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ABSTRACT: KEY FINDINGS AND IMPLICATIONS 

Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression. 

In budding yeast, silent chromatin is characterized by the loading of the Silent Information Regulatory (Sir) proteins  

Sir2, Sir3 and Sir4  onto unmodified nucleosomes. This requires the deacetylase activity of Sir2, extensive contacts 

between Sir3 and the nucleosome, as well as interactions between Sir proteins forming the Sir2-3-4 complex. During 

my PhD thesis I sought to advance our understanding of these phenomena from a molecular perspective. 

Previous studies of Sir-chromatin interactions made use of histone peptides and recombinant Sir protein fragments. This 

gave us an idea of possible interactions, but could not elucidate the role of histone modifications in the assembly of 

silent chromatin. This required that we examine nucleosomal arrays exposed to full length Sir proteins or the holo Sir 

complex. In Chapter 2, I made use of an in vitro reconstitution system, that allows the loading of Sir proteins  Sir3, 

Sir2-4 or Sir2-3-4  onto arrays of regularly spaced nucleosomes (Cubizolles et al, 2006; Martino et al, 2009), to 

examine the impact of specific histone modifications on Sir protein binding and linker DNA accessibility. The “active” 

H4K16ac mark is thought to limit the loading of the Sir proteins to silent domain thus favoring the formation of silent 

regions indirectly by increasing Sir concentration locally. Strikingly, I found that the Sir2-4 subcomplex, unlike Sir3, 

has a slight higher affinity for H4K16ac-containing chromatin in vitro, consistent with H4K16ac being a substrate for 

Sir2. In addition the NAD-dependent deacetylation of H4K16ac promotes the binding of the holo Sir complex to 

chromatin beyond generating hypoacetylated histone tails. We conclude that the Sir2-dependent turnover of the “active” 

H4K16ac mark directly helps to seed repression. 

The tight association of the holo Sir complex within silent domains relies on the ability of Sir3 to bind unmodified 

nucleosomes. In addition, Sir3 dimerization is thought to reinforce and propagate silent domains. However, no Sir3 

mutants that fail to dimerize were characterized to date. It was unclear which domain of Sir3 mediates dimerization in 

vivo. In Chapter 3, we present the X-ray crystal structure of the Sir3 extreme C-terminus (aa 840-978), which folds into 

a variant winged helix-turn-helix (Sir3 wH) and forms a stable homodimer through a large hydrophobic interface. Loss 

of wH homodimerization impairs holo Sir3 dimerization in vitro showing that the Sir3 wH module is key to Sir3-Sir3 

interaction. Homodimerization mediated by the wH domain can be fully recapitulated by an unrelated bacterial 

homodimerization domain and is essential for stable association of the Sir2-3-4 complex with chromatin and the 

formation of silent chromatin in vivo. 

1 INTRODUCTION 

The heritable information underlying the generation of all organisms is contained in polymers of deoxyribonucleic acid 

(DNA). Formed by a non-repetitive series of only 4 chemical units paired in a double helical chain, the DNA molecule 

holds the information that is necessary, albeit insufficient, to build an entire organism, whether unicellular like yeast or 

multicellular like man. Within this heritable information are shorter DNA sequences called genes, which can be 

transcribed into a ribonucleic acid (RNA) polymer and translated into a chain of amino acids, or protein. Together with 

RNA, proteins are the basic structural and catalytic constituent of cells. DNA, RNA and proteins build a tightly 

interconnected frame that constitutes life and supports its propagation. 

1.1  THE NUCLEOSOME 

In order to accommodate the long linear chains of DNA in the nucleus of eukaryotic cells, DNA is generally found 

associated with histone proteins to form nucleosomes. In the late nineties, the first high resolution crystal structure of 

the nucleosome core particle (NCP) was solved (Figure 1; (Luger et al, 1997)). Technically, a NCP corresponds to 147 

base pairs (bp) of DNA wrapped around a histone octamer in 1.65 superhelical turns without any linker DNA. The four 

core histone proteins (H2A, H2B, H3 and H4; two copies of each) are highly basic proteins that contain a characteristic 

structural motif called “histone fold” which consists of three -helices separated by two loops (Luger et al, 1997; 

Davey et al, 2002). This structured histone fold is flanked by disordered N- and C-terminal extensions called histone 

“tails”, which protrude from the nucleosomal core. Although histone tails are not required for the formation of a 

nucleosome, they have a great effect on its thermal stability (Ausio et al, 1989). The histone tails make up roughly 30% 

by mass of the histone octamer and have important regulatory functions described below (Luger and Richmond, 1998b; 

Zheng and Hayes, 2003). In the crystal lattice of the NCP, the N-terminal tail of the histone H4 (aa 16-25) makes 

contacts with an acidic patch on the surface of the H2A-H2B dimer of an adjacent NCP particle with important 

implications for the formation of high-order structures (Luger et al, 1997). 

In the absence of DNA, histones form heterodimers (H2A-H2B) and heterotetramers (H3-H4). Histones dimerize 

through their central and longest -helices in an anti-parallel orientation and in the case of the heterotetramers (H3-H4), 

two H3-H4 dimers make extensive H3-H3 contacts forming a 4-helix bundle (Luger et al, 1997). Given the highly basic 

charge of all four histones, a stable octamer of (H2A-H2B)2(H3-H4)2 only forms at very high salt concentrations (2M 

NaCl) or in the presence of DNA, which wraps around the histone octamer to form a nucleosome. The histone octamer 

is held together through a hydrophobic cluster formed by extensive interactions between H4 and H2B (Luger et al, 
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1997). Both the side chains and main chain amides of histone proteins make over 120 contacts with the DNA backbone 

phosphates (Luger et al, 1997; Luger and Richmond, 1998a). Therefore, the histone octamer binds DNA in a non-

specific manner (i.e. absence of a binding motif) consistently with its ubiquitous distribution along the genome. 

While histones are remarkably conserved throughout evolution, several variant forms have been identified. Examples 

are the centromere-specific CENP-A (also referred to as CenH3 or Cse4 in S. cerevisiae) which is essential for the 

formation of the kinetochore (Santaguida and Musacchio, 2009) and H2A.Z which is found at transcriptional start sites 

(Zlatanova and Thakar, 2008) where it promotes RNA Polymerase II recruitment (Adam et al, 2001). Interestingly, 

these alternative histone proteins are restricted to H2A and H3, while no variants of H2B and H4 have been found to 

date (reviewed in (Malik and Henikoff, 2003; Talbert and Henikoff, 2010)). 

Along with histones, the structure of the NCP is also remarkably conserved, with an electron density maps displaying 

an overall root mean square deviation (r.m.s.d) of only 1.57 Å between X. laevis and S. cerevisiae (White et al, 2001). 

To date, the structure of more than 25 different NCP has been solved to high resolution (Chakravarthy et al, 2005b; 

Andrews and Luger, 2011), including some containing histone variants (Suto et al, 2000; Chakravarthy et al, 2005a; 

Tachiwana et al, 2011a; Tachiwana et al, 2011b) and post-translationally modified histones (Lu et al, 2008). Moreover, 

the structures of few protein-bound NCPs have also become available, such as the fly protein RCC1 (Makde et al, 2010) 

and the budding yeast Sir3 BAH domain (Armache et al, 2011). 

 

Figure 1 - The nucleosome Representation of the nucleosome core particle (NCP) at 1.9Å resolution solved by X-ray 

crystallography (PDB 1KX5, (Davey et al, 2002)). The DNA double helix is colored in light green, the terminal bases 

are highlighted in magenta. The histones are labeled as follow: H2A red, H2B orange, H3 green and H4 blue. 

1.2  STRUCTURAL ASPECTS OF THE CHROMATIN FIBER 

Organization of DNA into arrays of nucleosomes  referred to as chromatin  not only allows for compaction of the 

genetic information but plays important regulatory roles in DNA replication (Hayashi and Masukata, 2011), genomic 

stability (Bao, 2011; Greenberg, 2011; Luijsterburg and van Attikum, 2011; Lukas et al, 2011) and regulating gene 

expression (Rando and Winston, 2012), as discussed below. Hereafter, the linear “beads-on-a-string” organization of 

nucleosomes and linker DNA is referred to as chromatin primary structure. The secondary structure of chromatin 

corresponds to the non-linear arrangement of nucleosomes resulting from interactions between nucleosomes. 

Interactions between distant regions of secondary structure are referred to as the tertiary structure of chromatin. 

The primary structure of the chromatin fiber corresponds to the unfolded nucleosomal array. Under conditions of low 

ionic strength, chromatin extracted from cells (i.e. “native”) as well as nucleosomal arrays reconstituted with purified 

components in vitro (see below) exist in an extended “beads on a string” configuration, also referred to as the 11 nm 

fibre (Olins and Olins, 1974; Thoma and Koller, 1977). However, in presence of physiological salt concentration, both 

native and reconstituted chromatin fibers adopt a secondary structure which further compacts the DNA polymer and can 

be stabilized by the presence of linker histones H1 and H5 (Thoma et al, 1979; Carruthers et al, 1998; Hizume et al, 

2005; Huynh et al, 2005; Scheffer et al, 2011; Scheffer et al, 2012). This second level of compaction involves the non-

linear arrangement of nucleosomes (see next section; (Hansen, 2002; Staynov, 2008)) and is thought to recapitulate the 

compaction of chromatin into the 30 nm fibre observed by electron microscopy (EM) on native starfish sperm and 

chicken erythrocytes chromatin preparations (Bazett-Jones, 1992; Horowitz et al, 1994).  
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The existence of a defined secondary structure of chromatin in vivo is still highly debated and is likely to vary in 

different cell types, cell-cycle stages and specific genomic locations. Nonetheless, filtered transmission EM studies on 

mammalian cells in situ suggest that the majority of chromatin during interphase is in the form of 11 nm or 30 nm 

fibres, indicative of an important role for these structures in DNA processes (Dehghani et al, 2005). These studies are 

supported by vitreous sectioning and cryo-EM studies of chicken erythrocyte nuclei, in conditions that avoid most of 

the artefacts due to sample preparation in standard filtered transmission EM (Scheffer et al, 2011; Scheffer et al, 2012). 

It is reasonable to argue that the 30 nm fibre provides the structural basis for further chromatin compaction. However, 

cryo-EM of vitreous sections and X-ray scattering studies failed to detect 30 nm chromatin fibres in human mitotic 

chromosomes in situ suggesting instead the existence of irregularly arranged and interdigitated nucleosomal fibres that 

may allow a more flexible organization of the genome (Eltsov et al, 2008; Fussner et al, 2011; Hansen, 2012; Nishino et 

al, 2012). 

Finally, interactions between distant regions of secondary structure define the tertiary structure of chromatin, which 

involves the loading of non-histone proteins (Moser and Swedlow, 2011) and the extreme DNA density characteristic of 

the mitotic chromosome (Belmont and Bruce, 1994; Moser and Swedlow, 2011). Folding of the chromatin fiber into 

secondary and high-order tertiary structures is cooperative and reversible and requires the histone tails (Allan et al, 

1982; Schwarz et al, 1996; Hansen, 2002; Dorigo et al, 2003). Indeed, cross-linking studies have shown that the tails of 

the histone H3 and H4 make both intra- and inter-nucleosomal interactions upon salt-dependent array folding (Zheng et 

al, 2005; Kan et al, 2007; Kan et al, 2009). While chromatin tertiary structures are still largely unexplained, the effort of 

many has led to the postulation of two main models for the secondary structure of chromatin discussed in the next 

section (Figure 2).  

1.2.1  PURSUING THE SECONDARY STRUCTURE OF CHROMATIN 

Given its potential of regulating DNA accessibility, the packing of nucleosomes into secondary chromatin structure has 

attracted a lot of attention and, over the years, several models have been proposed for the hypothetical 30 nm fibre. Two 

models, based on native chromatin preparations, have endured over time. Electron microscopy and X-ray diffraction 

from oriented samples suggested the existence of an one-start solenoid structure where adjacent nucleosomes are 

connected by linker DNA bent between them to follow a superhelical path, with about 6 to 8 nucleosomes per turn 

(Finch and Klug, 1976; Widom and Klug, 1985). However, using a similar approach, other researchers put forward a 

two-start helix model, in which adjacent nucleosomes are connected by straight linker DNA and follow a “zig-zag” 

arrangement (Williams et al, 1986). 

Although the nucleosome is a conserved unit of chromatin, native chromatin is highly heterogeneous as it contains 

variable DNA sequences, histone composition and modifications, and linker DNA length (van Holde and Zlatanova, 

2007). Therefore, researchers have developed in vitro reconstitution systems that make use of strong position sequences 

such as the 5S rDNA sequence (Gottesfeld and Bloomer, 1980) or the synthetic (i.e. not found in nature) Widom-601 

sequence (Lowary and Widom, 1998). The consecutive alignment of several Widom-601 sequences strongly positions 

recombinant histone octamers, generating well-defined, regularly spaced nucleosomal arrays (Dorigo et al, 2003; 

Huynh et al, 2005). The use of such a homogeneous array made possible the crystallization of a tetra-nucleosome 

(Schalch et al, 2005). This X-ray structure was combined to the salt-dependent compaction (0.5 mM MgCl2) of a cross-

linked 48-mer nucleosomal array (48 x 167 bp Widom-601) studied by EM (Dorigo et al, 2004) to model a twisted 

ribbon structure where “zig-zag” oriented nucleosomes form a two-start crossed-linker helix with a diameter of 25 nm 

and a nucleosome packing density of 5-6 nucleosome per 11 nm. However, four nucleosomes are not enough to 

generate a solenoid structure and pair-wise disulfide cross-linking of the 48-mer nucleosomal arrays required two amino 

acid substitutions in H4 and H2A which may affect nucleosomal packing. Therefore, it is not clear to which extent the 

model proposed by Richmond and colleagues can be generalized to be the secondary structure of chromatin. 

On the other hand, Rhodes and colleagues used the positioning Widom-601 sequence to generated long arrays (up to 80 

nucleosomes) with linker DNA length from 30 to 90 bp which were compacted in presence of 1-1.6 mM of MgCl2 and 

the linker histone H5 (Robinson et al, 2006; Routh et al, 2008). An unequivocal structure could not be determined by 

EM and cryo-EM measurements. Instead, three classes of fibers were created based on length diameter and nucleosome 

packing density. Importantly, the biophysical properties of these nucleosomal arrays were directly correlated to the 

length of the linker DNA used. Arrays characterized by 30-60 bp of linker DNA formed fibers with roughly 33 nm of 

diameter and a packing density of 11 nucleosomes per 11 nm, while linker DNA length of 70-90 bp led to structures 

with a diameter of approximately 43 nm and 15 nucleosomes per 11 nm of packing density. The non-linear relationship 

between the linker DNA length and the dimensions of these fibers are consistent with a one-start solenoid model. 

However, arrays containing only 20 bp of linker DNA were thinner, with a diameter of roughly 21 nm and a 

nucleosome packing density of only 6.1 nucleosomes per 11 nm. Importantly, these arrays appeared in a “zig-zag” 

arrangement consistent with the two-start helix, and their compaction was poorly dependent on the presence of a linker 

histone (Routh et al, 2008). This set of experiments nicely pointed out that the length of the linker DNA has a strong 

influence on secondary structure formation and dependency on the linker histone (Routh et al, 2008). 
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To summarize, linker DNA length greater than 30 bp favours the formation of two classes of one-start solenoid fibres in 
vitro (Robinson et al, 2006). The stabilization into one of these two conformations may be modulated by the abundance 

of linker histone. On the other hand, linker DNA length shorter than 30 bp conveys a zigzag arrangement of the 

nucleosomes in a two-start helix which relies more on nucleosome stacking and less on linker histones (Dorigo et al, 

2004; Schalch et al, 2005; Routh et al, 2008). While this set of rules helps explaining different secondary structures 

observed in vitro, nucleosomal remodeling and the association of non-histone proteins with the chromatin fiber is likely 

to impact linker DNA length and chromatin secondary structure in vivo. 

Genome-wide techniques such as tiling array, ChIP-chip and ChIP-Seq have been used to measure linker DNA lengths 

genome-wide in S. pombe (~12 bp) (Lantermann et al, 2010), S. cerevisiae (~21 bp) (Yuan et al, 2005), C. elegans (~29 

bp) (Valouev et al, 2008) and humans (~54 bp) (Schones et al, 2008). However, linker DNA length and nucleosomal 

positioning and spacing in vivo is likely to be tightly regulated by cis- as well as trans-acting factors ((Bell et al, 2011; 

Rando and Winston, 2012), see below) and may vary at discrete genomic locations. Structural variation within a single 

chromatin fiber is defined as chromatin “heteromorphism” and is supported experimentally by EM-assisted nucleosome 

interaction capture (EMANIC) coupled with Monte Carlo simulation (Grigoryev et al, 2009) and mesoscale simulation 

modeling (Schlick and Perisic, 2009). Finally, it is important to keep in mind that loading of non-histone proteins onto 

the chromatin fiber can play major roles in determining chromatin secondary structure (Li and Reinberg, 2011). In vivo, 

it is very likely that, at a given time within a given chromatin fiber, multiple secondary organizations exist 

simultaneously (at different loci) conveying variable DNA accessibilities. 

 

Figure 2 - Models for the 30 nm chromatin fiber (A) Interdigitated one-start helix model based on measurements 

obtained in (Robinson et al, 2006). Alternate helical gyres are colored in marine and magenta. (B) Two-start helical 

crossed linker model adapted from the model reported in (Schalch et al, 2005). Alternate nucleosome pairs are colored 

in marine and magenta. The positions of the first, second, third, and seventh nucleosome in the linear DNA sequence 

are marked on both models with N1, N2, N3, and N7. (Insets) Schematic representations of both atomic models 

showing the proposed DNA connectivity. Adapted from (Robinson et al, 2006). 

1.3  CHROMATIN REGULATES DNA-TEMPLATED PROCESSES 

Packaging of DNA into chromatin hinders DNA accessibility to proteins and thus regulate cellular processes that 

require DNA as a template. However, nucleosomes and chromatin are not static entities, and modulation of chromatin 

organization  at the primary, secondary and tertiary levels  is likely to have important regulatory functions. 

One of the most studied regulatory roles for chromatin concerns DNA transcription. The primary structure of chromatin 

 the nucleosomal organization of DNA  plays a fundamental role in regulating gene expression. The next sections 

will cover some of the crucial experiments that linked histone proteins and nucleosomes to gene expression in vitro and 

in vivo, with a particular focus on S. cerevisiae. The implication of secondary and tertiary high-order structures as well 

as the nuclear organization of the genome in regulating gene expression is less well understood and will be discussed 

later in the thesis (see (Akhtar and Gasser, 2007; Sexton et al, 2007; Arib and Akhtar, 2011; Geyer et al, 2011; Szerlong 

and Hansen, 2011; Zimmer and Fabre, 2011; Albert et al, 2012; de Wit and de Laat, 2012) and references cited therein). 
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1.3.1  TRANSCRIBING THROUGH CHROMATIN: EARLY STUDIES IN VITRO  AND CURRENT 

VIEW 

Early studies in vitro, based on bacterial and eukaryotic systems, demonstrated that the organization of DNA into a 

chromatin template impairs transcription. 

In a pioneering study, in vitro assembled chromatin prepared from SV40 DNA and calf thymus histones inhibited for 

transcription by the E. coli RNA polymerase. Inhibition seemed to occur at both the initiation and elongation levels and 

depended on the number of nucleosomes formed in the reconstituted complexes (Wasylyk et al, 1979). However, it 

could not be excluded that the mRNA production observed using under-reconstituted templates was actually a result of 

transcription of contaminating free DNA. In a subsequent study, transcription by human RNA polymerase II from the 

adenovirus-2 major late promoter was tested in vitro using HeLa nuclear extracts and circular DNA templates onto 

which varying numbers of nucleosomes had been reconstituted with Xenopus oocyte extracts (Knezetic and Luse, 

1986). This system was better controlled (Glikin et al, 1984), as manipulation of ATP and Mg2+ levels in the 

reconstitution reaction allowed the authors to fine-tune the amount of assembled nucleosomes (Knezetic and Luse, 

1986). Importantly, no initiation occurred on reconstituted templates with more than two-thirds of the “physiological” 

nucleosome density (considered to be ~ 40 bp of linker DNA (Kornberg, 1977)), whereas templates with less than one-

third of the physiological nucleosome density were transcribed as efficiently as naked DNA (Knezetic and Luse, 1986). 

These studies showed that the organization of DNA in chromatin can block transcription depending on the amount of 

nucleosomes found in the template, probably reflecting the likelihood to find a nucleosome on the promoter (see 

below). 

Importantly, further experiments demonstrated the existence of one or more components in cell extracts that were able 

to activate transcription through chromatin  on normally refractory conditions  if incubated with DNA prior to 

reconstitution of the chromatin template (Matsui, 1987; Workman and Roeder, 1987). One of these components is the 

TATA box-binding factor TFIID which was sequestered into the nucleosome-assembled templates and allowed for 

transcriptional initiation by RNA polymerase II (Workman and Roeder, 1987). 

At this point it was not clear whether the RNA polymerase could transit through nucleosomes or had the ability to evict 

or displace histones from the chromatin fiber. In conditions that allow for transcriptional initiation, purified RNA 

polymerase II elongation partially removed histones from a DNA template (adenovirus-2 promoter) as determined by 

restriction enzyme digestion and a gel shift observed in the electrophoretic mobility of the transcribed template (Lorch 

et al, 1987). However, combining sedimentation velocity, electrophoretic mobility and digestion with restriction 

nucleases it was shown that the bacteriophage T7 polymerase was able to transcribe through nucleosomes without 

removing the histones from the DNA template (based on the murine -globin gene cloned with a T7 promoter) (Kirov 
et al, 1992). 

Building on these early observations in vitro a great body of work has refined our understanding of how the primary 

structure of chromatin relates to transcription. The emerging picture is one in which histone release/exchange is strongly 

influenced by the rate of RNA polymerase II activity. The H3 and H4 histones seem to be more stably associated with 

DNA while the H2A-H2B heterodimer has a higher likelihood to be released (Kulaeva et al, 2007; Hodges et al, 2009; 

Kulaeva et al, 2009; Kulaeva et al, 2010). Similar results were observed in vivo (Lee et al, 2004; Schwabish and Struhl, 

2004; Thiriet and Hayes, 2005; Dion et al, 2007). Interestingly the passage of the RNA polymerase seems to displace 

nucleosomes “backwards” in the direction of the promoter both in vitro (Hodges et al, 2009) and in vivo (Weiner et al, 
2010). It is important to keep in mind that, while nucleosomes per se pose a barrier to DNA transcription (Bondarenko 

et al, 2006; Hodges et al, 2009), the post-translational modification of histones can facilitate the recruitment of 

additional factors such as ATP-dependent chromatin remodelers and histone chaperones which highly facilitate the 

passage of RNA polymerase II in vivo (see below and (Bell et al, 2011; Luse et al, 2011; Luse and Studitsky, 2011; 

Kremer et al, 2012; Rando and Winston, 2012)). For instance, the conserved histone chaperone FACT (FAcilitates 

Chromatin Transcription) is critical for nucleosome reorganization during transcription  as well as DNA replication 

and repair ((Orphanides et al, 1998; Orphanides et al, 1999; Brewster et al, 2001; Formosa et al, 2001; 

Belotserkovskaya et al, 2003; Saunders et al, 2003) and reviewed in (Belotserkovskaya and Reinberg, 2004; Winkler 

and Luger, 2011; Rando and Winston, 2012)). FACT is thought to reversibly destabilize nucleosomes to facilitate both 

transcription initiation and the passage of RNA polymerase II through the disruption of core histone-histone and 

histone-DNA interactions (reviewed in (Belotserkovskaya and Reinberg, 2004; Winkler and Luger, 2011; Rando and 

Winston, 2012)). Finally, it is clear now that nucleosomal positioning at the gene promoter, as opposed to the coding 

region, is the key determinant for gene expression by modulating DNA accessibility to upstream regulatory factors (see 

below and (Bell et al, 2011; Rando and Winston, 2012)). 

1.3.2  PIONEERING STUDIES IN S. CEREVISIAE : THE IMPORTANCE OF HISTONES IN GENE 

REGULATION IN VIVO  

Much of the knowledge on how chromatin structure controls gene expression comes from pioneering studies in S. 

cerevisiae. While higher eukaryotes, such as flies, mice and humans, have very high copy numbers of histone genes 
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(50-100 copies) (Lifton et al, 1978; Marzluff et al, 2002), S. cerevisiae has only 2 genes encoding for each of the four 

histone proteins: H2A, H2B, H3 and H4. The low histone genes copy number, coupled with the ease of its genetic 

manipulation, promoted budding yeast as a formidable tool to study histone function in vivo by mutational analysis. 

Experiments in yeast led to the discovery that histone genes are essential for viability (Rykowski et al, 1981). Two 

strains were constructed individually lacking either of the genes coding for the histone H2B (HTB1 and HTB2). While 

mutant strains survived as haploids and heterozygous or homozygous diploids, no spores could be derived, from a 

heterozygous diploid, that were mutated for both H2B genes, thus unable to produce the histone protein H2B 

(Rykowski et al, 1981). Early studies in yeast also led to the discovery that histone levels play important regulatory role 

for gene expression in vivo. Indeed, when histone H4 levels were decreased, by means of a glucose-repressible GAL1-

10 promoter system, the PHO5 gene was activated under normally repressive conditions and the nucleosomal 

distribution at the PHO5 promoter was greatly altered as probed by micrococcal nuclease digestion (Han et al, 1988). 

Similar results were also obtained for engineered CYC1 and GAL1 promoters if the upstream activator sequences (UAS) 

 which normally mediates glucose-dependent repression  were deleted (Han and Grunstein, 1988). Moreover, 

nuclease accessibility studies of the PHO5 and the GAL1-10 genes established the principle that nucleosomes occupy 

promoters in repressive conditions but are removed following induction (reviewed in (Lohr, 1997)). These studies 

showed that the nucleosome is a fundamental determinant of DNA accessibility and transcription. Consistently, the 

abundance of histone proteins in yeast is highly regulated on many levels (see (Rando and Winston, 2012) and 

references cited therein). This includes, but is note restricted to, the level of saturation of chaperones with histones 

(Osley and Lycan, 1987; Dollard et al, 1994; Eriksson et al, 2012) and regulation of histone protein stability (Gunjan 

and Verreault, 2003; Singh et al, 2009). 

In addition to the core histones H2A, H2B, H3 and H4, S. cerevisiae has three single copy genes coding for an equal 

number of additional histones. The histone H1 (HHO1), is not required for cell viability and plays a limited role in 

regulating chromatin structure and gene expression (Patterton et al, 1998; Levy et al, 2008; Schafer et al, 2008; Yu et 

al, 2009). The histone Cse4 (CSE4) is a centromere-specific histone H3 variant essential for cell viability and crucial for 

centromere function (Meluh et al, 1998; Furuyama and Biggins, 2007). Finally, the histone H2A.Z (HTZ1) is a histone 

H2A variant enriched at genes promoters, but whose specific role is still under examination (Rando and Winston, 

2012). 

1.3.3  NUCLEOSOME OCCUPANCY AND TRANSCRIPTION IN YEAST 

Genome-wide analysis of nucleosome occupancy in budding yeast has revealed important features of gene regulation 

(Kaplan et al, 2009; Zhang et al, 2009; Brogaard et al, 2012). From a global perspective, genes in yeast can be divided 

in two classes: “housekeeping” and “stress” genes. “Housekeeping” genes are associated with biomass production and 

are strongly expressed during rapid cellular growth. These genes, often regulated by TFIID binding, are characterized 

by a nucleosome-depleted region (NDR) located upstream of the coding region and bordered by two highly positioned 

nucleosomes often containing the histone variant H2A.Z (Rando and Winston, 2012). These features are well conserved 

from yeast to man (Bell et al, 2011). On the other hand, “stress” genes are poorly expressed in normal conditions but 

become rapidly induced in stress conditions in a manner often dependent on the SAGA complex. The promoter 

architecture at these genes is rather variable and, while associated with delocalized nucleosomes, a clear NDR region is 

less obvious (Rando and Winston, 2012). This may result from the specific mechanism of regulation of different stress 

genes that evolved to respond to very characteristic conditions. Parallel to this global classification several cis- and 

trans-factors (see below) are responsible for conveying specific chromatin structures at discrete genomic location by 

modulating nucleosomal positioning. 

1.3.3.1 NUCLEOSOME POSITIONING: CIS-REGULATORS ARE NOT ENOUGH 

The nucleosome does not require a binding motif on the DNA, consistent with its general packing function. However, 

the DNA polymer has to wrap tightly around the histone octamer and the propensity of a given DNA sequence to bend 

affects the tendency of a nucleosome to occupy that position ((Drew and Travers, 1985; Travers and Drew, 1997; 

Lowary and Widom, 1998) and reviewed in (Travers, 2004; Segal and Widom, 2009; Travers et al, 2012)). Since the 

biophysical properties of the DNA molecule rely on its sequence, DNA sequence indirectly affects nucleosome 

positioning. Of particular relevance, is the dA/dT content. Poly(dA/dT) stretches have a non-canonical conformation of 

the double-helix that renders them intrinsically stiff and less prone to be bent (Nelson et al, 1987). On the other hand, 

dA/dT dinucleotides spaced in 10 bp intervals create an intrinsic curvature which facilitates nucleosome assembly 

(Anselmi et al, 1999; Thastrom et al, 1999). 

In yeast, poly(dA/dT) stretches  which disfavor nucleosome formation  are enriched in NDR in vivo (Kaplan et al, 
2009). However, intrinsically bendable DNA sequences poorly explain the nucleosome positioning observed genome-

wide (Kaplan et al, 2009; Zhang et al, 2009). The analysis of specific genes also revealed a variable dependency on the 

DNA sequence. For example, the chromatin structure observed at the HIS3 promoter in vivo could be recapitulated in 

vitro using purified DNA and recombinant histones (Sekinger et al, 2005). On the other hand, this was not the case for 

the PHO5 promoter region (Korber et al, 2004). Strikingly, the in vivo nucleosomal organization at the PHO5 promoter 
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could be reproduced in vitro upon addition of whole-cell extract, indicating that trans-acting factors were responsible 

for promoter nucleosomal organization at this specific locus (Korber et al, 2004). A recent study showed that, outside of 

promoter regions, nucleosomal occupancy relies mostly on ATP-dependent processes (Zhang et al, 2011).  

Indeed, a large family of ATP-dependent chromatin remodelers works in concert with histone chaperones and histone 

modifying enzymes to regulate chromatin structure and DNA-templated processes, including gene expression (see 

below and (Clapier and Cairns, 2009; Das et al, 2010; Hondele and Ladurner, 2011; Rando and Winston, 2012)). 

Eukaryotic cells contain four different families of chromatin remodeling complexes: Swi/Snf, Iswi, Chd, and Ino80 

(Clapier and Cairns 2009). Although there is some variation in the precise protein composition of these multi-protein 

complexes in different organisms, individual families are well conserved from yeast to man. All four families share a 

similar ATPase domain and use ATP hydrolysis to alter histone-DNA contacts. However, each family member bears 

unique flanking domains and associated subunits specialized for particular purposes and biological contexts (see 

(Clapier and Cairns, 2009; Conaway and Conaway, 2009; Morrison and Shen, 2009; Rando and Winston, 2012) and 

references cited therein). 

1.3.3.2 TRANSCRIPTION FACTOR BINDING AND NUCLEOSOME REMODELING 

Binding of transcription factors is fundamental to gene expression. Whilst in S. cerevisiae transcription factor binding 

sites often lie within nucleosome-depleted regions (Segal et al, 2006), binding of transcription factors to nucleosomal 

DNA can directly displace histones in vitro (Workman and Kingston, 1992). In addition, transient unwrapping of the 

DNA from the histone octamer  referred to as “nucleosomal breathing”  can expose transcription factor binding sites 

(and other DNA sequences) covered by a nucleosome in vitro (Li et al, 2005; Poirier et al, 2009) and in vivo (Bucceri et 

al, 2006).  

Interestingly, binding of a transcription factor to a binding site within a NDR can lead to the recruitment of histone 

modifying and nucleosome remodeling machineries that expose secondary binding sites. In the case of the PHO5 

promoter, which is induced by low levels of phosphate, the Pho4 transcription factor binds first to an accessible site and 

recruits three histone acetyltransferases (NuA4, Gcn5 and Rtt109; see below), two nucleosome-remodeling complexes 

(Swi/Snf and Ino80) and a histone chaperone (Asf1) to free a secondary binding site and convey full activation of the 

PHO5 promoter ((Almer and Horz, 1986; Almer et al, 1986) and reviewed in (Rando and Winston, 2012)). This and 

other studies (e.g. on the GAL1-10 promoter) highlight the key role of nucleosomal positioning and chromatin structure 

dynamics in regulating gene expression (reviewed in (Rando and Winston, 2012)). Building on the Pho4 example, the 

role of “pioneer” transcription factors that bind DNA first and “open up” the local chromatin structure to allow binding 

of further activators is now considered a broadly conserved phenomenon in eukaryotes (Magnani et al, 2011; Zaret and 

Carroll, 2011). 

1.3.3.3 ATP-DEPENDENT NUCLEOSOME REMODELING AT PROMOTERS 

A recent in vitro reconstitution study showed that ATP-dependent remodeling explains most of the nucleosome 

positioning observed outside of gene promoters (Zhang et al, 2011). However, as introduced above with the example of 

the PHO5 gene, ATP-dependent nucleosome remodeling plays also an important role in determining chromatin 

structure and DNA accessibility at promoters. A well-characterized factor is the essential SWI/SNF-family member 

RSC (Remodels the Structure of Chromatin), an ATP-dependent nucleosome remodeling complex (Cairns et al, 1996). 

RSC is required for activation of many genes in S. cerevisiae (Parnell et al, 2008). RSC seems to synergize with 

intrinsic “anti-nucleosomal” DNA sequences (high A/T content) to generate NDR at the 5’ of genes (Hartley and 

Madhani, 2009). In the other hand, another ATP-dependent nucleosome remodeling complex, Isw2, has been shown to 

play the opposite role (Whitehouse et al, 2007). Isw2 seems to slide nucleosomes into unfavorable A/T rich sequences 

to inhibit aberrant transcription from canonical and cryptic promoters (Whitehouse et al, 2007). 

The emerging picture is one where DNA sequence can favor the formation of NDR, however the actual position of 

nucleosomes is highly dependent on trans-acting factors such as transcription factors and ATP-dependent remodeling 

complexes, which ultimately define transcriptional states (Zaugg and Luscombe, 2012). 

