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Summary

A quantum computer–in contrast to traditional computers based on transistors–is a de-

vice that makes direct use of quantum mechanical phenomena, such as superposition

and entanglement, to perform computation. One of possible realizations is a so-called

spin-qubit quantum computer which uses the intrinsic spin degree of freedom of an elec-

tron confined to a quantum dot as a qubit (a unit of quantum information that can be

in a linear superposition of the basis states).

Electron spins in semiconductor quantum dots, e.g., in GaAs, are inevitably coupled

via hyperfine interaction to the surrounding environment of nuclear spins. This coupling

results in decoherence, which is the process leading to the loss of information stored in

a qubit. Spontaneous polarization of nuclear spins should suppress decoherence in single-

electron spin qubits and ultimately facilitate quantum computing in these systems.

The main focus of this thesis is to study nonanalytic properties of electron spin

susceptibility, which was shown to effectively describe the coupling strength between

nuclear spins embedded in a two dimensional electron gas, and give detailed insights

into the issue of spontaneous polarization of nuclear spins.

In the first part we consider the effect of rescattering of pairs of quasiparticles in the

Cooper channel resulting in the strong renormalization of second-order corrections to

the spin susceptibility χ in a two-dimensional electron gas (2DEG). We use the Fourier

expansion of the scattering potential in the vicinity of the Fermi surface to find that

each harmonic becomes renormalized independently. Since some of those harmonics are

negative, the first derivative of χ is bound to be negative at small momenta, in contrast to

the lowest order perturbation theory result, which predicts a positive slope. We present

in detail an effective method to calculate diagrammatically corrections to χ to infinite

order.

The second part deals with the effect of the Rashba spin-orbit interaction (SOI)

on the nonanalytic behavior of χ for a two-dimensional electron liquid. A long-range

interaction via virtual particle-hole pairs between Fermi-liquid quasiparticles leads to
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Summary

the nonanalytic behavior of χ as a function of the temperature (T ), magnetic field

(B), and wavenumber (q̃). Although the SOI breaks the SU(2) symmetry, it does not

eliminate nonanalyticity but rather makes it anisotropic: while the linear scaling of χzz
with T and |B| saturates at the energy scale set by the SOI, that of χxx (= χyy) continues

through this energy scale, until renormalization of the electron-electron interaction in

the Cooper channel becomes important. We show that the Renormalization Group flow

in the Cooper channel has a non-trivial fixed point, and study the consequences of this

fixed point for the nonanalytic behavior of χ.

In the third part we analyze the ordered state of nuclear spins embedded in an in-

teracting 2DEG with Rashba SOI. Stability of the ferromagnetic nuclear-spin phase

is governed by nonanalytic dependences of the electron spin susceptibility χij on the

momentum (q̃) and on the SOI coupling constant (α). The uniform (q̃ = 0) spin sus-

ceptibility is anisotropic (with the out-of-plane component, χzz, being larger than the

in-plane one, χxx, by a term proportional to U2(2kF )|α|, where U(q) is the electron-

electron interaction). For q̃ ≤ m∗|α|, corrections to the leading, U2(2kF )|α|, term scale

linearly with q̃ for χxx and are absent for χzz. This anisotropy has important conse-

quences for the ferromagnetic nuclear-spin phase: (i) the ordered state–if achieved–is of

an Ising type and (ii) the spin-wave dispersion is gapped at q̃ = 0. To second order in

U(q̃), the dispersion is a decreasing function of q̃, and the anisotropy is not sufficient to

stabilize long-range order. However, we show that renormalization in the Cooper chan-

nel for q̃ � m∗|α| is capable of reversing the sign of the q̃-dependence of χxx and thus

stabilizing the ordered state, if the system is sufficiently close to (but not necessarily in

the immediate vicinity of) the Kohn-Luttinger instability.
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Chapter 1
Preface

1.1 Quantum computing

It was in the 1980s, when the idea of exploiting quantum degrees of freedom for infor-

mation processing was envisioned. The central question at the time was whether and

how it was possible to simulate (efficiently) any finite physical system with a man-made

machine. Deutsch argued that such a simulation is not possible perfectly within the

classical computational framework that had been developed for decades [Deutsch85]. He

suggested, together with other researchers such as Feynman [Feynman82, Feynman86],

that the universal computing machine should be of quantum nature, i.e., a quantum

computer.

Around the same time, developments in two different areas of research and industry

took a tremendous influence on the advent of quantum computing. On one hand, it

was experimentally confirmed [Aspect82] that Nature indeed does possess some peculiar

non-local aspects which were heavily debated since the early days of quantum mechanics

[Einstein35]. Schrödinger coined the term entanglement [Schrödinger35], comprising the

apparent possibility for faraway parties to observe highly correlated measurement results

as a consequence of the global and instantaneous collapse of the wave function according

to the Copenhagen interpretation of quantum mechanics. The existence of entanglement

is crucial for many quantum computations. On the other hand, the booming computer

industry led to major progress in semiconductor and laser technology, a prerequisite for

the possibility to fabricate, address and manipulate single quantum systems, as needed

in a quantum computer.

As the emerging fields of quantum information and nanotechnology inspired and

motivated each other in various ways, and are still doing so today more than ever, many

interesting results have been obtained so far. While the theories of quantum complexity

and entanglement are being established (a process which is far from being complete)

and fast quantum algorithms for classically difficult problems have been discovered, the
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1. Preface

control and manipulation of single quantum systems is now experimental reality. There

are various systems that may be employed as qubits in a quantum computer, i.e., the

basic unit of quantum information.

Given a number of practical difficulties in building a quantum computer five most

fundamental requirements any proposal for a quantum computer must fulfill in order to

work with an arbitrary number of qubits have been listed:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

These are known as the DiVincenzo criteria [DiVincenzo00].

1.1.1 The Loss-DiVincenzo proposal

We now review the spin-qubit proposal for universal scalable quantum computing of

Daniel Loss and David DiVincenzo [Loss98]. Here, the physical system representing

a qubit is given by the localized spin state of one electron, and the computational

basis states |0〉 and |1〉 are identified with the two spin states |↑〉 and |↓〉, respectively.

The considerations discussed in [Loss98] are applicable to electrons confined to any

structure, such as, e.g., atoms, defects, or molecules. However, the original proposal

focuses on electrons localized in electrically gated semiconductor quantum dots. The

relevance of such systems has become clearer in recent years, where remarkable progress

in the fabrication and control of single and double GaAs quantum dots has been made

(see, e.g., [Hanson07] for a recent experimental review).

Scalability in the proposal of [Loss98] is due to the availability of local gating. Gating

operations are realized through the exchange coupling (discussed below), which can be

tuned locally with exponential precision. Since neighboring qubits can be coupled and

decoupled individually, it is sufficient to study and understand the physics of single and

double quantum dots together with the coupling mechanisms to the environment present

in particular systems [Coish07]. Undesired interactions between three, four, and more

qubits should then not pose any great concern. This is in contrast with proposals that

make use of long-ranged interactions (such as dipolar coupling), where scalability might

not be easily achieved.

2



1.1. Quantum computing

Figure 1.1: An array of quantum dot qubits realized by laterally confining electrons in
a two dimensional electron gas formed at the interface of a heterostructure.
The confinement is achieved electrostatically by applying voltages to the
metallic top gates. Interaction is generally suppressed (as for the two qubits
on the left) but may be turned on to realize two-qubit operations by lowering
inter-dot gates (as for the two qubits on the right). Single spin rotations may
be achieved by dragging electrons down (by changing back gate voltages) to
a region where the Zeeman splitting in the presence of the external static
magnetic field B⊥ changes due to magnetization or an inhomogeneous g-
factor present in that layer. A resonant magnetic ac pulse Bac

|| can then be
used to rotate the spin under consideration, while leaving all other qubits
unaffected due to the off-resonant Zeeman splitting (electron spin resonance).
All-electrical single spin manipulation may be realized in the presence of
SOI by applying ac electric pulses directly via the gates (electric dipole spin
resonance).

Figure 1.1 shows part of a possible implementation of a quantum computer. Dis-

played are four qubits represented by the four single electron spins confined verti-

cally in the heterostructure quantum well and laterally by voltages applied to the

top gates. Initialization of the quantum computer could be realized at low temper-

ature T by applying an external magnetic field B satisfying |gµBB| � kBT , where

g is the g-factor, µB is Bohr’s magneton, and kB is the Boltzmann constant. After

a sufficiently long time, virtually all spins will have equilibrated to their thermody-

namic ground state |0〉 = |↑〉. This method for zeroing qubits in a running computa-

tion might be too slow to satisfy the 2nd criterion of the last section. Other proposed

techniques include initialization through spin-injection from a ferromagnet, as has been

performed in bulk semiconductors [Fiederling99, Ohno99], with a spin-polarized cur-

rent from a spin-filter device [Prinz95, Loss98, DiVincenzo99, Recher00], or by optical

pumping [Cortez02, Shabaev03, Gywat04, Bracker05]. The latter method has allowed

the preparation of spin states with very high fidelity, in one case as high as 99.8%

3



1. Preface

[Atatüre06].

The proposal of [Loss98] requires single qubit rotations around a fixed axis in order

to implement the cnot gate (described below). In the original work [Loss98] this is

suggested to be accomplished by varying the Zeeman splitting on each dot individually,

which was proposed to be done via a site-selective magnetic field (generated by, e.g.,

a scanning-probe tip) or by controlled hopping of the electron to a nearby auxiliary

ferromagnetic dot. Local control over the Zeeman energy may also be achieved through

g-factor modulation [Salis01], the inclusion of magnetic layers [Myers05], cf. Figure 1.1,

or by modification of the local Overhauser field due to hyperfine couplings [Burkard99].

Arbitrary rotations may be performed via electron spin resonance induced by an exter-

nally applied oscillating magnetic field. In this case, however, site-selective tuning of the

Zeeman energy is still required in order to bring a specific electron in resonance with

the external field, while leaving the other electrons untouched. Alternative all-electrical

proposals (i.e., without the need for local control over magnetic fields) in the presence

of spin-orbit interaction (SOI) or a static magnetic field gradient have been discussed

recently.

Two-qubit nearest-neighbor interaction is controlled in the proposal of [Loss98] by

electrical pulsing of a center gate between the two electrons. If the gate voltage is high,

the interaction is ‘off’ since tunneling is suppressed exponentially with the voltage. On

the other hand, the coupling can be switched ‘on’ by lowering the central barrier for

a certain switching time τs. In this configuration, the interaction of the two spins may

be described in terms of the isotropic Heisenberg Hamiltonian

Hs(t) = J(t)SL · SR, (1.1.1)

where J(t) ∝ t20(t)/U is the time-dependent exchange coupling that is produced by turn-

ing on and off the tunneling matrix element t0(t) via the center gate voltage. U denotes

the charging energy of a single dot, and SL and SR are the spin-1
2

operators for the

left and right dot, respectively. Equation (1.1.1) is a good description of the double-dot

system if the following criteria are satisfied: (i) ∆E � kBT , where T is the temperature

and ∆E the level spacing. This means that the temperature cannot provide sufficient

energy for transitions to higher-lying orbital states, which can therefore be ignored. (ii)

τs � ∆E/~, requiring the switching time τs to be such that the action of the Hamilto-

nian is ‘adiabatic enough’ to prevent transitions to higher orbital levels. (iii) U > t0(t) for

all t in order for the Heisenberg approximation to be accurate. (iv) Γ−1 � τs, where Γ−1

is the decoherence time. This is basically a restatement of the 3rd DiVincenzo criterion.

The pulsed Hamiltonian Equation (1.1.1) applies a unitary time evolution Us(t) to

the state of the double dot given by Us(t) = exp[−(i/~)
∫ t

0
J(t′)dt′SL ·SR]. If the constant

interaction J(t) = J0 is switched on for a time τs such that
∫ τs

0
J(t)dt/~ = J0τs/~ = π

mod 2π, then Us(τs) exchanges the states of the qubits: Us(τs)|n,n′〉 = |n′,n〉. Here,

n and n′ denote real unit vectors and |n,n′〉 is a simultaneous eigenstate of the two

4



1.2. Relaxation and decoherence in GaAs dots

operators SL · n and SR · n′. This gate is called swap. If the interaction is switched on

for the shorter time τs/2, then Us(τs/2) = Us(τs)
1/2 performs the so-called ‘square-root

of swap’ denoted by
√
swap. This gate together with single-qubit rotations about a fixed

(say, the z-) axis can be used to synthesize the cnot operation [Loss98]

Ucnot = ei(π/2)SzLe−i(π/2)SzRUs(τs)
1/2eiπS

z
LUs(τs)

1/2, (1.1.2)

or, alternatively, as

Ucnot = eiπS
z
LUs(τs)

−1/2e−i(π/2)SzLUs(τs)e
i(π/2)SzLUs(τs)

1/2. (1.1.3)

The latter representation has the potential advantage that single qubit rotations involve

only one spin, in this case the one in the left dot. Writing the cnot gate as above, it

is seen that arbitrary single qubit rotations together with the
√
swap gate are suffi-

cient for universal quantum computing. Errors during the execution of a
√
swap gate

due to non-adiabatic transitions to higher orbital states [Schliemann10, Requist05], SOI

[Bonesteel01, Burkard02, Stepanenko03], and hyperfine coupling to surrounding nuclear

spins [Petta05, Coish05, Klauser06, Taylor07] have been studied. Furthermore, realistic

systems will include some anisotropic spin terms in the exchange interaction which may

cause additional errors. Conversely, this fact might be used to perform universal quan-

tum computing with two-spin encoded qubits, in the absence of single-spin rotations

[Bonesteel01, Lidar01, Stepanenko04, Chutia06].

1.2 Relaxation and decoherence in GaAs dots

The requirement of sufficiently long coherence times is perhaps the most challenging

aspect for quantum computing architectures in the solid state. It requires a detailed

understanding of the different mechanisms that couple the electron’s spin to its environ-

ment.

1.2.1 Spin-orbit interaction

While fluctuations in the electrical environment do not directly couple to the electron

spin, they become relevant for spin decoherence in the presence of SOI. In GaAs two-

dimensional electron gas (2DEG) two types of SOI are present. The Dresselhaus SOI

originates from the bulk properties of GaAs [Dresselhaus55]. The zinc-blend crystal

structure has no center of inversion symmetry and a term of the type H3D
D ∝ px(p

2
y −

p2
z)σx + py(p

2
z − p2

x)σy + pz(p
2
x − p2

y)σz is allowed in three dimensions, where p is the

momentum operator and σ are the Pauli matrices. Due to the confining potential along

the z-direction, we can substitute the pz operators with their expectation values. Using

〈p2
z〉 6= 0 and 〈pz〉 = 0, one obtains

HD = β(pyσy − pxσx). (1.2.1)

5



1. Preface

Smaller terms cubic in p have been neglected, what is justified by the presence of strong

confinement.

The Rashba SOI is due to the asymmetry of the confining potential [Bychkov84b]

and can be written in the suggestive form HR ∝ (E×p) ·σ, where E = E ẑ is an effective

electric field along the confining direction:

HR = α(pxσy − pyσx). (1.2.2)

The Rashba and Dresselhaus terms produce an internal magnetic field linear in the

electron momentum defined by BSO = −2[(βpx+αpy)ex− (βpy +αpx)ey]/gµB. If β = 0,

the magnitude of BSO is isotropic in p and the direction is always perpendicular to the

velocity. While moving with momentum p, the spin precesses around BSO and a full

rotation is completed over a distance of order λSO = |~/(αm∗)| = 1 − 10 µm, where

m∗ is the effective mass. Generally, Rashba and Dresselhaus spin-orbit coupling coexist,

their relative strength being determined by the confining potential. This results in the

anisotropy of the SOI in the 2DEG plane (e.g., of the spin splitting as function of p). In

this case, two distinct spin-orbit lengths can be introduced

λ± =
~

m∗(β ± α)
. (1.2.3)

For GaAs quantum dots, the SOI is usually a small correction that can be treated

perturbatively since the size of the dot (typically ∼ 100 nm) is much smaller than the

SOI lengths λ±. The qualitative effect introduced by the SOI is a small mixing of the

spin eigenstates. As a consequence, the perturbed spin eigenstates can be coupled by

purely orbital perturbation even if the unperturbed states have orthogonal spin compo-

nents. Relevant charge fluctuations are produced by lattice phonons, surrounding gates,

electron-hole pair excitations, etc. with the phonon bath playing a particularly important

role.

1.2.2 Hyperfine interaction

The other mechanism for spin relaxation and decoherence that has proved to be effective

in GaAs dots, and ultimately constitutes the most serious limitation of such systems,

is due to the nuclear spins bath. All three nuclear species 69Ga, 71Ga, and75As of the

host material have spin 3/2 and interact with the electron spin via the Fermi contact

hyperfine interaction

HHF = S ·
∑
i

AiIi, (1.2.4)

where Ai and Ii are the coupling strengths and the nuclear spin operator at site i,

respectively. The density of nuclei is n0 = 45.6 nm−3 and there are typically N ∼ 106

nuclei in a dot. The strength of the coupling is proportional to the electron density at

6



1.3. Dealing with decoherence

site i, and one has Ai = A|ψ(ri)|2/n0, where ψ(r) is the orbital envelope wave function

of the electron and A ≈ 90 µeV.1

The study of the hyperfine interaction (1.2.4) represents an intricate problem in-

volving subtle quantum many-body correlations in the nuclear bath and entangled dy-

namical evolution of the electron’s spin and nuclear degrees of freedom. It is useful to

present here a qualitative picture based on the expectation value of the Overhauser field

BN =
∑

iAiIi/gµB. This field represents a source of uncertainty for the electron dy-

namics, since the precise value of BN is not known. Due to the fact that the nuclear spin

bath is in general a complicated mixture of different nuclear states, the operator BN in

the direction of the external field B does not correspond to a well-defined eigenstate,

but results in a statistical ensemble of values. These fluctuations have an amplitude of

order BN,max/
√
N ∼ 5 mT since the maximum value of BN (with fully polarized nuclear

bath) is about 5 T.

Finally, even if it were possible to prepare the nuclei in a specific configuration, e.g.,

|↑↑↓↑ . . .〉, the nuclear state would still evolve in time to a statistical ensemble on a time

scale tnuc. Although direct internuclear interactions are present (for example, magnetic

dipole-dipole interactions between nuclei) the most important contribution to the bath’s

time evolution is in fact due to the hyperfine coupling itself, causing the back action of

the electron spin on the nuclear bath. Estimates of the nuclear bath timescale lead to

tnuc = 10−100 µs or longer at higher values of the external magnetic field B [Hanson07].

1.3 Dealing with decoherence

Several schemes were proposed to mitigate or even completely lift the decoherence driven

by the hyperfine coupling of the electron spin to the nuclear spins bath. One approach is

to develop quantum control techniques which effectively lessen or even suppress the nu-

clear spin coupling to the electron spin [Johnson05, Petta05, Laird06]. Another possibil-

ity is to narrow the nuclear spin distribution [Coish04, Klauser06, Stepanenko06] or dy-

namically polarize the nuclear spins [Burkard99, Khaetskii02, Khaetskii03, Imamoḡlu03,

Bracker05, Coish04]. What all of the aforementioned methods have in common, is that

they aim at reducing nuclear spin fluctuations by external actions.

From the current experimental standpoint these polarization schemes may not seem

feasible because polarization of above 99% is required [Coish04] in order to extend the

spin decay time by one order of magnitude. This level of polarization is still beyond

the reach of experimental techniques with the best result of around 60% polarization

achieved so far in quantum dots [Bracker05]. Therefore an alternative mechanism has

1This value is a weighted average of the three nuclear species 69Ga, 71Ga, and 75As, which have
abundance 0.3, 0.2, and 0.5, respectively. For the three isotopes we have A = 8µ0

9 µBµIηn0, where
µI = (2.12, 2.56, 1.44)× µN , while ηGa = 2.7 103 and ηAs = 4.5 103 [Petta08].
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been recently proposed, namely, the possibility of an intrinsic polarization of nuclear

spins at finite but low temperature in the 2DEG confined to the GaAs heterostructure

[Simon07].

The main interaction mechanism of nuclear spins embedded in the 2DEG–as

shown below–is provided by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction

[Kittel87], which is mediated by the conduction electrons (the direct dipolar interactions

between the nuclear spins proves to be negligible). An intrinsic nuclear spin polarization

relies on the existence of a temperature dependent magnetic phase transition, at which

a ferromagnetic ordering sets in, thus defining a nuclear spin Curie temperature.

1.3.1 Effective Hamiltonian

A nuclear spin system embedded in a 2DEG can be described by a tight-binding model

in which each lattice site contains a single nuclear spin and electrons can hop between

neighboring sites. A general Hamiltonian describing such a system is given by

H = He−e +He−n +Hn−n = He−e +
1

2

Nl∑
j=1

AjSj · Ij +
∑
i,j

vαβij I
α
i I

β
j , (1.3.1)

where He−e describes electron-electron interactions, He−n the hyperfine interaction of

electron and nuclear spins, and Hn−n the general dipolar interaction between the nuclear

spins; Aj is the hyperfine coupling constant between the electron and the nuclear spin

at site rj (the total number of lattice sites is denoted by Nl), Sj = c†jστσσ′cjσ′ is the

electron spin operator at site rj with c†jσ (cjσ) being a creation (annihilation) operator of

an electron at the lattice site rj with spin σ =↑, ↓ and τ representing the Pauli matrices,

Ij = (Ixj , I
y
j , I

z
j ) is a nuclear spin located at the lattice site rj, and vαβij describes all

direct dipolar interaction between nuclear spins. Summation over the spin components

α, β = x, y, z is implied.

The above Hamiltonian can be further simplified by: (i) noting that the dipolar

interaction energy scale En−n ≈ 100 nK [Petta08] is the smallest energy scale of the

problem and therefore vαβij ≈ 0; (ii) assuming site-independent antiferromagnetic cou-

pling Aj = A > 0; (iii) neglecting any dipolar interaction to other nuclear spins which

are not embedded in the 2DEG. The last assumption is important since it allows to

focus only on those nuclear spins which lie within the support of the electron envelope

wave function (in the growth direction).

An effective RKKY Hamiltonian HRKKY for the nuclear spins in a 2D plane is derived

by performing the Schrieffer-Wolff (SW) transformation in order to eliminate terms

linear in A (this is appropriate since the nuclear spin dynamics is slow compared to the

electron one or, in terms of energy scales, A� EF ) and subsequently integrating out the

electron degrees of freedom. In real space, the resulting Hamiltonian takes the following

8
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form [Simon07, Simon08]

Heff = − A
2

8ns

∑
r,r′

χij(r, r′)I i(r)Ij(r′) (1.3.2)

with

χij(r, r′) = −
∫ 1/T

0

dτ
〈
TτS

i(r, τ)Sj(r′, 0)
〉

(1.3.3)

being the static electron spin susceptibility (up to a factor µ2
B).

The outlined derivation makes it clear that the interaction between nuclear spins–

described by the 2D static electron spin susceptibility–is mediated by conduction elec-

trons. This interaction is nothing but the standard RKKY interaction [Kittel87], which

can be substantially modified by electron-electron interactions as shown later in this

thesis.

1.3.2 Electron spin susceptibility

As we have seen in the previous section the magnetic exchange interaction between the

nuclear spins is mediated by the electron gas. Therefore, the key quantity governing the

magnetic properties of the nuclear spins is the electron spin susceptibility χs(q) in 2D.

In the case of non-interacting electrons the static electron spin susceptibility, i.e., the

spin susceptibility at vanishing external frequency Ω = 0, is given by

χs(q) = −2

∫
dωkd

2kg(ωk,k)g(ωk,k + q), (1.3.4)

where g(ωk,k) = (iωk − εk)−1 is the free electron Green’s function, ωk is a fermionic

Matsubara frequency, εk is the dispersion relation with εk = k2/2m∗ − µ and µ being

the chemical potential. It can be readily shown that χs(q) coincides with the usual

density-density (or Lindhard) response function in 2D [Giuliani05] and reads as

χs(q) = χ0

(
1−Θ(q − 2kF )

√
1− 4k2

F/q
2

)
, (1.3.5)

where χ0 = m∗/π and m∗ is the effective electron mass in the 2DEG.

The calculation of the static spin susceptibility in an interacting 2DEG has been

the subject of intense efforts in the last decade in connection with non-analyticities

in the Fermi liquid theory [Belitz97, Hirashima98, Misawa99, Chitov01b, Chitov01a,

Chubukov03, Gangadharaiah05, Chubukov05a, Maslov06, Chubukov06, Schwiete06,

Aleiner06, Shekhter06a, Shekhter06b]. In particular, the study of nonanalytic behavior

of thermodynamic quantities and susceptibilities in electron liquids has attracted recent

interest, especially in 2D. Of particular importance for this work is the recent findings

by Chubukov and Maslov [Chubukov03] that the static non-uniform spin susceptibility

9
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χs(q) depends linearly on the wave vector modulus q = |q| for q � kF in 2D (while it

is q2 in 3D), with kF being the Fermi momentum. This non-analyticity arises from the

long-range correlations between quasi-particles mediated by virtual particle-hole pairs,

despite the fact that electron-electron interactions was assumed to be short-ranged.

The positive slope of the momentum-dependent electron spin susceptibility to sec-

ond order in electron-electron interaction [Chubukov03] leads to the conclusion that

ferromagnetic ordering of nuclear spins is not possible [Simon07, Simon08]. However,

given the behavior of the spin susceptibility as a function of temperature, one can rea-

sonably expect that the slope can be reversed (negative) if higher order processes are

incorporated.

Indeed, it turns out that the temperature dependence of the electron spin susceptibil-

ity χs(T ) is rather intricate. On one hand, from perturbative calculations in second order

in the short-ranged interaction strength one obtains that χs(T ) increases with tempera-

ture [Chubukov03, Gangadharaiah05, Chubukov05a, Maslov06, Chubukov06]. The same

behavior is reproduced by effective supersymmetric theories [Schwiete06, Aleiner06].

On the other hand, non-perturbative calculations, taking into account renormalization

effects, found that χs(T ) has a non-monotonic behavior and first decreases with tem-

perature [Shekhter06b, Shekhter06a]. This latter behavior is in agreement with recent

experiments on 2DEGs [Prus03].

1.4 Outline

The purpose of this thesis is to study the static electron spin susceptibility beyond second

order in electron-electron interaction with a strong focus on the systems with a finite

Rashba SOI. The results are directly applied to analyze the stability and nature of the

ferromagnetically ordered phase of nuclear spins.

The manuscript is organized as follows: In Chapter 2 we consider the effect of rescat-

tering of pairs of quasiparticles in the Cooper channel resulting in the strong renor-

malization of second-order corrections to the spin susceptibility χ in a two-dimensional

electron system. We use the Fourier expansion of the scattering potential in the vicinity

of the Fermi surface to find that each harmonic becomes renormalized independently.

Since some of those harmonics are negative, the first derivative of χ is bound to be

negative at small momenta, in contrast to the lowest order perturbation theory result,

which predicts a positive slope. We present in detail an effective method to calculate

diagrammatically corrections to χ to infinite order.

Chapter 3 deals with the effect of the Rashba spin-orbit interaction (SOI) on the

nonanalytic behavior of χ for a two-dimensional electron liquid. A long-range interac-

tion via virtual particle-hole pairs between Fermi-liquid quasiparticles leads to the non-

analytic behavior of χ as a function of the temperature (T ), magnetic field (B), and
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wavenumber (q̃). Although the SOI breaks the SU(2) symmetry, it does not eliminate

nonanalyticity but rather makes it anisotropic: while the linear scaling of χzz with T

and |B| saturates at the energy scale set by the SOI, that of χxx (= χyy) continues

through this energy scale, until renormalization of the electron-electron interaction in

the Cooper channel becomes important. We show that the Renormalization Group flow

in the Cooper channel has a non-trivial fixed point, and study the consequences of this

fixed point for the nonanalytic behavior of χ. An immediate consequence of SOI-induced

anisotropy in the nonanalytic behavior of χ is a possible instability of a second-order fer-

romagnetic quantum phase transition with respect to a first-order transition to an XY

ferromagnetic state.

In Chapter 4 we analyze the ordered state of nuclear spins embedded in an interacting

2DEG with Rashba SOI. Stability of the ferromagnetic nuclear-spin phase is governed by

nonanalytic dependences of the electron spin susceptibility χij on the momentum (q̃) and

on the SOI coupling constant (α). The uniform (q̃ = 0) spin susceptibility is anisotropic

(with the out-of-plane component, χzz, being larger than the in-plane one, χxx, by a

term proportional to U2(2kF )|α|, where U(q) is the electron-electron interaction). For

q̃ ≤ 2m∗|α|, corrections to the leading, U2(2kF )|α|, term scale linearly with q̃ for χxx and

are absent for χzz. This anisotropy has important consequences for the ferromagnetic

nuclear-spin phase: (i) the ordered state–if achieved–is of an Ising type and (ii) the spin-

wave dispersion is gapped at q̃ = 0. To second order in U(q), the dispersion a decreasing

function of q̃, and anisotropy is not sufficient to stabilize long-range order. However,

renormalization in the Cooper channel for q̃ � 2m∗|α| is capable of reversing the sign

of the q̃-dependence of χxx and thus stabilizing the ordered state. We also show that

a combination of the electron-electron and SO interactions leads to a new effect: long-

wavelength Friedel oscillations in the spin (but not charge) electron density induced

by local magnetic moments. The period of these oscillations is given by the SO length

π/m∗|α|.
More detailed calculations are shifted into the Appendices.
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Chapter 2
Momentum dependence of the spin

susceptibility in two dimensions:
nonanalytic corrections

in the Cooper channel

2.1 Introduction

The study of the thermodynamic as well as microscopic properties of Fermi-liquid sys-

tems has a long history [Landau57, Landau59, Pines66, Giuliani05], but the interest in

nonanalytic corrections to the Fermi-liquid behavior is more recent. The existence of

well-defined quasiparticles at the Fermi surface is the basis for the phenomenological

description due to Landau [Landau57] and justifies the fact that a system of interacting

fermions is similar in many ways to the Fermi gas. The Landau theory of the Fermi liquid

is a fundamental paradigm which has been successful in describing properties of 3He,

metals, and two-dimensional electronic systems. In particular, the leading temperature

dependence of the specific heat or the spin susceptibility (i.e., Cs linear in T and χs
approaching a constant) is found to be valid experimentally and in microscopic calcu-

lations. However, deviations from the ideal Fermi gas behavior exist in the subleading

terms.

For example, while the low-temperature dependence of Cs/T for a Fermi gas

is a regular expansion in T 2, a correction to Cs/T of the form T 2 lnT was found

in three dimensions [Pethick73, and references therein]. These nonanalytic features

are enhanced in two dimensions and, in fact, a correction linear in T is found

[Coffey93, Belitz97, Chubukov03]. These effects were observed in 3He, both in the three-

[Greywall83] and two-dimensional case [Casey03].

The nonanalytic corrections manifest themselves not only in the temperature depen-
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2. Momentum dependence of the spin susceptibility in two dimensions

dence. For the special case of the spin susceptibility, it is of particular interest to deter-

mine also its dependence on the wave vector q̃. The deviation δχs from the T = q̃ = 0

value parallels the temperature dependence of the specific heat discussed above: from

a second-order calculation in the electron interaction, corrections proportional to q̃2 ln q̃

and q̃ were obtained in three and two dimensions respectively [Belitz97, Hirashima98,

Chubukov03]. On the other hand, the dependence on T was found to be δχs ∼ T 2 in

three dimensions [Carneiro77, Belitz97] (without any logarithmic factor) and δχs ∼ T in

two dimensions [Hirashima98, Baranov93, Chitov01b, Chitov01a, Chubukov03]. We cite

here the final results in the two dimensional case (on which we focus in this Chapter),

valid to second order in the interaction potential Uq,

δχ(2)
s (T, q̃) = 2U2

2kF
F (T, q̃), (2.1.1)

where

F (T, 0) =
m3

16π3

kBT

EF
(2.1.2)

and

F (0, q̃) ≡ m3

48π4

vF q̃

EF
. (2.1.3)

Here m is the effective mass, kF is the Fermi wave vector, EF = k2
F/2m, and we use ~ = 1

throughout this thesis. Our purpose is to extend this perturbative result to higher order

by taking into account the Cooper channel renormalization of the scattering amplitudes.

The extension to higher order of the second-order results has mostly focused on

the temperature dependence, both for the specific heat [Chubukov05b, Chubukov05a,

Chubukov06, Chubukov07, Aleiner06] and the electron spin susceptibility [Chubukov05b,

Shekhter06b, Shekhter06a, Schwiete06]. Recently the spin susceptibility has been mea-

sured in a silicon inversion layer as a function of temperature [Prus03]. A strong de-

pendence on T is observed, seemingly incompatible with a T 2 Fermi-liquid correction,

and the measurements also reveal that the (positive) value of the spin susceptibility is

decreasing with temperature, in disagreement with the lowest order result cited above.

This discrepancy has stimulated further theoretical investigations in the nonperturbative

regime. Possible mechanisms that lead to a negative slope were proposed if strong renor-

malization effects in the Cooper channel become important [Shekhter06b, Shekhter06a].

These can drastically change the picture given by the lowest order perturbation the-

ory, allowing for a nonmonotonic behavior and, in particular, a negative slope at small

temperatures.

The mechanism we consider here to modify the linear q̃ dependence is very much

related the one considered in [Shekhter06b]. There it is found that, at q̃ = 0 and finite

temperature, U2
2kF

in Equation (2.1.1) is substituted by |Γ(π)|2, where

Γ(θ) ≡
∑
n

Γne
inθ (2.1.4)
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is the scattering amplitude in the Cooper channel with θ being the scattering angle (θ = π

corresponds to the backscattering process). An additional temperature dependence arises

from the renormalization of the Fourier amplitudes

Γn(kBT ) =
Un

1− mUn
2π

ln kBT
Λ

, (2.1.5)

where Λ is a large energy scale Λ ∼ EF and Un are the Fourier amplitudes of the

interaction potential for scattering in the vicinity of the Fermi surface

U(2kF sin θ/2) =
∑
n

Une
inθ. (2.1.6)

A negative slope of δχs is possible, for sufficiently small T if one of the amplitudes Un
is negative [Shekhter06b, Kohn65, Chubukov93]. For (mUn/2π) ln(kBTKL/Λ) = 1, the

denominator in Equation (2.1.5) diverges what corresponds to the Kohn-Luttinger (KL)

instability [Kohn65]. At T & TKL the derivative of the spin susceptibility is negative due

to the singularity in Γn(kBT ) and becomes positive far away from TKL.

At T = 0 an analogous effect occurs for the momentum dependence. Indeed, it is

widely expected that the functional form of the spin susceptibility in terms of kBT or

vF q̃ is similar. As in the case of a finite temperature, the lowest order expression gains

an additional nontrivial dependence on q̃ due to the renormalization of the backscattering

amplitude U2
2kF

. We obtain

δχs(q̃) = 2|Γ(π)|2F (0, q̃), (2.1.7)

where Γ(π) is given by Equation (2.1.4) and

Γn(vF q̃) =
Un

1− mUn
2π

ln vF q̃
Λ

. (2.1.8)

Such result is obtained from renormalization of the interaction in the Cooper channel,

while other possible effects are neglected. Moreover, at each perturbative order, only the

leading term in the limit of small q̃ is kept. Therefore, corrections to Equation (2.1.7) exist

which, for example, would modify the proportionality of δχs to |Γ(π)|2, see [Shekhter06b].

However, in the region vF q̃ & kBTKL, close to the divergence of Γn(vF q̃) relative to the

most negative Un, Equation (2.1.7) is expected to give the most important contribution

to the spin susceptibility.

The result of Equations (2.1.7) and (2.1.8) could have been perhaps easily anticipated

and, in fact, it was suggested already in [Simon08]. The question of the functional depen-

dence of the spin susceptibility on momentum is crucial in light of the ongoing studies

on the nuclear spin ferromagnetism [Simon07, Simon08, Galitski03], as the stability of

the ferromagnetic phase is governed by the electron spin susceptibility. In this context,
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K

P

K −Q

P +Q

K ′

P ′

K

P

K ′

P ′

Figure 2.1: The building block (on the left) of any ladder diagram (on the right). Of
special interest is the limit of correlated momenta p = −k, leading to the
Cooper instability.

Equations (2.1.7) and (2.1.8) were motivated by a renormalization-group argument. We

provide here a complete derivation, based on the standard diagrammatic approach.

This Chapter is organized as follows: in Section 2.2 we discuss the origin of Cooper

instability and derive expressions for a general ladder diagram, which is an essential

ingredient for the higher order corrections to the spin susceptibility. In Section 2.3 we give

a short overview of the lowest order results to understand the origin of the nonanalytic

corrections. Based on the results of Section 2.2, we provide an alternative derivation

of one of the contributions, which can be easily generalized to higher order. Section 2.4

contains the main finding of this Chapter: the Cooper renormalization of the nonanalytic

correction to the spin susceptibility is obtained there. We find an efficient approach to

calculate higher order diagrams based on the second-order result. In Section 2.5 the

diagrammatic calculation is discussed in relation to the renormalization-group argument

of [Simon08]. Section 2.6 contains our concluding remarks. More technical details have

been moved to the Appendices A.1-A.4.

2.2 Particle-particle propagator

In this section we consider a generic particle-particle propagator, which includes n in-

teraction lines, as depicted in Figure 2.1. The incoming and outgoing frequencies and

momenta are K,P and K ′, P ′, respectively, using the relativistic notation K = (ωk,k).

This particle-particle propagator represents an essential part of the diagrams considered

in this Chapter and corresponds to the following expression:

Π(n)(P, P ′, K) = (−1)n−1

∫
q1

. . .

