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1 Introduction

1.1 Hepatitis C

1.1.1 Hepatitis C virus

Hepatitis C virus (HCV) infection is a considerable health burden worldwide, af-

fecting an estimated 170 million individuals [1]. HCV infects only humans and

chimpanzees. The main target of HCV are hepatocytes, although it has been re-

ported that the virus can also infect immune cells [2]. Phylogenetic analysis of

HCV isolates enabled viral classification into six major genotypes and more than

100 subtypes. This variability, which reflects the low-fidelity rate of the viral RNA-

dependant RNA polymerase, is also evidenced by the existence of highly diverse

quasispecies in the individual patient [3].

HCV is a positive-strand RNA virus whose life cycle is completed in the cy-

toplasm of the host cell. The viral lifecycle comprises viral entry, uncoating and

release of the viral genome into the cytoplasm followed by the translation and repli-

cation of the RNA, assembly into new particles and egress (Figure 1.1). The uptake

of the viral particles depends on the expression of four obligatory entry factors:

CD81, claudin, occludin and scavenger receptor BI [4, 5, 6, 7]. Other factors im-

plicated in HCV attachment and entry include glycosaminoglycans such as hep-

aran sulfate [8, 9], the lectins DC-SIGN and liver-specific L-SIGN [10], low-density

lipoprotein receptor [11], epidermal growth factor receptor, ephrin receptor A2 [12]

and Niemann-Pick C1-like 1 cholesterol absorption receptor [13]. Following internal-

ization via clathrin-dependent endocytosis, the viral genome is delivered from the

early endosome to the cytoplasm by a pH-dependent fusion process. Upon virus

uncoating, the internal ribosome entry site (IRES)-dependent translation of HCV

proteins is initiated on the template of the viral genome. The HCV genome encom-

passes 9.6 kb and encodes a single open reading frame. Translation of the viral ORF

produces a 3000 amino acids-long polyprotein which is cleaved by host and virus

proteases into 3 structural and 7 non-structural HCV proteins (reviewed in [14]).

HCV non-structural proteins assemble into replication complexes on the membranes

of the endoplasmic reticulum, inducing formation of specific structures known as the

membranous web [15, 16]. Newly synthesized positive-strand viral RNA translocates

to the surface of the lipid droplets, where the virion assembly is thought to occur

[17, 18, 19, 20]. The viral particles leave the cell in a complex with lipids making

use of the the very-low-density lipoprotein secretion pathway [21, 22, 23].
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Figure 1.1: HCV replication cycle HCV particles in the plasma are associated with

cellular lipoproteins (low density (LDL) and very low density (VLDL) lipoproteins). Fol-

lowing virus entry via receptor-mediated endocytosis, uncoating results in the release of

the positive-sense, single-stranded RNA (ssRNA) genome. The 5’ untranslated region

contains an internal ribosome entry site (IRES) which drives the synthesis of a single viral

polyprotein of about 3000 amino acids (aa). Subsequently, HCV polyprotein is processed

by virus and host proteases to produce ten mature viral proteins. Three of these proteins

have structural functions: core capsid protein (designated C ca) and envelope glycopro-

teins E1 (E1 gp) and E2 (E2 gp). There are seven non-structural HCV proteins: p7

membrane protein (p7 mp), NS2 protease (NS2 pr), NS3 protease and helicase (NS3 pr

hc), NS4A cofactor for NS3 (4A cf), NS4B membrane protein (4B mp), NS5A phospho-

protein (5A pp), and NS5B RNA-dependent RNA polymerase (5B pol). In addition to

its role as mRNA, the positive-sense RNA genome also serves as the template for RNA

replication catalyzed by the viral RNA-dependent RNA polymerase (NS5B) that occurs

in association with the ER membrane. Other components of the HCV replication complex

include viral proteins and cellular factors, such as microRNA-122 (miR122). The comple-

mentary minus-sense RNA serves as the template for synthesis of positive-sense RNA that

fulfills three functions: mRNA for translation, template for RNA replication, and progeny

genome that undergoes encapsidation into new virions. Adapted from [24]
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Several host cell factors are required for virus translation, replication and pro-

duction. These include liver-specific microRNA-122 (miR-122) (Figure 1.1), which

was shown to interact with the 5’ untranslated region of the HCV genome and in-

crease HCV abundance in replicon models [25]. miR-122 was also implicated in

HCV translation, reportedly by enhancing the association of ribosomes with the

viral RNA [26]. More recently, autophagy proteins such as BECN1, ATG4B, ATG5

and ATG12 have been suggested as host factors required for the initial translation of

HCV RNA, enabling the subsequent step of HCV replication [27]. Another essential

proviral host factor is cyclophilin A [28, 29]. Cyclophilin A was shown to interact

with HCV NS5A protein and stimulate RNA binding in the domain II of NS5A [30].

Finally, lipid droplets in the vicinity of active replication structures are essential

for viral assembly in cell culture [31]. Viral core and NS5A protein co-localize at

the surface of the lipid droplets where they take part in the viral particle assem-

bly process [32]. Also the subsequent step of the export of HCV particles through

very-low-density lipoprotein secretion pathway necessitates further cofactors such as

apolipoproteins B and E [33, 22].

1.1.2 Natural history of hepatitis C

HCV infection is transmitted by exposure to contaminated blood. HCV viremia can

be first observed 1-2 weeks after transmission (Figure 1.2A) [34]. The virus replicates

at high levels for several weeks before the adaptive immune response is activated.

Elevations of serum levels of liver enzymes such as alanine aminotransferase (ALT)

levels are usually observed 6-12 weeks after the onset of infection. ALT surge is

attributed to the liver damage inflicted by effective immune response, as it coincides

in most cases with a major decrease in the HCV viral load [34, 35].

Viral clearance is observed in approximately 30% of infected individuals [34, 36,

37]. In the remaining 70% of the infected population the immune system fails to

clear the virus and a chronic persistent infection is established. This is associated

with stabilizing of the serum viral load levels and ALT activity, indicating that a

state of balance has settled between the host immune system and the virus. At this

stage spontaneous clearance of infection is a rare event [38].

Chronic HCV infection, when untreated, persists and in the course of time

the chronic inflammatory state of the liver may lead to pathological states includ-

ing fibrosis, cirrhosis, hepatic decompensation and hepatocellular carcinoma (Fig-

ure 1.2A) [39, 40]. Although the rate of new HCV infections is decreasing in recent

years, the number of infected people with complications of the advanced disease is
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Figure 1

A B

Figure 1.2: (A) Natural course of hepatitis C virus infection. Changes in serum

HCV load, alanine aminotransferase levels (ALT), IFN-stimulated gene expression in the

liver (ISGs) as well as the development of liver disease are shown as a function of time from

transmission. The dashed line shows the upper limit of normal alanine aminotransferase

levels. (B) Treatment of chronic hepatitis C with peg-IFN-α and ribavirin.

Changes in serum HCV load and IFN-stimulated gene expression in the liver are shown

as a function of time from transmission or initiation of peg-IFN-α and ribavirin therapy.

still on the rise (reviewed in [41]). Progressive hepatic fibrosis leading to cirrhosis

is the major complication of chronic HCV infection. It is estimated that over the

course of 20-40 years 20-30% of the patients with chronic hepatitis C progress to liver

cirrhosis [42]. Patients with HCV-associated cirrhosis are at high risk of developing

hepatic decompensation, manifesting as hepatic synthetic dysfunction or complica-

tions of portal hypertension. Among patients with cirrhosis and active hepatitis C

2-5% a year develop hepatocellular carcinoma. End-stage liver cirrhosis associated

to chronic HCV infection is a leading cause of liver transplantation in developed

countries.

1.1.3 Therapy of hepatitis C virus infection

The current standard of care for chronic hepatitis C consists of weekly injections

of pegylated interferon (peg-IFN)-α2 combined with orally administered unspecific

antiviral drug, ribavirin. Among patients with chronic hepatitis C response rates to

the peg-IFN-α 2 combined with ribavirin vary from about 50% for HCV genotypes 1

and 4 to approximately 80% for viral genotypes 2 and 3 [43, 44]. For HCV genotype
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1 the peg-IFN-α/ribavirin regimen is since recently complemented by HCV-specific

antivirals (boceprevir or telaprevir [45, 46]) which act by inhibiting the viral NS3-

4A protease, an enzyme essential for the HCV replication cycle [47](Figure 1.1).

Introduction of these direct-acting antiviral drugs has been shown to raise the cure

rates for the difficult-to-treat HCV genotype 1 to about 65% [45, 46].

A significant number of new anti-HCV drugs are currently in clinical develop-

ment and even more in pre-clinical evaluation. Most of these compounds have been

designed to specifically target HCV genotype 1 and show low efficacy against other

viral genotypes. Moreover, high replicative potential of HCV combined with the lack

of proofreading activity of its RNA polymerase often result in emergence of resistant

HCV variants. This is especially frequent in patients with peg-IFN-α non-response

in the setting of triple therapies employing peg-IFN-α, ribavirin and a direct-acting

antiviral drug (reviewed in [48]). In addition to the problems related to non-response

due to the refractoriness of endogenous IFN system, IFN-α-based therapies provoke

systemic side effects owing to the ubiquitous expression of type I IFN receptor. The

adverse effects of peg-IFN-α treatment include influenza-like symptoms, hematologic

abnormalities and neuropsychiatric disorders [49]. Triple combination therapies add

to this spectrum additional side effects of protease inhibitors with most common

being rash, pruritus, dysgeusia, diarrhea and thrombocytopenia [45, 46].

The future direction is towards development of IFN-α-free, preferably all-oral

combination therapies. Such therapies should combine marked antiviral efficacy with

high barrier to viral resistance. This can be achieved by targeting elements of host

cell indispensable to the HCV life cycle. Alisporivir is an example of such approach

- it targets human cyclophilin A which is a cofactor essential for HCV replication.

Resistance development to alisporivir in HCV cell culture system required on average

20 weeks, while upon treatment with polymerase or protease inhibitors resistant

variants emerged in less than 2 weeks [50]. Moreover, peg-IFN-λ could replace

peg-IFN-α in the future anti-HCV therapies. Treatment with peg-IFN-λ resulted

in superior viral response in HCV genotypes 1 to 4 compared to peg-IFN-α [51].

Additionally, thanks to the restricted expression of IL28Rα chain of the IFN-λ

receptor, the therapy was safer and better tolerated.
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1.2 Interferon signal transduction pathway

1.2.1 Interferons and their receptors

IFNs are immune response mediators that constitute the first line of defence against

viral infections. They are classified as type I, II or III IFNs based on their use of

specific receptors (Figure 1.3) (reviewed in [52]). Human type I IFNs include 12

highly similar members of IFN-α family, a single IFN-β as well as IFNs-ε, -κ and

-ω. The members of type I IFN family bind to a common, ubiquitously expressed

IFN-α/IFN-β receptor (IFNAR) which consists of two major subunits, IFNAR1 and

IFNAR2 (reviewed in [52]). Type I IFNs are produced primarily in response to the

viral infection [53, 54]. The only type II IFN, IFN-γ, is produced mainly by NK and

T cells in response to stimulation with antigens or mitogens [55, 56, 57]. IFN-γ binds

to heterodimeric IFN-γ receptor (IFNGR), which, similarly to IFNAR, is expressed

in a ubiquitous manner [58].

The recently discovered type III IFNs include IFN-λ1, -λ2 and -λ3 (also referred

to as IL29, IL28A and IL28B, respectively)[59]. The receptor for the IFN-λ family

consists of the IL10R2 chain, which is shared with the interleukin 10 receptor, and

a unique IFN-λ chain, IL28Rα [59]. Contrary to IL10R2, IL28Rα is expressed in

a tissue-specific manner, restricting the activity of IFN-λs to the cells of epithelial

origin [60]. IFN-λs are produced in response to viral infection in both immune and

nonimmune cells. It has also been postulated that IFN-λs might be induced by

stimulation of cells with type I or III IFN, suggesting that this class of cytokines

belongs at the same time to IFN-stimulated genes [61].

All IFNs signal through the Janus kinase-signal transducer and activator of tran-

scription (Jak-STAT) pathway to regulate the expression of their target genes in the

nucleus (Figure 1.3, 1.4). IFN receptor subunits are constitutively associated with

tyrosine kinases from the Jak/Tyk family (Figure 1.3) [62]. The first step in the

IFN signal transduction pathway is ligand-dependent rearrangement and dimeriza-

tion of receptor subunits, which leads to autophosphorylation of the receptor and

activation of the associated Jaks. Receptor phosphotyrosines act as docking sites

for the STATs, which undergo tyrosine phosphorylation mediated by the activated

Jaks. IFN-γ-induced signalling involves mainly phosphorylation of STAT1, which

assembles into homodimeric complexes and translocates to the nucleus where it

binds to promoter regions containing a specific gamma-activated sequence (GAS)

to activate the transcription of downstream genes [63, 64]. Stimulation of cells with

type I and III IFNs leads to STAT1 and STAT2 phosphorylation and assembly of
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two types of transcriptional activators: homodimeric phospho-STAT1 complex and

heterotrimeric complex composed of phospho-STAT1, phospho-STAT2 and IRF9

[65, 66]. This heterotrimeric complex drives the expression of genes whose promot-

ers contain specific interferon-stimulated response elements (ISREs) [67]. The sets

of genes induced by type I and III IFNs are almost identical, and partially overlap

with the distinct set of IFN-γ-stimulated genes [68, 69].

Figure 2

Figure 1.3: Type I, II and III interferon signalling through the Jak-STAT path-

way. Type I and III IFNs bind to distinct receptors, but activate the same downstream

signalling events, inducing almost identical sets of genes through the activation of ISGF3

and STAT1 homodimers. IFN-γ treatment leads to activation of STAT1 homodimers, but

not ISGF3, inducing a distinct gene signature which partly overlaps with type I and III

IFN target genes.

Apart from the antiviral functions of IFNs, signalling through the Jak-STAT

pathway also produces growth-inhibitory and proapoptotic effects in a cell type-

specific manner (reviewed in [70]). Among the intracellular Jak-STAT pathway

factors, IRF9 appears to be the key component required for eliciting the antipro-

liferative activity of IFN-α, and it is possible that pro-apoptotic factor TRAIL is

one of the important mediators [71]. The antiproliferative effects of IFNs are the

rational basis for their use in the treatment of different malignancies (Figure 1.5).

The Jak-STAT pathway is the principal and the best studied signal transduction

pathway involved in IFN signalling, but it is not the only one. IFNs can also medi-
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ate biological effects by activation of the mitogen-activated protein kinase pathway

(particularly of the p38 kinase family), the phosphatidylinositol 3-kinase pathway

and the mammalian target of rapamycin pathway. These non-canonical IFN signal

transduction pathways play a role in the efficient induction of the antiviral state,

regulate IFN-induced mRNA translation and contribute to the growth-inhibitory

effects of IFNs (reviewed in [62]).

1.2.2 Antiviral properties of the interferon-stimulated genes

Genes induced by IFN stimulation contribute to the establishment of the so-called

antiviral state. IFN stimulation typically leads to up- and downregulation of several

hundred genes, many of which are regulated in a cell-type specific manner. Only a

small number of the IFN-induced antiviral effectors have been studied in detail and

their mode of action in inhibiting the viral infections is known. To date, four main

effector pathways of the IFN-mediated antiviral response have been described: the

Mx GTPase pathway, the ISG15 ubiquitin-like pathway, the OAS-RNaseL pathway

and the protein kinase R pathway (reviewed in [72]).

Mx GTPases are guanine-hydrolyzing proteins located in the smooth endoplas-

mic reticulum, where they regulate exocytosis and vesicle trafficking to trap essential

viral components [73]. Additionally, Mx proteins are able to specifically interfere

with influenza virus life cycle by binding and inhibiting the viral polymerase and

therefore blocking transcription of viral mRNAs [74].

ISG15 is a ubiquitin-like small protein which can be conjugated to target proteins

through a three-step cascade involving E1 activating enzymes, E2 conjugating en-

zymes and E3 ligases. The ISGylation (attachment of an ISG15 tag) is reversible and

deconjugation is catalyzed by proteins from USP family such as USP18. ISGylation

was shown to prolong target protein half-life [75], or modulate their function, such

as increasing or decreasing the substrate affinity of enzymes [76, 77]. Additionally,

free (unconjugated) ISG15 is known to be secreted from the cells and was proposed

to act as a cytokine to regulate immune responses [78]. However, the mechanism of

action of extracellular ISG15 is not well described to date.

Contrary to Mx and ISG15, which are virtually absent from unstimulated cells,

the OAS and PKR proteins are constitutively expressed at low levels which enables

them to function as intracellular pathogen recognition receptors. 2’-5’ oligoadenylate

synthetases (OAS) are a group of enzymes which catalyze the synthesis of 2’-5’-

oligoadenylates from ATP in response to viral double-stranded RNA (reviewed in

[79]). These adenosine polymers specifically activate the latent form of RNAse L
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enzyme, leading to RNA degradation. Fragmented RNA can subsequently activate

cytosolic receptors such as Mda5 and RIG-I, leading to production of IFNs [80].

PKR belongs to a family of protein kinases that regulate protein synthesis in

response to environmental stress. Similar to OAS proteins it becomes activated upon

double-stranded RNA binding [81]. Activated PKR phosphorylates the translation

initiation factor eIF2α which results in general blockade of translation (reviewed in

[72]).

Recently, a high-throughput study of IFN-inducible antiviral effectors reported

a number of ISGs capable of potently inhibiting HCV replication in cell culture

upon overexpression [82]. The most prominent HCV inhibitors included pattern-

recognition receptors such as RIG-I and MDA5, signalling molecules such as MAP3K14

and transcription factors IRF1, IRF2 and IRF7. It is likely that overexpression of

each of these genes led to induction of a number of other IFN-stimulated genes,

demonstrating that the antiviral action of IFN is mediated by a joint action of

many effector molecules. In line with this hypothesis, the strongest inhibition of

HCV replication was achieved by overexpression of combination of different ISGs.

1.2.3 Negative regulation of the interferon signal transduction pathway

Administration of IFN-α results in the activation of the Jak-STAT pathway and

induction of IFN-stimulated genes. Prolonged and intense IFN response can be

detrimental and the Jak-STAT pathway is tightly controlled by several IFN-inducible

negative feedback mechanisms in order to protect the organism from deleterious

consequences of exaggerated immune activation. Jak-STAT pathway activation and

gene induction were shown to strongly decrease after several hours of continuous

IFN-α treatment in cultured cells as well as in vivo in mouse or chimpanzee liver

[83, 84, 85, 86]. This downregulation of the IFN-α signalling is a result of the action

of IFN-induced Jak-STAT pathway inhibition. Several IFN-inducible mechanisms

exist to curtail the activation resulting from IFN stimulation, including de novo

production of signalling inhibitors like SOCS1, SOCS3 or USP18 and activation of

receptor-associated phosphatases such as SHP2 [87, 88, 89, 90, 91].

