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CHAPTER

Introduction

Adapted from the introductory chapters of:

R. A. Zak, B. Rothlisberger, S. Chesi, and D. Loss,

“Quantum Computing with Electron Spins in Quantum Dots”,
La Rivista del Nuovo Cimento 33, 7 (2010).

The vision of a quantum-mechanical device performing calculations
has its origin in the search for the ultimate computer: What universal ma-
chine can efficiently simulate all conceivable algorithmic processes that
can, in principle, be carried out in nature? It was not until the eighties of
the last century that people began to leave the — by then — familiar and
well established territory of classical information theory in order to ex-
plore what more fundamental answers the quantum world might have
to offer. After all, if nature is ultimately quantum, should a computer
based on the principles of quantum mechanics not be at least equally, if
not even more powerful than a classical computer [DiV00]? Researchers
such as Feynman [Fey82, Fey86] and Deutsch [Deu85] believed that the
answer to this question is indeed affirmative when they were envision-
ing and formalizing the notion of such a quantum computer together with
its potential applications for the first time.

These early ideas came along hand in hand with major developments
in research and industry that had a tremendous influence on the future
course of quantum computing. On the one hand, groundbreaking exper-
iments [AGR81, AGR82] confirmed that Nature indeed exhibits peculiar
nonlocal behavior whose existence was heavily debated since the early
days of quantum mechanics [EPR35]. It was Schrodinger [Sch35] who
termed this phenomenon entanglement, thereby trying to capture the in-
tricate ‘tangle” that individual parties can find themselves in as a part of
the whole within a global quantum state. Entanglement is a ubiquitous

1




2 CHAPTER 1. INTRODUCTION

and arguably the most crucial ingredient in the newly emerged field of
quantum computer science [NC00, Mer07, Ved07]. On the other hand,
the boom in computer industry led to major progress in semiconductor
and laser technology. This is another requirement for building a quan-
tum computer, since the latter demands the ability to fabricate, address
and coherently manipulate single quantum systems.

Despite all of the development during the past thirty years, building
a working quantum computer that is able to perform useful calculations
remains a challenge. With this thesis, we are trying to contribute a small
piece to this puzzle by addressing three of the many fundamental ques-
tions one encounters along the way of reaching that goal. These ques-
tions are:

(i) What is an easy way to create highly entangled states as a resource
for quantum computation?

(i) What can we do to efficiently quantify states of noisy entanglement
in systems coupled to the outside world?

(iii) How can we protect and store fragile quantum states for arbitrary
long times?

The first two questions are the subject of part one of this thesis, ‘Entangle-
ment Measures & Highly Entangled States’, whereas the third question
is addressed in part two, ‘Self-Correcting Quantum Memories’. In the
following, we would like to give a short motivation for studying these
topics along with an outline of the corresponding research presented in
the rest of the thesis.

Creating Highly Entangled Quantum States

Another term for ‘entanglement’ is ‘quantum correlations’, implying that
there is something more behind it than just ‘classical correlations’. In-
deed, Bell [Bel64] has shown that within any physical theory based on
reality (observables have definite values independent of whether they
are being measured or not) and locality (measurements cannot immedi-
ately influence each other if they are sufficiently far apart), certain corre-
lations of measurement outcomes satisfy an inequality that is violated by
quantum mechanics. One can thus think of entangled states as those that
contain such strong correlations, stronger than any classical correlations
could ever be ['].

More formally, a pure state |¢)) of an m-partite quantum system is
called entangled if and only if it is not separable [HHHHO09], i.e, if it cannot

! Admittedly, this is not perfectly true, as there are states known that are entangled
in the mathematical sense, but still admit a hidden variable model within local realistic
theories [Wer89].



be written in the form

) =1¢1) @ |¢2) ® ... @ |dm), (1.1)

where the |¢;) € H;, i = 1,...,m, are states of the m Hilbert spaces #,
associated with the m individual systems. Within the context of mixed
states, a state p is analogously said to be entangled if it cannot be ex-
pressed as

JP1 ® Pz - ® Pl (1.2)

uMw

Here, the integer K (sometlmes called ‘cardinality’) satisfies KX > rank p,
the p;’s are normalized probabilities and the p’s are density operators
acting on the Hilbert spaces H,;.

Some states are more entangled than others. In the context of Bell in-
equalities, this translates into the notion that such states contain stronger
non-classical correlations and thus violate Bell inequalities by a higher
amount. But also the strength of these quantum correlations is limited,
and states that do reach this upper bound are said to be maximally non-
local. In the case of two qubits [*] with individual basis states labeled by
1) and ||), they read

) = (N @)+
%) = (1) ® 1) &
and are typically called Bell states or Einstein-Podolski-Rosen (EPR)

pairs [EPR35]. Analogously, maximally non-local states of m qubits are
of the form

el /ve, (1.3)
Do) /v, (1.4)

Wy = (1. D+ D) /V2 (1.5)

or local unitary transformations thereof. Consequently, it is natural to
define maximally entangled states as exactly those that are of the above
form.

As mentioned earlier, entanglement plays a central role within the
theory of quantum information. Virtually all protocols and algorithms
performing non-classical computations and communication tasks require
access to a source of highly or even maximally entangled states [NCO0,
Mer07]. Furthermore, entanglement has become understood to be a re-
source that can be distilled, shared, and sometimes even irreversibly lost
(see, e.g., [HHHHO09] for a recent review).

Apart from the use in quantum information theory, highly entangled
states also play the key role in experiments that try to verify the funda-
mental concepts of quantum mechanics. Especially noteworthy in this
context is the maximally entangled state of three qubits, because it can
be used to test certain non-intuitive predictions of quantum mechanics

2A qubit is a quantum two-level system.



4 CHAPTER 1. INTRODUCTION

in single-shot experiments [Mer90, Mer93], as opposed to the averaging
over many measurements required by Bell inequalities.

The first part of this thesis is devoted to a particular proposal for gen-
erating entanglement within a solid-state setup, starting in chapter 2 with
the tripartite case and continuing in chapter 3 with a generalization to
four and more qubits. The main idea there is to realize systems with
highly entangled ground states in order for entanglement to be created
by merely cooling to low enough temperatures. We have found such
states in Heisenberg exchange-coupled spin rings of the form

N N
H=—J> 8;i-Si1+b) (5 cosa; +Ssina;), (1.6)

i=1 i=1

where the S,’s are the vectors of spin-% matrices associated with spins
i = 1,... N, satisfying Sy41 = S; to close the loop. The angles oy, are
given by

ap =2m(k—1)/N, k=1,...,N, (1.7)

and parameterize the directions of local magnetic fields pointing radi-
ally outwards the ring. For ferromagnetic coupling between the spins
(J > 0) and weak magnetic fields (b < J), a highly entangled ground
state emerges as a tunnel doublet from the two degenerate classical con-
tigurations given by all spins aligned along a direction perpendicular to
the plane of the ring.

However, the nature of these systems poses an intricate obstacle: On
the one hand, the maximally entangled ground states are obtained per-
fectly only in the limit where the strength b of the external magnetic fields
goes to zero. On the other hand, the ground-state energy gap vanishes in
the same limit. At non-zero temperature, we therefore have to identify
the optimal value of b that separates the ground state sufficiently from
excited states, but at the same time does not disturb it too much.

We have addressed this issue by numerically calculating mixed-state
entanglement measures [PV07] and maximizing the latter as a function of
b. These measures are functions that try to quantify the amount of entan-
glement in a given state. While there are many entanglement measures
for pure states that can be evaluated in a straight-forward manner, mixed
states bring along the additional complication that their decomposition
into pure states is not unique. This results in a particular optimization
problem with non-linear constraints that has to be solved for each den-
sity matrix of interest. This task was considered to be rather involved
[PV07], and no general procedures were known that could deal with it in
an efficient way. A large fraction of the first part of this thesis (esp. chap-
ter 3) is thus actually concerned with the development of algorithms that
can be used to calculate entanglement measures of mixed states. These



techniques are then in turn employed to analyze the kind of spin systems
we have originally started with.

The research along these lines has led to the development of the nu-
merical library 1ibCreme, presented in chapter 4. It can handle a broad
family of mixed-state entanglement measures — so-called convex-roofs —
[UhIO0] and is written in a user-friendly and easily extendable way. We
hope that the publication of the code will prove to be a useful contribu-
tion for other researchers studying entanglement of mixed states.

Self-Correcting Quantum Memories

The second part of the thesis addresses the question how to reliably store
quantum states long enough to perform useful calculations. Every com-
puter, be it classical or quantum, needs the information it processes to
be protected from corruption caused by faulty gates and perturbations
from interactions with its environment. However, quantum states are
much more susceptible to these adverse effects than classical states, mak-
ing the manipulation and storage of quantum information a challenging
task. Therefore, and despite the fact that coherence times of physical
qubits have been constantly increasing over recent years, the use of quan-
tum error correction still is, and probably always will be an unavoidable
prerequisite for the realization of a large-scale quantum computer.

The main idea of quantum error-correcting codes is to encode a logical
state in a Hilbert space of a larger number of physical qubits [Pre98]. This
redundancy can then be exploited to check the system for the occurrence
of errors without disturbing the encoded state. If such a syndrome mea-
surement is positive, the corresponding error can be corrected, thus bring-
ing the system back into its original uncorrupted state. In this way, the
encoded state of a quantum computation can in principle be protected
by actively monitoring it with sufficiently high frequency and correcting
errors whenever necessary. Unfortunately, this procedure brings along a
substantial overhead and thereby makes an already involved endeavor
even more complicated.

A therefore desirable alternative approach is to encode information in
physical systems that already possess some kind of ‘built-in” error pro-
tection mechanism [DKLP02]. The prime source of inspiration in this
context is the storage of classical information (in the form of bits) as the
magnetization direction of small magnetic regions. In the ordered phase
of such systems, the ferromagnetic exchange interaction favors spin flips
caused by thermal fluctuations to be reverted rather than spread further
across the system. A spontaneous change of the magnetization thus be-
comes less and less likely for increasing system size and is virtually im-
possible already at microscopic length scales. Analogously, a self-
correcting quantum memory would be a system that could store encoded
quantum states for arbitrary long times at large enough system size.
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Promising candidates for this are systems exhibiting topological order,
because they are robust against local perturbations, and information en-
coded in the ground state can only be manipulated in a non-local fash-
ion [NOQ9]. In this context, arguably the best studied model is Kitaev’s
toric code [Kit03]. Its Hamiltonian consists of a sum of mutually com-
muting local four-body spin operators defined on a lattice with periodic
boundary conditions, a torus. Encoded states can only be manipulated by
applying string-like logical operators that fully wrap around the torus. A
major drawback of the toric code is though, that it is not stable within a
thermal environment [NOO08, KC08, AFH09, BT09, CLBT09]. Its elemen-
tary excitations, which are frozen out at zero temperature 7', can diffuse
freely on the surface of the torus for any 7" # 0. While doing so, these so-
called anyons leave behind traces of errors that eventually act as random
logical operators, therefore irreversibly corrupting any encoded informa-
tion.

In chapter 5, we extend the toric code by repulsive long-range inter-
actions between the anyons and show that this makes the code stable
against thermal fluctuations. The reason for this is the suppression of
the anyon density with increasing system size. The excitation energy
diverges in the thermodynamic limit, thus keeping the system free of
anyons essentially forever. We obtained our results from an analytical
mean-field analysis on the one hand, and extensive numerical simula-
tions of the anyon dynamics on the other. An important conclusion of
our work, besides showing that this type of model is self-correcting, is
that the increase of the lifetime is very sensitive to the nature of the ther-
mal environment. The most favorable case turns out to be a super-Ohmic
bath, where not only the density, but also the diffusion of anyons is sup-
pressed by the interactions.

Finally, the last chapter of this thesis focusses on incoherent effects of
quenched disorder in the toric code and similar systems. First, we nu-
merically determine the error thresholds, that is, the fraction of errors for
which the system becomes uncorrectable, in codes obtained from ran-
domly moditying the syndrome operators of the toric code in a specific
way. It is shown that these random lattice models are advantageous over
the toric code in the presence of biased noise, where spin flip and and
phase flip errors occur with different probabilities. We further argue that
these codes have error thresholds close to the fundamental upper bound
valid for a large class of error-correcting codes. Second, we look at the in-
fluence of randomness in the anyon onsite energies of Kitaev’s toric code.
We have discovered that an increase in the strength of this randomness
can extend the lifetime of encoded states. We then explain this effect with
the disorder-induced suppression of the anyon diffusion.
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CHAPTER
Tripartite Systems

Adapted from:

B. Rothlisberger, J. Lehmann, D. S. Saraga, P. Traber, and D. Loss,
“Highly Entangled Ground States in Tripartite Qubit Systems”,
Phys. Rev. Lett. 100, 100502 (2008).

In this chapter, we investigate the creation of highly entangled ground
states in a system of three exchange-coupled qubits arranged in a ring
geometry. Suitable magnetic field configurations yielding approximate
GHZ and exact W ground states are identified. The entanglement in the
system is studied at finite temperature in terms of the mixed-state tangle
7. By generalizing a conjugate gradient optimization algorithm origi-
nally developed to evaluate the entanglement of formation, we demon-
strate that 7 can be calculated efficiently and with high precision. We
identify the parameter regime for which the equilibrium entanglement
of the tripartite system reaches its maximum.

2.1 Introduction

Entangled quantum systems have been the focus of numerous theoretical
and experimental investigations [EPR35, Bel64, AGR82, Wer89, GHZ89,
DVCO00]. In particular, entanglement has been identified as the primary
resource for quantum computation and communication [NC00]. Com-
pared to the case of a bipartite system, multipartite entanglement exhibits
various new features. Notably, there are two different equivalence classes
of genuine three-qubit entanglement [DVCO0], the representatives being
any one of the two maximally entangled Greenberger-Horne-Zeilinger
(GHZ) states [GHZ89] |GHZ*) = (|111) % [141))/v/2 on the one hand,
and the W state [DVC00] |W) = (|111) + [141) + [411))/v/3 on the other.

9



10 CHAPTER 2. TRIPARTITE SYSTEMS

The ability to realize both representatives in real physical systems is thus
of high importance in the study of genuine tripartite entanglement. Par-
ticularly interesting is the GHZ state, as it represents the strongest quan-
tum correlations possible in a system of three qubits. Furthermore, it is
equivalent to the three-qubit cluster state used in one-way quantum com-
putation [RBBO03]. It is favorable to obtain the GHZ and W states as the
eigenstate of a suitable system, rather than by engineering them using
quantum gates. In this chapter, we demonstrate the possibility of obtain-
ing approximate GHZ and exact W states as the ground state of three
spin-qubits in a ring geometry coupled via an anisotropic Heisenberg in-
teraction. The use of quantum gates is therefore not required. Rather, the
desired states are achieved merely by cooling down to sufficiently low
temperatures. We state all our results in terms of the exchange coupling
strengths in order to keep our proposal open to a broad set of possible
implementations of the qubits. We remark that, while Heisenberg mod-
els have been studied frequently in the context of entanglement [Bos03]
(also with respect to entangled eigenstates [RR02]), this is the first time
that highly entangled states are reported as the non-degenerate ground
state of three exchange-coupled qubits.

Our study inevitably involves the issue of quantifying entanglement
[PV07, MCKBO05, BDSW96, CKW00, WGO03]: At finite temperatures, the
mixing of the ground state with excited states forces us to evaluate a
mixed-state entanglement measure in order to study the entanglement
in the system meaningfully. Computationally, this is a rather formidable
task. We generalize a numerical scheme that has originally been devel-
oped to compute the entanglement of formation [BDSW96, AVDMO1].
Our scheme can be used to evaluate any mixed-state entanglement mea-
sure defined as a so-called convex roof [Uhl00].

2.2 Model

We assume that three spins S;, with S = 1/2, are located at the corners
i = 1,2, 3 of an equilateral triangle lying in the zy-plane. Their interaction
is described by the anisotropic Heisenberg Hamiltonian

3 3
H = —Jyy Z(stfﬂ + S?Szyﬂ) —J: Z Sz'ZSiZH + Hy, (2.1)

i=1 =1

where S, = S,. Here, J,, and J, are the in- and out-of-plane exchange
coupling constants, respectively, and H, = Zle b; - S; denotes the Zee-
man coupling of the spins S; to the externally applied magnetic fields b,
at the sites i [']. We now seek a configuration of b;’s yielding a highly

!Depending on the actual implementation of the qubits, b; can denote an effective
magnetic field.
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Figure 2.1: (a) Schematic depiction of the system described by the Hamil-
tonian (2.1) for J,, = J. = J and radial magnetic field configuration.
Three spins S; are situated at the corners of an equilateral triangle and are
ferromagnetically exchange-coupled with coupling strength J. Local ra-
dial in-plane magnetic fields b; (shown as green arrows in the zy-plane)
point radially outwards. As discussed in the text, any other in-plane field
geometry obeying the same radial symmetry (such as, e.g., a ‘chiral’ field
looping around the triangle) leads to equivalent results. (b) Classical en-
ergy surface E, of the system shown in the top panel. The ‘mean’ angles
¥ and ¢ (introduced in the top panel) are well suited to characterize the
state of the system since fluctuations around these angles are small for
b < J and sum to zero. The superimposed white line shows the pertur-
batively calculated energy barrier at ¢ = 7/2 [see Eq. (2.2)], whereas the
crosses are due to a corresponding numerical minimization of the energy.

entangled GHZ- or W-type ground state. Finite-temperature effects will
then be studied in a second step.
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2.3 Ground-state properties

We first consider isotropic exchange couplings, i.e., J,, = J., = J. For
b, = 0, we naturally find two fourfold-degenerate eigenspaces due to
the high symmetry of the system. For J > 0, i.e., ferromagnetic cou-
pling, the ground-state quadruplet is spanned by the two GHZ states
|GHZ®), the W and the spin-flipped W state. Appropriately chosen mag-
netic fields allow one, however, to split off an approximate GHZ state
from this degenerate eigenspace. To identify the optimal field geometry,
we first observe that the two states |GHZ*) have the form of a tunnel
doublet. If we thus find a set of b;’s, which, in the classical spin sys-
tem, results in precisely two degenerate minima for the configurations
1 and ||| with an energy barrier in between, quantum tunneling will
yield the desired states. In order to single out exactly the two directions
perpendicular to the zy-plane, the magnetic fields must be in-plane, be
of the same strength, and sum to zero. This immediately implies that
successive directions of the fields must differ by an angle of 27/3 from
each other. We choose the fields to point radially outwards [see Fig. 2.1],
although any other configuration possessing the required symmetry is
equivalent. However, this setup is experimentally most feasible, e.g., by
placing a bar magnet below the center of the sample (in the case of a solid
state implementation). In order to favor parallel spin configurations we
consider the regime where J > b, b = |b;| being the Zeeman energy.
We may thus assume that for given mean spherical angles ¥ (zenith) and
¢ (azimuth), the orientation of each spin will deviate from these values
only by a small amount. Expanding the classical energy E.(¢, %) corre-
sponding to Eq. (2.1) to second order in these deviations and minimizing
with respect to them under the constraint that they separately sum to
zero yields:

2
E. =~ —(b/TJ)(S + cos 20) +

3
b/ J)° sin (3) sin® V. (2.2)
24
This expression is minimal for ¥ = 0 and ) = 7, representing the de-
sired configurations. The paths in ¢ with lowest barrier height connect-
ing these two minima are found for values of ¢ = —7/6+27n/3 mod 27,
n = 0,1, 2, reflecting the rotational symmetry of the system [see Fig. 2.1].
The corresponding barrier height is approximately given by [(b/J)? —
(b/7)°/6]/4 2]
Next we return to the quantum system. The Hamiltonian (2.1) with
isotropic exchange coupling J and radial magnetic field can be diago-
nalized exactly. Expanding for b/J < 1, the overlap probabilities of the

2Using semiclassical path integration techniques [LDG92], we can calculate the tun-
nel splitting from Eq. (2.2). However, such a procedure gives accurate results only for
large spins (S >> 1) and is thus not pursued here.
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exact ground state |0) with |[GHZ"),,, and the exact first excited state |1)
with |GHZ™),..., respectively, are identical to second order and are given
by |1.u.(GHZT|0)|? = |1, (GHZ|1)|* ~ 1 — $(b/J)? ('l.u.” indicates that the
states are equivalent to GHZ states via local unitary transformations).
The associated energy splitting is given by AFy; ~ 2(b/J)%/3 (see in-
set of Fig. 2.2). This confirms the above semiclassical considerations in
terms of tunnel doublets. Moreover, we see that the ground state can
only approximate a GHZ state although this approximation will turn out
to be very good even at finite temperatures where mixing with excited
states additionally decreases the entanglement. Before discussing this in
greater detail, we study the ground-state of the general anisotropic case
with J,, # J, in the Hamiltonian (2.1).

When J,, # J, it is possible to generate highly entangled states by
applying a spatially uniform magnetic field either perpendicular to or in
the zy-plane. Indeed, a field along the z-axis, i.e., b, = be,, i = 1,2,3,
with b > 0 yields an exact W state as ground state if J,, > 0 and b <
Jzy — J. (note that this implies the condition J,, > J.). The optimal
Zeeman energy b, leading to the highest energy splitting AE,,; between
the ground state and the first excited state is given by bop, = (Joy — J.)/2.
This yields AE,, = 3J,,/2 if J, < —2J,, and AE,, = (Jyy — J.)/2
otherwise. The W state is thus best realized by choosing b = b, together
with a temperature sufficiently small compared to AFE,,. In order to
obtain a GHZ state, one has to apply an in-plane magnetic field b, =
be,. In this case we find for J, > 0, —2J, < J,, < J, a situation similar to
the one in the case of isotropic coupling and radial magnetic field: The
ground state converges to a GHZ state for vanishing field but also the
energy difference to the first excited state goes to zero in this limit.

2.4 Entanglement measure

Below, we will quantitatively study the effects of finite temperature 7" > 0
on the amount of entanglement present in the system. For this purpose,
we evaluate a suitable mixed-state entanglement measure of the canon-
ical density matrix p of the system. The three-tangle, or simply tangle
7, (originally called residual entanglement), is an entanglement measure
for pure states 1)) € H; ® Ha ® Hs of three qubits. It reads [CKWO0O]

7(|¢)) = 4det Tro 3 p, — C*(Trs pp) — C*(Tra py), (2.3)

where p, = |¢¥) (|, Tr; denotes the partial trace over subsystem i, and
C is the two-qubit concurrence [Wo098]. The tangle takes values be-
tween 0 and 1 and is maximal for GHZ states. It is also known that
7, is an entanglement monotone [DVCO00]. The generalization of pure-
state monotones to mixed states is given by the so-called convex roof
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[Uh100, MCKBO05, LOSU06]. Accordingly, the mixed-state tangle 7 is de-
fined as

7(p) =

o ) 2 PTY) 4
Here, D (p) denotes the set of all pure-state decompositions {p;, |1;) }1,
of p, with S5 pil) (W] = p, s > 0, .5 pi = 1and K > R = rankp.
The above definition of 7 ensures that 7(p) = 7,(|¢))) if p = [¢)(¢|, and
that 7 itself is an entanglement monotone [MCKBO05].

2.5 Numerical evaluation

In order to tackle the optimization problem in Eq. (2.4) numerically, the
set of all pure-state decompositions ©(p) needs to be given in an explic-
itly parameterized form. It is known [HJW93, Kir05] that every pure state
decomposition {p;, [¢;)}X, of p is related to a complex K x R matrix U
satisfying the unitary constraint UTU = 1pyp, ie., a matrix having or-
thonormal column vectors [?]. In fact, the set of all such matrices, the
so-called Stiefel manifold St(K, R), provides a complete parameteriza-
tion of all pure-state decompositions {p;, |1;)}}£, € D(p) of p with fixed
cardinality K. The minimization problem in Eq. (2.4) can thus be rewrit-
ten as

flp) =min it h(U, p), (2.5)
where in our case h is the sum over the weighted pure-state tangles with
probabilities and state vectors obtained from p via the matrix U. Prob-
lems of this kind are considered to be extremely difficult to solve in gen-
eral [PV07]. We have performed the minimization over the Stiefel man-
ifold numerically using the method described below. We have found
that the thereby obtained values converge quickly as K is increased, and
have thus fixed K = R + 4 throughout all of our calculations, yielding
an accuracy which is by far sufficient for our purpose (note that decom-
positions with smaller cardinality are contained as well). The numerical
method we used is a generalization of the conjugate gradient algorithm
presented in Ref. [AVDMO1]. It is however only suited for searching
over the unitary manifold St(K, K). At the cost of over-parameterizing
the search space, we have to minimize over K x K matrices using only
the first R columns. The iterative algorithm builds conjugate search di-
rections X (skew-hermitian K x K matrices) from the gradient G at the
current iteration point U and the previous search direction using a mod-
ified Polak-Ribiere update formula. A line search along the geodesic

3Given p and U with UTU = 1ryxr, {pi, |1:)}I, is obtained as p; = (¢;];), [v;) =

(1/\/]97)|1/~11>, where [¢;) = Zle Uijv/Ajlx;) and |x;) are the R eigenvectors of p with
non-zero eigenvalues ;.
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g(t) = Uexp(tX) going through U in direction X is performed in ev-
ery step. In Ref. [AVDMO1], an analytical expression for the gradient
G is given in the case where f is the entanglement of formation. The
algorithm is however also applicable to a generic convex-roof entangle-
ment measure f of the form (2.5). We find the matrix elements G, of the
general gradient G to be

ij = (Ajk - Am)/? + 1(Sjk + Skj)/Q, (2.6)
where
K
oh oh
Ajy, = i+ =————— Im Uy, 2.7
Jk ; <8ReUik Relis + 5 tm mU”) ’ @7)
K
oh oh
e " PSR | ) .
Sik=Y_ < Tt BV ~ FRetc mUm> (2.8)

The derivatives of h with respect to the real and imaginary parts of Uy,
Re U, and Im Uy, respectively, are taken at U and can be evaluated nu-
merically using finite differences. We have tested our implementation by
comparing our numerical results to known analytical results. The maxi-
mal encountered absolute error was smaller than 10~ for the entangle-
ment of formation of isotropic 2 x 2 states [TV00], 1072 for 3 x 3 states
and 107! for the tangle of a GHZ/W mixture [LOSUO06]. This suggests
that, although our method can only provide an upper bound, this bound
is very tight. It was shown only recently that also a (typically tight) lower
bound on any entanglement monotone can be estimated using entangle-
ment witnesses [GRWO07, EBaA07]. This is an interesting subject which is
left for future research.

