3, the 

histidine occurring at the right side of a potential missed cleavage site is also new, 

likely because histidine is a low abundant amino acid. 

5.6.2. Distribution of R- and K-ending peptides within the first ranks 

The database of consensus spectra includes the rank order of each peak. We queried the 

database for the occurrence of lysine– or arginine– ending peptides within the first few 

ranks of the consensus spectra. The result of that investigation is shown on Figure 16. 

 
Figure 16: As this figure impressively demonstrates, there is practically no lysine ending 
peptides observed within the first then ranks. Some lysine ending peptides are observed 
but they are missed cleavages, carrying R, K or H within the sequence. The mayor part of 
peptides within the first ten ranks are R ending peptides. 

As it is obvious from the data, arginine–ending peptides are much more frequent 

among the top-ranking peptides then their statistical expectancy, with the frequency of 

observing a K–ending peptide without another basic residue among the first 10 ranks 

being less than 8%. This holds even for multiple lysine residues in the sequence. As 

shown on Figure 17, the occurrence of multiple lysine residues in matched peptides 
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without arginines or histidines is distributed approximately like a binomial52 with a 

frequency of 6.5% (instead of 27.8%, as expected by amino acid frequencies). 

Interestingly, the performance of R-residues is a property of MALDI. The most likely 

explanation for this is the higher basicity of the guandinium group in gas-phase53, 

which leads to a non equal distribution of the protons after a short time in the relatively 

hot plasma of the extract. 

 
Figure 17: Binomial distribution of K-ending peptides not containing R or H. The 
experimentally determined values fit to the binomial distribution of values with a probability 
p of 0.065. Theoretical sequence database analysis predicts a 4.3 fold higher abundance 
of lysine–ending peptides. 

5.6.3. Kyte and Doolittle hydrophobicity plot 

Several papers presented hypotheses about an increased hydrophobic character of 

peptides that were observed in MALDI mass spectrometric measurements 54-57. We 

have evaluated the hydrophobicity and the gradient of hydrophobicity for each peptide 

in our database. This was done using the per amino acid hydrophobicity score as 

defined by Kyte and Doolittle42. The outcome of this analysis is shown on Figure 18. 

No difference between matched and unmatched peptides could have been observed. 

Additionally, we calculated the hydrophobicity and the hydrophobicity gradient in 

dependency on peptide rank for the ten top-ranked peptides. We could not observe 

positional dependencies (amphiphilic character) for the hydrophobicity of amino acid 

side chains. 
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The observations reported in the papers were drawn on a small sample of peptides. It 

appears that the prevalence of small amino acids in the vicinity of the C-terminal 

residue (see below) was misinterpreted in terms of hydrophobic/amphiphilic character 

of the peptides. 

 
Figure 18: This figure shows two properties of matched peptides. It shows the 
hydrophobicity of peptides within the first ranked peptides and the gradient of 
hydrophobicity of each peptide ranked within the first ten peptides. The gradient is defined 
as the slope of hydrophobicity from the N- to the C- terminus of a peptide sequence.  

5.6.4. Amino acid distributions as indicators of peptide ionization 

charac eristics t

For the calculation of the relative entropy per position and amino acid, we took into 

account 10 amino acids on the C-terminal site of the peptides. We assumed that the 

N-terminus features a similar behavior as Lysine in the ionization process, so that both 

N-terminal amino acids as well as Lysine terminated peptides can be ignored. We 

analyzed ten positions before the proton accepting Arginine, which is assumed to be 

sufficient to reveal possible differences in amino acid distributions by comparing 

matched to unmatched peptides. 8500 peptides containing at least 10 amino acid 

residues have been aligned starting at the C-terminus. Entropies were calculated by 

taking the frequencies of amino acids at every position in the alignment. The result of 

this analysis is shown on Figures 19 and 20. We observed significant differences in 

 56



residue distribution patterns between matched and unmatched peptides. Peptides 

detected in consensus MALDI MS spectra contain a marked excess of small amino 

acids (alanine, glycine, valine), while the occurrence of acidic amino acid residues in 

immediate neighborhood of the C–terminal basic amino acid is reduced. 

