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for the Cape Town AIDS Cohort and the Swiss HIV Cohort Studya

1Department of Social Medicine, University of Bristol, United Kingdom; 2Desmond Tutu HIV Research Centre, Institute of Infectious Disease
and Molecular Medicine, and 3Infectious Diseases Epidemiology Unit, School of Public Health and Family Medicine, University of Cape Town,
South Africa; 4Department of Epidemiology, Mailman School of Public Health, Columbia University, New York; and 5Data Centre, Swiss HIV Cohort
Study, Lausanne, 6Department of Infectious Diseases, University Hospital Inselspital, and 7Institute of Social and Preventive Medicine (ISPM),
University of Bern, Bern, and 8Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland

Background. Estimates of the decrease in CD4+ cell counts in untreated patients with human immunodeficiency
virus (HIV) infection are important for patient care and public health. We analyzed CD4+ cell count decreases in
the Cape Town AIDS Cohort and the Swiss HIV Cohort Study.

Methods. We used mixed-effects models and joint models that allowed for the correlation between CD4+ cell
count decreases and survival and stratified analyses by the initial cell count (50–199, 200–349, 350–499, and 500–
750 cells/mL). Results are presented as the mean decrease in CD4+ cell count with 95% confidence intervals (CIs)
during the first year after the initial CD4+ cell count.

Results. A total of 784 South African (629 nonwhite) and 2030 Swiss (218 nonwhite) patients with HIV
infection contributed 13,388 CD4+ cell counts. Decreases in CD4+ cell count were steeper in white patients, patients
with higher initial CD4+ cell counts, and older patients. Decreases ranged from a mean of 38 cells/mL (95% CI,
24–54 cells/mL) in nonwhite patients from the Swiss HIV Cohort Study 15–39 years of age with an initial CD4+

cell count of 200–349 cells/mL to a mean of 210 cells/mL (95% CI, 143–268 cells/mL) in white patients in the Cape
Town AIDS Cohort �40 years of age with an initial CD4+ cell count of 500–750 cells/mL.

Conclusions. Among both patients from Switzerland and patients from South Africa, CD4+ cell count decreases
were greater in white patients with HIV infection than they were in nonwhite patients with HIV infection.

An understanding of the factors that influence CD4+ T

cell counts and their decrease in untreated persons with

human immunodeficiency virus (HIV) infection is of

importance for clinical management of HIV disease (eg,

to inform guidelines on when to initiate antiretroviral

therapy [ART]). Such information is also important in

the context of public health, because the distribution

of CD4+ cell count decreases is required to model time
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to AIDS and ART eligibility and to project the course

of the epidemic and the need for treatment at the pop-

ulation level.

Although the decrease in CD4+ cell counts has been

extensively studied in cohorts from North America [1]

and Europe [2, 3], there is little data from patients with

estimated dates of seroconversion in sub-Saharan Africa

[4], where ART has become more widely available in

recent years [5]. Data from the Cape Town AIDS Co-

hort (CTAC), a cohort of seroprevalent patients from

Cape Town, South Africa, suggested that mean CD4+

cell count decreases ranged from 21 to 47 cells/mL per

year depending on the initial CD4+ cell count strata

[6]. Reported decreases for patients from industrialized

countries are steeper [1–3], but results may not be di-

rectly comparable, because the statistical methodology

used to model the trajectories varied. Also, decreases

may have been underestimated in the Cape Town co-

hort, because patients with steeper trajectories are more
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likely to die and to have fewer CD4+ cell counts than those

with less rapid decreases [7, 8]. We analyzed CD4+ cell count

decreases in the CTAC and the Swiss HIV Cohort Study (SHCS)

and assessed the effects of ethnicity, sex, age, and cohort on

the rate of CD4+ cell count decrease, taking into account the

correlation between survival and CD4+ cell count decrease.

METHODS

CTAC. The CTAC is an observational cohort of patients who

received care from public sector clinics affiliated with the Uni-

versity of Cape Town, South Africa. The cohort has been de-

scribed in detail elsewhere [9, 10]. The clinics mainly served

indigent communities, with a predominance of heterosexually

transmitted infection [10].