2.6 Finite temperature

We return to the study of the three qubits described by the Hamiltonian
(2.1). Using the generalized conjugate gradient algorithm, we are able to
investigate the entanglement as a function of the temperature 7', the mag-
netic field strength b and the exchange couplings J,, and J, by calculat-
ing the mixed-state tangle 7(p), where p = exp(—H/kgT')/ Trexp(—H /kgT)
is the canonical density matrix of the system. To our knowledge, this is
the first time that 7(p) has been evaluated for states arising from a phys-
ical model. Our main goal now is to maximize the entanglement as a
function of b = |b,|, i.e., the Zeeman energy. For this purpose we con-
sider only GHZ states in the following, since our W ground states are b-
independent (see above). In the system with isotropic exchange coupling
J > 0 and radial magnetic field, the tangle 7 tends to zero for b/J — 0
due to the vanishing energy splitting AF); (see Fig. 2.2). We remark that
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Figure 2.2: The tangle 7 of the system with isotropic positive (ferromag-
netic) coupling J and radial magnetic field as a function of b/.J for dif-
ferent temperatures 7' = 10~*J/kp (dashed line), 1073J/kp (dash-dotted
line), 1072J/kp (dash-dot-dotted line) and 5 x 1072J/kp (dotted line).
Note the twofold influence of the temperature on 7: Although higher
temperatures reduce the maximally achievable entanglement, a stabi-
lizing effect is observed as well. A maximum in the tangle is more ro-
bust against fluctuations in b at higher temperatures due to the less rapid
drop-off of 7 as b/J is reduced. Conversely, 7 of the approximate GHZ
ground state |GS) (I' = 0, red line) shows a discontinuity at b = 0,
where 7(p) = 0. For b >0, we find the simple algebraic expression
7,(|GS)) = (3 — 8b/J)/C + 2//C, where C' = 9 + 4b(4b/J — 3)/J. In-
set: Energy splitting AEy; of the ground-state doublet as a function of
b/J.

this behavior is discontinuous at 7' = 0, where 7(p) — 1 for b/J — 0,
but 7(p) = 0 at b = 0. With larger b/.J, the ground state contributes
dominantly to p but simultaneously deviates increasingly from a GHZ
state. The entanglement in the system is therefore reduced (cf. solid line
in Fig. 2.2). For a given temperature, the maximal tangle 7,,, is therefore
obtained at a finite optimal value (b/.J), of the scaled magnetic field
strength as a trade-off between having a highly entangled ground state
and separating the latter from excited states in order to avoid the nega-
tive effects of mixing. For low temperatures 7' < 1072 /kg, we numeri-
cally find the power laws (b/.J)opt o (kgT'/J)* and 1 — Tyay < (ksT/J)?
with the exponents a ~ 0.30 and 8 ~ 0.63. Specifically, we obtain
7(p) = 0.98 (0.92) for T' = 107*J/kg (1073J/kg) and b = 0.11J (0.21J).
Apart from the effect of reducing 7.y, finite temperatures also possess
the advantageous feature of broadening the discontinuity of 7 at 7" = 0
and b = 0 which makes 7,,,x more stable against fluctuations of b around
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Figure 2.3: Top: Maximally achievable tangle 7., in the anisotropic sys-
tem (GHZ ground state) with homogeneous in-plane magnetic field and
J. > 0 as a function of temperature for six anisotropy ratios J,,/J. (see
legend). The curves end at 7(p) = 107°. Bottom: The corresponding
optimal values (b/.J, ).t of the scaled magnetic field strength b/.J..

bopt (see Fig. 2.2).

We finally come back to the general anisotropic model (2.1) with .J,,, #
J. subject to a homogeneous in-plane magnetic field. In Fig. 2.3 we
show the maximally achievable tangle 7., (optimized with respect to
b/J.) as a function of temperature for various anisotropy ratios J,,/.J.
(where, as before, J, > 0). Since we are interested in high values of
Tmax, an arbitrary but low cutoff was introduced in the calculation at
7(p) = 1075, The lower panel of Fig. 2.3 depicts the corresponding op-
timal field values (b/J,)opt. At low temperatures 7', a power-law depen-
dence of (b/J.)opt On T' is observed, similar to the above isotropic case.
Note that a higher amount of entanglement can be realized in systems
with stronger anisotropies. E.g., for Ising coupling (./J,,/J. = 0) we find
7(p) = 0.98 (0.89) for T = 10~%.J /kg (10=3.J/kg) and b = 0.080.J, (0.16.J.).
AtT = 107*J/kg but with J,,/J, = 0.9, still a very good value 7(p) = 0.90
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is achieved for b = 0.016.J,. We remark that still higher tangles are ob-
tained for negative (antiferromagnetic) J,, > —2.J.. In this case, the max-
imal tangle as a function of 7" decays even more slowly than the curves
displayed in the top panel of Fig. 2.3.

Possible implementations of the qubits include GaAs and InAs quan-
tum dots, InAs nanowires or single-wall carbon nanotubes. Assuming
a typical value of |J| ~ 1meV [CCGL05, HKP*07] we obtain 7 ~ 0.9 at
T ~ 10mK and B ~ 2T (assuming a g-factor of |g| = 2). Ferromagnetic
coupling is achieved by operating the dots with more than one electron
per dot.

2.7 Conclusion

We have found highly entangled states in the case of isotropic, ferromag-
netic exchange coupling and an applied radial magnetic field, as well as
in the case of anisotropic coupling and a homogeneous in-plane field.
The mixed-state entanglement measure we have used to study the ef-
fects of finite temperatures has been evaluated numerically for the first
time for general states. Due to the generic formulation of the numeri-
cal scheme implemented here, entanglement in systems with more than
three parties can be investigated further.



CHAPTER

Algorithms and Multipartite
Systems

Adapted from:

B. Rothlisberger, . Lehmann, and D. Loss,
“Numerical evaluation of convex-roof entanglement
measures with applications to spin rings”,

Phys. Rev. A 80, 042301 (2009).

We have successfully applied a numerical algorithm to evaluate the
mixed-state tangle of three qubits in the previous chapter. Here, we
generalize this idea and present two ready-to-use numerical algorithms
to evaluate convex-roof extensions of arbitrary pure-state entanglement
monotones. The first one is the method from chapter 2, but is discussed
here in greater detail, whereas the second one is a quite different ap-
proach to the subject. Both their implementations merely leave the user
with the task of calculating derivatives of the respective pure-state mea-
sure. We provide numerical tests of the algorithms and demonstrate
their good convergence properties. We further employ them in order
to investigate the entanglement in particular few-spins systems at finite
temperature. Namely, we consider generalizations of the model stud-
ied in the previous chapter, i.e., ferromagnetic Heisenberg exchange-
coupled spin-2 rings subject to an inhomogeneous in-plane field geom-
etry obeying full rotational symmetry around the axis perpendicular to
the ring through its center. We demonstrate that highly entangled states
can be obtained in these systems at sufficiently low temperatures and
by tuning the strength of a magnetic field configuration to an optimal
value which is identified numerically.

19
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3.1 Introduction

Entanglement, one of the most intriguing features of quantum mechan-
ics [Sch35, EPR35], is undoubtedly an indispensable ingredient as a re-
source to any quantum computation or quantum communication scheme
[NCOO]. The ability to (sometimes drastically) outperform classical com-
putations using multipartite quantum correlations has been demon-
strated in various theoretical proposals which by now have become well
known standard examples [D]J92, CEMM98, Gro96, Sho97]. Due to the
rapid progress in the fields of quantum computation, communication,
and cryptography, both on the theoretical and the experimental side, it
has become a necessity to quantify and study the production, manipula-
tion and evolution of entangled states theoretically.

However, this has turned out to be a rather difficult task, as the di-
mension of the state space of a quantum system grows exponentially
with the number of qudits and thus permits the existence of highly non-
trivial quantum correlations between parties. While bipartite entangle-
ment is rather well understood (see, e.g., [PV07]), the study of multipar-
tite states (with three or more qudits) is an active field of research.

Several different approaches towards the study of entanglement exist.
Bell’s original idea [Bel64] that certain quantum states can exceed clas-
sically strict upper bounds on expressions of correlators between mea-
surement outcomes of different parties sharing the same state has been
widely extended and improved to detect entanglement in a great variety
of states. Entanglement between photons persisting over large distances
has been demonstrated with the use of Bell-type inequalities (see, e.g.,
Ref. [UTSM*07] and references therein). Another more recent approach
is the concept of entanglement witnesses [HHH96, Ter00]. These are ob-
servables whose expectation value is non-negative for separable states
and negative for some entangled states. Thirdly, the concept of entangle-
ment measures is focussing more on the quantification of entanglement:
if state A has lower entanglement than state 55, then A cannot be con-
verted into B by means of local operations and classical communication.
Remarkably, there exist interesting relations between entanglement mea-
sures and Bell inequalities [EB04] on the one hand, and entanglement
witnesses [GRW07, EBaA07] on the other hand. In this work, we focus
on the direct evaluation of entanglement measures.

Among the many features one can demand of such a measure, mono-
tonicity is arguably the most important one: an entanglement measure
should be non-increasing under local operations and classical communi-
cation (reflecting the fact that it is impossible to create entanglement in
a separable state by these means). A measure exhibiting this property
is called an entanglement monotone, with prominent examples being,
e.g., the entanglement of formation [BDSW96], the tangle [CKW00], the
concurrence [MKB05] or the measure by Meyer and Wallach [MW02].
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While one measure captures certain features of some states especially
well, other measures focus on different aspects of different states.

Often, entanglement monotones are defined only for pure states and
are given as analytical expressions of the state’s components in a stan-
dard basis. Unfortunately, quantifying mixed-state entanglement is more
involved. This is somewhat intuitive, since the measure needs to be capa-
ble of distinguishing quantum from classical correlations. A manifesta-
tion of this difficulty is the fact that the problem of determining whether
a given density matrix is separable or not is apparently very hard and has
no known general solution for an arbitrary number of subsystems with
arbitrary dimensions. The ability to study mixed-state entanglement is,
however, highly desirable since mixed-states appear naturally due to
various coupling mechanisms of the system under examination to its en-
vironment. There exists a standard way to construct a mixed-state en-
tanglement monotone from a pure-state monotone, the so-called convex-
roof construction [UhI00], but the evaluation of functions obtained in this
way requires the solution of a rather involved constrained optimization
problem (see Sec. 3.2).

We present in this chapter two algorithms targeted at solving this op-
timization problem numerically for any given convex-roof entanglement
measure. In principle, these algorithms can also be applied to any op-
timization problem subjected to the same kind of constraints. The first
algorithm is an extension of a procedure originally used to calculate the
entanglement of formation [AVDMO1]. It is a conjugate gradient method
exploiting the geometric structure of the nonlinear search space emerg-
ing from the optimization constraint. The second algorithm is based on
a real parameterization of the search space, which allows one to carry
out the optimization problem in the more familiar Euclidean space using
standard techniques.

In the second part of this chapter, we use these algorithms in order to
study the entanglement properties of a certain type of spin rings. These
systems form a generalization to /N qubits of our study in the previous
chapter, where we had only considered the case N = 3. In the presence
of an isotropic and ferromagnetic Heisenberg interaction and local in-
plane magnetic fields obeying a radial symmetry, it can be argued (see
sections 2.3 and 3.4) that the ground state becomes a local unitary equiv-
alent of an almost perfect N-partite Greenberger-Horne-Zeilinger (GHZ)
state [GHZ89]

IGHZY) = (It ... D £ [ ... 1) /vV2 (3.1)

Such a system could hence be used for the production of highly entan-
gled multipartite states merely by cooling it down to low temperatures.
One finds, however, that the energy splitting between the ground and
tirst excited state vanishes in the same limit as the N-partite approximate
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GHZ states become perfect, namely for the magnetic field strength go-
ing to zero. Therefore, in order to quantitatively identify the magnetic
tield strengths yielding maximal entanglement at finite temperature, one
has to study the system in terms of a suitable mixed-state entanglement
measure.

The outline of this chapter is as follows: In Sec. 3.2 we review how
the evaluation of a convex-roof entanglement measure is related to a
constrained optimization problem. We then develop and describe the
numerical algorithms capable of tackling this problem in Sec. 3.3. We
also present some benchmark tests, comparing our methods to another
known algorithm. In Sec. 3.4, we describe the spin rings mentioned ear-
lier and study their entanglement properties in terms of a convex-roof
entanglement measure evaluated using our algorithms. We conclude the
work presented in this chapter in Sec. 3.5.

3.2 Convex-roof entanglement measures as
constrained optimization problems

Given a pure-state entanglement monotone m, the most reasonable prop-
erties one can demand of a generalization of m to mixed states are that
this generalization is itself an entanglement monotone, and that it prop-
erly reduces to m for pure states. A standard procedure which achieves
this is the so-called convex-roof construction [Uhl00, MCKBO05]. Given
a mixed state p acting on a Hilbert space H of finite dimension d, it is
defined as

M(p)= inf sz (1)), (3.2)

{pz le }69

where
D(p) = {{ps [y 5 > rankp | {9}y C H,

pi =0, Zpi =1 p= ZPZWJWZ‘} (3.3)
i—1 i—1

is the set of all pure-state decompositions of p. Note that the pure states
|¢;) are understood to be normalized. The numerical value of M (p) is
hence defined as an optimization problem over the set ®(p).

In order to apply numerical algorithms to this problem, ©(p) must
be accessible in a parametric way. This parameterization is well-known
and is often referred to as the Schrédinger-HJW theorem [HJW93, Kir05],
which we briefly outline here for the sake of completeness.

Let St(k,r) denote the set of all k& x r matrices U € C**" with the
property U U = 1,4, i.e., matrices with orthonormal column vectors
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(hence we have k > r). The first part of the Schrodinger-HJW the-
orem states that every U € St(k,r) yields a pure-state decomposition
{pi, [i) Yo, € D(p) of the density matrix p by the following construction.
Let \;, | Xz> i =1,...,r = rank p denote the eigenvalues and correspond-
ing normalized eigenvectors of p,ie.,

p= Z Ailxi) (Xl - (3.4)

Note that we have \; > 0 since p is a density matrix and as such a positive
semi-definite operator. Given a matrix U € St(k,r), define the auxiliary
states

) =D Ugv/Ajlxg),  i=1,... k. (3.5)
j=1
It is then readily checked that
Pi = (&zwz% (3.6)
[¥i) = (1/vPi)l¥i) 37)

is indeed a valid decomposition of p into a convex sum of k projectors.

The second part of the theorem states that for any given pure-state de-
composition {p;, |1;) }*_, of p, there exists a U € St(k,r) realizing the de-
composition by the above construction. This guarantees that by search-
ing over the set St(k,r) and obtaining the decompositions according to
the Schrodinger-HJW theorem, we do not “miss out” on any part of the
subset of D(p) with a fixed number of states k. The parameterization is
thus complete, i.e., searching the infimum over St(k,r) is equivalent to
searching over all decompositions with fixed so-called cardinality k. This
allows us to reformulate the optimization problem Eq. (3.2) as

M(p) = mi inf h .
(r) rl?Zl?Ue}Srtl(k,r) (), (38)

where h(U) is the sum on the right-hand side of Eq. (3.2) obtained via the
matrix U from p, i.e.,

sz m(|ei(0))). (3.9)

Note that we have dropped the p-dependence in the above expressions,
since p is fixed within a particular calculation and only the dependence
of h on U is of relevance in the following.

It is clear that in a numerical calculation only a finite number of dif-
ferent values for k can be investigated. However, it is also intuitive to
expect that for some large enough value of %, increasing the latter even
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further has only marginal effects. In fact, we have observed numerically
that already £ = rankp + 4 yields very accurate results in all tests we
have performed (also in the ones presented in Sec. 3.3), and we have
used this choice throughout all numerical calculations within this work.
Note that for a fixed value of £, also all other decompositions with cardi-
nality smaller than k are considered as well, since the probabilities p; in
the elements of ©(p) are allowed to go to zero (with the convention that
the corresponding states |¢;) are then discarded).

Since the algorithms presented in the next section will both be gradient-
based, the derivatives of Eq. (3.9) with respect to the real and imaginary
parts of U evaluated at U will be required at some point. We state them
here for the convenience of the reader. They are given by

oh
TReT, 2\ Re(Ur)m(|vn(U)))
d
- om om
+ Re ¢z + Tm ¢ ’ ] :
izl B ORev O | 1y BEOIm YO | oy
(3.10)
oh
Tl 20 Im(Up)m (¢ (U)))
d
om om
Im
+; R¢IklaRdJ )>+ ¢Iklal wz) ))]’
(3.11)
where

PR (U [\/pk IAIx) — N Re(Uw) |von(U )>], (3.12)
91a(U)) = [iV/e @M = N Im(Ua) e (U)], (313)

and superscripts such as in 1)) denote the ith component of the state |1)
in an arbitrary but fixed basis.

As a last remark, we would like to point out that the constraint set
St(k,r) is, in fact, a closed embedded submanifold of C**", called the
complex Stiefel manifold [AMS08]. The geometric structure emerging
thereof is exploited in one of the two algorithms following shortly. The
dimension of the Stiefel manifold is dim St(k,r) = 2kr — r? [AMS08].
Since we have k > r,wecansetk = r+n,n = 0, 1, .. .. The number of free
parameters N in the optimization is thus NV = r? 4+ 2nr. Hence, N Srows
linearly with n, but quadratically with . The numerical evaluation in
larger systems will thus be restricted to low-rank density matrices. The
flexibility of choosing n is however less restricted. As mentioned above,
n = 4 already yields satisfying results.
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3.3 Numerical algorithms

The study of optimization problems on matrix manifolds is a rather new
and still active field of research (see [EAS98, AMS08] and references
therein). Only recently, two ready-to-use algorithms for minimization
over the complex Stiefel manifold have been presented [Man02]. To our
knowledge, these are the only general purpose algorithms applicable to
generic target functions over St(k,r) found in the literature. One is a
steepest descent-type method, the other one is of Newton-type. We will
compare the performance of the modified steepest descent algorithm, as
it is referred to in the original work, with the methods presented in this
section. We have found that our algorithms generally show better con-
vergence properties in the cases we have examined.

We will, however, not make use of the modified Newton algorithm
for the following reasons. The second derivatives (as required by any
Newton-type algorithm) of the function h(U) [Eq. (3.9)] are in general
quite involved and their number grows quadratically with the size of
U. Hence, they are very expensive to evaluate, even if one resorts to
numerical finite differences. Moreover, the good convergence proper-
ties of Newton-type methods may only be expected in the very proxim-
ity of a local minimum. One therefore first typically employs gradient-
based techniques to approach a minimum sufficiently enough. How-
ever, what ‘sufficiently enough” means in a particular case is often not
known beforehand. We will later make use of a quasi-Newton algo-
rithm, which approaches local minima satisfyingly and shows strong
convergence similar to Newton methods automatically when being close
enough to a minimum.

Generalized Conjugate-Gradient Method

In Ref. [AVDMO1] a conjugate-gradient algorithm on the unitary group
U(k) = St(k, k) was presented. The goal there was to calculate the en-
tanglement of formation also for systems with dimensions different from
2 x 2 [Woo098]. Here, we extend this result by noting that the method
is applicable to any optimization problem on St(k, k), particularly to the
evaluation of entanglement measures other than the entanglement of for-
mation, and we calculate the required general expression of the gradient
of h(U).

Optimizing over St(k, k) instead of St(k,r) comes at the cost of over-
parameterizing the search space. When using this algorithm to calculate
convex-roof entanglement measures, we simply took into account only
the first » columns of the matrix obtained at every iteration. This is cer-
tainly an aspect one could improve upon in future research.

The algorithm presented here is a conjugate gradient-type method,
meaning that instead of simply going downhill, i.e., in the direction of
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steepest descent, previous search directions are taken into account at the
current iteration step. Once the search direction X; at iteration step i, a
skew-Hermitian £ x k£ matrix, is known, a line search along the geodesic
U, exp(tX;) is performed, where U; is the current iteration point. In par-
ticular, one iteration step of the algorithm may be described as follows
[AVDMO1]:

1. Perform a line minimization, i.e., set

lit1 ¢ arg mtin h(U; exp (tX;)) (3.14)

and set
Uit1 < Usexp (ti1 Xi). (3.15)

2. Compute the new gradient G, at U;;; and set
T « exp(tiy1Xi/2)Giexp(—ti11Xi/2). (3.16)
T is the gradient G; parallel-transported to the new point U; ;.

3. Calculate the modified Polak-Ribiere parameter

<Gi+1 - T7 Gi+1>

v = ENen , (3.17)
where (X,Y) = Tr XY'T.
4. Set the new search direction to
Xiy1 < —Gip1 + 79X, (3.18)

5. i« 1+ 1
6. Repeat from step 1 until convergence.

The starting point U, can be chosen arbitrarily, and the initial search di-
rection is set to Xo = —Gy. In order to find a good approximation to the
global minimum, one should restart the procedure several times using
random initial conditions. For the line search in step 1, we utilized the
derivative-free algorithm linmin described in Ref. [PTVF92].

In the following, we calculate the general expression for the gradient
G of the function h, evaluated at the point U (we drop iteration indices for
simplicity). The gradient G is defined in terms of the directional deriva-
tive of h, namely as

dh(U) (X))

— — (G, X), (3.19)



3.3. NUMERICAL ALGORITHMS 27

where U®)(X) = V exp(cX) is a geodesic on St(k, k) in direction X (skew-
Hermitian matrix) and passing through V. The inner product is defined
as in step 3 of the algorithm. We will eventually read off the gradient G
from its definition in Eq. (3.19).

Treating h(U) as a function of the real and imaginary matrix elements
of U, Re Uj, and Im Uy, respectively, we have

dh(UO X)) 3 oh | OReUY
de =0 N — OReU |, Oe 0 (3:20)
oh | 9ImUY ’
+8111[1 Ukly 0Ot |/

The partial derivatives of i with respect to Re U;;, and Im U;;, have already

been stated in Egs. (3.10, 3.11). Inserting the derivatives of Ui(,f ! into Eq.
(3.20) and sorting all terms with respect to Re X and Im X, we obtain

%2()()) = (AuRe Xy + SpIm Xpy), (3.21)
e=0 kl
where
Ay = Z ( aff thﬂ ) Re Vi, + 81ranhUﬂ ) Im mk) : (3.22)
Sy = Z (mithﬂ ) Re Vi, — mf:Uu ) Tm mk) . (3.23)

Taking into account the symmetry conditions on X by using the relations
ReX = (X — XT)/2and Im X = —i(X + X7T)/2 we further obtain

dh(U-(X))
de

= %Z (A — Ai) — (S + Si)) Xt (3.24)
il

e=0

By comparing this to the right-hand side of Eq. (3.19), i.e.,

(G, X)=TrGX" = =) GuXu, (3.25)
kl

we finally obtain the desired expression for the matrix elements of the
gradient G,
G = (Aw — Aig)/2 +i(Sk + Si) /2. (3.26)

One readily sees that G is skew-Hermitian, as required.

By this, we have completed the description of the conjugate gradient
algorithm capable of evaluating any convex-roof entanglement measure
presented in the form of Eq. (3.8).
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Parameterization with Euler-Hurwitz angles

Here we present an alternative approach to optimization problems over
the Stiefel manifold St(k, ). We will obtain a parameterization of St(k,r)
in terms of a set of real numbers which we will call Euler-Hurwitz an-
gles, therefore unconstraining the optimization problem and mapping
it to Euclidean space, where optimization problems have been investi-
gated for much longer. We will therefore be able to employ a standard
algorithm to tackle the transformed problem Eq. (3.8) [NW99].

The idea of parameterizing St(k, r) is somewhat motivated by a theo-
rem known in classical mechanics, where it is stated that any rotation in
three-dimensional Euclidean space can be written as a sequence of three
elementary rotations described by three angles, the Euler angles. In other
words, any orthogonal 3 x 3 matrix is parameterized by three real num-
bers. It was already Euler himself who generalized this idea to arbitrary
k x k orthogonal matrices [Eul87], and Hurwitz [Hur33] extended the
parameterization to unitary matrices. We remark that ideas in a similar
fashion to the ones promoted here have been used to calculate an entan-
glement measure for Werner states [THLDO02] but were not discussed in
greater detail.

We now derive the parameterization of St(k,r). Let A € St(k,r). The
basic idea is to generate zeroes in A and bring it to upper triangular form
by applying so-called (complex) Givens rotations G4(¢, ¢) [GVL96] to A
from the left. The k x k matrices G4(v, ), s =1,...,k — 1, are defined as

(ei9cosd, if i=j=s,
e ¥sind, if i=1s,j=s541,
G (9, 0) = —e¥sind, if i=s+1,j=s, (3.27)
e ¥cost, if i=s+1,j=s5+1,
[ 0ij otherwise.

Multiplying A from the left with G, (¥, ), i.e, A = G,(¥,¢)A, has the
action

e¥ cosVAs. + e PsindAg ., if 1=,
A;. = { —e¥sin VAs. +e ¥ cosVAgpr,., if i=s+1, (3.28)
A, otherwise,

where A; . denotes the ith row of A.

Let us write the matrix elements A, ; and A,y ;, with j arbitrary but
fixed, in polar form, i.e., A, ; = ze'%» and Ay = ye'%, with z,y > 0. We
stick to the convention that the phases ¢, and ¢, be in the interval |-, 7]
in order to make this representation unique. It is now easy to see that by
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choosing
= (9y — ¢:)/2, (3.29)
9 = arctan 2, (3.30)
I
we obtain
(Gs(9,0)A)s415 =0, (3.31)

while all the other entries in the sth and (s + 1)th row have changed
according to Egs. (3.28). In the case x = 0, we set ¥ = 7/2 and ¢ = 0.
In the case y = 0, we have ¥ = 0, and we choose to set ¢ = 0 as well.
The angles ¥ and ¢ are thus restricted to the intervals ¥ € [0, 7] and
o €]—m, 7.

By successively applying Givens rotations with appropriately chosen
angles according to Egs. (3.29) and (3.30), we may now generate zeroes in
A column by column, from left to right, bottom to top. In greater detail,
we first erase the whole first column, except for the top entry which will
generally remain non-zero. Continuing at the bottom of the second col-
umn, we may generate zeros up to (and including) the third entry from
the top of the column. If we tried to make the second entry zero, we
would in general generate a non-zero entry in the second row of the first
column according to the transformation Eq. (3.28). It is convenient to
label the angles calculated during this process by two indices, and to use
the abbreviation G,(i, j) = G4(¥;, ¢;;). Eventually, we obtain a matrix R
given by

r—1 -
R=Q'A= H [H Gi(r —ik —j)| A. (3.32)

=r—i

The inner of the two products generates zeros in column r — i from the
bottom up to (and including) row number » — i + 1. The upper block
of R consisting of the first 7 rows is of upper triangular form, while the
lower block is zero. As a product of unitary Givens rotations, Q" is
itself unitary and in particular invertible. Hence, ) always exists and is
unitary. We may therefore write

A=QR=QR, (3.33)

where () € St(k,r) consists of the first r columns of Q and R is the upper
r X r block of R. Since we assumed that A € St(k,r), we have

Loxr = ATA = (QR)'QR = R'Q'QR = R'R, (3.34)

and hence, R is unitary. It is straightforward to see that a unitary upper
triangular matrix can only be of the form

Rij = (5Z'j€ixi, (335)
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i.e., a diagonal matrix with only phases on the diagonal. Again, we may
choose y; €]—m, 7.

We have thus achieved a unique parameterization of an arbitrary ma-
trix A € St(k,r) by a tuple of Euler-Hurwitz angles (¢, ¢, x) € &, where

fo— r+1

S =0, g]r(k_%) X |—m, 7["*= ) x |-, 7" (3.36)

As required, we find that the number of free parameters in this represen-
tation is equal to the dimension of the Stiefel manifold, i.e., dim St(k,r) =
2kr — 2. It is clear that the procedure described above is fully invertible.
Hence, we have obtained a one-to-one mapping F' : & — St(k,r). In
detail, this mapping, for a vector (¢, ¢, x) € &, is carried out by filling an
otherwise empty k£ x r matrix B with the entries B;; = eXi, i = 1,...7.
Then, we apply inverse Givens rotations (specified by the Euler-Hurwitz
angles ¥ and ¢) from the left to B, in inverse order with respect to Eq.
(3.32).