∫
qn−1

U|q1|

n−1∏
i=1

g(K −Qi)g(P +Qi)U|qi+1−qi|, (2.2.1)

where qn ≡ p′−p and
∫
qi
≡ (2π)−3

∫
dΩqid

2qi. The frequencies are along the imaginary

axis, i.e., g(K) = (iωk − εk)−1, where εk = k2/2m− EF with k = |k|.
In particular, we are interested in the case when the sum of incoming frequencies and

momenta is small; i.e., L ≡ K + P ≈ 0. Under this assumption we obtain the following
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useful result for which we provide details of the derivation in Appendix A.1:

Π(n)(L, θ) =
∑

M1...Mn−1

′
ΠM1(L) . . .ΠMn−1(L)Ũn

M1...Mn−1
(θl, θ), (2.2.2)

where the sum is restricted to Mi = 0,±2,±4 . . .. The angle of l = k + p is from the

direction of the incoming momentum p, i.e., θl ≡ ∠(l,p), while θ ≡ ∠(p,p′). In the

above formula,

Π0(L) =
m

2π
ln
|Ωl|+

√
Ω2
l + v2

F l
2

Λ
(2.2.3)

and (M even)

ΠM 6=0(L) = −m
2π

(−1)|M |/2

|M |
(1− sinφ

cosφ

)|M |
, (2.2.4)

with Λ ∼ EF a high energy cutoff and φ ≡ arctan(|Ωl|/vF l). Notice that ΠM(L) has no

angular (θl, θ) dependence, which is only determined by the following quantity:

Ũn
M1...Mn−1

(θl, θ) ≡
∑
m,m′

UmUm−M1 . . . Um−M1−...−Mn−1e
im′θl−imθ δM1+M2+...+Mn−1,m′

(2.2.5)

defined in terms of the amplitudes Un. Equation (2.1.6) can be used to approximate the

interaction potential in Equation (2.2.1) since the relevant contribution originates from

the region of external (p ≈ p′ ≈ k ≈ k′ ≈ kF ) and internal momenta (|p + qi| ≈ |k −
qi| ≈ kF ) close to the Fermi surface. Furthermore, the direction of l can be equivalently

measured from k without affecting the result since θl = ∠(l,k) + π and eim
′π = 1 (m′ is

even).

Notice also that the leading contribution to Equation (2.2.2), in the limit of small Ωl

and l, is determined by the standard logarithmic singularity of Π0(L). However, it will

become apparent that this leading contribution is not sufficient to obtain the correct

result for the desired (linear-in-q̃) corrections to the response function. The remaining

terms, ΠM(L), are important because of their nonanalytic form due to the dependence

on the ratio |Ωl|/vF l.

2.3 Second order calculation

The lowest order nonanalytic correction to the spin susceptibility has been calculated in

[Chubukov03] as a sum of four distinct contributions from the diagrams in Figure 4.8,

δχ
(2)
1 (q̃) = (U2

2kF
+ U2

0 )F (0, q̃), (2.3.1)

δχ
(2)
3 (q̃) = (U2

2kF
− U2

0 )F (0, q̃), (2.3.2)
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δχ
(2)
1 (q̃) δχ

(2)
2 (q̃) δχ

(2)
3 (q̃) δχ

(2)
4 (q̃)

Figure 2.2: The nonvanishing second-order diagrams contributing to the nonanalytic be-
havior of the electron spin susceptibility.

δχ
(2)
4 (q̃) = U0U2kFF (0, q̃), (2.3.3)

and δχ
(2)
2 = −δχ(2)

4 such that the final result reads as

δχ(2)
s (q̃) = 2U2

2kF
F (0, q̃). (2.3.4)

We refer to [Chubukov03] for a thorough discussion of these lowest order results,

but we find it useful to reproduce here the result for δχ
(2)
1 . In fact, Equation (2.3.1)

has been obtained in [Chubukov03] as a sum of two nonanalytic contributions from

the particle-hole bubble at small (q = 0) and large (q = 2kF ) momentum transfer.

These two contributions, proportional to U2
0 and U2

2kF
, respectively, can be directly seen

in Equation (2.3.1). However, it is more natural for our purposes to obtain the same

result in the particle-particle channel by making use of the propagator discussed in

Section 2.2. This approach is more cumbersome but produces these two contributions at

the same time. Furthermore, once the origin of the lowest order nonanalytic correction is

understood in the particle-particle channel, higher order results are most easily obtained.

We start with the analytic expression of δχ
(2)
1 (q̃) (see Figure 2.3) in terms of Π(2),

the n = 2 case of Equation (2.2.2);

δχ
(2)
1 (q̃) = −8

∫
k

∫
l

g2(K)g(K + Q̃)g(L−K)Π(2)(L, 0). (2.3.5)

It is convenient to define the angle of k as θk ≡ ∠(k, q̃), and θl ≡ ∠(l,k). We first

perform the integration in d3k, as explained in Appendix A.2, to obtain

δχ
(2)
1 = − m

π4v2
F q̃

2

∫ ∞
0

ldl

∫ ∞
0

dΩl

∫ 2π

0

dθlΠ
(2)(L, 0)

×
(

1−
√

(Ωl + ivF l cos θl)2 + (vF q̃)2

Ωl + ivF l cos θl

)
. (2.3.6)
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2.3. Second order calculation

K K

K + Q̃

P −K

P +Q

−Q

Figure 2.3: Labeling of the δχ
(2)
1 diagram, as in Equation (2.3.5).

Following the method of [Chubukov03], we rescale the integration variables: Ωl =

RvF q̃ sinφ, l = Rq̃ cosφ, and dΩldl = RvF q̃
2dRdφ. This gives

δχ
(2)
1 = − mq̃

π4vF

∫ ∞
0

R2dR

∫ π/2

0

dφ

∫ 2π

0

dθlΠ
(2)(R, φ, θl, 0)

× cosφ

(
1−

√
R2(sinφ+ i cosφ cos θl)2 + 1

R(sinφ+ i cosφ cos θl)

)
. (2.3.7)

where, from Equations (2.2.2) and (2.2.5),

Π(2)(R, φ, θl, θ) =
∑
M

′
Ũ2
M(θl, θ)ΠM(R, φ) =

∑
M

′
ΠM(R, φ)

∑
m

UmUm−Me
iMθl−imθ (2.3.8)

with the primed sum restricted to even values of M .

Now we can see clearly that the linear dependence on q̃ in Equation (2.3.7) can only

be modified by the presence of Π(2) in the integrand because of

Π0(R, φ) =
m

2π
ln
vF q̃

Λ
+
m

2π
lnR(1 + sinφ). (2.3.9)

The first logarithmic term is diverging at small q̃ but does not contribute to the final

result since it does not depend on θl and φ. In fact, if we keep only the ln vF q̃/Λ con-

tribution, after the change of variable r = R(sinφ + i cosφ cos θl) in Equation (2.3.7),

we obtain the angular integral
∫ 2π

0
dθl
∫ π/2

0
cosφ(sinφ+ i cosφ cos θl)

−3 dφ = 0 [cf. Equa-

tion (A.3.6) for M = 0]. Details of the calculation are provided in Appendix A.3.

Therefore, only the second term of Equation (2.3.9) is relevant. The integral in Equa-

tion (2.3.7) becomes independent of q̃ and gives only a numerical prefactor. The final

result is given by Equation (2.3.1), in agreement with [Chubukov03]. In a similar way,

the remaining diagrams of Figure 4.8 can be calculated.
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2. Momentum dependence of the spin susceptibility in two dimensions

+ + + . . .

Figure 2.4: The series of diagrams contributing to δχ1(q̃).

2.4 Higher order diagrams

In this section we aim to find the renormalization of the four diagrams depicted in

Figure 4.8 due to higher order contributions in the particle-particle channel. It is well

known that the scattering of two electrons with opposite momenta, in the presence of

the Fermi sea, leads to the emergence of a logarithmic singularity [Saraga05, Mahan00].

Furthermore, in two dimensions there are just two processes that contribute to δχ
(2)
i (q̃),

namely, forward- (small momentum transfer, q = 0) and back-scattering (large momen-

tum transfer, q = 2kF ). This results in the renormalization of the scattering amplitudes

appearing in the second-order results (see Section 2.1).

A direct calculation of the particle-particle propagators, depicted in Figure 2.1, shows

that for n+1 interaction lines, the divergence always appears as the nth power of a loga-

rithm. At each order of the perturbative expansion, we only consider the single diagram

which contributes to the nonanalytic correction with the leading logarithmic singularity.

This requirement restricts the freedom of adding interaction lines in unfettered manner

to the existing second-order diagrams: in order to produce the most divergent logarith-

mic term, all interaction lines have to build up at most one ladder for δχ1, δχ2, and δχ4,

or two ladders for δχ3.

The subset of diagrams generated in this way is not sufficient to obtain the general

momentum dependence of the spin susceptibility. However, if one of the harmonics Vn is

negative, these diagrams are the only relevant ones in the vicinity of the Kohn-Luttinger

instability, vF q̃ & kBTKL. Furthermore, at each order n in the interaction, it suffices to

keep the leading contribution in q̃ of the individual diagrams. This turns out to be of

order q̃ lnn−2 q̃ because the term proportional to lnn−1 q̃ is suppressed by an additional

factor q̃2. Other perturbative terms, e.g., in the particle-hole channel [Shekhter06a], can

be safely neglected as they result in logarithmic factors of lower order.

In the following we discuss explicitly how to insert a ladder diagram into the pre-

existing second-order diagrams and show the line of the calculation that has to be carried

out.
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2.4. Higher order diagrams

≡

Figure 2.5: An example of diagram contributing to δχ2(q̃). The maximally crossed dia-
gram (left) is topologically equivalent to its untwisted counterpart (right) in
which the particle-particle ladder appears explicitly.

2.4.1 Diagrams 1, 2, and 4

These three diagrams can all be expressed to lowest order in terms of a single particle-

particle propagator Π(2), which at higher order is substituted by Π(n). For the first term

we have

δχ
(n)
1 (q̃) = −8

∫
k

∫
l

g2(K)g(K + Q̃)g(L−K)Π(n)(L), (2.4.1)

where the n = 2 case was calculated in Section 2.3. The corresponding diagrams are, in

this case, easily identified and shown in Figure 2.4.

It is slightly more complicated to renormalize δχ
(2)
2 and δχ

(2)
4 . It requires one to

realize that the diagrams depicted in Figure 2.5 are topologically equivalent; i.e., the

maximally crossed diagram on the left is equivalent to the untwisted ladder diagram

on the right. A similar analysis shows how to lodge the ladder diagram into δχ
(2)
4 , as

illustrated in Figure 2.6. The corresponding analytic expressions are:

δχ
(n)
2 (q̃) = 4

∫
k

∫
l

g2(K)g(K + Q̃)g(L−K)Π(n)(L, π), (2.4.2)

δχ
(n)
4 (q̃) = 2

∫
k

∫
l

g(K)g(K + Q̃)g(L−K)g(L−K − Q̃)Π(n)(L, π). (2.4.3)

We show now that the final results can be simply obtained to leading order in q̃ based

on the second-order calculation. In fact, we can perform the integration in d3k and the

rescaling of variables as before. For δχ1 we have

δχ
(n)
1 = − mq̃

π4vF

∫ ∞
0

R2dR

∫ π

0

dθl

∫ π/2

0

Π(n)(R, φ, θl, 0)

×
(

1−
√
R2(sinφ+ i cosφ cos θl)2 + 1

R(sinφ+ i cosφ cos θl)

)
cosφ dφ. (2.4.4)
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2. Momentum dependence of the spin susceptibility in two dimensions

≡

Figure 2.6: A maximally crossed diagram (left) and its untwisted equivalent (right) con-
tributing to δχ4(q̃).

In the above formula, the q̃ dependence in the integrand is only due to Π(n). It is clear

that a similar situation occurs for the second and fourth diagrams.

The q̃ dependence of the rescaled Equation (2.2.2) is determined (as in the second

order) by the factors Π0(R, φ). The first term appearing in Π0(R, φ), see Equation (2.3.9),

is large in the small q̃ limit we are interested in. Therefore, we can expand Π(n) in powers

of ln vF q̃/Λ and retain at each perturbative order n only the most divergent nonvanishing

contribution. The detailed procedure is explained in Appendix A.4. It is found that the

largest contribution from Π(n) is of order (ln vF q̃/Λ)n−1. However, as in the case of

the second-order diagram discussed in Section 2.3, this leading term has an analytic

dependence on L (in fact, it is a constant), and gives a vanishing contribution to the

linear-in-q̃ correction to the spin susceptibility. Therefore, the (ln vF q̃/Λ)n−2 contribution

is relevant here.

A particularly useful expression is obtained upon summation of Π(n) to infinite order.

In fact, for each diagram, the sum of the relative series involves the particle-particle

propagator only. Therefore, δχ1, δχ2, and δχ4 are given by Equations (2.4.1)–(2.4.3) if

Π(n) is substituted by

Π(∞)(L, θ) =
∞∑
n=2

Π(n)(L, θ). (2.4.5)

The relevant contribution of Π(∞)(L, θ), in the rescaled variables, is derived in Ap-

pendix A.4. The final result is

Π(∞)(R, φ, θl, θ) =
∞∑
n=2

Π(n)(R, φ, θl, θ) =
∑
M

′
ΠM(R, φ)

∑
m

ΓmΓm−Me
iMθl−imθ + . . . ,

(2.4.6)

which should be compared directly to Equation (2.3.8). The only difference is the re-

placement of Un with the renormalized amplitudes Γn, which depend on q̃ as in Equa-

tion (2.1.8).

Hence, it is clear that the final results follow immediately from Equations (2.3.1)–

(2.3.3);

δχ1(q̃) = [Γ2(0) + Γ2(π)]F (0, q̃), (2.4.7)

22



2.4. Higher order diagrams

+ 2×

+ 2× + . . .

Figure 2.7: The series of diagrams contributing to δχ3(q̃). At the top, the second- and
third-order diagrams. Two equivalent third-order diagrams arise from the
addition of a parallel interaction line to either the upper or the lower part of
the second-order diagram. At the bottom, three fourth-order diagrams.

δχ4(q̃) = Γ(0)Γ(π)F (0, q̃), (2.4.8)

and δχ2(q̃) = −δχ4(q̃). We have used notation (2.1.4) while F (0, q̃) is defined in Equa-

tion (2.1.3). This explicitly proves what was anticipated in Section 2.1 (and in [Simon08]),

i.e., that the renormalization affects only the scattering amplitude. The bare interaction

potential is substituted by the dressed one, which incorporates the effect of other elec-

trons on the scattering pair.

2.4.2 Diagram 3

The last diagram δχ
(2)
3 differs from those already discussed in the sense that it allows for

the separate renormalization of either the upper or lower interaction line. This results in

the appearance of two equivalent third-order diagrams and three fourth-order diagrams

(of which two are equal), and so forth. These lowest order diagrams are shown in Fig-

ure 2.7. Accordingly, we define the quantities δχ
(i,j)
3 , where ladders of order i and j are

inserted in place of the original interaction lines. In particular, δχ
(n)
3 =

∑
i,j δχ

(i,j)
3 δn,i+j

and

δχ3(q̃) =
∞∑

i,j=1

δχ
(i,j)
3 (q̃). (2.4.9)

The second difference stems from the fact that a finite nonanalytic correction is

obtained from the leading terms in the particle-particle ladders of order (ln vF q̃/Λ)i−1 and

(ln vF q̃/Λ)j−1, respectively. In fact, extracting this leading term from Equation (2.2.2)

we obtain

Π(j)(L, θ) =
∑
n

U j
ne
−inθ

(m
2π

ln
vF q̃

Λ

)j−1

+ . . . , (2.4.10)
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2. Momentum dependence of the spin susceptibility in two dimensions

and by performing the sum over j we get

∞∑
j=1

Π(j)(L, θ) = Γ(θ) + . . . . (2.4.11)

A similar argument can be repeated for the ith order interaction ladder. Therefore, the

bare potential is replaced by renormalized expression (2.1.4) and the final result,

δχ3(q̃) = [Γ2(π)− Γ2(0)]F (0, q̃), (2.4.12)

is immediately obtained from Equation (2.3.2).

2.4.3 Renormalized nonanalytic correction

Combining the results of Section 2.4.1 and 2.4.2, it is clear that the final result has the

same form of Equation (2.3.4) if U2kF is substituted by Γ(π). The explicit expression

reads as

δχs(q̃) =
m3

24π4

q̃

kF

[∑
n

Un(−1)n

1− mUn
2π

ln vF q̃
Λ

]2

. (2.4.13)

2.5 Relation to the Renormalization Group

approach

As discussed, our calculation was partially motivated by the renormalization group (RG)

argument of [Simon08]. In this section, we further substantiate this argument. Starting

from Equations (2.3.8) and (2.3.9), one can calculate the second-order correction to the

bare vertex Π(1) =
∑

n Une
inθ given by

Π(2)(L, θ) =
m

2π
ln
vF q̃

Λ

∑
n

U2
ne

inθ + . . . , (2.5.1)

where we explicitly extracted the dependence on the upper cutoff Λ. From Equa-

tion (2.5.1), we can immediately derive the following RG equations for the scale-

dependent couplings Γn(s = vF q̃):

dΓn
d ln(s/Λ)

=
m

2π
Γ2
n, (2.5.2)

as in [Simon08]. This leads to the standard Cooper channel renormalization. A direct

derivation of these scaling equations can be found in [Shankar94]. At this lowest order, we

obtain an infinite number of independent flow equations, one for each angular momentum

n. The integration of these scaling equations directly leads to Equation (2.1.8). These
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2.5. Relation to the Renormalization Group approach

Figure 2.8: First-order diagrams contributing to the spin susceptibility. These are renor-
malized by the leading logarithmic terms of the higher order diagrams (see
Figures 2.4–2.6). However, they do not produce a nonanalytic correction and
can be neglected in the limit of small q̃.

flow equations tell us that the couplings Γn are marginally relevant in the infrared limit

when the bare Γn are negative and marginally irrelevant otherwise. Notice that at zero

temperature, the running flow parameter s is replaced by the momentum vF q̃ in the

Cooper channel. The idea of the RG is to replace in the perturbative calculations of

a momentum-dependent quantity the bare couplings Γn by their renormalized values.

By doing so, we directly resum an infinite class of (ladder) diagrams.

Let us apply this reasoning now to the susceptibility diagrams and note that the

first nonzero contribution to the linear-in-q̃ behavior of χs(q̃) appears in the second

order in Γn. For the particular example of δχ3, the renormalization procedure has to

be carried out independently for the two interaction lines, as illustrated by the series

of diagrams in Figure 2.7. For a given order of the interaction ladder in the bottom

(top) part of the diagram, one can perform the Cooper channel resummation of the top

(bottom) interaction ladders to infinite order, as described in Section 2.4.2 or by using

the RG equations. The fact that renormalized amplitudes Γn appear in the final results

for the remaining diagrams δχ1,2,4 is also clear from the RG argument, after insertion of

particle-particle ladders as in Figures 2.4–2.6.

Finally, we note that the same series of diagrams that renormalizes the nonanalytic

second-order contributions δχ
(2)
1,2,4 also contributes to the renormalization of the first-

order diagrams displayed in Figure 2.8 (notice that the first one is actually vanishing

because of charge neutrality). As it is clear from the explicit calculation Section 2.4, the

highest logarithmic powers, i.e., ∝ (ln vF q̃/Λ)n−1 at order n, renormalize Um to Γm in the

final expressions for Figure 2.8. These first-order diagrams have an analytic dependence,

at most q̃2. Therefore, in agreement with the discussion in Section 2.4.1, the largest

powers of the logarithms are not important for the linear dependence in q̃ and, in fact,

they were already neglected to second order [Chubukov03].
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2. Momentum dependence of the spin susceptibility in two dimensions

2.6 Summary and discussion

In this Chapter we discussed the renormalization effects in the Cooper channel on the

momentum-dependent spin susceptibility. The main result of this Chapter is given by

Equation (2.4.13) and shows that each harmonics gets renormalized independently. The

derivation of the higher order corrections to the spin susceptibility was based on the

second-order result, which we revisited through an independent direct calculation in

the particle-particle channel. Taking the angular dependence of the scattering potential

explicitly into account, we verified that the main contribution indeed enters through

forward- and back-scattering processes. At higher order, we found a simple and efficient

way of resumming all the diagrams which contribute to the Cooper renormalization.

We identified the leading nonvanishing logarithm in each ladder and used this result in

the second-order correction. This method saves a lot of effort and, in fact, makes the

calculation possible.

It was argued elsewhere that these renormalization effects might underpin the

nonmonotonic behavior of the electron spin susceptibility if the higher negative har-

monics override the initially leading positive Fourier components. This would re-

sults in the negative slope of the spin susceptibility at small momenta or tempera-

tures [Shekhter06b, Simon08]. Other effects neglected here, as subleading logarithmic

terms and nonperturbative contributions beyond the Cooper channel renormalization

[Shekhter06a], become relevant far away from the Kohn-Luttinger instability condition,

but a systematic treatment in this regime is outside the scope of this work. Our results

could be also extended to include material-related issues such as disorder and spin-orbit

coupling, which are possibly relevant in actual samples.

We also notice that final expression (2.4.13) parallels the temperature dependence

discussed in [Shekhter06b], suggesting that the temperature and momentum dependence

are qualitatively similar in two dimensions. This was already observed from the second-

order calculation, in which a linear dependence both in q̃ and T is obtained. In our work

we find that this correspondence continues to hold in the nonperturbative regime if the

Cooper channel contributions are included. This conclusion is nontrivial and, in fact,

does not hold for the three-dimensional case.

The last remark, together with the experimental observation of [Prus03], supports the

recent prediction that the ferromagnetic ordering of nuclear spins embedded in the two-

dimensional electron gas is possible [Simon07, Simon08]. The ferromagnetic phase would

be stabilized by the long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, as

determined by the nonanalytic corrections discussed here.
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Chapter 3
Spin susceptibility of interacting

two-dimensional electron gas in the
presence of spin-orbit interaction

3.1 Introduction

The issue of nonanalytic corrections to the Fermi liquid theory has been studied exten-

sively in recent years [Belitz05, Löhneysen07]. The interest to this subject is stimulated

by a variety of topics, from intrinsic instabilities of ferromagnetic quantum phase tran-

sitions [Belitz05, Löhneysen07, Chubukov04b, Rech06, Maslov06, Maslov09, Conduit09]

to enhancement of the indirect exchange interaction between nuclear spins in semicon-

ductor heterostructures with potential applications in quantum computing [Simon08,

Simon07, Chesi09]. The origin of the nonanalytic behavior can be traced to an effec-

tive long-range interaction of fermions via virtual particle-hole pairs with small energies

and with momenta which are either small (compared to the Fermi momentum kF ) or

near 2kF [Chubukov06, Chubukov05b]. In 2D, this interaction leads to a linear scal-

ing of χ with a characteristic energy scale E, set by either the temperature T or the

magnetic field |B|, or else by the wavenumber of an inhomogeneous magnetic field |q|
(whichever is larger when measured in appropriate units) [Chubukov03, Chubukov04a,

Hirashima98, Baranov93, Chitov01b, Chitov01a, Betouras05, Efremov08]. Higher-order

scattering processes in the Cooper (particle-particle) channel result in additional loga-

rithmic renormalization of the result: at the lowest energies, χ ∝ E/ ln2E [Aleiner06,

Shekhter06b, Shekhter06a, Schwiete06, Maslov06, Maslov09, Simon08, Simon07]. The

sign of the effect, i.e., whether χ increases or decreases with E, turns out to be non-

universal, at least in a generic Fermi liquid regime, i.e., away from the ferromagnetic

instability: while the second-order perturbation theory predicts that χ increases with E,

the sign of the effect may be reversed either due to a proximity to the Kohn-Luttinger
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

superconducting instability [Shekhter06b, Simon08, Simon07] or higher-order processes

in the particle-hole channel [Shekhter06a, Maslov06, Maslov09].

In this Chapter, we explore the effect of the spin-orbit interaction (SOI) on the non-

analytic behavior of the spin susceptibility [Żak10a]. The SOI is important for practically

all systems of current interest at low enough energies; at the same time, the nonana-

lytic behavior is also an inherently low-energy phenomenon. A natural question to ask

is: what is the interplay between these two low-energy effects? At first sight, the SOI

should regularize nonanalyticities at energy scales below the scale set by this coupling.

(For a Rashba-type SOI, the relevant scale is given by the product |α|kF , where α is

the coupling constant of the Rashba Hamiltonian; here and in the rest of this thesis, we

set ~ and kB to unity). Indeed, as we have already mentioned, the origin of the nonan-

alyticity is the long-range effective interaction originating from the singularities in the

particle-hole polarization bubble. If, for instance, the temperature is the largest scale in

the problem, these singularities are smeared by the temperature with an ensuing nonan-

alytic dependence of χ on T . On the other hand, if the Zeeman energy µB|B| is larger

than T , it provides a more efficient mechanism of regularization of the singularities and,

as result, χ exhibits a nonanalytic dependence on |B|. The same argument applies also

to the |q̃| dependence. It is often said that the SOI plays the role of an effective mag-

netic field, which acts on electron spins. If so, one should expect, for instance, a duality

between the T and |α|kF scalings of χ (by analogy to a duality between T and µB|B|
scalings of χ), i.e., in a system with fixed SOI, the nonanalytic T dependence of χ should

saturate at T ∼ |α|kF . The main message of this Chapter is that such a duality does

not, in fact, exist; more precisely, not all components of the susceptibility tensor exhibit

the duality. In particular, the in-plane component of χ, χxx, continues to scale linearly

with T and µB|B|, even if these energies are smaller than |α|kF . On the other hand, the

T and µB|B| dependences of χzz do saturate at T ∼ |α|kF .

The reason for such a behavior is that although the SOI does play a role of the

effective magnetic field, this field depends on the electron momentum. To understand

the importance of this fact, we consider the Rashba Hamiltonian in the presence of

an external magnetic field [Bychkov84b, Bychkov84a], which couples only to the spins

of the electrons but not to their orbital degrees of freedom

HR =
k2

2m
I + α(σ × k)z +

gµBσ

2
·B =

k2

2m
I +

gµBσ

2
· [BR(k) + B] , (3.1.1)

where α is the SOI, k is the electron momentum in the plane of a two-dimensional

electron gas (2DEG), σ is a vector of Pauli matrices, ez is a normal to the plane, g is the

gyromagnetic ratio, µB is the Bohr magneton, and the effective Rashba field, defined as

BR = (2α/gµB)(k × ez), is always in the 2DEG plane. The effective Zeeman energy is

determined by the total magnetic field Btot = BR + B as

∆̄k ≡
gµB |Btot|

2
=
√
α2k2 + 2α (∆× k)z + ∆2, (3.1.2)
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3.1. Introduction

1 2 3
k @mΑD

-1

1

2

3
Ε @Ε0D

Figure 3.1: Rashba spectrum in zero magnetic field. The energy is measured in units of
ε0 ≡ mα2/2, the momentum is measured in units of mα.

where we introduced ∆ = gµBB/2 for the ”Zeeman field”, such that ∆ is the Zeeman

energy of an electron spin in the external magnetic field (~ = 1) and 2∆ equals to

the Zeeman splitting between spin-up and spin-down states. A combined effect of the

Rashba and external magnetic fields gives rise to two branches of the electron spectrum

(see Figure 3.1) with dispersions

ε±k =
k2

2m
± ∆̄k. (3.1.3)

If B ‖ ez, the external and effective magnetic fields are perpendicular to each other,

as shown in Figure 3.2a, so that the magnitude of the total magnetic field is |Btot| =

|B + BR| =
√
B2 +B2

R. This means that the external and magnetic fields are totally

interchangeable, and the T dependence of the spin susceptibility is cut off by the largest

of the two scales. However, if the external field is in the plane (and defines the x axis in

Figure 3.2b), the magnitude of the total field depends on the angle θk between k and

B. In particular, for a weak external field,

∆̄k ≈ |α| k + ∆ sin θk. (3.1.4)

If the electron-electron interaction is weak, the nonanalytic behavior of the spin suscep-

tibility is due to particle-hole pairs with total momentum near 2kF , formed by electron

and holes moving in almost opposite directions. In this case, the second term in Equa-

tion (3.1.4) is of the opposite sign for electrons and holes. The effective Zeeman energy

of the whole pair, formed by fermions from Rashba branches s and s′, is

∆pair = s∆̄k − s′∆̄−k = (s− s′) |α| k + (s+ s′)∆ sin θk. (3.1.5)

Only those pairs which “know” about the external magnetic field –via the second term in

Equation (3.1.5)– renormalize the spin susceptibility. According to Equation (3.1.5), such
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Figure 3.2: Interplay between the external magnetic field B and effective magnetic field
BR due to the Rashba SOI. Left: the external field is perpendicular to the
plane of motion. Right: the external field is in the plane of motion.

pairs are formed by fermions from the same Rashba branch (s = s′). However, since the

first term in Equation (3.1.5) vanishes in this case, such pairs do not “know ” about the

SOI, which means that the Rashba and external magnetic fields are not interchangeable,

and the SOI energy scale does not provide a cutoff for the T dependence of χ.

We now briefly summarize the main results. We limit our consideration to the 2D

case and to the Rashba SOI, present in any 2D system with broken symmetry with

respect to reversal of the normal to the plane. We focus on the dependencies of χ on

T, α, and |B|, deferring a detailed discussion of the dependence of χ on |q| to another

occasion. Throughout this work, we assume that the spin-orbit and electron-electron

interaction, characterized by the coupling constant U, are weak, i.e., |α| kF � EF and

mU � 1. The latter condition implies that only 2kF scattering processes are relevant

for the nonanalytic behavior of the spin susceptibility. Accordingly, U is the 2kF Fourier

transform of the interaction potential. Renormalization provides another small energy

scale at which the product (mU/2π) ln (Λ/TC) (where Λ is an ultraviolet cutoff of the

theory) becomes comparable to unity, i.e, TC ≡ Λ exp (−2π/mU) . Depending on the

ratio of the two small energy scales–|α| kF and TC–different behaviors are possible.

In Figure 3.3a, we sketch the T dependence of χzz for the case of TC � |α| kF . For

T � |α| kF , χzz scales linearly with T, in agreement with previous studies; a correction

due to the SOI is on the order of (αkF/T )2 [cf. Equation (3.3.29)]. For TC � T � |α| kF ,
χzz saturates at a value proportional to |α| ; the correction due to finite T is on the order

of (T/ |α| kF )3 [cf. Equation (3.3.30)]. For T . TC , renormalization in the Cooper channel

becomes important. In the absence of the SOI, the coupling constant of the electron-

electron interaction in the Cooper channel flows to zero as U/| lnT |. Consequently, the T

scaling of the spin susceptibility changes to T/ ln2 T for T � TC . In the presence of the

SOI, the situation is different. We show that the Renormalization Group (RG) flow of

U in this case has a non-trivial fixed point characterized by finite value of the electron-
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Figure 3.3: A sketch of the temperature dependence of the spin susceptibility for the
transverse (top) and in-plane (bottom) magnetic field. Dashed segments in
crossovers between various asymptotic regimes do not represent results of ac-
tual calculations. The left (right) panel is valid for TC � |α|kF (TC � |α|kF )
where TC ≡ Λ exp (−2π/mU) is the temperature below which renormaliza-
tion in the Cooper channel becomes significant. The zero temperature limit
for interacting electrons, denoted by χ̃0, is given by Equation (3.2.8) in the
Random Phase Approximation.

electron coupling, which is only numerically smaller than its bare value. In between these

two limits, the coupling constant changes non-monotonically with lnT , and so does χzz.

In both high-and low T limits (compared to TC), however, χzz is almost T independent,

so Cooper renormalization affects the |α| term in χzz.

The T dependence of χzz for TC � |α| kF is sketched in Figure 3.3b. In this case, the

crossover between the T and T/ ln2 T forms occurs first, at T ∼ TC , while the T/ ln2 T

form crosses over to |α| at T ∼ |α| kF .
We now turn to χxx. For TC � |α| kF , its T dependence is shown in Figure 3.3c. The

high-T behavior is again linear [also with a (αkF/T )2 correction, cf. Equation (3.3.54)].

For TC � T � |α| kF , this behavior changes to χxx ∝ |α| kF/6 + T/2, which means

that χxx continues to decrease with T with a slope half of that at higher T , see Equa-

tion (3.3.55). Finally, for T . TC , Cooper renormalization leads to the same |α| depen-
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

dence as for χzz but with a different prefactor. The behavior of χxx for |α| kF � TC is

shown in Figure 3.3d. Apart from the numbers, this behavior is similar to that of χzz in

that case.

The dependences of χxx and χzz on the external magnetic field can be obtained (up

to a numerical coefficient) simply by replacing T by ∆ in all formulas presented above. In

particular, if Cooper renormalization can be ignored, both χxx and χzz scale linearly with

∆ for ∆� |α|kF but only χxx continues to scale with ∆ for ∆� |α|kF . A linear scaling

of χii with ∆ implies the presence of a nonanalytic, |Mi|3 term in the free energy, where

M is the magnetization and i = x, y, z. Consequently, while the cubic term is isotropic

(F ∝ |M |3) for larger M (so that the corresponding Zeeman energy is above |α|kF ), it

is anisotropic at smaller |M |: F ∝ |Mx|3 + |My|3. A negative cubic term in F implies

metamagnetism and an instability of the second-order ferromagnetic quantum phase

transition toward a first-order one [Belitz05, Maslov06, Maslov09]. An anisotropic cubic

term implies anisotropic metamagnetism, i.e., a phase transition in a finite magnetic field,

if it is applied along the plane of motion, but no transition for a perpendicular field, and

also that the first-order transition is into an XY rather than Heisenberg ferromagnetic

state. This issue is discussed in more detail in Section 4.4.

The rest of this Chapter is organized as follows. In Section 3.2, we formulate the

problem and discuss the T dependence of the spin susceptibility for free electrons with

Rashba spectrum (more details on this subject are given in Appendix B.1). Section 3.3.1

explains the general strategy of extracting the nonanalytic behavior of χ from the ther-

modynamic potential in the presence of the SOI. The second-order perturbation theory

for the temperature and magnetic-field dependences of the transverse and in-plane sus-

ceptibilities is presented in Sections 3.3.2 and 3.3.3, respectively. In Section 3.3.4, we

show that, as is also the case in the absence of the SOI, there is no contribution to

the nonanalytic behavior of the spin susceptibility from processes with small momen-

tum transfers, including the transfers commensurate with (small) Rashba splitting of

the free-electron spectrum (more details on this issue are provided in Appendix B.2).

Renormalization of spin susceptibility in the Cooper channel is considered in Section 3.4.

An explicit calculation of the third-order Cooper contribution to χzz is shown in Section

3.4.2. In Section 3.4.3 we derive the RG flow equations for the scattering amplitudes in

the absence of the magnetic field; the effect of the finite field on the RG flow is discussed

in Appendix B.3. The effect of Cooper-channel renormalization on the nonanalytic be-

havior of χzz and χxx is discussed in Secs. 3.4.3 and 3.4.3, correspondingly. Implications

of our results in the context of quantum phase transitions are discussed in Reference 4.4,

where we also give our conclusions.
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3.2. Free Rashba fermions

3.2 Free Rashba fermions

In this Section, we set the notations and discuss briefly the properties of Rashba electrons

in the absence of the electron-electron interaction. The Hamiltonian describing a two-

dimensional electron gas (2DEG) in the presence of a Rashba SOI and an external

magnetic field B is given by Equation (3.1.1).

In the following, we consider two orientations of the magnetic field: transverse (B =

Bez) and parallel (B = Bex) to the 2DEG plane. It is important to emphasize that,

when discussing the perpendicular magnetic field, we neglect its orbital effect. Certainly,

if the spin susceptibility is measured as a response to an external magnetic field, its

orbital and spin effects cannot be separated. However, there are situations when the

spin part of χzz is of primary importance. For example, the Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction between the local moments located in the 2DEG plane arises

only from the spin susceptibility of itinerant electrons, because the orbital effect of the

dipolar magnetic field of such moments is negligible. In this case, χxx and χzz determine

the strength of the RKKY interaction between two moments aligned along the x and z

axis, respectively. Also, divergences of χzz and χxx signal ferromagnetic transitions into

states with easy-axis and easy-plane anisotropies, respectively. Since it is this kind of

physical situations we are primarily interested in this Chapter, we will ignore the orbital

effect of the field from now on.

The Green’s function corresponding to the Hamiltonian (3.1.1) is obtained by matrix

inversion

GK ≡
1

iω −H =
∑
s=±

Ωs(k)gs(K), (3.2.1)

where we use the “relativistic” notation K ≡ (ω,k) with ω being a fermionic Matsubara

frequency, the matrix Ωs(k) is defined as

Ωs(k) ≡ 1

2
(I + sζ) , (3.2.2a)

ζ =
α(kyσx − kxσy) + σ ·∆

∆̄k

, (3.2.2b)

gs(K) = 1/(iω− εk− s∆̄k) is the single-electron Green’s function, εk ≡ k2

2m
− µ, µ is the

chemical potential, and ∆̄k is given by Equation (3.1.2).

As we have already pointed out in the Introduction, an important difference between

the cases of transverse and in-plane magnetic field is the dependence of the effective Zee-

man energy [Equation (3.1.2)] on the electron momentum. For the transverse magnetic

field, (∆x = ∆y = 0,∆z = ∆), the Zeeman energy is isotropic in the momentum space

and quadratic in ∆ in the weak-field limit: ∆̄k ≈ |α|kF + ∆2/2|α|kF . Correspondingly,

the Fermi surfaces of Rashba branches are concentric circles with slightly (in proportion

to ∆2) different radii. For the in-plane magnetic field, (∆x = ∆,∆y = ∆z = 0), the
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Figure 3.4: Spin susceptibility of free Rashba fermions (in units of χ0 = µ2
Bm/π) as

a function of the chemical potential µ (in units of ε0 = mα2/2). Solid (red):

χ
{0}
xx ; dashed (blue): χ

{0}
zz . Note that χ

{0}
xx 6= χ

{0}
zz if only the lowest Rashba

branch is occupied (−ε0 ≤ µ < 0) but χ
{0}
xx = χ

{0}
zz = χ0 if both branches are

occupied (µ > 0) at T = 0.

effective Zeeman energy is anisotropic in the momentum space, cf. Equation (3.1.4).

Correspondingly, the Fermi surfaces of Rashba branches are also anisotropic and their

centers are shifted by finite momentum, proportional to ∆x.