SHP2 is a ubiquitously expressed SH2 domain-containing protein tyrosine phos-

phatase (Figure 1.4) (reviewed in [92]). SHP2 is not an IFN-inducible gene and it

was shown to constitutively associate with IFNAR2 [91]. However, IFN stimulation

leads to an increase in SHP2 enzymatic activity, creating a negative feedback loop

[93]. In SHP2-deficient mouse fibroblasts, IFN-γ and IFN-α treatment resulted in

elevated tyrosine phosphorylation levels of Jak1 (but not Jak2), STAT1 and STAT2,
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Figure 1.4: Domain organization of Jak-STAT pathway components and sig-

nalling inhibitors Jak-STAT pathway signalling components share general domain orga-

nization. Receptor chains for type I, II and III IFNs consist of the extracellular ligand

recognition domain, the short transmembrane (TM) domain and intracellular regions re-

sponsible for interactions with Jak kinases and STATs. Jak kinases comprise the FERM

domain responsible for the association with receptors, SH2-related domain of unknown

function as well as pseudokinase and kinase domains in the carboxy-terminus. STAT

proteins are composed of the amino-terminal (NH2) domain important for homodimer-

ization of inactive STATs, the coiled-coil domain which can bind signalling regulators, the

DNA-binding domain (DBD), conserved linker sequence (Lk), the SH2 domain which di-

rects receptor binding and dimerization and the tyrosine activation domain (TAD). SHP2

phosphatase includes two SH2 domains which direct binding to tyrosine-phosphorylated

substrates and a C-terminal catalytic domain. SOCS family proteins consist of the N-

terminal domain (N-ter) which in case of SOCS1 and SOCS3 includes a kinase-inhibitory

region, the central SH2 domain which binds phosphorylated tyrosine residues and the C-

terminalSOCS box responsible for interaction with elongins B and C. USP18 protein

is composed of the N-terminal peptidase domain with conserved cysteine-box containing

the Cys61 active site and the C-terminal domain responsible for binding to the IFNAR2

chain of type I IFN receptor.
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and augmented suppression of cell viability [94]. It is not clear whether SHP-2 di-

rectly acts on and inactivates the Jak1 kinase, although physical interaction between

SHP-2 and Jak1 and 2 kinases has been observed [95]. Another mechanism by which

SHP2 was proposed to exert its inhibitory action on Jak-STAT cascade is by remov-

ing the phosphate group from phospho-STAT1 in the nucleus. Direct interaction of

SHP2 with phosphorylated STAT1 in the cell nucleus has been reported, leading to

dephosphorylation of STAT1 on both tyrosine and serine residues [94].

SOCS1 and SOCS3 belong to a family of cytokine-inducible inhibitors of sig-

nalling. The SOCS proteins have a central SH2 domain that allows them to bind to

phosphotyrosine residues in cytokine receptors or receptor-associated kinases [96, 97]

and a C-terminal SOCS box domain that was reported to interact with elongins B

and C and direct the SOCS-bound proteins for proteasomal degradation (Figure 1.4)

[98, 99, 100]. SOCS1 and SOCS3 also contain a kinase inhibitory region that is dis-

pensable for the target binding but necessary to inhibit the signalling [99, 96]. The

expression of SOCS1 and SOCS3 has been shown to mediate potent inhibitory effects

on type I and II IFN signal transduction and gene regulation in several experimen-

tal systems [87, 90]. SOCS1 has been found to co-immunoprecipitate with IFNAR1

and IFNGR1 as well as phosphorylated Jak2 and Tyk2 kinases [101, 102, 103, 104].

Moreover, SOCS1 interaction with the activated receptor-associated kinases was

reported to regulate their ubiquitin-mediated degradation [102, 104]. SOCS3 was

shown to associate with IFNGR1 at the phosphotyrosine residue [105]. SOCS3 was

also shown to inhibit type I IFN-dependent signals, but the mode of inhibition has

not been demonstrated so far. Contrary to SOCS1, SOCS3 was not able to in-

hibit Jak kinase activity in vitro, suggesting that SOCS3-receptor interactions are

indispensable for the signalling inhibition [96].

USP18, also known as UBP43, was initially identified as an enzyme that catalyzes

the removal of ISG15 conjugates from proteins. Genetic ablation of USP18 in mice

leads to type I, but not type II IFN hypersensitivity and hyperactivation of ISGs in

response to type I IFNs [88]. Recent work has demonstrated that the role of USP18

in the regulation of the signalling through the Jak-STAT pathway was independent

of its ISG-deconjugating activity [89]. It was revealed that USP18 reduces signalling

through the Jak-STAT pathway by specific binding of its C-terminal domain to the

IFNAR2 subunit of the type I IFN receptor, while it is unable to bind to IFNAR1

or IFNGR1 (Figure 1.4) [89]. By specific binding to IFNAR2 USP18 was able to

inhibit the Jak-STAT pathway by restricting the access of the Jak1 kinase to its

docking site at the receptor (Figure 1.3) [89].
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SOCS1 and SOCS3 are induced rapidly upon IFN treatment, remain detectable

for a short time and contribute to reducing the strength and duration of the on-

going activation of the Jak-STAT pathway [87, 90]. On the other hand, USP18

upregulation mediates a long-lasting refractory state even after the initial IFN stim-

ulus is not present anymore [84]. The cells which are refractory fail to respond to

IFN-α stimulation with activation of the Jak-STAT pathway. The phenomenon of

IFN-induced refractoriness has potential implications in the clinical practice, since

IFNs-α, -β and -γ are currently used as treatment agents, and a pegylated form of

IFN-λ is under evaluation in clinical trials (Figure 1.5).

IFN-α

IFN-β

IFN-γ

IFN-λ

Haematological 
malignancies

Solid tumours

Viral infections

chronic myeloid leukemia
cutaneous T cell lymphoma

hairy cell leukemia
multiple myeloma

malignant melanoma
renal cell carcinoma

AIDS-related Kaposi sarcoma

hepatitis C
hepatitis B

severe acute respiratory syndrome

multiple sclerosis

chronic granulomatous disease
severe malignant osteopetrosis

hepatitis C

{Type I

Type II

Type III

Figure 1.5: Clinical applications of type I, II and III interferons. Type I and

II interferons are used in various clinical settings. Type III IFN - pegylated IFN-λ - is

currently undergoing clinical trials for the treatment of chronic hepatitis C.

IFN signalling through the Jak-STAT pathway is also controlled through non-

inducible mechanisms, such as constitutive expression of PIAS1 or 3 (protein in-

hibitors of activated STAT) in some cells types. Proteins from the PIAS family

are SUMO E3 ligases (reviewed in [106]) and most of their biological functions are

related to SUMOylation. However, PIAS1 and 3 proteins additionally exert repres-

sive action on the Jak-STAT pathway by blocking the DNA binding of the dimers of

phosphorylated STATs 1 and 3, respectively, without influencing their SUMOylation

[107, 108].
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1.3 Interferon signalling in chronic hepatitis C and treat-

ment outcome

1.3.1 Preactivation of endogenous IFN system in chronic hepatitis C

Recent progress in research on IFN signalling in the liver has improved our un-

derstanding of the molecular mechanisms behind the non-response to IFN-based

therapies observed in a significant proportion of chronic hepatitis C patients. Ther-

apy of chronic hepatitis C with peg-IFN-α and ribavirin achieves viral clearance

in approximately half of the patients [43, 45]. Non-response to therapeutically ad-

ministered IFN-α is associated with constitutive upregulation of endogenous IFN

system in the liver (Figure 1.2B) [109, 110, 111]. Patients with preactivated IFN

system fail to respond to peg-IFN-α injection with further stimulation of STAT1

phosphorylation, nuclear translocation and induction of target genes in the liver

[110], demonstrating an apparent refractory state.

Similarly to what is observed in mouse liver after repeated stimulation with

IFN, the lack of sensitivity to IFN-α in chronic hepatitis C patients correlates with

elevated levels of USP18 [84, 110]. This suggests that some patients react to HCV

infection with production of endogenous IFNs which leads to upregulation of the

IFN signalling inhibitors such as USP18 and therefore compromises the action of

therapeutically administered peg-IFNα.

It is unclear why the activated endogenous IFN system of the peg-IFN-α non-

responders is unable to inhibit viral replication and clear the infection. It has been

proposed that HCV can block the effector function of IFN-stimulated genes [112].

According to this model, HCV infection induces phosphorylation of PKR and eIF2-

α, leading to the global downregulation of cellular mRNA translation. As a re-

sult, the antiviral action of IFN-α is hampered, while at the same time the IRES-

dependent translation of HCV RNA remains unaffected.

Another hypothesis which could explain why the preactivated state does not

lead to viral clearance relies on spatial resolution of the cells with high ISG levels

and the HCV-infected cells. It remains unclear what proportion of the hepatocytes

contain HCV during the infection. Different studies report the percentage of HCV-

infected hepatocytes in the human liver to vary from 4 to 25%[113], 7 to 20% [114]

or 0 to 100% with an average of 40% [115]. It has been shown that HCV can

inhibit IFN-α signalling through the Jak-STAT pathway by inducing upregulation

of protein phosphatase PP2A [116, 117, 118]. With the majority of hepatocytes

remaining free of the virus, it is possible that the strong ISG expression observed in
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the preactivated livers is contributed by endogenous IFN stimulation of uninfected

cells, whereas high levels viral replication preclude the Jak-STAT pathway activation

and target gene expression in cells harbouring HCV.

1.3.2 Possible sources of preactivation

The cellular source and type of IFN which drives the preactivated state in the liver

of non-responder patients remain a matter of speculation. It has been reported

that HCV-infected cells induce IFN-α production in plasmacytoid dendritic cells

(pDCs) through toll-like receptor 7 signalling in a manner that necessitates direct

contact of pDCs with the virus-replicating cells [119]. It is however unclear if this

mechanism is also active in vivo in the setting of human infection. The activation

of the Jak-STAT pathway in liver biopsies of non-responder patients despite high

levels of USP18 protein expression suggests that the cytokine which triggers the

preactivated state is not sensitive to the USP18-mediated inhibition [110]. This

would exclude IFN-α as the driver of pre-treatment IFN-stimulated gene induction

in the liver of IFN non-responders.

3’ untranslated region of HCV RNA contains a conserved poly-uridine motif.

When full-length HCV RNA or the polyuridine motif alone are transfected into cells,

they are recognized by RIG-I pattern recognition receptor and induce transcription

of IFN-β gene [120]. In order to activate IFN-β production, RIG-I is required

to interact with MAVS adaptor protein (also known as Cardif, IPS-1 or VISA)

[121, 122, 123, 124]. HCV NS3-4A protease has been shown to cleave and inactivate

MAVS, thereby preventing the induction of IFN-β in the infected cells [121]. MAVS

cleavage has been documented in liver biopsies from patients chronically infected

with HCV, and the patients with cleaved MAVS less frequently showed preactivation

of endogenous IFN system, which correlated with improved response rates [125].

These data suggest that IFN induction through RIG-I-MAVS-dependent pathway

could contribute to the preactivation in the liver of later peg-IFN-α non-responders.

Another cellular pattern recognition receptor which senses viral infection by rec-

ognizing double-stranded RNA is toll-like receptor 3 (TLR3) [126]. TLR3 signals

through TRIF to activate IRF3, which drives IFN-β production [127]. HCV NS3-4A

protease has been reported to be capable of cleaving TRIF, which could circumvent

the induction of endogenous IFN-β through TLR3-mediated signalling [128]. TRIF

cleavage has so far not been documented in liver tissue from hepatitis C patients.

Moreover, despite the evidence of viral interference with the induction of IFN-β,

RIG-I-dependent production of this cytokine was observed in primary human hep-
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atocytes infected with cell culture-derived HCV [129].

Recent progress in high-throughput approaches made possible the discovery of

single nucleotide polymorphisms (SNPs) which correlate with treatment outcome of

chronic hepatitis C patients [130, 131, 132, 133]. Patients homozygous for major

alleles of SNPs in proximity of IL28B (IFN-λ3) locus were about 2-fold more likely

to respond to the standard therapy than carriers of the minor alleles [130, 131, 132,

133]. These findings have attracted attention to the role of IFN-λs in the chronic

HCV infection and the possible contribution to the pre-treatment IFN-stimulated

gene expression. Recent work in primary human fetal liver cell cultures infected

with cell culture-derived HCV documented induction of IFN-λ upon HCV infection,

accompanied by upregulation of IFN target genes [134].

Neither IFN-β, IFN-λ, nor any of the members of IFN-α family have been found

upregulated in the liver of humans or chimpanzees chronically infected with HCV

[135, 136]. Despite considerable research efforts, it is still unclear which IFN subtype

is responsible for the Jak-STAT pathway activation in the chronic hepatitis C.

1.4 Interferon signalling in acute hepatitis C

Our understanding of the early hepatic events in the HCV infection derives from

serial liver biopsy studies in experimentally infected chimpanzees [137, 138, 139,

140, 141]. In the first two weeks of infection HCV titers increase rapidly, followed

by slowing down of the viral replication which occurs in concert with elevated mRNA

levels of type I IFN target genes in the liver. The activation of the endogenous type

I IFN system, believed to impede the viral replication at this stage, is observed in

all animals irrespective of the outcome of the disease. It is not clear to date which

subtype of IFN drives the hepatic activation at this early step of HCV infection.

Effective control of the acute infection in chimpanzees is observed 8-12 weeks

post-inoculation and is attributed to IFN-γ induction and upregulation of IFN-γ-

stimulated genes in the liver. Increases in the hepatic IFN-γ are in most cases

followed by reductions in HCV viremia and ALT elevation which could result from

killing of infected hepatocytes. Progression to chronicity was shown to be associated

with reduced hepatic CD3e and CCL3, whereas spontaneous clearance was related

to the induction of CD8+ T cell markers [139, 140]. Major decreases in viral titers in

experimentally infected animals were accompanied by an early, multispecific, IFN-

γ-producing intrahepatic CD4+and CD8+ response [142].

Acute infection with HCV in humans is mostly asymptomatic. As a result, few
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patients are diagnosed during the first months after transmission. So far, the major-

ity of studies of acute HCV infections in the human subjects focused on analyzing the

circulating immune cells. In agreement with the observations from the chimpanzee

models it has been shown that spontaneous clearance of infection is associated with

vigorous, strong and multispecific T cell responses [34, 142, 143, 144]. Although

CD4+ and CD8+ T cell responses are generated in the majority of acutely infected

patients irrespective of outcome, the distinguishing feature of spontaneous recovery

apperas to be the ability to maintain such responses over time [143, 145].
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1.5 Toll-like receptor 9 agonists as therapeutic agents

1.5.1 Toll-like receptor 9 signalling in innate immunity

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs).

There has been 10 functional TLRs identified in humans and 12 in mice, with TLRs

1-9 conserved in both species. TLRs comprise an extracellular leucine-rich repeat

and a cytoplasmic TIR (Toll/interleukin-1 receptor) domain, connected through a

transmembrane domain (reviewed in [146]). TLRs are sensors of microbial infection

which recognize lipids, proteins and nucleic acids of bacteria, viruses, protozoan

parasites and fungi (reviewed in [147]). Sensing these patterns by innate immune

cells activates and directs the immune system response against pathogens.

TLR9 specifically recognizes unmethylated 2-deoxyribo - [cytidine-phosphate-

guanosine] (CpG) DNA motifs that are frequently present in genomes of bacteria and

viruses but rare in mammalian cells [148]. TLR9 is highly expressed on endosomal

membranes of the cells of the immune compartment. Human TLR9 is expressed in

memory B cells [149, 150] and pDCs [151, 152, 153]. Expression of TLR9 on human

monocyte-derived DCs and monocytes has been reported, but is still a matter of

debate [154, 155]. On the other hand, mouse TLR9 expression is not limited to B

cells and pDCs, but is also detected in monocytes, macrophages and DCs [148, 156].

In non-activated immune cells TLR9 is expressed in the endoplasmic reticulum.

Upon cellular activation, TLR9 traffics to endosomal and lysosomal compartments

where the receptor can interact with endocytosed ligand at acidic pH, a condition

that is probably necessary for DNA recognition [157, 158, 159]. The molecular basis

of the TLR9 retention in the endoplastic reticulum membranes in unstimulated cells

and the subsequent trafficking to the endosome upon cellular stimulation is unclear.

After the engagement of TLR9 by CpG DNA, the receptor recruits a TIR-domain

containing adapter MyD88 (Figure 1.6, left). MyD88 forms a complex with mem-

bers of IRAK (IL-1-receptor-associated kinase) family and TRAF6, which activates

TAK1 kinase. TAK1 subsequently activates the IKK complex (IKKα, IKKβ, and

IKKγ) to catalyze phosphorylation of IκB proteins. Phosphorylated IκB proteins

are targeted for proteasomal degradation, allowing NFκB to translocate to the nu-

cleus. At the same time, TAK1 activates the MAPK pathway by inducing the

phosphorylation of MAPK kinases, which then activate transcription factors such

as AP-1. NFκB and MAPK pathways control inflammatory responses by inducing

production of cytokines and chemokines (reviewed in [160]).

In the plasmacytoid dendritic cells, TLR9 signalling through a Myd88-dependent
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Figure 1.6: Toll-like receptor 9 signalling pathway. Toll-like receptor 9 recog-

nizes endocytosed microbial DNA and activates signalling cascades that result in acti-

vation of transcription factors such as NFκB and AP1 and subsequent production of

pro-inflammatory cytokines (illustrated on the left side of the graph). In plasmacytoid

dendritic cells toll-like receptor 9 stimulation additionally leads to activation of IRF7,

which results in the induction of type I interferons (right side of the graph).

pathway additionally leads to production of type I IFNs (Figure 1.6, right). IRF7,

which is constitutively expressed by pDCs, binds MyD88 and forms a multiprotein

signaling complex with IRAK4, TRAF6, TRAF3, IRAK1, OPN-i and IKKα. Within

this complex, IRF7 becomes phosphorylated by IRAK1 and/or IKKα, dissociates

from the complex and translocates into the nucleus. Phosphorylated IRF7 homod-

imers mediate production of type I IFNs by pDCs. Produced IFNs are secreted and

activate the Jak-STAT pathway through IFN-α/β receptor which is ubiquitously

expressed on cell membranes (see Section 1.2.1). Signal transduction through the

Jak-STAT pathway leads to induction of IFN-stimulated genes, which have antiviral

functions and contribute to the control of the infection.

In vivo TLR9 recognizes CpG motifs in genetic material of a variety of bac-

teria and some DNA viruses such as murine cytomegalovirus and herpes simplex
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virus 1 and 2, resulting in production of inflammatory cytokines and type I IFNs

[161, 162, 163, 164]. Overall, TLR9 stimulation induces cell maturation and pro-

duction of proinflammatory cytokines including TNF-α, IL-1 and IL-6 as well as

regulatory cytokines such as IL-12 and IL-18 that induce Th1-type cellular and hu-

moral effector functions. These properties make TLR9 ligands interesting candidates

for therapeutic intervention in infectious diseases, treatment of cancer and allergy

[165].

1.5.2 Synthetic ligands of toll-like receptor 9 and their anti-HCV prop-

erties

The immunostimulatory effects of microbial DNA can be mimicked by synthetic

oligodeoxynucleotides containing a CpG-motif (CpG-ODN). Stimulation of TLR9

through administration of synthetic oligonucleotide agonists has demonstrated po-

tential in a variety of medical applications including use as vaccine adjuvants as

well as mono- or combination therapies for the treatment of cancer and infectious

diseases (reviewed in [165]).

Three major classes of structurally and phenotypically different CpG-ODNs have

been described [166, 153, 167]. The A-class oligonucleotides are potent inducers of

IFN-α secretion from pDCs, but poor inducers of B cell stimulation. B-class CpG-

ODNs have a phosphorothioate backbone and mediate strong B cell stimulation

but only weak IFN-α production (reviewed in [168]). The C-class TLR9 ligands

show immunomodulatory properties which are intermediate between the A and B

classes, inducing both B cell activation and IFN-α secretion. The unique structure

of these ODNs with a 5’ CpG-motif and a 3’ palindrome enables duplex formation

within the endosomal environment leading to specific profile of cytokine production

[169, 170, 171].

Supernatants from human peripheral blood mononuclear cells (PBMCs) treated

with class B CpG oligonucleotides showed potent antiviral activity in HCV replicon

cells [172]. Similar results were obtained using mouse bone marrow-derived myeloid

DCs and HCV replicon-bearing murine MH1 cells [173]. Class C CpG ODNs have

also been shown to induce robust IFN-α production in pDCs from patients chroni-

cally infected with HCV [174].

