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Zusammenfassung 
  

Einleitung 

Chronisch obstruktive Lungenerkrankung (COPD) ist für einen bedeutenden Anteil der chronischen 

Erkrankungen, Gesamtsterblichkeit und Gesundheitskosten verantwortlich und ist deswegen von 

grosser Bedeutung für die öffentliche Gesundheit. Die Prävalenz-Schätzwerte internationaler Studien 

driften jedoch aufgrund unterschiedlicher Krankheits-Definitionen weit auseinander. Trotz ihrer gros-

sen Bedeutung wird die Erkrankung in der Regel erst in späteren Stadien diagnostiziert, in denen 

keine effektive Therapie verfügbar ist.   

Die COPD Diagnose wird dabei vornehmlich auf die Lungenfunktionsmessung abgestellt, unter Be-

rücksichtigung weiterer Faktoren wie zum Bespiel hoher Tabakkonsum. Um die klinische Früherken-

nung zu fördern sowie vergleichbare Daten in der Forschung zu ermöglichen schlug die „global 

initiative for obstructive lung diseases“ (GOLD) eine einfache Definition vor. Diese beinhaltet, dass 

bei COPD das Verhältnis des Volumens, das bei der Spirometrie in der ersten Sekunde ausgeatmet 

wird, über das gesamte Ausatmungsvolumen (FEV1/FVC) kleiner als 0.7 ist. Die Spirometrie-Werte 

müssen dabei nach pharmakologischer Atemwegs-Dilatation gemessen werden, um COPD von 

undiagnostiziertem Asthma differenzieren zu können. Die Definition wurde zunächst weitläufig 

angewendet, einschliesslich epidemiologischer Studien, kam aber in der Folge unter starke Kritik, da 

sie eine Überdiagnose bei älteren Probanden begünstigt (der FEV1/FVC Wert von 0.7 kann durch die 

Lungenalterung zum Teil bereits mit 45 Jahren erreicht werden). Alternativ kommt vermehrt das 

Kriterium FEV1/FVC < lower limit of normal (LLN) zum Einsatz. Das LLN ist als fünftes Perzentil der 

FEV1/FVC Verteilung bei gesunden Nichtrauchern definiert. Wenn möglich sollten COPD Studien 

heute beide Definitionen einschliessen.  

Die der COPD Erkrankung zugrunde liegenden Krankheitsprozesse sind immer noch unklar. Rauchen 

wurde lange Zeit als entscheidender Risikofaktor angesehen, aber neuere Studien deuten auch auf 

Effekte durch Berufsexpositionen, Verwendung von biologischen Materialien (wie Kohle) zum Heizen 

und Kochen, Passivrauchen sowie möglicherweise Luftverschmutzung hin.  Zwei biologische Reak-

tionswege wurden als wahrscheinliche Krankheitsprozesse definiert. Erstens könnte ein Ungleichge-

wicht zwischen Proteasen und Antiproteasen im Körper zur Schädigung von Lungengewebe und den 

für COPD typischen Veränderungen führen. Zweitens könnte ein Ungleichgewicht zwischen Oxidan-

tien und Antioxidantien zu oxidativem Stress führen, unter welchem freie Radikale (Oxidantien) mit 

normalen Zell-Strukturen wie Proteinen, Zellwänden und DNA chemische Reaktionen eingehen und 

Zell-Schädigungen auslösen. Dies löst Entzündungsreaktionen aus, welche oxidativen Stress weiter 

begünstigen. Kandidaten-Gen Studien konnten Gene aus den beiden Systemen in Verbindung mit 

COPD bringen, aber oftmals wurden diese Assoziationen in Folgestudien nicht repliziert. Grund dafür 

könnte die Nichtbeachtung von Gen-Umwelt-Interaktionen sein.  

Die meisten der zitierten Umwelt-Risikofaktoren induzieren oxidativen Stress im Zielgewebe, doch 

das Ausmass der Schädigung hängt von der individuellen Empfindlichkeit ab. Diese wird durch Vari-

anten in den zugrundeliegenden Genen und Reaktionswegen mitbeeinflusst. Die Identifizierung von 

Empfindlichkeits-Faktoren muss durch die Untersuchung von Gen-Umwelt-Interaktionen erfolgen.  
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Es wurde nachgewiesen, dass die Schwebestaub-Komponente von Luftverschmutzung oxidativen 

Stress induziert. Epidemiologische Studien haben bedeutende und konsistente Beziehungen zwi-

schen Schwebestaub-Exposition und Mortalität, Hospitalisierungen aufgrund kardiopulmonaler 

Beschwerden, respiratorischer Symptome sowie beschleunigter Lungenalterung gezeigt. Daher ist 

Luftverschmutzung einer der wichtigsten, heutigen Umwelt-Risikofaktoren und muss als Risikofaktor 

für COPD untersucht werden.  

Das Ziel dieser Dissertation war es, die Inzidenz von COPD in der Schweiz zu bestimmen anhand ver-

fügbarer bevölkerungsbezogener Daten. In diesem Kontext soll die Nützlichkeit epidemiologischer 

Daten abgeschätzt werden. Weiter soll die Rolle von Luftverschmutzung in der Entstehung von COPD 

untersucht werden, mit Fokus auf die mögliche Interaktion mit „Oxidative Stress“ Genen. Schliesslich 

soll der geschätzte Beitrag von Luftverschmutzung zur COPD-Entstehung auf Populationsebene mit 

jenem von Rauchen, dem wichtigsten bekannten Risikofaktor, verglichen werden in Bezug auf 

involvierte Gene und Reaktionswege.     

Methoden 

Die Arbeiten der vorliegenden Dissertation basierten auf den Daten der Schweizer Studie zur Luftver-

schmutzung und Lungenerkrankungen bei Erwachsenen (SAPALDIA). Dies ist eine bevölkerungsbezo-

gene Kohortenstudie, welche im Jahr 1991 gestartet wurde mit dem Ziel, die Gesundheitseffekte von 

Langzeit-Expositionen gegenüber Luftverschmutzung auf Lungen- und Herzerkrankungen sowie Aller-

gien zu untersuchen. Die erste Folgeuntersuchung wurde 2002 durchgeführt, eine zweite wurde 

2010/11 abgeschlossen. Die jetzigen Arbeiten beruhen auf den Daten der Basis- und ersten Folge-

untersuchung, an denen 9651 respektive 8047 Personen teilnahmen. Teilnehmer beantworteten 

einen detaillierten Gesundheits-Fragebogen mit Fragen zu Rauch- und anderen Lebensgewohnhei-

ten, beruflichen Expositionen und vorbestehenden Erkrankungen. Die Lungenfunktion wurde mit 

denselben Testgeräten bei beiden Erhebungen und in standardisierter Weise getestet. Die Mes-

sungen wurden strikten Qualitätskontrollen unterworfen. Dabei fand keine Atemwegs-Dilatation 

statt. Schätzer der individuellen Luftverschmutzungs-Exposition waren für die Schwebestaubfraktion 

mit medianem Durchmesser unter 10µm (PM10) verfügbar, parametrisiert als Expositions-

Veränderung oder kumulative Belastung während des Follow-ups. Die Schätzer beruhten auf einem 

Gauss’schen Dispersionsmodel nationaler Emissionsdaten für die Jahre 1990 und 2000, mit Inter-

polation der Werte für die Zwischenjahre anhand historischer Trends bei Luftmessstationen. Bei der 

Folgeuntersuchung 2002 wurden auch Blutproben abgenommen, wodurch DNA-Proben von über 

6000 Personen für Untersuchungen von Kandidaten-Genen verfügbar waren. Durch die Zusammen-

arbeit im internationalen GABRIEL Konsortium wurden genomweite Daten für 1457 Personen gewon-

nen, welche alle Asthmatiker und eine Zufallsstichprobe von Nichtasthmatikern umfassen.  

Die Art der verfügbaren Daten implizierte folgende Entscheidungen betreffend des Analysedesigns: 

Das Fehlen von Spirometrie-Messungen nach Atemwegs-Dilatation machte die Untersuchung einer 

modifizierten GOLD COPD-Definition nötig. GOLD-Kriterien wurde dabei auf prä-dilatatorische Werte 

angewendet. Alternativ wurde die longitudinale Abnahme der Lungenfunktion als Proxy-Mass für 

COPD Entwicklung untersucht.  Zweitens konnten lediglich die Schätzer für PM10-Exposition als 

valides Mass der individuellen Belastung verwendet werden, da die PM10-Fraktion der Luftver-

schmutzung sich räumlich homogener verteilt als andere Komponenten. Drittens musste die Unter-

suchung von involvierten Reaktionswegen auf die relativ kleine Gruppe von Nicht-Asthmatikern mit 

verfügbaren genomweiten Daten beschränkt werden.  
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Resultate 

In der ersten Arbeit beobachteten wir mit der modifizierten GOLD-Definition eine Inzidenz von 14.2 

Fällen/1000 Personenjahre (PJ). Dies liegt am oberen Ende von publizierten Schätzwerten aus ver-

gleichbaren bevölkerungsbasierten Studien, und konnte nur partiell mit unterschiedlicher Altersver-

teilung, Tabakexposition und Dauer des Follow-up erklärt werden. Während ein positiver Zusammen-

hang zwischen Inzidenz und Alter sowie Rauchen konsistent in der Literatur beschrieben ist, beo-

bachteten wir einen solchen auch für chronische Bronchitis. Die LLN-Definition lieferte erwartungs-

gemäss eine kleinere Inzidenz von 7.2 Fällen/1000 PJ. 20.9% der obstruktiven Fälle bei der Basis-

untersuchung zeigten normale Spirometriewerte in der Folge. Eine Progression milder Atemwegs-

Obstruktion zu moderaten bis schweren Stadien während des Follow-up war assoziiert mit höheren 

Raten von Atemnot und Arztbesuchen, während persistent milde Obstruktion nicht damit assoziiert 

war. Fälle von milder Obstruktion, die nicht persistierten, waren assoziiert mit mehr Arztbesuchen, 

zeigten im Durchschnitt aber normale FEV1 und FVC Werte. Dies könnte durch nicht-diagnostiziertes 

Asthma bedingt sein. Die Schlussfolgerung dieser Arbeit war, dass wiederholte Lungenfunktionsmes-

sungen ohne Atemwegs-Dilatation künftige gesundheitliche Beeinträchtigungen vorhersagen kön-

nen, jedoch nicht gut zwischen Asthma und COPD differenzieren. Der Einbezug weiterer klinischer 

Parameter könnte helfen, Fälle von milder Obstruktion mit hohem Progressionsrisiko zu charakteri-

sieren. 

In der zweiten Arbeit untersuchten wir, ob Varianten in den Genen Hämoxygenase-1 (HMOX-1) und 

der Glutathione S-Transferase (GST) Superfamilie die Wirkung einer Luftverschmutzungs-Reduktion 

auf die Lungenfunktionsabnahme modifizieren. Diese Gene gehören zur ersten Abwehrlinie des 

Körpers gegen oxidativen Stress. Die Analyse war streng an eine zuvor publizierte Arbeit angelehnt, 

welche zeigte, dass eine Verbesserung der Luftqualität mit einer Verlangsamung der natürlichen 

Lungenalterung assoziiert war, besonders in den kleinen Atemwegen, welche durch den Parameter 

FEF25-75 repräsentiert wurden (dieser ist durch die Flussgeschwindigkeit im mittleren Teil der Aus-

atmung definiert). Wir beobachteten, dass Mutationen in GSTP1 und HMOX-1 die Wirkung einer 

reduzierten PM10-Belastung auf die Lungenalterung signifikant modifizierten, mit größten Verände-

rungen bei FEF25-75. Der Nutzen einer verbesserten Luftqualität verteilte sich daher nicht zu gleichen 

Teilen auf die Bevölkerung, sondern Personen mit unterschiedlicher Fähigkeit, oxidativen Stress zu 

verarbeiten, profitierten davon in unterschiedlichem Masse. Dies ist potentiell relevant für die Grenz-

wertsetzung. Es war jedoch schwierig die Resultate auf biologischer Ebene zu interpretieren, da bei 

den interagierenden genetischen Varianten die funktionellen Auswirkungen bezüglich Abbau von 

Luftschadstoffen nicht bekannt sind. 

In der letzten Arbeit wurde die Interaktion zwischen PM10- oder Tabak-Belastung mit Genen und 

Reaktionswegen, die für oxidativen Stress relevant sind, verglichen. Die Analyse fußte auf 878 Nicht-

Asthmatikern mit genomweiten Daten. 152 Gene, 14 Reaktionswege und 12679 Mutationen wurden 

durch eine Pathway-Analyse gemäss der ARTP-Methode untersucht. Nach Korrektur für multiples 

Testen fanden wir, dass die Gene CRISP2 signifikant, und SNCA marginal mit kumulativer PM10-Be-

lastung auf die Veränderung von FEV1/FVC interagierten. Eine vergleichende Analyse auf Mutations-

Ebene brachte neben der SNCA-Interaktion eine weitere Mutation im Gen PARK2 hervor, die mit 

PM10 die longitudinale Veränderung von FEV1 beeinflusste. Der Vergleich von nominal mit PM10- oder 

Tabak-Exposition interagierenden Genen (P-Wert für Interaktion <0.05) zeigte, dass die Überlappung 

der Interaktionsmuster zwischen den Expositionen sehr gering war. Bei Fokussierung auf die am 

stärksten interagierende Mutation innerhalb eines nominal signifikanten Gens zeigte sich, dass die 
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Tabak assoziierten Interaktions-Effekte größer ausfielen als jene bei PM10. Der Prozentsatz der 

erklärten Variabilität in der Lungenfunktionsveränderung war jedoch vergleichbar zwischen den 

Expositionen, und reichte bis zu 28.5%. Dies ist vermutlich eine Überschätzung aufgrund des so 

genannten „winner’s curse“ Effekts, der auftritt, wenn Effektschätzer bei kleinen Stichproben nach 

Stärke gefiltert werden. Weiter wurde diese Schätzung relativiert durch die fehlende Replikation der 

beobachteten Interaktionen in CRISP2 und PARK2 in der restlichen SAPALDIA Population. Schlussfol-

gernd waren statistisch signifikante Interaktionen auf Mutations- oder Gen-Ebene nicht nachweisbar, 

die Resultate deuten jedoch darauf hin, dass unterschiedliche Gene die Effekte von Luftverschmu-

tzung und Rauchen auf die Lungenfunktionsabnahme vermitteln. 

Diskussion und Schlussfolgerungen 

Unsere Resultate legen nahe, dass die COPD Inzidenz in der Schweiz am oberen Ende von vergleich-

baren internationalen Schätzern liegt, unter Vorbehalt der Überschätzung durch die fehlende Atem-

wegs-Dilatation und damit verbunden nicht diagnostiziertes Asthma. Dieses schlägt sich jedoch auch 

in einer erhöhten Belastung des Gesundheitswesens nieder. Der Einbezug weiterer klinischer Para-

meter könnte eine bessere Identifizierung von Personen mit milder Obstruktion und hohem Progres-

sionsrisiko ermöglichen. Für eine klare Differenzierung zwischen COPD und Asthma und ihrer Auswir-

kungen auf das Gesundheitssystem ist die Atemwegs-Dilatation vor Lungenfunktionsmessung unum-

gänglich. Die beobachteten Interaktionen zwischen PM10-Belastung und „Oxidative Stress“ Genen 

legen nahe, das die Luftverschmutzung über die Modulation der Lungenfunktionsabnahme zur COPD-

Entstehung beiträgt. Der Nutzen einer verbesserten Luftqualität wird umgekehrt nicht gleich hoch in 

der ganzen Bevölkerung sein, sondern hängt von der individuellen Empfindlichkeit gegenüber oxidati-

vem Stress ab. Die Resultate der Pathway-Analysen deuten darauf hin, dass unterschiedliche Gene 

und Reaktionswege durch PM10 und Tabak-Exposition aktiviert werden, möglicherweise aufgrund der 

unterschiedlichen Intensität des verursachten, oxidativen Stresses. Potentiell könnte der Beitrag von 

Luftverschmutzung in der COPD Entstehung auf Populationsebene jenem von Tabak vergleichbar 

sein, der Expositions-spezifische Anteil erklärter Outcome Variabilität muss jedoch von weiteren 

Studien untersucht werden. 

Diese Resultate sind von Public Health Relevanz, da sie die Bedeutung von oxidativem Stress im 

natürlichen Alterungsprozess der Lunge, und damit möglicherweise auch bei der Entstehung von 

COPD, hervorheben. Zukünftige methodische Weiterentwicklungen werden die Identifikation von 

Schlüssel-Enzymen und –Reaktionswegen und damit auch die Entwicklung neuer Präventions- und 

Behandlungs-Strategien ermöglichen. Zum jetzigen Zeitpunkt wäre die Empfehlung Überlegungen 

wert, in Zeiten höherer Luftverschmutzung Antioxidantien an empfindliche Bevölkerungsgruppen wie 

Kinder und ältere Leute mit Vorerkrankungen zu verabreichen. Dies könnte relativ einfach durch eine 

gemüse- und früchtereiche Ernährung oder Nahrungszusätze erfolgen. Auch sollte die Rolle der Luft-

verschmutzung in der COPD-Entstehung größere Beachtung in Public Health und Forschung finden.  

Die Analysen profitierten von verschiedenen Charakteristiken der zugrunde liegenden Daten. Das be-

völkerungs-basierte Design ermöglichte die Untersuchung von COPD Frühstadien wie beschleunigter 

Lungenalterung. Weitere Stärken waren die Verfügbarkeit von validierten Schätzern für die individu-

elle Luftschadstoffbelastung, standardisierte Lungenfunktionsmessungen und DNA Proben von hoher 

Qualität, sowie die Verwendung moderner Analysemethoden zur Untersuchung von Reaktionswe-

gen. Die wichtigsten Limitationen beinhalteten die fehlende Atemwegs-Dilatation bei der Lungen-

funktionsmessung, die Beschränkung auf zwei Lungenfunktionsmessungen (dadurch könnten Mess-
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fehler zur Unterschätzung von Luftschadstoff-Effekten führen), und die limitierte Stichprobengröße 

für genomweite Analysen.   

Diese Einschränkungen könnten durch den Aufbau einer großen, nationalen Kohorte mit detaillierten 

Daten zu Krankheitscharakteristiken, Umweltexpositionen und genomweiter genetischer Variabilität 

überwunden werden. Eine solche Unternehmung würde das Engagement aller Schlüsselstellen im 

Schweizer Gesundheitsbereich bedingen. Aus wissenschaftlicher Sicht wäre dies äußerst wertvoll, da 

neben dem Beitrag von Luftverschmutzung zur COPD-Entstehung Determinanten vieler weiterer 

chronischer Erkrankungen untersucht werden könnten.  
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Summary 
  

Introduction 

Chronic obstructive lung disease (COPD) is of major Public Health importance in terms of its global 

impact on morbidity, mortality and health care costs, although international estimates of its 

prevalence and burden differ widely due to the use of different disease definitions. Despite this large 

impact, the disease is often not diagnosed but in an advanced stage, where no effective therapy 

exists to date.   

Disease diagnosis is thereby based predominantly on lung function measurement, while taking 

account of additional risk factors such as smoking. To facilitate early detection and comparability 

across studies, the global initiative for obstructive lung disease (GOLD) has proposed an easily 

applicable disease definition based on the ratio of the forced expiratory volume in the 1st second of 

exhalation over the totally exhaled volume (FEV1/FVC) smaller than 0.7, measured after 

pharmacological airway dilatation. The latter is required to distinguish COPD from hidden asthmatic 

disease. The definition was first widely adopted including epidemiological studies, but was 

subsequently criticized for causing over-diagnosis in older ages. Owing to the natural lung function 

decline, the critical threshold could be reached by healthy persons at age 45 years. The alternatively 

proposed FEV1/FVC lower limit of normal, defined as the 5th percentile of the distribution in a healthy 

non-smoking population, has since substantially gained ground in the clinical as well as research 

setting. In consequence, the use of both definitions is warranted in studies on COPD disease burden 

today.  

Though COPD represents a major public health problem, the etiological pathways upon which it 

arises are not yet clear. Tobacco smoking has traditionally been the most important risk factor, but 

emerging evidence from recent years points to the importance of occupational exposures, domestic 

biomass burning for cooking and heating, environmental tobacco smoke exposure as well as ambient 

and traffic related air pollution as important determinants. Two major pathways have thereby been 

proposed as etiological frameworks for COPD. First, an imbalance of endogenous proteases and 

antiproteases could lead to destruction and alterations of lung tissue typical of COPD. Second, 

according to the oxidant/antioxidant imbalance hypothesis an overload of oxidants compared to the 

antioxidant defenses of the body could lead to oxidative stress. Oxidants are free radicals that react 

and interfere with normal cell structures like cell walls, proteins and the DNA, and cause 

inflammatory reactions with further oxidative stress. Genes belonging to these systems have 

successfully been related to COPD or lung function decline in candidate gene studies, underlining 

their importance. However, replication of these findings has proven difficult, even with the 

availability of genome wide studies. Failure to account for gene environment interaction could 

underlie this difficulty.  

Most of the environmental exposures suggested as COPD risk factors above are known to induce 

oxidative stress due to their content in free radicals or by stimulation of endogenous production. 

Further, the adverse effects of exposure on the tissue are not uniform, but depend on individual 

susceptibility to oxidative stress, determined by the functional capacity in underlying enzymes and 
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hence also variation in the respective genes and pathways. Identifying individual susceptibility factors 

thus requires the study of gene-environment interaction. 

For ambient air pollution, and especially its particulate matter component which is known to induce 

oxidative stress, substantial adverse health effects have been described including mortality, 

hospitalizations for cardiopulmonary morbidity, respiratory symptoms and decreased lung function 

growth. These make ambient air pollution one of the major environmental threats today, and an 

important candidate risk factor in the context of COPD. 

The aim of the thesis was thus to estimate the burden of COPD in Switzerland based on available 

population based data, while assessing the suitability of epidemiological data for this endeavor. 

Further, the role of ambient air pollution in the development of COPD is to be investigated via its 

possible interaction with variants in primary oxidative stress candidate genes. Finally, the estimated 

impact of air pollution exposure at the population level is to be compared to that of the traditional 

COPD risk factor, tobacco smoking, focusing on involved genes and pathways which could mediate 

the effects.  

Methods 

The work related to this thesis was based on data from the Swiss Study on Air Pollution and Lung and 

Heart Diseases in Adults (SAPALDIA). This is a population based cohort study initiated in 1991 to 

study the health effects of long term exposure to ambient air pollution on lung, allergic and heart 

diseases. A first follow-up has been conducted in 2002, and a second one has just been completed in 

2010/11. The current work drew upon data from the baseline and first follow-up assessment in 

which 9651 and 8047 persons participated, respectively. Participants underwent a detailed health 

questionnaire including questions on smoking and other life style habits, occupational exposures, 

and preexisting disease. Lung function testing was applied in both examinations without dilatation of 

the airways but according to a standardized protocol and strict quality control including use of the 

same devices at both time points. Individual air pollution exposure estimates were available for 

particulate matter of median diameter less than 10µm (PM10) in terms of change and cumulative 

exposure over 11 years of follow-up. These were based on a Gaussian dispersion model using Swiss 

emission data from years 1990 and 2000 and interpolation using historical trends of fixed air 

pollution monitoring stations. Blood samples were drawn in 2002 and DNA samples of over 6000 

persons were available for investigation of candidate genes. In the framework of the large 

international GABRIEL consortium, genome wide data was obtained on 1457 persons, including all 

asthmatics and a random sample of non-asthmatic participants.  

The nature of the available study data had the following implications on investigating the thesis 

questions: As no lung function measurements after airway dilatation were available, a modified 

GOLD definition of COPD was used (based on the pre-bronchodilation values), or alternatively change 

in lung function decline was studied as proxy measure for COPD development. Due to the more 

homogeneous distribution of particulate matter pollution compared to other components, only PM10 

exposure could be used as valid measure of individual air pollution exposure. Third, investigation of 

pathways involved in disease causation had to be limited to the relatively small group of non-

asthmatic persons with available genome wide data. 
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Results 

Using a modified GOLD-definition of COPD, we found an incidence of 14.2 cases/1000 person years 

(PY) in the first article. This was at the higher end of estimates from comparable population-based 

cohorts and could only partly be explained by differences in age, smoking distribution or length of 

follow-up. While positive associations of incidence with age and smoking were consistently described 

in the previous literature, we found chronic bronchitis also to be a significant determinant. Using 

FEV1/FVC < lower limit of normal (LLN) to define obstruction yielded expectedly lower incidence 

estimates of 7.2 cases/1000PY. 20.9% of obstructive cases at baseline did not persist, most of them 

presenting mild baseline obstruction. Progression from mild to moderate or severe stages or 

persistence in moderate to severe stages of obstruction during 11 years of follow-up was associated 

with more frequent health service use and dyspnea at follow-up, in contrast to persisting in mild 

obstruction.  Non-persistence of obstruction was marginally associated with higher health service 

use, despite broad adjustment for asthma, and on average, this category had normal lung function 

values but a mismatch between FEV1 and FVC. This was possibly due to cases of hidden asthma. We 

concluded that pre-bronchodilation spirometry as frequently used in epidemiological studies has 

prognostic value in predicting future adverse health events and health service use, though 

misclassification with hidden asthma might be substantial. Additional clinical characteristics could be 

useful to identify participants at risk of progression. 

In the second paper, we investigated whether variants in genes heme-oxygenase 1 (HMOX-1) and the 

glutathione S-tranferase (GST) gene superfamily, genes which belong to the body’s first line defense 

against oxidative stress, modify the effect of a reduction in PM10 exposure during follow-up on lung 

function decline. The employed analysis model was strongly based on previously published work, 

which had shown that a reduction in air pollution exposure was associated with attenuation in the 

natural, age-related lung function decline, particularly in the smaller airways as measured by FEF25-75 

(the velocity of the airflow in the mid-portion of exhalation). We observed that variants in GSTP1 and 

HMOX-1 significantly modified the effect of a reduced PM10 exposure, with the strongest interaction 

effects again observed for decline in FEF25-75. The benefits of a reduction in air pollution exposure are 

thus not equally distributed across the population, but individuals with a differing endogenous 

capacity to cope with oxidative stress profit from it to a different extent. This finding potentially has 

policy implications, but limited knowledge about how the interacting variants alter the biological 

processing of air pollutants warrant caution in interpretation.   

