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SUMMARY 
 

Sphingolipids are important membrane constituents in all eukaryotic cells. Ongoing sphingolipid 

synthesis is required for a variety of cellular processes including response to heat shock. During 

heat stress, de novo sphingolipid synthesis is upregulated and mutants defective in the biosynthesis 

of sphingolipids show a significantly greater loss of viability. To dissect the mechanisms of 

sphingolipid functions during heat stress we made use of the Saccharomyces cerevisiae lcb1-100 

mutant. This mutant is conditionally impaired in serine palmitoyltransferase activity, the first 

committed step in sphingolipid biosynthesis. lcb1-100 cells are highly sensitive to heat shock and 

die at elevated temperatures.  

In this study we could show that the increased sensitivity to heat stress in lcb1-100 cells 

correlated with a lack of induction of the major heat shock proteins at high temperature. This defect 

could be restored by the overexpression of ubiquitin, a situation that increased turnover of proteins 

and prevented accumulation of protein aggregates in lcb1-100 cells. These data showed that the 

essential function of heat shock protein induction is the removal of misfolded or aggregated 

proteins. Furthermore it suggested that heat stressed cells do not die because of the loss of protein 

activity due to their denaturation, but because of the inherent toxicity of the denatured and/or 

aggregated proteins.    

In addition we tried to explain the lack of induction of heat shock proteins in lcb1-100 

cells. We could show that transcription and nuclear export of heat shock protein mRNA was not 

affected in these cells. Under heat stress conditions, lcb1-100 cells exhibit a strong decrease in 

protein synthesis and polysome analyses demonstrated a defect in translation initiation. 

Furthermore we demonstrate that efficient translation under these conditions relies upon the 

synthesis of sphingoid base. Deletion of the eIF4E binding protein Eap1p partially restores 

translation initiation and the synthesis of heat shock proteins in lcb-100 cells. Thus, sphingoid 

bases signal to the cap-dependent translation initiation apparatus to enhance heat shock protein 

synthesis. In addition, ubiquitin overexpression in the lcb1-100 mutant allowed recovery of 

translation, but not at the initial phase where heat shock proteins are made. Therefore the recovery 

process seems to be dependent upon the function of the heat shock proteins that are made during 

the initial phase of heat stress. 

Altogether we have uncovered a new function for sphingoid bases and provide an 

explanation for the sphingoid base synthesis requirement for survival during heat stress.  
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PREFACE 
 

This thesis is basically divided into four main chapters. In the first chapter, the introduction, 

information for the subsequent three chapters can be found. This introduction, however, is not 

exhaustive concerning the growing field of sphingolipid synthesis, including all the metabolites, 

their broad range of functions, and heat stress in all organisms analyzed. Still all relevant work and 

also new and exciting findings in this specific fields are included. 

 

The two following chapters represent two major findings that were made during this study. The 

first important finding was that cells which are deficient for sphingolipid synthesis are unable to 

produce heat shock proteins. These cells nevertheless are able to survive a heat stress provided they 

have enough ubiquitin. This proved that the major task of heat shock proteins is the removal of 

unfolded proteins. The experimental part in this work was done in close collaboration with Sylvie 

Friant who also made the initial observation. This study was published in 2003 in EMBO Journal.  

 

The second finding was that cells, deficient in sphingoid base synthesis, have a defect in translation 

initiation. The analysis of this defect uncovered a novel lipid-mediated regulation of translation 

initiation and in addition gave raise to some new functions for eIF4E-binding proteins. This study 

was carried out with the help of Olivier Deloche, Kentaro Kajiwara and Koichi Funato and yielded 

a manuscript prepared for submission to Journal of Biology. 

 

In the last chapter these new results were brought together and are discussed in a broader context. 

Although this part is hypothetical at least it should display the upcoming concepts in current 

research about sphingolipid synthesis, metabolism and their functions in yeast. Sphingolipid 

synthesis during heat stress: To maintain and change the balance. 
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HEAT STRESS 
 

Cells constantly sense and respond to their changing external environment. In order to sense such 

alterations, signals must be generated and transmitted. One of the most dramatic and acute changes 

is a rapid increase in temperature. Heat damages cells in a variety of ways, most critically by 

disrupting the integrity of membranes and by causing proteins to denature and aggregate (Parsell 

and Lindquist, 1994). To survive heat, cells developed several mechanisms to cope with heat stress 

by generating and transmitting signals. These mechanisms affect a variety of cellular processes 

such as transcription, translation, folding and degradation of proteins and the cell cycle (Figure 1-1 

and below).  

 

At the onset of heat stress cells change their transcriptional profile dramatically (Gasch et al., 2000; 

Murray et al., 2004). In the budding yeast Saccharomyces cerevisiae several transcriptional control 

systems appear to be responsible for the changes in mRNA levels upon heat stress. One system 

involves the heat shock factor HSF. In yeast, HSF is encoded by a single essential gene, HSF1. 

Hsf1p binds to heat shock elements (HSE's) found in the promoter region of many heat shock 

protein genes (Amin et al., 1988; Wu, 1995). HSE's consist of a 5bp DNA consensus element 

nGAAn and about 50 genes were shown to be dependent of activation by Hsf1p (Boy-Marcotte et 

al., 1999). HSF proteins of various organisms share common structural motifs including the helix-

turn-helix DNA-binding domain and are functionally conserved (Pirkkala et al., 2001; Wu, 1995). 

In yeast, Hsf1p is constitutively present as a DNA bound trimer and activates transcription upon 

heat stress (Jakobsen and Pelham, 1988; Sorger and Pelham, 1987). Biochemical evidence suggests 

that some heat shock proteins (HSP) can physically interact with HSF's (Nadeau et al., 1993; Shih 

et al., 2000; Zou et al., 1998). This proposed a model in which the cellular level of HSPs directly or 

indirectly regulates HSF activity. However this seems to be unlikely since an increase in basal 

expression of HSPs does not affect the Hsf1p activation temperature (Hjorth-Sorensen et al., 2001). 

Moreover it was shown that heat stress inducibly phosphorylates Hsf1p – but the precise role of 

this phosphorylation event is still under debate (Hoj and Jakobsen, 1994; Sorger, 1990). The signal 

which reflects and transmits the physiological state of the cell to Hsf1p remains an open question.  

Another transcriptional control system depends on the Msn2p and Msn4p transcription 

factors. Genes which are transcriptionally not only induced by heat but also by other stresses like 

osmotic shock, DNA damage, oxidative stress and glucose starvation were shown to contain stress 

response elements (STRE's) in their promoter (Kobayashi and McEntee, 1990; Kobayashi and 

McEntee, 1993). Msn2p and Msn4p are two highly homologous C2H2 zinc finger proteins that bind 

to the STRE (Martinez-Pastor et al., 1996). The core consensus sequence of an STRE was 
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determined to be CCCCT (Marchler et al., 1993) and the yeast genome contains as many as 186 

potentially STRE regulated genes (Moskvina et al., 1998; Treger et al., 1998). Mutants deleted for 

MSN2 and MSN4 are highly sensitive to various stresses (Martinez-Pastor et al., 1996). In contrast 

to Hsf1p, activation of Msn2p and Msn4p is better understood. Msn2p and Msn4p are localized 

throughout the cytoplasm in unstressed cells and after stress treatment they accumulate in the 

nucleus (Gorner et al., 1998). Heat activation of an STRE reporter was enhanced by a ras2 

mutation and reduced in a BCY1 deletion (Marchler et al., 1993), suggesting a role for the PKA 

pathway in the regulation of Msn2p and Msn4p. Indeed, mutations in the potential PKA 

modification sites of Msn2p lead to constitutive nuclear localization of this protein (Gorner et al., 

1998). However, the PKA pathway appears only to transmit the glucose sensing signal to Msn2p 

and Msn4p because heat stress does not affect the PKA-responsive site (Gorner et al., 2002). The 

fact that, in contrast to Hsf1p, Msn2p and Msn4p are also regulated by other stresses enhanced 

understanding of the regulation of these transcription factors. For instance treatment of cells with 

rapamycin, a potent inhibitor of TORC1 (reviewed in Crespo and Hall, 2002; Loewith et al., 2002), 

was shown to induce the nuclear accumulation of Msn2p (Beck and Hall, 1999), regulated by the 

PP2A type protein phosphatase (Santhanam et al., 2004). This nuclear accumulation is only 

transient and thought to occur oscillatory, depending on the strength of the applied stress (Jacquet 

et al., 2003). 

Whereas activation of Hsf1p and Msn2/4p lead to an increase in transcription of a specific 

set of genes also transcriptional down-regulation of a distinct class of genes was observed. Already 

in the 70's it was shown that heat stress leads to a transient decrease in the synthesis of ribosomal 

proteins (Gorenstein and Warner, 1976) which was caused by a transient inhibition of transcription 

of ribosomal protein genes (Kim and Warner, 1983). Also the production of full-size 35S pre-

rRNA was shown to decline for a short period upon a temperature up-shift (Warner and Udem, 

1972). The repression of ribosomal protein genes was observed for multiple stress responses 

(Warner, 1999) and is thought to be regulated by the transcription factor Rap1p (Li et al., 1999; 

Moehle and Hinnebusch, 1991). There is some evidence that Rap1p interacts with Fhl1p on 

ribosomal protein gene promoters (Lee et al., 2002; Shore, 1994; Wade et al., 2004) and Fhl1p 

itself was found to be under the control of the RAS-PKA and the TOR pathway (Martin et al., 

2004; Schawalder et al., 2004). The exact mechanism of regulation of theses factors during heat 

stress still needs to be understood.  

Several different studies then showed the regulation of gene transcription during heat stress 

with the use of high density DNA microarrays (Lashkari et al., 1997). These studies were able to 

prove the specific upregulation of genes during heat stress and also showed that heat stress leads to 

a rapid but temporary repression of ribosomal gene transcription in yeast (Causton et al., 2001; 

Eisen et al., 1998; Hahn et al., 2004). In contrast to yeast cells, the overlap in the responses of 



 CHAPTER I 
 

Introduction   11 

cultured human cells to different stresses was rather poor (Gasch et al., 2000). Heat stress, 

however,  leads to an increase of many heat shock proteins also in cultured HeLa and primary lung 

fibroblast cells (Murray et al., 2004). 

 

Following transcription, the corresponding mRNA's are exported from the nucleus (Stutz and 

Rosbash, 1998). mRNA export was also suspected to occur through different pathways under 

normal and under heat stress conditions. Studies of mRNA export during heat shock led to the 

hypothesis that non heat shock mRNA's accumulate within the nucleus whereas as mRNA's 

encoding HSPs are efficiently exported (Saavedra et al., 1996). In addition, a nucleoporin like 

protein was found that was required for export of heat shock specific mRNA's during heat stress 

(Saavedra et al., 1997). More recent results could show, that heat shock and non heat shock 

mRNA's are exported via similar pathways and that mRNA export under normal and heat stress 

conditions seems to subjected to competition among different mRNA molecules for a limiting 

amount of common transport factors (Vainberg et al., 2000).  

 

After export from the nucleus, heat shock specific mRNA's are translated in the cytoplasm 

(McCarthy, 1998). The process of translation during heat stress is also regulated. Incubation of 

mammalian cells at elevated temperatures decreases the fraction of active, polysomal ribosomes 

from being more than 60% to less than 30%, showing a decrease in translation initiation. Return to 

lower temperature then leads to an increase in protein synthesis, consistent with the recovery from 

such stress conditions (Burdon, 1987; Duncan and Hershey, 1989). Important to note is that during 

the inhibition of total protein synthesis, heat shock proteins can still be made (Duncan and Hershey, 

1989). Similar mechanisms were found in yeast, although Uesono et al. reported that down-

regulation of total protein synthesis during the initial phase of heat stress was not detected (Uesono 

and Toh, 2002; and below). The exact mechanism by which cells down-regulate total protein 

synthesis is unclear. One explanation might be that the translation initiation factor eIF2α gets 

transiently phosphorylated and inactivated during heat stress, reducing translation initiation on 

most mRNA's (Deloche et al., 2004; and below). 

 

After translation, many of the heat shock mRNA's give rise to a set of functional heat shock 

proteins. This proteins are then responsible for the synthesis of trehalose, a sugar which acts as a 

thermoprotectant (Singer and Lindquist, 1998b) against misfolding of proteins and for the 

degradation of unfolded and aggregated proteins (Imai et al., 2003; Riezman, 2004).  

Trehalose is synthesized by the trehalose phosphate complex, consisting of at least three 

distinct, copurifying components: Tps1p and Tps2p with Tps3 or Tsl1p (De Virgilio et al., 1993; 

Vuorio et al., 1993). An increase in trehalose levels is thought to be regulated by the synthesis of 
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additional trehalose phosphate complex members, of which TPS1 and TPS2 contain STRE 

sequences in their promoter and are transcriptionally upregulated upon heat stress. An increase in 

trehalose levels can also be accomplished by a rise in intracellular levels of the substrates (Neves 

and Francois, 1992). Trehalose was initially thought to stabilize membranes during heat stress 

(Crowe et al., 1992). More recent work however suggests that trehalose protects cells from heat by 

stabilizing proteins at high temperatures and by preventing aggregation of denatured proteins 

(Singer and Lindquist, 1998a).  

Aside from synthesizing trehalose, heat shock proteins function as molecular chaperones. 

These prevent protein aggregation and refold denatured proteins to their native confirmation. For 

example, Hsp70, a DnaK homolog, was shown to bind extended hydrophobic amino acid 

sequences that are normally sequestered in the core of the protein. These regions often tend to stick 

together and to promote the formation of protein aggregates (Parsell and Lindquist, 1994). Hsp104, 

one of the major stress response proteins, was shown to mediate the resolubilization of 

polypeptides that have already begun to aggregate (Parsell et al., 1994). Later,  Hsp104 in concert 

with Hsp70 and Hsp40, a DnaJ homolog, were then described as a chaperone system that is able to 

dissolve and refold aggregated proteins (Glover and Lindquist, 1998). Not only refolding but also 

degradation of unfolded and aggregated proteins occurs during heat stress since not every non-

native protein can be re-/ folded successfully.  

 

Those proteins that are not accurately folded or refolded are tagged with ubiquitin and directed to 

the proteasome which is responsible for the selective elimination of abnormal and denatured 

proteins by degradation (Imai et al., 2003; Seufert and Jentsch, 1990). Ubiquitin is activated in an 

ATP dependent process by which a single ubiquitin molecule is loaded with the help of an E1 

ubiquitin-activating enzyme onto an E2 ubiquitin-conjugating enzyme. The E3 ubiquitin protein 

ligase then recognizes the target and transfers the ubiquitin moiety from E2 to the target 

(Hochstrasser, 1996; Pickart, 2001). The acceptor protein usually undergoes polyubiquitination, 

resulting in chains in which the carboxy-terminus of each ubiquitin is linked to either lysine at 

position 29, 48 or 63 of the preceding ubiquitin. Especially during heat stress, linkage to lysine 63 

was shown to be important since replacement of this lysine with a residue that can not be 

ubiquinitated decreased survival at high temperature (Arnason and Ellison, 1994). Linkage at lysine 

63 residue was shown to be perfomed by the two ubiquitin-conjugating enzymes Ubc4p and 

Ubc5p. Moreover, deletion of UBC4 and UBC5 significantly increased sensitivity to heat stress 

(Arnason and Ellison, 1994). This was in agreement with a previous result, showing that deletion of 

the poly-ubiquitin encoding gene UBI4 (Finley et al., 1987) increased sensitivity to diverse 

stresses, demonstrating once more the importance of this pathway under heat stress conditions. The 

multi-ubiquitin chain is generally believed to improve targeting to the proteasome (Pickart, 1997; 
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van Nocker et al., 1996). Recently it was reported that not only ubiquitin but also ubiquitin-

conjugating enzymes interact with the proteasome (Tongaonkar et al., 2000). A new model 

proposes that unfolded proteins are recognized by Hsp90 or Hsp70 and upon inability to refold the 

protein these complex is bound by a specific E3 ubiquitin ligase, mediating ubiquitination and 

destruction in the proteasome (Hohfeld et al., 2001; Meacham et al., 2001).  

 

In order to give the cell enough time to adjust to the new environmental conditions the progress in 

cell cycle is transiently arrested in the G0/G1 phase during heat stress (Shin et al., 1987), resulting 

in a decrease in budding after one hour of heat stress (Johnston and Singer, 1980). A decrease in G1 

cyclins induces a G0/G1 arrest and the decrease in budding during heat stress was shown to be 

blocked by expression of a hyperstable CLN3 allele (Rowley et al., 1993). After thermotolerance 

has been achieved, the second phase of the heat stress response is characterized by a resumption of 

normal growth at the elevated temperature. This phase is marked by a HSP70 dependent process of 

trehalose degradation (Hottiger et al., 1992; Singer and Lindquist, 1998b) and resumption of 

normal cell cycle (Johnston and Singer, 1980). The exact molecular mechanism that causes this cell 

cycle response is not yet understood.  

 

Little is known about the way through which heat activates the stress response. It was proposed that 

heat increases the amount of reactive oxygen species within cells (Jacquet et al., 2003), which leads 

to the activation of the RAS-PKA pathway. Also, certain membrane proteins were thought to act as 

a sensor for heat stress. The WSC proteins localize to the plasma membrane and deletion of all 

three WSC genes was shown to increase heat stress sensitivity, similar to mutants in the PKC1 

pathway. Increased activity of the MAP kinase SLT2 was impaired in wsc∆ strains and in addition, 

overxpression of WSC genes suppressed the heat shock sensitivity of a hyperactivated RAS allele 

(Verna et al., 1997). A following study showed that Wsc1p regulates the actin cytoskeleton via 

activation of Rho1p. Activated Rho1p then activates the downstream Pkc1p pathway and the 

regulation of the de- and repolarization of the actin cytoskeleton during heat stress (Delley and 

Hall, 1999).  

 

Still it remains to be determined what acts as a sensor of heat stress and causes the dramatic 

changes within a cell. Although several signaling pathways like the RAS-PKA and the WSC-PCK 

pathway are likely to be involved in the regulation of this response, the exact trigger, the cause, of 

this responses is not yet known. A potential trigger could be the synthesis of sphingolipids.  In 

response to heat stress, cells induce the de novo synthesis of free sphingoid bases, ceramides and 

sphingolipids (Dickson et al., 1997a; Jenkins et al., 1997; Wells et al., 1998). Induction of 
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sphingolipid synthesis during heat is thought to participate in many, if not all, responses during 

heat stress and therefore moved into the centre of  interest (see below).  
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SPHINGOLIPID METABOLISM 
 

Sphingolipids and their metabolites are abundant components of many membranes in eukaryotic 

cells (Hechtberger et al., 1994; Patton and Lester, 1991). The first and rate-limiting early step in 

mammalian and Saccharomyces cerevisiae sphingolipid synthesis is similar and involves 

condensation of L-serine and palmitoyl-CoA by the serine-palmitoyltransferase (SPT) (Figure 1-2). 

The SPT was located to the endoplasmic reticulum in mammals (Yasuda et al., 2003) and yeast 

cells (Han et al., 2004). At least two genes, LCB1 and LCB2 are necessary for SPT activity in all 

higher eukaryotes (Hanada, 2003) and their proteins were shown to interact tightly (Gable et al., 

2000). Deletion of either of these genes is lethal but can be rescued by supply of exogenous 

sphingoid bases in yeast (Pinto et al., 1992a). In addition yeast contains a third gene which is 

required for optimal SPT activity during heat stress, TSC3. Tsc3p may bind palmitoyl-CoA and 

deliver it to the SPT, thus increasing its activity (Gable et al., 2000; Monaghan et al., 2002). 

Condensation of L-serine with palmitoyl-CoA then generates the sphingoid base 3-

ketodihydrosphingosine (3-KDS).  

 

3-KDS is reduced into dihyrosphingosine (DHS), also called sphinganine. This reaction is 

performed by the Tsc10p enzyme and requires NADPH (Pinto et al., 1992b). Like the SPT 

subunits, Tsc10p is essential for growth (Beeler et al., 1998). In all organisms studied so far, DHS 

is rapidly metabolised (Dickson and Lester, 2002). In yeast, DHS can be modified in three ways: 

hydroxylation, phosphorylation or condensation with a very long chain fatty acid to make 

ceramide. This in contrast to mammalian cells where mainly fusion occurs.  