Immunomodulatory oligonucleotides (IMOs) are a novel class of TLR9 agonists

which incorporate synthetic cytosine or guanine analogues. These second gener-

ation oligonucleotides have the advantage of greater metabolic stability, species-

independent activity and clear structure-activity relationship [175, 176, 177, 178].
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IMOs containing a secondary structure-forming sequence and a CpR motif (where

R is a synthetic analogue of deoxyguanosine) were shown to induce IFN-α produc-

tion in human PBMC cultures as well as in vivo in nonhuman primates [176, 177].

In particular, IMO-2125 induced high and sustained levels of IFN-α and activated

natural killer cells in non-human primates. Based on these properties, IMO-2125

has been selected as a candidate for the development of new therapies for chronic

hepatitis C [179].
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2 Aims of the PhD project

IFN-induced regulators of the Jak-STAT signalling are known to involve in negative

feedback loops and affect the response to exogenously administered IFN-α. IFN-

based therapies are in clinical use for treatment of diseases such as HCV infection or

multiple sclerosis. In this context it is important to understand which IFN subtypes

are potent inducers of the negative regulators and whether all IFNs are equally

sensitive to the inhibitory mechanisms. To tackle this question we attempted to

characterize and compare response patterns to IFN-α, -β and -λ in a setting of con-

tinuous and repeated stimulation (see Section 3.1).

The acute phase of HCV infection in humans (first 6 months after transmission)

is characterized by high rates of spontaneous clearance and excellent treatment re-

sponse (>90% cure rate). As the infection at that stage is mostly asymptomatic, it

is rarely diagnosed and, in comparison to the chronic phase of HCV infection, little

is known about the human liver response to acute HCV infection and the host-virus

interactions during this time. In the second part of this PhD project we made use

of the acute hepatitis C liver biopsies collected over the course of several years at

the University Hospital of Basel to describe human hepatic response to acute HCV

infection and gain an insight into the mechanism of improved cure rate compared

to chronic hepatitis C (see Section 3.2).

Chronic hepatitis C is currently treated with combination therapies based on

pegylated IFN-α. A significant proportion of patients fails to respond to the cur-

rent treatment options, probably due to the refractory state of the preactivated

endogenous IFN system in the liver. Several compounds are currently in clinical

development with the aim to improve the treatment outcome of peg-IFN-α non-

responders. In the last part of this work we investigated in vivo the mode of action

of a novel synthetic TLR9 agonist which is a clinical candidate for anti-HCV therapy

and characterized the hepatic response to this compound (see Section 3.3).
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3 Materials, Methods and Results

3.1 Interferon-β and interferon-λ signaling is not affected

by interferon-induced refractoriness to interferon-α in

vivo

Zuzanna Makowska, Francois H. T. Duong, Gaia Trincucci, David F. Tough, and

Markus H. Heim

HEPATOLOGY, Vol. 53, No. 4, 2011
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Interferon-b and Interferon-k Signaling Is Not
Affected by Interferon-Induced Refractoriness

to Interferon-a InVivo
Zuzanna Makowska,1 Francois H. T. Duong,1 Gaia Trincucci,1 David F. Tough,2 and Markus H. Heim1,3

Therapy of chronic hepatitis C with pegylated interferon a (pegIFN-a) and ribavirin achieves
sustained virological responses in approximately half of the patients. Nonresponse to treat-
ment is associated with constitutively increased expression of IFN-stimulated genes in the
liver already before therapy. This activation of the endogenous IFN system could prevent
cells from responding to therapeutically injected (peg)IFN-a, because prolonged stimulation
of cells with IFN-a induces desensitization of the IFN signal transduction pathway. Whether
all types of IFNs induce refractoriness in the liver is presently unknown. We therefore treated
mice with multiple injections and different combinations of IFN-a, IFN-b, IFN-c, and IFN-
k. Pretreatment of mice with IFN-a, IFN-b, and IFN-k induced a strong expression of the
negative regulator ubiquitin-specific peptidase 18 in the liver and gut. As a result, IFN-a sig-
naling was significantly reduced when mice where reinjected 16 hours after the first injec-
tion. Surprisingly, both IFN-b and IFN-k could activate the Janus kinase–signal transducer
and activator of transcription (STAT) pathway and the expression of IFN-stimulated genes
despite high levels of ubiquitin-specific peptidase 18. IFN-k treatment of human liver biop-
sies ex vivo resulted in strong and maintained phosphorylation of STAT1, whereas IFN-a–
induced STAT1 activation was transient. Conclusion: Contrary to the action of IFN-a, IFN-
b, and IFN-k signaling in the liver does not become refractory during repeated stimulation
of the IFN signal transduction pathway. The sustained efficacy of IFN-b and IFN-k could be
an important advantage for the treatment patients who are nonresponders to pegIFN-a,
through a preactivated endogenous IFN system. (HEPATOLOGY 2011;53:1154-1163)

T
he interferons (IFNs) are a group of cytokines
that induce an antiviral state. They are cur-
rently classified into three groups: type I, type

II, and type III IFNs.1,2 The largest group comprises
the type I IFNs including all members of the IFN-a,
IFN-b, IFN-e, IFN-j, IFN-x, and IFN-m families.3

Humans have 12 different IFN-as and a single IFN-b.
Type I IFNs are induced in response to viral infec-
tions. All type I IFNs bind to the same IFN-a/IFN-b
receptor (IFNAR) that consists of two major subunits:
IFNAR1 (the a subunit in the older literature)4 and
IFNAR2c (the bL subunit in older literature).5,6 The
different IFN-a and IFN-b members have substantial
differences in their specific antiviral activities. How-
ever, the molecular basis of these differences is not yet
known.
There is only one class II IFN: IFN-c, which is pro-

duced by T lymphocytes when they are stimulated
with antigens or mitogens. IFN-c binds to a distinct
receptor, the IFN-c receptor (IFNGR) that consists of
the two subunits IFNGR1 (previously, the a chain)7

Abbreviations: CHC, chronic hepatitis C; GAPDH, glyceraldehyde
3-phosphate dehydrogenase; hu, human; IFN, interferon; IFNAR, interferon-a/b
receptor; IFNGR, interferon-c receptor; IL, interleukin; ISG, interferon-
stimulated gene; ISGF3, interferon-stimulated gene factor 3; ISRE, interferon-
stimulated response element; m, murine; PBS, phosphate-buffered saline; pegIFN,
pegylated interferon; PKR, protein kinase R; RPL19, ribosomal protein L19; RT-
PCR, real-time polymerase chain reaction; SEM, standard error of the mean;
SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of
transcription; USP18, ubiquitin-specific peptidase 18.
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and IFNGR2 (previously, the b chain or accessory
factor).8,9

The recently described type III IFNs IFN-k2, IFN-
k3, and IFN-k1 are also known as interleukin-28A
(IL-28A), IL-28B, and IL-29, respectively. Similar to
type I IFNs, they are also induced by viral infections.10

They signal through the IFN-k receptor consisting of
the IL-10R2 chain that is shared with the IL-10 recep-
tor, and a unique IFN-k receptor chain.11,12 Unlike
IFNAR, the IFN-k receptor is not expressed ubiqui-
tously, but is mainly restricted to epithelial cells.2 IFN-
k receptors are present in human hepatocytes.13 In the
mouse liver, the IFN-k receptor is expressed at very
low levels, and systemic application of IFN-k had very
little effects in the liver compared to other tissues such
as intestine, heart, lung, and skin.2,14

All IFNs signal through the Janus kinase–signal
transducer and activator of transcription (Jak-STAT)
pathway to regulate the expression of their target genes
in the nucleus. IFN-c predominantly stimulates
STAT1 and induces a homodimeric transcription fac-
tor complex, whereas members of the IFN-a, IFN-b,
and IFN-k families strongly activate STAT1 and
STAT2 and induce the heterotrimeric transcription
factor complex interferon-stimulated gene factor 3
(ISGF3). The different IFN subtypes induce overlap-
ping but distinct sets of target genes.15

The activation of the Jak-STAT pathway is tightly
controlled by several negative regulatory mechanisms.
Suppressor of cytokine signaling 1 (SOCS1) and
SOCS3 are rapidly induced by IFNs and prevent fur-
ther STAT activation by inhibiting the Jak kinases.16

Likewise, ubiquitin-specific peptidase 18 (USP18) is a
classical ISG that provides a strong negative feedback
loop at the level of the receptor-kinase complex.17 As a
result of the induction of these negative regulators,
cultured cells become rapidly unresponsive (refractory)
to continuous stimulation with IFNs, a phenomenon
that has been known for more than 20 years.18 We
have recently shown that refractoriness also occurs in
the liver of mice injected with IFN-a.19 Repeated
injection of mouse IFN-a (mIFN-a) at regular inter-
vals resulted in constantly elevated serum concentra-
tions, similar to what is observed in patients receiving
pegylated IFN-a (pegIFN-a). Within hours after the
first injection of mIFN-a, IFN-a signaling in the liver
became refractory to further stimulation. Neither
SOCS1 nor SOCS3 were instrumental for this long-
lasting refractoriness. Instead, USP18 was identified as
the key mediator.19

PegIFN-a2 together with ribavirin is the current
standard of care for the treatment of chronic hepatitis

C (CHC). The treatment achieves a sustained viral
clearance in only 50%-60% of patients. The molecular
mechanisms underlying treatment failure are still
incompletely understood. In recent years, we and
others have provided evidence that the endogenous
IFN system is already activated in the liver of a sub-
stantial number of patients before the therapeutic
application of pegIFN-a, and that such a preactivation
prevents treatment responses.20-22 It is not known why
this preactivation of the endogenous IFN system
inhibits the response to therapeutically injected
pegIFN-a, but it is conceivable that a constant stimu-
lation of liver cells by endogenous IFNs induces refrac-
toriness to pegIFN-a stimulation.
Comparatively few clinical studies have been per-

formed to assess the efficacy of IFN-b for the treat-
ment of CHC. In treatment-naive Asian patients, 24
weeks of therapy with IFN-b and ribavirin achieved a
sustained virological response in 57% of treated
patients.23 Interestingly, IFN-b is also effective in
some patients who did not respond to previous thera-
pies with IFN-a.24 More recently, pegIFN-k1 was
found to be effective for the treatment of CHC in a
phase 1b study with 49 IFN-a–treated patients with
relapse and seven treatment-naive patients.25

In the present study, we analyzed the activation pat-
terns of the Jak-STAT signal transduction pathway and
the induction of ISGs in different organs after single
and repeated subcutaneous injection of IFN-a, IFN-b,
and IFN-k in mice. Unexpectedly, marked refractori-
ness to repeated stimulation was observed only in case
of repeated stimulation with IFN-a. The sustained
sensitivity to IFN-b and IFN-k despite preactivation
of the signal transduction pathways with IFN-a pro-
vides support for the further clinical exploration of
IFN-b and IFN-k for the treatment of IFN-a
nonresponders.

Materials and Methods
Cell Culture and Reagents. Huh7 cells were grown

at 37�C and 5% CO2 in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum,
penicillin, and streptomycin. All cell culture reagents
were from Gibco, Basel, Switzerland. Human IFNs
used for Huh7 cells treatment were IFN-a-2b (Intron
A; Essex Chemie AG, Luzern, Switzerland), IFN-b-1b
(Betaferon; Bayer Schering Pharma, Zürich, Switzer-
land), or IFN-k2 (Peprotech Inc., Rocky Hill, NJ).

Animals. Four- to 6-week-old male C57Bl/6 mice
were used for all experiments. The animals were bred
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in the animal facility of the Department of Biomedi-
cine of the University Hospital Basel under specific
pathogen-free conditions. All animal experiments were
conducted with the approval of the Animal Care
Committee of the Canton Basel-Stadt, Switzerland.
The animals were injected subcutaneously with mu-

rine IFNs alpha-4 (mIFN-a), beta (mIFN-b), lambda2
(mIFN-k), and gamma (mIFN-c) in sterile phosphate-
buffered saline (PBS). Control animals were injected
with PBS only. The mIFN-a4 was produced as
described,26 and the concentration was measured by
mIFN-a enzyme-linked immunosorbent assay (PBL
Interferon Source, Piscataway, NJ). Recombinant
mIFN-b and mIFN-c were purchased from Millipore
(Axxora Europe, Lausen, Switzerland) and recombinant
IFN-k2 from Peprotech (Peprotech Inc., Rocky Hill,
NJ). Specific activities of recombinant IFN-b and
IFN-c were 107 IU/mg and 1.15 � 107 IU/mg,
respectively. The animals were euthanized by CO2 nar-
cosis. Samples from the liver, lung, kidney, and small
intestine were collected and immediately frozen in liq-
uid nitrogen and stored at �80�C until further
processing.
Western Blot Analysis. Tissue extracts and western

blots (protein immunoblots) were done as described.19

Proteins were detected with primary antibodies specific
to phospho-STAT1 (Tyr701, catalog No 9171; Cell
Signaling Technology, Bioconcept, Allschwil, Switzer-
land), STAT1 (catalog no. 610186; Transduction Lab-
oratories, BD Biosciences Pharmingen, San Diego,
CA), phospho-STAT2 (Tyr 689, catalog no. 07-224;
Upstate Biotechnology, Lake Placid, NY), STAT2 (cat-
alog no. sc950; Santa Cruz Biotechnology, LabForce
AG, Nunningen, Switzerland), phospho-STAT3
(Tyr705, catalog no. 9131; Cell Signaling Technology),
STAT3 (catalog no. sc482; Santa Cruz Biotechnology),
and b-actin (Sigma-Aldrich Chemie GmbH, Stein-
heim, Germany).
Electrophoretic Mobility Shift Assay. Nuclear

extracts from 150-200 mg of liver tissue were prepared
as described.27 Electrophoretic mobility shift assays
were done as described.28

RNA Isolation and Real-Time Quantitative
Reverse-Transcription Polymerase Chain Reac-
tion. RNA was isolated from Huh7 cells or shock-fro-
zen liver and gut samples using Trizol Reagent (Invi-
trogen AG, Basel, Switzerland). Isolated RNA was
quantified and 1 lg was reverse-transcribed with ran-
dom hexamers and Moloney murine leukemia virus
reverse transcriptase (Promega Biosciences Inc., Walli-
sellen, Switzerland). Prior to enzyme mix addition, the
reaction mixture was incubated for 3 minutes at 70�C

and then cooled on ice. Following the addition of the
enzyme, reverse transcription was carried out for 1
hour at 37�C and stopped by incubation at 95�C for
5 minutes. Quantitative real-time polymerase chain
reaction (RT-PCR) was performed based on SYBR
green fluorescence (Applied Biosystems, Foster City,
CA). The primers were: 50-ATC CGC AAG CCT
GTG ACT GT-30 and 50-TCG GGC CAG GGT
GTT TTT-30 for murine ribosomal protein L19
(mRPL19), 50-CGG CGG AGA GAG CTT TGC-30

and 50-AGC TGA AAC GAC TGG CTC-30 for
mSTAT1, 50-GTG GTT GTG GAG GGT GAG
ATG-30 and 50-GGG ATG AGG TCT CCA GCC
A-30 for mSOCS1, 50-AAG AGC CCG CCG AAA
ACT-30 and 50-AGC CAC TGA ATG TAG ATG
TGA CAA C-30 for murine protein kinase R (mPKR),
and 50-CGT GCT TGA GAG GGT CAT TTG-30

and 50-GGT CGG GAG TCC ACA ACT TC-30 for
mUSP18. For Huh7 cell samples, the primers were:
50-CTC AGT CCC GAC GTG GAA CT-30 and
50-ATC TCT CAA GCG CCA TGC A-30 for
huUSP18 and 50-GCT CCT CCT GTT CGA CAG
TCA-30 and 50-ACC TTC CCC ATG GTG TCT
GA-30 for human glyceraldehyde 3-phosphate dehydro-
genase (huGAPDH). All reactions were run in duplicate
using an ABI 7500 detection system (Applied Biosys-
tems). The DCT value for mouse samples was derived
by subtracting the threshold cycle (CT) value for
mRPL19, which served as an internal control, from the
CT values for mSTAT1, mSOCS1, mPKR, and
mUSP18. The messenger RNA (mRNA) expression lev-
els of the transcripts were calculated relative to
mRPL19 using the formula 2�dCT. For human cell sam-
ples, the internal control used was human GAPDH.

Ex Vivo Liver Biopsy Treatment. Freshly obtained
liver biopsies were immersed in PBS-diluted human
IFN-a-2b (Intron A; Essex Chemie AG, Luzern, Swit-
zerland), IFN-b-1b (Betaferon; Bayer Schering
Pharma, Zürich, Switzerland), or IFN-k2 (Peprotech)
and incubated for 10-60 minutes at 37�C. Longer
treatment periods are not feasible ex vivo because of
tissue degradation at 37�C. The liquid was then
removed and the biopsy material immediately frozen
in liquid nitrogen. The protocol was approved by the
Ethics Committee of the University Hospital of Basel,
Switzerland. Written informed consent was obtained
from all patients. Biopsies were obtained from patients
suffering from hepatitis C virus infection (biopsy 1),
graft-versus-host disease after a liver transplant (biopsy
2), nodular regenerative hyperplasia (biopsy 3), and
alcoholic steatohepatitis with liver cirrhosis (biopsy 4).
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Results
Contrary to IFN-a, IFN-b Signaling Is Not

Affected by Prior Stimulation with Type I IFNs. -
Repeated or continuous stimulation with IFN-a rap-
idly induces a refractory state in cultured cells18 and in
mouse liver.19 To test if prolonged stimulation with
IFN-b and IFN-k also desensitizes cells to further
stimulation, and if pretreatment of cells with IFN-a
induces refractoriness to IFN-b or IFN-k and vice
versa, we stimulated Huh7 cells with the different
IFNs for 12 hours, and restimulated them after an
additional 12-hour resting period (at the 24-hour
time-point). As expected, pretreatment of cells with
IFN-a induced a refractory state that prevented the
activation of the Jak-STAT pathway by IFN-a at the
24-hour time-point (Fig. 1A, lane 8). IFN-a–induced
STAT1 phosphorylation was also strongly reduced by
pretreatment of cells with IFN-b (Fig. 1A, lane 11).
Because IFN-b binds to and signals through the same
receptor as IFN-a, we expected the same pattern of

refractoriness. However, IFN-b signaling was not
attenuated by IFN-a or IFN-b pretreatments. The
phospho-STAT1 signals 30 minutes after the first
and the second stimulation with IFN-b showed the
same intensity (Fig. 1A, lanes 3, 9, and 13). We
conclude that pretreatment of Huh7 cells with type
I IFNs induces a refractory state that affects IFN-a–
induced signaling, but not the response to IFN-b.
Consistent with previous reports,29 IFN-k was less
potent than IFN-a in regard to STAT1 activation.
However, the signal intensity after restimulation was
not decreased in cells pretreated with IFN-k or
IFN-a compared to treatment-naive cells (Fig. 1A,
lane 4, 10, and 14).
We have previously shown that USP18 is a key me-

diator of refractoriness to IFN-a in vivo.19 Pretreat-
ment of cells with IFN-a and IFN-b strongly induced
USP18 in Huh7 cells (Fig. 1A,B), but despite this,
STAT1 phosphorylation induced by the second treat-
ment with IFN-b and IFN-k was not impaired.