Finally, in the last paper we compared the interaction between ambient PM10 or tobacco smoke 

exposure and genes and pathways involved in oxidative stress on lung function decline in a subset of 

878 non-asthmatic adults with available genome-wide data.  The study comprised 152 genes, 14 

pathways, and 12679 single nucleotide polymorphisms (SNPs). A pathway analysis was applied using 

the published ARTP-method. After multiple testing correction, we found that genes CRISP2 

significantly, and SNCA marginally interacted with PM10 on the decline in FEV1/FVC. In comparison, a 

pure SNP-level analysis yielded one additional interaction: a SNP in gene PARK2 significantly 

interacted with PM10 on FEV1-decline. When looking at the interaction pattern across nominally 

significant genes (pinteraction<0.05), we observed that different genes and pathways were interacting 

with PM10 and tobacco smoke exposure.  Focusing on the strongest SNP in nominally significant 

genes, tobacco smoke exposure presented larger interaction effects on lung function decline than 

PM10. However the percent explained variability in lung function decline was similar for both 

exposures, ranging up to 28.5%. This is probably an overestimation due to the so-called “winners 
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curse” phenomenon. The estimates were further questioned by non-replication of the interactions 

with CRISP2 and PARK2 in the remainder of the SAPALDIA population. This was possibly related to 

small sample size. In conclusion, we were not able to detect consistent, significant interactions using 

either SNP-level or gene-level analysis after strict correction for multiple testing. However, by 

evaluating nominally significant interactions, we observed suggestive evidence that different genes 

and pathways are involved in mediating the effects of PM10 and tobacco smoke exposure on lung 

function decline.  

Discussion and Conclusion 

Our results imply that the incidence of COPD in Switzerland is at the higher end compared to data 

from other countries, with the reservation that estimates are based on pre-bronchodilation 

spirometry. They might thus be overestimated by hidden asthma (which also imposed burden on 

health service use). Besides spirometry, clinical criteria might be needed to discern who among 

mildly obstructed persons is at risk of progression. Separating the respective contributions of COPD 

and asthma to the overall disease burden warrants bronchodilation. The observed interactions 

between ambient PM10 exposure and oxidative stress defense genes suggest that air pollution 

contributes to COPD development by modulating lung function decline. In turn, the expected 

benefits from cleaner air are not going to be equally distributed among all members of society, but 

are determined by individual genetic make-up defining the capacity to cope with oxidative stress. 

Finally, according to the results of our pathway interaction analyses, genes and molecular pathways 

activated by ambient air pollution potentially differ from those induced by tobacco smoke. This could 

be related to different levels of oxidative stress. Finally, the impact of air pollution at the population 

level might potentially be comparable to that of tobacco smoke, but further research needs to 

address the exposure-specific percentages of explained variability in lung function decline. 

These findings are important for Public Health and prevention, as they underline the important role 

of oxidative stress in shaping the natural decline in lung function, and hence possibly the risk of 

COPD. Future methodological improvements might lead to the identification of key enzymes and 

pathways in COPD causation with subsequent development of new preventive measures and 

therapies. But for the time being, thought is warranted about whether to recommend antioxidant 

administration via diets enriched with fruits, vegetables or supplements to susceptible population 

groups such as children or the elderly during periods of high pollution. Further, the role of air 

pollution in COPD causation deserves greater attention in Public Health, policy and epidemiological 

research. Our studies benefitted from several strengths including a population based design that 

allowed studying pre-clinical COPD stages like accelerated lung function decline, validated individual 

level air pollution exposure estimates, highly standardized lung function measurements, high quality 

DNA from a large part of the population, and application of modern analysis techniques. The most 

important limitations include the lack of post-bronchodilation spirometry, availability of only two 

lung function measurements (implying possible underestimation of air pollution effects by non-

differential measurement error), and  the reduced sample size for genome wide analyses. 

These limitations could be overcome with a new, large national cohort with detailed phenotype, 

exposure and genome wide variation data. Such an endeavor requires commitment from all 

stakeholders in the Swiss Public Health field, but has high scientific merit as it would not only allow 

defining the fraction of COPD attributable to air pollution, but also studying determinants of other 

chronic diseases.   
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Abbreviations 
 

ATS  American Thoracic Society 

COPD  Chronic obstructive lung disease 

DNA  Deoxyribonucleic acid 

ERS  European Respiratory Society 

FEF25-75  Velocity of the airflow in the middle portion of a forced expiratory maneuver. Proxy  

   measure for the patency of small airways in the lung.  

FEV1  Volume blown out in the first second of a forced expiratory maneuver 

FVC  Volume blown out totally in a forced expiratory maneuver 

GOLD  Global Initiative for Obstructive Lung Disease 

GWAS  Genome-wide association study 

PM10  Particulate matter air pollution with a median diameter less than 10µm 

PM2.5  Particulate matter air pollution with a median diameter less than 2.5µm 

SNP  Single nucleotide polymorphism, meaning a single base pair mutation.  

UFP  Ultrafine particles, corresponding to the particulate matter fraction with median  

  diameter less than 100nm. 
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1. Introduction 

1.1.  Chronic Obstructive Lung Disease (COPD) 
 

Chronic obstructive lung disease (COPD) is the most widespread chronic airway disease besides 

asthma in industrialized countries today. The disease is associated with abnormally elevated levels of 

inflammation in lung tissue leading to a progressive loss of lung function and consequently increasing 

dyspnoea, reduced exercise capacity and quality of life1. The Global initiative for Obstructive Lung 

Disease (GOLD) and American Thoracic Society (ATS)/ European Respiratory Society (ERS) guidelines 

define the disease in the following way: “A disease state characterized by airflow limitation that is 

not fully reversible. The airflow limitation is usually both progressive and associated with an 

abnormal inflammatory response of the lungs to noxious particles or gases” 2,3. 

 

1.1.1. Epidemiology and Public Health Burden 

 

COPD is substantially and progressively contributing to the global burden of disease4,5. While ranking 

as 12th cause of disability and 6th cause of mortality worldwide in 1990, according to estimates from 

the Global Burden of Disease Study, it will likely be the 5th cause of disability and 3rd cause of 

mortality by 20206. Consequently, direct and indirect economic costs arising from treatment and loss 

of productivity are enormous4,7. In 1998, the US National Heart, Lung and Blood Institute (NHLBI) and 

the World Health Organisation (WHO) formed the GOLD initiative to raise awareness for the disease 

and establish a consensus on diagnosis and treatment1. 

In light of the disease’s Public Health importance, several studies were performed to provide data on 

COPD prevalence and incidence rates in the general population. While their results varied 

considerably depending on the chosen disease definition, most of them used diagnostic criteria 

recommended by the GOLD initiative, where a ratio of the forced expiratory volume in the 1st second 

over forced vital capacity (FEV1/FVC) <0.7 in post-bronchodilation spirometry defines presence of 

airflow obstruction. FVC thereby represents the total volume of air that can be blown out in a forced 

expiratory manoeuvre. According to GOLD criteria, values of FEV1 are then used for further severity 

classification: FEV1 ≥80% defines mild GOLD stage I, < 80% moderate stage II, <50% severe stage III 

and <30% very severe stage IV disease.  

Prevalence and incidence estimates cited in the following paragraphs are most often based on the 

GOLD-definition, although many of the epidemiological studies did not apply bronchodilation 

required to distinguish fixed airway obstruction as occurring in COPD from a reversible form mostly 

present in asthma. Further details on disease definitions are given in section 1.1.6. 

1.1.2. Prevalence 

 

 The overall prevalence of COPD was estimated to be 9.2% (95% CI: 7.7-11.0%) in a meta-analysis by 

Halbert and colleagues8 based on data from international population-based studies published 
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between 1990 and 2004, with estimates ranging from 5.5% (3.3-9.0%) to 21.8% (4.7–61.4) depending 

on the chosen spirometric criteria to define disease. Importantly, the review noticed that most of the 

prevalence estimates from epidemiological studies were based on pre-bronchodilation spirometry, 

although most guidelines require post-bronchodilation spirometry for the COPD diagnosis. To 

overcome these limitations, the international Burden of Obstructive Lung Disease (BOLD) study was 

designed with a strong focus on achieving comparability, and applied standardized questionnaires 

and post-bronchodilation spirometries to assess the prevalence of COPD in 12 countries based on 

representative population-samples9. The study focused on prevalence estimates for moderate to 

severe stages of disease in persons aged 40 years and over, because COPD starts manifesting in this 

age range and the mild forms are subject to misclassification with the naturally occurring age-related 

lung function decline9 (see section 1.1.5). Despite careful consideration of differing sampling 

strategies and applying uniform methodology across countries, the authors found a wide 

heterogeneity of prevalence estimates for moderately severe COPD, ranging from 5.9% in Germany 

to 19.1% in South Africa, which could not be explained by differences in age or smoking distribution. 

The overall prevalence was estimated to be 10.1%. A similar picture emerged in the PLATINO study, a 

population-based survey of metropolitan areas in five Latin-American countries, where estimates for 

mild COPD ranged from 7.8% in Mexico to 19.6% in Uruguay, and did not change substantially after 

adjustment for sex, body mass-index, ethnic origin, smoking exposure, domestic biomass and coal 

pollution as well as exposures in the workplace10. In a recent systematic review on available 

European data, Atsou et al. showed that spirometry based prevalence rates varied across countries 

from 2.1-26.4% overall, and still from 4.5% to 26.1% in the upper age-range of 40 years and more11. 

Thereby both, pre- and postbronchodilation spirometry was used by the original studies. The authors 

related part of the variability to differing study population characteristics (general population 

samples, patient or occupational cohorts) and different levels of tobacco smoke exposure, but 

different spirometric disease definitions also played an important role11.  

In summary, the comparability of many earlier prevalence studies is hampered by differing study 

characteristics and disease definitions8,11. In contrast, the BOLD and PLATINO studies benefited of 

standardized disease definitions and methodology yielding highly comparable estimates across 

countries, but the results imply a wide range of site-specific prevalence estimates up to 26%, which 

cannot be explained by differences in age structure or distribution of smoking exposure. Further, 

population based prevalence studies yielded substantially higher prevalence estimates than those 

based on physicians diagnoses11, which underlines the public health importance of the disease and 

suggests considerable under-diagnosis. 

 

1.1.3. Incidence 

 

Compared to available prevalence estimates, COPD incidence data is sparse and was only estimated 

by a few large, prospective cohort studies comprising different populations in terms of age range, 

follow-up time and study setting. Annual COPD incidence was estimated to 3 cases/1000 person-

years in young adults aged 20-44 years12, and 16 cases/1000 person-years in an older population 

aged 46-77 years 13. A study in Copenhagen, Denmark observed a 20% cumulative incidence over 25 

years of follow-up in subjects over 19 years of age14. In contrast, only 6% of a Norwegian random 
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population sample aged 18-74 years developed COPD after nine years15. Thus incidence rates varied 

widely depending on age distribution and from country to country. 

 

1.1.4. Burden of COPD in Switzerland 

 

In Switzerland, no population-based prevalence study was carried out until recently, although 

published lung function data from the first examination of the Swiss Study on Air Pollution and Lung 

Disease in Adults (SAPALDIA) in 199116,17 had been used in the meta-analysis by Halbert and 

colleagues8. Bridevaux et al focused on data from the SAPALDIA follow-up survey in 2002 due to the 

favourable age distribution (median age 50 years, range 30-73), and estimated the prevalence of 

moderate airflow obstruction to 7% according to the GOLD definition, and 5.1% according to a ratio 

of FEV1/FVC smaller than its lower limit of normal (LLN)18. The LLN is calculated as the 5th percentile 

of the normal distribution in healthy never-smoking adults. These estimates are at the lower end of 

comparable studies across Europe including the European centres of the BOLD study9. Population-

based COPD incidence data was not available before publication of the work related to this thesis 

(first thesis paper). 

 

1.1.5. Symptoms and clinical presentation 

 

COPD is characterized by ongoing loss of breathing capacity due to an underlying, progressive 

narrowing of the airways and loss of gas exchanging lung surface1. Severe stages of disease are 

frequently associated with respiratory symptoms such as chronic cough and phlegm production, as 

well as shortness of breath while walking. These symptoms are accentuated while the disease 

progresses over several years, and ultimately patients suffer from incapacitating dyspnea, reduced 

exercise tolerance and also impaired quality of life19. COPD is often accompanied by other chronic 

conditions such as loss of muscle mass, weight loss (decline in BMI), cardiovascular disease, 

disturbances of lipid and glucose regulation, osteoporosis and depression, which further add to the 

disease burden and also economic costs20,21. The pathogenetic link between COPD and these 

comorbidities is currently not clear and actively researched21.  

A cardinal feature of the disease is the accelerated loss in FEV1 compared to the normal, aging-

related lung function decline, which starts after lung growth has reached its peak by the age of 25 

years. The accelerated decline is induced and maintained by exposure to noxious inhalatory particles 

like tobacco smoke and others. This characteristic of the disease has long ago been described by 

Fletcher and Peto in one of the first publications on COPD-disease (figure 1)22. Importantly, the 

authors noted already at that time that not all individuals are susceptible to the effects of smoking. 

On the tissue level the disease presents mainly in the form of two processes of differing intensity, 

one being characterized by progressive loss of tissue walls between the lung alveoli, i.e. in the gas 

exchanging part of the lung, which results in lung emphysema, the other presenting as inflammation 

and tissue remodeling in the larger, air transporting airways, resulting in fibrotic changes and fixed 

narrowing of the bronchi. Airway obstruction is also enhanced by the emphysematous processes via 
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Figure 1 Course of decline in FEV1 according to exposure to tobacco smoke from 22 

 

 

loss of elastic lung fibers whose traction normally helps to maintain open airways. Progressive 

obstruction leads to air trapping in the lungs, which is clinically often observed in chest radiographs 

in the form of hyperinflation and a flattened diaphragm, while pronounced emphysema can lead to 

large confluent air spaces presenting as bullae on radiography.  

 

1.1.6. Diagnosis 

 

One of the large problems to solve to tackle COPD-related morbidity is timely diagnosis. According to 

epidemiological data, more than half of the patients remain undiagnosed and untreated, even when 

their disease has already progressed to a moderate severity stage9,23,24. Hence at the time of 

diagnosis, often a large part of the patient’s lung function has already been lost. The problem is that 

in early stages of the disease the symptoms are rather unspecific and the degree of impairment in 

everyday life is minor. 

In contrast, there is consensus among experts that the disease needs to be diagnosed in an early 

stage by timely detection of the typical spirometric changes, if a chance of applying effective 

preventive or therapeutic measures shall be kept1. The diagnosis of COPD is predominantly based on 

spirometry and different spirometry-based COPD-definitions exist. Appendix 1 gives a detailed 

overview on pulmonary function testing. 

 

1.1.6.1. Spirometric criteria to define COPD 

 

Different spirometric criteria have been proposed to define COPD25, and it is well known that the 

different definitions produce a wide range of prevalence estimates26. The most frequently used 
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definitions are those proposed by the GOLD initiative and the European Respiratory Society 

(ERS)/American Thoracic Society (ATS) based on a fixed cutoff of 0.7 for the FEV1/FVC ratio to define 

airway obstruction3,27, although the validity of this cutoff is much contested today (see section 

1.1.6.2). 

 

GOLD COPD definition:  

COPD is present if the following criteria are met in post-bronchodilation spirometry:  

 Mild GOLD stage I: FEV1/FVC < 0.7  and  FEV1 >=80%              of the predicted value  

 Moderate stage II:    “          and 80%> FEV1 >=50%     “  

 Severe stage III:    “  and  50%> FEV1 >=30%     “ 

 Very severe stage IV:    “  and 30%> FEV1                        “ 

FEV1 values are thereby compared to expected values, based on prediction equations derived from a 

healthy, non-smoking adult population of the same ethnicity. Many population-specific prediction 

equations have been published to date28, and most of them take into account the proband’s sex, age, 

and possibly height. In the European context the most frequently used prediction equations are 

those published by Quanjer and colleagues in 1993 for the European Community of Coal and Steel 

(ECCS equations)29,30:  

Females: 

FEV1:  3.95 * height – 0.025 * age -2.60  RSD=0.38 

FVC:  4.43 * height – 0.026 * age -2.89  RSD=0.43 

FEV1/FVC: 89.1 – 0.19 * age   RSD=6.51 

(in %) 

Males: 

FEV1:  4.30 * height – 0.029 * age -2.49 RSD=0.51 

FVC:  5.76 * height – 0.026 * age -4.34 RSD=0.61 

FEV1/FVC: 87.21 – 0.18 * age   RSD=7.17 

(in %) 

 

Thereby volumes are in litres, height is in metres, and age in years. For adults aged <25 years, 25 

should be substituted for age. RSD means residual standard deviations of the prediction equations 

(i.e. the standard deviation of the residual difference between predicted and measured lung function 

values after taking account of height and age). 

For studies on the North-American continent, the most widely applied equations are those published 

by the NHANES III study31.  
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Comparative studies have shown that the ECCS equations often produce lower predicted lung 

function values than equations calculated for specific geographic populations32-35, or those derived 

from large population based studies such as SAPALDIA36 or NHANES III32. The probable reason for the 

frequent underprediction is that the ECCS equations were derived from lung function measurements 

and equations in different populations including smokers over three decades (1954-1980)30,32. They 

thus more represent average prediction values across populations, and might not optimally fit single 

ones. In spite, or perhaps also because of this shortcoming, they are still used in comparative 

analyses of population based studies in order to use a common set of prediction equations that 

approximately fits the involved studies to the same extent. 

ERS/ATS COPD definition: 

The spirometric criteria proposed by the ATS/ERS are practically identical to those of the GOLD 

initiative, with the exception that a ratio of 0.7 is already classified as pathologic3. Further, besides 

stressing that COPD is a preventable and treatable disease, the ATS/ERS consensus statement37 

emphasizes that these criteria should be applied to high risk groups such as persons with respiratory 

symptoms or heavy smokers.  

 

1.1.6.2. Fixed FEV1/FVC cutoff versus lower limit of normal 

 

There is currently much debate about the validity of using a fixed cutoff of FEV1/FVC<0.7 to define 

airway obstruction38-40.  

This fixed cutoff was initially proposed by an expert panel to have diagnostic criteria which are easy 

to remember and readily applicable in the clinical setting with the hope to facilitate early detection 

of airway obstruction38. Moreover, use of a fixed cutoff for the first time facilitated comparability of 

prevalence estimates across epidemiological studies.  

The inherent problem of using a fixed ratio cutoff is however that due to the natural lung function 

decline, which starts from the age of 25 years, this threshold can normally be reached around the age 

of 45 years, even by non-smokers25,40,41. It was estimated that by using the fixed FEV1/FVC ratio cutoff 

of 0.7 between 35-60% of healthy men aged 70 years or older would be falsely classified as 

diseased25,42,43. On the other side of the age spectrum, younger adults with a ratio above but close to 

the 0.7 threshold would still be classified as healthy, although their expected normal value would be 

considerably higher25. Accordingly, between 7-30% of young adults aged <50 years with irreversible 

airways obstruction might be missed by focusing on a fixed threshold of 0.743,44. Overall, the fixed 

ratio cutoff proposed by the GOLD initiative and ATS/ERS thus leads to considerable over-diagnosis in 

older age, while at the same time young adults are under-diagnosed.  

This misclassification issue has brought up the proposal of using the lower limit of normal (LLN) of 

the FEV1/FVC ratio to define the threshold of obstruction. The LLN would thereby be represented by 

the 5th percentile of the distribution of FEV1/FVC observed in a healthy, non-smoking, asymptomatic 

adult population of the same ethnic origin as the tested proband. Based on physiology, the expected 

lung volumes and hence also the LLN will naturally be different for males and females, for different 

heights, and would also depend on age.  
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While study-specific LLN values have been published, including for the SAPALDIA study36,45, the LLN is 

most often calculated by subtracting 1.645 standard deviations from the value predicted by one of 

the widely used standard equations in populations of European origin29,31. As an example, using the 

equations by Quanjer et al.29, the LLN for FEV1/FVC would be calculated as:  

LLN FEV1/FVC:  89.10 – 0.19 * age -1.645 * 6.51 (RSD)  in females 

87.21 – 0.18 * age -1.645 * 7.17 (RSD)  in males 

where RSD=residual standard deviation, as defined on page 19.  

Obviously, also the LLN criterion leads to a small degree of misclassification, as 5% of the healthy, 

adult population would be classified as diseased. It is however considerably more restrictive than the 

fixed cutoff criterion, and resulting estimates for the prevalence of airway obstruction are about 40% 

lower compared to using a fixed ratio of 0.725,46,47, with the difference being particularly prominent in 

the oldest age-segments. In the BOLD study, Vollmer and colleagues have found that the variability 

of COPD prevalence estimates was considerably reduced when using LLN, although still significantly 

different between study sites, ranging from 7.1-8.6%48.  

The discussion on how to best define airway obstruction is still ongoing, and in clinical practice as 

well in research, both definitions can be observed. 

In the clinical setting, the fixed 0.7 cutoff-criterion is thereby less prone to misclassification, as most 

of the diseased persons present with respiratory symptoms, frequently a smoking history, as well as 

in later disease stages. In such a population the prevalence of disease is likely to be high, and thus 

the fixed cutoff criterion will often perform well, except in young adults aged 50 years or less43. This 

might be also a reason why the GOLD initiative still propagates it in its position statements1. Likewise, 

ATS/ERS emphasized that the definition shall be used in persons with a positive history for these risk 

factors in its COPD position paper from 20043. However, in light of the consequences that a false-

positive test-result and hence over-diagnosis in elderly persons entails (lifelong treatment and 

possible anxiety), the ATS/ERS shortly afterwards changed its recommendations to using the LLN for 

the interpretation of spirometries28, and an urgent change of the major COPD guidelines is currently 

advocated39,40.  

In the research setting, and particularly in population-based epidemiological studies, the issue of 

misclassification when using the fixed cutoff criterion is even more pronounced (although without 

direct negative consequences for participating individuals), as most study participants are in good 

respiratory health, and the pre-test probability of disease is small. The stricter LLN criterion thus 

helps to minimize the rate of misclassification, from which many epidemiological studies lacking 

post-bronchodilation spirometry might even more benefit, as they struggle with additional 

misclassification by presence of hidden asthma. However, only a few population-based 

epidemiological studies have so far investigated and shown the prognostic value of using the LLN 

criterion to predict future adverse health events49-51, while there is more (although contested) 

evidence for the fixed cutoff in this respect49,52-54. The comparative predictive performance of the 

criteria thus remains to be determined.  

To summarize, the lower limit of normal criterion has gained ground not only in research but also in 

the clinical setting during the last years, and it will probably become standard in the future28. 
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Currently prediction equations for a wide spectrum of different ethnic populations are available (a 

good overview is given on the homepage of one of the leading respiratory epidemiologists, Prof. P 

Quanjer, under www.spirexpert.com/epidemiol7.htm, as accessed on July 15th 2011), but their 

readily application in clinical practice is hampered by the failure of many spirometer manufactures to 

make them available in their devices. At the same time, the GOLD and older ATS/ERS criteria 

including the fixed ratio cutoff are still widely used in epidemiological research for reasons of 

comparability with earlier studies. However, parallel or sensitivity analyses using the LLN criteria are 

clearly warranted in light of the limitations of using a fixed ratio criterion.  

 

1.1.7. Treatment 

 

Therapeutic options to slow the progression of COPD are still scarce. So far, the therapy consists 

primarily in removing the noxious inhalatory exposures, most often meaning smoking cessation, and 

symptomatic treatment with broncho-dilating drugs (which relieves the notion of respiratory 

distress), and possibly corticosteroids, given in combination with antibiotics in the case of infectious 

exacerbations (to suppress respiratory deterioration by inflammatory reactions). Recent results from 

the TORCH, UPLIFT and GLUCOLD trials reported promising effects on slowing the accelerated FEV1 

decline in moderate COPD stages by a long-term maintenance therapy with long-acting 

bronchodilators and inhaled steroids, given either alone or in combination55-57. While these findings 

challenge the negative results of previous studies with shorter follow-up, they are based on a 

posthoc analysis, and the case for clinically applying maintenance treatment in early COPD stages is 

thus still open58,59. The partly conflicting findings from these studies also stimulated the idea that 

only specific sub-phenotypes of COPD might respond to a certain maintenance treatment60.  

In light of the large mortality and morbidity burden the disease imposes worldwide6, new insights 

into the molecular processes underlying COPD are urgently needed to identify new targets for 

prevention and therapy. 

 

1.1.8. Risk Factors and Disease Aetiology 

 

1.1.8.1. Environmental Risk Factors 

 

Since it was described by Fletcher and Peto22, COPD has traditionally been understood as a smoking-

related disease, and there is wide consensus that smoking is still the most important risk factor for 

COPD1,3. But in the last years, it has increasingly been realized that many other inhalatory exposures 

contribute substantially to COPD development61,62. Current estimates state that about one third of 

prevalent COPD cases affect lifetime never smokers61, and in line with this, 30% of all cases of 

prevalent airway obstruction in the SAPALDIA study were never-smokers18. Other potentially relevant 

exposures comprise respiratory infections in infancy, tuberculosis infection, exposure to household 

dust and fumes from cooking and heating, industrial and occupational dust and fume, as well as 

environmental tobacco smoke and ambient air pollution61,62. Among these, consistent associations 

http://www.spirexpert.com/epidemiol7.htm
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with COPD-risk were found for workplace exposures to dusts and chemicals63-65. There is also growing 

evidence for an important role of environmental tobacco smoke (ETS)66, besides its known effects on 

respiratory symptoms and lung function67,68. Finally, evidence is also emerging that ambient air 

pollution might contribute to COPD development69,70.  

The effect of these alternative risk factors on COPD development is substantial due to their large 

exposure prevalence. Thereby indoor air pollution from burning of biomass fuel for heating and 

cooking constitutes a particularly important source of exposure in developing countries61,71,72, 

whereas in industrialized countries environmental tobacco smoke, occupational exposures, and 

ambient air pollution from industry, heating and traffic predominate. The role of these latter factors 

is however increasing in many developing countries due to their transition to market economies and 

a westernized lifestyle. From a public health perspective, ambient air pollution is of particular 

interest due to its unavoidability and high exposure level in densely-populated urban centers caused 

by production facilities, heating sources and traffic. Moreover, no biological exposure threshold for 

harmful effects of ambient air pollution has been identified to date73.  

It is however important to note that by far not all exposed individuals develop disease. In the case of 

smoking for example, it has been estimated that only about 15% of smokers22 eventually develop 

COPD. Data for the other exposures is not available. It is thus thought that the individual risk to 

develop disease depends on the underlying susceptibility to noxious exposures, which is in turn 

defined by the individual make-up of the genes coding for protective enzyme systems in the body.  

 

1.1.8.2. Individual susceptibility and the role of oxidative stress genes 

 

COPD thus belongs to the group of complex diseases, in which single environmental exposures or 
genetic mutations are not sufficient to cause disease, but a complex network of interactions between 
environmental and genetic factors forms the basis for underlying susceptibility. Each genetic 
alteration thus only contributes a small part of the overall risk, and possibly only in interaction with 
an environmental exposure (figure 2). Such a “polygenic disease model” represents the current 
understanding of chronic disease causation in genetic epidemiology74.  