A total of 2086 HIV-infected patients were enrolled in the

cohort during the period 1984–2000. Demographic informa-

tion collected on the first visit included date of birth, sex,

marital status, ethnicity/ethnic background, sexual preference,

and HIV risk factors. HIV infection diagnosis was confirmed

by analysis of 2 separate blood specimens with enzyme-linked

immunosorbent assay and/or Western blot. Laboratory data

were collected approximately every 6 months and included

CD4+ cell count. Some patients with a diagnosis of AIDS or

with a CD4+ cell count !200 cells/mL received cotrimoxazole

prophylaxis after 1993 [11]. In addition, zidovudine mono-

therapy was used, although infrequently.

SHCS. Established in 1988, the SHCS is a national pro-

spective cohort study involving HIV-infected patients who were

followed up at the outpatient departments of 7 University and

Cantonal outpatient clinics in Basel, Bern, Geneva, Lausanne,

Zurich, Lugano, and St. Gallen, Switzerland. The study is de-

scribed in detail elsewhere [12, 13]. Information on demo-

graphic characteristics, mode of HIV acquisition, risk behav-

iors, clinical events, laboratory results, and treatments is col-

lected at registration and then at intervals of 6 months. CD4+

cell counts and other laboratory parameters are measured at

least every 3 months. Nonwhite patients who participate in the

SHCS are predominantly migrants from sub-Saharan Africa,

who are an increasingly important patient group in Switzerland

[14].

Patients. We included all patients �15 years of age (CTAC)

or �16 years of age (SHCS) with at least 2 CD4+ cell counts

obtained while not receiving ART and while they were ART

naive. Patients whose initial CD4+ cell count was 1750 cells/

mL were left censored up to the first cell count !750 cells/mL,

because their elevated CD4+ cell count might have been at-

tributable to recent seroconversion, and the CD4+ cell count

decreases might have been unrepresentative of the chronic

phase of the infection. Patients with initial CD4+ cell count

!50 cells/mL were also excluded, because the assumed line-

arity of decrease of CD4+ cell count on the log scale may not

hold below this low level. Finally, we excluded patients from

the SHCS whose transmission risk group was injection drug

use, because CTAC patients were infected through sexual

transmission.

Statistical methods. We used log transformed CD4+ cell

count to linearize the relationship with time and make the

distribution more symmetric. We considered using square root

transformed CD4+ cell count data, which is commonly used to

model trajectories [15]; however, models using the log-trans-

formed data were a better fit to the data than those using the

square root transformation, and effect estimates may be more

easily back transformed to the original scale. We measured time

from the first available CD4+ cell count !750 cells/mL and strat-

ified analyses by the initial cell count (50–199, 200–349, 350–

499, and 500–750 cells/mL) to allow for different slopes in CD4+

cell count decreases across CD4+ cell count strata. We excluded

CD4+ cell counts measured more than 4 years after the first

measurement, because models give more weight to patients

with many measurements, which might introduce bias, because

patients who survive longer than 4 years after the first mea-

surement are more likely than other patients to be slow pro-

gressors. We also excluded CD4+ cell counts obtained after ART

initiation and deaths that occurred 14 years after the initial

CD4+ cell count measurement.

We used mixed effects models with random effects for in-

tercept and slope for CD4+ cell count measurements, to allow

for the fitted curve to vary between individuals, and used fixed

effects for intercept and gradient terms for sex, age (!40 vs

�40 years of age), ethnicity (white vs nonwhite), and initial

CD4+ cell count strata. Univariable models were fitted for each

potential predictor of CD4+ cell count decrease. We then fitted

a multivariable model that mutually adjusted for all other var-

iables separately for each cohort. We used the multivariable

model to estimate the mean decrease in CD4+ cell count for

different groups of patients for each cohort. The distribution

of CD4+ cell count decreases was then estimated using the best

linear unbiased predictions of the random effects. The final

model was a joint model for CD4+ cell count trajectory and

survival time [8] that allowed for the correlation between the

CD4+ cell count intercept and slope parameters and the log

survival time. The CD4+ cell count model was the model de-

scribed above, and the survival model assumed a lognormal

distribution of survival times with frailty. Results are presented

as mean decreases in CD4+ cell counts during the first year

after the initial CD4+ cell count measurement with 95% con-

fidence intervals (CIs). These were calculated as the difference

between the midpoint of the initial CD4+ cell count strata and

the estimated value 1 year later, which is calculated as the

product of the exponentiated coefficients from the model and

the midpoint value (ie, the calculation uses the ratio of geo-

metric means on the back-transformed log CD4+ cell count).
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Table 1. Demographic and Clinical Characteristics of Study Patients from the Cape Town AIDS Cohort and the Swiss HIV Cohort
Study by Ethnicity