We now give a brief summary of results for the susceptibility in the absence of

electron-electron interaction, which sets the zeroth order of the perturbation theory

(for more details, see Appendix B.1). The in-plane rotational symmetry of the Rashba

Hamiltonian guarantees that χ
{0}
yy = χ

{0}
xx . The static uniform susceptibility (defined in

the limit of zero frequency and vanishingly small wavenumber) is still diagonal even in

the presence of the SOI: χ
{0}
ij = δijχ

{0}
ii , although χ

{0}
xx = χ

{0}
yy 6= χ

{0}
zz in general. The

susceptibility depends strongly on whether both or only the lower of the two Rashba

branches are occupied, see Figure (3.4). In the latter case, the spin response is strongly

anisotropic. At T = 0,

χ{0}zz = χ0

√
1 + µ/ε0 (3.2.3a)

χ{0}xx = χ0
1 + µ/2ε0√

1 + µ/ε0
, (3.2.3b)

where χ0 ≡ µ2
Bm/π is the spin susceptibility of 2D electrons in the absence of the SOI,

ε0 = mα2/2 is the depth of the energy minimum of the lower branch and the chemical

potential µ is within the range −ε0 ≤ µ ≤ 0. The in-plane susceptibility exhibits a 1D-

like van Hove singularity at the bottom of the lower branch, i.e., for µ → −ε0. On

the other hand, if both branches are occupied (which is the case for µ > 0), the spin

susceptibility is isotropic and the same as in the absence of the SOI

χ{0}zz = χ{0}xx = χ0. (3.2.4)
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++ + . . .• • • • • •
Figure 3.5: The RPA diagrams for the spin susceptibility corresponding to Equa-

tion (3.2.7).

This isotropy can be related to a hidden symmetry of the Rashba Hamiltonian manifested

by conservation of the square of the electron’s velocity operator v [Rashba05]. The

eigenvalue of v2, given by 2ε/m + 2α2 with ε being the energy, is the same for both

branches. The square of the group velocity v2
g =

(
∇kε

±
k

)2
= 2ε/m + α2 also does not

depend on the branch index. Therefore, the total density of states

ν(ε) =
1

2π

k+ + k−

|vg|
=
m

π
, (3.2.5)

where k± = ∓mα +
√
m2α2 + 2mε are the momenta of the ± branches corresponding

to energy ε, is the same as without the SOI, if both branches are occupied. One can

show also that isotropy of the spin susceptibility is not specific for the Rashba coupling

but is there also in the presence of both Rashba and (linear) Dresselhaus interactions

[Ashrafi].

As one step beyond the free-electron model, we consider a Stoner-like enhancement

of the spin susceptibility by the electron-electron interaction. In the absence of the SOI

and for a point-like interaction U , the renormalized spin susceptibility is given by

χ =
χ0

1−mU/π . (3.2.6)

In the presence of the SOI, the ladder series for the susceptibility, shown in Figure 3.5

is given by

χii =χ
{0}
ii + Uµ2

B

∑
K,P

Tr [σiG(K +Q)G(P +Q)σiG(P )G(K)]

− U2µ2
B

∑
K,P,L

Tr [σiG(K +Q)G(P +Q)G(L+Q)σiG(L)G(P )G(P )] + . . . (3.2.7)

where Q = (Ω = 0,q → 0) and i = x, z. Although the traces do look different for χxx
and χzz, these differences disappear after angular integrations, and the resulting series

are the same. As we have shown above, the zero-order susceptibilities are also the same

(and equal to χ0) if both Rashba branches are occupied; hence

χii = µ2
B

(
m

π
+
m2U

π2
+
m3U2

π3
+ . . .

)
=

χ0

1−mU/π , (3.2.8)
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

which is the same result as in Equation (3.2.6). Therefore, at the mean-field level, the

spin susceptibility remains isotropic and independent of the SOI. In the rest of the

Chapter, we will show that none of these two features survives beyond the mean-field

level: the actual spin susceptibility is anisotropic and both its components do depend on

the SOI.

We now come back to the free-electron model and discuss the T dependence of the

spin susceptibility. A special feature of a 2DEG in the absence of the SOI is a breakdown

of the Sommerfeld expansion at finite T : since the density of states does not depend on

the energy, all power-law terms of this expansion vanish, and the resulting T dependence

of χ{0} is only exponential. The SOI leads to the energy dependence of the density of

states for the individual branches, and one would expect the Sommerfeld expansion to

be restored. This is what indeed happens if only the lower branch is occupied. In this

case,

χ{0}zz (T ) = χ{0}zz (0)− χ0
π2

24

(
T

ε0

)2
1

(1 + µ/ε0)3/2

(3.2.9a)

χ{0}xx (T ) = χ{0}xx (0) + χ0
π2

48

(
T

ε0

)2
2− µ/ε0

(1 + µ/ε0)5/2
,

(3.2.9b)

provided that T � min {−µ, ε0 + µ}. [Here, χ
{0}
zz (0) and χ

{0}
xx (0) are the zero temperature

values given by Equations (3.2.3a) and (3.2.3b)]. However, if both branches are occupied,

the energy dependent terms in the branch densities of states cancel out, and the resulting

dependence is exponential, similar to the case of no SOI, although with different pre-

exponential factors:

χ{0}zz (T ) = χ0

(
1− T

2ε0
e−µ/T

)
(3.2.10a)

χ{0}xx (T ) = χ0

(
1 +

T 2

4ε20
e−µ/T

)
(3.2.10b)

for T � ε0 � µ, and

χ{0}zz (T ) = χ0

[
1−

(
1− 2ε0

3T

)
e−µ/T

]
(3.2.11a)

χ{0}xx (T ) = χ0

[
1−

(
1− 4ε0

3T

)
e−µ/T

]
(3.2.11b)

for ε0 � T � µ. In a similar way, one can show that there are no power-law terms in

the dependence of χ
{0}
xx and χ

{0}
zz on the external magnetic field.

Notice that χxx 6= χzz at finite temperature, even if both Rashba subbands are

occupied. This suggests that the hidden symmetry of the Rashba Hamiltonian is, in
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3.3. Second order calculation

fact, a rotational symmetry in a (2 + 1) space with imaginary time being an extra

dimension [Rashba]. Finite temperature should then play a role of finite size along the

time axis breaking the rotational symmetry.

In what follows, we assume that the SOI is weak, i.e., |α| � vF , and thus the energy

scales describing SOI are small: mα2 � |α|kF � µ. This condition also means that

both Rashba branches are occupied. [Also, from now on we relabel µ→ EF .] The main

result of this section is that, for a weak SO coupling, the T and ∆ dependences of χ

in the free case are at least exponentially weak and thus cannot mask the power-law

dependences arising from the electron-electron interaction, which are discussed in the

rest of this Chapter.

3.3 Second order calculation

3.3.1 General strategy

The spin susceptibility tensor χij is related to the thermodynamic (grand canonical)

potential Ξ(T, α,∆) by the following identity

χij(T, α) = − ∂2Ξ

∂Bi∂Bj

∣∣∣∣
B=0

. (3.3.1)

To second order in the electron-electron interaction U(q), there is only one diagram for

the thermodynamic potential that gives rise to a nonanalytic behavior: diagram a) in

Figure 3.6. The rest of the diagrams in this figure can be shown to be irrelevant (cf.

Section 3.3.4). Algebraically, diagram a) in Figure 3.6 reads

δΞ(2) ≡ −1

4

∑
Q

∑
K

∑
P

U2
|k−p|Tr(GKGP )Tr(GK+QGP+Q), (3.3.2)

where
∑

Q = (2π)−2T
∑

Ω

∫
d2q,

∑
K = (2π)−2T

∑
ω

∫
d2k, and we use “relativistic”

notation K ≡ (ω,k) with a fermionic frequency ω and Q ≡ (Ω,q) with a bosonic

frequency Ω.

Evaluation of the first spin trace in Equation (3.3.2) yields

Tr(GKGP ) =
1

2

∑
ss′

Bss′(k,p)gs(K)gs′(P ), (3.3.3)

where

Bss′(k,p) ≡ 1 + ss′
α2k · p + α [∆× (k + p)]z + ∆2

∆̄k∆̄p

(3.3.4)
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Figure 3.6: Second order diagrams for the thermodynamic potential. A nonanalytic con-
tribution comes only from diagram a), where the momenta are arranged in
such a way that k ≈ −p while q is small; therefore, k ≈ p ≈ kF ,and the
momentum transfer in each scattering event is close to |k− p| ≈ 2kF . As is
shown in Section 3.3.4, diagrams b)-e) do not contribute to the nonanalytic
behavior of the spin susceptibility.

and ∆̄k is given by Equation (3.1.2). The second-order thermodynamic potential then

becomes

δΞ(2) ≡ − 1

16

∑
Q

∑
K

∑
P

U2
|k−p|Bs1s3(k,p)Bs2s4(k + q,p + q)

×gs1(K)gs2(P )gs3(K +Q)gs4(P +Q). (3.3.5)

Equation (3.3.5) describes the interaction among electrons from all Rashba branches via

an effective vertex U|k−p|Bss′(k,p), which depends not only on the momentum transfer

k− p but also on the initial momenta k and p themselves. This last dependence is due

to anisotropy of the Rashba spinors.

It has been shown in [Chubukov03, Maslov06, Maslov09] that, at weak coupling,

the main contribution to the nonanalytic part of the spin susceptibility comes from

“backscattering” processes, i.e., processes with p ≈ −k and small q (compared to kF ).
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3.3. Second order calculation

In particular, the second-order contribution is entirely of the backscattering type. The

proof given in [Maslov06, Maslov09] applies to any kind of the angular-dependent vertex

and, thus, also to vertices in Equation (3.3.5). Therefore, the calculation can be simplified

dramatically by putting in p = −k and neglecting q in the effective vertices. The last

assumption is justified as long as the typical values of q are determined by the smallest

energy of the problem, i.e., q ∼ max{T/vF ,m|α|} � kF . By the same argument, the

magnitudes of k and p in the vertices can be replaced by kF . The bare interaction is

then evaluated at |k − p| ≈ 2kF , and we introduce a coupling constant U ≡ U2kF .

Ignoring the angular dependence of Bsisj for a moment, Equation (3.3.5) is reduced to

a convolution of two particle-hole bubbles, formed by electrons belonging to either the

same or different Rashba branches

Πsisj(Q) =
∑
K

gsi(K)gsj(K +Q). (3.3.6)

By assumption, both components of Q in Πsisj(Q), i.e., Ω and q, are small (compared to

EF and kF , correspondingly). It is important to realize that, despite a two-band nature of

the Rashba spectrum, Πsisj(Q) has no threshold-like singularities at the momentum q0 =

2mα, separating the Rashba subbands [Pletyukhov06] (for a detailed derivation of this

result, see Appendix B.2). Therefore, the nonanalytic behavior of the spin susceptibility

comes only from the Landau-damping singularity of the dynamic bubble, as it is also

the case in the absence of the SOI.

After the simplifications described above, Equation (3.3.5) becomes

δΞ(2) ≡ −U
2

16

∑
Q

∑
K

∑
P

Bs1s3Bs2s4gs1(K)gs2(P )gs3(K +Q)gs4(P +Q), (3.3.7)

where

Bss′ ≡ Bss′(kF ,−kF ) = 1 + ss′
∆2 − α2k2

F

∆̄kF ∆̄−kF
(3.3.8)

and kF ≡ (k/k)kF . Finally, to obtain the leading T dependence of χij, it suffices to

replace the fermionic Matsubara sums in Equation (3.3.7) by integrals but keep the

bosonic Matsubara sum as it is. The rest of the calculations proceed somewhat differently

for the cases of the transverse and in-plane magnetic fields.

3.3.2 Transverse magnetic field

First, we consider a simpler case of the magnetic field transverse to the 2DEG plane:

∆ = gµBBez/2. In this case, the effective Zeeman energy is isotropic in the momentum

space; therefore, ∆̄kF = ∆̄−kF and

Bss′ = 1 + ss′
∆2 − α2k2

F

∆̄2
kF

= 1 + ss′
∆2 − α2k2

F

∆2 + α2k2
F

. (3.3.9)
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

Thereby the integrals over d3K and d3P separate, and one obtains

δΞ(2)
zz = −U

2

16

∑
s1...s4=±1

Bs1s3Bs2s4

∑
Q

Πs1s2(Q)Πs3s4(Q), (3.3.10)

where Πsisj(Q) is given by Equation (3.3.6). The single-particle spectrum in the sec-

ond Green’s function in Equation (3.3.6) can be linearized with respect to q as

εk+q ≈ εk + vF q cosφkq with φkq ≡ ∠(k,q). Since, by assumption, the SOI is small,

the effective Zeeman energy in the Green’s functions can be replaced by its value at

k = kF . Integration over dkk can be then replaced by that over dεk. The integrals over

ω, εk and φkq are performed in the same way as in the absence of the SOI, and we arrive

at the following expression for the dynamic part of the polarization bubble

Πss′ =
m

2π

|Ω|√[
Ω + i(s′ − s)∆̄kF

]2
+ (vF q)

2
. (3.3.11)

We pause here for a comment. The polarization bubble in Equation (3.3.11) is very

similar to the dynamic part of the polarization bubble for spin-up and -down electrons

in the presence of the magnetic field but in the absence of the SOI [Maslov06, Maslov09]

Π↑↓(Ω, q) =
m

2π

|Ω|√
(Ω− igµBB)2 + (vF q)2

. (3.3.12)

As we already mentioned in Section 3.1, the nonanalytic behavior of the spin susceptibil-

ity is due to an effective interaction of Fermi-liquid quasiparticles via particle-hole pairs

with small energies and momenta near 2kF . Our calculation is arranged in such a way

that, on a technical level, we deal with pairs with small momenta q. The spectral weight

of these pairs is proportional to the polarization bubble, which is singular for small Ω

and q. Since finite magnetic field cuts off the singularity in Π↑↓(Ω, q), the nonanalytic

dependence of χ on, e.g., temperature, saturates when T becomes comparable to the

Zeeman splitting gµBB. At lower energies, χ exhibits a nonanalytic dependence on ∆:

χ ∝ |∆|. Likewise, the singularity in Equation (3.3.11) is cut at the effective Zeeman

energy ∆̄kF , which reduces to the SOI energy scale |α|kF , when the real magnetic field

goes to zero. Therefore, one should expect the nonanalytic T dependence of χzz to be

cut by the SOI. Although soft particle-hole pairs can be still generated within a given

branch, i.e., for s = s′, the entire dependence on the Zeeman energy in this case is elim-

inated and processes of this type do not affect the spin susceptibility. In the rest of this

section, we are going to demonstrate that the SOI indeed plays a role of the magnetic

field for χzz.

For later convenience, we define a new quantity

Ps ≡ Ps(Ω, q) =
1√(

Ω− 2is∆̄kF

)2
+ v2

F q
2

(3.3.13)

40



3.3. Second order calculation

and sum over the Rashba branches in Equation (3.3.10). The contribution of the set

{s1 = s2 ≡ s, s3 = s4 ≡ s′} does not depend on ∆̄kF :∑
s,s′

B2
ss′Π

2
ss =

(
mΩ

2π

)2∑
s,s′

B2
ss′P2

0 . (3.3.14)

The set {s1 = −s2 ≡ s, s3 = −s4 ≡ s′} gives∑
s,s′

Bss′B−s,−s′Πs,−sΠs′,−s′ =

(
mΩ

2π

)2∑
s,s′

B2
ss′PsPs′ , (3.3.15)

where we used that Bss = B−s,−s. Finally, the sets {s1 = s2 ≡ s, s3 = −s4 ≡ s′} and

{s1 = −s2 ≡ s, s3 = s4 ≡ s′} contribute∑
s,s′

(Bss′Bs,−s′ΠssΠs′,−s′ +Bss′B−s,s′Πs,−sΠs′s′) = 2

(
mΩ

2π

)2∑
ss′

Bss′Bs,−s′P0Ps′ ,

(3.3.16)

where we relabeled the indices in the second sum (s→ s′, s′ → s) and used the symmetry

property Bss′ = Bs′s.

The angular integral contributes a unity, so that

δΞ(2)
zz = −

(
mU

8π

)2

T
∑

Ω

Ω2

∫
dqq

2π

∑
ss′

[B2
ss′(P2

0 + PsPs′) + 2Bss′Bs,−s′P0Ps′ ]. (3.3.17)

Now we sum over ss′, add and subtract a combination 2(α4k4
F +4α2k2

F∆2 +∆4)P2
0 inside

the square brackets, and obtain, after some algebra,

δΞ(2)
zz =−

(
mU

8π

)2

T
∑

Ω

Ω2

∫ ∞
0

dqq

2π

4

∆̄4
kF

[4∆̄4
kF
P2

0

+ ∆4(P2
+ + P2

− − 2P2
0 ) + 4α2k2

F∆2P0(P+ + P− − 2P0)], (3.3.18)

where we used that
∫
dqq (P+P− − P2

0 ) = 0. The first term in the square brackets in

Equation (3.3.18) does not depend on the effective field ∆̄kF and, therefore, can be

dropped. Integration over q in the remaining terms is performed as∫
dqqP0(P+ + P− − 2P0) =

1

v2
F

ln
Ω2

Ω2 + ∆̄2
kF

, (3.3.19)

∫
dqq(P2

+ + P2
− − 2P2

0 ) =
1

v2
F

ln
Ω2

Ω2 + 4∆̄2
kF

. (3.3.20)

Collecting all terms together, we obtain

δΞ(2)
zz = − 2

π

(
mU

4πvF

)2 [
∆4

4∆̄4
kF

T
∑

Ω

Ω2 ln
Ω2

Ω2 + 4∆̄2
kF

+
α2k2

F∆2

∆̄4
kF

T
∑

Ω

Ω2 ln
Ω2

Ω2 + ∆̄2
kF

]
.

(3.3.21)
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

The bosonic sum is evaluated by replacing the sum by an integral as follows

T
∑

Ω

F (Ω) =

∫ ∞
−∞

dΩ

2π
coth

Ω

2T
Im
[
lim
δ→0

F (−iΩ + δ)
]

(3.3.22)

and using the identity

Im

[
lim
δ→0

(−iΩ + δ)2 ln
(−iΩ + δ)2

(−iΩ + δ)2 + x2

]
= πΩ2signΩΘ(x2 − Ω2), (3.3.23)

where Θ(x) stands for the step function.

The thermodynamic potential then becomes

δΞ(2)
zz = − 2

π

(
mU

4πvF

)2

T 3

[
∆4

4∆̄4
kF

F
(

2∆̄kF

T

)
+
α2k2

F∆2

∆̄4
kF

F
(

∆̄kF

T

)]
(3.3.24)

with

F(y) =

∫ y

0

dxx2 coth (x/2) = −y2 [y + 6Li1 (ey)] /3 + 4[ζ(3) + yLi2 (ey)− Li3 (ey)],

(3.3.25)

where Lin(z) ≡∑∞k=1 z
k/kn is the polylogarithm function and ζ(z) is the Riemann zeta

function. In practice, the integral form of F(y) is more convenient as it can be easily

expanded in the limits of small and large argument. Indeed, for y � 1, one expands

coth(x/2) as coth(x/2) = 2/x+ x/6 and, upon integrating over x in Equation (3.3.25),

obtains

F (y) = y2 +
y3

24
+O

(
y4
)
, for 0 < y � 1. (3.3.26)

For y � 1, one subtracts unity from the integrand and replaces the upper limit in the

remaining integral by infinity:

F (y) =
y3

3
+

∫ y

0

dxx2
(

coth
x

2
− 1
)

=
y3

3
+

∫ ∞
0

dxx2
(

coth
x

2
− 1
)

−
∫ ∞
y

dxx2
(

coth
x

2
− 1
)

=
y3

3
+ 4ζ (3) +O

(
e−y
)
, for y � 1. (3.3.27)

Temperature dependence of the transverse component

The (linear) spin susceptibility is given by χzz = −∂2Ξ/∂B2
z |B=0, which means that only

terms proportional to ∆2 in the thermodynamic potential matter. Therefore, for finite

α, the spin susceptibility comes entirely from the second term in the square brackets of

Equation (3.3.24), which is proportional to α2k2
F∆2. On the other hand, for α = 0 the

second term vanishes, while ∆4/∆̄4
kF

= 1, and the spin susceptibility comes exclusively

from the first term: δΞ
(2)
zz still depends on the magnetic field through F(∆̄kF /T ), where
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3.3. Second order calculation

the ∆-dependence must be retained; in this case, F(∆̄kF /T ) is evaluated as shown in

[Chubukov03]. Neglecting the first term and differentiating the second one, we obtain

the interaction correction to χzz for ∆→ 0 as

δχ(2)
zz = 2χ0

(
mU

4π

)2
T 3

α2k2
FEF

F
( |α| kF

T

)
. (3.3.28)

For T � |α|kF , the asymptotic expansion of F in Equation (3.3.26) gives

δχ(2)
zz ≈ 2χ0

(
mU

4π

)2 [
T

EF
+

1

24

α2k2
F

TEF
+ . . .

]
. (3.3.29)

The first term in Equation (3.3.29) coincides with the result of [Chubukov03, Maslov06,

Maslov09, Shekhter06b, Schwiete06] obtained in the absence of the SOI, while the second

term is a correction due to the finite SOI. In the opposite limit, i.e., for T � |α|kF , the

asymptotic expansion of F in Equation (3.3.27) gives

δχ(2)
zz ≈ 2χ0

(
mU

4π

)2 [ |α|kF
3EF

+ 4ζ(3)
T 3

α2k2
FEF

+ . . .

]
. (3.3.30)

As it was anticipated, the SOI cuts off the nonanalytic T dependence for T . |α|kF .
However, the T dependence is replaced by a nonanalytic |α| dependence on the SOI.

Normalizing Equation (3.3.28) to the leading T dependent term for α = 0, i.e., by

δχ
(2)
zz (T, α = 0) = χ0 (mU/4π)2 (T/EF ) , we express δχ

(2)
zz via a scaling function of the

variable T/|α|kF
δχ

(2)
zz (T, α)

δχ
(2)
zz (T, α = 0)

=

(
T

|α|kF

)2

F
( |α| kF

T

)
. (3.3.31)

The left-hand side of Equation (3.3.31) is plotted in Figure 3.7 along with its high and

low T asymptotic forms.

Now we can give a physical interpretation of the above results. Although the electron-

electron interaction mixes Rashba branches, the final result in Equation (3.3.28) comes

only from a special combination of electron states. Namely, three out of four electron

states involved in the scattering process (two for the incoming and two for the outgoing

electrons) must belong to the same Rashba branch, while the last one must belong to

the opposite branch, as shown in Figure 3.8a. This can be seen from Equation (3.3.18)

by considering four terms in the square brackets. The first term, proportional to ∆̄4
kF

,

does not depend on the field upon the cancelation with an overall factor of ∆̄4
kF

in the

denominator; the second term, proportional to α4k4
F , vanishes; the third term is already

proportional to ∆4 and, thus, cannot affect the spin susceptibility for finite α. There-

fore, the effect comes exclusively from the last term, proportional to ∆2, because the

product Bss′Bs,−s′ is equal to 4∆2 (αkF )2 /(α2k2
F + ∆2)2 ≈ 4∆2/(αkF )2 for any choice
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3. Spin susceptibility of interacting 2DEG in the presence of SOI
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Figure 3.7: (The second-order nonanalytic correction to χzz, normalized to its value in
the absence of the SOI, as a function of T/|α|kF , see Equation (3.3.31). The
asymptotic forms, given by Equations (3.3.29) and (3.3.29), are shown by
dashed (red and blue) lines.

of s and s′. This term corresponds to the structure
∑

ss′ Bss′Bs,−s′Πs,−sΠs′s′ in Equa-

tion (3.3.17). The diagrams corresponding to this structure are shown in Figure 3.8a.

Pairing electron Green’s functions from different bubbles, we always obtain a combi-

nation
∑

K g± (K) g± (K +Q) , which depends neither on the SOI nor on the magnetic

field, and a combination
∑

K g± (K) g∓ (K +Q) , which depends on both via the effec-

tive Zeeman energy ∆̄kF =
√
α2k2

F + ∆2. In the weak-field limit, one needs to keep ∆2

only in the prefactor. The singularity in the combination
∑

K g± (K) g∓ (K +Q) is then

regularized by finite SOI, which is the reason why the nonanalytic T dependence is cut

off by the SOI.

Magnetic-field dependence of the transverse component

Now we consider the case of T � max{∆, |α|kF} when, to first approximation, one

can set T = 0. In this case, one can define a non-linear susceptibility χzz (Bz, α) =

−∂2Ξzz/∂B
2
z evaluated at finite rather than zero magnetic field. For T → 0, we re-

place the scaling function F in Equation (3.3.24) by the first term in its large-argument

asymptotic form (3.3.27) to obtain

δΞ(2)
zz = − 2

3π

(
mU

4πvF

)2
2∆4 + α2k2

F∆2√
∆2 + α2k2

F

. (3.3.32)

Differentiating twice with respect to the field, we find

δχ̃(2)
zz (Bz, α) = χ0

(
mU

4π

)2 |∆|
EF
G
( |α|kF

∆

)
, (3.3.33)
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3.3. Second order calculation
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Figure 3.8: Top: Diagrams contributing to nonanalytic behavior of χzz. There are eight
such diagrams with the following choice of Rashba indices: +++−, ++−+,
+ − ++, − + ++, − − −+, − − +−, − + −−, and + − −−; one of the
them is shown on the right. Bottom: Diagrams contributing to nonanalytic
behavior of χxx. There are four such diagrams with the following choice of
Rashba indices: + − +−, + − −+, − + +−, and − + −+; one of them is
shown on the right.

where

G (x) =
2x6 + 23x4 + 30x2 + 12

3 (1 + x2)5/2
(3.3.34)

has the following asymptotics

G (x� 1) = 4 + x4/6 + . . . , (3.3.35)

G (x� 1) = (2/3) |x|+ 6/|x|+ . . . . (3.3.36)

For |∆| � |α| kF , the nonanalytic correction χ̃zz (Bz, α) reduces to the result of

[Maslov06, Maslov09], obtained in the absence of the SOI, plus a correction term

δχ(2)
zz (Bz, α) = 4χ0

(
mU

4π

)2 [ |∆|
EF

+
1

24

α4k4
F

|∆|3EF
+ . . .

]
. (3.3.37)

In the opposite limit of |∆| � |α| kF , the nonanalytic field dependence is cut off by the

SOI

δχ̃(2)
zz (Bz, α) =

2

3
χ0

(
mU

4π

)2 [ |α| kF
EF

+ 9
∆2

|α|kFEF
+ . . .

]
. (3.3.38)
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

3.3.3 In-plane magnetic field

If the magnetic field is along the x-axis, ∆ = µBBex/2, the effective Zeeman energies,

∆̄±kF ≡
√
α2k2

F ± 2αkF sin θk∆ + ∆2, depends on the angle θk between k and the di-

rection of the field, chosen as the x axis. Coming back to Equation (3.3.7), we integrate

first over the fermionic frequencies, then over the magnitudes of the fermionic momenta,

then over the angle between p and q, and finally over the angle between q and k (at

fixed k). This yields

δΞ(2)
xx = −U

2

16
T
∑

Ω

∫
dθk
2π

∫
dqq

2π

∑
{si}

Bs1s3Bs2s4Π
+kF
s1s2

Π−kFs3s4
, (3.3.39)

where

Π±kFss′ ≡ Π±kFss′ (Ω, q; θk) =
∑
K

′
g±kFs (K)g±kFs′ (K +Q)

=
m

2π

|Ω|√[
Ω + i(s′ − s)∆̄±kF

]2
+ v2

F q
2

, (3.3.40)

with g±kFs (K) = 1/(iω − εk − s∆̄±kF ), and
∑′

K indicates that the integration over θk is

excluded. The remaining integration over θk is performed last, after integration over q

and summation over Ω.

As in Section 3.3.2, it is convenient to define a new quantity

P±kFs ≡ P±kFs (Ω, q; θk) =
1√(

Ω− 2is∆̄±kF
)2

+ v2
F q

2

, (3.3.41)

and to re-write the thermodynamic potential as

δΞ(2)
xx = −

(
mU

8π

)2

T
∑

Ω

Ω2

∫
dθk
2π

∫
dqq

2π

∑
ss′

[
Bss′Bs,−s′P0(P+kF

s′ + P−kFs′ )

+B2
ss′(P2

0 + P+kF
s P−kFs′ )

]
. (3.3.42)

Subsequently, we sum over s and s′, add and subtract 4(∆̄2
kF

∆̄2
−kF − 2α2k2

F sin 2θk)P2
0

inside the square brackets, and, after some algebraic manipulations, obtain

δΞ(2)
xx = −2

(
mU

8π

)2

T
∑

Ω

Ω2

∫
dθk
2π

∫
dqq

2π

[
8P2

0 + a0P0

(
P−kF+ + P+kF

+

+ P−kF− + P+kF
− − 4P0

)
+ a+

(
P+kF

+ P−kF− + P−kF+ P+kF
−

− 2P2
0

)
+ a−

(
P−kF− P+kF

− + P−kF+ P+kF
+ − 2P2

0

) ]
, (3.3.43)
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3.3. Second order calculation

where

a0 =
4α2k2

F∆2 cos2 θk
∆̄2

kF
∆̄2
−kF

, (3.3.44)

a± =
α4k4

F + ∆4 − 2α2k2
F∆2 sin2 θk ± ∆̄kF ∆̄−kF (α2k2

F −∆2)

∆̄2
kF

∆̄2
−kF

. (3.3.45)

The first term in the square brackets in Equation (3.3.43) does not depend on the

effective field ∆̄±kF and can be dropped. The remaining integrals over q are equal to∫
dqqP0[P−kF+ + P+kF

+ + P−kF− + P+kF
− − 4P0] =

1

v2
F

ln
Ω2

Ω2 + ∆̄2
kF

+
1

v2
F

ln
Ω2

Ω2 + ∆̄2
−kF

,

(3.3.46)

∫
dqq[P+kF

+ P−kF− + P−kF+ P+kF
− − 2P2

0 ] =
1

v2
F

ln
Ω2

Ω2 + (∆̄kF − ∆̄−kF )2
, (3.3.47)

and ∫
dqq[P−kF− P+kF

− + P−kF+ P+kF
+ − 2P2

0 ] =
1

v2
F

ln
Ω2

Ω2 + (∆̄kF + ∆̄−kF )2
. (3.3.48)

Evaluating the Matsubara sum in the same way as in Section 3.3.2, we obtain

δΞ(2)
xx = −2

(
mU

8πvF

)2

T 3

∫
dθk

(2π)2

{
a0

[
F
(

∆̄kF

T

)
+ F

(
∆̄−kF
T

)]

+ a+F
( |∆̄kF − ∆̄−kF |

T

)
+ a−F

(
∆̄kF + ∆̄−kF

T

)}
, (3.3.49)

where the function F (x) and its asymptotic limits are given by Equations (3.3.25-3.3.27).

The angular integral cannot be performed analytically because the function F(y)

depends in a complicated way on the angle θk through ∆̄±kF . Therefore, we consider

two limiting cases below.

Temperature dependence of the in-plane component

First, we consider the limit of a weak magnetic field: |∆| � max{|α|kF , T}. The main

difference between the cases of in- and transverse orientations of the field is in the term

proportional to a+ in Equation (3.3.49). The argument F in this term vanishes in the

limit of ∆→ 0, whereas the arguments of F in the rest of the terms reduce to a scaling

variable |α|kF/T , as it was also the case for the transverse field. Therefore, the SOI

energy scale, |α|kF , and temperature are interchangeable in the rest of the terms, which

means that a nonanalytic T dependence arising from these terms is cut off by the SOI
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

(and vice versa). However, the a+ term does not depend on α and produces a nonanalytic

T dependence which is not cut off by the SOI. To see this, we expand prefactors a0 and

a± to leading order in ∆ as

a0 = 4
∆2

α2k2
F

cos2 θk +O(∆4), (3.3.50)

a+ = 2− 4
∆2

α2k2
F

cos2 θk +O(∆4), (3.3.51)

a− = 2
∆4

α4k4
F

cos4 θk +O(∆6). (3.3.52)

The last term in Equation (3.3.49), proportional to a−, does not contribute to order ∆2,

and we focus on the first two terms. In the term a0, we replace ∆̄±kF = |α| kF in the

argument of the F function. In the a+ term, we replace |∆̄kF − ∆̄−kF | = 2|∆ sin θk| +
O(∆2), and then expand F (2|∆ sin θk|/T ) = 4∆2 sin2 θk/T

2 using Equation (3.3.26).

Integrating over θk and differentiating the result twice with respect to B, we obtain

δχ(2)
xx (T, α) = χ0

(
mU

4π

)2 [
T 3

α2k2
F

F
( |α| kF

T

)
+

T

EF

]
=

1

2
χ(2)
zz (T, α) +

1

2
χ0

(
mU

4π

)2
T

EF
, (3.3.53)

where χ
(2)
zz (T, α) is the correction to χzz given by Equation (3.3.28). [Notice a remarkable

similarity between Equation (3.3.53) and the relation between χxx and χzz in the non-

interacting case, Equation (B.1.5).] Equation (3.3.53) is one of the main results of this

part. It shows that a nonanalytic T dependence of χxx, given by the stand-alone T/EF
term survives in the presence of the SOI. Explicitly, the T dependence is

δχ(2)
xx = 2χ0

(
mU

4π

)2 [
T

EF
+

α2k2
F

48TEF

]
(3.3.54)

for T � |α|kF and

δχ(2)
xx = 2χ0

(
mU

4π

)2 [ |α|kF
6EF

+
T

2EF
+ 2ζ(3)

T 3

α2k2
FEF

]
(3.3.55)

for T � |α|kF .

As it is also the case for the transverse magnetic field, the first term in the second line

of Equation (3.3.54) is due to particle-hole pairs formed by electrons from three identical

and one different Rashba branches. On the other hand, the linear-in-T term, absent in

δχ
(2)
zz , is comes from processes involving electrons from the different Rashba branches

in each particle-hole bubble, see Figure 3.8b. Indeed, pairing electrons and holes, which
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3.3. Second order calculation

belong to different Rashba branches and move in the same direction, we obtain particle-

hole bubbles P±kF± [cf. Equation (3.3.43)]. The product of two such bubbles, P±kF+ P∓kF− ,

being integrated over q and summed over Ω, depends on the difference of the Zeeman

energies |∆̄kF − ∆̄−kF |. Since sin θk is odd upon k → −k, this difference is finite and

proportional to |∆| for ∆→ 0 but does not depend on α. This is a mechanism by which

one gets an O(∆2) contribution to the thermodynamic potential and, therefore, a T

dependent contribution to χxx, which does not involve the SOI.

Magnetic-field dependence of the in-plane component

Now we analyze the non-linear in-plane susceptibility χxx(Bx, α) = −∂2Ξxx/∂B
2
x at

T = 0. Replacing F in Equation (3.3.49) by its large-argument asymptotics from Equa-

tion (3.3.27), we obtain

δΞ(2)
xx = −2

3

(
mU

8πvF

)2 ∫
dφkx
(2π)2

{
a0

[
∆̄3

kF
+ ∆̄3

−kF
]

+ a+|∆̄kF − ∆̄−kF |3 + a−
[
∆̄kF + ∆̄−kF

]3 }
. (3.3.56)

The angular integral can now be solved explicitly in the limiting cases of |∆| � |α|kF
and |∆| � |α|kF . Since our primary interest is just to see whether a nonanalytic field-

dependence survives in the presence of the SOI, we will consider only the weak-field

case: |∆| � |α|kF . The a− term in Equation (3.3.56) can then be dropped, while the a0

and a+ ones yield

δχ(2)
xx (Bx, α) =

1

3
χ0

(
mU

4π

)2 [ |α| kF
EF

+
16

π

|∆|
EF

]
. (3.3.57)

The first term in Equation (4.1.10) is just half of the first term in δχ
(2)
zz [cf. Equa-

tion (3.3.38)]. However, the second term represents a nonanalytic dependence on the

field which is not cut off by the SOI.

3.3.4 Remaining diagrams

Besides the diagrams considered so far, there are other second order diagrams, which –

in principle – could contribute to the spin susceptibility. These diagrams are depicted

in Figure 3.6b-e. In the absence of the SOI, these diagrams are irrelevant because the

electron-electron interaction conserves spin. This means that the spins of electrons in

each of the bubbles in, e.g, diagram b) are the same and, therefore, the Zeeman energies,

entering the Green’s functions, can be absorbed into the chemical potential. The same

argument also goes for the other two diagrams. In the presence of the SOI, this argument

does not work because spin is not a good quantum number and the interaction mixes

states from all Rashba branches with different Zeeman energies. However, one can show
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

that the net result is the same as without the SOI: diagrams in Figure 3.6b-e do not

contribute to the nonanalytic behavior of the spin susceptibility. This is what we are

going to show in this section.

We begin with diagram b), which is a small momentum-transfer counterpart of dia-

gram in a):

δΞ
(2)
b = −U2

0T
∑
Q

[TrΠ(Q)]2 , (3.3.58)

where

Π(Q) =
1

2

∑
K

G(K)G(K +Q) =
1

2

∑
s,t=±1

ΩsΩt

∑
K

gs (K) gt (K +Q) (3.3.59)

is the full (summed over Rashba branches) polarization bubble, and both the space- and

time-like components of Q ≡ (Ω,q) are small. As it is also the case in the absence of the

SOI, the small-Q bubble does not depend on the magnetic field. Indeed, noticing that

the matrix ζ in Equation (3.2.2a) has the following properties

ζ2 = I and Trζ = 0, (3.3.60)

it is easy to show that

ΩsΩt =
1

4
[(1 + st)I + (s+ t) ζ] . (3.3.61)

Consequently, Ω+Ω+ = Ω−Ω− = I/2 and Ω+Ω− = Ω−Ω+ = 0. Therefore, electrons

from different branches do not contribute to Π(Q), while the Zeeman energies in the

contributions from the same branch can be absorbed into the chemical potential. As

a result, the dynamic part of the bubble depends neither on the field nor on the SOI (as

long as a weak dependence of the Fermi velocity for a given branch on α is neglected):

Π(Q) = I
m

2π

|Ω|√
Ω2 + v2

F q
2
. (3.3.62)

Therefore diagram b) does not contribute to the spin susceptibility. We remind the reader

that, since there are no threshold-like singularities in the static polarization bubble

(see discussion in Section 4.2), the Landau-damping singularity in Equation (3.3.62) is

the only singularity which may have contributed to a nonanalytic behavior of the spin

susceptibility. However, as we have just demonstrated, Landau damping is not effective

in diagrams with small momentum transfers.