 

Protease/anti-protease imbalance hypothesis 

Genetic studies have so far made promising attempts to uncover the genetic factors related to COPD. 
The most long standing and widely recognized genetic determinant of COPD is α1-antitrypsine 
deficiency, which is caused by genetic mutations in the SERPINA1-gene75,76. In the most severe-form, 
this mutation leads to a 90% loss of function of the enzyme α1-antitrypsine77, which normally inhibits 
neutrophil elastase present in lung tissue, and hence to degradation of elastic lung tissue and 
emphysema. This severe form is however rare, and accounts for only about 1-2% of COPD cases77,78, 
which cluster in families. More importantly, the process only manifests with concomitant exposure to 
tobacco smoke, as the inflammatory reactions induced by tobacco smoke attract sufficient quantities 
of neutrophils into the tissue79. The interaction between mutations in the SERPINA1-gene and 
smoking represents the classic paradigm of gene-environment interactions, which is now known for 
several decades75. It led to the formulation of the “protease/anti-protease imbalance” hypothesis in  
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Figure 2 Polygenic disease model 

 

GP: genetic protective factor; GR: genetic risk factor; EP: environmental protective factor;  
ER: environmental risk factor 

 

the causation of COPD80, meaning that the imbalance between deficient α1-antitrypsine activity and 
excessive release of elastase by inflammation activated neutrophils causes emphysema in lung 
tissue. On the basis of this hypothesis candidate gene studies indentified further genes involved in 
lung tissue and extracellular matrix maintenance as risk factors79.  

 

Oxidant/anti-oxidant imbalance hypothesis 

The other important enzyme systems potentially involved in the development of COPD are the anti-
oxidant and inflammatory pathways in the body, which are highly activated upon exposure to 
tobacco smoke and other inhalants like air pollution that impose oxidative stress on the lungs81. 
These exposures either directly contain high amounts of free radicals (highly-reactive substances 
containing free, unpaired electrons) or compounds which trigger their extensive formation in the 
body via a cascade of inflammatory reactions and consecutive activation of macrophages and 
neutrophil leucocytes that normally protect the body against infection-related tissue damage82. On 
the cell level, exposure to free-radicals leads to peroxidation of outer cell walls, further propagation 
of reactions into the cell, and ultimately protein and DNA alterations (figure 3), which damages the 
cell and further enhances inflammation83. The extent of these reactions will thereby depend on the 
individual capacity to handle the oxidative stress burden, and mutations affecting the activity of 
pivotal enzymes in these cascades are likely to influence the risk of COPD substantially82. Thus, 
analogously to the protease/anti-protease hypothesis the other large paradigm in COPD-
development is an imbalance between the oxidative stress burden and the activity of protective anti-
oxidant systems84.  

Though the two hypotheses are often separately referenced and investigated, they are biologically 
linked via inflammatory cascades and the secretion of pro-inflammatory substances from white 
blood cells triggered by oxidative stress (figure 4). 
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Figure 3 Cascade of peroxidation reactions in the cell upon exposure to free radicals, from 83 

 

 

Candidate gene studies 

As a consequence of both, the oxidant/anti-oxidant and protease/anti-protease imbalance 
hypotheses, many genes involved in inflammation (like tumor necrosis factor alpha or interleukins), 
oxidative-stress (like gluthathione s-transferases, microsomal epoxide hydroxylase, and heme-
oxygenase 1), and maintenance of the extracellular matrix (like matrix metallo-proteinases) have 
been investigated and associated with COPD or related traits in candidate gene studies85-87. However, 
only a small part of these findings could be consistently replicated in later studies and a recent meta-
analysis across different studies and populations87,88. According to the meta-analysis, among the 
genes showing consistent associations with COPD were transforming growth factor, beta 1 (TGFB1), 
interleukin 1 receptor antagonist (IL1RN), and tumor necrosis factor alpha TNF-α87,89. 

 

Genome-wide association studies (GWAS) 

Due to technological developments costs of genotyping have progressively declined during the last 
decade, and gene-chips covering several hundred thousand mutations dispersed over the whole 
genome have become available for epidemiological research. As a consequence, the search for 
genetic determinants of COPD was extended to the whole genome in recent years. Analysis was 
carried out in a hypothesis-free manner by association-testing of all available variants on the gene-
chip with COPD in the purpose of identifying new, previously unsuspected genes and pathways.  
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Figure 4 The role of proteases, oxidants and inflammation in COPD causation, from 82 

 

 

Capitalizing on this agnostic nature, genome wide association studies (GWAS) have indeed suggested 
new genes and genomic loci affecting the risk of COPD. The set of identified genes/loci comprises 
hedgehog interacting protein HHIP, a locus near the alpha-nicotinic acetylcholine receptor genes3 
and 5 CHRNA3/5 or iron responsive element binding protein 2 IREB2 (both located in the same 
linkage-disequilibrium block), and family with sequence similarity 13 member A FAM13A (which was 
also associated with hypoxia and lung function)90,91. Further, a meta-analysis of two large GWAS on 
cross-sectional lung function from the European SpiroMeta and North-American CHARGE 
consortia92,93 identified loci at FAM13A, serotonin 4 receptor subtype (HTR4), the receptor for 
advanced glycosylation end products (AGER) , thrombospondin type-1 domain-containing protein 
(THSD4) and a locus near HHIP to be associated with FEV1/FVC, and tensin 1 (TNS1) as well as 
glutathione S transferase C-terminal domain (GSTCD) with FEV1. A recent follow-up analysis could 
also confirm their association with COPD94.  

However, it is currently not clear by which mechanism these genetic variants influence the risk of 
COPD on the molecular level, as the identified variants for both lung function and COPD were hardly 
related to oxidative stress defense or the proteinase/anti-proteinase system. Further, a subsequent 
analysis focusing on previously defined candidate genes for COPD and lung function within the 
dataset of the SpiroMeta consortium failed to replicate previous candidate gene associations with 
the disease95. Moreover, the overlap between the most strongly associated SNPs from the cited 
genome-wide studies on COPD and lung function was small.  
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Gene-environment interaction 

In summary, the findings from both, candidate gene studies and GWAS on COPD were not consistent, 
and non-replication of previously identified associations was frequently observed. A subsequent 
analysis of the COPD GWAS by Pillai and colleagues96 implicated that the three genomic regions 
might differentially affect different sub-phenotypes of COPD: while all were to some degree 
associated with airway obstruction, the variant near CHRNA3/5 was also associated with smoking 
intensity and emphysema, and HHIP with fat free mass and body mass index (BMI). This finding 
underlines the importance of a detailed phenotypic characterization in COPD studies, and might 
explain a part of the observed non-replication of study findings, as genetic heterogeneity across 
disease subphenotypes might level out gene effects if not properly accounted for. Alternatively, non-
replication could also be due to lack of statistical power or genetic heterogeneity in study 
populations of differing ethnic origin. But these factors are not likely to operate in large scale GWAS, 
that regularly control for ethnic background of study participants in the analysis, where the issue of 
non-replication is nevertheless present. 

Another important explanation of non-replication could be presence of gene-gene- and gene-
environment interactions97,98. Interestingly, not many studies on possible interactions between 
genetic and environmental factors have been conducted in the search for genetic determinants of 
COPD75,99, although the disease represents the classic paradigm of gene-environment interaction 
since the association of lung function, α1-antitrypsine deficiency and smoking has been described 50 
years ago75,77.  

Variants in several candidate genes belonging to the first line defense against oxidative stress have 
been investigated regarding their interaction with air pollution on different respiratory outcomes in 
the past, including asthma, respiratory symptoms and lung function100. Often studied genetic variants 
included SNPs in glutathione S-transferases class M1 (GSTM1), P1 (GSTP1 )and T1 (GSTT1), NAD(P)H 
dehydrogenase  1 (NQO1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), heme 
oxygenase-1 HMOX-1, epoxide hydrolase 1 (EPHX1) and catalase (CAT). A systematic review of 
studies published up to April 30th 2009 investigating interactions between genetic variants and 
ambient air pollution on symptoms, lung function and asthma found evidence for the presence of 
gene-environment interactions in oxidative stress systems, particularly in populations of children 
who are more susceptible101. However, the strength of evidence was hampered by potential issues 
regarding multiple testing correction, selective reporting and inconsistent directions of association in 
the respective studies101. This is in line with a concurrent review on gene air pollution interactions 
focusing on asthma outcomes that was largely based on the same underlying studies102. Similarly, 
interactions have been described for oxidative stress genes with tobacco smoke exposure on lung 
function, and for inflammatory genes regarding lung function decline in adults with airway 
obstruction103-106.  

In contrast, no genomewide study on COPD was currently identifiable in the literature that assessed 
gene-environment interaction, and only one genome-wide study on childhood asthma assessed 
interaction with farming exposure in the whole field of respiratory epidemiology to date107.  

This lack of gene-environment interaction studies likely reflects the higher sample size requirements 
for successful investigation of gene-environment interactions compared to gene-main effects studies. 
The issue is further aggravated when performing GWAS, that typically require several thousand cases 
and controls to cope with multiple testing correction after genome-wide analysis of genetic main 
effects already108,109. Potential higher order interactions between genes and environmental factors 
can further limit the power of classic analysis methods108,109. In recognition of these methodological 
difficulties, large scale collaborations to examine the mutual roles of genes, environmental factors 
and their interaction in COPD and other chronic respiratory diseases have been proposed110. But 
these need to be accomplished with a strong focus on data comparability to avoid spurious 
associations introduced by differential measurement error between studies. The assembly of large 
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datasets or meta-analysis of interactions across several studies thus requires comparable data quality 
also on the environmental side, which is not easy to achieve in the field of air pollution exposure 
measurement. 

In summary, in view of the large Public Health burden and limited therapeutic options to treat COPD, 
it is important to pursue the investigation of gene-environment interactions, as uncovering the 
complex network of interacting genetic and environmental factors offers the possibility to develop 
new and urgently needed therapeutic and preventive measures.  

 



29 
 

1.2.  Air Pollution 
 

1.2.1. Air pollution as environmental threat to health 

 

Since the “Great Smog” in London triggered a high number of emergency visits and excessive deaths 

in 1952, the health effects of ambient air pollution have received attention environmental health 

research. This excessive pollution episode occurred in December 1952 due to a stagnation of the 

weather conditions and concentration of pollutants like soot and sulfur dioxide (SO2) originating 

from heating and combustion sources111.  

By the 1980s, clean air legislation and technological changes have substantially lowered the amount 

and changed the composition of air pollution, with smoke and sulfur components loosing importance 

compared to ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM). But the results of three 

large Unites States (U.S.) cohort studies, the Harvard Six Cities study112, the American Cancer Society 

study113 and the Seventh-day Adventist study114, brought the health effects of air pollution again to 

the attention of policy makers, the public as well as the research community. They provided robust 

evidence that the relatively low particulate matter exposure present at that time was still associated 

with overall mortality. Thereby, exposure contrasts in the range observed within the studies 

potentially entailed differences in life expectancy of 1-2 years on average. These observations were 

intensely questioned from the side of industry and respective stakeholders, but withstood detailed 

scrutiny115,116. The reanalyses eventually even helped to further improve the methodology of 

studying air pollution effects117. As a consequence, polluted air was de novo perceived as one of the 

main environmental threats to human health, which considerably fuelled the research in the field.  

 

1.2.2. Sources, composition and exposure assessment 
 

In the context of air pollution studies, it is important to consider that air pollution is actually a 

complex mixture of exposures111: it consists of gaseous pollutants such as NO2, SO2 and O3, as well 

as liquid and solid state components constituting particulate matter exposure. This has important 

implications for research, as the gaseous fraction is mostly generated locally by combustion 

processes (e.g. from traffic or power plants) and ensuing chemical reactions (e.g. synthesis of O3 by 

reaction of NO2 with hydrocarbons under sunlight exposure), where it also exerts its health effects 

before being degraded. Particulate matter (PM) relevant to human health in the context of air 

pollution consists of the particle size fraction with median diameters of 10µm or less (PM10). These 

particles remain suspended in the air after generation and are breathable, i.e. they enter and deposit 

in the airways and lungs. Different particle sizes have been defined according to the preferential 

place of deposition in the airways (figure 5): Particles with median diameter of 2.5-10µm (PM2.5-10) 

deposit in the trachea and pulmonary bronchi, while the fine fraction (PM2.5, median diameter less 

than 2.5 µm) can also deposit in the lung alveoli118. Ultrafine particles (UFP, median diameter less 

than 100nm) can penetrate the alveolar wall and reach the blood circulation119,120, and there are 

even studies showing their deposition in the brain via the nasopharynx and olfactory nerves121. 
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Figure 5 Fractions of particulate matter air pollution, from 118 

 

 

Particles are generated in different ways: coarse particles (median diameters between 2.5-10 µm) 

are formed by mechanical abrasion and attrition of diverse surfaces in agriculture, on construction 

sites and during transport including asphalt, tires, and rubber wear off. The finer portion PM2.5 (less 

than 2.5µm in diameter) originates mostly from incomplete combustion processes of motor vehicle 

engines, power generation, industrial activities, but can also arise from condensation of liquid drops 

and by chemical reactions of gaseous substances. The composition of particles varies depending on 

the source and can consist of a mixture of organic compounds, inorganic mineral dusts, heavy 

metals, acids or even biological specimens such as bacteria.  

The concentration of gaseous and particulate matter pollutants can be measured using devices that 

either sample the air over longer time spans while retaining the pollutant for later laboratory 

analysis, or that directly measure their concentration in the air. This is achieved using chemo 

luminescence methods for gaseous, and gravimetric methods for particulate pollutants.  

For the estimation of personal exposures from environmental measurements the physicochemical 

properties of gaseous and particulate matter pollution play a crucial role. The most important 

difference is that in contrast to gaseous pollutants which are volatile and undergo chemical reactions 

with other atmospheric components, particles are relatively inert, remain suspended and are further 

dispersed by air movements. They can be transported over several hundred kilometers by 

atmospheric flows. Pollution hotspot like large industrialized cities can thus induce health effects 

over wide geographic areas. From a methodological point of view, this makes it easier to obtain 

sufficiently accurate exposure estimates for particulate matter in epidemiological studies than for 

gaseous pollutants. Accordingly, most of the robust and consistent associations with adverse health 

effects have been described for particulate matter exposures (see next paragraph). Similarly, 

sophisticated methods to improve the accuracy of personal exposure estimates have mainly been 

developed for particulate matter pollution. A more detailed description of available measurement 

methods and currently employed models for exposure estimation is given in Appendix 2. 
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1.2.3. Air pollution health effects 

 

Research on air pollution related health effects has concentrated on two main lines: short and long 

term exposure effects. Studies investigating short term effects have thereby usually looked at how 

variation in day-to-day air pollution values correlated with daily rates in the outcome of interest in 

so-called time-series analyses, whereas long term studies investigated air pollution exposure over 

longer periods using traditional study designs and statistical methods.  

 

1.2.3.1. Short term effects 

 

Regarding short time effects, many smaller panel studies and two large scale cohort studies from 

Europe and the U.S. have shown positive associations with all-cause, respiratory and cardiovascular 

mortality as well as hospital admissions for cardiovascular and pulmonary reasons122,123. An increase 

in PM10 exposure of 10µg/m3 was associated with an increase in daily mortality of about 0.6% (95%-

confidence interval (CI) 0.4-0.8%) and increases in hospitalization rates for asthma and COPD in 

elderly persons between 1.0-1.5%, and 0.5-1.1% for cardiovascular disease111,124-127. Similar 

associations have also been found in these studies for the gaseous pollutants NO2 and O3, but not 

after adjusting for particulate matter. This illustrates the frequently present difficulty to disentangle 

the causal substance in air pollution research due to their mutual correlation. Positive associations 

were also found with symptoms and exacerbations of asthma and COPD123,128. There is also evidence 

that short term increases in particulate matter air pollution lead to elevated arterial blood pressure, 

and can trigger myocardial infarction, ischemic stroke, and hospitalizations for cardiovascular 

causes122,123. For other, subclinical outcomes like alterations in heart rate variability, ischemic ST-

segment depressions or myocardial repolarization disturbances results were variable and sometimes 

inconsistent122. 

 

1.2.3.2. Long term effects 

 

Long term exposure to particulate matter air pollution (PM10 and PM2.5) was also associated with all-

cause, cardiovascular and pulmonary mortality112,113,122,129, reduced lung function and symptoms of 

chronic bronchitis in cross sectional studies of adults including SAPALDIA123,130,131. Increase has also 

been related to worsening of lung function and respiratory symptoms in asthma and COPD 

patients123,132,133. Further, a reduction of ambient PM10 exposure was associated with an attenuation 

of the natural lung function decline in the SAPALDIA study69. First associations with asthma incidence 

in adults were found for traffic air pollution133. On the cardiovascular side, there is favorable though 

not conclusive evidence for associations of PM2.5 exposure with exacerbation of congestive heart 

failure, possibly incidence of stroke and non-fatal myocardial infarction, as well as progression of 

atherosclerosis122. In children, exposure to air pollution has been related to lower lung function, 

respiratory symptoms, incident asthma, and also attenuated lung function growth134-138. The latter is 

particularly important, as lung growth reaches a plateau phase about the age of 25 years, after which 

the natural, slow decline in lung function sets in. High air pollution exposure in the growth phase thus 
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entails a lower start point for decline, and might constitute higher susceptibility to respiratory 

disease in later life. 

 

1.2.3.3. Susceptibility 

 

Based on the results from epidemiological studies, it appears that the parts of the population which 

are most susceptible to the deleterious health effects of air pollution comprise children and the 

elderly, persons with pre-existing cardiopulmonary diseases or diabetes, and low socio-economic 

status122,123,139.  

 

1.2.4. Biological mechanisms 

 

Particulate matter and gaseous pollutants induce oxidative stress upon exposure in the lungs, with 

consecutive inflammatory reactions, which are potentially also propagated to the rest of the 

organism111,122,140,141. NO2 has also been described to impair the function of alveolar macrophages 

and epithelial cells, which could lower the protection against infections and might be a mechanism 

explaining the observed associations with exacerbations of respiratory diseases111. Oxidative stress, 

inflammation and in the long term also tissue remodeling is responsible for many of the symptoms 

and morbidity seen at the lung level. Possible mechanisms for the cardiovascular effects include 

spillover of inflammation from the lung to the systemic circulation118,122,141 (with consecutive 

alteration of endothelial function, dysbalances in blood coagulation, and inflammatory reactions in 

vessel walls), triggering of pulmonary reflexes impacting on the autonomous nervous system (and 

hence heart rate variability), or direct effects via penetration of fine and ultrafine particles into the 

blood stream. 

 

1.2.5. Public health significance 

 

The large, consistent and growing epidemiological evidence that air pollution exposure is associated 

with important adverse health outcomes such as overall and cardiopulmonary mortality, morbidity, 

and health service utilization makes clear that air pollution is one of the major Public Health issues 

today. Two other aspects further stress the Public Health significance of air pollution, the first being 

that up to now, no clear biological exposure threshold has been identified for adverse health effects, 

especially regarding particulate matter exposure73,111,118. Second, the fact that air pollution exposure 

cannot be avoided by affected persons like harmful lifestyle habits, makes it a clear target for 

community or national level preventive and regulatory action73. Air pollution is thus a prominent 

environmental hazard and an important potential risk factor to study in the context of COPD. 
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2. Aims 
 

The introductory part on COPD can be resumed as follows: COPD is a disease of large and global 

Public Health burden in terms of morbidity and mortality. The estimates of the disease’s prevalence 

comprise a wide range, even after standardizing the case definition across different study 

populations and accounting for differences in their age structure and distribution of tobacco smoke 

exposure. Population-based data on incidence are very scarce, and completely missing in the case of 

Switzerland. The unexplained portion of the disease distribution suggests on one side that other 

important environmental risk factors have not been accounted for, and on the other the presence of 

individual susceptibility factors that determine the actual risk of disease conveyed by environmental 

exposures (this is also in line with the observation that by far not all smokers develop COPD). Two 

main pathways for COPD causation have been proposed comprising protease/anti-protease as well 

as oxidant/anti-oxidant imbalance. In light of the large oxidative-stress burden many inhalatory 

exposures impose on the lungs, studies were performed on the effect of variants in genes coding 

enzymes of oxidative-stress defense or its endogenous production on COPD risk. Their evidence was 

inconsistent and non-replication frequent. This is also the case for the results gathered by recent, 

hypothesis-free genome-wide association studies, which successfully identified new, unsuspected 

genetic risk factors for COPD.  An explanation for the observed non-replication could be failure to 

account for gene-environment interactions. 

Ambient air pollution is an important environmental risk factor and could contribute to COPD via 

oxidative stress reactions. Investigating the role of ambient air pollution in COPD development is of 

high Public Health interest because of the high exposure prevalence and reduced capacity of 

individuals to avoid exposure. 

In light of the state of research, the thesis work aimed to find answers to the following questions: 

I) What is the burden of COPD in Switzerland, what are its main determinants, and how 

does it impact on individual well-being and use of health service resources? 

II) Does ambient air pollution contribute to the COPD burden after accounting for tobacco 

smoke exposure and age-and sex-related changes in respiratory health? 

III)  How does the impact of air pollution on COPD development compare with that of 

tobacco smoke on the population level? 

 

These aims were to be accomplished by assessing the following research questions using data from 

the population-based SAPALDIA cohort study: 

I a) What is the incidence of COPD in Switzerland: can adequate estimates of disease incidence  

 be made on the basis of available epidemiological data? 

I b) What are the main determinants of COPD-incidence in terms of age, sex, smoking, chronic  

  bronchitis symptoms? 

I c) How is the observed COPD-incidence related to use of health services and individual  

  breathing capacity in our epidemiological study?  
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II a) Does long-term exposure to ambient air pollution affect the development of COPD and  

  related lung function outcomes, after accounting for smoking and other identified risk  

     factors? 

II b) Does variation in genes constituting the body’s first-line defense against oxidative stress  

  modify the effects of air pollution on the risk of COPD and related outcomes?   

II c) Is it possible to characterize a population subgroup with greater susceptibility to adverse  

  effects of air pollution? 

III a) Starting from oxidative stress related genes, can larger biological pathways be identified,  

        variation in which affects the individual susceptibility to air pollution regarding development  

        of COPD or related traits? 

III b) Are the biological pathways mediating the effects of air pollution on individual risk of COPD  

    or related traits the same as those activated by tobacco smoke? 

III c) How large is the respective impact of pathways mediating ambient air pollution and tobacco 

    smoke effects on risk of COPD and related outcomes in terms of the size of environmental  

    exposure effects and predictive power at the population level?
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3.  Methods:  

3.1.  Description of the SAPALDIA study 

3.1.1. Study design 

 

The SAPALDIA study is a cohort study established in 1991 to study the health effects of long-term 

exposure to ambient air pollution in a sample of Swiss adults from the general population16,17. The 

study drew upon eight communities with different grades of urbanization that represented the 

whole range of ambient air pollution exposure throughout Switzerland. Swiss resident adults aged 

18-60 years were randomly sampled from the respective population registries and invited for 

participation. All persons participating in the baseline assessment in 1991 (SAPALDIA 1) were re-

invited for follow-up examinations in 2001-2003 (SAPALDIA 2). Meanwhile, a second follow-up 

examination has been accomplished during 2010/11 (SAPALDIA 3), but the current thesis is based on 

the data from the first 2 assessments. 

The SAPALDIA study was approved by the Swiss Academy of Medical Sciences and the regional ethics 

committees. All study participants gave written informed consent prior to study examinations.  

An overview of the examinations applied in the SAPALDIA study is given in figure 6, and details on 

study procedures and protocols have been published in methodological papers accompanying the 

study assessments16,17. In the following paragraphs, only a description of the study examinations 

relevant to the thesis will be given.  

 

Figure 6 Overview of measurements in the SAPALDIA study 
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3.1.2. Questionnaires 

 

A computer-assisted interview was performed at both examinations. The interview comprised 

questions about presence of respiratory symptoms and allergic diseases, family history of respiratory 

disease, personal smoking history, exposure to environmental tobacco smoke at home or at the 

workplace, exposure to dust and fumes at work, medication use, living conditions, and socio-

economic and demographic factors. In the follow-up assessment, additional questions on chronic 

illness including heart disease, dietary habits and physical fitness were included. Questions targeting 

time changing exposures and characteristics were asked identically at both examinations. An 

overview of the questionnaire used in SAPALDIA 2 is given in Appendix 3. 

Definitions related to smoking 

Based on the answers concerning smoking history, participants were defined as never smokers if 

they had smoked less than 20 packs of cigarettes or 360g of tobacco in their lifetime. Smokers 

reported current, active smoking at the time of interview, and ex-smokers were defined as those 

who had quit smoking at least one month before the examinations142. For current and ex-smokers, 

pack years were calculated as the number of cigarette packs consumed per day multiplied by the 

years of consumption. Thus a person with a cumulative tobacco smoke exposure of 2 pack years has 

for example smoked a pack of cigarettes a day over the previous 2 years, while another one having 

20 pack years of exposure might have smoked 2 packs per day over 10 years. 

 

3.1.3. Lung function measurements 

 

Lung function testing was performed at both examinations according to the protocol developed in 

the ECRHS study143. Participants were in an upright sitting position and performed three to eight 

forced expiratory spirometry maneuvers complying with quality criteria as set out by the American 

Thoracic Society (ATS) in 1994144. Lung function testing was done without broncho-dilation due to 

resource but also time constraints, as methacholine tests to assess airway reactivity were foreseen in 

both examinations. Spirometry devices were checked regularly and calibrated on a daily basis. The 

same devices were used at the baseline and first follow-up examination eleven years later (Sensor 

Medics 2200 SP, Sensor Medics, Yorba Linda, USA), and comparability of spirometry measurements 

was assessed at each time point145,146. In the testing procedure, measurements of lung volumes FEV1 

and FVC were recorded, as well as the airflow velocity in the mid-portion of FVC between its 25th and 

75th percentile (FEF25-75). 

 

3.1.4. Air pollution modeling 

 

Air pollution exposure data from the beginning of the SAPALDIA study throughout the first follow-up 

period up to 2002 was based on central site air pollution measurements from monitors. Exposure 

resolution was thus limited, as only a small number of monitors were operating per study site, and all 

participants residing within a certain distance from the monitor were assigned the same, measured 
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exposure level. Accordingly, in each study site, gaseous (e.g. SO4, NO2, NOx) and particulate air 

pollution (total suspended particles (TSP) or PM10) was measured at central monitoring sites 

maintained by national and cantonal air hygiene authorities. In two rural study areas additional 

measurements of the fine fraction of particulate matter pollution (i.e. PM2.5) were carried out by the 

SAPALDIA study from 1999 onwards, as no official measurements were available. To better capture 

spatial exposure resolution, in- and outdoor NO2-concentrations at the home addresses were 

additionally measured by Palmes tubes for a selected subsample of study participants147. Further 

details of air pollution monitoring data are available in the methodological publications 

accompanying each assessment16,17.  

From the first follow-up assessment onwards, air pollution exposure assessment was much improved 

by the use of individual exposure estimates148. These were based on the PolluMap model version 

2149,150, a Gaussian dispersion model which predicted mean average annual exposures to PM10 and 

NO2 for the years 1990 and 2000 with a 200m grid resolution throughout Switzerland (figure 7). The 

estimates were based on an emission inventory comprising transport, industrial, commercial, and 

construction sources, household heating, and agricultural and forestry activities. The dispersion of 

pollutants across geographical areas was modeled as Gaussian distribution taking into account Swiss 

topography, the emission source type and height above ground, as well as meteorological data. A 

detailed comparison of the exposure estimates predicted by the model with those measured at air 

pollution monitoring sites showed that the model produced robust estimates for individual PM10 

exposure even in highly exposed sites, that can be used for health assessments. The model probably 

profited from the fact that particulate matter is transported over long ranges spanning several 

kilometers and shows only limited variability on short distances148. On the opposite, the dispersion 

model insufficiently captured the high spatial variation typically found in traffic related pollutants like 

NO2, and the respective model estimates were thus only comparable with measured ones in 

background sites. Details of the model evaluation have been published by Liu and colleagues148. 