Hydroxylation of DHS at the 4 position yields the primary sphingoid base in yeast, 

phytosphingosine (PHS, also called 4-hydroxysphinganine) (Grilley et al., 1998). This reaction is 

catalyzed by Sur2p, which can also hydroxylate DHS-derived ceramide to produce PHS-ceramide 

(Grilley and Takemoto, 2000; Haak et al., 1997) (see below and Figure 1-2). Sur2p is an integral 

membrane protein and localized in the ER. Interestingly, deletion of SUR2 is not essential for 

growth indicating redundancy between the two sphingoid bases (Cliften et al., 1996). 

 

DHS and PHS can be phosphorylated by the two sphingoid base kinases Lcb4p and Lcb5p to yield 

DHS-1P and PHS-1P (Nagiec et al., 1998). Lcb4p is responsible for about 97% of total 

phosphorylation activity. The kinase activity seems to have some stereospecificity because the 

nonbiological threo-DHS isomers were less well phosphorylated (Lanterman and Saba, 1998; 

Nagiec et al., 1998; Skrzypek et al., 1999). In contrast, purified Lcb4p phosphorylated all 4 stereo 

isomers with the same efficiency in an in vitro reaction (I. Andrey and H. Riezman, personal 
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communication). Although none of these kinases contain a membrane localization signal about two 

thirds of the Lcb4p and about one third of the Lcb5p kinase activity was found in the membrane 

fraction. Lcb4p was localized to the ER whereas Lcb5p was found to cofractionate with Golgi 

membranes (Funato et al., 2003) 

Once phosphorylated, sphingoid bases are generated they can be dephosphorylated or 

cleaved. Dephosphorylation is achieved by Lcb3p or Ysr3p in yeast (Qie et al., 1997). These 

phosphatases are specific for sphingoid base phosphates since they can not dephosphorylate 

ceramides or phospholipids (Mao et al., 1997).  LCB3 and YSR3 encode for integral membrane 

proteins with several transmembrane domains. Neither of these genes is essential and both of the 

encoded proteins were localized to the ER. Lcb3p and Ysr3p are highly identical but differ in 

several physiological aspects. Whereas LCB3 transcripts are very abundant, mRNA of YSR3 is 

barely detectable (Mao and Obeid, 2000; Mao et al., 1999).  

Cleavage of sphingoid base phosphates is performed by a lyase encoded by DPL1. Dpl1p is 

specific for D-erythro-sphingoid bases and prefers C16-DHS-1P (Zhang et al., 2001) and cleavage 

produces ethanolamine phosphate and fatty aldehyde (Saba et al., 1997).  Dpl1p localizes to the ER 

(Grote et al., 2000), has one putative transmembrane domain and is membrane integrated despite of 

having a translocation sequence (K.D. Meier and H.Riezman, unpublished). A deletion of DPL1 is 

viable but is hypersensitive to sphingoid bases and accumulates sphingoid base phosphates (Kim et 

al., 2000; Saba et al., 1997; Skrzypek et al., 1999; Zhang et al., 2001; and K.D. Meier and H. 

Riezman, unpublished).  

Exogenous sphingoid bases and sphingoid base phosphates can also enter into the 

sphingolipid biosynthesis pathway, but their incorporation requires a specific mechanism. Deletion 

of LCB3 or both LCB3 and YSR3 was shown to almost completely block the incorporation of 

exogenous sphingoid bases into ceramide (Mao et al., 1999). In addition Lcb4p but not Lcb5p is 

required for incorporation of exogenous sphingoid bases into ceramide (Funato et al., 2003). This 

suggests a phosphorylation, dephosphorylation cycle for the uptake of exogenous sphingoid bases 

and incorporation into ceramide (Funato et al., 2003; Mao et al., 1997).  

 

Upon condensation with a very long chain fatty acyl (VLCFA) -CoA  DHS and PHS can be used to 

produce ceramides. The VLCFA-CoA is usually of either C20:0, C24:0 or C26:0 type whereas wild 

type Saccharomyces cerevisiae uses almost exclusively the C26:0 type. This indicates a 

requirement for fatty acid elongation in ceramide production. Palmitoyl-CoA is elongated by the 

products of ELO2, ELO3, TSC13 and YBR159w genes in a set of reactions which take place in the 

ER, yielding a VLCFA-CoA (Funato et al., 2002; Leonard et al., 2004). The simultaneous deletion 

of ELO2 and ELO3, as well as the deletion of TSC13 is lethal in yeast (Kohlwein et al., 2001; Oh et 

al., 1997; Rossler et al., 2003; Toke and Martin, 1996). 
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A C26:0 or sometimes a C24:0 VLCFA-CoA is then fused to DHS or PHS to produce 

dihydroceramide or phytoceramide. Based on the precursor, two types of ceramides can be 

produced that can be diverted into five different forms, depending on subsequent modifications 

(Figure 1-3).Ceramide synthesis is catalyzed by the ceramide synthase. The ceramide synthase 

consists of three subunits, the highly homologous Lac1p and Lag1p as well as the recently 

identified Lip1p (Guillas et al., 2001; Schorling et al., 2001; Vallee and Riezman, 2005). Lac1p and 

Lag1p are both several transmembrane spanning proteins localized to the ER (Guillas et al., 2001; 

Schorling et al., 2001). Lip1p also localizes to the ER and spans the membrane once, with a short 

N-terminal cytoplasmatic tail. So far it has been unclear if ceramide synthesis occurs at the 

cytosolic surface or in the lumen of the ER. Deletion of the cyptoplasmic N-term of Lip1p did not 

abrogate ceramide synthesis, suggesting that ceramide synthesis does not take place on the 

cytoplasmic site of the ER (Vallee and Riezman, 2005).  

 

In mammals DHS or sphinganine is usually consumed with the use of a fatty acyl-CoA for the 

synthesis of dihydroceramide which is rapidly converted into ceramide. Ceramide is the central 

metabolite of mammalian sphingolipid biosynthesis (Hannun and Luberto, 2000). For instance 

sphingosine-1 phosphate (S1P) in mammals is produced by the cleavage of ceramide by 

ceramidases (see below) which yields sphingosine and a fatty acid. Sphingosine is then 

subsequently phosphorylated by the two known mammalian sphingosine kinases SphK1 and 

SphK2 (Spiegel and Milstien, 2003). In addition, ceramides can be phosphorylated to yield 

ceramide-1 phosphate, glycosylated to yield the glycosylceramides or modified by addition of 

phosphocholine to form the sphingomyelins (Futerman and Hannun, 2004; Reynolds et al., 2004).  

 

Like in mammals, ceramides can also be cleaved into their building blocks in yeast. This reaction is 

performed by the two ceramidases Ydc1p and Ypc1p, both integral ER membrane proteins (Mao et 

al., 2000a; Mao et al., 2000b). Upon a total loss of ceramide synthase activity, Ydc1p and Ypc1p 

can revert their activity and produce small amounts of ceramides again (Mao et al., 2000a; Mao et 

al., 2000b; Schorling et al., 2001).  

 

Up to the formation of ceramide, all steps are located in or within the ER. After its synthesis, 

ceramide then needs to travel from the ER to the Golgi apparatus, the site of IPC synthesis (see 

below). This transport was reported to occur in a vesicular or in a non-vesicular pathway in yeast 

whereas the non-vesicular pathway was shown to be ATP independent and likely to occur via 

direct ER-Golgi membrane contacts (Funato and Riezman, 2001). In mammals a recent study 

describes the discovery of a protein, CERT, that binds to ceramides in the ER and allows their 

transport in a non-vesicular way to the Golgi apparatus (Hanada et al., 2003; Riezman and van 
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Meer, 2004). It will be of great interest to learn more about the regulation of each of these 

individual transport steps with respect to the diverse roles of sphingolipids and metabolites in 

different compartments of the cell (Hannun and Luberto, 2004).  

 

In the Golgi apparatus, ceramide gets further converted to inositol phosphorylceramide (IPC). IPC 

belongs to the class of the complex sphingolipids in yeast, each containing an inositol phosphate 

coupled to the C1 OH group of ceramide. This reaction is performed by the IPC synthase Aur1p, 

which is a membrane bound enzyme (Becker and Lester, 1980) and localizes to the Golgi apparatus 

with the active side in the lumen of the Golgi (Levine et al., 2000).  

Several proteins were shown to modify the two types of IPC into a diverse set of subtypes 

(Figure 1-3). Scs7p specifically hydroxylates VLCFA chains. SCS7 is not essential and contains an 

ER retrieval sequence (Dunn et al., 1998). Ccc2p, that is localized to the Golgi apparatus, was 

further shown to be responsible for hydroxylation of the fatty acid chain. This indicates that this 

hydroxylation event occurs most likely only on complex sphingolipids  (Beeler et al., 1997; Yuan 

et al., 1997; and Figure 1-3).     

The proteins encoded by the CSG1, CSH1 and CSG2 genes are then involved in the 

conversion of IPC by mannosylation to mannosyl inositol-P-ceramide (MIPC). Deletion of either 

of those genes does not prevent vegetative growth. A recent study  proposes two distinct IPC- 

mannosyltransferase complexes in yeast. Where Csg1p interacts with Csg2p to produce MIPC type 

A, B, C and B' , Csh1p interacts with Csg2p to mainly produce MIPC type C (Uemura et al., 2003). 

Based on sequence homology to other proteins Csg1p and Csh1p are likely to have catalytic 

function and mannosyltransferase activity was localized to the Golgi apparatus. The role of Csg2p 

is far less understood. Overexpressed Csg2p localizes to the ER (Beeler et al., 1994; Takita et al., 

1995). In addition, Csg2p contains a Ca2+ binding EF domain and deletion of CSG2 raised calcium 

sensitivity (Tanida et al., 1996). This supported the idea that calcium sensitivity raises when IPC 

type C is accumulated (Uemura et al., 2003). The cause for calcium sensitivity is not known but the 

csg2 mutant has been very successful for the discovery of many genes in the sphingolipid pathway. 

Yeast mutants that accumulated IPC and were sensitive to calcium could be screened for mutations 

that decreased accumulation of IPC and calcium sensitivity. Many of  these mutants were found to 

be in the sphingolipid biosynthetic pathway (Beeler et al., 1997; Zhao et al., 1994). Another gene 

that is required for mannosylation of IPC, although not taking place on the reaction itself, is VRG4. 

VRG4 encodes a GDP-mannose transporter that delivers GDP-mannose from the cytosol to the 

lumen of the Golgi (Dean et al., 1997).  

By transfer of another inositol phosphate group to MIPC, M(IP)2C is formed. This reaction 

is catalyzed by Ipt1p. The active site of Ipt1p is suspected to be on the luminal side of the Golgi. 

Deletion of IPT1 leads to a complete depletion of M(IP)2C and accumulation of MIPC, which has 
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no effect on vegetative growth (Dickson et al., 1997b). M(IP)2C is the most abundant sphingolipid 

in yeast cells. Since the total mass of sphingolipids, estimated to make 8% of total plasma 

membrane mass (Daum et al., 1998), does not change in ipt1∆ cells it appears that yeast cells are 

able to sense and adjust the relative levels of sphingolipids.  

The three types of complex sphingolipids, IPC, MIPC and M(IP)2C can also be degraded. 

The degradation of the complex sphingolipids into ceramide is catalyzed by Isc1p (Sawai et al., 

2000). Isc1p contains two putative transmembrane domains but its localization is yet unclear. 

Deletion of ISC1 reduced sphingolipase activity greatly, suggesting that Isc1p is the only 

sphingolipase in yeast.  

 

Under normal conditions, the complex sphingolipids travel to the plasma membrane and to the 

vacuole. This occurs via vesicular transport since all complex sphingolipids were found in 

secretory vesicles and in mutants affecting late secretory steps no inositol containing sphingolipids 

reached the plasma membrane (Hechtberger and Daum, 1995; Hechtberger et al., 1994). At the 

plasma membrane two other proteins important for the metabolism of sphingolipids were found, 

Rsb1p and Yor1p. Both were shown to pump sphingoid bases out of yeast cells and therefore to 

prevent their accumulation (Katzmann et al., 1999; Kihara and Igarashi, 2002). Overexpression of 

Rsb1p resulted in increased inward movement (also called flip) of glycerophospholipids and was 

therefore implicated in the establishment of plasma membrane asymmetry (Kihara and Igarashi, 

2004).  
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SPHINGOLIPID FUNCTION 
 

Many of the cellular responses during heat stress depend on the upregulation of sphingolipid 

synthesis (reviewed in Jenkins, 2003).  

 

The initial observation was made in mutants unable to produce sphingolipids. These mutant were 

shown to be hypersensitive to heat (Dickson et al., 1990; Patton et al., 1992; Zanolari et al., 2000; 

Chung et al., 2000) and supplementation of these mutants with exogenous sphingoid bases could 

restore the growth defect at high temperatures (Jenkins et al., 1997).  

One of these mutants was shown to carry a temperature sensitive mutation in the LCB1 

gene, called lcb1-100. This mutant was initially discovered in a screen for temperature sensitive 

yeast cells deficient for endocytosis (Munn and Riezman, 1994; and below). LCB1 encodes for the 

serine palmitoyltransferase (SPT), the first committed step of sphingolipid biosynthesis. lcb1-100 

cells have a reduced SPT activity. This gave evidence that de novo biosynthesis of sphingolipids 

was specifically needed to gain thermotolerance and to grow at 37°C (Chung et al., 2000; Zanolari 

et al., 2000).  

As the sphingolipid biosynthesis pathway counts many steps with different intermediates 

(Figure 1-2), the response to heat shock of different knock out strains was analyzed. Some of the 

viable deletions were sensitive to heat stress but several were resistant to severe heat shock. A 

strain deleted for both sphingoid base phosphate phosphatases LCB3 and YSR3, leading to an 

increase of phosphorylated sphingoid bases, was shown to have increased thermotolerance 

(Mandala et al., 1998; Mao et al., 1999). These results were in agreement with those obtained with 

a strain deleted in the sphingoid base phosphate lyase DPL1 (Skrzypek et al., 1999). On the other 

hand, a strain deleted for the dihydroceramidase YDC1 was shown to be hypersensitive to extreme 

heat stress at 50°C (Mao et al., 2000b). This lead to the hypothesis that sphingolipid metabolites 

could be mediators of thermotolerance. 

 Indeed, heat stress was shown to induce a transient increase of a vast majority of most of 

these metabolites. When grown at 24°C, yeast cells mainly contain sphingoid bases with 18 

carbons and a small amount of 16 carbons (Ferguson-Yankey et al., 2002). Heat stress leads to a 

small but reproducible increase in C18 and a huge increase in C20 sphingoid bases. The total 

amount of increase varies from 6 to a 100 fold within different reports, probably due to different 

methods used to analyze the sphingoid bases (Dickson et al., 1997a; Jenkins et al., 1997). The level 

of C16 DHS also increases during heat stress (unpublished observation from Dickson and Lester, 

2002). The increased levels of sphingoid bases upon heat stress were shown to peak after 10 to 15 

minutes and to decrease to near basal levels after one hour (Dickson et al., 1997a; Jenkins et al., 
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1997). However not only the sphingoid bases but also their phosphorylated counterparts were 

shown to increase about fivefold upon heat stress (Skrzypek et al., 1999). Ceramide levels in 

response to heat stress were also measured and shown to increase about five- to tenfold (Jenkins et 

al., 1997; Wells et al., 1998). The increased levels peaked after 1 hour and were maintained for 2 

hours after heat stress (Wells et al., 1998). Fumonisin B1, a specific but weak inhibitor of the 

ceramide synthase, inhibited the increase in ceramide levels during heat stress, but only partially. 

Autralifungin, a very potent inhibitor of the ceramide synthase almost totally blocked this increase, 

showing, that de novo synthesis is the source of the increase in ceramides during heat stress 

(Jenkins et al., 1997; Wells et al., 1998). The transient changes in these metabolites (DHS, PHS, 

ceramides) are consistent with the idea that one ore more of this compounds could act as signaling 

molecules.  

As mentioned above, DHS-1P and PHS-1P were implicated as mediators of heat stress 

based upon studies using strains deleted for DPL1, LCB3 and YSR3  (Lanterman and Saba, 1998; 

Mandala et al., 1998; Mao et al., 1999; Skrzypek et al., 1999). But not only the phosphorylated also 

the unphosphorylated forms of DHS and PHS increase during heat stress in this cells. This leads to  

the possibility that DHS and PHS alone or in combination with their phosphorylated forms are 

mediators of the heat stress resistance (Ferguson-Yankey et al., 2002).  

It remains to be determined how heat stress regulates the increase in sphingolipid 

production. Since the increase in sphingoid bases during heat stress occurs extremely fast it is most 

likely that the first committed step, the serine palmitoyltransferase, has to be tightly regulated 

(either directly or indirectly) upon heat stress. Most studies of the regulation of this enzyme carried 

out in mammalian cells indicate that it's activity is controlled by the availability of its substrates, 

serine and palmitoyl-CoA (Merrill et al., 1988; Messmer et al., 1989).  

 

Nevertheless, how these sphingolipid metabolites regulate the cellular responses to heat stress is 

still an open issue. An initial study showed that treatment of wild type cells with exogenous 

sphingoid bases lead to accumulation of trehalose. Addition of a solution of 50 µmolar DHS 

induced a TPS2-lacZ reporter construct even at low temperatures. The TPS2 gene contains STRE's 

in its promoter which led to the hypothesis that sphingoid bases activate transcription of STRE 

containing genes, thereby directing thermotolerance and stress resistance (Dickson et al., 1997a). 

Intriguingly, addition of the nonendogenous L-threo-dihydrosphingosine and C2-ceramide also 

activated the induction of those genes (Dickson et al., 1997a). To get further insight into this point, 

mutant lcb1-100 cells were used to display the specific transcriptional changes during heat stress. 

This study showed that HSE- and STRE- dependent transcription does not depend greatly on the 

production of sphingoid bases (Cowart et al., 2003). In this context it is important to note, that 

deletion of both LCB3 and DPL1 is lethal in many strain backgrounds. Lethality is thought to result 
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from a large accumulation of sphingoid base phosphates (Zanolari et al., 2000; Zhang et al., 2001). 

In addition, an unpublished observation (Jenkins, 2003) reported that treatment of cells with these 

amounts of sphingolipids can be lethal to yeast cells in liquid media. Most likely, addition of high 

amounts of sphingoid bases and analogs elicited a general stress response, leading to an activation 

of these genes.  

 

Also the transient arrest of the cell cycle at G0/G1 phase that occurs after heat shock was shown to 

be dependent upon the synthesis of sphingolipids. An lcb1-100 strain shows no transient arrest in 

cell cycle during heat stress and addition of exogenous sphingoid bases could induce such an arrest 

in the absence of heat stress in wild type cells. Strains deleted for the sphingoid base kinases LCB4 

and LCB5, the hydroxylase SUR2, the phosphatases LCB3 and YSR3, displayed this transient arrest, 

showing that de novo synthesis of sphingoid bases is required for this response. Interestingly, 

deletion of LCB4 and LCB5 rendered cells unable to recover from the heat stress induced cell cycle 

arrest (Jenkins and Hannun, 2001). This could indicate that accumulation of sphingoid bases acts as 

a signal for this transient cell cycle arrest and that phosphorylation of the sphingoid bases is 

required to downregulate this signal.  

 

The lcb1-100 allele was initially characterized in a screen for temperature sensitive mutants 

defective for endocytosis (Munn and Riezman, 1994). At restrictive temperature lcb1-100 cells 

were shown to be defective in the internalization step of the plasma membrane protein Ste2p and 

also in the vacuolar accumulation of the fluorescent dye Lucifer Yellow. Additionally, lcb1-100 

cells displayed defects in actin cytoskeleton organization. Subsequent studies showed that the lack 

of sphingoid base production at restrictive temperature was indeed responsible for these phenotypes 

(Zanolari et al., 2000). Overexpression of the yeast kinases YCK2 and PKC1 restored the defects 

observed in actin cytoskeleton and endocytosis in lcb1-100 cells. Loss of the protein phosphatases 

PPH21 and PPH22 or of their regulatory subunit CDC55 did also suppress the endocytic 

phenotype, proposing a complex signaling network downstream of sphingoid base involved in 

endocytosis (Friant et al., 2000). Interestingly, the plasma membrane uracil permease Fur4p could 

still be internalized in lcb1-100 cells at 37°C (Dupre and Haguenauer-Tsapis, 2003). The 

discrepancy between this two results could be due to different experimental setups. 