On the other hand, analysis of the relative entropies of amino acid positions in peptides 

revealed clear differences between matched and unmatched peptides. Whereas the 

unmatched peptides mostly carry acidic amino acids before the ion acceptor, the 

matched peptides prefer small amino acids like gylcine, valine and alanine at this 

position. These three amino acids are more prevalent at all ten positions before the C-

terminal arginine or lysine. Only at position four, five and eight the relative entropies of 

D and E are higher than the ones for A, G or V. Such a pattern is not observed in the 

unmatched peptides, where only D and E residues contain information relative to the 

background distribution, probably reflecting a general prevalence of ion bridges in 

protein secondary structures. 

 
Figure 19: Information content of amino acid residues at the C-terminus of peptides 
detectable in MALDI PMFs. Entropies for arginine and lysine have been removed because 
their high information content is caused by the cleavage specificity of trypsin and 
suppresses the signal of other positions. Significant differences from the natural amino 
acid distribution could be detected for small amino acid residues (alanine, glycine, valine) 
and for acidic residues (glutamic acid, aspartic acid). 
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Figure 20: Information content of amino acid residues at the C-terminus of peptides not 
detected in MALDI PMFs. Significant differences from the natural amino acid distribution 
could be detected for acidic residues (glutamic acid, aspartic acid), but, in opposite to the 
data presented on Figure 19 not for small amino acid residues (alanine, glycine, valine). 
As discussed below, this could be interpreted in terms of different structural requirements 
for ionization in MALDI experiments. 

Therefore, peptides with high ionization potential in MALDI have a marked prevalence 

of small amino acids over the background. While it is difficult to interpret this 

observation in terms of peptide structures or solution behavior, it could be speculated 

that the increased content of small amino acids provides a structural flexibility that aids 

the crystallization of the peptide with the matrix substance. 

 

The knowledge about peptide properties gained from these studies has been directly 

implemented in the Peptide Mass Fingerprint algorithm described in chapter 3.3. 

Addition of this information improved the search procedure to achieve a false positive 

rate of 0.25% (down from ca. 5%) at the same level of sensitivity. This was tested using 

a database whose theoretical peptide masses had been shifted by 3 Da. 

5.7. Noise free consensus spectra 

By using the filtering techniques described in chapter 4.6, we were able to clean the 

datasets from noise. Known peaks as internal standards, enzyme derived autolysis 

peaks and unwanted contamination (e.g. kreatine peaks) are excluded from the spectra 
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after successful peak annotation. Polymer peaks also are eliminated before the dataset is 

further processed. 

5.7.1. Elimination of polymer peaks 

By using the autocorrelation function described in chapter 4.1 (Formula 3), we are able 

to search for polymers that have a monomer mass ranging from 1 to ~100. We set the 

endpoint of the range to 100, assuming that polymers with larger monomer masses 

would not yield enough of the polymer peak pattern to unambiguously identify the 

polymer. Peaks that are larger than 1/10 of the total ion flux at lag zero are potential 

polymer peaks. These peaks have to occur at several times within a monomer specific 

mass frequency. 

An evaluation of the autocorrelation of a polymer-containing spectrum is shown on 

Figure 21. To clean a spectrum from such polymers, it has to be searched for peaks that 

have a difference in mass that corresponds exactly to the polymer unit mass. This is 

done using an adjacency list.  

 
Figure 21: This figure shows the autocorrelation of a polymer contaminated spectrum at 
different mass-shifts x. The spectrum used here contains polyethylene glycol, a polymer 
whose monomers each have a molecular weight of ~44. The red line marks the cutoff 
value for peak detection. 
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5.7.2. Elimination of noise peaks using spot locations on 2D-gels 

Using the spectra information gained from clustering, we can calculate the area that is 

occupied by the spots of which the spectra have been derived from. Every spectrum 

that has been measured was automatically excised from a 2D gel. The actual location of 

the spot is stored in a database along with the spectral information. This means for 

every spectrum we know its gel coordinates. By calculating the area that the envelope 

of the point set takes on the gel, we are able to decide whether a cluster is a noise 

cluster or not. Figure 24 shows the spot distribution of noise cluster and that of a 

protein cluster. 

