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Here is presented the complete 2,571,405-bp genome sequence of 

Capnocytophaga canimorsus strain 5 (Cc5), a strain that was isolated from a fatal 

septicaemia. Phylogenetic analysis of conserved genes supports the inclusion of 

C. canimorsus into the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum and 

indicates close relationships with environmental flavobacteria as Flavobacterium 

johnsoniae and Gramella forsetii. In addition, relative phylogenetic topology of 

Capnocytophaga species shows that C. canimorsus share more sequence 

similarities with human host associated Capnocytophaga species than species 

from the latter group among themselves (e.g. C. gingivalis and C. ochracea).  

As compared to other Capnocytophaga, C.canimorsus seems to have 

differentiated by large-scale horizontal gene transfer compensated by gene 

losses. Consistently with a relatively reduced genome size, genome scale 

metabolic modelling suggested a reduced global pleiotropy as it is illustrated by 

the presence of a split TCA cycle or by the metabolic uncoupling of the hexoses 

and N-acetylhexosamines pathways. In addition and in agreement with the high 

content in HCO3
- and Na+ ions in saliva, we predicted a CO2-dependent fumarate 

respiration coupled to a Na+ ions gradient based respiratory chain in Cc5. All 

together these observations draw the picture of an organism with a high degree 

of specialization to a relatively homeostatic host environment. 

Unexpectedly, the genome of Cc5 did not encode classical complex virulence 

functions as T3SSs or T4SSs. However it exhibits a very high relative number of 

predicted surface-exposed lipoproteins. Many of them are encoded within 13 

different putative polysaccharide utilization loci (PULs), a hallmark of the CFB 

group, discovered in the gut commensal Bacteroides thetaiotaomicron. When 

Cc5 bacteria were grown on Hek293 cells, at least 12 PULs were expressed and 

detected by mass spectrometry. Semi-quantitative analysis of the Cc5 surfome 

identified 73 surface exposed proteins among which 40 were lipoproteins and 

accounted for 76% of the total quantification. Interestingly, 28 proteins (38%) 

were encoded by 9 different PULs and corresponded to more than 54% of total 

MS-flying peptides detected. A systematic knockout analysis of the 13 PULs 

revealed that 6 PULs are involved in growth during cell culture infections with 

most dramatic effect observed for ∆PUL5. Proteins encoded by PUL5, one of the 

most abundant PULs (12%), turned out to be devoted to foraging glycans from N-

linked glycoproteins as fetuin but also IgG. It was not only essential for growth on 
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cells but also for survival in mice and in fresh human serum therefore 

representing a new type of virulence factor. 

Further characterization of the PUL5 deglycosylation mechanism revealed 

that deglycosylation is achieved by a large surface complex spanning the outer 

membrane and consisting of five PUL5 encoded Gpd proteins and the Siac 

sialidase. GpdCDEF contribute to the binding of glycoproteins at the bacterial 

surface while GpdG is a β-endo-glycosidase cleaving the N-linked 

oligosaccharide after the first N-linked GlcNAc residue. We demonstrate that 

GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins while 

GpdC resembles a TonB-dependent OM transporter and presumably imports 

oligosaccharides into the periplasm after cleavage from glycoproteins. Terminal 

sialic acid residues of the oligosaccharide are then removed by SiaC in the 

periplasm. Finally, degradation of the oligosaccharide proceeds sequentially from 

the desialylated non reducing end by the action of periplasmic exoglycosidases, 

including β-galactosidases, β-N-Acetylhexosaminidases and α-mannosidases. 

Genome sequencing of additional C. canimorsus strains have been 

performed with the only use of second generation sequencing methods (Solexa 

and 454). Two assembling approaches were developed in order to enhance 

assembly capacities of pre-existing tools. Draft assemblies of the three 

pathogenic human blood isolates C. canimorsus 2 (three contigs), C. canimorsus 

11 (152 contigs) and C. canimorsus 12 (63 contigs) are presented here. 

Comparative genomics including genomes of four available human hosted 

Capnocytophaga species stressed C. canimorsus exclusively conserved features 

as an oxidative respiratory chain and an oxidative stress resistance or the 

presence of a Cc5 specific PULs content. Therefore we propose these features 

as potential factors involved in the pathogenesis of C. canimorsus. 
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3.1. Capnocytophaga canimorsus 
Capnocytophaga canimorsus 

(Figure 3.1), formerly DF-2 

(dysgogenic fermentator 2), is a 

fastidious Gram negative commensal 

bacterium from the normal canine 

oral flora. It is responsible for rare 

but life-threatening zoonoses that 

occur after close contact with dogs 

(91%) and cats (9%) with a higher 

frequency for bites (54%), scratches 

(8.5%) or simply licks [1]. Such 

infections can lead to affections ranging from very mild flu like symptoms to 

fulminant sepsis potentially leading to multiple organ failure ([2] and [3]). 

Alternatively and in a minority of cases, meningitis, endocarditis or myocarditis 

can be observed. Fastidious growth of the pathogen and lack of symptoms 

during the initial stages of infection often lead to unattended wound [4]. 

Mortality is highest in case of sepsis (30%) [1], while it only reaches 5% for 

meningitis [5]. Reported predisposing factors are splenectomy (33% of sepsis 

cases), alcohol abuse (24%) or other immunosuppression (5%) but 41% of 

the patients do not show any other obvious risk factors [1]. 

C. canimorsus has first been described in 1976 [6] and assigned to the 

Capnocytophaga genus in 1989 [7]. Since then, it is regularly isolated from 

dog or cat bite infections [8]. Nowadays, C. canimorsus infections are well 

known by clinicians and more than 200 cases have been reported so far [9]. 

Apparent C. canimorsus infection incidence in Denmark encloses 1 case 

annually per million [3]. However several reasons would explain a significant 

underestimation of the factual infection frequency: 1) Systematic prophylactic 

antibiotic treatments after most categories of bites related injuries [10]; 2) 

sensitivity of C. canimorsus to most widely used antibiotics [11]; 3) an 

extended and variable incubation period (from 5 to 15 days) [5] with a large 

range of symptoms [3] [12]; 4) And fastidious growth specially in inappropriate 

routinely used blood culture conditions [12]. It is likely that generalization of 

Figure 3.1 C. canimorsus 

 

 

 

 

 

 

 

 

 

SEM of a thin Rod-shape C. canimorsus 

strain 5 (Cc5). (Chantal fitcher, 2007)  
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Figure 3.2 Phylogenetics of the Capnocytophaga genus 

 

 

 

 

 

 

 

 

 

 

clinical nucleotide sequence determination methods will afford a better 

assessment of the C. canimorsus infection incidence [13].  

3.2. The Capnocytophaga genus 
The Capnocytophaga genus exclusively includes a variety of fusiform 

commensals found in the oral flora of humans and other mammalians (Figure 

3.2). Often co-isolated with C. canimorsus, Capnocytophaga cynodegmi (DF-

2 like) is also found in dogs and cats with a significantly higher prevalence 

[13]. It occasionally leads to local wound infections in humans and animals 

with no obvious predisposing factors [7]. Seven Capnocytophaga species 

(formerly DF-1 group) are found in humans (Capnocytophaga ochracea, 

Capnocytophaga sputigena, Capnocytophaga gingivalis, Capnocytophaga 

haemolytica, Capnocytophaga granulosa, Capnocytophaga infantium, 

Capnocytophaga leadbetteri) [14]. Human Infections with human-associated 

Capnocytophaga species are extremely rare and only few cases have been 

reported mostly in immunocompromised patients [15-21]. 

The Capnocytophaga genus has first been thoroughly characterized in 

1979 [22-25]. It forms a functionally homogeneous taxon of capnophilic 

(greek: carbon dioxide (καπνος : smoke) loving), gliding, strict fermentators 

[7]. These bacteria are able to grow in aerobic or anaerobic conditions 

provided an elevated level of carbon dioxide is present (5-10% v/v). They are 

positive to the benzidine assay suggesting presence of iron-porphyrin 

compounds as cytochromes or other particular respiratory chain components. 

Acetate and succinate are the major or sole metabolic end products. G+C 

contents are rather low and range from 33-41%. 

 

 

 

 

 

 

Type strains 16S rRNA 
phylogenetic tree using 
the Weighbor weighted 
neighbor-joining 
algorithm. Bootstrap 
values are represented 
on their corresponding 
nodes; branch length is 
scaled in terms of 
mutation rate per site. 

http://rdp.cme.msu.edu/treebuilder/viewer.spr 
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3.3. C. canimorsus is member of the Bacteroidetes phylum 

Capnocytophaga belong to the Flavobacteriaceae family from the 

Bacteroidetes phylum. Bacteroidetes are remotely related to Proteobacteria and 

to most commonly studied human pathogens. They are taxonomically close to 

the environmental aquatic phylum Chlorobi (Green sulfur bacteria) and to the 

major rumen commensals Fibrobacteres (Figure 3.3). Bacteroidetes phylum 

currently ramifies into Bacteroidia, Sphingobacteria, Flavobacteria and 

Cytophagia classes. So far, only 34 bacteroidetes have their chromosome(s) 

completely sequenced (Table 3.3).  

The phylum exhibits a wide range of habitats and includes free-living and 

host-associated organisms. Several extremophiles belong to this phylum , for 

example the thermohalophilic and halophilic Rhodothermus marinus that colonize 

very narrow zones around submarine hot springs [26], the psychrophilic (or 

cryophilic) Flavobacteriaceae 3519-10 isolated in Antarctica from deep glacial ice 

that is able to grow at -8 °C by both producing an ice-binding protein and an ice 

recrystallization inhibitor [27], or the hyperhalophilic Salinibacter rubber from 

saltern crystallizer ponds whose proteins make up has adapted to strong ionic 

conditions [28]. Nevertheless, Bacteroidetes are not restricted to 

hyperspecialized niches and several ubiquitous environmental organisms are 

commonly found in soil and freshwater like Flavobacterium johnsoniae, the main 

model system for studies of gliding motility [29] or the pleomorphic Spirosoma 

linguale originally isolated from a laboratory water bath [30]. Host associated 

Bacteroidetes also display strong diversity. Several arthropods and protists 

endosymbionts have been described among Bacteroidetes to date. For instance, 

the Blattabacterium spp. (Flavobacteriales) are maternally inherited major 

endosymbiont of the cockroach and thought to support metabolic nitrogen 

recycling [31, 32], the N2-fixing endosymbiont Azobacteroides 

pseudotrichonymphae (Bacteroidales) lives in the termite’s gut protist 

Pseudotrichonympha grassii’s, ensures optimal lignocellulose fermentation and 

prevents nitrogen deficiencies [33], another example is Amoebophilus asiaticus, 

an obligate endoparasite of the free living Acanthamoeba sp. [34].  
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 Figure 3.3 Prokaryotic Phylogeny Webpage (April 2007).  

Large DNA Insertion / deletion events (blue and brown arrows) are of high interest in phylogeny 

determination.  (http://www.bacterialphylogeny.com/index.html) 
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Extracellular host associated Bacteroidetes are by far the most studied 

organism of the phylum mainly because of the specialized relationship they 

share with human hosts. Bacteroides spp. are dominant members of the 

major human microflora community, the colonic microbiota (e.g. Bacteroides 

fragilis [35], B. thetaiotaomicron [36], B. vulgatus and B. distasonis [37]). They 

are also considered as opportunistic pathogen as they can severely limit the 

success of gastro-intestinal surgery, and are repeatedly been associated with 

extraintestinal infections in animals and humans. Specialized pathogens 

among Bacteroidetes have also been reported and are of high interest in 

odontology like the highly proteolytic Porphyromonas gingivalis that initiates 

periodontal disease, one of the most frequently occurring infectious diseases 

in humans [38]. Other members of this phylum, particularly from the 

Flavobacteriaceae family (as C. canimorsus), are also renowned for the 

damages they can cause in the zootechnical field. The worldwide respiratory 

avian pathogen Ornithobacterium rhinotracheale typically causes airsacculitis 

symptoms leading to millions of dollars losses to the poultry industry annually 

[39]. Riemerella anatipestifer, a contagious septicemia agent in various birds 

also accounts for major economic losses in industrialized duck production 

[40]. Another example is the facultative intracellular pathogen of trouts and 

salmons Flavobacterium psychrophilum. it is currently one of the most 

devastating fish pathogens due to horizontal and vertical transmission and to 

the gravity of symptoms it generates (septicemia and extensive necrotic 

lesions) [41]. 
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Table 3.3 Completely sequenced genome within Bacteroidetes 

Class Genus genomes DNA source Isolation 
Bacteroides 4 Human intestinal microflora 

Azobacteroides 1 Termite gut protest associated 
Parabacteroides 1 Human intestinal microflora 
Porphyromonas 2 Human oral microflora 

Bacteroidia 

Prevotella 2 
Cattle rumen flora / Human oral 
microflora 

Dyadobacter 1 Plant stems 
Cytophagia 

Spirosoma 1 laboratory water bath 
Blattabacterium 2 cockroachs 

Capnocytophaga 1 Human oral microflora 
Croceibacter 1 Bermuda Atlantic 

Unknown 
Flavobacteriales 

2 
Antarctica subglacial lake / Coastal 
Pacific Ocean 

Flavobacterium 2 
Soils & fresh waters / Salmon 
infection 

Gramella 1 Sea waters 
Robiginitalea 1 Sea waters 

Sulcia 4 sap-feeding insects 

Flavobacteria 

Zunongwangia 1 deep-sea waters 
Chitinophaga 1 pine litter 
Cytophaga 1 soil 
Pedobacter 1 dry soil 

Rhodothermus 1 submarine hot springs, Iceland 

Sphingobacteria 

Salinibacter 2 saltern crystallizer pond 
unclassified Amoebophilus 1 Acanthamoeba sp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



Introduction 

 

 18 

3.4. C. canimorsus is a canine oral commensal 
Mammalians’ oral cavity is a highly heterogeneous environment made of 

different tissular compartments that exhibits strong composition and structural 

differences (e.g. mucosa, dental surfaces, gingival epithelium, lingual 

surfaces, saliva, crevicular fluids…). Each microenvironment is colonized by a 

specifically associated microbial biofilm as the so called dental plaque that 

cover several oral surfaces including the dental enamel layer. However, 

despite such a micro-environmental diversity, microflora is not well 

compartmented in the oral cavity. Several attempts to identify microbial 

composition bias according to oral localization failed to define specific site 

associated bacterial communities and it is currently accepted that “everything 

is everywhere” [42, 43]. In total, human oral microbiota is composed of up to 

700 bacterial phylotypes that alternatively become dominant according to the 

on going physiological state (e.g. gingivitis, tooth decay, early/late colonization 

stages or stable and self-sustained climax communities) [43, 44].  

Characterization of the commensal way of life of C. canimorsus is crucial 

in the understanding process of the pathogenic events it can trigger when 

incidentally introduced into alternative mammalian hosts. Identification of 

preferentially colonized oral sites or host groups by C. canimorsus would be 

highly informative. It would then be possible to assess possible interactions 

(with host cells or other bacteria), substrates availability, and sustained 

immune pressure during commensalism with dogs or cats. However, canine 

and feline oral microbiology are poorly studied and only few works consider 

Capnocytophaga species in animals [45].  

In contrast to C. canimorsus and C. cynodegmi, human hosted oral 

Capnocytophaga species (HCSs) benefit from sound investigation. C. 

gingivalis, C. ochracea and C. sputigena belong to the 8% of identified 

species that normally account for more than half of the total oral microbiota 

and are therefore considered in most polymicrobial studies [43]. The most 

obvious feature emerging from literature is an apparent tropism of HCSs for 

inflammation sites (i.e. bacteria is more abundant at gingivitis or periodontitis 

sites) but this is also observed for the vast majority of oral bacteria [43]. In 
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Figure 3.4.1 Microbial profiles of healthy and periodontitis affected individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Socransky & Haffajee [43]. Mean counts (×105) of 40 microbial taxa in subgingival plaque 

samples taken from 184 periodontally healthy and 592 subjects with chronic periodontitis. The species are 

color coded according to their role during biofilm formation and pathogenesis. The darker shade represents 

the periodontitis subjects, while the lighter shade represents the periodontally healthy subjects. 

 

contrast to suspected periodontal pathogens and most normal colonizers, 

HCSs have been shown to be significantly more prevalent and abundant in 

periodontally healthy persons compare to individual exhibiting periodontitis 

(Fig. 3.4.1). Even more, their presence in the oral cavity correlates to lower 

risks of dental disease progression [43, 46-48].  
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 No direct interaction or adhesion to human host tissues have been 

observed for HCSs so far. In facts, most polymicrobial subgingival biofilm 

models consider HCSs as secondary colonizers because of their lectin-based 

capacity to coaggregates with several gram-positive primary colonizers (e.g. 

Streptococcus sanguis, Actinomyces naeslundii, Actinomyces israelii). HCSs 

are then thought to bridge primary colonizers to tertiary colonizing species as 

the highly congregating Fusobacterium nucleatum and late colonizers (e.g. P. 

gingivalis or Treponema denticola) (Fig. 3.4.2) [44]. 

As for most oral bacteria, several studies failed to find significant 

differences in HCSs abundances among normal oral compartments. The only 

repeatedly reported bias in HCSs oral distribution is the increasing bacterial 

abundance that correlates with increasing subgingival pockets depth [43]. 

Subgingival pocket is a very important oral compartment responsible for 

significant serum and leukocyte exchange between the oral cavity and 

subjacent tissular circulation. The so called crevicular fluid, a constitutive 

serum exudate, virtually fills the subgingival pocket [49]. Consequentially, 

primary and adaptative immunity is higher there than in any other oral sub-

compartment indicating that immune pressure sustained by subgingivial 

inhabitants is substantial. Interestingly, this is consistent with the addition of 

blood or serum to growth media required by all Capnocytophaga species to 

achieve rapid growth [7, 22]. 
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Figure 3.4.2 Model of oral bacterial colonization at the dental surface  
(Kolenbrander et al., 2006) 

 

From the bottom, primary colonizers 
bind via adhesins (round black 
lines) to complementary salivary 
receptors (round-topped columns) 
in the acquired pellicle coating the 
tooth surface. Sequential bacterial 
binding results in the appearance of 
nascent surfaces that bridge with 
the next coaggregating partner. 
Rectangular symbols represent 
lactose-inhibitable coaggregations. 
Other symbols represent 
components that have no known 
inhibitor. The bacterial species first 
mentioned here are Actinobacillus 
actinomycetemcomitans, Eikenella 
corrodens, Eubacterium spp., 
Haemophilus parainfluenzae, 
Prevotella denticola, P. intermedia, 
P. loescheii, Propionibacterium 
acnes, Selenomonas flueggei, 
Streptococcus gordonii, 
Streptococcus mitis, Streptococcus 
oralis, and Veillonella atypica. 
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Species Dog Cat Human Pig Rodents Sheep Cattle 

effectives 376 369 140 13 35* 12 15 

C.canimorsus  

positive cultures 
128 60 0 0 0* 3 5 

Amylase activity 0 0 +++ ++ +++* 0 0 

 
* extrapolated from C.canimorsus counts in Hamsters and amylase activity from Rabbits 
and Rats 

Table 3.4 Occurrence of cultured C.canimorsus in mammalian oral cavities 

(Mally et al., 2009; Blanche et al., 1998, Westwell et al., 1989, HJ Lipner 1947 and Chauncey et al., 1963.) 

 It has been estimated by cultural means that more than every second 

dog carries C. canimorsus in its normal oral flora [50]. Because of the very 

specific cultural conditions required by C. canimorsus strains, prevalence has 

often been underestimated in previous studies. A recent study using a PCR 

based method reported up to 74% of dogs carrying C. canimorsus in their 

mouth [13]. 

Correlation between C. canimorsus occurrence and different host factors 

as lifestyle, health, breed or species have been poorly investigated. A recent 

study describes a higher occurrence of C. canimorsus among small breeds 

and male or neutered dogs [45]. A few studies reported other oral hosts than 

dogs and cats. So far, C. canimorsus has only been isolated from nutrition 

specialized mammalian species as carnivores or herbivores where amylase 

activity and dental decay are hardly observed (Table 3.4) [51-54]. One could 

speculate that Capnocytophaga species benefit from a relative independence 

from host diet uptake as it could be in the case of individuals with good dental 

hygiene practices or for carnivores that quickly swallow their food without any 

oral preprocessing. In other hosts, nutrient particles remaining in the oral 

cavity would support a different microbiotic profile and an increased 

competition for Capnocytophaga species. 
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3.5. C. canimorsus 5 and the molecular basis of its way of life 

Capnocytophaga canimorsus 5 (Cc5) is a strain isolated from a patient 

with fatal septicemia and is used as a model to understand the high 

aggressiveness of C. canimorsus for humans. Recently, a number of clues 

showed that Cc5 does not exhibit any strong pathogen-associated molecular 

pattern. Unusual features of its LPS provide C. canimorsus with the capacity to 

resist to killing by human complement as well as to escape phagocytosis by 

human polymorphonuclear leukocytes (PMNs) [55]. They are also able to evade 

detection and phagocytosis by macrophages, which results in a lack of release of 

pro-inflammatory cytokines [56]. Despite such anti-inflammatory mechanisms, C. 

canimorsus are not cytotoxic for macrophages and it has even been shown that 

they remain undetected by Toll like receptor 4 (TLR4) analogs. In addition to this 

passive evasion from innate immunity, some strains, including Cc5, even actively 

block macrophage’s pro-inflammatory responses: Despite stimulation by an 

endotoxic Escherichia coli lipopolysaccharide (LPS), macrophages fail to release 

nitric oxide (NO), TNF and other cytokines if they are pre-incubated in presence 

of C. canimorsus [56]. Moreover, when challenged by Escherichia coli, these 

macrophages can no longer kill phagocytosed E. coli [57]. The molecular bases 

of these active immunosuppressive mechanisms are not understood yet. 

However, their study led to the serendipitous discovery that the fastidious C. 

canimorsus grow readily upon direct contact with mammalian cells including 

phagocytes. This property was found to be dependent on a peripheral sialidase 

allowing C. canimorsus to harvest amino sugars of glycan chains from host cell 

glycoproteins [58]. Interestingly, sialidase was also found to contribute to 

bacterial persistence in a murine infection model [58]. Thus, the feeding system 

that C. canimorsus evolved in its extremely competitive niche -the canine oral 

cavity-, could be seen as an essential virulence factor.  

Despite extended characterization of C. canimorsus behavior in presence 

of diverse mammalian cells, molecular mechanisms of host interaction involved in 

bacterial growth and in immunity control remains poorly understood. To this 

purpose, deciphering of the C. canimorsus genome consequently became a 

priority. This thesis describes assembly, annotation and analysis of the Cc5 

genome and follow-up experiments enabling further understanding of the C. 

canimorsus life style. 
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4. Genomics of C. 

canimorsus 5 

The Capnocytophaga canimorsus Genome and 

Surfome reveal a key role of glycan foraging systems 

in its specialized host-dependent lifestyle. 
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ABSTRACT  

Capnocytophaga canimorsus are commensal Gram-negative bacteria from 

dog's mouth that cause rare but dramatic septicaemia in humans. C. 

canimorsus escape innate immune defenses and have the unusual property 

to feed on cultured mammalian cells, including phagocytes. Here we present 

the complete 2,571,405-bp genome sequence and the surface proteome of 

strain Cc5. Genome analysis highlighted a close relationship between 

Capnocytophaga and Flavobacteria among Bacteroidetes. Functional 

annotation and metabolic modeling consistently reflect adaptation to the 

canine oral environment. The genome of Cc5 does not encode any classical 

complex virulence system but a very high relative number of lipoproteins. 