Variable

Cape Town AIDS Cohort Swiss HIV Cohort Study

White
(n p 155)

Nonwhite
(n p 629)

White
(n p 1812)

Nonwhite
(n p 218)

Proportion (%) of total patients in cohort 155/784 (19.8) 629/784 (81.2) 1812/2030 (89.3) 218/2030 (10.7)

Proportion (%) of CD4+ cell counts 606/2594 (23) 1988/2594 (77) 9624/10,795 (89) 1171/10,795 (11)

Patients who died during follow-up 37 (24) 120 (19) 183 (10) 6 (3)

Median no. of CD4+ cell counts per person (IQR) 5 (3–8) 3 (2–5) 8 (5–13) 9 (4–16)

Duration of follow-up, median years (IQR) 1.16 (0.50–2.09) 1.03 (0.57–1.95) 1.33 (0.53–2.45) 0.65 (0.27–1.73)

Age, median years (IQR) 33 (28–42) 31 (25–37) 33 (28–41) 29 (25–33)

Age �40 years 43 (28) 119 (19) 511 (28) 22 (10)

Female sex 14 (9) 364 (58) 379 (21) 139 (64)

CD4+ cell count at enrolmenta

Median cells/mL (IQR) 321 (188–495) 279 (174–423) 460 (310–620) 415 (279–580)

50–199 cells/mL 45 (29) 193 (31) 184 (10) 31 (14)

200–349 cells/mL 43 (28) 201 (32) 391 (22) 49 (22)

350–499 cells/mL 34 (22) 133 (21) 506 (28) 60 (28)

500–750 cells/mL 33 (21) 102 (16) 731 (40) 78 (36)

NOTE. Data are no. (%) of patients, unless otherwise indicated. IQR, interquartile range.
a Determined by first recorded CD4+ cell count !750 cells/mL.

The estimates of CD4+ cell count decrease are corrected for the

bias introduced by informative censoring attributable to death

and therefore are the estimates that would hypothetically apply

to the whole cohort in the absence of mortality. The compar-

isons of the CD4+ cell count decreases between the 2 cohorts

are therefore not affected by differences in mortality.

RESULTS

Of the 2086 patients enrolled in CTAC, 1766 had �2 visits,

and 784 (37.6%) of these had �2 eligible CD4+ cell count

measurements and were included in the study. CTAC patients

who were excluded from the study were similar with respect

to age, sex, ethnicity, sexual preference, or mean initial CD4+

cell count but had shorter mean follow-up time than did those

individuals included in the study (18.7 months vs 28.5 months).

In the SHCS, there were 7153 patients enrolled before 2000

who were not infected by means of injection drug use; 2030

patients (28.4%) had �2 eligible CD4+ cell counts and were

included in the study. SHCS patients who were excluded from

the study had lower initial median CD4+ cell counts (220 vs

450 cells/mL), were more likely to be heterosexual (45% vs 42%

of patients), and had shorter mean follow-up time than did

those who were included in the study (4.2 years vs 8.5 years),

but they were similar with respect to age and sex.

A total of 2814 patients and 13,388 CD4+ cell counts were

included in analyses. Table 1 shows demographic and clinical

characteristics of CTAC and SHCS patients by ethnicity. CTAC

had a high proportion of nonwhite patients (81.2%), whereas

in SHCS, the majority of patients were white (89.3%). In both

cohorts, the proportion of patients who were female was much

higher among nonwhite patients than it was among white pa-

tients. The median CD4+ cell count at enrolment was lower for

nonwhite patients than it was for white patients in both cohorts,

and it was lower in CTAC patients than it was in SHCS patients.

Patients in CTAC were more likely to have enrolled with a

CD4+ cell count !200 cells/mL than to have enrolled with a

count 1500 cells/mL, whereas the opposite was true for SHCS

patients.

Decreases in CD4+ cell count in the first year after the initial

CD4+ cell count measurement were similar in men and women,

but the trajectory of decrease was steeper in patients with higher

initial CD4+ cell counts, in white patients, and in older patients.

Therefore, we did not include a term for sex in the final model.