We use two criteria to decide whether a cluster is derived from spectra that contain 

noise peaks or not. As a first criterion, we state that spots located in an area that is 

larger than 15% of the whole gel must contain noise. This condition is sometimes not 

sufficient because the same protein can occur several times on a gel in modified form 

or as fragment. Consider the case of a protein that occurs in a full length and a 

proteolytically cleaved form. The majority of peptides and therefore peaks remain 

unchanged for both forms. The two types of spectra would fall into the same cluster, 

even though the spots that are the source of the spectra are located at completely 

different places on the gel. The spot envelope covers an area larger than 15%, even 

though the spectra are not noisy. Therefore, we introduced a second criterion that treats 

such a case differently. We calculated for every sub-species the area it covers. These 

areas should still not be larger than 15% of the gel. Secondly, we checked whether 

these areas contain at least 40% of the spectra. Both conditions have to be fulfilled to 

pass the noise test. 

If a cluster is characterized as noise cluster (see Figure 22), a consensus spectrum can 

be generated. Such a noise consensus spectrum is shown on Figure 23. As it is seen on 

the spectrum image, there are many putative matrix peaks in the low molecular weight 

range. For each detected noise cluster and its consensus spectrum, its five most 

abundant peaks are declared as noise peaks and excluded from the whole dataset. As 

the dataset is freed from the most prominent noise peaks, another round of clustering 

leads to higher clustering accuracy. This can be done iteratively, collecting and 
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excluding the noise peaks from the dataset after each round of clustering until no more 

noise is detected.  

As the clustering is improved by deleting the most prominent noise peaks at every 

clustering cycle, the clusters become increasingly self-consistent and accurate.  

 
Figure 22: This figure illustrates a noise cluster (gel A) and how the spots are uniformly 
distributed all over the gel. The area covered by these spots easily exceeds 15% of the 
gel. Gel B however, shows the spot distribution of a cluster whose spectra are noise free. 

 
Figure 23: This figure shows a consensus spectrum generated from a cluster whose 
spectra are assembled together due to noise peaks. Matrix peaks and chemical noise 
peaks are typically observed in the range of 850-1050 MW. 
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5.8. Gel matching using spectral information 

After the noise elimination resulting clusters are noise free and the cluster consistency 

is high. Thus, we can begin to map the cluster information to the original gels. This is 

done as described in section 4.7. We calculated a Voronoi diagram over the gel so that 

each spot is surrounded by a polygon that partitions the gel such that each spot is nearer 

to its central point of the polygon than to any other spot. A Voronoi diagram drawn on 

a gel is shown on Figure 24. Having declared an area per spot, for illustration purposes 

we colored all the polygons belonging to the same cluster with the same color. This 

leads to a raw picture of the gel and its clustered spots as shown on the right side of 

Figure 24. As it can be seen on the Figure, many spots could not be assigned to a 

cluster. This is because in routine operation, there are spectra where a proper 

measurement was not possible, or even where a spot could not have been picked. 

A B

 
Figure 24: The left side of this figure shows a Voronoi diagram drawn on top of a gel 
image. As it can be seen, every single spot has its own polygon-defined region. These 
polygons are filled with colors, every color representing a separate cluster. This 
information is extracted from the spectra assemblies.  

As it desirable not to neglect these spots for quantification purposes, we used the 

methods described in section 4.7 to add the information missing in the cluster in order 

to complete the picture. 
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The approach we employed uses the information from two or more gels from the same 

sample to add missing spot information. The result of this approach is shown on 

Figure 25.  

A B
Matching spotNon-clustered spot

 
Figure 25: This figure illustrates the surround matching on other gels. The encircled 
regions denote the matching of surroundings on the left side to surroundings on the right 
side. The non-clustered spot in the center of the circle on the left side will be assigned to 
the same cluster as the green colored spot, seen on the center of the circle on the right 
side. 

In that method, we calculate the 15 geometrically nearest neighbors of every spot on 

every gel in the sample set. These sample sets usually contain 2 or more gels of exactly 

the same sample (replicas). As this method is depending on replicas, the more gels 

there are the better the overall coverage of the protein species is in the end. Having the 

list of surrounding clusters for every spot, we can try to assign non-clustered spots to 

clusters. This is done by comparison of the surroundings of every spot to all 

surroundings of spots on other gels in order to match the surroundings of the non-

clustered spots. We assign a non-clustered spot to a cluster if 35% of the surroundings 

on another gel overlap and the center of the surrounding is not further away than ±2% 

in x-y coordinates. The non-clustered spot is assigned to the cluster to which the center-

spot of the matching surround spot list belongs on the other gel. This procedure is 

repeated for all the non-clustered spots. 
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A B

 
Figure 26: This figure shows the highlighting of two regions on different gels. These 
regions have been derived from clustering information and from the addition of missing 
spot information. The consensus spectrum is identified as chaperonin containing tcp1.  