In conclusion, we have transformed the optimization problem Eq.
(3.8) into the new problem

M(p) = min ;gé h(F(s)). (3.37)
Due to the periodic dependence of F'(s) on the angles s, it is practical
to expand the search space from & to the whole Euclidean space, mak-
ing Eq. (3.37) a completely unconstrained optimization problem (at the
cost of over-parameterizing the search space [']). This problem can then
be solved using standard numerical techniques. In all our calculations,
we have used a quasi-Newton algorithm [NW99] together with the line
search 1inmin mentioned earlier. This method requires first derivatives
of the target function with respect to the angles. The derivatives with
respect to F' have already been stated in Egs. (3.10, 3.11), and the deriva-
tives of I with respect to the angles are obtained straightforwardly since
each angle appears only once in the product representation presented
above. In order to find a good approximation to the global minimum,
one should restart with random initial conditions several times and take
the over-all minimum.

Test Cases

Here, we briefly present some performance results of the two algorithms
presented above. We have applied them to the evaluation of two dif-
ferent convex-roof entanglement measures for which the numerical data

! Allowing the iteration points to move outside of & may result in large absolute
values of the angles, possibly leading to reduced precision in the output. Such effects
can be prevented by projecting the current iteration point back to & a few times in the
first couple of iterations.
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can be verified by analytically known results. Although our algorithms
show comparatively good performance in these cases, we would like to
stress that the efficiency of a certain method depends strongly on the type
of problem present, and may even be related to the particular instance of
the problem (see the GHZ /W example below). We have for instance also
studied certain matrix approximation problems, in some of which the
parameterized quasi-Newton method converged very poorly, whereas
the modified steepest descent and the generalized conjugate gradient
method were equally strong and very efficient. One thus cannot generi-
cally claim one algorithm to be better than the other. It is just beneficial
to have several different techniques at hand, out of which one can choose
the best-performing one when applied to a particular given problem.

Entanglement of formation of random 2 x 2 states

The entanglement of formation [BDSW96] is a popular entanglement
measure for bipartite mixed states. It is defined as the convex roof of
the entropy of entanglement [BBPS96], which is, for a state |¢), the von-
Neumann entropy S(p) = — Trplog, p of the reduced density matrix
p = Trp[1)(¢], Trp denoting the partial trace over the second subsys-
tem.

Figure 3.1 shows the convergence behavior of the algorithms applied
to ten random full-rank two-qubit density matrices. Displayed is the er-
ror at each step of the iteration between the respective iteration value and
the true result. The latter is known analytically from Ref. [Wo098].

Compared to the algorithms described here, the modified steepest de-
scent algorithm due to Ref. [Man02] (top panel) performs rather poorly.
We are aware of the fact that we are comparing here a steepest descent al-
gorithm with two superlinear algorithms. However, apart from present-
ing convergence properties, we would like to point out that the modified
steepest descent algorithm often converges to imprecise solutions, i.e., it
gets stuck in undesirable local minima. Rather than on the starting point,
this phenomenon seems to depend more on the actual density matrix it-
self.

The conjugate gradient algorithm due to Ref. [AVDMO1] (middle
panel) also shows some dependence on the form of the density matrix,
but always reaches satisfactory accuracy. The results for the parameter-
ized quasi-Newton method (bottom panel) do not, at first glance, show
the typical fast drop to the solution when close to a good local minimum.
This is due to the effect that changing the starting point seems to have
more influence on the number of required iterations in the case of the
quasi-Newton method (see insets in Fig. 3.1). When considering single
(non-averaged) runs of the algorithm, the fast convergence to the mini-
mum becomes visible. In conclusion, the conjugate gradient and the pa-
rameterized quasi-Newton methods perform best in this case, the latter
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Figure 3.1: Convergence plots of the algorithms used to evaluate the en-
tanglement of formation on ten random full-rank two-qubit states (each
plot was done using the same ten states) showing the difference be-
tween the numerical data and the analytical result as a function of the
iteration number. Top: The modified steepest descent algorithm from
Ref. [Man02]; Middle: The generalized conjugate gradient method from
Sec. 3.3; Bottom: Quasi-Newton on the parameterized search space,
Sec. 3.3. Each curve in the main plot is averaged over ten randomly
chosen initial points. The typical behavior of the algorithms for a sin-
gle fixed density matrix, but with varying initial points of the iteration,
is displayed in the insets.
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even slightly better than the former.

Tangle of GHZ/W mixtures

The second test case we present here is concerned with the evaluation of
the tangle of the rank-2 mixed states

p(n) = n|GHZS)(GHZS| + (1 — n)[W)(W], (3.38)
where |GHZ ) has been defined in Eq. (3.1),

_ b
V3

is the three-qubit W state [DVCO00], and 0 < n < 1. The tangle 7, [CKW00]
is an entanglement measure for pure states of three qubits and is known
to be an entanglement monotone [DVCO00]. It can hence be generalized
to mixed states by the convex roof construction (3.2). We will denote
the mixed-state tangle by 7, in contrast to the pure-state version 7,. The
definition of 7, reads

W) = —= (1) + [0 + [141) (3.39)

() = 4 |dy — 2dy + 4ds], (3.40)
where
dy = IR+ U5Y7 + P3s + VY, (3.41)
dy = V1Yguths + Y1hsgbetbs + 1shrie + Yahsiet)s
+haPsPriha + eP3thriba, (3.42)
dz = U176ths + Ysihath3ihs, (3.43)
and v, 19, ..., 15 denote the components of the state |¢) represented in

an arbitrary product basis. In this form, the derivatives of 7, with respect
to the real and imaginary parts of the components of |¢), as required by
the gradient Eqgs. (3.10, 3.11), can be read off most easily. The tangle
takes values between 0 and 1 and is maximal for GHZ states. The tangle
of the states p(n) has been studied in Ref. [LOSU06], where analytical
expressions as a function of n where presented [*]. Particularly, it was

42
3+42

found that the tangle vanishes for all 0 < n < 7y, where 1y, =
0.6269, and then continuously increases to unity at n = 1.

In Figure 3.2 we plot the error between the numerically obtained and
analytically calculated values of 7(p(n)) as a function of the iteration

2The entanglement of p(7) (and other states) has also been studied in Ref. [BC08]
in terms of the ‘global robustness’ [VT99]. The search over all separable (pure and
mixed) states appearing in the evaluation of this measure could in principle also be
accomplished with the parameterized quasi-Newton method (similar in spirit to Sec.
3.3).
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Figure 3.2: Convergence of the generalized conjugate gradient (top) and
the parameterized quasi-Newton (bottom) algorithms for the tangle of
GHZ/W states Eq. (3.38). The curves for the values n = %770 (solid line),
n = (1—10"*)n (dashed line), n = (14 10~*)n, (dotted line), and n = Zn,
(dashed-dotted line) have each been obtained by averaging 100 success-
ful runs starting with random initial points. The typical behavior of sin-
gle runs is shown in the insets, where the 100 successful tries that yield
one curve in the main plots are displayed.

number for four particular values of 1) (see caption of the figure). Only the
results of the generalized conjugate gradient (top panel) and the param-
eterized quasi-Newton (bottom panel) method are shown. The modified
steepest descent algorithm from Ref. [Man02] did not succeed to con-
verge to a reasonable local minimum for the lowest three values of 7 con-
sidered. In these cases, we empirically find the success rate, which we de-
fine as the relative number of final errors smaller than 107¢, to be < 0.1%.
For the largest value of 1 examined, the algorithm showed typical linear
convergence behavior and arrived at a precision around 1072 — 10~° af-
ter 1000 iterations with a rather high success rate of about 60%. Similarly,
the generalized conjugate gradient algorithm failed to obtain reasonable
results for the value of 7 slightly below the threshold value p, in most at-
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tempts, and we find a success rate of < 0.2%. The success probability for
the other three values of 1 are between 12% and 95%, whereas they are
between 25% and 80% for the parameterized quasi-Newton algorithm.
One can see, with the help of looking more detailed into the behavior of
single runs (see insets), that the averaged convergence plots are slightly
flattened out due to some rather rare occurrences of slow convergence.
Still, one can observe that the parameterized quasi-Newton method con-
verges faster to good local minima.

Local unitary equivalence

We would like to remark here that the parameterized quasi-Newton
method is also capable of determining whether two arbitrary mixed states
are equivalent up to local unitary transformations. While this problem
has an operational solution in some special cases (see, e.g., Ref. [FJ05]
and references therein), there is no generally applicable operational crite-
rion known capable of making this decision. Using the parameterization
developed in Sec. 3.3, one can express each local unitary transformation
Uiin the matrix U = U, ®U,®. . .®U,, by its Euler-Hurwitz angles and op-
timize over the whole set of all angles simultaneously. Furthermore, on
can study in this way how ‘close” two mixed state are with respect to lo-
cal unitary equivalence. Note that such kind of analyses are not possible
with the modified steepest descent or the generalized conjugate gradient
methods, since, as there is no parameterization, one can optimize over
only one unitary matrix at a time.

3.4 Physical application

In this section, we use the algorithms developed and described above to
evaluate a multipartite mixed-state entanglement measure of a concrete
physical system.

Exchange-coupled spin rings with inhomogeneous
magnetic field geometry

In the following, we consider the Hamiltonian

N N
H=-J> Si-Si1+b) (S cosa; + S¥sinay), (3.44)

=1 i=1
where S; = (57,57, 57), SF = 0% /2 with o* being the standard Pauli ma-
trices acting on the ith spin, Sy4; = S; and the angles oy, = 2n(k — 1)/N,
k =1,...,N. Equation (3.44) describes a closed ring of N > 2 equidis-
tant exchange-coupled spin qubits with local in-plane magnetic fields
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b; = (bcosay, bsin;, 0) which are chosen such that the system is in-
variant under rotations by multiples of 27 /N about the center of the ring.
The exchange coupling J is throughout assumed to be ferromagnetic (i.e.,
J > 0). The fields in Eq. (3.44) are chosen to point radially outwards,
but the following discussion and results also hold for any other local in-
plane field configuration possessing the same rotational symmetry, since
all these systems are local unitary equivalents. The system is depicted
schematically in Fig. 2.1 (a) for three spins.

In fact, we are considering here a generalization of one of the N =
3 cases studied in chapter 2. There, the particular field configuration
resulted from semiclassical considerations with the goal of obtaining a
state which is close to a GHZ state [see Eq. (3.1)] as the ground state of
the system. In that case, entanglement can be created by merely cooling
the system to low enough temperatures. In principle, the argumentation
for the occurrence of a GHZ ground state presented in chapter 2 can be
extended to a number of qubits N > 3. However, it can be expected that
for N — oo, the lowest-lying multiplet becomes a continuous spectrum.
Hence, the question arises up to which numbers of spins NV this setup still
allows generating GHZ-type entanglement. Before further investigating
this question, we briefly restate the arguments from chapter 2 for the
convenience of the reader.

We start from the fact that in the ground state of the classical analog
of the Hamiltonian (3.44), all spins are aligned for b = 0. However, no
direction of alignment is favored, reflecting the full rotational symmetry
of the system in spin space. Small local magnetic fields (b < J), applied
in the way described above, break this symmetry and one is left with
the two degenerate ground states 11 ... T and || ... | where the repre-
sentation (‘quantization’) axis is the usual z-direction. In fact, each spin
is slightly tilted against its local magnetic field, but there is no globally
favored direction of orientation, such as with, e.g., a global spatially uni-
form magnetic field. Note that this effect of tilting vanishes as b — 0.
Due to the Zeeman term in Eq. (3.44) there is an energy barrier between
any path connecting the two degenerate minima. In the quantum case,
tunneling through this barrier lifts the degeneracy between the ground
states and one obtains a tunnel doublet. Thus, in the limit b — 07, the
two lowest lying states are the generalized GHZ states given in Eq. (3.1).

As an illustration, we have plotted the energy surface of the classical
three-spin system corresponding to Eq. (3.44) in Fig. 2.1 (b). We have
previously argued in chapter 2 that this energy can be expressed in terms
of two ‘mean’ spherical angles ¢ and 9 [cf. Fig. 2.1 (a)], since all spins
will basically align in the present limit b <« J, up to small fluctuations
which sum to zero and are chosen to minimize the total energy. One
can nicely see how the out-of-plane configurations atJ = 0 and J = =
are energetically favored. For any value of ¢, a path connecting the two
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minima has to overcome an energy barrier which scales as O(b?). In the
tigure, this barrier is displayed by the superimposed white line for the
specific value ¢ = 7/2.

Independently of N, we are generally confronted with the following
problem if we want to achieve the systems considered here to be in a
highly entangled state at non-zero temperature. On the one hand, the
energy splitting between the ground state and the first excited state van-
ishes as b goes to zero. On the other hand, a perfect GHZ state is obtained
exactly in this limit. For increasing magnetic field, the states continu-
ously deviate from the maximally entangled GHZ state, as can be imag-
ined with the help of the classical picture, where the spins start to tilt.
One therefore has to choose the strength of b as a tradeoff between hav-
ing a highly entangled ground state and separating this state in energy
from the next higher state.

In order to find this optimal magnetic field strength at a given tem-
perature 7' # 0 we evaluate a suited mixed-state entanglement measure
on the system’s canonical density matrix p = exp(—pH)/ Trexp(—SH)
where § = 1/kgT and kg is Boltzmann’s constant. When we studied the
case N = 3 in chapter 2 we used the tangle [see Eq. (3.40)] as our pure-
state measure of choice, since it is an entanglement measure for three
qubits. The generalization to mixed states was done via the convex-roof
construction Eq. (3.2). Here, however, we need a pure-state entangle-
ment measure which is defined for any N > 2.

Entanglement measure

In principle, an exponentially increasing number of distinct entangle-
ment measures is required to capture all possible quantum correlations
in a general pure state of N qudits. This may be viewed as the reason
for the rather large number of proposals for multipartite entanglement
measures that have been put forward over the last years. Various in-
sights about the structure and characterization of multipartite entangle-
ment have been gained by studying such measures. For our purpose, we
want to have a measure that is easy (and fast) to compute (in particular,
that is an analytic function whose complexity grows at most polynomi-
ally with N), that captures the type of entanglement present in our sys-
tem well, and that possibly has a nice (physical) interpretation. We found
that the Meyer-Wallach measure [MWO02], defined for an arbitrary num-
ber of qubits, fulfills all these criteria. According to Ref. [Bre03], it can be
written in the compact form

1)) =2 [1 - =S mh)| (345
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where p;, is the density matrix obtained by tracing out all but the kth
qubit out of |¢)(¢|. This is simply the subsystem linear entropy averaged
over all bipartite partitions involving one qubit and the rest [°]. More-
over, it was shown that this entanglement measure is experimentally ob-
servable by determining a set of parameters that grows linearly with N,
in contrast to the exponentially increasing complexity of quantum state
tomography [Bre03]. We note at this point that the Meyer-Wallach entan-
glement has been generalized to a broader family of entanglement mea-
sures [Sco04] that might give deeper insight into the structure of multi-
partite entanglement. However, we stick to the simple form (3.45) for our
numerical calculations, as this measure turns out to describe our type of
entanglement well.

The Meyer-Wallach measure is an entanglement monotone (and can
thus be extended to mixed states via the convex-roof construction), lies
between zero and one, vanishes only for full product states (i.e., states
of the form [¢) = ), [¢:),7 = 1,..., N), and is maximal for generalized
GHZ states Eq. (3.1) [*]. The upper bound is however also reached by
other states, for instance by the so-called cluster states [Bre03, BRO1]. A
drawback of the Meyer-Wallach measure is that it can also be maximized
by partially separable states. For example, the state |V) = |®)®|®), where
|®) = (|11) +[44))/V/2 is a bipartite Bell state, gives v(|¥)) = 1 although it
is clearly not globally entangled [Bre03]. This is however not a problem
in our study for two reasons. First of all, we can check by numerical di-
agonalization that the ground state of our systems indeed converges to a
multipartite GHZ state (at least for the first few N < 20). Secondly, com-
paring the data for NV = 3 with our previous study in chapter 2 where we
had employed the tangle, we find the same qualitative behavior of both
entanglement measures. Moreover, the optimal values of b for which
the measures reach their maxima at a given temperature coincide almost
perfectly. It is thus reasonable to assume that the Meyer-Wallach entan-
glement measure is well suited for quantifying entanglement in our sys-
tems.

The numerical evaluation of the Meyer-Wallach measure extended to
mixed states via the convex-roof construction requires the derivatives of
v(]1)) with respect to the real and imaginary components of |¢) [see Egs.
(3.10, 3.11)]. Due to the partial traces, these expressions are a bit cumber-
some. However, exploiting the rotational symmetry of the Hamiltonian
studied here, they can be considerably simplified (see Appendix A).

3The subsystem linear entropy S7,(|¢)) = 2[1 — Tr(5?)], where p = Trp |[¢) (], is a
well-established bipartite entanglement measure that is often used instead of the von-
Neumann entropy in order to simplify calculations [Sco04].

4We mention, however, that there are also measures of entanglement which are not
maximized by the n-partite GHZ-state Eq. (3.1). Moreover, some measure ascribe this
state an unexpectedly low amount of entanglement for n > 3. See, e.g., Ref. [BPB07]
for an extensive numerical study.
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Results

Before we present and discuss our numerical results, we would like to
mention that studying the system Eq. (3.44) analytically for arbitrary N
is rather difficult. An exact diagonalization of the Hamiltonian is not
known for arbitrary N, and perturbation theory to constant order in b
(independent of N) is not suitable to study the ground-state properties
of the system, since the ground-state splitting is lifted only in N-th order.
One can can thus generally expect that the ground-state splitting scales
with the number of spins as bYN. Since we must always have b < 1, this
goes to zero for large N, as discussed in Sec. 3.4 above. Obtaining highly
entangled states at finite temperature with this approach will thus be
increasingly difficult for an increasing number of spins V.

Our numerical results are presented in Figs. 3.3 and 3.4. Figure 3.3
shows the Meyer-Wallach measure for N = 2, 3,4, and 5 spins at four
different temperatures (see caption of the figure). Each data point is the
result of whichever of the two algorithms described in Sec. 3.3 performed
better in a few trials with random initial conditions.

For a fixed number of spins, the entanglement as a function of the
magnetic field strength b assumes a maximum. This maximal entangle-
ment Y,.x(7') is increased and its position is shifted to smaller magnetic
tield values as the temperature is lowered. This is due to the fact that
at low temperatures, only a small magnetic field is required in order to
make the ground-state splitting sufficiently large compared with tem-
perature. Since these small field values only slightly disturb the ideal
GHZ configuration, almost maximal values of the entanglement measure
(corresponding to almost perfect GHZ-states) are observed. With higher
temperature, larger field values are required to protect the ground state.
Consistent with the semiclassical picture, this perturbs the desired spin
configuration and leads to a lower amount of entanglement. For large
magnetic fields, all curves coincide eventually, as the system is always
found in the ground state in that case.

Figure 3.4 gives more insight into the dependence of maximal entan-
glement 7,,,x(T") on temperature and the number of particles. The plot
was obtained by maximizing the Meyer-Wallach measure over the mag-
netic field strength b (using a simple golden section bracketing algorithm
[PTVF92]) while holding the temperature fixed. Displayed is the differ-
ence between the resulting data to the zero-temperature maximum (be-
ing equal to 1) as a function of temperature for different numbers of par-
ticles (see caption of the figure). Clearly, the maximally achievable entan-
glement vy, (T") decreases for both increasing temperature and increas-
ing number of particles. The qualitative dependence on the temperature
was discussed already above. Here we additionally see an almost linear
behavior on a log-log scale at low temperatures, suggesting a power-law
decay of the maximal entanglement of the form 1 — Y.« (7") o T* with
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Figure 3.3: Meyer-Wallach entanglement measure for the system described by the Hamiltonian Eq. (3.44) at different tem-
peratures for several numbers of particles. Concretely, the cases N = 2 (top left), N = 3 (top right), N = 4 (bottom left),
and N = 5 (bottom right) are studied at temperatures 7" = 10~*J/kp (dashed line), T = 1073.J/kp (dashed-dotted line),

T = 1072J/kg (dashed-dot-dotted line), and T' = 5 x 1072.J/kg (dotted line).
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Figure 3.4: Difference between zero-temperature and finite-temperature
maximally achievable Meyer-Wallach entanglement measure as a func-
tion of temperature for systems with N = 2,3,4,5,7, 10 spins (from bot-
tom to top). Inset: Value of the magnetic field strength b as a function of
system size at which the ground state yields the Meyer-Wallach value 0.5
(full width at half maximum).

an exponent o depending on the number of particles N.

The decrease of Yiax(1') with the number of spins N at fixed tem-
perature is due to the fact that the energy splitting between the ground
and first excited state scales as b". With a larger number of particles,
a higher magnetic field is required to achieve a sufficiently large split-
ting. This in turn lowers the entanglement in the ground state, due to
its b-dependence, resulting in a lowered maximum of the Meyer-Wallach
measure. As an additional obstacle, the ground-state entanglement as a
function of b decays even more rapidly as the number of particles is in-
creased. This can be seen from the inset of figure 3.4, where, at 7' = 0, the
b-values yielding the Meyer-Wallach measure 0.5 (full width at half max-
imum, since the maximum at 7" = 0 is always 1) are shown as a function
of N.

3.5 Conclusion

We have presented two ready-to-use numerical algorithms to evaluate
any generic convex-roof entanglement measure. While one is based on
a conjugate gradient algorithm operating directly on the search space,
the other one is a quasi-Newton procedure performing the search in the
transformed unconstrained Euclidean space. All required formulas to
implement either of the two algorithms have been stated explicitly, which,
in order to calculate different convex-roof extended pure-state measures,
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merely leaves the user with the task of calculating its derivatives with
respect to the real and imaginary components of the pure-state argu-
ment. The relatively different nature of the two procedures increases
the chances that at least one of them performs well in the concrete ap-
plication. In a series of numerical tests, we have found that the algo-
rithms perform well and especially significantly better than previously
presented (non Newton-type) ready-to-use optimization problems on the
Stiefel manifold. However, it is found that the convergence properties, as
is often the case in involved optimization problems, depend on the cost
function. This suggests to try applying different techniques to a particu-
lar optimization problem and examine which one performs best in that
case.

Further, we have applied our algorithms to evaluate a multipartite
entanglement measure on density matrices originating from a real phys-
ical system. The latter consists of NV ferromagnetically exchange-coupled
spin-1 particles placed on the edges of a regular polygon with N edges.
We have argued that a particular local magnetic field geometry, namely
radially symmetric in-plane fields, favor a highly entangled ground state
configuration. We have confirmed this argumentation by evaluating the
mixed-state Meyer-Wallach entanglement measure, defined for an arbi-
trary number of qubits, and found indeed high values of entanglement
at low temperatures and specific magnetic field strengths. This not only
quantifies the entanglement properties present in this system, but also
serves more generally as a proof-of-principle for the usefulness and ap-
plicability of our algorithms.



CHAPTER

The Optimization Library
1ibCreme

Adapted from:

B. Rothlisberger, J. Lehmann, and D. Loss,
“1tbCreme: An optimization library for evaluating
convex-roof entanglement measures”,

Comput. Phys. Commun. 183, 155 (2012).

We present the software library 1ibCreme which we have used in chap-
ters 2 and 3 to calculate convex-roof entanglement measures of mixed
quantum states appearing in realistic physical systems. Evaluating the
amount of entanglement in such states is in general a non-trivial task
requiring to solve a highly non-linear complex optimization problem.
The algorithms provided here are able to achieve to do this for a large
and important class of entanglement measures. The library is mostly
written in the MATLAB programming language, but is fully compatible
to the free and open-source OCTAVE platform. Some inefficient sub-
routines are written in C/C++ for better performance. This manuscript
discusses the most important theoretical concepts and workings of the
algorithms, focussing on the actual implementation and usage within
the library. Detailed examples in the end should make it easy for the
user to apply 1ibCreme to specific problems.

41 Introduction

The role of non-local quantum correlations, more familiarly known as
entanglement, in modern quantum theory cannot be overstated [NCO0].
On the one hand, entanglement lies at the heart of quantum information

43
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theory [Ved07], where it is a crucial ingredient to computation and com-
munication schemes. On the other hand, it is intricately related to phe-
nomena such as decoherence [MCKBO05] and quantum phase transitions
in many-body systems [AFOV08]. One has come to realize that entan-
glement is also a resource that can for instance be purified, shared, and
possibly irreversibly lost, and should therefore not only be detectable,
but also quantifiable [HHHHO09]. One way of doing so is by virtue of
entanglement measures [PV07]. These are mathematical functions map-
ping quantum states to the set of real numbers. While there is no unique
or strict definition for the notion of an entanglement measure, there are
a set of properties which are commonly regarded useful, e.g., that the
measure is zero only for separable states and is invariant under local uni-
tary transformations. Another important property which we will assume
throughout this work is monotonicity: An entanglement measure must
not increase (on average) under any protocol involving only local uni-
tary transformations and classical communication. In the following, we
will use the terms ‘entanglement measure” and ‘entanglement monotone’
interchangeably.

Rather understandably, it is difficult to capture all properties of even
a pure entangled state with just a single real number, especially in the set-
ting of higher-dimensional and multi-partite systems. It is thus no sur-
prise that there is quite a number of proposed entanglement monotones
of various levels of complexity, generality, and the ability to capture dif-
ferent aspects of entangled states more or less successfully than others.
As indicated previously, most of these entanglement monotones share
the fact that they are conveniently defined only for pure states, namely
as a function of the amplitudes of the state expressed in a certain stan-
dard basis.

The situation becomes more involved in the case of mixed states,
where classical and quantum correlations need to be distinguished from
one another. Given a density matrix p, it is not sufficient to simply cal-
culate the average entanglement of a given decomposition, because this
decomposition is not unique. Since there are in general infinitely many
ways to write a density matrix as a sum of projectors onto pure states,
only the infimum of entanglement over all these possible decomposi-
tions can make a reliable statement about the quantum correlations in
p, because there might be a decomposition of p in which all pure states
are separable and the total entanglement hence would vanish. Taking
this infimum of an averaged pure-state entanglement monotone over all
decompositions of p is called ‘convex-roof construction” or ‘convex-roof
extension’ of that monotone [Uhl00]. Notably, the thereby obtained mea-
sure for mixed states is again an entanglement monotone. Calculating
the convex-roof for a generic quantum state is considered extremely dif-
ficult [PV07]. In fact, even deciding whether or not a merely bipartite
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mixed state is separable is a hard problem itself which has no known
general solution in Hilbert space dimensions larger than six [HHHHO09].

In this work, we present the computer programs we have written and
successfully applied previously to calculate such convex-roof entangle-
ment measures of multi-partite mixed states in chapters 2 and 3. While
we have already described the theory behind our algorithms to some ex-
tent in the previous chapter, we complete this work by describing here
the full source code in the form a user-friendly high-level library called
libCreme [']. The package is to a large part written in the MATLAB pro-
gramming language [*], but great care has been taken to make the library
fully compatible with GNU OCTAVE [?], a free and open-source MATLAB
clone. For the sake of simplicity, we will refer to their common language
as M-script. Additionally, functions which have been identified as crucial
bottlenecks in terms of execution speed are provided in the form of fast
C extensions and have been adapted to be easily callable from MATLAB
and OCTAVE through their native C and C++ interfaces, respectively.

While the library already comes with the ability to evaluate a choice
of popular entanglement monotones, it is easily extend to calculate user-
specified functions. All that needs to be implemented is the entangle-
ment measure itself and its gradient with respect to the real and imagi-
nary parts of the quantum state vector [*]. The library is written in a self-
contained and consistent way, making it extremely easy to use in practice
and to experiment with different settings, measures, and optimization al-
gorithms. Furthermore, we provide convenience functions hiding most
of the steps required to arrive at function handles ready to be optimized.
This essentially simplifies the calculation of a convex-roof entanglement
measure to a one-line task. Table 4.1 lists each function provided in the
library together with a short description of its meaning.