Individual exposures were derived by mapping the geo-referenced residential address of each study 

participant to the corresponding model grid cell. Changes in residency were thereby accounted for. 

Additionally, for PM10, individual annual average exposure estimates were derived for all years 

between 1990 and 2002 by using an algorithm that interpolated the model estimates from 1990 and 

2000 based on historical trends from fixed monitoring stations69. Individual longitudinal exposure 

estimates were then estimated in terms of the change in PM10 exposure between baseline and 

follow-up examination, calculated as the difference between the mean annual exposures in 2002 and 

1990. A detailed residence history of each participant also allowed estimating a cumulative PM10 

exposure value by summing mean annual exposure estimates for each study year and respective grid 

cell of the participant’s residency. This resulted in exposure estimates of µg PM10/m3 * years. A 

comparison of effect estimates on lung function69 showed that the estimates for change and 

cumulative exposure to PM10 are highly correlated, and cannot always be disentangled in analytical 

studies.  
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Figure 7 Dispersion model estimates for home outdoor PM10 exposure in 2002, from 148, and 

adapted from 149 

 

Blue dots represent the residential addressed of study participants at SAPALDIA 2, clustered around 

the 8 study areas 

 

3.1.5. Genetic data 

 

Blood samples of 45ml were taken at the follow-up examination from all participants who had given 

consent for serum or genetic analyses16. Each blood sample was partitioned into 40 aliquots if 

possible, resulting in a blood bank of about 250000 blood aliquots. For safety reasons the blood bank 

was split into two identical parts, which were kept in two different locations (University Hospitals of 

Geneva and Zürich).  

7ml of whole blood was collected for later DNA-extraction into EDTA-buffered tubes and stored at 

minus 80°C. In preparation for analysis, DNA was extracted manually using the PUREGENE 

purification kit (GENTRA Systems, Minneapolis, USA), and 1ml of frozen EDTA-blood yielded between 

7-80µg DNA of high quality. DNA working solutions with concentrations of 10ng/µml were generated 

and kept at minus 20°C for long term storage. 

Ensuing genotyping for health related analyses was guided by published associations in genetic 

epidemiology studies and molecular biology studies related to possible health effects of air pollution. 

Likewise, genotyping results are available for many polymorphisms in oxidative-stress genes on 

which associations with respiratory or cardiovascular diseases have been published101,102,151. 

Genotyping of variants in glutathione S-transferases and heme-oxygenase 1 genes, which both 

belong to the lungs first line defense systems against oxidative stress, is of most relevance for the 

work in this thesis. 
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In the framework of the GABRIEL study152, a large collaborative effort funded by the 7th European 

Framework Program to uncover the genetic and environmental determinants of asthma, genome-

wide genotyping of all self-declared asthmatics (n=663) and a random sample of never-asthmatics 

(n=997) was obtained in 2009. Genotyping was done on the Illumina Human 6010quad BeadChip 

comprising 610’000 single nucleotide polymorphisms (SNPs) dispersed throughout the genome. 

After excluding samples with <97% genotyping success rate, non-European origin, cryptic relatedness 

or sex-inconsistencies, genome-wide data was available for 1457 participants, comprising 878 non-

asthmatics and 579 asthmatics. 

From the 610000 SNPs covered by the chip, 567589 autosomal SNPs passed strict quality control 

filters, including Hardy-Weinberg equilibrium p-value<10-4, genotyping call rate <97%, and minor 

allele frequency (MAF) <5%. All SNPs were used for imputation to 2.5 Mio SNPs using MACH v 1.0 

software153. The most comprehensive data on common genetic variation in humans stems from the 

HapMap project154, which applied high resolution genotyping in four populations of different ethnic 

origin (North Americans of European origin, Japanese, Han Chinese, and Africans). The HapMap 

version 22 CEPH panel of Utah residents with ancestry from northern and western Europe154 served 

as a reference frame for imputation, giving 2’168’681 SNPs with good imputation quality and minor 

allele frequencies >5%. 
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3.2. Implications for current research 
 

The characteristics of the available data in the SAPALDIA study entail the following implications for 

investigating the research questions stated in section 2, page 33: 

I) As only pre-bronchodilation spirometry results are available, no strict definition of COPD 

is possible (this requires broncho-dilation before lung function testing). As a 

consequence, the outcomes which are amenable to investigation are  

a. a modified definition of COPD: the GOLD COPD disease definition was applied to pre-

bronchodilation spirometry results. Thereby a vigorous control for known as well as 

hidden asthma in the analysis is necessary, as well as a sensitivity analysis using 

FEV1/FVC < lower limit of normal to define airway obstruction. 

b. lung function decline: decline is calculated by subtracting the baseline from the 

follow-up spirometry measurement. Accelerated lung function decline is a proxy 

measure and cardinal feature of COPD, with decline in the FEV1/FVC ratio preceding 

airway obstruction, while an accelerated decline in FEV1 determines severity in 

presence of obstruction. Further, decline in FEF25-75 can serve as proxy for processes 

in the small airways. Lung function declines were also studied in the case of 

interaction testing, as a continuous outcome measure offers higher statistical power 

than a binary outcome. 

 

II) To assess the effects of air pollution on COPD/lung function decline and its potential 

interaction with oxidative stress related genes, only individual PM10 exposure estimates 

could be used, since the validity of NO2 estimates was not sufficient to warrant a use in 

health related analyses. Further, the installment of a stricter clean air policy during the 

1990s led to a decline in air pollution levels throughout Switzerland between the 

baseline and follow-up examination. Our estimates of change in exposure between 

surveys were thus on average negative. Previous work in our study had shown that a 

larger decline in PM10 exposure during follow-up was associated with attenuation in the 

normal, age-related lung function decline69.Thereby the effects of an exposure change 

could not be distinguished from those of cumulative exposure, as the two were highly 

correlated. These factors were considered in the analysis of a possible interaction 

between air pollution and oxidative stress genes on lung function decline.  

 

III) To assess the role of biological pathways comprising oxidative-stress related genes, only 

878 non-asthmatic adults with genome-wide data were available. Focusing on oxidative-

stress relevant genes and pathways still entailed the investigation of over 12000 SNPs. 

Thus the small sample size compared to the large number of variables represented a 

problem of high data dimensionality with the main issue being low statistical power. This 

could not be addressed by classic statistical analysis methods, but required applying 

modern pathway analysis methods, which make use of pre-existing biological knowledge 

to integrate lower level association signals (from SNPs) onto the upper biological levels 

(genes and pathways). Such an approach results in fewer data dimensions, and higher 

statistical power. 
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4. Paper 1:  

Assessing the burden of COPD in Switzerland, its determinants, and 

its impact on individual well-being and health service utilization. 

(aim I) 

 

4.1.  Longitudinal change of prebronchodilator spirometric obstruction and   

 health outcomes: results from the SAPALDIA cohort.  

(published in: Probst-Hensch NM, Curjuric I, Pierre-Olivier B et al. Longitudinal change   
 of prebronchodilator spirometric obstruction and health outcomes: results from the  
 SAPALDIA cohort. Thorax 2010; 65(2): 150-6. Equal first authorship with Prof. Probst- 
 Hensch NM. 

 Article link: http://thorax.bmj.com/content/65/2/150.full?sid=a6f06257-f9fd-4100-
b746-857946480fb7 ) 

http://thorax.bmj.com/content/65/2/150.full?sid=a6f06257-f9fd-4100-b746-857946480fb7
http://thorax.bmj.com/content/65/2/150.full?sid=a6f06257-f9fd-4100-b746-857946480fb7
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Abstract 
 

Background: Understanding the prognostic meaning of early COPD stages in the general population 

is relevant for discussions about under-diagnosis. So far, COPD prevalence and incidence were often 

estimated using pre- instead of post-bronchodilation spirometry. In the SAPALDIA Cohort we 

investigated time course, clinical relevance and determinants of severity stages of obstruction using 

pre-bronchodilator spirometry. 

Methods: Incident obstruction was defined as FEV1/FVC ratio ≥0.70 at baseline and <0.70 at follow-

up, non-persistence inversely. Determinants were assessed in 5490 adults with spirometry and 

respiratory symptom data in 1991 and 2002 using Poisson regression controlling for self-declared 

asthma and wheezing. Change in obstruction severity (defined analogously to GOLD classification) 

over 11 years was related to shortness of breath and health service utilization for respiratory problems 

by logistic models.   

Results: Incidence rate of obstruction was 14.2 cases/1’000 person years. 20.9% of obstructive cases 

(n=113/540) were non-persistent. Age, smoking, chronic bronchitis and non-current asthma were 

determinants of incidence. After adjustment for asthma, only progressive stage I or persistent stage II 

obstruction was associated with shortness of breath (OR 1.71 (0.83-3.54), OR 3.11 (1.50-6.42) 

respectively) and health service utilization for respiratory problems (OR 2.49 (1.02-6.10), OR 4.17 

(1.91-9.13) respectively) at follow-up.  

 Conclusions:  The observed non-persistence of obstruction suggests that pre-bronchodilation 

spirometry, as used in epidemiological studies, might misclassify COPD.  Future epidemiological 

studies should consider both pre- and post-bronchodilation measurements and take specific clinical 

factors related to asthma and COPD into consideration for estimation of disease burden and prediction 

of health outcomes.  
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Introduction 
 

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and premature mortality 

worldwide.[1] At diagnosis, often more than half of the lung function has been lost and subsequent 

need for medical care is high.[2] This raises concerns about under-diagnosis, particularly regarding 

earlier disease stages[3, 4] which are expected to be more amenable to preventive action and 

improvement of quality of life. Timely diagnosis may also reduce health care costs.[5] For the clinical 

identification of early stages, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

provided an international standard for diagnosis based on a forced expiratory volume in 1 second 

(FEV1) over forced vital capacity (FVC) ratio < 0.70 measured by post-bronchodilator spirometry.[4] 

Severity classification depends on FEV1, expressed as percentage of the predicted value: ≥80% mild 

GOLD stage I, < 80% moderate stage II, <50% severe stage III and <30% very severe stage IV 

disease. 

Population based epidemiological studies are fundamental to understand the time course and 

prognostic meaning of COPD GOLD stages in the general population. In recent years, a modified 

GOLD definition omitting bronchodilation has been widely adopted by these studies.[1] The ease of 

use and straightforwardness of the FEV1/FVC cutoff facilitates standardization and comparability of 

observations,[6] and overcomes the shortcomings of previous inconsistent case definitions producing a 

wide range of prevalence and incidence estimates, and complicating evaluation of health care 

needs.[7] Although pre-bronchodilation measurements may overestimate COPD prevalence by up to 

50%,[8, 9] and might be unreliable when assessing COPD determinants because of reversible airflow 

obstruction, it is not known whether they perform worse than post-bronchodilator measurements for 

predicting future health outcomes.[1] So far, GOLD stages II and more have consistently been 

associated with mortality and reduced quality of life in epidemiological studies using pre-

bronchodilation spirometry.[10-13] The picture is less straightforward for stage I, which is most 

relevant for discussions about underdiagnosis.  It has been associated with increased mortality in 

population studies,[10, 12, 14] but partially respiratory symptoms might be responsible for that.[12, 

14] Similarly, in the SAPALDIA cohort we could recently show that stage I predicted rapid decline in 

FEV1, a cardinal feature of COPD,[4] lower quality of life and increased health care utilization for 

respiratory problems 11 years later, but only in the presence of respiratory symptoms at baseline.[15] 

In this current study based on pre-bronchodilation spirometry data from the SAPALDIA cohort, we 

investigated the time course and clinical relevance of severity of spirometric obstruction according to 

modified GOLD criteria while controlling for the effects of overt and undiagnosed asthma.  
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MATERIALS AND METHODS 
 

Study population 
 

The SAPALDIA cohort[16-18]
 
consists of a random sample of 18-62 year old adults from eight 

communities. For this study, we included participants with valid spirometry and respiratory symptom 

data from both, baseline (1991) and follow-up (2002) surveys (Online Figure 1).  

The SAPALDIA cohort study complies with the Helsinki Declaration. Written informed consent was 

obtained from participants at both surveys. The study was approved by the central ethics committee of 

the Swiss Academy of Medical Sciences and the respective Cantonal Ethics Committees of the eight 

study regions. 

 

Spirometry 
 

The spirometry protocol was equivalent to the one of the European Community Respiratory Health 

Survey (ECRHS).[19]  No bronchodilation was applied. Identical spirometers (Sensormedics model 

2200, Yorba Linda, USA) and protocols were used at both surveys; comparability was assessed before 

and after each one.[20, 21] Three to eight forced expiratory lung function maneuvers were performed 

and at least two acceptable measurements of forced vital capacity (FVC) and forced expiratory volume 

in the first second (FEV1)  were obtained, complying with American Thoracic Society criteria.[22]
 

 

Obstruction to airflow and its severity 

 
Spirometric obstruction was defined as FEV1/FVC <0.7 in pre-bronchodilation measurement. An 

incident case of obstruction was defined as a person with FEV1/FVC ratio ≥ 0.70 at baseline, but 

<0.70 at follow-up examination. Cases of non-persistence were defined inversely.   

In measurements with FEV1/FVC <0.7, severity of obstruction was defined analogously to the GOLD 

guidelines,[4] applying the prediction equation of Quanjer et al.[23]: FEV1 values of 80% or more of 

the predicted value were classified stage I, values below this threshold as stage II and more, 

integrating stages III (FEV1 <50% predicted) and IV (FEV1 <30% predicted) into stage II.  

 

Categories of change in obstruction severity during follow-up 
 

Categories of change in severity of obstruction during follow-up were defined as follows: ‘incident 

stage I’ (normal FEV1/FVC ratio at baseline and stage I at follow-up, n=683), ‘incident stage II’ 

(normal FEV1/FVC at baseline and stage II at follow-up, n=85), ‘persistent stage I’ (stage I at baseline 

and follow-up, n=294), ‘stage I progressing’ (stage I at baseline and stage II at follow-up, n=56), 

‘persistent stage II’ (stage II at both examinations, n=61) and ‘non-persistent’ (stage I or more at 

baseline and normal FEV1/FVC at follow-up, n=113). Cases of stage II at baseline but stage I at 

follow-up (n=16) were not analyzed. 
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Chronic bronchitis and shortness of breath 
 

Chronic bronchitis was defined as self-report of cough or phlegm during the day or at night on most 

days for as much as 3 months each year for ≥ 2 years.  

Shortness of breath was defined as affirmative answer to the question “Are you troubled by shortness 

of breath when hurrying on level ground or walking up a slight hill?”. 

 

Asthma status 
 

Presence of asthma at baseline and follow-up, respectively, was defined by the question ‘Have you 

ever had asthma?’. Asthma cases reporting attacks during the 12 months before interview or current 

use of asthma medication were classified as current asthma, the others as non-current. To identify 

hidden asthma, we considered subjects reporting wheezing without cold in the 12 months preceding 

each interview. 

Smoking status 
 

Ever smokers reported smoking ≥ 20 packs of cigarettes or ≥360g of tobacco in their lifetime at 

baseline,[24] former smokers quitting smoking at least 1 month before, and current smokers reported 

active smoking. Smoking intensity was assessed by pack-years smoked up to baseline and classified a 

priori into ≥ 15 and < 15 pack-years for heavy and light smoking, respectively.  

Health service use for respiratory problems 
 

Health service use for respiratory problems was defined as positive answer to one of the following 

questions: “Have you visited a hospital casualty department or emergency room because of breathing 

problems in the last 12 months?”, “Have you spent a night in hospital because of breathing problems 

in the last 12 months?”, “Have you been seen by a general practitioner because of breathing problems 

or because of shortness of breath in the last 12 months?”,  “Have you seen a specialist (chest 

physician, allergy specialist, internal medicine specialist, ENT doctor) because of your breathing 

problems or shortness of breath in the last 12 months?”.  

Health service use for cardiovascular problems 
 

Data from equivalent questions assessing health service use for cardiovascular problems at follow-up 

was used for sensitivity analysis only. 

Statistical analysis 
 

Baseline characteristics were compared between the whole SAPALDIA study population and 

participants included in the present study, and analogously between COPD transition categories. 

Incidence rate of spirometric obstruction was estimated as the number of new cases per total person-

years (PY) at risk in thousands. The non-persistence rate was calculated equivalently. Rate ratios for 

both outcomes were estimated using Poisson regression with the following baseline characteristics: 

sex, age (in categories of 18-30, >30-40, >40-50 and >50 years), smoking status (never smoker, light 

or heavy ever-smoker), symptoms of chronic bronchitis at baseline, educational level and study centre. 

Variables coding for asthma and wheezing at baseline and follow-up were included into the models to 
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assess their independent impact on the outcomes, and to adjust for overt and hidden asthma. The 

analysis was repeated using the 5
th
 percentile (lower limit of normal, calculated as 1.645 residual 

standard deviations or more below predicted according to Quanjer et al.[23]) of the FEV1/FVC ratio 

distribution to define obstruction. Logistic regression was used to compare presence of shortness of 

breath and health care services utilization for respiratory problems at follow-up between categories of 

change in severity of obstruction. Models were adjusted for demographic characteristics (sex, age, 

education, examination area), baseline health service use for respiratory problems (only in health 

service utilization models), smoking habits (light/heavy smoker at baseline, pack-years between 

surveys), preexisting symptoms (chronic bronchitis, shortness of breath), and asthma or wheezing at 

either examination.  

As sensitivity analysis, confounding by cardiovascular co-morbidity was assessed for health care 

utilization for respiratory problems and respiratory symptoms by including service utilization for 

cardiovascular problems at follow-up. Furthermore, study participants having only baseline spirometry 

were compared to the present study sample to predict the probability of participation for each 

individual. A dichotomous variable coding participation was regressed on baseline covariates used in 

the regression models. Regression analyses were then repeated using the inversed participation 

probabilities as weights. 

The statistical analysis was performed using SAS Software, Version 9.1 (SAS Institute Inc., Cary, 

North Carolina, USA) and STATA version 9.2 (StataCorp, College Station, Texas, USA).   
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RESULTS 
 

Baseline characteristics  
 

Baseline characteristics of SAPALDIA participants and subjects included in the current analysis are 

presented in online table O1. 53% of the participants were women and the average age at baseline was 

41.1 years (range 18-62 years). 30% of the study population was actively smoking at baseline, 52% 

had ever smoked. Missing at follow-up examination was more frequent in participants with higher 

obstruction stages (online table O2). As previously described in detail, women, never smokers, well 

educated subjects, and people with good respiratory health and no atopy were slightly overrepresented 

among follow-up participants and therefore in this study.[17]  

Baseline characteristics according to categories of change in severity of obstruction are presented in 

table 1. The proportion of females was markedly decreased in all categories but ‘persistently normal’ 

and ‘incident stage I’. Lung function values presented a pattern expected from the severity definitions, 

except for categories  ’persistent stage I’ and ‘non-persistent’ which had a mean FEV1 close to 100% 

of the predicted value and the highest FVC values (125.9% and 122.4% predicted respectively). Both 

categories also had the highest absolute FVC values (4.97L and 4.84L respectively, online Table O3).  

The proportion of never smokers was lowest in categories ‘stage I progressing’ (19.6%), ‘persistent 

stage II’ (31.1%) and ‘incident stage II’ (31.8%).  

Determinants of incidence and non-persistence of obstruction 
 

To assess determinants of incidence and non-persistence of obstruction, we stratified the study sample 

by baseline FEV1/FVC ratio (FEV1/FVC<0.70 vs. FEV1/FVC≥0.70) 

From the 4945 participants with baseline FEV1/FVC≥0.70, 765 had incident obstruction at follow-up 

(table 2). This corresponds to a cumulative incidence of 15.5% and an incidence rate of 14.2 

cases/1000 person years (PY). Incidence rates were 23.1 and 28.0 cases/1000 PY for participants with 

non-current and current asthma at baseline respectively, but only 13.4 cases/1000 PY for subjects 

without. In participants never reporting asthma or wheezing at either examination, the rate was 12.3 

cases/1000 PY. Determinants of incidence were (relative rate (RR) and 95%-confidence interval 

(95%-CI)): older age (RR 1.38 per 10 years, 95%-CI 1.29-1.47), heavy smoking at baseline (RR 1.51, 

95%-CI 1.29-1.77), chronic bronchitis at baseline (RR 1.23, 95%-CI 1.00-1.51), non-current asthma at 

baseline (RR 1.39, 95%-CI 1.01-1.92), current asthma at follow-up (RR 1.68, 95%-CI 1.13-2.50), and 

wheezing without cold at follow-up (RR 1.95, 95%-CI 1.57-2.42). Among participants with 

FEV1/FVC<0.70 at baseline (n=540), 113 (20.9%) presented a normal value at follow-up, giving a 

non-persistence rate of 19.2 cases/1000 PY (online table O4). 93.8% of non-persistent cases classified 

as stage I obstruction at baseline. Participants with current asthma at follow-up had a significantly 

lower rate of non-persistence (4.9 cases/1000 PY). In participants never reporting asthma or wheezing 

at either examination, the rate was 22.8 cases/1000 PY. Heavy smokers at baseline and wheezers at 

follow-up showed lower rates of non-persistence (14.0 and 9.8 cases/1000 PY respectively), but the 

effects did not reach statistical significance after adjustment for all asthma variables. 

When using the lower limit of normal of the FEV1/FVC ratio to define obstruction, lower incidence 

(7.2 cases/1000 PY) and higher non-persistence (31.5 cases/1000 PY) rates were observed (online 

table O5). Additionally, female sex was associated with incidence (RR 1.62, 95%-CI 1.32-1.98). The 

effects for the other determinants were comparable to the previous analyses (reported in tables 2 and 

O4).
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Categories of change in severity of obstruction and shortness of breath at 
follow-up 
 

All transition categories except ’ non-persistent obstruction’ were associated with shortness of breath 

at follow-up in the crude model (table 3). The association was strongest for categories ‘stage I 

progressing’ (odds ratio (OR) 3.76, 95%-CI 2.18-6.48) and ‘persistent stage II’ (OR  5.43, 95%-CI 

3.15-9.37). After adjusting for baseline covariates sex, age, education, smoking, chronic bronchitis, 

shortness of breath and area, only categories ‘stage I progressing’ and ‘persistent stage II’ remained 

statistically significant (OR 2.21, 95%-CI 1.10-4.45 and OR 4.38, 95%-CI 2.19-8.75 respectively). 

Adjustment for current or non-current asthma and wheezing without a cold at either examination made 

the estimate for ‘stage I progressing’ statistically non-significant (OR 1.71, 95%-CI 0.83-3.54) and 

decreased effect sizes.  

 

Categories of change in severity of obstruction and health service utilization 
for respiratory problems at follow-up 
 

The only two transition categories significantly associated with health service use for respiratory 

problems at follow-up were ‘stage I progressing’ and ‘persistent stage II’, irrespective of covariates 

included in the logistic model (Figure 1; online table O6). After adjustment for sex, age, education, 

area, baseline health service use for respiratory problems, smoking, baseline respiratory symptoms 

(chronic bronchitis, shortness of breath) as well as asthma, subjects progressing from stage I to stage II 

obstruction during follow-up were 2.5 times (OR 2.49, 95%-CI 1.02-6.10) and those persistently in 

stage II 4.2 times (OR 4.17, 95%-CI 1.91-9.13) more likely to utilize health services for respiratory 

problems than subjects with normal spirometry. The association with category ‘non-persistent 

obstruction’ was marginally significant (OR 2.28, 95%-CI 0.98-5.27, p=0.054) and remained largely 

unaltered by asthma adjustment. 

 

Sensitivity analysis 
 

Inclusion of health service use for cardiovascular problems at follow-up did not alter the associations 

of categories of change in obstruction severity with health service use for respiratory problems or 

respiratory symptoms at follow-up. 