In general, the clustering procedure covers about 60 to 70% of the gels. The spot 

assignment method increases the coverage to reach 75% and finally another increase in 

5 to 10%, depending on the overall quality and clusterability of the sample set, is 

achieved when adding spots due to neighborhood comparisons.  

Using the spectra information from clustering, we were able to establish a method to 

compare gels allowing the comparisons of gels without comparing spots on the level of 

identification nor on the level of their location on the gels.  

Using only counts of protein identifications tends to miss significant differences 

because there are many spots whose spectra are not identified. This situation does not 

occur when employing our method due to the fact, that a spectrum does not need to be 

identified to be clustered with similar spectra. Our approach is also independent from 

gel image comparisons in order to assign spots to specific clusters. The gain in 

reliability here is that we use regions on the gel that have the same cluster identity and 

not their spot image boundaries to assign spots to clusters.  

As seen on Figure 27, we can match the same region on two very different gels from 

the same sample, which would have been difficult using the gel matching methods.  
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5.9. Accurate comparisons of gel sets 

We established a method to accurately compare large sets of gels and mass 

spectrometric data measured from it on the level of mass spectrometric information. 

For the first time, our method allows a robust statement about protein expression 

differences when comparing two or more large different datasets.  

In order to compare the gel sets, they have to be clustered separately as described in 

chapter 4.2. Clustering results in a set of clusters that contain around 80% of the 

spectra. This number corresponds to the estimate of acceptable spectra per sample set. 

The obtained clusters are then mapped to the 2D-gels. The resulting regions, each 

defining a separate entity, cover about 80 to 90% of the gels. Once the clusters and 

therefore the regions are assigned to their location by gel cluster mapping, the sum of 

the individual spot volumes can be calculated. After completion of these procedures, a 

comparison of all consensus spectra is carried out. The consensus spectra are compared 

pair–wise using the similarity measure described in section 4.1. As the consensus 

spectra are supposed to be noise free, the correlation value is thought to be significant 

even if it is below a similarity value of 0.3.  

It is possible that a consensus spectrum from one gel set matches more than one 

consensus spectrum from the other gel set. That is the reason we decided to take only 

the most similar consensus spectrum for further processing. For every similar pair of 

consensus spectra, the change in overall spot intensity is calculated as follows: for a 

pair of spectra i  j the change in intensity is 










j

i

V
V10log . Thus, a change in intensity 

of 1 corresponds to a ten fold increased expression of protein i in comparison to protein 

j. Vi and Vj respectively denote the accumulated spot volumes derived from the spots 

contained in a region, which in turn is defined by consensus spectrum i and j 

respectively.  
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Figure 27: Highlights the region deterministic for chaperonin containing tcp1. The upper 
two gel images are from the same gel set whereas the lower two gels belong to another 
gel set. The similarity of these two regions was derived using the spectra comparison 
algorithm described in Chapter 4.1. 

The comparison results in two categories of consensus spectra. The first category 

describes consensus spectra that have a consensus spectrum in the other gel set that is 

similar to it. For these pairs of spectra, we can calculate the change in intensity, which 

is an estimate of the difference in protein expression of that particular protein. The 

second category describes consensus spectra that have no similar counterpart in either 

of the gel sets. For these consensus spectra, a calculation of the change in intensity is 

not possible. However, if the presence/absence can be confirmed, these spots provide 

valuable information about protein expression differences larger than the dynamic 

range of the detection method.  

The results of a gel set comparison can also be illustrated graphically as it is shown on 

Figure 27. The same region, accounting for the same protein, is highlighted on gels 

belonging to two different gel sets.  
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We are now able to match gels on the level of spectra and draw conclusions that are 

more robust than before. As we are comparing gel sets on the level of spectra content, 

we obtain expression level differences even if identification cannot be achieved (e.g. if 

no sequence database is available for an organism). Obtained consensus spectra can be 

selected and further analyzed using different identification methods. 

5.9.1. Performance evaluation of the new method 

A study entitled “Differential Expression Profiling of Human Pancreatic 

Adenocarcinoma and Healthy Pancreatic Tissue” from our lab has been published by 

Lu et al.58.  