We would briefly like to mention two other numerical libraries deal-
ing with quantum computing and entanglement. One is the freely avail-
able ‘quantum information package’ by T. Cubitt [°] written in M-script
as well. The other one is the CPC library FEYNMAN (catalog identifier
ADWE_v5_0) written by T. Radtke and S. Fritzsche [RF10] for MAPLE.

!The library can be downloaded at http://goo.gl/kXZJID.

2See http://www.mathworks . com/products/matlab/.

3See http://www.gnu.org/software/octave/.

41t is easily seen from the Cauchy-Riemann equations that non-constant functions
from C to R, such as the kind of entanglement measures we are addressing in this work,
cannot be analytic. We therefore have to treat the real and imaginary part of complex
numbers as independent variables.

Package can be downloaded at http://www.dr-qubit.org/matlab.php.
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Entanglement measures
convexSum

grad_convexSum
eof2x2

entropy0fEntanglement

grad_entropyOfEntanglement

meyer_wallach

grad meyer_wallach
tangle
grad_tangle

Optimization routines
cg-min

bfgs min
minimizeld_exp

minimizeld_lin

get_termination_criteria

Utilities
randDensityMatrix
randState
randUnitaryMatrix
decomposelUnitary
dimSt

densityEig
psDecomposition
createConvexFunctions

createEHFunctions

grad_eh_adapt

Convex sum parameterized by a Stiefel
matrix

Gradient of convex sum

Entanglement of formation for 2 qubits
(analytically exact result)

Entropy of entanglement

Gradient of entropy of entanglement
Meyer-Wallach measure

Gradient of Meyer-Wallach measure
Tangle

Gradient of Tangle

Conjugate-gradient method

BFGS quasi-Newton method
Minimization along a geodesic on the
Stiefel manifold

Minimization along a line in Euclidean
space

Helper function to check and handle ter-
mination criteria for the optimization al-
gorithms

Random density matrix

Random pure quantum state

Random Stiefel matrix

Get angles parameterizing a Stiefel ma-
trix

Dimension of Stiefel manifold

Get eigendecomposition of a density
matrix in the form required by many
functions within the library

Get pure-state decomposition parame-
terized by a Stiefel matrix

Create convex-sum function handles for
use with cg min

Create convex-sum function handles for
use with bfgs min

Adapter function to calculate the gradi-
ent of a convex sum parameterized by
Stiefel matrix angles
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buildUnitary Build a complex Stiefel matrix from a pa-
rameterization vector

grad buildUnitary Gradient of the above function

pTrace Partial trace over any subsystems of ar-
bitrary (finite) dimensions

completeGramSchmidt Helper function for numerical stability

used within cg min

Examples

example_eofIsotropic Main script to run the example from
Sec. 4.5

eofIsotropic Entanglement of formation of an
‘isotropic’ density matrix (analytically
exact result)

example_tangleGHZW Main script to run the example from
Sec. 4.5

tangleGHZW Tangle of GHZ /W mixture (analytically

exact result)

Table 4.1: List of all functions within 1ibCreme. Additional information
about the usage of each function can be obtained by calling “help func-
tion_name’ from within MATLAB or OCTAVE.

Quantum states obtained from calculations and simulations within these
libraries can conveniently be analyzed further using 1ibCreme’s ability to
calculate more complex entanglement measures.

This chapter is organized as follows: In Sec. 4.2, we briefly list and
discuss the default entanglement measures coming along with 1ibCreme.
Sec. 4.3 reviews the theory of convex-roof entanglement measures and
how to address their calculation on a computer. Sec. 4.4 describes the
two central algorithms in 1ibCreme to solve the optimization problem
related to the evaluation of such measures. In Sec. 4.5, we discuss two
complete examples demonstrating the usage of the library, and Sec. 4.6
concludes the work. Note that the focus of this manuscript lies mainly on
the functionality of the library: We have tried to provide short code ex-
amples throughout this chapter for all important functions and concepts
in a user-friendly bottom-up way. These snippets are all valid M-script
(including the line breaks “. ..” which we sometimes use due to spacial
restrictions) and can be copied directly into MATLAB or OCTAVE. Finally,
we would like to mention that all functions in 1ibCreme are documented,
and more information about them can be inquired by calling ‘help func-
tion_name’.
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4.2 Entanglement measures included in the
library

We start the description of our library by listing the entanglement mea-
sures currently implemented. Note that pure quantum states, such as
the arguments of functions calculating entanglement monotones, are al-
ways expected to be represented as column vectors in the standard com-
putational basis. In practice, this means that the n orthonormal basis
states |¢;) of each n-dimensional subsystem (where n may be different for
different subsystems) are always chosen as [¢;) = (1,0,...,0)7, 1) =
(0,1,0,...,0)7, ..., [¥) = (0,0,...,1)T. Multipartite states are then as-
sumed to be represented consistently with the implementation of the M-
script command kron, i.e., the Kronecker product of two arbitrary input
matrices.

Since the optimization algorithms used in libCreme are gradient-
based, the gradients of these measures with respect to the real and imag-
inary parts of the input state vector are also provided. The convention is
that gradients (i) are named identical to the original functions but with
the prefix ‘grad_’ added, (ii) require the same arguments as their function
counterparts, and (iii) return derivatives with respect to real and imagi-
nary parts of a variable in the form [V f(z)]; = 0f/ORex; +10f/0Imx;,
where i is the imaginary unit. Analytical expressions for all gradients of
the measures discussed in this section can be found in B.

Entropy of entanglement

The entropy of entanglement [BBPS96] is an entanglement monotone for
bipartite quantum systems of arbitrary dimensions. It is defined as the
von Neumann-entropy of the reduced density matrix, i.e.,

E(|¢)) = = Tr [(Trp p)logy(Trp p)] (4.1)

where Trp p denotes the partial trace of p = |¢) ()| over the second sub-
system (note that one could equally use the trace over the first subsys-
tem). This measure is implemented in entropyOfEntanglement and re-
quires as a first argument the state vector to be evaluated, and as the sec-
ond a two-dimensional row vector specifying the dimensions of the two
subsystems. Note that entropyOfEntanglement makes use of pTrace, a
C/C++ implementation for the fast calculation of partial traces over an
arbitrary set and number of subsystems of arbitrary dimensions. Usage:

% Create states p_01 and p_10 in the total

% Hilbert space of two qubits by applying the
% Kronecker product to the single-qubit basis
% states [1; 0] and [0; 1].
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b

% Note that in M-script, [al; a2; ... an]
% denotes a column vector, whereas

% [al, a2, ... an] is a row vector.

p_01 = kron([1; 0], [0; 11);

p_10 = kron([0; 1], [1; 01);

% Define a random superposition of the

% above states.

b

% rand() yields a random number chosen

% uniformly from the interval (0, 1).

rl = 2*pixrand(); r2 = 2*pi*rand();

psi = sin(r1)*p_01 + exp(li*r2)*cos(rl)*p_10;

%» Dimensions of subsystems
sys = [2, 2];

% Calculate measure and gradient
e = entropyOfEntanglement(psi, sys)
g = grad_entropyOfEntanglement (psi, sys)

Note that the entropy of entanglement is of particular importance, be-
cause its convex-roof extension is the well-known and widely used ‘en-
tanglement of formation” [BDSW96]. In the special case of a bipartite sys-
tem composed of two-dimensional subsystems (qubits), there exists an
operational solution for the entanglement of formation [Wo098], which
we have implemented in eof2x2.

Three-tangle

The three-tangle [CKWO00] is defined specifically for a system of three
two-dimensional subsystems. It reads

T([10)) = 4 |dy — 2dy + 4ds], 4.2)
where
dy = PP + 0507 + ivE + PR, (4.3)
dy = P1Ysats + Y1bstbeths + P1sihriba
+hathshets + Vashrihe + Yethathria, (4.4)
ds = 1076ths + Psihathsts, (4.5)

and ¢;,i = 1...,8, are the complex amplitudes of the vector |¢) in the
standard computational basis. The tangle is implemented in the function
tangle, taking an 8-dimensional vector psi as its only argument. Here
follows a short example:
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% Define an 8-dimensional random state
psi = randState(8);

% Calculate tangle and its gradient
t = tangle(psi)
g = grad_tangle(psi)

In the above code, we have introduced the function randState, which re-
turns a random pure quantum state of arbitrary specified dimension uni-
formly distributed according to the Haar measure of the unitary group
[Mez07].

Meyer-Wallach measure

Finally, the measure of Meyer and Wallach [MW02] for an arbitrary num-
ber N of qubits is an entanglement monotone that can be written in the
compact form [Bre03]

() =2 [1 - %;mpi) , 46)

where p;, is the density matrix obtained by tracing out all but the kth
subsystem out of |1)(¢)|. The implementation is given in meyer_wallach.
This function also makes use of pTrace. The usage is analogous to the
example given for the three-tangle above.

4.3 Theoretical background

In this section, we review how to arrive at an optimization problem
(whose solution is the desired value of the convex-roof entanglement
measure) in a form that can be dealt with on a computer. Let m be an
entanglement monotone for pure states from a Hilbert space H of finite
dimension d. Let p be a density matrix acting on that space. Our goal is
to numerically evaluate the convex roof M (p) of m, given by

M(p)=_ inf sz (1¢3)), (4.7)

{pz [¥3) }E@

where

D(p) = {{pu, Yy & = rankp | {lv) Y, € A,

k
(Wildhs) = 1,pi > 0, Zpi —1L o= nlv)wil} @)
i=1 =1
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is the set of all pure-state decompositions of p. With respect to numerical
optimization, a convenient parameterization of all subsets of ®(p) with
a constant number of terms £ (sometimes referred to as the ‘cardinality’)
is due to the Schrodinger-HJW theorem [HJW93, Kir05]. The latter states
that (i), every decomposition of a density matrix p with rank p = r into a
convex sum of k projectors onto pure states can be expressed in terms of a
complex k x r matrix U obeying U fU =, 4, and that (ii), conversely, from
every such matrix one can obtain a pure-state decomposition of p. The set
St(k,r) = {U € C**"|UTU = 1,4, } with k > r is also known as the Stiefel
manifold. Part (i) and (ii) together ensure that optimizing over St(k,r)
is equivalent to optimizing over the full subset of ©(p) with fixed cardi-
nality k. Part (ii) also provides an explicit construction of the pure-state
decomposition related to an arbitrary given matrix U € St(k,r): Let ),
|xi), % =1,...,r = rank p be the non-zero eigenvalues and corresponding
normalized eigenvectors of p, i.e.,

p= Z Ailxi) (Xl 4.9)

and (x;|x;) = 0;;. Note that we have \; > 0 due to the positive semi-
definiteness of p. Define the auxiliary states

and set
bi = %I@Zz% 3 (4.11)
i) = (1/v/pi)l¥i)- (4.12)

One can easily verify that we have

k
p= Zpi|wi><wi|. (4.13)

In 1ibCreme, the function densityEig calculates only the non-zero
eigenvalues and corresponding eigenvectors. The eigenvalues are guar-
anteed to be sorted in decreasing order, which is particularly convenient
if one wishes to discard some parts of the density matrix occurring with
low probability, such as, e.g., high-energy sectors in density matrices
p ~ exp(—pH) originating from some Hamiltonian H. The function
psDecomposition returns the pure-state decomposition from Egs. (4.9,
4.10, 4.11, 4.12). As an example, let rho store a d x d density matrix of
rank 7, and let U be a matrix from St(k, ), with arbitrary £ > r. Then
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% Note that in M-script, functions can return
% multiple values of arbitrary dimensions. The
% syntax to assign several return values to

% local variables is

% [A, B, ...] = foo(...);

[chi, lambda] = densityEig(rho);

[psi, p] = psDecomposition(U, chi, lambda);

first yields the eigenvectors of rho in the columns of the d x r matrix
chi with the corresponding r eigenvalues in the vector lambda. On the
second line then, the pure-state decomposition of rho (given in terms of
the parameters chi and lambda) corresponding to the parameterization
U is calculated, with the k state vectors |1);) stored in the columns of the
d x k matrix psi and the k corresponding probabilities p; in the vector p.

By virtue of the Schrodinger-HJW theorem, we can restate the opti-
mization problem Eq. (4.7) as

M) = B MO 1D
k
AU) = 3 pUm{i(U))), (415)

where the dependence on p enters implicitly as the dependence of the
p; and [1);) on the eigenvalues and eigenvectors of p. In practice, it has
turned out to be possible to drop the minimization over £ completely
and set k to a constant but large enough value instead. Note that this
actually includes all cardinalities £’ with » < k' < k in the search be-
cause up to k — r of the p; are allowed to go to zero without breaking
the optimization constraint. In 1ibCreme, the function convexSum calcu-
lates the value of the expression i (U) in Eq. (4.15), which is, in fact, the
objective function of the optimization. convexSum takes as its first argu-
ment a parameterization matrix from the Stiefel manifold, as its second
a function handle [°] to the entanglement monotone to be extended, and
as its third and fourth arguments the eigendecomposition of the density
matrix obtained by densityEig. Here is a full example:

®In M-script, functions can be passed as arguments using ‘function handles’
(conceptually similar to function pointers in C). For a function with name foo, the
corresponding function handle is given by @foo. Subroutines are then able to call foo
through its function handle, given the number and type of parameters are correct.
A related feature of M-script used frequently in 1ibCreme are ad hoc, also called
‘anonymous’, function handles. These are handles to functions which are neither
built-in, nor defined in a script file, but rather created on the spot. As an example,
consider the following syntax to create a function of two parameters calculating the
sine of the parameter’s product:

sinxy = @(x, y) sin(x*y);

The variable names used to define the function are listed in the parentheses after
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% Random 8-by-8 density matrix
rho = randDensityMatrix(8);

% Calculate eigendecomposition of rho for
% later use
[chi, lambda] = densityEig(rho);

% Random matrix from St(12, 8)
U = randUnitaryMatrix(12, 8);

% Evaluate convex sum Eq. (15) with the tangle
h = convexSum(U, @tangle, chi, lambda)

Note that we have introduced the functions
randDensityMatrix and randUnitaryMatrix to create random density
matrices and random matrices from the Stiefel manifold, respectively.
It is important to understand that convexSum is the key function in the
whole library in the sense that it is always this function (or more specif-
ically, an anonymous function handle to it, see Sec. 4.4), which is ulti-
mately optimized.

As mentioned earlier, the optimization algorithms in 1ibCreme re-
quire the knowledge of the gradient of the objective function, or more
precisely, the derivatives of h(U) with respect to the real and imaginary
parts of the matrix elements of U. These expressions and their derivation
can be found in C. Within the library, this gradient of i is implemented
in grad_convexSum. It requires 5 arguments: The matrix U, the entangle-
ment monotone to be extended, the gradient of the latter, and the eigen-
decomposition of p (eigenvectors and -values). The following code illus-
trates its application in practice, using the variables chi, lambda, and U
from the previous example:

% Evaluate gradient of the convex sum Eq. (15),
% given in Egqs. (B4 - B7) with the tangle
gh = grad_convexSum(U, @tangle,

Ograd_tangle, chi, lambda)

the ‘@’ sign. Directly following is the actual definition of the function. It can then be
called in the usual way, yielding, e.g.,

>> sinxy (0.5, pi)
ans =

1
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4.4 Optimization algorithms

We describe in this section two conceptually different optimization algo-
rithms which are both provided in 1ibCreme. One is a conjugate gradient
method based on the concepts introduced in Refs. [EAS98, AVDMO01,
AMSO08]. It exploits the differential-geometric structure of the nonlinear
search space emerging from the optimization constraint U'U = 1. The
other algorithm is a standard Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton method employing a transformation of the constrained
search space to an unconstrained one. Both algorithms have been dis-
cussed in greater detail in chapter 3, where the expressions for the gra-
dients and parameterization of the Stiefel manifold given below have
been derived. Here, we just state the final results for the sake of com-
pleteness and focus particularly on the implementation and usage within
libCreme.

Conjugate-Gradient Method

This algorithm exploits the geometric structure of the unitary group
U(k) = St(k,k) and therefore generally over-parameterizes the true
search space St(k,r), r < k. This is however not a problem in practice,
since we can simply discard the last £ — r columns of U when calculating
the decomposition of the density matrix based on U []. The full algo-
rithm for an input initial guess Uj is given as follows:

1. Initialization: Set ¢ +— 0. Calculate the gradient G, = G(U) ac-
cording to the formula

1 ,
G(U) = 5(A(U) = AW +5(SW) +SW)),  (416)
where the matrices A(U) and S(U) are given by
AU) =ReU” - Vgerh(U) +Im U - Vi ph(U), (4.17)
S(U)=ReU” - Viuph(U) —ImU” - Vgeph(U), (4.18)
and the gradient of 4(U) can be found in C.
Finally, set X, «— —G.

2. Perform the one-dimensional minimization

tip1 <— arg mtin h(U; exp (tX3)), (4.19)

"However, in the case where one chooses k > r, it is advantageous to employ an
algorithm that works directly on the Stiefel manifold instead of the unitary group. The
concepts discussed in Ref. [EAS98] for the real Stiefel manifold can be adapted to the
complex case by replacing transpositions with Hermitian conjugates and the Frobenius
inner product (X,Y) = Tr XTY by (X,Y) = ReTr XTY.
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set
Uit1 <— Ui exp (ti11X5), (4.20)

and compute the new gradient G,;1 <— G(U;;1) according to
Egs. (4.16,4.17, 4.18).

3. Define
T «— exp(ti+1X;/2) Gy exp(—ti+1X;/2). (4.21)

T is the gradient G; parallel-transported to the new point U, ;.

4. Calculate the modified Polak-Ribiere parameter

(Giz1 —T,Gisq)

v — GGy , (4.22)
where (X,Y) = Tr XY
5. Set the new search direction to
Xit1 — -G +7X,. (4.23)

6. Seti <— i+ 1.

N

. Repeat from step 2 until convergence.

This algorithm is implemented in the function cg_min. The minimiza-
tion in step 2 is performed by the derivative-based method
minimizeld_exp. cg min requires the function to be minimized, its gra-
dient, an initial point, and optionally a struct with user-specified termi-
nation criteria discussed below. At this point, we would like to work
through a full example demonstrating the use of cg min to calculate the
convex-roof extended three-tangle of a mixed state.

% Random 8-by-8 density matrix
rho = randDensityMatrix(8);

% Calculate eigendecomposition of rho for
% later use
[chi, lambda] = densityEig(rho);

% Define anonymous function handles to
% the objective function and its gradient
f_opt = @(x) convexSum(x, @tangle,
chi, lambda);
g_opt = @(x) grad_convexSum(x, Otangle, ...
Q@grad_tangle, chi, lambda);
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% Choose a random starting point, here for
% a decomposition with cardinality 12
U0 = randUnitaryMatrix(12, 12);

% Perform the optimization
[t, Ut, info] = cg_min(f_opt, g_opt, UO);

A few comments about the above code are in order. First, note that
because cg_min requires the objective and its gradient in the form of one-
parameter functions, we need to define the anonymous function handles
f_opt and g_opt before continuing. In this way, f_opt is a new function
that evaluates convexSum at a variable unitary input matrix while keep-
ing the constant arguments @tangle, chi, and lambda fixed. A similar
description holds for g_opt. Second, note that the initial search point U0
is a unitary and therefore square matrix, although matrices from 5t(12, 8)
would be sufficient in the example above to parameterize pure-state de-
compositions. The reason is, as mentioned above, that cg min is operat-
ing on the unitary group instead of the Stiefel manifold. However, this is
hidden from the user by the fact that both convexSum and grad_convexSum
can accept larger input than required, and automatically discard any dis-
pensable columns. Third, we would like to draw the reader’s atten-
tion to the output values of cg min. In the above example, t stores the
convex-roof of the entanglement monotone to be evaluated (in this case
the three-tangle) and Ut (or more precisely, the first  columns of it) repre-
sent the pure-state decomposition of rho arriving at this value. The vari-
able info is a struct that carries useful additional information, namely the
criterion that terminated the iteration (info.status), the function values
along the iteration, excluding intermediate values during line searches
(info.fvals), and finally, the traversed points in the search space corre-
sponding to fvals (info.xvals).

An optional fourth argument containing settings for the termination
of the algorithm can be passed to cg_min. The following code illustrates
the possible struct variables (the values in this example are also the de-
faults for any variables not set).

% Create a struct
opts = struct();

% Maximum number of iterations
opts.MaxIter = 1000;

% Tol. on consecutive function values
opts.TolFun = le-12;

% Tolerance on norm of difference between
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% two consecutive gradients
opts.TolG = 1e-10;

% Tolerance on norm of difference between
/» two consecutive iteration points
opts.TolX = 1e-10;

The iteration is stopped if either the maximum number of iterations is
reached, or one of the checked values is lower than its respective toler-
ance. Finally, we would like to mention that for the convenience of the
user, there is a function called createConvexFunctions which performs
all the necessary steps before the actual optimization in one line:

% Again using the tangle as an example

[f_opt, g_opt] = createConvexFunctions(rho,
Q@tangle, @grad_tangle);

[t, Ut, info]l = cg_min(f_opt, g_opt, UO);

As with any other numerical optimization procedure, it is advisable to re-
peat the computations with different (random) initial conditions in order
to reach a better approximation to the global minimum.

BFGS Quasi-Newton Method

The second algorithm is a classical BEGS quasi-Newton method [NW99]
that makes use of a transformation which is able to unconstrain the op-
timization problem Eq. (4.14) from the Stiefel manifold to ordinary Eu-
clidean space. This transformation is conceptually identical to the exam-
ple where one has an optimization problem with the constraint x?+y* = 1
and then sets = sin 6, y = cos f and performs the optimization over the
new variable 0. Again, we only state in the following the main results
required to implement the algorithm and refer the reader interested in a
thorough derivation to the previous chapter.

The number of independent real parameters required to parameterize
St(k, ) is equal to its dimension which is given by dim St(k, r) = 2kr—r2.
Given a tuple of ‘angles” X, i = ,dim St(k,r), we relabel them in the
following (arbitrary but fixed) way 19 ={X;}fori=1,...,r[k—(r+1)/2],
p={X;}fori=rlk—(r+1)/2]+1,...,7(2k —r —1),and x = {X;} for
i =r2k—r—1)+1,...,dimSt(k,r). Then, we calculate U € St(k,r)
according to

r k—i

UX)=UW,¢.x) = |[TTIGeVerr 00, | R (4.24)

=1 j=1

where ¢;; = (i —1)(k —i/2) + j, Ris a k x r matrix with the only non-zero
elements being R;; = exp(iy;) fori = 1,...,r, and the ‘inverse Givens
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matrices” G ! are defined in terms of their matrix elements as

(v cosv, if i=j=s,
—e%sind, if i=s5,j=5+1,
(G719, 9))ij =  €¥sind, if i=s4+1,j=s, (4.25)
el cos v, if i=s+1,7=s5+1,
[ 0ij otherwise.

In 1ibCreme, calculating a Stiefel matrix from a vector of angles X by
Eq. (4.24) is implemented in buildUnitary as a fast C/C++ extension and
is demonstrated in the following:

% Dimensions of the Stiefel manifold
k=10;, r = 7,;

% Random vector of angles with proper size
% (Uses dimSt for the dimension of the

% Stiefel manifold).

h

% randn(m, n) yields an m-by-n matrix of

% normally distributed random numbers.

X = 2xpixrandn(1l, dimSt(k, r));

% Finally, the Stiefel matrix
U = buildUnitary(X, k, r);

The derivatives of U (X)) with respect to the angles X; are implemented in
the function grad_buildUnitary. The inverse operation of buildUnitary,
namely obtaining the parameterizing angles for a given matrix U can be
performed by decomposeUnitary as in

X = decomposeUnitary(U);

This function is implemented in regular in M-script, because it is called
only infrequently and thus is not time critical.

We have now all the tools to describe the full BFGS quasi-Newton
algorithm starting from an initial vector of angles X.

1. Seti +— 0, HO — ]I, Gg = th(U(X))|X:Xo/ and SO = —Gg. HO is
the initial guess for the approximate Hessian, / is the convex sum
Eq. (4.15), and U(X)) is the transformation Eq. (4.24).

2. Perform the line minimization
tit1 ¢— arg mtin h(U(X; +1S;)) (4.26)

and set
Xi—l—l — XZ + ti+lsz’- (4:27)
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3. Compute the new gradient

Gipr < VXh(U(XmX:Xm-

4. Update the approximate Hessian as [Fle00]

VT(HW)) 60"

Hiyy «—H; + (1 +

0T~ T
_ 0T(Hyy) + (Hin)"o
0T~ ’

59

(4.28)

(4.29)

where the column vectors § and v are defined as § = X;;; — X; and

v =Gip1 — G,
5. Set the new search direction to
Sip1 +— —Hi1Giq.
6. Seti +— i+ 1.

7. Repeat from step 2 until convergence.

(4.30)

The line minimization in step 2 is performed by minimizeld_ 1lin, a sub-
routine thatis conceptually identical to the function minimizeld_exp used
above in the conjugate-gradient method. The full algorithm is imple-
mented in bfgs min and its input and output parameters are identical to
the ones in cg min. Hence, the descriptions in the previous section can
be adapted analogously to bfgs_min. However, the target function (and
its gradient) look slightly different in the current case and are somewhat
more cumbersome in terms of function handles, because the additional
intermediate transformation Eq. (4.24) needs to be incorporated. The fol-
lowing is a fully working example that should help to clarify this issue.

% Random 8-by-8 density matrix
rho = randDensityMatrix(8);
[chi, lambda] = densityEig(rho);

% Convex-sum function handles for the tangle
f_cr = @(x) convexSum(x, @tangle,
chi, lambda);
g_cr = Q@(x) grad_convexSum(x, Qtangle,
@grad_tangle, chi, lambda);

% Dimensions of the Stiefel manifold
r = rank(rho);
k=r + 4;
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% Objective function and gradient
f_opt = @(x) f_cr(buildUnitary(x, k, r));
g_opt = @(x) grad_eh_adapt(x, k, r, g_cr);

% Choose a random starting point
X0 = 2*pi*randn(l, dimSt(k, r));

% Perform the optimization
[t, Xt, info] = bfgs_min(f_opt, g_opt, X0);

Notice the use of the auxiliary function grad_eh_adapt which calculates
the gradient Vxh(U(X)) given the derivatives of h(U) with respect to
the real and imaginary matrix elements of U. For the convenience of the
user, there is a function that hides all the above steps just like in the case
of the conjugate-gradient algorithm. It is called createEHFunctions and
is analogously called, as exemplified here:

[f_opt, g_opt] = createEHFunctions(rho,
k, r, O@tangle, Qgrad_tangle);
[t, Xt, info] = bfgs_min(f_opt, g_opt, X0);

Clearly, the same note as in the previous section regarding multiple
restarts holds.

Finally, we would like to make a remark about a detail in our imple-
mentation of bfgs_min. It has shown to be useful in practice to reset the
angles modulo 27 every few iterations. This improves numerical stabil-
ity and convergence in the vicinity of a minimum. It is also advisable to
vary the interval size after which this is done as this can improve per-
formance depending on the problem. If bfgs_min is to be employed for
non-periodic functions, these lines of code must be removed.