Similarly, diagram c) with two crossed interaction lines, one of which carries a small

momentum and the other one carries a momentum near 2kF , is expressed via a small Q

bubble as

δΞ(2)
c = −U0U2kF

∑
Q

Tr
[
Π2(Q)

]
(3.3.63)
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3.3. Second order calculation

K

P L

−K +Q

−P +Q −L +Q
U|k−p| U|l−k|

Figure 3.9: The third-order Cooper-channel diagram for the thermodynamic potential.

and, therefore, does not depend on the magnetic field. Diagram d), with both interaction

lines carrying small momenta, contains a trace of four Green’s functions

δΞ
(2)
d =− U2

0

4

∑
Q,Q′,K

Tr [G (K)G(K +Q)G(K +Q+Q′)G(K +Q′)]

=− U2
0

4

∑
Q,Q′,K

∑
p,r,s,t=±

Tr [ΩpΩrΩsΩt]

× gp (K) gr (K +Q) gs (K +Q+Q′) gt (K +Q′) , (3.3.64)

where Q and Q′ are small, so that dependence of Ωl on either of the bosonic momenta

can be neglected. Using again the properties of the projection operator from Equa-

tion (3.3.60), we find that

Tr [ΩpΩrΩsΩt] =
1

16
Tr
{

[(1 + pr) (1 + st) + (p+ r)(s+ t)] I

+ [(1 + pr) (s+ t) + (1 + st) (p+ r)] ζ
}

=
1

8
[(1 + pr) (1 + st) + (p+ r)(s+ t)] . (3.3.65)

This expression vanishes if at least one of the indices from the set {p, r, s, t} is different

from the others. Therefore, only electrons from the same branch contribute to δΞ
(2)
d , the

Zeeman energy can again be absorbed into the chemical potential, and δΞ
(2)
d does not

depend on the magnetic field.

Finally, the last diagram, δΞ
(2)
e corresponds to the first-order self-energy inserted

twice into the zeroth order thermodynamic potential. Such an insertion only shifts the

chemical potential and, for a q dependent U , gives a regular correction to the electron

effective mass but does not produce any nonanalytic behavior.
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

3.4 Cooper-channel renormalization

3.4.1 General remarks

The second-order nonanalytic contribution to the spin susceptibility comes from

“backscattering” processes in which two fermions moving in almost opposite direc-

tions experience almost complete backscattering. Because the total momentum of two

fermions is small, the backscattering process is a special case of the interaction in

the Cooper (particle-particle) channel. Higher order processes in this channel lead

to logarithmic renormalization of the second-order result [Chubukov05a, Chubukov06,

Maslov06, Maslov09, Chubukov07, Aleiner06, Shekhter06b, Shekhter06a, Schwiete06,

Simon08, Simon07, Chesi09]. For a weak interaction, considered throughout this Chap-

ter, this is the leading higher-order effect. In the absence of the SOI, resummation of all

orders in the Cooper channel leads to the following scaling form of the spin susceptibility

δχ ∝ E

ln2 (E/Λ)
, (3.4.1)

where Λ is the ultraviolet cutoff and E ≡ max{T, |∆|} is small enough so that

mU | ln (E/Λ) | � 1. As we see, both the linear-in-E term, which occurs already at

second order, and its logarithmic renormalization contain the same energy scale. The

reason for this symmetry is very simple: an arbitrary order Cooper diagram for the ther-

modynamic potential contains two bubbles joined by a ladder. The spin susceptibility is

determined only by diagrams with opposite fermion spins in each of the bubbles. There-

fore, all Cooper bubbles in such diagrams are formed by fermions with opposite spins, so

that the logarithmic singularity of the bubble is cut off at the largest of the two energy

scales, i.e, temperature or Zeeman energy. At zero incoming momentum and frequency,

the Cooper bubble is

Π↑↓C =
m

2π
ln

Λ

max {T,∆} , (3.4.2)

hence the symmetry of the result with respect to interchanging T and ∆ follows imme-

diately. It will be shown in this section that this symmetry does not hold in the presence

of the SOI. The reason is that the Rashba branches are not the states with definite

spins, and diagrams with Cooper bubbles formed by electrons from the same branches

also contribute to the spin susceptibility. Although a Cooper bubble formed by electrons

from branches s and s′

Πs,s′

C = T
∑
ω

m

2π

∫
dθp
2π

∫
dεpgs(ω,p)gs′(−ω,−p) =

m

2π
ln

Λ

max
{
T, |s− s′| ∆̄kF

}
(3.4.3)

looks similar to that in the absence of the SOI, Equation (3.4.2), its diagonal element

Πss
C depends only on T even if T � ∆̄kF . Therefore, for ∆ = 0, the Cooper logarithm in
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3.4. Cooper-channel renormalization

Equation (3.4.1) will depend only on T in the limit of T → 0 while the energy E in the

numerator may be given either by T or by |α|kF . 1

3.4.2 Third-order Cooper channel contribution to the

transverse part

Is this section, we obtain the third-order Cooper channel contribution to χzz. This cal-

culation will help to understand the general strategy employed later, in Secs. 3.4.3 and

3.4.3, in resumming Cooper diagrams to all orders.

The third-order Cooper diagram for the thermodynamic potential, depicted in Fig-

ure 3.9, is given by

δΞ(3)
zz =

U3

6

∑
K,P,L,Q

Tr(GKGPGL)Tr(G−K+QG−P+QG−L+Q). (3.4.4)

First, we evaluate the traces Tr(GKGPGL) =
∑

rst Brstgr(K)gs(P )gt(L) with the coeffi-

cients

Brst ≡Tr[Ωr(k)Ωs(p)Ωt(l)] =
1

4∆̄k∆̄p∆̄l

[∆̄k∆̄p∆̄l + irstα2∆(k× p + p× l + l× k)z

+ rs(α2k · p + ∆2)∆̄l + rt(α2k · l + ∆2)∆̄p + st(α2l · p + ∆2)∆̄k]. (3.4.5)

Since q is small and Brst is an even function of the fermionic momenta,

Tr [Ωr′(−k + q)Ωs′(−p + q)Ωt′(−l + q)] ≈ Tr [Ωr′(−k)Ωs′(−p)Ωt′(−l)] = Br′s′t′ ,
(3.4.6)

1In fact, the particle-hole propagator in Equation (3.4.3) has to be evaluated at finite Ω and q, since
only such a diagram is an actual building block of the free energy. In that case one obtains

Πs,s′

C = T
∑
ω

m

2π

∫
dθp
2π

∫
dεpgs(ω,p)gs′(−ω+ Ω,−p+q) =

m

2π
ln

Λ

max
{
T, |s− s′| ∆̄kF

,
√
v2F q

2 + Ω2
}

and even if the SOI drops out for s = s′, the logarithm still depends on T and
√
v2F q

2 + Ω2 ∼ |α|kF .
Since T � |α|kF , we conclude that Πs,s

C depends on the logarithm of Ω, vF q rather than the temperature.

It can be shown that Πs,s
C ∝ ln

√
v2F q

2 + Ω2 does not lead to the logarithmic renormalization of the

second order |α|kF result and, thus, Πs,s
C can be neglected compared to Πs,−s

C ∝ ln(Λ/|α|kF ). Therefore
the renormalization of the second order free energy (and so, the spin susceptibility) is due to the SOI
and not temperature.

For this reason the results of Section 3.4 and Appendix B.3 that rely on the assumption Ω = vF q = 0
are erroneous. In order to correct them one could rederive the RG equations with a proper selection of
the Rashba indices, for example

− d

dL
Us1s2;s3s4(L) =

∑
s

Us1s2;s−s(L)Us−s;s3s4(L)

instead of Equation (3.4.24a). This approach, however, leads to a result that still disagrees with the
linear response calculation beyond second order [Żak]. The reason for the discrepancy remains an open
question and is beyond the scope of this work.
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

and the thermodynamic potential becomes

δΞ(3)
zz =

U3

6

∑
K,P,L,Q

∑
rst

∑
r′s′t′

BrstBr′s′t′gr(K)gr′(−K+Q)gs(P )gs′(−P +Q)gt(l)gt′(−L+Q).

(3.4.7)

Each pair of the Green’s functions with opposite momenta forms a Cooper bubble,

which depends logarithmically on the largest of the two energy scales–temperature or

the effective Zeeman energy, see Equation (3.4.3). The third-order contribution contains

one such logarithmic factor which can be extracted from any of the three Cooper bubbles;

this gives an overall factor of three:

δΞ(3)
zz =

U3

2

∑
K,P,Q

∑
rst

∑
r′s′t′

∫
dθkl
2π
BrstBr′s′t′Πt,t′

C gr(K)gr′(−K +Q)gs(P )gs′(−P +Q),

(3.4.8)

where θkl ≡ ∠(k, l). With this procedure, the third-order diagram reduces effectively to

the second-order one, but with a new set of coefficients. Since we already know that the

nonanalytic part of the second-order diagram comes from processes with k ≈ −p, the

coefficient Brst (and its primed counterpart) simplify significantly because k × p = 0

and p× l = l× k. Integrating over θkl, we obtain

Arstr′s′t′ ≡
∫
dθkl
2π
BrstBr′s′t′ =

1

16∆̄6
kF

{
− 2rstr′s′t′α4k4

F∆2 +
1

2
(rtr′t′ + sts′t′

− rts′t′ − r′t′st)α4k4
F ∆̄2

kF
+ ∆̄2

kF
[∆̄2

kF
+ (rs+ rt+ st)∆2 − rsα2k2

F ]

× [∆̄2
kF

+ (r′s′ + r′t′ + s′t′)∆2 − r′s′α2k2
F ]
}
, (3.4.9)

and

δΞ(3)
zz =

U3

2

∑
rst

∑
r′s′t′

Arstr′s′t′Πt,t′

C

∑
K,P,Q

gr(K)gr′(−K +Q)gs(P )gs′(−P +Q). (3.4.10)

The convolution of two Cooper bubbles in Equation (3.4.10) can be re-written via a con-

volution of two particle-hole bubbles by relabeling Q→ Q+K + P :∑
K,P,Q

gr(K)gr′(−K +Q)gs(P )gs′(−P +Q)

=
∑
Q

∑
K

gr(K)gs′(K +Q)
∑
P

gs(P )gr′ (P +Q)
∑
Q

Πrs′(Q)Πsr′(Q), (3.4.11)

where Πs,s′(Q) is a particle-hole bubble defined in Equation (3.3.6). Summing over the

Rashba indices, integrating over the momentum, and assuming that the Zeeman energy
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3.4. Cooper-channel renormalization
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Figure 3.10: Left: the effective scattering amplitude Γ
(1)
s1s2;s3s4(k,k

′; p,p′) in the chiral
basis. Right: a generic n-th order ladder diagram in the Cooper channel,
Γ

(n)
s1s2;s3s4(k,−k; p,−p).

is the smallest energy in the problem, i.e., that ∆� max{T, |α| kF}, we find

δΞ(3)
zz = − 1

2πv2
F

(
mU

4π

)3
∆2T 3

α2k2
F

{[
12F

( |α|kF
T

)
−F

(
2|α|kF
T

)]
ln
T

Λ

+

[
4F
( |α|kF

T

)
+ F

(
2|α|kF
T

)]
ln

max{T, |α|kF}
Λ

}
(3.4.12)

with F(y) given by Equation (3.3.25).

The asymptotic behavior of χzz for T � |α|kF is computed from Equation (3.4.12)

δχ(3)
zz = 8χ0

(
mU

4π

)3
T

EF
ln
T

Λ
(3.4.13)

and, as to be expected, δχ
(3)
zz scales as T lnT .

In the opposite limit of T � |α|kF ,

δχ(3)
zz =

2

3
χ0

(
mU

4π

)3 |α|kF
EF

(
ln
T

Λ
+ 3 ln

|α|kF
Λ

)
≈ 2

3
χ0

(
mU

4π

)3 |α|kF
EF

ln
T

Λ
, (3.4.14)

since | ln(T/Λ)| � | ln(|α|kF/Λ)|. As it was advertised in Section 3.4.1, the T lnT scaling

at high temperatures is replaced by the |α| lnT scaling at low temperatures which implies

that the energy scales |α|kF and T are not interchangeable.

3.4.3 Resummation of all Cooper channel diagrams

Scattering amplitude in the chiral basis

It is more convenient to resum the Cooper ladder diagrams in the chiral basis, in which

the Green’s functions are diagonal. Introducing Rashba spinors |k, s〉, we re-write the

number-density operator as

ρq =
∑
k

∑
s1,s2

〈k + q, s2|k, s1〉c†k+q,s2
ck,s1 , (3.4.15)
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

so that the Hamiltonian of the four-fermion interaction becomes

Hint =
1

2

∑
q

U|q|ρqρ−q =
1

2

∑
p,p′,k,k′

∑
{si}

Γ(1)
s1s2;s3s4

(k,k′; p,p′)c†p′,s4c
†
p,s3

ck,s1ck′,s2 , (3.4.16)

where the effective scattering amplitude is defined by (cf. Figure 3.10)

Γ(1)
s1s2;s3s4

(k,k′; p,p′) = U|k−p|〈p, s3|k, s1〉〈p′, s4|k′, s2〉. (3.4.17)

In the absence of the magnetic field,

|k,s〉 =
1√
2

( −ise−iθk
1

)
, (3.4.18)

where θk ≡ ∠ (k,x) , and Equation (3.4.17) gives [Gor’kov01]

Γ(1)
s1s2;s3s4

(k,k′; p,p′) =
1

4
U|k−p|

[
1 + s1s3e

i(θp−θk)
] [

1 + s2s4e
i(θp′−θk′ )

]
. (3.4.19)

In order to resum the ladder diagrams for the thermodynamic potential to infinite

order, we consider a skeleton diagram depicted in Figure 3.11, which is obtained from the

second-order diagram –shown in Figure 3.6a– by replacing the bare interaction U(q) with

the dressed scattering amplitudes: Γs1s2;s3s4(k,−k + q; p,−p + q) and its time reversed

counterpart. The dressed amplitudes contain infinite sums of the Cooper ladder diagrams

shown in Figure 3.10. We will be interested in the limit of vanishingly small magnetic

fields and temperatures smaller than the SOI energy scale: ∆ � T � |α|kF . In this

limit, the largest contribution to the ladder diagrams comes from the internal Cooper

bubbles formed by electrons from the same Rashba subbands. Each ”rung” of this ladder

contributes a large Cooper logarithm L ≡ (m/2π) ln (Λ/T ), which depends only on the

temperature, and one has to select the diagrams with a maximum number of L factors.

Renormalization Group for scattering amplitudes

Resummation of Cooper diagrams is performed most conveniently via the Renormal-

ization Group (RG) procedure [Chesi09]. In the Cooper channel, the bare amplitude is

given by Equation (3.4.19) with p′ = −p and k′ = −k or, equivalently, θk′ = θk +π and

θp′ = θp + π:

Γ(1)
s1s2;s3s4

(k,−k; p,−p) = U (1)
s1s2;s3s4

V (1)
s1s2;s3s4

ei(θp−θk) +W (1)
s1s2;s3s4

e2i(θp−θk), (3.4.20)

where the three terms correspond to orbital momenta ` = 0, 1, 2, respectively. The bare

values of partial amplitudes are given by

U (1)
s1s2;s3s4

= U/4, (3.4.21a)

V (1)
s1s2;s3s4

= (U/4)(s1s3 + s2s4), (3.4.21b)

W (1)
s1s2;s3s4

= (U/4)s1s2s3s4. (3.4.21c)
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K, s3

P, s1

−P +Q, s2

−K +Q, s4

Γ|k−p| Γ|k−p|

Figure 3.11: A skeleton diagram for the thermodynamic potential Ξ.

Consider now a ladder diagram consisting of n interaction lines and 2(n−1) internal

fermionic lines, as shown in Figure 3.10. As we have already pointed out, in the limit

T � |α|kF , the dominant logarithmic-in-T contribution originates from those Cooper

bubbles which are formed by electrons from the same Rashba branch. Therefore, the

n-th order Cooper ladder can be written iteratively as

Γ(n)
s1s2;s4s3

(k,−k; p,−p) = −L
∫
θl

∑
s

Γ(n−1)
s1s2;ss(k,−k; l,−l)Γ(1)

ss;s3s4
(l,−l; p,−p) (3.4.22)

where n ≥ 2. Since only “charge-neutral” terms of the type ei(θp−θl)ei(θl−θk) survive upon

averaging over θl, different partial harmonics are renormalized independently of each

other, i.e., we have the following group property:

Γ(n)
s1s2;s3s4

(k,−k; p,−p) = (−L)n−1[U (n)
s1s2;s3s4

+ V (n)
s1s2;s3s4

ei(θp−θk) +W (n)
s1s2;s3s4

e2i(θp−θk)].

(3.4.23)

Differentiating Equation (3.4.22) for n = 2 with respect to L we obtain three decoupled

one-loop RG flow equations

− d

dL
Us1s2;s3s4(L) =

∑
s

Us1s2;ss(L)Uss;s3s4(L), (3.4.24a)

− d

dL
Vs1s2;s3s4(L) =

∑
s

Vs1s2;ss(L)Vss;s3s4(L), (3.4.24b)

− d

dL
Ws1s2;s3s4(L) =

∑
s

Ws1s2;ss(L)Wss;s3s4(L) (3.4.24c)

with initial conditions specified by Us1s2;s3s4(0) = U
(1)
s1s2;s3s4 , Vs1s2;s3s4(0) = V

(1)
s1s2;s3s4 , and

Vs1s2;s3s4(0) = V
(1)
s1s2;s3s4 .
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

Solving this system of RG equations and substituting the results into the backscat-

tering amplitude,

Γs1s2;s3s4(k,−k;−k,k) = Us1s2;s3s4(L)− Vs1s2;s3s4(L) +Ws1s2;s3s4(L) (3.4.25)

which is a special case of the Cooper amplitude for p = −k, we obtain

Γss;±s±s(k,−k;−k,k) =
U

2 + UL
∓ U

2(1 + UL)
, (3.4.26)

Γs−s;∓s±s(k,−k;−k,k) =
U

2 + UL
± U

2
, (3.4.27)

Γσ(±∓;∓∓)(k,−k;−k,k) = 0, (3.4.28)

where σ(s1s2; s3s4) ≡ {(s1s2; s3s4), (s2, s3; s4s1), (s3, s4; s1s2), (s4, s1; s2, s3)} stands for

all cyclic permutations of indices.

We see that the RG flow described by Equations (3.4.24a-3.4.24c) has a non-trivial

solution: whereas the amplitudes in Equations (3.4.26) and (3.4.28) flow to zero in the

limit of L → ∞, the amplitudes in Equation (3.4.27) approach RG-invariant values of

±U/2. This behavior is in a striking contrast to what one finds in the absence of the

SOI, when the repulsive interaction is renormalized to zero in the Cooper channel. Notice

that we consider only the energy scales below the SOI energy, while the conventional

behavior is recovered at energies above the SOI scale.

The scattering amplitudes can be also derived by iterating Equation (3.4.22) di-

rectly. Examining a few first orders, one recognizes the pattern for the n-th order partial

amplitudes to be

Γ
(n)
ss;±s±s(k,−k;−k,k) = Un(−L)n−1 1∓ 2n−1

2n
, (3.4.29)

Γ
(n)
s−s;∓s∓s(k,−k;−k,k) = Un(−L)n

(
1

2n
± 1

2
δn,1

)
, (3.4.30)

Γ
(n)
σ(±∓;∓∓)(k,−k;−k,k) = 0. (3.4.31)

Summing these amplitudes over n, one reproduces the RG result.

Renormalization of the transverse component

The infinite-order result for the thermodynamic potential is obtained by replacing the

bare contact interaction U by its “dressed” counterpart Γ in the second-order skeleton

diagram Figure 3.11

δΞzz = −1

4

∑
Q

∑
{si}

Γs1s4;s3s2(k,−k;−k,k)Γs3s2;s1s4(−k,k; k,−k)Πs1s2Πs3s4 (3.4.32)
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3.4. Cooper-channel renormalization

with Γs3s4;s1s2(−k,k; k,−k) = Γs1s2;s3s4(k,−k;−k,k).

Now, we derive the asymptotic form of δχzz valid in the limit of strong Cooper renor-

malization, i.e., for UL � 1. In this limit, the only non-vanishing scattering amplitude

is given by Equation (3.4.27). Replacing the full Γ by its RG-invariant asymptotic limit

Γs−s;∓s±s(k,−k;−k,k) = ±U/2, we obtain

δΞzz = −U
2

16
T
∑

Ω

∫
qdq

2π

[
(Π2

+− + Π2
−+ − 2Π2

0) + 4Π2
0

]
(3.4.33)

In contrast to the perturbation theory, where the magnetic-field dependence of the ther-

modynamic potential was provided by the vertices while the polarization bubbles sup-

plied the dependence on the temperature and on the SOI, the vertices in the non-

perturbative result (3.4.33) depend neither on the field nor on the SOI. Therefore, the

dependences of Ξ on all three parameters (B, T , and α) must come from the polariza-

tion bubbles. The integral over q along with the sum over the Matsubara frequency Ω

have already been performed in Section 4.2. Note that the last term in square brackets

(proportional to Π2
0) does not depend on the magnetic field and thus can be dropped.

The final result reads

δΞzz = − T 3

8πv2
F

(
mU

2π

)2

F
(

2∆̄kF

T

)
(3.4.34)

so that

δχzz =
χ0

2

(
mU

4π

)2 |α|kF
EF

, (3.4.35)

where use was made of the expansion

∂2

∂∆2
F
(

2∆̄kF

T

)
≈ 2

|α|kFT
F ′
(

2|α|kF
T

)
(3.4.36)

and made use of the asymptotic form (3.3.27) of the function F to find that F ′(x) ≈ x2

for x � 1. Comparing the non-perturbative and second-order results for χzz, given by

Equations (3.4.35) and (3.3.30), respectively, we see that the only effect of Cooper renor-

malization is a change in the numerical coefficient of the nonanalytic part of χzz. This

is a consequence of a non-trivial fixed point in the Cooper channel which corresponds

to finite rather than vanishing Coulomb repulsion.

The temperature dependence of χzz can be also found for an arbitrary value of the

Cooper renormalization parameter UL. Deferring the details to Appendix B.3.1, we

present here only the final result

δχzz = χ0
2|α|kF
EF

(
mU

4π

)2 [(
1

2 + UL
− 1

2

)2

+
1

3

(
1

2(1 + UL)
+

1

2 + UL

)2

+
4

3

(
1

2(1 + UL)
− 2

(2 + UL)2
+

2

2 + UL

)(
1

2 + UL
− 1

2

)]
. (3.4.37)

59



3. Spin susceptibility of interacting 2DEG in the presence of SOI

5 10 15
UL

- ���
1
4

���
1
4

���
1
2

���
3
4

1
∆Χzz�∆Χzz

H2L

Figure 3.12: Nonanalytic part of χzz, normalized by the second-order result (3.3.30),
as a function of the Cooper-channel renormalization parameter UL =
(mU/2π) ln(Λ/T ). The horizontal line marks the low-temperature limit.

In the limit of strong renormalization in the Cooper channel, i.e., for UL� 1, only the

first term survives the logarithmic suppression, and Equation (3.4.37) reduces to Equa-

tion (3.4.35). In the absence of Cooper renormalization, i.e., for L = 0, Equation (3.4.37)

reduces to the second-order result (3.3.30). In between these two limits, δχzz is a non-

monotonic function of UL: as shown in Figure 3.12, δχzz exhibits a (shallow) minimum

at UL ≈ 2.1. In a wide interval of UL (0.9 ≤ UL ≤ 5.6), the sign of δχzz is opposite

(negative) to that in either of the high- and low-temperature limits. It is also seen from

this plot that the low-T asymptotic value (marked by a straight line) is reached only at

very large (& 100) values of UL.

Renormalization of the in-plane component

The second-order result for the in-plane magnetic field is renormalized in a similar way

with two exceptions. First, because the Zeeman energy is anisotropic in this case –

the effective magnetic field ∆̄±kF (θl) ≡
√
α2k2

F ± 2αkF∆ sin θl + ∆2 depends on the

direction of the electron momentum l with respect to the field θl ≡ ∠(l,B)– integration in

the ”rungs” of the Cooper ladder can be performed only over the fermionic frequency and

the magnitude of the electron momenta (or, equivalently, the variable εl). Consequently,

the elementary building block of the ladder

L(θl) = T
∑
ω

m

2π

∫
dεlgt(ω, l)gt′(−ω,−l) =

m

2π
ln

Λ

max
{
T,
∣∣t∆̄kF (θl)− t′∆̄−kF (θl)

∣∣}
(3.4.38)

depends on θl.
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3.5. Summary and discussion

In principle, the dependence of L on the angle θl should be taken into account when

averaging over θl. However, in the limit of ∆ � T � |α|kF , the angle-dependent term

under the logarithm can be approximated as
∣∣t∆̄kF (θl)− t′∆̄−kF (θl)

∣∣ ≈ |t− t′| |α|kF and,

as it was also the case for χzz, L = (m/2π) ln(Λ/T ) provided that t = t′.

Second, the particle-hole bubbles also depend on the direction of the electron mo-

mentum, hence, the infinite-order result for the thermodynamic potential is found again

by replacing the bare interaction U in the second-order diagram by Γs1s2;s3s4(θk) and

retaining the angular dependence of the bubbles.

The RG equations for the in-plane magnetic field are considerably more complicated.

The main difference is that even the RG-invariant terms depend on the magnetic field.

A detailed discussion of Cooper renormalization of the scattering amplitudes and spin

susceptibility for this case is given in Appendices B.3.2 and B.3.2, respectively. Below,

we only show the final result for the renormalized spin susceptibility

δχxx =
χ0

3

(
mU

4π

)2 |α|kF
EF

+O
(

T

lnT

)
. (3.4.39)

The T -independent term is the same as without the Cooper renormalization [cf. (3.3.55)].

The linear-in-T term however is suppressed by at least a factor of 1/ lnT , similar to the

case of no SOI, where it is suppressed by a ln2 T factor.

3.5 Summary and discussion

We have considered a two-dimensional electron liquid in the presence of the Rashba

spin-orbit interaction (SOI). The main result of this Chapter is that the combined effect

of the electro-electron and spin-orbit interactions breaks isotropy of the spin response,

whereas either of these two mechanisms does not. Namely, nonanalytic behavior of the

spin susceptibility, as manifested by its temperature–and magnetic-field dependences,

studied in this Chapter, is different for different components of the susceptibility tensor:

whereas the nonanalytic behavior of χzz is cut off at the energy scale associated with

the SOI (given by |α|kF for the Rashba SOI), that of χxx (and χyy = χxx) continues

through the SOI energy scale. The reason for this difference is the dependence of the

SOI-induced magnetic field on the electron momentum. If the external magnetic field

is perpendicular to the plane of motion, its effect is simply dual to that of the SOI-

field: the T dependence of χzz is cut by whichever of the two fields is larger. If the

external field is in the plane of motion, it is always possible to form a virtual particle-

hole pair, which mediates the long-range interaction between quasiparticles, from the

states belonging to the same Rashba branch. The energy of such a pair depends on the

external but not on the effective field, so that the SOI effectively drops out of the result.

We have also studied a non-perturbative renormalization of the spin susceptibility in
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3. Spin susceptibility of interacting 2DEG in the presence of SOI

the Cooper channel of the electron-electron interaction. It turns out the RG flow of

scattering amplitudes is highly non-trivial. As a result, the spin susceptibility exhibits

a non-monotonic dependence on the Cooper-channel renormalization parameter (lnT )

and eventually saturates as a temperature-independent value, proportional to the SOI

coupling |α|.
Notably, all the results of this Chapter are readily applicable to the systems with

large Dresselhaus SOI and negligible Rashba SOI. In this case the Rashba spin-orbit

coupling should be simply replaced by the Dresselhaus spin-orbit coupling.

Now we would like to discuss possible implications of these results for (in)stability of

a second-order ferromagnetic quantum critical point (QCP). This phenomenon depends

crucially on the sign of the nonanalytic correction. In this regard, we should point out

that we limited our analysis to the simplest possible model, which does not involve the

Kohn-Luttinger superconducting instability and higher-order processes in the particle-

hole channel. Therefore, the sign of our nonanalytic correction is “anomalous”, i.e., the

spin susceptibility increases with the corresponding energy scale. As in the absence of the

SOI, however, either of these two effects (Kohn-Luttinger and particle-hole) can reverse

the sign of nonanalyticity. Therefore, it is instructive to consider consequences of both

signs.

In the absence of the SOI, a nonanalyticity of the anomalous sign renders a second-

order ferromagnetic QCP unstable with respect to either a first-order phase transition

or a transition into a spiral state [Maslov06, Maslov09, Conduit09]. This result was pre-

viously believed to be relevant only to systems with a SU(2) symmetry of electron spins;

in particular it was shown in [Chubukov04b, Rech06] that there is no nonanalyticity in

χ for a model case of the Ising-like exchange interaction between electrons. We have

shown here that broken (by the SOI) SU(2) symmetry is not sufficient for eliminating

a nonanalyticity in the in-plane component of the spin susceptibility (χxx). Based on

our results for the magnetic-field dependence of χzz and χxx [cf. Equations (3.3.38) and

(4.1.10)], we can construct a model form for the free energy as a function of the magne-

tization M . The most interesting case for us is the one in which the Zeeman energy due

to spontaneous magnetization, ∼ M/mµB is larger than the SOI energy scale |α|kF , so

that χxx 6= χzz. Ignoring Cooper-channel renormalization, we can write the free energy

as

F = aM2 − b
(
|Mx|3 + |My|3

)
+M4, (3.5.1)

where M =
(
M2

x +M2
y +M2

z

)1/2
and the coefficient of the quartic term was absorbed

into the overall scale of F , which is irrelevant for our discussion. An important differ-

ence of this free energy, compared to the case of no SOI, is easy-plane anisotropy of

the nonanalytic, cubic term. In the absence of the cubic term (b = 0), a second-order

quantum phase transitions occurs when a = 0; in the paramagnetic phase, a is positive

but small near the QCP. Since χ is isotropic at the mean-field level [cf. Equation (3.2.8)],
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3.5. Summary and discussion

the regular, M2 and M4 terms in Equation (3.5.1) are isotropic as well. If b > 0 (which

corresponds to the anomalous sign of nonanalyticity), the cubic term leads to a mini-

mum of F at finite M ; when the minimum value of F reaches zero, the states with zero

and finite magnetization become degenerate, and a first-order phase transition occurs.

The first-order critical point is specified by the following equations

∂F

∂Mz

= 0,
∂F

∂Mx

= 0,
∂F

∂My

= 0, and F = 0. (3.5.2)

For a > 0, the only root of the first equation is Mz = 0, i.e., there is no net magnetization

in the z direction. Substituting Mz = 0 into the remaining equations and employing in-

plane symmetry (Mx = My), we find that the first-order phase transition occurs at

a = b2/8. The broken-symmetry state is an XY ferromagnet with spontaneous in-plane

magnetization M
{c}
x = M

{c}
y = b/4. The first-order transition to an XY ferromagnet

occurs if the Zeeman energy, corresponding to a jump of the magnetization at the critical

point, is larger than the SOI energy, i.e., M
{c}
x /mµB � |α|kF . In the opposite case, the

SOI is irrelevant, and the first-order transition is to a Heisenberg ferromagnet.

If the nonanalyticity is of the “normal” sign (b < 0), the transition remains second

order and occurs at a = 0. However, the critical indices are different for the in-plane

and transverse magnetization: in the broken-symmetry phase (a < 0), Mx = My ∝ (−a)

while Mz ∝ (−a)1/2. Since |a| � 1, the resulting state is an Ising-like ferromagnet with

Mz �Mx = My.

A detailed study of the |q̃| dependence of χ in the presence of the SOI is a subject

of Chapter 4.
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Chapter 4
Ferromagnetic order of nuclear spins

coupled to conduction electrons:
a combined effect of electron-electron

and spin-orbit interactions

4.1 Introduction

Spontaneous nuclear spin polarization in semiconductor heterostructures at finite but

low temperatures has recently attracted a considerable attention both on the theoreti-

cal [Simon07, Simon08, Chesi09, Żak10a] and experimental [Clark10] sides. Apart from

a fundamental interest in the new type of a ferromagnetic phase transition, the inter-

est is also motivated by an expectation that spontaneous polarization of nuclear spins

should suppress decoherence in single-electron spin qubits caused by the hyperfine inter-

action with the surrounding nuclear spins [Simon07, Simon08], and ultimately facilitate

quantum computing with single-electron spins [Loss98, Żak10b].

Improvements in experimental techniques have lead to extending the longitudi-

nal spin relaxation times in semiconductor quantum dots (QDs) to as long as 1s

[Kroutvar04, Elzerman04, Amasha08]. The decoherence time in single electron GaAs

QDs has been reported to exceed 1µs in experiments using spin-echo techniques at

magnetic fields below 100mT [Petta06, Koppens08], whereas a dephasing time of GaAs

electron-spin qubits coupled to a nuclear bath has lately been measured to be above

200µs [Bluhm04]. Still, even state-of-the-art dynamical nuclear polarization methods

[Burkard99, Khaetskii02, Khaetskii03, Coish04, Bracker05] allow for merely up to 60%

polarization of nuclear spins [Bracker05], whereas polarization of above 99% is required

in order to extend the electron spin decay time only by one order of magnitude[Coish04].

Full magnetization of nuclear spins by virtue of a ferromagnetic nuclear spin phase tran-
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4. Ferromagnetic order of nuclear spins. . .

sition (FNSPT), if achieved in practice, promises a drastic improvement over other

decoherence reduction techniques.

The main mechanism of the interaction between nuclear spins in the presence of con-

duction electrons is the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [Kittel87].

The effective Hamiltonian of the RKKY interaction between on-site nuclear spins of

magnitude I

HRKKY = −1

2

∑
r,r′

J ij(r, r′)I i(r)Ij(r′), (4.1.1)

is parameterized by an effective exchange coupling

J ij(r, r′) =
A2

4n2
s

χij(r, r′), (4.1.2)

where A is the hyperfine coupling constant, ns is the number density of nuclear spins,

and

χij (r, r′) = −
∫ 1/T

0

dτ〈TτSi (r,τ)Sj (r′,0)〉 (4.1.3)

is the (static) correlation function of electron spins. [Hereafter, we will refer to χij (r, r′)–

and to its momentum-space Fourier transform–as to ”spin susceptibility”, although it

is to be understood that this quantity differs from the thermodynamic susceptibility,

defined as a correlation function of electron magnetization, by a factor of µ2
B, where µB is

the Bohr magneton.] It is worth emphasizing that χij (r, r′) contains all the effects of the

electron-electron interaction [Simon07, Simon08]–this circumstance has two important

consequences for the RKKY coupling. First, the electron-electron interaction increases

the uniform spin susceptibility which should lead to an enhancement of the critical

temperature of the FNSPT, at least at the mean-field level. Second, stability of the

nuclear-spin ferromagnetic order is controlled by the long-wavelength behavior of the

magnon dispersion ω(q̃) which, in its turn, is determined by χij(q̃) at q̃ → 0. In a spin-

isotropic and translationally invariant system,

ω(q̃) =
A2

4ns
I[χ(0)− χ(q̃)], (4.1.4)

with χij = δijχ, while the magnetization is given by

M(T ) = µNI

[
ns −

∫
q̃∈BZ

dDq̃

(2π)D
1

eω(q̃)/T − 1

]
, (4.1.5)

where µN is the nuclear-spin magneton (we set kB = ~ = 1 throughout this work).

The second term in Equation (4.1.5) describes a reduction in the magnetization due

to thermally excited magnons. In a free two-dimensional electron gas (2DEG), χ(q̃)

is constant for q̃ ≤ 2kF , and thus the magnon contribution to M(T ) diverges in the
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q̃ → 0 limit, which means that long-range order (LRO) is unstable. However, residual

interactions among the Fermi-liquid quasiparticles lead to a non-analytic behavior of the

spin-susceptibility: for q̃ � kF , χ(q̃) = χ(0)+Cq̃, where both the magnitude and the sign

of C depend on the strength of the electron-electron interaction [Chubukov03, Rech06].

In two opposite limits-at weak-coupling and near the Stoner instability1–the prefactor C

is positive which, according to Equations (4.1.4) and (4.1.5), means that LRO is unstable.

However, C is negative (and thus the integral in Equation (4.1.5) is convergent) near

a Kohn-Luttinger superconducting instability [Shekhter06b, Chesi09]; also, in a generic

Fermi liquid with neither strong nor weak interactions C is likely to be negative due

to higher-order scattering processes in the particle-hole channel [Maslov06, Maslov09,

Shekhter06a].2

The spin-wave–theory argument presented above is supported by the analysis of the

RKKY kernel in real space. A linear-in-q̃ term in χ(q̃) corresponds to a dipole-dipole–

like., 1/r3 term in χ(r) (see Section 4.3). If C > 0, the dipole-dipole interaction is

repulsive, and the ferromagnetic ground state is unstable; vice versa, if C < 0, the

dipole-dipole attraction stabilizes the ferromagnetic state.

It is worth noting here that even finiteness of the magnon contribution to the magneti-

zation does not guarantee the existence of LRO. Although the Mermin-Wagner theorem

[Mermin66] in its original formulation is valid only for sufficiently short-range forces

and thus not applicable to the RKKY interaction, it has recently been proven [Loss11]

that magnetic LRO is impossible even for the RKKY interaction in D ≤ 2. From the

practical point of view, however, the absence of LRO in 2D is not really detrimental

for suppression of nuclear-spin induced decoherence. Indeed, nuclear spins need to be

ordered within the size of the electron qubit (a double QD system formed by gating

a 2DEG) as well as its immediate surrounding such that there is no flow of magnetiza-

tion. Since fluctuations grow only as a logarithm of the system size in 2D, it is always

possible to achieve a quasi-LRO at low enough temperatures and on a scale smaller

that the thermal correlation length. In addition, spin-orbit interaction (SOI)–which is

the main subject of this thesis, see below–makes a long-range order possible even in 2D

[Loss11].

The electron spin susceptibility in Equation (4.1.4) was assumed to be at zero tem-

perature. First, since the nuclear spin temperature is finite, the system as a whole is

not in equilibrium. However, a time scale associated with ’equilibration’ is sufficiently

1In a quantum-critical region near the Stoner instability, the q̃ term in the spin susceptibility
transforms into a q̃3/2 one, cf. [Rech06].