Weighted regression analyses yielded the same determinants of incidence and non-persistence, and the 

same associations between longitudinal obstruction categories and shortness of breath or health service 

use for respiratory problems at follow-up (data not shown). 
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Table 1 Baseline characteristics according to change in severity of obstruction1during follow-up 

  

Persistently 
normal 

Incident 
stage I 

Incident 
stage II 

Persistent 
stage I 

Stage I 
progressing 

Persistent 
stage II 

Non-persistent 

 

n=4181 n=683 n=85 n=294 n=56 n=61 n=113 

                                            

Female sex              (%) 54.7     54.2     44.7     39.1     33.9     32.8     40.7     

Age in years    (mean/sd) 39.2 / 11.2 45.3 / 10.3 44.5 / 11.9 48.8 / 9.6 48.5 / 9.2 49.5 / 9.1 47.0 / 9.1 

No professional        (%) 
education  

12.1     16.4     23.5     15.6     21.4     19.7     8.8     

FEV1 % of         (mean/sd)  
predicted value 

109.9 / 13.6 107.4 / 12.5 91.3 / 12.5 101.3 / 10.9 89.1 / 7.0 67.4 / 10.4 99.6 / 13.5 

FVC % of           mean/sd)  
predicted value 

114.0 /  0.2 119.2 / 0.1 100.6 / 0.1 125.9 / 0.1 116.0 / 0.1 96.0 / 0.1 122.4 /  0.2 

FEV1/FVC %     (mean/sd)  
of predicted value 

100.9 / 0.1 94.6 / 0.1 94.9 / 0.1 84.1 / 0.0 80.2 / 0.1 73.3 /  0.1 84.8 /  0.0 

Never smoker           (%) 49.9     44.7     35.3     36.7     19.6     31.1     38.9     

Light smoker at        (%) 
baseline (<15 PY)

2 28.7     19.3     13.6     20.9     9.3     11.8     24.5     

Heavy smoker at      (%) 
baseline (>=15 PY)

2
  

18.2     31.8     42.4     38.4     62.5     52.5     29.2     

Shortness of breath (%) 
at baseline 

21.7     25.0     42.4     25.5     44.6     47.5     14.2     
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Chronic bronchitis    (%) 
at baseline 

7.3     11.6     20.0     13.3     19.6     27.9     9.7     

Wheezing in last 12 
months at baseline 

4.8     7.8     22.4     9.9     28.6     20.0     8.0     

Non-current Asthma (%) 
at baseline    

5.6     10.5     17.6     12.2     21.4     27.9     9.7     

Current asthma at     (%) 
baseline 

1.8     3.4     11.8     4.4     16.1     16.4     4.4     

Health service use   (%) 
for respiratory problems 
at baseline 

18.0     22.0     27.1     26.9     33.9     42.6     23.0     

 

1 Obstruction was defined as FEV1/FVC<0.70 based on pre-bronchodilation spirometry.  

2 Numbers do not add up to 100.0% due to smokers with missing pack-year information 
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 Table 2 Incidence rate of obstruction (FEV1/FVC<0.7) using pre-bronchodilator spirometry during 11 years of follow-up according to a set of baseline  

 characteristics 

 

Predictor  
at baseline 
  

Person-years 
at risk  

(in 1000) 

Number  
of cases 

 

    Incidence rate  
    (cases per 1000  
     person years)     (95% CI)  

   Crude  
   incidence  
   rate ratio        (95% CI)  

Adjusted3 

incidence  
 rate ratio           (95% CI) 

All (N=4945) 
1
  54.00 765 14.17  (13.20 - 15.21 )               

Gender:                        

·        men  24.55 357 14.54  (13.11 - 16.13 )  1.00  (Ref)     1.00  (Ref)    

·        women  29.45 408 13.85  (12.57 - 15.27 )  0.95  (0.84 - 1.09 )  1.03  (0.90 - 1.18 ) 

Age (years) at baseline                        

·        18-30  11.62 70 6.02  (4.77 - 7.61 )  1.00  (Ref)     1.00  (Ref)    

·        >30-40  14.70 165 11.22  (9.64 - 13.07 )  1.86  (1.43 - 2.43 )  1.72  (1.33 - 2.24 ) 

·        >40-50  15.81 253 16.00  (14.15 - 18.10 )  2.66  (2.08 - 3.40 )  2.38  (1.85 - 3.06 ) 

·        >50  11.86 277 23.35  (20.75 - 26.27 )  3.88  (3.05 - 4.93 )  3.77  (2.94 - 4.83 ) 

Smoking status at baseline
2
:                       

·        never smoker  28.02 362 12.92  (11.65 - 14.32 )  1.00  (Ref)     1.00  (Ref)    

·        ever smoker:                        

 <15 packyrs. 14.94 153 10.24  (8.74 - 12.00 )  0.79  (0.66 - 0.95 )  0.87  (0.73 - 1.04 ) 

 ≥15 packyrs 11.03 250 22.66  (20.02 - 25.65 )  1.75  (1.52 - 2.03 )  1.51  (1.29 - 1.77 ) 
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Chronic bronchitis at baseline:                       

·        absent  49.62 671 13.52  (12.54 - 14.59 )  1.00  (Ref)     1.00  (Ref)    

·        present  4.38 94 21.45  (17.53 - 26.26 )  1.59  (1.30 - 1.93 )  1.23  (1.00 - 1.51 ) 

Asthma at baseline                        

·        absent  50.47 678 13.43  (12.46 - 14.48 )  1.00  (Ref)     1.00  (Ref)    

·        present, but non-current 2.34 54 23.12  (17.70 - 30.18 )  1.72  (1.33 - 2.22 )  1.39  (1.01 - 1.92 ) 

·        present, current  1.18 33 28.02  (19.92 - 39.41 )  2.09  (1.51 - 2.88 )  0.79  (0.51 - 1.23 ) 

Asthma at Follow-up                        

·        absent  49.75 662 13.31  (12.33 - 14.36 )  1.00  (Ref)     1.00  (Ref)    

·        present, but non-current 2.64 49 18.54  (14.01 - 24.53 )  1.39  (1.07 - 1.82 )  1.19  (0.85 - 1.65 ) 

·        present, current  1.60 54 33.77  (25.86 - 44.09 )  2.54  (1.97 - 3.28 )  1.68  (1.13 - 2.50 ) 

Wheezing without a cold at baseline                       

·        absent  50.81 689 13.56  (12.59 - 14.61 )  1.00  (Ref)     1.00  (Ref)    

·        present  2.96 71 23.99  (19.01 - 30.27 )  1.77  (1.41 - 2.21 )  1.04  (0.81 - 1.35 ) 

Wheezing without a cold at follow-up                       

·        absent  50.34 655 13.01  (12.05 - 14.05 )  1.00  (Ref)     1.00  (Ref)    

·        present  3.65 110 30.10  (24.97 - 36.29 )  2.31  (1.92 - 2.79 )  1.95  (1.57 - 2.42 ) 

1 additional reduction of sample size due to exclusion of participants with >120 pack years at baseline or > 150 at follow-up 

2 smoking status at baseline: never smokers:  <20 packs of cigarettes and <360 g of tobacco in lifetime 

3 adjusted for study area, educational level, and all predictors listed in the table  
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Table 3 Association1 of categories of change in severity of obstruction2 with shortness of breath while 
walking at follow-up 

    

 Crude Model 
Adjusting for all but  
asthma covariates

3
 

Adjusting for asthma 
& wheezing at base- 

line or follow-up 

Variable 
Rel. rate 

95%-CI 
    p-value 

Rel.rate 

95%-CI 
    p-value 

Rel.rate 

95%-CI 
    p-value 

             

Incident stage I 1.59     0.000 1.24     0.056 1.12     0.344 

  (n= 683) (1.32 - 1.91)   (0.99 - 1.56)   (0.89 - 1.41)   

Incident stage II 2.74     0.000 1.43     0.192 1.10     0.743 

  (n= 85) (1.74 - 4.30)   (0.84 - 2.45)   (0.63 - 1.90)   

Persistent stage I 1.48     0.004 1.14     0.428 1.02     0.903 

  (n=294) (1.13 - 1.94)   (0.82 - 1.60)   (0.73 - 1.44)   

Stage I progressing 3.76     0.000 2.21     0.026 1.71     0.148 

  (n= 56) (2.18 - 6.48)   (1.10 - 4.45)   (0.83 - 3.54)   

Persistent stage II 5.43     0.000 4.38     0.000 3.11     0.002 

  (n= 61) (3.15 - 9.37)   (2.19 - 8.75)   (1.50 - 6.42)   

Non-persistent  1.02     0.947 1.40     0.237 1.39     0.246 

  (n= 113) (0.64 - 1.62)   (0.80 - 2.44)   (0.80 - 2.43)   

Asthma at baseline                         

non-current
4
                 1.08     0.739 

                  (0.70 - 1.65)   

current
4
                 0.50     0.024 

                  (0.27 - 0.91)   

Asthma at follow-up                         

non-current
4
                 1.09     0.667 

                  (0.73 - 1.63)   

current
4
                 2.18     0.004 

                  (1.28 - 3.72)   

Wheezing without a            1.41     0.034 

cold at baseline                 (1.03 - 1.94)   
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Wheezing without a                  2.07     0.000 

cold at follow-up                 (1.55 - 2.75)   

 

95%-CI: 95%-confidence intervals; PY: pack-years  

1 Reference category: persistently without obstruction to the airflow 

2 Obstruction was defined as FEV1/FVC<0.70 based on pre-bronchodilation spirometry.  

3 Covariates adjusted for were: sex, age, smoking (light or heavy ever smoker), chronic bronchitis,  
  shortness of breath while walking at baseline, education and area. 

4 Current asthma was defined as presence of asthma attacks in the 12 months prior to assessment or  
  current asthma medication. 

   Non-current asthma cases were defined as self-declared asthma without attacks or asthma  
   medication. 
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DISCUSSION 
 

In our general population sample, we observed an incidence of modified GOLD COPD (obstruction 

based on pre-bronchodilation spirometry) of 14.2 cases per 1000 person years (PY). This estimate is at 

the higher end of comparable ones[25-28] which range between 3 and 16 cases/1000 PY depending on 

age distribution, smoking prevalence, follow-up time, and inclusion of asthmatics. This high incidence 

could only partly be explained by these factors. We replicated associations with age and smoking from 

previous studies[1, 6, 25-29], and found a significant association with chronic bronchitis, a finding not 

reported consistently so far.[27-29] Female sex was significantly associated with incidence only when 

the FEV1/FVC ratio lower limit of normal was used to define disease. Previous evidence regarding 

gender differences in obstruction rates is inconsistent,[25, 27-29] but our finding could support the 

currently debated hypothesis that women are more susceptible to COPD.[1, 30] 

Our observation that 20.9 % of obstructive cases at baseline did not persist is noteworthy. Two factors 

likely explain non-persistence. The first is measurement error: Like the ECRHS study,[28] we 

observed that FEV1/FVC values close to the 0.70 cut-off are predictive of both, incidence and non-

persistence (data not shown) and 93.8% of our non-persistent cases were mildly obstructive. Second, 

the use of pre-bronchodilator measurements prevents the identification of reversible obstruction 

(mostly undiagnosed asthma). The high FVC and normal FEV1 percent predicted values in our non-

persistent cases support this possibility. Also, category ‘non-persistent obstruction’ was marginally 

associated with health service use for respiratory problems irrespective of asthma adjustment. We 

captured reversible obstruction as far as possible by considering wheezing without a cold (besides self-

declared asthma), but hidden non-wheezing asthma cases might still be present.  

Pre-bronchodilatator measurements in epidemiological studies might thus misclassify COPD, 

especially in mild GOLD I stages, but our results suggest their longitudinal course may predict future 

health events on a population level independently of pre-existing symptoms, smoking or health care 

use. While shortness of breath and respiratory care utilization was particularly high in participants 

progressing from stage I to stage II obstruction or persisting in stage II, those remaining in stage I did 

not have increased risks for either outcome at follow-up.  

There is thus a need to better characterize the modified GOLD stage I category in epidemiological 

studies. In the past, epidemiological studies have omitted post-bronchodilation spirometry due to time 

and resource constraints, or in favour of broncho-challenge testing. The procedure is however essential 

to differentiate asthma from COPD in clinical practice. Future epidemiological studies will thus 

additionally need longitudinal post-bronchodilation measurements and consider characteristics such as 

medication intake and symptoms for asthma[32] or the BODE index for COPD[33, 34], which are 

important prognostic factors on the individual level, to define groups at high risk for adverse health 

outcomes or increased use of health services. Such extended assessments are foreseen in the third 

examination of SAPALDIA.  

 

Our study benefited from stringent quality control in spirometry and detailed information on lifestyle-

factors. As discussed above, a limitation is the use of pre-bronchodilator measurements. The 

associations of change in severity of obstruction with health service use for respiratory problems or 

shortness of breath were robust to cardiovascular co-morbidity. Finally, according to weighted 

regression analyses loss-to-follow-up was not a source of bias, although selection for lower stages of 

obstruction was detectable in our sample.  
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Conclusion 
 

The observed non-persistence of obstruction suggests that pre-bronchodilation spirometry at only two 

time points in epidemiological studies might misclassify COPD. Still, our findings regarding shortness 

of breath and health service use for respiratory problems show that pre-bronchodilation spirometry, 

particularly its longitudinal course, has value in predicting health outcomes on a population level. To 

accurately identify risk groups, future epidemiological studies will have to consider both, pre- and 

post-bronchodilation spirometry as well as individual prognostic factors used in today’s clinical 

practice.  
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Figures 
 

Figure 1 Association of categories of change in severity of obstruction with health service use for 

respiratory problems at follow-up1 

 

1 Obstruction was defined as FEV1/FVC<0.70 based on pre-bronchodilation spirometry.  

  Effect estimates are adjusted for: sex, age, smoking (light or heavy ever smoker), chronic bronchitis  

  and shortness of breath at baseline, health service use for respiratory problems at baseline, asthma  

  and wheezing at baseline or follow-up examination, education and area 
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Online figure 1 Participation in SAPALDIA1 (baseline) and SAPALDIA 2 (follow-up) 
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• no participation 4.4%

exclusions for longitudinal 

analysis due to missing
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• questionnaire only n=9651

• plus spirometry n=9552
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n=8666 with symptom data on at least 
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Sample with

FEV1/FVC value

<0.70

N= 541

Sample with

FEV1/FVC value

>=0.70

N= 4949

Follow-up Participation Rate, SAPALDIA 2: 85.9%
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5. Paper 2:  

Assessing the contribution of ambient air pollution to the COPD 

burden after accounting for known determinants.  

(aim II) 

 

5.1.  HMOX1 and GST variants modify attenuation of FEF25-75% decline due    

 to PM10 reduction. 
 

(published in: Curjuric I, Imboden M, Schindler C et al. HMOX1 and GST variants  

 modify attenuation of FEF25-75% decline due to PM10 reduction. Eur Respir J. 2010;  

 35(3):505-14. 

 Complying with European Respiratory Society copyright policy the article text is not  

 included into the online thesis version, but is available under:  

http://erj.ersjournals.com/content/35/3/505.full.pdf+html?sid=48efc88f-50aa-4dcb-

a4c5-f7dd242a93a6) 

 

 

  
 

 

 

 

 

http://erj.ersjournals.com/content/35/3/505.full.pdf+html?sid=48efc88f-50aa-4dcb-a4c5-f7dd242a93a6
http://erj.ersjournals.com/content/35/3/505.full.pdf+html?sid=48efc88f-50aa-4dcb-a4c5-f7dd242a93a6
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6. Paper 3:  

Comparison of the impacts of ambient air pollution and tobacco 

smoke exposure on COPD on the population level 

(aim III) 
 

6.1.  Different genes interact with particulate matter and tobacco smoke  

 exposure in affecting lung function decline in the general population. 

(published on July 6th 2012 in: Curjuric I, Imboden M, Nadif R, et al. Different Genes  
 Interact with Particulate Matter and Tobacco Smoke Exposure in Affecting Lung  
 Function Decline in the General Population. PLoS ONE 2012; 7(7): e40175.  
 doi: 10.1371/journal.pone. 0040175  

 Article link: http://dx.plos.org/10.1371/journal.pone.0040175)  

http://dx.plos.org/10.1371/journal.pone.0040175
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Abstract 
 

Background: 

 

Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on 

lung function decline. The impact of interactions might be substantial, but previous studies mostly 

focused on main effects of single genes. 

Objectives: 

 

We studied the interaction of both exposures with a broad set of oxidative-stress related candidate 

genes and pathways on lung function decline, and contrasted interactions between exposures.  

Methods: 

 

For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one 

second (FEV1), FEV1 over forced vital capacity (FEV1/FVC), and mean forced expiratory flow 

between 25 and 75% of the FVC (FEF25-75) was regressed on interval exposure to particulate 

matter <10µm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and 

interaction terms between a) and b) in 669 adults with GWAS data. Interaction p-values for 152 

genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, 

and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs 

of nominally significant genes (pinteraction<0.05). Replication was attempted for SNPs with 

MAF>10% in 3320 SAPALDIA participants without GWAS. 

Results: 

 

 On the SNP-level, rs2035268 in gene SNCA accelerated FEV1/FVC decline by 3.8% 

(pinteraction=2.5x10
-6

), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1ml 

pinteraction=9.7x10
-8

) over 11 years, while interacting with PM10.  Genes and pathways nominally 

interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a 

significant interaction with PM10 (pinteraction= 3.0x10
-4

) on FEV1/FVC decline. Pathway interactions 

were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful.   

Conclusions: 

 

Consistent with a stratified response to increasing oxidative stress, different genes and pathways 

potentially mediate PM10 and tobacco smoke effects on lung function decline. Ignoring 

environmental exposures would miss these patterns, but achieving sufficient sample size and 

comparability across study samples is challenging.   
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Introduction 
 

Lung function is an important determinant of respiratory health and life expectancy [1,2,3,4]. Its 

longitudinal course is affected by different environmental exposures such as active tobacco 

smoking, environmental tobacco smoke exposure [5], possibly workplace exposures to dusts and 

fumes [6,7,8,9] as well as ambient air pollution [10]. Both air pollution and tobacco smoke are 

known to contain free radicals and to induce their direct formation at the tissue level causing 

damage of cell walls, proteins and DNA, and chronic tissue inflammation and remodeling in the 

long run [11,12]. Upon exposure, different protein systems including those scavenging reactive 

oxygen species (ROS) are up-regulated, and the level of response is influenced by variation in 

underlying genes. Likewise, polymorphisms in oxidative stress related candidate genes like 

gluthathione s-transferases (GSTs), microsomal epoxide hydroxylase (EPHX), or heme-oxygenase 

1 (HMOX-1), have been associated with lung function decline and chronic obstructive pulmonary 

disease (COPD), a disease characterized by accelerated, progressive lung function loss 

[13,14,15,16].  But most of these candidate genes have not been consistently replicated across 

studies and populations according to a recent review [15]. Similarly, genome-wide association 

studies (GWAS) of lung function partially struggled with replication [17,18]. Further, in GWAS 

on lung function level or COPD prevalence [17,18,19,20,21,22] association signals in known 

oxidative-stress genes were not strong [23].  

Reasons for non-replication could be genetic heterogeneity across populations, or also sub-

phenotypes of disease [24]. However, it is also possible that differences in environmental factors, 

and hence presence of gene-environment interaction play a role. To the best of our knowledge, 

only one published genome-wide interaction study examining the effect of farming exposure on 

childhood asthma has taken into account gene-environment interaction in respiratory disease to 

date [25]. This gap in the scientific literature is probably due to increased sample size requirements 

when assessing gene-environment interactions with classical analysis methods [26,27]. However, 

their importance in respiratory disease has previously been shown in candidate gene studies 

focusing on single genes and SNPs therein [28,29,30], as well as follow-up studies of GWAS 

[31,32].  

Analysis methods such as pathway- or gene-set analyses [33] can at least partly overcome sample 

size restrictions by reducing the dimensionality of the data, and thus offer a promising alternative 

study approach. Based on biological knowledge of genes and their organization into molecular 

pathways, the longitudinal course of lung function might be better explained by accumulating 

interaction signals between environmental exposures and multiple SNPs of the same gene, or 

different genes involved in the same canonical pathway contributing to a functional entity in the 

organism. 

We thus aimed to investigate to which extent oxidative-stress related genes and pathways interact 

significantly with interval exposure to ambient particulate matter of mean diameter < 10 µm 

(PM10) or active tobacco smoking on natural lung function decline using genome-wide data from 

non-asthmatic adults of the Swiss Study on Air Pollution and Lung and Heart Diseases in Adults 

(SAPALDIA). SNP-level interaction signals were integrated onto upper biological levels to 

identify significantly interacting genes and pathways. The impact of PM10 exposure on lung 

function decline was contrasted to tobacco smoking by comparing patterns of associations at the 
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gene- and pathway level, as well as interaction effect sizes for the strongest interacting SNP within 

genes.  
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Methods 

Ethics statement 

 

All participants gave written informed consent. The study was approved by the Overall Regional 

Ethics Commission for Clinical Medicine (Swiss Academy of Medical Sciences, Basel, 

Switzerland) and the responsible cantonal ethics committees of each study centre (Ethics 

Commissions of the cantons Aarau, Basel, Geneva, Grisons, Ticino, Valais, Vaud, and Zürich). 

Study population 

 

SAPALDIA is a population-based cohort study established in 1991 to assess the effects of long-

term exposure to ambient air pollution on respiratory health, with a first follow-up examination in 

2002. Participants were residents from 8 communities throughout Switzerland aged 18-60 years at 

baseline. Details of the study design and methodology were published elsewhere [10,34,35].  

The current work is based on up to 669 non-asthmatic participants with genome-wide data 

fulfilling quality control criteria and complete data on sex, age, height, PM10- and smoking 

exposure (see supporting files Figure S1). Participants without genome-wide data served as 

replication sample. 

Spirometric measurements 

 

Spirometry was performed without bronchodilation. Identical spirometry protocols and devices 

(Sensormedics model 2200, Yorba Linda, USA) were used in 1991 and 2002 [36,37]. Participants 

were in an upright sitting position and performed three to eight forced expiratory lung function 

maneuvers according to American Thoracic Society quality criteria [38]. At least two acceptable 

measurements of forced vital capacity (FVC) and forced expiratory volume in the first second 

(FEV1) were obtained. Forced expiratory flow between 25 and 75% of the FVC (FEF25-75) was 

recorded.  

In the present study we studied the decline of FEV1, the ratio FEV1/FVC and FEF25-75 between 

1991 and 2002, as measures of airway obstruction, calculated by subtracting the first measurement 

from the second (measurement at SAPALDIA2 – measurement at SAPALDIA1). 

Health Questionnaire data 

 

Smoking information was assessed by questionnaire. At each examination, never smokers were 

defined as having smoked less than 20 packs of cigarettes or 360g of tobacco in their life, ex-

smokers as having quit smoking at least 30 days before the interview, and current smokers as those 

who reported active smoking [39]. Packyears smoked between baseline and follow-up examination 

were used for comparison with interval PM10 exposure, and were calculated by dividing the 

number of cigarettes per day by 20 (giving number of cigarette packs) and multiplying the result 

with years of exposure.  
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Air pollution exposure 

 

Similarly to calculating packyears, interval PM10 exposure was defined by summing individual 

average home outdoor exposure to PM10 over each year of follow-up, giving estimates in (µg/m
3
) 

* years. Annual average exposures were calculated by using exposure estimates from Gaussian 

Dispersion models on a 200m x 200m grid throughout Switzerland for years 1990 and 2000, and 

interpolating historical trends from fixed air pollution monitoring stations. Participants were 

assigned individual annual exposure estimates via their geo-referenced residence addresses, taking 

account of residence changes during follow-up. Details on exposure modeling are given elsewhere 

[40]. 

SNP genotyping and imputation 

 

Blood for DNA-analysis was drawn in 2002 in participants giving consent to genetic analyses [34].  

Genome-wide genotyping was done on the Illumina Human 610quad BeadChip in the framework 

of the EU-funded GABRIEL study [41], a large consortium aiming to uncover genetic and 

environmental causes of asthma. The current work focused on the non-asthmatic portion of 

participants. 

567’589 successfully genotyped autosomal SNPs were imputed to 2.5 Mio using MACH v 1.0 

software [42] and the HapMap v22 CEPH reference panel of Utah residents with ancestry from 

northern and western Europe [43].  

Strict quality control (QC) was applied by excluding samples with <97% genotyping success rate, 

non-European origin, cryptic relatedness or sex-inconsistencies, as well as SNPs with Hardy-

Weinberg equilibrium p-value<10
-4

, call rate <97%, minor allele frequency (MAF) <5% or low 

imputation quality (Rsq<0.5). A total of 2’168’681 SNPs withstood QC, and genome-wide data 

was finally available in 669 non-asthmatic individuals with environmental exposure data. 

Replication genotyping was attempted for two interacting SNPs (rs360563 in gene CRISP2, and 

rs12190800 in PARK2) with MAF>10%.  Genotyping was done using the iPLEX Gold 

MassARRAY (SEQUENOM, San Diego, USA) on the whole SAPALDIA study population 

including the analysis sample, as the costs for manual sample selection outweigh those of 

additional genotyping. The replication sample consisted of 3320 successfully genotyped 

participants with complete data for covariates and all three lung function parameters (see 

supporting files Figure S1). 

Definition of oxidative-stress genes and pathways 

 
Oxidative stress related genes were defined as either coding proteins that directly scavenge or 

endogenously produce ROS, their immediate regulators, or key genes in cascades triggered by 

oxidative stress. They were identified by searching the Gene Ontology database [44] with the term 

“response to oxidative stress” and GeneCards with “oxidative stress” in the pathway field of the 

advanced search option (http://www.genecards.org/index.php?path=/Search/Advanced/, accessed 

November 2010). Resulting gene lists were further enriched by literature reviews [45,46,47,48,49]. 

By feeding the gene lists into Ingenuity Pathway Analysis (Ingenuity® Systems, 

http://www.genecards.org/index.php?path=/Search/Advanced/
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www.ingenuity.com), 14 molecular pathways related to oxidative stress and environmental 

exposures of interest were identified (Table 1).  

Gene regions were defined by retrieving transcription start and end positions in the ‘gene track’ of 

the UCSC browser (http://genome.ucsc.edu/) [50], genome build 18 (March 2006), and adding 20 

kilo-bases to each end. Referring to dbSNP version 126, available SNP data was matched to gene 

regions. Data was available for 152 autosomal genes (Table 1), of which 46 mapped once to a 

pathway, 33 twice, and 37 three times or more. Thirty-six genes did not map to one of the 14 

pathways, but were related to oxidative stress based on their function. Details on gene size, SNP-

coverage and pathway mapping are given in supplemental Table S1 (see supporting files, Table 

S1). Gene specific allele dosage files in MACH format were used for analysis.  

Statistical analysis 
 

Characterization of study population 

 

The distribution of sex, age, baseline lung function parameters, their change during follow-up as 

well as packyears exposure during follow-up was tabulated according to categories of smoking 

status (never, former and current smokers) and interval PM10 exposure (high versus low exposure, 

defined by the median value). To assess a potential impact of loss to follow-up on our results, our 

study population consisting of up to 669 non-asthmatic adults with high quality genome-wide data 

and complete information on model covariates was compared to non-asthmatic participants 

examined at follow-up without genome-wide data (n=3833), and to those completing only baseline 

examination (n=1299) by means of descriptive tables and tests for independent samples (see 

supporting files, Table S2). 

Gene- and pathway-environment interaction analysis 

 

The interaction of genetic variation and exposure to PM10 or tobacco smoke on lung function 

decline was assessed in different stages.  

First, SNP level analyses on decline in FEV1, FEV1/FVC and FEF25-75 were done for each gene 

separately using multiple linear regression in ProbABEL v0.1.3 (http://www.genabel.org) [51] 

with robust sandwich-estimation of standard errors. Models specified an additive SNP-effect, main 

effects for packyears smoked and interval PM10 exposure between surveys, and an interaction 

term between the SNP-variable and either exposure. They adjusted for sex, age and height at 

follow-up, packyears smoked up to baseline, principal components of population ancestry, and 

study area. No adjustment for ageing during follow-up was made, since follow-up time was 11 

years for all participants. Complete data including covariates and environmental exposures was 

available on 669 participants for FEV1 decline, and on 650 for FEV1/FVC  and  

FEF25-75 decline. 

We used a slightly modified version of the Adaptive Rank Truncation Product (ARTP) method 

described by Yu and colleagues [52] to calculate gene- and pathway level p-values. Briefly, 

according to the method, SNPs are sorted in ascending order of interaction strength, and SNP-

interaction p-values are multiplied up to several pre-specified truncation points which depend on  

http://genome.ucsc.edu/index.html
http://www.genabel.org/
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Table 1 Mapping of candidate oxidative-stress genes to molecular pathways of interest. 