Many of these belong to 13 surface exposed feeding complexes encoded by 

polysaccharide utilization loci (PULs), a hallmark of the Flavobacteria-

Bacteroides group. When Cc5 bacteria were grown on Hek293 cells, at least 

12 PULs were expressed and their products represented more than half of the 

total peptides from the surface proteome. Systematic mutagenesis revealed 

that half of these complexes contributed to growth on cells. The complex 

encoded by PUL5, one of the most abundant ones, turned out to be devoted 

to foraging glycans from N-linked glycoproteins. It was not only essential for 

growth on cells but also for survival in mice and in fresh human serum. It thus 

represents a new type of virulence factor. 
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Author Summary 

Capnocytophaga canimorsus are Gram-negative commensal bacteria from 

the oral flora of dogs and cats, which cause rare but severe infections in 

humans that have been bitten or simply licked by a dog/cat. Fulminant 

septicemia and peripheral gangrene are the most common syndromes.  Here 

we present the first genome sequence of a C. canimorsus strain and we 

analyze the proteins anchored at the bacterial surface.  The genome analysis 

underlines the proximity of C. canimorsus with Bacteroides spp, the main 

commensals of the human colon, and also with Flavobacteria, saprophytes 

from aquatic environments.  Like the others, C. canimorsus are dedicated 

glycophile bacteria.  Indeed, we identified 13 surface-exposed protein 

complexes specialized in foraging diverse polysaccharides and complex 

glycosides.  One of them, abundant at the bacterial surface, turned out to be 

devoted to the harvest of host glycoproteins.  Although its main function must 

be to sustain commensalism in dog's mouth, we show that it may also 

contribute to human pathogenesis.  
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INTRODUCTION  

Capnocytophaga canimorsus, formerly dysgonic fermentor 2 (DF-2), is a non-

haemolytic Gram negative commensal bacterium from dog's mouth 

responsible for rare but life-threatening zoonoses. The genus 

Capnocytophaga belongs to the phylum Bacteroidetes, family of 

Flavobacteriaceae. It includes a variety of commensals found in the oral flora 

of mammalians. C. canimorsus are found in dogs and cats while 

Capnocytophaga gingivalis, ochracea and sputigena are found in human 

mouth [7, 14]. Human infections by C. canimorsus occur after dog bites, 

scratches or simply licks. They generally appear as fulminant septicaemia, 

peripheral gangrene or meningitis, with mortality as high as 40 % [3, 5]. A few 

recent observations help understanding the high aggressiveness of C. 

canimorsus for humans. First, C. canimorsus are able to escape complement 

killing and opsonization and hence to avoid phagocytosis by human 

polymorphonuclear leukocytes (PMN's)[55]. They also escape detection and 

phagocytosis by macrophages, which results in a lack of release of pro-

inflammatory cytokines [56]. In addition to this passive evasion from innate 

immunity, some strains even actively block the onset of pro-inflammatory 

signalling induced by an Escherichia coli lipopolysaccharide (LPS) stimulus 

[56] and are able to block the killing of phagocytosed E. coli by macrophages 

[57]. The molecular bases of these active immunosuppressive mechanisms 

are not understood yet. However, their study led to the serendipitous 

discovery that the fastidious C. canimorsus grow readily upon direct contact 

with mammalian cells including phagocytes. This property was found to be 

dependent on a sialidase allowing C. canimorsus to harvest amino sugars of 

glycan chains from host cell glycoproteins [58]. Interestingly, sialidase was 

also found to contribute to bacterial persistence in a murine infection model 

[58]. Thus, the feeding system that C. canimorsus evolved in its extremely 

competitive niche -the canine oral cavity-, could be seen as an essential 

virulence factor. 

Here, we report the first complete genome sequence and the surface 

proteome of a C. canimorsus strain. These analyses revealed the presence of 

13 putative surface exposed polysaccharide utilization systems, typical of the 
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Cytophaga-Flavobacteria-Bacteroides group. Through systematic deletion 

mutagenesis of the 13 polysaccharide utilisation loci (PULs), we identified a 

PUL essential for glycoprotein deglycosylation, growth on mammalian cells, 

growth in human serum and persistence in the mouse. To our knowledge, this 

is the first report of a coherent foraging system specialized in N-linked surface 

glycoproteins deglycosylation. It also provides the first evidence that such a 

foraging system could be a virulence factor. 

 

RESULTS 

 

General Genome features 

 The genome of Cc5 consists of a single circular replicon of 2,571,405 

bp with a G+C content of 36.11% (CP002113)(Fig 4.1.1). No plasmid was 

detected during assembly. In total, 2,414 coding sequences (CDSs) were 

identified, with 1,364 coding for proteins with high similarity to proteins in the 

non-redundant database (Table S4.1). This genome size is similar to those of 

C. gingivalis (NZ_ACLQ00000000, 2.66 Mb, 65 contigs), C. sputigena 

(NZ_ABZV00000000, 3.00 Mb, 37 contigs) and C. ochracea (NC_013162, 2.6 

Mb, complete genome)[59]. As compared to genomes of other members of 

the Bacteroidetes phylum, such as the 6.1 Mb genome of the free living 

Flavobacterium johnsoniae [60], the 6.25 Mb genome of the commensal 

Bacteroides thetaiotaomicron [36] and the 5.3 Mb genome of Bacteroides 

fragilis [35], the C. canimorsus genome is thus rather small but it is still larger 

than that of Porphyromonas gingivalis (2.3 Mb)[38]. The genome encodes 46 

tRNAs, three sets of ribosomal RNA genes, and 6 additional non-coding 

RNAs (an RNaseP, two tmRNAs, a TPP riboswitch, an SRP and one single 

CRISPR sequence)(Table S4.1). 
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Figure 4.1.1. Circular map of the Cc5 genome. 
From the most outer to the most inner ring (1 to 6). 1) White to red gradient indicates 
Alien Hunter scores above threshold (ranging from 18.229 to 67.541). 2) Taxonomic 
class of the cluster of orthologs established during this study. 3) PULs (green) and IS 
related elements (red). 4-5) Forward strand CDSs (blue), reverse strand CDS (red) 
and ncRNAs (purple). 6) Color coded COG functional categories.   
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Comparison of the Cc5 genome with 13 genomes from the 

Bacteroidetes phylum and two genomes from the proteobacteria phylum 

(Escherichia coli and N. meningitidis) (Fig 4.1.2) defined a set of 243 

orthologous groups (OGs) conserved in every taxon. As expected, most of 

these (90) are involved in translation, ribosomal structure and biogenesis and 

represent the vast majority of this functional category within Cc5’s genome 

(137 genes). Considering solely members of the Bacteroidetes phylum, the 

number of conserved orthologs only raised to 333. This contrasts with the 

much higher number of genes shared with Flavobacteria (849 i.e 35% of Cc5 

genome) and with the three Capnocytophaga genomes currently available 

(1,121 i.e 46% of the Cc5 genome)(Fig 4.1.3.A). These data indicate that the 

Capnocytophaga have conserved a relatively high number of functions from 

Flavobacteria. Consequently, Flavobacteriaceae seem to have a large, 

specific and conserved core genome despite their capacity to colonize a wide 

range of habitats. In contrast, the Bacteroidetes phylum appears 

heterogeneous as most conserved genes were also conserved among all 15 

Gram-negative bacteria considered. (Fig 4.1.3.ABC). 

To have a hint as to the evolution of the C. canimorsus genome, we 

computed phylogenetic trees of 209 conserved proteins in the 15 genomes 

considered (Fig 4.1.2), C. canimorsus surprisingly clustered in between the 

three Capnocytophaga species colonizing the human mouth, suggesting that 

diversification of the C. canimorsus branch occurred after adaptation to the 

oral environment. 
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Figure 4.1.3. Orthologous groups distribution at different taxonomic 
levels or in respect to their functional categories (COG). 
A) Taxonomic classes among orthologous groups (OGs) including Cc5 genes. 
Core groups correspond to OGs with at least one occurrence in all the 
bacteria from the corresponding taxon (15 genomes considered here, Fig. 
4.1.2) while Outer groups correspond to OGs where no ortholog was found 
among genomes from the associated phylotype. B) Histogram representing 
the genomic distribution of COG functional categories (horizontal axis, D to Q 
code as in panel C) with color coded taxonomic distribution categories 
(vertical axis, number of genes). C) Percentage of genes assigned to 
functional COG categories in the Cc5 genome. D) Distribution of orthologs 
and paralogs among the four Capnocytophaga considered in this study. 
Species specific CoDing Sequences (CDS) are exclusively found in the 
corresponding Capnocytophaga genome. Missing genes are defined as CDS 
found in three Capnocytophaga species but missing in the one considered. E) 
Histogram representing the distribution of the COG functional categories 
(horizontal axis, D to Q as in B and C) with color coded (as in D) four species 
(vertical axis, number of genes). F) Groups of Orthologs and close paralogs 
populating the four Capnocytophaga genomes Venn diagram. 
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Adaptation to the canine oral environment 

89 regions accounting for 0.95 Mb of the Cc5 genome exhibited significant 

bias in DNA composition (Fig 4.1.1) and most of them encoded mobile 

genetic elements related genes (Fig 4.1.1 and Table S4.1). In addition, 893 

Cc5 genes (36% of the genome) did not match any ortholog in the three other 

Capnocytophaga genomes available and are referred to as the 

"Capnocytophaga outer group" (Fig 4.1.3.AF). Within this group of genes, 623 

(26.1% of Cc5 genome) even failed to cluster with any homolog at all during 

OG analysis of 15 genomes (i.e. Eubacteria outer group) (Fig 4.1.3.A). 

Hence, during its speciation and adaptation to the mouth of carnivores, C. 

canimorsus acquired a significant number of genes, by horizontal transfer. 

Some of these genes could originate from other bacteria as illustrated by 

several successive best blast hits (BHs) from other members of the oral 

microflora like Neisseria lactamica, or Propionibacterium. Eukaryotic BHs 

were also found and often exhibited N-terminal bacterial export sequences 

suggesting functional selection pressure (Table S4.1). The Cc5 genome 

contains 157 genes involved in DNA replication, recombination and repair 

(COG category L) while the 3 other Capnocytophaga contain only between 91 

and 109 CDSs in this category (Fig 4.1.3.CDE). In spite of significant 

horizontal gene transfer, the genome of Cc5 (2.57Mb) remains slightly smaller 

than the genome of the three Capnocytophaga colonizing the human mouth 

(see before). Hence, the genome of C. canimorsus has counter-balanced the 

acquisitions by losses and this is revealed by (i) a low redundancy level 

(lowest number of paralogs in the Capnocytophaga genus (Fig 4.1.3.D)), (ii) 

the absence of many genes conserved in the three other Capnocytophaga 

(Fig 4.1.3.DF) and (iii) a high number of ISs (Table S4.1 and Fig 4.1.1)[61]. 
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Like the other Capnocytophaga, C. canimorsus are capnophilic 

bacteria, meaning that they require a CO2-enriched atmosphere (>5%) for 

their growth [7, 22]. This requirement is consistent with the adaptation to the 

oral environment, known to contain high concentrations of the bicarbonate 

anion (HCO3
-)[62]. In C. ochracea, HCO3

--derived carbon has been shown to 

end up in succinate [62], a major final metabolite [22, 24]. Consistently, C. 

ochracea synthesizes high amounts of phosphoenolpyruvate carboxykinase 

(PEPCK), an enzyme which catalyzes the conversion of the glycolytic 

pathway intermediate phosphoenolpyruvate (PEP) and HCO3
- to oxaloacetate 

and ATP. Oxaloacetate is then converted in a two-steps reaction to the 

anaerobic final electron acceptor fumarate (Fig 4.1.4). The Cc5 genome 

encodes all the enzymes of this pathway as well as a respiratory 

quinol:fumarate reductase (QFR) membrane protein complex [63] that 

completes the anaerobic respiratory pathway (Fig 4.1.4). To validate these in 

silico findings, we analyzed the culture supernatant of Cc5 grown on Raw 

264.7 macrophages, by Nuclear Magnetic Resonance. Consistently, the only 

products released in mM concentrations were acetate (1.75 mM) and 

succinate (1.82 mM), the reduced product of fumarate respiration (Fig 4.1.5).  

 Diheme-containing QFR based fumarate respiration indirectly 

generates a proton motive force [64]. However, interestingly enough, Cc5 

metabolism modeling strongly suggests a Na+ cycle based respiratory chain 

as observed in marine and pathogenic bacteria such as Vibrio cholerae. 

Accordingly, the two components of the respiratory complex I (Nqr and Mrp), 

nine solute transporters, three H+-efflux antiporters and potentially the ATP-

synthase appear to be also Na+-dependent (Fig 4.1.4). 
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Figure 4.1.4 Model of terminal energy catabolism and respiratory chain 
of C. canimorsus 5.  
The high potential energy metabolism (e.g. glycolysis) produces pyruvate, 
oxaloacetate and fumarate (curved red arrows). A main metabolic pathway 
(Bold black arrows) leads to production of the two major fermentation 
products succinate and acetate. As shown for C. ochracea, the energy 
metabolism requires a CO2 dependent PEP carboxylation that produces 
oxaloacetate (Ccan_10960) and ATP (Ccan_15480) [62, 65]. Oxaloacetate is 
metabolized into malate, fumarate and succinate. Released succinate could 
be metabolized by cross-feeding bacteria from the oral polymicrobial 
community [66, 67]. Like C. ochracea, C. canimorsus would also form acetate 
from PEP and increase the ATP yield as compared to succinate formation. 
Fumarate reduction to succinate is mediated by a Diheme-containing 
menaquinol-fumarate reductase (QFR) and indirectly contributes to the proton 
gradient (white arrows) through fumarate respiration [64]. Respiratory 
complex I is represented by two putative NADH dependent Na+ pumps, 
namely Mrp like complex and NQR (NADH:quinone oxidoreductases) that 
reduce menaquinones (K2) to menaquinols (K2H2). This suggests that the 
respiratory system of C. canimorsus primarily generates a Na+ gradient in 
addition to the H+ gradient. Accordingly, nine solute transporters and three H+-
efflux antiporters appear to be also Na+-dependent. Two menaquinol oxidative 
complexes NrfHA and NrfBCD (initially named for nitrate reduction by 
formate) oxidize menaquinols and indirectly contribute to the H+ gradient by 
ammonium formation or oxidized (OCc) cytochrome c reduction (RCc). The 
NrfBCD complex is genetically associated to a cytochrome c oxidase complex 
(Cco 1) that could directly interact with RCc generated by NrfBCD. An 
additional locus coding another Cco complex has been identified in the Cc5 
genome (Cco 2). The specificity to Na+ or/and H+ gradients of the F0F1 
ATPase is not clearly predicted. However, the γ-subunit (Ccan_01890) hits 
the ATP synthase γ-chain, Na+specific model (PTHR11693:SF10). OM: outer 
membrane, IM: plasma membrane. Doted lines represent hypothetical 
reactions. 
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Figure 4.1.5 NMR analysis of the supernatant of Raw 264.7 macrophages cultures infected or not with 
Cc5. 
A) overview spectrum of the supernatant from infected cultures. Resonances close to water (4.78 ppm) are obscured due 
to solvent suppression. B) selected regions from the spectra from the infected (+) and not-infected (-) cultures, as well as 
of 3 mM succinate (suc) and 3 mM acetate (ac) dissolved in (-) medium. In the infected sample (+), two resonances (2.39 
ppm and 1.91 ppm) are more intense than in the non-infected control (-). Data from C. ochracea [62] indicate that 
succinate and/or acetate are the metabolites most likely to have higher concentrations. This assumption was confirmed by 
the observation of the respective resonances (2.39 ppm, suc) and (1.91 ppm, ac) in the control samples prepared from 
succinate (suc) and acetate (ac) dissolved in (-) medium. C) Using the NMR peak intensities of the supernatant and 
control spectra, the following concentrations of these metabolites are determined: 1.82 mM (suc,+), 0.14 mM (suc,-), 1.75 
mM (ac,+), and 0.17 mM (ac,-). 
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Gliding motility and export/import systems 

In good agreement with the early observation that C. canimorsus exhibits 

gliding motility [7], the Cc5 genome contains 20 homologs to the gld/spr/por 

genes encoding the archetypal gliding motility system from Flavobacterium 

johnsoniae [68] (Table 4.1).  

 

 

 F. joh F. psy C. hut P. gin P. int P. dis B. fra B. the C.can 

gldA Fjoh_1516 FP0252 CHU_1545 PGN_1004 PIN_A1093 BDI_1335 BF2629 BT_0562 Ccan_13070 

gldB Fjoh_1793 FP2069 CHU_3691 PGN_1061 PIN_A1414 BDI_1780 BF0973 BT_4189 Ccan_17700 

gldC Fjoh_1794 FP2068 CHU_0945      Ccan_17690 

gldD Fjoh_1540 FP1663 CHU_3683   BDI_1991   Ccan_01250 

gldF Fjoh_2722 FP1089 CHU_1546      Ccan_07670 

gldG Fjoh_2721 FP1090 CHU_1547      Ccan_07660 

gldH Fjoh_0890 FP0024 CHU_0291 PGN_1566  BDI_1879 BF4095 BT_3818 Ccan_01070 

gldI Fjoh_2369 FP1892 CHU_3665 PGN_0743     Ccan_11090 

gldJ Fjoh_1557 FP1389 CHU_3494 PGN_1676 PIN_A0879 BDI_3324 BF2407  Ccan_02810 

gldK(porK) Fjoh_1853 FP1973 CHU_0171 PGN_1676 PIN_A0879 BDI_3324 BF2407  Ccan_01610 

gldL(porL) Fjoh_1854 FP1972 CHU_0172 PGN_1675 PIN_A0878 BDI_3323 BF2931  Ccan_01620 

gldM(porM) Fjoh_1855 FP1971 CHU_0173 PGN_1674 PIN_A0877 BDI_3322 BF2932  Ccan_01630 

gldN(porN) Fjoh_1856 FP1970 CHU_2610 PGN_1673 PIN_A0876 BDI_3321   Ccan_01640 

sprA(sov) Fjoh_1653 FP2121 CHU_0029 PGN_0832 PIN_A1146 BDI_2659   Ccan_21890 

sprB Fjoh_0979 FP0016 CHU_2225 PGN_1317 PIN_A1872    Ccan_06770 

sprE(porW) Fjoh_1051 FP2467 CHU_0177 PGN_1877 PIN_A2099 BDI_3149   Ccan_01790 

porP Fjoh_3477 FP2412 CHU_0170 PGN_1677 PIN_A0880 BDI_3325   

Ccan_00610 

Ccan_03400 

Ccan_03990 

porQ Fjoh_2755 FP1713 CHU_2991 PGN_0645 PIN_0248 BDI_3738   ? 

porT(sprT) Fjoh_1466 FP0326 CHU_2709 PGN_0778 PIN_A1079 BDI_1856   Ccan_09030 

porU Fjoh_1556 FP1388 CHU_3237 PGN_0022 PIN_A0180 BDI_2576   ? 

porX Fjoh_2906 FP1066 CHU_1040 PGN_1019 PIN_A2097 BDI_3342 BF2968 BT_0818 ? 

porY Fjoh_1592 FP2349 CHU_0334 PGN_2001 PIN_A0086 BDI_2438 BF0583 BT_1470 ? 

 

Table modified from [69]. Orthologous genes were defined as reciprocal best-hits. F. joh, F. johnsoniae 
UW101 (NC_009441); F. psy, Flavobacterium psychrophilium JIP02/86 (NC_009613); C. hut, C. 
hutchinsonii ATCC 33406 (NC_008255); P. gin, P. gingivalis ATCC 33277 (NC_010729); P. dis, 
Prevotella intermedia 17 (J. Craig Venter Institute); Parabacteroides distasonis ATCC 8503 
(NC_009615); B. fra, B. fragilis YCH46 (NC_006347); B. the, and B. thetaiotaomicron VPI-5482 
(NC_004663). C. canimorsus (C.can), has been added on the basis of ortholog group analysis with 
ORTHOMCL. 

Table 4.1 Genes involved in gliding motility and the related protein export apparatus 
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Regarding protein export, besides the Sec and the Tat protein 

secretion systems, the genome encodes 6 major facilitators, 20 putative ABC 

transporters and 4 type I secretions systems but no type II, type III, type IV or 

type VI secretion systems (Table S4.1). However, like the flagellum, the 

gliding motility was recently shown to include a protein export apparatus [60].  

 Genome annotation predicts 206 lipoprotein genes, which corresponds 

to 8.5 % of the total coding capacity (Fig 4.1.6.A). This content of lipoproteins 

is relatively high as compared to Eubacteria in general but it is standard 

among Bacteroidetes (Fig 4.1.6.A). In agreement with the predicted synthesis 

of many lipoproteins, the LolACDE lipoprotein export system was identified 

(Table S4.1) but, as for all Bacteroidetes currently studied, LolB could not be 

identified on the basis of the sole sequence. The very high number of 

lipoproteins suggests that the lipoprotein export pathway could be used as a 

common protein export pathway as shown for P. gingivalis which uses 

lipoproteins to build surface filaments [70]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.6 Bacterial lipoprotein contents comparison and their 
distribution among the 13 Polysaccharide Utilization Loci of Cc5.  
A) Genomic content of genes encoding signal peptides I (SPI) or signal peptides II 
(SPII, lipoproteins) for 11 bacterial genomes. * indicates that 7 lipoprotein 
annotation tags were manually added to the Cc5 genome during semi manual 
curation and were not detected by the LipoP software used here. B) The 13 PULs 
identified by the presence of SusC-like and SusD-like genes. Putative functions 
are color coded as indicated in the key. The black arrows show the range of the 
deletion in the various knockout mutants engineered. Dots and waves give 
indications concerning the cellular localization of the protein. 
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The genome of C. canimorsus 5 contains 13 polysaccharide-utilization 

loci (PULs) 

 A. Salyers and co-workers discovered that B. thetaiotaomicron is 

endowed with a cell envelope-associated multiprotein system that enables the 

bacterium to bind and degrade starch [71]. A key feature of this starch 

utilization system (Sus) is the coordinated action of several gene products 

involved in substrate binding and degradation. Interestingly, some of the Sus 

components are predicted to be lipoproteins and have been shown to be 

surface exposed [72, 73]. Subsequent microbial genome sequencing projects 

revealed the presence of many polysaccharide utilization loci (PULs) 

encoding “Sus-like systems” in the genome of B. thetaiotaomicron and other 

saccharolytic Bacteroidetes [36, 73, 74]. Sus-like systems target all major 

classes of host and dietary glycans [75]. Thus, PUL-mediated glycan 

catabolism is an important component in gut colonization and ecology, but the 

genome of saprophytic Bacteroidetes like F. johnsoniae also contains a high 

number of PULs [60], indicating that PULs are a hallmark of the Bacteroidetes 

phylum rather than of commensal Bacteroides only. Since the genome of C. 

canimorsus also encodes a high number of lipoproteins and since C. 

canimorsus can harvest glycan moieties from mammalian surface 

glycoproteins [58], we paid particular attention to two conserved archetypal 

outer membrane (OM) proteins (SusC and SusD) [76, 77]. SusC resembles a 

TonB-dependent transporter and is essential for energy-dependent import of 

starch oligosaccharides into the periplasm [76] while SusD is a α-helical 

starch-binding lipoprotein. Iterative Hidden Markov Model screens based on 

susD and susC homologs identified 13 hypothetical PULs, which could 

encode surface feeding machineries (Fig 4.1.6.B). This number of PULs is 

significant but nevertheless much lower than the number found in B. 

thetaiotaomicron (88) [73] and in F. johnsoniae (44)[60], which presumably 

reflects the specialization to the oral cavity niche. As a matter of comparison, 

we found that the genome from the human C. ochracea exhibits 20 PULs.  

 Within the 13 PULs from Cc5, susC and susD homologs show strong 

synteny conservation among Bacteroidetes (eg. between Ccan_14040-14030 

and gi:29348720-gi:29348719 from B. thetaiotaomicron). However, even 
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though other PUL genes from Cc5 have orthologs among other Bacteroidetes, 

PULs are poorly conserved, suggesting a reshuffling of these loci during 

evolution as nicely shown recently for Bacteroides plebeius [78]. 

 

Glycan-foraging complexes are predominant at the bacterial surface  

 The genome of C. canimorsus encodes a high proportion of predicted 

lipoproteins and a significant proportion of them are part of Sus-like systems. 