1.4  THE YEAST NUCLEOSOME 

The X-ray crystal structure of a NCP reconstituted with recombinant S. cerevisiae histones has been solved at 3.1 Å 

resolution (White et al, 2001). Importantly, the overall architecture of the histone octamer and the residues that directly 

contact the DNA in S. cerevisiae are unchanged compared to the available structural information for the NCP of higher 

eukaryotes (Luger et al, 1997; Harp et al, 2000). However, the yeast nucleosome exhibits some structural particularities 

that may affect chromatin organization in this organism. Two amino acid changes within the H2A-H2B dimeric 

interface (H2A-Q42 and H2B-A85, in yeast) reduce the surface between two H2A-H2B dimers from 150 to 90 Å2 

(White et al, 2001). Weaker interaction in this interface can affect the stability of the yeast octamer and indeed, salt-

dependent and thermal unfolding show a less constrained structure of the yeast nucleosome as compared to higher 

eukaryotes (Lee et al, 1982; Pineiro et al, 1991).  
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Other structural differences between the yeast and the X. laevis octamer reside in the C-terminal regions of H2A and 

H2B. The C-terminus of H2A contains a well ordered helix which is exposed on the surface of the nucleosome. While 

playing a minor role in the context of the X. laevis octamer, this C-terminal H2A helix forms essential inter-

nucleosomal contacts in the crystal packing of the yeast nucleosome (White et al, 2001). Moreover, in yeast, H2B T128 

and Q129 form hydrogen bonds with H3 K121 and K125 of a neighboring nucleosome but none of these residues are 

conserved in X. laevis. This results in an altered nucleosomal packing (in the crystal lattice) which prevents the basic H4 

N-terminal tail of a yeast nucleosome to interact with the acidic patch on the H2A-H2B surface of a neighboring 

nucleosome (Luger et al, 1997; White et al, 2001). Instead, the H4 N-terminal tail in yeast makes crystal contacts with 

the DNA molecule of a neighboring nucleosome (White et al, 2001). Nonetheless, it is very likely that contacts within 

the crystal lattice are not descriptive of the situation in vivo (Finch et al, 1981). Consistent with is crucial role in 

regulating chromatin processes (see below), the H4 N-terminal tail is highly conserved and given that the acidic patch 

on the H2A-H2B surface is largely maintained as well, this raises the intriguing possibility that the interaction partners 

of the H4 N-terminal tail may be modulated in vivo, for example by histone post-translational modifications or loading 

of non-histone proteins (e.g. Sir3 BAH; see section - Is the BAH domain involved in nucleosomal stacking?). 

1.5  REGULATION OF GENE EXPRESSION BY HISTONE MODIFICATIONS 

It is now clear that post-translational modification of histones is a key factor modulating the dynamic organization of 

the chromatin fiber. This section outlines the modification of histones and its broad role in regulating chromatin 

processes. The specific role of histone modifications in regulating silent chromatin in S. cerevisiae will be presented in 

great detail below (see section - Histone modifications regulates yeast silent chromatin). 

In the early 1960s, pioneering studies from Vincent Allfrey showed that histones can be acetylated and methylated 

“very probably after completion of the polypeptide chain” and that “acetylation in particular, may affect the capacity of 

the histones to inhibit ribonucleic acid synthesis in vivo” (Allfrey et al, 1964). We now know that Vincent Allfrey was 

largely right and that histone proteins are subjected to a wide range of post-translational modification bearing regulatory 

functions (Bannister and Kouzarides, 2011; Tan et al, 2011). 

An intensively studied histone modification  or “mark”  is the acetylation of lysines which is carried out by histone 

acetyltransferases (HAT) transferring an acetyl group from acetyl-CoA to the -amino group of lysines lying both on 

the nucleosomal surface and the tails of already assembled nucleosomes (type-A; e.g. MYST, ScSas2) (Ehrenhofer-

Murray et al, 1997; Pillus, 2008) or newly synthesized histones (type-B; e.g. p300/CBP, ScRtt109) (Driscoll et al, 2007; 

Wang et al, 2008b; D'Arcy and Luger, 2011). Acetylation of lysines is a very dynamic process, and this histone 

modification can be removed by the action of histone deacetylases (HDAC). Based on homology, HDACs can be 

grouped in four classes: class I is related to ScRpd3 (Taunton et al, 1996), class II is related to ScHda1(Yang and Seto, 

2008), class III is also referred to as “Sirtuins” (founded by the NAD-dependent deacetylase ScSir2; see below) 

(Blander and Guarente, 2004; Toiber et al, 2011) and class IV whose only member is HDAC11 (Yang and Seto, 2007). 

Similarly to histone acetylation, the phosphorylation of histones is an important and highly dynamic process. It occurs 

on serines, threonines and tyrosines, predominantly but not exclusively on the N-terminal histone tails (Bannister and 

Kouzarides, 2011). Histone phosphorylation is carried out by kinases which transfer a phosphate group from ATP to the 

hydroxyl group of the target amino acid side chain and is removed by phosphatases (Oki et al, 2007; Banerjee and 

Chakravarti, 2011).  

While acetylation neutralizes the positive charge of the lysine’s side chain, histone methylation, which mainly occurs on 

lysines and arginines, does not alter the charge of histone proteins but adds an adduct. Since the discovery of SUV39, a 

histone lysine methyltransferase (HMT; which targets H3K9) (Rea et al, 2000), many HMTs have been identified. All 

known HMTs use S-adenosylmethionine (SAM) as donor to transfer a methyl group to the -amino group of lysine 

residues. Whereas the large majority of HMTs have a SET domain  named for its concurrent occurrence in the 

Drosophila Su(var), E(Z) and Trithorax genes  and target histone tails, an important exception is the Dot1 (disruptor of 

telomeric silencing 1) enzyme. Dot1 is conserved from yeast to man, lacks a SET domain and methylates H3K79 on the 

core nucleosomal surface (Feng et al, 2002; Ng et al, 2002; van Leeuwen et al, 2002). It is unclear why Dot1 is 

structurally different from all others HMTs, but perhaps it reflects the relative inaccessibility of its substrate H3K79. 

Importantly, unlike acetylation, HMT enzymes can methylate a target lysine to a specific degree: mono-, di- or tri-

methylation. This specificity is an intrinsic property of the enzyme and is originated by the architecture of the enzyme’s 

catalytic pocked as elegantly shown by X-ray crystallography (Cheng et al, 2005; Collins et al, 2005). In addition to 

lysine residues, arginine can be mono-, symmetrically or asymmetrically di-methylated (reviewed in (Bedford and 

Clarke, 2009; Lan and Shi, 2009; Ng et al, 2009). All arginine methyltransferases use SAM to transfer a methyl group 

to the -guanidino group of arginine residues and major histone arginine methyltransferases are PRMT1, 4, 5 and 6 

(Bedford and Clarke, 2009; Wolf, 2009). Both lysine and arginine methyltransferases have the SAM-binding pocket on 

one face of the enzyme and the peptidyl acceptor channel on the opposite face. This suggest that the SAM molecule and 

the histone substrate come together from opposing sides of the enzyme (Copeland et al, 2009). For long time, histone 

methylation was thought to differ from acetylation and phosphorylation, given its inability to be reverted by an 

enzymatic activity. We now know that several histone demethylases exist (Tsukada et al, 2006; Hou and Yu, 2010). All 
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histone demethylases contain a catalytic “jumonji” domain with the exception of LSD1 which utilizes Flavin Adenine 

Dinucleotide (FAD) as a co-factor for demethylation (Shi et al, 2004; Tsukada et al, 2006; Mosammaparast and Shi, 

2010). 

Histone proteins can also be modified by the covalent attachment of an entire protein: the 76 amino acids long ubiquitin 

or the SUMO (small ubiquitin-like modifier) protein. Histone ubiquitination and sumoylation follow the typical E1-

activacting, E2-conjugating and E3-ligating enzymatic pathway and in the case of histones mono-ubiquitination and 

mono-sumoylation seem most relevant (Wright et al, 2012). Another very dramatic way of modifying histone tails is to 

cleave them off  referred to as histone tail clipping  a process described so far only for the N-terminus of H3. First 

identified in Tetrahymena (Allis et al, 1980), this presumably irreversible way of altering the nucleosome has also been 

found in yeast (Santos-Rosa et al, 2009) and mouse (Duncan et al, 2008). 

Other histone post-translational modification include: deimination, propionylation, ADP ribsoylation, butyrylation, 

formylation, citrullination, crotonylation and histone proline isomerization ((Tan et al, 2011) and reviewed in (Bannister 

and Kouzarides, 2011)). Notably through the advance of mass spectrometry-based proteomics a multitude of histone 

modifications have been discovered (Tan et al, 2011), yet the functional importance of most of these remains to be 

addressed. Modification of histones can alter the structural organization of chromatin per se or function as docking sites 

for trans-acting factors. 

1.5.1  DIRECT REGULATION OF CHROMATIN STRUCTURE BY HISTONE MODIFICATIONS 

Acetylation of lysines reduces the positive charge of histone proteins, decreasing the possibility of compacting the 

chromatin fiber through electrostatic interactions. The N-terminal tails of the histones H3 and H4 can be heavily 

acetylated at positions including H3K9, H3K14, H3K18, H4K5, H4K8, H4K16 and H4K12 (Kouzarides, 2007). 

Consistent with a role in “relaxing” the chromatin fiber, multiple acetyl marks are enriched at promoters of active 

genes, presumably facilitating the access to transcription factors (Wang et al, 2008c). Importantly, the acetylation of the 

single lysine 16 within the tail of the histone H4 (H4K16) is sufficient to inhibit compaction of the chromatin fiber in 

vitro (Shogren-Knaak et al, 2006), presumably by disrupting the electrostatic interaction between the positive H4 tail 

and a negative patch of the H2A-H2B dimer on the adjacent nucleosome (Luger et al, 1997). 

While acetylation of H4K16 seems to affect inter-nucleosomal interaction, single particle analysis of nucleososmes 

acetylated on H3K56 have shown that the H3K56ac mark increases the spontaneous (but transient) unwrapping of the 

DNA from the histone octamer, referred to as nucleosomal “breathing” (Neumann et al, 2009). 

A more dramatic effect was observed for chemically engineered ubiquitination of H2BK120 which inhibits salt-

dependent compaction of a nucleosomal array in vitro, as tested by sedimentation velocity (Fierz et al, 2011). 

Importantly, ubiquitination of H2BK120 and acetylation of H4K16 were synergistic and surprisingly, this effect could 

not be reproduced by substituting ubiquitin with the ubiquitin-related protein Hub1 indicating that decreased 

compaction by ubiquitin may not be merely a steric effect (Fierz et al, 2011). 

The H3 histone tail promotes both intra- and inter-nucleosomal interactions upon salt-dependent array folding (Zheng et 

al, 2005; Kan et al, 2007). Therefore, removal of the first 21 amino acid by histone tail clipping likely favours a less 

compacted chromatin structure. 

While understanding the impact of histone modifications on the dynamic properties of nucleosomal arrays in vitro helps 

defining their role in the genome, it is important to consider that chromatin is associated with a multitude of proteins in 

vivo and a growing amount of studies directly links histone modifications to the regulation of protein-chromatin 

interactions. 

1.5.2  HISTONE MODIFICATIONS REGULATE THE BINDING OF CHROMATIN FACTORS 

As described above, some of the direct effects of histone modification on chromatin structure can be elegantly 

recapitulated in vitro, in particular the direct effect of histone modifications on chromatin structure. However, in vivo 

histone modifications play an additional and crucial role in regulating protein-chromatin interaction. 

Specialized modules such as chromodomains, PHD domains, Tudor domains and WD40 domains have been shown to 

selectively bind methylated histones while bromodomains bind to acetylated histones (Taverna et al, 2007). These 

domains are very often included into multivalent proteins and complexes which can directly alter the structure of 

chromatin or further modify histones in the genomic location they bind. Indeed, there is an important level of cross-talk 

between different histone modifications (Kouzarides, 2007). For example, in S. cerevisiae, methylation of H3K4 by 

ScCOMPASS and methylation of H3K79 by ScDot1 both depend upon ubiquitination of H2BK123 by ScRad6/Bre1 

(Lee et al, 2007). Additionally, the H3K4me3 mark recruits ScYng1, a PHD finger-containing subunit of the NuA3 

complex which in turn acetylates H3K14 (Taverna et al, 2006). 

Tri-methylated H3K4 also appears to directly recruit chromatin remodelling activities. For instance, the H3K4me3 mark 

can be bound by the tandem chromodomains within CHD1, an ATP-dependent chromatin remodelling complex capable 

of displacing nucleosomes (Sims et al, 2005). Similarly, histone acetylation at promoter regions recruits the SWI/SNF 
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chromatin remodeler complex through the bromodomain-containing subunit Swi2/Snf2, facilitating gene activation 

(Hassan et al, 2002). However, histone modifications do not always function as docking site for other factors, but can 

also have a repulsive role. For instance, the H3K4me3 mark, which is associated with gene expression, can inhibit the 

binding (to the H3 N-terminal tail) of the NuRD complex, a transcriptional repressor with both chromatin remodelling 

and HDAC functions (Zegerman et al, 2002) and the Polycomb repressive complex 2, PRC2 (Schmitges et al, 2011). 

Thus, in addition to altering the chromatin structure per se, histone modifications can stimulate or disfavour the 

deposition of additional marks and recruit chromatin remodelling complexes to modulate gene expression. 

1.6  UNEQUAL DISTRIBUTION OF HISTONE MODIFICATIONS LABELS DIFFERENT 

GENOMIC REGIONS 

It has been appreciated for some time that the conformation of chromatin within the nucleus is not uniform and can be 

differentiated using dyes such as DAPI (4',6-diamidino-2-phenylindole). DAPI stains the DNA (preferring AT-rich 

regions) and yielded fluorescence images showing characteristic regions of high and low density, which occupy distinct 

regions of the nucleus. This was confirmed by uranyl acetate staining and EM techniques (Monneron and Bernhard, 

1969; Olins and Olins, 1974; Belmont and Bruce, 1994; Dehghani et al, 2005). This observations have inspired a classic 

model in which dense staining compartments  referred to as “heterochromatin”  reflect higher levels of chromatin 

compaction and reduced DNA accessibility, whereas lighter staining regions  referred to as “euchromatin”  reflect 

lower levels of chromatin compaction which facilitates DNA accessibility. 

However, the bimodal classification into euchromatin and heterochromatin is likely to be too simplistic (van Steensel, 

2011). Indeed, the use of integrative computational analysis to map the binding of non-histone proteins to chromatin 

and the location of histone modifications genome-wide has revealed that both euchromatin and heterochromatin can be 

divided in 2-3 subgroups each, at least in fly and man ((Filion et al, 2010; Kharchenko et al, 2011; Ram et al, 2011) and 

reviewed in (van Steensel, 2011)). Moreover, the actual contribution of chromatin compaction in the repression of gene 

expression is still debated (Bell et al, 2011; van Steensel, 2011). When DNA accessibility, in C. elegans or yeast, was 

probed in vivo by means of the DNA adenine methyltransferase (DAM) method, euchromatin-located DNA was barely 

2-fold more accessible compared to heterochromatic regions when averaged over a population of cells (Chen et al, 

2005; Sha et al, 2010). Whether this relatively small difference is due to dynamic changes within a population and 

whether it would be sufficient to prevent efficient transcription is still unclear. Whilst our understanding of chromatin 

domains in vivo has been refined and will continue to evolve, the “euchromatin” and “heterochromatin” nomenclature 

has survived to date.  

1.6.1  HISTONE MODIFICATIONS WITHIN EUCHROMATIN 

Euchromatin is not all the same but, based on known regulatory protein binding profiles genome-wide, can be divided 

into at least three groups (van Steensel, 2011). While the first two groups are very similar and approach the classical 

definition of euchromatin (see below), a third group is specifically marked with the heterochromatic proteins HP1 and 

SUV39. There is still much to learn about this type of chromatin (Kwon and Workman, 2011; van Steensel, 2011). 

Euchromatin is the first to replicate during S phase and this correlates with high levels of H4K16 acetylation (Bell et al, 

2010). The histone H4 is highly acetylated at active genes especially in proximity of the transcriptional start site (TSS) 

which also bears the H3K4me3 mark (Bell et al, 2011). In contrast, transcriptional enhancers are enriched with mono-

methylated H3K4 (Barski et al, 2007) and the H3K36me3 mark is highly enriched within the body of active genes 

(Bannister et al, 2005). Interestingly, it has been recently shown that H3K4me3 and H3K36me2/3 significantly inhibit 

the methylation of H3K27 by PRC2 (see below) in actively transcribed regions (Schmitges et al, 2011). 

Finally, within euchromatin, active marks (H3K4me3 and H3K36me3) are not homogenously distributed but often 

seem to be enriched at discrete regions (Barski et al, 2007). Spatial clustering of these regions in so-called transcription 

“factories” is an attractive hypothesis still under debate (Sutherland and Bickmore, 2009; Cook, 2010). 

1.6.2  TRANSCRIPTIONAL REPRESSION WITHIN HETEROCHROMATIN IN HIGHER 

EUKARYOTES 

In the light of what discussed above, it is important to note that active genes can also be found in chromatin regions 

traditionally considered as heterochromatic ((Wakimoto and Hearn, 1990; Clegg et al, 1998) and reviewed in (van 

Steensel, 2011)). The next paragraph outlines the molecular machineries responsible for transcriptional repression in 

heterochromatic regions of higher eukaryotes, whereas silent chromatin in S. cerevisiae will be described in detail in the 

next section. 

It is currently understood that different machineries are involved in various types of gene repression  or silencing  

and act on a diverse set of genes (Beisel and Paro, 2011). Genes that are differentially expressed through development 

and differentiation are often regulated by the Polycomb family (reviewed in (Muller and Verrijzer, 2009; Morey and 

Helin, 2010; Sawarkar and Paro, 2010; Margueron and Reinberg, 2011)). Given that the subset of genes silenced by 

Polycomb factors varies among different cells and throughout development, Polycomb associated silencing is often 
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referred to as “facultative” heterochromatin. The molecular mechanism for Polycomb-mediated silencing is still a very 

active field of research. The Polycomb repressive complex 2 (PRC2) catalyses the deposition of the H3K27me3 mark 

while PRC1 ubiquitinates H2AK119 which may impede transcriptional elongation (Stock et al, 2007). Intriguingly, 

PRC1 has been shown to compact a nucleosomal array in vitro with potential repercussion on DNA accessibility 

(Francis et al, 2004). The exact mechanism by which Polycomb-mediated silencing can be maintained through cell 

division is still unclear, but it may involve the recruitment of PRC2 by H3K27me3 itself (Hansen et al, 2008) and the 

somehow persistent interaction of PRC1 with chromatin during DNA replication (Lo et al, 2012). 

In contrast to Polycomb-associated domains, genomic locations commonly silenced among different cell types, such as 

centromeres and telomeres, are organized into so-called “constitutive” heterochromatin. This class of heterochromatin is 

characterized by histone hypoacetylation, methylation of H3K9 and H4K20 and recruitment of the heterochromatin 

protein 1 (HP1). Most eukaryotes have several HP1 isoforms that carry out different functions, also associated with 

euchromatic gene expression (Kwon and Workman, 2011). HP1 dimers bind to H3K9me2/3 through their 

chromodomains but also interact with the SUppressor of Variegation 3-9 (SUV39), a H3K9 methyltransferase 

(Bannister et al, 2001; Lachner et al, 2001). Following association of HP1 dimers with H3K9me3-containing 

chromatin, HP1 is thought to oligomerize through multiple self-interaction interfaces, involving both its chromo- and 

chromoshadow- domains, and bring together nearby nucleosomes (Canzio et al, 2011). Therefore, HP1 is thought to 

repress gene expression by limiting the DNA accessibility. The observation that HP1 interacts H3K9me3-containing 

nucleosomes and also the enzyme depositing this mark (SUV39) has led to an intriguing hypothesis for the epigenetic 

heritability of “constitutive” heterochromatin. Whilst H3K9me3-containing nucleosomes are diluted during DNA 

replication, the remaining H3K9me3 mark would recruit HP1 which will bring along SUV39 to methylate newly 

deposited nucleosomes (Bannister et al, 2001; Lachner et al, 2001). In S. pombe, the clr4 and swi6 genes  which 

encode the fission yeast homologs of SUV39 and HP1  are required for heterochromatic gene silencing (Thon et al, 

1994; Allshire et al, 1995; Ivanova et al, 1998; Nakayama et al, 2000; Nakayama et al, 2001). Deletion of either clr4 or 

swi6, while viable, leads to high rates of chromosomal missegregation in S. pombe (Ekwall et al, 1996; Nonaka et al, 

2002). Deletion of both SUV39 isozymes does not disrupt pericentric heterochromatin formation in mice and, while 

H3K9 di- and tri-methylation levels are strongly reduced, H3K9 mono-methylation is unaffected. However, double 

mutant mice display genome instability and several developmental abnormalities (Rea et al, 2000; Peters et al, 2001). 

Interestingly, Cbx5 (HP1, heterochromatic isoform) null mice are viable and do not exhibit obvious abnormalities. 

Therefore, it appears that while the SUV39 pathway is not absolutely required for the formation of pericentric 

heterochromatin in mammalian systems, it plays an important and conserved role in protecting genome stability and 

normal development. 

Despite an increasing knowledge of molecular details, the mechanism how chromatin modifications and chromatin-

protein interactions repress gene expression remains unclear. Chromatin-mediated silencing has been extensively 

investigated in budding yeast. While the molecular machinery involved differs significantly between yeast and higher 

eukaryotes, these studies have given important conceptual insights on how chromatin associated factors can control 

gene expression. 

1.7  SILENT CHROMATIN IN S. CEREVISIAE  

As discussed above, heterochromatic regions are characterized by a subset of histone modifications and specific protein 

composition. Heterochromatic regions in S. cerevisiae  hereafter referred to as “silent chromatin” because 

transcriptionally repressed  are characterized by the absence of histone modifications and are brought about by loading 

of the Silent Information Regulator (Sir) proteins Sir2, Sir3 and Sir4 onto the chromatin fiber (Rusche et al, 2003). The 

Sir proteins come together in a Sir2-3-4 heterotrimeric complex  referred to as the Sir complex  which is considered 

the basic silencing machinery of budding yeast (Gasser and Cockell, 2001; Liou et al, 2005; Cubizolles et al, 2006; 

Johnson et al, 2009; Martino et al, 2009). 

Silent chromatin in yeast occurs at the subtelomeric regions (Gottschling et al, 1990) and the cryptic homothallic 

mating-type loci (HM), HML and HMR (Rine and Herskowitz, 1987). Deletion of either SIR2, SIR3 or SIR4 disrupts 

silencing at telomeres and the HM loci (Haber and George, 1979; Klar et al, 1979; Rine and Herskowitz, 1987; Aparicio 

et al, 1991). In addition Sir2, but not Sir3 and Sir4, plays an important role in suppressing rDNA recombination 

(Gottlieb and Esposito, 1989; Fritze et al, 1997; Straight et al, 1999) and silencing of RNA Polymerase II-driven 

reporter genes inserted in the rDNA locus (Bryk et al, 1997; Fritze et al, 1997; Smith and Boeke, 1997). A fourth Sir 

protein, Sir1, is important for efficient silencing at the HML locus but not at telomeres (see below) (Rine et al, 1979; 

Ivy et al, 1986; Pillus and Rine, 1989). 

The Sir proteins themselves do not recognize specific DNA sequences, but are recruited to discrete loci through protein-

protein interactions with multifunctional factors such as ORC, Abf1 and Rap1 that recognize specific DNA motifs  

referred to as silencers  at the HM loci called the E and I elements (Brand et al, 1985; Brand et al, 1987; Shore et al, 
1987; Buchman et al, 1988a; Bell et al, 1993; Foss et al, 1993). These sequences were shown to repress ectopic 

promoters if placed into their vicinity (Brand et al, 1985). Hence, analogous to enhancers that activate transcription, 
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these elements were termed “silencers” (Brand et al, 1985). Generally, silencers flank repressed promoters. In addition, 

“protosilencers” are sequence elements that display no silencing activity on their own but can cooperate with silencers 

over a distance to establish or maintain repression at silent domains (Fourel et al, 1999; Fourel et al, 2002). Similarly, at 

the telomeres, TG1-3 repeats tracts can be considered as minimal silencers consisting solely of a long array of binding 

sites for Rap1 ((Conrad et al, 1990) reviewed in (Rusche et al, 2003)). 

From these initial nucleation sites the Sir complex spreads for 3-20 kb along the chromatin fiber (Hecht et al, 1996; 

Strahl-Bolsinger et al, 1997). Spreading of silent chromatin requires the NAD-dependent deacetylase activity of Sir2 

(Tanny et al, 1999; Imai et al, 2000; Smith et al, 2000; Yang and Kirchmaier, 2006), which generates high affinity 

binding sites for Sir3 and Sir4 and are thought to play structural roles in the establishment of silent chromatin. Loading 

of Sir4 in turns brings in additional Sir2 to deacetylate neighbor nucleosomes and promoting the farther binding of Sir3 

and Sir4 (see below and reviewed in (Gasser and Cockell, 2001; Rusche et al, 2003; Moazed et al, 2004)). The spread 

of Sir-mediated repression is limited both by histone modifications (and the machineries involved in their deposition) 

that lower affinity of Sir3 for chromatin and by the limited concentration of Sir proteins in the nucleus (Buck and Shore, 

1995; Maillet et al, 1996; Marcand et al, 1996; van Leeuwen et al, 2002; Martino et al, 2009; Oppikofer et al, 2011). 

1.7.1  SILENCERS ENSURE SIR-DEPENDENT REPRESSION AT THE HM LOCI ALLOWING 

FOR MATING IN S. CEREVISIAE 

S. cerevisiae can exist in two different mating-types of haploid cells, expressing a or  mating factors from the mating-

type (MAT) locus, which can then mate to form an a/ diploid. The MAT locus is found near the centromere of 

chromosome III. Complete copies of the either a or  genes are located at the left (HML) and right (HMRa) arm of the 

chromosome III, which under normal conditions are kept in a transcriptionally repressed state. These sequences are 

called cryptic homothallic mating-type loci. A wild-type haploid yeast cell is called “homothallic” as it can switch 

mating-type by replacing the genetic information present in the MAT locus with the information stored at either HML or 

HMR through a gene conversion event, dependent on the site-specific endonuclease HO (reviewed in (Haber, 2012)). 

Importantly, if silencing mechanisms are compromised (e.g. deletion of either SIR2, SIR3 or SIR4), both HML and 

HMRa become expressed simultaneously and the haploid cell becomes sterile. Thus, Sir-dependent silencing of the HM 

loci is essential for mating in yeast. As a result, S. cerevisiae evolved a rather sophisticated mechanisms that ensures 

recruitment of the Sir complex through partially redundant pathways to silence the cryptic HM loci (reviewed in (Haber, 

2012)). 

As introduced above, the HM loci are both flanked by two silencers called, E and I  referred to as HML-E, HMR-E and 

HML-I, HMR-I. The E and I silencers are composed of a series of DNA motifs named A, B, E and D2. The A motif is 

an autonomous replication sequence (ARS) bound by the origin recognition complex protein Orc1 (Brand et al, 1987). 

The B motifs are bound by the transcription factor Abf1 (Diffley and Stillman, 1989), while E sequences are recognized 

by Rap1 (Shore and Nasmyth, 1987). The E and B motifs directly recruit Sir4 through its interaction with Rap1 (Moretti 

and Shore, 2001) or Sir3 by its interaction with either Rap1 or Abf1 (Gasser and Cockell, 2001; Moretti and Shore, 

2001). In the case of the A motif, which binds the hexameric ORC complex, Orc1 further binds Sir1 which in turn 

recruits Sir4 (Triolo and Sternglanz, 1996). Importantly, Sir-recruitment appears to be the main function of silencers as 

efficient gene repression could be obtained by targeting either Sir1 (which binds Sir4) or Sir3 to an artificial Gal4 

binding sequence by means of Gal4 domain fusions in a strain lacking the HMR-E element (Chien et al, 1993; Lustig et 

al, 1996). It may sound counterintuitive that Rap1 and Abf1, known to be transcription activators, play a crucial role in 

establishing silent chromatin (Brand et al, 1987; Shore and Nasmyth, 1987; Shore et al, 1987; Buchman et al, 1988a; 

Buchman et al, 1988b). However, this reveals the importance of the chromosomal context in conveying specific 

functions to these factors. Interestingly, a recent study showed that replication stress arising from tight DNA-protein 

interactions  such as transcription factors binding  can favor gene silencing through the recruitment of Sir proteins 

(Dubarry et al, 2011). While Rap1 and Abf1 (and Orc1-Sir1) directly recruits the Sir complex through protein-protein 

interaction, additional mechanisms ensuring stable repression of the HM loci  thus the ability to mate  may involve 

the local increase of Sir protein concentration due to the genomic context and high order chromatin structure (see 

section - how is gene repression achieved in yeast silent chromatin?) 

1.7.2  SUBTELOMERIC SILENCING: TELOMERE POSITION EFFECT 

Yeast telomeres exert Sir-dependent transcriptional repression on genes located in their vicinity in a process called 

Telomere Position Effect (TPE) (Gottschling et al, 1990; Aparicio et al, 1991). TPE is similar to the Position Effect 

Variegation (PEV) observed at centromeric regions in flies (Raffel and Muller, 1940). Indeed, TPE has no DNA 

sequence specificity and reporter genes (such as URA3) can be transcriptionally silenced when inserted in a 

subtelomeric region (Gottschling et al, 1990). Importantly, gene silencing is inherited through cell division yet it 

appears to be bi-stable. A silent gene that stochastically escapes telomeric repression and becomes active, also sees is 

active state stably transmitted between cell generations (Gottschling et al, 1990). This epigenetic heritability of active 

and inactive states characterizes both TPE in yeast and PEV in flies (Raffel and Muller, 1940; Gottschling et al, 1990). 



Toward a molecular understanding of yeast silent chromatin PhD thesis 

 

16 Mariano Oppikofer 

   

Analogous to the situation at the HM loci, the Sir complex is recruited to subtelomeric regions by the Rap1 protein 

which binds to the TG1-3 repeats as well as to Sir4 and Sir3 (Conrad et al, 1990; Buck and Shore, 1995; Liu and Lustig, 

1996; Gasser and Cockell, 2001; Moretti and Shore, 2001). One molecule of Rap1 binds approximately ~20 bp of TG1-3 

repeats tract (Gilson et al, 1993), which varies in length from 250 to 630 bp at different telomeres (Shore and Nasmyth, 

1987; Buchman et al, 1988b; Longtine et al, 1989; Conrad et al, 1990; Klein et al, 1992). Temperature-sensitive 

mutants of Rap1 resulted in a telomere shortening phenotype (Conrad et al, 1990). Consistently, the Rap1 C-terminus 

(RCT domain, aa 695-827) binds to Rif1 and Rif2 which are negative regulators of telomeric length (Hardy et al, 

1992a; Hardy et al, 1992b; Wotton and Shore, 1997). Importantly, the same domain of Rap1 also interacts with Sir3 and 

Sir4 which are thought to compete with Rif1 and Rif2 for binding to Rap1 (Liu et al, 1994; Moretti et al, 1994; Buck 

and Shore, 1995; Feeser and Wolberger, 2008; Chen et al, 2011). Deletion of RIF1 and RIF2 has been proposed to 

favor subtelomeric silencing directly by increasing the Rap1-dependent recruitment of Sir proteins and concurrently by 

increasing TG1-3 repeats length which in turn would recruit more Rap1 and thus Sir proteins (Hardy et al, 1992b; Buck 

and Shore, 1995; Wotton and Shore, 1997). Importantly, increased recruitment of Sir4 at telomeres weakens silencing 

of the HM loci, supporting the model that the amount of Sir proteins in the nucleus is limiting for silencing (Buck and 

Shore, 1995; Maillet et al, 1996; Marcand et al, 1996; Cockell et al, 1998a). 

In addition to Rap1, silencing at telomeres, but not at the HM loci, also relies on the Yku70/Yku80 heterodimer. Indeed, 

mutations in the HDF1 and HDF2 genes (coding for Yku70 and Yku80 respectively) derepress telomeric silencing 

(Boulton and Jackson, 1998; Laroche et al, 1998; Mishra and Shore, 1999). Consistently, Yku70/Yku80 was shown to 

interact directly with Sir4 and to play an important role (together with Esc1; (Andrulis et al, 2002)) in positioning 

telomeres at the nuclear periphery (Hediger et al, 2002; Roy et al, 2004; Taddei et al, 2004). Additional evidence of the 

important role of Yku70/Yku80 to promote subtelomeric silencing reside in the observation that a 350 bp long TG1-3 

repeats tract is unable to nucleate silencing when inserted away from the end of the chromosome (Stavenhagen and 

Zakian, 1994) while as little as 80 bp of TG1-3 repeats  roughly recruiting only four Rap1 molecules  are enough to 

induce subtelomeric silencing (Gottschling et al, 1990). In addition to their role in subtelomeric silencing, it has been 

shown that Yku70/Yku80 also participate in the formation of silencing at the HM loci where their recruitment is 

dependent on Sir4 (Patterson and Fox, 2008; Vandre et al, 2008).  

The clustering of silent domains at the nuclear periphery increases the local concentration of Sir proteins thus 

facilitating the formation a repressed state (Maillet et al, 1996; Marcand et al, 1996; Andrulis et al, 1998; Taddei et al, 

2004; Taddei et al, 2009). Interestingly, a recent study indicates that, in conditions of Sir3 overexpression, clustering of 

telomeres is mostly mediated by Sir3 which, presumably by recruiting high concentrations of Sir proteins locally, 

supports silencing independently of the actual localization of the telomeric clusters at the nuclear periphery (Ruault et 

al, 2011). Sir3 overexpression may imitate the situation at the HMR locus where Sir recruitment is more efficient and 

transcriptional repression can be sustained without perinuclear anchoring (Gartenberg et al, 2004). Therefore, it appears 

that the determinant for gene silencing is the local concentration of Sir proteins which may be increased by strong 

silencers or clustering of weaker recruitment sites. In addition to the silencer-dependent recruitment of Sir proteins to 

specific genomic location, histone modifications are thought to play an important role in inhibiting the ectopic binding 

 and the consequent dilution  of the Sir proteins into euchromatic regions.  

1.8  HISTONE MODIFICATIONS REGULATE YEAST SILENT CHROMATIN 

The establishment of silent domains in budding yeast relies on the loading of the Sir complex onto unmodified 

nucleosomes. Based on its primary structure, the size of the holo Sir complex (Sir2-3-4; 326 kDa) exceeds the size of a 

nucleosome (205 kDa) by about 60%. This suggests that the Sir complex can have multiple interaction sites with the 

nucleosome spanning the DNA, the histone octamer surface as well as the histone tails. 

We still lack a complete picture of how the Sir complex binds to the nucleosome. However, a combination of genetic, 

biochemical and recent structural approaches have mapped some of the key Sir-nucleosome interaction sites, 

particularly in relation to Sir3 (and (Norris and Boeke, 2010; Armache et al, 2011; Ehrentraut et al, 2011) and 

references cited therein). Importantly, the interaction of Sir3 with the nucleosome needs to be fine-tuned as both too 

weak and too strong interactions can impair silent chromatin formation (see below). The Sir4 N-terminus (aa 1-344) has 

high affinity for naked DNA, plausibly favoring the interaction of the Sir complex with the nucleosomal linker DNA 

(Martino et al, 2009; Kueng et al, 2012). On the other hand, the Sir2 protein fails to interact appreciably with either 

DNA or nucleosomes (Martino et al, 2009).  

As described above, histone modifications play a major role in modulating gene expression. While high eukaryotes 

possess specific heterochromatic histone modifications (e.g. H3K9me3 and H4K27me3), yeast silent chromatin appears 

to be depleted of histone marks. Consistently, several histone marks have been found to exhibit “anti-silencing effects”, 

including the direct repulsion of the Sir proteins  and particularly Sir3  from the chromatin fiber thus limiting spread 

of Sir-mediated silencing. The following sections will review the mechanisms by which the modification of some key 

residues (Figure 3) is thought to regulate the formation of yeast silent domains. 
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Figure 3 - The position of H3K56, H3K79 and H4K16 is indicated on a representation of the nucleosome core 

particle (Davey et al, 2002). H3K56 (green) is located at the entry/exit point of the DNA wrapped around the histone 

octamer. H3K79 (red) is exposed on the lateral surface of the nucleosome, while H4K16 (blue) is located on the H4 N-

terminal tail.  