PATHWAY GENES 

Apoptosis 
Signaling  

BCL2 BCL2L1 CASP6 CDK1 CHUK MAP2K1 NFKB1 PLCG1 PRKCA RELA TP53  

Arachidonic Acid 
Metabolism 

ALOX12 CYP1A1 CYP1A2 DHRS2 EPHX2 GPX1 GPX2 GPX3 GPX4 GPX5 GPX6 
GPX7 GPX8 GSTK1 GSTT1 GSTZ1 MGST2 MGST3 PLA2G4A PRDX6 PTGS1 PTGS2  

Aryl 
Hydrocarbon 
Receptor 
Signaling 

ARNT CDKN1A CYP1A1 CYP1A2 EP300 FOS GSTK1 GSTM1 GSTM2 GSTM3 
GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 JUN MGST1 MGST2 MGST3 
NFE2L2 NFKB1 NQO1 NQO2 RELA TP53  

fMLP Signaling 
in Neutrophils  

MAP2K1 NCF2 NFKB1 NOX3 NOX4 PLCB1 PRKCA RAC1 RELA  

Glutathione 
Metabolism  

GCLC GCLM GLRX GPX1 GPX2 GPX3 GPX4 GPX5 GPX6 GPX7 GPX8 GSR GSS 
GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 
GSTT2 GSTZ1 IDH1 MGST1 MGST2 MGST3 PRDX6  

IL-6 Signaling  CHUK COL1A1 FOS GRB2 JAK2 JUN MAP2K1 MAPK14 NFKB1 RELA  

Metabolism of 
Xenobiotics by 
Cytochrome 
P450  

AKR1A1 CYP1A1 CYP1A2 DHRS2 EPHX1 GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 
GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 GSTZ1 MGST1 MGST2 MGST3  

Methane 
Metabolism  

CAT EPX LPO MPO PRDX1 PRDX2 PRDX5 PRDX6 TPO  

Mitochondrial 
Dysfunction  

CAT GLRX2 GPX4 GPX7 GSR NDUFA12 NDUFA13 NDUFA6 NDUFS1 NDUFS2 
NDUFS3 NDUFS4 NDUFS8 PARK2 PARK7 PRDX3 PRDX5 PSEN1 SNCA SOD2 
TXN2 TXNRD2 UCP2  

NF-κB Signaling  CHUK EGFR EP300 INSR NFKB1 RAC1 RAC2 RELA RIPK1 TGFBR2 TLR4  

NRF2-mediated 
Oxidative Stress 
Response  

ABCC1 AKR1A1 AKR7A2 AKR7A3 AOX1 CAT EP300 EPHX1 FOS FOSL1 GCLC 
GCLM GPX2 GSR GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 
GSTP1 GSTT1 GSTT2 HMOX1 JUN KEAP1 MAP2K1 MAPK14 MGST1 MGST2 
MGST3 NFE2L2 NQO1 NQO2 PRDX1 PRKCA SOD1 SOD2 SOD3 TXN TXNRD1  

Oxidative  
Phosphorylation  

NDUFA12 NDUFA13 NDUFA6 NDUFS1 NDUFS2 NDUFS3 NDUFS4 NDUFS8  

Production of 
Nitric Oxide and 
Reactive Oxygen 
Species in 
macrophages  

CAT CHUK CYBA FOS JAK2 JUN MAP2K1 MAPK14 MPO NCF2 NFKB1 NOS2 
PLCG1 PPP2CB PRKCA RAC1 RAC2 RELA STAT1 TLR4  

Xenobiotic 
Metabolism 
Signaling  

ARNT CAT CYP1A1 CYP1A2 EP300 FMO2 GCLC GSTK1 GSTM1 GSTM2 GSTM3 
GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 HMOX1 KEAP1 MAP2K1 
MAPK14 MGST1 MGST2 MGST3 NFE2L2 NFKB1 NOS2 NQO1 NQO2 PPP2CB 
PRKCA RELA SOD3  

NOT MAPPED 
TO PATHWAY 

AATF AGT AGTR1 ATOX1 CCL5 CP CRISP2 CYGB DHCR24 DUSP1 ERCC1 GLRX3 
GLRX5 GSTCD HMOX2 HP MSRA MT2A NAPRT1 NOS1 NOS3 NOX5 NOXO1 
OGG1 OXR1 PNKP PSMB5 PTK2B PXDN PYCR1 SCARA3 SEPP1 SLC23A2 SRXN1 
STK25 TXNIP  
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the number of SNPs in the gene. The statistical significance of these products is derived using the 

empirical distribution of products observed in the original and permutated datasets. For each gene, 

the strongest product p-value across all truncation points is readjusted using again its empirical 

distribution, to result in the gene-level p-value. Using the gene-level p-values in observed and 

permutated datasets, the same procedure can be applied to calculate pathway-level p-values. 

Details on the ARTP method, the applied modifications and truncation point definitions are 

presented in the supporting online material (see supporting files, Figure S2 and Methods S1).  

SNP-level analyses were run 10000 times, always after having newly permuted gene-specific 

SNP-allele-dosages across participants. SNP-level interaction p-values of the observed and 

permutated datasets were used for calculating gene- and pathway-level p-values. According to Yu 

et al. [52], results from simulation studies suggest the ARTP-method yields type I error rates close 

to 5%. We thus additionally corrected for 152 tests at the gene and 14 tests at the pathway level in 

a first look. In a second line of investigation, a non-stringent nominal threshold of α=0.05 was 

chosen for further exploring gene- and pathway-level interaction signals due to our restricted 

sample size. 

Comparing the impact of PM10 versus tobacco smoking 

 

Emerging patterns of interaction were compared between exposures at the pathway- and gene-

level.  In pathways with nominally significant interactions, gene-level p-values were plotted 

against each other to identify the relative contributions to the pathway signal.  

For the SNP with the strongest interaction signal in each nominally significant gene regression 

analyses were repeated with exposure centered to the median. Effect estimates were scaled to 

represent an exposure contrast of one interquartile range (IQR), and interaction effect sizes were 

compared between PM10 and tobacco smoke exposure. For SNP rs2035268 in gene SNCA, which 

was one of the top interaction signals in FEV1/FVC decline, genotype specific estimates for PM10 

and packyears exposure were calculated to exemplify the effect modification by genotype. To this 

purpose, imputed allele dosages were coded as genotypes as follows: dosage <0.5 genotype TT, 

0.5≤ dosage <1.5 genotype GT, and dosage ≥1.5 genotype GG. Reparametrization of exposure 

variables into genotype specific ones was employed to avoid model-overspecification and instable 

estimation in small genotype strata (rs2035268: MAF 5%).   

Statistical power 
  

Power calculations were done using QUANTO software [53] version 1.2 specifying a gene-

environment study on independent individuals. Details of the power calculation are given in the 

online supplement (see supporting files, Methods S1). The most important aspect of the 

calculation was  that a two-sided significance threshold of 5% was used (i.e. no multiple testing 

correction was included), since all 12679 SNP-estimates were further processed for deriving gene- 

and pathway level p-values without filtering by association strength. In our first analysis with 650 

subjects, we have at least 75% power to detect a SNP*environment interaction that accounts for 

1% of the total variance and that power increases to 99% when the SNP*environment 

interaction accounts for 5% of the total variance. In the replication analysis with n=3320, 

estimated power is 99% in both cases. Statistical power is  expected to be higher for the gene and 

pathway level analysis, but that increase in power could not be quantified since p-values for 
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interaction at the gene (or pathway) level are obtained from individual p-values for interactions 

with  SNPs belonging to the gene (or pathway), and the effect of interaction may vary among 

SNPs.
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Results 
 

 Characteristics of study population 

 

Regarding the distribution of sex, age and lung function according to categories of smoking and 

PM10 exposure, our study sample on average presented decreasing lung function values and 

accelerated lung function decline with increased smoking (Table 2). The percentage of females 

decreased with smoking exposure. Compared to participants assessed only at baseline, our study 

sample had slightly better lung function values, substantially less current smokers, was slightly 

less exposed to PM10 and tobacco smoke, and was older and leaner (see supporting files, Table 

S2).   

SNP-level analysis 

 
A SNP-level analysis correcting for 12679 tests (α=0.05/12679=3.9 x 10

-6
) detected an interaction 

between SNP rs2035268 in gene synuclein alpha (SNCA) on chromosome 4q21 and PM10 on 

FEV1/FVC decline (pinteraction=2.5 x 10
-6

). Compared to the baseline TT genotype, each G-allele 

was associated with a 3.8% (95% confidence interval (95%-CI) 2.2 to 5.4%) higher decline per 

83.4 µg/m3*year PM10 exposure (IQR) over 11 years. Further, rs12190800 located in gene 

Parkinson disease protein 2 (PARK2) on chromosome 6q25.2 interacted with PM10 on FEV1 

decline. Compared to the TT-genotype each C-allele entailed an attenuation of 95.1 ml (95%-CI 

60.1ml to 130.1ml) in FEV1 decline per  IQR of PM10 (pinteraction=9.8 x 10
-8

). Exposure and 

outcome specific regression estimates for all 12679 SNPs are given in the supporting online 

information (see supporting files, Data S1). 

Gene-level analysis 

 
In the gene-level analysis, nominally interacting genes differed between PM10 and packyears 

exposure across the parameters of lung function decline (Table 3). Genes interacting with PM10 

exposure partially overlapped for FEV1/FVC and FEF25-75 decline (genes CRISP2, ERCC1, LPO, 

MPO, and SNCA).  After correcting for performing 152 gene-level tests (αBonferroni=0.05/152=3.29* 

10
-4

), the interaction between gene cysteine-rich secretory protein 2 (CRISP2) located on 

chromosome 6p12.3 and interval PM10 exposure on FEV1/FVC decline remained significant 

(pinteraction=3.0x10
-4

). A marginally significant interaction was seen for gene SNCA on chromosome 

4q21 with the same outcome and exposure (pinteraction=4.0x10
-4

). Interactions observed for 

packyears exposure did not withstand multiple testing corrections.  

P-values of interaction for all tested genes are given in the supporting online material (see 

supporting files, Table S3).  
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Table 2 Distribution of main characteristics by smoking status at follow-up and PM10 exposure 

during follow-up (N=6501) . 

  

1 restricted to sample with complete data on all three lung function parameters. Regarding  

  FEV1, sample size with complete covariate data would be n=669  
2  means for age and lung function values, medians for pack years exposures.   

 

Interval PM10 EXPOSURE  
(median:239.0µg/m3*years)  

SMOKING CATEGORY exposure < median 
 

exposure≥ median 

  variable value2 range 
 

value2 range  

Never n 152 
    

145 
   Smoker female sex               [%] 67.1 

    
53.8 

   

 
age at follow-up [years] 53.0 31.1 - 71.5 

 
52.7 29.8 - 71.8 

 
FEV1                       [L] 3.4 2.0 - 5.2 

 
3.6 2.4 - 6.0 

 
  FEV1 decline         [L] -0.3 -1.1 - 1.0 

 
-0.3 -1.5 - 0.5 

 
FEV1/FVC               [%] 79.2 61.4 - 98.0 

 
81.0 62.5 - 99.8 

 
  FEV1/FVC decline [%] -3.9 -13.2 - 9.4 

 
-4.4 -21.6 - 8.2 

 
FEF25-75                      [L/sec] 3.2 1.3 - 7.5 

 
3.6 1.2 - 6.8 

 
  FEF25-75 decl.     [L/sec] -0.7 -2.5 - 2.1 

 
-0.8 -3.7 - 0.6 

 
pack years d. follow-up n.a. 

    
n.a. 

   Former n 98         102       

Smoker female sex               [%] 40.8 
    

52.9 
   

 
age at follow-up [years] 54.1 32.7 - 72.0 

 
54.4 30.8 - 71.9 

 
FEV1                        [L] 3.8 2.2 - 5.4 

 
3.6 2.3 - 5.6 

 
  FEV1 decline         [L] -0.4 -1.2 - 0.3 

 
-0.4 -1.4 - 0.6 

 
FEV1/FVC               [%] 78.8 60.0 - 97.3 

 
80.6 66.4 - 95.2 

 
  FEV1/FVC decline [%] -3.2 -16.1 - 12.4 

 
-4.7 -20.7 - 13.7 

 
FEF25-75                      [L/sec] 3.6 1.4 - 7.7 

 
3.6 1.5 - 7.2 

 
  FEF25-75 decl.    [L/sec] -0.8 -2.8 - 1.7 

 
-0.8 -3.6 - 1.6 

 
pack years d. follow-up 0.0 0.0 - 25.0 

 
0.0 0.0 - 35.0 

Current n 75         78       

Smoker female sex                [%] 37.3 
    

46.2 
   

 
age at follow-up  [years] 52.8 29.8 - 70.8 

 
49.7 30.3 - 70.6 

 
FEV1                        [L] 3.6 2.4 - 5.7 

 
3.7 1.8 - 6.8 

 
  FEV1 decline          [L] -0.5 -1.5 - 0.1 

 
-0.4 -1.3 - 0.3 

 
FEV1/FVC               [%] 77.6 59.3 - 94.5 

 
79.0 49.0 - 97.1 

 
  FEV1/FVC decline [%] -6.3 -20.5 - 3.9 

 
-4.9 -21.5 - 7.9 

 
FEF25-75                      [L/sec] 3.3 1.4 - 7.4 

 
3.5 0.7 - 7.3 

 
  FEF25-75 decl.     [L/sec] -1.0 -3.0 - 0.4 

 
-0.8 -2.4 - 0.7 

 
pack years d. follow-up 10.9 0.0 - 27.3 

 
9.0 0.0 - 24.0 
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Table 3 Nominally significant gene-environment interactions by outcome and exposure. 

Outcome decline FEV1 (n=669) decline FEV1/FVC (n=650) decline FEF25-75 (n=650) 

Exposure interval PM10 packyears interval PM10 packyears interval PM10 packyears 

Gene (pinteraction) CP (0.005) BCL2 (0.003) CRISP2 (0.0003)a PSMB5 (0.003) LPO (0.008) TGFBR2 (0.006) 

  PRDX3 (0.010) PTK2B (0.017) SNCA (0.0004)b SOD2 (0.015) ERCC1 (0.014)  PTK2B (0.033) 

 

ERCC1 (0.014) PSEN1 (0.023) ERCC1    (0.007)   MAP2K1 (0.019) MPO (0.018) TP53 (0.033) 

 

RAC1 (0.027) NOXO1 (0.034) ALOX12    (0.012)   NFKB1 (0.022) SLC23A2 (0.022) CASP6 (0.039) 

 

CYP1A2 (0.028) AOX1 (0.044) LPO    (0.018) HMOX2 (0.048) CRISP2 (0.023) OXR1 (0.045) 

 

PSMB5 (0.038) MAP2K1 (0.046) CHUK    (0.035)   SNCA (0.025) TXNRD2 (0.047) 

 

GLRX (0.046) 
 

GPX5    (0.039) 
 

GPX5 (0.026) 
 

 

GLRX2 (0.048) 
 

MPO    (0.039)   COL1A1 (0.049) 
 

  
  EPX    (0.040)   

   

Genes are sorted in ascending order of interaction p-value within outcome-exposure strata  

a significant after Bonferroni-correction for testing 152 genes (α=.00033) 

b marginally significant after Bonferroni-correction for testing 152 genes (α=.00033) 
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Pathway-level analysis  

 
Pathways “mitochondrial dysfunction” and “methane metabolism” interacted nominally 

(α=0.05) with PM10 on FEV1/FVC decline (p=0.017) and FEF25-75 decline (p=0.029), respectively. 

A further interaction signal was observed for pathway “apoptosis” and packyears exposure on 

FEV1-decline (p=0.051). Inspecting the interaction p-values of pathway-specific genes revealed 

that the pathway signals mostly arose from single genes (SNCA in pathway “mitochondrial 

dysfunction”) or single genomic loci (overlapping gene regions of genes eosinophil peroxidase, 

EPX, lactoperoxidase, LPO, and myeloperoxidase, MPO in pathway “methane metabolism”) 

(Figure 1, parts A-C). P-values of interaction for all tested pathways are given in the supporting 

online material (see supporting files, Table S3).  

Comparison of interactions with PM10 versus packyears exposure 

 
The comparison of interaction effect sizes for PM10 and packyears exposure was based on 

regression estimates for the strongest interacting SNP only within each nominally significant gene. 

Table 4 presents estimates for FEV1/FVC decline, where significant and marginally significant 

gene-level interactions have been detected for genes CRISP2 and SNCA, respectively. Estimates 

for decline in FEV1 and FEF25-75 are presented in the supporting online material (see supporting 

files, Table S4 and Table S5).  

The C-allele of SNP rs360563 in gene CRISP2  accelerated FEV1/FVC decline by 1.1 % per IQR 

change in PM10 exposure over 11 years (Table 4). Similarly, the G-allele of SNP rs2035268 in 

SNCA was associated with an accelerated decline by 3,8% per allele and IQR change in exposure.  

Genotype specific exposure estimates were calculated for rs2035268. Within genotypes GT and 

GG of SNP rs2035268, a change in IQR of PM10 was associated with a signficant acceleration of 

FEV1/FVC decline by 3.9%, opposed to a small and non-signficiant acceleration by 0.2% in 

baseline genotype TT (Table 5). In contrast, a change in IQR of packyears smoked was associated 

with a significant acceleration by 1.1% in the baseline TT genotype stratum, but not in the GT/GG 

strata.  

For FEV1- and FEF25-75 decline, interaction effect sizes for the strongest interacting SNPs in 

nominally significant genes tended to be considerably larger with packyears compared to PM10 

exposure. Further, packyears exposure frequently presented significant main effects besides the 

interaction with SNPs (supporting files, Table S4 and Table S5).  

In models including only main effects but no interaction between SNPs and exposure, an IQR of 

9.8 packyears was significantly associated with accelerated decline in FEV1/FVC by 1%, and in 

FEV1 by 50ml  (data not shown). Respective estimates for PM10 were non-significant. SNP main 

effects remained non-significant and their beta estimates largely unaffected by the exclusion of 

interaction terms.  
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Table 4 Effect estimates of the strongest interacting SNP from each nominally significant gene on FEV1/FVC decline (n=650). 

Exposure Chrom Position Gene SNP type All1 All2 Freq All1 Betainteraction (SE), P BetaSNP (SE), P Betaexposure (SE), P 

PM10 4 90975104 SNCA rs2035268 imp G T 0.05 -3.8 (0.8), 2.54E-06* -0.7 (0.6), 0.254 -0.2 (0.7), 0.786 

(IQR. 83.4 6 49766228 CRISP2 rs360563 imp C T 0.50 -1.1 (0.3), 3.78E-05  0.0 (0.3), 0.975  0.6 (0.7), 0.375 

ug/m3 * y) 17 6840800 ALOX12 rs2073438 gen A G 0.26  1.0 (0.3), 2.38E-04  0.4 (0.3), 0.181 -1.0 (0.7), 0.144 

 17 53675156 LPO rs8178290 imp A C 0.18  1.1 (0.3), 9.61E-04 -0.2 (0.3), 0.582 -1.0 (0.7), 0.153 

 17 53629132 EPX rs3785496 gen A G 0.80 -1.1 (0.3), 0.001 -0.1 (0.3), 0.773  1.1 (0.8), 0.140 

 17 53699864 MPO rs8178409 imp A G 0.18  1.1 (0.3), 0.001 -0.2 (0.3), 0.523 -1.0 (0.7), 0.158 

 19 50600888 ERCC1 rs1005165 imp C T 0.83 -1.3 (0.4), 0.002  0.1 (0.4), 0.765  1.5 (0.9), 0.084 

 6 28629296 GPX5 rs393414 gen C T 0.79 -0.9 (0.3), 0.003  0.3 (0.3), 0.385  1.0 (0.8), 0.219 

 10 101996416 CHUK rs4919438 imp C T 0.50 -0.8 (0.3), 0.003 -0.1 (0.2), 0.669  0.2 (0.7), 0.813 

packyears 14 22552780 PSMB5 rs12590429 imp A G 0.09 -3.8 (0.9), 1.06E-05  0.3 (0.5), 0.540 -0.5 (0.5), 0.265 

(IQR: 9.8 6 160020288 SOD2 rs7855 imp A G 0.94  2.7 (0.7), 2.17E-04 -0.4 (0.8), 0.620 -6.1 (1.4), 1.64E-05 

PY) 15 64583032 MAP2K1 rs8043062 imp A G 0.15  1.9 (0.6), 0.001 -0.1 (0.3), 0.741 -1.6 (0.5), 0.003 

 4 103676616 NFKB1 rs230528 gen G T 0.38 -1.7 (0.6), 0.003  0.1 (0.3), 0.775  0.2 (0.6), 0.693 

 16 4466293 HMOX2 rs2270363 imp A G 0.25  1.1 (0.4), 0.013  0.0 (0.3), 0.935 -1.8 (0.6), 0.002 

 

SNP-estimates are based on an additive model. Beta-estimates represent percentages of decline in FEV1/FVC over 11 years per effect allele and/or for an 

exposure contrast of one interquartile range (IQR). All estimates are taken from the same interaction model. Positive values mean an attenuation, and 

negative ones an acceleration of FEV1/FVC decline. Rows are sorted according to ascending interaction p-values. 

*significant after Bonferroni correction for testing 12679 SNPs (α=3.9 x 10E-6) 

gen: genotyped SNP; imp: imputed SNP; All1: allele 1 (effect allele); All2: allele 2 (baseline allele); FreqAll1: frequency of allele 1 
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Table 5 rs2035268 genotype specific estimates of the effect of interval PM10 and pack years 
exposure on percentage decline in FEV1/FVC ratio during 11 years of follow-up. 

 
 

exposure rs2035268 
genotype 

effect 
estimatea 

(95%-
confidence 
interval) 

p-value pinteraction
b

 

interval PM10 wild-type 
(TT) 

  -0.2 (-1.7 to 1.4) 0.827 7.35E-07 

(IQR 83.4ug/m
3
* y) mutant 

(GT/GG) 
  -3.9 (-5.9 to -1.8) 2.25E-04  

packyears wild-type 
(TT) 

  -1.1 (-2.0 to -0.1) 0.024 0.909 

(IQR 9,8 PY) mutant 
(GT/GG) 

  -0.7 (-2.3 to 1.0) 0.434  

 

a Environmental effect estimates are based on a multiple linear model with sample size n=650  

  adjusting for sex, age and height at follow-up, packyears smoked up to baseline, population  

  ancestry, and study area. PM10 and packyears exposure was reparametrized into genotype  

  specific exposure variables to avoid model overspecification with instable estimates in the  

  genotypic risk stratum (rs2035268 has minor allele frequency of 0.05). Estimates are in units of  

  percentage decline in FEV1/FVC 

b p-value of interaction between environmental exposure and genotypes of rs2035268  

   (TT vs GT/GG) 
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Replication of significant associations 

 
Replication genotyping was done for CRISP2 SNP rs360563 (MAF of 49.8%) and rs12190800 in 

PARK2 (MAF 16%), but their interaction with PM10 exposure on FEV1/FVC and FEV1 decline 

could not be confirmed in the remainder of the SAPALDIA population (pinteraction=0.63 and 0.50 

respectively, n=3320 for both). Thereby, MAFs in the replication sample corresponded to those in 

the discovery sample, and both SNPs were in Hardy-Weinberg equilibrium.  
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Discussion 
 

To the best of our knowledge, this is the first study assessing gene-environment interactions on 

lung function decline using analysis methods that accumulate interaction effects along a broadly 

defined set of candidate genes and pathways. Our results suggest that different oxidative stress 

genes could be involved in mediating the adverse effects of ambient air pollution and tobacco 

smoke exposure on lung function decline.  

We can currently only hypothesize about the reason for observing different patterns of interaction 

between the two environmental exposures. A possible explanation would be that ambient 

particulate matter pollution and tobacco smoke, although sharing many constituents, also differ in 

their composition, which possibly affects the overall and relative relevance of the different 

pathways. A probably more important explanation is that levels of oxidative stress imposed by 

ambient PM10 exposure are much lower than those induced by active tobacco smoking. 

Experimental studies have shown that different levels of oxidative stress trigger dose-dependent, 

specific activations of pathways on the cellular level in response to the oxidant burden [54]. Li and 

colleagues delineated a stratified oxidative stress model while studying the biological effects of 

particulate matter exposure on human and mouse cell lines exposed to solutions of Diesel exhaust 

particles (DEP) and concentrated ambient air particles (CAP) sampled in a highly polluted area 

[55,56]. According to their observations, at the lower end of exposure pivotal ROS-scavenging 

enzymes like heme oxygenase-1 are induced, representing the activation of protective cell-

mechanisms. Intermediate exposure levels trigger inflammatory pathways via signal transduction 

cascades (increased expression of interleukin-8 and Jun kinase), while high exposure levels impact 

on mitochondrial permeability, and result in cytotoxicity and apoptosis. Thereby CAP were mostly 

representing the lower to mid-level of exposure, inducing oxidative-stress enzymes and 

inflammation, but not apoptosis (as observed with DEP). In contrast, tobacco smoke exposure is 

known to induce the whole spectrum of cellular reactions, from oxidative stress response and 

inflammation [57,58] up to DNA-damage [58], apoptosis [59,60,61,62] as well as cellular necrosis 

[61].  Although in the light of limited sample size, we cannot provide statistical evidence of 

exposure-specific interaction patterns with genes and pathways in our current study, it is 

interesting to see that many of the top-ranking genes interacting with packyears exposure are 

involved in signal transduction or apoptosis (Table 3 BCL2, CASP6, MAP2K1, NFκB1, TGFBR2, 

TP53). Only two such genes showed interaction signals with PM10 exposure (CHUK, RAC1), and 

many of the others related to scavenging or production of ROS (CRISP2, CYP1A2, EPX, GLRX, 

GLRX2, GPX5, LPO, MPO, PRDX3). These observations are consistent with the stratified 

oxidative stress model. The observation of larger interaction effect sizes at the level of SNPs for 

FEV1 and FEF25-75 decline, as well as the frequent presence of significant main effects further 

support higher oxidative stress levels induced by tobacco smoke than PM10 exposure.   

Another important observation was that the effect of genetic variation related to oxidative stress 

appeared to be mediated predominantly by the interactions with environmental exposures, as 

hardly any SNP main-effects were observed. This is in line with the findings of genome-wide 

studies on lung function performed to date [17,18,21], where oxidative-stress related candidate 

genes did not produce strong signals. But their design was cross-sectional and importantly, these 

analyses focused on SNP-main effects. Exposure specific gene-effects might thus be missed as 

they can cancel out when averaged over the whole population (which happens in a gene main 
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effect analysis). Disregarding gene-environment interaction might also explain part of the missing 

heritability in complex disease genetics.  

Our study had several limitations. First, the limited number of non-asthmatic adults with available 

genome-wide data restricted our power to detect associations at the gene and pathway levels. In 

this context, we faced the problem of finding studies with genome-wide genotyping and 

comparable data on both phenotypes and environmental exposures. This issue is particularly 

imminent regarding ambient air pollution exposure. As a consequence, small sample size did not 

allow us to identify further strong interaction signals to follow-up, while the observed ones could 

not be replicated in the remainder of the study population. Our gene and pathway level results are 

thus of more exploratory nature. Limited power is also known to inflate effect estimates when the 

strongest association signals are selected for further follow-up (so-called “winner’s curse” [63]), 

thus our interaction effect estimates on the SNP-level are likely overestimated for both exposures. 

But the relative difference in effect size between exposures is probably less affected by this 

phenomenon. In case of differential overestimation, the true difference would likely be larger, as 

observed PM10 effects were smaller and therefore would be more affected than packyears effects. 

Further, follow-up participants were healthier than those completing only baseline examination. 

Our results are thus applicable to an adult general population sample of good health. 

Environmental exposure and genetic susceptibility might possibly have affected health and thus 

participation of our study subjects. But in this case, true effects would likely be underestimated in 

our present study [64]. Finally, SNP-coverage was low for certain genes (see supporting files, 

Table S1), and the well-known gene-deletions in glutathione S-transferases are difficult to tag by 

SNP-genotyping as they represent copy number variations. This makes it difficult to interpret 

respective results. On the other side, a comparison of imputed SNP data for rs360563 (gene 

CRISP2) with genotypes measured during replication in the initial study sample showed a high 

concordance indicating high imputation quality (see supporting files, Table S6). The absence of 

strong interactions on the pathway level is likely due to our primary focus on function while 

selecting candidate genes, which limited pathway coverage. But genes in a pathway may also 

differently interact with exposure, or compensate for each other. Further, regulatory genomic 

regions could be located farer away than the chosen flanking segments of 20 kilobases. Detecting 

interactions in pathways is thus more challenging. 

