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Abbreviations 

Ago1   S. pombe Argonaute 

ARC   Argonaute siRNA chaperone complex 

ATF/CREB  activating transcription factor/cAMP response element-binding 

BANC   bound by Atf1 under normal conditions 

bp   base pairs 

ChIP   chromatin immunoprecipitation 

CLRC   Clr4-Rik1-Cul4 complex 

CTD   C-terminal domain 

CTGS   co-transcriptional gene silencing 

DamID   DNA adenine methyltransferase identification 

DCL   Dicer-like 

Dcr1   S. pombe Dicer 

dsRBD   dsRNA binding domain 

dsRNA  double-stranded RNA 

endo-siRNA  endogenous siRNA 

HDAC   histone deacetylase 

HP1   heterochromatin protein 1 

LTR   long terminal repeat of retrotransposon 

miRNA  microRNA 

MVB   multivesicular body 

ncRNA  non-coding RNA 

NPC   nuclear pore complex 

NRDE   nuclear RNAi defective 
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nt   nucleotides 

PAZ   PIWI, Argonaute, and Zwille 

piRNA   Piwi-interacting RNA 

Piwi   P-element induced wimpy testis 

Pol II   RNA polymerase II 

Pol IV   RNA polymerase IV 

Pol V   RNA polymerase V 

pre-miRNA  precursor miRNA 

pri-miRNA  primary miRNA 

priRNAs  primal RNAs 

PTGS   post-transcriptional gene silencing 

qPCR   quantitative real-time PCR 

RdDM   RNA-directed DNA methylation 

Rdp1   S. pombe RNA-dependent RNA polymerase 

RDRC   RNA-directed RNA polymerase complex 

RdRP   RNA-dependent RNA polymerase 

RISC   RNA-induced silencing complex 

RITS   RNA-induced transcriptional silencing complex 

RNAi    RNA interference 

RNase III  ribonuclease III 

scnRNA  scan RNA 

SHREC  Snf2/Hdac-containing repressor complex 

siRNA   small interfering RNA 

snoRNA  small nucleolar RNA 
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snRNA  small nuclear RNA 

sRNA   small RNA 

TF   transcription factor 

Tf2   Tf2 LTR retrotransposon 

TGS   transcriptional gene silencing 

UTR   untranslated region 

WAGO  worm-specific AGO 

WT   wild type 

wtf   with Tf2-type LTRs 
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In the last decade or so, RNA interference (RNAi) has gained unanticipated recognition in the 

fields of RNA biology and gene regulation. It exists in a wide variety of eukaryotic organisms, 

and various forms of RNAi are involved in diverse biological processes. Furthermore, it has been 

extensively exploited as an experimental tool and has great potential in therapeutics. At its core, 

RNAi comprises small non-coding RNAs (sRNAs) in association with Argonaute proteins. The 

sRNAs are usually produced by cleavage of long double-stranded RNA by the endoribonuclease 

Dicer enzymes. The sRNAs guide Argonautes to target transcripts via complementary base-

pairing, resulting in repression that can occur at various stages of the RNA production process. 

Perhaps the most well-studied mechanisms of RNAi-mediated repression are those occurring in 

the cytoplasm at a post-transcriptional level, whereby the target transcript is subject to 

degradation and/or inhibition of translation. However, well-characterised examples of nuclear 

RNAi also exist, and usually involve RNAi-mediated chromatin modification such as DNA 

methylation in plants and histone methylation in protozoa and fungi. These modifications can 

contribute to heterochromatin formation and inhibit RNA production at the level of transcription. 

In addition to mediating post-transcriptional and transcriptional gene silencing, recent evidence 

from several organisms suggests that RNAi can mediate co-transcriptional gene silencing 

(CTGS), whereby physical association of the RNAi machinery with chromatin can promote 

degradation of the nascent transcripts and/or inhibit transcription. Such a mode of silencing was 

first proposed in the fission yeast Schizosaccharomyces pombe (S. pombe), where the RNAi 

machinery is thought to repress heterochromatic RNA at a transcriptional and co-transcriptional 

level. During my PhD, I focused on the association of the RNAi machinery with chromatin in S. 