In addition, overexpression of one of the two kinases Pkh1p or Pkh2p, that are homologous 

to mammalian 3-phosphoinositide-dependent kinase-1 (PDK1), can suppress the sphingoid base 

synthesis requirement for endocytosis. Most importantly, this study showed that the Pkh1/2p 

kinases could be activated in vitro by nanomolar concentrations of sphingoid bases (Friant et al., 

2001). In mammals, PDK1 phosphorylates and activates the serum and glucocorticoid-dependent 

kinase SGK (Kobayashi and Cohen, 1999) and in yeast two kinases were found to resemble SGK 



 CHAPTER I 
 

Introduction   23 

and being phosphorylated by Pkh1/p, Ypk1 and Ypk2p. YPK1 and PKH1 overexpression were also 

found to suppress the growth defect mediated by myriocin, a specific inhibitor of the serine-

palmitoyltransferase. Treatment of cells with myriocin inhibited phosphorylation of Ypk1p and 

inversely, addition of PHS induced phosphorylation of Ypk1p (Sun et al., 2000). And the protein 

kinases Ypk1/2p were also found to be required for endocytosis (deHart et al., 2002). This led to 

the proposal of a conserved sphingoid base activated signaling cascade that is required for 

endocytosis, actin organization and cell growth in yeast.  

 

Moreover, sphingoid base synthesis was shown to be required for the degradation of proteins 

during heat stress. In contrast to the previously mentioned study by Dupré et al. (Dupre and 

Haguenauer-Tsapis, 2003), Chung et al. showed that in lcb1-100 cells, unable to produce PHS 

during heat stress, degradation of Fur4p was disabled and could be reverted by the addition of PHS. 

PHS, and none of a variety of similar lipids, induced the degradation of Fur4p, even in the absence 

of heat. Deletion of the NPI1 ubiquitin ligase and the DOA4 deubiquitinase abrogated PHS induced 

Fur4p endocytosis (Chung et al., 2000) as expected from previous studies (Galan and Haguenauer-

Tsapis, 1997). In the same study it was shown that PHS can stimulate the proteolysis of a Deg1-β-

galactosidase fusion protein which is a substrate for the proteasome. PHS stimulated degradation of 

proteins requiring multi-ubiquitin chain formation through the stress responsive lysine 63 residue 

of ubiquitin (Chung et al., 2000). It remains to be determined if addition of PHS stimulated the 

degradation specifically or just induced a stress response leading to degradation of those proteins.  

 

Sphingoid bases and ceramides have also been shown to play a role in secretion. Addition of PHS 

could restore protein secretion from the Golgi to the plasma membrane in Snc1/2p (v-SNARE) 

Sso1/2p (t-SNARE) mutants (Marash and Gerst, 2001). Overexpression of DPL1 was additionally 

found to suppress a Snc1-M42A mutant which is defective in recycling of compounds from the 

plasma membrane (Grote et al., 2000). How overexpression of DPL1 could restore recycling or 

PHS could restore secretion remains unclear. Moreover, ceramide synthesis was assigned to be 

required for transport of GPI-anchored proteins from the ER to the Golgi (Barz and Walter, 1999; 

Sutterlin et al., 1997) and for the stable attachment of GPI-anchored proteins to membranes 

(Watanabe et al., 2002). 

 

Sphingolipids and cholesterol have the tendency to associate in membranes to form domains that 

are called rafts, detergent insoluble glycolipid-enriched complexes (DIG's) or detergent resistant 

membranes (DRM's) (Harder et al., 1998; London and Brown, 2000; Simons and Ikonen, 1997). 

Association of proteins with detergent resistant membranes was found in yeast (Bagnat et al., 2000; 

Dupre and Haguenauer-Tsapis, 2003) and mammalian cells and was attributed to play key roles in 
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signal transduction, membrane trafficking, cytoskeletal organization and pathogen entry (Munro, 

2003). However, recent data indicate that Triton-X 100 itself induces the formation of ordered 

domains in vitro (Heerklotz, 2002). Therefore DRM's do not obligatory resemble functional, 

biological rafts. It can not be excluded that proteins, associated with DRM's in vitro, are associated 

with lipid rafts in vivo before the addition of the detergent. In addition, yeast proteins that were 

found together in biochemically purified DRM's could not be colocalized in living cells (Malinska 

et al., 2003). 

 

Similarly, in mammalian cells, sphingolipid synthesis and the metabolites were shown to play 

crucial roles (reviewed in Hannun and Luberto, 2000; Jenkins, 2003; Spiegel and Milstien, 2003).  

Heat shock caused a twofold increase of ceramide in NIH 3T3 and in HL-60 cells (Chang 

et al., 1995; Kondo et al., 2000a; Kondo et al., 2000b). In contrast to yeast cells, increase in  

ceramide levels did not result from an increase in sphingolipid synthesis but rather from an increase 

in hydrolysis of sphingomyelins (Kondo et al., 2000a). In contrast to the above mentioned cell 

types, de novo sphingolipid synthesis was upregulated during heat stress in Molt-4 cells. Detailed 

studies of this increase showed that ceramides, mostly of the C:16 type, were induced twofold 

(Jenkins et al., 2002). In mammalian cells, the increase in ceramide levels was shown to have 

several functions. In HL-60 cells, ceramide activates caspase-3 which causes an increase in c-jun 

mRNA, ultimately resulting in apoptosis (Kondo et al., 2000a). In Molt-4 cells, production of 

ceramide induced dephosphorylation of SR proteins which are implicated in mRNA splicing 

(Jenkins et al., 2002). A very recent study showed that SR proteins also play a crucial role in 

splicing events during heat stress (Shin et al., 2004). 

In contrast to ceramide, Sphingosine-1-phosphate (S1P) has mainly anti-apoptotic effects. 

S1P is a ligand for a family of five G-protein coupled receptors, the Edg receptors (Hla et al., 

2001). Binding of S1P to these receptors leads to activation of a variety of downstream signaling 

targets like PLC, PI3K, Rac, JNK and ERK. By this way, S1P can control diverse responses such 

as angiogenesis, vascular maturation, heart development and immunity (reviewed in Spiegel and 

Milstien, 2003). 
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Figure 1-1. Simplified and schematic overview of the cellular events occurring throughout heat shock in S. 

cerevisiae cells. Heat stress activates several downstream targets, leading to transcriptional changes. Besides 

transcription, translation, sphingolipid synthesis and the cell cycle are affected. MAPK, mitogen activated 

protein kinase. HSPs, heat shock proteins. PM, plasma membrane.  
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Figure 1-2. Schematic overview of the sphingolipid biosynthetic and degradation pathways. From the level 

of ceramides different isoforms can exist, which is simplified here and illustrated in greater detail in Figure 1-

3. IPC inositol phosphorylceramide, MIPC mannose inositol phosphorylceramide, M(IP)2C mannose di-

inositol phosphorylceramide. 
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Figure 1-3. Illustration of the synthesis of the five different ceramide species. The long chain base moiety of 

ceramides A and B' is DHS, those of ceramides B, C, and D is PHS. The C-2 of ceramides B', C, and D is 

hydroxylated by Scs7p. Ceramide D contains another hydroxyl group on the very long chain fatty acid, 

although its precise position has not been determined. Because of the different hydroxylation states of 

ceramide (ceramides A, B', B, C, and D) five species of each IPC, MIPC, and M(IP)2C can be made. 
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AIM OF THIS THESIS 
 

Sphingolipid biosynthesis in animal cells and in the yeast S. cerevisiae is similar during the first 

steps and ongoing sphingolipid synthesis is required for a variety of cellular functions including 

response to heat stress.  

During heat stress, de novo sphingolipid synthesis is upregulated and mutant cells that 

accumulate sphingoid bases show an increase in thermotolerance. Conversely, mutants defective in 

the biosynthesis of sphingolipids show a decrease in survival during and after heat stress. Roles for 

sphingolipid synthesis in heat stress were also found in the regulation of the transient cell cycle 

arrest, control of putative signaling pathways that govern cell integrity and the actin cytoskeleton, 

vesicle trafficking and protein breakdown in the plasma membrane. Biosynthesis of sphingolipids 

was therefore thought to be important for governing the specific responses to heat shock.  

 

In this study we want to find and describe additional mechanisms of the function of sphingolipid 

synthesis during heat stress. To determine the role of sphingolipid synthesis in heat stress we make 

use of the yeast lcb1-100 mutant which is impaired in serine palmitoyltransferase, the first enzyme 

in sphingolipid biosynthesis. In addition, this mutant shows a rapid and strong decrease in cell 

viability upon heat when compared to wild type cells, further indicating the requirement for 

sphingolipid synthesis during the response to heat stress.  

We would also like to understand which sphingolipid metabolite is responsible for the 

response to heat shock. Looking at various mutants in the sphingolipid pathway is the primary 

choice to differentiate between the need of sphingoid bases, ceramides or complex sphingolipids 

for this response.  

We also want to elucidate which signaling pathways mediate the sphingolipid synthesis 

dependent response to heat.  It was previously shown that sphingoid bases can activate the yeast 

homologues of the 3-phosphoinositide-dependent protein kinase PDK1, PKH1 and PKH2. The 

PKH kinases act upstream of YPK1 and YPK2, the yeast homologues of the serum and 

glucocorticoid induced kinase SGK, which were also shown to affect cell viability.   

 

In this study we want to achieve a more detailed view of the role of sphingolipid biosynthesis 

during rapid increases in temperature. This will help to understand the fundamental cellular 

processes that allow a cell to cope with heat stress.  
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ABSTRACT 
 

Serine palmitoyltransferase, the first enzyme in ceramide biosynthesis, is required for resistance to 

heat shock. We show that increased heat shock sensitivity in the absence of serine 

palmitoyltransferase activity correlates with a lack of induction of the major heat shock proteins at 

high temperature. Normal heat shock resistance can be restored, without restoration of ceramide 

synthesis or induction of heat shock proteins, by overexpression of ubiquitin. This function of 

ubiquitin requires the proteasome. These data imply that the essential function of heat shock 

protein induction is the removal of misfolded or aggregated proteins, not their refolding. This 

suggests that cells stressed by heat shock do not die because of the loss of protein activity due to 

their denaturation, but because of the inherent toxicity of the denatured and/or aggregated proteins.    
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INTRODUCTION 

 

All organisms respond to temperature increases by induction of a conserved set of proteins, the heat 

shock proteins (Hsps), which protect them from damage and facilitate recovery from such heat 

stresses. Most of these Hsps function as molecular chaperones that prevent the accumulation of 

aggregated proteins or promote refolding of misfolded proteins (Glover and Lindquist, 1998; 

Hendrick and Hartl, 1993; Parsell and Lindquist, 1993). In eukaryotic cells, ubiquitin and certain 

ubiquitin-conjugating enzymes are Hsps that function in the rapid turnover of denatured proteins. 

The major pathway for the selective degradation of abnormal proteins in the cytosol and nucleus is 

the ubiquitin-proteasome pathway (Ciechanover, 1994). In the budding yeast Saccharomyces 

cerevisiae, Hsp induction is caused by increased transcription of the corresponding genes 

(Lindquist, 1981). Two transcriptional control systems appear to be responsible for the gene 

expression changes upon heat stress, one involving the heat shock factor (Hsf1p) and the other one 

depending on Msn2p and Msn4p transcription factors. Hsf1p binds to the heat shock promoter 

element (HSE) found in the promoter region of many heat shock protein genes. In yeast, several 

genes have been identified that do not contain HSEs, but whose transcription is induced by heat 

and other stress signals, including osmotic shock, DNA damage and oxidative stress. Msn2/4p 

activates these genes through the stress response element (STRE), a cis regulatory sequence (Ruis 

and Schuller, 1995). 

In addition to the induction of Hsps, heat shocked yeast cells display a number of 

characteristic phenotypes. Cells accumulate trehalose (a thermoprotectant), acquire 

thermotolerance, become transiently arrested in the G1 phase of the cell cycle and exhibit an 

increase in cellular levels of sphingoid bases and ceramides. Furthermore, de novo synthesis of 

sphingoid bases (phytosphingosine (PHS) and dihydrosphingosine (DHS)) is required for  

the yeast heat stress response (Jenkins et al., 1997; Patton et al., 1992; Ruis and Schuller, 1995). 

Sphingoid bases are potential mediators of the heat stress response, because treatment of cells with 

DHS activates transcription of the TPS2 gene encoding a subunit of trehalose synthase and causes 

trehalose to accumulate. DHS also induces expression of a STRE-LacZ reporter gene, showing that 

the global stress response pathway can be activated by sphingoid base signals (Dickson et al., 

1997). 

To understand the role of sphingoid bases in yeast heat stress response, we used the mutant 

strain lcb1-100, which has a thermosensitive defect in de novo sphingolipid synthesis and fails to 

grow at 37°C (Zanolari et al., 2000). The LCB1 gene encodes a subunit of the serine 

palmitoyltransferase, an essential enzyme that catalyzes the first step in sphingoid base synthesis 

(Buede et al., 1991). Upon heat shock, lcb1-100 mutant cells show no increase in sphingoid base 
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(PHS and DHS) synthesis, no transient cell cycle arrest and no resistance to heat stress, indicating a 

requirement for de novo synthesis of sphingoid bases for the heat shock response (Chung et al., 

2000; Jenkins and Hannun, 2001). Here, we show that overexpression of the polyubiquitin gene 

UBI4 can abrogate the sphingoid base synthesis requirement for heat shock resistance and restore 

survival upon heat stress of the lcb1-100 mutant strain without induction of Hsps or ceramide 

synthesis. This suppressor effect of UBI4 is mediated via the ubiquitin-proteasome degradation 

pathway. These results suggest that the essential requirement for heat shock survival is the removal 

of misfolded or aggregated proteins, not their refolding and that cells stressed by heat shock do not 

die because of the loss of protein activity due to their denaturation, but because of the inherent 

toxicity of misfolded and/or aggregated proteins.    
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RESULTS AND DISCUSSION 
 

Overexpression of ubiquitin restores heat-stress resistance to the lcb1-100 mutant 

 

In this study we used a suppressor approach to identify proteins that are downstream effectors in 

the sphingoid base signaling pathway required for the heat shock response. The rationale of this 

study was based on the idea that overexpression of such proteins from a high copy number plasmid 

would result in an increased resistance of the lcb1-100 mutant to elevated temperature. The poly-

ubiquitin gene UBI4 was isolated as a suppressor of the lcb1-100 mutation (Fig. 2-1 A), suggesting 

that ubiquitin overexpression can restore the heat stress defect due to the lack of sphingoid base 

synthesis. This effect was specific for the heat survival defect associated with the lcb1-100 

mutation, because UBI4 overexpression did not suppress the endocytic defect of lcb1-100 mutant 

cells (data not shown) (Zanolari et al., 2000). 

Survival at an elevated temperature was also examined. Log-phase cells of wild-type, lcb1-

100, and lcb1-100 mutant strains overexpressing the UBI4 gene, were heat shocked at 44°C and the 

percentage of cells able to form colonies was determined as a function of time (Fig. 2-1 B). The 

lcb1-100 mutant cells showed a clear defect in survival at high temperature when compared to 

wild-type cells. In contrast, lcb1-100 cells with UBI4 plasmid were 6 to 10-fold more resistant at 

44°C than the parental lcb1-100 strain (Fig. 2-1 B). Consistent with this result, we found that 

increased expression of a single ubiquitin gene driven from the CUP1 promoter was also able to 

suppress the lcb1-100 mutation (data not shown). Thus, the suppression of the lcb1-100 heat shock 

defect results from increased ubiquitin expression. 

The heat shock transcription factor Hsf1p and the stress-responsive transcription factors 

Msn2/4p are required for Hsp induction. To determine whether UBI4 overexpression could also 

suppress the temperature-sensitive growth defect displayed by the msn2 msn4, hsf1-∆CTD, msn2 

msn4 hsf1-∆CTD, tetO-HSF1 and msn2 msn4 tetO-HSF1 mutant strains, these strains were 

transformed by the YEplac181-UBI4 plasmid bearing UBI4 and tested for growth at 37°C. None of 

these strains were suppressed by UBI4 overexpression, showing that this effect was specific for the 

temperature sensitive defect associated with the lcb1-100 mutation. 

The heat shock response pathway activates several genes that are under the control of the 

HSE and/or the STRE regulons. The UBI4, HSP12, HSP26 and HSP104 genes contain both stress 

inducible regulons (Amoros and Estruch, 2001; Boy-Marcotte et al., 1999; Simon et al., 1999). 

Other genes contain only the STRE regulon, including genes for trehalose biosynthetic enzymes 

TPS1 and TPS2. Most of the classical heat shock protein genes are heat-inducible only via Hsf1p, 

including the Hsp70s encoded by the SSA1-4 genes. To determine if overexpression of other heat 
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inducible genes could also suppress the lcb1-100 temperature sensitive defect, the lcb1-100 strain 

was transformed with high copy number plasmids bearing HSC82, TPS1, TPS2, TPS3, TSL1, SSA2 

or SSA4 genes (Fig. 2-1 A and data not shown for TPS1, TSL1 and SSA4 overexpression) and with 

a centromeric plasmid bearing the SSA1 or HPS104 gene under the control of the inducible GAL1 

promoter (Fig. 2-1 A). The transformants were tested for survival at 37°C. None of the genes tested 

was able to suppress the lcb1-100 temperature sensitive growth defect, even the HSP104 gene, 

which like the UBI4 gene contains both the HSE and STRE regulons in its promoter region. This 

result shows that in contrast to ubiquitin, overexpression of different chaperones or subunits of the 

trehalose synthase are not sufficient to restore survival upon heat stress in the lcb1-100 strain. The 

UBI4 gene is stress inducible and important for the survival under diverse stresses (Finley et al., 

1987; Fraser et al., 1991; Jungmann et al., 1993). This probably reflects the need for adequate 

ubiquitin levels to enable the ubiquitination system to control the turnover of damaged proteins. 

The protein kinase C-mitogen-activated protein (Pkc1-MAP) kinase pathway is inducible 

by elevated temperature and this activation is required for acquired thermotolerance. Indeed, 

activation of the MAP kinase branch of the pathway is sufficient to confer acquired 

thermotolerance (Kamada et al., 1995). It is therefore possible that activation of the PKC1-MAP 

kinase pathway by overexpressing effectors of this pathway, could rescue the heat survival of the 

lcb1-100 mutant cells. This MAP kinase-signaling pathway is composed of four downstream 

effectors, Bck1p, Mkk1p/Mkk2p and Mpk1p (Irie et al., 1993; Lee et al., 1993; Lee and Levin, 

1992), which are homologs of the MAP kinase cascade effectors in mammalian cells. The lcb1-100 

mutant was transformed with high copy number plasmids bearing PKC1, BCK1, MKK1 or MPK1 

genes and survival at 37°C was tested. We also overproduced Pkc1p activity by transformation 

with a low copy number plasmid bearing a dominant, activated allele of PKC1 (PKC1-R398P) 

(Nonaka et al., 1995). None of these kinases was able to suppress the heat sensitivity associated 

with the lcb1-100 mutation (Fig. 2-1 A, panel lcb1+PKC1 and data not shown) despite the fact that 

Pkc1p overexpression can suppress the endocytic defect of lcb1-100 cells (Friant et al., 2000). In 

yeast, the Pkh1/2p kinases that phosphorylate and activate Pkc1p, are stimulated by sphingoid base. 

This sphingoid base-mediated signaling pathway is required for endocytosis (Friant et al., 2001). 

These results suggest that the lack of sphingoid base synthesis observed in the lcb1-100 strain upon 

heat-shock, may result in a decrease of Pkh1/2p and Pkc1p kinase activity. Therefore, we tested 

whether PKH1 or PKH2 overexpression could suppress the temperature-sensitive phenotype 

displayed by the lcb1-100 mutant. Neither of the two kinases tested was able to restore growth of 

lcb1-100 at 37°C, even though they are also able to suppress the endocytic defect of this strain 

(Friant et al., 2001). Taken together, these results indicate that the suppressor effect of UBI4 is 

specific and is not mediated via the Pkc1p-MAP kinase pathway. These results suggest that 
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elevated levels of ubiquitin expression can bypass the need for de novo sphingoid base synthesis 

for survival upon heat stress. 