Fig. 1. Repeated stimulation with IFN-a, IFN-b, and IFN-k results in different response patterns in Huh7 cells. (A) Huh7 cells were stimulated
with 1000 IU/mL human IFN-a, 1000 IU/mL human IFN-b, or 500 ng/mL human IFN-k using the following protocols: (1) single stimulation for
30 minutes (lanes 2-4), (2) single stimulation for 12 hours followed by a 12-hour resting period in complete growth medium (lanes 5-7), (3) ini-
tial stimulation for 12 hours followed by a 12-hour resting period and then restimulation for 30 minutes with the same or different IFN (lanes 8-
14). IFN-induced tyrosine phosphorylation of STAT1 was assessed by immunoblotting of whole-cell extracts. Blots were then reprobed for total
STAT1, USP18, and b-actin. (B) Quantitative RT-PCR analysis of USP18 mRNA expression in Huh7 cells treated for 8 hours with 1000 IU/mL
human IFN-a, 1000 IU/mL human IFN-b or 500 ng/mL human IFN-k. The data are plotted as the amount of USP18 mRNA relative to GAPDH
mRNA (mean 6 standard error of the mean [SEM]). (C) Huh7 cells were stimulated with 1000, 5000, or 10000 IU/mL human IFN-a or 20,
100, or 1000 IU/mL human IFN-b using the following protocols: (1) single stimulation for 15 minutes (lanes 2-7), (2) single stimulation for 12
hours followed by a 12-hour resting period in complete growth medium (lanes 8-11), (3) initial stimulation for 12 hours with 5000 or 10000
IU/mL human IFN-a or 20 or 100 IU/mL human IFN-b followed by a 12-hour resting period and then restimulation for 30 minutes with 1000
IU/mL of the same IFN as used for initial stimulation (lanes 12-15). IFN-induced tyrosine phosphorylation of STAT1 was assessed by immuno-
blotting of whole-cell extracts. Blots were then reprobed for total STAT1 and b-actin.
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A single stimulation of cells with 1000 IU/mL IFN-
a resulted in a slightly weaker activation of STAT1
compared to 1000 IU/mL IFN-b (Fig. 1A, lanes 2
and 3). To exclude that this difference caused the dif-
ferential response to repeated stimulation, we pre-
treated cells with higher concentrations of IFN-a and
lower concentrations of IFN-b. In these conditions,
IFN-a induced STAT1 activation was similar or stron-
ger compared to IFN-b (Fig. 1C, lanes 2 to 7). How-
ever, restimulation with 1000 IU/mL IFN-a or IFN-b
(Fig. 1C, lanes 12-15) revealed the same pattern of
refractoriness as observed after pretreatment with 1000
IU/mL (Fig. 1A). We conclude that the different sensi-
tivity of IFN-a and IFN-b to pretreatment-induced
refractoriness is not influenced by the strength of the
initial stimulation, but is an inherent characteristic of
the IFN species.

IFN Subtypes Elicit Overlapping but Distinct
Responses in the Liver and the Gut of Mice. In order
to gain insight into the in vivo responses to type I, II,
and III IFNs, we studied the dose-response curve to
IFN-a, IFN-b, IFN-k, or IFN-c after subcutaneous
administration. Mice were sacrificed 1 hour after the

injection, and liver and small intestine samples were
collected and analyzed for the activation of Jak-STAT
pathway components and ISG induction (Fig. 2).
IFN-a, IFN-b, and IFN-c induced a dose-dependent
phosphorylation of STAT1, STAT2, and STAT3 and a
dose-dependent induction of the classical ISGs
SOCS1, STAT1, and USP18 both in the liver and in
the gut (Fig. 2 and Supporting Fig. 1). At the lowest
dose, IFN-k already strongly induced STAT phospho-
rylation and ISG expression in the gut, but had no
effect in the liver even at the highest dose. This inef-
fectiveness in the liver is most likely due to the absence
or very low expression of the IFN-k receptor chain in
the mouse liver.2

IFN-b–Induced Signaling in the Liver Is Not Re-
fractory After Pretreatment. We then analyzed the in
vivo patterns of refractoriness using mouse samples
obtained after repeated administration of different
combinations of type I, II, and III IFNs. Both for the
first and the second stimulation we chose doses of the
different IFNs that resulted in a similar STAT1 phos-
phorylation 1 hour after a single injection, as estab-
lished in previous experiments (Fig. 2), i.e., 300 pg/g

Fig. 2. Dose-response relation-
ship of IFN-a, -b, -k and -c in liver
and gut. C57Bl/6 mice were
injected subcutaneously with
increasing doses of murine IFN-a,
-b, -k and -c and sacrificed 1 hour
after injection. IFN doses were:
300, 1500 and 7500 pg/g body
weight IFN-a; 100, 250, and 500
IU/g body weight IFN-b; 50, 100,
and 500 ng/g body weight IFN-k
and 20, 100 and 500 IU/g body
weight IFN-c. IFN-induced phospho-
rylation of STAT1, STAT2 and STAT3
was assessed in the (A) liver and
(B) small intestine. IFN-induced
expression of SOCS1 was quanti-
fied by RT-PCR in liver (C) and
small intestine (D). The data are
plotted as the amount of SOCS1
mRNA relative to RPL19 mRNA
(mean 6 SEM).
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body weight IFN-a, 500 IU/g body weight IFN-b, 50
ng/g body weight IFN-k, and 100 IU/g body weight
IFN-c. At 16 hours after the first injection, the ani-
mals were sacrificed or injected again, either with the
same IFN or with IFN-a. Mice receiving the second
injection were sacrificed 1 hour later for the collection
of liver, small intestine, kidney and lung samples. Sig-
naling through the Jak-STAT pathway was analyzed at
the level of STAT activation by tyrosine phosphoryla-
tion, at the level of binding of activated STAT1 to the
IFN-stimulated response element (ISRE) found in pro-
moters of ISGs, and at the level of transcriptional
induction of ISGs.
Consistent with our previous findings,19 mice pre-

treated with IFN-a showed little response to the sec-
ond injection with IFN-a (Fig. 3 and Supporting Fig.
2). The same attenuation of signals and ISG induction
was observed when IFN-b-pretreated mice were
injected 16 hours later with IFN-a. IFN-k pretreat-
ment had no effect on later IFN-a responses, most
likely because of the lack of IFN-k receptors in mouse
liver. Likewise, IFN-c pretreatment did not induce
refractoriness to subsequent stimulation with IFN-a
(Fig. 3 and Supporting Fig. 2). This can be explained
by the observation that IFN-c treatment did not
induce an up-regulation of USP18 (Fig. 3B and Sup-
porting Fig. 1), the key mediator of refractoriness to
IFN-a in vivo.19

Interestingly, IFN-b–pretreated mice showed a
strong response to the second injection with IFN-b.
Phosphorylation of STATs, DNA binding, and ISG
induction were slightly decreased compared to the first
injection of IFN-b. However, ISGs such as USP18
were again strongly induced relative to the expression
level at time point 16 hours, demonstrating that the
mouse liver remains responsive to repeated injections
of IFN-b (Fig. 3A-D and Supporting Fig. 2). The
same responses to IFN-a and IFN-b were found in
kidney and lung (Supporting Fig. 3). We conclude
that consistent with our findings in cultured cells (Fig.
1), cells in the liver, kidney, and lung remain respon-
sive to IFN-b in vivo, whereas IFN-induced signaling
becomes refractory to IFN-a.
To check if IFN-b could also overcome refractory

state induced by a prolonged stimulation with IFN-a,
we administered a single injection of IFN-b in mice
that were continuously stimulated with IFN-a for an
extended period of time. For this continuous stimula-
tion mice were injected every 3 hours with 300 pg/g
body weight mIFN-a to ensure constantly elevated
IFN-a serum concentrations. In agreement with previ-
ously reported data,19 IFN signaling was refractory to

the second, third, and fourth injection of IFN-a (Fig.
3E, lanes 5 to 8). In contrast, IFN-b could still induce
STAT1 activation in mice that have been previously
injected three times with mIFN-a (Fig. 3E, lane 9).

Repeated Administration of IFN-k Does Not
Induce a Refractory State in the Gut. To investigate
the effects of repeated administration of IFN-k in vivo
we analyzed STAT1 and 2 phosphorylation and ISG
induction in small intestine samples from the same
animals that were used to study the hepatic response
(Fig. 4). Compared to IFN-a and -b, IFN-k induced a
stronger phosphorylation of STAT1 and STAT2 and
stronger ISG up-regulation (Fig. 4A-D and Supporting
Fig. 4). This finding is in line with recent studies dem-
onstrating a primary role of IFN-k in antiviral
responses of tissues of epithelial origin.30 Remarkably,
repeated administration of IFN-k did not lead to any
detectable decrease in the levels of Jak-STAT pathway
activation or transcriptional induction. This apparent
lack of refractoriness related to signaling through inter-
feron-k receptor occurred despite an important up-reg-
ulation of USP18 mRNA 1 hour after injection, sug-
gesting that the inhibitory effect of USP18 protein
may be specific to stimulation of cells with IFN-a.17

IFN-k signaling in the gut was also not affected af-
ter prolonged stimulation with IFN-a. Repeated injec-
tions of mice with mIFN-a resulted in a stepwise
reduction of the phospho-STAT1 signals 1 hour after
every injection (Fig. 4E, lanes 5 to 8), whereas IFN-k
still induced a strong STAT1 activation in animals
injected repeatedly with IFN-a (Fig. 4E, lane 10).

IFN-k Induces Long-Lasting STAT1 Activation in
Human Liver. To study the response patterns to dif-
ferent IFNs in human liver, we treated human liver
biopsies ex vivo with IFN-a, -b, and -k. At a dose of
500 ng/mL, IFN-k elicited comparable STAT1 phos-
phorylation as stimulation with 1000 IU/mL IFN-a or
-b (Fig. 5A). Using these equipotent doses, we next
studied the time-course of STAT1 activation. Consist-
ent with our previous results,31 IFN-a induced a tran-
sient phosphorylation of STAT1 that returned to base-
line within 60 minutes (Fig. 5B). Interestingly, IFN-k
induced STAT1 was still maximal after 60 minutes.

Discussion

Patients with CHC and an induction of the endoge-
nous IFN system in the liver do not respond to thera-
peutically injected pegIFN-a with further stimulation
of STAT1 phosphorylation, STAT1 nuclear transloca-
tion, or induction of IFN target genes.20 This appa-
rent refractoriness of IFN signaling could explain why
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most patients with a preactivated IFN system are non-
responders to the current standard of care with
pegIFN-a and ribavirin.20-22 The molecular mecha-
nisms of nonresponse to therapeutically applied
pegIFN-a in such preactivated patients have not been
conclusively identified. One of the key components re-
sponsible for nonresponse could be USP18. USP18

(also known as UBP43) binds to IFNAR2 and inhibits
the interaction of Jak1 with the receptor, thereby pre-
venting the activation of STAT1 and STAT2.17 USP18
was found to be up-regulated in pretreatment liver
biopsies of nonresponders20,22 and it was identified as
an important regulator of the antiviral activity of inter-
feron against hepatitis C virus infection in vitro.32

Fig. 3. IFN-b-induced signaling in the mouse liver is not abrogated after pretreatment. (A, B, C, D) C57Bl/6 mice were injected subcutane-
ously with different murine IFNs and sacrificed 1 hour or 16 hours later, or injected again 16 hours after the first administration and then sacri-
ficed 1 hour after the second injection. IFN doses were 300 pg/g body weight IFN-a, 500 IU/g body weight IFN-b, 50 ng/g body weight IFN-k,
or 100 IU/g body weight IFN-c. (A) Liver samples were subjected to immunoblotting for tyrosine phosphorylation of STAT1 and STAT2 as well as
STAT1 and STAT2 total protein and b-actin as a loading control. (B, C) Quantitative RT-PCR analysis of USP18 (B) and PKR (C) mRNA expression
in the liver. The data are plotted as the amount of USP18 or PKR mRNA relative to RPL19 mRNA (mean 6 SEM). (D) Liver nuclear extracts were
analyzed in EMSAs using ISRE oligonucleotide probe. Supershift of the ISGF3 band was performed using antibody specific for STAT1 (lane 12).
(E) C57Bl/6 mice were injected every 3 hours with 300 pg/g body weight mIFN-a or PBS (control). Liver samples were collected 1 hour after
the first, second, third, and fourth injections, as well as after three injections of mIFN-a and subsequent (3 hours later) single injection of mIFN-
b (500 IU/g body weight). Whole-cell extracts were subjected to immunoblotting for tyrosine phosphorylation of STAT1 as well as STAT1 total pro-
tein and b-actin as a loading control.
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Furthermore, USP18 has been identified as a key me-
diator of refractoriness to repeated or prolonged stimu-
lation with IFN-a in the mouse liver.19

IFN-b and IFN-as bind to the same receptor,
IFNAR. It has also been shown that IFN-b induced sig-
naling is enhanced in USP18 deficient mouse embryonic
fibroblasts.17 However, IFN-b signaling in the mouse
liver was largely unaffected in mice pretreated with IFN-
a or IFN-b despite high expression levels of USP18

(Fig. 4). There is experimental evidence that IFN-b has
a higher affinity to IFNAR2 compared to IFN-as.33 It is
also conceivable that such different affinity bindings
might induce different conformational changes to the re-
ceptor molecules and thereby differential sensitivities to
inhibition by USP18. However, solid experimental evi-
dence supporting such a model is still lacking.
The absence or low-level expression of the IFN-k re-

ceptor in the mouse liver prevented us from studying

Fig. 4. Repeated administration of IFN-k does not lead to the reduction of the signaling in the gut. (A, B, C, D) C57Bl/6 mice were injected
subcutaneously with different murine IFNs and sacrificed 1 hour or 16 hours later, or injected again 16 hours after the first administration and
then sacrificed 1 hour after the second injection. IFN doses were 300 pg/g body weight IFN-a, 500 IU/g body weight IFN-b, 50 ng/g body
weight IFN-k or 100 IU/g body weight IFN-c. (A) Small intestine samples were subjected to immunoblotting for tyrosine phosphorylation of
STAT1 and STAT2 as well as STAT1 and STAT2 total protein and b-actin as a loading control. (B, C, D) Quantitative RT-PCR analysis of USP18
(B), SOCS1 (C) and PKR (D) mRNA expression in the small intestine samples. The data are plotted as the amount of USP18, SOCS1, or PKR
mRNA relative to RPL19 mRNA (mean 6 SEM). (E) C57Bl/6 mice were injected every 3 hours with 300 pg/g body weight mIFN-a or PBS (con-
trol). Small intestine samples were collected 1 hour after the first, second, third, and fourth injections, as well as after a single injection of
mIFN-k (50 ng/g body weight) or three injections of mIFN-a and subsequent (3 hours later) single injection of mIFN-k (50 ng/g body weight).
Whole-cell extracts were subjected to immunoblotting for tyrosine phosphorylation of STAT1 as well as STAT1 total protein and b-actin as a load-
ing control.
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the induction of refractoriness of the type III IFN sig-
naling system in the liver. We therefore used the gut as
a model tissue in vivo (Fig. 4). Sensitivity to IFN-k
remained unaffected by repeated injections of IFN-k
or IFN-a, again despite high expression levels of
USP18. In the case of IFN-k, the use of a different
and structurally unrelated receptor that is not bound
by USP18 is a likely explanation.
IFN-k has been shown to activate the Jak-STAT

pathway in human hepatoma cells and to inhibit hepa-
titis C virus replication.13,29 Using liver biopsies
treated ex vivo, we provide evidence that IFN-k is also
active in the human liver. Moreover, contrary to the
transient STAT1 phosphorylation signal detected in
IFN-a–stimulated samples, IFN-k induced STAT1
phosphorylation was maintained (Fig. 5).
It is widely assumed that the constant high serum

concentrations achieved with pegIFN-a provide the de-
cisive advantage over nonpegylated forms of recombi-
nant IFN-a, because the permanent stimulation of the
IFN signal transduction pathway will induce an unin-
terrupted antiviral activity in the infected hepatocytes.
However, there is no experimental evidence to support
this hypothesis. On the contrary, in previous work we
observed a long-lasting refractoriness to IFN-a in mice
that were repeatedly injected in short intervals with
mIFN-a in order to maintain high serum concentra-
tions over a prolonged period of time. The present ob-
servation that IFN-k signaling is unaffected by IFN
induced up-regulation of USP18 could provide an al-
ternative explanation for the increased efficacy of
pegIFN-a. Similar to IFN-as, IFN-ks can be induced
by type I IFNs.34 If refractoriness to IFN-a would be
restricted to hepatocytes, pegIFN-a could still stimu-
late dendritic cells or macrophages to secrete IFN-k
and thereby indirectly sustain the expression of antivi-
ral genes in hepatocytes. Indeed, we have previously
found that pegIFN-a injections could still activate

STAT1 in nonparenchymal, sinusoidal cells in patients
with a preactivated hepatic IFN system whereas no
further increase in phospho-STAT1 signals were found
in hepatocytes.20

In conclusion, contrary to IFN-a, both IFN-b and
IFN-k continue to induce signaling through the Jak-
STAT pathway in the setting of repeated or prolonged
stimulation with type I or type III IFNs in vivo. We
propose that pegylated IFN-b and pegylated IFN-k
could be promising treatment options specifically for
patients with a preactivated hepatic IFN system who
have little chances to be cured by the current standard
of care with pegIFN-a and ribavirin, and for patients
who are known nonresponders to previous therapies
with (peg)IFN-a–based regimens.
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BACKGROUND & AIMS: Approximately 50% of pa-
tients with chronic hepatitis C (CHC) have a sustained
virologic response to treatment with pegylated interferon
(pegIFN)-� and ribavirin. Nonresponse to treatment is
associated with constitutively increased expression of
IFN-stimulated genes (ISGs) in the liver. Treatment of
patients with acute hepatitis C (AHC) is more effective,
with sustained virologic response rates greater than 90%.
We investigated mechanisms of the different responses of
patients with CHC and AHC to pegIFN-� therapy.
METHODS: We analyzed IFN signaling and ISG expres-
sion in liver samples from patients with AHC, patients
with CHC, and individuals without hepatitis C (controls)
using microarray, immunohistochemical, and protein
analyses. Findings were compared with those from pri-
mary human hepatocytes stimulated with IFN-� or IFN-�,
as reference sets. RESULTS: Expression levels of hun-
dreds of genes, primarily those regulated by IFN-�, were
altered in liver samples from patients with AHC compared
with controls. Expression of IFN-�–stimulated genes was
induced in liver samples from patients with AHC, whereas
expression of IFN-�–stimulated genes was induced in
samples from patients with CHC. In an expression anal-
ysis of negative regulators of IFN-� signaling, we did not
observe differences in expression of suppresor of cytokine
signaling 1 or SOCS3 between liver samples from patients
with AHC and those with CHC. However, USP18 (another
negative regulator of IFN-� signaling), was up-regulated
in liver samples of patients with CHC that did not re-
spond to therapy, but not in AHC. CONCLUSIONS:
Differences in expression of ISGs might account for
the greater response of patients with AHC, compared
with those with CHC, to treatment with pegIFN-� and
ribavirin. Specifically, USP18 is up-regulated in liver
samples of patients with CHC that did not respond to
therapy, but not in patients with AHC.

Keywords: HCV; Jak–STAT Signaling; Host–Virus Interac-
tion; Immune Response.