Consequently, we hypothesized that most of these lipoproteins would be 

surface exposed and not periplasm-exposed like in enterobacteria for 

instance. To test this hypothesis, we carried out a proteomic analysis of the 

surface of Cc5 bacteria cultivated onto HEK293 cells. The first approach was 

a mild tryptic shaving followed by MS/MS analysis (Table S4.2). Excluding 6 

clear cytosolic contaminants (2 elongation factors and 4 ribosomal proteins), 

this approach identified a total of 62 putative surface-exposed proteins, 

including 59 where the peptide detection signal was strong enough to allow a 

relative quantification. As a control, we applied our shaving protocol to a 

corresponding lysed bacterial preparation and samples were analyzed by 

MS/MS (Table S4.2). The two lists of proteins were significantly different and, 

as expected, the contaminants from the shaving ranked high in the list of total 

proteins. Among the 62 hypothetical surface proteins, 38 were predicted to be 

lipoproteins processed by signal peptidase-II, 18 had a classical signal 

peptide and 6 had no characteristic peripheral feature (Table S4.2). The 

second approach was a surface biotinylation followed by avidin purification. It 

gave only 24 hits with only 3 clear cytosolic contaminations (1 elongation 

factor already contaminating the list of shaved proteins and 2 ribosomal 

proteins) but nevertheless added 13 new proteins to the surfome list, among 

which 3 predicted outer membrane proteins (OMPs) without SP, 8 with a SPI 

and two lipoproteins. Interestingly, 4 of the new proteins, including 3 susC 

homologs, happened to be encoded by PULs previously detected by the 

shaving method. In total, the list of surface proteins came thus to 75 (Table 

S4.2). Interestingly, the predominant proteins from the surfome were those 

encoded by PUL9 (16.6 %), PUL1 (12.6 %), PUL5 (12.0 %) as well as a 

putative thiol-activated cytolysin (Ccan_00790) (12.8 %) and a putative 
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endonuclease (Ccan_21630) (11.3 %). Products of PUL2, -6, -10, -11 and -12 

were minor components of the surfome. Finally, products of PUL3, -4, -7 and -

13 were detected in purified outer membranes. Thus, when Cc5 bacteria were 

grown on Hek293 cells, at least 12 PULs were expressed and their products 

contributed 53.5 % of the total peptides from the surfome (Fig 4.1.7). All this 

indicates that surface-exposed complexes specialized in foraging complex 

glycans or other macromolecules play a central role in the biology of C. 

canimorsus.  

 

Figure 4.1.7. Genetic and Functional distribution of the surfome of C. canimorsus 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59 surface-exposed proteins are encoded by only 34 loci, suggesting that most of these proteins form 
functional complexes. In agreement with this, these loci include 8 out the 13 PULs identified in the genome. 
Proteins were quantified by MS-MS peptide intensity. Panel A: % of the surface proteome encoded by the 
37 loci (including 3 ribosomal contaminant loci). Panel B: Functional distribution of surface protein 
highlighting the predominance of PUL-encoded feeding complexes at the bacterial surface (53.5%). The 
endonuclease Ccan_21630 and the surface exposed putative hemolysin Ccan_00790 respectively 
accounted for 11% and 13% of the total surfome.  
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PULs contribute to growth on cells, host protein deglycosylation and 

survival in human serum and in a murine model. 

 In order to assess the impact of these feeding complexes on growth at 

the expenses of mammalian cells, we undertook to independently knockout 

each of the 13 PULs. Removal of some PULs had a clear impact on growth 

on Hek293 cells but not on growth in blood agar plates. Deletion of PUL5 

alone led to a severe reduction of growth at the expenses of Hek293 cells 

(Fig 4.1.8.A) but deletion of PUL1,-2,-6,-9 or -11 also had a lower but 

significant impact. In the case of PUL5 and PUL9, the growth deficiency could 

be suppressed by the addition of N-Acetylglucosamine (GlcNAc) to the culture 

medium (Fig 4.1.8.A), suggesting that these PULs do indeed encode glycan 

foraging systems.  

 In order to confirm that C. canimorsus grow at the expenses of cellular 

glycoproteins, wt Cc5 bacteria and PUL deletion mutants were incubated with 

fetuin, a standard serum glycoprotein and the glycosylation state was 

monitored by lectin staining and immuno blotting. As shown in Fig 4.1.8.B, 

fetuin was deglycosylated by wt Cc5 bacteria and by all the PUL deletants, 

except by PUL5 deletants.  
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Figure 4.1.8 Contribution of the different PULs to feeding on HEK293 
cells and to fetuin deglycosylation.  
A. The 13 PUL knockout mutant strains were inoculated on HEK293 cells at 
moi=0.2, with (grey) or without (black) supplemented N-Acetyl glucosamine 
(GlcNAc) and grown for 23 hours. Significance is assessed by T-test of wt vs. 
∆PUL deletants and GlcNAc complementation vs. its corresponding non 
complemented ∆PUL (n=3). B. Deglycosylation of fetuin. top, western blot 
with anti-fetuin; middle: staining with the Sambucus nigra lectin (SNA) that 

binds preferentially to terminal Gal(α2-6)Sialic acid; bottom, staining with 
Datura stramonium lectin (DSA) that recognises (β-1,4) linked N-
Acetylglucosamine oligomers. 
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We conclude from all these observations that PUL5 plays a major role 

in the capacity of C. canimorsus to feed on live host cells by deglycosylating 

surface glycoproteins. The locus, which is among the most expressed PULs, 

(encoding 12% of the surfome, see previous section) consists of six genes. 

The SusC-like integral OMP represents the porin of the system, three 

lipoproteins presumably involved in substrate binding and a forth one 

predicted to be an endoglycosidase (Fig 4.1.6.B).  

 Since deglycosylation of host proteins could also contribute to growth 

during septicemia, we compared the growth of wt and ∆PUL5 bacteria in fresh 

and heat inactivated human serum. As shown in Fig 4.1.9.AB, while wt 

bacteria could grow even in fresh serum, the ∆PUL5 bacteria were 

significantly impaired in their growth. They even showed some sensitivity to 

the bactericidal activity of fresh human serum, although not to the same 

extend as a mutant affected in LPS synthesis [55]. Interestingly, serum 

sensitivity exclusively resulted from growth impairment in human serum as it 

was complemented by GlcNac. 

 Finally, we compared the survival of wt and ∆PUL5 bacteria in teflon 

cages implanted into mice, the only reported animal model for C. canimorsus 

[58]. We also included in this study, the sialidase mutant known to persist less 

than wt [58] and a mutant affected in the thiol-activated cytolysin 

(Ccan00790). As shown in Fig 4.1.9.C, in each experiment, only 1 out of 5 

mice cleared wt Cc5 bacteria after 28 days. In contrast, 4 mice cleared the 

sialidase mutant and 3 mice cleared the ∆PUL5 mutant. Only one mouse 

cleared the cytolysin mutant. In competition experiments, ∆PUL5 and 

cytolysin mutants were cleared. We infer from all these data that PUL5 

contributes to the survival in mice and in fresh human serum and hence that 

PUL5 can be considered as a virulence factor [58].  

 



Genomics of C. canimorsus 5 

 

 50 

Figure 4.1.9. Survival and growth of wt and ∆PUL5 Cc5 in murine tissue cages and in serum. 
 
A) Cc5 bacteria were injected into tissue cages implanted into mice and bacterial loads were inferred from 
the number of colony forming units after plating tissue cage fluid. Cc5 wt and knockout for PUL5 5 
(∆PUL5), sialidase (∆sia, ∆Ccan_04790::ermF) and cytolysin (∆cyt, ∆Ccan_00790::ermF) were tested. 
Polymorphonuclear neutrophils (PMNs) populations were monitored during infection with no significant 
increase observed (two top graphs). Single infections and competition assays were followed during 28 
days. B-C) 107 Cc5 bacteria were suspended in 1 ml of 10% human fresh serum (FS) or heat inactivated 
serum (HIS). In panel B, bacteria were counted by plating after 3 h of incubation in presence or absence of 
N-Acetylglucosamine (GlcNAc). In panel C, samples were counted after 1, 2 and 3 hours of incubation. 
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DISCUSSION 

Our genome analysis confirms the relatedness between the mouth 

commensals from the Capnocytophaga genus and the gut commensals from 

the Bacteroides genus but it also shows that the Bacteroidetes phylum is 

heterogeneous, suggesting that intermediate clades or taxa remain unknown. 

The genome analysis also shows that Capnocytophaga are closer from 

Flavobacteriaceae such as the marine G. forsetii [79] and the soil and lake 

saprophytic bacterium F. johnsoniae [60] than from Bacteroides. With F. 

johnsoniae, C. canimorsus shares the whole set of 13 gliding motility genes 

(gldA-N) (Table 4.1) agreeing with its initial description as a gliding bacterium 

[7]. During growth on mammalian cells, Cc5 bacteria produced large amounts 

of succinate. Genome-based metabolic modeling suggests that succinate was 

generated by CO2-dependent fumarate respiration coupled to Na+ gradient 

based respiratory chain. This model is consistent with the capnophilia of C. 

canimorsus and with the relatively high concentration of HCO3
- in saliva (25 

mM).  

 The genome of Cc5 did not encode any of the complex secretion 

pathways commonly found in the α and γ proteobacteria like T2S, T3S, T4S 

and T6S. In contrast, C. canimorsus was found to encode an unusually high 

proportion of predicted lipoproteins, like several other members of the BFC 

group. However, analysis of the Cc5 surface proteome indicated that, in 

contrast to what is seen in proteobacteria, a significant part of these 

lipoproteins are surface exposed. This property, suggests that these bacteria 

expose a number of proteins on their surface rather than secreting them. In P. 

gingivalis, it has even been shown that major structural components of two 

cell surface filaments are matured through lipoprotein precursors [70]. A 

substantial routing of proteins through the lipoprotein pathway could thus be 

central to the biology of the whole BFC group. The abundance of these 

surface exposed lipoproteins coupled to the fact that C. canimorsus was 

shown to deglycosylate mammalian lipoproteins hinted that C. canimorsus is 

endowed with foraging systems like the archetypal starch utilization system 

(Sus) of B. thetaiotaomicron which also includes predicted lipoproteins [74]. 

This system consists of several lipoproteins with capacities to bind (SusD-like) 
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or to hydrolyse complex polysaccharides and of a TonB-dependent porin (SusC-

like), which are thought to form a complex [73, 74, 80]. A screen for homologs of 

SusC and SusD confirmed the presence of 13 putative PULs, encoding Sus-like 

systems. This number of PULs is significant but nevertheless much lower than 

the number found in B. thetaiotaomicron (88) [73] and in F. johnsoniae (44)[60] 

but similar to the number found in G. forsetii (14), a marine bacterium adapted to 

the degradation of high molecular weight organic matter with a predicted 

preference for polymeric carbon sources [79]. The low number of PULs reflects 

the specialization to the oral cavity niche rather than a reduced importance of the 

complexes encoded by these loci. Indeed, PUL-encoded proteins represent more 

than half of the surface-exposed proteins and hence the most important protein 

class at the bacterium-host interphase. The low number of PULs found in C. 

canimorsus compared to Bacteroides spp. suggests that C. canimorsus feeds 

less from the host diet and more from the host itself and from the rest of the 

complex mouth flora [81]. Besides the homologs to SusC and SusD, most of 

these 13 PULs encode putative glycan hydrolases. Six PULs turned out to be 

involved in the capacity of C. canimorsus to grow at the expenses of mammalian 

cells [58]. One of them, PUL5 was found to encode a complex involved in N-

linked glycoprotein deglycosylation and this complex turned out to be the most 

abundant at the bacterial surface, underlying the importance of protein 

deglycosylation for these bacteria. Interestingly, B. thetaiotaomicron has already 

been shown to deglycosylate mucin O-glycans from the gut [73]. The observation 

that PUL5-encoded complex deglycosylates N-linked glycoproteins nicely fits with 

the previous report showing that sialidase is key to growth of C. canimorsus at 

the expenses of cells and their persistence in the mouse [58]. Sialidase 

presumably cooperates with the PUL5 proteins in spite of the fact that it is 

encoded outside any of the 13 PULs. Not surprisingly, like the sialidase gene, the 

PUL5 genes were also found to be necessary for survival and growth in human 

serum as well as persistence in the mouse. In conclusion, although the genome 

of Cc5 does not encode any classical virulence function, it encodes a surface-

exposed glycoproteins foraging system which can be considered as a new type 

of virulence factor. 
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Methods 

Ethics statement:  
Animal experiments were performed in strict accordance with institutional and 
guidelines of the Swiss veterinary law (article 13a TSchG; 60-62 TSchV). The 
protocol was reviewed and approved by the veterinary office of the canton 
Basel (Permit Number: 1397-Inflammation and mouse peritonitis model in 
mice, valid until 2010-12-31). 
Human serum samples used for this study were provided by the 
“Blutspendezentrum SRK beider Basel”. Samples were taken from healthy 
volunteer blood donors after obtaining written informed consent, in agreement 
with the guidelines of the “Ethikkommission beider Basel EKBB”. 
Bacterial growth conditions: C. canimorsus bacteria were routinely grown 
on heart infusion agar supplemented with 5% sheep blood at 37°C in the 
presence of 5% CO2. For growth on cells, 4x104 bacteria were incubated with 
2x105 HEK293 cells or Raw 264.7 macrophages in a final volume of 1ml 
DMEM with 10% (v/v) fetal calf serum and 1mM sodium pyruvate for 23h 
(DETAILED MATERIAL AND METHODS). 
Genome sequencing and annotation: Genomic DNA of C. canimorsus 5 
was isolated by using the QIAGEN Genomic-tip 500/G and corresponding 
buffers followed by Phenol / Chlorophorm purification to achieve even higher 
DNA purity. Sequencing of the Cc5 chromosome integrated four different 
sequencing approaches corresponding to more than 80X read coverage in 
total (see DETAILED MATERIAL AND METHODS). Assembly and annotation 
of the genome are described in the DETAILED MATERIAL AND METHODS. 
Proteome: For the surface-exposed proteome, bacteria were grown on 
HEK293 cells, harvested by carefully washed twice with 10mM Hepes and 
trypsinized for 30 min at 37 °C. The supernatant was then filtered through 
0.20 µm pore size filters, reaction was stopped with formic acid (0.1% final) 
and peptides were stored at − 20 °C until further analysis. Alternatively, the 
surface-exposed proteins were biotinylated with Sulfo-NHS-SS-Biotin (0.02 
g/L) after bacteria were first incubated with regular biotin (0.2 g/L) in order to 
saturate the transport systems. The bacterial lysate was then cleared by 
centrifugation and the labeled proteins were immobilized on avidin. Finally, 
bound proteins were released by incubating the resin with SDS-PAGE sample 
buffer containing 50 mM DTT and analyzed by MS-MS. For the OM proteome, 
bacteria were collected from blood agar plates, resuspended at OD600=1 and 
sonicated. Membrane pellets were resuspended in HEPES 10mM with 1% 
Sarkosyl incubated at room temperature for 30 minutes and re-centrifuged. 
The pellet was resuspended and analyzed by MS-MS. More details are given 
in DETAILED MATERIAL AND METHODS. 
Identification of the main metabolic end product in Cc5 culture 
supernatants:  
Cc5 were grown in the presence of Raw 264.7 macrophages. 0.1% NaN3 was 
added to the supernatant and pH adjusted to 7.5. The medium was finally 
filter sterilized and the macromolecules discarded by a 3 kDa cut-off filter. 
Following steps were carried out on samples containing 5% D2O in 5 mm 
standard NMR tubes and samples were measured with a spectrometer 
equipped with a triple resonance pulse field gradient probehead. The 
temperature of 297.18 K was determined according to the splitting (1.675 
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ppm) of a 100% ethylene glycol temperature calibration sample. Spectra were 
processed and evaluated using the software Topspin 2.1.6. 1D proton NMR 
spectra were recorded with the excitation sculpting scheme achieving water 
suppression by gradient dephasing of the water resonance. The proton carrier 
was set to the water frequency for solvent suppression. Spectra were 
recorded with 57344 complex points and acquisition times of 1.99 seconds 
(DETAILED MATERIAL AND METHODS).  
Mutagenesis and allelic exchange was performed has described in ref [82] 
with slight modifications (DETAILED MATERIAL AND METHODS). 
Survival and growth in human serum: bacteria were harvested from blood 
agar plates. A total of 107 bacteria were incubated in 10% NHS PBS with or 
without 0.005% GlcNAc (w/v) at 37°C in a heating block. Serial dilutions were 
plated onto blood plates, and viable colonies were counted after 48h of 
incubation in a humidified atmosphere supplemented with 5% CO2 at 37°C 
(DETAILED MATERIAL AND METHODS). 
Tissue cages infection in mice were performed has described in ref 
[82](DETAILED MATERIAL AND METHODS). 
 
 
 
Detailed material and methods 
 
Conventional bacterial growth conditions and selective agents 
The strains used in this study are listed in Appendix. Escherichia coli strains 
were routinely grown in LB broth at 37°C. C. canimorsus bacteria were 
routinely grown on heart infusion agar (Difco) supplemented with 5% sheep 
blood (Oxoid) for 2 days at 37°C in the presence of 5% CO2. To select for 
plasmids, antibiotics were added at the following concentrations: 10 µg/ml 
erythromycin (Em), 10 µg/ml cefoxitin (Cf). 
 
Growth of Cc5 bacteria on HEK293 cultured cells  
Human Embryonic Kidney 293 cells (HEK293) were cultured in DMEM 
(Invitrogen) with 10% (v/v) fetal calf serum and 1mM sodium pyruvate. Cells 
were grown in medium without antibiotics in a humidified atmosphere 
enriched with 5% CO2 at 37°C. Bacteria were harvested by gently scraping 
colonies off the agar surface and resuspended in PBS to an OD600 of 0.0008. 
A total of 4x104 bacteria were incubated with 2x105 HEK293 cells in a final 
volume of 1ml medium with or without 0.005% GlcNAc (w/v) devoid of 
antibiotics for 23h, resulting in a multiplicity of infection of 0.2. Serial dilutions 
were plated onto blood plates, and viable colonies were counted after 48h of 
incubation in a humidified atmosphere enriched with 5% CO2 at 37°C. 
 
Genomic DNA preparation  
Genomic DNA of C. canimorsus 5 was isolated by using the QIAGEN 
Genomic-tip 500/G (Cat.No.10262) and corresponding buffers (Cat.No.19060) 
followed by Phenol / Chlorophorm purification to achieve even higher DNA 
purity. 
 
Global sequencing strategy, Assembly 
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Sequencing and assembly of the Cc5 chromosome included i) pair-end reads 
from a ~4 kb inserts plasmid library of ~25 000 clones representing ~10X 
physical Coverage, ii) pair-end reads from a ~ 40 kb inserts fosmid library of ~ 
4600 clones corresponding to ~60X physical Coverage, iii) A run of 454 
pyrosequencing corresponding to 20X read Coverage and iv) a set of 33 
nucleotides microreads generated with Solexa sequencing technology 
corresponding to ~49X read coverage. In addition, targeted sequencing has 
been performed on weakly covered regions. Assembly has been done with 
Phred/Phrap/Consed package [83-85]. Short reads (454) have been 
preassembled and condensed into pseudoreads using Newbler assembler 
(http://www.454.com/). Pseudoreads were then integrated to the Sanger data 
using Phrap. After gaps closure, micro reads (Solexa) have been aligned with 
the circular chromosome of Cc5 using MAQ [86] to increase coverage and 
base call confidence particularly on homopolymeric tracts.  
 
CDS Annotation 
Glimmer 3.02 [87] was run with default settings. Predicted coding sequences 
(CDSs) were then considered for possible alternative starting codons. Briefly, 
a score based in-house Perl script compiled i) the distance of the considered 
CDS from the initial CDS prediction by Glimmer, ii) the bacterial frequency of 
the starting codon considered, iii) the possible presence of an N-terminal 
signal peptide computed by LipoP [87], iv) and the N-terminal alignment of the 
current CDS with its best blast hit [88] against the GenBank’s non-redundant 
database (NR, at the NCBI). C-terminal properties as possible early stop 
codons (pseudogenes) or fusion/deletion events were also inferred from such 
alignments. Finally, CDS overlaps were monitored and CDSs eventually 
shortened. Best scored CDSs were then screened with EMBOSS:pepstats 
[89] for physico-chemical inferences, with InterProScan [90] for domain 
identification and PRIAM [91] for accurate EC annotation. For each CDS, a 
position-specific matrix has been computed for 5 cycles against the uniref90 
using a size adapted initial matrix with PSI-BLAST [88] (cutoff: 10e-5 e-value). 
Matrices were then used during a one-iteration PSI-BLAST vs. Swiss-Prot, 
TrEMBL [90] or STRING Orthologous Groups [92] for COG assignment. 
 
Non coding RNAs 
The complete chromosome has been scanned against all Rfam CMs using 
the INFERNAL software [93] with default options and stringent bit score cutoff 
(40) has been applied. rRNAs have been predicted with RNAMMER [94] and 
tRNA with tRNAscan-SE [95]. 
 
Genomic DNA sequence features 
The chromosomal origin of replication has been suggested based on the 
location of lowest cumulative GC skew value and presence of DnaA boxes 
clusters. The first T of the AT rich region was proposed as +1. 
Alien Hunter v1.7 has been used to spot bias in DNA composition often due to 
recent DNA acquisition or very high transcriptional levels [96]. 
 
Orthologs groups 
15 predicted proteomes were clustered in ortholog groups using Orthomcl 
v1.4 [97] with the following settings: OrthoMCL Mode 1, P-value Cut-off 1e-05, 
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Percent Identity Cut-off 30, Percent Match Cut-off 50, MCL Inflation 1.5, and 
Maximum Weight 316. Predicted proteomes used in the present study include 
those from Capnocytophaga canimorsus 5 (CP002113), Capnocytophaga 
ochracea DSM 7271 (NC_013162), Capnocytophaga gingivalis ATCC 33624 
(NZ_ACLQ00000000), Capnocytophaga sputigena ATCC 33612 
(NZ_ABZV00000000), Flavobacterium johnsoniae UW101 (NC_009441), 
Flavobacterium psychrophilum JIP0286 (NC_009613), Gramella forsetii 
KT0803 (NC_008571), Bacteroides fragilis YCH46 (NC_006347), Bacteroides 
thetaiotaomicron VPI5482 (NC_004663), Bacteroides vulgatus ATCC 8482 
(NC_009614), Porphyromonas gingivalis W83 (NC_002950), Cytophaga 
hutchinsonii ATCC33406 (NC_008255), Amoebophilus asiaticus 5a2 
(NC_010830), Escherichia coli K-12 W3110 (AC_000091) and Neisseria 
meningitidis 053442 (NC_010120). 
 
Phylogenic analysis 
Consensual phylogenetic tree of 13 Bacteroidetes and two proteobacteria 
(mentioned here above) has been computed using the PHYLIP package 3.6 
[98]. Among 243 orthologous groups (OGs) conserved in every taxon, 209 
were exempt of any paralog and were used to compute single protein 
phylogenies with Maximum Likelihood. Amino acid sequences from the same 
OGs were first aligned with ClustalW (default settings) [99]. Alignment files 
were then used as input for Proml (PHYLIP 3.65) with following settings: S, o, 
15, o, m, d, 21, 3, 1, Y 
(http://evolution.genetics.washington.edu/phylip/doc/proml.html) and 209 
single protein Maximum Likelihood phylogenetic trees were generated. A 
Consensus tree has been inferred with Consense (PHYLIP 3.65) following the 
extended Majority rule (default settings) and species partition scores were 
kept as confidence estimates. Topology restricted comparisons between the 
consensus and the 209 single protein trees have been performed with treedist 
in Symmetric Difference mode (PHYLIP 3.65). Finally, the 21 OGs exhibiting 
best scoring trees (closest topology from consensus) have been used for 
branch length estimation using Proml (settings: s, g, o, 15, Y) on the 
concatenated corresponding alignments (14,130 amino acids). 