 

 

Sphingolipid synthesis is defective in the lcb1-100 cells overexpressing UBI4 

 

The suppressor effect of the UBI4 gene could be due to restoration of normal sphingoid base 

synthesis in the lcb1-100 mutant strain. To investigate this possibility, sphingolipid synthesis was 

measured in cells overexpressing UBI4. Wild-type and lcb1-100 cells were grown at 24°C and 

metabolically labeled with [3H]myoinositol at 24°C or upon heat shock at 37°C. Lipids were 

extracted, treated with mild base to identify sphingolipids which are base-resistant, separated by 

thin layer chromatography (TLC) and visualized using a phosphorimager (Fig. 2-2). At 24°C, both 

wild-type and mutant cells overexpressing UBI4 or not, synthesize sphingolipids 

(inositolphosphoceramide (IPC), mannosylated inositolphosphoceramide (MIPC) and 

mannosylated di-inositolphosphoceramide (M(IP)2C)), although the lcb1-100 strains showed less 

sphingolipid synthesis than the wild-type cells. After mild heat-shock (37°C), wild-type cells 

showed normal synthesis of sphingolipids. In contrast, the lcb1-100 mutant cells showed a 

reduction in sphingolipid synthesis. The reduction was the same in lcb1-100 mutant cells 

overexpressing UBI4 (Fig. 2-2). This result shows that overexpression of UBI4 does not restore 

synthesis of sphingolipids in lcb1-100 mutant cells and suggests that the requirement for heat 

induced increase in sphingolipid synthesis can be overcome by UBI4 overexpression. 

Accumulation of a novel intermediate in the sphingolipid synthesis pathway upon UBI4 

overexpression could explain the restoration of the viability of the lcb1-100 cells upon heat stress. 

To test this hypothesis, wild-type and lcb1-100 mutant cells were labeled with [3H]DHS. Addition 

of DHS to the lcb1-100 mutant restores synthesis of sphingolipids at 37°C (Zanolari et al., 2000). 

Exogenously added DHS can be incorporated into phosphorylated DHS, ceramides and 

sphingolipids, allowing an analysis of the sphingolipid biosynthetic pathway in the lcb1-100 strain. 

Wild-type and lcb1-100 strains overexpressing UBI4 or not, were grown at 24°C, preincubated for 

15 min at 37°C to induce the heat shock response, then [3H]DHS was added and incubation was 

continued for 15 min. Lipids were extracted, separated by TLC and visualized using a 

Phosphorimager (data not shown). There was no difference in the lipid pattern between the strains 

bearing no plasmid and the ones overexpressing UBI4, showing that the suppressor effect is not due 

to a difference in sphingolipid synthesis. 
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The lcb1-100 mutant shows a defect in heat induction of Hsps 

 

Sphingoid bases are potential mediators of the heat stress response, because treatment of cells with 

DHS mimics heat induced activation of several reporter genes (Dickson et al., 1997). The lcb1-100 

mutant cells show very low synthesis of sphingoid bases (DHS or PHS) upon heat treatment. To 

determine whether the lack of sphingoid base synthesis results in loss of induction of heat shock 

activated genes, we tested heat induction of a reporter gene having the HSP26 or SSA1 gene fused 

in frame to the Escherichia coli lacZ gene in wild-type and lcb1-100 mutant strains with or without 

a UBI4 plasmid (Fig. 2-3 A). The wild-type cells (WT) showed an induction of β-galactosidase 

activity upon heat treatment, whereas this induction was defective in the lcb1-100 mutant cells 

(lcb1) and in the lcb1-100 cells overexpressing UBI4 (lcb1+UBI4) for both reporter genes (Fig. 2-3 

A). The HSP26 gene promoter region contains both regulons controlling stress response whereas 

the SSA1 gene is heat-inducible only via Hsf1p. This result shows that activation of two different 

reporter genes that are under the control of the STRE and/or the HSE regulons is defective in the 

absence of sphingolipid synthesis and this activation is not restored upon UBI4 overexpression. 

The UBI4 gene promoter region also contains both regulons controlling stress induction, 

HSE and STRE that contribute independently to heat shock regulation of the UBI4 gene (Simon et 

al., 1999). Overexpression of the UBI4 gene restored viability of the lcb1-100 mutant strain upon 

heat stress. To determine whether the UBI4 gene was heat inducible in the lcb1-100 mutant, we 

tested heat induction of a reporter gene having the UBI4 gene fused in frame to the E. coli lacZ 

gene in wild-type and lcb1-100 mutant strains (Fig. 2-3 B). Both wild-type (WT) and lcb1-100 

mutant cells (lcb1) showed an induction in β-galactosidase activity upon heat treatment. This result 

shows that the UBI4 gene is heat inducible in lcb1-100 mutant cells, in contrast to HSP26 or SSA1 

genes. Therefore, heat shock activation of UBI4 expression is preserved in the absence of sphingoid 

base synthesis suggesting a difference in the mechanism of activation from the one used to induce 

HSP26 or SSA1. UBI4 oxerexpression could therefore restore normal heat shock resistance to the 

lcb1-100 strain, because this heat shock protein is still heat inducible in the absence of sphingoid 

base synthesis in contrast to the other Hsps. In several genes with an essential role in stress 

protection, such as HSP26, HSP104 or UBI4, Hsf1p and Msn2/4p act redundantly, assuring the 

expression of these genes even when one of the regulatory pathways is inactive (Amoros and 

Estruch, 2001). Consistent with our results, the expression of UBI4 was not completely abolished 

in cells deficient for both stress pathways, suggesting the involvement of additional transcription 

factor(s) (Simon et al., 1999). Activation of this additional transcription factor(s) upon heat shock 

could be independent of sphingoid base synthesis, explaining the normal heat induction of UBI4 in 

the lcb1-100 mutant cells.  
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The lcb1-100 mutant is defective in Hsp synthesis and sustained trehalose accumulation upon 

heat shock 

 

Activation of the heat-shock response in yeast results in increased synthesis of heat shock proteins 

of 100, 90 and 70 kDa, as monitored by pulse-labeling and one-dimensional SDS-PAGE (Miller et 

al., 1979). To determine whether the lcb1-100 mutant cells exhibit a defect in heat shock protein 

synthesis upon heat stress, the general heat shock response was analyzed in the lcb1-100 mutant 

cells with our without the UBI4 plasmid and compared to wild-type cells. Heat shock protein 

synthesis was induced by a temperature shift from 24°C to 44°C. The proteins were labeled with a 

mix of [35S]-methionine and [35S]-cysteine 15 min after the temperature shift, because the induction 

of heat shock proteins is transient, with a maximum expression at 15-20 min (Martinez-Pastor et 

al., 1996; Smith and Yaffe, 1991). Proteins were separated by SDS-PAGE and visualized using a 

phosphorimager in wild-type, lcb1-100, and lcb1-100 overexpressing UBI4 strains (Fig. 2-4 A). 

This analysis allows the detection of heat shock proteins Hsp104, Hsp90, Hsp82 and Hsp70s (Ssa1-

4), identified according to their molecular weight. Following heat-shock, the wild-type strain (WT) 

showed the expected production of heat shock proteins, whereas the lcb1-100 strain overexpressing 

UBI4 or not, showed a strong reduction in all heat shock protein synthesis (Fig. 2-4 A). Hsp104p 

and Hsp82p were barely detected in the lcb1 mutant strain overexpressing UBI4 or not, whereas 

these two proteins were expressed in the wild-type cells. Hsp90p and Hsp70p proteins synthesis 

was greatly reduced in the lcb1 mutant strain when compared to wild-type cells. Mutant lcb1+UBI4 

cells, which retain viability under these conditions similarly to wild type cells (Fig. 2-1 B), were 

also defective in heat shock protein expression showing that the reason for the reduced labeling 

was not a reduction in cell viability. 

Heat shock causes the accumulation of another thermoprotectant in yeast, the nonreducing 

disaccharide trehalose (Attfield, 1987). Heat stress survival of the lcb1-100 mutant by UBI4 

overexpression could be due to increased trehalose synthesis. Trehalose accumulation upon heat 

shock was determined in wild-type cells and in lcb1-100 mutant with or without a UBI4 plasmid 

(Fig. 2-4 B). Upon incubation for 16 min at 37°C, the level of trehalose increased markedly and to 

a similar extent in all cells, whereas after this, only wild type cells continued to accumulate 

trehalose significantly. The initial induction of trehalose upon temperature shift has been shown to 

be independent of new protein synthesis (Neves and Francois, 1992). This could explain why we 

find a similar induction of trehalose after a short incubation at 37°C. Upon longer incubations, the 

continued increase in trehalose would require induction of enzymes involved in trehalose 

production.  Our results show that the lcb1-100 cells are defective for sustained trehalose 

accumulation and for induction of heat shock proteins and that these defects are not restored upon 

UBI4 overexpression, even though these cells are resistant to heat stress. Therefore, the ability to 
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synthesize trehalose or heat shock proteins does not correlate with the ability of UBI4 to suppress 

the lcb1-100 mutation. Therefore, we predicted that the capacity of a cell to degrade misfolded 

and/or aggegated proteins using the proteasome-ubiquitin pathway must be the most important 

factor allowing resistance to heat stress in the absence of Hsps and sustained trehalose 

accumulation. 

 

 
Heat shock induced protein degradation and ubiquitination is restored in lcb1-100 mutant 

overexpressing UBI4  

 

To test whether UBI4 overexpression affects the rate of protein turnover in the lcb1-100 mutant 

cells, protein degradation after heat shock at 37°C was determined in these cells and compared to 

wild-type cells. Cells grown at 24°C were shifted to 37°C, pulse-labeled with a mix of [35S]-

methionine and [35S]-cysteine, then chased in presence of cycloheximide to prevent reincorporation 

of radioactive amino acids released from proteins. At the indicated time, aliquots of cells were 

taken and protein degradation was determined as the percentage of incorporated radioactivity 

converted into TCA-soluble fragments (Fig. 2-5 A). At 37°C, protein degradation in wild-type cells 

exceeded that in the lcb1-100 mutant by about two to three fold. Overexpression of UBI4 in the 

lcb1-100 cells restored protein degradation upon heat treatment to the wild type level. These results 

suggest that UBI4 overexpression may allow the lcb1-100 mutant cells to survive a heat stress by 

increasing the degradation of misfolded proteins via the ubiquitin-proteasome pathway. 

The conjugation of polyubiquitin chains to short-lived or damaged proteins marks them for 

subsequent degradation by the proteasome. To test if this response is defective in the lcb1-100 

mutant, we compared the changes in the levels of ubiquitinated proteins after a shift to 37°C in 

wild-type and lcb1-100 cells bearing a UBI4 plasmid or not. Cells grown at 24°C were shifted for 1 

h at 37°C to induce heat stress or kept at 24°C and the total level of ubiquitinated proteins was 

determined by Western blotting with anti-ubiquitin antibody (Fig. 2-5 B). The lcb1-100 mutant 

displayed an increase in protein ubiquitination at 24°C compared to wild-type cells, showing that 

these mutant cells already accumulate ubiquitin conjugates at 24°C without heat-stress, which is 

consistent with our results showing greater expression of the UBI4-lacZ construct in lcb1-100 cells 

than in wild type cells at 24°C (Fig. 2-3 B). This result suggests that even without heat shock, the 

lcb1-100 mutant cells may accumulate more misfolded and/or aggregated proteins that would need 

to be degraded via the ubquitin-proteasome pathway. After heat shock at 37°C, wild-type cells and 

the lcb1-100 mutant overexpressing UBI4 displayed an increase in ubiquitinated proteins, but in the 

lcb1-100 mutant cells where protein degradation was low (Fig. 2-5 A), the content of ubiquitinated 

proteins decreased (Fig. 2-5 B). Free ubiquitin was difficult to detect under conditions where UBI4 
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was not overexpressed. Therefore, we cannot rule out that a lack of free ubiquitin is a possible 

cause of cell death in the lcb1-100 mutant cells at 37°C. However, our results show that lcb1-100 

cells are able to induce the UBI4 gene at 37°C (Fig. 2-3 B) and that protein ubiquitination is not 

defective in these mutants cells. These results suggest that there probably is some free ubiquitin in 

the lcb1-100 mutant cells at 37°C but that the ubiquitin level is not sufficient to respond to the 

quantity of accumulated, misfolded and/or aggregated proteins that need to be degraded via the 

ubiquitin-proteasome pathway. It was previously shown that the essential function of UBI4 is to 

provide ubiquitin under conditions of stress (Finley et al., 1987). Therefore, overexpression of 

UBI4 in the lcb1-100 mutant cells allows a higher synthesis of free ubiquitin upon heat stress and 

permits the cells to survive at 37°C via degradation of abnormal proteins presumably by the 

ubiquitin-proteasome pathway. 

 

 
Accumulation of protein aggregates in the lcb1-100 mutant is reduced by UBI4 

overexpression 

 

To determine whether the lcb1-100 mutant cells accumulate protein aggregates due to the lack of 

induction of Hsps, the percentage of aggregated proteins upon heat shock was analyzed in the lcb1-

100 mutant and compared to wild-type cells. Cells were pulse-labeled with a mix of [35S]-

methionine and [35S]-cysteine at 24°C and then heat shocked at 37°C for the indicated time. Whole-

cell extracts, containing glycerol and nonionic detergent, of wild-type and lcb1-100 cells were 

subjected to centrifugation to separate protein aggregates, which sedimented at 15,000 g and the 

percentage of aggregated proteins was determined (Fig. 2-5 C). The amount of aggregated proteins 

increased in wild type cells following heat stress and then remained stable at 7%, whereas in the 

lcb1-100 strain the rate of protein aggregates constantly increased after the shift to 37°C and 

reached 16% after 40 min incubation at 37°C. This result indicates that the lcb1-100 mutant cells 

accumulate aggregated proteins upon heat shock and these aggregated proteins could be 

responsible for the heat sensitivity displayed by the lcb1-100 cells. To test if UBI4 overexpression, 

which restores heat shock resistance of the lcb1-100 mutant, abrogated the accumulation of protein 

aggregates upon heat shock, the same experiment was done in the lcb1-100 cells transformed by 

the UBI4 plasmid (Fig. 2-5 C). The lcb1-100 cells overexpressing UBI4 showed only a small 

accumulation of aggregated proteins similar to wild-type cells upon heat shock. This result shows 

that UBI4 overexpression could function through the removal of denatured proteins before or after 

they have aggregated. If this is true, then degradation of the denatured/aggregated proteins should 

be required for the suppression. 
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The proteasome is required for UBI4 dependent suppression of lcb1-100 

 

The proteasome is an important cellular protein degradation system that recognizes ubiquitinated 

proteins and functions in cellular quality control by degrading misfolded, unassembled or damaged 

proteins that could otherwise form potentially toxic aggregates (Ciechanover et al., 2000). The 

proteasome is a multi-enzyme complex consisting of a number of different protease subunits. In 

yeast cells, PRE1 and PRE2 genes encode two well-characterized subunits of the proteasome. The 

pre1-1 mutant strain is severely deficient in cytoplasmic proteolysis, accumulates ubiquitinated 

proteins and shows reduced growth at 37°C (Fig. 2-6 A) (Heinemeyer et al., 1991). To determine if 

the proteasome is required for UBI4 suppression of lcb1-100, we constructed a double mutant 

strain lcb1-100 pre1-1; this strain is viable at 24°C, but does not grow at 37°C. We then analyzed 

survival at 37°C of the lcb1-100 pre1-1 strain with or without UBI4 overexpression. UBI4 

overexpression was not able to suppress the temperature-sensitive growth defect of the lcb1-100 

pre1-1 double mutant strain in contrast to the single lcb1-100 mutant cells (Fig. 2-6 A). This result 

suggests that the heat-shock resistance and survival of the lcb1-100 cells due to UBI4 

overexpression depends on the correct function of the cytoplasmic proteasome. 

The recent identification of selective proteasome inhibitors like the peptide aldehyde 

MG132 allowed us to further analyze the role of the ubiquitin-proteasome pathway in the UBI4 

suppression of the lcb1-100 heat stress defect. MG132 cannot enter wild-type yeast cells, so it is 

essential to use yeast strains with increased membrane permeability such as the erg6 (ise1) mutant 

(Emter et al., 2002). In this mutant, MG132 blocks the rapid breakdown of proteins by the 

ubiquitin-proteasome pathway (Lee and Goldberg, 1998). Heat stress survival of the erg6 and lcb1-

100 erg6 mutant strains transformed or not by the UBI4 plasmid were analyzed by plating the 

different strains at 37°C on plates containing 50 µM of MG132. The erg6 mutant strain like wild-

type strains was able to grow at both 24 and 37°C. The double mutant strain lcb1-100 erg6 showed 

a clear defect in survival at 37°C, but was resistant to this temperature when overexpressing UBI4, 

meaning that it has the same phenotype as the lcb1-100 mutant strain and could be used to test the 

effect of the MG132 inhibitor (Fig. 2-6 B). The erg6 mutant strain grew at 37°C in presence of 50 

µM MG132, whereas the double mutant strain lcb1-100 erg6 was defective for growth even with 

UBI4 overexpression (Fig. 2-6 C). This result confirms that the UBI4 suppression of the lcb1-100 

heat stress defect requires the ubiquitin-proteasome degradation pathway. 

 

In summary, we show that Hsp induction upon heat shock is defective in cells lacking serine 

palmitoyl transferase activity. Both the Hsf1p- and Msn2/4p-dependent stress pathways are 

dependent upon serine palmitoyl transferase activity. However, the expression of UBI4 is not 

completely abolished in cells deficient for these two stress pathways (Simon et al., 1999) or in 
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lcb1-100 mutant cells. These results suggest that UBI4 expression is controlled by additional 

factor(s) whose activation could be independent of sphingoid base synthesis. 

We have shown that the lack of Hsp induction, which presumably is the cause of a 

hypersensitivity to heat shock, can be overcome by  increased expression of ubiquitin. The function 

of ubiquitin in this process requires the proteasome, because proteasome mutants and inhibitors 

abrogate the ability of ubiquitin to restore heat shock resistance. This suggests that the major 

essential function of Hsp induction at high temperature is to help refold denatured and/or 

aggregated proteins. Removal of these misfolded or aggregated proteins by ubiquitin-dependent 

proteasomal degradation is also sufficient to render cells resistant to heat shock. This shows that it 

is the removal of the aberrant proteins and not their refolding that is essential to recover from heat 

shock. This is consistent with the recent finding that aggregates formed from two non-disease-

related proteins are substantially cytotoxic (Bucciantini et al., 2002). Our results also show that 

yeast cells can survive with substantially reduced levels of sphingolipid biosynthesis provided that 

they overexpress ubiquitin. This suggests that one of the major essential functions of the ceramide 

synthesis pathway is to control the expression of proteins involved in removal or refolding of 

denatured or aggregated cytoplasmic proteins.  
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Figure 2-1. A. Increased ubiquitin expression suppresses the lcb1-100 temperature-sensitive phenotype. 