General Remarks

Before we end this section and look at some more examples, we would
like to make a few comments. At this point, the reader might wonder
why we provide our own implementation of a line search and a BFGS
quasi-Newton method, instead of resorting to the functions available in
MATLAB and OCTAVE. There are several reasons for that. First of all, it
makes the library independent of the platform, since the standard rou-
tines in MATLAB and OCTAVE work differently and hence generally pro-
duce unequal results. Furthermore, having a simple implementation at
hand allows the user to quickly make modifications and customize the
code to specific needs. In OCTAVE this is can only be achieved with quite
an effort, whereas in MATLAB it is generally not possible at all. Addi-
tional issues are availability and backward-compatibility. While MAT-
LAB’s optimization framework is well established, it is only available
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through the purchase of the ‘"MATLAB Optimization Toolbox’. On the
other hand, there is a free octave package for non-linear optimization
tasks [®]. But since this is still under active development, its usage within
libCreme might potentially become incompatible with future releases of
the package.

Next we would like to address the performance of the algorithms as
a function of » = rankp and k£ > r. The dimension of the Stiefel man-
ifold (and hence the problem size) is given by dim St(k,r) = 2kr — r2.
Since we must have £ > r, we can replace it by & = r + n, withn > 0,
yielding dim St(k,r) = 72 + 2nr. This shows that the computational cost
grows quadratically with the rank of p, but only linearly with the (user-
specified) cardinality. The algorithms in the library are thus most efficient
for low-rank density matrices, whereas experimenting with different car-
dinalities is not that costly. Actually, already choices for n as low as n ~ 4
have shown to produce very accurate results in practice (see also below).
Since, on the other hand, the scaling with r is less favorable, it is advis-
able to examine whether the rank of r can be reduced. Particularly in
density matrices originating from physical Hamiltonians it is often jus-
tified to neglect high-energy states. As mentioned earlier, reducing the
rank of p can conveniently be achieved by truncating the output of the
function densityEig.

4.5 Examples

In this section, we demonstrate the usage of 1ibCreme by working through
two complete examples. We calculate the entanglement of special states
where analytical results are known in order to compare the numerical
experiments with theory. Note that we provide initial points for the opti-
mization in separate files instead of generating them randomly, because
(i) the random number generators in MATLAB and OCTAVE produce dif-
ferent sequences of random numbers and (ii) not every initial point leads
to the convergence to a global minimum in such high-dimensional spaces.

Entanglement of formation of isotropic states using cg min

Isotropic states are defined as a convex mixture of a maximally entangled

state and the maximally mixed state in a system of two d-dimensional

subsystems. The isotropic state with an amount of mixing specified by f,
where 0 < f <1, is given by [TV00]

1-f

Pr=pm_q

D= @) + T T, (4.31)

8See http://octave.sourceforge.net/optim/.
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Figure 4.1: Comparison of numerical experiments with theory. The solid
line demonstrates the convergence of the entanglement of formation of
an isotropic state (example in Sec. 4.5), whereas the dashed line does the
same for the tangle of a GHZ/W mixture (example in Sec. 4.5).

where |[¢1) = \/Lg S°% | |ii). An analytical solution for the entanglement
of formation as a function of f and d has been found [TV00] and is imple-
mented in eofIsotropic. Let us compare now the numerical results with
theory. The full example can be found in the folder
examples/eofIsotropic, along with all other related files.

We first choose a dimension for the two subsystem:s,

d =5;

then create the maximally entangled state |1/ ") in these systems and store
it in psi:

psi = 0O;

for i = 1:d
tmp = zeros(d, 1);
tmp(i) = 1;

psi = psi + kron(tmp, tmp);
end

psi = psi/sqrt(d);
After choosing a value for the mixing parameter f,
f =0.3;

we can construct the isotropic state specified by d and f as
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% Note that in M-script, A’ is the Hermitian

% conjugate of A.

rho = (1 - £)/(d°2 - 1)*( eye(d~2) - ...
(psi*psi’) ) + f*x(psi*psi’);

and calculate its eigendecomposition with
[chi, lambda] = densityEig(rho);

In order to keep this example fully reproducible, we unfortunately have
to load and overwrite the eigenvectors chi from a file at this point. The
reason is that the density matrix is degenerate, yielding different eigen-
decompositions for the degenerate subspace depending on whether one
uses MATLAB or OCTAVE due to the different diagonalization routines
employed by these platforms. Clearly, one arrives at comparable results
in both cases, but the paths in optimization space are different.

chi = load(’example_eofIsotropic_chi.txt’);

After setting an appropriate cardinality

r = rank(rho);
k = 2%*r;

and defining function handles for the entanglement measure and its gra-
dient

eoe = Q@(x) entropyOfEntanglement(x, [d, d]);
grad_eoe = ...
@(x) grad_entropyOfEntanglement(x, [d, dl);

we can create the function handles required in the optimization

f_cr = @(x) convexSum(x, eoe, chi, lambda);
g_cr = Q@(x) grad_convexSum(x, eoe,
grad_eoe, chi, lambda);

Finally, we choose a random initial value UO (here initialized from a file)

UOr = load(’example_eofIsotropic_UOr.txt’);
UO0i = load(’example_eofIsotropic_UOi.txt’);
U0 = UOr + 1ixU01i;

and perform the optimization:
[e_res, U_res, info] = cg_min(f_cr, g_cr, U0);

This yields a value of e_res ~ 0.129322085695260 after 80 iterations. We
can check the convergence and the accuracy of the result by plotting the
difference between the function value in each iteration and the theoretical
value:
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semilogy(abs(info.fvals - eofIsotropic(f, d)));

This produces the solid line in Fig. 1, showing that the result is exact up
to an absolute error of ~ 102,

Three-tangle of GHZ/W mixtures using bfgs min

In this example, we will calculate the three-tangle of a mixture of the two
states

|GHZ) = (]000) + [111))/v/2 (4.32)
IW) = (|001) + ]010) + [100))/v/3, (4.33)

given by [LOSU06]
pp = p|GHZ)(GHZ| + (1 — p)|[W)(W]. (4.34)

The example files are in examples/tangleGHZW.
In the code, we define the states

[1; 0; 0; 0; 0; 0; 0; 11/sqrt(2);

GHZ =
= [0; 1; 1; 0; 1; 0; 0; 01/sqrt(3);

W
choose a particular value for p
p=0.7;

and create the mixed state

rho = p*GHZ*GHZ’ + (1 - p)*W*W’;

We then specify a value for the cardinality

rank(rho) ;
r + 4;

r
k

and can create the objective function and gradient handles. Note that
we use the auxiliary function createEHFunctions to do all the required
work:

[f_eh, g_eh] = createEHFunctions(rho,
k, r, Otangle, Q@grad_tangle);

After choosing a random initial point (initialized from a file, as before)
X0 = load(’example_tangleGHZW_XO.dat’);
we are ready to perform the optimization:

[t_res, X_res, info] = ...
bfgs_min(f_eh, g_eh, X0);
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The value one obtains in this way after 29 iterations is
t_res ~ 0.190667409058084. A comparison with the analytical value
[LOSUO06] is exact within numerical precision. We can again plot the er-
ror between the function values and the exact result

semilogy(abs(info.fvals - tangleGHZW(0.7)));

which yields the dashed line in Fig. 1.

4.6 Conclusion

We have presented our library 1ibCreme which serves to evaluate generic
convex-roof entanglement measures. The library contains all tools re-
quired to deal with this problem, including two optimization algorithms
working on the space of density matrix decompositions. The first one is
based on a conjugate gradient algorithm operating directly on the group
of unitary parameterizations, while the second one is a standard BFGS
quasi-Newton method employed with a transformation from the original
search space to unconstrained Euclidean space. Both implementations
accept generic function handles, making it easy to extend their applica-
tion to user-defined entanglement measures. All that needs to be done
for this is the implementation of the respective pure-state entanglement
monotone and the corresponding derivatives with respect to the real and
imaginary parts of the input state vector.
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CHAPTER

Extending Kitaev’s Toric Code
with Long-Range Interactions

Adapted from:

S. Chesi, B. Réthlisberger, and D. Loss,

“Self-correcting quantum memory in a thermal environment”,
Phys. Rev. A 82, 022305 (2010).

The ability to store information is of fundamental importance to any
computer, be it classical or quantum. To identify systems for quantum
memories which rely, analogously to classical memories, on passive er-
ror protection (‘self-correction’) is of greatest interest in quantum infor-
mation science. While systems with topological ground states have been
considered to be promising candidates, a large class of them was re-
cently proven unstable against thermal fluctuations. In this chapter, we
propose two-dimensional spin models unaffected by this result. Specif-
ically, we introduce repulsive long-range interactions in the toric code
and establish a memory lifetime polynomially increasing with the sys-
tem size. This remarkable stability is shown to originate directly from
the repulsive long-range nature of the interactions. We study the time
dynamics of the quantum memory in terms of diffusing anyons and
support our analytical results with extensive numerical simulations.
Our findings demonstrate that self-correcting quantum memories can
exist in 2D at finite temperatures.

5.1 Introduction

Quantum computers cannot be realized without the help of error cor-
rection [NCO00]. By encoding quantum information into logical states
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and designing correction circuits working on them, computations and
information can in principle be protected from decoherence. However,
the need for such an active control mechanism poses a major challenge
for any physical implementation. It is therefore of greatest interest to
look for passively protected systems which are intrinsically stable against
the destructive influence of a thermal environment. For this reason, the
idea to encode quantum information in a topologically ordered ground
state |U;) of a suitable Hamiltonian has attracted a lot of interest [Kit03,
DKLP02, Kit06, Bac06, TWT*07, TKPS10, VDS09, VISD09, NO08, AFH09,
IPGAP09, IPGAP10, BT09, KC08, PKSC09, PKSC10, HCC09, CLBT09].

Important candidates among such topological models are stabilizer
Hamiltonians [NC00, Got97], which are given by a sum of mutually com-
muting many-body Pauli operators. The advantage of such Hamiltoni-
ans is that the full energy spectrum is known and error correction schemes
are readily derived [NCO00, Got97]. A prototypical example of such mod-
els is the toric code proposed in Ref. [Kit03], for which the stability against
Hamiltonian perturbations [TWT*07, TKPS10, VDS09, VISD09, PKSC10]
and thermal fluctuations [DKLP02, NO08, AFH09, IPGAP09, IPGAP10]
was studied extensively. However, recent results [BT09, KC08] show that
in one and two spatial dimensions no stabilizer Hamiltonian with finite-
range interactions (including the toric code model) can serve as a self-
correcting quantum memory due to the errors induced by a thermal en-
vironment.

In other words, increasing the size of such a system does not prolong
the protection of its ground-state space from decoherence. These neg-
ative results point toward the fundamental question whether topologi-
cally ordered quantum states, and hence self-correcting quantum mem-
ories, can exist at all on a macroscopic scale. In the following, we will
demonstrate that self-correcting properties of two-dimensional (2D) sta-
bilizer Hamiltonians can indeed be established when we allow for long-
range repulsive interactions between the elementary excitations (anyons).
While the purpose of the present work is of principal nature, we note
that such interacting models can be expected to be realized in physical
systems. We discuss this issue in greater detail at the end, where we also
show how tunable repulsive long-range interactions could be mediated
via photons in an optical cavity.

The outline of this chapter is as follows: In Sec. 5.2 we introduce a
toric code model with repulsive long-range interactions between anyons.
In Sec. 5.3 we describe how to simulate the dynamics of the model in
contact with Ohmic or super-Ohmic thermal baths. A discussion of the
decoherence caused by anyon diffusion and an expression of the mem-
ory lifetime as a function of system parameters is provided in Sec. 5.4.
The main results of our work are in Secs. 5.5 and 5.6 where, first by an
analytical mean-field treatment and then by direct numerical simulation,
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we demonstrate the self-correcting properties of our model. Section 5.7
contains a discussion of the possible implementations of the long-range
anyon interaction and Sec. 5.8 concludes the chapter with our final re-
marks.

5.2 Repulsive long range interactions in the
Kitaev model

The model under study is defined on a L x L square lattice with periodic
boundary conditions (a ‘torus’), and a spin-} is placed on each of its 2L
edges. Starting from the toric code model [Kit03], we consider the more
general stabilizer Hamiltonian

1 1
H() = 5 Z Upp/npnp/ + 5 Z V;S/’I'LSTLS/, (51)
pp ss

wheren, = (1], 0:4)/2,ns = (1-[]ic, 024)/2,and 0, ;, 0. ; denote the
usual single-spin z and z Pauli operators applied to spin 7. The indices p
and p’ run over all ‘plaquettes’ (involving the four spins on the edges of
a unit cell), whereas s and s’ run over all ‘stars’ (involving the four spins
around a corner of a unit cell), see Fig. 5.1. The operator n,, (n,) has eigen-
values 0, 1 and counts the number of plaquette- (star-) anyons at site p (s).
The fourfold degenerate energy levels encode two qubits with logical op-
erators given by Z; = er&; o.rpand X; = [[,cp Oup, @ = 1,2, where /; and
¢} are strings of spins topologically equivalent to single loops around the
torus (see Fig. 5.1 for an example). These operators commute with all n,,
and n; and obey themselves the usual spin commutation relations.

Note that by specializing to U,, = 2J6,, and Vs = 2J6,y, where
J > 0 is the single-anyon excitation energy, the Kitaev original toric code
model is recovered. Except for the boundary conditions, the structure
of the toric code is very similar to an earlier model by Wegner [Weg71,
Kog79]. Wegner’s Ising lattice gauge theory involves only plaquette op-
erators in the Hamiltonian (U,, = 2J6,, and V;y = 0), while the stars
play the role of a gauge symmetry group. Both the Kitaev Hamilto-
nian and the two-dimensional Wegner model have no finite-temperature
phase transition, as can be obtained by mapping them to one-dimensional
Ising chains [Weg71, Kog79, DKLP02, NOO8]. Finally, the Kitaev model
is also equivalent to a model proposed later by Wen [Wen03, NOOQ9].

Since all n,, and n, are mutually commuting, the Hamiltonian Eq. (5.1)
describes two independent lattice gases of plaquettes and stars, respec-
tively. Without loss of generality, we can thus restrict our analysis to the
dynamics of plaquettes and their influence on one of the Z; operators,
say Z; = Z. A corresponding logical operator Z.. is defined by the er-
ror correction procedure (see Fig. 5.1 and Sec. 5.3). Consequently, we set
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Figure 5.1: Quantum memory based on the toric code. Illustrated is an
8 x 8 lattice (periodic boundary conditions) with a total of 128 spins-
1 [gray (smaller) circles] on its edges. The four-body plaquette and star
operators are indicated in the background. A particular choice for all log-
ical operators X, Z;, X,, and Z, is shown, although we will focus only
on the decay of Z; = Z (see main text). A number of spins is affected by
o-errors (solid dots), leading to excited plaquettes, or “plaquette anyons’
(striped plaquettes). Measuring the plaquette operators yields the posi-
tions of the excited plaquettes, but reveals no information about how
they were originally paired or which path (indicated by the framed pla-
quettes) they took. A minimum-weight error correction procedure (see
Sec. 5.3) applies o,-operators to the spins marked by the larger orange
circles. While the vertically striped green anyons are annihilated “prop-
erly” (with a trivial loop of errors remaining from the top pair and no er-
ror from the bottom pair), the horizontally striped red pair is connected
around a topologically non-trivial loop on the torus. Although this last
pair is annihilated as well, an uncorrected o,-error remains on the logical
Z string, having thereby introduced a logical error in the state stored in
the memory.



5.3. ERROR MODELS AND SIMULATIONS 73

Vss = 0 for all stars while assuming the plaquette interactions U, to be
of the generic form

Uppr = 2J0ppr + ia(l — Opp'); (5.2)

(rpp)
where 7, denotes the shortest distance on the torus between the centers
of plaquettes p and p’, see Fig. 5.1. The strength of the repulsive plaquette
interaction is given by the energy A > 0, and the interaction is long-range
for 0 < a < 2 (see below). The model is also equivalent to a long-range
Ising model, see Appendix D.1. The case of a positive logarithmically di-

verging interaction (which results in attractive forces between the anyons
[DKLPO02]) was recently discussed in Ref. [HCCO09].

5.3 Error models and simulations

Error models

We model the interaction of the system with a thermal environment by
coupling each spin to a bath which can introduce o,-errors ['] in the ini-
tial state |¥,), assumed to be a ground state of Eq. (5.1). From a standard
master equation approach in the weak coupling limit [Dav74, AFH09],
we derive a rate equation for the probabilities p,, of the system to be in
state |U,,) = [[;c,, 0x.i|Wo), where {m} is the set of all possible patterns
of o,-errors. This rate equation reads

P = Y [V(=wi(m))pa,m) — (@i (m))pm] , (5.3)

%

where we have defined z;(m) to be the state m with an additional o,-error
applied to spin i, and w;(m) = €, — €4,(m) is the energy difference between
the states m and z;(m). The time evolution of the probabilities p,, deter-
mines the decay of the expectation values (Z(cc)) = >, Pm(¥m|Z(ec)| Urmn)-

The rates v(w) describe the transition probabilities between states with
energy difference w. A standard expression for 7(w) can be obtained from
a spin-boson model and reads [LCD*87, DLO5]

v(w) = 2k, e lwl/ee (5.4)

1—e B

Here, § = 1/T, with T being the temperature of the bath (we set Boltz-
mann’s constant to one). For simplicity, we assume in the following a
large cut-off energy w. — oo. For n = 1, the bath is called ‘Ohmic’,
whereas for n > 2 it is called ‘super-Ohmic’. We find in this work that n

1o ,-errors are irrelevant for the dynamics of plaquettes.
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Figure 5.2: Decay of the logical Z operator in the non-interacting toric
code. The simulation data is obtained for grid sizes L increasing by pow-
ers of two from 16 (dotted blue) to 512 (solid red). All curves are ensem-
ble averages over 10! runs. The main plot displays (Z.), which is the
average value of Z one would find if an error correction scheme would
be applied at the readout time ¢. The inset shows the expectation value of
the bare (uncorrected) logical Z operator. We have used 7'/J = 0.3, and
~v(0) = ~(2J). See Sec. 5.3 for further details on the simulation.

has a strong influence on the decay times of the encoded states, with
super-Ohmic baths providing the best scaling of the memory lifetime
with L. These are not uncommon and emerge, e.g., for quantum dot
spins in contact with phonons [GKL04].

Simulations and error correction

The eigenstates of Eq. (5.1) are highly entangled, but it is nevertheless
possible to perform classical simulations of the quantum memory in the
simple framework discussed above. In order to achieve a time evolution
in accordance with Eq. (5.3), each iteration of a simulation consists of the
following steps. (i) We record the relevant parameters of the system. (ii)
We calculate the total spin flip rate R = ). y(es — €4,(s)), Where s is the
current state of the system. (iii) We draw the time At it takes for the next
spin to flip from an exponential distribution, At ~ Exp(1/R), and then
add this to the current total time. (iv) We calculate all individual spin flip
probabilities p; = y(e; — €,,(s))/ R and flip a spin at random accordingly.
After some initially specified time has been reached, we stop and have
obtained a single ‘run’. The final data presented in this work is then
generated by averaging over many (typically several thousand) runs.
Although continuous monitoring and error-correction are not required
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in a passive memory during the storage time, it is still beneficial to ap-
ply an error correction scheme once the memory is being read out. By
(Zec)(t), we denote in this work the average value of Z we would have
obtained if we had performed error correction at time ¢. The goal here is
to properly annihilate corresponding anyons (by applying o,-operations),
thereby reverting the undesired operations performed by anyon paths
crossing the logical operator strings. However, since only the positions
of the anyons are known, this correspondence has to be guessed. We do
this by choosing the pairing with the minimal sum of connection path
lengths using Blossom V [Kol09], which is the latest improvement on Ed-
monds’ minimal-weight perfect matching algorithm [Edm65]. If many
anyons are present, using the complete graph as the input to this algo-
rithm is numerically infeasible. In excellent approximation, we therefore
replace the complete graph by a Delaunay triangulation [?].

As a useful reference, we show in Fig. 5.2 numerical results for the
non-interacting system, i.e., A = 0. The relevant rates entering Eq. (5.3)
are y(0) (rate for an anyon to hop to a free neighboring site), v(—2J) (rate
to create an anyon pair) and v(2J) = y(—2J)e*/” (rate to annihilate a
pair of adjacent anyons, obtained from the detailed balance condition).
Figure 5.2 illustrates the typical behavior of (Z) and (Z..), in agreement
with previous literature [AFH(09, NO08, HCC09, BT09, KC08]. We refer
to Sec. 5.4 for a more detailed discussion.

5.4 Diffusion of anyons and memory lifetime

It is the purpose of this section to establish a formula for the lifetime of
the quantum memory. A static criterion was discussed in Ref. [DKLP02]:
assuming independent errors, the toric code can be mapped to a random-
bond Ising model, and a threshold probability f. = 0.11 is obtained. In
the thermodynamic limit, retrieval of the encoded information is impos-
sible if the relative number of errors is above this value. Below f,, re-
covery is achieved with probability one. Numerically, we find a similar
threshold f. ~ 0.1 for the same error model, see Fig. 5.3. This shows
that our implementation of the minimum-weight error correction scheme
works close to optimal.

Also in the dynamical simulations of the non-interacting model (see
Fig. 5.2), we observe a sharp transition in time similar to Fig. 5.3. Starting
from an initial state without errors, the thermal environment introduces
a growing number of spin-flips which eventually cause the memory to
fail. This occurs again at a certain threshold probability f. which is for
this case, however, different from 0.1, see the inset of Fig. 5.3. To under-
stand this difference, we note that a main mechanism for the creation of

2We have used the code Triangle [She96]. See also Ref. [Kol09] and references
therein for a justification of this approximation.
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Figure 5.3: Average of the corrected operator Z.. for a model with inde-
pendent o,-errors occurring with probability f at each spin. The dashed-
dotted, dashed, and solid curves refer to our numerical simulations with
lattice sizes L = 40,100, 200, respectively. The error correction fails at
a value f. ~ 0.1, which is slightly smaller than the value 0.11 from
Ref. [DKLP02]. In the inset, we plot the value of f, from simulations
of the non-interacting toric code in contact with a bath at temperature T’
and 7(0) = v(2J). The fraction f. is extracted at the time 7 when (Z..)
decays to zero in the limit of large L (see Fig. 5.2). This value is always
smaller than f = 0.11 and depends on 7.

errors is the diffusion of anyons. Clearly, errors created by the anyons in
their diffusive motion have strong spatial correlations, rather than being
independent and uniformly distributed across the memory. We find that
such correlations yield values of f. strictly smaller than 0.1 but still of the
order of a few percent, see Fig. 5.3. Although the value of f. is difficult to
determine in general, we will assume in the following that such thresh-
old probability exists and derive from it an expression for the memory
lifetime.

Direct and indirect diffusion of anyons

To estimate the error creation rate, we first study the diffusive motion
of anyons in the non-interacting model. To determine the diffusion con-
stant D, we consider an isolated anyon in the lattice and its probability
pij to be at site (7, 7). In the Ohmic case, we have v(0) # 0, and direct
hopping to neighboring sites is thus allowed. In the continuum limit, a
standard diffusion equation d’;—g) = DV?p(r) with D = ~(0) is obtained.
The resulting decay of the bare and error-corrected logical operators in

the simple case of a single pair is discussed in Appendix D.2.
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Figure 5.4: The values of 7 extracted at the sharp transitions of the (Z..)
decay (circles). As in Fig. 5.2, we use 7(0) = v(2J). Comparison to
Eq. (5.5) (dotted curve) gives good agreement for f. ~ 0.1.

For a super-Ohmic bath where v(0) = 0, diffusion is still possible due
to ‘indirect hopping’. We assume 28J > 1, such that, since v(2J) =
e?P/~(—2.J), the recombination of a pair of anyons is essentially instanta-
neous. Hopping from the site (i, j) to, e.g., (4, j+2) is possible by creation
of an anyon pair occupying sites (i,j + 1) and (¢, j + 2). This event oc-
curs with rate (—2J). Since the intermediate state can decay back to the
initial state, the actual rate for the indirect hopping process is v(—2.J)/2.
Similar considerations hold for all other sites. Accounting for all of these,
we write

dz;’] = il 22J) (—=12p;j + Pivay + Pi—2j + Dijr2 + Dij-2
+2Pit1,541 + 2Pit1j—1 + 2pim1 41 + 2pim1o1),s

which, in the continuum limit, yields D = 4y(—2.J). We can expect that
the properties of the memory improve by lowering the value of (0), but
only as long as 7(0) 2 4y(—2.J). In the interacting case, J can be replaced
by an appropriate excitation energy (e.g., a mean-field gap, see Sec. 5.5).

Lifetime of the non-interacting model

We can now express the error creation rate in terms of the diffusion con-
stant. An isolated anyon can have either one or three o,-errors at its
plaquette spins. In the first case, the anyon can hop to a neighboring
site either by creating an error on one of the initially unaffected spins, or
by removing the one pre-existing error. Therefore, such an anyon con-
tributes to the error rate with 2D = 3D — D. If three o,-errors are present,
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an opposite rate —2D is obtained from an analogous reasoning. How-
ever, three-error plaquettes can be expected to be less likely: they require
that an anyon hopped on a plaquette with two pre-existing errors from
one of the two directions without errors. From the above discussion, it is
justified to estimate the rate at which errors are created to be of order D
per anyon.

Finally, assuming N diffusing anyons present in the system, the frac-
tion f of spins affected by a o,-error after a time ¢ is estimated as f ~
NDt/2L?* and the error correction fails when f is larger than some criti-
cal value f. [DKLPO02]. This gives a lifetime 7 for the memory

e? +1
max{7(0), 47(=2J)}’
where we have replaced the factor N/L? by the equilibrium occupation
(ny) = 1/(e7 +1).

An analogous result can be obtained based on the following different
reasoning [AFHO09, HCCO09]. The distance between the two anyons of a
pair after a time 7 is of order A/ = +/Dr and is required to be much
smaller than the average anyon separation ~ /L2/N. This gives 7 <
(€?7 + 1)/ max{(0), 4v(—2J)}. Interestingly, this upper bound coincides
with the right-hand side of Eq. (5.5) if the probability for each spin to be
flipped is 3 (which is realized at long times).

Equation (5.5) generally gives reasonable estimates of the memory
lifetime. For example, the value f. ~ 0.11 of [DKLP02] yields 7 ~ 5.8
for the same parameters as used in Fig. 5.2, in remarkable agreement
with the simulations. However, the real threshold directly obtained by
the simulation is smaller (inset of Fig. 5.2). This seems not surprising
considering the approximations introduced when deriving Eq. (5.5). We
generally adopt the practice of using f. as a single fitting parameter to
study the functional dependence of the lifetime, e.g., as a function of L or
T. An example of the temperature dependence of 7 in the non-interacting
case is shown in Fig. 5.4 and is also well described by Eq. (5.5).

More importantly, Eq. (5.5) allows one to describe the asymptotic de-
pendence of the lifetime on L. For the non-interacting case, 7 is inde-
pendent of the system size, consistent with previous findings [AFHO09,
NOO08, HCC09, BT09, KC08]. This fact is confirmed by our simulations,
as shown in Fig. 5.2, where (Z,.) clearly approaches a step-function with
increasing L. We also see that the bare expectation value (Z) decays even
faster with larger L. Indeed, at sufficiently short times
t < 1/max{v(0),4v(—2J)}, when anyon pairs have not yet diffused
apart from each other (the ‘nonsplit-pair” regime, indicated by an aster-
isk), we obtain (Z) = (1—1/L)N"/2 ~ e~ N"/2L_ By using N* ~ 4L2y(—2J)t,
it follows that (Z) decays exponentially with L.