 
Identification of SusC/SusD homologs in the genome of C.canimorsus 5  
SusC (gi|29341017|gb|AAO78807.1) and SusD 
(gi|29341016|gb|AAO78806.1) from Bacteroides thetaiotaomicron VPI-5482 
were blasted against the nr70 subset. Hits above the threshold (Hsp_evalue < 
10e-5 & Hsp_align_len/ORF_Length > 0.6 & Hsp_align_len/Hit_len > 0.6 & 
Hsp_identity/Hsp_align_len > 0.4) were aligned with clustalW from the MEGA 
4 software (default settings). Alignments were used to build HMMs with 
HMMER.2.3.2. Models were calibrated and C. ochracea and C.canimorsus 5 
homologs screened out. In the case of SusD, an arbitrary initial cutoff “e-
value” (0.25) was chosen so that all predicted hits from the first cycle were 
fished in the vicinity of TonB-dependent outer membrane proteins. 
Concerning SusC, an arbitrary initial cutoff “e-value” (10e-14) was chosen so 
that all predicted hits from the first cycle were fished in the vicinity of the 
previously detected SusD homologs. The newly identified protein sequences 
were then integrated into the HMM and the procedure has been repeated with 
the same cutoff e-value (0.25 or 10e-14) until no new hit was detected. 
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Identification of the main metabolic end product in Cc5 culture 
supernatants  
Cc5 were grown (24h) in the presence of murine macrophages (Raw 264.7) in 
Dulbecco’s modified eagle medium supplemented with 1mM Na-Pyruvate and 
10% v/v fetal calf serum. Medium was collected and the bacteria pelleted by 
centrifugation (5 minutes, 15000rcf, 4°C). 0.1% NaN3 was added to the 
supernatant and pH adjusted to 7.5 with phosphate-buffer (500mM, pH8). The 
medium was finally passed through a 0.22 um filter and a 3 kDa cut-off filter 
(vivaspin, Sartorious). Following steps were carried out on samples containing 
5% D2O in 5 mm standard NMR tubes and samples were measured with a 
Bruker Avance DRX 600 spectrometer equipped with a triple resonance pulse 
field gradient probehead. The temperature of 297.18 K was determined 
according to the splitting (1.675 ppm) of a 100% ethylene glycol temperature 
calibration sample. Spectra were processed and evaluated using the software 
Topspin 2.1.6 (Bruker). 1D proton NMR spectra were recorded with the 
excitation sculpting scheme (pulseprogram zgesgp in the standard Bruker 
library) as described previously [100] achieving water suppression by gradient 
dephasing of the water resonance. The proton carrier was set to the water 
frequency for solvent suppression. Spectra were recorded with 57344 
complex points and acquisition times of 1.99 seconds. With 64 scans, the total 
experimental time was 3 minutes and 26 seconds. 
 
Bacterial Surface Digestion  
The surface-exposed proteins from C. canimorsus 5 bacteria were digested 
essentially as described in ref [101] and [102]. Bacteria were grown on heart 
infusion agar plates (Difco) supplemented with 5% sheep blood (Oxoid) (SB 
plates) for 2 days at 37°C in the presence of 5% CO2. They were then 
suspended in PBS and used to infect 7.5 x 106 HEK293 cells at an moi of 10 

(≈108 bacteria). Infected cells were incubated for 15h at 37 °C in DMEM 
(Invitrogen) medium supplemented with 10% (v/v) fetal bovine serum (FBS). 
The medium and bacteria were collected taking care not to detach the 
HEK293 cells and centrifuged at 1000 g for 5 min at 4°C to get rid of the 
HEK293 cells eventually present. The supernatant was then centrifuged at 
3500 g for 10 min at 4 °C to harvest bacteria. The bacterial pellet was gently 
resuspended in 10mM Hepes (pH 7.4) and then washed twice with 10mM 
Hepes (pH 7.4). Cells were resuspended in 1 ml of 10mM Hepes (pH 7.4) and 
10 µg trypsin (Roche) was added. Digestion was carried out for 30 min at 37 
°C.  Bacterial cells were then spun down at 3.500 g for 10 min at 4 °C and the 
supernatant was filtered through 0.20 µm pore size filters (Millex, Millipore, 
Bedford, MA). Protease reaction was stopped with formic acid (0.1% final 
concentration) and the solution containing the peptides was stored at − 20 °C 
until further analysis. 
 
Biotinylation of the bacterial surface 
The surface-exposed proteins from C. canimorsus 5 strain were biotinylated 
with the "Pierce Cell Surface Protein Isolation Kit" with adaptation of the 
protocol. Cc5 bacteria were grown on SB plates and then on HEK293 cells 
exactly as described here above. The bacterial pellet was gently suspended in 
10mM Hepes (pH 7.4), washed twice with 10mM Hepes (pH 7.4) and 
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resuspended in 10 ml of 10mM Hepes (pH 7.4).  Since biotin can be taken up 
by Flavobacteria [103], bacteria were first incubated with regular biotin (0.2 
g/L) in order to saturate the transport systems.  After 5 min Sulfo-NHS-SS-
Biotin (0.02 g/L) was added. After 2 min at RT, the reaction was stopped by 
the addition of 0.5 ml of Quenching Solution (Pierce) and 1ml 10X TBS (pH 
7.4).  Bacteria were harvested by centrifugation at 5000 g for 10 min at 4 °C, 
washed twice in TBS (pH 7.4) and then lysed in 1mL according to the 
manufacturer's protocol.  The bacterial lysate was then cleared by 
centrifugation at 16000g for 10 min at 4 °C and the labeled proteins were 
immobilized on the NeutrAvidin Gel according to the manufacturer's protocol. 
Finally the bound proteins were released by incubating the resin with SDS-
PAGE sample buffer containing 50 mM DTT.  
 
Identification of the main metabolic end product in Cc5 culture 
supernatants  
Cc5 were grown (24 h) in the presence of murine macrophages (Raw 264.7) 
in Dulbecco’s modified eagle medium supplemented with 1 mM Na-Pyruvate 
and 10% v/v fetal calf serum. Medium was collected and the bacteria pelleted 
by centrifugation (5 minutes, 15000 rcf, 4 °C). 0.1% NaN3 was added to the 
supernatant and pH adjusted to 7.5 with phosphate-buffer (500 mM, pH 8). 
The medium was finally passed through a 0.22 um filter and a 3 kDa cut-off 

filter (Vivaspin, Sartorius). NMR samples were prepared from 400 µl of this 
medium by adding 5% D2O and placed into 5 mm standard NMR tubes. NMR 
measurements were carried out at 24 ˚C on a Bruker Avance DRX 600 
spectrometer equipped with a triple resonance pulse field gradient probe. 1D 
proton NMR spectra were recorded with the excitation sculpting scheme 
(pulseprogram zgesgp in the standard Bruker library) as described previously 
[100] achieving water suppression by gradient dephasing of the water 
resonance. The proton carrier was set to the water frequency for solvent 
suppression. Spectra were recorded with 57344 complex points and 
acquisition times of 1.99 seconds. The total experimental time was 3 minutes 
and 26 seconds for the accumulation of 64 transients. Spectra were 
processed and evaluated using the software Topspin 2.1.6 (Bruker). 
 
Mutagenesis and allelic exchange  
Mutagenesis of Cc5 Wt has been performed has described in ref [82] with 
slight modifications. Briefly, replacement cassettes with flanking regions 
spanning approximately 500 bp homologous to direct PULs framing regions 
were constructed with a three-fragment overlapping-PCR strategy. First, two 
PCRs were performed on 100 ng of of Cc5 genomic DNA with primers A and 
B (c.f. Appendix) for the upstream flanking regions and with primers C and D 
for the downstream regions. Primers B and C contained 20 bp of sequence 
homology to the ermF insertion cassette. The ermF resistance cassette was 
amplified from pMM106 with primers 5502 and 5503. All three PCR products 
were cleaned and then mixed in equal amounts for PCR using Phusion 
polymerase (Finnzymes). The initial denaturation was at 98°C for 2 min, 
followed by 12 cycles without primers to allow annealing and elongation of the 
overlapping fragments (98°C for 30 s, 50°C for 40 s, and 72°C for 2 min). 
After the addition of external primers (A and D), the program was continued 
with 20 cycles (98°C for 30 s, 50°C for 40 s, and 72°C for 2 min 30 s) and 
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finally 10 min at 72°C. Final PCR products consisted in PUL::ermF insertion 
cassettes and were then digested with PstI and SpeI for cloning into the 
appropriate sites of the C. canimorsus suicide vector pMM25. Resulting 
plasmids were transferred by RP4-mediated conjugative DNA transfer from E. 
coli S17-1 to C. canimorsus 5 to allow integration of the insertion cassette. 
Transconjugants were then selected for presence of the ermF cassette, 
checked for sensitivity to cefoxitin and the deleted regions were sequenced. 
 
Fetuin deglycosylation analyses and lectin stainings 
Bacteria were collected from blood agar plates and resuspended in PBS at 
OD600=1. 100 µl of bacterial suspensions were then incubated with 100 µl of a 
fetuin solution (0.1 g.l-1) for 120 minutes at 37°C. As negative control, 200 µl 
of 1:2 diluted fetuin solution alone was incubated for 120 minutes at 37°C. 
Samples were then centrufiged for 5 min at 13000 RCF, supernatant collected 
and 3 µl ( and 12 µl SDS buffer) were loaded  in a 12% SDS gel. Samples 
were analyzed by immunoblotting (Fetuine, Rabbit anti-Bovine RIA, 
UCBA699/R1H, ACCURATE CHEMICAL & SCIENTIFIC CORPORATION) 
and lectin stainings were performed with Sambucus nigra lectin (SNA) and 
Datura stramonium lectin (DSA) according to manufacturer recommendations 
(DIG Glycan Differentiation Kit, 11210238001, Roche). 
 
Outer Membrane Protein purification 
Bacteria were collected from blood agar plates and resuspended in 3mI ice 
Cold HEPES 10mM (pH7.4) at OD600=1. Bacterial suspensions were then 
sonicated on ice until they turned clear and spined at 15600g for 2 minutes at 
4°C. Supernatants were transferred and centrifuged again for 30 minutes at 
15600g at 4°C. Pellets were resuspended in 2 ml HEPES 10mM with 1% 
sarkosyl and Incubated at room temperature for 30 minutes. Finally, samples 
were centrifuged at 15600g for 30 min at 4°C and pellet resuspended in 0.1 
ml  HEPES. Samples were checked for quality and quantity on silver stained 
SDS-PAGE and analysed by MS/MS. 
 
Survival and growth in human serum 
Bacteria were harvested by gently scraping colonies off the blood agar 
surface, washed twice (5000g for 7 min) and resuspended in PBS to an OD600 

of 0.2. Normal human serum (NHS) from healthy volunteers was pooled, 
aliquoted, and stored at -80°C. Serum was heat-inactivated at 56°C for 2h. A 
total of 107

 bacteria were incubated in 1 ml of 10% NHS in PBS with or without 
0.005% GlcNAc (w/v) at 37°C in a heating block. Serial dilutions were plated 
onto blood plates, and viable colonies were counted after 48h of incubation in 
a humidified atmosphere supplemented with 5% CO2 at 37°C. 
 
Mice and tissue cage infection model 
12 week-old male C57BL/6 mice were maintained under pathogen-free 
conditions in the Animal Facility of the Department of Research, University 
Hospital Basel. Animal experiments were performed in accordance with the 
guidelines of the Swiss veterinary law. Teflon tissue cages were implanted 
subcutaneously in the back of anesthetized mice as previously described 
[104]. The cages consisted of closed Teflon cylinders (10 mm diameter, 30 
mm length, internal volume 1.84 ml) with 130 regularly spaced 0.2 mm holes. 
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2 weeks after surgery, 200 µl of bacterial suspension was injected 
percutaneously into the cage. Prior to infection, sterility of the tissue cage was 
verified. Tissue cage fluid (TCF) was sampled at day 2, 5, 7, 14, 21 and 28 
and examined for leukocytes and bacterial viable counts. Leukocytes from 
TCF were quantified with a Coulter counter (Coulter Electronics). Survival of 
Cc5 mutants in the competition experiments were directly compared with wt 
Cc5 in individual animals giving a 1:1 ratio of wt to mutant bacteria. The 
number of mutant (Em resistant) and wt bacteria recovered from the TCF of 
animals was established by plating to media with and without Em. The 
competitive index was calculated as the (number of mutant/wild-type bacteria 
recovered from animals)/(number of mutant/wild-type bacteria in the 
inoculum). 
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4.2. Additional data 

4.2.1. Genome assembly and restriction fragment profile 

Genome assembly quality has been assessed by comparing in silico 

predicted restriction profile of the chromosomal sequence by a rare cutter SalI 

to the actual in vitro complete restriction reaction. As represented on Figure 

4.2.1, in silico length are in the experimental tolerance error range (ε = 10-

20%) of the observed values. In addition, tow short fragments of 15 and 2 kb 

were out of the focus of the pulsed field gel electrophoresis (PFGE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,545.5  

796 

549 

383 
332 
287 

100 

74 

30 

Kb + ε(10-20%)  

�700 

kb 

2,573.
(+15 +2) 

IN SILICO 
SalI 

5'-G^T C G A C-3‘ 
3'-C A G C T^G-5‘ Cc5, SalI 

SalI restriction and PFGE performed by Stephan C. Schuster,  

Figure 4.2.1 in silico versus in vitro restriction profiles of the Cc5 genome 



Genomics of C. canimorsus 5 

 

 62 

4.2.2. Semi automated genome annotation pipeline 

Genome annotation has been performed in a semi automated way 

using a set of in-house Perl scripts presented on this chapter (Figure 4.2.2 

and supplementary data, Chapter_4.2_In_House_Scripts folder). Perl scripts 

were used to loop single gene analysis software over the whole genome by 

using local CPU or the BC2 CPU cluster if split work was considered as 

beneficial (ref.BC2). 

First step: open reading frames and coding sequences identification. 

BaseCount.pl gives an overview of the assembly file (nucleotides 

statistics and contigs statistics). SerialGlimmer3.pl Integrates the CDS 

predictor (or gene finder) GLIMER.3 into a loop considering all contigs from a 

multiple fasta file of an incomplete draft assembly (it output a single file per 

contig). Translator.p translates the Multifasta file of CDS in a protein multiple 

fasta file. Super_script_For_Alternative_CDS_Determination.4.pl has been 

used to redefine N-terminal boundaries of the genes predicted by GLIMMER 

as briefly discuss in chapter 4.1. 

Parallel run of several functional prediction programs. 

WWW_InterProScan_PsiBlast_Annotation.pl connects to the European 

Bioinformatics Institute (EBI) server at 

http://www.ebi.ac.uk/Tools/InterProScan/ and submits a certain number of 

concomitant jobs to the InterProScan domain analysis meta-search tool [90]. 

Each submission corresponds to a single gene and is monitored by a single 

job in a specific BC2 cluster nod. The number of jobs submitted to 

InterProScan server is intentionally limited to avoid overloads or queuing 

issues at the EBI. The script finally generates a single file per sequence with 

the identified profiles, amino acid coordinates, the name of the software and 

the databases hitting the current gene with additional cross-references. 

BC2_BlastP_Annotation.pl is used to Psi-blast translated genomes to 

different databases with the previously reported strategy (c.f. chapter 4.1).    

20100630_BC2_INFERNAL_Annotation have been designed to 

optimize genome analysis by the fastidious ncRNA detection software 

INFERNAL. The script submits a chromosome screening run with each 

existing model of the RFAM database [93] to a different cluster nod. 
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Data handling, storing and querying: 

Most programs need special input formatting in order to be correctly 

processed. For this reason, parsing scripts were also created for almost all 

input or output files used during genome annotation (e.g. MakeListe.pl, 

PARSE_.raw_InterProScan_files.pl, PARSE_.XML PsiBlast_files.pl, 

Fasta2RawTab.pl, PARSE_IntProSca_4_GO.pl). A MySQL and a plain text 

database were built to store such generated data. PHP scripts were used for 

MySQL database management and querry outputting (see supplementary 

data, Chapter_4.2_In_House_Scripts folder). Plain text database has been 

handled with integrative Perl scripts that fetch data from different data sources 

(tab delimited or plain text files) (supplementary data, 

Chapter_4.2_In_House_Scripts folder). In addition, a series of html files have 

been generated with CGview [105] and represent the Cc5 chromosome with 

several annotations an interactive display of the functional characterization of 

CDSs or ncRNAs (limited overview in supplementary data, 

Chapter_4.2_In_House_Scripts folder, Cc5_Chromosome, index.html). 
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Figure 4.2.2 The annotation pipe 

Cc5 Contig 

CDS 

predictions 

INFERNAL 

InterProScan 

Blast 

PsiBlast 

Protein 

sequence 

Functional  
predictions 

Domain…  
predictions 

Functional  
predictions 

Intranet 
“web site” 

mySQL / 
plain text 

databases 

Translator 

Integrator 

ncRNA  
predictions 

Glimmer.3 

Manual 
annotation 

 

GenoScan 

GC% 
Repeats 

Ori 
Cod. u. 
Inteines 

Transposons 
Virus, phages 

 

Database  
Maintenance 

A single consensual 
sequence is used as 
starting point. 

 

Coding sequence & 
ncRNA 
An intrinsic method 
(Glimmer.3) is used to 
predict coding sequences 
(CDSs) on genomic DNA. 
The whole genome is 
screened by INFERNAL for 
each non-coding RNA 
model from the RFAM 
library. Additional features 
are directly calculated from 
the genomic sequence 
(here, termed GenoScan 
and mostly supported by 
EMBOSS package. e.g. 
Pepstat).   
 
Functional prediction 
Each single CDS is 
translated and undergoes 
classical functional analysis 
(InterproScan/Blast/PsiBlas
t…). Main protein 
databases (Nr, TrEMBL, 
KEGG…) as well as the full 
InterProScan library are 
used as data providers. 
Alternative start codons are 
also considered during this 
stage. 
 
Sorting, storing, 
filtering… 
An Integrator software is 
used to collect previously 
retrieved data and to unify 
formats in order to integrate 
it into Cc5 tailored 
databases. This goes along 
with a database 
maintenance tool that 
updates annotation data on 
demand. 
 
Display & manipulation 
The database has an 
intranet accessible web-
site. This graphical 
interface was designed in 
order to provide a manual 
curation tool and an 
efficient way to query the 
databas. 

 

Data Mining 

 

IN/OUT data 

Home made process 

Pre-existing software 

User driven process 

Data storage 

Data display 

N-terminal 

determination 

LipoP 

Blast 
PROSITEscan 

PRIAM 

HAMAP 

 

 



Genomics of C. canimorsus 5 

 

 65 

4.2.3. Genome scale metabolic modeling 
Development of an organism-specific genome scale metabolic 

databases has been performed with the Pathway Tools package v14.0 [106] 

and a quick manual curation applied. The software used annotation 

information (EC number predictions mainly produced by PRIAM and Blast 

analysis against the Swiss-Prot database). The local database considers 

1597 enzymatic reactions, 771 enzymes and 64 transporters out of the 2414 

proteins encoded by the Cc5 genome. Twenty tRNA amino acid ligases were 

detected and most genes involved in amino acid synthesis were present with 

the exception of the histidine biosynthesis pathway that was lacking most part 

of it. When compared to well characterized metabolic schemes from other 

bacteria (Agrobacterium tumefaciens C58, Bacillus anthracis Ames, Bacillus. 

Subtilis subtilis 168, Caulobacter crescentus CB15, Escherichia coli CFT073, 

Escherichia coli K12, Escherichia coli O157:H7 EDL933, Francisella 

tularensis subsp. tularensis SCHU S4, Helicobacter pylori 26695, 

Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Rv, 

Plasmodium. Falciparum 3D7, Shigella flexneri 2a str. 2457T and Vibrio 

cholerae O1 biovar eltor str. N16961), as expected, the most conserved 

pathways are the nucleotide and nucleoside biosynthesis pathway together 

with the glycolysis, the fermentative pathway, a partially conserved split TCA 

cycle (variation IV) and the pentose phosphate pathways (Supplementary 

data, Chapter_4.2_Additional_data, Fig. S4.2.3). Several genes did encode 

enzymes with odd activities like members of the mevalonic acid biosynthesis 

pathway (Ccan_15750-15760, Ccan_08140), a high number of enzymes 

possibly involved in mycolate biosynthesis (Supplementary data, 

Chapter_4.2_Additional_data, Fig. S4.2.3), enzymes involved in putrescine 

biosynthesis (Ccan_14980 and Ccan_15000), all specific genes requiered for 

the autoinducer AI-2 production (Ccan_20040 and Ccan_17230), a 

glucuronosyltransferase (Ccan_1938), or enzymes involved in UDP-D-xylose, 

UDP-D-galacturonate and CMP-N-glycoloylneuraminate biosynthesis. 

However no Cc5 specific coherent pathway has been identified by this mean. 
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Interestingly, metabolism analysis also suggests the presence of an 

uncoupled metabolism for glucose and N-Acetylglucosamine (Fig. 4.2.3) and 

this is currently supported by previous works [7]. In one hand, glucose 

fermentation has been reported for most C. canimorsus strains tested by 

Brenner et al. and glucose utilization by Cc5 has been confirmed by formazan 

assays in G.R. Cornelis’ lab (L. Sauteur, master thesis). In another hand, 

∆PUL5 C. canimorsus bacteria are unable to grow in glucose-rich medium 

and this growth defect can be fully rescued by addition of N-

Acetylglucosamine even at low concentrations (226 µM) (L. Sauteur, master 

thesis). All these suggest that C. canimorsus 5 may have split its amino sugar 

metabolic pathway in an energy providing route (e.g. Glycolysis) and a 

structural biosynthesis route (e.g. LPS or peptidoglycan synthesis). Split 

metabolic pathways tend to reduce metabolic redundancy and to increase the 

number of compounds required by the bacterium for growth. Consequently 

substrates are restricted to more specialized purposes (i.g. Hexoses for 

energy, N-Acetylhexoses for structural biosynthesis). Similarly, in the spit TCA 

cycle of C. canimorsus 5, the CO2 dependent carbon integration route that 

feeds bacterial respiration with fumarate might be uncoupled to the energy 

providing side of the TCA cycle (the acetate forming path). In concordance with 

the relatively reduced genome size of Cc5, all these observations may illustrate 

a reduced metabolic pleiotropy. In such case, the environment has to provide 

certain amounts of multiple indispensable substrates that Cc5 is not be able to 

synthesize through alternative resources. Thus, dependence on a rich and 

homeostatic environment would suggest a specific bacterial adaptation to a 

host associated lifestyle.  

In addition, the genome scale metabolic database is a fundamental tool 

to draw accurate observation as for the previously described respiratory 

model initially derived from the data presented here. It also gave initial input in 

the identification of the LPS biosynthesis pathway (S. Ittig, unpublished). 
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Figure 4.2.3 Amino sugar metabolism  

Modified from map00520, 08/05/2010, Kanehisa Laboratory, 

http://www.genome.jp/kegg/pathway/map/map00520.html. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Red and blue lines respectively represent Cc5’s glucose and N-Acetylglucosamine 
pathways. Enzymatic activities predicted in Cc5 are framed in green. Absence of 
enzymatic connection is stressed by blue and red symbols. 
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4.2.4. Genomic codon usage analysis 
A genomic codon usage analysis is the assessment of the codon 

frequency of each amino acid in a given genome. Each gene is then represented 

by a set of frequencies that can be viewed as an evolutionary hallmark. Optimal 

codon usage for a given organism is extrapolated from the frequency profiles of a 

highly conserved set of genes and is therefore a good marker of its vertical 

evolution. Profiles clustering enables then to group genes that shows common 

evolutionary features. Such features may depend on different factors as high 

expression levels that increase selection pressure on certain (important) genes 

and tend to shift codon usage gene profiles to the optimal one for the considered 

organism. Inversely, genes that strongly differ in their codon usage from the rest 

of the genome (or compared to a set of conserved genes) are interesting 

candidates for recent horizontal gene acquisitions (i.e. until recently, under a 

different codon usage pressure) or pseudogenes (loose of codon usage 

pressure). 

 In the present work, another DNA bias analysis performed with Alien 

hunter (c.f. chapter 4.1) out-competes performances of a simple codon usage 

clustering or a third codon nucleotide analysis [96] (data not shown). However, 

difficulties encountered during heterologous expression of either Cc5 functional 

proteins in E. coli BL21 or fluorescent proteins in Cc5 (namely GFP) motivated 

the identification of the Cc5 specific codon usage. Figure 4.2.4 has been 

generated with INCA [107] and shows the average codon frequencies of Cc5, 

E.coli K12 MG1655 and Yersinia enterocolitica 8081 genomes. Obvious 

discrepancies can be observed for codons encoding alanine, cysteine, glycine, 

leucine, isoleucine, proline, glutamine, arginine and valine. However expression 

trials of cytoplasmic GFP and mCherry protein indicated that despite substantial 

expression of both fluorescent proteins (observed on Coomassie stained SDS-

PAGE gels), only mCherry exhibited limited fluorescence levels. Besides, it is 

known that GFP is more sensitive to oxidative stress during its folding compare to 

mCherry [108] suggesting that heterologous expression difficulties may originate 

from a proteins folding incompatibility rather than from protein expression 

issues. 
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5. The polysaccharide 

utilization locus 5 

The N-glycan glycoprotein deglycosylation complex 

(Gpd) from Capnocytophaga canimorsus. 
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 ABSTRACT  

C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties 

from host cells N-glycoproteins.  Here, we show that C. canimorsus 5 has also 

the capacity to deglycosylate human IgG and we analyze the deglycosylation 

mechanism.  We show that deglycosylation is achieved by a large complex 

spanning the outer membrane and consisting of the Gpd proteins and 

sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane 

lipoproteins. GpdDEF contribute to the binding of glycoproteins at the 

bacterial surface while GpdG is a β-endo-glycosidase cleaving the N-linked 

oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a 

TonB-dependent OM transporter is presumed to import the oligosaccharide 

into the periplasm after its cleavage from the glycoprotein. The terminal sialic 

acid residue of the oligosaccharide is then removed by SiaC, a periplasm-

exposed lipoprotein in direct contact with GpdC.  Finally, degradation of the 

oligosaccharide proceeds sequentially from the desialylated non reducing end 

by the action of periplasmic exoglycosidases, including β-galactosidases, β-N-

Acetylhexosaminidases and α-mannosidases. 