RH3809 (lcb1-100) cells carrying plasmids that overexpress either LCB1, UBI4, PKC1, TPS1, TPS3, HSC82 

or SSA2 were streaked onto YPUAD plates and grown at the non-permissive temperature of 37°C (left and 

middle panels). The RH3809 (lcb1) strain bearing pYSGal104 (HSP104) or YCp50-GAL1-SSA1 (SSA1) 

plasmids was streaked onto an SGal/Raf-ura plate and tested for growth at 37°C (right panel). B. Increased 

ubiquitin expression restores heat resistance to lcb1-100 cells. Mid log-phase cultures of wild-type (WT), 

lcb1-100 (lcb1) cells or lcb1-100 mutant cells overexpressing UBI4 (+UBI4) were grown in YPUAD at 24°C 

and an aliquot was shifted to 44°C. Samples were taken in duplicate at the times indicated, diluted into ice-

cold YPUAD, and immediately plated onto YPUAD agar at 24°C to assess cell viability. Survival at 44°C 

was plotted on a log scale as a percentage of colony forming units relative to that found at 24°C. 
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Figure 2-2. Increased ubiquitin expression does not restore sphingolipid synthesis in lcb1-100 cells. Wild-

type (WT), lcb1-100 mutant (lcb1) or lcb1-100 mutant cells overexpressing UBI4 (+UBI4) were grown in 

SDYE at 24°C, preshifted to 24°C or 37°C and labeled with [3H]myoinositol. Incorporation of 

[3H]myoinositol into the total lipid fraction was quantified and equal c.p.m. were directly applied to TLC 

plates, or treated with mild base to identify sphingolipids (IPC, MIPC and M(IP)2C). 
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Figure 2-3. A. lcb1-100 mutant cells are defective in Hsp induction. Wild-type (WT), lcb1-100 mutant (lcb1) 

or lcb1-100 mutant cells overexpressing UBI4 (+UBI4) were transformed with plasmids carrying SSA1-LacZ 

or HSP26-LacZ reporter constructs. After growth at 24°C, transformants were shifted to 37°C for the 

indicated time to induce the heat shock response and β-galactosidase expression driven from these promoters 

was quantified. B. Normal heat induction of UBI4 in the lcb1-100 mutant cells. Wild-type (WT) or lcb1-100 

mutant (lcb1) cells were transformed with a plasmid carrying the UBI4-LacZ reporter gene and treated as 

described for panel A. 
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Figure 2-4. Heat shock protein synthesis and sustained trehalose accumulation are defective in the lcb1-100 

cells. A. Cells actively dividing at 24°C were transferred to 44°C. The production of heat shock proteins was 

assessed after [35S]-Met/Cys labeling, followed by extraction, separation by SDS-PAGE and phosphorimager 

analysis of labeled proteins. Heat shock protein bands are indicated. B. Wild-type (WT) and lcb1-100 (lcb1) 

cells bearing a plasmid without insert or lcb1-100 cells overexpressing UBI4 (lcb1+UBI4) were shifted from 

24°C to 37°C, aliquots of cells were collected at the indicated times, cell extracts were prepared and trehalose 

contents were determined. Similar results were obtained in two independent experiments.  
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Figure 2-5. Increased protein degradation and removal of protein aggregates in the lcb1-100 strain 

overexpressing UBI4. A. Wild-type (WT), lcb1-100 (lcb1) and lcb1-100 cells overexpressing UBI4 

(lcb1+UBI4) were pulse-labelled at 37°C with [35S]-Met/Cys and the rate of protein degradation was 

measured during the chase period. The data shown are mean values and standard errors obtained from four 

independent experiments are shown. B. Wild-type (WT), lcb1-100 (lcb1) cells bearing or not the UBI4 

plasmid (UBI4) were grown at 24°C, then either kept at 24°C or shifted at 37°C for 1 h and cell extracts were 

prepared. Equal amount of proteins were applied to a 15% SDS-PAGE and probed with an anti-ubiquitin 

antibody. Free ubiquitin and high-molecular weight ubiquitin-protein conjugates are indicated. C. The 

determination of the percentage of aggregated [35S]-Met/Cys labeled proteins was assessed in wild-type 

(WT), lcb1-100 (lcb1), and lcb1-100 cells bearing the UBI4 plasmid (lcb1+UBI4) after heat shock at 37°C 

for the indicated times. Protein aggregates were identified by their sedimentation at 15000xg for 15 min in 

glycerol and non-ionic detergent at physiological salt concentrations. Total and aggregated labeled proteins 

were quantified by liquid scintillation counting. 
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Figure 2-6. The proteasome is required for UBI4 suppression of lcb1-100. A. The pre1-1 strain is mutated in 

one subunit of the proteasome complex. Single mutant strains lcb1-100 and pre1-1, and the double mutant 

strain lcb1-100 pre1-1 were transformed with a high copy number UBI4 plasmid and after growth on SD 

selective medium at 24°C were tested for growth on YPUAD at 37°C. B. erg6 and lcb1-100 erg6 mutant 

cells bearing the UBI4 overexpression plasmid were plated onto YPUAD medium (-MG132, lower part) and 

on YPUAD containing the proteasome inhibitor MG132 (+MG132, upper part) and tested for growth at 24°C 

and 37°C.  
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MATERIALS AND METHODS 
 

Plasmids and Yeast Strains 

 

Previously described plasmids used in this study were pSH24 (PKC1), YEp195-PKH1, YEp195-

PKH2 (Friant et al., 2001; Friant et al., 2000), expressing different ubiquitin genes, pKN32 (gift 

from S.K. Lemmon), YEp352-UBI4 (gift from M. Ellison) and YEplac181-UBI4, bearing the UBI4 

gene on high-copy number plasmids, and plasmid YEp112-CUP1-Ub containing a synthetic yeast 

ubiquitin gene under the control of the CUP1 promoter (gift from M. Hochstrasser) (Hochstrasser 

et al., 1991; Nelson and Lemmon, 1993; Prendergast et al., 1995), the YEplac195 plasmid 

containing TPS1, TPS2, TPS3 and TSL1 genes (kindly provided by J.M. Thevelein (Bell et al., 

1998)), pKAT6 (YEp24-HSC82) and pYSGal104(pRS316-pGAL1-HSP104) (kind gifts from S. 

Lindquist (Lindquist and Kim, 1996; Nathan and Lindquist, 1995)), YEp434-A4 (SSA4), YEp351-

SSA2, YCp50-GAL1-SSA1, pZJHSE2-137 containing an HSE, HSE2 from SSA1 promoter fused 

to LacZ (kind gifts from E.A. Craig (Slater and Craig, 1987), The UBI4-lacZ and the HSP26-LacZ 

plasmids (kindly provided by T. Schmelzle), the pUKC414 vector containing the HSP26 promoter 

fused to LacZ (S. Christodoulou, P. Bossier, C. Stokes and M.F. Tuite, unpublished) and the UBI4-

lacZ plasmid (Tanaka et al., 1988). 

The yeast strains used in this study were RH448 (WT), RH3802 and RH3809 (lcb1-100) 

(Friant et al., 2000), RH3804 (Matα lcb1-100 trp1 leu2 ura3 lys2 bar1), RH3323 (Mata pre1-1 

his3 his4 lys2 ura3 leu2 bar1), RH5404 (Matα pre1-1 lcb1-100 lys2 ura3 leu2), RH4237 (Matα 

erg6::LEU2 his4 lys2 ura3 leu2 bar1), RH4727 (Matα erg6::LEU2 lcb1-100 his4 ura3 leu2 bar1), 

and W303 derivatives (from F. Estruch) W303-1A (Mata ade2-1 can1-100, his3-11,15, leu2-3,112, 

ura3-1, trp1-1), ∆CTD (W303-1A ∆CTD::URA3), msn2 msn4 (W303-1A msn2-∆3::HIS3 

msn4∆::URA3),  msn2 msn4 ∆CTD (W303-1A msn2-∆3::HIS3 msn4∆::TRP1 HSF(1-

583)::URA3), ∆hsf (W303-1A tetO::HSF1::KanMX4), ∆hsf msn2/4 (W303-1A msn2-∆3::HIS3 

msn4∆::URA3 tetO::HSF1::KanMX4) (Amoros and Estruch, 2001). 

 

 

UBI4 Suppression of the lcb1-100 Mutation 

 

The RH3809 (lcb1-100) strain carrying a temperature-sensitive allele of the LCB1 gene was 

transformed with pKN32, a YEp24 based plasmid bearing UBI4, the polyubiquitin gene.  This 

transformant could grow at 37°C showing that UBI4 is a high copy suppressor of the lcb1-100 

mutation. The lcb1-100 mutant strains RH3802, RH3804 and RH3809 were also transformed by 
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other plasmids bearing the UBI4 gene (YEp352-UBI4 and YEplac181-UBI4) and tested for growth 

at 37°C, to ensure that the suppressor effect observed was due to overexpression of UBI4 gene. 

UBI4 rescues growth at 37°C only in high copy number and is not able to suppress the viability 

defect associated with a lcb1::URA3 strain. RH3804 strain was also transformed by YEp112-

CUP1-Ub plasmid containing a synthetic yeast ubiquitin gene under the control of the CUP1 

promoter and this transformant was able to grow on YPUAD plates containing CuSO4 (0.1 mM 

final concentration) at 37°C. 

 

 

Viability Assay 

 

Mid log-phase cultures of wild-type (RH448) and lcb1-100 (RH3809) cells overexpressing UBI4 or 

not were grown in YPUAD at 24°C and an aliquot was shifted to 44°C. Samples were taken at the 

times indicated in duplicate, and diluted onto ice-cold YPUAD, and immediately plated onto 

YPUAD agar to assess cell viability (Martinez-Pastor et al., 1996). Viability was expressed as a 

percentage of viable cells relative to the initial colony-forming units, measured at 24°C before the 

heat shock. The viability experiments were repeated twice, yielding similar results. 

 

 
Sphingolipid Analysis 

 

[3H]myoinositol and [3H]DHS labeling of yeast cells was performed for 30 min at 24°C or 37°C 

after a 15 min preincubation at the corresponding temperature. The lipids were extracted, treated 

with base to identify sphingolipids, and analyzed by thin layer chromatography and 

phosphorimaging as described (Zanolari et al., 2000). 

 

 

Liquid β-Galactosidase Assay 

 

A liquid β-galactosidase assay was performed as described previously with slight modifications 

(Guarente, 1983; Miller, 1972). For each sample, time, OD420 and protein concentration, using a 

Bradford assay kit (BioRad), was determined. The values reported are the average of three 

independent measurements for WT and lcb1-100 experiments and of two independent 

measurements for experiments with UBI4 overexpression respectively. 
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Heat Shock Protein Labeling 

 

Strains were grown exponentially in SD medium at 24°C, shifted for 15 min at 44°C to induce 

heat-shock protein synthesis and pulse labeled with [35S]methionine/[35S]cysteine mix (Easy Tag 

EXPRESS-[35S] mix from NEN) for 10 min, followed by 1 min chase, prior to protein extraction, 

proteins were resolved by SDS-PAGE analysis essentially as described previously (Miller et al., 

1979). 

 

 

Extraction and Assay of Trehalose 

 

Measurement of trehalose were performed on early log phase cells (0.4 – 0.5 OD600 units/ml) 

grown on YPUAD at 24°C and transferred to a prewarmed large flask at 37°C for the indicated 

times, by a protocol similar to that described previously (Lee and Goldberg, 1998) except that 

trehalose extraction was for 10 min at 95°C, enzymatic trehalose digestion for 3-4 hours and that 

total proteins were extracted using the NaOH/2-mercaptoethanol and TCA procedure (Horvath and 

Riezman, 1994), dissolved in 0.1N NaOH/1% SDS, and protein was determined using the detergent 

compatible procedure (Pierce). Trehalose induction experiments were repeated twice with 

essentially identical results. 

 

 

Total Protein Degradation 

 

Measurement of total protein degradation was performed as described previously with the 

following slight changes (Lee et al., 1996). Cells were grown to optical density at 600nm 0.4 to 0.6 

at 24°C in SD media and 2.5 OD600 units of cells were pulsed with 0.2 mCi 

[35S]methionine/[35S]cysteine mix (Easy Tag EXPRESS-[35S] mix from NEN) for 3 minutes as 

described. Chase was initiated by adding a 1/100 volume of a mixture of 0.3% methionine/cysteine 

in 0.3M (NH4)2SO4 and cycloheximide (0.5mg/ml). At indicated time intervals after shifting the 

cells to 37°C, aliquots were removed and analyzed as described before (Lee et al., 1996). The rate 

of protein degradation is expressed as the percentage of incorporated radioactivity converted into 

acid-soluble fragments from the cells during the chase period normalized to the total amount of 

cells in each sample. 
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Ubiquitin-protein Conjugates Determination 

 

Analysis of ubiquitin-protein conjugates was performed as described previously with the following 

slight changes (Lee et al., 1996). Cells were grown to 0.6 - 0.8 OD600 units/ml at 24°C in YPUAD 

media, 1 OD600 was shifted to 37°C for 1 h or kept at 24°C and cells were harvested and lysed by 

vortexing with glass beads in 10 mM Tris-HCl pH 7.4, 1 mM EDTA-2% SDS buffer for 3 min at 

4°C. Extracts were analyzed by SDS-PAGE and Western blot analysis with anti-ubiquitin antibody 

(Zymed Laboratories Inc.) using ECL protocols (Amersham Biosciences). 

 

 
Protein Aggregate Analysis 

 

Cells were grown to a density of 0.5 x 106 cells/ml in synthetic (SD) media containing 0.5% yeast 

extract and 40 mg/l of the appropriate amino acids. 1.2 x 108 cells were harvested and washed in 10 

ml SD without yeast extract. 3 x 107 cells per time point in a total volume of 0.5 ml SD were 

labeled with 0.2 mCi [35S]methionine/[35S]cysteine mix (Easy Tag EXPRESS-[35S] mix from NEN) 

for 10 minutes at 24°C. 5 µl 100x chase mix (0.3% methionine and cysteine, 0.3 M (NH4)2SO4) 

was added and cells were heat shocked for the indicated time points at 37°C. Heat shock was 

terminated by adding NaF and NaN3 to a final concentration of 8 mM and cooling on ice. Cells 

were washed with ice-cold glycerol buffer (1mM EDTA, 150mM KCl, 1mM EGTA, 50mM 

HEPES, 20% Glycerol, 0.5% Triton-X 100, pH 7.4) and resuspended in 0.2 ml ice cold glycerol 

buffer containing 1 mM PMSF. Glass beads were added and lysis was performed as described 

(Miller et al., 1979). Cell debris was spun down at 3000 g at 4°C. 1/20 of total lysate was removed 

and 19/20 were centrifuged at 15'000 g for 15 minutes at 4°C. The supernatant was removed and 

the total or pellet fractions were analyzed by either 7.5% SDS-PAGE or liquid scintillation 

counting using a Packard Scintillation Counter (Packard Instrument Company, USA). The data 

shown represent the average of 5 individual experiments. 
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ABSTRACT 
 

Background 

Ongoing sphingolipid synthesis is required for a variety of cellular functions including response to 

heat shock. The yeast lcb1-100 mutant is conditionally impaired in the first step of sphingolipid 

biosynthesis and shows a strong decrease in cell viability upon heat-shock. The decrease in 

viability is caused by insufficient synthesis of heat-shock proteins. 

 

Results  

Transcription and nuclear export of heat shock protein mRNAs is not affected in lcb1-100 cells. 

However, these cells exhibited a strong decrease in protein synthesis and polysome analyses 

demonstrated a defect in translation initiation under heat-stress conditions. The relevant lipid is 

sphingoid base, not ceramide or sphingoid base phosphates. Deletion of the eIF4E binding protein 

Eap1p in lcb-100 cells partially restored translation of heat shock proteins and increased viability of 

eap1∆lcb1-100 during heat stress. Ubiquitin overexpression allowed recovery of translation after 

heat stress, but not at the initial stages where heat shock proteins were made. The translation defect 

at later times during a heat stress in lcb1-100 correlated with depletion of the translation initiation 

factor eIF4G. Translation initiation during heat stress depended at least partially on the function of 

the sphingoid base activated PKH1/2 protein kinases. 

 

Conclusion 

We have uncovered a novel lipid-mediated regulation of translation initiation that is operative 

when cells are exposed to heat stress conditions. Sphingoid bases signal to the cap-dependent 

translation initiation apparatus to allow heat shock protein synthesis. This is  required for the 

recovery from heat shock. 
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INTRODUCTION 
 

Eukaryotic cells have developed several mechanisms to respond to rapid increases in temperature. 

Upon heat stress, cells reduce the rate of synthesis of proteins that were expressed before the heat 

shock and change their transcription profile dramatically to produce mainly heat shock proteins 

(Gasch et al., 2000; Murray et al., 2004). In the budding yeast S. cerevisiae changes in transcription 

upon heat stress are fairly well understood, involving control by two transcription factors, the heat 

shock factor Hsf1p and Msn2p/4p. Hsf1p binds to heat shock elements (HSE's) found in the 

promoter region of many heat shock protein genes (Amin et al., 1988; Wu, 1995). Genes that do 

not contain HSEs, but whose transcription is induced by heat and other stress signals, including 

osmotic shock, DNA damage and oxidative stress, contain stress response elements (STRE's) in 

their promoter. Upon these stresses, Msn2/4p shuttles from the cytosol to the nucleus and activates 

transcription through binding the STRE (Gorner et al., 1998; Schmitt and McEntee, 1996). After 

transcription, the corresponding mRNAs are exported from the nucleus (Stutz and Rosbash, 1998). 

Proteins encoded by heat stress responsive genes are responsible for the synthesis of the 

thermoprotectant trehalose (Singer and Lindquist, 1998), for the folding of proteins and for the 

degradation of unfolded and aggregated proteins (Imai et al., 2003; Riezman, 2004).  

In addition to the induction of heat shock proteins, yeast cells arrest transiently in the G1 

phase of the cell cycle during heat stress (Johnston and Singer, 1980). A very early event in the 

heat shock response in yeast is the induction of de novo synthesis of free sphingoid bases, followed 

by ceramides and sphingolipids (Dickson et al., 1997; Jenkins et al., 1997; Wells et al., 1998). The 

first steps in the biosynthesis of sphingolipids in animal cells and in yeast are similar, but differ in 

production of complex sphingolipids. In yeast, two sphingoid bases, dihydrosphingosine (DHS) 

and phytosphingosine (PHS) can be converted upon addition of a C26-CoA into ceramides. These 

ceramides are precursors for the three major classes of complex sphingolipids (Dickson and Lester, 

2002; Funato et al., 2002).  

 

Interestingly, many of the cellular responses during heat stress depend on the upregulation of 

sphingolipid synthesis (reviewed in Jenkins, 2003) and yeast mutants unable to produce 

sphingolipids are hypersensitive to heat (Chung et al., 2000; Patton et al., 1992; Zanolari et al., 

2000). One of these mutants carries a temperature sensitive mutation in the LCB1 gene, called lcb1-

100. The LCB1 gene encodes a subunit of the serine palmitoyl-transferase which catalyzes the first 

step in sphingolipid synthesis (Buede et al., 1991). lcb1-100 mutants are therefore unable to 

produce sphingoid bases, ceramides and sphingolipids during heat stress. Addition of high 

concentrations of sphingoid bases to the growth media induces the synthesis of heat shock proteins 
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at low temperatures (Dickson et al., 1997) and an lcb1-100 mutant was shown to be deficient in the 

synthesis of heat shock proteins (Friant et al., 2003). Mutant lcb1-100 cells also displayed specific 

transcriptional changes during heat stress (Cowart et al., 2003). Interestingly, this study showed 

that HSE- and STRE- dependent transcription does not depend greatly on the production of 

sphingoid bases.  

   

Apart from sphingolipid synthesis, translation initiation is one of the key points for the regulation 

of gene expression and adaptation to various stresses (Dever, 2002). In eukaryotes, the small 40S 

ribosomal subunit interacts with the ternary complex composed of eIF2-GTP and the charged Met-

tRNAiMet to form the 43S preinitiation complex which then binds to the mRNA at the 5′ end, scans 

for the initiator codon and associates with the 60S ribosomal subunit to initiate translation (Kapp 

and Lorsch, 2004). Translation initiation can be regulated by various mechanisms including 

phosphorylation of the translation initiation factor eIF2α on serine 51 by the Gcn2p kinase, which 

down-regulates the overall translation initiation rate (Hinnebusch, 2000). The Gcn2p kinase is 

activated by several stimuli including low nutrients (Wilson and Roach, 2002) and membrane stress 

(Deloche et al., 2004). 

The integrity of the 5'cap binding complex is also a target for general control of translation 

initiation for most cellular mRNAs (Gingras et al., 1999). One important regulator of cap 

dependent translation initiation is eIF4G, which binds eIF4E and associates with the cap structure 

and the poly(A)-binding protein leading to circularization of the mRNA (Sachs and Varani, 2000). 

The eIF4G protein is degraded upon nutrient deprivation and in yeast cells deficient for YPK1/2 

function (Berset et al., 1998; Gelperin et al., 2002; Powers and Walter, 1999). In addition, the 

eIF4E binding proteins (4E-BPs) act as specific inhibitors. Binding of the 4E-BPs to eIF4E 

abolishes the interaction of eIF4E with eIF4G, thus blocking ribosome recruitment to the mRNA. 

Two functional homologues of mammalian 4E-BPs, Caf20p and Eap1p, have been described in 

S.cerevisiae but how these proteins regulate translation initiation is still poorly understood 

(Altmann et al., 1997; Cosentino et al., 2000; de la Cruz et al., 1997; Deloche et al., 2004).  