Chronic infection with hepatitis C virus (HCV) is a
major cause of liver disease worldwide.1 For the

past decade, a combination of pegylated interferon-�
(pegIFN-�) with ribavirin was the standard therapy for
chronic hepatitis C (CHC). This treatment achieves an
overall sustained virologic response (SVR) in approxi-

mately 55% of patients.2 Recently, 2 HCV protease inhib-
itors used in conjunction with pegIFN-� and ribavirin
were approved for the treatment of CHC, and triple com-
bination therapies most likely will be the standard of care
for a majority of patients in developed countries.3 How-
ever, nonresponse to pegIFN-� remains an important
problem in the setting of triple therapy because it signif-
icantly increases the rate of viral breakthrough during
therapy caused by the emergence of HCV variants resis-
tant to protease inhibitors.4,5 It has been well documented
that nonresponse to pegIFN-� is associated with per-
sistent induction of IFN-stimulated genes (ISGs) in the
liver.6 – 8 The very same set of hundreds of ISGs is induced
by therapeutically applied pegIFN-� in patients without
pretreatment activation of ISGs who have a good response
to treatment.7 Paradoxically, activation of the endogenous
IFN system not only is ineffective in clearing the infection,
but also impedes response to pegIFN-� therapy, possibly
because of refractoriness of the IFN-� signal transduction
pathway. We previously showed that IFN-� signaling in
the mouse liver becomes unresponsive within hours after
the injection of IFN-� and have identified USP18 as a key
mediator of refractoriness.9

Contrary to patients with CHC, most patients with
acute hepatitis C (AHC) respond very well to mono-
therapy with (peg)IFN-�.10,11 The reasons for the discrep-
ant response to pegIFN-� are unknown. Given the asso-
ciation of intrahepatic ISG expression and nonresponse to
pegIFN-� in CHC, an obvious explanation for the good
response to therapy in AHC could be a lack of ISG
induction in AHC. The intrahepatic immune response has
not been studied in patients with AHC, but serial liver
biopsy specimens in chimpanzees obtained during the
first 6 – 8 months after infection with HCV have revealed
a strong induction of ISGs.12–14 In the present study, we
analyzed inflammatory infiltrates, the activation of IFN

Abbreviations used in this paper: AHC, acute hepatitis C; CHC, chronic
hepatitis C; CHC-NR, CHC nonresponder; CHC-R, CHC responder; HCV,
hepatitis C virus; HPF, high-power field; ISG, interferon-stimulated gene;
JAK, Janus kinase; MAVS, mitochondrial antiviral signaling protein;
mRNA, messenger RNA; PCR, polymerase chain reaction; pegIFN-�,
pegylated interferon alfa; PHH, primary human hepatocytes; pSTAT1,
phosphorylated STAT1; RT, reverse-transcription; SVR, sustained viro-
logic response.
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signal transduction pathways, and gene expression pro-
files in liver biopsy specimens of 6 patients with AHC.

Materials and Methods
Patients
All patients were recruited in the Hepatology Outpatient

Clinic of the University Hospital Basel (Basel, Switzerland).
From October 2007 to December 2010, 6 patients with AHC
(between 0 and 6 months after the HCV transmission) gave
written informed consent to participate in this study and do-
nated a liver biopsy specimen for research purposes. The study
was approved by the Ethics Committee of Basel.

Liver biopsy specimens from 16 patients with CHC and 4
normal liver tissue samples were used for comparative analysis.
These samples were obtained during a previous study that has
been published previously.7 The data reported in that article
have been deposited in the Gene Expression Omnibus database
(www.ncbi.nlm.nih.gov/geo, accession no. GSE11190). An addi-
tional 17 liver biopsy specimens of patients with CHC were used
for immunostaining analyses. All patients with CHC were
treated with pegIFN-� and ribavirin, the standard of care during
the study period. Patients with a sustained virologic response
defined as undetectable HCV-RNA level 6 months after the end
of treatment were classified as responders (R); all others were
classified as nonresponders (NR). Serum HCV RNA was quan-
tified using the Cobas Amplicor Monitor (Roche, Basel, Switzer-
land). AHC patients were monitored closely for transaminases
and HCV polymerase chain reaction (PCR), and if there was no
decline of the viral load below the limit of detection within a
month after the first visit, they were treated with 1.5 �g/kg body
weight pegIFN-�-2b (PegIntron; Essex Chemie, Luzern, Switzer-
land) monotherapy for 24 weeks, unless indicated otherwise
(Table 1).

Cell Culture
Primary human hepatocytes (PHH) were isolated from

liver resections obtained from noninfected patients as described
previously.15 Freshly isolated PHH were seeded on 6-well plates
precoated with collagen (BD Biosciences, Allschwil, Switzerland)
and maintained in culture in William’s E medium (Sigma, Bu-
chs, Switzerland), supplemented with 1% Glutamax (Gibco, Zug,
Switzerland), 1% insulin transferrin selenium (Gibco, Aidenbach,
Germany), 10�7 mol/L dexamethasone (Sigma), 0.15% bovine
serum albumin (Sigma), and 10% fetal bovine serum (PAN Bio-
tec, Aidenbach, Germany). Huh-7 cells were maintained in
DMEM (Gibco) supplemented with 10% fetal bovine serum.

PHH and Huh-7 cells were treated with 1000 U/mL of human
IFN-� (Roferon; Roche), human IFN-� (BioLegend, Luzern,
Switzerland), or 70 ng/mL of human pegIFN-� (Pegasys; Roche).

RNA Extraction and Microarray
Hybridization
Gene expression was assessed by microarray analysis

using Affymetrix Human Genome U133 Plus 2.0 arrays (Af-
fymetrix, Santa Clara, CA) for human liver specimens and Af-
fymetrix Human Gene 1.0 ST arrays for PHH. Detailed infor-
mation is included in the Supplementary Materials and
Methods section. All original array data are deposited at the
National Center for Biotechnology Information Gene Expres-
sion Omnibus database under accession number GSE38598.

Statistical Analysis
Microarray analysis was performed with Bioconductor

packages of R statistical environment (R foundation for Statis-
tical Computing, Vienna, Austria).16 Detailed information on
the statistical procedures is included in the Supplementary Ma-
terials and Methods section. Statistical analyses of real-time
reverse-transcription (RT)-PCR and immunohistochemical data
were performed using GraphPad Prism (La Jolla, CA) software
version 4.0.

Interleukin-28B Genotyping
Extraction of DNA and genotyping for the single-nucle-

otide polymorphism rs12979860 near the interleukin-28B gene
was performed as described previously.17

Real-Time RT-PCR
Reverse transcription was performed as described.7 For

the measurement of IFN-� and IFN-� genes containing only one
exon, the same amount of RNA also was mock reverse-tran-
scribed to control for genomic DNA contamination. SYBR real-
time PCR was performed using SYBR green (Applied Biosystems,
Foster City, CA). The intron-spanning primers are listed in
Supplementary Table 1. IFN-� primers were designed to detect
all 13 IFN-� genes. All reactions were run in duplicate with an
ABI 7500 Real-Time PCR System (Applied Biosystems). Messen-
ger RNA (mRNA) expression levels of the transcripts were nor-
malized to glyceraldehyde-3-phosphate dehydrogenase using the delta
Ct method.

Western Blot
Whole-cell extracts and blotting of human liver samples

were performed as described.7 The membranes were incubated

Table 1. Patient Characteristics

Patient
number Age, y Sex

HCV
genotype

Viral load at Bx,
log IU/mL

Alanine
aminotransferase
level at Bx, U/L

Interleukin-28B
rs12979860

Week 4
response Response HIV

�T Inf-Bx,
mo

1 31 M 3 �12 60 CC — SC — 3
2 17 F 1 �12 421 CT — SC — 3
3 16 F 1 3.53 86 CT RVR SVRa — 4
4 30 M 4 2.49 125 CT RVR SVR — 2
5 44 M 3 5.98 571 CC — Interrupted — 2–5
6 56 M 3 4.15 155 TT RVR EoTRb — 3–4

Bx, biopsy; EoTR, end of treatment response; HIV, human immunodeficiency virus; Inf, infection; RVR, rapid virologic response (below limit of
detection at week 4); SC, spontaneous clearance; �T, time interval.
aTreatment with pegIFN-�-2a for 12 weeks.
bTreatment with pegIFN-�-2b and ribavirin.
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with primary antibodies (listed in Supplementary Table 1) in
Tris-buffered saline Tween-20 overnight at 4°C. After 3 washes
with Tris-buffered saline Tween-20, membranes were incubated
with fluorescent secondary goat anti-mouse (IRDye 680) or anti-
rabbit (IRDye 800) antibodies (both LI-COR Biosciences, Bad
Homburg, Germany) for 1 hour at room temperature. Blots were
scanned by the Odyssey Infrared Imaging System (LI-COR). For
mitochondrial antiviral signaling protein (MAVS), the mem-
brane was incubated with HRP-conjugated goat anti-mouse an-
tibody (Pierce, Lausanne, Switzerland), and developed on Bio-
max MR films (Kodak, Chalon-sur-Saone, France).

Immunohistochemistry
Serial sections (4-�m thick) were cut from formalin-

fixed, paraffin-embedded, liver biopsy specimens, rehydrated,
pretreated for 20 minutes in epitope retrieval solution 2, incu-
bated with the respective primary antibody, and counterstained
with hematoxylin. Standard indirect immunoperoxidase proce-
dures were used for immunohistochemistry (ABC-Elite; Vectra
Laboratories, Peterborough, UK). The staining procedure was
performed with an automated stainer (Bond; Vision BioSystems,
Newton Aycliffe, UK). The primary antibodies are listed in Sup-
plementary Table 2.

For the co-localization analysis, each section was photo-
graphed at 50� magnification with an 11.7-megapixel Axio Zeiss
(Jena, Germany) camera (picture size, 3900 � 3000 pixels),
choosing the same area of the biopsy. Five random high-power
fields (HPF, 279 � 252 pixels) were chosen within the paren-
chyma of the biopsy of the first section (Supplementary Figure
1). Then, identical HPFs of the other sections were defined, all
HPFs were enlarged digitally, and the amount of positive hepa-
tocytes or immune cells were counted by 2 independent observ-
ers (M.T.D., F.M.) (Supplementary Table 6). To ensure the qual-
ity of the count on the digitally enlarged HPFs, the
corresponding HPFs also were counted by microscopic assess-
ment. For the digital processing, Adobe Photoshop and Illustra-
tor version 5 were used.

Immunofluorescence
Sections (6-�m thick) were cut from fresh-frozen liver

biopsy specimens embedded in optimal cutting temperature
medium, fixed in periodate-lysine-paraformaldehyde for 10
minutes, and then incubated with primary antibodies (Supple-
mentary Table 2) for 1 hour. CD8 was detected with goat
anti-mouse-Cy3 antibody (1:600, 115-166-068; Jackson Immu-
noResearch, Newmarket, England) and IFN-� with goat anti-
rabbit-Alexa488 (1:100, A11070; Invitrogen, Lucerne, Switzer-
land). Pictures were recorded with a 40� objective using an LSM
710 confocal microscope (Carl Zeiss, Feldbach, Switzerland).

Results
Host–Virus Interactions During Acute
Hepatitis C Induce a Distinct Pattern of Gene
Expression in the Liver
Six patients with HCV monoinfection underwent a

liver biopsy 2–5 months after HCV transmission (ie, dur-
ing the acute phase of HCV infection) (Table 1). Gene
expression in these liver biopsy specimens was analyzed
with Affymetrix U133 Plus 2.0 arrays and compared with
4 samples from patients without liver disease (controls)
and 16 samples from patients with CHC recruited in a

previous study.7 We found between 203 and 492 genes
(average, 312) up-regulated and 239 to 374 genes (average,
294) down-regulated more than 2-fold in the liver of
patients with AHC compared with the healthy controls
(Figure 1A). The extent of up-regulation or down-regula-
tion was not associated with response to treatment, spon-
taneous clearance, estimated time from infection to bi-
opsy, serum viral load, or interleukin-28B genotype (data
not shown). Transcriptome profiles of AHC liver samples
were highly homogenous: between 50% and 80% of genes
altered in a particular patient also were changed in at least
2 other AHC patients (Figure 1A). Genes up-regulated in
AHC patients compared with healthy liver included
chemokines and their receptors, ISGs, and genes involved
in cellular immune responses (Figure 1B and Supplemen-
tary Table 3). Many of the down-regulated genes are
involved in intermediate metabolism and lipid homeosta-
sis (Supplementary Table 4).

A comparable number of genes were dysregulated in the
group of CHC patients who were nonresponders to
pegIFN-� (CHC-NR), but intersecting the sets of differen-
tially regulated genes showed only a limited overlap between
CHC and AHC patients, with 147 genes up-regulated and
138 genes down-regulated specifically in AHC (Figure 1C).
Genome-wide unsupervised clustering of the healthy liver,
CHC, and AHC samples (Supplementary Figure 2)
showed that AHC samples form a well-defined, separate
cluster, further showing the specific molecular signature
of this group of patients.

Activation of Janus kinase-Signal Transducer
and Activator of Transcription Signaling and
ISG Induction in AHC
As outlined earlier, functional annotation of the

genes dysregulated in AHC identified several classic ISGs
(Supplementary Table 3). To investigate more rigorously
to what extent ISGs were induced in AHC, we made use of
a list of bona fide hepatic ISGs. This list was compiled in
a previous study in which we obtained paired biopsy
specimens before and 4 hours after the first injection of
pegIFN-� in 10 selected patients with CHC who did not
show induction of ISGs before treatment and responded
well to pegIFN-�.7 The list contains 167 genes (242 probe
sets) significantly (paired t test, P � .05) changed more
than 2-fold by pegIFN-� (157 up-regulated, 10 down-
regulated). Of the 167 genes, there were 125 detected
above the minimal expression cut-off level in our dataset.
Unexpectedly, only 30 of these 125 IFN-�–regulated genes
were regulated more than 2-fold in AHC. This low num-
ber of induced ISGs could be explained by a relatively
weak activation of IFN signaling pathways in AHC. How-
ever, when we analyzed phosphorylation and nuclear
translocation of STAT1 in the AHC samples, we found a
strong activation of this central mediator of the IFN
signaling pathway (Figure 2A–C). Alternatively, the ab-
sence of a broad induction of pegIFN-�–induced genes in
AHC could be explained by the activation of STAT1 by
IFN-�, another strong inducer of STAT1 phosphoryla-
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tion18 that has been implicated in the immune response
during AHC in chimpanzees and human beings.19,20 We
therefore measured the mRNA expression levels of IFN-�,
and found them indeed significantly up-regulated in AHC
biopsy specimens compared with CHC (Figure 2D). Of
note, we were not able to detect any up-regulation of
IFN-� and IFN-� levels in all biopsy specimens (data not
shown). Also, we could not detect phosphorylation of type
I IFN-specific STAT2 in AHC biopsy specimens (Figure
2E). We conclude that in AHC, STAT1 activation is caused
by IFN-� and not by IFN-�/�.

IFN-�–Specific Gene Signature Is Enriched in
the AHC Gene Expression Profiles, Whereas
IFN-�–Induced Transcription Patterns
Characterize CHC-NR Patients
To further study the pattern of ISG induction in

AHC and CHC-NR, we generated IFN-�– and IFN-�–
induced gene lists and compared them with the ISG
expression in the biopsy specimens. Because ISG expres-
sion differs considerably between different cells and tis-
sues, we did not use published ISG lists obtained in
nonhepatic cells, but stimulated primary human hepato-
cytes (PHH) from 2 donors with 1000 IU/mL of human
IFN-� and IFN-� for 6 and 24 hours and performed
microarray analysis (Figure 3A). There were 256 genes

up-regulated more than 2-fold in the PHH from both
donors after IFN-� stimulation, with the majority of the
genes induced already after 6 hours of treatment. IFN-�
induced a comparable number of genes (288), but with
different kinetics. The majority of the IFN-�–induced
genes were detected after 24 hours of treatment, which
was in accordance with a previous study.21 Treatment of
PHH with IFN-� led to a very broad gene down-regula-
tion: transcript levels of 850 genes were reduced more
than 2-fold in PHH from both donors. Interestingly, the
observed suppression was very transient and only 15 genes
were found down-regulated after 24 hours of IFN-� ex-
posure. Gene down-regulation after IFN-� treatment in-
volved 123 genes, with a slightly larger number of genes
found suppressed after 24 hours of treatment (77) com-
pared with 6 hours (60), and a limited overlap between the
2 time points (14).

Comparison of the gene sets induced by IFN-� or IFN-�
identified 149 common genes, but also a similar number
of genes specifically induced by either IFN-� or IFN-�
(Figure 3A and Supplementary Tables 5 and 6). This
allowed us to generate 2 gene lists representative of
IFN-�– or IFN-�–stimulated genes (Supplementary Figure
3A). These gene sets then were used to assess the enrich-
ment of specific IFN-� and IFN-� signatures in liver

Figure 1. Acute hepatitis C patients show a distinct pattern of gene expression in the liver. (A) Number of genes 2-fold up-regulated or down-
regulated in each AHC patient compared with the mean gene expression in healthy liver samples (n � 4). Different shades show the extent of overlap
between patients as indicated. (B) Enrichment of gene ontology biological process terms among genes up-regulated in AHC patients with respect
to control patients. Terms with P values less than 10�6 were clustered based on the gene ontology hierarchy. The bar plot shows the enrichment
score for each cluster. The numbers to the left of the term name show the number of genes that represent a given gene ontology term in AHC patients.
(C) Venn diagram of genes identified as up-regulated or down-regulated in AHC (n � 6), CHC-NR (n � 6), or CHC-R patients (n � 10) compared with
healthy liver.
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biopsy specimens of AHC and CHC-NR patients using the
gene set enrichment analysis algorithm22 (Figure 3B and
Supplementary Table 7). We observed a significant enrich-
ment of IFN-�–regulated genes in AHC compared with
CHC-NR (enrichment score, 0.52; P � .04). On the other
hand, the genes up-regulated in PHH by IFN-� were
enriched in CHC-NR samples (enrichment score, �0.83;
P � .001). By selecting interferon, alpha-inducible protein
27 and interferon-induced protein with tetratricopeptide
repeats 1 as IFN-�–specific ISGs as well as guanylate
binding protein 5 and major histocompatibility complex,
class II, DM beta for IFN-� specificity we were able to
confirm the data obtained from the microarrays in the
PHH and the liver biopsy specimens by quantitative RT-
PCR (Supplementary Figure 4). These results disclose a
predominant role of IFN-� in driving the ISG transcrip-

tion in the acute phase of HCV infection, whereas ISG
expression in pre-activated patients in the chronic phase
shows a type I IFN-specific pattern.