 

AUTHOR SUMMARY 

Capnocytophaga canimorsus are Gram-negative bacteria from the normal 

oral flora of dogs and cats. They cause rare but severe infections in humans 

that have been bitten or simply licked by a dog or cat. Fulminant septicemia 

and peripheral gangrene with a high mortality are the most common 

symptoms. A surprising feature of these bacteria is their capacity to feed by 

foraging the glycan moieties of glycoproteins from animal cells, including 

phagocytes.  Here we show that C. canimorsus can also deglycosylate human 

IgGs reinforcing the idea that this property of harvesting host glycoproteins 

may contribute to pathogenesis.  We also unravel the complete 

deglycosylation system which belongs to a large family of systems devoted to 

foraging complex glycans, found exclusively in the Capnocytophaga-

Flavobacteria-Bacteroides group, and whose archetype is the starch 

harvesting system Sus.  It is the first system devoted to deglycosylation of 

glycoproteins to be characterized. 
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INTRODUCTION  

Capnocytophaga are capnophilic Gram negative bacteria that belong to the 

family of Flavobacteriaceae in the phylum Bacteroidetes and colonize the oral 

cavity of diverse mammals including humans [14, 81]. Capnocytophaga 

canimorsus, a usual member of dog's mouths flora [50, 51] was discovered in 

1976 [6] in patients that underwent dramatic infections after having been 

bitten, scratched or simply licked by a dog. These infections occur, worldwide, 

with an approximate frequency of one per million inhabitants per year.  They 

generally begin with flu symptoms and evolve in a few days into fulminant 

septicaemia and peripheral gangrene with a mortality as high as 40 % [3, 5, 6, 

54, 109]. A few recent observations help understanding the high 

aggressiveness of C. canimorsus for humans. First, C. canimorsus are able to 

escape complement killing and phagocytosis by human polymorphonuclear 

leukocytes (PMN's) [55, 57]. They also escape detection and phagocytosis by 

macrophages, which results in a lack of release of pro-inflammatory cytokines 

[56]. In addition to this passive evasion from innate immunity, 60 % of the 

strains are able to block the killing of Escherichia coli phagocytosed by 

macrophages [50, 57] and some strains even block the onset of pro-

inflammatory signalling induced by an E. coli lipopolysaccharide (LPS) 

stimulus [56]. The molecular bases of these immunosuppressive mechanisms 

are not understood yet. However, their study led to the serendipitous 

discovery that the fastidious C. canimorsus grow readily upon direct contact 

with mammalian cells including phagocytes. This property was found to be 

dependent on a sialidase (SiaC) allowing C. canimorsus to harvest amino 

sugars of glycan chains from host cell glycoproteins [58].  Recently, we 

reported the complete 2,571,405-bp genome sequence and the surface 

proteome of strain Cc5.  Among others, this study unravelled the existence of 

13 complex feeding systems encoded by polysaccharide utilization loci 

(PULs), a hallmark of the Cytophaga-Flavobacteria-Bacteroides (CFB) group 

[73, 74]. The archetype of these systems is the Sus system, pioneered by the 

laboratory of A. Salyers and allowing Bacteroides thetaiotaomicron to forage 

starch. It is composed of the surface-exposed SusCDEF protein complex [74, 

80] and the SusAB periplasmic proteins [71]. SusC resembles a TonB-
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dependent transporter essential for energy-dependent import of starch 

oligosaccharides into the periplasm [76] while SusD is a α-helical starch-

binding lipoprotein [77, 110][19,20]. SusE and SusF are other surface-

exposed lipoproteins that reinforce starch binding [71].  Finally, the outer 

membrane α-amylase SusG hydrolyses surface-bound starch [77]. B. 

thetaiotaomicron has 88 of these PULs, identified essentially by the presence 

of a pair of adjacent susC-like and susD-like alleles. Interestingly, expression 

of some PULs is upregulated in the presence of mucin O-glycans or 

glucosaminoglycans (GAGs), indicating that B. thetaiotaomicron also forages 

on host glycans, primarily the O-glycosylated mucin [73] but these 

glycoprotein foraging systems have not been characterized so far.  Although 

Streptococcus oralis, a firmicute from the human oral flora and S. pneumoniae 

have been shown to remove and metabolize N-linked complex glycans of 

human glycoproteins [111-113], no PUL-encoded N-linked glycan foraging 

system has been described in detail.  Here, we characterize such a system 

that was discovered recently in C. canimorsus 5 (c.f. chapter 4.1).  It is 

encoded by chromosome locus PUL5, accounts for 12% of the Cc5 surface 

proteins and it contributes to survival in mice and in fresh human serum. It 

thus represents a new type of bacterial virulence factor (c.f. chapter 4.1). We 

show that it deglycosylates human immunoglobulins G (IgG), we present a 

detailed molecular characterization of this N-linked glycoprotein foraging 

complex and we show its functional relation with sialidase. 
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RESULTS 

 

Genetic analysis of the PUL5 locus. 

 PUL5 consists of the five genes Ccan_08700 – Ccan_08740. 

Ccan_08700 encodes a SusC-like integral outer membrane (OM) protein 

presumably forming a pore in the OM while Ccan_08710 is a SusD-like 

protein presumably involved in substrate binding [110].  Since the locus was 

shown to confer the capacity to deglycosylate proteins (c.f. chapter 4.1), we 

named the five genes gpd (for glycoprotein deglycosylation) and we called 

gpdC and gpdD the genes encoding homologs to SusC and SusD, 

respectively.  The five gpd genes seem to be organized as an operon in the 

order gpdC, gpdD, gpdG, gpdE and gpdF (Fig. 5.1.1A). GpdG is predicted to 

be an endo-β-N-acetylglucosaminidase and GpdE has similarities with the 

Concanavalin A-like lectins/glucanases superfamily on its 108 C-terminal 

amino acids and could have a substrate-binding role analogous to that of 

GpdD. Finally, GpdF shows homology to the galactose-binding domain-like 

superfamily on its 136 C-terminal amino acids suggesting again a role in 

glycan binding.  

In order to investigate what is the function of the individual Gpd 

proteins we constructed single gpd genes knockout strains. None of the 

knockout mutants was significantly affected in its growth on blood agar plates.  

In contrast, deletion of any of the gpdC, -D, -G or -E genes led to a severe 

reduction of growth on HEK293 cells while deletion of gpdF had only a slight 

effect (Fig. 5.1.1.B).  Complementation of the deleted genes with plasmid-

borne genes expressed from the natural gpdC promoter completely restored 

growth to the wt level indicating that none of the mutation was polar. 

 In order to determine whether the reduced growth of the mutants was 

due to a defect in protein deglycosylation, we incubated wt Cc5 bacteria and 

the gpd mutant bacteria with fetal calf serum protein fetuin, taken as a 

standard glycoprotein.  Fetuin contains 3 O-linked glycans (20 % of the total 

glycans) and 3 N-linked glycans (80 % of the total glycans)[114].  We 

monitored glycosylation by staining with Sambucus nigra agglutinin (SNA), a 

lectin that recognizes terminal sialic acids on glycans. As shown in Fig. 
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5.1.1.C, fetuin that had been incubated with wt Cc5 reacted much less with 

SNA and appeared as two, still sialylated smaller degradation products.  This 

indicated that partial deglycosylation had occurred and progressed further 

than a simple desialylation. In contrast, fetuin that was incubated with the 

gpdC, -D, -G and -E mutant bacteria was unaffected, indicating that no 

desialylation occurred in the absence of these gpd genes, although sialidase 

SiaC [58] was unaffected.  Fetuin incubated with the gpdF mutant showed a 

slight desialylation indicating that fetuin deglycosylation was not completely 

abolished as with the other mutants.  Fetuin glycosylation was also monitored 

by immuno-blotting with anti-fetuin antibodies. As shown in Fig. 5.1.1.D, the 

size of fetuin was shifted down after incubation with wt Cc5 bacteria while the 

protein migration rate was unchanged after incubation with the gpdC, -D, -G 

and -E mutant bacteria. After incubation with gpdF mutant bacteria, fetuin did 

undergo a size shift but not as important as when incubated with wt bacteria. 

Taken together these results indicate that partial fetuin deglycosylation was 

strictly dependent on the activity of proteins GpdC, -D, -G, -E and, to a lesser 

extend -F. Finally, our data strongly suggest that the defect in growth of the 

gpd mutants onto HEK293 cells was completely due to a defect in the ability 

to deglycosylate host glycoproteins.  
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Figure 5.1.1. Genetic analysis of the PUL5 locus 

(A). Schematic representation of the PUL5 putative operon (top: new gene designation; below: gene codes derived from 
the annotation of the genome (c.f. chapter 4.1). 
(B). Growth of the various individual gpd knockout (black) and complemented (grey) mutants on HEK293 cells (moi = 0.2; 
23 hours growth).  
(C). Glycosylation state of fetuin samples incubated for 3 hours in the presence of the different strains, monitored by 
staining with SNA that recognizes terminal sialic acid (2-6 or 2-3) linked to Gal or to GalNAc  
(D). Western blot analysis with anti-fetuin antibodies of fetuin samples incubated as in (C). 
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GpdG is an endo-ββββ-N-acetylglucosaminidase. 

 GpdG is annotated as an endo-β-N-acetylglucosaminidase (c.f. chapter 

4.1), i.e an endo-glycosidase that cleaves N-linked glycan structures at the 

base of the glycan in between two GlcNAc molecules. Hence, it should leave 

one GlcNac molecule attached to the protein. Fetuin is reported to be 

glycosylated on the three asparagine residues Asn99, Asn156 and Asn176 

[114]. Analysis by liquid chromatography-mass spectrometry (LC-MS) of 

trypsin-digested fetuin showed that the main glycosylation site resides on 

Asn156 and bears a sugar with a Hex6HexNAc5NeuAc3 composition (Fig. 

5.1.2.A). Asn176 was found to carry a sugar with a Hex6HexNAc5NeuAc4 

composition, but its site occupancy was much lower than Asn156. Only trace 

amounts of glycans were found attached to Asn99.  After incubation of fetuin 

with wt Cc5 bacteria, LC-MS analysis revealed the presence of a peptide 

whose mass indicated that only one HexNAc moiety remained linked to 

Asn156 (Fig. 5.1.2.B). The fragmentation spectrum of this peptide fully 

confirmed the presence of the HexNAc moiety on Asn156 (Fig. 5.1.2.C). Due 

to the low site occupancy of Asn176, deglycosylation of Asn176 to the 

HexNAc moiety was too weak to be detected. The conversion of 

Hex6HexNAc5NeuAc3 to HexNAc on Asn156 suggests an endo-β-N-

acetylglycosidase dependent deglycosylation.  

 To confirm that fetuin deglycosylation was due to the Gpd complex 

activity and in particular to the GpdG glycosyl hydrolase activity, we then 

analysed fetuin after incubation with the gpdG knockout bacteria. Fetuin 

incubated in the presence of these mutant bacteria turned out to remain fully 

glycosylated (Fig. 5.1.2.D) indicating that no cleavage occurred in the 

absence of the enzyme. 
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Figure 5.1.2. LC-MS analysis reveals an endo-β-N-acetylglucosaminidase activity of GpdG.  

Glycosylation analysis of fetal calf serum fetuin. (A). Asn156 glycosylation of untreated bovine fetuin. 
Selected ion chromatogram for the quadruply charged tryptic peptide carrying the 
Hex6HexNAC5NeuAc3 glycosyl moiety on the LCPDCPLLAPLNDSR peptide. The inset shows the 
isotope pattern for the Asn156 glycopeptide. (B). Selected ion chromatogram for the doubly charged 
Asn156 HexNAc-modified LCPDCPLLAPLNDSR glycopeptide of fetuin that had been incubated with 
wild-type Cc5. (C) Fragmentation spectrum of the Asn156- GlcNAc species with the y- and b-ions that 
conclusively show the HexNAc modification of Asn156. (D) Asn156 glycosylation of bovine fetuin that 
had been treated with the ∆gpdG strain. Selected ion chromatogram for the quadruply charged tryptic 
peptide carrying the Hex6HexNAC5NeuAc3 glycosyl moiety on the LCPDCPLLAPLNDSR peptide. The 
inset shows the isotope pattern for the Asn156 glycopeptide. 
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 The sequence of GpdG was then compared to those of two endo-β-N-

acetylglucosaminidases, namely EndoS from Streptococcus pyogenes 

capable of deglycosylating N-linked glycans from the γ chain of human 

immunoglobulins [115], and  EndoF from Flavobacterium meningosepticum 

capable of cleaving off high-mannose and complex glycan N-linked from 

several glycoproteins including immunoglobulins [116].  It appeared that a 

chitinase motif present in these two enzymes was conserved in GpdG 

(FDGFDIDWE).  In order to further confirm the endo-β-N-

acetylglucosaminidase activity of GpdG we substituted the essential E205 

residue [116] with a glycine and tested the growth on HEK293 cells of the 

gpdG mutant strain expressing in trans the GpdG catalytic mutant. As shown 

in Fig. 5.1.3.A, the GpdG catalytic mutant was impaired in growth. We then 

tested the fetuin deglycosylation ability of the GpdG catalytic mutant. As 

shown by the lectin staining in Fig. 5.1.3.B and by the immuno-blotting in Fig. 

5.1.3.C, bacteria endowed with the GpdG catalytic mutant were completely 

impaired in fetuin deglycosylation.  We conclude from all these experiments 

that GpdG is an endo-β-N-acetylglucosaminidase.   
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Figure 5.1.3. The F197DGFDIDWE205 chitinase motif of GpdG is the catalytic site. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E205 from GpdG was substituted with a glycine.  (A): Number of divisions after 23 h growth on 

HEK293 cells of the ∆gpdG mutant complemented with gpdG* encoding the catalytic mutant  
(B): Fetuin glycosylation state of samples incubated for 3 hours in the presence of the different 
strains, determined by staining with the Sambucus nigra lectin (SNA) that recognizes terminal 
sialic acid (2-6 or 2-3) linked to Gal or to GalNAc. 
(C): same as B after western blot analysis with anti-fetuin antibodies. 
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The Gpd complex deglycosylates human IgG. 

Since GpdG has the same chitinase motif as EndoF and EndoS, 

known to deglycosylate N-linked glycans from the γ chain of human IgGs 

[25,26], we tested whether the Gpd complex would also be able to 

deglycosylate the heavy chain of IgGs.  The N297-linked glycan moiety of this 

chain is biantennary and consists of Hex6HexNAc5NeuAc2. Removal of this 

moiety by EndoS was shown to determine a size shift of ~ 3 KDa [115].  After 

incubation of purified human IgG with wt Cc5 bacteria, the molecular mass of 

the γ chain underwent a slight size shift (Fig. 5.1.4.A and B) while the mass of 

the light chains was unchanged (Fig. 5.1.4.A). In contrast incubation with 

∆gpdG knockout bacteria did not alter the γ chain size indicating that the 

cleavage was GpdG dependent.  To confirm that the size reduction of the γ 

chain was due to the removal of the glycan moiety, IgG was stained with SNA. 

As shown in Fig. 5.1.4.C, the SNA signal of the γ chain was significantly 

reduced after incubation with wt Cc5.  In contrast the γ chains remained fully 

glycosylated after incubation with ∆gpdG bacteria. These data indicated that, 

like F. meningosepticum and S. pyogenes, C. canimorsus has the capacity to 

deglycosylate IgGs. 

 

 
Figure 5.1.4. Human IgG deglycosylation.  

 

 
 
 
 
 
 
 
 
 
 
 

 

Glycosylation state of human IgG samples incubated for 3 hours in the presence of 

wt and ∆gpdG bacteria monitored by Coomassie staining (A), western blot analysis 
with anti-IgG antibodies (B) and staining with SNA (C). 
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GpdD, -G, -E and -F are lipoproteins and lipid modification is 

fundamental for the complex activity. 

The GpdD, -G, -E and –F proteins belong to the OM and surface 

proteomes of Cc5 (c.f. chapter 4.1).  In addition, these proteins are endowed 

with a signal peptidase II consensus signal peptide.  Altogether, this suggests 

that they could be lipoproteins anchored to the outer leaflet of the outer 

membrane and exposed at the surface of the bacterium (c.f. chapter 4.1). In 

order to determine whether the lipidation of the Gpd proteins is required for 

their function, we generated soluble periplasmic versions of GpdD and GpdG 

by substituting the cystein residue of the lipobox with a glycin.  We then tested 

the ability of the periplasmic variants of GpdD and GpdG to complement the 

growth deficiency of the gpdD and gpdG knockout strains on HEK293 cells.  

As shown in Fig. 5.1.5, both the GpdD and GpdG periplasmic variant were 

unable to complement the growth deficiency indicating that lipid modification 

is necessary for the proper localization and function of the proteins.  This 

conclusion was reinforced by the fact that bacteria endowed with periplasmic 

GpdD or GpdG were unable to deglycosylate fetuin (Fig. 5.1.5). Hence, we 

infer that GpdD and GpdG are lipoproteins that are anchored in the outer 

leaflet of the outer membrane and exposed to the bacterial surface. The same 

presumably applies to GpdE and GpdF since they have also a lipobox and 

they are also part of the surface proteome (c.f. chapter 4.1). 
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Figure 5.1.5. Lipid modification of GpdD and GpdG is essential for their activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Number of divisions after 23 h growth on HEK293 cells of the ∆gpdG bacteria complemented 
with gpdDC17G and gpdGC21G.  
(B) Fetuin glycosylation state of samples incubated for 3 hours in the presence of the different 
strains, determined by staining with SNA.  
(C) Same as B analyzed by western blot with anti-fetuin antibodies.  
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The Gpd proteins form a deglycosylation complex associated with sialidase. 
 In order to assay whether the five Gpd proteins interact with each other 

to form a complex at the bacterial surface, we performed a two-step affinity 

purification with a His-Strep tagged version of GpdC. Analysis by immuno-blot 

and mass spectrometry (Fig. 5.1.6) of the purified fraction revealed the 

presence, together with GpdC, of GpdD, -G, -E and –F, indicating a stable 

interaction between all these proteins. Furthermore, six other proteins, among 

which SiaC (Fig. 5.1.6), co-purified with the complex.   

 

 

 

Figure 5.1.6. Gpd proteins form a complex with sialidase 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Streptavidine affinity purification of GpdC-His-Strep expressed from its natural 

promoter in a ∆gpdC background. (A) Detection by western blot of GpdC (anti-His 
antibody), GpdG (anti-GpdG) and Sialidase (anti-SiaC) in the elution fractions. (B) 
List of protein identified by Mass spectrometry in the elution fractions. 
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Sialidase is a periplasmic lipoprotein that interacts with GpdC. 
 SiaC has been previously shown [58] to be essential to sustain growth 

of Cc5 in the presence of eukaryotic cells due to its role in the glycoprotein 

deglycosylation process.  We thus focused our attention on the sialidase-Gpd 

complex interaction. The co-purification of SiaC with GpdC strongly suggested 

that SiaC is associated to the Gpd complex, although it is encoded far away 

from PUL5. However, unlike the Gpd proteins, sialidase was not identified in 

the surface proteome of Cc5 (c.f. chapter 4.1). On the other hand, earlier 

immunofluorescence assays suggested that sialidase is localized on the 

bacterial surface and removal of the signal sequence of sialidase prevented 

growth on cells [58]. In order to better understand the interplay between SiaC 

and Gpd proteins in the glycoprotein deglycosylation process, we decided to 

clarify its localization.  

 Since the sialidase sequence analysis revealed the presence of a 

signal peptide with a lipobox in the N-terminal sequence, we first sought to 

determine whether SiaC is a lipoprotein.  We incubated Cc5 and mutant 

bacteria encoding SiaCC17Y in the presence of tritiated palmitate and analyzed 

the total proteins by SDS-PAGE and fluorography (Fig. 5.1.7.A). Sialidase 

appeared indeed to be lipidated and the C17Y mutation completely prevented 

this lipid modification.  The analysis of outer membrane proteins isolated by 

sarcosyl extraction confirmed that sialidase but not its C17Y variant was 

associated with the OM (Fig. 5.1.7.B).  We conclude from these experiments 

that SiaC is a lipoprotein anchored into the outer membrane.   

 In order to define whether it is exposed towards the outside like 

GpdDGEF or towards the periplasm, we tested whether the periplasmic 

SiaC17Y could restore the growth deficiency of the siaC mutant strain. In 

contrast to what was observed for GpdD and GpdG, expression of SiaC17Y in 

trans did fully restore the growth defect (Fig. 5.1.7.C) indicating that the 

localization of sialidase in the periplasm and the absence of association with 

the outer membrane did not prevent its function.  This data pointed to the 

direction of a periplasmic localization of SiaC rather than a surface-exposed 

localization as was previously suggested [58]. 

 The association between sialidase and the Gpd complex obviously 

suggests that the two work cooperatively.  This was already suggested by the 



The polysaccharide utilization locus 5 

 

 88 

fact that the gpd mutant bacteria did not remove the terminal sialic acid 

residues from fetuin, although SiaC was functional in these mutants (Fig. 

5.1.1.C). We then tested the ability of the siaC knockout bacteria to 

deglycosilate fetuin. SNA lectin staining (Fig. 5.1.7.D) and immuno-blotting 

(Fig. 5.1.7.E) clearly showed the same fetuin deglycosylation pattern for the 

wt and siaC mutant bacteria. These results indicate that the endo-cleavage of 

fetuin N-glycans, operated by the Gpd complex is completely independent 

from the activity of SiaC. However, the evidence that SiaC activity is essential 

for growth on Hek293 cells (Fig. 5.1.7.C), suggests that removal of the glycan 

terminal sialic acid is nevertheless a crucial step for the subsequent glycan 

catabolism process.  This indicates that the Gpd complex acts upstream of 

SiaC.  Since the Gpd complex includes the GpdC porin-like protein, this 

sequential order is perfectly compatible with a periplasmic localization of 

sialidase.  Sialic acid removal would thus occur in the periplasm after the 

glycan has been cleaved off and transported through the GpdC OM channel.   

 If this model was correct, the interaction between the periplasmic SiaC 

and the GpdC complex could only occur through a direct interaction with 

GpdC, since the other Gpd proteins are surface exposed.  To test this 

prediction, we expressed a C-terminally Strep-His double tagged GpdC in a 

gpdCDGE multi knockout strain and we performed a two-step affinity 

purification of GpdC.  The analysis by immuno-blotting (Fig. 5.1.7.F) of the 

fractions eluted after the second purification step showed that SiaC did indeed 

co-purify with GpdC indicating that SiaC and GpdC do indeed interact directly 

with each other. The complete deglycosylation complex would thus consist of 

the surface-exposed lipoproteins GpdDGEF and the periplasm-exposed  

lipoprotein SiaC, all of them associated to the porin-like GpdC (Fig. 5.1.7).    
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Figure 5.1.7.  Sialidase localization and interaction with GpdC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Autoradiography of 3H-palmitate labeled sialidase in different bacteria. 
(B) Detection of sialidase by western blot analysis (anti-SiaC antibody) in total cell 

extracts (TC) and outer membrane protein (OMP) fractions of Cc5 wt and ∆siaC 
bacteria complemented with the soluble periplasmic sialidase (SiaCC17Y). 
(C) Number of divisions after 23 hours growth on HEK293 cells of ∆siaC bacteria 
expressing SiaC or SiaCC17Y . 
(D) Fetuin glycosylation state after 3 hours of incubation in the presence of the 
different strains, determined by staining SNA.  
(E) Same as D, analyzed by western blot with anti-fetuin antibodies. 