1.8.1  THE H4 N-TERMINAL TAIL: A DOCKING SITE REGULATED BY ACETYLATION 

Early evidence for the important role played by histone proteins in yeast silent chromatin formation, came from the 

observation that removal of the H4 N-terminal tail derepressed silencing at the HM loci, thus disrupting mating (Kayne 
et al, 1988). Importantly, this activation was specific for heterochromatic-like regions since regulation of other genes 

(e.g. PHO5 or GAL10) was unaltered (Kayne et al, 1988). In particular, a basic domain spanning from glycine 14 to 

arginine 19 was essential for mating. Mutagenesis studies revealed that substitution of lysine 16, arginine 17, histidine 

18 or arginine 19, to a neutral amino acid (glycine or alanine) derepressed HM (Johnson et al, 1990; Park and Szostak, 

1990) and telomeric silencing (Aparicio et al, 1991). Importantly, a search for suppressors of histone H4 tail mutants, 

revealed that mutations in the N-terminal BAH domain of Sir3 (W86R, sir3R1 and D205N, sir3R3; see below) could 

restore HM silencing (Johnson et al, 1990). This strongly suggested that Sir3 could contact the H4 N-terminal tail, and 

in particular this acidic patch (aa 16-19), during the assembly of silent chromatin. Indeed, pull-down experiments 

showed that in vitro translated Sir3 (and Sir4) binds to bacterially expressed histone H4 tails in vitro in a manner 

sensitive to mutations near lysine 16 (Hecht et al, 1995). While, the lysine 16 to glutamine substitution  mimicking the 

acetylated state  didn’t appreciably affect the interaction between Sir3 and the H4 tail peptides (Hecht et al, 1995) by 

pull-down, Surface Plasmon Resonance (SPR) experiments using a immobilized Sir3 C-terminal fragment (aa 503-970; 

expressed in bacteria) and synthetic histone H4 tails peptides revealed that acetylation of lysine 5, 8, 12, or 16 can 

decrease the interaction between Sir3 and the H4 tail in a cumulative manner (Carmen et al, 2002). A recent study using 

reconstituted chromatin in vitro, instead of isolated histone tail peptides, showed that Sir3 purified recombinantly from 

insect cells has less affinity for chromatin lacking the histone H4 N-terminal tails (Martino et al, 2009; Sinha et al, 

2009). Supporting a regulatory role for acetylation, it was recently found that the H4K16A substitution, or the NuA4-

dependent unspecific acetylation of the nucleosome (including at H4K16), reduced binding of Sir3 to a chromatin 

template in vitro (Johnson et al, 2009). Together, the H4 N-terminal tail is an important docking site for Sir3 and the 

acetylation of the H4 tail, particularly at the H4K16 residue, is likely to regulate Sir3 binding.  

1.8.2  ACETYLATION OF H4K16: IS ALL ABOUT REMOVING A POSITIVE CHARGE? 

Acetylation of H4K16 (H4K16ac) marks transcriptionally active chromatin in most species, peaking at the 

transcriptional start site and decreasing through the body of active genes (similar to H3K4me3), and is enriched at early 

firing origins in yeast and flies (Kimura et al, 2002; Suka et al, 2002; Bell et al, 2010). Consistent with the majority of 

the yeast genome being in an active state, H4K16ac is very abundant, with ~ 80% of histone H4 molecules bearing this 

mark (Clarke et al, 1993; Smith et al, 2003b; Millar et al, 2004). Interestingly, an intact H4 N-terminal tail, and in 

particular unmodified H4K16, promotes nucleosomal array folding in vitro (Dorigo et al, 2003; Shogren-Knaak et al, 

2006; Robinson et al, 2008) arguing that H4K16ac mark helps maintain chromatin in an “open” state accessible to 

regulatory and transcriptional machineries. 

In yeast, H4K16 is acetylated primarily by the nonessential histone acetyltransferase (HAT) Sas2 (Kimura et al, 2002; 

Suka et al, 2002) and secondarily by the essential HAT Esa1, which also targets H4K5, H4K8 and H4K12 (Suka et al, 

2001; Suka et al, 2002; Chang and Pillus, 2009). A recent, genome-wide study suggests that the H4K16ac mark is 

deposited by Sas2 independently of transcription and histone exchange (Heise et al, 2012). The SAS2 gene was 

identified independently in two different screens: one for enhancers of sir1 silencing defects (Something About 
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Silencing 2; (Reifsnyder et al, 1996)) and the other for suppressors of a silencing-deficient HMR-E, crippled by 

mutations in the Rap1 and Abf1 binding sites (Ehrenhofer-Murray et al, 1997). Thus, ever since its initial 

characterization, loss of Sas2 seemed both to disfavor (Reifsnyder et al, 1996) and to promote silencing (Ehrenhofer-

Murray et al, 1997), depending on the assay used. Several laboratories have explored the effect of sas2 deletion and 

H4K16 mutation in order to define the precise roles of SAS2 and the H4K16ac mark in gene silencing. However, the 

situation has not been straightforward. Deletion of SAS2 completely derepressed a reporter gene inserted at telomere 7L 

and was partially defective in mating (Reifsnyder et al, 1996). This agrees with the previous observation that even a 

conservative substitution of lysine 16 to arginine (H4K16R) impaired HML silencing (Johnson et al, 1990) and 

repression at the telomere 7L (Meijsing and Ehrenhofer-Murray, 2001). Importantly, this suggests that the conservation 

of a positive charge at this residue is not sufficient for efficient silencing. Consistently, an elegant study monitoring the 

onset of silencing with single-cell resolution showed that the establishment of silencing at HML was slower in the 

absence of Sas2 (Osborne et al, 2009). However, the same H4K16R mutation, which again phenocopied a SAS2 

deletion, promoted silencing of a reporter inserted at a crippled HMR, where Sir recruitment is favored (Ehrenhofer-

Murray et al, 1997). Nonetheless, the rate of Sir3 recruitment to HMR was slower in cells that lack Sas2 and, therefore, 

H4K16 acetylation (Katan-Khaykovich and Struhl, 2005). 

In summary, maintaining a positive charge at H4K16 by either a conservative substitution (H4K16R) or deletion of the 

SAS2 gene, exhibits phenotypes which are in apparent disagreement. Intriguingly, more often than not, blocking the 

deposition of the H4K16ac “active” mark seemed to disfavor the formation of silencing. At first glance, this is counter-

intuitive and seems to contradict in vitro data showing that Sir3 binds specifically to unacetylated H4 tails (Carmen et 
al, 2002; Johnson et al, 2009), which suggests that a lack of H4K16ac should promote silencing. However, two 

mutually non-exclusive models can explain this conundrum. 

1.8.2.1 H4K16 ACETYLATION PREVENTS THE DILUTION OF SILENCING FACTORS 

It was shown that deletion of SAS2, as well as the conservative H4K16R substitution, results in the spread of Sir 

proteins (Sir2, Sir3 and Sir4) away from subtelomeric regions leading to the inactivation of genes found in euchromatic 

domains (Kimura et al, 2002; Suka et al, 2002). Given that the steady state level of Sir proteins is limiting for the 

establishment of silencing (Buck and Shore, 1995; Maillet et al, 1996; Marcand et al, 1996; Cockell et al, 1998a), loss 

of H4K16ac would generate binding sites for Sir3 genome-wide diluting Sir proteins  in particular Sir3. Thus efficient 

silencing would be possible only in presence of strong recruitment sites, such as the HMR locus (Ehrenhofer-Murray et 

al, 1997). While this model is consistent with our current understanding of yeast silent chromatin, recent findings 

suggest that genetic loss of H4K16ac has an additional negative impact on silencing.  

1.8.2.2 THE TURNOVER OF THE H4K16AC MARK MAY FAVOR SILENCING DIRECTLY 

Using in vitro reconstituted chromatin immobilized on beads, it was shown that, unlike Sir3 alone, the loading of the 

holo Sir complex onto chromatin was not impaired by NuA4-dependent nucleosomal acetylation, including of H4K16 

(Johnson et al, 2009). This suggests that the role of H4K16ac may not be merely to prevent “dilution” of the Sir 

proteins into euchromatic regions. Strikingly, by means of chromatin immunoprecipitation (ChIP), it was shown that the 

Sir complex can spread efficiently in cells expressing the histone mutant H4K16R  mimicking the H4K16 

hypoacetylated state  yet silencing was impaired (Yang and Kirchmaier, 2006). In other words, Sir proteins were not 

completely dispersed in a H4K16R background, yet even when loaded onto chromatin depleted from the H4K16ac 

mark, silencing was compromised. Given that H4K16ac is a key substrate of Sir2 (Imai et al, 2000; Kimura et al, 2002; 

Suka et al, 2002; Borra et al, 2004), and that the catalytic activity of Sir2 is absolutely required for Sir-silencing in cells 

expressing wild-type histones (Tanny et al, 1999; Imai et al, 2000; Smith et al, 2000), it seems that the active Sir2-

mediated deacetylation of H4K16ac facilitates the establishment of silencing directly. As detailed in the next section 

(see - Sir2: from histone deacetylation to O-AADPR production), Sir2-dependent deacetylation uses a NAD moiety and 

is coupled to the production of O-acetyl-ADP-ribose (O-AADPR). Importantly, purified O-AADPR has been proposed 

to alter the stoichiometry and the conformation of reconstituted Sir2-3-4 particles bound to a synthetic histone H4 tail 

(Liou et al, 2005). Furthermore, it was shown that purified O-AADPR increases the binding affinity of the Sir complex 

(and Sir3 alone) for a nucleosomal array in vitro (Martino et al, 2009). Therefore, there is good evidence for an 

additional role of the H4K16ac other than merely repelling Sir proteins from most of the genome. The Sir2-dependent 

turnover of this “active” mark could convey an important silencing role to H4K16ac (see Chapter 2 - An active mark 

promotes silencing). 

1.8.3  METHYLATION OF H3K79 BY DOT1: AN INVARIANT BARRIER? 

The H4K16ac mark has been found to stimulate the methylation of lysine 79 on the histone H3 (H3K79me) by the 

methyltransferase Dot1, possibly by decreasing the affinity of Sir3 for the nucleosome (Altaf et al, 2007). Indeed, the 

H4 N-terminal tail is required for Dot1-dependent methylation of H3K79 in vitro and in vivo and acetylation of H4K16 

displaces Sir3 allowing Dot1 binding in vitro (Altaf et al, 2007; Fingerman et al, 2007). 

DOT1 was isolated in a screen for factors that impair telomeric silencing when overexpressed (Singer et al, 1998). It 

was shown that Dot1 specifically methylates H3K79 which lies on the surface of the nucleosome and does not contact 
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DNA or other histones (Luger et al, 1997; Feng et al, 2002; Ng et al, 2002; van Leeuwen et al, 2002). This shows that 

modulation of Sir-silencing is not restricted to modification of the histone tails. Dot1 and methylation of H3K79 is 

conserved from yeast to man (Feng et al, 2002; Ng et al, 2003) and is essential for mammalian development and cell 

proliferation (Jones et al, 2008; Kim et al, 2012). The X-ray crystal structure of human and yeast Dot1’s catalytic core 

revealed a very conserved / structure composed of a large seven-stranded -sheet characteristic of the class I SAM-

dependent methyltransferases which lack a SET domain (Min et al, 2003; Sawada et al, 2004). 

In yeast, loss of Dot1 completely abolishes H3K79 methylation in vivo, showing that Dot1 is the only HMT for this 

specific residue (Ng et al, 2002; van Leeuwen et al, 2002). Importantly, as shown in vitro, Dot1-dependent methylation 

of H3K79 occurs only when the histone H3 is assembled into chromatin (Ng et al, 2002; van Leeuwen et al, 2002). The 

observation that Dot1 only methylates the nucleosomal histone H3 likely has to do with the fact that Dot1 docks on the 

H4 N-terminal tail (Altaf et al, 2007). Combining ChIP and mass spectrometry it was shown that Dot1 has the ability of 

carry out mono-, di- and tri-methylation of H3K79 in vivo. Moreover, the transition to di- and tri-methylation requires 

H2BK123 ubiquitination, which is dispensable for mono-methylation (Sun and Allis, 2002; Shahbazian et al, 2005). It 

is not yet clear how H2BK123 ubiquitination (H2BK123Ub) increases the processivity of Dot1 (Frederiks et al, 2008) 

and three non-mutually exclusive models have been proposed. 1) Dot1 could interact directly with H2BK123Ub 

through a lysine-rich region within the Dot1 N-terminus (McGinty et al, 2008; Chatterjee et al, 2010; Oh et al, 2010). 

2) A bridging protein could bind both Dot1 and H2BK123Ub, candidates are the proteasomal ATPases Rpt4 and Rpt6 

(Ezhkova and Tansey, 2004) as well as Cps35, a component of the COMPASS complex (Lee et al, 2007). 3) 

Alternatively, ubiquitination of H2B has been shown to disrupt chromatin compaction in vitro (Fierz et al, 2011) and 

this may facilitate the accessibility of H3K79 to Dot1. 

Importantly, not only overexpression but also deletion of DOT1 compromised telomeric silencing and the non-

conservative substitution of H3K79 with alanine (H3K79A) completely derepressed silencing of reporter genes inserted 

at telomeres and the HM loci (Ng et al, 2002; van Leeuwen et al, 2002). Consistently, and to a greater extent than 

H4K16R, disruption of silencing in the H3K79A mutant correlated with a redistribution of Sir2, Sir3 and Sir4 away 

from the subtelomeric region (Ng et al, 2002; van Leeuwen et al, 2002). This strongly suggested a model in which the 

unmodified H3K79 residue makes important contacts with the Sir complex and that methylation of H3K79 in 

euchromatic regions disfavor Sir-chromatin interaction. This concentrates the Sir proteins into silent regions (Ng et al, 
2002; van Leeuwen et al, 2002; Verzijlbergen et al, 2009). Indeed, Sir3 binding and spreading of Sir-mediated silencing 

was shown to be hindered by methylation of H3K79 in vivo (Altaf et al, 2007; Onishi et al, 2007; van Welsem et al, 

2008) and in vitro (Altaf et al, 2007; Martino et al, 2009; Ehrentraut et al, 2011). Consistently, the recent crystal 

structure of the N-terminal BAH domain of Sir3 bound to the nucleosome shows that the H3K79 residue makes 

hydrogen bonding with the loop 3 of the BAH domain which would be displaced by progressive methylation (Armache 

et al, 2011) (see section - Sir3: selective nucleosome binding and spreading of silencing). 

As discussed earlier, there is some similarity in the mode of action of H3K79me and H4K16ac: both limit the spread of 

silent domain by disfavoring the binding of Sir3 to the nucleosome. Yet, while the H4K16ac mark can be removed by 

Sir2, no enzyme has been found so far that removes the H3K79me mark, and its removal may depend on sequential 

dilution through rounds of DNA replication (Katan-Khaykovich and Struhl, 2005; Osborne et al, 2009). However, to 

date, all other histone lysine residues subjected to methylation were shown to undergo enzymatic removal of the methyl 

mark (Klose et al, 2006; Klose and Zhang, 2007; Cloos et al, 2008; Liu et al, 2010; Qi et al, 2010). Is H3K79me the 

only exception? There is evidence suggesting that H3K79me may be reversible and regulated. For instance, H3K79me2 

has been shown to fluctuate during the cell cycle in both yeast and human cells (Feng et al, 2002; Schulze et al, 2009). 

With the exception of Lsd1, all histone demethylases discovered to date contain a “jumonji” domain and can be 

competitively inhibited by 2-hydroxyglutarate (2-HG) (Tsukada et al, 2006; Mosammaparast and Shi, 2010; Xu et al, 

2011). Intriguingly, when the level of 2-HG was artificially increased in cultured human cancer cells, global histone 

methylation was increased, including the H3K79me2 mark (~ 10-fold). This suggests that a not yet characterized 

jumonji-containing enzyme responsible for H3K79 demethylation was inhibited by 2-HG (Xu et al, 2011). While 

indirect effects cannot be excluded, these lines of evidence suggest that a demethylase for H3K79 may exist, at least in 

higher eukaryotes. Clearly, more work is required to understand the turnover of the H3K79me mark. 

1.8.4  ACETYLATION OF H3K56: SILENCING IS NOT JUST ABOUT LOADING OF SIRS 

A further histone modification that interferes with Sir-mediated repression is the acetylation of K56 on the histone H3 

(Xu et al, 2005; Xu et al, 2007; Yang et al, 2008b). In contrast to Dot1-dependent methylation of H3K79, acetylation of 

H3K56 is deposited by Rtt109 during S phase prior to the loading of the histones onto DNA, and therefore serves as a 

marker for newly assembled nucleosomes (Hyland et al, 2005; Masumoto et al, 2005; Han et al, 2007a; Li et al, 2008). 

H3K56 is acetylated while H3-H4 dimers are bound to the chaperone Asf1 (Han et al, 2007b; Tsubota et al, 2007) and 

after peaking in S phase, H3K56ac is removed by Hst3 and Hst4 during G2/M (Masumoto et al, 2005; Celic et al, 2006; 

Maas et al, 2006). Consistently, expression of Hst3 and Hst4 peaks precisely during the G2/M phase (Maas et al, 2006). 

In chromatin the H3K56 residue is located near the entry/exit point of DNA around the nucleosome, suggesting that it 

may play an important role in regulating nucleosomal architecture (Luger et al, 1997). Supporting this model, 
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nucleosomal arrays isolated from yeast cells expressing the acetylmimic H3K56Q mutation are more sensitive to 

micrococcal nuclease digestion, than are wild-type histones or the H3K56R mutant, which mimicks the deacetylated 

state (Masumoto et al, 2005). Accordingly, plasmids isolated from rtt109 mutants are more supercoiled compared to 

wild-type, suggesting that acetylation of H3K56 induces a less compacted chromatin organization (Driscoll et al, 2007). 

Using Fluorescence Resonance Energy Transfer (FRET) it was shown that the DNA can transiently and rapidly unwrap 

from the histone octamer surface  referred to as nucleosomal “breathing” (Li et al, 2005). Supporting a regulatory role 

for H3K56 in nucleosomal architecture, homogeneous acetylation of H3K56 increased nucleosomal “breathing” 

roughly 7-fold (Neumann et al, 2009). 

Genetic analysis of H3K56 mutants strongly implicated this residue in modulating yeast silent chromatin (Xu et al, 

2007; Yang et al, 2008b). While H3K56 residue seems to play a minor role at the HM loci (Xu et al, 2007; Yang et al, 

2008b), non-conservative substitutions of H3K56 with either glycine or glutamine (acetylmimic) dramatically impaired 

telomeric silencing of both reporter genes and native telomeres (Xu et al, 2007). In addition, the conservative 

substitution of H3K56 with arginine (deacetylmimic) also derepressed silencing yet to a lesser extent (Xu et al, 2007). 

The observation that a conservative substitution at H3K56 still impaired silencing supports the notion that this residue 

plays an important role in modulating nucleosomal architecture, likely due to its characteristic localization (Luger et al, 

1997). Importantly, mutation of H3K56 neither altered the acetylation state of other histone residues, including H4K16, 

nor did it induce histone loss (Xu et al, 2007). This indicates that the modification of H3K56 may regulate silencing 

directly. 

Intriguingly, while mutation of the H3K56 residue derepresses telomeric silencing, the binding of Sir2, Sir3 and Sir4 

was unchanged (Xu et al, 2007), suggesting that H3K56, unlike H4K16 and H3K79, is not a direct binding site for the 

Sir complex. Using an in vivo bacterial DAM methylase assay (Gottschling, 1992) it was shown that substitution of 

H3K56 with either glycine, glutamine or arginine increases telomeric DNA accessibility by ~ 6-fold, despite the 

continuous presence of the Sir complex. However, deletion of SIR2 had a more dramatic effect as DNA accessibility 

was increased roughly 12-fold (Xu et al, 2007), consistent with the notion that Sir2 is essential to reduce DNA 

accessibility by deacetylating other residues, notably H4K16. Together, in vitro analysis of nucleosomes bearing the 

H3K56ac mark (Neumann et al, 2009) or the acetylmimic H3K56Q mutation (Masumoto et al, 2005; Driscoll et al, 

2007) combined with in vivo accessibility assay (Xu et al, 2007) suggest that H3K56 plays an important role in 

regulating DNA accessibly beyond the loading of the Sir complex onto the chromatin fibre, implying that the removal 

of the H3K56ac mark is required for efficient silencing in vivo. 

1.8.4.1 IS THERE A SPECIFIC HDAC FOR H3K56AC WITHIN SILENT CHROMATIN? 

Using a tiling array, it was shown that acetylation of H3K56 is indeed strongly reduced at subtelomeric regions, while it 

is enriched in the coding region of actively transcribed genes (Xu et al, 2007). While it is accepted that Hst3 and Hst4 

deacetylate H3K56ac during cell cycle progression (Masumoto et al, 2005; Celic et al, 2006; Maas et al, 2006), the 

enzymatic machinery responsible for removing this mark specifically within silent chromatin may be either the 

Hst3/Hst4 pair (Yang et al, 2008b), the silencing protein Sir2 (Xu et al, 2007) or both. 

In favour of a role for Sir2 in the removal of the H3K56ac mark, Xu and colleagues showed that deletion of SIR2, but 

not of HST3/HST4, increases acetylation of H3K56 at telomere 6R and the HM loci 4-6 fold, as assessed by ChIP with 

an anti-H3K56ac antibody (Xu et al, 2007). However, the authors normalized the data to an internal locus: SPS2, 

located in the middle of chromosome 4. The amount of SPS2 DNA pulled-down using the anti-H3K56ac antibody is 

markedly increased in the hst3/hst4 mutant, since the hst3/hst4 mutant increases global H3K56 acetylation, including at 

the SPS2 locus (Masumoto et al, 2005; Celic et al, 2006; Maas et al, 2006). As a result the H3K56 acetylation levels at 

silent loci appeared artificially low in the hst3/hst4 mutant as the amount of SPS2 DNA used for normalization was 

specifically increased in the hst3/hst4, but not in the sir2 mutant background (Xu et al, 2007). 

Supporting a role for Hst3/Hst4 in the removal of the H3K56ac mark at silent regions, an early study showed that 

deletion of HST3/HST4 impairs silencing of a reporter gene inserted at the telomere 7L (Brachmann et al, 1995). In 

addition, again using ChIP, another study showed that H3K56ac levels at the natural YFR057W gene (telomere 6R) 

were strongly increased in the hst3/hst4 mutant and silencing at the YFR057W gene was lost (Yang et al, 2008b). 

Importantly, in agreement with the previous study (Xu et al, 2007), Sir2 was still present on chromatin and H4K16 was 

hypoacetylated (Yang et al, 2008b), suggesting that the H3K56ac mark impairs silencing without decreasing the affinity 

of Sir proteins for chromatin. Importantly, H3K56ac levels were not further increased by genetic removal of the Sir2 

catalytic activity (sri2-345) in a hst3/hst4 background. Moreover, overexpression of Sir2 did not reduce H3K56ac levels 

nor restore telomeric silencing (Yang et al, 2008b). On the other hand, expression of Hst3 from a low-copy plasmid  or 

deletion of rtt109, the HAT responsible for depositing the H3K56ac mark  reduced H3K56ac levels and restored 

silencing of the YFR057W gene (Yang et al, 2008b). This suggests that Sir2 is unable to deacetylate H3K56ac in vivo 

and that the role of Hst3/Hst4 is not limited to cell cycle regulation of H3K56ac level, but also extends to silent regions. 

In vivo, overexpression of Hst3/Hst4 but not Sir2, reduces H3K56ac levels at telomeres, HM loci and genome-wide. On 

the other hand, using recombinant Sir2 expressed in bacteria and synthetic histone peptides acetylated on H3K56 or 

native histones extracted from yeast, Sir2 efficiently deacetylated the H3K56ac residue in vitro (Xu et al, 2007). While 
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the experiments where well-controlled, the material used presents several caveats. First, Sir2 expressed in bacteria may 

lack post-translational modifications key for specificity of the deacetylation reaction. Second, and more importantly, the 

specific location of H3K56 at the entry/exit point of the DNA around the histone octamer may greatly affect its 

accessibility. It is unlikely that histone peptides or extracted histones accurately reflect the situation where H3K56ac is 

embedded into chromatin. Whether Sir2 is able to remove the H3K56ac mark from a nucleosomal template in vitro was 

not tested heretofore. The data presented in Chapter 2 reveal that Sir2, in complex with Sir3 and Sir4, is unable to 

remove the H3K56ac mark from a nucleosomal array although it efficiently deacetylates H4K16ac in vitro (see Chapter 

2 - An active mark promotes silencing). 

1.9  SIR-MEDIATED SILENCING: A COMPLEX  STORY WITH THREE PROTAGONISTS 

The establishment and maintenance of yeast silent chromatin requires Sir2, Sir3 and Sir4 at telomeres, while Sir1 is 

crucial for recruitment at the HM loci (Rine and Herskowitz, 1987; Gottschling et al, 1990). Genetic experiments 

showed that the correct dosage of Sir2, Sir3 and Sir4 is crucial for silent chromatin formation. For instance, 

overexpression of a Sir4 C-terminal fragment derepressed HML silencing unless Sir3 was overexpressed simultaneously 

(Marshall et al, 1987; Maillet et al, 1996). In addition, overexpression of Sir4 C-terminus delocalized Sir3 (and Rap1) 

and derepressed telomeric silencing (Cockell et al, 1995). Similarly, overexpression of either Sir4 full-length or a Sir4 

C-terminal fragment strongly derepressed telomeric silencing and clustering, yet both phenotypes could be suppressed 

by co-overexpression of Sir3 (Cockell et al, 1998a). Moreover, overexpression of a C-terminal fragment of Sir3 (aa 

568-978) alone  but not a N-terminal portion (aa 1-503)  impaired silencing at telomeres (Gotta et al, 1998). In 

addition, overexpression of Sir4 reduced Sir2 levels in the nucleolus thus impairing silencing of a reporter gene inserted 

at the rDNA locus (Smith et al, 1998). Together, the genetic interdependency between Sir proteins for proper 

functioning strongly suggested both that Sir4 interacts with Sir2 and Sir3 and that stoichiometric assembly of a Sir2-3-4 

complex is required for proper silencing.  

Consistently, yeast-two-hybrid showed that Sir3 and Sir4 interact (Moretti et al, 1994) and co-immunoprecipitation and 

co-purification confirmed that Sir4 interacts with both Sir3 and Sir2 (Cockell et al, 1995; Hecht et al, 1996; Moazed 

and Johnson, 1996; Strahl-Bolsinger et al, 1997). Importantly, pull-down experiments using purified substrates revealed 

that Sir4-Sir3 interaction occur in the absence of Sir2 and that Sir4-Sir2 interaction occurs in the absence of Sir3 

(Strahl-Bolsinger et al, 1997). Co-immunoprecipitation experiments showed that Sir3 and Sir2 do not interact (Moazed 

et al, 1997). Together, this argues that Sir4 functions as a scaffold for the assembly of the Sir2-3-4, or Sir complex. 

 

Figure 4 - The Sir proteins Schematic representation of the Sir proteins and their modular organization. Important 

interaction sites and other features are highlighted. The numbering refers to the primary sequence of the proteins. 

Details on Sir interactions and appropriate references can be found in the manuscript. The structure and function of Sir3 

wH, highlighted in green has been revealed in the Chapter 3 of this PhD thesis. 

Although we lack a comprehensive structural characterization of the holo Sir complex, several contacts between Sir4 

and Sir3 or Sir2 can be recapitulated in vitro using purified proteins or domains (see Figure 4). An N-terminal fragment 

of Sir4 (aa 142-590) interacts with a large Sir3 C-terminus (aa 623-978) and with full length Sir2 (Strahl-Bolsinger et 

al, 1997). On the other hand, the Sir4 C-terminus (aa 1144-1358) interacts with a large Sir3 N-terminal fragment (aa 1-

762) (Strahl-Bolsinger et al, 1997). The region of Sir3 that interacts with Sir4 was further narrowed down to aa 464-728 

(King et al, 2006) and successive truncation showed that aa 495-521 in Sir3 are essential to interact with the Sir4 C-

terminus (Chang et al, 2003). Based on a recent  yet unpublished  crystal structure, the tight interaction between Sir2 

and Sir4 relies on the so-called Sir2 Interaction Domain (SID, aa 737-893) of Sir4 which interacts primarily with a Sir2 
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N-terminal domain (aa 101-236) and secondarily with a Sir2 C-terminal fragment (aa 237-555) involving mostly 

hydrophobic interactions (Rolf Sternglanz and Rui-Ming Xu, unpublished). 

Initial attempts to purify the Sir complex from yeast yielded only a Sir2-4 heterodimer with estimated molecular 

weights ranging from 0.7 to 1 MDa leaving open the issue of stoichiometry (Ghidelli et al, 2001; Hoppe et al, 2002; 

Tanny et al, 2004). Moreover, some of these preparations contained contaminant activities as histone deacetylation 

could be performed in the absence of NAD, an obligate Sir2 co-factor (Ghidelli et al, 2001). A stoichiometric assembly 

of the Sir2, Sir3 and Sir4 proteins was observed by co-purification from insect cells where the Sir proteins came 

together in a 1:1:1 Sir2-3-4 complex (Cubizolles et al, 2006). Such a Sir complex maintained a stoichiometric assembly 

when loaded onto chromatin arrays in vitro (Martino et al, 2009). Alternatively, a 1:1:1 Sir2-3-4 complex could also be 

reconstituted by mixing Sir2-4 and Sir3 purified independently from overexpression in yeast (Liou et al, 2005). 

However, when this Sir complex was incubated with synthetic tetra-acetylated histone H4 tails and NAD, the Sir3 to 

Sir2 ration increased of approximately 2.5 fold and that of Sir3 to Sir4 of roughly 4.5 fold (Liou et al, 2005). This 

suggests that the architecture of the Sir complex may vary following the Sir2-dependent deacetylation of nucleosomes 

during the formation of silent chromatin. Further experiments are needed to confirm or disprove this hypothesis. 

While the assembly of the Sir2, Sir3 and Sir4 proteins into the Sir complex is important to repress gene expression, 

Sir2, Sir3 and Sir4 each plays a very different but complementary role as described below. The NAD-dependent 

deacetylase activity of Sir2, is required for silencing and it may do more than generate hypoacetylated nucleosomes. 

Sir3 is the key player in binding the nucleosome and, by “sensing” the modification state of histones, restricts the 

loading of the Sir complex to regions to be silenced. In addition, Sir3 may play a major role in promoting the spread of 

silent domains. Finally, Sir4 plays a crucial scaffolding role, bridging between Sir2 and Sir3 as well as localizing Sir-

repression on the chromatin fiber and at the nuclear periphery. 

1.9.1  SIR2: FROM HISTONE DEACETYLATION TO O-AADPR PRODUCTION 

The only Sir protein with a catalytic activity is Sir2, a class III NAD-dependent histone deacetylase. Sir2 is the founding 

member of the Sirtuin family conserved from yeast to man whose members are known to deacetylate a wide variety of 

histone and non-histone substrates ((Imai et al, 2000; Smith et al, 2000) and reviewed in (Greiss and Gartner, 2009)). 

Although Sirtuins are involved in various cellular processes, there is at least one Sirtuin involved in gene silencing in 

most organisms. Interestingly, the role of Sirtuins in controlling gene expression is very old, since even in Archaea a 

Sir2 homolog is reported to regulate silencing through deacetylation of the major archaeal chromatin protein Alba (Bell 
et al, 2002). 

In yeast, there are five Sirtuins: Sir2, Hst1, Hst2, Hst3 and Hst4. Hst1 is the paralog of Sir2 and these two proteins arose 

from the genome duplication event that generated S. cerevisiae (Hickman and Rusche, 2007). Sir2 and Hst1 repress a 

different subset of genes and their common ancestor K. lactis Sir2 fulfils both functions indicating that they specialized 

following duplication (Hickman and Rusche, 2009). Hst1 has a promoter-specific repression function and works in 

complex with Sum1 and Rfm1 (Xie et al, 1999; Sutton et al, 2001; McCord et al, 2003). On the other hand, Sir2 

specialized in non-specific promoter silencing and repression of rDNA recombination, as part of the SIR or the RENT 

complex, respectively. The catalytic core of Sir2 and Hst1 are highly conserved and can be interchanged, yet the 

specific silencing functions of Sir2 and Hst1 require protein interfaces that mediate binding to Sir4 (aa 101-236 of Sir2) 

or Rfm1 (aa 266-325 of Hst1), respectively (Mead et al, 2007; Froyd and Rusche, 2011; Hickman et al, 2011). Specific 

interactions for Sir2 and Hst1 were likely achieved through the acquisition of divergent N-terminal domains and 

mutation of two residues in the catalytic core (yet not directly involved in catalysis; N378 and L379 in Sir2 (Mead et al, 

2007). Consistently, when the N-terminal region of Hst1 was swapped with the N-terminus of Sir2, the Hst1::Sir212-155 

chimera was able to interact with Sir4 and silence the HM loci and telomeres in a sir2∆ strain (Mead et al, 2007). In 

addition, swapping only two Sir2 residues with the Hst1 counterparts (N378Q and L379I) generated a Sir2 mutant 

which efficiently associates with Rfm1 and can suppress Hst1 promoter-specific target genes in a hst1∆ strain (Mead et 

al, 2007). Less clear is the evolutionary origin of the interactions found in the rDNA-localized RENT complex 

(containing Sir2, Cdc14, Net1 (Shou et al, 1999; Straight et al, 1999; Ghidelli et al, 2001; Tanny et al, 2004)). In 

addition, Sir2 has been suggested to self-associate in a homotrimeric complex specifically at the rDNA (Cubizolles et 

al, 2006), a feature not yet reported for Hst1. 

1.9.1.1 GENETIC AND STRUCTURAL DISSECTION OF SIR2 FUNCTIONS 

Sir2 has been subjected to extensive mutagenesis which revealed functionally important domains and residues, notably 

mapping to the catalytic core region (Cockell et al, 2000; Cuperus et al, 2000; Armstrong et al, 2002; Garcia and Pillus, 

2002; Cubizolles et al, 2006; Matecic et al, 2006; Hickman and Rusche, 2007; Wang et al, 2008a). Indeed, the single 

amino acid substitution N345A, maps to the nucleotide binding motif (Rossman fold) and disrupts Sir2 enzymatic 

activity in vitro and in vivo (Imai et al, 2000; Armstrong et al, 2002). Similarly, the substitution of a conserved histidine 

within the catalytic core with tyrosine abrogates the enzymatic activity of yeast Sir2 (H364Y in ScSir2) (Tanny et al, 

1999) and its human counterpart (Frye, 1999). In agreement with the dual role of Sir2 acting either within the SIR or the 

RENT complex, several laboratories have identified Sir2 domains or point mutations that specifically affect silencing at 
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telomeres and HM loci or the rDNA locus (Cockell et al, 2000; Cuperus et al, 2000; Cubizolles et al, 2006). For 

instance, the P394L mutation within the Sir2 core, selectively disrupts rDNA repression and impairs Sir2 

homotrimerization (Cubizolles et al, 2006). Depending on its binding partners, Sir2 is either localized in telomeric foci 

at the nuclear periphery, co-localizing with Sir3, Sir4 and Rap1, or it is found in the nucleolus with Cdc14 and Net1, 

associated with tandem rDNA repeats from which Sir3 and Sir4 are normally excluded (Gotta et al, 1997; Kennedy et 

al, 1997). The balance between the two Sir2 populations has to be tightly regulated, since Sir2 levels in the nucleolus 

can be reduced by high Sir4 concentrations, impairing rDNA silencing dramatically (Smith et al, 1998). 