2Strictly speaking, the non-analytic behavior of χ in the generic FL regime was analyzed as a
function of the temperature [Maslov06, Maslov09, Shekhter06a] and of the magnetic field [Maslov06,
Maslov09] rather than as a function of q̃. However, in all cases studied so far the non-analytic dependence
of χ(q̃, H, T ) has always been found to be symmetric in all variables, i.e., χ(q̃, H, T ) = χ(0, 0, 0) +
max{Cq̃ q̃, CHH,CTT}, with Cq̃,H,T being of the same sign. It is likely that the same also holds true in
the generic FL regime.
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long to assume that there is no energy transfer from the nuclear- to electron-spin sys-

tem. Second, if the electron temperature is finite, the linear q̃ scaling of χ(q̃) is cut off

at the momentum of order T/vF ≡ 1/LT . For q̃ � 1/LT , χ(T, q̃) ∝ T + O (v2
F q̃

2/T )

such that ω(q̃) ∝ q̃2 and, according to Equation (4.1.5), spin waves would destroy LRO.

However, at low enough temperatures the thermal length LT is much larger than a typ-

ical size of the electron qubit LQ. (For example, LT ∼ 1mm at T ∼ 1mK.) Therefore,

q̃ & 1/LQ � 1/LT = T/vF and, indeed, the electron temperature can be assumed to be

zero.

In practically all nuclear-spin systems of current interest, such as GaAs or carbon-13

nanotubes, spin-orbit interaction (SOI) plays a vital role. The main focus of this thesis is

the combined effect of the electron-electron and SO interactions on the spin susceptibility

of 2DEG and, in particular, on its q̃ dependence, and thus on the existence/stability of

the nuclear-spin ferromagnetic order.

The interplay between the electron-electron and SOIs is of crucial importance here.

Although the SOI breaks spin-rotational invariance and thus may be expected to result in

an anisotropic spin response, this does not happen for the Rashba and Dresselhaus SOIs

alone: the spin susceptibility of free electrons is isotropic [up to exp(−EF/T ) terms] as

long as both spin-orbit–split subbands remain occupied [Żak10a]. The electron-electron

interaction breaks isotropy, which can be proven within a Fermi-liquid formalism gener-

alized for systems with SOI [Ashrafi]. Specific models adhere to this general statement.

In particular, χzz > χxx = χyy for a dense electron gas with the Coulomb interaction

[Chesi07].

In this thesis, we analyze the q̃ dependence of the spin susceptibility in the presence

of the SOI. The natural momentum-space scale introduced by a (weak) Rashba SOI with

coupling constant α (|α| � vF ) is the difference of the Fermi momenta in two Rashba

subbands:

qα ≡ 2m∗|α|, (4.1.6)

where m∗ is the band mass of 2DEG. Accordingly, the dependence of χij on q̃ is different

for q̃ above and below qα; in the latter case, it is also different for the out-of-plane and in-

plane components. To second order in electron-electron interaction with potential U(q),

the out-of-plane component is independent of q̃ for q̃ ≤ qα:

δχzz(q̃, α) = 2χ0u
2
2kF

|α|kF
3EF

. (4.1.7a)

On the other hand, the in-plane component scales linearly with q̃ even for q̃ ≤ qα:

δχxx(q̃, α) = δχyy(q̃, α)

= χ0u
2
2kF

[ |α|kF
3EF

+
4

9π

vF q̃

EF

]
, (4.1.7b)

In Equations (4.1.7a,4.1.7b), uq ≡ m∗U(q)/4π, kF is the Fermi momentum, EF =

k2
F/2m

∗ is the Fermi energy, χ0 = m∗/π is the spin susceptibility of a free 2DEG,
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and δχij denotes a nonanalytic part of χij. For qα � q̃ � kF , the spin susceptibility

goes back to the result of [Chubukov03] valid in the absence of the SOI:

δχij(q̃, α = 0) = δij
2

3π
χ0u

2
2kF

vF q̃

EF
. (4.1.8)

Note that the subleading term in q̃ in Eq. (4.1.7b) differs by a factor of 2/3 from the

leading term in q̃ in Eq. (4.1.8). There is no contradiction, however, because Eqs. (4.1.8)

and (4.1.7b) correspond to the regions of q ≤ qα and q � qα, correspondingly.

Equations (4.1.7a) and (4.1.7b) show that the uniform spin susceptibility is

anisotropic: δχzz(0, α) = 2δχxx(0, α). This implies that the RKKY coupling is stronger

if nuclear spins are aligned along the normal to the 2DEG plane, and thus the

nuclear-spin order is of the Ising type. In general, a 2D Heisenberg system with

anisotropic exchange interaction is expected to have a finite-temperature phase tran-

sition [Caride83a, Caride83b, Kaufman84]. In an anisotropic case, the dispersion of the

out-of-plane spin-wave mode [Ashcroft76, Simon08] is given by

ω(q̃) =
A2

4ns
I[χzz(0)− χxx(q̃)], (4.1.9)

with q̃ ⊥ ẑ. Ising-like anisotropy implies a finite gap in the magnon spectrum. In our

case, however, the situation is complicated by the positive slope of the linear q̃ de-

pendence of the second-order result for χxx(q), which–according to Equation (4.1.9)–

translates into ω(q̃) decreasing with q̃. Combining the asymptotic forms of χij from

Equations (4.1.7a,4.1.7b), and (4.1.8) together, as shown in Figure 4.1, we see that ω(q̃)

is necessarily negative in the interval qα � q̃ � kF , and thus LRO is unstable. There-

fore, anisotropy alone is not sufficient to ensure the stability of LRO: in order to reverse

the sign of the q̃ dependence, one also needs to invoke other mechanisms, arising from

higher orders in the electron-electron interaction. We show that at least one of these

mechanisms–renormalization in the Cooper channel–is still operational even for q̃ � qα
and capable of reversing the sign of the q̃-dependence is the system is close to (but not

necessarily in the immediate vicinity of) the Kohn-Luttinger instability.

We note that the dependences of δχij on q̃ in the presence of the SOI is similar to

the dependences on the temperature and magnetic field, [Żak10a] presented below for
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Figure 4.1: (color online): A normalized dispersion of the out-of-plane spin-wave mode
ω̃(q̃) = ω(q̃)/[A2Iχ0/4ns] as a function of the momentum. To second order in
interaction (lower curve) ω(q̃) is necessarily negative for m|α| � q̃ � kF , and
thus LRO is unstable. Solid parts of the curves corresponds to actual calcu-
lations; dashed parts are interpolations between various asymptotic regimes.
Renormalization effects in the Cooper channel reverse the slope of ω(q̃) (up-
per curve) and stabilize LRO.

completeness:

δχzz(T, α) = 2χ0u
2
2kF

[ |α|kF
3EF

+O
(
T 3
)]

δχzz (Bz, α) = 2χ0u
2
2kF

[ |α| kF
3EF

+O
(
∆2
z

)]
δχxx(T, α) = χ0u

2
2kF

[ |α|kF
3EF

+
T

EF
+O

(
T 3
)]

δχxx (Bx, α) = χ0u
2
2kF

[ |α| kF
3EF

+
16

3π

|∆x|
EF

]
(4.1.10)

Here, ∆i = gµBBi/2 and T,∆i � |α|kF . As Equations (4.1.7a,4.1.7b) and (4.1.10)

demonstrate, while nonanalytic scaling of δχzz with all three variables (q̃, T , B) is cut

off by the scale introduced by SOI, scaling of δχzz continues below the SOI scale. This

difference was shown in [Żak10a] to arise from the differences in the dependence of the

energies of particle-hole pairs with zero total momentum on the magnetic field: while

the energy of such a pair depends on the SO energy for B||ẑ, this energy drops out for

B ⊥ ẑ.

In addition to modifying the behavior of χij for q̃ ≤ qα, SOI leads to a new

type of the Kohn anomaly arising due to interband transitions: a nonanalyticity of

χij(q̃, α) at q̃ = qα. The nonanalyticity is stronger in χzz than in χxx: δχzz(q̃ ≈ qα) ∝
(q̃ − qα)3/2 Θ(q̃ − qα) while δχxx(q̃ ≈ qα) ∝ (q̃ − qα)5/2 Θ(q̃ − qα), where Θ(x) is the

step-function. Consequently, the real-space RKKY interaction exhibits long-wavelength

oscillations χzz(r) ∝ cos(qαr)/r
3 and χxx(r) ∝ sin(qαr)/r

4, in addition to conventional
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4.2. Spin susceptibility of interacting electron gas

Friedel oscillations behaving as sin(2kF r)/r
2. It is worth noting that the long-wavelength

Friedel oscillations occur only in the presence of both electron-electron and SO interac-

tions.

This Chapter is organized as follows. In Section 4.2 we derive perturbatively the elec-

tron spin susceptibility of interacting 2DEG with the SOI as a function of momentum;

in particular, Sections 4.2.1–4.2.4 outline the derivation of all relevant second-order dia-

grams, Section 4.2.5 is devoted to Cooper renormalization of the second order result, and

in Section 4.2.6 we show that, in contrast to the spin susceptibility, the charge suscepti-

bility is analytic at small q̃ (as it is also the case in the absence of SOI) . In Section 4.3,

we derive the real-space form the of the RKKY interaction and show that it exhibits

long-wavelength oscillations with period given by the SO length 2π/qα. Details of the

calculations are delegated to Appendices C.1-C.4. In particular, the free energy in the

presence of the SOI is derived beyond the Random Phase Approximation in Appendix

C.4. The summary and discussion of the main results are provided in Section 4.4.

4.2 Spin susceptibility of interacting electron gas

Dynamics of a free electron in a two-dimensional electron gas (2DEG) in the presence

of the Rashba spin-orbit interaction (SOI) with a coupling strength α is described by

the following Hamiltonian

H =
p2

2m∗
+ α(pxσ

y − pyσx), (4.2.1)

where p = (px, py) is the electron momentum of an electron, and σ is a vector of

Pauli matrices. The interaction between electrons will be treated perturbatively. For

this purpose, we introduce a Green’s function

G(P ) =
1

iωp −H − EF
=
∑
s

Ωs(p)gs(P ) (4.2.2)

with

Ωs(p) =
1

2

[
1 +

s

p
(pyσ

x − pxσy)
]

(4.2.3)

and

gs(P ) =
1

iωp − εp − sαp
, (4.2.4)

where P ≡ (ωp,p) with ωp being a fermionic Matsubara frequency, εp = p2/2m∗ − EF ,

and s = ±1 is a Rashba index.

The nonanalytic part of a spin susceptibility tensor to second order in electron-

electron interaction is given by seven linear response diagrams depicted in Figs. 4.2-4.7.

Due to symmetry of the Rashba SOI, χij(q̃) = χii(q̃)δij and χxx = χyy 6= χzz.
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4. Ferromagnetic order of nuclear spins. . .

In the following subsections, we calculate all diagrams that contribute to non-

analytic behavior of the out-of-plane, χzz, and in-plane, χxx = χyy, components of

the spin susceptibility tensor for small external moment (q̃ � kF ) and at T = 0. In

the absence of SOI, the non-analytic contributions to the spin susceptibility from in-

dividual diagrams are determined by “backscattering” or “Cooper-channel” processes

[Chubukov03, Maslov06, Maslov09], in which two fermions with initial momenta k and p

move in almost opposite directions, such that k ≈ −p. Backscattering processes are fur-

ther subdivided into those with small momentum transfer, such that (k,−k)→ (k,−k),

and those with momentum transfers near 2kF , such that (k,−k)→ (−k,k). In the net

result, all q = 0 contributions cancel out and only 2kF contributions survive. We will

show that this also the case in the presence of the SOI. In what follows, all ”q = 0

diagrams” are to be understood as the q = 0 channel of the backscattering process.

4.2.1 Diagram 1

General formulation

The first diagram is a self-energy insertion into the free-electron spin susceptibility, see

Figure 4.2. There are two contributions to the nonanalytic behavior: (i) from the region

of small momentum transfers, i.e., q � kF ,

χij1,q=0 (q̃) =2U2(0)

∫
Q

∫
K

∫
P

Tr[G(P )G(P +Q)]

× Tr[G(K + Q̃)σiG(K)G(K +Q)G(K)σj] (4.2.5a)

and (ii) from the region of momentum transfers close to 2kF , i.e., |k − p| ≈ 2kF and

q � kF ,

χij1,q=2kF
(q̃) =2U2(2kF )

∫
Q

∫
K

∫
P

Tr[G(K +Q)G(P +Q)]

× Tr[G(K + Q̃)σiG(K)G(P )G(K)σj]. (4.2.5b)

Here, K ≡ (ωk,k) and
∫
K
≡ (2π)−3

∫
dωkd

2k (and the same for other momenta). The

time component of Q̃ = (Ω̃, q̃) is equal to zero throughout this thesis. Since the cal-

culation is performed at T = 0, there is no difference between the fermionic and

bosonic Matsubara frequencies. A factor of 2 appears because the self-energy can be

inserted either into the upper or the lower arm of the free-electron susceptibility. As

subsequent analysis will show, a typical value of the momentum transfer q is on the

order of either the external momentum q̃ or the ”Rashba momentum” qα [cf. Equa-

tion (4.1.6)], whichever is larger. In both cases, q � kF while the momenta of both

fermions are near kF , thus we neglect q in the angular dependencies of the Rashba ver-

tices: Ωs(k + q) ≈ Ωs(k+q̃) ≈ Ωs(k) = [1+s(sin θkq̃σ
x−cos θkq̃σ

y)]/2 with θab ≡ ∠(a,b).
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4.2. Spin susceptibility of interacting electron gas

[The origin of the x̂-axis is arbitrary and can be chosen along q̃.] Also, we impose the

backscattering correlation between the fermionic momenta: k = −p in the 2kF -part of

the diagram. With these simplifications, we obtain

χij1,q=0 (q̃) = 2U2(0)

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
aijlmnrbstIlmnr(Ω, θkq̃, q, q̃)Πst(Ω, q), (4.2.6a)

χij1,q=2kF
(q̃) = 2U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
ãijlmsrb̃ntIlmnr(Ω, θkq̃, q, q̃)Πst(Ω, q),

(4.2.6b)

where summation over the Rashba indices is implied,

aijlmnr ≡ Tr[Ωl(k)σiΩm(k)Ωn(k)Ωr(k)σj], (4.2.7a)

bst ≡ Tr[Ωs(p)Ωt(p)] = (1 + st)/2, (4.2.7b)

ãijlmsr ≡ Tr[Ωl(k)σiΩm(k)Ωs(−k)Ωr(k)σj], (4.2.7c)

b̃nt ≡ Tr[Ωn(−p)Ωt(p)] = (1− nt)/2 (4.2.7d)

Ilmnr(Ω, θkq̃, q, q̃) ≡
∫
dθkq
2π

∫
dωk
2π

∫
dεk
2π

× gl(ωk,k + q̃)gm(ωk,k)gn(ωk + Ω,k + q)gr(ωk,k) (4.2.7e)

and, finally, the partial components of the particle-hole bubble are given by

Πst(Ω, q) ≡
∫
dθpq
2π

∫
dωp
2π

∫
dεp
2π

gs(ωp,p)gt(ωp + Ω,p + q)

=
m

2π

1√
v2
F q

2 + (Ω + i(t− s)αkF )2
. (4.2.7f)

For the derivation of the particle-hole bubble, see 3.3.2. Calculation of other common

integrals is presented in Appendix C.1.

The main difference between the out-of-plane and in-plane components is in the

structure of the “quaternion”, defined by Equation (4.2.7e) and calculated explicitly in

Appendix C.1 [cf. Equation (C.1.3)]. The dependence of Ilmnr on the external momentum

q̃ enters only in a combination with the SOI coupling as vF q̃ cos θkq̃ + (s− s′)αkF , where

s, s′ ∈ {l,m, n, r}. Combinations of indices l,m, n, r are determined by the spin vertices

σi,j and are, therefore, different for the out-of-plane and in-plane components. The out-

of-plane component contains only such combinations {l,m, n, r} for which the coefficient

s−s′ is finite. Therefore, the SOI energy scale is always present and, for q̃ � qα, one can

expand in q̃/qα. The leading term in this expansion is proportional to |α| but any finite-

order correction in q̃/qα vanishes. In fact, one can calculate the entire dependence of χzz1
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K,m K, r

P +Q, t

P, s

K +Q, n

K + Q̃, l

σi σj

U(|q|) U(|q|)

1a)

K,m K, r

P +Q, t

K +Q, n

P, s

K + Q̃, l

σi σj

U(|k− p|) U(|k− p|)

1b)

Figure 4.2: Diagram 1. Left: small-momentum transfer part. Right: 2kF -momentum
transfer part. K, s denotes a fermion from Rashba subband s = ±1 with
“four-momentum” K = (ωk,k).

on q̃ (what is done in Appendix C.2) and show that χzz1 is indeed independent of q̃ for

q̃ ≤ qα (and similar for the remaining diagrams). On the other hand, some quaternions,

entering the in-plane component, have s = s′ and thus do not contain the SOI, which

means that one cannot expand in q̃/qα anymore. These quaternions provide linear-in-q̃

dependence of χxx1 even for q̃ ≤ qα, where the slope of this dependence is 2/3 of that in

the absence of the SOI. This is the origin of the difference in the q̃ dependencies of χzz

and χxx, as presented by Equations (4.1.7a) and (4.1.7b).

The evaluation of the out-of-plane and in-plane part of diagram 1 is a subject of the

next two subsections.

Diagram 1: out-of-plane component

We begin with the out-of-plane component of the spin susceptibility, in which case

azzlmnr = [1 +mr + n(m+ r)− l(m+ n+ r +mnr)]/8 and ãzzlmsr = [1 +mr− s(m+ r) +

l(s−m− r +mrs)]/8. Summation over the Rashba indices yields

χzz1,q=0 = 4U2(0)

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
(I+−−− + I−+++)Π0, (4.2.8a)

and

χzz1,q=2kF
= 2U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
[(I+−−− + I−+++)Π0

+I+−+−Π+− + I−+−+Π−+], (4.2.8b)

where Π0 = Π++ = Π−−.
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4.2. Spin susceptibility of interacting electron gas

As we explained in Section 4.2.1, the quaternions in Equations (4.2.8a) and (4.2.8b)

contain q̃ only in combination with qα. Therefore, for q � qα, the leading term is obtained

by simply setting q̃ = 0, upon which the remaining integrals can be readily calculated.

The results are given by Equations (C.1.7) and (C.1.8), so that

χzz1,q=0 = u2
0χ0
|α|kF
3EF

(4.2.9a)

and

χzz1,q=2kF
= u2

2kF
χ0
|α|kF
3EF

. (4.2.9b)

In fact, it is shown in Appendix C.2 that Equations (4.2.9a) and (4.2.9b) hold for any

q ≤ qα rather than only for q̃ = 0.

Diagram 1: in-plane component

The in-plane component of the spin susceptibility differs substantially from its out-of-

plane counterpart due the angular dependence of the traces aijlmnr and ãijlmsr which, for

the in-plane case, read as

axxlmnr = 1
8

[1 +mr + n(m+ r)− l(m+ n+ r +mnr) cos 2θk]

ãxxlmsr = 1
8

[1 +mr − s(m+ r) + l(s−m− r +mrs) cos 2θk] .

(For the sake of convenience, we choose the x axis to be perpendicular to q̃ when

calculating all diagrams for χxx.) Summing over the Rashba indices, one arrives at

χxx1,q=0 =4U2(0)

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

× [sin2 θkq̃(I+−−− + I−+++)Π0

+ cos2 θkq̃(I++++ + I−−−−)Π0] (4.2.10a)

and

χxx1,q=2kF
=2U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

× [sin2 θkq̃(I+−−− + I−+++)Π0

+ cos2 θkq̃(I++++ + I−−−−)Π0

+ sin2 θkq̃(I+−+−Π+− + I−+−+Π−+)

+ cos2 θkq̃(I++−+Π−+ + I−−+−Π+−)]. (4.2.10b)
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K +Q, n K, r

P +Q, tP, s

K +Q+ Q̃,m K + Q̃, l

σi σj

U(|q|)

U(|q|)

2a)

P, s K,m

P +Q, tK +Q, n

P + Q̃, r K + Q̃, l

σi σj

U(|k− p|)

U(|k− p|)
2b)

Figure 4.3: Diagram 2. Left: small-momentum transfer part. Right: 2kF -momentum
transfer part.

Details of the calculation are given in Appendix. C.1.2; here we present only the results

in the interval q̃ ≤ qα:

χxx1,q=0 =
1

2
χzz1,q=0 + u2

0χ0
2

9π

vF q̃

EF

= u2
0χ0

( |α|kF
6EF

+
2

9π

vF q̃

EF

)
(4.2.11a)

χxx1,q=2kF
=

1

2
χzz1,q=2kF

+ u2
2kF

χ0
2

9π

vF q̃

EF

= u2
2kF

χ0

( |α|kF
6EF

+
2

9π

vF q̃

EF

)
. (4.2.11b)

Notice that the linear-in-q̃ dependence survives in the in-plane component of the spin

susceptibility even for q̃ ≤ qα. Similar behavior was found in [Żak10a] for the temperature

dependence of the uniform spin susceptibility in the presence of the SOI.

4.2.2 Diagram 2

Diagram 2, shown in Figure 4.3, is a vertex correction to the spin susceptibility. As in the

previous case, there are two regions of momentum transfers relevant for the non-analytic

behavior of the spin susceptibility: the q = 0 region, where

χij2,q=0 =U2(0)

∫
Q

∫
K

∫
P

Tr[G(P )G(P +Q)]

× Tr[G(K + Q̃)G(K +Q+ Q̃)σiG(K +Q)G(K)σj], (4.2.12a)

and the 2kF -region, where

χij2,q=2kF
=U2(2kF )

∫
Q

∫
K

∫
P

Tr[G(K +Q)G(P +Q)]

× Tr[G(K + Q̃)G(P + Q̃)σiG(P )G(K)σj]. (4.2.12b)

Explicitly,

χij2,q=0 =U2(0)

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
cijlmnrbst

× Jlmnr(Ω, θkq̃, q, q̃)Πst(Ω, q), (4.2.13a)
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4.2. Spin susceptibility of interacting electron gas

χij2,q=2kF
=U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
c̃ijlrsmb̃nt

× Ilmn(Ω, θkq̃, q, q̃)Irst(Ω, θkq̃, q,−q̃), (4.2.13b)

where

cijlmnr ≡ Tr[Ωl(k)Ωm(k)σiΩn(k)Ωr(k)σj], (4.2.14a)

c̃ijlrsm ≡ Tr[Ωl(k)Ωr(−k)σiΩs(−k)Ωm(k)σj], (4.2.14b)

Jlmnr(Ω, θkq̃, q, q̃) ≡
∫
dθkq
2π

∫
dωp
2π

∫
dεk
2π

× gl(ωk + Ω,k + q)gm(ωk + Ω,k + q + q̃)

× gn(ωk + Ω,k + q)gr(ωk,k), (4.2.14c)

Ilmn(Ω, θkq̃, q, q̃) ≡
∫
dθkq
2π

∫
dωp
2π

∫
dεk
2π

× gl(ωk,k + q̃)gm(ωk,k)gn(ωk + Ω,k + q), (4.2.14d)

As before, summation over the Rashba is implied. Integrals (4.2.14c) and (4.2.14d) are

derived in Appendix C.1.

Traces entering the q = 0 part of the out-of-plane and in-plane components are

evaluated as

czzlmnr =
1 + nr −m(n+ r) + l(m− n− r +mnr)

8
,

cxxlmnr =
(1 + lm)(1 + nr) + (l +m)(n+ r) cos 2θkq̃

8
.

(4.2.15)

Summing over the Rashba indices and using the symmetry properties of Ilmnr and Jlmnr,

it can be shown that the q = 0 parts of diagrams 1 and 2 cancel each other

χij2,q=0 = −χij1,q=0, (4.2.16)

which is also the case in the absence of the SOI [Chubukov03]. Therefore, we only need

to calculate the 2kF -part of diagram 2.

Diagram 2: out-of-plane component

Summation over the Rashba indices with the coefficient c̃zzlrsm = [1 + mr − s(m + r) +

l(s− r −m+mrs)]/8 for the out-of-plane part gives

χzz2,q=2kF
= U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

× [I+−+(Ω, θkq̃, q, q̃)I−+−(Ω, θkq̃, q,−q̃)
+ I+−−(Ω, θkq̃, q, q̃)I−++(Ω, θkq̃, q,−q̃) + (q̃ → −q̃)], (4.2.17)
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4. Ferromagnetic order of nuclear spins. . .

where (q̃ → −q̃) stands for the preceding terms with an opposite sign of momentum.

Integrating over q and Ω at q̃ = 0, yields [cf. Equation (C.1.9)],

χzz2,q=2kF
= u2

2kF
χ0
|α|kF
3EF

. (4.2.18)

Again, an exact calculation at finite q̃ proves that this results holds for any q̃ ≤ qα.

Diagram 2: in-plane component

The in-plane component comes with a Rashba coefficient c̃zzlmsr = [(1 − lr)(1 −ms)(l −
r)(m− s) cos 2θkq̃]/8, such that

χxx2,q=2kF
= U2(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

× {sin2 θkq̃[I+−+(Ω, θkq̃, q, q̃)I−+−(Ω, θkq̃, q,−q̃)
+ I+−−(Ω, θkq̃, q, q̃)I−++(Ω, θkq̃, q,−q̃)]
+ cos2 θkq̃[I+++(Ω, θkq̃, q, q̃)I−−−(Ω, θkq̃, q,−q̃)
+ I++−(Ω, θkq̃, q, q̃)I−−+(Ω, θkq̃, q,−q̃)]
+ (q̃ → −q̃)}. (4.2.19)

The first part, proportional to sin2 θkq̃, contains the SOI coupling α. In this part, q̃ can

be set to zero, and the resulting linear-in-|α| part equals half of that for the out-of-plane

component due to the integral over sin2 θkq̃. On the other hand, in the term proportional

to cos2 θkq̃, the dependence on |α| drops out upon integration over q, and the final result

for q̃ ≤ qα reads as [cf. see Equation (C.1.12)]

χxx2,q=2kF
=

1

2
χzz2,q=2kF

+ u2
2kF

χ0
2

9π

vF q̃

EF

= u2
2kF

χ0

( |α|kF
6EF

+
2

9π

vF q̃

EF

)
. (4.2.20)

4.2.3 Diagrams 3 and 4

We now turn to ”Aslamazov-Larkin” diagrams, Figure 4.4, which represent interaction

via fluctuational particle-hole pairs. Without SOI, these diagrams are identically equal

to zero because the spin vertices are averaged independently and thus vanish. With

SOI, this argument does not hold because the Green’s functions now also contain Pauli

matrices and, in general, diagrams 3 and 4 do not vanish identically. Nevertheless, we

show here the non-analytic parts of diagrams 2 and 3 are still equal to zero.
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P, s K,m

K + Q̃, lP + Q̃, r

P +Q, t K +Q, nσi σj

U(|q|)

U(|q|)
3)

P − Q̃, r K,m

K + Q̃, lP, s

P −Q, t K +Q, nσi σj

U(|q|)

U(|q|)

4)

Figure 4.4: Left: diagram 3. Right: diagram 4. The momentum transfer q in both dia-
grams can be either small or close to 2kF .

Diagrams 3 and 4 correspond to the following analytical expressions:

χij3 =

∫
Q

∫
K

∫
P

U2(|q|)Tr[G(P − Q̃)G(P −Q)G(P )σi]

×Tr[G(K + Q̃)G(K +Q)G(K)σj], (4.2.21a)

χij3 =

∫
Q

∫
K

∫
P

U2(|q|)Tr[G(P )G(P +Q)G(P + Q̃)σi]

×Tr[G(K + Q̃)G(K +Q)G(K)σj]. (4.2.21b)

Note that the second trace is the same in both diagrams. In what follows, we prove that

χij3 = χij4 = 0 (4.2.22)

for both small and large momentum transfer q.

Diagrams 3 and 4: out-of-plane components

The out-of-plane case is straightforward. Evaluating the second traces in Equa-

tions (4.2.21a) and (4.2.21b), one finds that they vanish:

dzlnm ≡ Tr[Ωl(k)Ωn(k)Ωm(k)σz] = 0, (4.2.23)

for the q = 0 case, and

d̃zlnm ≡ Tr[Ωl(k)Ωn(−k)Ωm(k)σz] = 0, (4.2.24)

for the q = 2kF case. Therefore, χzz3 = χzz4 = 0.

Diagrams 3 and 4: in-plane components

For the in-plane part of the spin susceptibility, the proof is more complicated as the

traces do not vanish on their own. To calculate the q = 0 part, we need the following

two objects

dxlnm ≡ Tr[Ωl(k)Ωn(k)Ωm(k)σx]

= cos θkq̃(l +m+ n+ lmn)/4 (4.2.25)
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K,m K, rP, sK +Q, n
P +Q, t

K + Q̃, l

σi σj

U(|q|) U(|k− p|)

5)

Figure 4.5: Diagram 5. The momentum transfer q is close to zero and |k− p| = 2kF .

and

I ′lmn(Ω, θkq̃, q, q̃) ≡
m∗

2π

∫
dωk

∫
dεkgl(ωk,k + q̃)

× gm(ωk,k)gn(ωk + Ω,k + q)

=
im∗Ω

iΩ− vF q cos θkq + vF q̃ cos θkq̃ + (l − n)αkF

× 1

iΩ− vF q cos θkq + (m− n)αkF
. (4.2.26)

The prime over I denotes that integration over the angle θkq is not yet performed as

compared to Ilmn(Ω, θkq̃, q, q̃) defined by Equation (4.2.14d).

Summing over the Rashba indices, one finds∑
lmn

dxlnmI
′
lmn(Ω, θkq̃, q, q̃) = 0 (4.2.27)

and, therefore, the in-plane component at small momentum transfer vanishes.

The trace for the q = 2kF case turns out to be the same as for the q = 0 one

d̃xlnm ≡ Tr[Ωl(k)Ωn(−k)Ωm(k)σx] = dxlnm. (4.2.28)

However, in order to see the vanishing of the 2kF part, the integral over εk has to be

evaluated explicitly with q = 2kF , i.e.,

I ′′lmn(Ω, θkq̃, q = 2kF , q̃) =
m∗

2π

∫
dεkgl(ωk,k + q̃)gm(ωk,k)gn(ωk + Ω,k + q)

=
im∗[1−Θ(ωk)−Θ(ωk + Ω)]

[i(2ωk + Ω)− vF q̃ cos θkq̃ − vF q − 2vFkF cos θkq − (m+ n)αkF ][i(2ωk + Ω)− vF q − 2vFkF cos θkq − (l + n)αkF ]
,

(4.2.29)

where we used an expansion of εk+q around q = 2kF : εk+q ≈ −εk + vF (q − 2kF ) +

2vFkF cos θkq. Summing over the Rashba indices, we obtain∑
lmn

d̃xlnmI
′′
lmn(q ≈ 2kF , q̃) = 0 (4.2.30)

and, therefore, the 2kF part of the in-plane components of diagrams 3 and 4 is also equal

to zero.
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K,m P − Q̃, r

P, sK + Q̃, l

K +Q, n

P −Q, t

σi σj

U(|q|)
U(|k− p|)

6)

Figure 4.6: Diagram 6. The momentum transfer q is close to zero and |k− p| = 2kF .

4.2.4 Remaining diagrams and the final result for the spin

susceptibility

The remaining diagrams can be expressed in terms of the diagrams we have already

calculated.

Diagram 5 in Figure 4.5 reads as

χij5 =− 4U(0)U(2kF )

∫
Q

∫
K

∫
P

Tr[G(K + Q̃)σiG(K)

×G(K +Q)G(P +Q)G(P )G(K)σj]

=− 4U(0)U(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
f ijlmntsrIlmnrΠst (4.2.31)

with

f ijlmntsr ≡ Tr[Ωl(k)σiΩm(k)Ωn(k)

× Ωt(−k)Ωs(−k)Ωr(k)σj] (4.2.32)

and q � |k− p| = 2kF . A factor of 4 appears because the “sunrise” self-energy can be

inserted into either the lower or the upper arm of the bubble while each of the interaction

line can carry momentum of either q = 0 or q = 2kF . A minus sign is due to an odd

number of fermionic loops. Upon summation over the Rashba indices, we obtain

χij5
U(0)U(2kF )

= −χ
ij
1,q=0

U2(0)
. (4.2.33)

Diagrams 6 and 7b in Figs. 4.6 and 4.7, correspondingly, are related as well. Explicitly,

diagram 6 reads as

χij6 =− 2U(0)U(2kF )

∫
Q

∫
K

∫
P

Tr[G(K + Q̃)σiG(K)

×G(K +Q)G(P − Q̃)σjG(P )G(P −Q)]

=− 2U(0)U(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
gijlmnrst

× Ilmn(Ω, θkq̃, q, q̃)Irst(−Ω, θkq̃,−q, q̃) (4.2.34)
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K +Q, n K, r

K + Q̃, lK +Q+ Q̃,m

P, s P +Q, t

σi σj

U(|k− p|)

U(|q|)
7a)

K,m P, s

P + Q̃, rK + Q̃, l

K +Q, n P +Q, t

σi σj

U(|q|)

U(|k− p|)
7b)

Figure 4.7: Diagram 5a (left figure) and diagram 5b (right figure). The transferred mo-
menta are q = and |k− p| = 2kF .

with

gijlmntsr ≡ Tr[Ωl(k)σiΩm(k)Ωn(k)

× Ωr(−k)σjΩs(−k)Ωt(−k)]. (4.2.35)

On the other hand, for diagram 7b we obtain

χij7b =− 2U(0)U(2kF )

∫
Q

∫
K

∫
P

Tr[G(K + Q̃)σiG(K)

×G(K +Q)G(P +Q)G(P )σjG(P + Q̃)]

=− 2U(0)U(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
h̃ijlmntsr

× Ilmn(Ω, θkq̃, q, q̃)Irst(Ω, θkq̃, q,−q̃) (4.2.36)

with

h̃ijlmntsr ≡ Tr[Ωl(k)σiΩm(k)Ωn(k)

× Ωt(−k)Ωs(−k)σjΩr(−k)]. (4.2.37)

In both cases, q � |k− p| = 2kF . Using the symmetry propertyIrst(−Ω, θkq̃,−q,−q̃) =

−I−r−s−t(Ω, θkq̃, q, q̃) in χij4 , summing over the Rashba indices, and noticing that

I+++(Ω, θkq̃, q, q̃) = I−−−(Ω, θkq̃, q, q̃), we arrive at

χij6 = χij7b. (4.2.38)

Finally, diagram 7a shown in Figure 4.7 is related to diagram 2 at small momentum

transfer. Indeed,

χij7a =− 2U(0)U(2kF )

∫
Q

∫
K

∫
P

Tr[G(K +Q+ Q̃)σiG(K +Q)

×G(P )G(P +Q)G(K)σjG(K + Q̃)]

=− 2U(0)U(2kF )

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
hijlmnstrJlmnrΠst (4.2.39)
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4.2. Spin susceptibility of interacting electron gas

with

hijlmnstr ≡ Tr[Ωl(k)Ωm(k)σiΩn(k)

× Ωs(−k)Ωt(−k)Ωr(k)σj], (4.2.40)

where again q � |k− p| = 2kF . After summation over the Rashba indices, this diagram

proves related to the small-momentum part of diagram 2 as

χij5a
U(0)U(2kF )

= −χ
ij
2,q=0

U2(0)
. (4.2.41)

The results of this section along with Equation (4.2.16) show that the sum of all

diagrams proportional to U(0)U(2kF ) cancel each other

χij5 + χij6 + χij7a + χij7b = 0. (4.2.42)

Therefore, as in the absence of SOI, the non-analytic part of the spin susceptibility is

determined only by the Kohn anomaly at q = 2kF .

Summing up the contributions from diagrams 1− 3, we obtain the results presented

in Equations (4.1.7a) and (4.1.7b).

4.2.5 Cooper-channel renormalization to higher orders in the

electron-electron interaction

An important question is how the second-order results, obtained earlier in this Section,

are modified by higher-order effects. In the absence of SOI, the most important effect–at

least within the weak-coupling approach– is logarithmic renormalization of the second-

order result by to the interaction in the Cooper channel. As it was shown in [Chesi09],

this effect reverses the sign of the q̃ dependence due to proximity to the Kohn-Luttinger

superconducting instability; the sign reversal occurs at q̃ = e2TKL/vF ≈ 7.4TKL/vF ,

where TKL is the Kohn-Luttinger critical temperature. For momenta below the SO scale

(qα), χzz ceases to depend on q̃ but χxx still scales linearly with q̃. What is necessary

to understand now is whether the linear-in-q̃ term in χxx renormalized in the Cooper

channel. The answer to this question is quite natural. The |α|- and q̃ terms in the

second-order result for χxx [Equation (4.1.7b)] come from different parts of diagram:

the |α| term comes from q̃ independent part and vice versa. Starting from the third

order and beyond, these two terms acquire logarithmic renormalizations but the main

logarithm of these renormalizations contains only one energy scale. In other words, the

|α| term is renormalized via ln |α| while the q̃ is renormalized via ln q̃. For example, the

third-order result for the 2kF part of diagram 1 (Figure 4.2) reads as (for simplicity, we

assume here a contact interaction with U(q) = const)

χxx1,q=2kF
= −u3 2χ0

3

[ |α|kF
EF

ln
Λ

|α|kF
+

2

3π

vF q̃

EF
ln

Λ

vF q̃

]
, (4.2.43)
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where u = m∗U/4π and Λ is the ultraviolet cutoff. Details of this calculation are given

in Appendix C.3. It is clear already from this result the logarithmic renormalization of

the q̃ term in χxx remains operational even for q̃ < qα, with consequences similar to

those in [Chesi09].