For the interacting case, we find good agreement of a modified ver-
sion of Eq. (5.5) with the simulations [see Eq. (5.12) and Fig. 5.6]. Fitting

T~ 2f. (5.5)
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the data always yields values of f. smaller than f. = 0.11, but still of the
order of a few percent. These values are thus consistent with the original
meaning of f.. For a more extended discussion, we refer to Secs. 5.5 and
5.6.

5.5 Mean-field analysis of the interacting
model

We now turn to the interacting case A > 0 and perform a mean-field
analysis, which becomes accurate in the relevant limit of large L.

Mean-field anyon density

We first consider the equilibrium number of anyons N within a mean-
tield treatment (mean-field values will be indexed with a subscript ‘mft’).
We obtain the single-particle energy at plaquette p as ¢, = 0H,/on, =
J + 32, Uty Replacing ny by the average value ny,s = Nit/L? and
taking the continuum limit, we find the mean-field value for ¢, to be

A
€mt = J + nmf/ —dr = J 4 1T La, (5.6)
LxL T

where we use the notation
L, = coSAL*™. (5.7)

The constant ¢, is a geometrical factor of order 1, given by the integration
of 1/r* on a unit square centered at the origin. In particular, ¢y = 1. On
the other hand, we have ny,¢ = 1/(e’“ +1) since the occupation numbers
n, can only assume the values 0 or 1. By using Eq. (5.6) to calculate n,,¢,
we find the self-consistent equation

1
Nmf = B 1t Lo +1 ) (58)
with the following expansion at large L,
1
Nt = — [In Ly —Inln L, — BJ +...]. (5.9)

La

Higher order terms in the square brackets are smallif In L, > £J, |Inln L,|.
For fixed temperature 7" and interaction strength A, these conditions are
always satisfied at sufficiently large L since L, o< L*~°.

We have confirmed the validity of the mean-field approximation by
Monte Carlo simulations. By using the Metropolis algorithm [MRR*53]
to sample the probability distribution oc e=#/22PP Uiy gee Eq. (5.1),
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the equilibrium number of excited plaquettes can be approximated with
arbitrary accuracy. This can be used to study the accuracy of the mean-
field value N,y = nyeL? [see Eq. (5.8)], in particular for values o # 0.
Due to the long-range nature of the interaction, V,,,y compares very well
to the equilibrium value of N obtained from these simulations at generic
values of the temperature and interaction exponent a. This is illustrated
in Fig. 5.5, which further shows a satisfactory agreement already at mod-
erate values of L.

We also note that, for the case of constant interaction (« = 0), the aver-
age number can be calculated directly from the grand-canonical partition

function
2
> < gk )ME%, (5.10)

2k<L?

since the energy of a given anyon configuration does not depend on the
positions of the anyons, but only on their total number N =} n,. In the
presence of a sufficiently strong anyon interaction or at low temperature,
the number of excited plaquettes is much smaller than L?. Therefore, one
can restrict the sum (5.10) to the first few relevant terms.

Lifetime of the interacting model

From Eq. (5.9) we obtain that, even though the number of anyons N,
grows with the system size L, the anyon density n,,s goes to zero for long-
range repulsive interactions with 0 < a < 2. Hence, the population of
anyons is increasingly diluted and the system is essentially frozen in the
ground state at large system size. This remarkable effect can be attributed
to the divergence of the excitation energy e, ~ T'In L,, which is self-
consistently determined from the anyon population in the whole system
due to the long-range nature of the interactions. Note also that, despite
the fact that e, is diverging, the total excitation energy density 7n,¢€m¢/2
goes to zero for large L.

Secondly, the divergence of ¢,,; leads to a vanishing anyon pair cre-
ation rate at large L,

(2In Ly)"*

—2€mf) = kI

(5.11)

This fact allows us to revise the lifetime for the non-interacting memory
Eq. (5.5), simply by substituting J with the equilibrium value €,,, yield-
ing

ch/nmf

~ max(7(0), y(—Zemg)} 6:12)
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Figure 5.5: Comparison of the equilibrium value of N obtained numer-
ically (crosses) with N, (curves) for different grid sizes. We have used
the interaction exponents oo = 0 (solid line), @ = 0.5 (dashed line), and
a = 1.0 (dotted line), and the temperature 7'/J = 0.5.
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From this we obtain the lifetime of an interacting memory in case of an
Ohmic (n = 1) or super-Ohmic (n > 1) bath as

JeLa :
—_— Oh
kiTInL,’ e
T o 2f L (5.13)
T fnz = super-Ohmic

in the limit of large grid size [see after Eq. (5.9)]. It is clear from these
expressions that the memory lifetime is diverging with L, in strong con-
trast to the non-interacting case where it was bounded by a constant. In
the Ohmic case, this divergence of 7 is entirely due to the vanishing den-
sity, since v(0) = 2k,7 is non-zero. In the super-Ohmic case, however, an
additional divergence due to the vanishing of v(—2¢,¢) is obtained, see
Eq. (5.11). Since the energy gap grows logarithmically with L, 7 grows
polynomially, but with a rather favorable power. For instance, constant
interaction (o = 0, see also below) leads to 7 oc L?/In L in the Ohmic case
and to 7 < L%/ 1n° L in the super-Ohmic (n = 2) case.

Effects beyond the mean-field treatment

Equation (5.12) is valid in the mean-field limit and does not include ef-
fects of the fluctuations of the number of anyons and their positions.
These result in additional errors and correlated spin-flips across the mem-
ory, due to the long-range nature of the anyon interactions. Although we
expect in general deviations from Eq. (5.12), the memory remains self-
correcting both for an Ohmic and for a super-Ohmic bath.

Indeed, for an Ohmic bath, we can neglect the effect of the repulsive
force if the change of energy w in a diffusive step is smaller in magnitude
than 7" [see Eq. (5.4)], so that we can approximate y(w) ~ 7(0). In par-
ticular, for a single pair of anyons at distance r, we have |w| < aA/r*t!,
which defines a critical radius

re = (@ AB)a+, (5.14)

beyond which the fluctuations become negligible. For a = 0 one has
r. = 0. For a > 0, since the average distance ~ 1/,/ny¢ between anyons
grows with L while r, is independent of L, the fluctuations also become
negligible. The validity of Eq. (5.12) for the Ohmic case is confirmed by
numerical simulations both for a = 0 (see Fig. 5.6) and for o > 0 (see
Fig. 5.8).

Concerning the super-Ohmic case, Eq. (5.12) could become inaccu-
rate if the fluctuations of w ~ 0 are more effective for the anyon mo-
tion than the indirect diffusion mechanism which is proportional to the
rate in Eq. (5.11). However, due to the decreasing interaction strength,
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such fluctuations in w become small at large L and still result in a van-
ishing diffusion coefficient. Therefore, Eq. (5.12) might overestimate the
lifetime in this case, but the asymptotic dependence on L would still be
better than in the Ohmic case. Furthermore, at o = 0 direct hopping is
impossible and Eq. (5.12) is valid (see Fig. 5.6).

5.6 Dynamics of the interacting model

We turn now to the numerical simulations of our model, Eq. (5.1), and fo-
cus first on constant long-range interactions (o = 0). In this case, the total
energy Ey = NJ + 92N(N — 1) depends only on the number of anyons
N, but not on their position. This simplifies the numerical treatment con-
siderably. Our results are displayed in Fig. 5.6. The numerical data show
a clear increase of the memory lifetime 7 with L. Note that this holds
already for the bare logical Z operator. Like in the non-interacting case
(see Fig. 5.2), the beneficial effect of the error correction at read-out is to
prolong the lifetime by maintaining (Z..) close to 1 (see inset of Fig. 5.6).

Our analytical results describe the numerical data remarkably well.
By fitting f. in Eq. (5.12) to the simulation data, excellent agreement
is found for an Ohmic bath (top panel of Fig. 5.6), while for a super-
Ohmic bath (lower panel), analytics and numerics agree well for L 2 64.
Furthermore, the fit yields values for f,. of about 0.01 — 0.02, which is
reasonable in comparison to the upper bound f. = 0.11 found for a model
of uncorrelated errors (dashed-dotted lines in Fig. 5.6) [DKLP02]. See
also the discussion in Sec. 5.4.

The lifetime 7 can be compared to the physical time scales of single
spin flips, 1/7(0) and 1/v(—2J). For instance, for the L = 256 super-
Ohmic case in Fig. 3 we obtain 77y(—2J) ~ 5 x 10°, i.e., already for a mod-
erate system size the lifetime 7 of the memory is about a 10° times longer
than the single-spin lifetime. For quantum dots, the latter is typically in
the range of milliseconds to seconds at about 100 mK [GKL04, AMR*08].

The nonsplit pair regime

We consider now in greater detail the super-Ohmic case at a = 0, which
has the most favorable scaling. The initial dynamics of the memory can
be nicely characterized by a regime of nonsplit pairs. Under this assump-
tion, the rate equation

dN}; * * *
Tmf = 4L27(_26mf) - Nmfv(zemf) (515)
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Figure 5.6: Thermal stability of the interacting memory. The data in the
top (bottom) panel were obtained for an Ohmic (super-Ohmic, n = 2)
bath. Plotted as a function of L are the numerically simulated times at
which the expectation values of the bare (squares) and error-corrected
(diamonds) logical Z operator have decayed from 1 to 0.9. The dotted
lines serve as a guide to the eye. The red dashed-dotted curves are cal-
culated from Eq. (5.12) with f. = 0.11, where we have used the self-
consistent values of n,; and e, from Egs. (5.6) and (5.8). Similarly, the
green dashed lines are also due to Eq. (5.12), but here f, is fit to the nu-
merical data of the 90% threshold times, yielding f. = 0.022 for an Ohmic,
and f, = 0.007 for a super-Ohmic bath. The inset shows the decay of (Z..)
with time for L = 8,. .., 128 (from left to right), and the 90% threshold is
illustrated by the dotted line. It is seen that choosing this particular value
has no substantial influence on the scaling behavior with L. Parameters
used in these simulations were A/.J = 0.1, and 7'/J = 0.3. Times are in
units of (k1J)~! and (k2J?)~! for the first and second panel, respectively.
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describes the initial time-evolution of the system well, since in this non-
diffusive regime only pair creation [°] and annihilation takes place. In
Eq. (5.15) we denote with N;; the total number of anyons, appearing as
N} ;/2 nonsplit pairs.

We confirm Eq. (5.15) by comparing its solution, obtained by numer-
ical integration, with a direct simulation presented in Fig. 5.7. After a
rapid initial ‘build-up” phase, N} ; saturates to a value determined by
the self-consistent condition N}, = 4L%e~2(/+4Nud)8 obtained by setting
dN}¢/dt = 0in Eq. (5.15). In this state, the excitation energy is diverging
with L, since we have ¢! ; ~ AN, ~ AN,¢/2 o In L. This effectively sup-
presses the indirect diffusion of anyons. Therefore, the system remains
in a quasi-stationary state which evolves to the final anyon density on a
time scale also diverging with L. In this regime of nonsplit pairs, one has
(Z) ~ e Nui/2L. This leads to the quasi-stationary value (Z) ~ e~ AT,
which approaches 1 for large L (see Fig. 5.7).

Similar to the calculation of the total number of anyons [see Eq. (5.10)],
the exact quasi-stationary number of paired anyons N* (crosses in Fig.
Fig. 5.7) can be calculated from a partition function reading

> ( Zf ) e PEx (5.16)

k<2L2?

Here we have assumed that k sufficiently diluted errors are present in
the memory such that 2k anyons are created in the nonsplit-pair regime.
The average number of anyons N* calculated from Eq. (5.16) is in very
good agreement with the simulations, see Fig. 5.7.

Non-constant interaction

For non-constant long-range interaction (0 < o < 2), simulating the time
dynamics of the memory is numerically more costly due to an O(L?)
overhead coming from recalculating all spin flip rates. Nevertheless, we
were able to study the (more tractable) case of an Ohmic bath. The results
are presented in Fig. 5.8 for a = 0.5 and o = 1. Clearly, the memory life-
time is still increasing with L, proving the memory to be self-correcting
also for a # 0. Furthermore, the data are in very good agreement with
the analytically calculated lifetime Eq. (5.12). The super-Ohmic case for
a > 0 is more difficult to simulate due to the increased memory lifetime
and will be examined elsewhere.

3Note that in Eq. 5.15, we have approximated the number of spins without errors
by the total number 2L?, neglecting corrections of order In L.
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Figure 5.7: Short-time dynamics of the interacting memory in a super-
Ohmic bath. In this case, the memory is in the nonsplit-pair regime. The
curves refer to different values of L increasing in powers of 2 from L = 64
(lowest curves in both panels) to L = 2048 (highest curves). Upper panel:
The time dependence of the anyon number N obtained from the simula-
tions (solid lines) is compared to the solutions of Eq. (5.15) (dashed lines).
The crosses are the exact values N* obtained from the partition function
of pairs Eq. (5.16). Good agreement with N* is also obtained for the lower
curves at longer times (not shown). Lower panel: The expectation value
of the bare Z obtained from the simulations (solid lines) is compared to
e~N"/2L (dashed lines), where N*(t) is obtained from the upper plot. Pa-
rameters used are A/J = 0.1, and 7'/J = 0.3. The time axes are in units
of (ke J?)™L.
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Figure 5.8: Thermal stability of the interacting memory with o # 0 and
an Ohmic bath. Data points refer to the numerically calculated times at
which the error-corrected logical Z operator has decayed from 1 to 0.9 in
the cases o = 0 (diamonds), o = 0.5 (triangles), and o = 1 (squares). Note
that we have replotted the data from a = 0 merely for comparison. The
dashed lines are from Eq. (5.12) (as in Fig. 5.6), with a fit of f. yielding
fe = 0.027 for o = 0.5 and f. = 0.032 for @ = 1. Inset: Decay of (Z..) as
a function of time for different grid sizes, L = 8, 16, ..., 256 (left to right),
and o = 1. Parameters used in the simulations were A/J = 0.1, and
T/J = 0.3. Times are in units of (x;.J) .

5.7 Discussion of the long range interaction

So far we have assumed the presence of long-range anyon interactions.
We briefly comment here on their possible realization. Concerning the
many-body nature of the interactions involved, general n-body couplings
can in principle be engineered from two-body interactions
[KKRO6, BDLT08, Wol08, JF08]. For example, toric codes with interact-
ing anyons are derived in [HCC09, SDV08]. A systematic procedure
to construct such effective low-energy Hamiltonians can be rigorously
founded on the Schrieffer-Wolff transformation [BDLT08, Wol08]. In a
similar way, physical long-range interactions of the type considered in
this work could also be generated perturbatively. A well-known example
is the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [Kit87], e.g.,
for a 2D Kondo-lattice of nuclear spins [SLO7]. Alternatively, constant
interactions (o = 0) can be realized for qubits coupled to photon modes
in QED-cavities [Dic54, PGCZ95, IAB*99, WSB*04, BI06, TGL08]. The
interaction range is determined by the wavelength of the photon and
can reach macroscopic distances, in particular in superconducting cavity
striplines [WSB*04, BI06, TGL08]. Another promising candidate system
to realize topological models are ultracold atoms or molecules in optical
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lattices [JBG*T08, WML*10].

As a most elementary example, consider all plaquette operators in-
teracting with a delocalized two-level system (acting as an ancilla qubit),
in analogy to the so-called central spin problem. For example, H, =

Ao, + 7, gpnyo. With eigenvalues i\/ A%+ (3, 9pnp)*. A quadratic ex-

2
pansion of the higher eigenvalue >~ A + i (Zp gpnp> (if A > 0) gives a
repulsive interaction between the anyons. Note that in this example the
central spin has to be kept in the excited state.
A physically more interesting case is the two-photon coupling de-
scribed by the Hamiltonian

2
Hiy =Y wiala; + Y gynp(alas + araf). (5.17)

i=1 p

Here, w; are the photon frequencies, and g, is the coupling strength of
plaquette p to the modes. This type of coupling naturally emerges in
the perturbative derivation of the toric code model from the Kitaev hon-
eycomb model [Kit06] if a quadratic coupling to electric (or magnetic)
cavity fields such as E,E, is added. We start from the expression of the
anyon excitation energy obtained in leading order of perturbation theory,
given by

J2 T}
8J3 '

where J;, are the exchange couplings in the honeycomb lattice [Kit06,
SDV08]. Since the couplings J;, are determined by exchange integrals,
they can be modified by electric perturbations: In multiferroic materials,
electric fields can couple to the spin (-texture) via a modification of the
exchange interaction such as J, — Ji, + dx(ar + az) [TTSLOS8, TTSL10]
(with 4, . being some coupling constants and a,, = a;2). Thus, if, for
example, one J, and one J, occurring in .J2.J;/8.J? get modified in this
way (by locally modifying the corresponding links), we end up with a
coupling of the desired form with

JQ:

(5.18)

Ty 0.0,

A possible concern is that the spin-electric couplings introduce several
other interaction terms in addition to Eq. (5.17) [*]. By imposing the res-
onance condition w; & ws, the quadratic term (alay + ala;) can be made
dominant over the linear ones (which are non-resonant). Furthermore,

*As a simple example, we note that since the gap of the star anyons is also given by
Eq. (5.18), an additional term ) _ _ gsns (ai ag +a£a1) appears in Eq. (5.17) which generates
repulsive star-star as well as star-plaquette interactions.
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higher-order terms can be neglected for §;, < J;; (a more detailed analy-
sis will be presented elsewhere [PCL11]).

The Hamiltonian Eq. (5.17) can be brought to the diagonal form H;,, =
S22 Q:bib; by making use of a standard Bogoliubov transformation of
the boson operators. Since g, is spatially constant over the photon wave-
length \; [Dic54], we assume in the following a constant value ¢, = g,
such that )} g,n, = gN. Therefore,

b1 = cosfa; + sin fao, (5.20)
by = cosfay — sinfay, (5.21)

with tan 20 = 2gN/(w; — wo) and

2
Q=2 ‘2“‘12 + \/(“’1 ;“’2> + (gN)?. (5.22)

By expanding H;, to lowest order in g we obtain the desired constant
anyon interaction,

- 2 bk — blby )
e Y wiblb + ——2= (gN)?. (5.23)

- W1 — W2
=1

The same result can also be derived with the general method of the
Schrieffer-Wolff transformation [TAB*99, TGL08] (see also Appendix D.3).
The strength and sign of the interaction are tunable via the difference in
frequencies and occupation numbers of the modes, and can consequently
be made repulsive in a steady-state regime. We identify the parameters
of Egs. (5.1) and (5.2) as follows

2

2
J=Jo+ 2L ib)) and A=Y

W1 — W2 W1 — W2

2

(blby). (5.24)

The value of J includes a small self-energy correction. For definiteness,
we assumed that only the first mode (with w; > w,) is populated while
(biby) = 0.

Similarly to the first example, the case of repulsive interaction corre-
sponds to a larger occupation of the mode with higher frequency. This
condition is never realized in equilibrium and thus requires excitation
of the cavity mode, which is easily accomplished by an external laser.
Therefore, this specific realization of the long-range interaction corre-
sponds to some sort of optical pumping of the memory into its ground
state. It allows to avoid the full machinery of active error-correction, but
cannot be considered passive in the strict sense of the term.

Finally, while a non-equilibrium regime is generally needed for inter-
actions obtained in second-order perturbation theory, it might be possi-
ble to derive repulsive interactions in the ground state at higher orders
by a more elaborate construction.
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at small L but it can also lead to a stable memory at a sufficiently large
system size, if the initial encoding is in a state full of anyons (n, = 1 at
each plaquette, instead of n, = 0).

5.8 Conclusion

We have discussed a generalization of the Kitaev toric code to include
repulsive long-range anyon interactions. The properties of the system
have been analyzed within a mean-field treatment, which we find to be-
come accurate at large system size. Additionally, we have numerically
studied the system dynamics via direct simulations. This has allowed us
to demonstrate robust storage of the information encoded in the ground
state manifold at large system size.

A similar model to ours, but with attractive instead of repulsive long-
range interactions, was studied in Ref. [HCC09], and was also found to
possess self-correcting properties. In that case, however, the interaction
is logarithmically divergent with distance while we consider here more
physical interactions, i.e., polynomially decaying. A dependence of this
type is commonly found in condensed matter systems and, more specif-
ically, we show that local coupling of the anyon operators to long-range
optical modes would allow to realize such interactions. As for the peri-
odic boundary conditions, these are not an essential ingredient to a topo-
logical stabilizer code [BK98, FM01].

Another important aspect of our study is that the properties of the
memory are strongly influenced by the type of thermal bath. We obtained
the size dependence of the memory lifetime for Ohmic and super-Ohmic
baths, the latter representing an especially advantageous situation. For
example, for typical stripline cavities with \; ~ cm and typical lattice
constants of 100 nm (e.g. quantum dots), we see that the anyon inter-
action stays constant over system sizes L as large as 10°. Extrapolating
the super-Ohmic curve of Fig. 5.6, an enhancement factor ~ 10%° is ob-
tained at this value of L. With a single-spin lifetime 1/v(—2J) ~ 1us —1s
[HKP*07, AMR"08] this gives a memory lifetime 7 ~ 10** — 10 s. How-
ever, the assumption that the super-Ohmic scaling is valid up to this large
size might be violated (e.g., because 7(0) = 0 can only hold approxi-
mately).

In conclusion, we have demonstrated the existence of 2D stabilizer
quantum memories at finite temperatures. In our model, the stability
of the memory is due to a large effective gap created by the repulsive
interactions, which results in a vanishing anyon density. Furthermore,
the diffusive motion of the anyons is quenched in a super-Ohmic bath,
when the diffusion process requires creation of new anyon pairs. We
expect that similar systems in the presence of such interactions also prove
useful as self-correcting quantum memories.
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“Incoherent dynamics in the toric code subject to disorder”,

Phys. Rev. A 85, 022313 (2012).

We numerically study the effects of quenched disorder on the incoher-
ent dynamics of anyons in two variations of the toric code. A new class
of error-correcting codes based on random lattices of stabilizer opera-
tors is presented and is shown to be superior to the toric code for cer-
tain forms of biased noise. It is further argued that these codes are close
to optimal, in that they tightly reach the upper bound of error thresh-
olds beyond which no correctable CSS codes can exist. Additionally,
we study the classical motion of anyons in toric codes with randomly
distributed onsite potentials. In the presence of repulsive long-range
interaction between the anyons, a surprising increase in the lifetime of
encoded states with disorder strength is reported and explained by an
entirely incoherent mechanism. Finally the coherent transport of the
anyons in the presence of both forms of disorder is investigated, and a
significant suppression of the anyon motion is found.

6.1 Introduction

A working quantum computer performing meaningful calculations unar-
guably requires information processing to be carried out in a fault-tolerant
manner [NC00, Mer(07]. This not only means protecting the information
from the action of imperfect gates, but also storing it in a reliable way
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during the course of computation. In the theory of quantum error cor-
rection, the state of a logical qubit can be encoded in the code space
of a number of physical qubits [Got10]. The resulting redundancy al-
lows one to implement fault-tolerant quantum gates and to periodically
check for the occurrence of single-qubit errors using syndrome measure-
ments. However, this kind of active error monitoring imposes an ad-
ditional overhead on an already deeply involved vision. Therefore, the
idea to manipulate and store quantum states in systems that already pro-
vide ‘built-in” protection from errors has gained a lot of attention recently
[Kit03, DKLP02, Bac06, NOQ09]. A promising approach in this direction
is to encode information in the degenerate topologically ordered ground
state of a suitable many-body Hamiltonian. Information is encoded in
an entangled state distributed across a large number of qubits and can
only be distinguished and modified non-locally. In this context, Kitaev’s
toric code [Kit03] is arguably the best studied model to date. It is robust
against local perturbation at zero temperature, as well as against ther-
mal errors if long-range interaction between its fundamental excitations
is present (see Refs. [HCCO09, PCL11], and chapter 5).

Recent studies have focussed on coherent phenomena in the toric
code that arise due to the additional presence of various forms of
quenched disorder [TOC11, WP11, SPIbuR11, BK11]. Conversely, in this
chapter, we numerically study incoherent (classical) effects caused by
two particular forms of randomness. First, we consider a class of models
similar to the toric code, but differing from the latter in that the syndrome
check operators are chosen randomly from a set of 3-body and 6-body
operators. We find that these models bear advantage over the toric code
for biased noise, where bit-flip and phase-flip errors occur with differ-
ent probabilities. We also present strong evidence that these codes are
almost optimal, in the sense that they reach error thresholds close to the
overall upper bound valid for any Calderbank-Shore-Steane (CSS) code
[CS96, Ste96]. Second, we investigate the effect of random onsite poten-
tials on the lifetime of states encoded in the regular toric code coupled to
a thermal bath. We identify and describe an interesting regime, where,
in the presence of long-range interactions, the lifetime of this quantum
memory is enhanced for increasing disorder strength. Finally the effects
of the random lattices on coherent anyon transport is investigated, both
with and without additional randomness in the onsite potentials. The re-
sultant slowdown of the anyonic motion is determined and its effect on
the stability of the quantum memory is discussed.

This chapter is organized as follows: Section 6.2 reviews the toric
code, which is the basis of all further studies in this chapter. We then
show in Sec. 6.3 how to simulate the classical dynamics of excitations in
the systems considered subsequently and also give some details on the
numerics. Our main results are presented in Sections 6.4, 6.5, and 6.6,
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followed by a conclusion in Sec. 6.7.

6.2 Review of the 2D toric code

The starting point of our investigation is Kitaev’s 2D toric code [Kit03]
which will be modified in the following sections to incorporate random-
ness. We provide here a brief outline of the original model for the sake of
completeness. The 2D toric code consists of 2L? spins-3 with each spin
placed on an edge of an underlying L x L square lattice with periodic
boundary conditions. One then defines two sets of mutually commut-
ing four-body operators, called plaquettes and stars, respectively, in the
following way (cf. Fig. 6.1a). A plaquette is the product of the Pauli o,
operators associated with the four spins belonging to a single face of the
square lattice, whereas a star is the product of the four o, operators of the
spins on edges adjacent to a single vertex of the lattice. In this way, one
obtains two sets of L? plaquette and star operators, out of which L? — 1
in each set are independent. Note that these operators can only have
eigenvalues +1 and —1.

One can then define a subspace C of the total Hilbert space given
by the 2[2/*~2(*~1)] — 4 states which are simultaneous eigenstates of all
independent plaquettes and stars with eigenvalue +1. This space can
thus accommodate two logical qubits, and measuring the plaquette and
star operators allows one to gather information about possible spin- and
phase-flip errors without disturbing the encoded state. A negative pla-
quette (star) indicates the presence of one or three o, (¢) spin errors. The
toric code belongs to the class of stabilizer codes, and the plaquettes and
stars are in that context often referred to simply as stabilizer operators.

Notably, the code space C is the degenerate ground space of the Hamil-

tonian
H=-JY A,-JY B, 6.1)
s p

Here, J > 01is the energy gap, and A, and B, are the stars and plaquettes,
respectively, explicitly given by

Ay = H U:im (62)
i€adj(s)

B, = ][ . (6.3)
i€adj(p)

where adj(s) [adj(p)] denotes the set of spins on edges adjacent to the star
(plaquette) s (p). The elementary excitations of the Hamiltonian Eq. (6.1)
are stabilizer operators with negative eigenvalue and are referred to as
‘anyons’.
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Figure 6.1: Toric codes. a) Kitaev’s original 2D toric code. Shown is a
4 x 4 subregion of the L x L lattice. The blue solid dots on the edges of the
lattice represent spins, the 4-body plaquette and star operators are shown
in light green and orange, respectively (note that stabilizers containing
spins outside the figure are not shown). All four logical Pauli operator
strings are displayed as thick horizontal and vertical lines. b) The same
region after modifying the lattice in order to incorporate randomness.
The modified plaquette and star operators are not shown yet, see Fig. 6.2.
The empty circles indicate the defect positions, i.e., the edges of the lattice
where spins are removed. This requires altering the logical operators Z,
and X, in the way shown. Note that all commutation relations between
the logical operators are preserved.