Strengths of our study were the population based design comprising non-asthmatic adults of a 

wide age-spectrum, the detailed data on individual tobacco smoke and particularly PM10 

exposure, and the high quality of longitudinal lung function data. Finally, the application of 

analysis methods which exploit interaction signals below the significance threshold of a pure SNP-

level analysis provided new insight into a possible differential involvement of genes according to 

exposure specific oxidative stress levels.  
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Conclusions 

 
Applying a gene- and pathway-level analysis, we observed that PM10 and packyears exposure 

potentially interact with different genes on lung function decline, consistent with a stratified 

response to different oxidative stress levels. Our study thus points to the importance of considering 

interactions with environmental factors in the search for molecular pathways underlying lung 

function decline in response to exogenous inhalants. But it is also a good example of the 

challenges faced by gene-environment interaction studies today: While studies with partial 

genome-wide data, and hence often small sample size, can beneficially use the remainder of the 

study population as highly comparable replication sample, their potential to identify sufficient 

variants to follow-up is limited. In contrast, large studies or study consortia are more powerful in 

the discovery stage, but suffer from data heterogeneity as finding suitable replication studies with 

comparable phenotypic, genetic and environmental exposure data is difficult. This results in a 

challenging trade-off between sample size and data homogeneity. 
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Figures 
 

Figure 1 Distribution of interaction p-values across genes mapping to pathways with weak  
                interaction signals. 
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P-values of interaction on the gene-level are given on a minus log10 scale (y-axis), i.e. higher bars 
represent smaller interaction p-values 

A) Genes of the mitochondrial dysfunction pathway interacting with PM10 and packyears 
exposure between surveys on FEV1/FVC decline. 

B) Genes of the methane metabolism pathway interacting with PM10 and packyears 
exposure between surveys on FEF25-75 decline. 

C) Genes of the apoptosis signaling pathway interacting with PM10 and packyears exposure 
between surveys on FEV1 decline  
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Figure S1 Follow-up of participants and selection of study population. 
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Figure S2 Scheme of analysis steps in the ARTP-method. 

 

The ARTP method developed by Yu and colleagues [52] assumes that an analysis at the SNP-level 
has been performed on the originally observed data, followed by a reanalysis on permutated 
datasets, i.e.  p-values of association for original and permutated datasets are available for each 
SNP. The ARTP procedure then entails the following 4 steps: 

1. Order p-values from single SNP analysis in ascending order   

2. Calculate products of ranked p-values at different truncation points depending on gene 
length  

3. Adjust product p-values using permutation distribution  

4. Select the minimum of the adjusted products 

5. Readjust the product minimum. 

The readjusted product minimum represents the gene-level p-value. For each permutated 

dataset, an adjusted product minimum can be calculated as well. The procedure can then be 

repeated using the resulting, original and permutation gene-level p-values to yield p-values of the 

pathway.
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7. Summary of findings  

7.1. Paper 1: Longitudinal change of prebronchodilator spirometric 
obstruction and health outcomes: results from the SAPALDIA cohort 

 

In this article, we estimated the incidence of airway obstruction over a follow-up of 11 years using a 

modified GOLD-definition of COPD, which applied the GOLD criteria to pre-bronchodilation 

spirometry values. We found an incidence of 14.2 cases/1000 person years (PY), which was at the 

higher end of estimates from comparable population-based cohorts ranging from 3-16 cases/1000 

PY. The high incidence could only partly be explained by differences in age structure, smoking 

distribution or length of follow-up. Baseline characteristics identified as determinants of incidence 

were higher age and smoking exposure, and presence of chronic bronchitis. While positive 

associations with the first two factors were consistently described in previous studies on airway 

obstruction, the evidence for chronic bronchitis was less clear. Using FEV1/FVC < lower limit of 

normal (LLN) to define obstruction, the incidence was 7.2 cases/1000 PY, and female sex emerged as 

additional risk factor, possibly indicating a higher susceptibility of females to develop obstruction. 

The positive linear association with age expectedly disappeared (LLN is dependent on age). We also 

observed that 20.9% of obstructive cases at baseline did not persist. Most of them showed mild 

obstruction severity at baseline.  

When investigating how longitudinal change in severity of obstruction over 11 years was correlated 

with health service use for respiratory problems or shortness of breath while walking, we found that 

progression from mild (stage I) to moderate to severe obstruction (stage II and more), and 

persistence in moderate to severe stages was most strongly associated with more frequent health 

service use and dyspnea at follow-up. Importantly, the association was robust to adjusting for 

smoking exposure and pre-existing symptoms or health service use. Persisting in a state of mild 

obstruction was not associated with higher service use or symptoms, but reversing from an 

obstructive state at baseline to normal at follow-up was marginally associated with higher health 

service use, despite adjustment for presence of asthma or wheezing without a cold at either 

examination. Interestingly, lung function values for both FEV1 and FVC were on average above the 

predicted values in this category, indicating more a mismatch between FEV1 and FVC than 

abnormally low lung function. These observations could possibly be due to cases of hidden asthma. 

The main limitation of this study was an observed selection of participants in better health condition 

during follow-up time. To assess the possible impact of these selection processes on associations 

with health service use and dyspnea at exercise, we reran the analysis giving more weight to 

participants with underrepresented characteristics in the sample. The results were robust. 

We concluded that pre-bronchodilation spirometry as often available in epidemiological studies has 

prognostic value in predicting future adverse health events and health service use, although it might 

misclassify hidden asthma for COPD. The observation that mild obstruction stages were only 

associated with adverse events if they further progressed suggested the need for bronchodilation. 

Also, further clinical characteristics such as medication intake and symptoms for asthma, or 

functional scores such as the BODE index in the case of COPD could help correctly identifying 

participants at risk of progression in an early disease stage.
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7.2. Paper 2: HMOX1 and GST variants modify attenuation of FEF25-75% 

decline due to PM10 reduction 
 

We investigated whether variants in genes heme-oxygenase 1 (HMOX-1) and the glutathione S-

tranferase (GST) gene superfamily, which comprises several isoforms including the M, P, and T gene 

classes, modified the effect of a change in PM10 exposure between surveys on lung function decline.  

The studied variants included one single nucleotide polymorphism (SNP) for genes GSTP1, three SNPs 

for  gene HMOX-1, a well studied functionally relevant DNA repeat in the promoter region of HMOX-

1, and gene deletions in genes GSTM1 and GSTT1, which are highly prevalent in European 

populations. These variants were selected because of previously published associations with 

pulmonary function or respiratory disease, except for the three HMOX-1 SNPs which were carefully 

chosen to maximally capture observed DNA variability for HMOX-1 in European populations. Both 

HMOX-1 and the GST genes belong to the lung’s first line defense against oxidative stress, and were 

thus very good candidates for interaction effects.  

The analysis model we used was strongly based on previously published work 69, which showed that a 

reduction in air pollution exposure was on average associated with attenuation in the natural, age-

related lung function decline. The observed effects were thereby particularly strong in the smaller 

airways fraction, captured by the decline in the mid-flow measure FEF25-75.  

In our analysis, we observed that variants in GSTP1 and HMOX-1, significantly modified the effect of a 

reduction in PM10 exposure. Participants having mutant alleles in the HMOX-1 SNPs, long repeat 

alleles in the HMOX-1 promoter region, or the mutant alleles in GSTP1 profited most from the air 

quality improvement. In analogy to the previous work, strongest interaction effects were seen for 

decline in FEF25-75, and those for FEV1 and FVC were weaker and sometimes inconsistent compared to 

FEF25-75. 

The conclusion for this analysis was that variation in genes involved in the body’s defense against 

oxidative stress modifies the beneficial effects of a reduction in air pollution. Individuals with a 

differing endogenous capacity to cope with oxidative stress profited to a different extent from the 

improvement in air quality. Once the molecular mechanisms are better understood, this finding 

potentially has policy implications for the definition of exposure limits, as those should protect the 

weakest and most susceptible members of society.  
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7.3. Paper 3: Different genes interact with particulate matter and tobacco 

smoke  exposure in affecting lung function decline in the general 

population. 
 

In the third paper, we assessed whether SNPs in a broad set of pathways and genes involved in 

oxidative stress defense or its endogenous production interact with exposure to air pollution on lung 

function decline, and compared the impact of such interactions to those observed with tobacco 

smoke exposure. As tobacco smoke exposure is measured using a cumulative measure of pack years, 

cumulative PM10 exposure estimates were used in this analysis. No analysis of interaction between 

oxidative stress genes and air pollution on respiratory outcomes in such a broad scale was published 

so far.  

The study was based on a subset of 669 non-asthmatic adults with available covariate information 

and genome-wide data that would cover the genes and pathways of interest. Genes and pathways 

had been identified by searches in functional gene databases and by feeding the resulting gene list 

into a protein interaction database. The analysis comprised 152 genes, 14 pathways, and 12679 

SNPs.  

Pathway analysis was applied using the ARTP-method published by Yu and colleagues155 to maximally 

increase statistical power, but also to obtain interaction p-values on the higher biological levels of 

genes and pathways.  

After correcting for multiple testing, we found that genes CRISP2 significantly, and SNCA marginally 

interacted with PM10 on the decline in FEV1/FVC. In comparison, a pure SNP-level analysis yielded one 

SNP in gene PARK2 significantly interacting with PM10 on FEV1-decline, besides the already observed 

interaction in SNCA. We attempted to replicate the interactions with CRISP2 and PARK2 in the 

remainder of the SAPALDIA population (without genome-wide data), but without success (the SNP in 

SNCA was not chosen for replication due its low MAF of 7%). When looking at the interaction pattern 

in an exploratory manner, i.e. inspecting nominally significant genes (pinteraction<0.05) across outcomes 

and exposures, we observed that different genes and pathways were interacting with PM10 and 

tobacco smoke exposure. Based on the interaction effect estimates for the strongest SNP of each 

nominally significant gene, the impact of tobacco smoke exposure on lung function decline was 

larger than that of PM10. Also, besides significant interaction, tobacco smoke exposure often 

presented a significant main effect per se. On the other side, the percent variability in lung function 

decline explained was very similar between the exposures, ranging up to 28.5% for PM10 and 26.1% 

for tobacco smoke, and to 33.3% for both. However, this finding was based on adjusted R square 

values from models including all strongest interacting SNPs from each nominally interacting gene 

simultaneously. According to the winners curse phenomenon156, these percentages are likely to be 

overestimated given the small size of our study sample and the applied filtering for strongest 

interaction signals. Further, they are questioned by the non-replication of the significant interaction 

signals in CRISP2 and PARK2. As a consequence, estimated percentages of explained variability have 

not been included into the manuscript, but they are presented as supplemental information in 

Appendix 4 of the present thesis only. 

In conclusion, we were not able to detect consistent, significant interactions using either SNP-level or 

gene-level analysis after strict correction for multiple testing. However, by evaluating nominally 
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significant interactions, we observed suggestive evidence that different genes and pathways are 

involved in handling oxidative stress from PM10 and tobacco smoke. This could possibly be due to the 

different levels of exposure imposed by PM10 and tobacco smoke, or to a lesser extent also by 

differences in their composition. Such effects would be missed in a gene main effect analysis, as it is 

most often done in genetic studies including GWAS today.  
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8. Discussion 

8.1.  General discussion 
 

The goals of this thesis were: I) to estimate the incidence of COPD in the Swiss general population 

and identify its main determinants, II) to investigate whether ambient air pollution contributes to 

COPD development, and III) to compare the possible impact of ambient air pollution on COPD 

development to that of the most important known risk factor, tobacco smoke exposure.  

Assessing the importance of environmental effects thereby focused on the role of oxidative stress, 

which is thought to be a major etiological pathway in COPD, and whose role was presently 

investigated by studying gene environment interactions. The scientific work of this thesis was based 

on available data from the population-based SAPALDIA cohort study. 

In the first study we estimated the incidence of airway obstruction in SAPALDIA primarily using the 

COPD definition proposed by the GOLD initiative, but with pre-instead of post-bronchodilation 

spirometry. We assessed the prognostic value of longitudinal changes in obstruction severity 

regarding future adverse health events and health service use. Our incidence estimates are at the 

higher range of comparable values from other population based studies, the reasons for which 

cannot be clearly established. Estimates diminished considerably when using the lower limit of 

normal (LLN) of the FEV1/FVC ratio to define disease. This decline is expected given the high 

proportion of participants aged 50 years and over, for which the GOLD criteria are known to lead to 

substantial over-diagnosis. In this respect it is also important to consider the accumulating evidence 

that COPD is not just a smoking related disease1,61, and hence comparing age-structure and smoking 

burden across studies might miss other important determinants. Analogously to other studies, we 

identified age, and smoking as determinants of incidence of obstruction, and found additional 

evidence for a possible role of chronic bronchitis and sex (the latter when using the LLN criterion). 

We observed that the transition to or persistence in more severe stages during follow-up was 

correlated with higher health service use and more dyspnea at exercise. This suggests that repeated 

pre-bronchodilation spirometry still has value in epidemiological research to predict health 

outcomes. At the same time, our observation that 20% of our obstructive cases at baseline did not 

persist indicates that pre-bronchodilation spirometry is misclassifying asthma for COPD. This is also 

supported by our observations that the category of non-persistent obstruction on average presented 

normal lung function values, but was marginally associated with later health service use for 

respiratory problems, which might be due to presence of hidden asthma. Our results thus support 

the use of bronchodilation in lung function testing to reduce the potentially large misclassification 

with hidden asthma in studies of COPD. Accordingly, bronchodilation was carried out in the second 

follow-up examination of SAPALDIA taking place in 2010/2011. The observation that mild obstruction 

is only associated with later adverse outcomes if it didn’t persist or increased suggests that instead of 

basing COPD severity classification solely on spirometry, further characteristics might be useful to 

define who is at risk for progression among mildly obstructive cases. A possible example could be the 

multidimensional BODE index, which is used in clinical COPD management today and comprises 

spirometry, body mass index, exercise capacity, and grade of dyspnea. 
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Consequently, in the ensuing studies we focused on lung function decline as an intermediate 

phenotype and proxy measure of COPD. This decision was also influenced by the fact that statistical 

power had to be maximized to assess interaction effects, which are more demanding in terms of 

sample size requirements than main effect studies.  

In the second study, we investigated whether variation in two genes belonging to the lung’s first line 

of defense against oxidative stress could alter the beneficial effects of reducing ambient PM10 

exposure on the natural, age-related lung function decline reported previously69. We could show that 

a part of the investigated genetic variants modified the response to air quality improvement, which 

implicated that beneficial effects of a reduction in air pollution are not equally distributed across the 

population, but are influenced by the individual capacity to cope with oxidative stress. Similar to the 

paper upon which the analysis was based69, we found the strongest interaction effects in the mid-

flow measure FEF25-75, but also weaker effects on FEV1. This is probably due to the size-specific 

deposition profile of particulate matter. The fine, biologically more active PM2.5 portion157,158 of PM10 

is preferentially retained in the small airways whose patency is approximated by FEF25-75. These 

results were robust to adjusting for the FVC in different ways (the FEF25-75 parameter is known to be 

strongly dependent on the measured FVC). The interaction effects on FEV1 were mostly consistent 

with those in FEF25-75, but did not reach statistical significance. The evidence for effects on FEV1 was 

thus suggestive.  

The observed interactions are important from a Public Health perspective as they potentially have 

implications for the setting of air pollution limits. Clean air legislation should aim to protect the 

weakest members of society159. However, a limitation of the study was that functional alterations on 

the enzyme level could not be defined for most variants with which interactions were observed. 

Likewise, no data on functional changes was available for our studied heme oxygenase 1 (HMOX1) 

SNPs, as they were not selected on the basis of known functional deficits, but because they tag a 

large part of the common variability in the HMOX1 gene. The chosen Ile105Val polymorphism in 

GSTP1 is well studied and known to alter the detoxification rate of diolepoxides160. However, the 

direction of allele-specific effects was dependent on the studied outcome and exposure in previous 

epidemiological studies102. It is therefore very difficult to make inferences about underlying 

molecular mechanisms in the case of complex exposure mixtures such as PM10. As a consequence, it 

was not possible to make a strong case about the Public Health importance of our findings by relating 

them to the underlying biology. 

The observed interactions between ambient air pollution and genetic variation in enzymes belonging 

to the first line of defense from oxidative stress, encouraged us to assess the impact of PM10 

exposure on lung function decline in a broad set of oxidative stress related genes and pathways in 

the third paper. Effects were also compared to those of tobacco smoking, the classical COPD risk 

factor. The broad set of candidate genes and pathways necessitated focusing on the subset of 

SAPALDIA participants with available genome-wide data, at the cost of sample size and hence 

statistical power. To improve power and maximally exploit the available data, we reduced the 

complexity of our analysis models and applied modern, pathway or gene set analysis methods. These 

reduce the dimensionality of the data by making use of pre-existing biological knowledge and 

integrate the lower level SNP-association signals onto the upper biological levels of genes and 

pathways161. The incorporation of biological knowledge can also eventually help to interpret the 

results. The analytical strength of the methods is that they combine multiple moderate to weak 

association signals from SNPs belonging to the same gene or pathway, which can yield significant 
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associations overall. Several statistical methods are thereby available to derive the overall signal 

across multiple SNPs, and we used the one published by Yu and colleagues155. As a comparison, we 

also performed a classic SNP-level analysis with correction for multiple testing. We detected one 

significant interaction with PM10 exposure on FEV1/FVC decline at the gene (CRISP2) and one on FEV1 

decline at the SNP-level (SNP rs12190800 in gene PARK2), and found suggestive evidence that the 

effects of PM10 exposure and tobacco smoking were mediated through different genes and pathways 

with only a minimal overlap. Importantly, interaction effect sizes conveyed by tobacco smoking were 

roughly twice as large as those from PM10 (except for decline in FEV1/FVC where comparable effects 

were observed), indicating a higher effect on lung function decline in smoking individuals. On the 

other side, first estimates of the percent explained variability in lung function decline were very 

similar for both exposures, and although these estimates were questioned by methodological issues, 

they nevertheless suggest that the impact of PM10 exposure on lung function decline at the 

population level might be comparable to tobacco smoke. This underlines the importance of Public 

Health efforts to establish a clean air environment, and makes particulate matter pollution an 

important target for preventive action.  

From a methodological point of view, our analysis was the first to assess interactions between a very 

broad set of oxidative stress genes and environmental risk factors via pathway analysis methods in 

respiratory epidemiology. We could not overcome the negative impact of a restricted sample size, 

but the work showed the practical feasibility and promising first results of applying modern analysis 

methods to assess the role of entire genes and pathways in mediating environmental effects.  

 

8.2.  Limitations 
 

Our studies faced several limitations. First, the lack of post-bronchodilation spirometry hampered 

our ability to calculate a robust estimate for the burden of COPD in Switzerland. The estimated high 

incidence rates of airway obstruction might thus be an overestimation due to undiagnosed asthma 

cases. Our observations related to the cases of non-persistent obstruction would support such an 

explanation. We could however show the value of available pre-bronchodilation measurements 

regarding prediction of future health events. We thereby controlled for misclassification by hidden 

asthma as far as possible. Post-bronchodilation lung function testing has been applied at the second 

SAPALDIA follow-up examination (SAPALDIA 3), and as soon as these data will be available for 

analysis, they will enable us to shed light on the question on how much the observed incidence rate 

was overestimated by reversible airway obstruction. 

Our observations during the assessment of the COPD burden suggested focusing on lung function 

decline for further analyses. This was also beneficial to increase statistical power for studying gene-

environment interactions. The main limitation in this respect was that we had to base our estimates 

of lung function decline on only two measurements 11 years apart, which introduces a certain 

degree of misclassification by measurement error. But we did not expect the degree of measurement 

error to be influenced by the genetic background of the participant or the level of ambient air 

pollution. Thus errors in lung function measurement would primarily induce non-differential 

misclassification, reduce statistical power for our analyses, and possibly lead to an underestimation 

of the true air pollution effects.  
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A limitation of our genetic data is that for many of the investigated genetic variants the functional 

impact on the enzyme level is not known. This makes it often impossible to give an explanation of the 

molecular mechanisms underlying observed genetic main effects or interactions with environmental 

exposures. This is particularly true for genome-wide association studies, which were originally 

conceived as hypothesis-free approaches to uncover new genes and pathways in disease causation. 

The limitation is also due to the technical advances that genotyping procedures have undergone in 

the last two decades, which enable fast and large-scale measurement of DNA-variation while 

functional studies involving in vitro and in vivo experiments still require more time. It can thus be 

expected, that the molecular basis of many consistently observed genetic associations and 

interactions today will be uncovered in the next years.  

An additional limitation comes to effect in our last analysis involving genome wide data. The 

employed genotyping platform (Illumina Human 6010quad BeadChip) was designed to cover known, 

commonly occurring genetic variation in the human genome as much as possible. It might thus not 

optimally cover all the genes and pathways that were of interest for our analysis. However, our 

measured and imputed genome wide data was based on the HapMap project154, which represents 

the current state of knowledge on human genetic variation and serves as reference standard for 

analysis. Consecutive releases of the HapMap data progressively increased the resolution of the 

genetic variation map, and hence it is likely that the coverage of our genes of interest will be 

improved in the future. 

Finally, a limitation observed in all of our studies is that participants at the follow-up examination 

were on average in better health than those who participated only at baseline. We regularly took 

account of this selection process by comparing our analysis sample with participants who took part 

only in the baseline assessment. If this comparison indicated a potential for bias in the results and 

the chosen analysis technique allowed weighing, we applied a sensitivity analysis giving more weight 

to underrepresented participants to increase their influence on the analysis results. Sensitivity 

analysis did not alter our results in these cases. Otherwise, the descriptive comparison of study and 

baseline sample served as a basis to think about the expected direction and range of biases. Based on 

the known biological effects of air pollution and previous literature showing increased susceptibility 

of persons with pre-existing chronic diseases122,123,139, we concluded that the selection process taking 

place during follow-up would more likely lead to an underestimation of the true health effects of air 

pollution than inducing spurious associations. 

 

8.3.  Strengths 
 

One of the strengths of our studies is SAPALDIA’s population-based design, which allows investigating 

the research questions in a Swiss general population sample of adults with very wide age range. This 

offers the possibility to investigate the whole severity spectrum of COPD disease including the early, 

pre-clinical stages, which can yield important insights for the development of preventive measures. 

In this respect, focusing a part of the analyses on lung function decline and its acceleration could 

capture potentially important risk factors in the general population, which could ultimately 

contribute to later development of COPD.  
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A further excellent characteristic of the SAPALDIA study from which our work took benefit is the 

availability of high quality and validated estimates for exposure to particulate matter air pollution 

(PM10) on the individual level. Moreover, the PM10 estimates covered the whole range of air pollution 

exposure throughout Switzerland thanks to the careful selection of study areas in the original design 

phase. In this respect, the available air pollution data in SAPALDIA offers an almost unique 

opportunity to investigate the health effects of air pollution on the population level. 

Third, despite the limits imposed by missing bronchodilation, the SAPALDIA study disposes of high 

quality spirometry data obtained from standardized lung function testing according to international 

quality standards. Further, spirometry devices were regularly checked and calibrated and their 

comparability was assessed before each assessment. These rigorous quality control measures 

ensured to keep measurement error as small as possible and maximize the data quality in the two 

examinations. This also benefited the analyses related to this thesis.  

Our genetic data offered the strengths of a large sample size of over 6000 samples, on which robust 

candidate genes studies could be carried out. Further, the selection of candidate SNPs for genotyping 

within study projects was guided by published results from respiratory and cardiovascular genetic 

epidemiology studies. This yielded very good candidate SNPs for the investigation of oxidative-stress 

related health effects of air pollution, such as those we successfully studied in the second paper.  

Finally, a further strength of our work was the application of modern analysis techniques to uncover 

significant interactions of ambient air pollution with a broad set of oxidative stress genes and 

pathways in the third study, although its return was reduced by the limited number of non-asthmatic 

participants with genome-wide data. The study has nevertheless shown that the approach is feasible, 

shows promising results, and will likely yield important insights into disease-related molecular 

pathways with a larger data basis. 

 

8.4. Conclusions 
 

From a Public Health perspective, our study results have potential implications with regard to the 

burden of COPD and associated risk factors in Switzerland.  

First, according to our estimates the incidence of COPD in Switzerland is at the higher end in 

comparison with data from other countries, with the reservation that our results are based on pre-

bronchodilation spirometry. But misclassified asthma cases appeared to impose additional burden on 

the health system as well, insofar the overestimated portion of COPD-incidence is also reflected in 

terms of its consequences on individual health and health system resources. The burden of airway 

obstruction thus warrants further investigation and monitoring at the population level, but with 

more accurate methods including bronchodilation to enable a robust separation of the burden 

imposed by COPD opposed to asthma. 

Second, although effects of an improvement in air pollution can be measured in terms of a change in 

the normal-age related lung function decline at the population level, the benefits from cleaner air are 

not equally distributed among all members of society, but are influenced by the individual genetic 

profile determining the ability to cope with oxidative stress. Thus current estimates of the projected 
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benefits from reductions in air pollution69,162,163 are on average correct at a population level, but 

individual benefits might be much larger or smaller depending on individual susceptibility. Lack of 

functional data on the molecular level currently precludes defining robust genetic high- or low-risk 

profiles in this respect. 

Third and last, although a small sample size hampered a statistical proof, results from our pathway 

interaction analyses suggest that the contribution of ambient air pollution to lung function decline 

and probably also COPD is mediated by oxidative stress related pathways, which potentially differ 

from those involved in tobacco smoke effects. Genetic variations within these pathways might 

constitute individual susceptibility. Moreover, our tentative estimates of the percentage of explained 

variability in lung function decline suggest the share of air pollution in the burden of COPD on the 

population level might be equal to that of tobacco smoke. This is of high Public Health importance as 

air pollution is omnipresent in densely populated areas, and hence exposure is involuntary and not 

avoidable. According to the well known “prevention paradox” present in programs targeting the 

whole population164, small attenuations in average lung function decline of the population could lead 

to a substantial reduction of disease cases at the higher end of the distribution. In this respect, a 

reassessment of our results by further studies with larger sample sizes is clearly warranted. 

Meanwhile, the role of air pollution in respiratory disease at the population level needs reconsidering 

and deserves greater attention in Public Health policy. 

 

8.5.  Outlook 
 

The work in this thesis has yielded evidence that COPD-related respiratory disease constitutes an 

important Public Health problem in Switzerland and that ambient air pollution, as represented by 

exposure to PM10 in our study, might be an important contributor to this burden. Moreover, the 

results of our studies underline the important role of oxidative stress in shaping the velocity of lung 

function decline and mediating the effects of ambient air pollution and tobacco smoking on 

respiratory health.  

A future identification of key enzymes and pathways defining an individual’s susceptibility to 

oxidative stress would be an important milestone for Public Health, as it would allow defining high-

risk subgroups within the population. Administration of antioxidant substances would naturally lend 

itself as preventive measure to counteract high oxidative stress levels. A Mexican study on genetic 

susceptibility to air pollution in children provided first evidence for effectiveness in this respect165. 