4.2.6 Charge susceptibility

In the absence of SOI, non-analytic behavior as a function of external parameters–q̃,

T , H–is present only in the spin but not charge susceptibility [Belitz97, Chitov01b,

Chubukov03]. An interesting question is whether the charge susceptibility also becomes

non-analytic in the presence of SOI. We answer this question in the negative: the charge

susceptibility remains analytic. To show this, we consider all seven diagrams replacing

both spin vertices by unities. The calculation goes along the same lines as before, thereby

we only list the results for specific diagrams; for q̃ � qα,

δχc1 = −δχc4 =
χ0

3π

(
u2

0 + u2
2kF

) vF q̃
EF

,

δχc2 = −δχc3 =
χ0

3π

(
u2

2kF
− u2

0

) vF q̃
EF

, (4.2.44)

δχc5 = −δχc6 = −χ0

3π
u0u2kF

vF q̃

EF
,

whereas χc7 = 0 on its own (χc7a = −χc7b). First, we immediately notice that SOI drops

out from every diagram even in the limit q̃ � qα. Second, the sum of the non-analytic

parts of all the charge susceptibility diagrams is zero, δχc = 0, as in the case of no SOI.

4.3 RKKY interaction in real space

A nonanalytic behavior of the spin susceptibility in the momentum space leads to a

power-law decrease of the RKKY interaction with distance. In this Section, we discuss

the relation between various nonanalyticities in χij(q) and the real-space behavior of the

RKKY interaction. We show that, in addition to conventional 2kF Friedel oscillations, a

combination of the electron-electron and SO interactions lead to a new effect: long-range

Friedel-like oscillations with the period given by the SO length.

4.3.1 No spin-orbit interaction

First, we discuss the case of no SOI, when the spin susceptibility is isotropic: χij(q̃) =

δijχ(q̃). For free electrons, the only non-analyticity in χ0(q̃) is the Kohn anomaly at

q̃ = 2kF , which translates into Friedel oscillations of the RKKY kernel; in 2D, and for
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4.3. RKKY interaction in real space

kF r � 1 [Żak10a],

χ0(r) =
χ0

2π

sin (2kF r)

r2
. (4.3.1)

One effect of the electron-electron interaction is a logarithmic amplification of the Kohn

anomaly (which also becomes symmetric about the q̃ = 2kF point): χ(q̃ ≈ 2kF ) ∝√
|q̃ − 2kF | ln |q̃ − 2kF | [Khalil02]. Consequently, χ(r) is also enhanced by logarithmic

factor compared to the free-electron case: χ(r) ∝ sin(2kF r) ln(kF r)/r
2.

Another effect is related to the nonanalyticity at small q̃: χ(q̃) = χ0 + Cq̃

[Chubukov03]. To second order in the electron-electron interaction [cf. Equation (4.1.8)],

C2 =
4χ0

3πkF
u2

2kF
; (4.3.2)

however, as we explained in Section 4.1, both the magnitude and sign of C can changed

due to higher-order effects. (Cooper channel renormalization leads also to multiplicative

ln q̃ corrections to the linear-in-q̃ term; those correspond to multiplicative ln r renormal-

ization of the real-space result and are ignored here.)

In 2D, χ(r) is related to χ(q̃) via

χ(r) =
1

2π

∫ ∞
0

dq̃q̃χ(q̃)J0(q̃r). (4.3.3)

Power-counting suggests that the q̃ term in χ(q̃) translates into a dipole-dipole–like, 1/r3

term in χ(r). To see if this indeed the case, we calculate the integral

A =

∫ Λ

0

dq̃q̃2J0(q̃r) (4.3.4)

with an arbitrary cutoff Λ, and search for a universal, Λ-independent term in the result.

If such a term exists, it corresponds to a long-range component of the RKKY interaction.

Using an identity xJ0(x) = d
dx

(xJ1(x)) and integrating by parts, we obtain

A =
1

r3

[
(Λr)2J1(Λr)−

∫ Λr

0

dxxJ1(x)

]
=

1

r3

[
(Λr)2J1(Λr)− πΛr

2
{J1(Λr)H0(Λr)− J0(Λr)H1(Λr)}

]
,(4.3.5)

where Hν(x) is the Struve function. The asymptotic expansion of the last term in the

preceding equation indeed contains a universal term

πΛr

2
{J1(Λr)H0(Λr)− J0(Λr)H1(Λr)}

∣∣
Λr→∞ = 1 + . . . (4.3.6)

where . . . stands for non-universal terms. A corresponding term in χ(r) reads

χ(r) = − C

2πr3
. (4.3.7)
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As a check, we also calculate the Fourier transform of the q̃-independent term in χij.

The corresponding integral

Ã =

∫ Λ

0

dq̃q̃J0(q̃r) =
Λ

r
J1(Λr). (4.3.8)

does not contain a Λ-independent term and, therefore, a constant term in χ(q̃) does not

produce a long-range component of the RKKY interaction, which is indeed the case for

free electrons.

Equation (4.3.7) describes a dipole-dipole–like part of the RKKY interaction that

falls off faster than Friedel oscillations but is not oscillatory. Incidentally, it is the same

behavior as that of a screened Coulomb potential in 2D, which also has a q̃ nonanalyticity

at small q̃ [Ando82].

In a translationally invariant system, HRKKY = − A2

8n2
s

∑
r,r′ χ(r − r′)I irIjr′ . Therefore,

if C > 0, i.e., χ(q̃) increases with q̃, the dipole-dipole interaction is repulsive for parallel

nuclear spins and attractive for antiparallel ones. Since the 1/r3 behavior sets in only

at large distances, the resulting phase is a helimagnet rather than an antiferromagnet.

Vice versa, if C < 0, the dipole-dipole interaction is attractive for parallel spins. This

corresponds precisely to the conclusions drawn from the spin-wave theory: a stable FM

phase requires that ω (q̃) > 0, which is the case if C < 0.

4.3.2 With spin-orbit interaction

4.3.3 Free electrons

In a free electron system, the SOI splits the Fermi surface into two surfaces corresponding

to two branches of the Rashba spectrum with opposite helicities. Consequently, both

components of the spin susceptibility in the momentum space have two Kohn anomalies

located at momenta 2k±F = 2kF∓qα with qα = 2m∗ |α| . To see this explicitly, we evaluate

the diagonal components of χij (q̃) for q̃ ≈ 2kF

χii0 (q̃) = −
∑
s,t

∫
K

∣∣〈k, s|σi|k + q̃, t〉
∣∣2 gt (ω,k + q̃) gs (ω,k) . (4.3.9)

For q̃ ≈ 2kF , the matrix elements of the spin operators in the helical basis reduce to

|〈k + q̃, t|σx|k, s〉|2 = |〈k + q̃, t|σz|k, s〉|2 =
1

2
(1 + st) . (4.3.10)

Therefore, χii (q̃) contains only contributions from intraband transitions

χxx0 (q̃) = χzz (q̃) = −
∫
K

g+ (ω,k + q̃) g+ (ω,k)

−
∫
K

g− (ω,k + q̃) g− (ω,k) . (4.3.11)
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4.3. RKKY interaction in real space

Each of the two terms in Equation (4.3.11) has its own Kohn anomaly at q̃ = 2ksF ,

s = ±. In real space, this corresponds to beating of Friedel oscillations with a period

2π/qα.

This behavior needs to be contrasted with that of Friedel oscillations in the charge

susceptibility, where–to leading order in α–the Kohn anomaly is present only at twice

the Fermi momenta in the absence of SOI [Pletyukhov06]. Consequently, the period of

Friedel oscillations is the same as in the absence of SOI. (Beating occurs in the presence

of both Rashba and Dresselhaus interactions [Badalyan10]. This is so because, for q̃ near

2kF , the matrix element entering χc (q̃) reduces to

|〈k + q̃, t|k, s〉|2 =
1

2
(1− st) ,

which implies that χc contains only contributions from interband transitions:

χc0 (q̃) = −2

∫
K

g+ (ω,k + q̃) g− (ω,k) . (4.3.12)

The Kohn anomaly in χc0 corresponds to the nesting condition ε+k+q̃ = −ε−k , which is

satisfied only for q̃ = 2kF .

Interacting electrons

The electron-electron interaction is expected to affect the 2kF -Kohn anomalies in χxx

and χzz in a way similar to that in the absence of SOI. However, a combination of

the electron-electron and SO interaction leads to a new effect: a Kohn anomaly at the

momentum qα � 2kF . Consequently, the RKKY interaction contains a component which

oscillates with a long period given by the SO length λSO = 2π/qα rather than the half

of the Fermi wavelength.

To second order in the electron-electron interaction, the full dependence of the elec-

tron spin susceptibility on the momentum is shown in Appendix C.2 to be given by

δχxx(q̃) =
2C2q̃

3
+
C2q̃

2
Re

[
1

3

√
1−

(
qα
q̃

)2
(

2 +

(
qα
q̃

)2
)

+
qα
q̃

arcsin
qα
q̃

]
, (4.3.13a)

δχzz(q̃) =C2q̃Re

[√
1−

(
qα
q̃

)2

+
qα
q̃

arcsin
qα
q̃

]
. (4.3.13b)

Equations (4.3.13a) and (4.3.13b) are valid for an arbitrary value of the ratio q̃/qα (but

for q̃ � kF ). For q̃ � qα, both δχxx and δχzz scale as q̃. For q̃ � qα, δχxx continues

to scale as q̃ (but with a smaller slope compared to the opposite case), while δχzz is q̃
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Figure 4.8: (color online) The nonanalytic part of the electron spin susceptibility in
units of (2/3π)u2

2kF
(|α|/vF )χ0 as a function of the momentum in units of

qα = 2m∗|α|. i = x, z. Solid: exact results (4.3.13a) and (4.3.13b). Dashed:
approximate results (4.3.14a) and (4.3.14b) valid near the singularity at q =
qα.

independent. The crossover between the two regimes is not continuous, however: certain

derivatives of both δχxx and δχzz diverge at q̃ = qα. Expanding around the singularity

at q̃ = qα, one finds

δχxx =
2C2q̃

3
+
C̃2

2

[
Θ(qα − q̃)

+ Θ(q̃ − qα)

(
1 +

2b

5

( q̃
qα
− 1
)5/2

)]
, (4.3.14a)

δχzz =C̃2

[
Θ(qα − q̃) + Θ(q̃ − qα)

(
1 + b

( q̃
qα
− 1
)3/2

)]
, (4.3.14b)

where Θ(x) is the step-function, C̃2 = πC2qα/2 and b = 4
√

2/3π. The q̃ dependencies of

δχxx and δχzz are shown in Figure 4.8.

The singularity is stronger in δχzz ∝ (q̃ − qα)3/2 whose second derivative diverges at

q̃ = qα, whereas it is only third derivative of δχxx ∝ (q̃−qα)5/2 that diverges at this point.

Both divergences are weaker than the free-electron Kohn anomaly χ ∝ (q̃ − 2kF )1/2.

We now derive the real-space form of the RRKY interaction, starting from χzz(r).

Substituting Equation (4.3.14b) into Equation (4.3.3) and noting that only the part

proportional to (q̃/qα − 1)3/2 contributes, we arrive at the following integral

χzz(r) =
C̃2b

2π

∫ Λ

qα

dq̃q̃J0(q̃r)

(
q̃

qα
− 1

)3/2

, (4.3.15)

where Λ is an arbitrarily chosen cutoff which does affect the long-range behavior of

χzz(r). Replacing J0(x) by its large-x asymptotic form and q̃ by qα in all non-singular
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and non-oscillatory parts of the integrand, we simplify the previous expression to

χzz(r) =
C̃2b

2π

√
2qα
πr

∫ Λ

0

dq̃

(
q̃

qα

)3/2

cos
(

(q̃ + qα)r − π

4

)
. (4.3.16)

Integrating by parts twice and dropping the high-energy contribution, we arrive at an

integral that converges at the upper limit. The final results reads

χzz(r) = −χ0
2

3π2

u2
2kF

kF

cos (qαr)

r3
. (4.3.17)

Equation (4.3.17) describes long-wavelength Friedel-like oscillations which fall off with r

faster than the usual 2kF oscillations. Notice that Equation (4.3.17), while valid formally

only for qαr � 1, reproduces correctly the dipole-dipole term [Equation (4.3.7) with

C = C2] in the opposite limit of qαr � 1. Therefore, Equation (4.3.17) can be used an

extrapolation formula applicable for any value of qαr.

In addition to the Kohn anomaly at q̃ = qα, the in-plane component also contains a

non-oscillatory but nonanalytic term, proportional to q̃. As it was also the case in the

absence of SOI, this term translates into a dipole-dipole part of the RKKY interaction.

Analysis of Section 4.3 fully applies here: we just need to replace the prefactor C in

Equation (4.3.7) by 2C2/3, where C2 is defined by Equation (4.3.2). The role of the cutoff

Λ in Equation (4.3.4) is now being played by qα, therefore, C → 2C2/3 for r � q−1
α .

For r � q−1
α , the prefactor is the same as in the absence of SOI. Summarizing, the

dipole-dipole part of the in-plane RKKY interaction is

χxxd−d(r) = − 2

3π2
u2

2kF
χ0 ×

{
1/r3, for qαr � 1

2/3r3, for qαr � 1
(4.3.18)

The oscillatory part of χxx(r) is obtained by the same method as for χzz(r); one only

needs to integrate by parts three times in order to obtain a convergent integral. Conse-

quently, χxx(r) falls off with r as 1/r4. The r-dependence of χxx(r), resulting from the

SOI, is given by a sum of the non-oscillatory and oscillatory parts

χxx(r) = χxxd−d(r) + χ0
1

3π2

u2
2kF

qαkF

sin(qαr)

r4
. (4.3.19)

Finally, the conventional, 2kF Friedel oscillations should be added to Equations (4.3.17)

and (4.3.19) to get a complete r dependence. The dipole-dipole part and long-wavelength

Friedel oscillations fall off faster then conventional Friedel oscillations. In order to extract

the long-wavelength part from the data, one needs to average the measured χij(r) over

many Fermi wavelengths. Recently, 2kF oscillations in the RKKY interaction between

magnetic adatoms on metallic surfaces have been observed directly via scanning tunnel-

ing microscopy [Zhou10]. Hopefully, improvements in spatial resolution would allow for

89



4. Ferromagnetic order of nuclear spins. . .

an experimental verification of our prediction for the long-wavelength component of the

RKKY interaction.

As a final remark, we showed in Section 4.2.6 that the charge susceptibility does

not exhibit small-q nonanalyticities. This result also implies that the long-wavelength

oscillations are absent in the charge susceptibility; therefore, Friedel oscillations produced

by non-magnetic impurities contains only a conventional, 2kF component.

4.4 Summary and discussion

We have studied the nonanalytic behavior of the electron spin susceptibility of a two-

dimensional electron gas (2DEG) with SOI as a function of momentum q̃ = |q̃| in the

context of a ferromagnetic nuclear-spin phase transition (FNSPT). Similarly to the de-

pendence on temperature and magnetic-field [Żak10a], the combined effect of the electro-

electron and spin-orbit interactions affects two distinct components of the spin suscepti-

bility tensor differently. For q̃ ≤ 2m∗|α|, where m∗ is the effective electron mass and α is

the spin-orbit coupling, the out-of-plane component of the spin susceptibility, χzz(q̃, α),

does not depend on momentum (in other words, momentum-dependence is cut off by the

SOI), [cf. Equation (4.1.7a)], whereas its in-plane counterparts, χxx(q̃, α) = χyy(q̃, α),

scale linearly with q̃ even below the energy scale given by the SOI [cf. Equation (4.1.7b)].

Notably, both results are exact for q̃ ≤ 2m∗|α|.
Beyond second order in electron-electron interaction renormalization effects in the

Cooper channel, being the most relevant channel in the weak coupling regime, start to

play a dominant role. As we have shown in Section 4.2.5 the leading linear-in-|α| term

becomes renormalized by ln |α|, while the subleading linear-in-q̃ term acquires additional

ln q̃ dependence. This behavior is a natural consequence of the separation of energy scales

in each of the diagrams and suggests that, in general, χ(n)({Ei}) ∝ Un
∑

iEi ln
n−2Ei,

where Ei stands for a generic energy scale (in our case Ei = {|α|kF , vF q̃} but temperature

or the magnetic field could be included as well).

Our analysis of the spin susceptibility gives important insights into the nature of a

FNSPT. First, the SOI-induced anisotropy of the spin susceptibility implies that the or-

dered phase is of an Ising type with nuclear spins aligned along the z-axis since χzz > χxx.

Second, the ferromagnetic phase cannot be stable as long as the higher-order effects of

the electron-electron interaction are not taken into account. In this Chapter, we focused

only on one type of those effects, i.e., renormalization in the Cooper channel. Without

Cooper renormalization, the slope of the magnon dispersion is negative, even though

the magnon spectrum is gapped at zero-momentum, cf. Figure 4.1. This implies that

spin-wave excitations destroy the ferromagnetic order. Only inclusion of higher-order

processes in the Cooper channel, similarly to the mechanism proposed in [Chesi09],

leads to the reversal of the slope of the spin susceptibility in the (not necessarily imme-
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diate) vicinity of the Kohn-Luttinger instability, and allows for the spin-wave dispersion

to become positive at all values of the momentum. This ensures stability of the ordered

phase at sufficiently low temperatures [Simon07, Simon08].

We have also shown that a combination of the electron-electron and SO interactions

leads to a new effect: a Kohn anomaly at the momentum splitting of the two Rashba

subbands. Consequently, the real-space RKKY interaction has a long-wavelength com-

ponent with a period determined by the SO rather than the Fermi wavelength.

Another issue is whether the SOI modifies the behavior of the charge susceptibil-

ity which is known to be analytic in the absence of the SOI [Belitz97, Chitov01b,

Chubukov03]. As our calculation shows, the answer to this question is negative.

One more comment on the spin and charge susceptibilities is in order: despite the

fact that we considered only the Rashba SOI, all our results are applicable to systems

where the Dresselhaus SOI with coupling strength β takes place of Rashba SOI, i.e.,

β 6= 0, α = 0; in this case, the Rashba SOI should be simply replaced by the Dresselhaus

SOI (α→ β).

Finally, we analyzed the nonanalytic dependence of the free energy, F , in the presence

of the SOI and at zero temperature beyond the Random Phase Approximation (RPA).

This analysis is important in the context of interacting helical Fermi liquids that have

recently attracted considerable attention [Agarwal11, Chesi11b, Chesi11a]. In contrast to

the RPA result [Chesi11b], which predicts that the free energy scales with α as α4 ln |α|,
our result shows that the renormalization is stronger, namely, F ∝ U2|α|3C(U ln |α|),
where C(x→ 1) ∼ x2 and C(x→∞) ∼ 1/x2.
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Appendix A
Appendix to

‘Momentum dependence of the spin
susceptibility in two dimensions:

nonanalytic corrections
in the Cooper channel’

A.1 Derivation of ladder diagrams

To calculate the ladder diagram given by Equation (2.2.1) we begin from the simultane-

ous change of all Qi variables, Qi → −Qi − P , and expand the scattering potential into

its Fourier components given by Equation (2.1.6). Thus,

Π(n)(P, P ′, K) =
∑

m1...mn

(−1)n−1+m1−mnUm1 . . . Umne
−im1θp+imnθp′

×
n−1∏
i=1

∫
qi

g(−Qi)g(Qi + L)ei(mi−mi+1)θqi , (A.1.1)

where L ≡ K + P . We first evaluate the factors ΠM(L) ≡ −
∫
q
g(−Q)G(Q + L)eiMθq

appearing in the above formula. To this end, we integrate over the frequency Ωq and

linearize the spectrum around the Fermi surface, εq+l ≈ εq + vF l cos θq. This requires

that θq, and all the angles in Equation (A.1.1), are defined from the direction of l. We

also use ε = εq as integration variable, which gives

ΠM(L) = − m

(2π)2

∫ 2π

0

dθqe
iMθq

∫
dε

Θ(ε+ vF l cos θq)−Θ(−ε)
2ε+ vF l cos θq − iΩl

. (A.1.2)
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The unit step functions, Θ(ε + vF l cos θq) and Θ(−ε), determine the integration range

in ε, which is −vF l cos θq to Λ and −Λ to 0, respectively, with Λ being the high energy

cutoff. The energy integration yields

ΠM(L) =
m

(2π)2

∫ 2π

0

dθq
eiMθ

2

(
iπsignΩl − ln

−2Λ

+vF l cos θq + iΩl

− ln
2Λ

vF l cos θq − iΩl

)
,

(A.1.3)

with the sign term coming from the lower limit of the second integration, ln(−2Λ−iΩl) =

ln 2Λ− iπsignΩl.

If we change variables in the integral over the first logarithm, θq → θq + π, we make

it identical to the second one, except for the multiplicative term (−1)M originating from

eiM(θq+π). Therefore, we find that

ΠM(L) =
m

(2π)2

∫ 2π

0

dθq e
iMθq

[
iπ

2
signΩl + ln

−iΩl

Λ
+ ln

(
1 + i

vF l

Ωl

cos θq

)]
, (A.1.4)

where M is even and the factor of 2 in front of Λ has been absorbed into the cutoff.

Writing the second logarithm as a series, ln(1 + x) = −∑∞n=1(−1)nxn/n, we can easily

integrate term by term.

The M = 0 contribution is

Π0(L) =
m

(2π)2

∫ 2π

0

dθq

[
ln
|Ωl|
Λ
−
∞∑
n=1

1

n

(−ivF l
Ωl

cos θq

)n]
=
m

2π

[
ln
|Ωl|
Λ
−
∑
n≥2

′ 1

n

(
n
n
2

)(−ivF l
2Ωl

)n]
, (A.1.5)

where n is even in the primed sum. The summation of the series gives Equation (2.2.3)

shown in the main text.

For M 6= 0 (M even) we get

ΠM(L) = − m

(2π)2

∫ 2π

0

dθqe
iMθq

∑
n

1

n

(−ivF l
Ωl

cos θq

)n
= −m

2π

∑
n≥|M |

′ 1

n

(
n

n−|M |
2

)(−ivF l
2Ωl

)n
. (A.1.6)

Upon summation over even values of n, Equation (2.2.4) in the main text is obtained.

We now consider Equation (A.1.1), and to simplify the notation we introduce summation

indexes Mn−i ≡ mi − mi+1 (for i = 1, 2, . . . n − 1) and m ≡ −mn. We also introduce

m′ = m1 −mn =
∑

iMi, which is even. We express the angles from the direction of p,

i.e., θp → −θl and θp′ → θ − θl. Finally, we obtain

Π(n)(L, θ) =
∑

m′,M1...Mn−1

′
U−mUM1−m . . . UM1+...Mn−1−me

im′θl−imθΠM1(L) . . .ΠMn−1(L),

(A.1.7)
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which can be written as in Equation (2.2.2) using definition (2.2.5). The special case

of Π(2) is given by Equation (2.3.8) and can be directly used for the derivation of RG

equations in Section 2.5.

A.2 Green’s functions integration of n-th order

diagram 1

We consider here the integration of the Green’s functions appearing explicitly in Equa-

tions (2.3.5) and (2.4.1);

A ≡ −
∫

d2k

(2π)2
lim

εk′→εk

∫
dωk
2π

1

(ωk + iεk)(ωk + iεk′)(ωk + iεk+q̃)(ωk − Ωl − iεk−l)
.

(A.2.1)

The integration over ωk can be performed with the method of residues (we choose the

lower half-plane contour);

A = im

∫
dθkdεk
(2π)2

lim
εk′→εk

[
Θ(εk)

(εk′ − εk)(εk+q̃ − εk)(Ωl + iεk + iεk−l)

+
Θ(εk′)

(εk − εk′)(εk+q̃ − εk′)(Ωl + iεk′ + iεk−l)

+
Θ(εk+q̃)

(εk − εk+q̃)(εk′ − εk+q̃)(Ωl + iεk+q̃ + iεk−l)

+
Θ(−εk−l)

(Ωl + iεk + iεk−l)(Ωl + iεk′ + iεk−l)(Ωl + iεk+q̃ + iεk−l)

]
.

(A.2.2)

Since the sum of all residues of the integrand in Equation (A.2.1) in the entire

complex plane is zero, we can subtract the same quantity Θ(εk) from each numerator

in Equation (A.2.2) without affecting the result. This cancels the first term and, using

limεk′→εk [Θ(εk′)−Θ(εk)]/[εk′ − εk] = δ(εk), we obtain

A = A1 + A2 + A3 = im

∫
dθkdεk
(2π)2

[
iδ(εk)

(εk − εk+q̃)(Ωl + iεk + iεk−l)

+
Θ(εk+q̃)−Θ(εk)

(εk − εk+q̃)2(Ωl + iεk+q̃ + iεk−l)
+

Θ(−εk−l)−Θ(εk)

(Ωl + iεk + iεk−l)2(Ωl + iεk+q̃ + iεk−l)

]
.

(A.2.3)

We can now perform the integration in dεk. To this end we linearize the energy

spectrum near the Fermi surface, εk+q̃ ≈ εk + vF q̃ cos θk and εk−l ≈ εk− vF l cos θl, which
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is a good approximation since q̃, l � kF . We also define ζ ≡ Ωl − ivF l cos θl (and the

complex conjugate ζ̄ ≡ Ωl + ivF l cos θl). The first two integrals are vanishing,

A1 =
m

(2π)2

∫ 2π

0

dθk
1

ζvF q̃ cos θk
= 0 (A.2.4)

and

A2 =
m

8π2

∫ 2π

0

dθk
(vF q̃ cos θk)2

ln

(
ζ + ivF q̃ cos θk
ζ − ivF q̃ cos θk

)
= 0, (A.2.5)

since the integrands are odd with respect to cos θk.

For the remaining term we make use of the indefinite integral,∫
dε

(2iε+ z1)2(2iε+ z2)
=
z1 − z2 + (z1 + 2iε) ln

(
z2+2iε
z1+2iε

)
2i(z1 − z2)2(2iε+ z1)

, (A.2.6)

which tends to zero for ε→ ±∞, and hence only the integration limits at 0 and vF l cos θl
contribute;

A =
m

8π2

∫ 2π

0

dθk

{
1

(vF q̃ cos θk)2

[
ln

(
ζ̄

ζ̄ + ivF q̃ cos θk

)
+ ln

(
ζ

ζ + ivF q̃ cos θk

)]
+

2iΩl

|ζ|2vF q̃ cos θk

}
. (A.2.7)

The last term vanishes and the final integration in dθk can be done using∫ 2π

0

ln
(

z
z+ia cos θ

)
a2 cos2 θ

dθ =
2π

a2

(
1− sign(Rez)

√
z2 + a2

z

)
, (A.2.8)

which yields

=
m

4π(vF q̃)2

[
2−
√

(Ωl + ivF l cos θl)2 + (vF q̃)2

Ωl + ivF l cos θl
sign Ωl

−
√

(Ωl − ivF l cos θl)2 + (vF q̃)2

Ωl − ivF l cos θl
sign Ωl

]
. (A.2.9)

Notice that A is even in Ωl. Furthermore, the last two terms give the same contribution

upon integration
∫ 2π

0
dθl, and therefore Equation (2.3.6) is obtained.

A.3 Second order calculation of diagram 1

In this appendix we consider the explicit evaluation of Equation (2.3.7). It receives

contributions from all possible values of M appearing in Π(2) [see Equation (2.3.8)]. We
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consider first M = 0 for which Equation (2.3.9) is useful. With the change of variables

r = R(sinφ+ i cosφ cos θl) we obtain

δχ
(2)
1,0 = − m2q̃

2π5vF
Ũ2

0

∫ π/2

0

dφ cosφ

∫ 2π

0

dθl

∫ rmax(φ,θl)

0

drr2

×
(

1−
√
r2 + 1

r

) ln
(

1+sinφ
sinφ+i cosφ cos θl

)
+ ln

(
vF q̃r

Λ

)
(sinφ+ i cosφ cos θl)3

, (A.3.1)

where rmax = (Λ/vF q̃)(sinφ + i cosφ cos θl). Note, that it is necessary to introduce the

upper cutoff in the integral over r, which is formally divergent. However, this upper limit

turns out to be irrelevant for the nonanalytic correction.

We start from the first contribution in the above equation, where the r integration

gives

q̃

∫ rmax

0

drr2
(

1−
√
r2 + 1

r

)
=
q̃

3
[r3
max − (1 + r2

max)
3/2 + 1]

≈ Λ

vF
(sinφ+ i cosφ cos θl) +

q̃

3
. (A.3.2)

The term proportional to Λ, as in [Chubukov03], is the dominant contribution to the

spin susceptibility. However, it does not depend on q̃ and therefore is uninteresting for us.

The term proportional to q̃, from the lower integration limit, is the desired nonanalytic

correction to the spin susceptibility and does not depend on φ and θl. Therefore, the

angular integration can be performed using1∫ π/2

0

dφ cosφ

∫ 2π

0

dθl
ln
(

1+sinφ
sinφ+i cosφ cos θl

)
(sinφ+ i cosφ cos θl)3

= −π
2
. (A.3.3)

The same analysis can be applied to the second term of Equation (A.3.1), which contains

ln(vF q̃r/Λ). The integration in r gives a constant from the lower limit and the remaining

angular integrations yield zero, as discussed in the main text.

Hence, the final result is

δχ
(2)
1,0(q̃) =

m2

12π4vF
q̃
∑
n

U2
n. (A.3.4)

We now aim to calculate terms with M 6= 0. By making use of Equation (2.2.4) for

ΠM(R, φ) and substituting again r ≡ R(sinφ+ i cosφ cos θl) we obtain

δχ
(2)
1,M =

m2q̃

2|M |π5vF

∑
n

UM−nUn

∫ π/2

0

dφ

∫ 2π

0

dθl

∫ rmax

0

drr2

×
(

1−
√
r2 + 1

r

)(1− sinφ

i cosφ

)|M | cosφ e−iMθl

(sinφ+ i cosφ cos θl)3
. (A.3.5)

1This result has been obtained by accurate numerical integration.
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The integral over r can be performed as before. The integration over θl yields∫ 2π

0

dθl
e−iMθl

(sinφ+ i cosφ cos θl)3
= π(M2+3|M | sinφ+3 sin2 φ−1)

(1− sinφ

i cosφ

)|M |
, (A.3.6)

which can be obtained by standard contour integration in the complex plane (z = e−iθl).

Finally,

δχ
(2)
1,M =

m2q̃

6|M |π4vF

∑
n

UM−nUn

∫ π/2

0

dφ cosφ
(1− sinφ

cosφ

)2|M |

× (M2 + 3|M | sinφ+ 3 sin2 φ− 1) =
m2q̃

12π4vF

∑
n

UM−nUn, (A.3.7)

since the last integration gives a factor of |M |/2. Thus, the total second order correction

is

δχ
(2)
1 (q̃) =

m2

24π4

q̃

vF

∑
M

′∑
n

2UM−nUn. (A.3.8)

Rewriting the double sum as
∑

m,n UmUn +
∑

m,n(−1)m+nUmUn, we recover the two

contributions as in Equation (2.3.1).

A.4 Small momentum limit of n-th order

particle-particle propagator

We expand Π(n) [see Equation (2.2.2)] in powers of Π0(R, φ) as follows

Π(n)(R, φ, θl, θ) ≈ Ũn
00...0Πn−1

0 +
∑
M 6=0

′ (
Ũn
M0...0 + . . . Ũn

00...M

)
ΠMΠn−2

0 + . . . . (A.4.1)

The expression of Π0(R, φ) is given by Equation (2.3.9). Therefore, the leading contribu-

tion in the above equation at small q̃ is from the first term since Πn−1
0 ∝ (ln vF q̃/Λ)n−1.

However, the leading order does not contribute to the nonanalytic correction. Neglecting

such constant terms, we can write the relevant subleading contribution in the following

way:

[Π0(R, φ)]n−1 =(n− 1)
(m

2π
ln
vF q̃

Λ

)n−2 m

2π
lnR(1 + sinφ) + . . .

=(n− 1)
(m

2π
ln
vF q̃

Λ

)n−2

Π0(R, φ) + . . . . (A.4.2)

Furthermore, by using Πn−2
0 ∝ (ln vF q̃/Λ)n−2, we can simplify Equation (A.4.1) to the

following form:

Π(n)(R, φ, θl, θ) =
(m

2π
ln
vF q̃

Λ

)n−2∑
M

′ (
Ũn
M0...0 + Ũn

0M...0 + . . . Ũn
00...M

)
ΠM + . . . .

(A.4.3)
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By making use of Equation (2.2.5) we have

Ũn
M0...0 + Ũn

0M...0 + . . . Ũn
00...M =

∑
k

n−1∑
j=1

Un−j
k U j

k−Me
iMθl−ikθ (A.4.4)

and therefore Equation (A.4.3) is written explicitly as

Π(n)(R, φ, θl, θ) =
∑
M

′
ΠM(R, φ)

∑
k

UkUk−Me
iMθl−ikθ

×
∞∑

j,j′=0

δj+j′,n−2

(
mUk
2π

ln
vF q̃

Λ

)j (
mUk−M

2π
ln
vF q̃

Λ

)j′
+ . . . . (A.4.5)

We can now sum previous expression (A.4.5) over the index n ≥ 2, which removes the

constraint j + j′ = n− 2. Hence, the last double summation factorizes in the product of

two geometric series, that can be evaluated explicitly, and we obtain Equation (2.4.6).
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Appendix to

‘Spin susceptibility of interacting
two-dimensional electron gas in the

presence of spin-orbit interaction’

B.1 Temperature dependence for free Rashba

fermions

In this Appendix, we consider the temperature dependence of the spin susceptibility of

free 2D electrons in the presence of the Rashba SOI. The transverse and parallel spin

susceptibilities, χ
{0}
zz and χ

{0}
xx , are given by

χ{0}zz = −
∑
K

Tr [G (K)σzG (K ′)σz] (B.1.1)

χ{0}xx = −
∑
K

Tr [G (K)σxG (K ′)σx] , (B.1.2)

where K = (ω,k) and K ′ = (ω,k + q) with q → 0. Evaluating the traces, we obtain for

χ
{0}
zz

χ{0}zz = −T
∑
ω

∫
d2k

(2π)2

∑
s,t

1

2
(1− st)gs(ω,k)gt(ω,k) = −2T

∑
ω

∫
dkk

2π
g+(ω,k)g−(ω,k),

(B.1.3)

where we took advantage of the isotropy of g±(ω,k) and put q = 0, because the poles

in the Green’s functions of different branches reside on opposite sides of the real axis.

We see that χ
{0}
zz is determined only by inter-subband transitions. Similarly, we obtain
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for χ
{0}
xx

χ{0}xx = −T
∑
ω

∫
d2k

(2π)2

∑
s,t

1

2
[1− st cos(2θk)]gs(ω,k)gt(ω,k + q)|q→0. (B.1.4)

Since cos θk averages to zero, χ
{0}
xx can be written as

χ{0}xx =
1

2
χ{0}zz +

1

2
δχ{0}xx , (B.1.5)

where

δχ{0}xx ≡ −T
∑
ω

∫
d2k

(2π)2 [g+(ω,k)g+(ω,k + q) + g−(ω,k)g−(ω,k + q)]|q→0 (B.1.6)

is the contribution from intra-subband transitions, absent in χ
{0}
zz .

Let us evaluate χ
{0}
zz first. Performing the fermionic Matsubara sum, we obtain

χ{0}zz =− 2

∫ ∞
0

kdk

2π
T
∑
ω

1

2αk

(
1

iω − εk − αk
− 1

iω − εk + αk

)
=

1

2πα

∫ ∞
0

dk[nF (εk − αk)− nF (εk + αk)] (B.1.7)

with a Fermi function nF (ε) =
[
e(ε−µ)/T + 1

]−1
and εk = k2/2m−µ. Changing variables

in the first integral to εk−αk = ε−−µ, we find two roots: k
(1)
− = mα−

√
(mα)2 + 2mε−,

valid for −ε0 < ε− < 0 with dk
(1)
− /dε− < 0, and k

(2)
− = mα +

√
(mα)2 + 2mε−, valid

for ε− > 0 with dk
(2)
− /dε− > 0, where ε0 ≡ mα2/2. Similarly, we change variables

in the second integral to εk + αk = ε+ − µ and obtain only one positive root k+ =

−mα +
√

(mα)2 + 2mε+, valid for ε+ > 0 with dk+/dε+ > 0. Notice that the absolute

values of the (inverse) group velocities are the same for both branches: |dk(1,2)
− /dε−| =

|dk+/dε+| = m[(mα)2 + 2mε±]−1/2. Therefore,

χ{0}zz =
1

2πα

(∫ 0

−ε0
dε

∣∣∣∣∣dk(1)
−
dε

∣∣∣∣∣+

∫ ∞
0

dε

∣∣∣∣∣dk(2)
−
dε

∣∣∣∣∣−
∫ ∞

0

dε

∣∣∣∣dk+

dε

∣∣∣∣
)
nF (ε)

=
m

2πα

∫ 0

−ε0
dε

nF (ε)√
(mα)2 + 2mε

, (B.1.8)

where we dropped the index on the integration variable ε. Notably, the high energy

contributions from the two Rashba branches cancel each other for any value of the

chemical potential and the spin susceptibility is determined exclusively by the bottom

part of the lower Rashba branch. Integration by parts yields

χ{0}zz = χ0

(
nF (0)−

∫ 0

−ε0
dε

√
1 +

ε

ε0

∂nF (ε)

∂ε

)
, (B.1.9)
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where nF (0) = [e−µ/T +1]−1. In order to evaluate this integral, it is convenient to consider

three limiting cases.

For T � ε0 � µ, i.e., when both Rashba subbands are occupied and the temperature

is lower than the minimum of the lower subband, we approximate nF (0) ≈ 1 − e−µ/T ,

−T∂nF (ε)/∂ε ≈ e(ε−µ)/T , and
√

1 + ε/ε0 ≈ 1 + ε/2ε0, so that

χ{0}zz = χ0

[
(1− e−µ/T ) +

1

T
e−µ/T

∫ ∞
0

dε

(
1− ε

2ε0

)
e−ε/T

]
= χ0

(
1− T

2ε0
e−µ/T

)
.

(B.1.10)

At T = 0, χ
{0}
zz = χ0.