This study has been carried out using the traditional method of analysis of the 

differentially expressed proteins. Differences in spot intensities were evaluated by 2D 

gel analysis software (Bio-Rad PDQUEST 6.2). Individual spot volumes have been 

estimated. The spots from two master gels, one per sample, have been analyzed and 

identified. These two gels served as templates for the remaining gels to assign protein 

identifications to spots that have been matched by the gel comparison software. 

In this study, about 70 proteins were found in pancreatic carcinoma tissue that are 2 or 

more fold expressed in comparison to the control. It took an experienced operator 

several weeks to derive this information. 

Since the samples have been analyzed in our proteomics laboratory, the data including 

2D gel images and mass spectra were available to reproduce the results. We employed 

our newly established method to re-analyze protein expression differences. 

We clustered spectra from each gel/spectra set separately to generate protein specific 

cluster assemblies as described in chapter 4.2 and extracted a consensus spectrum for 

every cluster as described in chapter 4.3. Regions which are defined by the spectra 

clusters were mapped onto corresponding gels in order to establish a clustered gel 

picture. Consensus spectra were then identified via traditional PMF or via the reference 

library of consensus spectra. In order to perform gel matching, all consensus spectra 

derived from clustering of the carcinoma spectra set were compared to consensus 

spectra from the control spectra set.  
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No similar proteins found

Identified as DEST_HUMAN

Control
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carcinoma

Similar consensus spectra

 
Figure 28: DEST_HUMAN (Destrin (actin-depolymerizing factor) (adf)) has been 
identified only in the control. It was suggested by Lu et al. that this protein is two fold 
overexpressed in the carcinoma sample. In the region of Destrin no similar spot or 
spectrum was detected that shows a two times higher expression level. 

Identified as 
HSB1_HUMAN and ECHM_HUMAN 

Clustered as HSB1_HUMAN

Control

Pancreas
carcinoma

Figure 29: ECHM_HUMAN (enoyl-coa hydratase, mitochondrial precursor (ec 4.2.1.17)) 
was identified only in the control sample. Five spectra were measured from this spot, three 
of them identified as HSB1_HUMAN (Heat shock protein beta-1) and two of them as 
ECHM_HUMAN. However, as it is more likely that the major protein of this mixture spot is 
HSB1_HUMAN, ECHM_HUMAN might not be overexpressed in the carcinoma sample as 
described by Lu et al. All the spectra from the marked spots were clustered together and 
the resulting consensus spectra have been identified as HSB1_HUMAN.  
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Identified as ALBU_HUMAN

Identified as NUAM_HUMAN

Control
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carcinoma

Figure 30: NUAM_HUMAN (Nadh-ubiquinone oxidoreductase 75 kda subunit), which is 
described as overexpressed in the pancreas carcinoma sample was identified only in the 
control. This figure shows similar regions on two gels, the first is a gel from the control and 
the second gel is from the pancreas carcinoma sample. Similar regions are highlighted on 
the two gels. There is no spot observed in the NUAM_HUMAN region that justified an 
assumption of NUAM_HUMAN being two fold overexpressed in the carcinoma sample. 

We compared our expression analysis results to the list of overexpressed proteins 

described by Lu et al. 43 proteins of the 70 overexpressed proteins could be detected. 

However, for 27 proteins given in their list, we could not observe expression 

differences. A list of these proteins is given in Table 4. The table contains several 

proteins of which a different isoform has been detected. It also contains proteins that 

are clearly false positive identifications, which would be enriched in any gel-

comparison analysis. Since we were able to reduce the false positive success rate of our 

peptide mass fingerprint algorithm to a minimum, we believe that the protein isoforms 

we detected using our consensus spectra are the correct ones.  

Additionally, the list of differentially expressed proteins obtained from gel image 

comparison contains a few clear artifacts of the image comparison process. Possible 

explanations for these misassignments are given for three of these proteins 

(DEST_HUMAN, ECHM_HUMAN and NUAM_HUMAN) on Figures 28-30 in 
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detail. As our method requires substantial spectral information, it is not vulnerable to 

mismatches of image analysis that occur in the vicinity of large protein spots or in areas 

of insufficient gel quality.  

Table 5 describes a list of proteins expressed only in the carcinoma tissue. 