Given that it would be comparably easy to implement by enriching the daily diet with fruits and 

vegetables or possibly by dietary supplements, running campaigns for a healthy diet in periods of 

high air pollution might be worth considering on the population level or targeting children, the 

elderly or persons with cardiovascular disease. Tailoring these measures to high-risk individuals 

would increase efficacy, but requires the previous definition of a detailed individual risk profile.  

As molecular pathways in our body are highly complex networks whose parts can interact but also 

compensate for each other, their characterization will require large efforts and resources. In this 

context, studying the effects of variants in the genome might be advantageous, as they are resistant 

to environmental exposure effects and hence do not underlie reverse causality. Thus, while genetic 

variants rarely constitute major determinants of complex chronic diseases, they can still pinpoint 



109 
 

underlying pathways which might substantially contribute to disease causation via environmental 

exposures166,167. Moreover, identification of important pathways opens the potential for effective 

prevention even before the underlying biology is completely understood and detailed risk profiles 

can be defined. The current scientific evidence supports an important role of oxidative stress 

reactions in COPD causation, and it is therefore crucial to continue studying the respective genes and 

pathways to boost developments of preventive measures and therapeutic applications.  

The studies in this thesis have also uncovered several limitations. These impede drawing firm 

conclusions regarding the true disease burden and extent of excess risk conferred by air pollution, 

which would provide the required scientific foundation on which to base Public Health action. 

The discovered limitations clearly show the need for a large population based cohort with detailed 

characterization of phenotypes, comprising post-bronchodilation spirometry in the case of 

respiratory disease, but also including other important features such as respiratory symptoms, 

medication, extent of disability in daily life, as well as data on hospitalizations and treatment, which 

would help to measure the disease-related burden on the level of individuals but also health systems.  

A more detailed characterization of the disease phenotype would also help to identify etiological 

factors, as different subtypes of disease might arise on different risk factors. For the same purpose, 

such a cohort would also require a large biobank comprising serum and DNA samples of each 

participant. Serum measurements would allow to identify important biomarkers as measures of 

biological exposure doses or early, intermediate stages of disease. Genetic information, 

preferentially in the form of genome-wide data would offer the possibility to identify molecular 

pathways involved in disease causation and ultimately, when the main molecular processes on which 

a disease arises are identified, also to determine individual susceptibility.  

In this respect, it is important to realize that most population based genetic epidemiological studies 

investigate associations between disease phenotypes and variation in the deoxyribonucleic acid 

(DNA), thus inherited susceptibility. But environmental exposures as well as the normal aging process 

also alter the expression pattern of genomic DNA, i.e. the level of gene and consequently enzyme 

activity in target tissues. It is likely that such processes are very important for disease causation in 

tissues directly exposed to the outer environment such as the lungs. And while technologies to 

measure the activity of genes at a genome-wide scale have been developed and used on white blood 

cell DNA168, it will in future also be mandatory to collect direct samples of the studied target tissue 

from participants of large epidemiological studies. Because tissue sampling is normally not possible 

without imposing health risks to participants, close collaboration with clinical institutions to gain 

samples from diagnostic or treatment procedures is necessary.  

The establishment of such a large-scale cohort with detailed phenotype and genotype data including 

tissue samples thus requires considerable investments in terms of long-term interdisciplinary 

collaboration and dedicated resources, not to forget careful preparation to comply with ethical 

requirements and required broad informed consent of participants when bringing disease- and 

treatment-related data into epidemiological studies.  

From a scientific perspective, such an investment would be clearly worth doing, as it would also offer 

the possibility to investigate the etiology of other chronic diseases, which are expected to increase in 

prevalence due to population aging. This can probably not be achieved by a loose collaboration of 

existing Swiss cohort studies on a national level, as they were designed with different goals in mind, 
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and thus dispose of different data collections from differing populations. The establishment of a new, 

national large scale cohort instead necessitates close and multidisciplinary collaborations from the 

side of Public Health experts on the national level with maximal exploitation of preexisting expertise.  

In this respect, the SAPALDIA study can contribute its expertise in international collaborations in the 

field of genetic epidemiology, and particularly in genome-wide association studies in respiratory but 

also other chronic diseases, which has been initiated by the availability of genome-wide data through 

the GABRIEL project. These collaborations have led to a buildup of expertise in handling and 

analyzing large scale genomic data, including gene-environment interaction in chronic disease. In this 

context, it’s long standing and profound experience with biobanking is a further important asset. Of 

equal importance, substantial expertise has been built up in the assessment of respiratory and 

cardiovascular phenotypes as well as measurement of air pollution exposure in course of the 

SAPALDIA examinations.  

The future establishment of a national, large scale cohort aiming to uncover susceptibility to chronic, 

non-communicable disease by concerted and dedicated action from the Swiss Public Health 

community will likely enable us to determine to which extent air pollution contributes to COPD 

development, thus providing urgently needed answers on the role of air pollution in COPD causation, 

expected benefits from further air quality improvements, and the best preventive strategy with 

respect to the distribution of susceptibility in the population. 
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Appendix 1 

Lung function testing 

Lung function testing is usually done with the tested person in an upright sitting position. Upon 

prompting by the lab technician, the person inspires maximally from normal tidal breathing, stays at 

full inspiration for 1-2 seconds, and then exhales as fast as possible (in a blast) until complete 

exhalation, where he/she needs to persist until the technician announces the end of the test. Two 

criteria are recommended to define the end of the test1. Formally, the end of test is reached if no 

changes in volume occur (or changes <25ml) in the volume–time curve for ≥1 second, whereby the 

person has made an exhalation effort for ≥6 seconds. Alternatively, the test is stopped if the person 

cannot or should not (for medical reasons) exhale further to prevent side-effects from the 

manoeuvre.  

Figure A1 provides a graphical representation of a spirometry manoeuvre in form of a time-volume 

curve. The air volume exhaled during the 1st second of forced expiration is called forced expiratory 

volume in the first second (FEV1), and the maximally exhaled volume forced vital capacity (FVC). 

Thereby the ratio of FEV1/FVC is a measure of airway obstruction, as tissue remodelling and 

narrowing of the larger bronchi affects primarily FEV1, and to a lesser extent and more indirectly FVC 

(the residual volume remaining in the lung after full exhalation can be increased due to trapped air 

and indirectly decrease FVC). 

Lung function testing must fulfil quality standards, such as those set out by the ATS and ERS1: 

Spirometry devices need to be regularly maintained and calibrated. Probands must be instructed by 

 

Figure A1 Volume-time curve of spirometric FEV1 and FVC manoeuvres  
 

 

INS: inspiration; EXP: expiration; FEV1: expiratory volume in 1
st

 second of forced expiration; FVC: forced vital 

capacity, the maximally exhalable volume; FRC: functional residual volume, the air volume remaining in the 

lung after normal exhalation during tidal breathing; RV: residual volume, air volume remaining in the lung after 

maximal forced exhalation; TLC: total lung capacity, air volume in the lung after maximal inhalation 
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the lab technicians on how to perform the testing correctly, and must be continuously motivated by 

them to invest the largest possible effort in the manoeuvres. A detailed list of criteria for acceptable 

test quality was established to ensure valid and reliable lung function measurements (table A1) 

Applying bronchodilation prior to spirometric testing is important to distinguish fixed, anatomical 

narrowing of the airways as present in COPD from a reversible airway obstruction induced by hyper-

reactive smooth airway musculature, as typically present in asthmatic disease. The bronchodilating 

agent thereby relaxes the airway muscle layer. It has been shown that irreversible airway obstruction 

rates can be overestimated by up to 50% when relying on only pre-bronchodilation spirometry2-5. 

Based on data from a Norwegian population-based study, it seems that mild obstruction stages seem 

to be most prone to this kind of misclassification6. There is no detailed consensus about how to 

perform bronchodilation, but the ATS/ERS taskforce for standardization of spirometry recommends 

applying four separate doses of 100µg of a short-acting bronchodilator such as salbutamol7. The 

doses should be administered by a metered dose inhaler with a spacer. Lung function testing should 

then be repeated 15 minutes after application. 

Table A1 Criteria for acceptability of spirometric testing according to the ATS/ERS guidelines,  

                   from 1 

Within-manoeuvre criteria 

 Individual spirograms are ‘‘acceptable’’ if 
o They are free from artefacts 

 Cough during the first second of exhalation 
 Glottis closure that influences the measurement 
 Early termination or cut-off 
 Effort that is not maximal throughout 
 Leak 
 Obstructed mouthpiece 

o They have good starts 
 Extrapolated volume <5% of FVC or 0.15 litres, whichever is greater 

o They show satisfactory exhalation 
 Duration of ≥6 seconds (3 seconds for children) or a plateau in the volume–

time curve or 
 If the subject cannot or should not continue to exhale 

Between-manoeuvre criteria 

 After three acceptable spirograms have been obtained, apply the following tests 
o The two largest values of FVC must be within 0.150 litres of each other 
o The two largest values of FEV1 must be within 0.150 litres of each other 

If both of these criteria are met, the test session may be concluded 
If both of these criteria are not met, continue testing until 

o Both of the criteria are met with analysis of additional acceptable spirograms or 
o A total of eight tests have been performed (optional) or 
o The patient/subject cannot or should not continue 

Save, as a minimum, the three satisfactory manoeuvres 
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Appendix 2 

Measurement of air pollution and individual exposure assessment 

 

Different devices and methods are available for measuring gaseous and particulate matter 

pollutants. Pollutant gases can be assessed using methods based on chemoluminesence where the 

substances or their chemical predecessors (after prior conversion) emit light signals proportional to 

their concentration in the air, or by passive diffusion sampling tubes which absorb the substances 

over several days and are then analyzed in a laboratory. The gold standard for measuring particulate 

matter exposure consists of using high volume samplers. These devices are run over 24h or more 

during which they suck a known amount of air through a filter. The filter is changed regularly and the 

amount of deposited particles is determined by weighting under standardized conditions in a lab. 

Knowing the sampling volume allows to calculate the respective mean concentration per cubic 

meter. Newer sampling devices measure particulate matter concentrations continuously using 

oscillating microbalances. Air is sucked through a thin, oscillating glass tube with a filter on its tip. 

The tube oscillation frequency, which depends on the particle mass impacted on the filter, allows 

calculating the concentration.  

To obtain estimates on personal exposure from measured air pollution concentrations in the field, 

several physicochemical characteristics of the pollutants must be considered. Due to suspension and 

transport in the air as well as relative chemical inertness compared to gaseous pollutants, particulate 

matter pollution is more homogeneously distributed at the local level. From the methodological side 

of view, the reduced spatial and temporal variability of particulate matter concentration makes it 

easier to obtain relatively accurate exposure measurements in epidemiological studies.  

An important aspect is thereby how well ambient measurements of particulate matter exposure 

correlate with personal exposures. In urban areas, people spend much time indoors, and most of it at 

home, which is the reason why home outdoor exposures are frequently used as proxy for individual 

exposure .It has been shown that outdoor fine particulate matter measurements (PM2.5) correlate 

well with individual exposure1, and spatiotemporal variability of individual exposure is well 

approximated by measured outdoor variability2. On the other side, obtaining accurate exposure 

estimates for gaseous pollutants is more difficult, as pollutants are more volatile and undergo 

chemical reactions with atmospheric components.  

As a consequence methods to improve exposure assessment and accurately estimate individual 

exposures based on environmental measurements have been more developed for PM exposure. PM 

exposure was initially estimated by using measurements from monitoring devices placed at key 

locations in a city or region of interest. Often, studies just used data from air pollution monitors 

already operated by environmental agencies. Participants were then assigned the values measured 

at the closest monitoring station to their residence address as exposure estimate.  

Estimation methods were subsequently refined by more and more sophisticated prediction models, 

which are usually calibrated on a set of measurements. Techniques include use of different statistical 

interpolation techniques, geographic information system (GIS) or land use data around air pollution 

monitors, modeling of pollution levels based on meteorological data and national inventories on 

pollution emissions3,4, or newly also by using data on atmospheric composition from satellites, which 
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can also estimate gaseous pollution5. Nowadays, hybrid models combining these techniques with 

personal or environmental measurements are frequently used3. 
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Appendix 3 

Short Version of Health questionnaire used in SAPALDIA 2 (German) 
 

Question Number Question      

    Answers 

 

T_H00010 Haben Sie in den letzten 12 Monaten irgendwann ein pfeifendes 

Atemgeräusch in der Brust gehabt? 

   

  nein     gehen Sie bitte zu Frage T_H00040, S. 1 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00020 Haben Sie in den letzten 12 Monaten Mühe gehabt mit Atmen, wenn Sie 
dieses pfeifende Atemgeräusch in der Brust gehabt haben? 

 
  nein 

  ja 

  weiss nicht 

  Weigerung 

 

 

T_H00030 Haben Sie in den letzten 12 Monaten dieses pfeifende Atemgeräusch 

gehabt, ohne dass Sie gleichzeitig erkältet waren? 

 

  nein 

  ja 
  weiss nicht 

  Weigerung 

 

T_H00040 Sind Sie in den letzten 12 Monaten irgendwann aufgewacht mit einem 

Druckgefühl oder Engegefühl in der Brust? 

 

  nein 
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  ja 

  weiss nicht 

  Weigerung 

 

T_H00050 Haben Sie in den letzten 12 Monaten tagsüber einen Anfall von Atemnot 

gehabt, wenn Sie ruhig waren? (gemeint ist "in Ruhe") 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00060 Haben Sie in den letzten 12 Monaten einen Anfall von Atemnot nach 

körperlicher Anstrengung gehabt? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 
T_H00070 Sind Sie in den letzten 12 Monaten jemals aufgewacht, weil sie einen Anfall von 

Atemnot gehabt haben?  

 

  nein  gehen Sie bitte zu Frage T_H00100, S. 2  

  ja 
  weiss nicht 
  Weigerung 

 
T_H00080 Sind Sie in den letzten 3 Monaten durchschnittlich mindestens einmal in der 

Woche mit einem Anfall von Atemnot aufgewacht? 

 

  nein 
  ja 

  weiss nicht 

  Weigerung 
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T_H00100 Sind Sie in den letzten 12 Monaten jemals wegen eines Hustenanfalles 

aufgewacht? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00110 Husten Sie normalerweise morgens nach dem Aufstehen? 

 

  nein     gehen Sie bitte zu Frage T_H00130, S. 2 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00120 In welchen Jahreszeiten husten Sie normalerweise morgens nach dem 

Aufstehen? 

 

  unabhängig von der Jahreszeit 

  nur im Winter 

  nur im Frühling, Sommer oder Herbst 

  weiss nicht 

  Weigerung 

 

T_H00130 Husten Sie normalerweise tagsüber oder nachts? 

 
  nein  wenn T_H00110 „nein“ und T_H00130 „nein“  

   gehen Sie bitte zu Frage T_H00170, S. 3 

  ja 
  weiss nicht 

  Weigerung 

 

T_H00140 Husten Sie so an den meisten Tagen während mindestens 3 Monaten im 

Jahr?  
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  nein  

  ja 

  weiss nicht 

  Weigerung 

 

T_H00150 In welchen Jahreszeiten husten Sie normalerweise tagsüber oder in der 

Nacht? 

 

  unabhängig von der Jahreszeit 

  nur im Winter 

  nur im Frühling, Sommer oder Herbst 

  weiss nicht 

  Weigerung 

 

T_H00160 Seit wie vielen Jahren? 

 

 ______(Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H00170 Haben Sie normalerweise Auswurf morgens nach dem Aufstehen? 

 

  nein   gehen Sie bitte zu Frage T_H00190, S. 3 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00180 In welchen Jahreszeiten haben Sie normalerweise Auswurf morgens nach  

dem Aufstehen? 

 

  unabhängig von der Jahreszeit 

  nur im Winter 
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  nur im Frühling, Sommer oder Herbst 

  weiss nicht 

  Weigerung 

 
T_H00190 Haben Sie normalerweise tagsüber oder nachts Auswurf? 

 

  nein  wenn T_H00170 „nein“ und T_H00190 „nein“  

   gehen Sie bitte zu Frage T_H00310, S. 4 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00200 Haben Sie normalerweise an den meisten Tagen während mindestens 3 

Monaten pro Jahr solchen Auswurf? 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00210 In welchen Jahreszeiten haben Sie normalerweise tagsüber oder nachts  

Auswurf? 

 

  unabhängig von der Jahreszeit 
  nur im Winter 

  nur im Frühling, Sommer oder Herbst 
  weiss nicht 

  Weigerung 

 

T_H00220 Seit wie vielen Jahren?  

 

 ______(Zahl einfüllen)  
  weiss nicht 

  Weigerung 

 

T_H00310 Haben Sie jemals Asthma gehabt? 
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  nein  gehen Sie bitte zu Frage T_H00500, S. 5 

  ja 
  weiss nicht 

  Weigerung 

 

T_H00320 Wurde dies von einem Arzt bestätigt? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00370 Haben Sie in den letzten 12 Monaten einen Asthmaanfall gehabt? 

 

  nein  gehen Sie bitte zu Frage T_H00430, S. 4 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00380 Wie viele Asthmaanfälle haben Sie in den letzten 12 Monaten gehabt? 

 

 ______(Zahl einfüllen)  
  weiss nicht 

  Weigerung 

 

T_H00390 Wie viele Asthmaanfälle haben Sie in den letzten 3 Monaten gehabt? 

 

 ______(Zahl einfüllen)  
  weiss nicht 

  Weigerung 
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T_H00430 Nehmen Sie zur Zeit irgendwelche Medikamente gegen Asthma (auch 

Inhalationsmittel, Aerosole oder Tabletten)? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H00500 Haben Sie allergischen Schnupfen oder Heuschnupfen? 

 

  nein  gehen Sie bitte zu Frage T_H00520, S. 5 

  ja 

  weiss nicht 

  Weigerung 

 
T_H00640 Haben Sie in diesem Jahr schon Heuschnupfen gehabt? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 
T_H00520 Hatten Sie jemals Probleme mit Niesen oder mit einer laufenden oder 

verstopften Nase, ohne erkältet zu sein oder eine Grippe zu haben? 
 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

 T_H00730 Haben Sie eine chronische Erkrankung, die Sie in irgendeiner Weise 

einschränkt? 

 

  nein   

  ja 
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  weiss nicht 

  Weigerung 

 

Haben Sie etwas von dem Folgenden? 

T_H00740 Arthritis   

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00741 Hoher Blutdruck 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00742 Schwerhörigkeit  

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00743 Krampfadern 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 
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T_H00744 Grauer Star (Linsentrübung) 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00745 Herzkrankheiten 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00746 Depression 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00747 Diabetes/Zuckerkrankheit 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 
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T_H00748 Migräne/oft auftretende  

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00749 Krebs (Stellen Sie die Frage so: Haben Sie Krebs gehabt?) 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00750 Schlaganfall 

  nein 

  ja, aber nicht vom Arzt diagnostiziert 

  ja, vom Arzt diagnostiziert 

  weiss nicht 

  Weigerung 

 

T_H00880 Mit welchem Alter haben Sie Ihre vollzeitliche Ausbildung abgeschlossen? 

(0 entspricht hauptberuflich Student) 

 

  ___________ (Zahl einfüllen) 

 weiss nicht 

 Weigerung 

 

Was machen Sie zur Zeit? 

T_H00890 voll erwerbstätig 

  Nein 
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  Ja 

  weiss nicht 

  Weigerung 

 

T_H00891 teilweise erwerbstätig 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 

T_H00892 Hausfrau/Hausmann 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 

T_H00893 in Ausbildung 

 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 

T_H00894 pensioniert/Rentner 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 
T_H00895 arbeitslos 

  Nein 

  Ja 
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  weiss nicht 

  Weigerung 

 

T_H00896 längerer Militärdienst (z.B. RS), längere Ferien (z.B. nach Schulabschluss 

oder zwischen zwei Stellen)  

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 

T_H00897 krank oder invalid 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 
T_H00898 mache etwas anderes 

 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

  

 T_H01000 Haben Sie jemals in einem Beruf gearbeitet, bei dem Sie Dampf, Gas, taub 

oder Rauch ausgesetzt waren? 

 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 
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T_H01340 Leben Sie in derselben Wohnung/Haus wie in der letzten Untersuchung? 

 

  Nein 

  Ja 

  weiss nicht 

  Weigerung 

 

T_H01720 Welche Aussage beschreibt Ihre Wohnsituation am besten? Ich wohne ... 

 

  im Stadt/Dorfzentrum an stark befahrener Strasse 

  im Stadt/Dorfzentrum an wenig bis mässig befahrener Strasse 

  im Aussenquartier/am Dorfrand an mässig bis stark befahrener Strasse 

  im Aussenquartier/am Dorfrand an wenig befahrener Strasse 

  in alleinstehenden Haus auf dem Land 

  weiss nicht 

  Weigerung 

 

T_H01730 Wie gross ist werktags das Verkehrsaufkommen auf der Strasse, an welcher 

Sie wohnen? 

 

  Stark befahrene Strasse/ununterbrochener Verkehrsfluss 

  Mässig befahrene Strasse/viele Autos fahren vorbei 

  Wenig befahrene Strasse/nur ab und zu ein paar Autos 

  weiss nicht 

  Weigerung 

 

T_H01740 Wie oft fahren an Wochentagen Lastwagen durch die Strasse, an welcher 

Sie wohnen? 

 

  nie 

  selten 

  öfter am Tag 
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  fast den ganzen Tag 

  weiss nicht 

  Weigerung 

 

T_H02040 Haben Sie schon einmal mindestens ein Jahr lang geraucht? 

(„Ja“ heisst mindestens 20 Zigarettenpackungen oder 360g Tabak im 

ganzen Leben ODER: mindestens 1 Zigarette pro Tag, oder eine Zigarre pro 

Woche für ein Jahr). 

 

  nein  gehen Sie bitte zu Frage T_H02150, S. 10 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02050 In welchem Alter haben Sie angefangen, regelmässig zu rauchen? 

 
 ____________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02060 Rauchen Sie zur Zeit (im letzten Monat)? 

 

  nein  gehen Sie bitte zu Frage T_H02105, S. 9 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02070 Wie viel rauchen Sie jetzt im Durchschnitt? 

  Anzahl Zigaretten pro Tag 

 
 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 



141 
 

T_H02072 Anzahl Zigarren pro Woche 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02073 Pfeifentabak in Gramm pro Woche 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02105 In welchem Alter haben Sie aufgehört zu rauchen? 

 

 ____________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02110 In der gesamten Zeit, in der Sie rauchten, haben Sie durchschnittlich wie 

viel geraucht?  

 

Anzahl Zigaretten pro Tag 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02150 Sind Sie in den letzten 12 Monaten regelmässig Tabakrauch ausgesetzt 

gewesen? (regelmässig heisst, an den meisten Tagen oder Nächten) 

 

  nein  gehen Sie bitte zu Frage T_H02280, S. 10 

  ja 

  weiss nicht 

  Weigerung 
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T_H02160 Sie selber nicht mitgezählt, wie viele Personen rauchen in Ihrem Haushalt? 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02170 Rauchen an Ihrem Arbeitsplatz andere Personen regelmässig? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02190 Wie viele Stunden sind Sie täglich dem Tabakrauch von anderen Leuten 

ausgesetzt? 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02280 Haben Sie seit der letzten Untersuchung jemals inhalierbare Glucocorticoide 

(Kortison) benutzt? (Liste zeigen) 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02390 Haben Sie in den letzten 12 Monaten die Notfallstation eines Spitals 

aufgesucht wegen Atemproblemen? 

  nein  gehen Sie bitte zu Frage T_H02420, S. 11 

  ja 
  weiss nicht 

  Weigerung 
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 T_H02400 War dies wegen Asthma, Mühe mit der Atmung oder wegen des pfeifenden Atemgeräusches? 

 

  nein 

  ja 

  weiss nicht 
  Weigerung 

 

T_H02410 Wie oft in den letzten 12 Monaten? 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 

 

T_H02420 Haben Sie in den letzten 12 Monaten die Notfallstation eines Spitals 

aufgesucht wegen Herz-Kreislaufproblemen? 

 

  nein  gehen Sie bitte zu Frage T_H02480, S. 11 

  ja 

  weiss nicht 

  Weigerung 

 

War dies wegen 

T_H02430  Angina pectoris 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02431 Herzinfarkt 

  nein 

  ja 

  weiss nicht 

  Weigerung 
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T_H02432 Herzrhythmusstörungen 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02480 Haben Sie in den letzten 12 Monaten eine Nacht in einem Spital verbracht 

wegen Atemproblemen? 

 

  nein  gehen Sie bitte zu Frage T_H02520, S. 12 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02490 War dies wegen Asthma, Mühe mit der Atmung oder pfeifender Atmung? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02520 Haben Sie in den letzten 12 Monaten eine Nacht in einem Spital verbracht 

wegen Herz-/Kreislaufproblemen? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02590 Sind Sie in den letzten 12 Monaten von einem Arzt untersucht worden 

wegen Atembeschwerden oder wegen Mühe mit der Atmung? 

 

  nein  gehen Sie bitte zu Frage T_H02650, S. 12 
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  ja 

  weiss nicht 

  Weigerung 

  

 T_H02600 War dies wegen Asthma, wegen Mühe mit der Atmung oder wegen eines 

pfeifenden Atemgeräusches? 

 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H02650 Sind Sie in den letzten 12 Monaten von einem Arzt untersucht worden 

wegen Herz-/Kreislaufbeschwerden? 

  nein 

  ja 

  weiss nicht 

  Weigerung 

 

T_H03030 Wie viele Tage konnten Sie in den letzten 12 Monaten wegen Asthma, 

wegen Mühe mit der Atmung oder wegen pfeifender Atemgeräusche nicht 

zur Arbeit gehen? 

 

 ________ (Zahl einfüllen) 
  weiss nicht 

  Weigerung 
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Appendix 4  

Percent explained variability in lung function decline by interactions of oxidative stress genes with PM10 and tobacco smoke exposure. 

 

exposure decline in FEV1   decline in FEV1/FVC   decline in FEF25-75   
model G*E G, E only E only G*E G, E only E only G*E G, E only E only 

interval PM10 28.5 20.4 
 

18.9 10.4 
 

13.5 7.9 
 pack years 26.1 19.2 

 
15.6 10.1 

 
13.2 8.6 

 both 33.3 19.7 19.9 22.5 9.7 10.8 18.0 8.0 8.4 
  

Values are adjusted R2-values from linear regression models including the strongest interacting SNP from each nominally significant gene (p-value for 

interaction<0.05, see table 4 in the manuscript for the full list of genes) simultaneously. All models controlled for covariates sex, age and height at follow-up, 

principal components of population stratification, study area, pack years smoked at baseline and during follow-up and PM10-exposure during follow-up. 

Environmental exposure means interval PM10-exposure or pack years smoked during follow-up. 

 

G*E:   full gene-environment interaction model including a multiplicative interaction term 

G, E only:  model specifying only SNP- and environmental main effects, but no interaction term 

E only:   model specifying only environmental main effects, without SNPs 
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