Many mutations identified within the catalytic core (aa 237-562) can nicely be mapped to the active site in the crystal 

structure ((Imai et al, 2000; Armstrong et al, 2002) and Rolf Sternglanz and Rui-Ming Xu, unpublished). Structurally, 

Sir2 is highly similar to its yeast paralog Hst2 or other homologs found in various species, including man (i.e. SIRT1) 

(Finnin et al, 2001; Min et al, 2001; Zhao et al, 2003). Sir2 is composed of a catalytic domain (aa 237-555) highly 

conserved from Archaea to man (Sauve et al, 2006; Sanders et al, 2010), and a N-terminal domain (aa 99-236) arranged 

in a horseshoe shape (Rolf Sternglanz and Rui-Ming Xu, unpublished). The interface between this two domains is 

limited (622 Å) suggesting a relative dynamic positioning. However, interaction with the Sir4 SID (aa 737-893), which 

becomes buried between the two Sir2 domains, is proposed to stabilize the orientation of the catalytic domain and the 

N-terminal module of Sir2, enhancing Sir2 catalytic activity (Rolf Sternglanz and Rui-Ming Xu, unpublished). This is 

in agreement with earlier reports showing that that Sir4 binding increases the activity of Sir2 in vitro (Tanny et al, 1999; 

Cubizolles et al, 2006). 

1.9.1.2 BEYOND HYPOACETYLATED HISTONES: A ROLE FOR O-AADPR? 

The catalytic activity of Sir2 is essential for Sir proteins spreading and the establishment of silencing (Tanny et al, 

1999; Yang et al, 2008a). While an early study reported that Sir2 overexpression correlates with global histone 

hypoacetylation (Braunstein et al, 1993), the crucial substrate of Sir2 is acetylated lysine 16 on the tail of the histone H4 

(H4K16ac) (Imai et al, 2000; Borra et al, 2004; Millar et al, 2004). As introduced above, H4K16ac is mainly deposited 

by the nonessential histone acetyltransferase Sas2 (Kimura et al, 2002; Suka et al, 2002). Sir2 has been reported to 

deacetylate other substrates, however their relevance is either unclear or debated (H3K79ac (Bheda et al, 2012), Pck1-

K514ac (Lin et al, 2009), H3K56ac (Xu et al, 2007)). Like other Sirtuins, the NAD-dependent Sir2 deacetylation reaction 

is coupled to the production of nicotinamide (NAM), which inhibits Sir2 activity in vivo and in vitro (Bitterman et al, 

2002; Sauve et al, 2005), and O-acetyl-ADP-ribose (O-AADPR; (Tanner et al, 2000; Tanny and Moazed, 2001) and 

reviewed in (Tong and Denu, 2010)). The generation of NAM and O-AADPR makes this class of enzymes interesting 

for several reasons: the NAD dependency makes the catalytic activity reliant on cellular NAD concentration, a measure 

of nutrient availability. Even though Hst1 seems to be more sensitive to NAM/NAD concentrations (Li et al, 2010), 

NDT1 and PCN1, two enzymes regulating cellular NAM or NAD concentrations, impact silencing especially at the 

rDNA (Bitterman et al, 2002; Gallo et al, 2004; McClure et al, 2008). On the other hand, O-AADPR has been 

hypothesized to function as a second messenger molecule since several proteins contain potential binding sites for this 

metabolite (Gasser and Cockell, 2001; Tong and Denu, 2010). The observation that microinjecting purified O-AADPR 

into starfish oocytes leads to a delay in maturation, led to the speculation that O-AADPR may have a physiological 

activity and thus needs to be regulated (Borra et al, 2002). Consistently, several enzymes have been shown to further 

metabolize O-AADPR at least in vitro, like the budding yeast NUDIX family member Ysa1, which hydrolyses O-

AADPR into O-acetylribose-5-phosphate and AMP ((Rafty et al, 2002) and reviewed in (Tong and Denu, 2010)).  

In yeast, O-AADPR has been suggested to alter the architecture of the SIR complex and promote loading of the Sir 

complex and Sir3 to chromatin (Gasser and Cockell, 2001; Liou et al, 2005; Martino et al, 2009). However, direct 

binding of O-AADPR was so far only detected for Sir2 (Tung et al, 2012) while the AAA domain of Sir3 has lost its 

ability to bind nucleotides (see below and (Ehrentraut et al, 2011)). Alternatively, the acetyl group of O-AADPR could 

be transferred to an unknown substrate (Rafty et al, 2002) and promote silencing indirectly. While Sir2 activity is 

required for silencing in normal conditions (Tanny et al, 1999; Imai et al, 2000; Yang and Kirchmaier, 2006; Yu et al, 

2006), the presence of O-AADPR is not absolutely essential. Silencing can be accomplished, yet not at wild-type levels, 

in a strain depleted of all five Sirtuins  thus presumably O-AADPR  if Sir3 is fused to the NAD-independent histone 

deacetylase Hos3 (Chou et al, 2008). Silencing can also be restored to a partial level if H4K16 is substituted with 

arginine (H4K16R, mimicking the deacetylated state). However, silencing in these conditions requires the 

overexpression of Sir3 (Yang and Kirchmaier, 2006), which per se has the ability to extend silent domains (Renauld et 

al, 1993). Importantly, the Sir complex can associate with chromatin in a H4K16R background, yet silencing is only 

partial (Yang and Kirchmaier, 2006). This again suggests that the simple association of the Sir complex with chromatin 

does not convey maximal repression which may require H4K16ac turnover and production of O-AADPR. Consistently, 

O-AADPR is not required for a basal level of chromatin compaction, linker DNA protection from enzymatic attack and 

decreased transcription in vitro (Johnson et al, 2009; Martino et al, 2009). Nevertheless, Sir-chromatin interaction and 

protection of the linker DNA can be reinforced by O-AADPR directly in vitro (Johnson et al, 2009; Martino et al, 

2009). The same can be achieved by the enzymatic activity of Sir2 (Oppikofer et al, 2011), suggesting that production 

of O-AADPR enhances silencing in vivo (see Chapter 2 - An active mark promotes silencing). 
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1.9.2  SIR4: SCAFFOLDING, NUCLEATION AND ANCHORING 

Sir4 is one of the fastest evolving proteins in the budding yeast genome and is not conserved except in closely related 

Saccharomycetales (Zill et al, 2010). The C-terminal half (aa 747-1358) is essential for silencing and mediates most 

interactions, especially the coiled-coil domain at its extreme C-terminus (aa 1262-1358). The extreme Sir4 N-terminus 

(aa 1-270) binds DNA and is thought to help recruiting Sir4 to silent regions (Martino et al, 2009; Kueng et al, 2012). 

The central domain of Sir4 (aa 300-730) appears to be unique to ScSir4. This domain does not contain mapped 

mutations or known functions, yet it is necessary for silencing at telomeres, suggesting a structural role (Kueng et al, 

2012). 

1.9.2.1 THE SIR4 N-TERMINUS: RECRUITING AND REGULATING SILENCING 

The Sir4 N-terminus (Sir4N; aa 1-270) is dispensable for Sir-mediated repression of the HM loci in normal conditions. 

However, Sir4N is required for efficient repression of a crippled HMR locus where either Orc1 or Abf1 binding sites 

have been deleted (Kueng et al, 2012). While Sir4N is not required for the assembly or the enzymatic activity of the 

holo Sir complex (Kueng et al, 2012), Sir complexes lacking the Sir4N domain bind nucleosomal arrays and protect 

linker DNA from nucleolytic digestion less effectively than wild-type Sir complexes in vitro. Consistently, Sir4N was 

shown to readily bind to DNA in vitro (Martino et al, 2009), plausibly through the many basic residues found in this 

region (Martino et al, 2009; Kueng et al, 2012). Together with the observation that the Sir4N is required for efficient 

repression if Sir-recruitment is impaired (Kueng et al, 2012), this suggests that the Sir4N enhances or stabilizes the 

loading of Sir complexes onto chromatin in vivo through its interaction with DNA. Additionally, Sir4N interacts with 

Yku80 and Sir1 (Triolo and Sternglanz, 1996; Roy et al, 2004) suggesting a Sir-recruiting role for this domain in silent 

regions. In addition Sir4N also interacts with Sif2, a component of the transcriptional activator Set3C complex (Wang et 

al, 2002), but the functional relevance of this interaction is unclear (Cockell et al, 1998b). 

Together with the uncharacterized central part (aa 271-746), the N-terminal half of Sir4 has been suggested to function 

as a regulatory domain (Zill et al, 2010). Indeed, this region of Sir4 becomes heavily phosphorylated during mitosis, 

when silencing is released (Laroche et al, 2000; Smith et al, 2003a; Kueng et al, 2012). Phosphorylation of Sir4N may 

decrease its affinity for DNA, as suggested by acetylmimic substitutions at serine 63 and 84 (Kueng et al, 2012), thus 

decreasing the affinity of Sir4 and the Sir complex to chromatin. 

1.9.2.2 MANY INTERACTIONS WITHIN THE SIR4 C-TERMINUS: ANCHORING AND BEYOND 

The C-terminal half of Sir4 (aa 747-1358) is sufficient for silencing at HM loci but not at telomeres, consistent with the 

recruiting function of Sir4N which becomes more important at telomeres where recruitment is less redundant (Kueng et 

al, 2012). At the beginning of this half resides the Sir2 Interaction Domain (SID; aa 737-893), which binds the catalytic 

domain and the N-terminus of Sir2, enhancing its catalytic activity ((Tanny et al, 1999; Cubizolles et al, 2006) and 

(Rolf Sternglanz and Rui-Ming Xu, unpublished). Between the SID and the C-terminal coiled-coil domain is the 

Partitioning and Anchoring Domain (PAD; aa 950-1262), which is sufficient to tether a chromatin locus to the nuclear 

periphery through its interaction with Enhancer of Silent Chromatin 1 (Esc1; the interacting region in Esc1 is aa 1395-

1551; (Andrulis et al, 2002; Taddei et al, 2004)). However, the peripheral localization of Sir proteins – and therewith 

telomeres and the HM loci  is mediated by both Esc1 and Yku interactions with Sir4 (Hediger et al, 2002; Taddei et al, 
2004). 

The C-terminal half of Sir4 also interacts with Yku80 and Ubp10/Dot4 (Kahana and Gottschling, 1999; Taddei et al, 

2004). Ubp10 de-ubiquitinates H2BK123 leading to a more compacted chromatin structure (Fierz et al, 2011) and 

reduced levels of H3K4 and H3K79 methylation (Foster and Downs, 2009). Thus, Ubp10 counteracts the deposition of 

active chromatin marks, favoring the establishment of silencing (Emre et al, 2005; Gardner et al, 2005). 

The Sir4 C-terminal coiled-coil domain (aa 1262-1358) mediates Sir4 homodimerization by forming a parallel coiled-

coil structure as revealed by X-ray crystallography (Chang et al, 2003; Murphy et al, 2003). Disruption of this 

dimerization interface leads to a loss of silencing (Murphy et al, 2003). However, this domain also interacts with Sir3, 

which binds to the surface of the Sir4 coiled-coil region (Chang et al, 2003), and the mutations introduced by Murphy 

and colleagues also disrupt the Sir4-Sir3 interaction (Stephanie Kueng and Susan Gasser, unpublished). Therefore, it is 

still unclear whether Sir4 coiled-coil homodimerization is required for silencing per se. The Sir4 coiled-coil module 

also interacts with Rap1 and Yku70, playing an important role in recruitment of Sir4 to telomeres and silencers (Moretti 

et al, 1994; Tsukamoto et al, 1997; Mishra and Shore, 1999). While Sir3 can bind a mutant of Sir4 with impaired 

dimerization function (Stephanie Kueng and Susan Gasser, unpublished), it is unclear whether mutations that disrupt 

Sir4 coiled-coil dimerization also disrupt its interaction with Yku70 and Rap1. 

In summary, the C-terminal half of Sir4 forms a scaffold for silent chromatin by mediating 1) interactions with both 

Sir2 and Sir3 leading to the formation of the holo Sir complex, 2) Sir recruitment to silent sites through Rap1 and Yku, 

and 3) nuclear anchoring through Esc1 and Yku70/80, all of which are crucial for silencing. 
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1.9.2.3 SIR4 INTERACTION WITH CHROMATIN 

Sir4 binds DNA with no sequence specificity (Martino et al, 2009). Pull-down experiments showed that in vitro 

translated Sir4 also binds to histone H4 tails (expressed in bacteria) in a manner sensitive to mutations within the basic 

patch (aa 16-22) (Hecht et al, 1995). However, in vivo, Sir4 is most likely to be found in complex with Sir2 as a 

stoichiometric Sir2-4 complex could be purified by overexpressing a TAP-tagged Sir4 in yeast (Hoppe et al, 2002; Liou 

et al, 2005). Consistently, Sir4 alone seems to be unstable in vitro, but could be readily co-purified with stoichiometric 

amounts of Sir2 after co-infection of insect cells (Martino et al, 2009). The binding affinity of Sir2-4 to an array of 

reconstituted nucleosomes was not appreciably affected by deletion of the H4 tails which may be due to the high 

affinity of Sir4 for DNA (Martino et al, 2009). In contrast, loading of the holo Sir complex to reconstituted nucleosomal 

arrays lacking the H4 N-terminal tail was mildly but reproducibly decreased (Martino et al, 2009). Specific recognition 

of the H4 tail is likely to be mediated by Sir3 as deletion of the H4 tail decreased the binding affinity of Sir3 to 

nucleosomal arrays and mononucleosomes in vitro (Martino et al, 2009; Sinha et al, 2009). Consistently, acetylation of 

a nucleosomal array in vitro including the key residue H4K16 (Millar et al, 2004), by means of a NuA4 subcomplex, 

impaired Sir3-chromatin interactions yet it did not decrease Sir2-4 or Sir2-3-4 loading onto chromatin (Johnson et al, 

2009). This result was surprising as acetylation of H4K16 was thought to inhibit the spread of Sir-mediated silencing 

(Kimura et al, 2002; Suka et al, 2002; Millar et al, 2004) and the functional implication of this interaction needed to be 

tested further (see above and Chapter 2 - An active mark promotes silencing). 

1.9.2.4 NUCLEATION OF SILENCING: SIR4 IS KEY BUT “UNITED WE STAND, DIVIDED WE 

FALL” 

Sir4 is the only protein within the Sir complex detected at silencers and telomeric TG1-3 repeats in the absence of the 

other Sir proteins (Hoppe et al, 2002; Luo et al, 2002; Rusche et al, 2002). Immunoblotting analysis of a whole cell 

lysate revealed that the level of the Sir4 protein is mildly reduced if SIR3 or SIR2 are deleted (Rusche et al, 2002). This 

may result from the instability of the Sir4 protein when a Sir2-4 heterodimer or the holo Sir complex cannot be formed 

(Martino et al, 2009). Consistently, in a sir3∆ or sir2∆ background, the recruitment of Sir4 at silencers drops by about 

50% (Hoppe et al, 2002; Luo et al, 2002). Importantly, the recruitment of Sir4 at silencers is also reduced to roughly 

50% in a strain carrying a catalytic dead Sir2 (H346Y) which still supports the formation of the holo Sir2-3-4 complex 

(Luo et al, 2002). In addition, Sir3 is also thought to participate to nucleation of silencing through its interaction with 

Rap1 and Abf1 (Gasser and Cockell, 2001; Moretti and Shore, 2001). This suggests that Sir4 plays an important 

scaffolding role in assembling the Sir complex at silencers, yet a functional and holo Sir complex is required for 

efficient nucleation. 

1.9.3  SIR3: SELECTIVE NUCLEOSOME BINDING AND SPREADING OF SILENCING 

Sir3 is a paralog of Orc1 that arose through the whole genome duplication that created S. cerevisiae approximately 100 

million years ago (Kellis et al, 2004; Hickman et al, 2011). It shares the same architecture as Orc1 having an N-terminal 

Bromo-Adjacent Homology domain (BAH; aa 1-214 (Connelly et al, 2006)), a central AAA+ ATPase-like domain 

(AAA; aa 532-834 (Ehrentraut et al, 2011)) and a predicted C-terminal winged helix-turn-helix domain (wH; aa 840-

978; see Figure 4). Interestingly, a chimeric protein containing the Orc1 BAH domain and the C-terminus of Sir3 can 

restore HM silencing in a sir3∆ background, indicating a high degree of functional conservation between these two 

paralogs (Bell et al, 1995). Inversely, swapping the N-terminal part of Orc1 with the Sir3 counterpart generates a 

protein functional in replication, but not silencing (Bell et al, 1995; Stone et al, 2000). Consistently, the C-terminus of 

Sir3 interacts with proteins important for silencing such as Sir4 and Rap1 (see below). 

1.9.3.1 THE BAH DOMAIN FAVORS BINDING TO UNMODIFIED NUCLEOSOMES 

The main function of the BAH domain is to interact specifically with non-modified nucleosomes. Johnson and 

colleagues hypothesized that the Sir3 BAH contacts chromatin when they identified suppressor mutations within the 

Sir3 BAH that could restore silencing in strains carrying point mutations in the basic domain of the H4 N-terminal tail 

(Johnson et al, 1990). One of the mutations they identified, D205N (sir3R3), was later found to strongly increase the 

affinity of the BAH domain for nucleosomes in vitro and to rescue telomeric silencing in a rap1-22 (H810Y) silencing 

deficient strain (Liu and Lustig, 1996). The D205N mutation also made possible the co-crystallization of the BAH 

domain with a mononucleosome (Armache et al, 2011). This recent structure nicely confirmed several features of the 

interaction surface between the BAH domain and the nucleosome previously mapped using mutagenesis (Buchberger et 

al, 2008; Sampath et al, 2009), especially the mutations in the so called LRS region (Loss of rDNA Silencing) around 

H3K79 on the nucleosomal surface (Park et al, 2002; Thompson et al, 2003). Importantly, the interaction of the BAH 

domain with the nucleosome is specific for non-modified histones, and two modifications that are inhibitory to silent 

chromatin formation in vivo  H4K16ac and H3K79me  have been shown to strongly decrease the binding affinity of 

both, full length Sir3 and the BAH domain for chromatin (Altaf et al, 2007; Onishi et al, 2007; Johnson et al, 2009; 

Martino et al, 2009; Armache et al, 2011; Oppikofer et al, 2011). The crystal structure provided molecular details on 

how methylation of H3K79 decreases the BAH-nucleosomes association: progressive methylation reduces the hydrogen 

bonding between K79 and the loop 3 of the BAH domain as well as increasing the hydrophobicity of this region, 
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thereby reducing affinity of the BAH domain for H3K79me nucleosomes (Armache et al, 2011). Similarly, the H4K16 ε-

amino group interacts with polar or negatively charged side chains of the BAH domain (D60, Y69, E95, and S67) and 

acetylation of H4K16 could disrupt most of the electrostatic contacts in this negatively charged binding pocket of the 

Sir3 BAH (Armache et al, 2011). 

The N-terminal acetylation of Sir3-BAH by NatA (a dimer of ARD1 and NAT1) is essential for silencing (Aparicio et al, 

1991; Park and Szostak, 1992), which explains why adding an N-terminal tag to Sir3 disrupts its function (Wang et al, 
2004; Onishi et al, 2007). Sir3 N-terminal acetylation is likely to enhance chromatin affinity, as defects in HMR 

silencing in a non-acetylatable Sir3 mutant (A2G) can be suppressed by mutations in the histone H4 and H3 tails 

(Sampath et al, 2009). 

1.9.3.2 IS THE BAH DOMAIN INVOLVED IN NUCLEOSOMAL STACKING? 

By disclosing the binding mode of the BAH domain to the H4 N-terminal tail, the crystal structure of the Sir3 BAH 

bound to the nucleosome (Armache et al, 2011) suggests the hypothesis that budding yeast may have evolved a unique 

chromatin compaction mechanism. Based on the X. laevis NCP structure, the H4 tail has been suggested to function in 

chromatin compaction by contacting the acidic path of the H2A/H2B dimer of the neighboring nucleosome (Luger et al, 

1997; Luger and Richmond, 1998b). Indeed the H4 tail is essential for chromatin compaction in vitro (Dorigo et al, 

2003) and acetylation of H4K16 releases compaction of reconstituted nucleosomal arrays (Shogren-Knaak et al, 2006; 

Robinson et al, 2008). However, in the structure of the yeast nucleosome, the H4 tail is more distorted, contacting the 

DNA rather than the H2A/H2B dimer of the neighboring nucleosome (see section - The yeast nucleosome and (White et 

al, 2001)). In the BAH-nucleosome structure, the H4 tail becomes ordered upon interaction with the BAH domain 

making contacts prevalently with lysine 16 and histidine 18. This suggests that upon binding to the H4 N-terminal tail, 

the Sir3 BAH may reinforce and/or alter the architecture of the nucleosomal stacking. Intriguingly, based on contacts 

present in the crystal packing, the BAH domain seems to self associate and form a dimeric bridge between two 

nucleosomes (Armache et al, 2011). However, the relevance of this finding outside of the crystal context is unclear, as 

dimerization of the Sir3 BAH could not be detected by co-immunoprecipitation (Buchberger et al, 2008) and only a 

very weak interaction (dimerization constant ~ 2 mM) was observed by analytical ultracentrifugation (Armache et al, 

2011). 

1.9.3.3 THE C-TERMINAL SIR3 AAA DOMAIN ALSO BINDS THE NUCLEOSOME 

The BAH domain is not the only part of Sir3 interacting with chromatin. In vitro studies identified two domains in the 

Sir3 C-terminus (aa 623-762 and aa 808-910) that bind the N-terminal tail of the histone H4 (Hecht et al, 1995). In 

addition to the H4 tail, in vitro studies showed that a Sir3 C-terminal fragment (aa 620-978) interacts with a H3 histone 

peptide (aa 67-89) in a manner sensitive to the methylation of H3K79, indicating that this domain, together with the 

BAH, can also contact the LRS surface of the nucleosome (Altaf et al, 2007). Whether the Sir3 AAA alone was 

sufficient for this interaction and whether Sir3 AAA could interact with the LRS surface in the context of chromatin 

was not tested prior to my work (see Chapter 3 - The AAA+ ATPase-like domain of Sir3 binds nucleosomes in an 

H3K79me sensitive manner). A screen for dominant negative sir3 alleles, discovered a point mutation within the first 

chromatin interaction domain of the Sir3 C-terminus (L738P) indicating that the interaction of the Sir3 AAA domain 

with chromatin may also be important in vivo (Buchberger et al, 2008). Indeed, this mutation enhanced the interaction 

of Sir3 with chromatin and impaired spreading of the Sir complex (Buchberger et al, 2008). 

1.9.3.4 SIR3 MAY BIND THE NUCLEOSOME IN MORE THAN ONE CONFORMATION 

The BAH D205N and the AAA L738P mutants, both impair silencing yet bind the nucleosome with higher affinity 

compared to wild-type (Connelly et al, 2006; Buchberger et al, 2008). Similarly, ectopically expressed Orc1 BAH 

cannot replace Sir3 BAH in silencing, yet it co-immunoprecipitates more histone H3 than Sir3 BAH (Stone et al, 2000; 

Onishi et al, 2007). This suggests that strong binding does not correlate with efficient silencing. A possible explanation 

is that the Sir3 protein may need to continuously bind and release the nucleosome for efficient silencing, however the 

benefit of such a binding mode is unclear. A better explanation for this apparent conundrum comes from the observation 

that both the BAH and the AAA domain (or a larger Sir3 C-terminal fragment, aa 623-910) bind to the nucleosomal 

surface around H3K79 as well as the H4 N-terminal tail (Hecht et al, 1995; Carmen et al, 2002; Altaf et al, 2007; 

Onishi et al, 2007; Armache et al, 2011; Ehrentraut et al, 2011). This strongly suggests that Sir3 can bind the 

nucleosome in at least two different conformations where either the BAH or the AAA interact with the H3K79/H4 N-

terminal region of a given nucleosome. Within a single Sir3 molecule, the domain not involved in this interaction, may 

contact the same region of a neighbor nucleosome, the linker DNA or being involved in additional protein-protein 

interactions. Such a mechanism may facilitate the spreading of the Sir3 protein (and the Sir complex) along an 

appropriately unmodified chromatin fiber. 

1.9.3.5 A CENTRAL ROLE IN SPREADING FOR THE SIR3 PROTEIN? 

The most striking features of Sir3 are its multiple and modifications specific interactions with chromatin, and its 

multimerization properties. Multimerization of full length Sir3 has been observed in vitro at high concentrations and 
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low ionic strength (Georgel et al, 2001). Moreover, Sir3 has a strong tendency to form higher order structures if bound 

to DNA and nucleosomal arrays (Georgel et al, 2001). This property may reflect the role of Sir3 in spreading silencing 

in vivo. Indeed, when overexpressed, Sir3 extends telomeric silencing (Renauld et al, 1993) and accumulates on 

chromatin at distances further away from the nucleation site with only substoichiometric amounts of Sir2-4 (Strahl-

Bolsinger et al, 1997). This property of Sir3 seems to be mediated, at least in part, by the Sir3 BAH, which increases 

both the frequency and extent of subtelomeric silencing when expressed ectopically in SIR+ strain (Gotta et al, 1998). 

Intriguingly, overexpression of an N-terminal construct encompassing the BAH domain (aa 1-380; which also interacts 

with the DNA) or a BAH-lexA fusion can partially restore silencing in a sir3∆ background (Connelly et al, 2006). This 

function of the Sir3 BAH was suggested to result from spreading of the BAH domain on chromatin given that BAH-

BAH interactions could be observed in crystallographic conditions (Connelly et al, 2006). However, the lexA tag can 

dimerize per se and Sir3 BAH oligomerization could not be observed in vitro (Connelly et al, 2006; Armache et al, 

2011), making it unclear how relevant this is in vivo. Similarly, an atypical N-terminal -helical extension within the 

Sir3 AAA domain (see above) mediates oligomerization in the crystal lattice (Ehrentraut et al, 2011), yet these 

interactions may have no relevance in vivo. It is not clear which domain contributes most to the extended spread of Sir3 

observed in vivo upon overexpression (Renauld et al, 1993; Strahl-Bolsinger et al, 1997) or to the oligomeric Sir3-

chromatin structures found in vitro (Georgel et al, 2001). Moreover, it is unclear whether these interactions are also 

responsible for spreading of the holo Sir-complex under normal conditions, which likely involves additional interactions 

such as Sir3-Sir4 and Sir4 homodimerization. 

1.9.3.6 THE SIR3 AAA DOMAIN LOST ATPASE ACTIVITY AND EVOLVED TO BIND TO SIR4 

The homologous AAA+ ATPase-like domain of yeast Orc1 hydrolyses ATP and this function is essential for cell 

viability (Klemm et al, 1997). However, the residues required for binding and catalysis of ATP are not conserved in 

Sir3 (Bell et al, 1995). Moreover, the recent crystal structure of the Sir3 AAA domain (aa 530-845) revealed not only 

that the key catalytic residues are missing but that the overall nucleotide binding pocket is altered in the Sir3 AAA 

domain (Ehrentraut et al, 2011). While Sir3 AAA posses typical AAA+ ATPase-like features, such as the “base” sub 

domain (or Rossman fold) and the “lid” module, the orientation of the “lid” compared to the “base” is unusual and the 

flexible N-terminal region that in Orc1 participates in the nucleotide binding pocket, in Sir3 AAA forms a protruded -

helical extension directed away from the core structure. This results in a rather shallow groove incompatible with 

nucleotide binding (Ehrentraut et al, 2011). Whether Sir3 acquires the ability to bind a nucleotide once assembled in the 

holo Sir complex and/or loaded onto chromatin remains to be tested. Ehrentraut and colleagues also conducted a 

systematic alanine scan on charged residues within Sir3 AAA highlighting several potential protein-protein interfaces 

required for silencing (Ehrentraut et al, 2011). Notably, alanine substitutions at residues 657-659 disrupt the Sir3-Sir4 

interaction and assembly of the Sir complex in vitro (Ehrentraut et al, 2011). However, it remains to be determined 

whether these residues directly bind to the Sir4 coiled-coil domain  the region of Sir4 interacting with Sir3 – and if 

they could complement the mutations in the Sir4 coiled-coil disrupting its interaction with Sir3 (single mutation either 

M1307N, E1310R or I1311N; (Chang et al, 2003; Rudner et al, 2005)). Thus, it seems that after the whole genome 

duplication that generated S. cerevisiae, the Sir3 AAA domain has lost ATPase activity and acquired a protein-protein 

interaction function crucial for gene silencing. 

1.9.3.7 SIR3-RAP1 AND SIR3 INTERACTING FACTORS 

Apart from itself and chromatin, other important Sir3 interaction partners are Sir4, Abf1, and Rap1 (Moretti et al, 1994; 

Moazed et al, 1997; Gasser and Cockell, 2001; Moretti and Shore, 2001). Whereas the Abf1 interaction has never been 

fully investigated (Gasser and Cockell, 2001), the last 27 amino acids of Rap1 have been shown to bind Sir3 and are 

essential for silencing of reporter genes inserted at telomeres or compromised HM loci (Liu et al, 1994; Moretti et al, 

1994). The Rap1 binding domain within Sir3 is upstream of the AAA domain (aa 456-481 (Moretti et al, 1994)) and the 

structure of the Rap1-Sir3 interaction surface has recently been solved by X-ray crystallography (Chen et al, 2011). The 

short Sir3 fragment forms an -helix that binds to a hydrophobic groove within the C-terminal domain of Rap1 (RCT; 

aa 695-827). Interestingly, S. pombe Rap1 and human Rap1 bind with the same mode to their telomeric binding partners 

Taz1 and TRF2, respectively, indicating that this interaction module has been conserved across evolution (Chen et al, 

2011). The same fragment of Rap1 also interacts with Sir4, Rif1 and Rif2, even though the four proteins do not all share 

the exact same binding mode (Feeser and Wolberger, 2008), indicating a competition between silencing and telomeric 

proteins (Buck and Shore, 1995; Marcand et al, 1996; Wotton and Shore, 1997). This competition is important for 

telomere length regulation as removing either of the Rif proteins increases the length of the TG1-3 repeats tract (Buck 

and Shore, 1995; Wotton and Shore, 1997) while deletion of Sir3 or Sir4 has the opposite effect (Palladino et al, 1993) 

(see section - Subtelomeric silencing: Telomere Position Effect). 

1.9.3.8 PURSUING THE FUNCTION OF THE EXTREME SIR3 C-TERMINUS 

The extreme C-terminus of Sir3 (aa 840-978) is predicted to adopt a winged-helix-turn-helix (wH) fold based on its 

homology with the crystallized archaeal Orc1 C-terminus (Dueber et al, 2007; Gaudier et al, 2007). Structural as well as 

biochemical studies show that the wH of homologs archaeal Orc1 bind DNA and participate in the assembly of the 

replication origin (De Felice et al, 2004; Dueber et al, 2007; Gaudier et al, 2007). However, in budding yeast, Sir3-
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DNA interactions had only been mapped to a N-terminal fragment containing the BAH domain (aa 1-380; (Connelly et 
al, 2006)). In contrast to the archaeal homolog, the Sir3 wH domain has been reported to self-associate in a yeast-two-

hybrid assay (Liaw and Lustig, 2006) and to interact in vitro with a central domain of Sir3 (aa 464-728), which contains 

a N-terminal portion of the AAA domain (King et al, 2006). In vivo, the Sir3 wH can mediate repression of a 

subtelomeric reporter gene when bound to the promoter-proximal region as a lexA fusion protein (Park et al, 1998; 

Liaw and Lustig, 2006). Ectopic establishment of silencing is thought to involve the Sir3 wH dimerization activity 

which would recruit full-length, endogenous Sir3 which in turn brings in Sir4 and Sir2 (Liaw and Lustig, 2006). 

However, the function of this predicted Sir3 wH module and Sir3 dimerization had never been tested and remained 

elusive (see Chapter 3 - Homodimerization of Sir3 wH is essential for silent chromatin formation). 

1.10 HOW IS GENE REPRESSION ACHIEVED IN YEAST SILENT CHROMATIN? 

Despite the extensive genetic and interaction information cited above, the precise mechanism through which Sir 

proteins mediate gene repression is not fully understood. Several mutually non-exclusive models have been proposed, 

going from simple steric hindrance involving higher order chromatin structures, to an active inhibition of recruitment 

and activation of the transcriptional machinery.  

1.10.1  THE STERIC HINDRANCE MODEL: HIGHER-ORDER FOLDING 

The steric hindrance model proposes that loading of Sir proteins onto chromatin physically blocks the access of site-

specific activator proteins to their DNA target sites. This model is supported by the observation that silent chromatin in 

vivo is less accessible to the HO endonuclease (Nasmyth, 1982; Weiss and Simpson, 1997), the DAM methyltransferase 

(Gottschling, 1992; de Bruin et al, 2000) and protein required for DNA repair (Terleth et al, 1989; Sinha et al, 2009). In 

addition, loading of Sir proteins in vitro limits the accessibility of the linker DNA to micrococcal nuclease digestion 

(Martino et al, 2009).  

Steric hindrance could be generated at different levels. At the primary level, the binding of the Sir complex to the 

nucleosome could inhibit the transient unwrapping of the DNA from the histone octamer (Li et al, 2005; Bucceri et al, 

2006; Poirier et al, 2009)  referred to as “nucleosomal breathing”  and limit the exposition of transcription factors 

binding sites. Second, Sir-bound chromatin could form higher-order structures further limiting the accessibility of 

regulatory factors. The existence of higher-order folding at Sir-silenced regions is supported by the discontinuous mode 

of silencing observed at native telomeres illustrated by the “looping out” of the active Y’ element (Fourel et al, 1999; 

Pryde and Louis, 1999). In addition, back folding or looping of truncated telomeres, was suggested by the association of 

Rap1 to subtelomeric regions (beyond the TG1-3 nucleating repeats) (de Bruin et al, 2000) and, more convincingly, by 

the Gal4-dependent activation of reporter genes located up to 2 kb away from a Gal4 recruiting sequence (de Bruin et 

al, 2001). Additionally, as monitored by EM, DNA fragments containing the HM loci appeared to form loops between 

E and I silencers and between the silencers and the promoter region in vitro, in a manner dependent on Rap1 (Hofmann 

et al, 1989). Finally, a recent study combined boundary trap assays, Gal4 enhancer activity assay, ChIP and 

chromosome conformation capture (3C) to show that HMR-E and HMR-I are found in close proximity in vivo in a 

manner dependent on Sir-mediated silencing (Valenzuela et al, 2008). Higher order folding (i.e. back folding or 

looping) does not directly imply decreased DNA accessibility and the presumed strengthening of silencing by folding or 

clustering of silent domains could also be due to a local increase in Sir proteins concentration favoring silencing by 

other means than simple steric hindrance (see below).  

1.10.2  SIR-MEDIATED SILENCING: A FINE-TUNED PROCESS 

While the steric hindrance model could be a component of Sir-mediated silencing, there is evidence against such a 

simple mode of gene repression. The promoter region of the silent HML locus was shown to be nucleosome-free and the 

DNA between two TATA boxes is more sensitive to micrococcal nuclease digestion compared to the active MAT 

(Weiss and Simpson, 1998). In addition, silencing of reporter genes inserted in the rDNA occurs in regions actively 

transcribed by RNA polymerase I (Buck et al, 2002). Together, these results suggest that Sir-mediated silencing 

involves a more regulated mechanism that simple unspecific steric hindrance.  

In an attempt to understand the molecular basis of Sir-repression, Chen and colleagues monitored LexA binding, as well 

as restriction enzyme and DAM methylase activity to quantify DNA accessibility at promoters of reporter genes and 

endogenous loci in active (sir2∆) and repressed (SIR2+) conditions (Chen and Widom, 2005). In conflict with previous 

interpretations (i.e. not necessarily the data in (Gottschling, 1992; Loo and Rine, 1994))  Chen and colleagues found at 

best a 2 fold reduction in DNA accessibility in silenced compared to actively transcribed chromatin loci (Chen and 

Widom, 2005). As investigated by ChIP, Sir-silencing only slightly decreased (< 2 fold) occupancy of the endogenous 

activator protein of the URA3 gene, Prp1, yet occupancy of RNA polymerase II at the same location was drastically 

decreased (> 20 fold) (Chen and Widom, 2005). Similarly, Sir-silencing had a striking effect on the occupancy of the 

general transcription factors TFIIB and TFIIE which were virtually absent from silent loci (Chen and Widom, 2005). 