(F) Co-purification of SiaC with GpdC-Strep-His produced in a ∆gpdCDGE 
background. GpdC was detected with anti-Strep antibody and SiaC with anti-SiaC 
antibodies. 
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DISCUSSION 

 

Our previous work has shown that C. canimorsus deglycosylates 

surface glycoproteins from the host and sustains its growth on the glycan 

moieties [58].  Here, we showed that this deglycosylating activity is achieved 

by the joined action of the PUL5-encoded Gpd complex and sialidase [58]. 

PUL5 consists of the five gpdCDGEF genes.  GpdC, an homolog of the 

archetypal SusC [71] likely represents the specific OM porin of the system. 

GpdD is an homolog of SusD, a starch-binding protein [16,20] and hence 

most likely a glycoprotein-binding protein. On the basis of their annotation, we 

propose that GpdE and GpdF are also glycan-binding proteins.  GpdG was 

annotated as an endo-β-N-acetylglucosaminidase (c.f. chapter 4.1) and this 

annotation was shown to be correct.  Indeed mass spectrometry analyses 

demonstrated that GpdG removes the tribranched complex 

Hex6HexNAc5NeuAc3 glycan structure linked to N156 from the model 

glycoprotein fetuin, leaving one GlcNac residue to the protein.  GpdDGEF 

were predicted to be lipoproteins (c.f. chapter 4.1). Replacement of the critical 

cysteine of the lipoprotein signal peptide from GpdD and GpdG completely 

abolished the deglycosylating activity, indicating that a periplasmic location 

did not sustain the activity.  These data, together with the fact that the two 

proteins belong to the surface proteome indicate that these two lipoproteins 

are exposed to the surface and not to the periplasm.  We assume the same is 

true for GpdE and F since, like GpdD, they are thought to bind glycans, they 

contain a lipobox and they belong to the surface proteome.  Interestingly, all 

the five Gpd proteins could be co-purified with the porin-like GpdC, indicating 

that they all form one single complex at the bacterial surface. Unexpectedly, 

not only GpdD, -G, -E and -F co-purified with GpdC but also SiaC.  Although 

SiaC was known to be part of the catabolic process, SiaC is not encoded 

together with GpdCDGEF (c.f. chapter 4.1) and it was not anticipated that the 

interaction would be so close.  SiaC turned out to be also a lipoprotein but, 

unlike GpdD and GpdG, it was still functional when it was directed to the 

periplasm, unlipidated.  We inferred from this observation that, contrary to our 

initial report, SiaC is a periplasm-oriented lipoprotein.  Thus, the observations 
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presented here suggest the model illustrated in Fig. 5.1.8: the surface-

exposed GpdCDEF complex captures the N-linked complex glycan moieties 

of glycoproteins, which are then detached from the protein by GpdG and 

internalized by GpdC.  As soon as they reach the periplasm, SiaC removes 

the terminal sialic acid. This sequence of events is strongly supported by the 

observation that gpd mutant bacteria do not desialylate fetuin, although SiaC 

is functional in these mutants (Fig. 5.1.1).  After desialylation, the 

oligosaccharide would be sequentially degraded by periplasmic 

exogalactosidases and the monosaccharides would transferred to the cytosol.  

This last step of the model is supported by the fact that the genome encodes 

three putative β-galactosidases (Ccan 01530, Ccan 15520, Ccan17480), five 

putative β-N-Acetylhexosaminidase (Ccan 03860, Ccan04040, Ccan16820, 

Ccan17870, Ccan20090) and four putative α-mannosidases (Ccan00510, 

Ccan01900, Ccan 04050 and Ccan 16220), all of them endowed with a signal 

peptide I or II, and none of them surface exposed (c.f. chapter 4.1).  The β-

galactosidase and α-mannosidase activities were confirmed in the crude 

extract (data not shown).  The three β-galactosidases seemed actually 

redundant since they could all be individually knocked out without affecting 

the growth on cells (data not shown).   

 This global model strikingly reminds the archetypal Sus system shown 

to consist of one single complex made of SusCDEF [80].  It is thought that 

SusG, an endo-acting enzyme, generates internal cuts in a bound starch 

molecule and releases oligosaccharides larger than maltotriose, which are 

then transported by SusC into the periplasmic compartment. In the periplasm, 

glycoside hydrolases SusA and SusB then degrade the oligosaccharides into 

their component sugars prior to final transport to the cytosol [27,28].  The two 

systems are thus remarkably conserved, although they adapted to different 

complex saccharides.  
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Figure 5.1.8. Functional model of complex N-linked glycan moieties deglycosylation 
processing by C. canimorsus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual glycan processing steps are illustrated. (A) The glycan moiety is bound at the bacterial 
surface by the Gpd complex. (B) The glycan mopiety is endo-cleaved by GpdG and imported into the 
periplasm trough the GpdC pore. (C) Terminal sialic acid is cleaved by sialidase (SiaC). (D) The glycan 
is further processed by the sequencial activity of several periplasmic exoglycosidases. 
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To our knowledge, the Gpd system is the first PUL-encoded system 

devoted to foraging N-linked glycoproteins.  It contributes to sustain growth of 

C. canimorsus at the expenses of cultured cells (c.f. chapter 4.1). Since C. 

canimorsus has 13 PULs (c.f. chapter 4.1), it is very likely that some of them 

could be devoted to the harvest of O-linked glycans, but this activity has not 

been identified thus far.  The best approach would probably be to look for 

upregulation in the presence of O-linked glycoproteins, as was done in B. 

thetaiotaomicron [74].  Deglycosylation of N-linked glycans is not 

unprecedented among pathogens and commensals. As mentioned earlier, 

two streptococci, S. pyogenes and S. oralis have this remarkable property. In 

the case of S. pyogenes, this activity is exerted towards IgGs by secreted 

endoglycosidase EndoS and it does not seem to play a major role in nutrient 

acquisition [115].  In contrast, in S. oralis, the activity was shown to sustain 

growth [30].  It is interesting to notice that S. oralis, like C. canimorsus, is 

emerging as an important opportunistic pathogen originating from the oral 

flora.  This commonality between two very different bacteria from the same 

ecosystem suggests first that the capacity to deglycosylate host proteins is a 

favourable trait in the mouth ecosystem and, second, could favour 

opportunistic infections.  Deglycosylation of IgGs is very likely to contribute to 

a generalized infection as discussed by Collin and Olsen [115] but, for C. 

canimorsus, one cannot exclude that deglycosylation of other host proteins 

would also significantly contribute to pathogenesis.  

 Our data demonstrate that PUL-encoded lipoproteins are surface-

exposed.  Prolipoproteins are exported through the Sec pathway and then 

acylated at the periplasmic leaflet of the inner membrane (IM), by the 

sequential action of glyceryl transferase, O-acyl transferase(s) and 

prolipoprotein signal peptidase (signal peptidase II). A mature lipoprotein 

harbours as a first aminoacid a cysteine residue that is lipid modified with a N-

Acyl diacyl Glyceryl group which serves to anchor the protein to the IM. In 

Gram-negative bacteria, some lipoproteins are destined for the OM.  These 

proteins are extracted from the IM, transported across the periplasm and 

inserted in the inner leaflet of the OM by the Lol pathway (for review see refs 

[31,32]. Insertion of lipoproteins into the outer leaflet of the OM is however 
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established in some pathogens like Borrelia but, the pathway is neither well 

documented not well understood [117].  Since bacteria from the Cytophaga-

Flavobacteria-Bacteroides group massively insert lipoproteins in the outer 

leaflet of the OM, we postulate that they have an original system dedicated to 

the transport of lipoproteins across the OM but this system still needs to be 

identified and investigated. 
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Materials and Methods 

 

Bacterial strains and growth conditions 
Conventional bacterial growth conditions and selective agents 
The strains used in this study are listed in Appendix hia coli strains were 
routinely grown in LB broth at 37°C. C. canimorsus bacteria were routinely 
grown on heart infusion agar (Difco) supplemented with 5% sheep blood 
(Oxoid) for 2 days at 37°C in the presence of 5% CO2. To select for plasmids, 
antibiotics were added at the following concentrations: 10 µg/ml erythromycin 

(Em), 10 µg/ml cefoxitin (Cf), 20 µg/ml gentamicin (Gm), 100 µg/ml ampicillin 
(Ap) and 50 µg/ml kanamycin (Km). 
 
Growth of Cc5 bacteria on HEK293 cultured cells  
Human Embryonic Kidney 293 cells (HEK293) were cultured in DMEM 
(Invitrogen) with 10% (v/v) fetal calf serum (Invitrogen) and 1mM sodium 
pyruvate. Cells were grown in medium without antibiotics in a humidified 
atmosphere enriched with 5% CO2 at 37°C. Bacteria were harvested by gently 
scraping colonies off the agar surface and resuspended in PBS. A total of 
4x104 bacteria were incubated with 2x105 HEK293 cells (MOI = 0.2) in a final 
volume of 1ml medium devoid of antibiotics for 23h.  
 
Mutagenesis and allelic exchange  
Mutagenesis of Cc5 Wt has been performed has described in ref [82] with 
slight modifications. Briefly, replacement cassettes with flanking regions 
spanning approximately 500 bp homologous to direct gpd framing regions 
were constructed with a three-fragment overlapping-PCR strategy. First, two 
PCRs were performed on 100 ng of of Cc5 genomic DNA with primers A and 
B (Appendix) for the upstream flanking regions and with primers C and D for 
the downstream regions. Primers B and C contained an additional 5' 20-
nucleotide extension homologous to the resistance ermF insertion cassette. 
The ermF resistance cassette was amplified from plasmid pMM106 DNA with 
primers 5502 and 5503. All three PCR products were cleaned and then mixed 
in equal amounts for PCR using Phusion polymerase (Finnzymes). The initial 
denaturation was at 98°C for 2 min, followed by 12 cycles without primers to 
allow annealing and elongation of the overlapping fragments (98°C for 30 s, 
50°C for 40 s, and 72°C for 2 min). After the addition of external primers (A 
and D), the program was continued with 20 cycles (98°C for 30 s, 50°C for 40 
s, and 72°C for 2 min 30 s) and finally 10 min at 72°C. Final PCR products 
consisted in gpd::ermF insertion cassettes and were then digested with PstI 
and SpeI for cloning into the appropriate sites of the C. canimorsus suicide 
vector pMM25 . Resulting plasmids were transferred by RP4-mediated 
conjugative DNA transfer from E. coli S17-1 to C. canimorsus 5 to allow 
integration of the insertion cassette. Transconjugants were then selected for 
presence of the ermF cassette, checked for sensitivity to cefoxitin and the 
deleted regions were sequenced. 
 
Construction of complementation and expression plasmids 
Plasmid pPM1,  used for complementation and expression of the Gpd 
proteins is a derivative of the E. coli- C. canimorsus shuttle vector pMM47A.1 
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[82]. pMM47A.1 ermF promoter region was cleaved with SalI and NcoI and 
the 117 nucteotides upstream the gpdC starting codon sequence, containing 
the putative gpdC promoter, was cloned using the same restriction sites. Full 
length gpdC, -D, -G, -E and -F were amplified with the specific primers listed 
in Appendix and cloned into plasmid pPM1 into NcoI and XbaI restriction sites 
leading to the insertion of a glycine at position 2. 
The E205G substitution inactivating the catalytic site of GpdG was introduced 
by site directed mutagenesis by overlapping PCR using primers 5008/6061 
and 6060/6055 and cloned in pPM1 using NcoI and XbaI restriction sites 
leading to plasmid pFR10 (gpdG*). The C17G substitution of GpdD was 
introduced by site directed mutagenesis amplifying by PCR using primers 
6056 and 6057 and cloning NcoI/XbaI in pPM1 leading to plasmid pFR8.  
The C21G substitution of GpdG was introduced by site directed mutagenesis 
amplifying by PCR using primers 6054 and 6055 and cloning NcoI/XbaI in 
pPM1 leading to plasmid pFR9. 
The C17Y substitution SiaC was introduced by site directed mutagenesis 
amplifying by inverse PCR using primers 5045 and 5046 using as pMM52 as 
template leading to plasmid pMM121.1.  
C-terminal His-Strep double tagged gpdC was amplified by two-step 
overlapping PCR using primers 5081, 5467 and 5530 and cloned in pMM47.A 
using SalI and SpeI restriction sites leading to plasmid pPM3.  
 
Fetuin deglycosylation analyses and lectin stainings 
Bacteria were collected from blood agar plates and resuspended in PBS at 
OD600=1. 100 µl of bacterial suspensions were then incubated with 100 µl of a 
fetal calf serum fetuin (Sigma F2379) solution (0.1 g.l-1) for 120 minutes at 
37°C. As negative control, 200 µl of 1:2 diluted fetuin solution alone was 
incubated for 120 minutes at 37°C. Samples were then centrifuged for 5 min 
at 13000 x g, supernatant collected and loaded in a 12% SDS gel. Samples 
were analyzed by immunoblotting (Fetuin, Rabbit anti-Bovine RIA, 
UCBA699/R1H, ACCURATE CHEMICAL & SCIENTIFIC CORPORATION) 
and lectin stainings were performed with Sambucus nigra lectin (SNA) 
according to manufacturer recommendations (DIG Glycan Differentiation Kit, 
11210238001, Roche). 
 
Human IgG deglycosylation analyses and lectin stainings 
Bacteria were collected from blood agar plates and resuspended in PBS at 
OD600 = 1. 100 µl of bacterial suspensions were then incubated with 100 µl of 
a purified human IgG (Invitrogen, 02-7102) solution (0.5 g.l-1) for 180 minutes 
at 37°C. As negative control, 200 µl of 1:2 diluted IgG solution alone was 
incubated for 120 minutes at 37°C. Samples were then centrufiged for 5 min 
at 13000 x g, supernatant collected and 3 µl ( and 12 µl SDS buffer) were 
loaded  in a 12% SDS gel. Samples were analyzed by Coomassie blue 
staining, immunoblotting (Goat Anti-Human IgG (Fc specific)-FITC antibody, 
F9512 Sigma)) and lectin stainings were performed with SNA according to 
manufacturer recommendations (DIG Glycan Differentiation Kit, 
11210238001, Roche). 
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Mass spectrometric analysis of fetuin 
Fetuin (Sigma F2379) was reduced with 10 mM TCEP at 37oC for 1 hour and 
alkylated with 50 mM iodoacetamide for 15 min at room temperature. Fetuin 
was digested with trypsin at an enzyme to protein ratio of 1:50 (w/w) at 37oC 
overnight. The peptides were desalted on C18 StageTips (Thermo Fisher 
Scientific, Reinach, Switzerland) according to the manufacurer’s 
recommendations. The fetuin peptides were analysed on an LTQ Orbitrap 
instrument (Thermo Fisher, San José, CA, USA) coupled to an Agilent 1200 
nano pump according to (c.f. chapter 4.1). 
 
Outer Membrane Protein purification 
Bacteria were collected from blood agar plates and resuspended in 3 mI ice 
cold HEPES 10mM (pH7.4) at OD600 = 1. Bacterial suspensions were then 
sonicated on ice until they turned clear and spined at 15600 x g for 2 minutes 
at 4°C. Supernatants were transferred and centrifuged again for 30 minutes at 
15600 x g at 4°C. Pellets were resuspended in 2 ml HEPES 10mM with 1% 
sarcosyl (N-Lauroylsarcosine sodium salt, Sigma) and incubated at room 
temperature for 30 minutes. Finally, samples were centrifuged at 15600g for 
30 min at 4°C and pellet resuspended in 0.1 ml  HEPES. Samples were 
checked for quality and quantity on silver stained SDS-PAGE and analysed by 
MS/MS. 
 
Gpd proteins and sialidase co-purification  
Cc5 ∆gpdC bacteria harbouring plasmid pPM3, expressing a C-terminal His-
Strep double tagged GpdC, or harbouring plasmid pPM2, expressing GpdC 
without any tag (Mock), were grown for 2 days at 37 °C in the presence of 5% 
CO2 on sheep blood agar plates. Bacteria from 6 plates were scraped and 
lysed in 35ml of 25mM Tris-HCl, 150mM NaCl, 0.2% triton, 1% NP-40%, 1% 
sodium deoxycholate, pH7.6.  
For His affinity purification, the lysates were clarified by centrifugation (10 min 
at 18500g at RT) and the supernatant was diluted 1:2 in PBS, 10 mM 
Imidazole, in the presence of proteinase inhibitor (cOmplete, Mini, EDTA-free 
Protease Inhibitor Cocktail Tablets, Roche). 3.5 ml of 50% slurry Chelating 
sepharose Fast Flow beads (GE Healthcare) was first coupled to Ni2+ 

according to the manufacturer instructions and then 1.75 ml of resin was 
added to the solution and incubated overnight at 4 °C on a rotating wheel.  
The solution was then loaded into a column and the resin washed first with 25 
column volumes (CV) of high salt buffer (50mM Tris, 500mM NaCl, pH8) and 
then with 5 CV of low salt buffer (50 mM Tris, 100 mM NaCl, pH 8).  Proteins 
were then eluted from the resin with 2 CV of elution buffer (50mM Tris, 
100mM NaCl, 350 mM Imidazole, pH8). The material eluted from the Ni2+ 

column was then diluted 1:2 in PBS and 1 ml of 50% slurry (0.5 ml CV) Strep-
Tactin® Superflow® resin (IBA, cat No: 2-1206-002) was added. The solution 
was then incubated overnight at 4 °C on a rotating wheel. The solution was 
then loaded into a column and the flow through reloaded into the resin 2 more 
times. The resin was then washed 4 times with 10 CV of Buffer W (100mM 
Tris, 150 mM NaCl, 1mM EDTA, pH8) and proteins eluted in 3 steps with 0.5 
ml elution buffer (100mM Tris, 150 mM NaCl, 1mM EDTA, 2.5 mM 
desthiobiotin, pH8).  The proteins present in the elution fractions were 
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identified by MS and immunoblotting, using anti-His for GpdC detection, anti-
GpdG and anti-SiaC . 
GpdC-sialidase co-purification was performed exactly as described above 
using Cc5 ∆PUL5 bacteria harbouring pPM3 plasmid or harbouring plasmid 
pPM2 (Mock).Proteins present in the elution fractions were identified by 
immunoblotting with anti-Strep antibodies to detect GpdC and anti-SiaC. 
 
In vivo radiolabeling with [3H] palmitate, immuno-precipitation and 
fluorography. 
Bacteria were inoculated to HeLa epithelial cells (ATCC CCL-2) in complete 
DMEM at 37°C with 5% CO2 at a moi of 20. 15-16 h post infection, [9,10-3H] 
palmitic acid (48 Ci/mmol; Perkin-Elmer Life Sciences) was added to a final 
concentration of 50 µCi/ml and incubation was continued for 8-9 h, by which 
time the bacterial culture had reached approximately 108 bacteria/ml as 
described elsewhere [58]. Supernatants of 2 x 1 ml were collected without 
detaching epithelial cells from the wells. Bacteria corresponding to 
approximately 2x 108 cfu were then collected by centrifugation and pellets 
were combined from 2 ml and stored at -20°C until they were processed. 
Pellets were resuspended in 0.1 ml PBS TritonX 1% to lyze bacteria and 

sialidase was immuno-precipitated by addition of 10 µl rabbit polyclonal anti-
SiaC for 1h at RT on a rotating wheel. Protein A agarose slurry (Sigma) was 
then added in equal amounts for 30 min under constant rotation at RT. 
Samples were then centrifuged at 14000 x g for 2 min at RT, supernatant was 
discarded and pellets were washed with 0.5 ml PBS 0.1% Triton which was 

repeated 4 times. Captured proteins were eluted by addition of 50 µl Lämmli 
buffer (1% SDS, 10% glycerol, 50 mM dithiothreitol, 0.02% bromophenol blue, 
45 mM Tris, pH 6.8) for 5 min at 85°C. Samples were centrifuged again and 
supernatant was carefully separated from the agarose beads and loaded on 
SDS PAGE gels using 10% polyacrylamide. After gel electrophoresis, gels 
were fixed in 25:65:10 isopropanol:water:acetic acid overnight and 
subsequently soaked for 30 min in AmplifyTM (Amersham). Gels were 
vacuum dried and exposed to SuperRXTM autoradiography film (Fuji) for 
13days until desired signal strength was reached. 
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Figure 5.2 Representative anti HIS tag western blot of total Cc5 ∆gpdC bacteria 

expressing HIS-tagged GpdC under different promoters 

 

ompA.Cc: ompA promoter (Cc5)  

ermF: ermF promoter 

gpdC.Cc: gpdC promoter (Cc5 ) 

ompA.Fj: ompA promoter (F. johnsoniae) 

 

5.2. Additional data: New promoters with diverse expression levels 

Since Mally et al. established expression tools for C. canimorsus [82], 

ermF promoter has been intensively and exclusively used in our system. 

However purification trials of GpdC were both performed under ermf and 

gpdC’s native promoter. Interestingly, gpdC promoter showed significantly 

stronger protein expression than ermF promoted constructs under our growth 

conditions (Fig. 5.2). In addition, the previously reported strong ompA 

promoter from Flavobacterium johnsoniae [118, 119] has been tested together 

with its C. canimorsus 5 homolog for GpdC expression (Fig. 5.2). All 

constructs shown here were able to complement growth phenotype of the 

gpdC deletants strain when cultured in presence of cells and even display 

slightly faster growth on blood agar plates when GpdC was expressed under 

its native promoter or under the F. johnsoniae’s ompA promoter (data not 

shown).  
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6.1. Additional genomes sequencing 

Comparative genomic analysis of the Capnocytophaga genus has become 

possible since several sequencing projects achieved complete or advanced draft 

genome assemblies four human hosted strains: Capnocytophaga ochracea 

strains F0287 (61 contigs) and DSM 7271 (complete), Capnocytophaga gingivalis 

ATCC 33624 (37 contigs), Capnocytophaga sputigena ATCC 33612 (65 contigs). 

In order to characterize the molecular bases of Cc5 host interactions, additional 

C. canimorsus strains have been targeted for sequencing. Three additional 

strains isolated from patients’ blood (i.e. capable of pathogenesis) were selected. 

Study of genes conservation among the whole Capnocytophaga genus and 

among the C. canimorsus genomes could help us to identify genes important for 

the incidental pathogenesis of C. canimorsus. Strains selected for genome 

sequencing were C. canimorsus 2 (Cc2), C. canimorsus 11 (Cc11) and C. 

canimorsus 12 (Cc12). In addition, a Cc5 transposon mutant derivative - X2E4 - 

that could not to be mapped with standard arbitrarily primed PCR, has also been 

sequenced for both insert localization and improvement of the Cc5 wild type 

genome read depth.  

6.2. Genomes sequencing and Assembly 

The so called second generation deep sequencing methods (e.g. 

Solexa/Illumina, 454, ABI SOLiD) generate very high read coverages at the 

expense of read size (for example 36 bp for Solexa). At the time this work has 

been performed, Solexa represented the most efficient alternative in terms of 

sequence coverage and allowed pair ends recovering. This latter feature 

consisting in generating length homogeneous fragments and keeping track of the 

relationship shared by two reads coming from both ends of a same fragment.  

The three sets of microreads generated have been tested on a series of 

recent assembler software devoted to microreads or hybrid assemblies (i.e. using 

different sequencing chemistries) (Table 6.2.1). However, best assemblies did 

not go below 1000 contigs when assemblers were used independently in the 

case of Cc2, Cc11, Cc12 and even for the Cc5 isogenic strain X2E4 (Table 6.2.2 

and Table 6.2.3).  
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 Assembler 

type 

reference 

sequence 
hybrid PE

1
 

Time 

& CPU 
Other 

EDENA de novo No No Yes + + +  

VELVET de novo 
Yes 

as tutors 
No Yes + + + 

Merging 

limitations 

MAQ Resequencing Required Yes Yes + + Align only 

SSAKE de novo 

Yes 

as Elongation 

Seeds 

No Yes - - - 
Calling quality 

ignored 

1 Possibility to use Pair End reads data sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROG Contigs 
Reads used 

(Mb) 

VELVET 4488 NA 

EDENA 1606 2.73 (71%) 

SSAKE NA (>>) NA 

MAQ Run Contigs 
NON 

COVERED
1
 

Reads used 

(Mb) 

X2E4 57 264 3.07 (79%) 

Cc2 1.0461 339.948 2.96 (61%) 

Cc11 14.800 621.534 1.40 (52%) 

Cc12 14.238 677.896 2.30 (50%) 

Table 6.2.2 Performances of three de 

novo assemblers on the X2E4 reads set  

 

Table 6.2.1 Assembler programs tested in the present study  

 

Table 6.2.3 Performances of the mapping 

software MAQ on different reads sets 

 

1 Number of bases from Cc5 that failed to map reads. 
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6.2.1. Development of a microreads assembly pipe 

using different assemblers' features. 