CD8� T Cells Co-localize With Phosphorylated
STAT1-Positive Hepatocytes in AHC

To investigate the source of IFN production in the
infected liver, serial sections from AHC and CHC liver
biopsy specimens were stained for phospho-STAT1 and
markers for T cells (CD3, CD8), for B cells (CD20), for
natural killer cells (CD56), and for plasmacytoid dendritic
cells (CD123) (Figure 4A, Supplementary Figure 1 and
Supplementary Table 8). In general, the liver parenchyma
of AHC showed more inflammatory infiltrates than CHC
and most of these cells were positive for CD3 (Figure 4B).
Co-localization analysis revealed that AHC areas with

Figure 2. Jak-STAT pathway activation in acute hepatitis C. (A) STAT1 phosphorylation and STAT1 protein expression by Western blot analysis
using whole-cell extracts of liver samples from AHC (lanes 1–6, according to Table 1), healthy liver (lane 7), CHC-R (lanes 8 and 9), and CHC-NR
(lanes 10 and 11). (B) Representative pictures of immunohistochemistry for phosphorylated STAT1 (pSTAT1) showing strong nuclear staining in AHC
and moderate staining in CHC-NR, although CHC-R is not positively stained. (C) Quantification of phospho-STAT1 nuclear staining in hepatocytes
per HPF in AHC, healthy liver (Ctrl), and CHC-R and CHC-NR. There were significant differences of the mean amount of positive hepatocytes between
the 4 groups (P value obtained by 1-way analysis of variance). (D) Measurement of hepatic expression of IFN-� mRNA in AHC and CHC by
quantitative PCR normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Each dot represents one sample. P value was obtained with
the Student t test. (E) STAT1 and STAT2 phosphorylation and whole protein expression by Western blot analysis using whole-cell extracts of Huh7
cells untreated (lane 1) or treated for 30 minutes with 1000 U/mL IFN-� (lane 2) or liver samples of 2 AHC patients (lanes 3 and 4), 2 CHC-NR patients
(lanes 5 and 6), and 3 CHC-R patients undergoing a biopsy 4 hours after subcutaneous pegIFN-� injection (lanes 7–9). Phospho-STAT2 signals are
detected in IFN-�–treated Huh7 cells (lane 2) and weakly in biopsy specimens from pegIFN-�–treated patients (lanes 7–9). Phospho-STAT1 signals
are strong in biopsy specimens from patients with AHC (lanes 3 and 4) and after pegIFN-� treatment (lanes 7–9), and weak in CHC-NR samples (lanes
5 and 6).
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high amounts of phospho-STAT1–positive hepatic nuclei
were associated with high numbers of CD3� and CD8�
cells, but not with CD20�, CD56�, or CD123� cells
(Figure 4A). We did not observe a co-localization of any of
these cell types with phospho-STAT1–positive hepato-
cytes in CHC-NR samples (Figure 4A). There was a statis-
tically significant correlation of STAT1 phosphorylation
with the amount of CD3� cells (Spearman r � 0.70; P �
.0001) and CD8� cells in AHC (Spearman r � 0.69; P �
.0001; Figure 4C). We detected a positive correlation of
CD8� cells and IFN-� mRNA levels in AHC and a co-
localization of CD8 and IFN-� (Figure 4D and E). In
addition, enrichment analysis of gene ontology terms and
Kyoto Encyclopedia of Genes and Genomes pathways revealed
a significant overrepresentation of categories related to
T-cell activation in AHC compared with CHC-NR patients
(Supplementary Figure 3B). Taken together, these data
provide strong evidence that infiltrates of CD8� T cells in
the liver of patients with AHC are responsible for IFN-�
production and induction of the Janus kinase-Signal
Transducer and Activator of Transcription (Jak-STAT)
signaling pathway.

USP18 Expression Correlates With Treatment
Response to PegIFN-�
Nonresponse to treatment with pegIFN-� and

ribavirin in CHC is associated with a general up-regula-

tion of ISGs in the liver, but the molecular mechanism
linking ISG induction to IFN nonresponse remains un-
known.6 – 8 In the present study, we found a similar extent
of ISG up-regulation in AHC samples, but most of the
patients either cleared HCV spontaneously or responded
to therapy (Figure 1 and Table 1). We therefore hypothe-
sized that the IFN-�– driven ISG set in CHC included
specific genes that are not up-regulated by IFN-� in AHC.
Because negative feedback inhibition of Jak-STAT signal-
ing pathways could underlie treatment nonresponse,9,23

we analyzed the expression of pathway inhibitors in AHC
and CHC liver biopsy samples. Suppresor of cytokine
signaling 1 (SOCS1) and SOCS3, 2 IFN-induced negative
regulators of IFN signaling, showed no difference between
AHC and CHC (data not shown). However, ubiqitin-spe-
cific peptidase 18 (USP18), a more recently discovered
negative regulator that is instrumental for the refractory
state of IFN signaling in the mouse liver,9,24 was up-
regulated significantly in CHC-NR patients compared
with CHC-R and AHC (Figure 5A). The induction of
USP18 in CHC-NR also was apparent on the protein level
(Figure 5B and C). In our microarray analysis of IFN-
treated PHH, USP18 was induced preferentially by IFN-�
(Supplementary Table 5). This finding also was confirmed
on the protein level in Huh-7 cells stimulated by either
IFN subtype (Figure 5D). Indeed, USP18 was induced

Figure 3. IFN-�–specific gene signature is enriched in the AHC gene expression profiles, whereas IFN-�–induced transcription patterns charac-
terize CHC-NR patients. (A) Venn diagrams of genes differentially expressed in PHH upon IFN-� or IFN-� treatment. Diagrams in gray boxes show
temporal patterns of IFN-induced gene expression in PHH, with genes differentially regulated at 6 and at 24 hours. In the middle, the overlap between
the sets of genes differentially regulated by IFN-� (green) and IFN-� (orange) at any of the 2 time points is shown. (B) Genes were rank-ordered based
on differential expression between the AHC and CHC-NR patients and the overrepresentation of the experimentally defined IFN-�– and IFN-�–
specific gene sets at the top and bottom of the list was assessed by the gene set enrichment analysis (GSEA) algorithm. Below the GSEA plots are
heatmaps of the genes that contribute to the enrichment score of the gene set tested.
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almost exclusively by IFN-�. The low-level induction of
USP18 by IFN-� was not sufficient to attenuate (peg)IFN-
�–mediated signaling (Figure 5E).

Discussion
The study of the acute phase of HCV infection in

human beings is hampered by the fact that most cases are

asymptomatic. Spontaneous clearance occurs in about
20%–30% of patients.25 Studies of subjects after needle-
stick injuries revealed a very rapid increase of HCV viral
load to maximal levels within the first 2– 4 weeks.20 Viral
replication then is slowed down, most likely by an innate
immune response involving the induction of ISGs in the
liver.14,19 HCV-specific T cells are detectable 5–9 weeks

Figure 4. In AHC, phospho-STAT1–positive hepatocytes co-localize with CD8� T cells. (A) Representative pictures of serial sections from liver
biopsy specimens analyzed immunohistochemically for phospho-STAT1 and markers for T cells (CD3), cytotoxic T cells (CD8), B cells (CD20), natural
killer cells (CD56), and plasmacytoid dendritic cells (CD123). For each section within the sample, the same detail is shown. In AHC pSTAT1�
hepatocytes co-localized with immune cells positive for CD3 and CD8. (B) Number of mean CD3� cells per HPF of the liver parenchyma. Each dot
represents the mean number per patient. P value was obtained by the Student t test. (C) Correlation analysis of the number of CD3� cells and CD8�
cells/HPF with the number of nuclear phospho-STAT1 signals in hepatocytes/HPF (n � 30). The values represent the number of positive cells
counted in 5 random HPF in the parenchyma of each biopsy specimen in AHC patients, which are shown in Supplementary Figure 4 and listed in
Supplementary Table 8. Each dot represents 1 HPF. Association was assessed by Spearman correlation analysis. (D) Correlation analysis of the
mean number of CD8� cells with the IFN-� mRNA amount in AHC (Pearson correlation). Numbers denote AHC patients listed in Table 1. (E)
Co-localization analysis of IFN-� and CD8 in AHC and CHC-NR biopsy specimens by immunofluorescence. For CHC-NR, a portal tract is depicted
owing to lack of parenchymal T-cell infiltration.
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after infection, accompanied by an increase in alanine
aminotransferase levels and a decline of the serum viral
load.20 Liver biopsy studies in chimpanzees documented
the presence of HCV-specific CD8� T cells and an in-
crease in intrahepatic IFN-� mRNA during this period of
viral decline.14,19 In the present study, we analyzed human
liver biopsy specimens obtained 2–5 months after HCV
infection (ie, during the early phase of the adaptive im-
mune response). In accordance with the chimpanzee stud-
ies, we found CD8� T-cell infiltrates, increased intrahe-
patic IFN-� mRNA expression, and an increase in alanine
aminotransferase level. Importantly, T-cell infiltrates pos-
itive for IFN-� were found in direct proximity of hepato-
cytes positive for nuclear phospho-STAT1 immunostain-
ing, providing evidence that the predominant mediator of
STAT1 activation in the hepatocytes is IFN-� secreted by
infiltrating T cells (Figure 4). The microarray analysis of
ISG expression revealed a strong enrichment of IFN-�–
specific ISGs in AHC liver biopsy samples, further con-
firming that the predominant IFN in this phase of HCV
infection is IFN-� and not IFN-�. These results do not
support the hypothesis that liver-infiltrating HCV-specific
T cells are stunned, with impaired IFN-� production, and
are therefore not capable to clear the infection.20,26,27 Our
results are more consistent with a model in which recruit-
ment of T cells, IFN-� secretion by T cells, and IFN
signaling in hepatocytes is intact, but the induction of
hundreds of ISGs is barely effective, either because of a

block of translation of ISG mRNAs28 or because of inter-
ference of viral proteins with antiviral effector systems.

Up-regulation of ISGs during the chronic phase of HCV
infection also is ineffective in clearing the virus, and even
strongly associated with nonresponse to therapy with
pegIFN-� and ribavirin.6 – 8 It is presently still not clear
which IFN is the driver of this induction of ISGs because
despite an IFN-�–like signature, we and others have failed
to detect up-regulation of type I IFNs in human or chim-
panzee CHC liver biopsy specimens.29,30 We have shown
previously that in liver biopsy specimens of CHC patients
with persistently induced ISG expression, nuclear phos-
pho-STAT1 staining is detectable in 40%– 80% of hepato-
cytes already in pretreatment samples, and that this num-
ber does not increase in biopsy specimens obtained 4
hours after the injection of pegIFN-�.7 In such pre-acti-
vated livers, STAT1 phosphorylation seems to be refrac-
tory to further IFN-� stimulation. These findings can
explain why about half of the patients with CHC do not
respond to treatment with pegIFN-� and ribavirin. On the
other side, patients with AHC have an excellent, more
than 90%, response rate to treatment with pegIFN-�, even
when given as monotherapy. Before our present study, an
attractive hypothesis to explain the efficacy of pegIFN-�
in AHC postulated the lack of ISG induction in AHC. The
seminal findings that the HCV protease NS3/4A can
cleave and inactivate TRIF (also known as TICAM1, toll-
like receptor adaptor molecule 1) and MAVS, two impor-

Figure 5. USP18 expression in AHC and CHC liver biopsy specimens. (A) Hepatic expression of USP18 mRNA measured by quantitative PCR and
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Each dot represents one sample. The line indicates the median. P values were
obtained by Mann–Whitney tests. (B) USP18 protein expression by Western blot analysis using whole-cell extracts of liver samples from AHC (lanes
1–6, number according to Table 1), healthy liver (lane 7), CHC-R (lanes 8 and 9), and CHC-NR (lanes 10 and 11). (C) Representative pictures of
immunohistochemistry for USP18 in healthy liver (Ctrl), AHC, and CHC-NR, showing a strong cytoplasmic and patchy staining in CHC-NR
(magnification, 400�). (D) USP18 protein expression by Western blot analysis using whole-cell extracts of Huh-7 cells treated with IFN-� and IFN-�
for 6 or 24 hours, and untreated cells (Ctrl). (E) Huh-7 cells were treated for 16 hours with IFN-alfa (�), pegIFN-alfa (p�), or IFN-� (�), rested for 8 hours
in IFN-free medium, and restimulated for 30 minutes. Expression of USP18 and STAT1 phosphorylation were assessed by Western blot.
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tant components of cellular pathways involved in viral
sensing and IFN-� induction, provided a molecular mech-
anism to explain the lack of induction of the endogenous
hepatic IFN system.31,32 However, we could not detect
cleaved MAVS in any of the 6 AHC biopsy samples (Sup-
plementary Figure 5). Furthermore, microarray analysis
studies of liver biopsy specimens from chimpanzees dur-
ing the acute phase of HCV infection revealed a strong
induction of ISGs.12,13,33 These findings do not support
the hypothesis that efficient MAVS cleavage is a central
viral escape mechanism by preventing the induction of
the IFN system. Our present study in human liver biopsy
specimens confirms these findings by showing a strong
activation of STAT1 and ISG induction during AHC.
However, although biopsy specimens were obtained dur-
ing the entire course of AHC in the chimpanzee studies,
we obtained the biopsy specimens in the late phase of
AHC. Therefore, we cannot exclude that TRIF and/or
MAVS cleavage are important viral escape mechanisms in
the very first weeks after infection in human beings.

In a previous study in mice, we identified USP18 as a
key mediator of IFN-� refractoriness.9 Here, we show that
USP18 is up-regulated in CHC-NR but not in AHC pa-
tients. Comparison of responders vs nonresponders to
pegIFN-� in a combined analysis including AHC, CHC-R,
and CHC-NR showed that USP18 induction is associated
with nonresponse to pegIFN-�. Its preferential induction
by IFN-� can explain the low expression levels in patients
with AHC, in which ISG induction is predominantly IFN-�
driven. Because USP18 is an important mediator of refrac-
toriness to IFN-� signaling, the apparent lack of its induc-
tion in AHC might explain the markedly improved response
rate to pegIFN-� treatments in these patients compared with
patients with CHC.

Supplementary Material

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at http://
dx.doi.org/10.1053/j.gastro.2012.05.044.
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Supplementary Materials and Methods

RNA Extraction and Microarray
Hybridization
Total RNA was extracted from human liver tissue

and PHH using Qiazol reagent and the RNeasy Mini Kit
(Qiagen, Hombrechtikon, Switzerland) according to the
manufacturer’s instruction. For the 3’ in vitro transcrip-
tion (IVT) arrays, 1 �g of total RNA from each sample
was reverse transcribed using Genechip 3’ IVT Express Kit
(Affymetrix) according to the manufacturer’s instruc-
tions. For the whole-transcript arrays, 500 ng of total
RNA was reverse transcribed and biotinylated with the
whole-transcript Expression Kit (Ambion, Zug, Switzer-
land) and whole-transcript Terminal Labeling Kit (Af-
fymetrix) according to the manufacturer’s instructions.
The Hybridization and Wash Kit (Affymetrix) was used to
hybridize all samples.

Biostatistical Analysis
Microarray data were preprocessed using standard

robust multiarray averaging (RMA) algorithm. Batch ef-
fects observed between the human liver samples pro-
cessed and hybridized at different times were corrected
using the ComBat algorithm.1 Probe sets with very low
expression intensities (�80 in the highest-expressing
sample) as well as the control probe sets were excluded
from the subsequent analyses. Genome-wide hierarchical
clustering of the human liver samples was performed
using Ward’s linkage method, with 1 – Pearson correla-
tion as a distance metric. Differential gene expression for
AHC, CHC-R, and CHC-NR vs control samples was as-
sessed using the limma package,2 with fold-change cut-off
value of 2 and a false discovery rate cut-off value of 0.05.
To calculate the false discovery rate, moderated t-statis-
tics were first generated using the empiric Bayes method,
as implemented in the limma package, and the obtained
P values were corrected for multiple testing using Benja-
mini and Hochberg3 adjustment. Enrichment of gene
ontology biological process terms was performed using
the list of genes significantly up-regulated in AHC pa-
tients with respect to CTRL patients. Significance estima-
tion of the enrichment analysis was performed using a
hypergeometric test as implemented in g:Profiler soft-
ware.4 Terms with P values less than 10�6 were clustered
into distinct groups based on the gene ontology hierar-
chy. The enrichment scores were calculated for each clus-
ter (–log10 of the geometric mean of the P values for all
categories in a cluster).

Area-proportional Venn diagrams were created with
the help of BioVenn software.5

Two gene sets for the gene set enrichment analysis6

were obtained as follows (Supplementary Figure 3A): (1)
2 initial probe set lists were derived from the PHH ex-
pression data set based on up-regulation in IFN-�– or
IFN-�–treated samples compared with untreated samples

(fold-change between the means of treated and untreated
samples above 2 at least at one time point); (2) within the
2 lists we selected probe sets for which at least at one time
point there was more than a 2-fold difference between
the means of IFN-�– and IFN-�–treated samples, with
the P value from a Welch t test between the correspond-
ing samples less than .05. These 2 lists then were anno-
tated with gene symbols and their enrichment was as-
sessed in AHC vs CHC-NR samples with java gene set
enrichment analysis software version 2.07 (Broad Insti-
tute, Cambridge, MA), using the signal-to-noise ratio as a
ranking metric. On the gene set enrichment analysis plot
(Figure 3B), the x-axis represents a list of all genes on the
array rank-ordered according to their decreasing correla-
tion with AHC phenotype (red, genes overexpressed in
AHC; blue, genes overexpressed in CHC-NR). Black ticks
along the x-axis show positions of genes that are part of
the tested gene set. The y-axis unit is the enrichment
score defined as a running-sum statistic calculated walk-
ing down the ranked gene list. The running-sum in-
creases when a gene in the ordered list is present in the
gene set in question and decreases when it is absent. The
increment of the enrichment score depends on the value
of the ranking metric.

Enrichment of Kyoto Encyclopedia of Genes and Genomes
pathways and gene ontology biological process terms in
lists of genes significantly altered between AHC and
CHC-NR was assessed using DAVID software version
6.7.7 To facilitate the interpretation, terms with P values
(modified Fisher exact test) less than .05 were grouped
based on the overlapping gene membership. The enrich-
ment score is equal to –log10 of the geometric mean of the
P values for all categories in a cluster.

Supplementary References

1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microar-
ray expression data using empirical Bayes methods. Biostatistics
2007;8:118–127.

2. Smyth GK. Limma: linear models for microarray data. In: Gentle-
man R, Carey V, Dudoit S, et al, eds. Bioinformatics and compu-
tational biology solutions using R and bioconductor. New York:
Springer, 2005:397–420.

3. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc B
1995;57:289–300.

4. Reimand J, Kull M, Peterson H, et al. g:Profiler—a web-based
toolset for functional profiling of gene lists from large-scale exper-
iments. Nucleic Acids Res 2007;35:W193–W200.

5. Hulsen T, de Vlieg J, Alkema W. BioVenn—a web application for
the comparison and visualization of biological lists using area-
proportional Venn diagrams. BMC Genomics 2008;9:488.

6. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 2005;102:
15545–15550.

7. Huang da W, Sherman BT, Lempicki RA. Systematic and integra-
tive analysis of large gene lists using DAVID bioinformatics re-
sources. Nat Protoc 2009;4:44–57.

September 2012 HEPATIC GENE EXPRESSION IN ACUTE HEPATITIS C 786.e1

44



Supplementary Figure 1. Collection of all liver biopsy serial sections from AHC patients numbers 1–6 (red number), immunohistochemically
stained for pSTAT1 and markers for T cells (CD3), cytotoxic T cells (CD8), B cells (CD20), natural killer (NK) cells (CD56), and plasmacytoid dendritic
cells (CD123). The 5 boxes per slide indicate the high-power fields in the liver parenchyma that were chosen randomly for the co-localization analysis.
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Supplementary Figure 1. (Cont’d).
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Supplementary Figure 2. Genome-wide unsupervised hierarchical clustering groups all AHC patients in a distinct cluster, separate from the CHC
or control samples. The heatmap shows the expression patterns of 1003 probe sets identified as up-regulated or down-regulated in at least one of
the HCV-infected groups (AHC, CHC-NR, CHC-R) compared to the healthy liver control group.
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Supplementary Figure 3. (A) Scheme representation of the generation of gene sets for gene set enrichment analysis (GSEA). A gene was included
if the difference between the means of IFN-�– and IFN-�–treated PHH was larger than 2-fold and the P value from a Welch t test of the corresponding
samples was less than .05. The example in the scheme shows expression values for USP18 after 6 hours of IFN-� or IFN-� treatment. (B) Gene
ontology biological process terms and Kyoto Encyclopedia of Genes and Genomes collection pathways were tested for overrepresentation in lists
of genes significantly altered between AHC and CHC-NR patients. Enriched categories then were clustered to bring together closely related terms.
The heatmap shows expression patterns of all differentially expressed genes that belong to one of the enriched categories.
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Supplementary Figure 4. Confirmation of microarray data by quantitative RT-PCR. (A) Quantification of IFN-�–specific ISGs (IFI27 and IFIT1) and
IFN-�–specific ISGs (GBP5 and HLA-DMB) by quantitative RT-PCR in IFN-�– or IFN-�–treated PHH confirmed specific induction as previously
assessed by the microarray analysis (time point, 24 h). (B) Quantitative RT-PCR confirmed up-regulation of IFN-� ISGs (IFI27 and IFIT1) in CHC-NR
and up-regulation of IFN-� ISGs (GBP5 and HLA-DMB) in AHC. (P values were by Mann–Whitney test).