 

The major question of this study was how is heat shock protein expression controlled by 

sphingolipid biosynthesis. Wild type cells challenged with a heat stress initially decrease general 

translation initiation but increase synthesis of heat shock proteins. Subsequently, general translation 

is recovered and even surpasses pre-heat shock rates. We demonstrate that the defect in expression 

of heat shock proteins lies at the level of translation initiation. The initial translation initiation 

defect does not depend on the phosphorylation status of eIF2α, however deletion of the 4E binding 

protein Eap1p partially restored translation of heat shock proteins and cell viability. The recovery 

process seems to depend upon the function of the heat shock proteins made during the initial phase. 
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The function of heat shock proteins in the subsequent recovery process can be partially replaced by 

overexpression of ubiquitin. Lack of recovery of translation initiation correlates with depletion of 

the initiation factor eIF4G. Finally, sphingoid base signaling to translation initiation depends at 

least partially on the sphingoid base activated kinases, Pkh1/2p. 
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RESULTS 
 

Synthesis of heat shock proteins is reduced in lcb1-100 cells 

 

We have shown previously that the synthesis of heat shock proteins is severely reduced in cells 

deficient for the production of sphingolipids using promoters from the heat shock genes SSA1 and 

HSP26 that were fused to the E.coli β-galactosidase. Also, heat shock protein labeling in a pulse-

chase assay showed reduced induction of heat shock proteins in lcb1-100 cells (Friant et al., 2003). 

Since the promoters of both reporter constructs were shown to be dependent on Hsf1p (Amoros and 

Estruch, 2001; Stone and Craig, 1990), we repeated these assays using a stress inducible promoter 

which contains seven artificially introduced STRE sequences and is solely dependent on Msn2/4p. 

Again β-galactosidase activity was greatly reduced in lcb1-100 cells compared to wild type (Fig. 3-

1 A) during heat stress. In addition, protein levels of this construct could barely be detected by 

western blot against β-galactosidase (Fig. 3-1 B). The decrease in activity or protein level was not 

due to an increase in β-galactosidase turnover since this protein remained stable over hours in both 

wild type and mutant cells as determined by pulse chase analysis (data not shown). This shows 

again that induction of stress- and heat-inducible proteins is reduced in lcb1-100 cells. 

To elucidate how sphingolipid synthesis governs the production of heat shock proteins we 

analyzed the nuclear import of the STRE activating transcription factor Msn2p. Msn2p translocates 

to the nucleus upon a wide variety of stresses including heat stress in a PKA/cAMP dependent 

manner (Gorner et al., 1998; Schmitt and McEntee, 1996). Translocation upon heat stress of Msn2p 

to the nucleus was normal in lcb1-100 cells compared to wild type (Fig. 3-1 D). Therefore, cells 

defective for the synthesis of sphingolipids during heat stress are not impaired for the translocation 

of the stress responsive transcription factor Msn2p to the nucleus.  

We then assessed the transcription of the 7xSTRE-lacZ mRNA in lcb1-100 cells by reverse 

transcriptase PCR. This assay clearly demonstrated that the transcription of the 7xSTRE-lacZ 

mRNA in lcb-100 cells was upregulated normally during heat stress (Fig. 3-1 C). This result is in 

agreement with a recent study, showing that almost none of the heat-induced heat shock mRNAs 

are affected in lcb1-100 cells after 15 or 30 minutes of heat stress compared to wild type (Cowart et 

al., 2003).  

Recent reports have shown the involvement of pre-mRNA splicing as a post-transcriptional 

regulatory mechanism during heat shock. In MOLT-4 cells, increased sphingolipid synthesis was 

shown to cause SR protein dephosphorylation (Jenkins et al., 2002) and SR proteins play a crucial 

role in splicing during heat stress (Shin et al., 2004). To analyze sphingolipid synthesis dependent 

splicing during heat stress in yeast cells, we performed a primer extension of SNR17a exon2. Wild 
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type as well as lcb1-100 cells were able to properly splice and join exons 1 and 2, resulting in an 81 

base product, during up to one hour of heat stress (Fig. 3-2). Based on these results we exclude a 

role for sphingolipid synthesis dependent splicing during heat stress in S. cerevisiae.  

 

 

Export of total and HSP104 mRNA is functional in lcb1-100 cells 

 

A reduced rate in heat shock protein synthesis was previously observed in cells defective for 

nuclear export of mRNA (Miller et al., 1979; Stutz and Rosbash, 1998). Consequently we analyzed 

both export of total and HSP104 mRNA from the nucleus during heat stress in wild type, lcb1-100 

and mex67-5 cells. For total mRNA we used a poly-dT probe that was labeled at its 3' end using 

digoxigenin (DIG-) modified dUTP. HSP104 mRNA was detected using oligos that hybridize 

specifically to this gene and were internally modified with Cy3 as described (Jensen et al., 2001). 

In wild type and in lcb1-100 cells, total and HSP104 mRNA could be detected in the cytosol after 

30 minutes of heat stress at 37°C as seen by a diffuse cytosolic staining with no accumulation in 

the nucleus (Fig. 3-3). Control mex67-5 cells, accumulated total and heat induced mRNA within 

the nucleus as previously reported (Hurt et al., 2000; Segref et al., 1997). HSP104 mRNA staining 

in wild type and lcb1-100 cells before heat stress was not detectable (data not shown). We conclude 

that export of total and heat induced mRNA is not affected in lcb1-100 mutant cells. 

  

 

The rate of protein synthesis and translation initiation is reduced during heat stress in cells 

deficient for sphingolipid synthesis 

 

Having ruled out the involvement of sphingolipid synthesis in a transcriptional event in heat shock 

protein synthesis we concluded that protein synthesis itself must be defective in lcb1-100 cells. 

Translation can be regulated to cope with a diverse set of cellular responses to stress (Deloche et 

al., 2004; Miller et al., 1979; Uesono and Toh, 2002). First, we determined the rate of protein 

synthesis in wild type and lcb1-100 cells by comparing the amounts of [35S]methionine 

incorporation into protein during heat stress. Yeast cells were shifted from 24°C to 37°C to induce 

heat stress and radiolabeled for 5 minutes as indicated (Fig. 3-4 A). Incorporation was stopped by 

adding azide and fluoride and the amount of [35S] incorporated into protein was determined by 

TCA precipitation and scintillation counting.  

In contrast to wild type cells the total uptake of [35S]methionine decreased in the lcb1-100 

mutant cells during heat stress (data not shown). Since the decrease in the TCA-precipitated counts 

in an aliquot of cells reflects both a decrease in uptake and incorporation into protein, the ratio of 
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TCA-precipitated versus total cell-associated [35S]methionine for each aliquot was used to 

determine the rate of protein synthesis. The initial ratio of TCA-precipitable to total 

[35S]methionine at 24°C was set to 100% (Fig. 3-4 A). Wild type cells showed a transient decrease 

in protein synthesis after heat stress at 37°C but recovered and increased their rate of synthesis to 

about 150% of the initial rate and maintained this for at least one hour at 37°C. Mutant lcb1-100 

cells showed the same decrease in protein synthesis upon heat stress, but there was no recovery. 

The rate of protein synthesis remained stable at about 50% of the initial synthesis rate (Fig. 3-4 A). 

Therefore the mechanisms involved in initial down regulation of protein synthesis are operative in 

lcb1-100 cells, but these cells are unable to resume normal protein synthesis afterwards.   

To assess how sphingolipid synthesis affects translation during heat stress, we analyzed the 

sedimentation profiles of polysomes on linear 5 to 50% sucrose gradients. After the indicated times 

of heat stress, cycloheximide was added to the cultures to arrest translation elongation and to 

preserve the polysomes during preparation. Compared to wild type cells, lcb1-100 already showed 

an increase in 80S monosomes, relative to 40S and 60S ribosomal subunits, at permissive 

temperature (Fig. 3-4 B). After 15 minutes of heat stress at 37°C, the sedimentation analyses 

showed that both cell types attenuated translation initiation as monitored by the increase in 

monosomes and the slight decrease in polysomes. The analyses of later time points revealed that 

this attenuation was transient for wild type cells. In contrast, monosomes continued to increase in 

lcb1-100 cells. After 60 minutes at 37°C, wild type cells returned to an almost normal distribution, 

but lcb1-100 cells showed a substantial defect in translation initiation as monitored by the large 

monosome peak with only very few actively translating polysomes (Fig. 3-4 B).  

The samples from wild type and lcb1-100 cells after 60 minutes of heat stress were then 

loaded onto 5 to 50% linear sucrose gradients containing 0.7M NaCl. High salt concentration leads 

to the dissociation of randomly formed monosomes that are non-translating and not tightly bound 

to mRNA. In contrast to wild type cells, the accumulated monosomes in lcb1-100 cells were non-

translating because almost the entire peak consisted of randomly formed 80S particles that could be 

dissociated into their 40S and 60S subunits (Fig. 3-4 C). Therefore, lcb1-100 mutant cells show the 

hallmarks of a translation initiation defect; a decrease in the poylsome to monosome ratio and a 

majority of non-translating monosomes. 

To determine whether the synthesis of sphingolipids is required for translation initiation in 

general or only during heat stress, wild type cells grown at 24 or 37°C were treated with the 

antifungal compound myriocin (ISP-1) that inhibits serine palmitoyltransferase (Miyake et al., 

1995). At 24°C the rate of protein synthesis remained stable at 100% for wild type cells in the 

presence or absence of 10 µg/myriocin whereas the same cells showed a decrease in the 

upregulation of protein synthesis during heat stress in the presence of myriocin (data not shown). 

Polysome distribution on sucrose gradients was normal for wild type cells at 24°C after up to two 



 CHAPTER III 
 

Sphingolipid regulation of translation initiation  63 

hours of treatment with myriocin (Fig. 3-4 D).  In contrast, wild type cells treated with myriocin at 

37°C showed an increase in monosomes and a decrease in polysomes over time (Fig. 3-4 D). This 

demonstrates that sphingolipid synthesis is required for efficient translation initiation only during 

heat stress.  The effects of myriocin are weaker than those seen with the lcb1-100 mutant, but this 

is consistent with previous data (Horvath et al., 1994; Sutterlin et al., 1997) and probably results 

from an incomplete inhibition of serine palmitoyltransferase by the compound. 

 

 

The synthesis of sphingoid base is required for translation initiation during heat shock 

 

Metabolites of the sphingolipid biosynthesis pathway, including sphingoid base, ceramide and 

sphingoid base 1-phosphate have been shown to be important second messengers in eukaryotic 

cells, regulating diverse biological processes such as cell growth, differentiation, apoptosis, stress 

responses, endocytosis, calcium homeostasis, and cell migration (reviewed in Dickson and Lester, 

2002; Hannun and Obeid, 2002; Spiegel and Milstien, 2003).  Our attention first focused on the 

phosphorylation of the sphingoid bases since sphingoid base phosphates were shown to be 

important regulators of heat-induced cell cycle arrest (Chung et al., 2001; Jenkins and Hannun, 

2001) and accumulation of phosphorylated sphingoid bases resulted in cell growth inhibition (Kim 

et al., 2000; Zhang et al., 2001). Yeast cells have two long chain sphingoid base kinases, LCB4 and 

LCB5, which  phosphorylate DHS and PHS (Nagiec et al., 1998). Concomitant with the increase in 

sphingoid bases during heat stress, yeast cells show an increase in the amount of sphingoid base 

phosphates with a peak 15 min after heat stress (Ferguson-Yankey et al., 2002; Skrzypek et al., 

1999). Therefore we tested if LCB4 and LCB5 are required for the regulation of translation during 

heat stress. 

Deletion of the sphingoid base kinases did not lead to a reduction in the production of heat 

shock proteins as measured by the induction of β-galactosidase from SSA1 and HSP26 heat shock 

gene promoters (Fig. 3-5 A). Moreover, the rate of protein synthesis during heat stress was similar 

in wild type and lcb4,5 double mutant cells. Interestingly, lcb4,5 cells did not show the typical, 

transient down-regulation in the rate of protein synthesis at 30 min of heat stress (Fig. 3-5 B). The 

distribution of polysomes on sucrose gradients was analyzed from wild type and lcb4,5 cells 

maintained at 24°C or after 15, 30 or 60 minutes of heat stress at 37°C, respectively. Polysomes 

remained unchanged in lcb4,5 cells as shown after 60 minutes of heat stress (Fig. 3-5 C). During 

early time points of heat stress wild type and lcb4,5 cells showed the same distribution of 

polysomes (data not shown).  

Sphingolipids and their precursor ceramide fulfill important functions in eukaryotic cells. 

Ceramide was shown to induce differentiation, cell cycle arrest in G0/G1 phase, senescence and 
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apoptosis whereas sphingolipids have been implicated in cell-cell or ligand-receptor interactions, 

differentiation and apoptosis in mammalian cells (Hannun and Obeid, 2002). Although ceramides 

and sphingolipids are upregulated during heat stress in yeast, so far no direct involvement of these 

metabolites could be shown during this response. Therefore we analyzed the role of ceramide and 

complex sphingolipid synthesis in translation during heat stress.  

Two homologous, redundant genes, LAG1 and LAC1, have been shown to be required for 

ceramide synthesis (Guillas et al., 2001; Schorling et al., 2001) and to be essential subunits of 

ceramide synthase (Vallée and Riezman, 2005) . Upon deletion of these genes, yeast cells produce 

vastly reduced quantities of ceramides. Deletion of both genes leads to severe defects in cell 

viability and to decreases in heat stress resistance (Barz and Walter, 1999). To rule out the formal 

possibility that these phenotypes are of secondary nature and not directly connected to the loss of 

the de novo synthesis of ceramides, we introduced a temperature-sensitive allele of LAG1 on a 

plasmid in a strain deleted for both LAG1 and LAC1 (Schorling et al., 2001). The lac1lag1ts strain 

showed no defects in the induction of reporter constructs for heat shock proteins (Fig. 3-5 A). The 

rate of protein synthesis was also not affected in lac1lag1ts cells compared to wild type cells (Fig. 

3-5 B). In agreement with these results, the distribution of polysomes on sucrose gradients was 

similar in lac1lag1ts at 24°C and after heat stress at 37°C (Fig. 3-5 C) when compared to wild type 

cells. To provide further evidence that ceramides are not required for regulation of protein 

synthesis after heat shock, we tested whether addition of the 4 different stereoisomers of DHS 

could complement the defects of lcb1-100 cells. Only two of these stereoisomers can be 

incorporated into ceramide (Watanabe et al., 2002). All four stereoisomers could restore normal 

regulation of protein synthesis providing further proof that ceramide is not the sphingolipid 

required for regulation of translation (Fig. 3-5 D). 

  

 

Phosphorylation of eIF2α is similar in wild type and lcb1-100 cells 

 

Since a block in sphingolipid synthesis could possibly induce a membrane stress, leading to a 

decrease of translation initiation by activating the Gcn2p kinase, we next monitored the 

phosphorylation status of eIF2α (encoded by SUI2 in yeast) on serine 51 during heat stress in wild 

type and lcb1-100 cells. Western blots against total and phosphorylated eIF2α were performed. 

Wild type and lcb1-100 cells showed an increase in phosphorylation of eIF2α shortly after shift to 

37°C. During prolonged times of heat stress decreased amounts of phosphorylated eIF2α were 

observed in lcb1-100 cells compared to wild type cells (Fig. 3-6). The lack of difference at 15 and 
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30 min allow us to exclude a role of the Gcn2p-eIF2α pathway for regulation of heat shock protein 

translation in our mutant cells, but it could play some role in the recovery process.  

 

 

Deletion of the yeast eIF4E-binding protein, Eap1p, restores translation initiation and 

synthesis of heat shock proteins  

 

A second control step in translation initiation is achieved by the control of the availability of eIF4E 

proteins and deletion of EAP1 was shown to partially restore translation initiation of membrane 

stressed cells (Deloche et al., 2004). Therefore, we analyzed the rate of protein synthesis in eap1∆, 

and eap1∆ lcb1-100 cells. Deletion of EAP1 alone had no effect on the rate of protein synthesis 

during heat stress (Fig. 3-7 A). In contrast, deletion of EAP1 in lcb1-100 cells was able to restore 

the incorporation of [35S]methionine into protein to almost wild type levels. Interestingly, similarly 

to lcb4,5 cells,  eap1∆lcb1-100 cells showed no transient down-regulation in the synthesis rate 

shortly after heat stress (Fig. 3-7 B). Deletion of CAF20 in wild type, lcb1-100, eap1∆ or 

eap1∆lcb1-100 cells did not lead to any phenotypes different from presented above (data not 

shown).  

 Polysome analyses of eap1∆, lcb1-100 and eap1∆lcb1-100 cells demonstrated that eap1∆ 

cells behave as wild type cells before and after 60 minutes of heat stress at 37°C (Fig 3-7 B). As 

before, mutant lcb1-100 cells showed an accumulation of monosomes (80S peak) at permissive 

temperature and strong accumulation of non-translating monosomes after 60 minutes of heat stress. 

In contrast, eap1∆lcb1-100 cells showed a less severe loss of translating ribosomes (Fig. 5B). The 

increase in the protein synthesis rate at early time points during heat stress did not lead to any 

change in the distribution of polysomes or in the size of the 80S peak in eap1∆lcb1-100 cells, as 

was observed for the lcb4,5 mutant (data not shown).  

 Next we determined if deletion of EAP1 also restored synthesis of heat shock proteins to 

lcb1-100 cells. Induction of SSA1 and HSP26 heat shock gene promoters fused to β-galactosidase 

was increased in eap1∆ cells compared to wild type cells especially for the HSP26 fusion (Fig. 3-7 

C). The induction of the same β-galactosidase gene promoters was also improved in lcb1-100 cells 

deleted for EAP1 although the profile of induction was somewhat different.  

Loss of production of heat shock proteins was shown to be a major cause of decreased 

viability during heat stress in cells deficient for sphingolipid synthesis (Friant et al., 2003). 

Therefore lcb1-100 cells deleted for eap1∆ were predicted to have an improved viability due to the 

restoration of heat shock protein synthesis. Deletion of EAP1 in wild type cells is lethal at high 

temperatures (Cosentino et al., 2000) and deletion of EAP1 in lcb1-100 cells did not restore growth 
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on plates (data not shown). Therefore, we assayed resistance to heat shock at an elevated 

temperature. Log-phase cultures of wild type, lcb1-100, eap1∆ and eap1∆lcb1-100 cells were heat 

shocked at 44°C and the percentage of cells able to form colonies was determined as a function of 

time (Fig. 3-7 D). The lcb1-100 mutant showed a clear defect in survival at high temperature. In 

contrast, lcb1-100 cells deleted for EAP1 regained resistance to heat stress over the 2 hour period 

(Fig. 3-7 D).  

Taken together these results show that deletion of the translation repressing 4E-BP Eap1p, 

increased translation of heat shock proteins in lcb1-100 cells, indicating that synthesis of sphingoid 

bases during heat stress regulates translation initiation at a cap dependent step. In addition, these 

results show that recovery of heat shock protein synthesis allows lcb1-100 cells to resist heat shock 

in the absence of sphingolipid synthesis. Therefore, the essential function of sphingolipids in 

resistance to heat shock is their function in heat shock protein expression.   

 

 
Translation initiation is regulated in part via the conserved PKH/YPK signaling cascade 

 

Sphingoid bases were previously shown to serve as signaling molecules. Addition of sphingoid 

base stimulated phosphorylation of the yeast serum- and glucocorticoid-inducible kinase (SKG) 

homologues Ypk1p and Ypk2p by the upstream yeast PDK1 homologues Pkh1p and Pkh2p 

(Casamayor et al., 1999) in an in vitro assay (Friant et al., 2001). Also overexpression of YPK1 

conferred resistance to the serine palmitoyltransferase inhibitor myriocin, (Sun et al., 2000). 

Furthermore, it was shown that cells thermosensitive for YPK signaling, are defective for 

translation initiation and the translation initiation factor eIF4G is depleted with time at non-

permissive temperature (Gelperin et al., 2002). If the proposed conserved signaling cascade is 

operative here, eIF4G should be depleted in lcb1-100 at similar rates during heat stress as was 

observed for a ypkts strain. To test this, western blots against eIF4G were performed.  

 eIF4G was stable in wild type cells up to 4 hours during heat stress at 37°C. In contrast, 

lcb1-100 cells showed loss of eIF4G beginning at 60 minutes of heat stress and after 4 hours very 

small levels of eIF4G could be detected. Has1p, a member of the DEAD-box family of RNA 

helicases that is involved in 40S ribosomal subunit biogenesis (Emery et al., 2004), remained stable 

in both wild type and lcb1-100 cells at all times tested (Fig 3-8 A). This demonstrates clearly that 

the stability of eIF4G in lcb-100 cells is comparable to ypkts cells and suggests a similar mechanism 

of regulation. 