With the aim to optimize assembly process, a hybrid assembly pipe 

exploiting best features of the currently available software has been 

developed (Figure 6.2.1 & Supplementary data, 

Chapter_6.2_assembling_methods). In a first step, the complete genome of 

Cc5 has been used as scaffold and microreads from the three newly 

sequenced strains showing 100% identity values with the Cc5 sequence have 

been mapped on it by using MAQ [86]. Well covered chromosomal regions 

were referred as conserved regions (CR) and unmapped reads (UMR) were 

outputted (i.e. recovered) and stored. UMRs were then independently 

assembled using the de novo assemblers Velvet [120] and Edena [121]. 

Separation of the assembly process between CRs and strain specific regions 

(SSRs) has been thought to prevent misassembling interferences from the 

mapped reads during de novo assembly of SSRs. In parallel, the complete 

sets of reads were also employed to extend CRs with the SSAKE [122] 

software. SSAKE takes CRs, referred as seeds, and the whole set of 

microreads as inputs. It then only considers seeds extremities for an 

extension process using overlapping microreads.  

 Once this process has run over all seeds (i.e. CRs), neighboring 

regions (according to the Cc5 chromosome topology) are pairwise aligned at 

their contiguous boundaries by Xmatch (http://www.phrap.org/). In case the 

overlap satisfies the arbitrary assembling constraints (e.g. match length, 

identity values, coverage…), sequences are merged with Merge [89]. This 

way merging control parameters can be further relaxed while maintaining a 

high assembly accuracy level. Indeed, we expect that the chances that two 

contiguous CRs in Cc5 will be contiguous in another strain are substantially 

higher than the chances to independently build two overleaping 

misassembled sequences. Inversely, note that in case of a classical assembly 

process, the “all against all” alignment step highly increases the chance to find 

false positive overlaps. In addition, to avoid uncontrolled CRs boundaries 

extensions that could lead to misassembled edges and prevent two 
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contiguous CRs from merging, SSAKE is integrated in a stepwise stringency 

reduction loop. Each round SSAKE is seeded with extended and/or merged 

CRs from the previous round and assembling constraints are incrementally 

relaxed. This allows potential CRs’ merge to occur before abusive extension 

may occur.   

 Complete cycling through the extension-merging process is achieved 

three times with increasing leniency of the merging restriction rules. During 

the first cycle, merging of two contiguous CRs is allowed if matching parts 

only span over CRs’ extensions. This has been meant to prevent premature 

gap closure between two repeated regions close in the chromosome of Cc5 

but potentially separated by a SSR in another strain. The second cycle allows 

contiguous regions to be merged over their CRs. This step considers InDel 

(Insertion / Deletion) events in the evolutionary course separating each strain 

to Cc5. The last cycles allows merging in case of complete embedment of one 

region by another. This latter rule allows clearance of false positive CRs that 

would prevent actual neighboring contigs to merge (most likely in case of 

duplication events specific to Cc5). In addition, because of the decreased 

assembly stringency at latest steps of each cycle, contigs (including orphan 

CRs) are cleared for non-joining extensions before considered for the next 

cycle. 

 Ultimately, contigs formed of jointed CRs and those resulting from the 

de novo assembled UMRs were assimilated to pseudoreads and inputted into 

the Phrap assembler (http://www.phrap.org/) for final assembly and 

visualization. Additionally, primer walking for final gap closure has been 

performed on Cc2.  
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Figure 6.2.1 Solexa assembly pipeline 

The microreads assembly strategy presented here separates the assembling process over strain-
scaffold conserved regions from the one over strain specific regions. Gap closure between contiguous 
conserved regions on the scaffold is performed through edges extension and pairwise merge 
assessment. Assembly stringency is quantitatively and qualitatively reduced stepwise to maximize 
assembly and minimize effects of possible misassembly. Microreads datasets are represented as green 
ovals, processed sequence data as pink hexagons, and programs and scripts as white boxes. Dark and 
light green short bars respectively represent mapped and unmapped microreads. Red, blue and orange 
long bars are conserved regions while green long bars are de novo assembled contigs. Hatched boxes 
represent matching regions. Question marks indicate decisional point for contig joining. 
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The method described here substantially increased the assembling 

performances compare to the different assemblers when used independently 

(tables 6.2.2, 6.2.3 and 6.2.4). However, despite an orientated assembly 

strategy, the process accuracy may have been decreased at several points of 

the pipeline, in particular during last steps of CRs extension cycles. 

Integration of a quality score tracking back local assembly accuracy (as the 

one used by MAQ) would be a necessary step further to achieve better data 

processing. A series of feed back tests could be done by mapping whole 

datasets against the new strains assemblies and compare it to previous 

mappings against the Cc5 genome. Total amount of mapped reads would be 

informative of the level of assembling achieved while coverage deviation 

would indicate presence or absence of sequence redundancy. 

 

 

 

Strain 
Contigs prior 

Phrap 

Final 

Contigs
1
 

Cumulative 

Size (Mb) 

largest 

contig 
N95

2
 N50

2
 

Cc5 - - 2.571 - - - 

Cc2 185 

 

22(3) 2.524 1368379 101525 (3) 1368379 (1) 

Cc11 516 152 2.508 91762 3413 (109) 36452 (22) 

Cc12 266 63 2.531 341916 11115 (39) 94748 (9) 

 

 

 

Table 6.2.4 Performances of three microreads assembly   

1
 numbers in between brackets correspond the contig number after primer walking 

2
 numbers in between brackets correspond to the number of contigs at least as long as the 
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6.2.2. Preliminary hybrid assembly of the Cc2, Cc11 and Cc12 

genomes using Solexa, 454 and Sanger sequencing 

chemistries. 

In order to enclose complete genome sequencing of Cc2, Cc11 and 

Cc12 an additional run of 454 pyrosequencing has been performed at 

Microsynth, Balgach (CH). Approximately 10X read coverage per strain were 

generated (table 6.2.5).  

 

 

 

 

 

 

 

Very recently technical progress allowed best usage of current 

assembly methods: First, a dramatic improvement of the available hardware 

at the BC2 Basel university framework particularly concerning nods memory. 

Indeed, second generation sequencing methods generate very large data sets 

requiring high memory nods. And second, a clear improvement of assembler 

software that can now perform complex tasks and integrate several 

sequencing technologies (e.g. MIRA.3, 

http://www.chevreux.org/projects_mira.html). Here, Cc5 complete genome 

has been used with MIRA.3 as a scaffold for short (454) and micro (Solexa) 

reads mapping. Well covered regions (taking into account read coverage and 

base calling qualities) were then turned to constant low quality Sanger 

pseudoreads with mktrace (Phred / Phrap / Consed package) and the 

BC2_MIRA_output_TCS_file_Parser.pl (Supplementary data, 

Chapter_6.2_assembling_methods) in-house script. Single Nucleotide 

Polymorphisms (SNPs) and small Insertions/deletions events (Indels) were 

tolerated during the mapping phase and therefore appeared within the 

corresponding pseudoreads (virtually reconstituted chromatograms). Such 

pseudoreads represent conserved regions between Cc5 and the assembled 

strain and were then of great value to orientate reassembling of the whole 

Table 6.2.5 Lifescience 454 sequencing data 

326 

333 

309 

Avrg. length 

24.5 Mb 74 882 Cc12 

26.7 Mb 80 168 Cc11 

24.5 Mb 79 417 Cc2 

Total reads Strain 
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data set. The generated pseudoreads were then added to 454 and Solexa 

reads as Sanger reads in a hybrid de novo assembly with Mira.3. Since 

redundancy in assembly was still high (Table 6.2.6), contigs were further 

assembled with Phrap. Assembly statistics Positions exhibiting degenerated 

base calling were turned to deoxycytidines (C) in order to minimize false 

negatives during Open Reading Frame determination as stop codons lack 

deoxycytidines. CDS prediction on newly assembled draft genomes has then 

been performed as previously described in chapter 4.1. After CDSs translation 

the three newly predicted proteomes were integrated to further ortholog 

analysis.  

 

 

MIRA 

>500 bp 
contigs 

Cumulative 

Size (bp) 

Largest 

contig  (bp) 
N95

1
 N50

1
 

Cc2 262 2573684 75772 3379 21021 

Cc11 359 2538073 96082 2062 15391 

Cc12 176 2437242 136522 4984 38583 

MIRA      

Cc2 3655 3129525 75772 228 16147 

Cc11 3080 3082587 96082 276 11088 

Cc12 3145 2988930 136522 264 27259 

MIRA 

+ Phrap 
     

Cc2 289 2510543 75826 
4870 

(107) 
28366 (29) 

Cc11 267 2446272 117363 
3268 

(159) 
18129 (37) 

Cc12 
81 2383627 160249 

10215 

(51) 
64490 (12) 

1
 numbers in between brackets correspond to the number of contigs at least as long as the 

corresponding length of the N95 or the N50 contig. 

 

Table 6.2.6 Lifescience 454 sequencing data 
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6.3. Genomics of Capnocytophaga 
With the four C. canimorsus genomes presented here, it is now 

possible to determine gene conservation among different strains or species 

and isolate set of genes potentially involved in human or dog commensalism 

but also in pathogenesis of C. canimorsus. Clustering of orthologs defined 

several group of interest: 1) Genes conserved among all Capnocytophaga 

genomes defined the genus core genome and represented 39% of the 

genome size in average (1009 genes). 2) Genes conserved among 

canimorsus isolates but not conserved or absent from the three HCSs were 

respectively named inclusive (678 genes) and exclusive (421 genes) 

canimorsus corer genomes. 3) Inversely, genes conserved among C. 

gingivalis, C. ochracea and C. sputigena but not conserved or absent from the 

four C. canimorsus strains were respectively named inclusive (not counted) 

and exclusive (202 genes) human-hosted Capnocytophaga core genomes.  
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Figure 4.2.2 Relative taxonomic distribution of orthologs among Capnocytophaga 

Orthologous groups are classified according to the taxonomy of the concerned genes. Color code is red 

for genus core, pink for human hosted Capnocytophaga species exclusive core genome, blue and teal 

respectively for inclusive and exclusive species core genomes, green for the strain specific genes and 

grey for unclassified groups. Ccan stands for C. canimorsus, Cgin for C. gingivalis ATCC33624, Cspu 

for C.sputigena ATCC33612 and Coch1 for C. ochracea F0287 and Coch2 for C. ochracea DSM7271. 
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6.3.1.  Mapping of the X2E4 transposon mutant  

X2E4 is a Cc5 derivative transposon mutant exhibiting a strong growth 

defect in presence of cells (around 100 fold less cfu than wild-type after 24h 

incubation) (M. Mally, doctoral thesis). After mapping reads from X2E4 onto 

the Cc5 chromosome, transposon insertion has been successfully mapped in 

a gene encoding a putative cytosolic dihydroorotase (DHOase) conserved 

among Bacteroidetes (Ccan_03130). DHOase catalyze the reversible 

interconversion of carbamoyl aspartate to dihydroorotate, a key reaction in 

pyrimidine biosynthesis. X2E4 display a moderated growth defect in presence 

of cells (below 10 fold, data not shown) which would then be consistent with 

the conserved function of Ccan_03130. Besides possible metabolism 

redundancies, the presence of a second highly conserved DHOase encoded 

by Ccan_10340 might explain why insertion occurring in X2E4 is not lethal.  



Additional unpublished data 

 

 113 

 

 

 

 

 

 

6.3.2.  Genomics of C. canimorsus 

Orthologous clustering has been performed among the four C. 

canimorsus strains. Gene populations are mapped on a Venn diagram 

according to their taxonomic profiles (Figure 6.3.2). The species core genome 

accounted for 1721 genes and represents up to 71% of the Cc5 genome. 

Strain specific genes accounted in average for 7.2% of the genomes. It is 

noteworthy that the more strains from the same species are integrated to the 

analysis, the lower the gene content will be for the core or the strain specific 

groups.  

 

 

  

 

Figure 6.3.2 Strain distribution of the C. canimorsus orthologous groups 

Four strain Venn diagram 

populated by orthologous groups 

inferred from Solexa draft 

assemblies. Colored areas 
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6.3.3. What makes C. canimorsus a dog commensal and 

a potentially lethal opportunistic pathogen? 

Two set of genes are of high interest for commensalism and 

pathogenesis understanding : i) Coding sequences conserved among the four 

clinically isolated C. canimorsus, with tow flavors, exclusively or not and ii) 

Coding sequences conserved among the four human associated 

Capnocytophaga species, with again tow flavors, exclusively or not. 

Among the 421 genes exclusively conserved in the four C. canimorsus 

strains among Capnocytophaga (Supplementary data, 

Chapter_6.3_Genomcis_of_Capnocytophaga, Table 

S6.3_Capnocytophaga_genomics), most (216) were of unknown function 

but nine emerging functional categories accounted for 146 proteins : “Protein 

and amino acids metabolism” represented by 14 CDSs including four 

peripheral proteins (SPI, SPII, TM) involved in dipeptide binding, transport and 

degradation; “Phospholipids metabolism” (9); “Polysacharide utilisazion loci” 

(16 genes from PUL2, -4, -6, -7, -9 and -13); “Other Cazymes” (14 genes 

including 5 N-acetylosaminidases); “DNA binding and transcriptional 

regulation” (21 including a putative one-component Histidine kinase sensor 

protein); “Mobile Genetic Elements” (15); “General Metabolism” (5); 

“Transporters” (13); “Oxidative stress” (36). 59 CDSs were left unclassified but 

included several potential candidates for a role in pathogenesis or 

commensalism of C. canimorsus like the two partner secretion protein 

Ccan_13910 detected by MS at the Cc5 bacterial surface, a putative vesicle-

fusing ATPase (Ccan_05240) that might explain presence of integral outer 

membrane proteins in Cc5 culture supernatants (data not shown), an operon 

including four putative cytolysine (two of them being detected at the OM), a 

methylglyoxal synthase potentially involved in protein glycation and possibly 

responsible for difficulties during heterologous expression of Cc5 proteins in 

E.coli, a putative calcium binding protein (Ccan_07510) and its hypothetical 

outer membrane partner (Ccan_07520) both detected by MS in the OM and 

genetically located at the immediate vicinity of the conserved sec secretion 

regulator “Trigger factor” (Ccan_07530) and two eukaryotic-like proteins (the 
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Ccan_08450 intimin like protein and Ccan_20350, an ankyrin repeat-

containing protein). 

Interestingly, the predominant functional category was the “Oxidative 

stress” group. This set included genes directly or indirectly involved in O2 

utilization and oxidative stress resistance. It is known that protein participating 

to the respiratory electron transport contribute both to O2 consumption and 

oxidative resistance. All genes encoding the Mrp complex but one, all genes 

from the Cytochrome C oxidase complex 1 (CcO 1) except one and the 

majority of genes involved in sodium cotransport were therefore assigned to 

this group. Genes encoding the CcO 2 were all found conserved among C. 

canimorsus strains but also partially present in C. gingivalis ATCC 33624. In 

addition to the conserved phosphoenolpyruvate carboxykinase (Ccan_15480) 

C.canimorsus acquired / maintained a phosphoenolpyruvate carboxylase 

(Ccan_10960) that is unable to produce ATP while it might increase fumarate 

production rates and consequently boost respiratory chain transfers (Figure 

6.3.3). 
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6.3.4. C. canimorsus and O2 utilization 

Human hosted Capnocytophaga species (HCSs) have been reported 

to grow in air only if CO2 supplementation was provided. In addition they are 

devoid of catalase and oxidase activities and O2 consumption, as analyzed by 

oxygen electrodes, has never been detected according to Leadbetter et al. 

[22]. In contrast, Brenner et al. reported characteristic catalase and oxidase 

activities for both C. canimorsus and C. cynodegmi [7]. In addition to that, we 

observed slightly delayed but consistent growth of C. canimorsus when kept 

in air at 37°C without CO2 supplementation in cell cultures but also on blood 

agar plates (table 6.3.4). Together with the presence of a several C. 

canimorsus specific genes increasing both generation (Mrp, Cco1, Cco2, 

phosphoenolpyruvate carboxylase) and utilizations (Na+-cotransporters) of 

Na+/H+ ionic gradients, all these data suggest the occurrence of a metabolic 

switch from a typical Capnocytophaga fermentative metabolism to a more 

respiratory one. 

C. cynodegmi also exhibited slightly delayed growth on blood agar 

plates without any addition of carbon dioxide (table 6.3.4). Thus, it is likely 

that these features are not responsible of the pathogenic tendencies of C. 

canimorsus in the human host. However, they could be a perquisite to resist 

oxidative stress in human blood and certainly have a role in maintenance of 

the bacterium in the canine oral cavity. 

 

 

 

 

 

 

 

 

 

Blood 

Agar 
Anaerobiose 

Candle 

jar 

Air  

+ 5% CO2 
Aerobiose 

Cc5 0 + ++ + 

HCSs +? +? +? 0 

C.cynodegmi ND ND ++ + 

Table 6.3.4 Growth of Capnocytophaga species under different O2 and CO2 concentrations 

0 indicates no growth was observed after 4 days incubation; +, growth after 3 days incubation; ++, growth 
after 2 days incubation; ? means reported from E.R Leadbetter et al., 1979; ND stands for not done. 
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6.3.5. Taxonomic conservation of polysaccharide utilization loci 

Expectedly, PULs conservation among Capnocytophaga is globally 

high and among the 102 genes assigned to PULs in the Cc5 genome, 27 

genes were found conserved among all Capnocytophaga and 72 genes were 

conserved among C. canimorsus strains (Figure 6.3.5). Only 18 genes were 

exclusively conserved among C. canimorsus species and two were only found 

in Cc5. The two latter (Ccan_1690 & Ccan_17100, PUL8) share similarities 

with two consecutive domains of a single SusC homologue suggesting a 

pseudogenic event. In addition, no protein encoded by PUL8 has been 

detected by MS.  

Synteny conservation was observed for most genes among the C. 

canimorsus genomes (data not shown). However, as it has been reported for 

other Bacteroidetes [78], PULs recombination was frequent when comparison 

was extended at the genus level (indirectly in Figure 6.3.5).  

Surprisingly, in the case of PUL5, the most conserved protein was the 

SusD homolog GpdD involved in glycan binding. GpdD was present in all 

Capnocytophaga genomes and human hosted Capnocytophaga species even 

exhibited multiple paralogs. Concerning GpdC, all human hosted strains with 

the exception of C. gingivalis, that lacks a GpdC ortholog, presented multiple 

GpdC paralogs. In the case of C. canimorsus, a single couple of GpdCD 

genes was identified in each genome. The apparent importance of these two 

genes contrasts with the scarce distribution of the GpdG β-endo-glycosidase 

that only showed-up in Cc5, Cc2, C. sputigena and C. ochracea F0287. 

Presence of the two putative lectins orthologs GpdE and GpdF strictly 

correlated to the GpdG occurrence suggesting a collaborative functionality. It 

is thus tempting to speculate a key role for GpdC and GpdD in polysaccharide 

binding and selection while the cleavage mechanism involving GpdGEF is 

accessory and can be replaced by diverse other enzymatic processes (e.g. 

different cleveage sites). Whether these paralogous PULs target the same 

substrates or if they are still involved in carbon source scavenging remains 

difficult to predict from current data. 
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Figure 6.3.5 PULs conservation among Capnocytophaga species 

 

 

The figure has been adapted from chapter 4.1. Gene have been underlined with a color code according to their 
taxonomic distribution among Capnocytophaga: As previously, blue stands for membership of the genus core, purple 
for the exclusive canimorsus core, light blue for the inclusive canimorsus core, red for Cc5 strain specific genes and 
grey for unclassified taxonomic membership. Numbers and symbols on the left correspond to the growth impairment 
factor in presence of Hek cells compare to wild type (left bottom corner), the percentage of surface abundance among 
PULS (middle) and the presence (+) or the absence (-) from MS analysis of the outer membrane fraction.  
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Material and Methods 
Solexa run 

Genomic DNA samples have been obtained as previously described 
(c.f. chapter 4.1) and sent for sequencing at FASTERIS SA, Geneva. 
Sequencing method consisted in a single run of Solexa/Illumina GAII EAS269 

on 100 tiles during 36 cycles. Picture acquisition and analysis have been 
processed through the GAPipeline1.0rc4 pipeline. 5’ sequence extremities were 
screened for the presence of artificial bar codes segregating for biologic 
samples (Table 6.4). Same bar codes should be present on both reads 
coming from the same sequenced polony (i.e. the PCR amplification product 
of the targeted insert fixed on a solid phase). Biological sample consistency 
validation has been carried out between the set of 1st read and 2nd read for 
each polony (same bar code for both reads). Whenever one read did not 
display the tag, or two reads displayed different tags, both reads were 
discarded. After Quality streaming reads were 33 nucleotides length. 

 

 

 

 

 

 

 

 

 

 

 

Sample Barr code PE Reads % Total reads 

CC2 GT 2'394'734 27.4% 

CC11 CT 1'344'302 15.4% 

CC12 AT 2'294'977 26.2% 

X2E4 TT 1'927'946 22.0% 

Total - 7'961'959 91.0% 

Read length  33 bps 

Average fragment  length 250 +/-50 bps 

Table 6.4 Statistics of bar coded samples used together during Solexa run 
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MIRA command line for the Genome mapping 
/import/bc2/home/guest/cornelis/manfpa00/FASTERIS/MIRA.3/mira_3.2.1rc2_prod_linux-
gnu_x86_64_static/bin/mira  
--project=Cc2  
--projectin= 
/import/bc2/home/guest/cornelis/manfpa00/FASTERIS/MIRA.3/Cc2_mira/Cc2  
--job=mapping,genome,accurate,454,solexa  

-SB:abnc=1  
-LR:ssiqf=yes  
SOLEXA_SETTINGS  

-LR:ft=fasta  
-CO:msr=no  
-GE:uti=no:tismin=200:tismax=400 

 
MIRA command line for the de novo assembling 
/import/bc2/home/guest/cornelis/manfpa00/FASTERIS/MIRA.3/mira_3.2.1rc2_prod_linux-
gnu_x86_64_static/bin/mira  
--project=Cc2_Reass  
--projectin= 
/import/bc2/home/guest/cornelis/manfpa00/FASTERIS/MIRA.3/Cc2_mira/Cc2  
--job=denovo,genome,accurate,454,solexa,sanger  

-LR:ssiqf=yes  
SOLEXA_SETTINGS  
 -LR:ft=fasta  
SANGER_SETTINGS  
 -LR:ft=phd 

 
Growth of Capnocytophaga species under different O2 and CO2 concentrations 

C. canimorsus 5 and a C. cynodegmi strain recently isolated in our lab from 
dog oral flora were grown on plates routinely (c.f. chapter 4.1) with the 
exception of two the varying conditions O2 and CO2 concentrations. 
Anaerobiosis has been reached by using a GasPak™ EZ Anaerobe Pouch 
System (Catalog #260683, BD) according to manufacturer recomendations. 
Microaerophilic conditions were achieved by using a candle extinction jar. 
Normal or CO2 complemented aerobiosis were tested in a humidified 37 
incubator with or without a 5% CO2complementation.  
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7. Conclusions and 

perspectives 
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Conclusions and perspectives 
The 2,571,405-bp genome sequence of Cc5 shows close relationships 

with environmental flavobacteria as Flavobacterium johnsoniae and Gramella 

forsetii. Among Capnocytophaga species, it occupies a taxonomically median 

position since a phylogeny tree computed on conserved proteins positioned C. 

canimorsus in between three human associated Capnocytophaga species. It 

is thus tempting to think that host specialization occurred after adaptation to 

the oral environment. 

C.canimorsus 5 has undergone large-scale horizontal gene transfers 

compensated by gene losses thus maintaining a reduced genome size. 