 

Protein AccNo Description Status 
humangp:CHR7-
FSC2 O14926 sw:fsc2_human: fascin 2 (retinal fascin).  different isoform detected 

Sw:CALD_HUMAN Q05682 caldesmon (cdm). not found in datasets 

Sw:COF1_HUMAN P23528 cofilin, non-muscle isoform (p18). not found in datasets 

Sw:DEST_HUMAN P18282 destrin (actin-depolymerizing factor) (adf). 
not found in carcinoma 

sample 

Sw:AMPL_HUMAN P28838 cytosol aminopeptidase (ec 3.4.11.1)  
not found in carcinoma 

sample 

Sw:EL3A_HUMAN P09093 elastase iiia precursor (ec 3.4.21.70) not found in datasets 

Sw:APE_HUMAN P02649 apolipoprotein e precursor (apo-e). not found in datasets 

Sw:CALX_HUMAN P27824 calnexin precursor(p90)  not found in datasets 

Sw:CYPH_HUMAN P05092 peptidyl-prolyl cis-trans isomerase a (ec 5.2.1.8) not found in datasets 

Sw:TCPG_HUMAN P49368 t-complex protein 1, gamma subunit 
not found in carcinoma 

sample 

Sw:DLDH_HUMAN P09622 dihydrolipoamide dehydrogenase (ec 1.8.1.4). 
not found in carcinoma 

sample 

Sw:NUAM_HUMAN P28331 nadh-ubiquinone oxidoreductase 75 kda subunit 
not found in carcinoma 

sample 

Sw:ECHM_HUMAN P30084 
enoyl-coa hydratase, mitochondrial precursor (ec 
4.2.1.17)  

not found in carcinoma 
sample 

Sw:SYW_HUMAN P23381 tryptophanyl-trna synthetase (ec 6.1.1.2)  not found in datasets 

Sw:HSBX_HUMAN O14558 heat-shock 20 kda like-protein p20. different isoform detected 

Sw:IQG1_HUMAN P46940 ras gtpase-activating-like protein iqgap1  only 1 good spectrum 

Sw:PBEF_HUMAN P43490 pre-b cell enhancing factor precursor. not found in datasets 

Sw:RAN_HUMAN P17080 gtp-binding nuclear protein ran  not found in datasets 

Sw:KAC_HUMAN P01834 ig kappa chain c region. not found in datasets 

Sw:MA32_HUMAN Q07021 pre-mrna splicing factor sf2, p32 subunit. not found in datasets 

Sw:S109_HUMAN P06702 calgranulin b (mrp-14)  different isoform detected 

Sw:MLRN_HUMAN P24844 myosin regulatory light chain 2 not found in datasets 

Sw:POR2_HUMAN P45880 voltage-dependent anion-selective channel protein 2  different isoform detected 

Sw:RET1_HUMAN P09455 retinol-binding protein I not found in datasets 

Sw:RINI_HUMAN P13489 placental ribonuclease inhibitor  not found in datasets 

Sw:TCTP_HUMAN P13693 translationally controlled tumor protein (p23) not found in datasets 
Table 4: This list represents the differences in detected proteins compared to the list of 
overexpressed proteins presented by Lu and collaborators. The major part of proteins on 
this table are not identified in the two different samples. For some proteins different 
isoforms were detected. Only one good spectrum per sample was measured for 
IQG1_HUMAN (ras gtpase-activating-like protein iqgap1). The spectrum for this 
protein could not be clustered. 
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Table 5: This table shows proteins expressed in the carcinoma sample that have not been 
found in the control. Red marked proteins are not described to be differentially expressed 
in the work published by Lu et al.  

As demonstrated on Figures 28-30, it is almost impossible to match gels from different 

samples accurately using traditional gel matching software. Almost 40% of the proteins 

were assigned to be overexpressed by mistake. Gels subject of gel comparisons have to 

be very similar to obtain good results. Often, this is not the case. Better and more 

reliable results are obtained by comparing differences in identifications of proteins. 

Here, all proteins found exclusively in one or the other sample have been assigned 

correctly. However, quantitative and reliable results are obtained when comparing 

differences in protein expression on the level of spectral information. Relating spot 

volumes to protein identifications is not possible when comparing protein 

identifications due to the non-optimal identification rate of peptide mass fingerprint 

search algorithms.  