Supplementary Figure 5. Analysis of MAVS cleavage by Western
blot. Arrowheads indicate full-length (FL) and cleaved (CL) MAVS. Ly-
sates from Huh-7.5 cells harboring a subgenomic HCV replicon (Repl,
lane 1) and healthy liver (Ctrl, lane 8) served as controls for cleaved and
full-length MAVS. Lysates from AHC patients 1–6 (according to Table 1)
are displayed in lanes 2–7.
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ABSTRACT 

 
Background & Aims: The toll-like receptor 9 (TLR9) agonist IMO-2125 is currently 

evaluated in clinical trials for chronic hepatitis C therapy. The aim of this study was to 

investigate the in vivo mode of action of a closely related compound, referred to as 

immunomodulatory oligonucleotide (IMO). 

Methods: We analyzed the Jak-STAT pathway activation and induction of interferon-

stimulated genes in the liver of wild-type, interferon-α/β receptor-deficient and 

interferon-γ-deficient mice after administration of IMO. 

Results: IMO induced a prolonged activation of the Jak-STAT pathway and upregulation 

of interferon-stimulated genes in mouse liver. Contrary to the response observed after 

interferon-α injection, the signalling induced by IMO was not abrogated following 

repeated administration.  

At early time points after IMO injection STAT1 phosphorylation and interferon-

stimulated gene induction required a functional interferon-α/-β receptor, whereas at the 

later time points the activation was type I interferon-independent. Microarray analysis 

revealed that IMO induced broad transcriptional response in the mouse liver. This 

included upregulation of cytokine and chemokine genes responsible for recruitment of 

IFN-γ producers such as T cells and natural killer cells. Interferon-γ-deficient mice 

showed a transient response to IMO, demonstrating the central role of interferon-γ in 

sustained activation of Jak-STAT pathway by IMO. 

Conclusions: The bimodal kinetics of response to IMO in the mouse liver are driven by 

the sequential endogenous production of type I and II interferons. The lack of 

refractoriness to IMO combined with the long-lasting induction of interferon-stimulated 

genes reveal a favourable pharmacodynamics profile of this novel TLR9 agonist for the 

treatment of chronic viral hepatitis. 

 

Keywords: Toll-like receptor 9, Interferon, Hepatitis C virus, Liver, Oligonucleotide
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INTRODUCTION 

Chronic infection with hepatitis C virus (HCV) is a major cause of liver disease 

worldwide (1). Current standard of care for chronic hepatitis C consists of pegylated 

interferon (IFN)-α and ribavirin, complemented with direct-acting antiviral drugs for 

HCV genotype 1 (2). A substantial proportion of patients has an induction of the 

endogenous IFN system in the liver already before therapy, and consequently respond 

poorly to IFN-α treatments (3-5), probably because of refractoriness of the IFN-α signal 

transduction pathway (6). A number of therapeutics are presently in clinical development 

with the aim to improve the treatment outcome of IFN-α non-responders. One of the 

compounds evaluated in current clinical trials for chronic hepatitis C therapy is IMO-

2125, a novel synthetic Toll-like receptor (TLR) 9 agonist (7). 

TLR9 ligands, such as CpG-motif containing oligodeoxynucleotides (ODNs), act by 

stimulating TLR9 present on the endoplasmic vesicles of the cells of the immune system 

(8). Ligand binding to TLR9 induces signalling cascade involving MyD88, IRAK4 and 

TRAF6 which culminates in nuclear translocation of transcription factors such as IRF7 

and NFκB, resulting in the production of endogenous IFNs and other cytokines (reviewed 

in (9)). The secreted IFNs bind to their specific receptors on the cell surface and signal 

through the Janus kinase-signal transducer and activator of transcription (Jak-STAT) 

pathway to regulate the expression of the target genes. IFN-γ predominantly stimulates 

STAT1 and induces formation of homodimeric transcription factor complexes, whereas 

IFN-β and the members of IFN-α family activate both STAT1 and STAT2, resulting in 

the assembly of heterotrimeric transcription factor complex interferon-stimulated gene 

factor 3. The different IFNs induce overlapping but distinct sets of target genes (10). The 

products of interferon-stimulated genes (ISGs) function as the effectors of the antiviral 

state (11). 

Oligonucleotide agonists of TLR9 have demonstrated potential in a variety of medical 

applications including use as vaccine adjuvants as well as mono- or combination 

therapies for the treatment of cancer and infectious diseases (reviewed in (12)). 

Supernatants from human peripheral blood mononuclear cells (PBMCs) treated with class 

B CpG oligonucleotides showed potent antiviral activity in HCV replicon cells (13). 

Similar results were obtained using mouse bone marrow-derived myeloid dendritic cells 
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and HCV replicon-bearing murine MH1 cells (14). Class C CpG TLR9 agonists have also 

been shown to induce robust IFN-α production in plasmacytoid dendritic cells from 

patients chronically infected with HCV (15). The activity of the CpG oligomers has been 

shown to depend on the sequence and secondary structures of the DNA flanking the CpG 

motif (16, 17). Immunomodulatory oligonucleotides (IMOs) are a novel class of TLR9 

agonists which incorporate synthetic cytosine or guanine analogues. These second-

generation oligonucleotides have the advantage of greater metabolic stability, species-

independent activity depending on the synthetic dinucleotide motif incorporated and a 

clear structure-activity relationship (18-21). IMOs containing a secondary structure-

forming sequence and a CpR motif (where R is a synthetic analogue of deoxyguanosine) 

were shown to induce IFN-α production in human PBMC cultures as well as in vivo in 

nonhuman primates (19, 20). 

In the present study we investigated pharmacodynamics of an IMO, a novel TLR9 

agonist related to IMO-2125, in mouse liver. The novel TLR9 agonist contains a 3’-3’-

attached structure and CpR dinucleotide motifs (wherein R is a 7-deaza-deoxy-

guanosine) within a sequence that allows duplex formation, but not a hairpin.  It belongs 

to a class of compounds such as IMO-2125 that produce elevated levels of IFN-α in 

human plasmacytoid dendritic cells and stimulates B cell proliferation through TLR9 

activation (19, 22). We found that shortly after administration IMO induced the 

production of type I IFNs and a variety of chemokines, leading to marked immune cell 

recruitment to the liver. This was followed by secretion of IFN-γ resulting in long-lasting 

stimulation of Jak-STAT pathway and induction of ISGs. There was no refractoriness to 

repeated injections of IMO. These pharmacodynamic properties support the development 

of TLR9 agonists with similar structure and activity as IMO-2125 for treatment of viral 

hepatitis. 

 

MATERIALS AND METHODS 
Compounds 

TLR9 agonist used in this study, 5’-TCG1AACG1TTCG1-X1-G1CTTG1CAAG1CT-5’ 

(wherein G1 is 7-deaza-dG and X1 is 1,2,4-butane triol linker) was synthesized on a 

MerMade 6 DNA/RNA synthesizer with phosphorothioate (PS) backbone using β-
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cyanoethylphosphoramidite chemistry at Idera Pharmaceuticals as described previously 

(23). The oligonucleotide was purified on an anion-exchange HPLC, desalted, dialyzed 

and lyophilized. The purity of lyophilized compound was 95% with the rest being shorter 

by one or two nucleotides (n - 1 and n - 2) as determined by analytical anion-exchange 

HPLC and capillary gel electrophoresis. The sequence integrity was determined by 

MALDI-ToF mass spectrometry. Endotoxin was less than 0.1 EU/mL as determined by 

the Limulus assay.  

Animals 
Four- to 8-week-old male mice were used for all experiments. The animals were bred in 

the animal facility of the Department of Biomedicine of the University Hospital of Basel 

under specific pathogen-free conditions. All animal experiments were conducted with the 

approval of the Animal Care Committee of the Canton Basel-Stadt, Switzerland. 

C57Bl/6 and IFNAR knockout (KO) mice (24) were obtained from BRL (Füllinsdorf, 

Switzerland) and IFN-γ KO mice (25) were from Doug Hilton. Genotyping primers for 

IFN-γ KO mice: Ivg33: 5’-TTC AAT GAC GCT TAT GTT GTT GCT G-3’, Ivg31: 5’-

CCT CAG AAC TCA AGT GGC ATA GAT-3’, Ivg35: 5’-CAT TCG ACC ACC AAG 

CGA AAC ATC-3’. Genotyping primers for IFNAR KO mice: UM5: 5’-ATT ATT AAA 

AGA AAA GAC GAG GCG AAG TGG-3’, UM4: 5’-AAG ATG TGC TGT TCC CTT 

CCT CTG CTC TGA-3’, Neo: 5’-CCT GCG TGC AAT CCA TCT TG-3’. The animals 

were injected subcutaneously with IMO or murine IFN-α (CalBioChem) in sterile 

phosphate-buffered saline (PBS). Control animals were injected with PBS only. Mice 

were euthanized by CO2 narcosis. Samples from the liver were collected, immediately 

frozen in liquid nitrogen and stored at -80°C until further processing. 

RNA isolation, reverse transcription and quantitative RT-PCR 
RNA was isolated from shock-frozen liver samples using Trizol Reagent (Invitrogen). 

Isolated RNA was quantified and 1 μg was reverse-transcribed with random hexamers 

and Moloney murine leukemia virus reverse transcriptase (Promega). Prior to enzyme 

mix addition, the reaction mixture was incubated for 3 minutes at 70°C and then cooled 

on ice. Following the addition of the enzyme, reverse transcription was carried out for 1 

hour at 37°C and stopped by incubation at 95°C for 5 minutes. Quantitative real-time 

polymerase chain reaction (RT-PCR) was performed based on SYBR green fluorescence 
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(Applied Biosystems). The primers were: 5’-CGG CGG AGA GAG CTT TGC-3’ and 5’-

AGC TGA AAC GAC TGG CTC-3’ for STAT1, 5’-GTG GTT GTG GAG GGT GAG 

ATG-3’ and 5’-GGG ATG AGG TCT CCA GCC A-3’ for SOCS1, 5’-CGT GCT TGA 

GAG GGT CAT TTG-3’ and 5’-GGT CGG GAG TCC ACA ACT TC-3’ for USP18,  5’-

ATC CGC AAG CCT GTG ACT GT-3’ and 5’-TCG GGC CAG GGT GTT TTT-3’ for 

RPL19. All reactions were run in duplicate using an ABI 7500 detection system (Applied 

Biosystems). The ΔCT value was derived by subtracting the threshold cycle (CT) value 

for RPL19, which served as an internal control, from the CT values for STAT1, SOCS1 

and USP18. The RNA expression levels of the transcripts were calculated relative to 

RPL19 using the formula 2-ΔCT.  

Microarray analysis 

RNA from shock-frozen liver samples was extracted with Qiazol (Qiagen) and purified 

on a RNeasy Mini column kit (Qiagen). Reverse transcription, second strand synthesis 

and in vitro transcription were performed according to manufacturer’s instructions 

(Ambion). The samples were hybridized overnight to Affymetrix Mouse Gene ST 1.0 

arrays (Affymetrix). Microarray analysis was carried out with Bioconductor packages of 

R statistical environment (26). Normalization, background correction and summarization 

on the level of transcript clusters was performed using RMA algorithm implementation of 

oligo package (27, 28). Genes were identified as differentially expressed if they showed a 

mean fold change above 2 between the treated and control samples with corresponding 

false discovery rate (FDR) below 0.1 (moderated t-test as implemented in the limma 

package followed by Benjamini-Hochberg p-value adjustment for multiple testing) (29). 

Significance estimation of the Gene Ontology (GO) Biological Process enrichment 

analysis was carried out using a hypergeometric test as implemented in g:Profiler 

software (30). Terms with p-values below 10-5 were clustered into distinct groups based 

on the GO hierarchy. The enrichment scores were calculated for each cluster (–log10 of 

the geometric mean of the p-values for all categories in a cluster). 

Western blot 

Tissue extracts and western blots (protein immunoblots) were done as described (6). 

Proteins were detected with primary antibodies specific to phospho-STAT1 (Tyr701, 

catalog No 9171; Cell Signaling Technology), STAT1 (catalog no. 610186; Transduction 
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Laboratories), phospho-STAT2 (Tyr 689, catalog no. 07-224; Upstate Biotechnology), 

phospho-STAT3 (Tyr 705, catalog no. 9131; Cell Signaling), STAT2 (catalog no. sc950, 

Santa Cruz Biotechnology), STAT3 (catalog no. sc482, Santa Cruz Biotechnology) and 

β-actin (Sigma-Aldrich Chemie GmbH). 

Histochemical staining 
Mouse liver samples were fixed overnight in 4% buffered formalin and embedded in 

paraffin blocks. Hematoxylin-eosin staining was performed according to the standard 

procedure. 

Isolation of mouse hepatocytes and non-parenchymal liver cells  

Buffer I containing 136mM NaCl, 2.7mM KCl, 0.8mM Na2HPO4, 25mM Hepes, 0.5mM 

EGTA and buffer II containing 136mM NaCl, 2.7mM KCl, 0.8mM Na2HPO4, 25mM 

Hepes, 5mM CaCl2, 25µg/ml Liberase TM (Roche) were prepared and kept at 37°C prior 

to the isolation procedure. C57BL/6 mice were perfused through the portal vein with 

buffer I for 5 minutes at 37°C (flow rate 160ml/h) and then with buffer II for another 5 

minutes at 37°C (flow rate 200ml/h). The liver was removed and cells were dispersed in 

cold Hank’s balanced salt solution (HBSS, Gibco). Cell dispersion was filtered through a 

70µm nylon cell strainer and then washed with 30ml of cold HBSS. Non-parenchymal 

cells were collected from the supernatant after the first wash with HBSS. Primary mouse 

hepatocytes were collected from the pellet. 

Mouse IFN-γ  ELISA 

Mouse serum samples were diluted 1:10 in Assay Diluent and the concentration of 

murine IFN-γ was tested by High Sensitivity Femto-HS ELISA (eBioscience) according 

to manufacturer’s instructions.  

 

RESULTS 

Administration of IMO leads to a sustained activation of Jak-STAT pathway 

Injection of murine IFN-α leads to a transient activation of Jak-STAT pathway in mouse 

liver (6). To gain insight into the signalling patterns induced in the mouse liver by the 

novel TLR9 agonist, we injected the animals subcutaneously with 3 μg/g bodyweight 

(bw) IMO and analyzed liver samples collected at different time points after 

administration. We found that a single injection of IMO resulted in a bimodal pattern of 
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STAT1 activation (Figure 1A). Phospho-STAT1 signal first appeared 2 hours after IMO 

administration and decreased to almost undetectable levels 4 hours later. The second peak 

of phosphorylation was observed 12 hours post-injection, and the activation of STAT1 

continued until as late as 96 hours after administration. On the other hand, STAT2 

phosphorylation was only detectable 2 and 4 hours after administration. The signalling 

induced by IFN-α leads to activation of both STAT1 and STAT2 ((31), Figure 1A). The 

absence of STAT2 phosphorylation at the late time points after IMO injection suggested 

that the second peak of STAT1 activation was not mediated by IFN-α. STAT3 

phosphorylation was first observed 1 hour after injection, peaked 1 hour later and 

remained detectable at low levels until 96 hours post-administration. The sustained 

signalling through the Jak-STAT pathway led to a long-lasting upregulation of ISGs such 

as STAT1, SOCS1 or USP18 (Figure 1B). This is in contrast to the activation pattern 

elicited by murine IFN-α, which was characterized by a potent, but short-lived Jak-STAT 

pathway stimulation.  

Signalling induced by IMO does not become refractory 

Administration of IFN-α is known to elicit a refractory state in mouse liver (6). 

Refractory cells are not responsive to further stimulation with IFN-α and this 

phenomenon was shown to depend on the presence of USP18 (6). We investigated 

whether repeated stimulation with IMO also results in desensitization of the mouse liver. 

Mice were injected with 1 μg/g bw IMO. At this dose of IMO induced STAT1 activation 

that began to recede 48 hours post-injection and returned to baseline 24 hours later. We 

administered a second dose of TLR9 agonist 48 hours after the first injection and 

analyzed Jak-STAT signalling in the liver. The second injection of IMO resulted in 

efficient re-induction of STAT1 and STAT3, but not STAT2 phosphorylation (Figure 

2A). In contrast, the second dose of IFN-α administered 8 hours after the first injection 

did not lead to the Jak-STAT pathway activation. In consequence, transcription of ISGs 

could be re-induced in IMO-, but not IFN-α-treated mice (Figure 2B). 

 
IMO upregulates cytokine and chemoattractant genes 

To characterize the transcriptional response to IMO we performed microarray analysis of 

the mouse liver samples 4 hours after a single injection of 1000 IU/g bw IFN-α, 3 μg/g 
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bw IMO or PBS (control). We found a broad transcriptional induction following IMO 

injection, with over 450 genes upregulated more than 2-fold with false discovery rate 

below 0.1 compared to PBS-injected mice (Figure 3A). At the same time IFN-α 

administration led to upregulation of 296 genes in the mouse liver, and almost 80% of 

those were also significantly induced by IMO. Gene ontology enrichment analysis of the 

genes regulated by IMO revealed terms such as cytokine biosynthesis, activation of 

immune response, cellular response to interferon and regulation of cell death and 

proliferation (Supplementary Table 1). Several chemokine genes were significantly more 

induced by IMO than by IFN-α, including chemoattractants of T cells and NK cells such 

as Cxcl11, Cxcl10, Cxcl9 and Ccl5 (Figure 3B). Immune cell recruitment to the liver was 

readily observed by hematoxylin-eosin staining, with focal areas of lymphocyte 

concentration first appearing 48 hours after IMO injection and increasing with time in 

size and frequency (Figure 3C, 48 and 96 hours time points shown). 

 

Signalling induced by IMO relies on endogenous production of type I and II 

interferons 

We observed a sustained STAT1 activation in IMO-injected animals, whereas STAT2 

phosphorylation was transient (Figure 1A). To further explore the molecular 

underpinnings of this phenotype we examined the hepatic response to IMO in IFN-γ KO 

and IFNAR1 KO mice. Animals lacking IFN-γ showed intact signalling and ISG 

induction at early time points after IMO administration, but 12 hours post-injection or 

later the response was completely abrogated (Figure 4A, C, D). On the other hand, 

animals deficient in a functional type I IFN receptor failed to respond to IMO treatment 

shortly after injection, but STAT1 phosphorylation and ISG induction 24 or 48 hours 

post-injection were identical to the wild-type levels (Figure 4B, C, D). In agreement with 

these data, we were able detect elevated levels of IFN-γ in the serum of WT mice 12, 24 

and 48 hours after IMO injection (Figure 4E). These findings demonstrate the central role 

of IFN-γ in the sustained activation mediated by IMO as well as the importance of type I 

IFNs in early response to this agonist in mouse liver. It is also evident that the early 

events involving secretion of type I IFNs are not required for later IFN-γ production. 
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DISCUSSION 

In this study we investigated the pharmacodynamics and the mode of action of a novel 

synthetic TLR9 agonist,. Administration of IMO resulted in two-phase pattern of Jak-

STAT pathway stimulation in the mouse liver, with initial transient activation shortly 

followed by a long-lasting activated state.  We demonstrated that these kinetics resulted 

from two independent events: initial production of type I IFNs and a subsequent 

production of IFN-γ. In contrast to the response elicited by exogenous IFN-α injections, 

repeated treatment with IMO did not result in the refractoriness of the Jak-STAT 

pathway. These findings improve our understanding of the in vivo action of the IMO 

class of TLR9 agonists, compounds currently evaluated in clinical trials for many 

diseases including chronic hepatitis C infection. 