If translation initiation during heat stress is regulated via this signaling cascade, a strain 

defective for Pkh kinase signaling should also be defective for translation initiation during heat 

stress. We tested a pkhts strain for the rate of protein synthesis and for polysome distribution on 
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sucrose gradients after 60 minutes of heat stress. The rate of protein synthesis during heat stress 

was clearly reduced in pkhts cells compared to wild type cells, although not quite to the same extent 

as in lcb-100 cells (compare Fig. 3-8 B and 3-8 A).  Polysome distribution was also changed in 

pkhts cells after 60 minutes of heat stress at 37°C.  Thermosensitive pkhts cells showed 

accumulation of 80S particles and a reduction in polysomes, indicating reduced translation rates 

(Fig. 3-8 C).  

Since the arrest in translation initiation in pkhts cells was rather slow compared to lcb1-100 

cells we wanted to know if induction of SSA1 and HSP26 heat shock gene promoters fused to β-

galactosidase was affected in pkhts and ypkts cells. Whereas pkhts cells showed a nearly 50% 

reduction in the induction of SSA1-lacZ and HSP26-lacZ, ypkts cells displayed a induction profile 

similar to wild type cells (Fig. 3-8 D). These results suggest that translation is partially regulated by 

the sphingoid base dependent PKH-YPK signaling cascade during heat stress and that the Pkh 

kinases may have other targets than the Ypk kinases in this pathway. 

 

 

Ubiquitin overexpression can partially suppress the translation defect in lcb1-100 cells 

 

Overexpression of the polyubiquitin gene UBI4 restored growth of lcb1-100 cells at elevated 

temperatures without restoring heat shock protein expression (Friant et al., 2003 and Fig. 3-9 A). 

UBI4 overexpression led to higher levels of ubiquitin and enhanced degradation of un- or 

misfolded proteins in a proteasome-dependent pathway, preventing aggregation of those proteins 

(Friant et al., 2003). Overexpression of ubiquitin partially suppressed the decrease in the translation 

rate as determined by measuring the incorporation of [35S]methionine into proteins (Fig. 3-9 B). 

Mutant lcb1-100 cells overexpressing UBI4 showed the same distribution of polysomes on sucrose 

gradients as wild type cells at permissive temperature. After 60 minutes of heat stress, lcb1-100 

cells overexpressing ubiquitin showed less accumulated monosomes and more polysomes 

compared to the polysomes of lcb1-100 cells shown in Fig. 3-4 B. This was in agreement with the 

translation rates measured (Fig. 3-9 C).  Therefore, the overexpression of ubiquitin in the lcb1-100 

mutant largely abrogates the need of sphingoid bases and heat shock proteins for the recovery of 

protein synthesis after a heat stress.  
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Figure 3-1. Synthesis of heat shock proteins in lcb1-100 cells is not reduced at a transcriptional level.          

A. Wild type and lcb1-100 cells transformed with 7xSTRE-lacZ were heat stressed for up to two hours at 

37°C. Whole cell lysates were assayed for β-galactosidase activity at indicated time points as described. B. 

Western blot showing induction of 7xSTRE-lacZ in wild type and lcb1-100 cells at 37°C. Yeast cells were 

treated as in A and protein extracts were analyzed using an antibody against β-galactosidase. Relative 

intensity of bands compared to the 0 time point is given. C. Reverse transcription analysis of 7xSTRE-lacZ 

mRNA. At indicated times during heat stress at 37°C wild type and lcb1-100 cells were collected, their RNA 

extracted and amplified using specific primers against ACT1 and LacZ mRNA. Relative intensity of bands 

compared to time point 0 is shown. D. Translocation of Msn2-GFP to the nucleus is not inhibited in lcb1-100 

cells during heat stress. Wild type and lcb1-100 cells were transformed with a plasmid carrying MSN2 fused 

to GFP and analyzed as described at permissive temperature and after 10 minutes heat stress at 37°C.   
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Figure 3-2. Splicing of U3 (SNR17a) snRNA is not affected in lcb1-100 cells. Total RNA was extracted 

from cells at given time points after heat stress at 37°C as indicated. Primer extension was performed as 

described and autoradiographed. b, number of bases.  
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Figure 3-3. In situ hybridization of total and HSP104 mRNA after 30 minutes at 37°C in wild type, lcb1-100 

and mex67-5 cells showing normal export of mRNA in lcb1-100 and wild type cells. Total mRNA was 

detected using DIG modified poly dT oligos with anti DIG antibodies coupled to fluorescein and visualized 

using a FITC filter set. HSP104 mRNA was detected using specific Cy3 labeled oligos and a Cy3 filter set as 

described. 
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Figure 3-4. Translation is reduced in cells deficient for sphingolipid synthesis during heat stress. A. Wild 

type and lcb1-100 cells were grown to early log phase at 24°C in synthetic media and shifted for the 

indicated time to 37°C. Each sample was pulsed using [35S]methionine for the last 5 minutes and the amount 

of incorporated [35S]methionine compared to cell associated [35S]methionine was analyzed. B. Polysome 

analysis of wild type and lcb1-100 cells during heat stress. Wild type and lcb1-100 cells treated at 24°C or 

for the indicated time at 37°C were collected and lysed as described. 8 OD260 were loaded on linear 5 to 50% 

sucrose gradients and spun at 39 krpm for 2h 45min.   
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Figure 3-4 cont. C. Distribution of polysomes on high salt gradients for wild type and lcb1-100 cells after 60 

minutes heat stress at 37°C. Extracts were loaded on 5 to 50% linear sucrose gradients containing 0.7 M 

NaCl were spun at 35 k for 3h 20min and analyzed as before. D. Polysome analysis of wild type cells, treated 

for either 60 or 120 minutes at 24 or 37°C, with myriocin at a final concentration of 10µg/ml, respectively. 

Analysis was performed as in B except that centrifugation was for 3h 20min at 35 krpm. 40S, small 

ribosomal subunit; 60S large ribosomal subunit; 80S monosome. 
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Figure 3-5. The synthesis of sphingoid base phosphates and ceramides is not required for proper translation 

initiation during heat shock. A. Wild type, lcb4,5 and lac1lag1ts cells transformed with a plasmid containing 

either SSA1-lacZ or HSP26-lacZ were heat stressed for up to two hours at 37°C. β-galactosidase was 

extracted and assayed at indicated time points as described. B. Translation rate of lcb4,5 and lac1lag1ts cells 

during heat stress at 37°C over two hours was analyzed as described above. C. Polysome analysis of lcb4,5 

and lac1lag1ts cells after 60 minutes of heat stress at 37°C in synthetic media was analyzed as described. 40S, 

small ribosomal subunit; 60S large ribosomal subunit; 80S monosome. D. Addition of all four stereo-isomers 

of DHS to lcb1-100 cells induced heat shock protein synthesis. Cells actively dividing at 24°C were treated 

with isomer or carrier, transferred to 44°C and the production of heat shock proteins was assessed after 

[35S]methionine labeling, followed by extraction and separation by SDS-PAGE of labeled proteins. Heat 

shock protein bands are indicated. e stands for erythro-DHS and t for threo-DHS. 
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Figure 3-6. Phosphorylation of eIF2α is similar in wild type and lcb1-100 cells. Western blots against eIF2α 

phosphorylated at Ser51 and total eIF2α before and after the indicated times during heat stress. Wild-type 

cells were grown to log phase in synthetic media and whole cell extracts were prepared.  Phosphorylation of 

Ser51 was quantified and compared with the total amount of eIF2α protein, given in numbers below.  
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Figure 3-7. Deletion of EAP1 partially restores translation initiation. A. Translation rate analysis of eap1∆ 

and eap1∆lcb1-100 cells during heat stress at 37°C over two hours was performed as described above. B. 

Polysome analysis of eap1∆ and eap1∆ lcb1-100 cells in synthetic media after 60 minutes of heat stress at 

37°C, analyzed as described in Figure 3B. C. Wild type, eap1∆ and eap1∆lcb1-100 cells transformed with a 

plasmid containing either SSA1-lacZ or HSP26-lacZ were heat stressed for up to two hours at 37°C. β-

galactosidase was extracted and assayed at indicated time points as described. D. Deletion of EAP1 restores 

heat resistance to lcb1-100 cells. Mid log-phase cultures were grown at 24°C and an aliquot was shifted to 

44°C. Samples were taken in duplicate at the times indicated, diluted into ice-cold YPD, and immediately 

plated onto YPD agar at 24°C to assess cell viability. Survival at 44°C was plotted on a log scale as a 

percentage of colony forming units relative to that found before the heat shock. 
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Figure 3-8. Translation during heat stress depends on the conserved PKH1/2 signaling cascade and leads to 

stability of eIF4G. A. Stability of eIF4G in wild type and lcb1-100 cells during heat stress at 37°C. Cells 

were grown to log phase, shifted for the indicated time and total protein extracts were resolved on SDS-

PAGE gels and analyzed by western blotting using antibodies against eIF4G and Has1p as control, 

respectively. B. Translation rate of pkhts cells in response to heat stress at 37°C for two hours, analyzed as 

described. C. Polysome analysis of pkhts cells in synthetic media after 60 minutes of heat stress at 37°C, 

analyzed as described in Figure 3B. D. Wild type, pkhts and ypkts cells transformed with a plasmid containing 

either SSA1-lacZ or HSP26-lacZ were heat stressed for up to two hours at 37°C. β-galactosidase was 

extracted and assayed as described.  
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Figure 3-9. Overexpression of UBI4 partially restores translation in lcb1-100 cells. A. Wild type, lcb1-100 

and  lcb1-100 cells carrying plasmids that overexpress UBI4 were streaked onto YPD plates and grown at 

24°C and at the non-permissive temperature of 37°C B. Translation rate of lcb1-100 transformed with a 

multicopy plasmid overexpressing UBI4 cells in response to heat stress at 37°C, performed as described 

above. C. Polysome analysis of lcb1-100  cells overexpressing UBI4 in synthetic media after 60 minutes of 

heat stress at 37°C, analyzed as described in Figure 3B. 
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Figure 3-10. A. Transcription of ribosomal protein mRNA is less down regulated during heat stress in lcb1-

100 cells. Wild-type and lcb1-100 cells were grown in synthetic media at 24°C. Log phase cultures were 

shifted to 37°C and cells were harvested before and at various times after the shift to 37°C. Total RNA was 

prepared and subjected to electrophoresis. Gels were transferred to nylon membranes and hybridized with the 

indicated probes to detect the steady state levels of the different RNA's. B. Transcription of ribosomal rRNA 

is not affected by the lcb1-100 mutation. Analysis was performed as described for A. C. Transcription of 

rRNA and total tRNA is not affected in lcb1-100 cells during heat stress. RNA was extracted as described 

above and loaded on 8% polyacrylamide gels containing 8M Urea and stained using ethidium bromide. 
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DISCUSSION 
 

Sphingoid base synthesis regulates translation initiation during heat stress 

 

The major finding of this study is that a lipid mediator, in this case sphingoid base, regulates 

protein translation during a heat stress. Our results suggest that this regulation concerns two phases; 

the initial translation of heat shock protein mRNAs and the subsequent increase in translation rate. 

The latter phase probably depends upon proper execution of the first phase and the function of heat 

shock proteins. Sphingolipid synthesis has been suggested to play many roles in heat stress, but 

thus far little molecular insight into the pathways depending on sphingolipid synthesis has been 

forthcoming. Dickson and co-workers showed in a previous study that addition of high 

concentrations (µM range) of DHS could induce reporter genes driven by stress response elements 

(Dickson et al., 1997). These results could have implicated sphingoid bases in the induction of the 

heat stress response, in particular in mRNA induction, or could have meant that high amounts of 

sphingoid bases induce a stress themselves, in particular since high amounts of sphingoid bases are 

toxic to yeast cells (Mao et al., 1999). The role of sphingolipid biosynthesis in heat shock protein 

expression was then confirmed using the lcb1-100 mutant (Friant et al., 2003). Interestingly, 

transcription of most heat shock protein genes was not dependent on sphingolipid biosynthesis 

(Cowart et al., 2003), which already suggested that the level of control was not transcriptional.  

The results presented here demonstrate that synthesis of sphingoid base phosphates, 

ceramides and sphingolipids are not required for translation and synthesis of heat shock proteins 

during a heat shock. This result is both interesting and intriguing because all metabolites of the 

sphingolipid biosynthesis pathway were shown to be upregulated during heat stress. The precise 

roles for sphingoid base phosphates, ceramides and sphingolipid synthesis in the heat stress 

response in yeast still need to be determined. Alternatively, they could serve as sinks to remove 

sphingoid bases once they have performed their signaling function. 

  Heat stress leads to a rapid but temporary repression of ribosomal protein (RP) 

gene transcription (Eisen et al., 1998). In contrast to this, RP mRNA levels failed to be down 

regulated during heat stress in lcb1-100 cells (Cowart et al., 2003) and Fig. 3-10 A). This is 

unlikely to affect translation since RP gene mRNA was not reduced to an amount below that of 

wild type cells during heat stress and quantification of ribosomal 40 and 60S subunits using low 

Mg2+ extracts gave a ratio of 1.6 for wild type and lcb1-100 cells at 24°C and after 60 minutes of 

heat stress at 37°C, respectively (data not shown). In addition, the levels of tRNA and rRNA were 

maintained normally for various time points after heat stress in lcb1-100 cells (Fig. 3-10 B and Fig. 
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3-10 C), indicating that the translation initiation defect in the lcb1-100 mutant is not due to an 

inhibition of tRNA and rRNA synthesis.  

 Surprisingly, the defect in sphingolipid synthesis did not elicit a membrane stress that is 

typically governed by strong phosphorylation of eIF2α (Deloche et al., 2004). Nevertheless, 

deletion of the 4E-BP EAP1 partially restored heat shock protein and general translation in lcb1-

100 mutants in a fashion similar to cells showing a transient attenuation in translation initiation 

resulting from membrane stress.  This result, together with the fact that eIF4G is depleted in lcb1-

100 cells, indicates that sphingoid bases regulate translation initiation through a cap-dependent 

step. Growth at high temperatures could not be restored by an EAP1 deletion in lcb1-100, but this 

was to be expected because deletion of EAP1 alone causes defects in genetic stability at 37°C 

(Chial et al., 2000). We do not know if this or the hyperactivation of the stress response is the 

primary cause for lethality in eap1∆ cells. The precise role of Eap1p needs to be determined.  

Our data suggest that the defect in heat shock protein translation is likely to be regulated, at 

least in part, via the conserved sphingoid base dependent PKH/YPK signaling pathway. A mutant 

defective for YPK kinases showed a strong decrease in translation initiation during prolonged heat 

stress and depletion of eIF4G (Gelperin et al., 2002) was observed at similar rates in lcb1-100 cells. 

Mutant cells defective for PKH1/2 or YPK1/2 signaling however showed moderate defects in the 

rate of heat shock protein induction for the former and almost no defect for the latter. This suggests 

that the role of this kinase cascade may be different in the two phases of response to heat shock. 

The first phase regulates immediate translation of heat shock mRNAs, requires sphingoid bases and 

is partially dependent upon Phk kinases, but independent of Ypk kinases. The second phase is the 

increase in the rate of  translation  in general. The second phase is likely to depend upon the 

function of heat shock proteins in the first phase because overexpression of ubiquitin partially 

restored the translation defect in lcb1-100 cells. Ubiquitin has been shown to functionally substitute 

for heat shock proteins under these conditions and its role must be in the recovery phase because its 

overexpression does not restore heat shock protein induction in lcb1-100 cells (Friant et al., 2003). 

One way to rationalize these results is that sphingoid bases are required for heat shock protein 

translation and that in the normal course of events, heat shock proteins play a crucial role in the 

recovery process. However, in the absence of heat shock proteins, protein aggregation or misfolded 

proteins could have an additional negative effect on translation. This latter effect could be 

circumvented by the overexpression of ubiquitin. It has been shown that the yeast Hsp70 

homologue Ssa is required for efficient translation by promoting the interaction of Pab1p with 

eIF4G. Depletion of Ssa led to reduced translation and reduction of eIF4G even in the absence of 

heat stress (Horton et al., 2001). Therefore, accumulation of unfolded proteins and/or aggregates 

due to an inefficient heat shock protein induction could lead to a titrating out of Ssa proteins and a 

block in translation initiation. Overexpression of ubiquitin could remove the unfolded/aggregated 
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proteins thus making the limiting amount of Ssa available for its function in translation. 

Sphingolipid synthesis may also play a role in the recovery process because eIF4G is depleted in 

lcb1-100 cells similarly to the reduction found in ypkts mutants and the Ypk kinases are part of a 

sphingoid base activated protein kinase cascade in yeast (Casamayor et al., 1999; Friant et al., 

2001). 

 

 

Sphingolipids as a general signal for heat stress 

 

The results presented here and previously demonstrate that the synthesis of sphingoid bases act as a 

general signal for the cellular responses to heat stress. In order to survive a heat stress, cells need to 

change their transcriptional program and the newly transcribed messages need to be processed and 

translated efficiently in order to change the developmental program of the cell (Preiss et al., 2003). 

During this time, the cell cycle is arrested in order to give the cell enough time to make these 

changes and to rearrange its actin cytoskeleton (Delley and Hall, 1999). In cells lacking 

sphingolipid synthesis, ribosomal proteins were found to be less down regulated and translation 

initiation failed to take place efficiently. In addition, cells deficient for sphingolipid synthesis fail to 

arrest in the cell cycle and cannot reorganize their actin cytoskeleton (Friant et al., 2000). The 

trigger for these responses is probably the increase in de novo sphingolipid biosynthesis, which is 

extremely fast and most likely controlled at the first committed step, serine palmitoyltransferase. 

Most studies of the regulation of this enzyme indicate that its activity is controlled by the 

availability of its substrates, serine and palmitoyl-CoA (Merrill et al., 1988; Messmer et al., 1989). 

One of the first events that ensues during a heat shock is a  reduction in the rate of protein 

synthesis, which logically would lead to an increase in available serine, and could provide an 

explanation for the reason why sphingoid bases have evolved to regulate the heat shock response. 

Serine palmitoyltransferase activity also increases upon heat shock in mammalian cells (Jenkins, 

2003). 

Sphingolipid synthesis therefore acts as a sensor for heat stress, coupling an essential 

metabolic process to a diverse set of cellular responses like transcription, translation, cell cycle 

progression, actin organization and endocytosis. To further understand the responses to stress in 

connection to sphingolipid synthesis is of particular interest for many fields in biology and 

medicine. Recently it was shown that dihydromotuporamine C (dhMotC), a compound in 

preclinical development that inhibits angiogenesis and metastasis targets the sphingolipid pathway 

(Baetz et al., 2004) and therapeutic radiation stimulates the synthesis of ceramide in tumors 

(Santana et al., 1996). Understanding the molecular functions of the sphingolipid synthesis 

intermediates would greatly facilitate our understanding of disease states and therapeutic methods. 
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MATERIALS AND METHODS 
 

Plasmids and Yeast Strains 

 

The yeast strains used in this study were wild type (RH3435, Mata his4 leu2 lys2 ura3 bar1), lcb1-

100 (RH3809, Mata his4 lcb1-100 leu2 ura3 bar1), lcb4,5 (RH4952, Mata his3 leu2 lcb4::HIS3 

lcb5::LEU2 pep4 bar1), pkhts (RH5410, Mata ade1 his2 leu2 ura3 trp1 pkh1ts pkh2::LEU2), 

lac1lag1ts (RH4859, Matα ade2 his3 leu2 trp1 ura3 can1 lag1::HIS3 lac1::ADE2 transformed with 

plag1-1TS::TRP1), eap1∆ (RH6178, Mata his3 his4 leu2 trp1 ura3 lys2 eap1::TRP1, this study), 

eap1∆lcb1-100 (RH6174, Mata his3 ura3 eap1∆ lcb1-100, this study), ypkts (YPT-40, Matα ypk1-

1ts:HIS3 ypk2::TRP1 ade2 his3 leu2 lys2 trp1 ura3, kindly provided by J. Thorner), mex67-5 

(Mata ade2 his3 leu2 trp1 ura3 mex67:HIS3 (pUN100-LEU2-mex67-5), kindly provided by F. 

Stutz) 

Previously described plasmids used in this study were: pZJHSE2-137 containing an HSE, 

HSE2 from SSA1 promoter fused to LacZ, the pUKC414 vector containing the HSP26 promoter 

fused to LacZ  (all described in (Friant et al., 2003)), plag1-1TS (Schorling et al., 2001), pAdh1-

Msn2-GFP (Gorner et al., 1998) and pGM18/17 carrying a 7xSTRE-LacZ fusion for genomic 

integration (Marchler et al., 1993).  