The computationally expensive part of the whole evaluation was the clustering of 

spectra of the datasets, which was conveniently done overnight without operator 

involvement. The gel matching on the other hand took around 2 minutes to complete. 

Thus, our method outperforms traditional gel comparison software in terms of speed 

and accuracy. Gel image comparison algorithms work fine for 60% of the spots and 

their proteins. However, the amount of false positive annotations is too large to derive 

robust conclusions.  
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The disadvantage of the alternative method – having few positive hits when comparing 

counts of protein identifications – is circumvented by comparing directly the spectral 

information as it is done using our method. 
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6. Conclusions 

We established a new algorithm to accurately measure the similarity between MALDI-

TOF measured mass spectrometric data. Our algorithm is a combination of two 

orthogonal correlation measures, a correlation for monoisotopic peak masses and a 

correlation for relative levels over noise of the peaks. The superior performance of our 

algorithm is shown in chapter 5.1. 

We used this algorithm to compare large data sets of mass spectrometric data. As it is 

described in chapter 5.2 we used a graph theoretical clustering algorithm to robustly 

group similar spectra together. We established a method to exclude noise peaks from 

sets of mass spectrometric data. Peaks with known masses are filtered from the spectra 

after annotation. Matrix derived peaks and chemical noise are excluded using a method 

implemented in connection with the clustering procedure that analyses spot locations 

derived from a spectra cluster on gels and decides whether the set of locations drawn 

from a gel represents a random sampling of gel spots. This newly established clustering 

procedure shows excellent performance and filters most of the noise out of the spectra 

set. 

We were able to extract essential peak information from clusters of spectra and to 

generate consensus spectra. We build a database of consensus spectra derived from 

clustering of more than 100’000 spectra from four different organisms. This database 

contains ~1700 consensus spectra that account for the identifications of 1250 different 

proteins. This peptide/spectra database served for two purposes: we could extract 

knowledge from matched peptides and compare it to unmatched peptides, and we could 

compare spectra from any dataset to this reference library of consensus spectra and 

identify the underlying protein by pair–wise spectra comparison. 

The combined knowledge of peptide analysis drawn from the library was implemented 

in the peptide mass fingerprinting algorithm we employ for identification purposes. We 

are able to search the databases and identify proteins in spectra with an accuracy of 

99.75% true hits at the without loss of sensitivity.  
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However, it was not possible to extract sufficient knowledge from the comparison of 

unmatched peptides versus matched peptides to allow prediction of ionization 

characteristics. 

For every noise free cluster, a region on the gel can be defined that represents one (or 

few) protein(s). Missing spot information is added to already defined regions following 

two concepts. Spots are added due to its immediate proximity to an existing cluster, or 

spots are added to a region by having the same surrounding region matched on other 

gels. After complete matching of gels, cluster regions cover up to 90% of the spots of 

the gel, depending on the quality of the gel and the spectra. Our new gel matching 

method is completely independent from protein identifications and/or gel image 

matching. Accuracy of the gel matching using spectral information is increased in 

comparison to the traditional methods of gel matching. 

As we have now a tool for the complete analysis of gels, spots and its spectral content, 

we are able to compare large data sets of proteomics experiments. Data sets of different 

samples can be compared in order to identify differences in protein expression. 

Therefore, the proposed set of methods represents a new toolbox for the complete 

analysis of proteomics data, which is fully automated, parameter-free and robust. 

An example of the usage of the method is given in chapter 5.9.1. 
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Appendix 

Derivation of the spectra similarity algorithm 
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Formulation (2) shows the Fourier transform of a Gaussian. 
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The integral is defined as ∫
∞

−

0

2aue
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2
1 for a > 0. As the integration boarder range from 

to the term is multiplied by the factor 2, which leads to the simplified form 

shown below. 
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Formulation (7) shows the final form of a Fourier transformed Gaussian F(t), which 

again yields a Gaussian. 

To calculate the correlation between all the peaks from the spectrum the sum of the 

Fourier-Transformation of each peak has to be formed: 
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Correlations for each peak with all the other peaks are calculated by multiplying the 

Fourier sums of the first dimension with the Fourier sums of the second dimension. 

This product yields 
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and looks like that in a simplified form: 
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In fact, the formulation shown above is the product of the two conjugates. To obtain the 

correlation function, the product has to be re-transformed out of Fourier space into 

normal space. This procedure is explained in detail in the following calculations (11-

17). 
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