Chronic hepatitis C infection is presently treated with pegylated IFN-α combined with 

ribavirin and for some virus genotypes also with direct-acting antiviral drugs. Previous 

work of our group has demonstrated that mouse liver becomes unresponsive to IFN-α 

stimulation within hours after the first application of IFN-α and identified the interferon-

stimulated gene USP18 as the key regulator of IFN-induced refractoriness (6). These 

findings suggest that desensitization may also occur upon clinical use of IFN-α and 

negatively influence the therapeutic outcome. Recent studies of our group and others 

showed that different IFN types are unequally affected by the USP18-mediated negative 

feedback loop (32, 33). Particularly, IFN-α-mediated signalling was demonstrated to be 

almost completely abrogated by previous exposure to IFN, whereas IFN-β, -λ or -γ-

mediated signals were only marginally reduced. The long-lasting activation of the Jak-

STAT pathway after IMO injection is induced by IFN-γ, which is not sensitive to the 

refractory state of the cells induced by USP18. The continuing strong activation of the 

signalling in the context of repeated administration could provide an advantage for TLR9 

agonists such as IMO-2125 in the clinical setting. 

We have not identified the cells that secrete type I and II IFNs in response to IMO in 

mice. We found very low levels of TLR9 expression in isolated mouse hepatocytes, 

suggesting that these cells are not the direct targets of the IMO (Supplementary Figure 

1B). On the other hand, we observed high expression of TLR9 in isolated mouse non-

parenchymal liver cells (NPLCs), raising the possibility that the NPLCs contribute to the 
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cytokine and chemokine production after IMO injection. In line with this hypothesis it 

has previously been shown that mouse non-parenchymal liver cells can produce 

interleukin 6, tumour necrosis factor α and IFN-β in response to TLR stimulation (14). 

Repeated stimulation of TLR9 in mice has been associated with adverse effects such as 

alterations in the architecture of lymphoid organs, liver damage and macrophage 

activation syndrome-like disease, raising concerns regarding the use of TLR9 agonists as 

treatment agents (34, 35). However, in these reports mice have been exposed to very high 

doses of CpG DNA: 2-3 mg/kg bw administered daily or every other day, whereas the 

minimal therapeutically effective dose of IMO-2125 in human subjects with chronic 

HCV infection has been established at 0.16 mg/kg bw twice or once weekly (7). In 

agreement with previous reports we found an increase in spleen size in mice 3 and 4 days 

after an injection of 3 μg/g bw IMO (data not shown), but no splenomegaly was found in 

the mice which received ten times lower dose. The dose of 0.3 μg/g bw IMO could still 

achieve Jak-STAT pathway activation in the mouse liver, however with altered kinetics 

(Supplementary Figure 1). Moreover, no severe treatment-related adverse effects have 

been noted in phase I clinical trials of IMO-2125 or CPG 10101, another TLR9 agonist 

clinical candidate (36). These findings suggest that side effects of TLR9 agonists 

observed in mice may be dose-dependent. The doses used in patients are likely too low to 

trigger the same serious adverse events described in the mouse model. Indeed, evidence 

of antiviral activity of IMO-2125, an analogue of the TLR9 agonist that was used in the 

present study, has been obtained in Phase I clinical trials in HCV patients (7). Moreover, 

it should be noted that TLR9 expression is wider across the cell types in mice than in 

humans, resulting in overestimation of TLR9 agonist-mediated toxicity in mice (rev in 

(37)). 
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Figure 3.1: Jak-STAT pathway activation in mouse liver after IMO and IFN-

α injection C57Bl/6 mice were injected subcutaneously with 3 µg/g bw IMO or 1000

IU/g bw mIFN-α and the liver samples were collected at indicated time points post-

administration. (A) STAT1, STAT2 and STAT3 phosphorylation as well as total STAT1

protein levels induced by IMO and IFN-α treatment were assessed by immunoblot with

specific antibodies. (B) IMO and IFN-α-induced expression of STAT1, SOCS1 and USP18

was quantified by RT-qPCR. The data are plotted as the amount of STAT1 or SOCS1

mRNA relative to RPL19 mRNA (mean and SEM).
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Figure 2
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Figure 3.2: Lack of refractoriness to IMO treatment in mouse liver C57Bl/6

mice were injected subcutaneously with 1 µg/g bw IMO or 1000 IU/g bw mIFN-α and

subsequently re-injected with the same compound 8 hours post-injection (mIFN-α) or 48

hours post-injection (IMO). Liver samples were collected at indicated time points post-

administration. (A) STAT1, STAT2 and STAT3 phosphorylation as well as total STAT1

protein levels induced by single and repeated IMO and IFN-α treatments were assessed by

immunoblot with specific antibodies. (B) IMO and mIFN-α-induced expression of STAT1

and SOCS1 was quantified by RT-qPCR. The data are plotted as the amount of STAT1

or SOCS1 mRNA relative to RPL19 mRNA (mean and SEM).
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Figure 3

A

IFN-α IMO

B

C

64 232 223 ex
pr

es
si

on

CXCL10

CXCL9CCL3

CXCL11

CCL5

CXCL13

ex
pr

es
si

on

ex
pr

es
si

on

ex
pr

es
si

on

ex
pr

es
si

on

ex
pr

es
si

on

IFN-α IMOPBS

IMO 48h p.i.PBS 48h p.i.

Figure 3.3: Gene expression and immune cell recruitment induced by IMO

application C57Bl/6 mice were injected subcutaneously with 3 µg/g bw IMO and liver

samples were collected at indicated time points post-administration. (A) Venn diagram

showing the number of genes induced in mouse liver 4 hours after IMO (3 µg/g bw) or

mIFN-α (1000 IU/g bw) treatment (fold-change above 2 and false discovery rate below

0.1). (B) Expression levels of chemoattractant genes CCL3, CCL5, CXCL9, CXCL10,

CXCL11, CXCL13 in mouse liver 4 hours after PBS, IMO (3 µg/g bw) or mIFN-α (1000

IU/g bw) treatment quantified by microarray analysis (mean and SEM). (C) Hematoxylin-

eosin staining of formalin-fixed, paraffin-embedded mouse liver sections 48 and 96 hours

after injection of 3 µg/g bw IMO or 96 hours after PBS injection. Arrows indicate areas

of lymphocyte concentration.
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Figure 4
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Figure 3.4: Type I and II interferons mediate the response to IMO in mouse

liver C57Bl/6, IFNAR KO and IFN-γ KO mice were injected subcutaneously with 3 µg/g

bw IMO and liver samples were collected at indicated time points post-administration.

(A, B) STAT1, STAT2 and STAT3 phosphorylation as well as total STAT1 protein levels

induced by IMO treatment were assessed by immunoblot with specific antibodies (C, D)

IMO-induced expression of SOCS1 and STAT1 was quantified by RT-qPCR. The data

are plotted as the amount of SOCS1 or STAT1 mRNA relative to RPL19 mRNA (mean

and SEM). (E) mIFN-γ protein concentration was measured in the serum of WT mice in

response to an injection of 3 µg/g bw IMO. The data are plotted as mean and SEM.
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Supplementary Figure 1
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Figure 3.5: A) C57Bl/6 mice were injected subcutaneously with IMO (0.3, 1 or 3 µg/g

bw) and the liver samples were collected at indicated time points post-administration.

STAT1 phosphorylation as well as total STAT1 protein levels induced by the treatment

were assessed by immunoblot with specific antibodies. B) Expression of TLR9 was quan-

tified by RT-qPCR in mouse spleen, isolated non-parenchymal liver cells (NPLC) and

hepatocytes (C57/Bl6 mice). The data are plotted as the amount of TLR9 mRNA rela-

tive to RPL19 mRNA (mean and SEM).
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4 Discussion

4.1 Differential sensitivites of IFNs-α, -β and -λ to the neg-

ative feedback mechanisms of the Jak-STAT pathway

Over 20 years ago it has been demonstrated that cultured cells continuously exposed

to IFN-α mount an initial transcriptional response which is followed by a long-lasting

(up to 72 hours) refractory period. During this time, expression of IFN-stimulated

genes was attenuated and re-stimulation with IFN was uneffective in re-inducing the

signalling [85]. More recently it has been demonstrated that the same phenomenon

occurs in vivo in mouse liver [84]. Experiments with knock-out mice showed that

this refractory period following IFN-α exposure was specifically mediated by USP18

protein. Whereas the phenomenon of IFN-induced desensitization was described for

IFN-α, it has not been studied whether it also affects other IFN subtypes.

In our present work we have investigated the Jak-STAT pathway activation and

induction of IFN-stimulated genes in the setting of continuous and repeated admin-

istration with IFN-α, -β and -λ. In agreement with previous studies, we found that

IFN-α-mediated signalling was almost completely abrogated in the cells or in vivo

in the mouse liver when the cytokine was administered repeatedly. In contrast, the

Jak-STAT pathway activation achieved by treatment with other type I IFN, IFN-β,

was only marginally reduced through pretreatment of cultured cells or mice with

IFN-α or -β. Similarly, the signalling induced by type III IFN was not attenuated

by previous exposure to type I or III IFNs.

USP18 reduces signalling through the Jak-STAT pathway by specific binding

of its C-terminal domain to the IFNAR2 subunit of the type I IFN receptor and

restricting the access of the Jak1 kinase to its docking site at the receptor (Figure 1.3)

[89]. Given this mechanism of action, it is not unexpected that the signalling which

proceeds through IFN-λ receptor is intact despite high levels of USP18 resulting from

previous IFN exposure. On the other hand, IFNs-α and IFN-β bind to the same

receptor, but still exhibit differential sensitivity to USP18-mediated refractory state.

Experimental evidence suggests that IFN-β has higher affinity to IFNAR2 compared

to IFN-αs [180]. It is possible that such different affinity bindings may result in

different conformational changes to the receptor molecules, affecting protein-protein

interactions of the intracellular part of IFNAR2 and therefore leading to distinct

sensitivities to inhibition by USP18. A different mechanism has been postulated by

Francois-Newton and colleagues, whereby USP18 binding to the intracellular portion
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of IFNAR2 would specifically inhibit the binding of IFN-α to the receptor on the

cell surface [181].

Pegylated IFN-α is the backbone of chronic hepatitis C therapies, with cure

rates ranging from 50 to 80% [43, 44]. It is conceivable that the USP18-mediated

attenuation of IFN-α signalling underlies the mechanism of treatment non-response.

In particular, it has been shown that patients who do not respond to the peg-

IFN-α and ribavirin treatment have elevated levels of IFN-stimulated genes in the

liver already before the commencement of the therapy [110]. One of the highly

upregulated genes is USP18. Following the first therapeutic injection of peg-IFN-α

these patients do not show efficient STAT1 phosphorylation in the hepatocytes or

further IFN-stimulated gene induction in the liver. In contrast, the patients whose

endogenous IFN system is not preactivated before the antiviral treatment respond

fully to the therapeutically administered IFN-α and eventually succeed in clearing

the HCV infection completely.

4.2 IFN-γ response in the liver during acute phase of hep-

atitis C virus infection

The first 6 months after HCV transmission are classified as the acute phase of the

infection. During this time the patients have a considerable chance (about 30%) of

clearing the infection spontaneously, without the need for antiviral therapy. With

the time, as the infection progresses to the chronic phase, the odds for spontaneous

cure drastically decrease. When treated with peg-IFN-α-based therapy, almost all

patients with acute HCV monoinfection respond by eradicating the virus, a stark

contrast to the patients in the chronic phase of the disease, when only about a half of

the patient population can be cured with this regimen. These discrepancies suggest

that the host-virus interactions during HCV infection change with progression to

chronicity. To gain an insight into the nature of this change we investigated the

host hepatic response during the late phase of acute HCV infection in humans and

compared it to the chronic hepatitis C situation. We found evidence of a strong

activation of the IFN signalling in liver biopsy samples obtained 2-5 months after

the transmission of HCV infection. This activation of the Jak-STAT pathway was

accompanied by a significant upregulation of IFN-γ, but not IFN-α target genes,

marking an important difference to the preactivated state observed in the liver of the

chronic hepatitis C non-responder patients. The source of the IFN-γ in the liver were

the infiltrating CD8-positive T cells found in the direct proximity of the hepatocytes
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showing nuclear phospho-STAT1 signals. These data are in line with the previous

findings from the chimpanzee model of acute HCV infection, where elevated levels

of IFN-γ and CD8-positive T cell infiltrates in the liver are noted several weeks after

HCV transmission. These observations usually coincide with elevated levels of liver

enzymes and transient or permanent suppression of HCV viral load.

The lack of induction of type I IFN-specific target genes in the liver of the acute

hepatitis C patients despite ongoing viral replication could be explained by HCV

interference with the immune system. However, contrary to the chronic hepatitis C

situation, we could not detect MAVS cleavage in any of the acute hepatitis C pa-

tients. Moreover, strong phospho-STAT1 signals found in the liver of acute hepatits

C patients suggest that Jak-STAT signalling is not globally impaired. It remains

unclear what mechanisms circumvent type I IFN induction and/or signalling in the

liver of the patients in the acute phase of disease.

Contrary to chronically infected individuals, patients with acute hepatitis C have

an excellent, over 90% response rate to treatment with peg-IFN-α. Refractoriness

to IFN-α-based therapies in the chronic hepatitis C patients correlates with a strong

overexpression of an IFN-α, but not IFN-β or -λ inhibitor, USP18 [110]. USP18 is

a target gene of type I and III IFNs, but it is only weakly induced by IFN-γ. IFN-

γ stimulation is the main source of IFN target genes expression during the acute

phase of HCV infection. Accordingly, no elevations in USP18 transcript or protein

levels were found in the liver of acute hepatitis C patients. Moreover, it has been

demonstrated that silencing of USP18 potentiates the ability of IFN-α to inhibit the

replication and virion production of HCV in the cell culture model system which

reproduces the full cycle of viral replication. Consequently, the lack of induction of

USP18 in the liver of acute hepatitis C patient might explain the excellent treatment

response rates in this group. USP18 could represent a potential therapeutic target

for improving IFN-α responsiveness of the patients with preactivated endogenous

IFN system.

4.3 Sequential induction of type I and II IFNs in response

to a novel TLR9 agonist

Synthetic TLR agonists induce innate immune responses and regulate adaptive im-

munity by stimulating the signalling through the toll-like receptor pathways which

evolved to detect and respond to microbial infections. This therapeutic strategy

is currently intensively investigated in a number of clinical trials. TLR agonists
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are tested in a variety of applications including cancer, viral infections, allergy and

asthma as well as use in vaccine adjuvants. Three TLR agonists are currently ap-

proved for use in humans: bacillus Calmette-Guerin (TLR4 agonist, an attenuated

strain of Mycobacterium bovis) is mainly used as a vaccine against tuberculosis, but

also for the immunotherapy of in situ bladder carcinoma. Monophosphoryl lipid

A (TLR4 agonist derived from the LPS of Salmonella minnesota) is included in

the formulation of a vaccine against human papillomavirus-16 and -18. Imiquimod

(TLR7 agonist, a synthetic imidazoquinoline) is employed for treatment of actinic

keratosis, superficial basal cell carcinoma and external genital warts (reviewed in

[182].

In this work we investigated the mouse liver response to IMO, a synthetic agonist

of TLR9. This compound is closely related to a TLR9 agonist IMO-2125 which is

currently developed for treatment of chronic hepatitis C. We found that a single

injection of IMO induced a prolonged activation of the Jak-STAT pathway and IFN-

stimulated gene induction in mouse liver. Repeated treatment with IMO did not lead

to decrease in STAT1 activation or IFN-stimulated gene expression, demonstrating

that contrary to IFN-α-induced signalling, there is no refractory period following

IMO administration. Microarray analysis revealed a broad transcriptional response

to IMO in the mouse liver, including production of a panel of chemoattractant

molecules. Indeed, lymphocyte infiltration was readily observed in the liver of mice

receiving IMO. Moreover, we were able to demonstrate that in vivo response to

IMO was biphasic, with initial activation relying on signal transduction through

type I IFN receptor and later an independent sustained phase of IFN-γ-mediated

signalling.

Mouse liver becomes unresponsive to IFN-α within hours after administration

and this refractory state depends on upregulation of USP18. The present work

of our group and an independent recent study showed that different IFN types

are unequally affected by the USP18-mediated negative feedback loop [181, 183].

Particularly, IFN-α-mediated signalling was demonstrated to be almost completely

abrogated by previous exposure to type I IFN, whereas IFN-β, -γ or -λ-mediated

signals were only marginally reduced. The long-lasting activation of the Jak-STAT

pathway after IMO injection is induced by IFN-γ, which is not sensitive to the

refractory state of the cells induced by USP18. The continuing strong activation of

the signalling in the context of repeated administration could provide an advantage

for TLR9 agonists such as IMO-2125 or similar compounds in the clinical setting.
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5 Outlook

Considerable efforts have been made to understand the interaction of hepatitis C

virus with the IFN system in the liver, but a number of key questions remain unan-

swered. One of the central questions is why the preactivated state of IFN-α non-

responders is completely ineffective in clearing the virus. It has been proposed that

the inability of the endogenous IFN system to combat the infection is due to the

spatial resolution of the sites of HCV replication in the liver and the hepatocytes

producing the antiviral IFN-stimulated genes. It is an attractive hypothesis, but

the advances have so far been hampered by the lack of reliable protocol for in situ

HCV detection in liver biopsies from infected patients.

Moreover, it is still not clear what subtype of IFN is responsible for the preac-

tivated state of the liver of the patients who do not respond to therapy. No upreg-

ulation of known cytokines that signal through the Jak-STAT pathway and could

explain the type I IFN-like transcriptional signature of the liver in chronic hepatitis

C non-responders has been detected. It is conceivable that an as-yet undescribed

cytokine or IFN subtype could be responsible for the observed activation.

Another central question in the field is that of the functional link between the

IL28B genotype, preactivated state of the liver and treatment non-response. SNPs

in proximity of the IL28B (IFN-λ2) gene and preactivated state of the liver are both

highly related to treatment outcomes in chronic hepatitis C. It is a matter of debate

whether the upregulation of IFN-stimulated genes in the liver is causally linked to

the IL28B polymorphisms [184, 185, 186, 187]. IL28B genotype does not appear

to impact the treatment response rates through variations in coding sequence of

IFN-λ2 or changes in its expression levels. A more complex mechanism seems to be

in play, warranting further research efforts to clarify the mechanisms of treatment

failure in IL28B minor allele carriers.
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6 Abbreviations

ALT alanine aminotransferase

CpG 2-deoxyribo-[cytidine-phosphate-guanosine]

GAS gamma activated sequence

HCC hepatocellular carcinoma

HCV hepatitis C virus

IFN interferon

IFNAR interferon alpha/beta receptor

IFNGR interferon gamma receptor

IL interleukin

IMO immunomodulatory oligonucleotide

IRAK interleukin 1 receptor-associated kinase

IRES internal ribosome entry site

IRF interferon regulatory factor

ISG interferon-stimulated gene

ISGF3 interferon-stimulated gene factor 3

ISRE interferon-stimulated response element

Jak janus kinase

miR-122 microRNA-122

NF-κB nuclear factor kappa B

NK natural killer cell

NS non-structural (protein)

OAS 2’-5’ oligoadenylate synthetase

ODN oligonucleotide

PBMCs peripheral blood mononuclear cells

pDCs plasmocytoid dendritic cells

peg pegylated

PIAS protein inhibitor of activated STAT

SNP single nucleotide polymorphism

SOCS suppressor of cytokine signalling

STAT signal transducer and activator of transcription

TIR toll-interleukin 1 receptor

TLR toll-like receptor

USP18 ubiquitin-specific peptidase 18
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