 

 
Polysome Analysis 

 

All sucrose gradient analyses were performed exactly according to methods described in (Foiani et 

al., 1991)  except that sucrose gradients were 5 to 50% (w/v) and sedimentation was performed for 

either 2h45 min at 39 krpm or for 3h20min at 35 krpm. Ribosomal subunit quantification was done 

in low Mg2+ gradients as described (Foiani et al., 1991). All gradients were analyzed using an ISCO 

UV-6 gradient collector and continuously monitored at A254.  

 

 
Western Blotting 

 

Whole-cell extracts were prepared from 2 OD600 of cells grown in synthetic media at 24°C and 

shifted to 37°C for the indicated time as published (Kushnirov, 2000). For the analysis of eIF4G 

stability, equal amounts of protein from the different extracts were resolved by SDS-PAGE and 

subjected to Western blotting a polyclonal antibody against eIF4G (kindly provided by M. 

Altmann). The blots were stripped and re-probed with polyclonal antibodies against Has1p (Emery 
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et al., 2004). Detection of β-galactosidase fusion constructs was performed using a monoclonal anti 

β-galactosidase antibody (Sigma). 

 

 

Fluorescent in situ Hybridization 

 

Fluorescent in situ hybridization and analysis of total mRNA export was performed exactly as 

described in (Cole et al., 2002). Analysis of HSP104 mRNA export was done using 10 ng of a 

mixture of oligos thj203 and thj205 modified with Cy3 following the protocol as described (Jensen 

et al., 2001). Samples were analyzed with a Zeiss Axioplan microscope using the appropriate filter 

sets. 

 

 
Reverse Transcription-PCR 

 

Total mRNA was extracted using the RNeasy Kit (Qiagen). 5 µg of RNA was then treated with the 

DNA-free kit (Ambion) to remove all traces of remaining DNA. Integrity of the isolated mRNA 

was assayed by agarose gel electrophoresis. 2 µg of mRNA were then analyzed using primes 

against lacZ mRNA (forward: 5'- CCCCGTTTACAGGGCGGCTTC, reverse: 5'- 

CCCCGTTTACAGGGCGGCTTC) and ACT1 (forward: 5'- CGGTTCTGGTATGTGTAA AGC, 

reverse: 5'- GGTGAACGATAGATGGACCAC) in a one step reverse transcription reaction 

(Access RT-PCR System, Promega). The reaction products were then analyzed on 1.5% agarose 

gels and visualized.  

 

 
Translation Rate Assay 

 

Translation rate measurements were adapted from (Deloche et al., 2004; Uesono and Toh, 2002). In 

brief: 2x108 cells at early log phase were collected and resuspended in 3ml of synthetic dextrose 

media supplemented with appropriate nutrients. 0.5 ml aliquots were shifted to 37°C and labeled 

using [35S]methionine mix (Easy Tag EXPRESS-[35S] mix from NEN) for five minutes up to the 

indicated time. Uptake and incorporation of [35S]methionine was stopped by bringing the solution 

to 10 mM each NaN3 and NaF. Cells were put on ice and split in half. One half was mixed with an 

equal amount of 20% ice cold TCA and incubated for one hour one ice. The other half was 

resuspended in 10 more volumes of ice cold double distilled water, filtered using GF/C filters and 

washed with additional ice cold double distilled water. TCA precipitates were filtered using GF/C 
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filters. The filtrate was washed using ice cold 10% TCA and twice using ice cold ethanol. All 

filters were dried and counted in a liquid scintillation counter using a Packard Scintillation Counter 

(Packard Instrument Company, USA) 

 

 
Liquid β-Galactosidase Assay 

 

A liquid β-galactosidase assay was performed as described previously with slight modifications 

(Miller, 1972). For each sample, time, OD420 and protein concentration, using a Bradford assay kit 

(BioRad), was determined. The values reported are the average of at least three independent 

measurements. 

 

 
Msn2 GFP 

 

Cells expressing MSN2-green fluorescent protein (GFP) were grown to logarithmic phase at 24°C, 

shifted to 37°C for 10 min and fixed for 2 h in phosphate-buffered saline-formaldehyde (3.7% final 

concentration) and analyzed essentially as described (Schmelzle et al., 2004). 

 

 

Viability Assay 

 

Mid log-phase cultures were grown in YPUAD at 24°C and an aliquot was shifted to 44°C. 

Samples were taken at the times indicated in duplicate, and diluted onto ice-cold YPUAD, and 

immediately plated onto YPUAD agar to assess cell viability (Martinez-Pastor et al., 1996). 

Viability was expressed as the percentage of viable cells relative to the initial colony-forming units 

before heat shock. The viability experiments were repeated twice, yielding similar results.  

 

 
UBI4 Suppression of the lcb1-100 Mutation 

 

The RH3809 (lcb1-100) strain carrying a temperature-sensitive allele of the LCB1 gene was 

transformed with Yeplac181-UBI. UBI4 rescued growth at 37°C only in high copy number as 

previously reported (Friant et al., 2003). 
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Heat Shock Protein Labeling 

 

Strains were grown exponentially in SD medium at 24°C, shifted for 10 min at 44°C to induce 

heat-shock protein synthesis and pulse labeled with [35S]methionine (Easy Tag EXPRESS-[35S] 

mix from NEN) for 10 min, followed by 1 min chase, prior to protein extraction. Proteins were 

resolved by SDS-PAGE analysis essentially as described previously (Miller et al., 1979). 

Dihydrosphingosine (DHS) isomers (Matreya Inc.) at 10 µM final concentration were added before 

shift.e 

 

 

IF2α Phosphorylation 

 

Whole-cell extracts were prepared from 2 OD600 of cells grown in synthetic media at 24°C and 

shifted to 37°C for the indicated time as published (Kushnirov, 2000). For the analysis of eIF2α 

phosphorylation equal amounts of protein from the different extracts were resolved by SDS-PAGE 

and subjected to Western blotting using monospecific antibodies for phosphorylated serine 51 in 

eIF2α (Research Genetics/RG0001). The blots were stripped and reprobed with polyclonal 

antibodies against total eIF2α (Cherkasova and Hinnebusch, 2003). 

 

 
Primer Extension 

 

Primer extension analysis was done as described (Beltrame and Tollervey, 1992) using anti U3 (5'-

CCAAGTTGGATTCAGTGGCTC) and reverse transcriptase from Stratagene (La Jolla, USA).  

 

 
Northern Blotting 

 

Mid log phase cell cultures grown in synthetic media were shifted to 37°C and were harvested at 

various times after the shift. Total RNA was prepared and 10 µg from each sample was subjected 

to 1.5% agarose gel electrophoresis and transferred to Nytran membranes as described (Eng and 

Warner, 1991) or alternatively on 8% polyacrylamide gels containing 8M Urea and stained using 

ethidium bromide.. The membranes were hybridized with different 32P-labeled DNA probes 

specific for mRNA such as RPL28, RPL7, RPL3 (Miyoshi et al., 2002; Tsuno et al., 2000). 32P-

labeled oligonucleotide probes for snoRNA U3 were described (Shirai et al., 2004). 
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 Sphingolipid synthesis and heat stress: 

To maintain and change the balance 
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ABSTRACT 
 

Eukaryotic cells have the constant demand to respond to their changing environment. In order to do 

so, cells would have an advantage in coupling their response to a metabolic pathway that is altered 

during such a change. One of the most drastic changes in the environment is a rapid increase in 

temperature, called heat stress. Research over the past years, mainly in the budding yeast 

Saccharomyces cerevisiae, made clear that sphingolipid synthesis is such a pathway, that is 

regulated during heat stress and tightly coupled with a variety of functions that are important for a 

cell to survive a heat stress. During heat stress, de novo sphingolipid synthesis is upregulated which 

increases thermotolerance and mutants defective in the biosynthesis of sphingolipids show loss of 

viability when confronted with heat stress. Roles for sphingolipid synthesis in heat stress were 

found in the regulation of the transient cell cycle arrest, protein breakdown and in the control of 

signaling pathways that govern endocytosis and cell integrity. New data now connect sphingolipid 

synthesis with additional essential processes such as transcription and translation.  
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DISCUSSION 
 

Sphingolipid synthesis and to keep the balance 

 

The knowledge about the role of sphingolipid synthesis during heat stress expanded 

continuously during the past years. This knowledge arose mainly from work in the budding yeast S. 

cerevisiae in which essentially all of the important enzymes and their products in the sphingolipid 

synthesis pathway have been described. The finding that yeast and mammalian cells upregulate the 

synthesis of sphingolipids during heat stress led to the proposal that this special class of lipids 

could govern specific functions during heat stress (reviewed in Dickson and Lester, 2002; Jenkins, 

2003). But sphingolipids do not simply need to be upregulated to make cells able to cope with heat, 

their amounts need to be regulated tightly. In unstressed cells, sphingolipid synthesis is in balance 

between synthesis and degradation. During heat stress, this balance is affected yielding primarily to 

a massive induction of sphingoid bases (Dickson et al., 1997; Ferguson-Yankey et al., 2002; 

Jenkins et al., 1997). The induction of sphingoid bases during heat stress is thought to be regulated 

at the first committed step, the serine palmitoyltransferase (SPT). In yeast and mammals, the serine 

palmitoyltransferase is encoded by to essential genes, LCB1 and LCB2. In yeast, additionally Tcs3p 

interacts with the SPT and is required for optimal activity of the SPT at higher temperatures (Gable 

et al., 2000; Monaghan et al., 2002). How exactly the SPT gets activated by a raise in temperature 

remains unclear. Most studies however indicate that its activity is controlled by the availability of 

serine and palmitoyl-CoA (Merrill et al., 1988; Messmer et al., 1989) L.A. Cowart and Y.A. 

Hannun, personal communication). 

 

The induction of the sphingoid bases (dihydrosphingosine (DHS) and phytosphingosine 

(PHS)) is the next crucial step. A lack in induction of the sphingoid bases during heat stress results 

in cell death, most drastically observed in the lcb1-100 mutant which is defective in SPT activity 

upon heat stress (Friant et al., 2003; Jenkins and Hannun, 2001; Zanolari et al., 2000). The loss of 

viability in lcb1-100 correlated with a lack of induction of the major heat shock proteins but could 

be suppressed by massive production of ubiquitin (Friant et al., 2003). This suggests that one of the 

major essential functions of sphingoid base synthesis is to control the expression of proteins 

involved in removal or refolding of denatured or aggregated proteins. Conversely, deletion of 

enzymes that lead to accumulation of DHS and PHS and their phosphates yielded strains that were 

hyper resistant to heat (Mandala et al., 1998; Mao et al., 1999; Skrzypek et al., 1999). An 

explanation for this phenomenon could be that sphingoid bases which accumulated before heat 

shock could be more rapidly made available for the translation of heat shock proteins, thereby 
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bypassing the limitation of serine at the first committed step (Meier et al., 2005). A massive 

increase in these metabolites however can also lead to a cell cycle arrest or death (Jenkins, 2003; 

Jenkins et al., 1997; Kim et al., 2000; Schorling et al., 2001; Zhang et al., 2001), indicating a 

requirement for readjusting the balance after heat stress. This readjustment, the down regulation of 

the sphingoid bases, is likely to be performed by Lcb4p and Lcb5p, which phosphorylate the 

sphingoid bases and make them accessible to the lyase Dpl1p (Saba et al., 1997). Another way for 

removal of the sphingoid bases as a signal would be their incorporation into ceramide. This is 

unlikely given that ceramides and sphingolipids themselves were assigned to have functions in 

signaling (see below). Furthermore, accumulation of ceramides and loss of ceramide synthesis lead 

to strong growth defects or cell death in yeast cells. Cells defective for ceramide synthesis 

additionally accumulate large levels of sphingoid bases (Guillas et al., 2001; Schorling et al., 2001; 

Vallee and Riezman, 2005). So far it is unclear if the lack of ceramides or the accumulation of 

sphingoid bases causes this phenotype. The same holds true for IPC synthesis. Cell treated with 

Aureobasidin A, an inhibitor of Aur1p dependent IPC synthesis, are also unable to grow. This is 

rather due to the accumulation of ceramide, or maybe sphingoid bases, than to the lack of IPC 

synthesis (Schorling et al., 2001).  

 

However, to control the balance between these metabolites is crucial (Figure 4-1). This not 

at last because they turned out to be potent signaling molecules, regulating cellular processes like 

transcription, the actin cytoskeleton and cell integrity, cell cycle progression, exocytosis, 

endocytosis and translation (Dickson and Lester, 2002; Jenkins, 2003; Meier et al., 2005).  

 

 
Signaling via sphingoid bases 

 

In yeast, two genes, PKH1 and PKH2, were found to be homologous to mammalian PDK1, 

the 3-phosphoinositide-dependent protein-kinase-1. PDK1 was shown to phosphorylate several 

other protein kinases including the serum and glucocorticoid-dependent kinase SGK (Kobayashi 

and Cohen, 1999), PKB (Chan et al., 1999) and PRK2 (Flynn et al., 2000). In agreement, the yeast 

PKH protein kinases were shown to phosphorylate three AGC family kinases: Ypk1/2p, the 

homologues of mammalian SGK (Casamayor et al., 1999), Pkc1p, the orthologue of mammalian 

PRK2 (Inagaki et al., 1999) and Sch9p, the orthologue of mammalian PKB (Fabrizio et al., 2001). 

The fact that yeast cells are unable to produce PI-3,4, 5-triphosphate and PI-3,4-bisphosphate and 

the lack of a PH domain that would bind to this lipids in PKH1 and PKH2 genes raised the question 

how this kinases get activated.  
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Initially it was observed that sphingosine can stimulate autophosphorylation of PDK1 

(King et al., 2000) and later that sphingoid base and overexpression of the yeast PKH kinases can 

suppress the endocytic phenotype of lcb1-100 cells (Friant et al., 2001; Friant et al., 2000; Zanolari 

et al., 2000). At about the same time it was described that overexpression of YPK1 conferred 

resistance to the SPT inhibitor myriocin (Sun et al., 2000) and that sphingoid base could activate 

the Pkh1/2p dependent phosphorylation of Pkc1p in vitro (Friant et al., 2001). Also the YPK 

kinases were shown to be required for endocytosis (deHart et al., 2002). Further analysis 

demonstrated the involvement of the Pkhs, Ypks and the Pkc1p kinase in cytoskeleton organization 

and cell integrity (Friant et al., 2000; Schmelzle et al., 2002; Zanolari et al., 2000). This altogether 

lead to the establishment of a sphingoid base dependent signaling cascade (Figure 4-2). 

Unfortunately, the targets of the YPKs and the interplay between those kinases remain unknown 

(Schmelzle et al., 2002). Also the involvement of these pathways in translation initiation has not 

been entirely uncovered. Translation initiation was defective in ypkts cells and lead to depletion of 

eIF4G after prolonged times at 37°C (Gelperin et al., 2002). Also lcb1-100 showed defects in 

translation initiation and depletion of eIF4G after 4 hours at the restrictive temperature. 

Interestingly, heat shock protein induction was severely affected in lcb1-100 cells (Friant et al., 

2003; Meier et al., 2005) but not in ypktts cells (Meier et al., 2005). This, together with the fact that 

a pkhts strain is only partially defective for translation initiation and heat shock protein induction 

indicates the existence of additional signaling modules downstream of sphingoid base.  

Only recently, two new proteins have been identified as targets of the PKH kinases. Pil1p 

and Lsp1p. Both proteins were shown to negatively regulate the activity of the PKH kinases, 

affecting Ypk1/p and Pck1p kinases (Zhang et al., 2004). The exact role of these proteins however 

still needs to be determined. Since Pil1p and Lsp1p are highly abundant in yeast cells (R.C. 

Dickson, personal communication) they might serve as phosphoacceptors of Pkh1/2p and maybe 

other kinases and titrate away the activity from other downstream target.  

Another interesting target of the PKH kinases is Sch9p. Sch9p was shown to be 

downstream of PKH signaling (Roelants et al., 2004) and to be phosphorylated by the PKH kinases 

in vitro (D. Mukhopadyay and H. Riezman, unpublished results). Deletion of Sch9p increased the 

chronologic life span of yeast cells and survival of extreme heat stress (Fabrizio et al., 2001; 

Roelants et al., 2004). How and if sphingoid bases regulate the activity of Sch9p remains to be 

determined.  

 

Other cellular functions were also shown to be dependent upon sphingoid base synthesis 

although the connection to any signaling pathway is so far missing. One if these functions is the 

transient arrest in cell cycle, which naturally occurs in wild type cells during heat stress (Johnston 

and Singer, 1980; Shin et al., 1987) but not in lcb1-100 cells. The relevant lipid for this was shown 
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to be sphingoid base (Jenkins et al., 1997). The importance to keep and turn the balance in 

sphingolipid synthesis is nicely illustrated in a series of experiments showing that de novo synthesis 

of sphingoid base is required to signal the transient cell cycle arrest. But deletion of LCB4 and 

LCB5 rendered cells unable to recover from heat stress induced cell cycle arrest (Jenkins and 

Hannun, 2001), indicating that phosphorylation of the sphingoid base is required to down regulate 

the sphingoid base mediated cell cycle arrest.  

Another cellular function assigned to the synthesis of sphingoid base is transcription. lcb1-

100 cells showed specific defects in the induction or reduction of several genes during heat stress 

compared to wild type cells (Cowart et al., 2003). For instance heat stress leads to a rapid but 

temporary repression of ribosomal protein gene transcription (Eisen et al., 1998). In contrast to this, 

ribosomal protein mRNA levels failed to be down regulated during heat stress in lcb1-100 cells 

(Cowart et al., 2003; Meier et al., 2005). It remains to be elucidated how sphingoid base synthesis 

regulates transcription during heat stress.  

 

 

Signaling via ceramides and complex sphingolipids 

 

Not only sphingoid bases, also ceramide and complex sphingolipids were involved in 

signaling events in yeast and mammalian cells. Ceramide mediates different cellular events, 

including apoptosis and stress response in mammalian cells (Hannun and Luberto, 2000; Obeid et 

al., 1993). In yeast, ceramides were implicated in aging because deletion (D'Mello N et al., 1994) 

or overxepression of LAG1 (Jiang et al., 2004) affects longevity. In contrast, deletion or 

overxpression of LAC1 had no effect (Jiang et al., 2004) on life span. So far it is not clear how 

LAG1 affects longevity and other concrete roles for ceramides during heat stress and in signaling in 

yeast are still missing (Meier et al., 2005).  

A complex sphingolipid that is likely to be involved in signaling is IPC. The IPC synthase 

members CSG1 and CSG2 were initially identified in  a screen for Ca2+ sensitive mutants (Beeler et 

al., 1994). Ca2+ sensitivity of csg2∆ cells could be suppressed by several mutations that lead to a 

reduction in the level of IPC-C (Zhao et al., 1994). A further screen uncovered mutants in the TOR 

signaling pathway to suppress the Ca2+ sensitivity in csg2 mutants (Beeler et al., 1998), namely 

tor2, mss4 and avo3 (Loewith et al., 2002). If or how mutations in TOR signaling reduce the 

amount of IPC-C and the exact mechanism of how the accumulation of IPC-C renders cells 

sensitive to Ca2+ remains to be revealed.  
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Outlook 

 

In wild type cells, flux through the sphingolipid synthesis pathway is in balance. A change 

in one step of this pathway can lead to a change in the amount of many individual metabolites. 

Since these metabolites have individual signaling functions it is obvious that a small change in this 

balance can elicit a variety of signals, with similar and opposing effects on the cell physiology. Of 

special importance will be to measure the overall lipid composition within a cell or a tissue at any 

state. This so called "Lipidomics" (Hannun and Obeid, 2002) will help to achieve a more detailed 

view of the role of sphingolipid metabolites and to understand many fundamental cellular 

processes. 
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Figure 4-1. Schematic overview of the cellular readouts governed by sphingolipid synthesis during heat 

stress. Sphingolipid synthesis is activated by heat stress, leading to an increase in DHS, PHS, their 

phosphates and well ceramide. Balancing the amount of those molecules is crucial for appropriate response to 

heat stress. P-EtNH2 , Phosphatidyl-ethanolamine.  
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Figure 4-2. Schematic overview of the sphingoid base activated signalling cascade. Heat stress leads to an 

increase in sphingoid base synthesis. The two sphingoid bases dihydrosphingosine (DHS) and 

phytosphingosine (PHS) activate the PKH1/2 kinase, leading to the phosphorylation of several downstream 

targets.  
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