Given that neutral reporters (LexA, EcoRV and DAM methylase), as well as the endogenous Prp1 protein, are still able 

to access DNA within Sir-silenced regions, it appears that loading of the Sir complex onto chromatin does not markedly 
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hinder DNA accessibility. Yet, RNA polymerase II occupancy and assembly of the preinitiation complex seems to be 

efficiently inhibited at promoters of silent genes (Chen and Widom, 2005). Additionally, based on ChIP analysis, Gao 

and colleagues observed that even when an activated form of RNA polymerase II (Serine 5 phosphorylation) can be 

detected at the promoter of silenced genes, Sir-mediated silencing dramatically reduces the occupancy of mRNA 

capping enzymes (Cet1 and Abd1), elongation factors (Spt5, Par1C and TFIIS) and the Mediator (Sekinger and Gross, 

2001; Gao and Gross, 2008).  

The emerging picture is one where loading of the Sir complex onto chromatin may not efficiently inhibit the binding of 

all upstream gene regulatory factors (e.g. Prp1) yet silencing impairs the formation of a stable RNA polymerase II 

preinitiation complex and inhibits the recruitment of elongation factors. Mechanisms for such a specific Sir-dependent 

regulation of chromatin accessibility are both fascinating and speculative. For instance, silent regions are specifically 

depleted from histone modifications, unmodified nucleosomes could be a poor binding partner for components of the 

transcriptional machinery. Alternatively, Sir2 could directly deacetylate transcription factors thereby reducing their 

affinity to chromatin. Yet, it is also possible that small effects on affinity and occupancy of singular proteins could 

accumulate cooperatively to strongly reduce the occupancy of a multiprotein complex, such as the RNA polymerase 

holoenzyme. 

2 AN ACTIVE MARK PROMOTES SILENCING 

The work presented in this experimental section was published in A dual role of H4K16 acetylation in the establishment 

of yeast silent chromatin. Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, Fischle W, Gasser 

SM (2011) EMBO J 30: 2610-2621 

Author contributions: MO, SK, and SMG designed the experiments and interpreted results. MO performed the 

experiments. SK and FM contributed reagents. SS and WF contributed the H4K16ac histone octamers. SMH and JC 

contributed the H3K56ac histone octamers. MO, SK and SMG wrote the manuscript. SMG supervised the work. 

In this experimental section, I made use of an in vitro reconstitution system, which allows the loading of Sir proteins 

onto arrays of regularly spaced nucleosomes, to examine the impact of specific histone modifications on SIR protein 

binding and linker DNA accessibility. I studied the role of H3K79 methylation, H3K56 acetylation and H4K16 

acetylation (see section - Histone modifications regulate yeast silent chromatin, Figure 3) and addressed their molecular 

role in regulating yeast silent chromatin formation from a biochemical perspective.  

The most important finding of this work is that acetylation of H4K16, while it repels Sir3, increases the affinity of the 

Sir2-4 heterodimer to chromatin. Moreover, the deacetylation of H4K16ac by Sir2 actively promotes the high-affinity 

binding of the holo Sir complex and reduces the accessibility of the linker DNA. We propose that H4K16ac is actively 

implicated in the establishment of yeast silent chromatin, being the first histone mark shown to directly increase the 

binding affinity of a Sir subcomplex to chromatin. 
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Discrete regions of the eukaryotic genome assume herita-

ble chromatin structure that is refractory to transcription.

In budding yeast, silent chromatin is characterized by the

binding of the Silent Information Regulatory (Sir) proteins

to unmodified nucleosomes. Using an in vitro reconstitu-

tion assay, which allows us to load Sir proteins onto arrays

of regularly spaced nucleosomes, we have examined the

impact of specific histone modifications on Sir protein

binding and linker DNA accessibility. Two typical marks

for active chromatin, H3K79me and H4K16ac decrease the

affinity of Sir3 for chromatin, yet only H4K16ac affects

chromatin structure, as measured by nuclease accessibility.

Surprisingly, we found that the Sir2-4 subcomplex, unlike

Sir3, has higher affinity for chromatin carrying H4K16ac.

NAD-dependent deacetylation of H4K16ac promotes bind-

ing of the SIR holocomplex but not of the Sir2-4 hetero-

dimer. This function of H4K16ac cannot be substituted

by H3K56ac. We conclude that acetylated H4K16 has a

dual role in silencing: it recruits Sir2-4 and repels Sir3.

Moreover, the deacetylation of H4K16ac by Sir2 actively

promotes the high-affinity binding of the SIR holocomplex.

The EMBO Journal (2011) 30, 2610–2621. doi:10.1038/

emboj.2011.170; Published online 10 June 2011

Subject Categories: chromatin & transcription

Keywords: H4K16; histone deacetylation; methylation; silent

chromatin; SIR complex

Introduction

Heterochromatin is a heritable, specialized chromatin struc-

ture that silences discrete regions in eukaryotic genomes.

Among other features, gene silencing within heterochromatic

regions is thought to involve compaction of the chromatin

fibre in order to structurally limit DNA accessibility. In

budding yeast, silent chromatin requires the binding of

Silent Information Regulatory (Sir) proteins to unmodified

nucleosomes. Work of many laboratories has identified Sir2,

Sir3 and Sir4 proteins as the core components of silent

chromatin at telomeres and silent mating type loci (Rine

and Herskowitz, 1987; reviewed in Rusche et al (2003)).

Two-hybrid and protein binding studies suggested that they

form a complex, with Sir4 being a scaffold protein that

bridges between Sir2 and Sir3 (Moazed et al, 1997; Strahl-

Bolsinger et al, 1997; Rudner et al, 2005; Cubizolles et al,

2006). Although initial attempts to purify the Sir proteins

from yeast yielded only an Sir2-4 heterodimer (Ghidelli et al,

2001; Hoppe et al, 2002), a stable Sir2-Sir3-Sir4 heterotrimer

with 1:1:1 stoichiometry (hereafter SIR complex) was purified

from insect cells (Cubizolles et al, 2006). A fourth Sir protein,

Sir1, is important for the establishment of silencing at the

silent mating type loci, but is not required for repression at

telomeres (Pillus and Rine, 1989; Aparicio et al, 1991).

Sir proteins do not bind DNA in a sequence-specific

manner, yet zones of silencing are restricted to specific

domains in the yeast genome. To achieve targeted silencing,

Sir proteins are recruited by bifunctional DNA binding

factors, such as Rap1, Abf1 and Orc1, which bind yeast

silencer elements. The SIR complex then spreads from this

nucleation site for 3–20 kb, depending on the abundance and

balance of available Sir proteins (reviewed in Gasser and

Cockell (2001) and Rusche et al (2003)). SIR complex asso-

ciation decreases the ability of enzymes, like DNA methylases

or endonucleases, to access the DNA (Gottschling, 1992; Loo

and Rine, 1994). Transcription in these regions is repressed,

most likely by reducing RNA polymerase II occupancy at

promoters (Chen and Widom, 2005; Lynch and Rusche,

2009), although other studies suggest that Sir protein binding

interferes with RNA polymerase II elongation (Sekinger and

Gross, 2001; Gao and Gross, 2008).

All three Sir proteins, Sir2, Sir3 and Sir4, are essential for

transcriptional repression. Sir3 and Sir4 are primarily thought

to be structural proteins of silent chromatin (Gasser and

Cockell, 2001). SIR3 arose from a duplication of the ORC1

gene, with which it shares an N-terminal BAH domain and a

related AAAþ ATPase domain (Hickman and Rusche, 2010).

Sir4 is found only in related ascomycetes species, while Sir2 is

a NAD-dependent histone deacetylase conserved from bacteria

to man. Its enzymatic activity is required for gene silencing

(Tanny et al, 1999; Imai et al, 2000; Smith et al, 2000).

The key substrate of Sir2 is histone H4 acetylated on lysine

16 (H4K16ac; Imai et al, 2000; Smith et al, 2000; Borra et al,

2004). This mark is found on transcriptionally active chro-

matin in most species and marks early firing origins in yeast

and flies (Kimura et al, 2002; Suka et al, 2002; Schwaiger

et al, 2010). It has been shown that unmodified H4K16

promotes compaction of the chromatin fibre in vitro and

in vivo (Smith et al, 2003; Shogren-Knaak et al, 2006;

Robinson et al, 2008). Consistently, in budding yeast

H4K16ac is found throughout the genome except at silent

loci (Suka et al, 2001; Smith et al, 2003).

Recombinant fragments of Sir3 and Sir4 were shown to

bind to the histone H4 tail in vitro, in a manner sensitive to
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mutations near K16 and to lysine acetylation (Hecht et al,

1995; Carmen et al, 2002). Using recombinant proteins

and nucleosomal substrates, it was found that the H4K16A

mutation can decrease binding of Sir3 in vitro (Johnson

et al, 2009), while mutations of H4K16 to glycine or gluta-

mate, and to a lesser extent arginine, diminished mating

efficiency in vivo (Johnson et al, 1990; Megee et al, 1990;

Park and Szostak, 1990). Finally it was shown that the

H4K16G phenotype could be suppressed by a compen-

satory mutation in Sir3, suggesting that Sir3 contacts

the H4 tail in an acetylation-sensitive manner (Johnson

et al, 1990).

In yeast, H4K16 is acetylated primarily by the histone

acetyltransferase (HAT) Sas2 (Kimura et al, 2002; Suka

et al, 2002) and secondarily by the essential HAT Esa1,

which also targets H4K5 and H4K12 (Suka et al, 2001,

2002; Chang and Pillus, 2009). Similar to conservative muta-

tions in H4K16, the deletion of SAS2 impairs repression of a

reporter gene at telomeres or the HML locus, although the

same mutation favours silencing of a reporter at HMR,

which has much stronger silencer elements (Reifsnyder

et al, 1996; Ehrenhofer-Murray et al, 1997; Meijsing and

Ehrenhofer-Murray, 2001). However, the rate of Sir3 recruit-

ment to HMR was slower in cells that lack Sas2 (Katan-

Khaykovich and Struhl, 2005), as was the establishment of

silencing at HML (Osborne et al, 2009). This, together with

the observation that the catalytic activity of Sir2 is required

for silencing (Tanny et al, 1999; Imai et al, 2000; Smith et al,

2000; Yang and Kirchmaier, 2006; Yang et al, 2008a), suggests

that Sir-mediated deacetylation of H4K16ac might have an

active role in the formation of silent chromatin.

The H4K16ac mark is also required for efficient methylation

of lysine 79 on the histone H3 (H3K79me) by the methyltrans-

ferase Dot1 (Altaf et al, 2007). In vivo H3K79me appears to

impair the spreading of the Sir proteins, and is thought to act

by reducing association of Sir3 to chromatin (Ng et al, 2002,

2003; van Leeuwen et al, 2002; Altaf et al, 2007; Onishi et al,

2007). Consistently, a recent study with recombinant proteins

has suggested that both Sir3 and the SIR holocomplex have

lower affinities for reconstituted chromatin bearing H3K79me

(Martino et al, 2009). This shows that, in addition to the

histone tails, the Sir3 protein also interacts with the nucleoso-

mal core, a property that has been assigned both to the N-

terminal BAH domain (Onishi et al, 2007; Buchberger et al,

2008; Norris et al, 2008; Sampath et al, 2009) as well as the

Sir3 C-terminal region (Altaf et al, 2007).

A further histone modification that interferes with SIR-

mediated repression is the acetylation of K56 on histone H3.

In budding yeast, H3K56ac is deposited by Rtt109 during

S phase before the loading of the histones onto DNA, and

therefore serves as a marker for newly assembled nucleo-

somes (Hyland et al, 2005; Masumoto et al, 2005; Han

et al, 2007; Li et al, 2008). A large number of studies have

also linked H3K56ac to gene transcription from yeast to man

(Xu et al, 2005, 2007; Schneider et al, 2006; Williams et al,

2008; Yang et al, 2008b; Michishita et al, 2009; Xie et al,

2009). In yeast, amino-acid substitutions at H3K56 severely

disrupt silencing without completely displacing the SIR com-

plex (Xu et al, 2007; Yang et al, 2008b). Moreover, elimination

of the histone deacetylases responsible for removal of

H3K56ac, Hst3 and Hst4, disrupts SIR-mediated repression

as well (Yang et al, 2008b). A recent report has shown that

acetylation of H3K56 favours transcriptional elongation

through yeast heterochromatin, generating speculation that

H3K56ac promotes the displacement of the Sir proteins (Varv

et al, 2010). However, there is as yet no direct evidence that

the affinity of Sir proteins for nucleosomes is lowered by

H3K56ac.

To gain insight into the role played by these histone

modifications in the assembly of silent chromatin, we recon-

stituted SIR-bound chromatin in vitro using nucleosomes

homogeneously modified on only one residue. Our system

recapitulates many of the characteristics of silent chromatin

(Martino et al, 2009) and allows us to probe both Sir protein

binding and accessibility of the linker DNA to micrococcal

nuclease (MNase). We find that both H3K79me and H4K16ac

decrease the affinity of Sir3 for chromatin, while only

H4K16ac has an effect on MNase accessibility. Surprisingly,

we found that Sir2-4 prefers to bind to chromatin acetylated

on H4K16. The binding of Sir2-4, in presence of NAD and

Sir3, leads to the removal of the H4K16ac mark and couples

stable binding of the Sir2-3-4 complex with a significant

decrease in linker DNA accessibility. On the other hand,

H3K56ac slightly increases MNase accessibility and reduces

the interaction of chromatin with the SIR complex.

Importantly, we find that H3K56ac is not a substrate for

Sir2-mediated deacetylation. We, thus, show how the anti-

silencing properties of different histone modifications differ-

entially affect silent chromatin. Of particular interest are the

two contradictory roles played by H4K16ac, which reduces

the binding of Sir3 and favours the recruitment of Sir2-4. The

acetylation and deacetylation of H4K16 thus appear to or-

chestrate the sequential binding of Sir proteins in order to

establish a stable silent chromatin.

Results

The H4K16ac mark differentially affects the binding of

Sir2-4 and Sir3 to chromatin

It is generally accepted that the H4K16ac mark plays an

important role in silent chromatin by preventing the ectopic

spread of the Sir proteins from the non-acetylated silent

domains (Kimura et al, 2002; Suka et al, 2002; Millar et al,

2004; Yang et al, 2008a). However, accumulating evidence

suggests that not only the absence of the acetyl mark but its

Sir2-dependent removal may be required for efficient estab-

lishment of silencing (Liou et al, 2005; Yang and Kirchmaier,

2006; Yang et al, 2008a; Martino et al, 2009; Osborne et al,

2009). To shed light on this matter, we analysed in detail the

binding of SIR subcomplexes to nucleosomal arrays bearing a

fully acetylated H4K16.

Nucleosomes were reconstituted with recombinant his-

tones that were either unmodified or fully acetylated on

H4K16. These were generated by expressing a truncated

version of H4 and adding the N-terminal tail by native

chemical ligation (NCL) using a synthetic peptide (Shogren-

Knaak et al, 2006; Supplementary Figure S1). Nucleosomal

arrays were then reconstituted by salt dialysis using a DNA

template containing repeated arrays of a 167-bp histone

octamer positioning sequence (Widom 601) as described

previously (Huynh et al, 2005; Martino et al, 2009).

Recombinant Sir proteins were purified from insect cells

(Figure 2F; Cubizolles et al, 2006; Martino et al, 2009).
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We first compared acetylated and non-acetylated arrays of

a 6mer of nucleosomes by monitoring the accessibility of

linker DNA to MNase in the absence of Sir proteins. Previous

studies have shown that acetylation of H4K16 inhibits chro-

matin compaction both in vitro and in vivo (Shogren-Knaak

et al, 2006; Robinson et al, 2008). By challenging this

chromatin with increasing amounts of MNase, we found

that H4K16ac enhances linker DNA accessibility of a chroma-

tin template as short as six nucleosomes (Figure 1A).

Sir3 has been reported to be more susceptible than Sir4 to

modifications on histone tails (Carmen et al, 2002; Johnson

et al, 2009). Therefore, we examined first the effect of

H4K16ac on the binding of Sir3 to nucleosomal arrays.

Increasing amounts of Sir3 were titrated onto unmodified or

H4K16ac arrays of nucleosomes. The binding was analysed by

gel shift and quantified by scoring the loss of the unbound

6mer. In agreement with previous studies (Carmen et al,

2002; Johnson et al, 2009), we found that H4K16ac reduces

the binding affinity of Sir3 to an in vitro reconstituted

nucleosomal array by roughly two-fold (Figure 1B). In con-

trast, the binding affinity of the Sir2-4 heterodimer to chro-

matin was increased nearly two-fold by the presence of the

H4K16ac mark (Figure 1C). Superficially, this appears to

contradict the fact that silent chromatin is depleted for this

mark, although it is consistent with the notion that H4K16ac

is a key substrate of Sir2-4 (see also Johnson et al (2009)).

Therefore, we decided to perform competition experiments in

order to reinforce this observation. The binding of increasing

amounts of Sir2-4 to an unmodified Cy5-labelled array was

competed with a four-fold excess of either unlabelled unmo-

dified or unlabelled H4K16ac chromatin. Confirming our

previous results, H4K16ac chromatin competed roughly two-

fold more efficiently for the binding of Sir2-4 compared with

unmodified chromatin (Figure 1D).

We previously showed that our recombinant Sir2-4 has

efficient histone deacetylase activity in the presence of its co-

factor NAD (Cubizolles et al, 2006). We reasoned that if

Sir2-4 bound H4K16ac with higher affinity because it is a

preferred substrate of Sir2, then the complex should have

less affinity once H4K16ac had been deacetylated. To test this,

we quantified the binding of the Sir2-4 heterodimer to

H4K16ac chromatin in the absence or presence of NAD.

Confirming our hypothesis, Sir2-4 bound more readily to

acetylated chromatin and less readily following deacetylation

(Figure 1E). Surprisingly, this shows an enhanced affinity

of Sir2-4 for acetylated H4K16, while the opposite is true

for Sir3.

Sir2-dependent deacetylation of H4K16ac stabilizes the

association of Sir2-3-4 to chromatin

Removal of H4K16ac through the catalytic activity of Sir2 has

been reported to be important for silencing (Johnson et al,

1990; Suka et al, 2001, 2002; Carmen et al, 2002; Kimura et al,

2002). However, it is not clear whether this is due exclusively

Figure 1 Acetylation of H4K16 decreases the binding affinity of
Sir3 but favours the loading of Sir2-4 onto chromatin. (A) Equally
saturated 6mer of 601 nucleosomes with either unmodified or
acetylated H4K16 was digested with increasing amount of MNase,
as indicated. After protein digestion, the denatured DNA was
separated by electrophoresis and visualized by SYBRs Safe stain-
ing. The bands showed by an arrow (6-, 5-, 4- and 3mers) were
quantified and normalized to input. The histograms show the ratio
between the amount of intact 6-3mers of H4K16ac over unmodified
chromatin for the indicated MNase titration point. The Sir3 protein
(B) or the Sir2-4 heterodimer (C) were titrated into a constant
amount of unmodified or H4K16ac 6mer of 601 nucleosomes.
Samples were separated by native agarose gel electrophoresis and
visualized by SYBRs Safe staining. (D) The binding of increasing
amounts of Sir2-4 to 8 nM of unmodified Cy5-labelled 6mer of
nucleosomes (indicated by the arrowhead) was competed with
32 nM of either unlabelled unmodified or unlabelled H4K16ac

6mer of nucleosomes. Cy5 fluorescence was used to monitor the
binding of Sir2-4 to the unmodified labelled chromatin. The asterisk
indicates a Cy5-labelled contaminant DNA. (E) The Sir2-4 hetero-
dimer was titrated into a constant amount of H4K16ac 6mer of 601
nucleosomes. Deacetylation is allowed by the addition of 150 mM
NAD where indicated. Samples were separated and visualized as in
(B, C). The images are representative of at least three independent
experiments, quantifications show the mean value±s.e.m. of the %
of unbound chromatin compared with the input.
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to the generation of unmodified H4K16 or whether it addi-

tionally involves a conformational change coupled to O-

acetyl-ADP-ribose (O-AADPR) production (Liou et al, 2005;

Martino et al, 2009). To gain insight into the molecular

consequences of H4K16ac deacetylation on the establishment

of silencing, we compared the binding of the SIR complex

with unmodified or H4K16ac chromatin in the presence or

absence of NAD. We first examined the effect of H4K16ac on

the binding of the Sir2-3-4 heterotrimer in absence of NAD

(Figure 2A) and found that, similar to Sir2-4 (Figure 1C) but

in a less pronounced manner, the SIR holocomplex bound

slightly better to acetylated chromatin. We then confirmed

that our purified Sir2-3-4 complex was able to efficiently

deacetylate H4K16ac within chromatin in the presence of

NAD (Figure 2E), as shown previously for chemically acety-

lated histone octamers (Cubizolles et al, 2006). In the follow-

ing experiments, the term ‘deacetylated chromatin’ will be

used whenever H4K16ac marks were actively removed by Sir2

in the presence of NAD, to distinguish it from chromatin

assembled from unmodified histones.

We next compared the binding affinity of Sir2-3-4 with

unmodified or H4K16ac chromatin in the presence of NAD.

We found that the active removal of the H4K16ac mark

increased the binding affinity of the SIR complex to chroma-

tin by roughly two-fold (Figure 2B). This effect is not caused

by NAD alone as enhanced binding was not observed when

H4K16ac chromatin was replaced with unmodified chromatin

(Supplementary Figure S2A). Indeed, in absence of Sir2,

Figure 2 Sir2-dependent deacetylation of H4K16ac stabilizes the association of Sir2-3-4 to chromatin. The Sir2-3-4 complex (A, B) or the
catalytically dead Sir2cd-3-4 mutant (C, D) was titrated into a constant amount of unmodified or H4K16ac 6mer of 601 nucleosomes. Where
indicated, 150mM NAD was added to the samples. Scatter plot quantifications show the mean value±s.e.m. of the % of unbound chromatin
compared with the input for at least three experiments. (E) Reconstituted chromatin fully acetylated on H4K16 was subjected to NAD-
dependent deacetylation in presence of a 2.5-fold molar excess of the Sir2-3-4 complex or the Sir2cd-3-4 mutant. The acetylation state was then
determined by immunoblotting using acetylation mark-specific antibodies and H3 for loading. (F) Two micrograms of the indicated Sir protein
were denatured in sample buffer and run on a 4–12% NuPAGEs Novexs Bis-Tris Gel.
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NAD does not affect the acetylation state of chromatin

(Supplementary Figure S2B). This shows that the binding

affinity of the SIR complex for deacetylated chromatin is

higher compared with chromatin assembled from unmodified

histones.

In order to reinforce this finding, we tested whether the

deacetylase activity of Sir2 itself was required for the en-

hanced binding of acetylated template in the presence of

NAD. We generated a catalytic inactive Sir2 (Sir2cd) by

introducing the point mutation N345A, which maps to the

nucleotide binding motif (Rossman fold). This mutation

disrupts Sir2 enzymatic activity in vitro and in vivo (Imai

et al, 2000; Armstrong et al, 2002). The N345A substitution,

however, did not affect the stability of Sir2 or its interaction

with Sir3 and Sir4 and we were able to purify the mutated

Sir2cd-3-4 from insect cells with the same efficiency as for the

Sir2-3-4 complex (Figure 2F). We could furthermore confirm

that this mutant did not retain significant deacetylase activity

(Figure 2E).

In order to confirm that the Sir2cd-3-4 mutant was still able

to recognize its substrate, we monitored the binding of Sir2cd-

3-4 to unmodified or H4K16ac chromatin in the absence of

NAD. We found that, like Sir2-3-4, Sir2cd-3-4 has a slight

preference for H4K16ac chromatin (compare Figure 2A and C).

We then monitored the loading of the Sir2cd-3-4 mutant onto

unmodified or H4K16ac chromatin in the presence of NAD.

Unlike the Sir2-3-4 complex, the catalytic dead Sir2cd-3-4

showed the same slight preference for the H4K16ac chromatin,

as it did in the absence of NAD (compare Figure 2C and D).

This data reinforce our observation that the deacetylation

reaction has a positive role on the loading of the SIR complex

onto chromatin (Figure 2B). Given that the deacetylation of

H4K16ac chromatin reduced the binding affinity of the Sir2-4

heterodimer (Figure 1E), these results suggest that Sir3 and the

deacetylation of H4K16ac by Sir2 jointly promote the binding of

the SIR holocomplex to chromatin.

The Sir3 protein and Sir2-dependent deacetylation of

H4K16ac are both required to decrease nuclease

accessibility of the linker DNA

SIR complex bound chromatin is thought to have a more

compact structure in vivo as it is less accessible to enzy-

matic attack (Gottschling, 1992; Loo and Rine, 1994). The SIR

complex could compact chromatin in two ways: first by

deacetylating H4K16, and second by binding to chromatin.

We observed that loading of the SIR complex onto unmodi-

fied chromatin greatly reduces the accessibility of the linker

DNA to MNase and the restriction enzyme AvaI in vitro,

consistent with a direct role for binding (Supplementary

Figure S3A and B; Martino et al, 2009). In order to test the

impact of H4K16ac deacetylation on compaction in vitro, we

first incubated H4K16ac chromatin with the Sir2-4 subcom-

plex in the presence or absence of NAD and then challenged

it with increasing amounts of MNase. We found that the

presence of NAD did not significantly change the accessibility

of the linker DNA (Figure 3A). Since acetylation of chro-

matin usually results in greater accessibility (Figure 1A), this

result is likely a combination of changed accessibility due to

removal of H4K16ac and reduced binding affinity of Sir2-4 for

deacetylated chromatin (Figure 1E).

We then performed the same experiment but replaced Sir2-

4 with the SIR holocomplex. The concentration of Sir2-3-4

used resulted in a complete upshift of both acetylated and

unmodified chromatin in a binding assay, ruling out differ-

ential accessibility due to incomplete ligand occupancy.

Interestingly, we observed that in the presence of NAD the

linker DNA was more protected from MNase than SIR-bound

Figure 3 Sir3 is required to translate the Sir2-dependent deacetyla-
tion of H4K16ac into a decrease of nuclease accessibility of the linker
DNA. Unmodified or H4K16ac 6mer of 601 nucleosomes (50 nM)
was incubated with the indicated amount of Sir2-4 (A), Sir2-3-4
(B, D and E) or Sir2cd-3-4 (C) and was challenged with increasing
amounts of MNase. Where indicated, SIR-bound chromatin was
supplemented with 150mM NAD and incubated for 15 min at 301C
before MNase digestion. Deproteinated samples were separated by
electrophoresis and the amount of intact 6mer DNA (black arrow)
was quantified and normalized to input. Quantification of at least
three experiments was used to generate the vertical bar charts, data
represent mean value±s.e.m.
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chromatin in the absence of NAD (Figure 3B). Importantly,

the addition of NAD did not change the protection of linker

DNA of an array bound by the catalytic inactive Sir2cd-3-4

(Figure 3C). The same analysis in the absence of Sir3 did

not increase protection against MNase attack (Figure 3A),

arguing that the protective effect of NAD-dependent deacety-

lation of H4K16ac by Sir2 requires Sir3 (compare Figures 3A

and B). Finally, the increased linker DNA protection observed

in Figure 3B was not caused by the NAD molecule per se, as

no NAD-dependent differences were scored for linker DNA

accessibility when Sir proteins were bound to unmodified

chromatin (Supplementary Figure S3C). These results sug-

gested that the deacetylation of H4K16ac by the SIR complex

promotes linker DNA protection.

When comparing unmodified with acetylated chromatin

bound by Sir2-3-4 in the absence of NAD, we found that the

linker DNA is slightly more protected (Figure 3D), indicating

that at least some of the protection observed in Figure 3B is

due to loss of H4K16ac per se. However, given our previous

observation that deacetylated chromatin is bound with higher

affinity than unmodified chromatin (Figure 2B), we decided

to explore the possibility that the deacetylation reaction itself

may also contribute to the increased linker DNA protection

observed in Figure 3B. Therefore, we compared the linker

DNA accessibility of unmodified and H4K16ac chromatin in

the presence of Sir2-3-4 and NAD. We found that deacetylated

chromatin is reproducibly more protected from MNase attack

compared with chromatin assembled from unmodified his-

tones (Figure 3E). Together, these results show that both Sir2-

dependent deacetylation of H4K16ac and Sir3 are required to

decrease the nuclease accessibility of linker DNA, which

presumably reflects the tighter binding of the SIR holocom-

plex to chromatin. In addition, there may be a conformational

change that enhances linker DNA protection.

H3K56ac loosens Sir protein binding to chromatin,

slightly increasing linker DNA accessibility

To ask if our observation for H4K16ac can be generalized to

other acetylation marks we tested the effects of H3K56

acetylation, which is found on newly assembled nucleosomes

in S phase. Since there are contradictory reports about which

enzyme deacetylates H3K56ac (Xu et al, 2007; Yang et al,

2008b) we first tested if Sir2 can deacetylate H3K56ac as

suggested earlier. We incubated H3K56ac chromatin with

SIR complex in the presence or absence of NAD. Chromatin

homogenously acetylated at H3K56 was obtained by purify-

ing acetylated H3 from E. coli using an expanded genetic code

strategy (Neumann et al, 2008). Probing the histones with

H3K56ac antibodies after incubation showed that, unlike for

H4K16ac, the level of H3K56 acetylation remained unchanged

(Figure 4B). We conclude that H3K56ac is not a substrate of

the NAD-dependent deacetylase activity of Sir2. This sup-

ports previous work reporting that two Sir2-related enzymes,

Hst3 and Hst4, are required for H3K56ac deacetylation in vivo

(Celic et al, 2006; Maas et al, 2006; Yang and Kirchmaier,

2006) and suggests that Hst3 and Hst4 are the exclusive

deacetylases for this residue.

To address whether acetylation of H3K56 has an effect on

Sir protein loading, we compared the binding of the SIR

holocomplex with unmodified and H3K56ac chromatin. We

found that H3K56ac reduces the affinity of the SIR holocom-

plex for chromatin by roughly two-fold (Figure 4C). The

binding affinity of the Sir2-4 heterodimer was also reduced

in presence of the H3K56ac mark (Figure 4D), while the

binding affinity of the Sir3 protein alone was mostly un-

changed (Figure 4E). To explore whether the slight affinity

decrease observed here for the SIR complex could be respon-

sible for the silencing defects seen in vivo, we investigated

whether the SIR complex efficiently protects linker DNA in

chromatin bearing the H3K56ac mark. The acetylation on

H3K56 per se has been shown to increase transient unwrap-

ping of the DNA from the histone octamer but not to change

the higher order structure of a 61mer nucleosomal array

(Neumann et al, 2009). Consistently we show, by means of

an MNase digestion assay, a slight increase in linker DNA

accessibility for the chromatin bearing H3K56ac over the

unmodified control (Figure 4F). Subsequently, after adding

the SIR complex in saturating concentrations (Supplementary

Figure S4A), the H3K56ac chromatin continued to show

slightly higher linker DNA accessibility as compared with

unmodified chromatin (Figure 4G). This is consistent with a

previous in vivo study indicating that H3K56ac chromatin

is more sensitive to DNA methylation by an ectopically

expressed bacterial dam methylase (Xu et al, 2007).

Moreover, H3K56 point mutations disrupted silencing at

telomeres without affecting Sir protein spreading (Xu et al,

2007). We conclude that H3K56ac does not have a role similar

to that of H4K16ac, neither in the recruitment of Sir2-4, nor by

being a substrate for Sir2.

Methylation of H3K79 by Dot1 neither increases linker

DNA accessibility nor reduces Sir2-4 loading

Another mark associated with active chromatin in yeast is

methylation of lysine 79 of histone H3 (H3K79). This methy-

lation is exclusively catalysed by Dot1 and is thought to act as

a boundary for the inappropriate spreading of the Sir proteins

on chromatin (van Leeuwen et al, 2002; Frederiks et al, 2008;

Martino et al, 2009; Verzijlbergen et al, 2009). Moreover,

in vitro studies showed that interaction of the Sir3 protein with

histone peptides was sensitive to the methylation of H3K79

(Altaf et al, 2007; Onishi et al, 2007). Previous work from our

laboratory showed that we can make use of recombinant Dot1

in order to methylate reconstituted nucleosomal arrays in vitro

(Martino et al, 2009). We have previously shown that even

partial methylation of H3K79 decreases the binding affinity of

both the SIR complex and the Sir3 protein alone to chromatin

(Martino et al, 2009). We now provide further evidence that the

lowered affinity indeed affects Sir3 binding, since the Sir2-4

heterodimer associates with unmodified and H3K79me chroma-

tin with nearly equal affinity (Figure 5A), while Sir3 clearly

prefers unmodified chromatin (Figure 5B).

We then decided to test whether H3K79me also impacts the

structure of SIR-bound or SIR-depleted chromatin. To exam-

ine the potential impact of H3K79me on linker DNA protec-

tion, we challenged in vitro methylated chromatin lacking Sir

proteins with increasing amounts of MNase. Unlike the case

for H3K56ac, the accessibility of the linker DNA in the

absence of SIR complex was unaffected by H3K79me

(Figure 5C). However, in the presence of substoichiometric

amounts of Sir2-3-4 (Supplementary Figure S4B), the acces-

sibility of the linker DNA was higher for H3K79me chromatin

than for unmodified chromatin (Figure 5D), consistent with

notion that better SIR complex binding enhances linker DNA

protection. When we added additional Sir2-3-4 such that
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we score an equal degree of binding on both substrates

(Supplementary Figure S4C), we observed no difference in

accessibility of linker DNA (Figure 5E). This suggests that

H3K79me neither changes chromatin structure nor prevents

the SIR complex from compacting it, but decreases the

affinity of the SIR complex for chromatin. Thus, it antago-

nizes silencing through a mechanism distinct from H3K56ac.

Discussion

Silent chromatin in Saccharomyces cerevisiae is the best

studied system of heterochromatic gene silencing, yet we

still do not fully understand the molecular mechanisms of

its assembly and the role of histone modifications in this

process. In vitro binding analysis between Sir protein

domains and histone peptides have been informative, yet

they only reflect a small part of the chromatin template.

To examine the molecular basis of SIR-dependent silen-

cing, we have established a fully recombinant system that

recapitulates key features of silent chromatin in budding

yeast (Martino et al, 2009). Here, we extend this system to

examine how histone modifications participate in the forma-

tion of stable silent and active domains.

We show here that the H4K16ac mark has both a positive

and a negative role in SIR binding in a sequential manner (see

Figure 6). Importantly, we show that H4K16ac decreases the

binding affinity of Sir3, but, in contrast, promotes the asso-

ciation of the Sir2-4 heterodimer to chromatin. Even the

binding affinity of the SIR holocomplex is slightly increased

by the presence of H4K16ac in the absence of NAD (see also

Johnson et al (2009)). This result, while initially counter-

intuitive, helps elucidate the dual role of H4K16ac in hetero-

chromatin formation. On one hand, H4K16ac prevents the

dispersion of its key ligand, Sir3, into euchromatic chromatin.

On the other hand, the high affinity of Sir2-4 for H4K16ac may

help nucleate silent chromatin, since it is likely in yeast that

the targeted nucleosomes are acetylated before SIR complex

loading.