For ε0 � T � µ, i.e., when again both Rashba subbands are occupied but the

temperature is higher than the minimum of the lower subband, we keep the same ap-

proximations for nF (0) and −T∂nF (ε)/∂ε but neglect the ε dependence of the Fermi

function in the integrand:

−
∫ {0}
−ε0

dε

√
1 +

ε

ε0

∂nF (ε)

∂ε
≈ 1

T
e−µ/T

∫ ε0

0

dε

√
1 +

ε

ε0
e−ε/T

≈ 1

T
e−µ/T

∫ ε0

0

dε

√
1 +

ε

ε0
=

2ε0
3T

e−µ/T . (B.1.11)

Thus,

χ{0}zz = χ0

[
1−

(
1− 2ε0

3T

)
e−µ/T

]
. (B.1.12)

Finally, for µ < 0, i.e., when only the lower Rashba subband is occupied, the first

term in Equation (B.1.9) gives only an exponentially weak temperature dependence,

while the Sommerfeld expansion of the second term generates a T 2 contribution because

the density of states depends on ε:

χ{0}zz = χ0

[√
1− |µ|/ε0 −

π2

24

(
T

ε0

)2
1

(1− |µ|/ε0)3/2

]
(B.1.13)

At zero temperature, χ
{0}
zz = χ0

√
1− |µ|/ε0 vanishes at the bottom of the lower subband.

We now calculate δχ
{0}
xx given by Equation (B.1.6), which can be written as

δχ{0}xx = −
∫ ∞

0

dkk

2π

(
∂nF (ε−)

∂ε−
+
∂nF (ε+)

∂ε+

)
. (B.1.14)

The change of variables is straightforward in the second integral, since the equation

ε+ − µ = εk + αk has only one positive root k+ and the density of states is given by

ν+(ε) =
k+

2π

dk+

dε
=
m

2π

√
1 + ε/ε0 − 1√

1 + ε/ε0
(B.1.15)
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with ε0 ≡ mα2/2. In the first integral more care must be taken: for ε > 0, we have

k
(2)
− = mα +

√
(mα)2 + 2mε and the density of states is given by

ν>−(ε) =
k

(2)
−

2π

dk
(2)
−
dε

=
m

2π

√
1 + ε/ε0 + 1√

1 + ε/ε0
; (B.1.16)

however, for −ε0 < ε < 0 both roots enter the density of states

ν<−(ε) =

∫ ∞
0

kdk

2π
δ(ε− ε−) =

1

2π

(
k

(1)
−

∣∣∣∣∣dk(1)
−

dε−

∣∣∣∣∣+ k
(2)
−

∣∣∣∣∣dk(2)
−

dε−

∣∣∣∣∣
)

=
m

π

1√
1 + ε/ε0

. (B.1.17)

Summing up the contributions from all energies, we find

δχ{0}xx =

(∫ 0

−ε0
dεν<−(ε) +

∫ ∞
0

dεν>−(ε) +

∫ ∞
0

dεν+(ε)

)(
−∂nF (ε)

∂ε

)
=

∫ 0

−ε0
dεν<−(ε)

(
−∂nF (ε)

∂ε

)
+ χ0nF (0), (B.1.18)

where the second and third integrals are easily evaluated because ε drops out of the sum

ν+ + ν>− = m/π. Combining the above result with Equations (B.1.2) and (B.1.8), we get

χ{0}xx = χ0

(
nF (0)−

∫ 0

−ε0
dε

1 + ε/2ε0√
1 + ε/ε0

∂nF (ε)

∂ε

)
. (B.1.19)

For T � ε0 � µ, we approximate nF (0) ≈ 1 − e−µ/T and −T∂nF (ε)/∂ε =

e(ε−µ)/T (e(ε−µ)/T + 1)−2 ≈ e(ε−µ)/T as before, and expand (1 + ε/2ε0)/
√

1 + ε/ε0 ≈
1 + ε2/8ε20, so that

χ{0}xx = χ0

[
nF (0) +

1

T
e−µ/T

∫ ∞
0

dε

(
1 +

ε2

8ε20

)
e−ε/T

]
= χ0

(
1 +

T 2

4ε20
e−µ/T

)
. (B.1.20)

For ε0 � T � µ, we keep the same approximations for the Fermi function but, as it was

also the case for χ
{0}
zz , neglect the ε dependence of the Fermi function in the integrand∫ 0

−ε0
dε

1 + ε/2ε0√
1 + ε/ε0

∂nF (ε)

∂ε
≈ 1

T
e−µ/T

∫ ε0

0

dε
1− ε/2ε0√

1− ε/ε0
e−ε/T

≈ 1

T
e−µ/T

∫ ε0

0

dε
1− ε/2ε0√

1− ε/ε0
=

4ε0
3T

e−µ/T . (B.1.21)

Thus,

χ{0}xx = χ0

[
1−

(
1− 4ε0

3T

)
e−µ/T

]
. (B.1.22)

Finally, for µ < 0, the Sommerfeld expansion of the second term in Equation (B.1.19)

yields

χ{0}xx = χ0

[
1− |µ|/2ε0

(1− |µ|/ε0)1/2
+
π2

48

(
T

ε0

)2
2 + |µ|/ε0

(1− |µ|/ε0)5/2

]
(B.1.23)

for T � min{|µ|, ε0− |µ|}. At zero temperature, χ
{0}
xx = χ0 (1− |µ|/2ε0) / (1− |µ|/ε0)1/2

diverges at the bottom of the lower subband.

104



B.2. Absence of a q0 ≡ 2mα singularity in a static particle-hole propagator

B.2 Absence of a q0 ≡ 2mα singularity in a static

particle-hole propagator

In Secs. 4.2 and 3.3.4, we argued that there is no contribution to the nonanalytic behav-

ior of the spin susceptibility from the region of small bosonic momenta, q � kF . This

statement contradicts [Chen99], where it was argued that, in the presence of the SOI,

a static particle-hole bubble has a square-root singularity at q = q0 ≡ 2mα (in addition

to the Kohn anomaly which is also modified by the SOI). For a weak SOI, q0 is much

smaller than kF and thus the region of small q may also contribute to the nonanalytic

behavior. Later on, however, [Pletyukhov06, Pletyukhov07] showed that there is no sin-

gularity at q = q0. According to [Pletyukhov06], the reason is related to a subtlety in

approaching the static limit of a dynamic bubble. While we agree with the authors of

n PhysRevB.74.045307 in that there are no small-q singularities in the bubble, we find

that a cancelation of singular terms occurs in the calculation of a purely static bubble.

The same result was obtained in an unpublished work [Mishchenko]. For the sake of

completeness, we present our derivation in this Appendix.

Evaluating the spin trace, we obtain for the static polarization bubble

Π(q) ≡
∑
K

Tr[Gω,k+qGω,k] =
1

2

∑
K

∑
s,t

[1 + st cos(ϕk+q − ϕk)] gs(ω,k + q)gt(ω,k),

(B.2.1)

where, as before, K = (ω,k), ϕk+q ≡ ∠(k + q, ex) and ϕk ≡ ∠(k, ex). We divide Π(q)

into intra- and intersubband contributions as

Π(q) = Π++(q) + Π−−(q) + Π±(q), (B.2.2)

where

Π±±(q) ≡ 1

2

∑
K

[1 + cos(ϕk+q − ϕk)]g±(ω,k + q)g±(ω,k), (B.2.3a)

Π±(q) ≡ 1

2

∑
K

[1− cos(ϕk+q − ϕk)][g+(ω,k + q)g−(ω,k) + g−(ω,k + q)g+(ω,k)]

=
∑
K

[1− cos(ϕk+q − ϕk)]g+(ω,k + q)g−(ω,k). (B.2.3b)

In the last line, we employed obvious symmetries of the Green’s function.

First, we focus on the intersubband part, Π±(q). Summation over the Matsubara

frequency yields

T
∑
ω

g+(p,ω)g−(k,ω) =
nF (ε+p )− nF (ε−k )

ε+p − ε−k
, (B.2.4)

where p = k + q, ε±k = εk±αk and, as before, εk = k2/2m−EF . Introducing additional

integration over the momentum p, as it was done in [Chen99], Equation (B.2.3b) can be
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re-written as

Π±(q) =
2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dkk

∫ ∞
0

dpp δ(p2 − |k + q|2)

×
(

1− k · (k + q)

kp

)
nF (ε+p )− nF (ε−k )

ε+p − ε−k
, (B.2.5)

where θ = ∠(k,q). Integration over θ yields∫ 2π

0

dθδ(p2 − k2 − q2 − 2kq cos θ)

(
1− k2 + kq cos θ

kp

)
=

1

kp

q2 − (k − p)2√
(k + q)2 − p2

√
p2 − (k − q)2

, (B.2.6)

which imposes a constraint on the range of integration over p, i.e., |k − q| < p < k + q.

Since we assume that q � k ≈ p ≈ kF , Equation (B.2.6) can be simplified to√
q2 − (k − p)2

2k3
F

, (B.2.7)

and Π±(q) becomes

Π±(q) =
1

4π2k3
F

∫ ∞
0

dkk

∫ k+q

|k−q|
dpp

√
q2 − (k − p)2

nF (ε+p )− nF (ε−k )

ε+p − ε−k
. (B.2.8)

For a weak SOI (m|α| � kF ) , ε±k ≈ εk ± αkF . Switching from integration over k and p

to integration over εk and εp, we find

Π±(q) =
1

4π2v3
FkF

∫ ∞
−∞

dεk

∫ εk+vF q

εk−vF q
dεp

×
√

(vF q)2 − (εk − εp)2
nF (εp + αkF )− nF (εk − αkF )

εp − εk + 2αkF
. (B.2.9)

Shifting the integration variables as εp → εp − αkF , εk → εk + αkF , we eliminate the

dependence of the Fermi functions on αkF . Assuming also that T = 0, we obtain

Π±(q) =
1

4π2v3
FkF

∫ ∞
−∞

dεk

∫ εk+2αkF+vF q

εk+2αkF−vF q
dεp

×
√

(vF q)2 − (εp − εk − 2αkF )2
Θ(−εp)−Θ(−εk)

εp − εk
, (B.2.10)

where Θ (x) is the step function. Notice that the integrand is finite only if εkεp < 0,

which imposes further constraints on the integration range.
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We will now prove that Π±(q) given by Equation (B.2.10) is continuous at q = q0.

To this end, it is convenient to consider the cases of q < q0 and q > q0. Combining all

the constraints together, we find that Π± for q < q0 can be written as

Π<
±(q) ≡Π±(q < q0) = − 1

4π2v3
FkF

(∫ vF q−2αkF

−vF q−2αkF

dεk

∫ εk+2αkF+vF q

0

dεp

+

∫ 0

vF q−2αkF

dεk

∫ εk+2αkF+vF q

εk+2αkF−vF q
dεp

)√
(vF q)2 − (εp − εk − 2αkF )2

εp − εk
, (B.2.11)

Reversing the sign of εk, absorbing εk into εp, and defining the dimensionless variables

x = εk/vF q and y = εp/vF q, we obtain

Π<
±(q) = − q2

4π2vFkF

(∫ β+1

β−1

dx

∫ β+1

x

dy +

∫ β−1

0

dx

∫ β+1

β−1

dy

) √
1− (y − β)2

y
,

(B.2.12)

where β ≡ q0/q > 1. Next, we switch the order of integration in the first term, so that

the integrals over x can be readily evaluated

Π<
±(q) = − q2

4π2vFkF

∫ β+1

β−1

dy

(∫ y

β−1

dx+

∫ β−1

0

dx

) √
1− (y − β)2

y

= − q2

4π2vFkF

∫ β+1

β−1

dy
√

1− (y − β)2 = −m
2π

(
q

2kF

)2

. (B.2.13)

For q > q0, we have

Π>
±(q) ≡ Π±(q > q0) =

1

4π2v3
FkF

(∫ vF q−2αkF

0

dεk

∫ 0

εk+2αkF−vF q
dεp

−
∫ 0

−vF q−2αkF

dεk

∫ εk+2αkF+vF q

0

dεp

)√
(vF q)2 − (εp − εk − 2αkF )2

εp − εk
. (B.2.14)

Manipulations similar to those for the previous case yield

Π>
±(q) = − q2

4π2vFkF

(∫ 1−β

0

dx

∫ 1−β

x

dy

√
1− (y + β)2

y

+

∫ 1+β

0

dx

∫ 1+β

x

dy

√
1− (y − β)2

y

)
(B.2.15)

with β = q0/q < 1. Interchanging the order of integrations over x and y, we find

Π±(q > 2mα) = − q2

4π2vFkF

(∫ 1−β

0

dy
√

1− (y + β)2

+

∫ 1+β

0

dy
√

1− (y − β)2

)
= −m

2π

(
q

2kF

)2

. (B.2.16)
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Since Π<
±(q = q0 − 0+) = Π>

±(q = q0 + 0+), the function Π±(q) = −(m/2π)(q/2kF )2 is

continuous at q = q0 and, thus, there is no singularity in the static particle-hole response

function. In addition, Π±(q) does not depend on the SOI. However, since there is no q2

term in the 2D bubble for q ≤ 2kF in the absence of the SOI, the q2 term must be

canceled out by similar terms in Π++(q) and Π−−(q), which is what we will show below.

Having proven that Π±(q) is an analytic function of q, we can re-derive its q de-

pendence simply by expanding the combination ϕk+q − ϕk in Equation (B.2.3b) for

q � kF as ϕk+q−ϕk ≈ (q/kF ) sinϕkq, where ϕkq ≡ ∠(k,q); then 1− cos(ϕk+q−ϕk) ≈
(q/kF )2 sin2 (ϕkq) /2. Since we already have a factor of q2 up front, the Green’s functions

in Equation (B.2.3b) can be evaluated at q = 0. Accordingly, Equation (B.2.3b) becomes

Π±(q) =
1

2

(
q

kF

)2∑
K

sin2 ϕkqg+(k, ω)g−(k,ω) =
m

2π

(
q

2kF

)2 ∫
dεk

nF (ε+k )− nF (ε−k )

ε+k − ε−k

= −m
2π

(
q

2kF

)2 ∫ αkF

−αkF
dεk

1

2αkF
= −m

2π

(
q

2kF

)2

. (B.2.17)

Expanding Equation (B.2.3a) for the intraband contribution to the bubble also to second

order in q, we obtain

Π±±(Q) =
∑
K

g±(k + q,ω)g±(k, ω)|q→0

− 1

4

(
q

kF

)2∑
K

sin2 ϕkqg±(k + q, ω)g±(k,ω)|q→0 = −m
2π

+
m

4π

(
q

2kF

)2

,

(B.2.18)

since ∑
K

g±(k + q,ω)g±(k, ω)|q→0 = −m
∫
dεk
2π

Θ(ε±k+q)−Θ(ε±k )

ε±k+q − ε±k

∣∣∣∣
q→0

= −m
∫
dεk
2π

δ(εk ± |α|kF ) = −m
2π
. (B.2.19)

Thereby the total bubble (B.2.2)

Π(q) = −m
π

(B.2.20)

is independent of q for q � 2kF .

B.3 Renormalization of scattering amplitudes

in a finite magnetic field

In this Appendix, we present the derivation of the RG flow equations for the scattering

amplitudes in the Cooper channel in the presence of the magnetic field. These amplitudes
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are then used to find the non-perturbative results for the spin susceptibility. Since the

amplitudes are renormalized quite differently for the field applied perpendicularly and

parallel to the 2DEG plane, we will treat these two cases separately.

B.3.1 Transverse magnetic field

Renormalization Group flow of scattering amplitudes

If the magnetic field is transverse to the 2DEG plane, B = Bez, the eigenvectors of the

Hamiltonian (3.1.1) read

|k, s〉 =
1√
Ns(k)

(
(∆− s∆̄ k)ie−iθk/αk

1

)
, (B.3.1)

where Ns(k) = 2 + 2∆(∆ − s∆̄ k)/(αk)2 is the normalization factor and, as before,

∆̄ k ≡ (∆2+α2k2)−1/2 is the effective Zeeman energy. Since, by assumption, |α|kF � EF ,

we approximate ∆̄ k by ∆̄ kF . Substituting the above eigenvectors into Equation (3.4.17),

we find the scattering amplitude

Γ(1)
s1s2;s4s3

(k,k′; p,p′) = U

 4∏
i=1

1√
2 +

2∆(∆−si∆̄ kF
)

α2k2F


×
[
1 +

1

α2k2
F

(∆− s1∆̄ kF )(∆− s3∆̄ kF )ei(θp−θk)

]
×
[
1 +

1

α2k2
F

(∆− s2∆̄ kF )(∆− s4∆̄kF )ei(θp′−θk′ )
]
. (B.3.2)

To find the spin susceptibility, we need to know the scattering amplitude to second order

in the magnetic field. Expanding Equation (B.3.2) to second order in δ ≡ ∆/|α|kF (note

that s2
i = 1 and s3

i = si) and projecting the amplitude onto the Cooper channel, where

the momenta are correlated in such a way that k′ = −k and p′ = −p or, equivalently,

θk′ = θk + π and θp′ = θp + π, we obtain

Γ(1)
s1s2;s3s4

(k,−k; p,−p) = Us1s2;s3s4 + Vs1s2;s3s4e
i(θp−θk) +Ws1s2;s3s4e

2i(θp−θk), (B.3.3)

where we introduced partial amplitudes

Us1s2;s3s4 =
U

4
+
U

8
(s1+s2+s3+s4)δ+

U

16
(s1s2+s1s3+s1s4+s2s3+s2s4+s3s4−2)δ2+O(δ3),

(B.3.4)

Vs1s2;s3s4 =
U

4
(s1s3 + s2s4) +

U

8
(s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 − s1 − s2 − s3 − s4)δ

+
U

8
(1− s1s2 − s2s3 − s3s4 − s1s4 − s1s3 − s2s4 + s1s2s3s4)δ2 +O(δ3),

(B.3.5)
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Ws1s2;s3s4 =
U

4
s1s2s3s4 −

U

8
(s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4)δ

+
U

16
(s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4 − 2s1s2s3s4)δ2 +O(δ3).

(B.3.6)

For δ = 0, the partial amplitudes reduce back to Equations (3.4.21a-3.4.21c). The RG

flow equations for the partial amplitudes are the same as in the absence of the mag-

netic field and are given by Equations (3.4.24a)–(3.4.24c) with initial conditions (B.3.4)–

(B.3.6). Since the differential equations for U , V , and Λ are identical, for the sake of

argument we select the first one, copied below for the reader’s convenience,

− d

dL
Us1s2;s3s4(L) =

∑
s

Us1s2;ss(L)Uss;s3s4(L) (B.3.7)

and introduce the following ansatz

Us1s2;s3s4(L) =
Us1s2;s3s4(0) + as1s2;s3s4L

1 + bL
, (B.3.8)

which satisfies the initial condition. Substituting this formula into the differential equa-

tion for U and multiplying the result by (1 + bL)2, we obtain an algebraic equation for

as1s2;s3s4 and b

bUs1s2;s3s4(0)− as1s2;s3s4 +
∑
s

(Us1s2;ss(0) + as1s2;ssL)(Uss;s3s4(0) + ass;s3s4L) = 0. (B.3.9)

Grouping coefficients of a polynomial in L, we obtain the following set of equations

bUs1s2;s3s4(0)− as1s2;s3s4 +
∑
s

Us1s2;ss(0)Uss;s3s4(0) = 0, (B.3.10)∑
s

[Us1s2;ss(0)ass;s3s4 + as1s2;ssUss;s3s4(0)] = 0, (B.3.11)∑
s

as1s2;ssass;s3s4 = 0, (B.3.12)

which are not independent. Thereby, we choose two out of three equations, namely,

Equation (B.3.10) and Equation (B.3.12) with the s1 = s2 = s3 = s4 = 1 combination

of the Rashba indices, so that there are 17 equations for 17 unknown variables: as1s2;s3s4

and b. The final solutions are listed below

U±±;±±(L) =
U

4

(1± δ)2

1 + (1 + δ2)UL/2
, (B.3.13)

Uss;−s−s(L) = Us−s;−ss(L) = Us−s;s−s(L) =
U

4

1− δ2

1 + (1 + δ2)UL/2
, (B.3.14)

Uσ(±∓;∓∓)(L) =
U

4

1∓ δ − δ2/2

1 + (1 + δ2)UL/2
. (B.3.15)

110



B.3. Renormalization of the scattering amplitudes in a finite magnetic field

The same procedure is repeated to derive the V - and Λ-amplitudes listed below

Vss;ss(L) =
U

2

1− δ2

1 + (1− δ2)UL
, (B.3.16)

Vss;−s−s(L) = −U
2

1− δ2

1 + (1− δ2)UL
, (B.3.17)

Vs−s;−ss(L) = −U
2

(1− δ2)− U

2

δ2UL

1 + (1− δ2)UL
, (B.3.18)

Vs−s;s−s(L) =
U

2
(1 + δ2)− U

2

δ2UL

1 + (1− δ2)UL
, (B.3.19)

Vσ(±∓;∓∓)(L) = ±U
2

δ

1 + (1− δ2)UL
(B.3.20)

and

W±±;±±(L) =
U

4

(1∓ δ)2

1 + (1 + δ2)UL/2
, (B.3.21)

Wss;−s−s(L) = Ws−s;−ss(L) = Ws−s;s−s(L) =
U

4

1− δ2

1 + (1 + δ2)UL/2
, (B.3.22)

Wσ(±∓;∓∓)(L) = −U
4

1± δ − δ2/2

1 + (1 + δ2)UL/2
. (B.3.23)

Summing up all the contributions to the backscattering amplitude, obtained from the

Cooper amplitude for a special choice of the momenta p = −k, i.e., for θp − θk = π, we

obtain

Γs1s2;s3s4(k,−k;−k,k) = Us1s2;s3s4(L)− Vs1s2;s3s4(L) +Ws1s2;s3s4(L). (B.3.24)

To second order in the field, the backscattering amplitudes read

Γss;ss(k,−k;−k,k) =

(
U

2 + UL
− U

2(1 + UL)

)
+

(
U

2(1 + UL)2
+

2U

(2 + UL)2

)
δ2,

(B.3.25a)

Γss;−s−s(k,−k;−k,k) =

(
U

2 + UL
+

U

2(1 + UL)

)
(B.3.25b)

−
(

U

2(1 + UL)2
− 2U

(2 + UL)2
+

2U

2 + UL

)
δ2, (B.3.25c)

Γs−s;−ss(k,−k;−k,k) =

(
U

2 + UL
+
U

2

)
−
(

U

2(1 + UL)
− 2U

(2 + UL)2
+

2U

2 + UL

)
δ2,

(B.3.25d)

Γs−s;s−s(k,−k;−k,k) =

(
U

2 + UL
− U

2

)
−
(

U

2(1 + UL)
− 2U

(2 + UL)2
+

2U

2 + UL

)
δ2,

(B.3.25e)

Γσ(±∓;∓∓)(k,−k;−k,k) =∓
(

U

2(1 + UL)
+

U

2 + UL

)
δ. (B.3.25f)
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For δ = 0, we reproduce Equations (3.4.26-3.4.28). In the limit of strong renormal-

ization in the Cooper channel, i.e., for UL → ∞, the field-dependent terms in Equa-

tions (B.3.25a-B.3.25f) vanish. A posteriori, this explains why we could obtain the renor-

malized result (3.4.35) for χzz in the main text using only the zero-field amplitudes.

Renormalization of the transverse component

As in Section 3.4.3, the thermodynamic potential in the presence of Cooper renormaliza-

tion is obtained by substituting the renormalized scattering amplitudes (B.3.25a-B.3.25f)

into Equation (3.4.32)

δΞzz = −1

2
T
∑

Ω

∫
qdq

2π

[
1

2

(
U

2 + UL
− U

2

)2

(Π2
+− + Π2

−+ − 2Π2
0) + (Π+−Π−+ − Π2

0)

×
(

U

2 + UL
+

U

2(1 + UL)

)2

− U2(16 + 32UL+ 22U2L2 + 6U2L3 + U4L4)

4(1 + UL)2(2 + UL)2
Π2

0

]
(B.3.26a)

− ∆2

α2k2
F

T
∑

Ω

∫
qdq

2π

[(
U

2(1 + UL)
+

U

2 + UL

)2

Π0(Π+− + Π−+ − 2Π0)

+
1

2

(
U

2(1 + UL)
− 2U

(2 + UL)2
+

2U

2 + UL

)(
U

2 + UL
− U

2

)
(Π2

+− + Π2
−+ − 2Π2

0)

(B.3.26b)

−
(

U

2(1 + UL)2
− 2U

(2 + UL)2
+

2U

2 + UL

)(
U

2 + UL
+

U

2(1 + UL)

)
(Π+−Π−+ − Π2

0)

− U4L2(12 + 18UL+ 7U2L2)

2(1 + UL)2(2 + UL)3
Π2

0

]
. (B.3.26c)

The first part of δΞzz (B.3.26a) came from the field-independent terms in the scatter-

ing amplitudes. This part depends on the magnetic field through the combinations of

the polarization bubbles. The second part (B.3.26c) already contains a field-dependent

prefactor (∆2) resulting from the field-dependent terms in the scattering amplitudes.

Therefore, the polarization bubbles in this part can be evaluated in zero field. The in-

tegrals over q along with the summation over the Matsubara frequency Ω have already

been performed in Section 4.2. Note that in each square bracket the last term (pro-

portional to Π2
0) depends neither on the field nor on the SOI. In fact, it can be shown

[Chubukov05b, Chubukov05a] that this formally divergent contribution has a cubic de-

pendence on temperature, T
∑

Ω

∫
qdqΠ2

0 ∝ T 3, thus it adds a higher order correction

112



B.3. Renormalization of the scattering amplitudes in a finite magnetic field

and can be dropped. The final result reads

δΞzz = − T 3

8πv2
F

(
mU

2π

)2 [(
1

2 + UL
− 1

2

)2

F
(

2
√
α2k2

F + ∆2

T

)]
− ∆2

α2k2
F

T 3

2πv2
F

(
mU

2π

)2 [(
1

2(1 + UL)
+

1

2 + UL

)2

F
( |α|kF

T

)
+

1

2

(
1

2(1 + UL)
− 2

(2 + UL)2
+

2

2 + UL

)(
1

2 + UL
− 1

2

)
F
(

2|α|kF
T

)]
.

(B.3.27)

The spin susceptibility is obtained by expanding Equation (B.3.27) further to order ∆2.

We also need to recall that our treatment of Cooper renormalization is only valid for

T � |α|kF , because we kept only the T - but not α-dependent Cooper logarithms (see

the discussion at the end of Section 3.4.3). Therefore, the function F and its derivative

should be replaced by their large-argument forms, Equation (3.3.27). Doing so, we obtain

the final result for the nonanalytic part of the χzz, presented in Equation (3.4.37) in the

main text.

B.3.2 In-plane magnetic field

Renormalization Group flow of scattering amplitudes

For the in-plane magnetic field, B = Bex, the RG flow of the scattering amplitudes is

more cumbersome because the eigenvectors of Hamiltonian (3.1.1) depend in a compli-

cated way on the angle between the magnetic field and the electron momentum

| k, s〉 =
1√
2

(
s∆̄ k/(∆− ieiθkαk)

1

)
, (B.3.28)

where ∆̄ k ≡ (∆2 + 2αk∆ sin θk + α2k2)−1/2 is the effective Zeeman energy. For that

reason, the (double) Fourier series of the scattering amplitude (3.4.17) in the angles θk
and θp contains infinitely many harmonics:

Γ(1)
s1s2;s3s4

(k,−k; p,−p) =
∞∑

m,n=−∞
Γ(1){m,n}
s1s2;s3s4

eimθpeinθk , (B.3.29)

To second order in the field, however, the number of nonvanishing harmonics is limited

to 15. Indeed, expanding the eigenvector (B.3.28) to second order in δ ≡ ∆/|α|kF as

| k, s〉 =
1√
2

(
sie−iθk [1− i cos θkδ − (cos2 θk − i sin 2θk)δ2/2]

1

)
+O(δ3) (B.3.30)
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and substituting Equation (B.3.30) into the scattering amplitude (3.4.17) with k′ = −k

and p′ = −p, we obtain

Γ(1)
s1s2;s3s4

(k,−k; p,−p) = Us1s2;s3s4 + Vs1s2;s3s4e
iθpe−iθk +Ws1s2;s3s4e

2iθpe−2iθk

+ As1s2;s3s4e
iθpeiθk +Bs1s2;s3s4e

−iθpe−iθk + Fs1s2;s3s4e
2iθpe−iθk

+Gs1s2;s3s4e
iθpe−2iθk +Hs1s2;s3s4e

iθp + Js1s2;s3s4e
−iθk

+ Ls1s2;s3s4e
2iθp +Ms1s2;s3s4e

−2iθk + Ps1s2;s3s4e
3iθpe−iθk

+Qs1s2;s3s4e
iθpe−3iθk +Rs1s2;s3s4e

4iθpe−2iθk + Ss1s2;s3s4e
2iθpe−4iθk +O(δ3). (B.3.31)

Here,

Us1s2;s3s4 = Γ(1){0,0}
s1s2;s3s4

= (U/16)[4 + (s1s3 + s2s4)δ2], (B.3.32)

Vs1s2;s3s4 = Γ(1){1,−1}
s1s2;s3s4

= (U/8)(s1s3 + s2s4)(2− δ2), (B.3.33)

Ws1s2;s3s4 = Γ(1){2,−2}
s1s2;s3s4

= (U/16)[4s1s2s3s4 + (s1s3 + s2s4)δ2], (B.3.34)

As1s2;s3s4 = Γ(1){1,1}
s1s2;s3s4

= (U/32)(s1s3 + s2s4)δ2, (B.3.35)

Bs1s2;s3s4 = Γ(1){−1,−1}
s1s2;s3s4

= As1s2;s3s4 , (B.3.36)

Fs1s2;s3s4 = Γ(1){2,−1}
s1s2;s3s4

= (U/8)i(s1s3 − s2s4)δ, (B.3.37)

Gs1s2;s3s4 = Γ(1){1,−2}
s1s2;s3s4

= −Fs1s2;s3s4 , (B.3.38)

Hs1s2;s3s4 = Γ(1){1,0}
s1s2;s3s4

= −Fs1s2;s3s4 , (B.3.39)

Js1s2;s3s4 = Γ(1){0,−1}
s1s2;s3s4

= Fs1s2;s3s4 , (B.3.40)

Ls1s2;s3s4 = Γ(1){2,0}
s1s2;s3s4

= (U/16)(s1s3 + s2s4 + 2s1s2s3s4)δ2, (B.3.41)

Ms1s2;s3s4 = Γ(1){0,−2}
s1s2;s3s4

= Ls1s2;s3s4 , (B.3.42)

Ps1s2;s3s4 = Γ(1){3,−1}
s1s2;s3s4

= −3As1s2;s3s4 , (B.3.43)

Qs1s2;s3s4 = Γ(1){1,−3}
s1s2;s3s4

= Ps1s2;s3s4 , (B.3.44)

Rs1s2;s3s4 = Γ(1){4,−2}
s1s2;s3s4

= −(U/8)s1s2s3s4δ
2, (B.3.45)

Ss1s2;s3s4 = Γ(1){2,−4}
s1s2;s3s4

= Rs1s2;s3s4 . (B.3.46)

The second-order amplitude is derived from Equation (3.4.22) with n = 2

Γ(2)
s1s2;s4s3

(k,−k; p,−p) = −L
∑
s

{Us1s2;ssUss;s3s4 +Hs1s2;ssJss;s3s4 + [Vs1s2;ssVss;s3s4

+ Fs1s2;ssGss;s3s4 + Js1s2;ssHss;s3s4 ]e
iθpe−iθk + [Ws1s2;ssWss;s3s4 +Gs1s2;ssFss;s3s4 ]

× e2iθpe−2iθk + As1s2;ssVss;s3s4e
iθpeiθk + Vs1s2;ssBss;s3s4e

−iθpe−iθk + [Vs1s2;ssFss;s3s4

+ Fs1s2;ssWss;s3s4 ]e
2iθpe−iθk + [Ws1s2;ssGss;s3s4 +Gs1s2;ssVss;s3s4 ]e

iθpe−2iθk

+ [Hs1s2;ssVss;s3s4 + Us1s2;ssHss;s3s4 ]e
iθp + [Vs1s2;ssJss;s3s4 + Js1s2;ssUss;s3s4 ]e

−iθk

+ [Hs1s2;ssFss;s3s4 + Us1s2;ssLss;s3s4 + Ls1s2;ssWss;s3s4 ]e
2iθp + [Ws1s2;ssMss;s3s4

+Gs1s2;ssJss;s3s4 +Ms1s2;ssUss;s3s4 ]e
−2iθk + Vs1s2;ssPss;s3s4e

3iθpe−iθk +Qs1s2;ssVss;s3s4

× eiθpe−3iθk +Ws1s2;ssRss;s3s4e
4iθpe−2iθk + Ss1s2;ssWss;s3s4e

2iθpe−4iθk}+O(δ3), (B.3.47)
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where L = (m/2π) ln(Λ/T ). The second-order amplitude contains the same combina-

tions of the harmonics eimθp and einθk as the first-order amplitude, which proves the

group property. The RG flow equations are obtained by replacing the left-hand side of

Equation (B.3.47) by the bare amplitude, letting the coefficients U . . . S to depend on

L, and differentiating with respect to L:

− d

dL
Us1s2;s3s4(L) =Us1s2;ss(L)Uss;s3s4(L) +Hs1s2;ss(L)Jss;s3s4(L), (B.3.48)

− d

dL
Vs1s2;s3s4(L) =Vs1s2;ss(L)Vss;s3s4(L) + Fs1s2;ss(L)Gss;s3s4(L)

+ Js1s2;ss(L)Hss;s3s4(L), (B.3.49)

− d

dL
Ws1s2;s3s4(L) =Ws1s2;ss(L)Wss;s3s4(L) +Gs1s2;ss(L)Fss;s3s4(L), (B.3.50)

− d

dL
As1s2;s3s4(L) =As1s2;ss(L)Vss;s3s4(L), (B.3.51)

− d

dL
Bs1s2;s3s4(L) =Vs1s2;ss(L)Bss;s3s4(L), (B.3.52)

− d

dL
Fs1s2;s3s4(L) =Vs1s2;ss(L)Fss;s3s4(L) + Fs1s2;ss(L)Wss;s3s4(L), (B.3.53)

− d

dL
Gs1s2;s3s4(L) =Ws1s2;ss(L)Gss;s3s4(L) +Gs1s2;ss(L)Vss;s3s4(L), (B.3.54)

− d

dL
Hs1s2;s3s4(L) =Hs1s2;ss(L)Vss;s3s4(L) + Us1s2;ss(L)Hss;s3s4(L), (B.3.55)

− d

dL
Js1s2;s3s4(L) =Vs1s2;ss(L)Jss;s3s4(L) + Js1s2;ss(L)Uss;s3s4(L), (B.3.56)

− d

dL
Ls1s2;s3s4(L) =Hs1s2;ss(L)Fss;s3s4(L) + Us1s2;ss(L)Lss;s3s4(L)

+ Ls1s2;ss(L)Wss;s3s4(L), (B.3.57)

− d

dL
Ms1s2;s3s4(L) =Ws1s2;ss(L)Mss;s3s4(L) +Gs1s2;ss(L)Jss;s3s4(L)

+Ms1s2;ss(L)Uss;s3s4(L), (B.3.58)

− d

dL
Ps1s2;s3s4(L) =Vs1s2;ss(L)Pss;s3s4(L), (B.3.59)

− d

dL
Qs1s2;s3s4(L) =Qs1s2;ss(L)Vss;s3s4(L), (B.3.60)

− d

dL
Rs1s2;s3s4(L) =Ws1s2;ss(L)Rss;s3s4(L), (B.3.61)

− d

dL
Ss1s2;s3s4(L) =Ss1s2;ss(L)Wss;s3s4(L), (B.3.62)

where summation over the repeated index s is implied. The initial conditions are given

by Xs1,s2;s3,s4(0) = Xs1,s2;s3,s4 with X = U . . . S. Since it is very difficult to solve this

system of differential equations analytically, a new approach is required. In what follows,

we will determine U(L), . . . , S(L) for a few lowest orders in the “RG time” L and then
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make a guess for a form of an arbitrary-order term. The RG equations will then provide

a necessary check as to whether our guess, based on the perturbative calculation, gives

a correct answer.

A few lowest order amplitudes can be derived perturbatively from Equation (3.4.22),

copied here for the reader’s convenience

Γ(j)
s1s2;s4s3

(k,−k; p,−p)(L) = −L
∑
s

∫ 2π

0

dθl
2π

Γ(j−1)
s1s2;ss(k,−k; l,−l)Γ(1)

ss;s4s3
(l,−l; p,−p)

(B.3.63)

with j ≥ 2 standing for order of the perturbation theory. Since the scattering amplitudes

depend on angles θk and θp, they can be decomposed order by order into the Fourier

series

Γ(j)
s1s2;s3s4

(k,−k; p,−p) =
∞∑

m,n=−∞
Γ(j){m,n}
s1s2;s3s4

emiθpeniθk , (B.3.64)

where the coefficients in front of eimθpeinθk are determined using the orthogonality prop-

erty

Γ(j){m,n}
s1s2;s4s3

(k,−k; p,−p) =

∫ 2π

0

dθk
2π

∫ 2π

0

dθp
2π

Γ(j)
s1s2;s4s3

(k,−k; p,−p)e−imθpe−inθk .