Table 2 shows decreases estimated from joint models converted

to the original CD4+ cell count scale for each cohort by ethnicity

and age group. Decreases ranged from 38 cells/mL (95% CI,

24–54 cells/mL) in nonwhite SHCS patients aged 15–39 years

with an initial CD4+ cell count of 200–349 cells/mL to 210 cells/

mL (95% CI, 143–268 cells/mL) in white CTAC patients �40

years of age with an initial CD4+ cell count of 500–750 cells/

mL. Figure 1 illustrates the distribution of the decrease in CD4+

cell count in 1 year by initial CD4+ cell count strata and eth-

nicity for both cohorts combined.

The model coefficients with 95% CIs on the log transformed

CD4+ cell count scale for gradient and intercept terms from

the unadjusted univariable models, the mutually adjusted full

multivariable models, and the joint models are available online

(Table 3). In the joint model, the adjusted estimate of survival

was longer in SHCS than in CTAC. In both cohorts, older

patients had shorter survival than did younger patients, and
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Table 2. Estimated 1-Year CD4+ Cell Count Decrease according to Baseline CD4+ Cell Count Stratum, Ethnicity, and Age in the Cape
Town AIDS Cohort and the Swiss HIV Cohort Study.

Age group, initial
CD4+ cell count

Cape Town AIDS Cohort Swiss HIV Cohort Study

White Nonwhite White Nonwhite

No. of
patients

CD4+ cell count
decrease,

cells/mL (95% CI)
No. of

patients

CD4+ cell count
decrease,

cells/mL (95% CI)
No. of

patients

CD4+ cell count
decrease,

cells/mL (95% CI)
No. of

patients

CD4+ cell count
decrease,

cells/mL (95% CI)

15–39 Years
50– 199 cells/mL 26 52 (42–60) 154 47 (40–54) 120 46 (40–51) 25 39 (31–46)
200–349 cells/mL 31 65 (38–89) 157 50 (31–69) 276 59 (50–67) 43 38 (24–54)
350–499 cells/mL 22 70 (21–110) 109 44 (8–81) 353 84 (70–94) 55 52 (29–74)
500–750 cells/mL 33 123 (59–180) 90 92 (36–143) 552 98 (87–113) 73 54 (18–87)

�40 Years
50–199 cells/mL 19 65 (55–73) 39 61 (52–68) 83 48 (42–54) 7 41 (33–49)
200–349 cells/mL 11 101 (75–124) 40 91 (67–112) 119 65 (54–75) 6 48 (29–63)
350–499 cells/mL 8 131 (84–172) 20 113 (70–151) 130 94 (81–107) 4 63 (37–91)
500–750 cells/mL 5 210 (143–268) 20 185 (118–242) 179 118 (98–138) 5 71 (30–108)

NOTE. Decreases from the within-group median value in the first year after the initial CD4+ cell count measurement are shown with 95% confidence intervals
(CIs). Results are from adjusted joint model taking survival time into account.

Figure 1. Distribution of CD4+ cell count decreases by initial CD4+ cell
count and ethnicity for the combined Cape Town AIDS Cohort and Swiss
HIV Cohort Study population. Box-and-whisker diagrams show the median
and quartiles (box with horizontal line) and the smallest and largest
decrease that are not outliers (upper and lower whiskers). Outliers are
defined as points 11.5 times the interquartile range above the 75th
percentile or below the 25th percentile. Non-w, nonwhite ethnicity; w,
white ethnicity.

there was a strong association of survival with initial CD4+ cell

count strata (the lower the CD4+ cell count strata, the shorter

the survival time). In the SHCS, nonwhite patients and female

patients survived longer than did white patients and male pa-

tients, but these associations were not seen in CTAC patients.

Compared with the standard mixed-effects multivariable

model, the joint model estimated CD4+ cell count decreases

that were less steep for the highest CD4+ cell count strata, in

which there is the best survival in the CTAC cohort. In the

SHCS, the estimates from both models were similar, probably

because of fewer deaths being recorded.

DISCUSSION

We compared the CD4+ cell count decreases in untreated pa-

tients in a European setting and an African setting and analyzed

2 cohorts from Cape Town, South Africa, and from Switzerland.

In both South Africa and Switzerland, nonwhite patients had

slower CD4+ cell count decreases than did white patients, and

older patients had faster decreases than did younger patients.