In support of this dual role, it was shown that the sub-

stitution of H4K16 by not only an acetyl-mimicking residue,

but also unacetylatable amino acids, disrupts silencing at

telomeres and mating type loci (Johnson et al, 1990, 1992;

Megee et al, 1990; Park and Szostak, 1990; Aparicio et al,

1991; Millar et al, 2004). Moreover, the deletion of SAS2,

which encodes the HAT responsible for most H4K16ac in

yeast, impaired the repression of reporter genes at certain

loci, such as TelVIIL or within the HML locus (Reifsnyder

et al, 1996; Meijsing and Ehrenhofer-Murray, 2001) and led to

the spreading of Sir proteins into subtelomeric regions that

usually lack SIR-mediated repression (Kimura et al, 2002;

Figure 4 H3K56ac decreases Sir protein binding affinity and slightly increases linker DNA accessibility. (A) Cartoon representation of the
nucleosome core particle (NCP147; Davey et al, 2002) highlighting the position of H3K56 (black) at the entry/exit point of the DNA around the
histone octamer. (B) Reconstituted chromatin fully acetylated on H3K56 was subjected to NAD-dependent deacetylation in presence of a 2.5-
fold molar excess of the SIR complex. The acetylation state was then determined by immunoblotting using acetylation mark-specific antibodies
and H3 for loading. The SIR complex (C), Sir2-4 heterodimer (D) or Sir3 (E) were titrated into a constant amount of unmodified or H3K56ac

6mer of 601 nucleosomes. Samples were analysed as in Figure 2. Unmodified or H3K56ac 6mer of nucleosomes were challenged with an
increasing amount of MNase in absence (F) or presence (G) of the SIR complex. The 6mer, 5mer and 4mer bands (F) or the band corresponding
to the intact 6mer alone (G), shown by black arrows, were quantified and normalized to the input. The histograms show the ratio between the
amounts of quantified DNA from H4K16ac chromatin over unmodified for the indicated MNase titration point±s.e.m.
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Suka et al, 2002). In contrast, the repression of a reporter at

HMR was enhanced, probably because this locus has much

stronger silencers, which dominate over an indiscriminate

spreading of Sirs (Ehrenhofer-Murray et al, 1997). Impor-

tantly, both the kinetics of Sir3 recruitment to HMR and the

establishment of silencing at HML were slower in cells that

lack the H4K16-specific HAT, Sas2 (Katan-Khaykovich and

Struhl, 2005; Osborne et al, 2009), suggesting a positive role

for H4K16 acetylation. Collectively, these results support the

model that Sas2-mediated acetylation of H4K16 has more

than one role in silent chromatin formation (see also Zou and

Bi (2008)). Reporter context appears to determine which

role is rate limiting: the recruitment of Sir2-4, or the assembly

and propagation of the Sir3-containing holocomplex along

nucleosomes.

Sequential assembly of nuclease-resistant SIR-bound

chromatin requires H4K16ac deacetylation

In vivo the absence of H4K16ac from silent chromatin suggests

that it is removed by Sir2 as soon as the SIR complex is

loaded. Moreover, it was shown that in the absence of Sir2

catalytic activity, H4K16ac prevents the formation of silent

domains (Yang and Kirchmaier, 2006). On the other hand,

as mentioned above, even conservative substitutions at

H4K16 decrease silencing efficiency at HML and at telomeres

(Johnson et al, 1990; Meijsing and Ehrenhofer-Murray, 2001;

Yang and Kirchmaier, 2006). This supports the notion that not

only the recruitment of Sir2-4 by H4K16ac, but the deacetyla-

tion reaction itself helps to seed repression (Johnson et al,

1992; Imai et al, 2000; Millar et al, 2004; Liou et al, 2005;

Yang et al, 2008a; Martino et al, 2009).

Why is the deacetylation reaction important for silencing?

The recapitulation of these steps in vitro helped us to address

this question. Indeed, by adding NAD to SIR-bound H4K16ac

chromatin, we catalysed deacetylation of H4K16 and in-

creased the binding affinity of the SIR holocomplex to chro-

matin. This shows in a well-defined recombinant system

that removal of the single H4K16ac mark by Sir2 increases

SIR complex binding. Even more importantly, we found that

the linker DNA was better protected from MNase digestion

when the SIR complex was assembled on chromatin in the

presence of H4K16ac and NAD, as compared with its being

loaded onto unmodified chromatin. This protection nicely

mimics the DNA shielding observed in SIR-silenced chroma-

tin regions in vivo (Gottschling, 1992; Loo and Rine, 1994;

Xu et al, 2007) and argues that the SIR complex may associate

with chromatin in more than one conformation. It was

previously proposed that a by-product of Sir2 NAD-

dependent deacetylation, O-AADPR, might trigger a confor-

mational change of the SIR–chromatin complex to favour

repression (Liou et al, 2005; Onishi et al, 2007; Martino et al,

2009).

Importantly, the deacetylation-dependent increase in affi-

nity of the SIR holocomplex for chromatin, and the increase

in linker DNA protection, depends crucially on the presence

of Sir3. This is consistent with previous results which showed

that exogenously added O-AADPR enhances the binding of

both Sir3 and the SIR holocomplex to chromatin (Martino

et al, 2009). A further study showed that addition of an excess

of acetylated peptides and NAD to SIR–chromatin assemblies

generated a structure that appeared more compact by elec-

tron microscopy (Johnson et al, 2009), perhaps reflecting a

conformational change in the SIR complex (Liou et al, 2005).

Nevertheless, O-AADPR is probably neither absolutely req-

uired for SIR complex loading nor for silencing, since repres-

sion can be achieved in a strain devoid of NAD-dependent

deacetylases if an ectopic HDAC is fused to Sir3 (Chou et al,

2008) or if Sir3 is overexpressed in a H4K16R background

(Yang and Kirchmaier, 2006). Taken together, our data sup-

port a scenario in which the sequential loading of Sir2-4

Figure 5 Methylation of H3K79 by Dot1 affects neither linker DNA
accessibility nor Sir2-4 loading onto chromatin. The Sir2-4 hetero-
dimer (A) or Sir3 (B) was titrated into a constant amount of
unmodified or H3K79me 6mer of nucleosomes. Samples were ana-
lysed as in Figure 2. Unmodified or H3K79me chromatin were
challenged with an increasing amount of MNase in absence (C) or
presence (D, E) of the indicated amount of the SIR complex. The
6mer DNA band alone (C, E) or the 3mer to 6mer bands (D), shown
by black arrows, were quantified and normalized to the input. The
histograms show the ratio between the amount of quantified DNA
from H3K79me over unmodified chromatin for the indicated MNase
titration point.
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onto nucleosomes containing H4K16ac, its NAD-dependent

deacetylation and the loading of Sir3, sequentially promote a

stable assembly that protects linker DNA from exogenous

factors (Figure 6).

Boundary formation and reduction of SIR holocomplex

affinity by histone modifications

The observation that H4K16ac might provide a boundary for

heterochromatin spreading (Kimura et al, 2002; Suka et al,

2002) seems counterintuitive given the results described

above. However, H4K16ac does affect other processes beyond

SIR complex association to chromatin, most notably, the

recruitment of the histone methyltransferase Dot1 to chro-

matin (Altaf et al, 2007). Given that Sir2-4 preferentially

binds chromatin carrying H4K16ac, we propose that Dot1

competes with the recruitment of Sir2-4, and not as proposed

earlier, with Sir3 (Altaf et al, 2007). On the other hand, the

anti-silencing role of the methylation mark itself, H3K79me, is

most likely a reflection of reduced interaction between Sir3

and methylated chromatin (Ng et al, 2002, 2003; van

Leeuwen et al, 2002; Altaf et al, 2007; Onishi et al, 2007;

Martino et al, 2009). Consistently, we found that nucleo-

somes bearing H3K79me neither affect the binding of the

Sir2-4 heterodimer, nor was there an inherent change in

structural properties of H3K79me-containing chromatin. This

is consistent with crystallographic analyses which argue that

H3K79me does not alter the structure of the nucleosome

(Lu et al, 2008). Given that no enzyme has been found so

far that removes the H3K79me mark, depletion of this mark

may depend on histone eviction or on sequential dilution

through rounds of DNA replication. Its slow removal renders

H3K79me a more stable barrier to the spreading of the SIR

complex than H4K16ac, which instead recruits Sir2-4 and

promotes the spread of repression (Figure 6).

The third histone mark correlated with active chromatin in

yeast is the acetylation of H3 on K56. In contrast with

H3K79me, H3K56ac is clearly subject to active deacetylation.

Here, we show that Sir2 is unable to remove the H3K56ac

mark in vitro, which indirectly supports previous work

showing that H3K56ac is primarily deacetylated by two Sir2-

related enzymes: Hst3 and Hst4 (Celic et al, 2006; Maas et al,

2006). Indeed, Sir-mediated repression cannot be established

in the absence of these two enzymes, although Sir proteins

still bind telomeres in an hst3Dhst4D mutant (Yang et al,

2008b). Consistent with our work, this suggests that the

H3K56ac mark does not completely block SIR–chromatin

interaction.

How then does H3K56ac impair the formation of silent

chromatin? Using our in vitro system, we found that H3K56ac

affects both the affinity with which SIR complexes bind

chromatin and the formation of a chromatin structure that

is less accessible to MNase attack. The observed drop in

affinity of SIR holocomplex for chromatin agrees with an

in vivo study, which suggested that H3K56ac facilitates Sir

protein displacement and RNA polymerase II elongation

within heterochromatin regions (Varv et al, 2010). Our

Figure 6 Combinatorial histone modifications distinguish silent and active chromatin regions. (A) Outline of the role played by different
histone modifications on Sir protein loading and chromatin structure. (B) The Sir proteins are recruited onto chromatin by protein–protein
interactions and bind tightly unmodified nucleosomes driving gene silencing. Spreading of the SIR complex is promoted by H4K16ac that
recruits the Sir2-4 heterodimer yet prevents the ectopic spreading of Sir3 alone. The NAD-dependent deacetylation reaction of H4K16ac by Sir2
generates a high-affinity binding substrate for Sir3 and the synthesis of O-AADPR favours the tight association of the SIR complex to
unmodified nucleosomes. H3K56ac and H3K79me generate a boundary to the spreading of the SIR complex mainly by reducing the binding
affinity of the Sir2-4 heterodimer and the Sir3 protein, respectively. The acetylation of H3K56 and H4K16 also enhance the accessibility of the
chromatin fibre, unlike methylation of H3K79.
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observation that H3K56ac increases accessibility of the

linker DNA is consistent with an increase in spontaneous

(but transient) unwrapping of the DNA from the histone

octamer, which may reflect the position of H3K56 at the

entry/exit point of the nucleosomal DNA (Figure 4A;

Neumann et al, 2009). It is striking that even SIR-saturated

arrays showed increased linker DNA accessibility in the

presence of H3K56ac, indicating that SIR binding cannot

overcome the effect of H3K56ac on nucleosomal structure.

Although it is unclear why this modification reduces SIR

complex binding, this and the increased linker DNA exposure

are likely to account for the anti-silencing effect of the

H3K56ac mark.

To conclude, we propose that the euchromatic mark

H4K16ac is required for the formation of both active and

silent chromatin. The process of creating stable silent and

active states is not an one-step event, but requires positive

feedback loops. H4K16ac may be the starting point for silent

domains, which are reinforced by the Sir2 deacetylation

reaction and possibly the generation of O-AADPR, and active

domains, where it promotes H3K79 methylation. These inter-

dependent pathways are conserved throughout evolution and

mathematical modelling clearly shows that such networks

are required to establish a stable binary switch (Dodd et al,

2007; Mukhopadhyay et al, 2010). Here, we have demon-

strated that H4K16ac is actively implicated in the establish-

ment of yeast silent chromatin, being the first histone mark

shown to recruit Sir proteins to chromatin.

Materials and methods

SIR purification and chromatin reconstitution
In vitro reconstitution of SIR-bound chromatin was carried out
essentially as described (Cubizolles et al, 2006; Martino et al, 2009).
Briefly, the Sir proteins were expressed in sf21 insect cells with
baculoviruses generated using BD BaculoGoldTM, BD-Biosciences.
Co-infection was used to produce the Sir2-3-4 complex, the catalytic
dead Sir2cd-3-4 and the Sir2-4 heterodimer, a single infection was
used to produce the Sir3 protein alone (Cubizolles et al, 2006).
Recombinant X. laevis histones were use to reconstitute histone
octamers as described previously (Luger et al, 1997). Chromatin
was assembled in vitro by adding increasing amounts of purified
histone octamer to a constant amount of DNA arrays containing six
601-Widom positioning elements separated by 20 bp of linker DNA,
referred as 601-167-6mer (Lowary and Widom, 1998). An unspecific
DNA sequence of 147 bp (referred as ‘competitor’ on the figures)
was added to the mix in order to bind the excess of histone
octamers subsequent to the saturation of the 601-167-6mer (Huynh
et al, 2005). Cy5-labelled 601-167-6mer was generated by filling the
50 overhang-ends of an EcoRI site with Klenow enzyme (NEB,
accordingly to manufacturer’s instruction), using d-CTP-Cy5 (GE
Healthcare). The free nucleotides were then separated from the
Cy5-labelled array using small Bio-spin columns (Bio-Rad). DNA
and histones were mixed in 40 ml of buffer A (10 mM TEA pH 7.4
and 1 mM EDTA) and 2 M NaCl on ice, and chromatin was
reconstituted by step dialysis in buffer A containing 1.2, 1, 0.8 or
0.6 M NaCl for 2 h at 41C and in buffer A overnight (Lee and
Narlikar, 2001). The 601-167-6mer was routinely prepared at a final
nucleosomal concentration of 10�6 M. Increasing amounts of Sir
proteins were added to the 601-167-6mer diluted to 5�10�8 M or
2.5�10�8 M in 10 mM TEA pH 8, 25 mM NaCl, 0.05% Tween-20 on
ice and after 10 min incubation the samples were fixed with
0.0025% glutaraldehyde for 10 min on ice. The fixation yields
slightly sharper bands but the results are very similar without
fixation. When chromatin deacetylation was coupled to Sir protein
loading, SIR-bound chromatin was incubated with or without
150mM NAD for 15 min at 301C before incubation on ice for a
10 min fixation as above. The samples were routinely run at 80 V for
90 min at 41C in a 0.7% agarose gel 0.2� TB: 18 mM Tris, 18 mM

Boric acid. The gel was soaked for 20 min in 1� SYBRs Safe and
the DNA was visualized in a Typhoon 9400 scanner.

Preparation of the histone modifications
Methylation of H3K79 was carried out on reconstituted chromatin
as described before (Martino et al, 2009). Briefly, 0.8 pmol of
recombinant Dot1 was incubated with 8 pmol of reconstituted 601-
167-6mer in 25 mM Tris pH 7.9, 20 mM NaCl, 0.4 mM EDTA, with or
without 160 pmol of S-adenosylmethionine (SAM) at 301C for
30 min, then 160 pmol of SAM was added and the reaction was
continued for 30 min. Mass spectrometry analysis showed that
H3K79 is mono-, di- and, to a lesser extent, tri-methylated on at
least 50% of the available K79 residues (Frederiks et al, 2008;
Martino et al, 2009). The chromatin was then stored at 41C.

Homogeneous acetylated histone H3 at the lysine 56 was
obtained using an aminoacyl-tRNA synthetase and tRNACUA pair
created by directed evolution in E. coli (Neumann et al, 2008). An
unmodified control was prepared in parallel. Histone octamers were
assembled as described previously (Luger et al, 1997) and kept at
41C before chromatin reconstitution.

Full acetylation of H4K16 was obtained by NCL as described
previously (Shogren-Knaak et al, 2006). Briefly, the H4 N-terminal
peptide containing residues 1–22 and acetylated lysine at position
16 was synthesized using Fmoc (N-(9-fluorenyl)methoxycarbonyl)-
based solid-phase synthesis and activated at the C-terminus by
thioesterification. Subsequently, the globular X. laevis H4D1-
22,R23C was ligated to the activated H4 peptide and the ligation
product was purified as described previously (Shogren-Knaak
et al, 2006). Identity and purity of the histones were verified by
SDS–PAGE as well as ESI-MS (Supplementary Figure S1). Histone
octamers were assembled as described previously (Luger et al,
1997) and kept at 41C before chromatin reconstitution.

MNase digestion assay
MNase digestion was carried out in 20 ml of 10 mM TEA pH 8,
1.5 mM CaCl2, 25 mM NaCl, 0.05% Tween-20. In all, 1 pmol of
601-167-6mer was digested with increasing amounts of MNase, as
detailed in the figures, for 12 min on ice. The digestion was stopped
by adding 10 mM EGTA, proteins were removed by proteinase K
digestion for 15 min at 301C and the samples were run at 65 V for
60 min in a 1.2% agarose gel 1� TBE: 90 mM Tris, 90 mM Boric
acid, 2 mM EDTA. Digestion of SIR-bound chromatin was performed
on 601-167-6mer pre-incubated with the indicated amount of Sir
proteins for 10 min on ice. MNase digestion of deacetylated
chromatin was performed on 601-167-6mer incubated with
0.66 pmol of Sir2-3-4, Sir2cd-3-4 or Sir2-4 for 15 min at 301C with
or without 150mM NAD and recovered on ice. Concerning the Sir2-
3-4 complex, similar results were obtained by incubating the
nucleosomal array with 0.66 pmol of Sir2-4 at first and adding
0.66 pmol of Sir3 before the recovery on ice. In order to strengthen
our observations, different batches of modified and unmodified
chromatins were compared.

Deacetylation reaction
Deacetylation of 2 pmol of reconstituted chromatin was performed
in 30 ml of 25 mM Tris pH 8, 50 mM NaCl in presence of 5 pmol of
the Sir2-3-4 complex, the Sir2cd-3-4 mutant or Sir2-4 and 150mM
NAD for 30 min at 301C and stopped by addition of 4� Laemmli
buffer. Similar results were obtained in 25 mM Tris pH 8, 137 mM
NaCl, 2.7 mM KCl and 1 mM MgCl2. The acetylation state was
determined by immunoblotting using acetylation mark-specific
antibodies (anti-H3K56ac Upstate #07-677, anti-H4K16ac Serotec
AHP417) and H3 for loading (anti-H3 Abcam ab1791-100).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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3 THE SIR3 C-TERMINUS BINDS THE NUCLEOSOME AND MEDIATES SIR3 

HOMODIMERIZATION 

3.1  THE AAA+ ATPASE-LIKE DOMAIN OF SIR3 BINDS THE NUCLEOSOME IN A H3K79ME 

SENSITIVE MANNER 

The work presented in this experimental section was published, together with work done by others, in Structural basis 

for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. Ehrentraut S, 

Hassler M, Oppikofer M, Kueng S, Weber JM, Mueller JW, Gasser SM, Ladurner AG, Ehrenhofer-Murray AE (2011) 

Genes Dev 25: 1835-1846 

The text and the figure have been edited to fit in the present PhD thesis. I performed and interpreted all experiments 

shown here and wrote the text which was edited by SK, SMG and AEE prior to publication. MH purified the Sir3 AAA 

domain. SMG supervised the work presented here. Recombinant yeast Dot1 was a kind gift of Fred van Leeuwen. 

Detailed material and methods can be found in the original publication. 

The most important finding of this work is that the Sir3 AAA domain is able to bind the nucleosome in vitro, and this 

interaction is influenced by the methylation state of H3K79. 

Brief introduction  

Full-length Sir3 has the ability to bind to chromatin (Georgel et al, 2001), and this binding is sensitive to methylation of 

H3K79 in the nucleosome core region (Martino et al, 2009; Oppikofer et al, 2011). Recognition of the nucleosomal face 

has been attributed to both the Sir3 N-terminal BAH domain as well as a large C-terminal fragment (aa 620-978) that 

encompasses the AAA domain (Hecht et al, 1995; Connelly et al, 2006; Altaf et al, 2007; Onishi et al, 2007). Genetic 

and biochemical evidence indicates that the BAH domain is sensitive to H3K79 methylation (Onishi et al, 2007; 

Buchberger et al, 2008; Sampath et al, 2009), yet the binding of the large C-terminal region of Sir3 to an H3 peptide (aa 

67-89) is also sensitive to methylation of H3K79 (Altaf et al, 2007). 

 

The Sir3 protein - Schematic representation of the modular organization of the Sir3 protein encompassing an N-

terminal bromo-adjacent homology (BAH) domain and C-terminal AAA+ ATPase-like (AAA) and winged helix-turn-

helix (wH) modules. The numbering refers to the primary sequence of the protein. 

Results 

To address the contribution of the AAA domain to chromatin binding, we compared its association with recombinant 

nucleosomal arrays with that of full-length Sir3. Increasing amounts of recombinant full-length Sir3 and AAA domain 

(aa 530-845) were incubated with a constant amount of a 6-mer of regularly spaced nucleosomes reconstituted on the 

601-Widom sequence, as described earlier (Martino et al, 2009). Binding was analyzed by native agarose gel 

electrophoresis. We also included a shortened AAA domain lacking the N-terminal -helical extension involved in 

oligomerization of this domain in the crystal (AAA∆N, aa 545-845), since the absence of these residues in full-length 

Sir3 caused a significant loss of telomeric silencing in vivo (Ehrentraut et al, 2011). The titrations show that the AAA 

domain has chromatin-binding capacity, although it is 2-3 fold reduced compared with full-length Sir3 (Figure 3A). The 

AAA∆N protein bound chromatin like the full-length AAA domain, indicating that this N-terminal arm is not a major 

chromatin interaction site (Figure 3A). 

To test whether the binding of the AAA domain was sensitive to H3K79 methylation in the context of nucleosomes, we 

incubated the AAA domain with mononucleosomes that had been methylated by recombinant yeast Dot1 (Figure 3C). 

As monitored by mass spectrometry, these nucleosomes are methylated between 50% and 70%, containing mono-, di-, 

and tri-methylated H3K79 residues (Martino et al, 2009). Previous studies showed that all methylated forms are 

functional in disrupting silencing (Frederiks et al, 2008). Indeed, the binding affinity of the AAA domain to 

nucleosomes was reduced by roughly 2 fold upon H3K79 methylation (Figure 3C). In the same conditions, the binding 

affinity of full-length Sir3 was reduced by approximately 6 fold by H3K79 methylation (Figure 3D). We conclude that 

the Sir3 AAA domain binds both a hexamer and a mononucleosome, with a preference for unmethylated H3K79, yet it 

is likely that the N-terminal BAH domain also contributes to the pronounced sensitivity of full-length Sir3 to H3K79 

methylation. 
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Binding of the Sir3 AAA to chromatin is sensitive to methylation of H3K79 (A) The Sir3 protein, the Sir3 AAA+ 

ATPase-like domain (AAA; aa 530-845) or an N-terminal truncation (AAA∆N; aa 545-845) were titrated over a 

constant amount (25 nM) of unmodified 6-mer nucleosomes. (B) SDS-PAGE gel of 1 µg of the Sir3 protein, the Sir3 

AAA domain and the N-terminal truncation used in the experiments above stained with Coomassie brilliant blue. The 

Sir3 AAA domain (C) or Sir3 full-length (D) were titrated over a constant amount (25 nM) of unmodified or H3K79me 

mononucleosomes. Samples were separated by native agarose gel electrophoresis, and Cy3- or Cy5-labeled DNA was 

visualized. The images are representative of at least three independent experiments, quantifications show the mean 

value  s.e.m. of the % of unbound template compared to the input. 
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3.2  THE HOMODIMERIZATION OF THE SIR3 C-TERMINAL WINGED-HELIX DOMAIN IS 

ESSENTIAL FOR SILENT CHROMATIN FORMATION 

The work presented in this experimental section corresponds to a manuscript currently under review at The EMBO 

Journal. 

Dimerization through the yeast Sir3 C-terminal winged helix domain is essential for heterochromatin formation. 

Oppikofer M, Kueng S, Keusch JJ, Hassler M, Ladurner AG, Gut H, Gasser SM 

Author contributions: MO, SK and SMG designed most experiments and interpreted results. MO performed most 

experiments with the following exceptions. HG collected X-ray diffraction data, solved the Sir3 wH structure, produced 

the wH alignment and supervised the structural work. SK performed pull-down experiments from insect cells and 

helped with in vivo assays and ChIP. JJK performed SEC-MALS analysis and helped with cloning and purification of 
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Abstract  

Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, 

which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the 

AAA+ ATPase-like family, contacts both the histone H4 tail and the nucleosome core. Here we present the structure 

and function of the conserved C-terminal tail domain of Sir3, comprising 138 amino acids. This module adopts a variant 

winged helix-turn-helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the 

self-association mediated by this domain is essential for holo-Sir3 dimerization. Its loss impairs Sir3 loading onto 

nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an 

unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3 cells. In contrast, related but 

monomeric wH domains of archaeal and human members of the Orc1/Sir3 family have DNA binding activity. We 

speculate that a dimerization function for the wH evolved with Sir3’s ability to facilitate heterochromatin formation. 

Introduction 

Large regions of eukaryotic chromatin assume an epigenetically heritable structure that is refractory to gene expression, 

called heterochromatin or, in budding yeast, silent chromatin. From yeast to man, gene silencing is thought to stem from 

a more compact folding of the chromatin fiber that sterically restricts DNA accessibility (Gottschling, 1992; Singh and 

Klar, 1992; Loo and Rine, 1994). Covalent modifications of histone proteins play a major role in determining chromatin 

compaction, and hypoacetylated histones are characteristic of silent chromatin in budding yeast (Braunstein et al, 1993; 

Suka et al, 2001). The binding of non-histone complexes along the nucleosomal fiber appears to repress productive 

transcription. In budding yeast this is achieved by the binding of a heterotrimeric complex of Silent Information 

Regulator (Sir) proteins Sir2, Sir3 and Sir4, each of which is essential for gene silencing (Rine and Herskowitz, 1987).  

The Sir proteins themselves do not recognize specific DNA sequences, but are recruited to discrete loci through protein-

protein interactions with mutifunctional factors like Rap1, ORC and Abf1, which recognize specific DNA motifs at 

telomeres and the silent homothallic mating type (HM) loci. At HM loci an intermediary protein called Sir1 bridges 

between these factors and the Sir complex (reviewed in (Rusche et al, 2003)). From these initial nucleation sites, or 
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silencers, the Sir complex spreads for 3-20 kb along the chromatin fiber (Hecht et al, 1996; Strahl-Bolsinger et al, 
1997). 

The establishment of silent chromatin requires the NAD-dependent deacetylase activity of Sir2 (Tanny et al, 1999; Imai 

et al, 2000; Smith et al, 2000; Yang and Kirchmaier, 2006), while Sir3 and Sir4 are thought to play structural roles in 

the silent chromatin formation (reviewed in (Gasser and Cockell, 2001; Rusche et al, 2003; Moazed et al, 2004)). Sir4 

forms a tight complex with Sir2, and stimulates Sir2 activity in vitro (Ghidelli et al, 2001; Hoppe et al, 2002; Tanny et 
al, 2004; Cubizolles et al, 2006). The C-terminal coiled-coil domain of Sir4 dimerizes and interacts with Sir3; this 

interaction is essential for silencing as point mutations in this Sir3-Sir4 interface abolish assembly of the trimeric Sir 

complex (Chang et al, 2003; Rudner et al, 2005; Ehrentraut et al, 2011).  

The spread of Sir-mediated repression is limited both by histone modifications that lower affinity of Sir3 for chromatin 

and by the limited concentration of Sir proteins in the nucleus (Maillet et al, 1996; Marcand et al, 1996; van Leeuwen et 
al, 2002; Martino et al, 2009; Oppikofer et al, 2011). The overexpression of Sir3, or a balanced overexpression of Sir4 

and Sir3, leads to the extension of the silent chromatin domains at telomeres or enhanced repression at silencer-flanked 

reporter genes (Renauld et al, 1993; Gotta and Gasser, 1996; Hecht et al, 1996; Maillet et al, 1996; Strahl-Bolsinger et 

al, 1997), suggesting that Sir3, and its dosage, play major roles in Sir complex spreading and transcriptional repression.  

SIR3 arose from the duplication of the ORC1 gene (Kellis et al, 2004), and both encode a highly conserved N-terminal 

BAH domain, a C-terminal AAA+ ATPase-like domain, plus an extreme C-terminal domain, which assumes a winged 

helix structure in archaeal Orc1 (Gaudier et al, 2007). A chimeric protein formed by exchanging the BAH domain of 

Sir3 with that of Orc1 can restore mating in a sir3∆ strain, but no other Orc1 subdomain is able to support silencing 

when integrated into Sir3 (Bell et al, 1995). Overexpression of a N-terminal domain of Sir3 reinforces telomere-

proximal silencing in a SIR+ strain and partially restores mating at HM loci in a sir3∆ background if Sir1 is 

overexpressed (Gotta et al, 1998; Connelly et al, 2006). Consistently, biochemical and structural analyses show that the 

Sir3 BAH domain interacts with the nucleosome (Onishi et al, 2007; Buchberger et al, 2008; Sampath et al, 2009; 

Armache et al, 2011). Both H3K79 methylation by Dot1 and H4K16 acetylation by Sas2 reduce the association of Sir3 

BAH with chromatin (Onishi et al, 2007), or of holo-Sir3 with nucleosomes in vitro (Martino et al, 2009; Oppikofer et 

al, 2011), indicating that the BAH domain helps to restrict Sir3-mediated silencing to unmodified nucleosomes.  

The AAA+ ATPase-like (AAA) domain of Sir3 (aa 530-845) has lost its ATPase activity, but has gained specific 

contacts with both Sir4 and unmodified nucleosomes (Ehrentraut et al, 2011). Mutagenesis confirmed that both 

interactions are essential for silencing. The third structural subdomain of Sir3 occupies its extreme C-terminus (aa 843-

978). When fused to lexA and targeted to a subtelomeric reporter, this fragment can recruit Sir proteins and nucleate 

transcriptional repression (Liaw and Lustig, 2006). It was also reported to self-associate in a yeast-two-hybrid assay 

(Liaw and Lustig, 2006). Pull-down experiments argued that a slightly longer Sir3 C-terminal fragment (aa 832-978) 

might bind a central domain of Sir3 (aa 464-728), which contains the N-terminal portion of the AAA+ ATPase module 

(King et al, 2006). While these results suggested that the Sir3 C-terminus might harbor homo- or hetero-dimerization 

activities, the importance of such interactions for silencing or their redundancy with other potential dimerization 

domains in Sir3 was never rigorously tested. It is important to note that this C-terminal domain is conserved among 

Orc1 homologues and corresponds to the domain III of ORC/CDC6, which in A. pernix and other archaea binds DNA 

(Bell et al, 1995; Liu et al, 2000; De Felice et al, 2004; Singleton et al, 2004). X-ray structure analysis showed that the 

archaeal domain adopts a winged helix-turn-helix fold (Gaudier et al, 2007). Given that the sequence identity between 

the C-termini of archaeal Orc1 and yeast Sir3 is very low (13%), structure-function predictions remain highly 

speculative. 

To sort out the role of this extreme C-terminal domain of Sir3, we first solved its X-ray crystal structure to 2.7Å 

resolution. These 138 amino acids form a winged helix-turn-helix variant (Sir3 wH) that is reminiscent of domain III of 

Orc1/Cdc6, yet the Sir3 wH has acquired a strong homodimerization function and fails to bind DNA. We show that 

deletion of the domain (Sir3ΔwH), or loss of its dimerization potential, ablates silencing, which can be restored by 

attaching a bacterial dimerization motif to Sir3ΔwH. With a combination of structural, biochemical and genetic 

analyses we demonstrate that the last 138 aa of Sir3 evolved as the crucial homodimerization motif within Sir3 that is 

essential for the assembly of Sir-dependent silent chromatin in yeast. Distinct features of the wH structure distinguish 

human and archaeal Orc1 from the silencing-competent S. cerevisiae Sir3 paralogue.  

Results 

The C-terminal 138 aa of Sir3 form a winged helix-turn-helix variant that homodimerizes 

SIR3 arose from the duplication of the ORC1 gene with which it shares a multidomain organization (Figure 1A) (Bell et 
al, 1995; Kellis et al, 2004). While the extreme C-terminal region of archaeal A. pernix Orc1 folds as a winged helix-

turn-helix domain that binds DNA (De Felice et al, 2004; Dueber et al, 2007; Gaudier et al, 2007), the function of the 

homologous domain in ScSir3 was unclear. The multiple sequence alignment of selected archaea, vertebrate, and yeast 

Orc1/Sir3 wH domains revealed important evolutionary changes (Figure 1B). Notably, yeast Orc1/Sir3 wH domains 

possess a ~30 residues insertion (Figure 1B, orange residues) which is missing in archaea and higher eukaryotic Orc1 
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wH domains. In addition, the specific ApOrc1 residues implicated in DNA binding (Gaudier et al, 2007) are poorly 

conserved in yeast and higher eukaryotes (Figure 1B, blue residues). 

To determine the biochemical and structural features of the predicted Sir3 wH we expressed the last 138 aa of Sir3 (aa 

840-978) in E. coli and purified the protein to ≥ 95 % purity (Figure 1C). Surprisingly, molecular mass determination of 

the purified Sir3 840-978 aa (15.9 kDa) using size exclusion chromatography coupled to multi-angle light scattering 

(SEC-MALS) yielded a mass of 33.1 kDa, consistent with recombinant Sir3 840-978 aa being a homodimer in solution 

(Supplemental Figure S1). The folding of this C-terminal module was determined by solving its X-ray crystal structure.  

The extreme C-terminal domain of Sir3 crystallized in space group P3212 with one molecule per asymmetric unit and 

its structure was solved to 2.7 Å resolution by the multi-wavelength anomalous diffraction (MAD) method using a 

seleno-methionine derivative (Table I). The final crystal structure displays clear electron density for residues 849-975, 

that fold into a wH variant featuring a total of 7 -helices and a 3 stranded -sheet wing (Figure 1D). A search of the 

Protein Data Bank (PDB) using DALI (Holm and Rosenstrom, 2010) indicated that the wH domains of archaeal Orc1 

(A. pernix, 2V1U) (Gaudier et al, 2007), Orc2 (A. pernix, 1W5T) (Singleton et al, 2004), CDC6P (P. Aerophilum, 

1FNN) (Liu et al, 2000), and CDCP6 (S. solfataricus, 2QBY) (Dueber et al, 2007) are most similar. 

Superposition of Sir3 wH with an archaeal homolog (ApOrc1 wH; (Gaudier et al, 2007); Figure 1E) showed that the 

core helix-turn-helix structures and the -sheet wing are highly similar, but also revealed important structural 

differences. The most significant differences are due to an additional stretch of 30 aa we identified by sequence 

alignment (Figure 1B, orange residues), which is absent in the archaeal ApOrc1. This insert is found between the wH 

core -helices three (3, aa 883-896) and four (4, aa 928-938) and forms two additional -helices (a, b) that are 

connected by an elongated turn in coiled conformation (Figure 1B, 1E; highlighted in orange).  

Whereas the asymmetric unit of Sir3 in the crystal contains one Sir3 wH module, the crystal packing reveals two 

symmetry-related Sir3 wH proteins in the crystal lattice (Figure 1F). The 30 aa -helical insertion does not alone 

mediate Sir3 wH-wH dimerization, but contributes most to the buried solvent-accessible surface area of the protein-

protein interface covering 1500 Å2 ,  with leucine 861 and valine 909 being located in the hydrophobic core of this 

contact (Figure 1F). This large contact surface is likely to account for the strong homodimerization observed in solution 

(Supplemental Figure S1), as predicted by PISA (Protein Interfaces, Surfaces and Assemblies) calculations based on the 

crystal packing (Krissinel and Henrick, 2007). 