Associated with the two logical qubits encoded in C are four string-
like operators (products of single-spin o,’s or ¢.’s) which wrap around
the torus and commute with all plaquettes and stars, but act non-trivially
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in the form of logical Pauli X and Z operators on the two qubits encoded
in C. We choose to label the operators such that X is a vertical string on
horizontal edges and Z; is a horizontal string on horizontal edges. Cor-
respondingly, X, and Z, are horizontal and vertical strings, respectively,
on vertical edges (see Fig. 6.1a).

When the system described by the Hamiltonian Eq. (6.1) is coupled to
a noisy environment causing single-spin errors, pairs of anyons are cre-
ated and can subsequently move diffusively on the toric surface. Even-
tually, the creation and diffusion of anyons leads to a pattern of errors
containing undetectable loops around the torus, acting as unnoticed log-
ical Pauli operators on the code space C and therefore corrupting the state
contained therein. Measuring the plaquette and star operators to locate
anyons reveals some, but not all information about the underlying er-
ror pattern and is generally ambiguous. It is up to an error correction
procedure (see Sec. 6.3) to deal with this problem in a satisfactory way.

The toric code has gained attention due to a series of interesting and
advantageous properties. Namely, the stabilizer operators are local and
independent of the system size L, while the code distance grows linearly
with L. Closely related is the fact that the ground-state degeneracy is
exponentially protected (in L) against local perturbations. Quite remark-
ably, the toric code is in a sense almost optimal within the class of all CSS
codes [DKLP02], even though the latter contains codes with arbitrarily
large stabilizer operators. We will revisit this topic in greater detail in
Sec. 6.4.

6.3 Classical dynamics and numerical
simulations

Classical dynamics from single-spin errors

Since the Hamiltonian Eq. (6.1) does not couple the star and plaquette op-
erators, we can treat the two corresponding types of anyonic excitations
independently. Furthermore, because the stars are simply plaquettes on
the dual lattice, it is sufficient to study the dynamics of only one type,
e.g., the plaquette anyons. We assume that each spin is coupled to an
auxiliary system that can cause the spin to flip via o, errors. In the limit
of weak coupling [Dav74, AFHQ9], one can derive the following system
of coupled rate equations describing the classical dynamics of the system
(see the Sec. 5.3):

%ps(t) = Z (V% Dasie)(t) — A7E pe(t)] - (6.4)

7

Here, pg(t) is the time-dependent probability to find the system in the
state |£) obtained by applying o, errors to all spins with indices in &, i.e.,
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1E) = [ice 0F|tbo), where |1y) is the initial state of the system. Similarly,
Pz, (¢)(t) describes the probability to be in the state ¢ |€). Finally, 7/ and
77¢" are the transition rates to arrive at or leave the state |£), respectively,
via a o,-error at the spin with index «.

In this chapter, we will consider two types of error environments. The
first one is a constant error rate model, i.e., we set 7} = 77¢ = const. In
this case, spin-flips are caused independently of any previously existing
anyons and o, errors. The second model mimics the coupling to a ther-
mal environment, where the transition rates are in general energy de-
pendent. Consequently, we set 7/t = y(—w;¢) and ¢ = v(wie), where

wig = €g — €4,(¢) is the energy difference between the states |£) and o7 |E).
An expression for v(w) often found in the literature is given by

wn

m e_lw‘/wc (65)

V(w) =2k,

and can be derived from a spin-boson model [LCD*87, DL0O5]. Here,
Kk, is a constant with units 1/energy” setting the time scale, 8 = 1/kgT,
with T being the temperature of the bath and kp denoting Boltzmann’s
constant, and w, is the cutoff frequency of the bath. In the following,
we set w, — oo for simplicity. A bath with n = 1 is called ‘Ohmic’,
whereas one with n > 2 is called ‘super-Ohmic’. Only the former case is
considered in this chapter. Unless otherwise stated, all energies will be
expressed in units of k7. Consequently, the unit of time is (k1kpT) "

Simulations and error correction

Clearly, it is impossible to solve Eq. (6.4) analytically for meaningful sys-
tem sizes, because the number of states pg grows exponentially with L2.
We thus have to stochastically simulate the system and obtain the quan-
tities of interest, such as the number of anyons or the expectation values
of the logical operators, by averaging over many (typically several thou-
sand) instances. In greater detail, the iteration of the simulation at time
t consists of these steps: (i) Calculate all unnormalized single spin-flip
probabilities p; = v(eg — €;,(¢)), then obtain from them the total spin flip
rate R = ), p;. (ii) Draw the time At until the next spin flip from an expo-
nential distribution with rate R. (iii) Calculate and record all quantities of
interest for time sampling points lying in the interval [¢, ¢ + At]. Namely,
these quantities are the number of anyons, the number of o, errors, and
the uncorrected and error-corrected (see below) logical operators Z; and
Z,. (iv) Determine a random spin according to the probabilities p;/ R, flip
it, and set t to t + At.

The error correction step in the toric code consists of pairing up all de-
tected anyons and then annihilating them by connecting each pair with
a string of errors from one partner to the other. The pairing is usually
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chosen such that all anyons are annihilated with the smallest total num-
ber of single-spin operators. This is known as the minimal-weight per-
fect matching and can be found in polynomial time with the help of the
‘blossom” algorithm due to Edmonds [Edm65]. The runtime complexity
of this algorithm has been improved several times since its discovery. We
are employing the library Blossom V [Kol09] which implements the lat-
est version running in O(mn log n) time, where n is the number of anyons
(vertices) and m the number of connections (edges) between them.

In order to find the true matching with minimal weight, one in prin-
cipal would need to choose the set of edges to include all connections
from every anyon to every other. However, since the size of this set
grows quadratically with the number of anyons n, the overall scaling
of the matching algorithm becomes O(n?®logn) which is infeasible for
large n. We therefore first perform a Delaunay triangulation in negligi-
ble O(nlogn) time using the library Triangle [She96]. The result is that
only anyons close to each other are connected using a number of edges
linear in the number of anyons. It turns out that this is an excellent ap-
proximation yielding results that are nearly indistinguishable from those
obtained from a matching over the complete graph.

Within the paradigm of active error correction, where the anyons are
detected and corrected periodically on sufficiently small time intervals,
the encoded state can be kept free of logical errors almost indefinitely.
However, since we are interested in the use of the toric code as a passive
quantum memory, we are mostly concerned with the lifetime 7 of the en-
coded information in a scenario where error correction is only performed
once at readout. Hence, whenever we show plots of the ‘error-corrected’
logical operators decaying as a function of time, we thereby refer to their
value if error correction had been performed at that time, without actu-
ally performing it. We then define the lifetime of the system as the time
it takes for the expectation values of the error-corrected logical operators
to decay to 90% of their initial value.

6.4 Random lattices

In this section, we study the error thresholds of a family of models ob-
tained by randomly modifying the toric code in a way that preserves its
basic features. We first describe how we create our random lattices and
then present and discuss the results of the simulations within the context
of optimal quantum codes.

Generating the lattices

Starting from the toric code on an L x L lattice, we remove $L? spins
at specific and regularly distributed ‘defect” locations. The structure of
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Figure 6.2: Modifying the stabilizer operators. a) When removing a spin
(empty circle), we choose between two ways of adapting the affected
stabilizer operators. With probability p,.;, we join the two plaquette op-
erators to one large 6-body operator and reduce the two stars from 4- to
3-body operators. Alternatively, with probability 1—p,,;,, we perform the
dual operation, namely we define two 3-body plaquettes and one large 6-
body star. Spins and operators not affected by removing the central spin
are not shown in this example. b) Typical 8 x 8 subregion of a (larger)
random lattice with p,,;, = 0.5. Logical operators as well as some spins
and operators at the edges with the rest of the lattice are not shown.
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the defect pattern can be easily understood from Fig 6.1b. Basically, ev-
ery second vertical edge is labelled a defect, with the first defect of each
row alternatingly being created on the first or second vertical edge of
that row. Note that the height and width of the grid both must be even
in oder for this procedure to be consistent with the periodic boundary
conditions. We now have to modify all plaquettes and stars as well as
the logical Pauli X and Z operators such that all original commutation
relations remain unaltered.

Let us start with the logical operators. Clearly, both X; and Z; (with
single-spin operators exclusively on horizontal edges) are unaffected by
the introduction of defects on vertical edges of the lattice. However, the
pair of operators in the original code acting on the second encoded qubit
is defined on vertical edges and thus needs to be adapted. Clearly, the
operators must remain connected strings wrapping around both dimen-
sions of the torus. The ‘zig-zag’ pattern shown in Fig. 6.1b achieves this
with the smallest increase in the number of single-spin operators. It is
straightforward to verify that these new X, and Z, operators, together
with the unaltered pair acting on the first encoded qubit, indeed fulfill
all original commutation relations between each other.

We now discuss the modification of the plaquette and star operators.
Removing one spin, i.e., creating one defect, affects exactly two adjacent
plaquettes and two adjacent stars. We will consider two possible ways
of dealing with this situation (cf. Fig. 6.2). We can either (i) define two
restricted 3-body plaquettes and one ‘vertical star” consisting of the prod-
uct of the remaining 6 single-spin o, operators, or (ii), perform the dual
operation, namely defining one large 6-body ‘horizontal plaquette” and
two restricted 3-body stars. The two ways of modifying the original op-
erators are depicted in Fig 6.2a. It is relatively easy to see that these new
3-body and 6-body operators remain mutually commuting, and further-
more commute with all modified logical Pauli operators just as in the
original code. Note that also the dimension of the code space is left un-
changed since it generally only depends on the genus of the surface cov-
ered by the anyon operators [Kit03]. We can now create a random lattice
by choosing at each defect site to create a 6-body plaquette with proba-
bility pi, and two 3-body plaquettes with probability 1 — p,,;,.. See Fig.
6.2b for a typical example. The special case p,,;, = 0 corresponds to a reg-
ular lattice of 3-body plaquettes and 6-body stars, whereas p,,;, = 1 con-
versely yields a regular lattice of 6-body plaquettes and 3-body stars. In
both cases, the 3-body operators are the vertices of an underlying hexag-
onal lattice, whereas the 6-body operators form the vertices of its dual,
the triangular lattice.
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Results

Before we start discussing the results, we would like to briefly point out
a modification to the error correction scheme we had to incorporate in or-
der to deal with the random lattices. Since it would be difficult to adapt
the Delaunay triangulation to an irregular graph, we have replaced this
step by a breadth-first search performed on each anyon. This procedure
connects every anyon to at most £ of its nearest neighbors, where dis-
tance is measured not in a Euclidean sense, but as the number of errors
in a connecting string. For constant k, this requires a runtime of O(n),
where 7 is the number of anyons. We have found that k£ = 10 is an excel-
lent approximation to £ = oo and have used this value in all calculations.

We have performed a series of Monte Carlo simulations to determine
the critical fraction of errors fZ independent of any form of anyon dy-
namics (see Appendix E for additional results in the case of thermal er-
rors). If the probability for each spin to independently be affected by a o,
error becomes larger than this critical value in the limit I — oo, the error
correction scheme undergoes a transition from performing fully accurate
error recovery to randomly guessing the error-corrected state with the
lowest possible success rate of 50%. We can determine fZ by plotting the
expectation values of the error-corrected logical Z operators as a function
of the error probability f for different lattice sizes and observe at which
value of f the curves intersect ['].

Fig. 6.3a displays typical results for a few different values of p,,;,. We
observe that the expectation values of Z; and Z, in general have a dif-
ferent dependence on the error probability f. This is due to the fact that
on a lattice with, e.g., a majority of 6-body plaquettes, it takes on av-
erage fewer spins to form a loop around the horizontal direction of the
torus than around the vertical one. The opposite argument holds in the
case of a 3-body plaquette majority. Not surprisingly, Z; and Z; decay
identically for a 50 per cent mixing of 3- and 6-body plaquettes. Note
that, despite the typically unequal decay of Z; and Z, as a function of
[, the error thresholds for the two operators are always identical for a
given value of p,,;,. This is consistent with the general understanding
that the correctability of the memory as a whole is related to the phase of
a corresponding random-bond Ising model [DKLP02]. Indeed, our nu-
merically determined thresholds for the regular 3-body and 6-body pla-
quette lattices agree well with the recently calculated multicritical points
in spin glass models on hexagonal and triangular lattices, respectively
[Ohz09]. Specifically, we find f. ~ 0.1585 for p,,;, = 0 (theoretical value:
fe = 0.1640) and f,. ~ 0.0645 for p,,;. = 1 (theoretical value: f. = 0.0674).
The discrepancy of about 4 — 5% between the numerical and theoretical

!Note that fZ could equivalently be obtained from dynamical simulations in the
presence of a bath with constant error rates at the time where the error-corrected logical
Z operators for different system sizes intersect.
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Figure 6.3: Critical error thresholds of random models. a) Three exam-
ple plots of data used to determine the critical error thresholds. Each
plot shows, for a specific value of p,,,, the expectation values of the
logical Z; (dotted lines) and Z, (dashed lines) operators for grid sizes
L = 32 (circles), 64 (triangles), and 128 (squares). The vertical dotted
lines indicate the position of the error threshold. Data points are ob-
tained by bootstrapping 1000 sample values, each of which is obtained
by averaging over 200 random error distributions on a single instance of
a random lattice. b) Error thresholds [as determined in a)] of Z (circles)
and X (triangles) operators as a function of p,,;,;. The dotted lines are
guides to the eye.
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thresholds is of the same size as in the case of the toric code on a square
lattice (where we had found f. ~ 0.1055 as compared to the theoreti-
cal value f. = 0.1092, see Sec.5.4) and can generically be attributed to the
failure of the minimal-weight perfect matching close to the threshold. In-
terestingly, our numerical results suggest that the thresholds of the toric
code and our random lattice models with p,,;, = 0.5 are identical.

We show in Fig. 6.3b the critical fraction of errors fZ for the logical
Z operators determined in the way described above as a function of the
lattice mixing probability p,,.,. Since the plaquette and star lattices are
dual to each other (to every 6-body plaquette correspond two 3-body
stars and vice versa), the critical fraction fX of o, errors for which error
correction of the logical X operators fails (also plotted in Fig. 6.3b) is
simply given by

At equal mixing, i.e., pmi; = 0.5, the threshold values are given by
X(0.5) = fZ(0.5) ~ 0.1055.

Consequently, one of the thresholds for the two different types of
Pauli operators, either fX or fZ is always smaller than or equal to the
threshold of the toric code. Our random lattices thus bear no advantage
over the latter in the case of a uniform error model, where o, and o, er-
rors occur with the same probability. The situation is different, however,
for biased noise. If bit-flips and phase-flips are created with different
probabilities, we can make use of the asymmetry in the error thresholds
for pii; # 0.5. Assuming, for instance, that o, errors are more frequent
than o, errors would lead to an overall lifetime decrease of encoded states
in the toric code due to the shorter lifetimes of the logical Z operators.
However, starting from a random model at p,,;, = 0.5, a decrease in
pmiz Will lead to an increase of the Z lifetimes and a decrease of the X
lifetimes. If the error frequencies are not too different, the lifetimes will
become identical at some value 0 < p,,;, < 0.5 and will be larger than the
overall lifetime of the toric code. We thus conclude that the random lat-
tices can be employed to increase the lifetime of encoded states compared
with the toric code on a square lattice in the presence of biased noise.
While these lattices require both error probabilities to fall in the range
0.0674 < p < 0.1640 (and below the boundary in Fig. 6.4, see next sec-
tion), it should in principle be possible to extend this range to 0 < p < 0.5
by defining stabilizers with more than 6 single-spin operators in a similar
fashion.

Relation to optimal quantum codes

We now discuss our random lattices within the context of optimal quan-
tum coding. It is well known that, assuming a biased constant error
model, there is an upper bound on the fraction of logical qubits £ and
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Figure 6.4: Theoretical upper bound on biased noise correctable by CSS
codes. Given an error model of independent o, and o, errors occurring
with constant probabilities p, and p., respectively, there exists no CSS
code able to cope with pairs of error probabilities lying above the solid
line given by the zero-contour of Eq. (6.7). The crosses are the numeri-
cally determined pairs of thresholds of the random models for p,,,;, = 1
down to p,,;; = 0 from left to right. The dotted line is a guide to the eye.

physical qubits n that encode them, valid for all CSS codes. This bound
is given by [Ste96, DKLP02, GL03]

k/n <1—H(p:) — H(p.), (6.7)

where H(z) = —xzlogy,z — (1 — x)log,(1 — z) is the Shannon entropy,
and p, and p, are the probabilities for a singe spin to be affected by a o,
and o, error, respectively. The bound Eq. (6.7) can be motivated with the
following intuitive (but somewhat hand-waving) argument we were not
able to find in the literature.

An ideal CSS code would be able to detect for each physical qubit if it
was suffering from a o, or a o, error. Assuming that these errors are un-
correlated, the number of classical bits required to store this information
is asymptotically given by nH (p,) + nH (p.). If we are to store the same
information in qubits instead of bits, the Holevo bound [NCO00] requires
the usage of at least as many qubits to do so. Since our optimal CSS code
needs to store the information of k encoded qubits, as well as all possible
occurrences of errors, we have

n>k+nH(p,) +nH(p,). (6.8)

Dividing by n and rearranging the terms yields the desired bound Eq. (6.7).
For unbiased errors with p = p, = p,, the right-hand side of Eq. (6.7)

becomes zero at p ~ 0.110028, implying that there cannot be any CSS

code coping with an error rate larger than this value. Quite remarkably,
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the critical error probability for the toric code has been determined to be
fer = 0.109187 [Ohz09]. This is astonishingly close to the upper bound,
especially when taking into account that all stabilizers are local 4-body
operators. Moreover, inserting the error thresholds for the regular 6-body
plaquette lattice and its dual lattice of 3-body stars (p.,;; = 1) into the
right-hand side of Eq. (6.7) evaluates to

1— H(0.0674) — H(0.1640) ~ 6 x 107°, (6.9)

which is virtually zero, indicating that the code is close to optimal for
this particular biased error model. Due to the symmetry of Eq. (6.7) with
respect to the error probabilities and the duality of the triangular and
hexagonal lattices, the same argument holds for a lattice with 3-body
plaquettes and 6-body stars (p,;, = 0) with the values of p, and p, ex-
changed. With our random lattices, we can thus continuously interpo-
late between two optimal models by changing p,.;,. This suggests that
the random models are optimal for all values of p,,;,, in the sense that
for every 0.0674 < p, < 0.1640 there is a random model with a theoreti-
cally (close to) maximal possible threshold for p,. The results plotted in
Fig. 6.4 strongly support this claim. The solid line is the zero-contour of
the upper bound Eq. (6.7) and the crosses are the threshold pairs of the
random lattices determined numerically. Note that the numerical data is
within the typical 5% distance of theoretical bound. This can once again
be explained by the failure of the minimal-weight error correction algo-
rithm close to the thresholds. This observation, together with the knowl-
edge from theory that the models are virtually optimal for p,,;, = 0 and
Pmiz = 1 leads us to conjecture that the random models are virtually op-
timal for all values of p,,;,. However, carrying out a theoretical study in
the fashion of Ref. [Ohz09] is outside of the scope of the present work
and is deferred for future research.

6.5 Random onsite potentials

This section is devoted to the study of the classical dynamics of anyons
in the regular toric code on a square lattice, but with randomly mod-
ified anyon onsite energies. We are also particularly interested in the
case where long-range anyon-anyon interaction is present, as this has
been shown in the previous chapter to generally enhance the lifetime of
the memory due to the suppression of the anyon density with increasing
system size. For this, it is convenient to introduce the new stabilizer op-
erators ns = (1—A;)/2and n, = (1-B,)/2, where A, and B, are the usual
star and plaquette operators, respectively. These operators are zero in the
absence of an anyon on the respective site, and equal to 1 otherwise. The
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more general Hamiltonian can then be written as

H= % > Uppnpny + % > Vienang, (6.10)
pp’ ss’

where U,, and Vs contain the onsite energy and repulsive anyon in-

teraction terms. Since in this model plaquette and star anyons are still

independent, we can set V¢ = 0 and note again that all results for the

plaquette anyons hold equally for the stars. We then set

Uy = 20500+ — (1= 6,.,), (6.11)
(rppr )

where J, is the onsite energy of an anyon on the plaquette with index p,
A is the interaction strength, r,,, is the shortest distance on the torus be-
tween plaquettes p and p/, and 0 < o < 2 is the (long-range) interaction
exponent. The onsite energies .J, are chosen randomly from a distribu-
tion with mean zero in order to discriminate effects caused by the ran-
domness from such potentially caused by the system having a non-zero
mean gap.

We focus on the case of constant interaction, i.e., &« = 0, and Ising-like
randomness, meaning that the J, are chosen from {—o, 40} with equal
probabilities. We refer to ¢ > 0 as the disorder strength. This model is
interesting mostly for two reasons. First, it is the most convenient system
incorporating randomness with respect to numerical simulation. Since
the interaction is constant and thus simply depends on the total number
of anyons, only six different single-spin flip rates need to be updated at
each iteration step, depending on the number and configuration of adja-
cent anyons and onsite energies, respectively. Second, this simple model
already displays all dynamical effects also present in more complicated
systems (e.g., & # 0 and Gaussian distribution of J,’s, see Appendix F)
and thus serves as an ideal playground for studying and understanding
these effects. Naively, one would expect that the presence of negative
onsite energies in the system simply favors the creation of anyons and
is thus always disadvantageous for the lifetime of the memory. While
this is indeed true for a non-interacting system, we find a regime in the
interacting case where, quite surprisingly, the lifetime is enhanced for
increasing disorder strength.

Fig 6.5 presents the results for the two cases. The non-interacting
system is stable against disorder strengths that are roughly equal to the
temperature but then decays for larger o. This can be understood easily
from the detailed balance condition satisfied by the rates Eq. (6.5): The
ratio of the creation and annihilation rates of a pair of anyons on two
sites with negative onsite energy is given by v(20)/v(—20) = exp(2f50),
which becomes large for o’s exceeding the temperature. It is thus ex-
ponentially more likely for a pair of anyons to be created than annihi-
lated for o > kgT, thereby quickly cluttering the system with anyons and
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Figure 6.5: Influence of disorder on the memory lifetime. a) Time evolu-
tion of error corrected Z operators for a non-interacting (top) and inter-
acting (bottom, o = 0, A = 0.5) model. Both systems are of size 32 x 32
unit cells (2 x 322 spins) and are coupled to an Ohmic bath at tempera-
ture 7' = 1. The different curves display (Z..(t)) for different disorder
strengths o of Ising-like randomness with onsite energies J, = +o0. In
the non-interacting system, o is increased from 0 to 10 kg7 as indicated
in the panel. The inset displays the lifetime of the memory, i.e., the time at
which (Z..) hits 0.9, as a function of ¢. The disorder strengths examined
in the interacting case have been chosen as 0 < o < 15kgT (see main
text and labels in the panel). b) The lifetimes of the interacting model
extracted from the curves of the lower panel in a). The dotted line is a
guide to the eye.
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Figure 6.6: Number of anyons (top) and number of single-spin errors
(bottom) as a function of time in an interacting system (¢« = 0,4 =
0.5kpT) of size 32 x 32 coupled to an Ohmic bath. The strength of the
Ising-like randomness is increased from o = 0 to ¢ = 15 kT as indicated
in the panels (see also main text).

crossing the critical fraction of errors. This situation changes completely
in the presence of interactions between the anyons. The data shown in
Fig. 6.5 displays a steep increase in the lifetime as a function of the dis-
order strength, peaking at around o =~ 3.5 kT for that particular system,
followed by a slower decay.

We can shed some light on this effect by additionally looking at the
number of anyons and the number of errors as shown in Fig. 6.6. For
any fixed value of o, the number of anyons again increases quickly but
then saturates almost instantaneously at the equilibrium value. At this
point, creating a new pair of anyons costs an energy penalty due to the
repulsive interaction that can no longer be compensated by the negative
onsite potentials. One can clearly see that the equilibrium number of
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anyons increases linearly with o, which implies that the corresponding
enhanced memory lifetimes cannot be explained by a suppression of the
anyon density.

However, the error creation rate (i.e., the slope of the curves in the
lower panel of Fig. 6.6) exhibits a pronounced minimum at the same
value 0 ~ 3.5kgT that also yields the maximal lifetime. Such an ini-
tial decrease in the error rate despite an increasing number of anyons
can only be consistently explained by a suppression of the anyon diffu-
sion. For disorder strengths o > kg7, processes that create anyons on
two positive sites or that move an anyon from a negative to a positive
site are exponentially suppressed. The positive sites thus effectively act
as infinite barriers that greatly reduce the mobility of the anyons, and
the encoded state is solely destroyed by diffusing anyons restricted to
the negative sites [?]. As the disorder strength is lowered, two compet-
ing effects come into play. On the one hand, the number of anyons is
reduced linearly. On its own, this would lead to a longer lifetime due to
the presence of fewer diffusing anyons. On the other hand, the barriers
separating the regions of negative sites are lowered, which facilitates the
diffusion across longer distances and promotes a reduction in lifetime.
The observed maximum in the memory lifetime can thus be understood
as a tradeoff between having few but relatively freely moving anyons for
0 < kgT, and more but very restricted anyons for o > kgT'. The interac-
tion merely plays the role of restricting the anyons to a small enough (for
o < kgT) and constant number. Appendix G contains results that further
support the picture described above.

6.6 Quantum dynamics

The toric code ground state has been shown to be stable against local per-
turbations of sufficiently small strength [BHM10, DKOSV11]. The effect
on exited states, however, is more disastrous. Perturbations allow the
hopping of any anyons that are present, causing the quantum memory
to become unstable [Kay09, PKSC10]. It has been found that this problem
can be solved by the presence of disorder in the couplings of the model
[WP11, SPIbuR11], since the disorder suppresses anyon motion through
a localization effect. In this section we study the effects of the disorder
introduced by using the random lattices.

ZNote that the error correction is unaware of the distribution of negative and posi-
tive onsite energies. If it were, this information could in principle be used to improve
the lifetime of the memory.
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Error model

Consider the toric code Hamiltonian, perturbed by a magnetic field of
strength h. For concreteness, let us choose this to be of the form,

H=> Jmn,+» Jon,+h) o (6.12)
p s %

The effects of such a perturbation have been studied using the methods
of Refs. [WP11, SPIbuR11], where it was noted that, since the ¢’ do not
commute with the n,, the perturbation will have the effect of creating,
annihilating and transporting plaquette anyons. For h < J, all these ef-
fects apart from the transport are suppressed by the energy gap, allowing
the system to be modelled as the following many-particle quantum walk
Hamiltonian,

H, = Z My ptpy +U Z ny(n, — 1),
p.p’ p
M,y = dppyh+oppJp. (6.13)

Here d(,,,y = 1 only when the plaquettes p and p’ share a spin. The op-
erator ¢, ,, maps a state with an anyon on the plaquette p to that with the
anyon moved to p/, and annihilates any state without an anyon initially
on p. Since the anyons are hardcore bosons, we are interested in the case
of U — oo.