Furthermore, the CD4+ cell count decrease was more rapid in

patients with higher initial CD4+ cell counts than it was in

patients with lower counts.

We applied the same analytical approach to the data from

the CTAC and SHCS cohorts, and results are therefore directly

comparable. We have taken account of the demographic char-

acteristics of the cohorts by excluding injection drug users and

adjusting models for age and sex. We focused on estimating

short-term CD4+ cell count trajectories within 4 years of the

first measurement to reduce bias attributable to slow progres-

sors having more CD4+ cells than fast progressors. Finally, we

examined the effect of deaths on estimated CD4+ cell count

decrease and found that CD4+ cell count decreases in the higher

CD4+ cell count strata are over-estimated by the standard

mixed-effects model. The joint model takes into account sur-

vival time and deaths and adjusts for the steeper decrease of

CD4+ cell counts in very ill patients. A previous analysis of the

CTAC data by Holmes et al [6] estimated the CD4+ cell count

decrease to be 47.1 cells/mL per year for patients with initial

CD4+ cell counts 1500 cells/mL, 30.6 cells/mL for those with

CD4+ cell counts of 351–500 cells/mL, and 20.5 cells/mL for
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Table 3. Model Coefficients with 95% Confidence Intervals on
Log Transformed CD4+ Cell Count Scale for Gradient and Intercept
Terms and Survival Time for Mortality Model from (i) Unadjusted
Univariable Random Effects Models, (ii) Mutually Adjusted Mul-
tivariable Random Effects Model, and (iii) Joint Marker and Mor-
tality Random Effects Model (JMRE)

This table is available in its entirety
in the online version of

the Journal of Infectious Diseases

patients with counts of 201–350 cells/mL [6]. Our estimates are

somewhat higher. The different methodological approach may

at least partially account for the difference between our esti-

mates and those of Holmes et al [6].

Our study has a number of limitations. There were few white

patients in CTAC and few nonwhite patients in SHCS. The

study thus had limited power to examine whether the effect of

ethnicity differed between the 2 cohorts. Also, the follow-up

period was short for many patients in CTAC, and therefore,

there are few CD4+ cell count measurements for most patients.

A further problem with analyzing CD4+ cell count trajectories

in seroprevalent cohorts is the lack of data regarding the time

of infection, which would be the natural point in time to line

up the trajectories. This is, to some extent, overcome by strat-

ifying on initial CD4+ cell count; this reflects what the treating

physicians see in practice and are interested in—namely, esti-

mates of short-term CD4+ cell count decrease from the current

value. The validity of using first CD4+ cell count measurement

as a surrogate for time from infection has been questioned in

survival analyses from the Concerted Action on Seroconversion

to AIDS and Death in Europe (CASCADE) study, with time

to death as the outcome [16], which have shown variation in

CD4+ cell count set point associated with rate of subsequent

decrease in CD4+ cell count. Our analyses, which examined

CD4+ cell count decrease according to initial CD4+ cell count

strata, may thus be grouping together patients who have dif-

ferent lengths of time since infection. Furthermore, the mean

time since infection for each initial CD4+ cell count strata could

vary by cohort or ethnicity.

The data that are available from patients with well-docu-

mented seroconversion are limited, and they are particularly

limited in resource-limited settings. A recent collaborative anal-

ysis of time to ART treatment eligibility was based on just over

2000 individuals with seroconversion from 5 cohorts from sub-

Saharan Africa and Thailand [4]. In contrast, the CASCADE

collaboration of cohorts in Europe, Canada, and Australia is

based on 117,000 patients with documented seroconversion

[16]. There are also disadvantages to seroconverter cohorts,

which are generally not representative of the HIV-infected pop-

ulation but include many patients who were infected through

injection drug use or the transfusion of blood products. Also,

independently of the route of transmission, patients whose se-

roconversion was documented because they experienced symp-

tomatic illness are likely to have more-rapid CD4+ cell count

decreases and more-rapid clinical progression, compared with

those who were asymptomatic [17, 18].