In order to test the importance of the wH module for Sir3 dimerization in a competitive assay, we co-expressed in insect 

cells a His-tagged full length Sir3 (Sir3-His) with a Myc-tagged full length Sir3 (Sir3-Myc) or Sir3 lacking the wH 

module (Sir3∆wH-Myc; aa 1-850). Affinity purified Sir3-His was tested for interaction with Sir3-Myc and Sir3∆wH-

Myc using an anti-Myc antibody on proteins recovered on Ni-beads, which bind the His-tag. Strikingly, we observed 

that the deletion of the wH domain reduced Sir3 self-association to background levels, whereas full length Sir3-Myc 

was efficiently recovered with full length Sir3-His (Figure 1G). This suggests that Sir3 wH-mediated homodimerization 

accounts for most, if not all, Sir3 self-interaction, at least in its soluble form. 

The wH fails to interact with DNA or chromatin but promotes Sir3 loading onto nucleosomes 

Past work has implicated both the BAH and the AAA domains in dimerization, and in the spreading of Sir3 along the 

nucleosomal fiber (Connelly et al, 2006; Armache et al, 2011; Ehrentraut et al, 2011). Moreover, the Sir3 wH has been 

proposed to heterodimerize by binding a central Sir3 domain (King et al, 2006; Liaw and Lustig, 2006). In contrast, the 

archaeal ORC/CDC6 wH modules were shown to bind to DNA in concert with the AAA+ ATPase-like domain (De 

Felice et al, 2004; Singleton et al, 2004; Dueber et al, 2007; Gaudier et al, 2007). The residues implicated in DNA 

binding within ApOrc1, however, are not conserved in Sir3 wH Figure (Figure 1B, 2A; blue residues; (Gaudier et al, 

2007)). 

To test various models of DNA binding, domain interaction and cooperation in chromatin association, we purified two 

additional Sir3 C-terminal fragments: the AAA+ ATPase-like (AAA) domain alone (aa 530-845; (Ehrentraut et al, 

2011)) and the entire Sir3 C-terminal half, which includes both AAA+ and wH domains (Sir3C; aa 527-978; Figure 2B; 

Supplemental Figure S2A). We first incubated increasing amounts of the Sir3 wH and the AAA module with a constant 

amount of a Cy3-labelled 147 bp DNA (Huynh et al, 2005; Martino et al, 2009), and monitored interaction by gel shift 

assay. Scoring the loss of unbound DNA template, we found that Sir3 AAA readily binds DNA, while Sir3 wH does 

not, even at 2500-fold molar excess (Figure 2C). To see if the Sir3 wH instead binds a chromatin template, we repeated 

the titration into a constant amount of hexameric (6-mer) nucleosomal arrays, reconstituted from bacterially expressed 

histones and the Widom repeat (Martino et al, 2009). The AAA domain efficiently interacted with this array (see also 

(Ehrentraut et al, 2011)), while Sir3 wH was unable to bind chromatin, even at 2500-fold molar excess (Figure 2D).  

In order to test whether the dimerization capacity of the wH domain contributes to the DNA and chromatin binding 

properties of Sir3 AAA, we compared the binding of the AAA domain with the larger Sir3C fragment, which includes 

the wH domain (Figure 2B). Strikingly, the presence of the wH, which does not interact with DNA per se, increased 

Sir3C-DNA binding affinity by roughly 4-fold over that of the AAA module alone (Figure 2E). Similarly, when we 

compared the loading of AAA and the larger Sir3C onto the 6-mer array, the chromatin binding affinity of the larger 
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Sir3C fragment was again roughly 4-fold higher (Figure 2F). Nonetheless, the pull-down experiments shown in Figure 

1G indicated that the wH does not interact with the AAA module. Indeed, we failed to co-precipitate purified wH and 

AAA domains under a variety of conditions, nor could we detect interaction by isothermal titration calorimetry 

(Supplemental Figure S2B, S2C). Thus, the simplest explanation is that homodimerization of the wH module within the 

full Sir3C domain promotes the observed cooperative binding of neighboring Sir3C molecules onto chromatin, 

indirectly increasing affinity for the 6-mer array. Direct contacts with nucleosomes and DNA appear to be mediated 

exclusively by the AAA domain (Figure 2, see also (Ehrentraut et al, 2011)). 

Sir3 wH is essential for silencing in vivo, and can be substituted by a bacterial dimerization motif 

To test whether Sir3 dimerization through its wH module is important to form silent chromatin in vivo, we examined the 

restoration of silencing in a sir3∆ strain complemented with various Sir3 constructs expressed from a plasmid (Figure 

3A). The constructs were cloned together with 1 kb of Sir3 5’- and 3’-UTR to ensure endogenous expression levels, 

which were checked routinely by Western blot (Figure 3B). As expected, expression of full length SIR3 fully restored 

silencing of reporter genes inserted at telomere 7L and to a large extent at the HMR locus (Figure 3E). We then tested 

the complementation efficiency of a construct lacking the wH module (Sir3∆wH; aa 1-850). Consistent with pull-down 

data (Figure 1G), deletion of the wH module disrupted the dimerization capacity of Sir3 as tested by glycerol gradient 

sedimentation (Supplemental Figure S3A, S3B). Importantly, we found that Sir3∆wH, which was expressed at wild-

type Sir3 levels, failed to restore silencing at telomere 7L and HMR (Figure 3B, 3E). 

We next examined whether Sir3 wH homodimerization was necessary for silencing. Because PISA analysis suggested 

that leucine 861 (L861) and valine 909 (V909) contribute strongly to the wH-wH hydrophobic interface, we mutated 

these two key residues to alanines (Sir3-AA; L861A-V909A). V909 is located at the C-terminal end of the -helix “a”, 

which is part of the yeast specific insert described above. It contacts L861 of the other Sir3 wH unit within the 

crystallized homodimer (Figure 1B, 1F, Figure 3C). Like Sir3∆wH, the Sir3-AA mutant had impaired dimerization 

capacity and sedimented as a monomer in a glycerol gradient (Supplemental Figure S3A , S3B). Importantly, the Sir3-

AA double mutant, which was again expressed at levels comparable to wild-type Sir3 (Figure 3B), led to a complete 

loss of silencing of the telomere 7L reporter gene, mimicking a full deletion of SIR3 (Figure 3E; Supplemental Figure 

S4A, S4B). Sir3-AA also weakly decreased silencing at HMR compared to wild-type Sir3 (Figure 3E). Several other 

mutations, such as the triple alanine substitution mutant, L861A-V909A-F926A, or mutation of L861 and V909, singly 

or in combination, into tryptophan (W), arginine (R) or aspartic acid (D) residues, as well as swapping the residues 900-

914 with a short glycine-serine-glycine (GSG) linker, strongly reduced Sir3 protein levels, although they were 

expressed from the same promoters. These mutations, which rendered Sir3 unstable, of course, also compromised 

repression at telomere 7L (hereafter, TPE for Telomere position effect (Gottschling et al, 1990)); Supplemental Figure 

S4A, S4B).  

We reasoned that if Sir3 wH homodimerization were the only essential function of the wH in gene repression, a 

chimeric protein consisting of the Sir3∆wH construct fused to an ectopic dimerization domain might be able to restore 

silencing. To test this, we made use of the well-characterized transcription factor HlyU from Vibrio vulnificus, which 

dimerizes readily and is similar in overall size to Sir3 wH, although it shares no sequence identity (Nishi et al, 2010; 

Liu et al, 2011) (Figure 3D). This chimeric construct (sir3-HlyU), like the AA mutant, was expressed at wild-type Sir3 

levels (Figure 3B) in a sir3∆ strain. Using reporters at both telomere 7L and at the HMR locus, we found that the hybrid 

protein Sir3-HlyU was able to restore silencing completely, with an efficiency indistinguishable from that of full-length 

Sir3 protein (Figure 3E). The fact that an ectopic bacterial dimerization module can functionally replace the wH domain 

of Sir3, conferring silencing function and protein stability, strongly suggests that dimerization is the only essential 

function of the Sir3 wH domain for Sir-mediated repression in vivo. 

Overexpression of Sir3 wH competes with endogenous Sir3 dimerization to relieve TPE 

Given the above findings, and past results showing that SIR3 gene dosage affects repression (Renauld et al, 1993; 

Hecht et al, 1996; Maillet et al, 1996; Strahl-Bolsinger et al, 1997), we reasoned that an excess of Sir3 wH might 

compete for endogenous full length Sir3 dimerization and impair silencing. To test this hypothesis, we cloned the wH 

module under the control of the GAL1 promoter, which allows overexpression in galactose-containing media (Mumberg 
et al, 1994). We introduced this construct in a SIR3+ strain and monitored TPE at telomere 7L and 5R, as well as 

silencing at the HMR locus on plates, containing galactose to induce Sir3 wH expression. Indeed, overexpression of 

Sir3 wH abrogated TPE at the two telomeres scored (Figure 4A; Supplemental Figure S5). On the other hand, Sir3 wH 

overexpression did not affect repression at HMR, where redundant silencers ensure more stable repression (Figure 4B; 

(Maillet et al, 1996; Marcand et al, 1996)).  

To confirm that the Sir3 wH-provoked derepression stems from its ability to dimerize and thereby disrupt essential Sir3-

Sir3 interactions, we introduced structure-based point mutations in the dimerization interface of Sir3 wH. As detailed in 

Figure 3, by introducing the L861A and V909A mutations in the overexpressed Sir3 wH module (LV-AA) we reduced 

the extent of the wH-wH hydrophobic dimerization interface (Figure 3C). We also replaced V909 by an aspartic acid 

(V-D), destabilizing Sir3 wH dimerization by inserting a negative charge at the hydrophobic interface. Both mutated 

Sir3wH domains, LV-AA and V-D, were expressed at similar levels as the wild-type Sir3 wH domain (Figure 4C). 
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Although overexpression of the V-D mutant failed to impair TPE at telomeres 7L and 5R (Figure 4A; Supplemental 

Figure S5), the LV-AA mutant derepressed both sites, albeit less efficiently than the wild-type domain (Figure 4A; 

Supplemental Figure S5). This is consistent with the notion that overexpression of the Sir3 wH domain has a dominant 

negative effect on TPE by interfering with endogenous Sir3 dimerization, and again confirms the importance of the 

large dimerization interface within Sir3 wH domains for Sir-mediated repression. 

Sir3 dimerization is dispensible for Sir complex formation, but is essential for Sir complex assembly on 

chromatin in vivo 

Our in vitro assays revealed that the Sir3 wH domain promotes the loading of Sir3 C-terminus onto a reconstituted 

chromatin template (Figure 2). Given the multiplicity of contacts between the Sir complex and chromatin, we next 

examined whether Sir3 wH homodimerization also promotes the binding of the holo-Sir complex to chromatin in vitro. 

We first expressed Sir3-AA, Sir3∆wH, or wild-type Sir3 in insect cells, together with Sir2 and Sir4, and found that all 

generate stable trimeric complexes with Sir2-4 that can be purified from cell extracts (Figure 5A). The purified holo-Sir 

complexes were then incubated with the 6-mer of reconstituted nucleosomes. Strikingly, disruption of Sir3 dimerization 

by deletion (Sir3∆wH) or mutation (Sir3-AA) of the Sir3 wH domain reduced the binding affinity of the holo-Sir 

complex to chromatin in vitro by roughly 2-fold (Figure 5B). This is consistent with the loss of TPE in cells expressing 

only the Sir3∆wH or Sir3-AA forms of Sir3. 

Given the fact that loss of Sir3 wH homodimerization weakened Sir complex loading in vitro (Figure 5B) and 

compromised TPE in vivo (Figure 3), we asked whether Sir3 wH-mediated dimerization was also necessary for the 

stable binding and spread of Sir complexes along subtelomeric chromatin in vivo. Alternatively, the mutant Sir 

complexes might bind chromatin, but simply fail to repress. To address this, we performed chromatin 

immunoprecipitation (ChIP) analysis using an antibody against Sir4 in strains that express the Sir3 constructs described 

above (Figure 3), driven by the SIR3 promoter and flanked by SIR3 terminator sequences. All constructs are expressed 

at levels comparable to wild-type Sir3 (Figure 3B). Using qPCR on chromatin sheared to obtain a resolution of roughly 

500 bp, we monitored Sir4 binding to the subtelomeric URA3 reporter gene that monitors silencing at telomere 7L, 

along with other genomic locations that support Sir-mediated repression.  

We found that Sir3∆wH failed to support Sir4 loading at native telomeres 6R and 9R, and at the HML-1 gene, while 

there was reduced Sir4 binding at telomere 7L and at the HML-E silencer (Figure 5C). In addition, the dimerization 

mutant sir3-AA reduced Sir4 loading at all telomeres tested (Tel6R, 7L, 9R) as well as at HML-1, while it did not 

affect binding of Sir4 at the HML-E silencer. Consistent with its ability to restore repression, expression of Sir3-HlyU 

restored binding of the Sir4 protein at all loci tested (Figure 5C). This confirms that Sir3 dimerization through the wH 

domain is essential for Sir complex spreading in vivo, although Sir4-silencer binding is independent of Sir3 

dimerization activity. Our ChIP results correlate perfectly with the silencing phenotypes described in Figures 3, and 

reveal that Sir3 wH-mediated dimerization is critical for holo-Sir complex loading or stable association on chromatin in 

vivo. Since the bacterial dimerization domain (HlyU) restores holo-Sir binding, we propose that the Sir3 wH performs 

no other silencing-specific function. 

The S. cerevisiae Orc1/Sir3 wH domain evolved to self-associate prior to gene duplication 

As discussed above, the Orc1/Sir3 family is conserved throughout evolution. The archaeal A. PERNIX Orc1 wH was 

shown to bind DNA (Gaudier et al, 2007), and based on this observation, a similar function was predicted for other 

Orc1 homologues, including the Sir3 wH domain (Norris and Boeke, 2010; Hickman et al, 2011). Having shown here 

that Sir3 wH does not bind DNA, and evolved instead into a dimerization module that is crucial for Sir-mediated 

silencing, we were curious whether the S. cerevisiae and H. sapiens Orc1 wH domains would be more similar to Sir3 or 

to the archaeal protein.  

To shed light on the functional conservation of these wH modules, we purified the equivalent domains of ScOrc1 and 

HsOrc1 after expression in E. coli (Figure 6A). To test whether the ScOrc1 or HsOrc1 wH domains interact with DNA, 

we titrated an increasing amount of each purified protein into a constant amount of Cy3-labelled 147-bp DNA, and 

monitored interaction by gel shift assay. We found that the human Orc1 wH domain bound DNA readily, while the 

yeast Orc1 wH did not (Figure 6B). Next, we investigated the oligomeric states of ScOrc1 and HsOrc1 by SEC-MALS. 

We found that ScOrc1 wH oligomerizes in solution and, in the conditions used here, forms a range of oligomers, 

primarily consistent with 5-7 molecules, but ranging in one experiment up to 27 (Figure 6C). This may reflect a need 

for other subunits of ORC for proper oligomerization. In contrast, the HsOrc1 wH showed no self-association and 

retained a stable monomeric state in solution (Figure 6D). We conclude that there is a fundamental difference between 

ScOrc1/Sir3 and both the archaeal and human Orc1 proteins, in that the ScOrc1/Sir3 wH evolved to promote protein-

protein interactions, losing DNA binding ability. This most likely occurred before an ancient yeast underwent the 

genome duplication that generated the two related SIR3 and ORC1 genes. 

Discussion 

The formation of yeast silent chromatin depends on the recruitment of the Sir proteins by factors that bind specific DNA 

elements, followed by the establishment of Sir-chromatin and Sir-Sir contacts. These layers of interaction contribute to 
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a stable chromatin structure that impairs transcription and protects the linker DNA from nuclease attack. Whereas Sir 

protein recruitment by Rap1, ORC, Abf1 and yYku has been studied extensively, as have interactions between Sir 

domains and chromatin, only a few studies have examined the importance of Sir protein dimerization for repression.  

The Sir3 C-terminal wH domain is necessary and sufficient for Sir3 dimerization 

Sir4 homodimerizes through a C-terminal coiled-coil domain, which also interacts with Sir3, Yku70 and Rap1 (Moretti 
et al, 1994; Tsukamoto et al, 1997; Chang et al, 2003; Murphy et al, 2003; Rudner et al, 2005). Sir4 dimerization has 

been proposed to be necessary for silencing by providing a binding site for Sir3 (Chang et al, 2003; Murphy et al, 

2003). The importance of Sir3 dimerization has never been tested directly, even though Sir3 has the ability to spread 

along chromatin with substoichiometric amounts of Sir2 and Sir4 (Hecht et al, 1996; Strahl-Bolsinger et al, 1997). This 

implied that Sir3-Sir3 interaction might be important for its function in vivo. 

Over the years, various Sir3 domains have been proposed to mediate homo- or hetero-dimerization. Both the AAA 

domain and the BAH domain made suggestive contacts in the crystal packing when crystallized alone (Connelly et al, 

2006; Ehrentraut et al, 2011) or together with a nucleosome (Armache et al, 2011). However, the relevance of this 

finding outside of the crystal context is unclear. Dimerization of the Sir3 BAH could not be detected by co-IP 

(Buchberger et al, 2008) and only a very weak interaction was observed by analytical ultracentrifugation (Armache et 

al, 2011). A Sir3 C-terminal fragment that contained both the AAA and the wH domains appeared to dimerize in 

solution (Chang et al, 2003), while the Sir3 wH and a fragment containing a large N-terminal portion of the AAA 

domain showed some interaction upon bacterial co-overexpression (King et al, 2006). However, no study to date had 

carefully mapped the dimerization interface between Sir3 molecules, nor mutated important residues to monitor both a 

loss of dimerization and of silencing function in vivo. Here we demonstrate unequivocally that the Sir3 C-terminal 138 

residues form a wH module that is necessary and sufficient for dimerization, and that Sir3 homodimerization is crucial 

for Sir complex loading along nucleosomes in vitro and in vivo. Genetic, biochemical and structural data support this 

conclusion rigorously.  

The crystal structure of the wH domain presented here reveals a large hydrophobic dimerization interface (1500 Å2), 

which we show is biologically relevant in contrast to the contact surfaces observed for the BAH and AAA domains 

(Connelly et al, 2006; Ehrentraut et al, 2011). We confirmed Sir3 wH dimerization in solution by SEC-MALS. 

Importantly, Sir3 dimerization in insect cell extracts was reduced to background levels when full length Sir3 was co-

expressed with Sir3 lacking the wH domain (Figure 1G). Finally, while holo-Sir3 was shown to migrate as a dimer in a 

glycerol gradient, Sir3∆wH or Sir3-AA shifted the Sir3 protein toward a monomeric state. Together, these studies 

indicate that dimerization of Sir3 is mostly, if not entirely, mediated by the wH domain. In contrast, we found that the 

AAA domain does not stably dimerizes (Connelly et al, 2006; Ehrentraut et al, 2011), nor does it interact with the wH 

domain by either pull-down or isothermal titration calorimetry (this study). While we cannot rule out that novel 

dimerization interfaces are revealed in Sir3 upon assembly into the holo-Sir complex or upon binding to chromatin, it is 

made less likely by the fact that either deletion or mutation of the Sir3 wH domain reduces the binding affinity of the 

holo-Sir complex to chromatin in vitro. 

The Sir3 wH does not bind DNA or chromatin, but stabilizes the Sir complex on chromatin 

Due to its homology with the crystallized archaeal ApOrc1 C-terminus (Gaudier et al, 2007), the Sir3 wH domain was 

predicted to bind DNA. However, Sir3 wH neither binds DNA nor chromatin in vitro. Instead it forms a homodimer 

that greatly reinforces the loading of the Sir3 C-terminus onto both templates in binding assays (Figure 2). Previous 

work using full-length Sir3 showed that holo-Sir3 can bind DNA and nucleosomal templates, forming oligomeric 

structures in vitro (Georgel et al, 2001; McBryant et al, 2006; McBryant et al, 2008). We attribute these chromatin 

interactions to contacts demonstrated for the BAH and AAA domains (Connelly et al, 2006; Armache et al, 2011; 

Ehrentraut et al, 2011), while Sir3 wH specifically mediates dimerization. 

Our biochemical data suggest that the dimerization of Sir3 wH promotes Sir3 and holo-Sir complex loading onto 

chromatin in vitro, while ChIP data show that it also promotes the propagation and/or stable binding of the holo-Sir 

complex along the chromatin fiber in vivo. Reducing the Sir3 wH dimerization interface by targeted mutagenesis (Sir3-

AA) or deletion of the wH domain, significantly decreased the loading of Sir4 along subtelomeric nucleosomes at 

telomeres 6R, 7L, 9R and across the HML locus in vivo. Consistently, the Sir3-AA or Sir3wH mutants failed to silence 

subtelomeric reporter genes. Remarkably, repression could be completely restored to the wH-deficient Sir3 mutant by 

attaching a bacterial dimerization motif that has no homology with the native Sir3 domain. Reinforcing our conclusion 

that dimerization of Sir3 is crucial for repression, it was reported that expression of the BAH domain could support 

measurable HM silencing only when fused to the dimerization-competent lexA module (Connelly et al, 2006). This 

suggests that dimerization capacity is a general requirement for gene repression, even when it is mediated by an 

alternative mechanism that involves only a subdomain of Sir3. In summary, our data show unequivocably that Sir3 wH-

mediated homodimerization is essential for loading of Sir proteins onto chromatin and for the silencing of underlying 

genes. 
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Consistent with the loss- and gain-of function constructs described above we also demonstrate that overexpression of 

the Sir3 wH domain, but not of a dimerization deficient mutant, ablates TPE. This refines previous data showing that 

overexpression of a large Sir3 C-terminal construct (aa 437-978) derepresses TPE, but only if it includes the Sir3 wH 

domain (Enomoto et al, 2000). Although TPE has been shown to be more easily disrupted than HMR silencing in 

overexpression studies, we note that the deletion of the wH domain fully derepressed both HMR and telomeric 

reporters, demonstrating the general need of Sir3 wH dimerization for silencing.  

A previous study showed that a few amino acid substitutions that do not affect Sir3 wH dimerization in yeast-2-hybrid 

assays, interfered with a tethered repression assay (Y900A, Y964A and K973A; (Liaw and Lustig, 2006)). Our 

structural studies reveal that these residues are not involved in dimerization, and thus their effects may stem instead 

from altered intramolecular secondary structure within Sir3, or Sir3 interfaces with other proteins. However, the fact 

that the HlyU dimerization motif can replace wH to restore TPE, argues against other silencing-specific functions in this 

C-terminal domain.  

Evolutionarily distinct wH domains among Orc1/Sir3 family members 

The basic wH fold that we present here for the Sir3 C-terminal domain is conserved from archaea to man, and appears 

generally to mediate macromolecular interactions, either between proteins or between proteins and nucleic acids 

(Aravind et al, 2005). The yeast Sir3 wH domain, however, binds neither chromatin nor DNA, in striking contrast to the 

wH domain of archaeal (Dueber et al, 2007; Gaudier et al, 2007) or human Orc1 (this study). Indeed, we show here that 

a recombinant wH domain of HsOrc1, like the archaeal Orc1 wH, forms a stable monomer in solution and readily binds 

DNA. 

Sequence analysis predicts that only budding yeast lineage (Saccharomycetales) homologues, i.e. those bearing an 

insertion in the wH domain, will have a sufficiently large hydrophobic surface to mediate dimerization (Figure 1B). 

Indeed, the ScOrc1 wH, unlike HsOrc1 wH, self-associates in solution, and fails to bind DNA. These functional 

similarities between ScOrc1 and ScSir3, place the yeast Orc1 wH closer to Sir3 than to the human Orc1 wH, which 

more closely resembles the archaeal domain, at least with respect to macro-molecular interactions. However, given that 

the critical residues for ApOrc1-DNA interaction are not conserved in man (Figure 1B), the two may bind DNA in 

different ways.  

The fact that both yeast Sir3 and yeast Orc1 wH domains have a ~30-aa insert, which in Sir3 contributes to a large 

protein-protein interface, and the fact that both multimerize and fail to bind DNA, argues that these changes in the wH 

domain arose prior to the genome duplication event that generated S. cerevisiae and the SIR3/ORC1 gene pair (Kellis et 

al, 2004). Consistently, the characteristic insertion in the wH domain is also found in the budding yeast kluyveromyces 

lactis, whose genome was not duplicated (Hickman and Rusche, 2010). Moreover, Orc1 from K. lactis which diverged 

from S. cerevisiae before genome duplication, acts in conjunction with the deacetylase Sir2 and the histone-binding 

protein Sir4 to generate telomeric and mating type heterochromatin (Hickman and Rusche, 2010). Although it is not 

known how important ScOrc1 self-association is for either its replication or silencer functions, it is clear that changes in 

the wH domain that promote dimerization, correlate with a divergent branch of the Orc1/Sir3 family that is involved in 

silencing. We note that mechanisms of chromatin-mediated repression, such as those involving Heterochromatin Protein 

1 or Polycomb repressive complex 1, also have components with homodimerization potential (Fujisaki et al, 2003; 

Czypionka et al, 2007; Canzio et al, 2011). The work presented here, however, is the first to our knowledge to show 

genetically and biochemically, that restoration of homodimerization through a bacterial motif can restore 

heterochromatin to a silencing-deficient repressor mutant. Indeed, Sir3’s dimerization capacity is essential for efficient 

Sir complex loading onto chromatin in vitro and in vivo, and for mating type maintenance, which is essential for the 

survival of the species. 

Finally, we speculate that some of the differences between mammalian and yeast Orc1 reflect the divergence in domain 

structure reported here. Whereas Orc1 supports replication origin licensing in both species, HsOrc1 has other functions, 

such as centrosome duplication (Hemerly et al, 2009), cell cycle control and a role in centromeric heterochromatin 

(Prasanth et al, 2010), distinct from the activities attributed to ScOrc1. The fact that ScOrc1 cannot substitute for Sir3 in 

budding yeast silencing, despite having a similar wH domain, most likely reflects the specialization of the Sir3 AAA+ 

domain for Sir4 interaction (Ehrentraut et al, 2011). At the very least, our findings call into question models that require 

a ScOrc1 wH DNA binding function (Chen et al, 2008; Sun et al, 2012).  

Materials and Methods  

Multiple sequence alignment 

Orc1 wH sequences from higher eukaryotes were aligned with ClustalW (www.ebi.ac.uk) and submitted to HHPRED 

(Soding et al, 2006) to yield an alignment with the A. pernix Orc1 wH sequence of which the structure is known 

(Gaudier et al, 2007). A ClustalW alignment of yeast Sir3 and Orc1 wH sequences was then added according to a 

structural alignment computed with DALI (Holm and Rosenstrom, 2010) using crystal structures of the A. pernix Orc1 

and Sir3 wH domains. 
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Purification of protein domains 

The Sir3 wH (aa 840-978), Sir3C (aa 527-978), ScOrc1 wH (aa 783-914) and HsOrc1 wH (aa 760-861) constructs were 

cloned into a pOPINF vector using the In-Fusion system (Clontech)(Berrow et al, 2007), expressed in the E. 

coli strain BL21 Rosetta pLysS and affinity purified via a His-tag using ProBond Ni-NTA resin (Invitrogen) according 

to manufacturer’s instructions. Tags were removed by HRV 3C protease digestion (Novagen) and Sir3 domains were 

further purified by gel filtration on a HiLoad 16/60 Superdex 75 column in 50 mM Tris pH 7.5, 200 mM NaCl, 0.02% 

NaN3 and 1 mM TCEP. The Sir3 AAA (aa 530-845) was purified as described previously (Ehrentraut et al, 2011). Point 

mutations were introduced by site directed mutagenesis using Pfu DNA polymerase (Promega). For the chimera Sir3-

HlyU, the coding region for aa 851-978 was deleted and replaced with AscI and XbaI sites using site directed 

mutagenesis. The cDNA of HlyU_Vv was amplified by PCR (without the ATG start codon) inserting AscI and XbaI 

sites and a SGSG linker. The cDNA of HsOrc1 (IRAK013J04) was obtained through RIKEN BRC, Japan (Ota et al, 

2004; Otsuki et al, 2005; Itoh et al, 2006; Kimura et al, 2006). Purity was confirmed by SDS PAGE and Coomassie 

blue staining, protein concentration was measured by UV spectroscopy. 

Structure determination 

Native and selenomethionine substituted Sir3 wH crystal were grown at 20°C by sitting-drop vapor diffusion in 96-

wells crystallization plates from mixtures containing equal volumes of protein (22 mg/ml in 20 mM Tris pH 8.5, 200 

mM NaCl, 0.02% NaN3 and 1 mM TCEP) and reservoir solutions (0.1 M sodium citrate pH 5.6, 0.2 M ammonium 

acetate and 30% (w/v) PEG-4000) and were flash-frozen in mother liquor made up to 25% (v/v) ethylene glycol. 

Diffraction data were collected at beam lines X06DA and X10SA at the Swiss Light Source synchrotron in Villigen, 

Switzerland. Detailed Materials and Methods for structure determination and refinement can be found in supplemental 

material. Coordinates have been deposited in the Protein Data Bank database under accession code XXXX. 

SEC-MALS experiments 

Purified domains were concentrated to 2 -8 mg/ml and filtered through a 0.1 µM Amicon filter before injection. 100 µl 

of each protein was separated on a Wyatt SEC 300A 7.8 x 300 mm column equilibrated in 20 mM Tris pH 7.4, 200 mM 

NaCl, 0.02% NaN3 at a flow rate of 0.5 ml/ min at 4°C. Light scattering was recorded on an in-line miniDAWN TREOS 

3-angle light scattering detector (Wyatt Technology) and protein concentration detected with an in-line Optilab Trex 

refractive index detector. Data analysis was done using the Zimm fitting method in Astra V software (Wyatt 

Technology).  

Co-immunoprecipitation from insect cells  

Full length or truncated Sir3-ΔwH were co-infected in Hi5 cells as indicated in Figure 1G. Cells were lysed by gentle 

sonication in 50 mM HEPES pH 7.5, 150 mM NaCl, 0.1% NP-40, and Sir3-HIS-HA purified in batch using ProBond 

Ni-NTA resin (Invitrogen). Beads were washed with 50 mM Na2HPO4 pH 8.0, 500 mM NaCl, 50 mM imidazole, 

0.05% NP-40 and eluted in 2x the bead volume with 50 mM Na2HPO4 buffer pH 8.0, 300 mM NaCl, 250 mM 

imidazole, 0.05% NP-40. Co-purification of Myc-tagged Sir3 constructs was analyzed by immunoblotting using HIS-

hrp (Abcam, ab1187) or Myc (9E10) antibodies. 

Chromatin and DNA interaction assays 

In vitro reconstitution of nucleosomal arrays and binding assays were performed as described previously (Oppikofer et 

al, 2011). See also descriptions in supplemental material.  

Overexpression and complementation assays in yeast 

For overexpression assays the genomic sequence coding for Sir3 wH (aa 840-978) was HA-tagged, amplified by PCR 

and cloned into the pRS425-GAL1 vector (Mumberg et al, 1994) using Pst1 and Sal1 sites. For complementation assays 

the SIR3 gene together with 1 kb 5’- and 3’-UTR was amplified by PCR and cloned into pRS415 using BamHI and NotI 

sites. Deletion and point mutations were introduced by site directed mutagenesis using Pfu DNA polymerase 

(Promega). Telomeric silencing used GA503 (SIR3+) and GA7055 (sir3∆) strains, while HMR silencing used GA484 

(SIR3+) and GA7292 (sir3∆) strains. SIR3 deletion was achieved by replacing the endogenous gene together with 1 kb 

5’- and 3’-UTR with a kanamycin resistance cassette (Supplemental Table S1). Silencing of the indicated reporter genes 

(URA3 or TRP1) was monitored as described (Gotta et al, 1998), by growth on synthetic media lacking either uracil or 

tryptophan.  

ChIP and qPCR experiments 

ChIP experiments were carried out as previously described (Braunstein et al, 1993), with an antibody raised against 

GST-Sir4 C-terminus used at 750 ng/ 20 µL MagSi-proteinA 1.0 beads (MagnaMedics). Precipitated DNA was purified 

using the AccuPrep PCR purification kit (Bioneer) after overnight incubation at 65 °C to reverse the formaldehyde 

cross-linking. The GA5822 sir4∆ strain (Kueng et al, 2012) was used as control. Quantification of the precipitated 

DNA was performed by qPCR on a StepOnePlus instrument (Applied Biosystems), enrichments were normalized to 
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input and the ACT1 locus. Primers have been used previously (see Supplemental Table S2). Experiments were 

performed in biological and technical duplicates.  
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Figure legends 

Figure 1 The C-terminal 138 residues of Sir3 fold into a wH domain and homodimerize. (A) Schematic representation 

of the Sir3 protein. The C-terminal wH domain in green has been crystallized. Purple bars show the position of the 3 

stranded -sheet wing. (B) Multiple sequence alignment of Orc1/Sir3 wH modules from archaea, budding yeasts and 

higher eukaryotes. Conserved residues are highlighted in black (100%), dark grey (50%), and light grey (20%). ScSir3 

wH residues that contribute to the dimerization interface are in red, the 30 aa insertion is highlighted in orange, and 

ApOrc1 wH residues that contact DNA are in blue (Gaudier et al, 2007). Above the alignment is the secondary structure 

of Sir3 wH color coded as in panel D. The L861 and V909 residues mutated in the Sir3-AA construct are highlighted. 

(C) 2 µg of purified Sir3 wH (aa 840-978) were loaded on a SDS-PAGE and stained with Coomassie blue. (D) 

Representation of the Sir3 wH structure; -helices are represented in green, -sheets in purple and coils in yellow. (E) 

Superposition of Sir3 and ApOrc1 (PDB 2v1u; (Gaudier et al, 2007). The insertion, absent in ApOrc1, forming most of 

the Sir3 wH homodimerization interface is in orange (see sequence alignment) and displayed as dumbbell shaped 

helices (a, b). (F) Representation of a Sir3 wH dimer, residues involved in the hydrophobic interface in red and cyan for 

the green and grey Sir3 wH monomers, respectively. The insertion crucial for Sir3 wH dimerization is displayed as 

dumbbell shaped helices. (G) His-tagged full length Sir3 (Sir3-His) was co-expressed in insect cells with Myc-tagged 

full length Sir3 (Sir3-Myc) or Sir3 lacking the wH module (Sir3∆wH-Myc; aa 1-850). Sir3-His was affinity purified, 

input and His elution were analyzed by Western blotting using the indicated antibody. 

Figure 2 The association of the Sir3 C-terminus to DNA and chromatin is promoted by wH homodimerization. (A) 

Details on the residues of ApOrc1 wH (blue) interacting with DNA and superposition with the corresponding region of 

Sir3 (green). (B) Scheme of the modular organization of the Sir3 protein. Constructs used are highlighted.  

The indicated Sir3 domains were titrated onto a constant amount of Cy3-labeled 147 bp DNA (C, E) or a 6-mer of 

nucleosomes (D, F). Samples were separated on a native agarose gel, the nucleosomal template was stained with SYBR 

safe and the amount of unbound probe was quantified by the intensity of the fluorescent signal. The images are 

representatives for three or more experiments, quantification represent mean values and s.e.m of the % of free probe 

normalized to the input.  

Figure 3 Sir3 wH homodimerization is essential for telomeric and HMR silencing. (A) Schematic representation of the 

Sir3 constructs used. Highlighted are Sir3 wH wild-type (green), the L861A-V909A mutant (blue) and the HlyU 

module from Vibrio vulnificus (orange). (B) Western blot analysis of alkaline yeast extracts (Ruault et al, 2011) of the 

strains used in panel E show wild type levels of Sir3 expression, using a polyclonal antibody raised against full length 

Sir3 (a kind gift from L. Pillus). (C) Modeled representation of the impact L861A and V909A mutations on the extent 

of the hydrophobic Sir3 wH dimerization interface. (D) Representation of the Sir3 wH or the HlyU dimer. The most C-

terminal residues are highlighted by a black dot. (E) The indicated strain was grown overnight in selective media and 

10-fold dilutions were dropped on the indicated media. Ability to repress a URA3 gene inserted at the telomere 7L was 

tested by growth on synthetic media lacking uracil while ability to repress a TRP1 gene inserted at the HMR locus was 

tested by growth on synthetic media lacking tryptophan. Synthetic complete media (only selecting for plasmids) was 

used to control for equal deposition.  