This effective description in terms of quantum walks of anyons holds
also for a more general magnetic field and other local perturbations. The
effects of anyonic braiding occur at a higher order of perturbation the-
ory than those of this effective description, and hence may be ignored.
The dynamics of the plaquette and vertex anyons can therefore be con-
sidered separately. Since they are dual to each other, once again only the
plaquette anyons are considered here without loss of generality.

The Hamiltonian ), is difficult to solve in general. However, note
that the dynamics of H, are driven by the matrix }, i.e., the Hamilto-
nian for a single particle walk. Hence, by considering the case of a single
anyon, important aspects of the behavior for the many-particle walks can
be determined. It is this approach that is taken here. The Hamiltonian M
is applied to a single anyon, initially placed on an arbitrary plaquette of
the code. The motion of the anyon can be characterized by the time evo-
lution of its standard deviation, A. Since finite values of the system size
L must be used in the numerics, the walks will, at some point, interact
with the boundary. In order for this effect to be ignored, the run time of
the walks is limited to ensure this interference always remains negligible.

The behavior of A over time for walks on square, triangular and
hexagonal lattices for which all J, are uniform can be found in Fig. 6.7.
In each case the standard deviation of the distance increases linearly with
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Figure 6.7: Time evolution of the standard deviation A(t) of a single
quantum walker on lattices with uniform couplings J, = J for all p. The
different curves correspond to a square lattice (solid), 3-body plaquette
lattice (dashed), and 6-body plaquette lattice (dotted). Inset: A(¢) on the
random lattices from Sec. 6.4 with p,,,;, = 0.5, where each point has been
averaged over 1000 samples.

time, demonstrating the ballistic motion expected from quantum walks
when no disorder is present.

The ballistic motion caused by the field is highly damaging to the
quantum information stored within the code. Suppose that the toric code
initially has some density p of anyon pairs, due perhaps to noisy prepa-
ration of the state or interaction with the environment. If p is sufficiently
small then the pairs will be far apart, allowing error correction to be per-
formed reliably. However, when the perturbation is present this will only
remain true for a finite lifetime 7, after which the motion of the anyons
prevents them from being paired reliably. This occurs when they have
moved a distance comparable to the average distance between pairs, and
hence when A(7) ~ 1/,/p. Since A(t) grows linearly with time for or-
dered quantum walks (cf. Fig. 6.7), the quantum memory will fail within
a time of order 7 = O(1/,/p). Mechanisms which slow down the anyons
are therefore favorable to the quantum memory, since they lead to longer
lifetimes. It is this effect that is expected from the disorder.

Random lattices

Let us now introduce disorder by using the random lattice of Sec. 6.4
while still keeping the J, (and J;) uniform, all taking the same value J.
Specifically the case of p,;, = 0.5 is considered, to maintain the sym-
metry between plaquette and star anyons. The behavior of the standard
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deviation of the distance moved by a single walker is shown for this lat-
tice in the inset of Fig. 6.7. Rather than increasing linearly with time ¢,
as in the ordered case, it is found that A(¢) grows with the square root
of t. The motion of a quantum walker is therefore diffusive rather than
ballistic in this case. As such, the random lattice leads to a significant
slowing of the anyon motion, increasing the lifetime to 7 = O(p™') (note
that we always have p < 1). It is possible that the random lattice also
induces Anderson localization [And58], in which case the lifetime will
be increased further, but the system sizes which may be probed are too
small for this to be evident.

Random lattices together with J disorder

It is known that, when disorder in the J, couplings is present in the toric
code, Anderson localization is induced [WP11, SPIbuR11]. This effect
exponentially suppresses the motion of the walkers, and causes the stan-
dard deviation of the distance to converge to a constant value. We there-
fore have 7 — o0, i.e., the memory stays stable against the perturbation
for an arbitrarily long time. It is now important to determine whether
the combination of randomness in both the lattice and the J, couplings
enhances or diminishes this effect.

To study this, disorder in the .J, couplings are considered. Specifi-
cally, each J, randomly takes either the value J — o or J + ¢ with equal
probabilities. The value J is unimportant, but the ratio of o/h charac-
terizes the strength of the disorder in comparison to the magnetic field.
Guided by the numerical results of [WP11], we consider here disorder of
strength o /h = 250 to ensure that the localization effect is observed for
moderately sized systems.

In Fig. 6.8, the time evolution of the standard deviation is shown for
the case of J disorder on a square and a random lattice. In both cases
the localization effect is seen, with the walk unable to move far beyond
a few times the length scale separating neighboring vertices. The walks
with and without the lattice disorder give very similar results, especially
at longer times. The effect of localization in the random lattice therefore
seems the same as that of the square, without significantly enhancing or
diminishing the effect.

6.7 Conclusion

We have studied the influence of quenched disorder on the incoherent
(classical) motion of anyons in modified forms of the toric code. We have
tirst described a class of random models that can be obtained from the
toric code by removing a regular sublattice of spins, and then for each de-
fect site randomly choosing one of two ways to adapt the affected stabi-
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Figure 6.8: Time evolution of the standard deviation A(t) for a single
anyonic walker with disorder in the J, of o/h = 250, on both a square
lattice (solid line) and a random lattice (dashed line) with p,,;, = 0.5.
Each point has been averaged over 1000 samples.

lizers with a probability p,,;,. The critical fractions of independent errors
at which these codes become uncorrectable have then been determined
numerically as a function of p,,;,. We have shown that in the presence of
biased noise, where bit flips and phase flips occur at different probabili-
ties, the models based on random lattices can tolerate higher thresholds
than the toric code in one type of errors, given the other type is corre-
spondingly lower. These thresholds have been demonstrated to be close
to the upper bound correctable by any CSS code. Second, we have stud-
ied the toric code subject to randomness in the onsite potentials. Specifi-
cally, we have demonstrated that in the presence of repulsive long-range
interaction between anyons, there is a pronounced maximum in the life-
time of encoded states as a function of disorder strength. This effect has
been attributed to a reduction of anyon diffusion due to the sites with
positive onsite energy acting as barriers for the anyons.
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APPENDIX

Derivatives of the Meyer-Wallach
Entanglement Measure

Within our numerical framework, the evaluation of the Meyer-Wallach
measure v(|1)) [see Eq. (3.45)] requires its partial derivatives with respect
to the real and imaginary components of |¢) [see Egs. (3.10, 3.11)]. They
are given by

af}/ 8 EN 1 V1,V2,...,V, v N 1%
aRed}(z) [4) a _N 2’ Re (w( W2 sV — 1y Vk 150 UN) pkk u) 7 (Al)
k=1 pu=0
—67 8 -\ (V1,02 V- 1ol Vheh 15 UN ) . APkl
alm¢<i>>—_ﬁz T (w2t eet) L plelt) (A 2)
P

b
Il
o

1 p=

Here, we represented the ith component of |¢) by the tuplei = (11, ..., vn),
with the indices v; € {0, 1} corresponding to some arbitrary product ba-
sis {|v1)|ve) -+ - [vn) 11,]:0 of the spin system. Furthermore, p,"** denotes the
matrix element with indices (v, i) of the reduced density matrix

Pk = TrV17V27---7Vk—17Vk+1 ----- VN |¢> <77Z}| € CQXQ' (A3)

In case of the systems studied in Sec. 3.4, the computation of the
Meyer-Wallach measure (3.45) and its derivatives can be greatly simpli-
tied by exploiting the rotational symmetry of the Hamiltonian H. Since
we have [H, R] = 0, where R is the symmetry operator for the rotation by
an angle of 27 /N about the central axis perpendicular to the plane of the
spin ring, all p, in Eq. (3.45) are unitary equivalents for a simultaneous
eigenstate |¢)) of H and R. This reduces Eq. (3.45) to the simple form

y([9)) = 2[1 = Te(p})]. (A4)

115



APPENDIX A. DERIVATIVES OF THE MEYER-WALLACH
116 ENTANGLEMENT MEASURE

The corresponding derivatives read

oy ‘

ORe )
_9r
O Im @

= —8[p)° Rep® 4 Re(p) ™" '+0)), (A.5)

= —8[p Tm o + Im(p @™+, (A.6)

[¥)
for0<i<2¥1 _1,and
dvy
ORey®

_ O
0 Im @

= —8[pr" Rev” + Re(p{" 9" * D)), (A7)

[¥)
= —8[py" Im ¢ — Tm(p =2 ), (A.8)

)

for 2V-1 <j < 2V — 1. In practice, we first diagonalize H numerically ['],
subsequently diagonalize further any degenerate spaces with respect to
R, and then apply the simplified formulas above.

ISince for the number of particles N considered in Sec. 3.4 the splitting between
the lowest and the next higher multiplet is still always large compared with tempera-
ture, we diagonalize only the lowest-lying (N + 1)-dimensional subspace of H using a
Lanczos algorithm.



APPENDIX

Derivatives of Entanglement
Measures

In the following, we provide the calculations for the derivatives of all
entanglement measures included in 1ibCreme.

B.1 Entropy of entanglement

Let |U) be a state vector from a bipartite system with subsystem dimen-
sions d; and ds. Let us rewrite Eq. (4.1) in the form

E(|¥)) = S(Trp p), (B.1)

where
S(X)=—TrXlogX, (B.2)

and p = |V)(¥|. Let ¢ be an arbitrary (complex) entry of the state vector
|W). Then, using the chain rule, we have

OE(IV) _ §~ 95(X))

0y vy Xij

I(Trp p)ij Opu

B.3
X=Trgp apkl a¢ ( )

Note that the indices k& and [ in the above sum run over the full Hilbert
space dimension d;d,, whereas i and j only run over the first subsystem
with dimension d;. We now evaluate each term in the sum separately.

117




118 APPENDIX B. DERIVATIVES OF ENTANGLEMENT MEASURES

For the gradient of S(X') we get

VxS(X)=-VxTr[(X —T)log X + log X]

- —VX{ i - gnﬂ Tr [(X — D)™

53 (_12&’1“ Te (X - 17 }
_ _{ i( 1>”+;<n+ D x _ gy

+ nf;( DX — H)"—l}T

+Z nH ]I)"Jri(]I—X)"}T
= —log XT — 1, o

where we have made use of the formula Vx Tr(X") = n(X"!)T and the
fact that the series expansion of the logarithm is valid because in our case
X is always a density matrix, thus having real eigenvalues between 0 and
1.

Next we evaluate the derivatives of the partial trace Trpz. We will
write coordinate indices of vectors in the full Hilbert space as k = (k; —
)dy + ko = [k1, k2|, where ky € {1,...,d;} and ky € {1,...,ds}. Then

(Trp p)i; Z Pli k) [.k] (B4)

and thus

da

= E zmlékmzéjnlékng

k=

I(Trg p)ij
0pmn

i

my 5]’%1 5m27n2'

Finally, we have to consider the derivatives of the density matrix itself
with respect to the entries of the state vectors. This is the part where we
have to treat Re? and Im+ as independent variables because p is not
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analytic in the entries of |¥). One quickly finds

opr .

8Re d}n - §kn’l/}l + 5lnwk7 (BS)
dp . .

T g~ Ol — Bt (B.6)

Putting all this together we find, after eliminating all Kronecker ¢-
symbols,

=1
and analogously for the derivatives with respect to the imaginary parts.
Exploiting the fact that V.S(Trp p) = —log(Trp p)T — I is Hermitian, we

arrive at the final expressions

dy

OE(|W
aR((szi) QZZRG [VS(Trp p)liny  Yfiina } (B.8)
OE(|W))

am’”pn QZZI {[VS(Trp p)lin, * Wiina } - (B.9)

B.2 Three-tangle

Defining d = dy — 2d, +4ds, where dy, ds, d; are given in Eqs. (4.3, 4.4, 4.5),
it is easy to see that

37‘(|\I/>) B od .

Rev, |d|R (awn'd)’ (8.10)
af(|xp>): 4 m(ad )
St = 1™ () (B.11)

Note that the derivatives dd/0v,, are well-defined because d is an analytic
function of the elements 1), of | V).

B.3 Meyer-Wallach measure

We start by calculating the derivative of v(|V)) with respect to an arbi-
trary complex element ¢ of |¥) until the point where non-analyticities
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appear:
M(P) 2 D s
—_=Z —(p3) .. (B.12)
R N ; ]Zl Y (v),,
AR,
= 2 2 g Lo (o)) (B.13)
k=1 j,l=1
4 N2 ) 9
= N Z Z Re |:(pk)jl : @ (pk)jl} (B.14)
k=1 j,l=1
B 4 N 2 . 2N P (pk>jl 8pa5
- _N kz:;jlzl i {(pk)]l a%;1 |: apaﬁ . 3@/) :| } ‘ (B15)

The derivatives of the p,s (depending non-analytically on ) with re-
spect to the real and imaginary part of i) have already been stated in
Egs. (B.5, B.6). We are thus left to calculate the slightly cumbersome
derivatives of multiple partial traces of p with respect to the matrix el-
ements p,z.

Similarly to the calculation in Sec. B.1, we will now rewrite indices
v € {1,...,2"} of the full Hilbert space in the binary representation v =
(r — 12N+ (b — )22 + .+ 2un_ 1 + vy = [11, 1, ..., VN], where
v; € {1,2} foralli € 1,... N (we will also employ this representation for
the indices a, 5, and n below). Then, the matrix elements of p; can be
written as

(pk)i,j = E : E : o § : E : E :p[l’l7V2a~~-,l’k7177::Vk+17~~-VN} (V1,025 V10Vt 15 VN ]
VN

141 12] Vi—1 VE+1
(B.16)
where i, j € {1,2}. Hence we have
9 (pr) il
ap 5] - 5a161 ’ 6042,32 T 5ak—16k—1 ’ 50&1@73' : 5Bk7l ’ 5ak+1/3k+1 to 5C¥NBN' (817)

Inserting this into Eq. (B.15) and working out all Kronecker ¢ symbols,
we arrive at

oy g M2
aRe¢ —_ — /= Z ZRe <¢[n17n2 ..... nk717j,nk+1 ..... nN] : (pk’)nku> 9 (B.18)

L)) k=1 j=1

O N N 2
S| =% 2 2o (Ve (98)n ) - (BI9)
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APPENDIX
Derivatives of the Function 1 (U)

We will carry out the calculation explicitly only for the derivatives with
respect to the real part of U, but everything works analogously for the
imaginary part. For the sake of readability, we will drop the usual ‘ket’
notation and write quantum state vectors as v, = |¢;). We write the kth
element of ¢; as wi(k).

Differentiating Eq. (4.15) with respect to the real part of the k x r
matrix U (with matrix elements U,3) yields

onu) , {api(U) d 3m(?/))’ 3%@ }

aReUa@_iZ1 8ReUa5m(¢i(U))+pi<U)Z 0v0) |,_, OReUqg
(C.1)

where d is the dimension of the total Hilbert space. Note that we have

specifically emphasized the U-dependence of the p; and v; via Egs. (4.9,
4.10, 4.11, 4.12). The first derivative in this expression is given by

o5 (a2 )

j=1

OReUns OReUqg OReUqg

i oY)
—9 @, TV
Zj: Re (@/a dRe Uag

=9 Z Re (@@U)* S \/A_ﬂxg)) (C.2)
j
= 20,, A3 Re <XT: U; Z ng)*x(ﬁj)>
=1 j

= 2(5@/\5 Re (Uzg) s

where we have used in the last step the orthonormality of the x; and the
fact that Re ¢* = Re c for any complex number c.

121




122 APPENDIX C. DERIVATIVES OF THE FUNCTION H (U)

As for the derivatives of the state vector, we obtain

81/%@ . 1 ai;z(j) 1 —3/2 Op;

ey D 0U.s 2" OULs

1 ) 3/ ()
= — i/ Aax? = p 25,008 Re (Usg) bV

(C.3)

As A ,
=5m[ G — 22 Re(Usg)
Di Di

E(Szagz(é)

We can now insert Egs. (C.2) and (C.3) into (C.1). The final result
(including the derivatives with respect to the imaginary part of U from
an analogous calculation) reads

onU)  _
SRRl = 25 Re(Ung)m(1a(U)) (C4)
d
HMU); Retos TReq) =y el Gy .
onu)  _
STmls = 225 Im(Unp)m(¢a(U)) (©3)
d
+Pa(U); Re (3 dReyl) w:¢k+1m§a5 0 Im ) — 7
where
gaﬁ(U) ’ (U)Xﬁ » (U) Re(Ua5)¢a(U) ) (C6)
Cos(U) = [ As _LI U U Cc7
A=Y ) ™ iy M) 7




APPENDIX

Self-Correcting Quantum
Memories

D.1 Mapping from lattice gas to Ising model

Note that Hj in Eq. (5.1) has the general form of two independent lattice
gases, which are in turn equivalent to two Ising spin lattices. We explic-
itly perform the transformation in the plaquette sector by identifying the
Ising variables s, = 1 — 2n,, yielding

J Uy 1
Hy = — Z (5 4 Z %) Sp + gz Upp' SpSpr + ..., (D.1)
P P’ p,p’

where U,,, is given in Eq. (5.2) and the primes in the summations indicate
p' # p. We have used U,, = 2J and U,y = Uy,,. The noninteracting Kitaev
model corresponds to noninteracting spins in an external magnetic field.
The ground state corresponds to the fully polarized state s, = 1 for all
p, where no anyon is present. However, for 7' > 0 a finite density of
anyons emerges and is sufficient to destroy the information stored in the
memory.

If a short-range ferromagnetic interaction is introduced, ordering of
the system is spontaneously favored below some critical temperature. A
higher magnetization corresponds to a lower population of anyons and
improves the lifetime. However, short range interactions do not improve
the scaling of the lifetime with the system size, since a residual density of
anyons is left at any finite temperature. As in the noninteracting case, a fi-
nite density of excited plaquettes efficiently destroys the stored quantum
information, in agreement with the general analysis of [BT09, KC08]. In-
stead, repulsive long-range interactions lead to a fully polarized system
at a given temperature for sufficiently large system size L.
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1
0.75
2 05

N
0.25
0 =
0 0.05 0.1 0.15 0.2
v(0)t/L?

Figure D.1: (Color online.) Decay of the bare and corrected expectation
value of Z due to a single pair of anyons in the memory. The dots show
numerical data (averaged over 10* samples) while the two curves are the
continuum limit expressions Eq. (D.4) and (D.6) for (Z..) (solid) and (Z)
(dashed). The numerical data have been obtained for L = 32,64, 128. All
points collapse onto each other when plotted as a function of v(0)¢/L?.

D.2 Lifetime in the presence of a single pair

The decay of the bare and logical Z operators is most simply illustrated
by assuming only a single anyon pair in the memory. We set v(2J) =
0, so that pair creation and annihilation are not allowed. If no anyons
were present, the initial values (Z) = (Z..) = 1 would be stable. We
apply one o,-operation at a randomly chosen site and thereby create two
neighboring anyons at ¢t = 0. This causes a partial decay of the bare
logical operator already at ¢ = 0, since we might have chosen to flip a
spin on the logical Z operator, yielding (Z) = 1 — 7. This has been used
in the main text in the discussion of the nonsplit-pair regime.

We now study the decay for ¢t > 0 in the continuum limit and there-
fore neglect the 1/L correction at t = 0. We consider a single pair of
diffusing anyons with coordinates (z1,y;) and (x9,y2) created at the ori-
gin. We then assume that the probability to find an anyon at position r is
described by the probability density

1 r?
= T Ay (0t D.2
4y (0)E ©-2)

p(r)

We represent the torus as an infinite plane with the points (z, y) and (z +
mL,y + nL) being equivalent (m,n € Z). The logical Z operator is then
represented by parallel lines at y; = L/2 + nL. The two anyons diffuse

along y with probability density p(y; — o) = e~ ¥—%)*/0O) /. [iz~(0)t,
where ¢ = 1,2 and the initial (random) coordinate satisfies —L/2 < y, <
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L/2. The average of the logical operator at time ¢ is

L2
(Z) = / o / dyrdyap(yr — yo)P(Y2 — ¥0)2 (Y1, Y2), (D.3)

where z(y1,y2) gives the sign of Z if the two anyons have diffused to the
coordinates y; and y,. Since Z changes sign each time an anyon crosses
the lines at y, we have z(y1,y2) = 2(y1)z(y2) where z(y) = 1if —L/2 +
2nL <y < L/2+ 2nL and —1 otherwise (n € Z). Therefore we can write

1/2

(Z) = / dzo f(20)?, (D.4)

1/2

where we have made the change of variables y, = Lz, such that
1 X 220 +2n+1
20) = = -1 |erf | ———
fe)=5 3 (=D [ <4 W(O)tm)

2 2n —1
Copf [0 EEn Y | (D.5)

4/(0)t/ L2
We now consider the average of the error-corrected logical operator
Zec. In this case, only the distance y12 = y; — y» between the two anyons

is important since the value of Z..is 1 if —L/2 +2nL < y;5 < L/2+ 2nL,
and is —1 otherwise. The probability distribution for y;5 is f dys p(y12 —

Y2)p(1y2) = e ¥i2/3700 /| /87~(0)t, which gives

- . 2n + 1
<Zec> = Z (—1) erf (W) . (D6)

n=—oo

Both functions (D.4) and (D.6) are plotted in Fig. D.1 and show per-
fect agreement with the numerical simulation. An important feature of
the above analytical expressions is that the time dependence only en-
ters through the combination v(0)¢/L?, which makes it possible to scale
curves from different system sizes and diffusion constants onto each other.

D.3 Effective Hamiltonian via Schrieffer-Wolff
transformation

In order to find an effective Hamiltonian for Eq. (5.17), we write H =
Ho+V,where Hy = 3.7 wala; and V = > gpnp(alag 4 ayal), and treat
V as a small perturbation. The general expression for the Schrieffer-Wolff
transformation of H up to second order in V' reads

H.g — Hy + %lin(l) dte™*t [V, V ()] + O(V?), (D.7)
e=0 4
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where V (t) = exp(iHot)V exp(—iHyt), which yields in our case

V(t) — ngnp <€i(w1—w2)ta{a2 + e—i(w1—w2)ta£ 1> . (DS)
p

With this, the commutator in Eq. (D.7) evaluates to

V.,V (t)] = QZ(Z gpnp)(abay — alay) sin(w, — wy)t. (D.9)

p

Inserting this into Eq. (D.7) and performing the integral yields Eq. (5.23).
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Critical Fraction of Random

Lattices in Contact with an
Ohmic Bath

We present here some additional results for the error thresholds of ran-
dom lattices in the presence of thermal errors. Fig. E.1 shows the fraction
of errors f at the lifetime of an infinitely large system as a function of the
lattice mixing p,,;, and for different temperatures 7'. In this section, the
energy scale is set by the anyon gap J. Time is thus measured in units of
(k1J)~t. For given p,,;, and temperature T, we first simulate systems of
several different sizes in contact with an Ohmic bath. We then determine
the lifetime 7 as the intersection of the decay curves of the corresponding
error-corrected logical Z operators (see inset of Fig. E.1). Since the anyon
dynamics are independent of the system size (note that the anyons are
not interacting with each other), all curves f(¢) for different system sizes
collapse and the specific value f(t = 7) = f., can be read off easily. One
can see nicely that these thresholds converge with increasing tempera-
ture to the ones given by the model of independent errors. This can be
explained by the loss of correlations between errors due to an increasing
amount of thermal noise in the form of fluctuating anyons.
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Figure E.1: (color online) Critical fraction of errors f., = f(t = 7) as a
function of lattice mixing p,,;, at temperatures 7' = 0.2J (circles), 0.45.J
(triangles), 1.0125.J (squares), and 2.J (diamonds). The lifetime 7 is given
by the intersection of error-corrected logical Z operators for lattice sizes
L = 38,56, 86. Error bars are due to the uncertainty in 7. The solid line
is determined by the thresholds from the Monte Carlo simulations of an
independent error model (see main text). The inset shows an example
of crossing logical Z operators for the particular values p,,;;, = 0.4 and
T =0.45J.



APPENDIX

Gaussian Noise and 1/r
Interaction

We have also performed simulations with 1/r interaction (o = 1) and plot
the results in Fig. E1. Apart from Ising-like disorder (.J, = +0) we have
also looked at a Gaussian distribution of onsite potentials J, with mean
zero and standard deviation 0. Generally, the lifetimes are shorter than
for constant interaction because the weaker 1/r interaction allows for a
larger density of anyons. Nevertheless, the results are qualitatively simi-
lar to the ones discussed in the main text, namely showing a pronounced
maxima of the lifetime as a function of ¢. This supports the picture that
the interaction is required to limit the number of diffusing anyons, while
the initial increase in lifetime with o is due to their obscured diffusion.
In the case of Gaussian noise, the latter effect is even stronger, because
anyons are created or get trapped in a few sites with onsite potentials
much lower than —o, out of which it is difficult for them to escape again.
This explains the increased lifetime from Ising to Gaussian randomness.
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Figure F.1: (color online) Lifetime 7 as a function of disorder strength
o in the presence of Gaussian (triangles) and Ising (squares) noise in an
interacting system with o = 1, A = 0.5kg7". The lines are guides to the
eye. The size of this particular system was L = 32.
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Supporting Simulations

G.1 Polarized Ising randomness

In order to confirm the picture that it is indeed the sites with J, > 0
that restrict the diffusion by acting as barriers to the anyons, we have
determined the lifetime 7 of an interacting system (L = 50, « = 0, A =
0.5kpT, 0 = 5kgT) as a function of the Ising polarization P. The latter is
defined as P = 1 — 27, where 7 is the fraction of sites with negative onsite
energy.

Starting from P = —1, i.e., J, = —o for all sites p, the lifetime mod-
erately increases as more and more positive sites are randomly added
(increasing P), as can be seen in Fig. G.1. Around P = 0, where there
is an equal number of sites with positive and negative onsite energies,
the lifetime drastically increases by about 2 orders of magnitude. At this
point, large connected areas of sites with .J, < 0 can no longer exist, such
that the anyons can move freely only within areas each consisting of just
a few negative sites. Consequently, the diffusion is drastically reduced. If
and how the polarization at this threshold is related to the site and bond
percolation thresholds of the square lattice, which are n ~ 0.5927 and 0.5
(see, e.g., Ref. [FDBO08]), respectively, is not completely clear at the time
of writing and remains the subject of future research.

G.2 Artificial cutoff of number of anyons

We can support the claim that the only relevant effect of the repulsive in-
teraction is to reduce the number of anyons by simulating a non-
interacting system with an artificial maximal number of anyons. This
data is shown in Fig. G.2. Despite the absence of interaction, the lifetime
of encoded states is still growing with increasing Ising disorder strength,
hence clearly demonstrating that this effect is caused solely by the disor-
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Figure G.1: (color online) Lifetime as a function of Ising polarization P.
The parameters for these systems are L = 50, « = 0, A = 0.5kgT, 0 =
5kpT. The dashed line is a guide to the eye.
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Figure G.2: (color online) Lifetime as a function of Ising disorder strength
in a non-interacting system of size L = 32 with an artificially engineered
maximal number of anyons equal to 20. The solid line is a guide to the
eye. Inset: The error-corrected logical Z operator as a function of time for
different o yielding the lifetimes shown in the main plot.

der. Furthermore, the lifetime saturates for large o, because the energy
barriers posed by the sites with J, = 4o are essentially infinitely high
and increasing them further bears no more advantage. The observed sat-
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uration also confirms that it is indeed the growing number of anyons
that is responsible for the subsequent decrease in lifetime at large o in
the data presented in the main text (where the number of anyons was
not artificially restricted).
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