Consistently, metabolic modelling shows a reduced global pleiotropy and a 

high degree of specialization to the oral environment. Indeed, we postulate 

that Cc5 couples a CO2-dependent fumarate respiration to a Na+ based 

respiratory chain adapted to oral fluids rich in HCO3
- and Na+ ions. Further 

understanding of the metabolic requirements of C. canimorsus would 

significantly reduce complexity of the currently used rich broth (serum or blood 

complemented). It would allow us to investigate cell cultures supernatant 

contents for protein or secondary metabolites potentially involved in Cc5’s 

anti-inflammatory features. 

The genome of Cc5 did not encode any classical complex virulence 

functions as T3SSs or T4SSs. However, it exhibits a very high relative number 

of surface-exposed lipoproteins that account for 76% of the total surfome and 

many of which are encoded within 13 different PULs. At least 12 PULs were 

expressed under our growth conditions and corresponded to more than 54% 

of total MS-flying peptides detected at the surface. A systematic knockout 

analysis of the 13 PULs revealed that 6 PULs are involved in growth during 

cell culture infections with most dramatic effect observed for ∆PUL5.  

The PUL5 encoded Gpd surface-complex turned out to be devoted to 

foraging glycans from N-linked glycoproteins as fetuin but also IgG. It also 

plays a role in survival in mice and in fresh human serum and therefore 

represents a new type of virulence factor. In order to further test this 

hypothesis fresh human blood infection assays [123] would enclose conditions 

encountered by C. canimorsus during systemic infections and eventually help 
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to identify PULs and substrates involved in bacterial survival in the human 

host. In parallel, a PCR screen for the presence of all 13 PUL among 

members of our C. canimorsus library might reveal correlations between the 

occurrence of certain PUL genes and the pathogenicity of the strains isolated 

from patients. 

GpdCDEF contribute to the binding of glycoproteins at the bacterial 

surface while GpdG cleaves N-linked oligosaccharide after the first GlcNAc 

residue and possible terminal sialic acid residues of the oligosaccharide are 

removed by SiaC in the periplasm. Finally, degradation of the imported 

oligosaccharide proceeds sequentially from the desialylated non reducing end 

by the action of periplasmic exoglycosidases. Identification of others PULs 

specific substrates has been recently addressed in G.R. Cornelis’ lab (L. 

Sauteur, Master thesis). Despite significant gene conservation and observed 

expression of most PULs, only few hint of a possible role of PUL6 and PUL9 

in mucin O-glycan chains degradation have been found so far. Identification of 

additional salivary O-glycosylated proteins is currently ongoing. 

Two assembling approaches were developed in order to enhance 

assembly capacities of pre-existing tools. Draft assemblies of the three 

pathogenic human blood isolates Cc2, Cc11 and Cc12 together with four 

available human hosted Capnocytophaga species were included to a 

comparative genomics analysis. The set of genes exclusively present and 

conserved among C. canimorsus strains was enriched in genes involved in 

respiration, oxidative respiration and oxidative stress resistance. Specific 

PULs members were also found within the differential gene set.  

It is likely that C. canimorsus has evolved its human aggressiveness 

through adaptation to the carnivores’ oral environment. However, C. 

canimorsus is often co-isolated with C. cynodegmi from canine oral swaps. In 

fact C. cynodegmi has been reported with a higher prevalence in dog’s mouth 

[13]. In contrast to C. canimorsus that is mostly associated with systemic 

infections, C. cynodegmi is only known to scarcely trigger local wound 

infection on individuals with no reported immunosuppression (mostly animals). 

Such differences in pathogenesis contrast with the nucleic acid similarity 

levels shared by C. canimorsus and C. cynodegmi (Closest known species) 
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[50]. Genome comparison of the more frequent but non systemic C. 

cynodegmi versus the one of the less prevalent but clinically relevant (isolated 

from human blood) C. canimorsus would be a step forward in the identification 

of genes potentially involved in oral canine adaptation and in those that may 

have a predominant role in pathogenesis. Particular care could also be given 

to the group of genes conserved with the human hosted species but absent 

from C. cynodegmi. 
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Strains and plasmids 

strains Description or genotype Reference Ch. 

E. coli    
S17-1 hsdR17 recA1 RP4-2-tet::Mu1kan::Tn7; Smr [124] 4.1&5.1 

C. canimorsus   
Cc5∆PUL1 Site directed mutation of PUL1 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL2 Site directed mutation of PUL2 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL3 Site directed mutation of PUL3 by partial replacement with ermF; Emr This study 4.1 

Cc5∆PUL4 Site directed mutation of PUL4 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL6 Site directed mutation of PUL6 by partial replacement with ermF; Emr This study 4.1 

Cc5∆PUL7 Site directed mutation of PUL7 by partial replacement with ermF; Emr This study 4.1 

Cc5∆PUL8 Site directed mutation of PUL8 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL9 Site directed mutation of PUL9 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL10 Site directed mutation of PUL10 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL11 Site directed mutation of PUL11 by partail replacement with ermF; Emr This study 4.1 

Cc5∆PUL12 Site directed mutation of PUL12 by replacement with ermF; Emr This study 4.1 

Cc5∆PUL13 Site directed mutation of PUL13 by replacement with ermF; Emr This study 4.1 

Cc5 ∆cyt Site directed mutation of Ccan_04790 by replacement with ermF; Emr This study 4.1 

Cc5 Human fatal septicemia after dog bite 1995 [56] 4.1&5.1 

Cc5∆siaC Replacement of Ccan_00790 by ermF; Emr [58] 4.1&5.1 

Cc5∆PUL5 Replacement of Ccan_08700, Ccan_08710, Ccan_08720, Ccan_08730 by ermF : Emr  This study 4.1&5.1 

Cc5∆gpdC Replacement of Ccan_08700 by ermF using primers 5073, 5074, 5075, 5083; Emr This study 5.1 

Cc5∆ gpdD Replacement of Ccan_08710 by ermF using primers 4850, 4851,4854, 4855; Emr This study 5.1 

Cc5∆gpdG Replacement of Ccan_08720 by ermF using primers 5001, 5002, 5005, 5006; Emr This study 5.1 

Cc5∆gpdE Replacement of Ccan_08730 by ermF using primers 5951, 5952, 5953, 5954; Emr This study 5.1 

Cc5∆gpdF Replacement of Ccan_08740 by ermF using primers 5955, 5956, 5957, 5958; Emr This study 5.1 
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Plasmid Description Reference Chapter 

pMM47.A OriColE1, oripCC7, Ap
r
 ,Cf

r
,  E. coli - C. canimorsus expression shuttle vector. [82] 5.1 

pPM1 

pMM47.A where the ermF promoter has been replaced by the stronger  gpd 
promoter: 117bp upstream of the gpdC ORF start codon were amplified with 
primers 5081 and 5469 and cloned into pMM47.A using SalI and NcoI 
restriction sites. This study 5.1 

pPM2 
Full length gpdC containing its putative promoter region amplified with primers 
5081 and 5082 and cloned into pMM47.A using SalI and SpeI restriction sites. This study 5.1 

pPM3 

Full length gpdC with a C-terminal His-Strep double tag amplified by 2-step 
overlapping PCR with primers 5081, 5467 and 5530 and cloned into pMM47.A 
using SalI and SpeI restriction sites. This study 5.1 

pFR4 
Full length gpdD amplified with primers 6133 and 6057 and cloned in pPM1 
using NcoI and XbaI restriction sites. This study 5.1 

pFR5 
Full length gpdG amplified with primers 5008 and 6055 and cloned in pPM1 
using NcoI and XbaI restriction sites. This study 5.1 

pFR6 
Full length gpdE amplified with primers 5959 and 5060 and cloned in pPM1 
using NcoI and XbaI restriction sites. This study 5.1 

pFR7 
Full length gpdF amplified with primers 5062 and 5063 and cloned in pPM1 
using NcoI and XbaI restriction sites. This study 5.1 

pFR8 
Full length gpdD with a C17G point mutation amplified with primers 6056 and 
6057 and cloned in pPM1 using NcoI and XbaI restriction sites. This study 5.1 

pFR9 
Full length gpdG with a C21G point mutation amplified with primers 6054 and 
6055 and cloned in pPM1 using NcoI and XbaI restriction sites. This study 5.1 

pFR10 

Full length gpdG with a E205G point mutation amplified by overlapping PCR 
using primers 5008/6061 and 6060/6055 and cloned in pPM1 using NcoI and 
XbaI restriction sites. This study 5.1 

pMM121.1 
Full length siaC amplified by inverse PCR using primers 5045 + 5046 on 
pMM52 as a template to insert to C17Y substitution in siaC. This study 5.1 

pMM25 oriColE1 , Kmr , Cfr .Suicide vector for C. canimorsus. [82] 5.1 

pMM52 
Full length siaC with a C-terminal His tag cloned in pMM47.A using NcoI and 
XbaI restriction sites. [58] 5.1 

pMM106 oriColE1 , Km
r
 , Cf

r
 , Ery

R 
, Mutator plasmid for the replacement of siaC by ermF [82] 5.1 
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Oligonucleotides 

Ref. Name Sequence 5'-3' Restr.  Gene PCR Ch. 

5508 fwd_PUL9_1.1 CCCTGCAGCGCCTAAAAAGAGCCC PstI PUL9 A 4.1 

5509 rev_PUL9_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGTAAAGACTCAATACAAGCGG  PUL9 B 4.1 

5510 fwd_PUL9_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTTTCATATCTGATTTTTGG  PUL9 C 4.1 

5511 rev_PUL9_2.2 GCACTAGTACGCGGATTTCCAACCTG SpeI PUL9 D 4.1 

5512 fwd_PUL10_1.1 CCCTGCAGGGTATCGGCTGTATTAGCC PstI PUL10 A 4.1 

5513 rev_PUL10_1.2 GAAGCTATCGGAGTAGATAAAAGCACTGTTGTAGAGGTTGTTAAATTTGTC  PUL10 B 4.1 

5514 fwd_PUL10_2.1 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAAATAGAATATAATTTTTTG  PUL10 C 4.1 

5515 rev_PUL10_2.2 GGACTAGTGGCTAATAAAAAGCCAATAACC SpeI PUL10 D 4.1 

5520 fwd_PUL11_1.1 GGCTGCAGTTCTTTAATGATTTATAGCG PstI PUL11 A 4.1 

5521 rev_PUL11_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGTAAGAAAGCATATGGC  PUL11 B 4.1 

5522 fwd_PUL11_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTACTTTTTTATTCAATG  PUL11 C 4.1 

5523 rev_PUL11_2.2 GCACTAGTAAAGTGAGTAAACATTCCCG SpeI PUL11 D 4.1 

5566 fwd_PUL1_1.1 GGCTGCAGGCAATGACTAATAAGTTAGG PstI PUL1 A 4.1 

5567 rev_PUL1_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGCCAAGTTAATTTTAATCTC  PUL1 B 4.1 

5568 fwd_PUL1_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTTCAATTAAAAATTTCCAACAC  PUL1 C 4.1 

5569 rev_PUL1_2.2 GCACTAGTTGAAAAAGTGGGATTAGATGC SpeI PUL1 D 4.1 

5570 fwd_PUL2_1.1 GGCTGCAGGCTCTTTTAAAAGCACTATAAAGG PstI PUL2 A 4.1 

5571 rev_PUL2_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAACAACTGGCATCAAGAAGAGC  PUL2 B 4.1 

5572 fwd_PUL2_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTAAAAACGGAACGTTG  PUL2 C 4.1 

5573 rev_PUL2_2.2 GCACTAGTATGACCAAAAAGATGCTGG SpeI PUL2 D 4.1 

5574 fwd_00780-820 _1.1 GGCTGCAGGGCAAAAACTTCGGGAAAACC PstI 00780-820 A 4.1 

5575 rev_00780-820_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAATTGACAGCAATAATAAC  00780-820 B 4.1 

5576 fwd_00780-820_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTAGAAATATACTTTTTCATAATC  00780-820 C 4.1 

5577 rev_00780-820_2.2 GCACTAGTCAGATTCTCCCCATTGCTTTACC SpeI 00780-820 D 4.1 

5639 fwd_PUL5_1.1 GGCTGCAGGTATTAGAAGAATATTTTCC PstI PUL5 A 4.1 

5640 rev_PUL5_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGGTTAATAATTATTTCAAAACAAACTAACGCG  PUL5 B 4.1 

5641 fwd_PUL5_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTTAGTAAGAGTAATAAAGAATGCC  PUL5 C 4.1 

5642 rev_PUL5_2.2 GCACTAGTTTATCTTCACTCGAAATAGCCTCTCCC SpeI PUL5 D 4.1 

5740 fwd_PUL6_1.1 GGCTGCAGTGTACGCCTATTTGGAACAGGC PstI PUL6 A 4.1 

5741 rev_PUL6_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAGGTAGAAGGTAAAATTTGAATTTATCC  PUL6 B 4.1 

5742 fwd_PUL6_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTATTTATACGTTTTTTATGAGAAAAATAATTCC  PUL6 C 4.1 

5743 rev_PUL6_2.2 GCACTAGTTAAGTTATAGATCGCTTTTTCAAAATCGG SpeI PUL6 D 4.1 

5873 fwd_PUL7_1.1 GGCTGCAGATGCGCTATTGCTTCCTGAGG PstI PUL7 A 4.1 

5874 rev_PUL7_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGGTCAATTTAAATGTTTGATAATGAG  PUL7 B 4.1 

5875 fwd_PUL7_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTAGTAAAAATTTAGACTAATG  PUL7 C 4.1 

5876 rev_PUL7_2.2 GCACTAGTGTAATTGTAAATCATATCACGAAGCG SpeI PUL7 D 4.1 

5877 fwd_PUL8_1.1 GGCTGCAGGGCAATTGACTATATTTGGG PstI PUL8 A 4.1 

5878 rev_PUL8_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGTTTTTTATCGAGGAGTTAGTTC  PUL8 B 4.1 

5879 fwd_PUL8_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTAAGTAATGTACAAATTTGC  PUL8 C 4.1 

5880 rev_PUL8_2.2 GCACTAGTGCGTGTTTGGGCTCTTCTTG SpeI PUL8 D 4.1 

5881 fwd_PUL12_1.1 GGCTGCAGCTGGGTGATGTTTTTCGTGG PstI PUL12 A 4.1 

5882 rev_PUL12_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAGTTCATAAAATTAGTTCATAGC  PUL12 B 4.1 

5883 fwd_PUL12_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTATAAATATCTTTTAGATTAAAC  PUL12 C 4.1 

5884 rev_PUL12_2.2 GCACTAGTAAGTCGTGAGCAATTTCTGG SpeI PUL12 D 4.1 

5885 fwd_PUL13_1.1 GGCTGCAGGACAAAAATATGAACTATAAATTTG PstI PUL13 A 4.1 

5886 rev_PUL13_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGGTAAAAAGGATAAAGTAGAAAATG  PUL13 B 4.1 

5887 fwd_PUL13_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTTCAGGTATAATGGACAAAAATTAGGC  PUL13 C 4.1 

5888 rev_PUL13_2.2 GCACTAGTTCTAAATGAAAGAACTATTAATCC SpeI PUL13 D 4.1 

5889 fwd_PUL3_1.1 GGCTGCAGCATATTGCTTAAAGTTAATAAATC PstI PUL3 A 4.1 

5890 rev_PUL3_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGAAAAACTTCTTACGATTTTTATTTAG  PUL3 B 4.1 

5891 fwd_PUL3_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTTTTGTAAGGAAGGGACGTGTCC  PUL3 C 4.1 
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5892 rev_PUL3_2.2_SpeI GCACTAGTCCTTCTCATCGAAATTATTGAC SpeI PUL3 D 4.1 

5893 fwd_PUL4_1.1_PstI GGCTGCAGGGCTCAACGCTCCGTATTGTAAACC PstI PUL4 A 4.1 

5894 rev_PUL4_1.2 GTTGTCCCTGAAAAATTTCATCCTTCGTAGCCTTAATTGTATCTACTGAGAG  PUL4 B 4.1 

5895 fwd_PUL4_2.1 GAAGCTATCGGAGTAGATAAAAGCACTGTTAAAAAATGTTAACAAGAATCTTTTCC  PUL4 C 4.1 

5896 rev_PUL4_2.2_SpeI GCACTAGTGGCCAAAGTACCTGTTTTATTCCG SpeI PUL4 D 4.1 

5502 ermF-fw_2.1 CTACGAAGGATGAAATTTTTCAGGGACAAC  ermF  

4.1 
&  

5.1 

5503 ermF-rev_2.2 AACAGTGCTTTTATCTACTCCGATAGCTTC  ermF  

4.1 
&  

5.1 

4850 gpdDKO-1.1-fw CCCTGCAGTTAATAAGAAATGAAAAAATAC PstI gpdD A 5.1 

4851 gpdDKO-1.2-rev GAGTAGATAAAAGCACTGTTAATACGGTAAGGGACCAAAC  gpdD B 5.1 

4854 gpdDKO-2.1-fw AAAAATTTCATCCTTCGTAGTTCTGAAAATGGGGTAAGCA  gpdD C 5.1 

4855 gpdDKO-2.2-rev CCACTAGTAAGATTATCTTGTATTAGGATTC SpeI gpdD D 5.1 

5001 gpdGKO-1.1-fw CGCTGCAGGATTGTAATACCCATCTTTG PstI gpdG A 5.1 

5002 gpdGKO-1.2-rev GAGTAGATAAAAGCACTGTTGAGACTTGATAACAAGTAAA  gpdG B 5.1 
5005 

gpdGKO-2.1-fw AAAAATTTCATCCTTCGTAGTTACTTTGATAAGTATATTA   C 5.1 

5006 gpdGKO-2.2-rev CCACTAGTCTGACGCCAAATTAGAGTCA SpeI gpdG D 5.1 

5008 gpdG-fw CATGCCATGGGAAAAAAAAATATTATAAAATGGGG NcoI gpdG  5.1 

5045 siaCCys-fw CTTTTGTCGGCTTATGGAAGCCAAAAA  siaC  5.1 

5046 siaCCys-rev TTTTTGGCTTCCATAAGCCGACAAAAG  siaC  5.1 

5073 gpdCKO-1.1-fw CCCTGCAGActtatagctcttgcgtgcggactttgg PstI gpdC A 5.1 

5074 gpdCKO-1.2-rev GAGTAGATAAAAGCACTGTTgcacttcgttgaatgttaatgccagcca  gpdC B 5.1 

5075 gpdCKO-2.1-fw AAAAATTTCATCCTTCGTAGtgaaggcggttcaatgacagcagtg  gpdC C 5.1 

5081 PgpdC-fw CGATGTCGACtgaatatgttgtacatttgtg SalI   5.1 

5082 gpdC-rev CCACTAGTacctataatgaagctttaattgc SpeI gpdC  5.1 

5083 gpdCKO-2.2-rev CCACTAGTattcgggatcaaaaggcgctgacaa SpeI gpdC D 5.1 

5467 gpdC-His-rev tgACTAGTTAatgatgatgatgatgatgAGCACCACCAGCACCACCtAATGAAGCTTTAATTGCAATACC SpeI gpdC  5.1 

5469 PgpdC-rev CATACCATGGcaataataaaatgaattag NcoI   5.1 

5530 gpdC-Strep-rev TgACTAGTTATTTTTCAAATTGAGGATGTGACCAAGCTCCTCCAGCTCCTCCatgatgatgatgatgatgAGC SpeI gpdC  5.1 

5951 gpdEKO-1.1-fw GGCTGCAGCGGTTACCATCCACAAGAGAAAG PstI gpdE A 5.1 

5952 gpdEKO-1.2-rev GTTGTCCCTGAAAAATTTCATCCTTCGTAGAATTTACTATTTTTTAGGTAATCTG  gpdE B 5.1 

5953 gpdEKO-2.1-fw GAAGCTATCGGAGTAGATAAAAGCACTGTTGATTTCCTAATGTTGATTTTAATACC  gpdE C 5.1 

5954 gpdEKO-2.2-rev GCACTAGTGGGTGAGACATCAGATACTTG SpeI gpdE D 5.1 

5955 gpdFKO-1.1-fw GGCTGCAGGTTTGAAGCAGCGGGTACTAATCC PstI gpdF A 5.1 

5956 gpdFKO-1.2-rev GTTGTCCCTGAAAAATTTCATCCTTCGTAGCCCTACCAGTAATACTGTTGTGAG  gpdF B 5.1 

5957 gpdFKO-2.1-fw GAAGCTATCGGAGTAGATAAAAGCACTGTTGGGAGGAGATCAATATGTTGATATAAATG  gpdF C 5.1 

5958 gpdFKO-2.2-rev GCACTAGTCGGCTTTTTCGAATGAAACGAAC SpeI gpdF D 5.1 

5959 gpdE-fw CATACCATGGGAAAGAAATTACATATCTTATTTGTTATCG NcoI gpdE  5.1 

5960 gpdE-rev GCTCTAGATTAAAATTCTACTTTGGTATTAAAATC XbaI gpdE  5.1 

5962 gpdF-fw CATACCATGGGAAAAAAACATATAAAAATTTTATTTCTCACAACAG NcoI gpdF  5.1 
5963 

gpdF-rev GCTCTAGACTAATAAAATTCTAATTCATTTATATCAAC XbaI gpdF  5.1 

6054 gpdGCys-fw CATACCATGGGAAAAAAAAATATTATAAAATGGGGTTTAGCAATACTTATAGGGGTAGCTTCTGTAA NcoI gpdG  5.1 

6055 gpdG-rev GCTCTAGACTATTTTTTAGGTAATCTGATAATTAATTGCTC XbaI gpdG  5.1 
6056 

gpdDCys-fw CATACCATGGGAAAAAAATACTTTATGATAGGTGCTTTATCTTTAGCTACAATTTCTGGTACGAAAG NcoI gpdD  5.1 

6057 gpdD-rev GCTCTAGATTATCTTGTATTAGGATTCACATCCCACC XbaI gpdD  5.1 

6060 gpdG-E /G-fw CCAAAAGATATTGACTGGGGACCTACTGTGGGTAATCATGGAAG  gpdG  5.1 

6061 gpdG-E /G-rev CTTCCATGATTACCCACAGTAGGTCCCCAGTCAATATCTTTTGG  gpdG  5.1 

6133 gpdD-fw CATACCATGGGAAAAAAATACTTTATGATAGGTGCTTTATCTTTAGC NcoI gpdD  5.1 
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Capnocytophaga canimorsus : Genomic characterization 
of a specialised host-dependent lifestyle and implications in 
pathogenesis

The complete genome of Capnocytophaga canimorsus 5 (Cc5), a bacterium 
causing fatal septicaemia in humans, draw the picture of an organism with a 
high degree of specialization to its natural environment : the canine oral cavity.

Unexpectedly, Cc5 does not encode any classical virulence complex. 
However it exhibits a very high number of surface-exposed lipoproteins mostly 
encoded within 13 putative polysaccharide utilization loci (PULs). Analysis of the 
Cc5 surfome identified 73 surface exposed proteins among which lipoproteins 
accounted for 76% of the total quantification. Interestingly, 54% of total peptides 
detected were encoded in PULs. A systematic knockout analysis of the 13 PULs 
revealed that 6 PULs are involved in growth during cell culture infections with 
most dramatic effect observed for ΔPUL5.

PUL5 turned out to be devoted to foraging glycans from N-linked 
glycoproteins as fetuin or IgG. It was not only essential for growth on cells but 
also for survival in mice and in human serum therefore representing a new type 
of virulence factor.

Further characterization of the deglycosylation mechanism revealed that it 
involves a large surface complex spanning the outer membrane and consisting 
of 5 Gpd proteins. GpdDEF are surface-exposed outer membrane lipoproteins 
that contribute to the binding of glycoproteins at the bacterial surface while 
GpdG is a β-endo-glycosidase cleaving the N-linked oligosaccharide. In addition, 
GpdC resembles a TonB-dependent OM transporter that imports 
oligosaccharides into the periplasm. Finally, degradation of the oligosaccharide 
proceeds by the action of periplasmic exoglycosidases.

Genome sequencing of additional human blood isolates of canimorsus have 
been performed with the only use of microreads methods. Two assembling 
approaches were developed in order to enhance assembly capacities of pre-
existing tools. In addition, comparative genome analysis stressed features 
exclusively conserved among clinical isolates like oxidative stress resistance, 
the presence of an oxidative respiratory chain, or the conservation of a specific 
pattern of PUL genes. Therefore we propose these features as potential factors 
involved in the pathogenesis of C. canimorsus.

© 2012 Pablo Manfredi
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