Figure 4 Overexpression of Sir3 wH, but not of dimerization mutants, derepresses silencing. (A) The indicated strain 

was grown overnight in selective media and 10-fold dilutions were dropped on the indicated media containing galactose 
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as carbon source, to induce pGAL1promoter-SIR3wH construct overexpression. Ability to repress a URA3 gene at telomere 

7L was tested as in Figure 3E. (B) The ability to repress TRP1 inserted at the HMR locus was tested as in Figure 3E. (C) 

Western blot analysis from alkaline yeast extracts (Ruault et al, 2011) of strains showed in Figure 4A, grown on 

galactose, to confirm domain expression. 

Figure 5 Sir3 wH homodimerization is critical for loading or stable binding of Sir complex onto chromatin in vivo. (A) 

Hi5 insect cells were co-infected with Sir2, Sir4 and the indicated Sir3 expressing virus. Sir4 was affinity purified as 

described previously (Martino et al, 2009) and a sample elution was loaded on a SDS-PAGE and stained with 

Coomassie blue. The asterisk indicates a common Sir4 degradation product. (B) The holo-Sir complex or mutant 

complexes containing either Sir3∆wH (aa 1-850) or Sir3-AA (L861A and V909A) were titrated into a constant amount 

of 6-mer of nucleosomes. The images are representative of at least three independent experiments; quantifications show 

the mean value  s.e.m of the % of unbound chromatin compared to the input. The asterisk indicates a contaminant 

DNA, and the bracket on the right indicates Sir/chromatin complexes. (C) Sir4 ChIP analysis of the same strains used 

for silencing assay in Figure 3E, the amount of precipitate DNA was measured by qPCR. Enrichment over the ACT1 

locus was normalized to the input.  

Figure 6 Evidence for a functional conservation of Sir3 wH in Saccharomycetales species. (A) 2µg of the indicated 

domains were run on a SDS-PAGE and stained with Coomassie blue. (B) The indicated domain was titrated onto a 

constant amount of a 147 bp Cy3-DNA probe, binding was scored as in Figure 2. Purified ScOrc1 wH, 3 mg/ml (C) or 

HsOrc1 wH, 7.8 mg/ml (D) were analyzed by SEC-MALS as described in the Materials and Methods. The measured 

molar mass is represented by black dots (grey arrow) and superposed to the UV (280 nm) trace. The ScOrc1 wH domain 

was injected five times yielding the following results: 78, 81, 108, 123 and 417 g/mol. 
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SUPPLEMENTAL MATERIAL for Oppikofer et al. “Dimerization of the yeast Sir3 C-terminal winged helix 

domain is essential for heterochromatin formation” 

 

Supplemental Figures and legends 

 

Figure S1 SEC-MALS analysis of the wild-type Sir3 wH domain. Purified Sir3 wH, 2 mg/ml was analyzed by SEC-

MALS as described in the Materials and Methods. The measured molar mass is represented by black dots and 

superposed to the UV (280 nm) trace. 
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Figure S2 The Sir3 wH fails to interact with the AAA module in vitro. (A) 2µg of the indicated domain were run on a 

SDS-PAGE and stained with Coomassie blue. (B) Pull-down experiment using a GST-tagged AAA module in 50 mM 

Tris pH 7.5, 1 mM TCEP, 0.01 % Triton-X containing the indicate amount of NaCl. Input are 100% and 40 % for the 

AAA and the wH module respectively. (C) Isothermal titration calorimetry (ITC) binding was measured using a 

MicroCal Omega VP-ITC machine (MicroCal, GE) at 25oC with 20 µM Sir3 AAA domain in the sample cell and 254 

µM Sir3 wH domain in the syringe. Proteins had been dialyzed against 25 mM Tris pH 7.5, 100 mM NaCl and 0.5 mM 

DTT. Calorimetric data were analyzed with the evaluation software MicroCal ORIGIN V5.0 (MicroCal Software, GE).  
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Figure S3 Deletion of the Sir3 wH domain or mutation of the crystallographic dimerization interface disrupt 

dimerization of purified Sir3 in solution. (A) 7 pmol of Sir2-4, full-length Sir3, Sir3∆wH (aa 1-850) and Sir3-AA 

(L861A and V909A) were loaded on a SDS-PAGE and stained with Coomassie blue. (B) The sedimentation profiles of 

full-length Sir3, Sir3∆wH and Sir3-AA were monitored in a 5-25% glycerol gradient by ultra centrifugation (16 h, 

120’000 g, 4 °C) without fixation. After fractionation, 15 consecutive fractions were loaded on a SDS-PAGE and 

stained with SYPRO Ruby (data not shown). The graph represents the quantification of protein distribution in the 

gradient normalized to the fraction containing the highest amount of protein. Monomeric and dimeric states were 

determined based on molecular mass by running the same gradients in presence of 0.025 % Glutaraldehyde to fix the 

samples (GraFix method (Kastner et al, 2008)) prior to SDS-PAGE analysis (data not shown). The data is representative 

for two or more independent experiments. While wild-type Sir3 is mainly found in a dimeric form, Sir3∆wH and Sir3-

AA co-sediment as monomers in the conditions tested here. 
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Figure S4 Several substitutions in the wH affect Sir3 stability in vivo. (A) Western blot analysis of alkaline yeast 

extracts (Ruault et al, 2011) of sir3 mutants designed to disrupt wH homodimerization. In contrast to those 

characterized in Figures 1G, 3 and 4, namely sir3-wH or sir3-AA,  several point mutations in the Sir3 wH domain 

destabilize the mutant sir3 protein. (B) Indicated strains were grown overnight in selective media and 10-fold dilutions 

were dropped on the indicated media. Ability to repress URA3 inserted at the telomere 7L was tested by growth on 

synthetic media lacking uracil, synthetic complete media was as plating control.  
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Figure S5 Overexpression of Sir3 wH, but not of dimerization mutants, derepresses telomeric silencing. The indicated 

strain was grown overnight in selective media and 10-fold dilutions were dropped on media containing galactose as 

carbon source. Ability to repress ADE2 at the telomere 5R was monitored by accumulation of a red pigment; red color 

illustrates efficient repression.  
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Table S1. Yeast strains used in this study 

strain genotype source 

GA484 W303; MATalpha; hmr::TRP1 (Singh and Klar, 1992) 

GA503 PH499; MATa ppr1::HIS3 adh4::URA3-TEL 7L 5R::ADE2-TEL (Gottschling, 1992) 

GA5822 GA503; sir4::kanMX6 (Kueng et al, 2012) 

GA7055 GA503; sir3::kanMX6 this study 

GA7292 GA484; sir3::kanMX6 this study 

 

Table S2. Primers used for qPCR 

name sequence gene source 

SG4791 TTGACCCATACCGACCATGATA ACT1 (Schawalder et al, 2004) 

SG5788 AGGTTGCTGCTTTGGTTATTGA ACT1 (Kueng et al, 2012) 

SG6041 AAATGGCAAGGGTAAAAACCAG Tel6R 0.2kb (Darst et al, 2008) 

SG6042 TCGGATCACTACACACGGAAAT Tel6R 0.2kb (Darst et al, 2008) 

SG5783 GGAATGATCTTGGAAATCGATCA Tel6R 0.5kb (Yang and Kirchmaier, 2006) 

SG5784 CTAGTGTCTATAGTAAGTGCTCGG Tel6R 0.5kb (Darst et al, 2008) 

SG6043 GGACCTACTAGTGTCTATAGTAAGTG Tel6R 1kb (Darst et al, 2008) 

SG5785 CTCTAACATAACTTTGATCCTTACTCG Tel6R 1kb (Darst et al, 2008) 

SG6044 GGCTAGAAAAGCTTCAACATGGCCTTAC Tel6R 5kb (Darst et al, 2008) 

SG6045 CTCCAGCCTGCCTAAGACAAGCTATAG Tel6R 5kb (Darst et al, 2008) 

SG5861 CCGCCAAGTACAATTTTTTAC Tel7L (URA3) (Martins-Taylor et al, 2004) 

SG5862 CAACCAATCGTAACCTTCATC Tel7L (URA3) (Martins-Taylor et al, 2004) 

SG5789 AGCTGCGGTGTTTACAAGT Tel9R (Kueng et al, 2012) 

SG5790 ACTACCGGAAACAAGAAACGTG Tel9R (Kueng et al, 2012) 

SG418‘ CTTGTATTAGACGAGGGACGGAGTG HML-E (Martin et al, 1999) 

SG419 ACAGAGGGTCACAGCACTACTACAG HML-E (Martin et al, 1999) 

SG5780 CACAGTTTGGCTCCGGTGTA HML-alpha1 (Yang and Kirchmaier, 2006) 

SG5781 CCGCGTGCCATTCTTCAG HML-alpha1 (Yang and Kirchmaier, 2006) 

 



Toward a molecular understanding of yeast silent chromatin PhD thesis 

 

66 Mariano Oppikofer 

   

Supplemental Materials and Methods  

Structure determination and refinement 

Diffraction images were processed and scaled with HKL-2000 (Otwinowski et al, 1997) and XDS (Kabsch, 2010). The 

structure of Sir3 wH was solved by MAD using five Seleno-Methionine sites per molecule identified in SHELXD 

(Sheldrick, 2008). Selenium sites were used for phase calculation and refinement of sites in Sharp (Bricogne et al, 
2003) followed by density modification using Solomon (Abrahams and Leslie, 1996). Phases from density modification 

were then used for automatic model building in PHENIX (Adams et al, 2011) and BUCCANEER (Cowtan, 2006) 

followed by manual completion of the model using COOT (Emsley et al, 2010). The Sir3 wH structure was refined by 

the crystallographic simulated annealing routine followed by individual B-factor refinement in PHENIX. The final 

structure was validated using Molprobity (Chen et al, 2010) and COOT. Structural images for figures were prepared 

with PyMOL (http://pymol.sourceforge.net/). 

Chromatin and DNA interaction assays 

In vitro assembled recombinant X. laevis histone octamers (Luger et al, 1997) were used to reconstitute nucleosomes 

onto 6mer arrays of 601-Widom positioning sequence (Lowary and Widom, 1998; Huynh et al, 2005) by sequential salt 

dialysis (Lee and Narlikar, 2001). Increasing amount of the indicated protein was added to 25 nM of 601-167-6mer 

nucleosomal probe in 10 mM TEA pH 7.4, 50 mM NaCl and 0.05 % Tween-20. For bidning using the holo-Sir 

complex, the purified Sir2-4 heterodimer and the Sir3 constructs (Figure S3A) were added sequentially. After 10 min 

incubation on ice, the samples were separated by electrophoresis on a native 0.7 % agarose gel in 18 mM Tris, 18 mM 

boric acid at 80 V for 90 min at 4 °C. The probe was stained using SYBR Safe. A Cy3-labeled 147 bp DNA probe, 

routinely used as competitor DNA for nucleosomal reconstitutions, was PCR amplified from a region outside the 

multiple cloning site of pUC18 and used to investigate DNA interaction in 10 mM TEA pH 7.4, 100 mM NaCl and 0.05 

% Tween-20. The fluorescent signal was detected using a Typhoon 9400 scanner.  

 

3.3  ADDENDUM - STRUCTURAL ANALYSIS OF SIR3 DIMERS BY ELECTRON MICROSCOPY 

 

 

 

Dimers of full-length Sir3 can be enriched by sedimentation in a glycerol gradient and visualized by electron 

microscopy. The sedimentation properties of purified full-length Sir3 (110 kDa) were analyzed by ultracentrifugation 

using a 5-25% glycerol gradient. Glutaraldehyde (0.025 %) was added to the gradient in order to fix the sample during 

sedimentation (Kastner et al, 2008). The Sir3 protein mostly forms dimers (~ 225 kDa) indicates by the arrow head. The 

indicated fraction was used to prepare floated carbon film grids stained with standard uranyl acetate negative stain and 

visualized with a CM10-TEM microscope, scale bar 100 nm. 

Grids preparation and imagining was performed by Dr. Mohamed Chami, laboratory of Prof. Dr. Henning Stahlberg, 

University of Basel at the Department for Biosystems Science and Engineering (D-BSSE). 

 

 



Toward a molecular understanding of yeast silent chromatin PhD thesis 

 

67 Mariano Oppikofer 

   

4 CONCLUDING REMARKS AND OUTLOOK 

Despite an increasing understanding of the molecular details, the mechanistic interplay between chromatin 

modifications and chromatin-associated factors in establishing heterochromatin still presents a formidable challenge. 

Chromatin mediated silencing has been extensively investigated in the budding yeast S. cerevisiae. While the molecular 

machinery involved differs significantly between budding yeast and higher eukaryotes, these studies have given 

important conceptual insights into how chromatin associated factors can repress gene expression. In the case of S. 

cerevisiae, there is good evidence that this is achieved primarily through occlusion of the promoter sequence by Sir 

proteins and by spatial segregation in the nucleus. 

The first aim of this thesis was to understand the precise role of individual histone modifications in the establishment of 

yeast silent chromatin. In order avoid the caveats of histone modifications cross-talk in vivo, we turned to a highly 

controlled in vitro reconstitution system. As detailed in Chapter 2, we found that each histone modification tested  

H3K79me, H3K56ac and H4K16ac  affects Sir-chromatin interactions in a different way. Strikingly, we highlighted a 

new role for the H4K16ac mark, which does not act as barrier to the spread of silent chromatin, but rather as a 

prerequisite to the formation of both active and silent domains. 

The second aim of this thesis was to characterize the function of the extreme Sir3 C-terminus. We found that the last 

138 amino acids of Sir3 fold into a wH domain which mediates homodimerization. Sir3 wH homodimerization accounts 

for most of Sir3-Sir3 interaction and is required for silencing at telomeres and HM loci. Intriguingly, we found that Sir3 

wH homodimerization is required for efficient loading of the Sir2-3-4 complex onto chromatin in vitro and in vivo, 

possible reasons for this are discussed below. 

4.1  A EUCHROMATIC HISTONE MARK IS ACTIVELY INVOLVED IN THE ESTABLISHMENT 

OF SILENCING IN YEAST 

The role of histone modifications in the establishment of Sir-mediated silent chromatin has been extensively studied 

genetically (Ehrenhofer-Murray et al, 1997; Kimura et al, 2002; Ng et al, 2002; Suka et al, 2002; van Leeuwen et al, 

2002; Xu et al, 2005; Yang et al, 2008b). These pivotal studies showed that the presence of Sir proteins and histone 

modifications are mutually exclusive within yeast chromatin in vivo. Consistently, by monitoring the interaction 

between modified histone peptides and full-length Sir proteins or domains, it was shown that histone modifications 

generally inhibit the loading of Sir proteins in vitro (Carmen et al, 2002; Liou et al, 2005; Altaf et al, 2007; Onishi et al, 

2007), while the unmodified H4 histone tail promotes the loading of Sir3 onto chromatin in vitro (Martino et al, 2009; 

Sinha et al, 2009). Together, these studies generated the dogma that histone marks as a whole prevent the association of 

Sir proteins to euchromatic regions and form a barrier to the spread of heterochromatin. 

These studies have been instrumental in understanding the basic mechanisms for separating active and silent domains in 

yeast, yet in vivo studies and peptide-based approaches present some caveats. In vivo, the cross-talk between histone 

modifications and the recruitment of additional non-histone factors may mask the specific contribution of a single 

histone mark in modulating Sir-chromatin interactions. On the other hand, when embedded in a nucleosomal template, 

the accessibility of histone marks may change compared to when in the context of free histone peptides. For instance, 

Sir4 was shown to interact with an isolated H4 N-terminal tail (Hecht et al, 1995) and binding of Sir2-4  through Sir4 

 to an isolated N-terminal H4 tail was sensitive to acetylation of H4K16 (Liou et al, 2005). However, the Sir2-4 

heterodimer has poor specificity for the H4 tail when in the context of chromatin as it binds chromatin reconstituted 

with full-length or tailless histone with similar affinity (Martino et al, 2009). Consistently, the acetylation of the H4 tail 

by NuA4 did not decrease the affinity of Sir-2-4 to chromatin (Johnson et al, 2009). The different results obtained with 

isolated peptides and nuclesosomes are best explained by the high affinity of the Sir4 N-terminus for DNA which likely 

overcomes the interaction between Sir4 and the H4 tail (Martino et al, 2009). Consistently, a Sir complex lacking the 

Sir4 N-terminus binds nucleosomal arrays less effectively than a wild-type Sir complex in vitro (Kueng et al, 2012). 

Finally, while the use of Sir domains allows us to assign a specific function of a given protein region, studying the 

interaction of chromatin with full-length Sir proteins and Sir complexes may better represent the situation in vivo. 

To better understand the role of histone marks in the establishment of yeast silent chromatin, we therefore expanded the 

previously established in vitro reconstitution system (Cubizolles et al, 2006; Martino et al, 2009) using homogenously 

modified nucleosomal arrays and recombinant full-length Sir3, Sir2-4 and holo Sir complexes. This well-defined 

system allowed us to assess not only Sir-chromatin affinities, but also the sensitivity of the linker DNA to micrococcal 

nuclease, a neutral reporter for DNA accessibility. We made use of the Widom 601 positioning sequence (Lowary and 

Widom, 1998) to generate regularly spaced arrays which mimic the linker DNA length found in living yeast cells (~21 

bp) (Yuan et al, 2005). As detailed in Chapter 2, we attributed specific functions to three established histone marks  

H4K16ac, H3K56ac and H3K79me  and revealed that, in contrast to what was generally assumed, acetylation of 

H4K16 is likely to precede the formation of both active and silent domains. 

Previous peptide-based studies suggested that H4K16ac resulted in a similar decrease in the binding of both Sir3 and 

the Sir2-4 heterodimer to isolated histone tail domains (Liou et al, 2005). Yet, it was shown that NuA4-dependent 
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acetylation  notably of H4K16  only reduced the binding affinity of Sir3, but not Sir2-4, for a reconstituted chromatin 

template (Johnson et al, 2009). However, Johnson and colleagues used reconstituted chromatin arrays covalently 

attached to beads and only analysed the amount of bound protein at a single concentration point by Western blotting 

(Johnson et al, 2009). Taking advantage of more comprehensive titration experiments, we found that H4K16ac-

containing chromatin in fact has an increased affinity for the Sir2-4 heterodimer, whilst decreasing Sir3 binding affinity 

(Oppikofer et al, 2011). Strikingly, the Sir2-dependent turnover of H4K16ac does not only recruit Sir3, but directly 

promotes the loading of the holo Sir complex. Therefore, the active Sir2-dependent removal of the H4K16ac mark 

promotes the formation of silent chromatin beyond the generation of a hypocetylated substrate and can be considered as 

a prerequisite for silencing (see Chapter 2).  

The notion that H4K16ac plays a positive role in the establishment of silent chromatin was previously proposed, yet the 

role of H4K16ac was thought to be indirect by preventing the binding of Sir proteins within euchromatic loci thus 

concentrating them at regions to be silenced (Kimura et al, 2002; Suka et al, 2002; Millar et al, 2004). However, in light 

of the discoveries presented in this thesis, I propose a revised model that directly implicates the H4K16ac mark in the 

establishment of yeast silent chromatin. Based on the results detailed in Chapter 2, I propose that the boundary between 

silent and active chromatin is established by a competition between Sir2-4 and Dot1 for binding to H4K16ac-containing 

nucleosomes. This disputes the previous notion that there is a competition between Dot1 and Sir3 for binding the 

nucleosome (Altaf et al, 2007). Indeed, binding of Dot1 the H4 tail is unaffected by the acetylation state of H4K16 

(Altaf et al, 2007), yet H4K16ac selectively repels Sir3 (Altaf et al, 2007; Oppikofer et al, 2011). Given that more than 

80% of H4K16 residues are acetylated in vivo (Clarke et al, 1993; Smith et al, 2003b), Sir3 and Dot1 do not strictly 

compete for the same substrate but rather the euchromatic acetylation of H4K16 favors Dot1 over Sir3 binding to the 

nucleosome. However, at the boundary between silent and active domains it is likely that a given nucleosome can 

undergo one of the following two scenarios: 1) H4K16ac stimulates the binding of Dot1 which further inhibits the 

loading of Sir3 and the Sir complex by depositing the H3K79me mark. 2) H4K16ac recruits the Sir2-4 heterodimer 

which deacetylates H4K16ac, favoring the loading of Sir3, whose recruitment is additionally facilitated by its 

interaction with Sir4. Progressive Sir2-4 recruitment by H4K16ac, followed by cycles of histone deacetylation, helps 

the spread of silent regions. Importantly, the reduced affinity of Sir3 for H4K16ac chromatin assures that Sir3 binds 

preferentially in presence of Sir2-4, where deacetylation of H4K16ac  coupled to O-AADPR production  reinforces 

the association of the holo Sir complex to the chromatin fiber ensuring efficient gene repression. The question remains 

what is the actual role of O-AADPR. 

The prevalence of either one of these scenarios is most likely dependent on the relative abundance of Sir2-4 and Dot1 at 

a given genomic location. Away from silencers, the concentration of Sir proteins drops dramatically, therefore allowing 

Dot1 a higher chance to bind to H4K16ac-containing chromatin first. However, in the proximity of silencers, the 

abundance of Sir proteins favors the establishment of a silent state. Therefore, H4K16ac per se is not a barrier to the 

spreading of silencing as suggested before (Kimura et al, 2002; Suka et al, 2002) but rather precedes the formation of 

both active and silent domains. This model is supported by the observation that H4K16ac-containing chromatin can be 

readily bound by the Sir complex (Johnson et al, 2009; Oppikofer et al, 2011) and its turnover is likely to be required 

for efficient silencing as loading of the Sir complex on H4K16R chromatin does not support full repression (Yang and 

Kirchmaier, 2006; Yang et al, 2008a). Coupling the turnover of the H4K16ac mark to O-AADPR production links the 

formation of silent chromatin to NAD levels. This is interesting in that it renders the spread of silent chromatin sensitive 

to the metabolic state of the cell. Consistently, Sir-mediated silencing decreases under conditions that lower intracellular 

NAD levels (Smith et al, 2000).  

Intriguingly, Sir2, Dot1 and the H4K16ac mark are well conserved through evolution suggesting that mechanism 

described here may be at work in higher eukaryotes as well. 

4.2  SIR3 EVOLVED SPECIFIC SILENCING FUNCTIONS 

The SIR3 gene arose from ORC1 through a whole genome duplication event that took place ~100 million years ago 

(Wolfe and Shields, 1997; Kellis et al, 2004). ORC1 codes for the largest subunit of the Origin Recognition Complex 

(ORC) which defines DNA replication origins in a variety of species.  

Following gene duplication the fate of the new gene pair can follow at least three different scenarios (Ohno et al, 1968; 

Conant and Wolfe, 2008; Hahn, 2009; Hickman et al, 2011). 1) The function of the ancestor gene may be duplicated 

and conserved in both new genes which thus become redundant. 2) Evolution may lead to neofunctionalization where 

one of the duplicated genes acquires new functions, while the other copy retains the original function. 3) In a process 

called subfunctionalization, the functions of the ancestor gene are shared out among the new pair of genes which 

together retain the entire set of ancestral functions. Subfunctionalization also gives the opportunity to evolve new 

specialized functions. In this case the divergence of functions among paralogs also involves the accumulation of 

mutations in at least one of the duplicated genes, enabling it to acquire new functions. 

Several line of evidence indicates that the ORC1/SIR3 pair underwent subfunctionalization and that SIR3 and the 

opportunity to evolve specialized silencing functions. Indeed, ORC interaction with several heterochromatin proteins is 
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evolutionarily conserved. For instance, both human and Drosophila ORC bind to HP1 (Pak et al, 1997; Lidonnici et al, 
2004; Prasanth et al, 2004; Auth et al, 2006) and human ORC associates with pericentromeric and telomeric 

heterochromatin (Deng et al, 2007; Deng et al, 2009; Prasanth et al, 2010). Moreover, Orc1 has been shown to function 

together with Sir2 to establish telomeric silencing in the evolutionarily distant organism P. falciparum (Mancio-Silva et 

al, 2008; Deshmukh et al, 2012). This suggests that the ORC1 gene had an ancestral and conserved role in silencing, yet 

the gene duplication event in S. cerevisae gave the chance to Sir3 to specialize further and outperform Orc1 in silencing 

functions (Hickman and Rusche, 2010). 

The best evidence supporting a subfunctionalization and specialization of the Sir3 protein comes from studies in the 

budding yeast K. lactis which diverged from S.cerevisiae before the whole genome duplication event that produced Sir3 

and thus possesses only KlOrc1 (Hickman and Rusche, 2010). KlOrc1 supports both DNA replication and silent 

chromatin formation in association with KlSir2 and KlSir4 in a manner analogous to Sir-dependent silencing in S. 

cerevisiae (Hickman and Rusche, 2010). This strongly suggests that the Orc1/Sir3 pair in S. cerevisiae 

subfunctionalized and while Orc1 maintained a role in DNA replication, Sir3 evolved as key player  together with Sir2 

and Sir4  in yeast silent chromatin formation (Hickman and Rusche, 2010).  

Within multidomain proteins it is very likely that subfunctionalization and specialization occurs within discrete 

domains. For instance, as discussed in Chapter 1, the BAH domain of Sir3 (aa 1-214) is absolutely essential for 

silencing as it plays a major role in interacting with the nucleosome (Bell et al, 1995; Rusche et al, 2002; Connelly et al, 
2006; Onishi et al, 2007; Armache et al, 2011). Interestingly, a chimera protein containing the Orc1 BAH domain and 

the C-terminus of Sir3 can restore HM silencing in a sir3∆ background, indicating that both Orc1 and Sir3 BAH 

domains retained an ancestral silencing function which existed prior to the genome duplication event (Bell et al, 1995). 

Consistently, despite its high conservation, the N-terminal BAH domain of Orc1 is dispensable for DNA replication in 

S. cerevisiae (Bell et al, 1995). However, this chimeric protein does not support DNA replication suggesting that the C-

terminus of Sir3 has lost important functions for DNA replication after it arose from Orc1, namely the ability to 

hydrolyse ATP (Bell et al, 1995; Ehrentraut et al, 2011). The “inverse” chimera protein containing the Sir3 BAH 

domain and the C-terminus of Orc1 is not able to support silencing. This shows that while the Sir3 C-terminus has lost 

the ability to function in DNA replication, the gene duplication event has given the Sir3 C-terminus the opportunity to 

evolve new functions crucial for silencing (Bell et al, 1995), such as its interaction with Rap1 and Sir4 (see Chapter 1 

and (Moretti et al, 1994; Cockell et al, 1995; Strahl-Bolsinger et al, 1997; Moazed, 2001; Moretti and Shore, 2001; 

Rudner et al, 2005; Chen et al, 2011; Ehrentraut et al, 2011)).  

The work presented in Chapter 3, reveals new important functions for both the Sir3 AAA domain (aa 532-834) and the 

heretofore mysterious extreme Sir3 C-terminal wH motif (aa 840-978). As mentioned before, the nucleosome binding 

function of Sir3 AAA, as well as its interaction with Sir4, are likely to have evolved after the gene duplication event. 

On the other hand, the self-association function contained in the Sir3 wH module is also present in the extreme Orc1 C-

terminus, suggesting that it evolved prior to the formation of the Orc1/Sir3 pair by gene duplication. While the Sir3 wH 

homodimerization is crucial for silencing, the role of the self-association of the predicted Orc1 C-terminal wH motif 

remains to be explored.  

4.2.1  THE SIR3 AAA DOMAIN BINDS THE NUCLEOSOME: MULTIPLE BINDING MODES? 

A screen for dominant negative sir3 alleles revealed that a point mutation within the Sir3 AAA (L738P) enhances the 

interaction of Sir3 with chromatin and impaired spreading of the Sir complex (Buchberger et al, 2008). This suggests 

that the AAA module can bind to the nucleosome. Consistent with a previous study using a longer Sir3 C-terminal 

fragment (aa 620-978) (Altaf et al, 2007), the work presented in Chapter 3 shows that the Sir3 C-terminal AAA domain 

binds the nucleosome in a manner sensitive to the methylation of H3K79. This suggests that the Sir3 AAA module 

indeed contacts the surface of the nucleosome encompassing the H3K79 residue and that the regulation of this 

interaction is important for silent chromatin formation. Importantly, the Sir3 N-terminal BAH domain also binds the 

region of the nucleosome encompassing the H3K79 residue (Onishi et al, 2007; Sampath et al, 2009; Armache et al, 

2011). This suggests that Sir3 can bind the nucleosome in at least two different conformations where either the BAH or 

the AAA interact with the H3K79 region of a given nucleosome. Within a single Sir3 molecule, the domain not 

involved in this interaction may contact the same region of a neighboring nucleosome, the linker DNA or other factors. 

Importantly, we show that the AAA binds free DNA and mononucleosomes with similar affinity, suggesting that a Sir3 

binding conformation where the AAA domain interacts with DNA is possible. Whether such a combinatorial binding 

mode exists and may be at work to facilitate the spread of the Sir3 protein (and the Sir complex) along the chromatin 

fiber remains to be investigated.  

4.2.2  HOMODIMERIZATION OF SIR3 WH IS REQUIRED FOR SILENCING, BUT WHY? 

Essential to Sir-mediated silencing are the interactions within and between Sir-complexes that presumably contribute to 

the stable loading and spreading of Sir proteins along the chromatin fiber. Interaction between Sir proteins has been 

extensively monitored by genetics, yeast-2-hybrid assays and co-immunoprecipitation (see section - Sir-mediated 

silencing: a complex story with three protagonists). Yet, atomic level structural knowledge of how the Sir proteins 
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interact is very limited. Previously, only the dimerization of the Sir4 coiled-coil domain and the interaction between a 

central region of Sir4 and Sir2 have been elucidated by X-ray crystallography ((Chang et al, 2003; Murphy et al, 2003); 

Rolf Sternglanz and Rui-Ming Xu, unpublished). 

Here we revealed a new interface essential for silent chromatin formation. The last 138 amino acids of Sir3 fold into a 

wH domain, whose homodimerization accounts for most of Sir3 dimerization and we show through mutagenesis that it 

is essential for silencing at telomeres and HM loci. The question remains: why is Sir3 dimerization indispensable for 

silencing?  

At least part of the answer comes from monitoring the recruitment of Sir proteins to silencers. Given its interactions 

with recruiting factors such as Rap1 and Yku70/Yku80 and its bridging function between Sir2 and Sir3, Sir4 is believed 

to play a major role in the recruitment of Sir proteins to nucleation sites (Moretti et al, 1994; Strahl-Bolsinger et al, 

1997; Roy et al, 2004; Taddei et al, 2004). In addition, Sir4 is the only component of the Sir complex detected at 

silencers in the absence of other Sir proteins (Hoppe et al, 2002; Luo et al, 2002; Rusche et al, 2002). Yet, in a sir3∆ or 

sir2∆ background, the overall level of Sir4 protein is mildly reduced and Sir4 recruitment at silencers is decreased by 

more than 50% (Hoppe et al, 2002; Luo et al, 2002; Rusche et al, 2002). Consistently, Sir3 also participates in the 

nucleation of silencing through its interaction with Rap1 and Abf1 (Gasser and Cockell, 2001; Moretti and Shore, 

2001). Alternatively, the stoichiometric assembly of the holo Sir complex may stabilize Sir4 and facilitate the 

recruitment of silencing by reinforcing Sir-chromatin interactions. 

Deletion of the Sir3 wH domain does not affect the assembly of the holo Sir complex, yet in a sir3∆wH background the 

amount of Sir4 recruited to nucleation sites is strongly reduced (virtually abolished at telomere 6R and reduced by more 

than 50% at telomere 7L and HML-E). It is unlikely that the wH domain serves as an interaction platform for other Sir 

recruiting factors as an unrelated bacterial dimerization motif (HlyU) fully substitutes for the Sir3 wH domain. 

Therefore, I propose that the homodimerization of Sir3 through the C-terminal wH domain is required for the stable 

association of the holo Sir complex with chromatin at nucleation sites. It is likely that Sir3 wH and Sir4 coiled-coil 

homodimerization, in concert with Sir2-Sir4 and Sir3-Sir4 heterodimerization, are responsible for increasing the local 

concentration of Sir proteins at silencers, from whence gene repression can then spread. Consistently, the Sir3 wH 

domain alone can mediate repression of a subtelomeric reporter gene (in a TPE-deficient rap1-17 strain) when bound to 

the promoter-proximal region as a lexA fusion protein plausibly by recruiting full-length, endogenous Sir3 which in 

turn brings in Sir4 and Sir2 (Liaw and Lustig, 2006). It remains unclear whether Sir3 wH homodimerization, in concert 

with Sir3-Sir4 and Sir4 coiled-coil homodimerization, also orchestrates the spread of Sir-mediated silencing along the 

chromatin fiber.  

4.3  FUTURE DIRECTIONS 

Owing to the work of many, we have a thorough understanding of the genetic requirements for yeast silencing. The 

precise molecular steps that assemble repressive chromatin are less well understood and the work presented here moves 

us a step closer to understanding how histone modifications, Sir-chromatin and Sir-Sir interactions regulate gene 

silencing. Many important questions remain unanswered.  

It is unclear how and to which extent Sir3 wH and Sir4 coiled-coil homodimerization  together with the interactions 

that make up the holo Sir complex  cooperate to promote nucleation and/or the spread of silencing. While Sir4 

dimerization has been reported to be necessary for silencing (Murphy et al, 2003), the mutations introduced by Murphy 

and colleagues also disrupt the Sir4-Sir3 interaction (Stephanie Kueng and Susan Gasser, unpublished). Therefore, it is 

still unknown whether Sir4 coiled-coil homodimerization per se is required for silencing. Recent work in our laboratory 

identified a Sir4 coiled-coil mutant with impaired dimerization function but consistent binding to Sir3 (Stephanie Kueng 

and Susan Gasser, unpublished). This will allow us to monitor the impact of Sir4 coiled-coil homodimerization on 

silencing as well as nucleation and spreading of Sir proteins. The combinatorial analysis of mutants defective for Sir3 or 

Sir4 homodimerization (see Chapter 3 of this thesis and (Stephanie Kueng and Susan Gasser, unpublished)) and the 

Sir3-Sir4 interaction (Murphy et al, 2003; Rudner et al, 2005; Ehrentraut et al, 2011) will shed light on the overlap in 

Sir-Sir interactions between nucleation and spreading of Sir-mediated repression in vivo. In addition, it is not clear how 

deacetylation of H4K16  and O-AADPR production  alters the Sir-chromatin assembly and whether Sir3 wH or Sir4 

coiled-coil homodimerization (or other Sir-Sir interactions dispensable for the formation of the holo Sir complex) play a 

role in this process. Building on the work presented here, it will be possible to shed light on this matter by monitoring 

the change in binding affinity of Sir complexes containing Sir3 and Sir4 dimerization mutants for chromatin 

deacetylated in vitro. 

Finally, our understanding of the structural organization of the holo Sir complex per se and the Sir-bound chromatin 

template is still very limited. Yet, our ability to prepare well-defined Sir complexes and Sir-nucleosome assemblies is 

constantly improving. The use of the Sir3 dimerization mutants presented here combined to Sir4 dimerization mutants 

(Stephanie Kueng and Susan Gasser, unpublished) will allow us to prepare more homogeneous samples, unable to 

undergo oligomerization. Combining X-ray crystallography and electron microscopy we will soon be able to gain 

exciting insights into the structure of yeast silent chromatin. 
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