(B.3.65)

Resumming the coefficients of eimθpeinθk to infinite order (with m and n being fixed)

Γ(∞){m,n}
s1s2;s4s3

(k,−k; p,−p) =
∞∑
j=1

Γ(j){m,n}
s1s2;s4s3

(k,−k; p,−p) (B.3.66)

we can find the renormalized amplitudes. For each combination of partial harmonics,

which occurs to second order in the magnetic field, we derive explicitly the scattering

amplitudes up to seventh order in the Cooper channel renormalization parameter UL

and then make a guess for general j-th order amplitude. The final result is obtained

by resumming these amplitudes to infinite order and then substituted into the RG flow

equations to check the correctness of our guess. In all cases, the guess turns out to be

correct. All nonzero RG charges as well as their large L limits are listed below. We begin

with the n = m = 0 and n = m = 1 harmonics, given by

Uss;ss(L) =
U

2

1

2 + UL
+
U

8
δ2 =

U

8
δ2 +O(ln−1 T ), (B.3.67)

Uss;−s−s(L) =
U

2

1

2 + UL
− U

8
δ2 = −U

8
δ2 +O(ln−1 T ), (B.3.68)

Us−s;−ss(L) =
U

2

1

2 + UL
− U

8

1

1 + UL
δ2 = O(ln−1 T ), (B.3.69)

Us−s;s−s(L) =
U

2

1

2 + UL
+
U

8

1

1 + UL
δ2 = O(ln−1 T ), (B.3.70)

Uσ(±∓;∓∓)(L) =
U

2

1

2 + UL
= O(ln−1 T ), (B.3.71)
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Vss;ss(L) =
U

2

1

1 + UL
− U

4

1

(1 + UL)2
δ2 = O(ln−1 T ), (B.3.72)

Vss;−s−s(L) = −U
2

1

1 + UL
+
U

4

1

(1 + UL)2
δ2 = O(ln−1 T ), (B.3.73)

Vs−s;−ss(L) = −U
2

+
U

4
(1 + UL)δ2 = −U

2
+O(U2), (B.3.74)

Vs−s;s−s(L) =
U

2
− U

4
(1 + UL)δ2 =

U

2
+O(U2). (B.3.75)

An important remark should be made at this point: in addition to amplitudes which flow

either to zero or to finite values at low temperatures, there are also amplitudes which

grow logarithmically at low temperatures, namely, the amplitudes in Equations(B.3.74)

and (B.3.75). This peculiar feature, which occurs only in the presence of both the SOI and

in-plane magnetic field, may indicate a phase transition below certain field-dependent

temperature or it may be an artifact of the expansion to lowest order in δ2. In the

derivation of the spin susceptibility that follows in Appendix B.3.2, we assume that the

electron gas is far above the temperature below which the instability becomes important,

i.e., that UL � 1/δ2, so that the effect of the instability can be neglected but the

nonperturbative regime of Cooper renormalization, where 1� UL� 1/δ2, can still be

accessed.

The remaining harmonics are

Wss;ss(L) = Uss;ss(L), (B.3.76)

Wss;−s−s(L) = Uss;−s−s(L), (B.3.77)

Ws−s;−ss(L) = Us−s;−ss(L), (B.3.78)

Ws−s;s−s(L) = Us−s;s−s(L), (B.3.79)

Wσ(±∓;∓∓)(L) = −Uσ(±∓;∓∓)(L), (B.3.80)

Ass;ss(L) = −Ass;−s−s(L) =
U

16

1

1 + UL
δ2 = O(ln−1 T ), (B.3.81)

As−s;−ss(L) = −As−s;s−s(L) = − U
16
δ2 (B.3.82)

Bs1s2;s3s4(L) = As1s2;s3s4(L). (B.3.83)

F±∓;∓∓(L) = −U
4
iδ, (B.3.84)

F∓±;∓∓(L) =
U

4
iδ, (B.3.85)

F∓∓;±∓(L) = −U
4

1

1 + UL
iδ = O(ln−1 T ), (B.3.86)

F∓∓;∓±(L) =
U

4

1

1 + UL
iδ = O(ln−1 T ), (B.3.87)
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G±∓;∓∓(L) =
U

4

1

1 + UL
iδ = O(ln−1 T ), (B.3.88)

G∓±;∓∓(L) = −U
4

1

1 + UL
iδ = O(ln−1 T ), (B.3.89)

G∓∓;±∓(L) =
U

4
iδ, (B.3.90)

G∓∓;∓±(L) = −U
4
iδ, (B.3.91)

Hs1s2;s3s4(L) = Gs1s2;s3s4(L) (B.3.92)

Js1s2;s3s4(L) = Fs1s2;s3s4(L) (B.3.93)

Lss;ss(L) =
U

2

1

(2 + UL)2
+
U

8
δ2 =

U

8
δ2 +O(ln−1 T ), (B.3.94)

Lss;−s−s(L) =
U

2

1

(2 + UL)2
− U

8
δ2 = −U

8
δ2 +O(ln−1 T ), (B.3.95)

Ls−s;−ss(L) =
U

8

(4 + 3UL)UL

(1 + UL)(2 + UL)2
δ2 = O(ln−1 T ), (B.3.96)

Ls−s;s−s(L) =
U

8

8 + 12UL+ 5U2L2

(1 + UL)(2 + UL)2
δ2 = O(ln−1 T ), (B.3.97)

L±∓;∓∓(L) = L∓±;∓∓(L) = −U
2

1 + UL

(2 + UL)2
δ2 = O(ln−1 T ), (B.3.98)

L∓∓;±∓(L) = L∓∓;∓±(L) = −U
2

1

(2 + UL)2
δ2 = O(ln−1 T ). (B.3.99)

Mss;ss(L) = Lss;ss(L), (B.3.100)

Mss;−s−s(L) = Lss;−s−s(L), (B.3.101)

Ms−s;−ss(L) = Ls−s;−ss(L), (B.3.102)

Ms−s;s−s(L) = Ls−s;s−s(L), (B.3.103)

M±∓;∓∓(L) = L∓±;∓∓(L) = −U
2

1

(2 + UL)2
δ2 = O(ln−1 T ), (B.3.104)

M∓∓;±∓(L) = L∓∓;∓±(L) = −U
2

1 + UL

(2 + UL)2
δ2 = O(ln−1 T ), (B.3.105)

Ps1s2;s3s4(L) = Qs1s2;s3s4(L) = −3As1s2;s3s4(L), (B.3.106)

Rss;ss(L) = Rss;−s−s(L) = Rs−s;−ss(L) = Rs−s;s−s(L) = −U
4

1

2 + UL
δ2 = O(ln−1 T ),

(B.3.107)

Rσ(±∓;∓∓)(L) =
U

4

1

2 + UL
δ2 = O(ln−1 T ), (B.3.108)

118



B.3. Renormalization of the scattering amplitudes in a finite magnetic field

Ss1s2;s3s4(L) = Rs1s2;s3s4(L). (B.3.109)

It can be readily verified that all the amplitudes satisfy RG equations (B.3.48)–(B.3.62)

with initial conditions (B.3.32)–(B.3.46) up to O(δ3) accuracy.

Finally, the renormalized scattering amplitude is given by

Γs1s2;s3s4(k,−k; p,−p) = Us1s2;s3s4(L) + Vs1s2;s3s4(L)eiθpe−iθk +Ws1s2;s3s4(L)e2iθpe−2iθk

+ As1s2;s3s4(L)eiθpeiθk +Bs1s2;s3s4(L)e−iθpe−iθk + Fs1s2;s3s4(L)e2iθpe−iθk

+Gs1s2;s3s4(L)eiθpe−2iθk +Hs1s2;s3s4(L)eiθp + Js1s2;s3s4(L)e−iθk + Ls1s2;s3s4(L)e2iθp

+Ms1s2;s3s4(L)e−2iθk + Ps1s2;s3s4(L)e3iθpe−iθk +Qs1s2;s3s4(L)eiθpe−3iθk

+Rs1s2;s3s4(L)e4iθpe−2iθk + Ss1s2;s3s4(L)e2iθpe−4iθk . (B.3.110)

Renormalization of the in-plane component

As for the transverse-field case, the free energy for the in-plane magnetic field is found

by replacing the bare interaction U in Equation (3.3.39) by the renormalized vertex Γ

δΞxx = −1

4

∫ 2π

0

dθk
2π

T
∑

Ω

∑
{si}

∫ ∞
0

qdq

2π
Γs1s4;s3s2(k,−k;−k,k)

× Γs3s2;s1s4(−k,k; k,−k)Π+kF
s1s2

Π−kFs3s4
, (B.3.111)

where Π±kFss′ given by Equation (3.3.40) depends on the direction of the electron momen-

tum with respect to the magnetic field.

A general formula for δΞxx is very complicated; however, in the regime of strong

Cooper renormalization, i.e. for 1� UL� 1/δ2, there are only a few partial amplitudes

which survive the downward renormalization. Keeping only these partial amplitudes in

Γ, we obtain for the thermodynamic potential

δΞxx =− U2

16

∫ 2π

0

dθk
2π

T
∑

Ω

∫
qdq

2π
[(Π+kF
−+ Π−kF−+ + Π+kF

+− Π−kF+− − 2Π2
0) + 4Π2

0]

− ∆2

α2k2
F

U2

8
T
∑

Ω

∫
qdq

2π
[Π0(Π−+ + Π+− − 2Π0) + Π2

0], (B.3.112)

where the angular dependence of the polarization bubbles in the second line was ne-

glected because of an overall factor ∆2 originating from the scattering amplitudes, and

the angular integral in those terms was readily performed. On the other hand, the field

dependence in the first term is exclusively due to the bubbles, hence the angular in-

tegration has to be carried out last. The integrals over the momentum and frequency

yield

δΞxx = − T 3

8πv2
F

(
mU

4π

)2 [ ∫ 2π

0

dθk
2π
F
(

∆̄kF + ∆̄−kF
T

)
+2

∆2

α2k2
F

F
( |α|kF

T

)]
. (B.3.113)
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Expanding F(x) ≈ x3/3 for x � 1 and differentiating with respect to the field twice,

we obtain for the nonanalytic part of the spin susceptibility

δχxx =
1

3
χ0

(
mU

4π

)2 |α|kF
EF

. (B.3.114)

Somewhat unexpectedly, the fully renormalized result (B.3.114) coincides with the lead-

ing (first) term in the second-order result (3.3.55). The formally subleading but T -

dependent T/2EF term in Equation (3.3.55) does not show up in the fully renormalized

result, which implies that, at best, it is of order T/UL ∝ T/ lnT for large but finite UL.

Hence follows the result for δχxx presented in the main text, Equation (3.4.39).
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Appendix C
Appendix to

’Ferromagnetic order of nuclear spins
coupled to conduction electrons:

a combined effect of electron-electron
and spin-orbit interactions’

C.1 Derivation of common integrals

In this Appendix, we derive explicit expressions for some integrals of the Green’s function

which occur throughout the paper.

C.1.1 “Quaternions” (Ilmnr and Jlmnr) and a ”triad” (Ilmn)

The first integral is a “quaternion”–a convolution of four Green’s functions defined by

Equation (4.2.7e). This convolution occurs in diagram 1, where it needs to be evaluated

at small external and transferred momenta: q, q̃ � kF . To linear order in q and α, εk+q+

sα|k + q| = εk+vF q cos θkq+αkF+o(q2, αq) with θkq ≡ ∠(k,q). The same approximation

holds for q̃ with θkq̃ ≡ ∠(k, q̃). Switching to polar coordinates and replacing kdk by

m∗dεk, we reduce the integral to

Ilmnr(Ω, θkq̃, q, q̃) = m∗
∫
dθkq
2π

∫
dωk
2π

∫
dεk
2π

1

iωk − εk − vF q̃ cos θkq̃ − lαkF
× 1

iωka− εk −mαkF
1

i(ωk + Ω)− εk − vF q cos θkq − nαkF
1

iωk − εk − rαkF
.

(C.1.1)
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Integrating first over εk and then over ωk, we obtain

Ilmnr(Ω, θkq̃, q, q̃) =
im∗Ω

(2π)2

∫
dθkq

1

iΩ− vF q cos θkq + (m− n)αkF

× 1

iΩ− vF q cos θkq + (r − n)αkF

1

iΩ− vF q cos θkq + vF q̃ cos θkq̃ + (l − n)αkF
.

(C.1.2)

Finally, the integral over θkq gives

Ilmnr(Ω, θkq̃, q, q̃) =
m∗|Ω|

2π

1

(r −m)αkF [(l −m)αkF + vF q̃ cos θkq̃][(l − r)αkF + vF q̃ cos θkq̃]

×
[

(l − r)αkF + vF q̃ cos θkq̃√
v2
F q

2 + (Ω + i(n−m)αkF )2
− (l −m)αkF + vF q̃ cos θkq̃√

v2
F q

2 + (Ω + i(n− r)αkF )2

×+
(r −m)αkF√

v2
F q

2 + (Ω− ivF q̃ cos θkq̃ + i(n− l)αkF )2

]
. (C.1.3)

Because to the overall term (r − m)αkF in the denominator, the case r = m has to

be treated specially. Taking the limit Ilmnm(Ω, θkq̃, q, q̃) = limr→m Ilmnr(Ω, θkq̃, q, q̃), one

obtains

Ilmnm(Ω, θkq̃, q, q̃) =
m∗|Ω|

2π

1

[(l −m)αkF + vF q̃ cos θkq̃]2

×
[

1√
v2
F q

2 + (Ω− ivF q̃ cos θkq̃ + i(n− l)αkF )2

− v2
F q

2 + [Ω + i(n−m)αkF ][Ω + ivF q̃ cos θkq̃ + i(l + n− 2m)αkF ]

[v2
F q

2 + (Ω + i(n−m)αkF )2]
3/2

]
. (C.1.4)

Similarly, we obtain for another quaternion Jlmnr, defined by Equation (4.2.14c)

Jlmnr(Ω, θkq̃, q, q̃) =
m∗|Ω|

2π

1

Ω− ivF q̃ cos θkq̃ + i(n−m)αkF

× 1

Ω− ivF q̃ cos θkq̃ + i(r − l)αkF

[
1√

v2
F q

2 + (Ω− ivF q̃ cos θkq̃ + i(r −m)αkF )2

+
1√

v2
F q

2 + (Ω− ivF q̃ cos θkq̃ + i(n− l)αkF )2

]
. (C.1.5)

Finally, we obtain for a convolution of three Green’s functions–a ”triad”–defined by
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Equation (4.2.14d)

Ilmn(Ω, θkq̃, q, q̃) =
m∗|Ω|

2π

1

vF q̃ cos θkq̃ + (l −m)αkF

×
[

1√
v2
F q

2 + (Ω + i(n− l)αkF − vF q̃ cos θkq̃)2
− 1√

v2
F q

2 + (Ω + i(n−m)αkF )2

]
.

(C.1.6)

C.1.2 Integrals over bosonic variables

There is a number of integrals over the bosonic frequency Ω and momentum q one en-

counters while calculating the spin susceptibility. The following strategy provides a con-

venient way of calculating all of them: (i) integrate over vF q for x ∈ [0,∞[, (ii) integrate

over Ω by introducing a cut-off Λ–the low-energy physics proves to be independent of

the choice of the cut-off, (iii) perform angular integration, which is trivial for the out-

of-plane spin susceptibility and, in that case, can be performed at the very beginning.

Again, it is convenient to treat the out-of-plane and in-plane components separately.

Out-of-plane components

As it was explained in the main text, the q̃ dependence of χzz for q̃ � qα can be

calculated perturbatively, by expanding in q̃/qα, where qα = 2m∗|α|. In this section,

we calculate only the leading term of this expansion obtained by setting q̃ = 0. Later,

in Appendix C.2, we find the entire dependence of χzz on q̃ exactly, and show that

this dependence is absent for q̃ ≤ qα, which means that all terms of the expansion

in q̃/qα vanish. For now, we focus on the q̃ = 0 case and evaluate the integrals in

Equations (4.2.8a) and (4.2.8b) for χzz1

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
(I+−−− + I−+++)Π0 =

=

(
m

8π2vFαkF

)2 ∫ ∞
−∞

dΩ

∫ ∞
0

xdx
Ω2

√
x2 + Ω2

(
1√

x2 + (Ω + 2iαkF )2
− 1√

x2 + Ω2
+ c.c.

)

=

(
m

8π2vFαkF

)2 ∫ Λ

−Λ

dΩΩ2 ln
Ω2

Ω2 + α2k2
F

=

(
m

4πvF

)2 |α|kF
6π

+ . . . (C.1.7)
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∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
(I−+−+Π−+ + I+−+−Π+−) =

=

(
m

8π2vFαkF

)2 ∫
dΩ

∫
xdx

[
1√

x2 + (Ω + 2iαkF )2

×
(

1√
x2 + Ω2

− 1√
x2 + (Ω− 2iαkF )2

+
2iαkF (Ω− 2iαkF )

[x2 + (Ω− 2iαkF )2]3/2

)
+ c.c.

]

=

(
m

8π2vFαkF

)2 ∫
dΩΩ2 ln

Ω2

Ω2 + α2k2
F

=

(
m

4πvF

)2 |α|kF
6π

+ . . . (C.1.8)

where . . . stands for non-universal, Λ-dependent terms and c.c. denotes the com-

plex conjugate of the preceding expression. Substituting these results back into Equa-

tions (4.2.8a) and (4.2.8b), we obtain Equations (4.2.9a) and (4.2.9b). Similarly, we

obtain for the combination of triads in Equation (4.2.17) for χzz2

2

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
(I+−−I−++ + I+−+I−+−) =

= −
(

m

4π2vFαkF

)2 ∫
dΩ

∫
xdx

∣∣∣∣∣ 1√
x2 + (Ω + 2iαkF )2

− 1√
x2 + Ω2

∣∣∣∣∣
2

=

(
m

4π2vFαkF

)2 ∫
dΩΩ2 ln

Ω2

Ω2 + α2k2
F

=
2

3π

(
m

4πvF

)2

|α|kF + . . . (C.1.9)

In-plane components

We start with χxx1 given by Equations (4.2.10a) and (4.2.10b). First, we notice that the

quaternion structure of the first lines in Equations (4.2.10a) and (4.2.10b) is the same

as in the first lines of Equations (4.2.8a) and (4.2.8b) for the out-of-plane component;

the only difference is in the factor of sin2 θkq̃. Since these expressions contain α, they

can be evaluated at q̃ = 0 in the same way as the corresponding expressions in χzz1
were evaluated. At q̃ = 0, the factor of sin2 θkq just gives 1/2 of the corresponding

contribution to χzz1 . Next, we calculate explicitly the integrals in the second line of

Equation (4.2.10a) and in the third line of Equation (4.2.10b). These contributions

contain an overall factor of q̃−2 and, therefore, one has to calculate the full dependence

on q̃ without expanding in q̃/qα. The part of the integrands that are odd in the angle

drop out and, since
∫ 2π

0
dθf(i cos θ) =

∫ 2π

0
dθ[f(i cos θ) + f(−i cos θ)]/2, all the formulas

can be written in an explicitly real form. For the first of these two integrals we obtain
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(for brevity, we relabel θkq̃ → θ)

∫
dΩ

2π

∫
dθ

2π

∫
qdq

2π
cos2 θ(I++++ + I−−−−)Π0 =

(
m

4π2v2
F q̃

)2 ∫ 2π

0

dθ

π

∫ ∞
−∞

dΩ

∫ ∞
0

xdx

× Ω2

√
x2 + Ω2

(
1√

x2 + (Ω− ivF q̃ cos θ)2
− 1√

x2 + Ω2

)
− iΩ3vF q̃ cos θ

(x2 + Ω2)2

=

(
m

4π2v2
F q̃

)2 ∫ 2π

0

dθ

2π

∫ ∞
−∞

dΩ

∫ ∞
0

xdx
Ω2

√
x2 + Ω2

(
1√

x2 + (Ω + ivF q̃ cos θ)2

− 1√
x2 + Ω2

+ c.c.

)
= −

(
m

4π2v2
F q̃

)2 ∫ Λ

−Λ

dΩ

∫ 2π

0

dθ

2π
Ω2 ln

(
1 +

v2
F q̃

2

4Ω2
cos θ2

)
= −2

(
m

4π2v2
F q̃

)2 ∫ Λ

−Λ

dΩΩ2 ln

[
1

2

(
1 +

√
1 +

v2
F q̃

2

4Ω2

)]
=

(
m

4πvF

)2
vF q̃

9π2
+ . . .

(C.1.10)

where, as before, . . . stands for non-universal, Λ-dependent terms. Notice that the SOI

dropped out and, therefore, the equation above is valid for any ratio q̃/qα. The second

integral reads as

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
cos2 θ(I++−+Π−+ + I−−+−Π+−) =

(
m

4π2v2
F q̃

)2 ∫
dθ

π

∫
dΩ

∫
xdx

×
{[

Ω2√
x2 + (Ω + 2iαkF )2

(
1√

x2 + (Ω− 2iαkF − ivF q̃ cos θ)2

+
1√

x2 + (Ω− 2iαkF + ivF q̃ cos θ)2
− 2√

x2 + (Ω− 2iαkF )2

)
+ c.c.

]
− iΩ2vF q̃ cos θ

|x2 + (Ω + 2iαkF )2|2
[

Ω + 2iαkF
x2 + (Ω + 2iαkF )2

+ c.c.

]}
= −

(
m

4π2v2
F q̃

)2 ∫ Λ

−Λ

dΩΩ2

∫
dθ

2π
ln

(
1 +

v2
F q̃

2

4Ω2
cos2 θ

)
=

(
m

4πvF

)2
vF q̃

9π2
+ . . .

(C.1.11)

which is the same result as in Equation (C.1.10). The second line in Equation (4.2.10b)

gives the same result as the third one. Collecting all the results above, we arrive at

Equations (4.2.11a) and (4.2.11b).
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Finally, for the SOI-independent part of diagram 3, we find

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π
cos2 θ[I+++(Ω, θkq̃, q, q̃)I−−−(Ω, θkq̃, q,−q̃)

+ I++−(Ω, θkq̃, q, q̃)I−−+(Ω, θkq̃, q,−q̃) + (q̃ → −q̃)]

= −
(

m

4π2v2
F q̃

)2 ∫
dθ

π

∫
dΩΩ2

∫
xdx

(∣∣∣∣ 1√
x2 + (Ω + ivF q̃ cos θ)2

− 1√
x2 + Ω2

∣∣∣∣2
+

∣∣∣∣ 1√
x2 + (Ω + 2iαkF + ivF q̃ cos θ)2

− 1√
x2 + (Ω + 2iαkF )2

∣∣∣∣2)
= −2

(
m

4π2v2
F q̃

)2 ∫
dΩΩ2

∫
dθ

π
ln

(
1 +

v2
F q̃

2 cos2 θ

Ω2

)
= −2

(
m

2π2v2
F q̃

)2 ∫ Λ

−Λ

dΩΩ2 ln
1

2

(
1 +

√
1 +

v2
F q̃

2

4Ω2

)
=

(
m

2πvF

)2
vF q̃

9π2
+ . . . (C.1.12)

C.2 Full q̃ dependence of the spin susceptibility

In the main text and preceding Appendices we found χzz at zero external momentum.

Here, we show how the full dependence of χzz can be found using the q = 0 part of

diagram 1 in Figure 4.2 as an example.

We consider Equation (4.2.8a) at finite q̃. The integral over bosonic variables reads

as reads

∫
dΩ

2π

∫
dθ

2π

∫
qdq

2π
[I+−−− + I−+++] Π0(Ω, q)

=

(
m

4π2vF

)2 ∫ 2π

0

dθ

2π

∫ ∞
−∞

dΩ

∫ ∞
0

xdx
Ω2

√
x2 + Ω2

[
1

(2αkF + vF q̃ cos θ)2

×
(

1√
x2 + (Ω− 2iαkF − ivF q̃ cos θ)2

− 1√
x2 + Ω2

− iΩ(2α + vF q̃ cos θ)

(x2 + Ω2)3/2

)

+ (α→ −α)

]
, (C.2.1)

where (α → −α) stands for a preceding term with a reversed sign of α and, as before,

we relabeled θkq̃ → θ. The last term in the parenthesis vanishes upon integration over

either the angle (in the principal value sense) or the frequency (it is odd in Ω), whereas
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the remainder yields

∫ 2π

0

dθ

2π

∫ ∞
−∞

dΩ

∫ ∞
0

xdx
Ω2

√
x2 + Ω2

1

(2αkF + vF q̃ cos θ)2

(
1√

x2 + (Ω + 2iαkF + ivF q̃ cos θ)2

− 1√
x2 + Ω2

+ c.c.

)
= −

∫ 2π

0

dθ

2π

∫ Λ

−Λ

dΩΩ2 ln [1 + (2αkF + vF q̃ cos θ)2/4Ω2]

(2αkF + vF q̃ cos θ)2

=
1

24

∫ 2π

0

dθ|2αkF + vF q̃ cos θ| = vF q̃

6
Re

√1−
(
qα
q̃

)2

+
qα
q̃

(
π

2
− arccos

qα
q̃

)
=

 πvF qα/12 for q̃ ≤ qα,

vF q̃
6

[
1 + 1

2

(
qα
q̃

)2

+ . . .

]
for q̃ � qα.

(C.2.2)

We see that while χzz1 is independent of q̃ for q̃ ≤ qα, for qα � qα it approaches the

linear-in-q̃ form found in [Chubukov03] in the absence of the SOI.

Another integral of this type occurs in the in-plane component, e.g., in the first line

of Equation (4.2.10a). The only difference compared to the out-of-plane part is an extra

sin2 θ factor. The q and Ω integrals are calculated in the same way while the angular

integral is replaced by

∫
dΩ

2π

∫
dθ

2π

∫
qdq

2π
sin2 θ [I+−−− + I−+++] Π =

1

24

∫ 2π

0

dθ sin2 θ|2αkF + vF q̃ cos θ|

=
vF q̃

12
Re

1

3

√
1−

(
qα
q̃

)2
{

2 +

(
qα
q̃

)2
}

+
qα
q̃

(
π

2
− arccos

qα
q̃

)
=

 πvF qα/24 for q̃ ≤ qα,

vF q̃
18

[
1 + 3

2

(
qα
q̃

)2

+ . . .

]
for q̃ � qα.

(C.2.3)

C.3 Logarithmic renormalization

In this Appendix, we analyze renormalization of the out-of-plane component of the spin

susceptibility in the Cooper channel for q̃ � qα. As an example, we consider diagram 1

at large momentum transfer to third order in the electron-electron interaction, see Fig-

ure C.1. The calculation is carried out most conveniently in the chiral basis as shown
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below

χxx1,q=2kF
=− 2U3

∫
Q

∫
K

∫
dωp
2π

∫
dεk
2π

∫
P

∫
L

Tr[G(−K +Q)G(−P +Q)G(−L+Q)]

× Tr[G(K + Q̃)σxG(K)G(P )G(L)G(K)σx]

=− 4U3

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

∫
dθl
2π

∑
{si}

Γtm;ns(θk, θp)Γns;vu(θp, θl)Γvu;tr(θl, θk)

× σxrl(θk)σxlm(θk)IlmnrΠstLuv, (C.3.1)

where

Γs1s2;s4s3(θk, θp) ≡ U〈p, s3|k, s1〉〈p, s4|k, s2〉 =
U

4

(
1 + s1s3e

i(θp−θk)
) (

1 + s2s4e
i(θp−θk)

)
(C.3.2)

is the scattering amplitude in the Cooper channel (k = −p) , σst(θk) ≡ 〈k, s|σx |k, t〉 =

−i(seiθk − te−iθk)/2, and

Luv =
m

2π

∫
dωl

∫
dεlgu(L)gv(−L+Q) =

m

4π
ln

Λ2

(vF q cos θlq + (u− v)αkF )2 + Ω2

=

{
m
4π

ln Λ2

α2k2F
≡ L(α) for u = v

m
4π

ln Λ2

v2F q
2 cos2 θlq+Ω2 ≡ L(q) for u = −v (C.3.3)

is the particle-particle (Cooper) propagator, evaluated on the Fermi surface at fixed

direction of the fermionic momentum l. An additional factor of 2 in Equation (C.3.1)

is related to the possibility of extracting the logarithmic contribution from either the

integral over P or that over L. Note that each scattering amplitude depends on the

difference of two angles, i.e., θp− θl = θpq− θlq, such that the angle θlq is shared between

the vertices and the function Luv. Moreover, due to the correlation of momenta, we have

θp = θk + π and θk = π/2− θkq̃.
Upon summation over the Rashba indices, the integration over θlq is readily carried

out in all u = v terms, whereas the u = −v terms require more a careful treatment. Due

to the dependence of the scattering amplitudes on θlq, Luv enters multiplied by a either

constant, or by sin 2θlq, or else by cos 2θlq

∫ 2π

0

dθlq
2π

 1

sin 2θlq
cos 2θlq

L(q) =
m

2π


ln Λ

|Ω|+
√
v2F q

2+Ω2

0

−1
2
− |Ω|

vF q

(
|Ω| −

√
v2
F q

2 + Ω2
)

 . (C.3.4)

Obviously, only the first choice leads to logarithmic renormalizaton. Keeping only this
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K,m K, r

−K + Q, t

−P +Q, n −L+Q, v

P, s L, u

K + Q̃, l

σx σx

U U U

Figure C.1: Diagram 1 to third order in electron-electron interaction at large momentum
transfer; here, the in-plane component is shown.

choice for u = −v , we obtain

χxx1,q=2kF
=− U3 m

2π

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

{[
3 sin2 θkq̃(I+−−− + I−+++)Π0

+ 3 cos2 θkq̃(I++++ + I−−−−)Π0 + sin2 θkq̃(I+−+−Π+− + I−+−+Π−+)

+ cos2 θkq̃(I++−+Π−+ + I−−+−Π+−)
]

ln
Λ

|α|kF
+
[

sin2 θkq̃(I+−−− + I−+++)Π0 + cos2 θkq̃(I++++ + I−−−−)Π0

+ 3 sin2 θkq̃(I+−+−Π+− + I−+−+Π−+) + 3 cos2 θkq̃(I++−+Π−+ + I−−+−Π+−)

× ln
Λ

|Ω|+
√
v2
F q

2 + Ω2

]}
. (C.3.5)

The first two lines in Equation (C.3.5) contain an Ω and q-independent logarithmic

factor. Integrations over q, θkq̃, and Ω in these lines produce terms which scale either as

q̃ or as |α| , thus these two lines generate terms of the type q̃ ln |α| and |α| ln |α| . Next,

we note that some combinations of quaternions and polarizations bubbles in these two

lines,when integrated over q, θkq̃, and Ω, produce a q̃ term while others produce an |α|
term. Namely, combinations (I++++ + I−−−−)Π0 and I++−+Π−+ + I−−+−Π+− produce

q̃ , while (I+−−− + I−+++)Π0 and I+−+−Π+− + I−+−+Π−+ produce |α|. To extract the

leading logarithmic dependence, we split the Ω and q-dependent logarithmic factor into

two parts as ln vF q̃

|Ω|+
√
v2F q

2+Ω2
+ ln Λ

vF q̃
, when it multiplies the combinations of the first

type, and as ln kF |α|
|Ω|+
√
v2F q

2+Ω2
+ ln Λ

kF |α| , when it multiples the combinations of the second

type. The Ω- and q-dependent remainders do not produce main logarithms because the
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internal scales of Ω and q are set either by q̃ or by |α| for the first and second types,

correspondingly. Therefore, the only main logarithmis we have are either ln Λ
vF q̃

or ln Λ
kF |α| .

Collecting all the contributions, we finally obtain

χxx1,q=2kF
=− u3 2χ0

3

[ |α|kF
EF

ln
Λ

|α|kF
+

2

3π

vF q̃

EF

(
ln

Λ

|α|kF
+ ln

Λ

vF q̃

)]
≈− u3 2χ0

3

[ |α|kF
EF

ln
Λ

|α|kF
+

2

3π

vF q̃

EF
ln

Λ

vF q̃

]
, (C.3.6)

where in the last line we retained only leading logarithms renormalizing each of the two

terms in of the second-order result. Thus we see that each energy scale, i.e., vF q̃ and

vF qα, is renormalized by itself.

C.4 Nonanalytic dependence of the free energy as

a function of SOI

In a number of recent papers [Agarwal11, Chesi11b, Chesi11a], the properties of inter-

acting helical Fermi liquids were analyzed from a general point of view. In particular,

Chesi and Giuliani [Chesi11b] have shown that an equilibrium value of helical imbalance

δN ≡ N+ −N−
N+ +N−

, (C.4.1)

where N± is the number of electrons in the ± Rashba subbands, is not affected to any

order in the electron-electron interaction and to first order in Rashba SOI. Mathemat-

ically, this statement is equivalent to the notion that, for small δN and α, the ground

state energy of the system F can be written as E = A(δN − 2mα/kF )2, so that the

minimum value of F corresponds to the non-interacting value of δN . The analysis of

[Chesi11b] was based on the assumption that F is an analytic function of α, at least to

order α2. In a related paper, Chesi and Giuliani [Chesi11a] analyzed the dependence of

F on δN within the Random-Phase Approximation (RPA) for a Coulomb interaction

and found a non-analytic δN4 ln |δN | term.

In this Appendix, we analyze the non-analytic dependence of F on α by going beyond

the RPA. [For small α, there is no need to consider the dependences of F on α and

δN separately, as the shift in the equilibrium value of δN due to the electron-electron

interaction can be found perturbatively.] To this end, we derive the free energy at q̃ =

T = 0 –equal, therefore, to the ground state energy–following the method of [Żak10a]

which includes renormalization in the Cooper channel to all orders in the interaction.

The free energy is given by the skeleton diagram in Figure C.2

Fzz = −1

4

∫
q

Γ̃s1s4;s3s2(kF,−kF;−kF,kF)Γ̃s3s2;s1s4(−kF,kF; kF,−kF)Πs1s2Πs3s4 ,

(C.4.2)
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K +Q, s2

P +Q, s4

K, s1

P, s3

Γ̃ Γ̃
K

s1

s2

K ′

P

s3

s4

P ′

K

s1

s2

−K

L1

t1

t1

−L1

Ln−1

tn−1

tn−1

−Ln−1

P

s3

s4

−P

Figure C.2: Left: A skeleton diagram for the free energy in the presence of the
Cooper renormalization; Γ̃ is a renormalized Cooper vertex. Middle:
The effective scattering amplitude Γ

(1)
s1s2;s3s4(k,k

′; p,p′) in the chiral ba-
sis. Right: A generic n-th order ladder diagram in the Cooper channel,
Γ

(n)
s1s2;s3s4(k,−k; p,−p).

where a particle-hole bubble is given by Equation (4.2.7f) and Γ̃s1s2;s3s4(kF,−kF;−kF,kF)

is a scattering amplitude renormalized in the Cooper channel. To first order in electron-

electron interaction U , Γ̃s1s2;s3s4 is given by Equation (C.3.2).

It is convenient to decompose the renormalized amplitude into s, p, and d channels

as

Γ(1)
s1s2;s3s4

(k,−k; p,−p)(L) = Us1s2;s3s4(L) + Vs1s2;s3s4(L)ei(θp−θk) +Ws1s2;s3s4(L)e2i(θp−θk),

(C.4.3)

where the bare values of the corresponding harmonics are Us1s2;s3s4(0) = u2kF /2,

Vs1s2;s3s4(0) = u2kF (s1s3 + s2s4)/2, and Ws1s2;s3s4(0) = u2kF s1s2s3s4/2. The s,p,d har-

monics of Γ̃ were shown in [Żak10a] to obey a system of decoupled Renormalization

Group (RG) equations:

− d

dL
Us1s2;s3s4(L) =

∑
s

Us1s2;s−s(L)Us−s;s3s4(L), (C.4.4)

− d

dL
Vs1s2;s3s4(L) =

∑
s

Vs1s2;s−s(L)Vs−s;s3s4(L), (C.4.5)

− d

dL
Ws1s2;s3s4(L) =

∑
s

Ws1s2;s−s(L)Ws−s;s3s4(L), (C.4.6)

where the RG variable is defined as

L ≡ Lss =
m

2π
ln

Λ

|α|kF
. (C.4.7)

and the initial conditions were specified above. Solving these equations, we obtain

Us1s2;s3s4(L) = u/[2(1+uL)], Vss;±s±s(L) = ±u, Vs1s2s3s4(L) = u(s1s3+s2s4)/(1+2uL) for
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the remaining si’s, and Ws1s2;s3s4(L) = us1s2s3s4/[2(1 +uL)], with u ≡ u2kF . Combining

the solution in the Cooper channel, we find

Γ̃s±s;±ss(kF,−kF;−kF,kF) =
u

1 + uL
∓ u, (C.4.8)

Γ̃s−s;±s∓s(kF,−kF;−kF,kF) =
u

1 + uL
∓ u

1 + 2uL
, (C.4.9)

and zero for the remaining cases.

Substituting the RG amplitudes into Equation (C.4.2) and summing over the Rashba

indices, we arrive at

F =− u2

∫
dΩ

2π

∫
dθkq̃
2π

∫
qdq

2π

{(
1

1 + uL
− 1

1 + 2uL

)2(
Π2
−+ + Π2

+− − 2Π2
0

)
+ 2

(
1

1 + uL
+ 1

)2(
Π−+Π+− − Π2

0

)
+ 2

[(
1

1 + uL
− 1

)2

+

(
1

1 + uL
+

1

1 + 2uL

)2

+

(
1

1 + uL
− 1

1 + 2uL

)2

+

(
1

1 + uL
+ 1

)2
]

Π2
0

}
.

(C.4.10)

The terms proportional to Π2
0 are divergent and scale with the upper cut-off Λ, thus

they can be dropped as we are interested only in the low energy sector. Making use of

the following integrals
∫
qdq(Π+−Π−+ − Π2

0) = 0 and∫
dΩΩ2

∫
dqq(Π2

+− + Π2
−+ − 2Π2

0) =

∫
dΩ

Ω2

v2
F

ln
Ω2

Ω2 + 4α2k2
F

=
16π

3v2
F

|α|3k3
F +O(Λ),

(C.4.11)

we obtain the final result

F = −u2χ0

[
1

1 + u ln Λ
|α|kF

− 1

1 + 2u ln Λ
|α|kF

]2
|α|3k3

F

2EF
. (C.4.12)

Note that F is non-zero starting only from the fourth order in u:

F (4) = −u4χ0
|α|3k3

F

2EF
ln2

( |α|kF
Λ

)
. (C.4.13)

Apart from the logarithmic factor, a cubic dependence of F on |α| is in line with a gen-

eral power-counting argument [Maslov06, Maslov09] which states that the non-analytic

dependence of the free energy in 2D is cubic in the relevant energy scale. A cubic depen-

dence of F on α implies that the shift in δN scales as α2C(L), where C(L) is a function

describing logarithmic renormalization in Equation (C.4.12). This is to be contrasted

with an α3 lnα scaling predicted within the RPA [Chesi11a].
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[Clark10] A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan and D. M.
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Christoph Bruder, Martin Brühlmann, Denis Bulaev, Guido Burkard, Oleg Chalaev,

Stefano Chesi, Bill Coish, Charles Doiron, Mathias Duckheim, Carlos Egues, Gerson Fer-

reira, Jan Fischer, Suhas Gangadharaiah, Stefanie Garni, Marco Hachiya, Rahel Heule,

Kevin van Hoogdalem, Philippe Jacquod, Jelena Klinovaja, Daniel Klauser, Verena
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