Other studies involving seroprevalent cohorts that have com-

pared white patients with black patients have also found slower

decreases in the black group [19–21]. A recent analysis of the

SHCS showed similar differences in CD4+ cell count decreases

between patients of African and European descent, but de-

creases in general were less pronounced, probably because the

analysis was restricted to patients in Centers for Disease Control

and Prevention clinical stage A with at least 5 CD4+ cell counts

and did not take into account informative censoring attrib-

utable to death [21]. Interestingly, in CASCADE, nonwhite

ethnicity, compared with white ethnicity, was associated with

higher odds of spontaneously achieving undetectable viremia

and, in those who did have an undetectable viral load, with a

longer period of undetectable viremia [22]. Analyses of sero-

prevalent cohorts, such as the CTAC and SHCS, are helpful to

complement and extend the evidence that is available from

seroconverter cohorts. In particular, our results are relevant

when modeling time to ART eligibility and the need for ART

at the population level, as well as when estimating and pro-

jecting the future course of the AIDS epidemic [23].

Although the decrease in CD4+ cell count is a determinant

of the time from HIV infection to AIDS or death, other factors

include the mean CD4+ cell count before infection in the rel-

evant background population and the rapid decrease in CD4+

cell count during the weeks immediately after seroconversion.

A study of CD4+ cell count decreases in seroincident and se-

roprevalent individuals in Tanzania showed that the median

initial CD4+ cell count of the seroincident individuals who

experienced seroconversion within 1 year before the first CD4+

cell count measurement was ∼500 cells/mL, whereas the median

CD4+ cell count among infected individuals was ∼800 cells/mL,

which indicates a decrease of ∼300 cells/mL soon after sero-

conversion [24]. Reference ranges for CD4+ cell counts in peo-

ple without HIV infection vary across geographical regions, sex,

and age and racial groups [25, 26] and are also influenced by

lifestyle and biological factors, such as smoking or contraceptive

use [27]. A study involving Swiss blood donors found that the

reference range was higher for women than for men and that

is was lower at older ages [28]. African studies showed het-

erogeneity across populations, with, for example, markedly

lower CD4+ cell counts in Ethiopians [29], and they have also

found higher counts in women than in men [25, 30].

The association between ethnicity and CD4+ cell count de-

creases may have several explanations. Ethnicity reflects the

social and economic position of participants within their re-

spective cohorts. In CTAC, nonwhite participants tended to be
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of lower socioeconomic position than white participants be-

cause of historical limitations on socioeconomic opportunity.

In the SHCS, the nonwhite participants are migrants from sub-

Saharan Africa who are also generally of a lower socioeconomic

position than are white participants. In untreated patients, so-

cioeconomic position may affect CD4+ cell decreases through

increased exposure to opportunistic infections and resultant

immune activation and by influencing access and adherence to

prophylactic therapies and other relevant health behaviors. In

the Swiss cohort, but not in South Africa, the slower decrease

in CD4+ cell counts appears to have translated into better sur-

vival in nonwhite individuals than in white individuals. Of note,

once enrolled in the SHCS, access to ART and the prognosis

of nonwhite participants is equivalent to that for white partic-

ipants [14]. Socioeconomic conditions, health-seeking behav-

iors, access to health care, and exposure to pathogens are more

important determinants of mortality in South Africa than is

ethnicity [31].

It is also possible that our results relate to host genetic dif-

ferences. Nonwhite patients may have adapted to frequent in-

fectious diseases by selection over many generations for the

ability to survive despite chronic immune activation [20]. Of

note, the low immune activation phenotype is also found in

HIV-infected patients with slow disease progression in Euro-

pean countries [32] and in asymptomatic nonhuman African

primates infected with simian immunodeficiency viruses [33].

A recent study suggested that genetically determined divergent

Toll-like receptor signaling and interferon production distin-

guishes pathogenic (“immune activated”) from nonpathogenic

infection in the animal model [34]. In white individuals, genetic

polymorphisms explained ∼15% of the variation in viral load

set points during the asymptomatic period of infection [35].

Of note, a recent analysis of the SHCS found that the CD4+

cell count decrease was less rapid for patients of African descent

than it was for patients of European descent, independently of

whether patients were infected with HIV type 1 subtype B or

subtype C [21]. The slower CD4+ cell count decrease in patients

of African descent is therefore unlikely to be attributable to

infection with less virulent subtypes.

In conclusion, further studies on reference ranges of CD4+

cell counts and on rates of decreases in CD4+ cell counts in

different countries and populations are needed to inform the

development of guidelines for when to start ART, as well as to

improve projections of the epidemic, particularly in resource-

limited settings. The methodology used in the present study,

which addressed a number of issues not generally considered

in previous studies, might serve as a model for future studies.
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