pombe. Using a sensitive chromatin profiling technique called DamID, I was able to provide the 

first direct evidence that S. pombe Dicer functions in cis on chromatin. Secondly, I uncovered a 

novel role for RNAi in gene regulation outside of the well-studied heterochromatic regions. The 

evidence presented here shows that the S. pombe RNAi machinery is concentrated at nuclear 

pores where it acts to co-transcriptionally degrade euchromatic RNAs, particularly those from 

retrotransposon long-terminal repeats, non-coding RNAs and stress response genes bound by the 

activating transcription factor Atf1. This may keep such features ‘poised’ for expression, 

allowing more rapid upregulation under inducing conditions. In addition, I provide evidence that 

Atf1 has a role in tethering its target genes to nuclear pores and that RNAi-mediated CTGS is 
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regulated by temperature. Of particular note, Argonaute is not required for targeting the other 

RNAi components to euchromatin, suggesting that in this case guidance by the sRNA is not 

responsible for recognition of substrates. I discuss the implications of these results, particularly 

in the context of RNAi in other eukaryotes. 
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RNA interference 
 

RNA interference (RNAi) was first recognized as a double-stranded RNA (dsRNA)-mediated 

silencing process in C. elegans by Fire and Mello in 1998 (Fire et al., 1998). Soon after this 

landmark discovery, it was shown in plants that small RNAs (sRNAs) are the guides responsible 

for silencing (Hamilton and Baulcombe, 1999). Apart from their short length (~20-30 

nucleotides (nt)), a defining feature of small silencing RNAs is their association with members of 

the Argonaute family of effector proteins (Hammond et al., 2001). The sRNAs guide the 

Argonautes to RNA targets with complementarity, usually inducing silencing (Figure I). Therein 

lies the beauty of RNAi – the sRNAs are long enough to provide the sequence complexity 

needed to guide proteins with exquisite specificity to target RNAs. RNA-mediated targeting of 

RNA was previously thought to be limited to small nuclear RNAs (snRNAs) and small nucleolar 

RNAs (snoRNAs), which use base complementarity for recognition of RNA substrates in the 

nucleus, bringing in associated protein partners that mediate RNA splicing and modification, 

respectively. The discovery of RNAi demonstrated that nature has taken advantage of sRNA-

guided targeting in diverse contexts – there may even be an evolutionary link between these 

sRNA-based pathways. Along with the identification of longer functional non-coding RNAs 

(ncRNAs), the discovery of RNAi has overturned the traditional perception of RNA as a 

generally passive messenger between DNA and protein, and placed RNA at the centre of 

eukaryotic gene regulation. 

 

 
 

My PhD thesis focuses on the role of RNAi in the nucleus of the fission yeast 

Schizosaccharomyces pombe (S. pombe). S. pombe contains single copies of the major RNAi 

components Argonaute (Ago1), Dicer (Dcr1), and the RNA-dependent RNA polymerase (Rdp1). 

Since these are key factors in many RNAi pathways and I have focused particularly on them 

during my PhD, I will introduce them in some detail below. Broadly, there are three types of 

small silencing RNAs in eukaryotes: small interfering RNAs (siRNAs), microRNAs (miRNAs), 

target RNA
Argonaute

small RNA

Figure I An Argonaute protein bound to 
a small RNA forms the minimal RNA-
induced silencing complex (RISC), but 
often associates with accessory proteins 
to mediate silencing.  
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and Piwi-interacting RNAs (piRNAs). I will introduce these briefly – there are several recent 

good reviews that discuss each of these pathways in detail (Carthew and Sontheimer, 2009; 

Ghildiyal and Zamore, 2009; Siomi et al., 2011). I will then follow this with an in-depth 

introduction to the RNAi pathway in S. pombe. 

 

Argonaute 
 

Argonautes, the key effector proteins in RNAi pathways, consist of four domains. Crystal 

structures, initially from archaea and bacteria, revealed a bilobed structure, with one lobe 

consisting of the PAZ (PIWI, Argonaute, and Zwille) and N-terminal (N) domains and the other 

consisting of the PIWI and middle (MID) domains (Ma et al., 2005; Song et al., 2004; Wang et 

al., 2008b; Wang et al., 2008c; Yuan et al., 2005). The PAZ domain binds the 3' end of the guide 

RNA, while the MID domain provides a binding pocket for the 5' phosphate. A central cleft 

allows binding of guide and target RNAs. The PIWI domain adopts an RNase H fold, which 

contains a catalytic triad (DDE/H motif) that can catalyze guide strand-mediated cleavage of the 

target RNA (‘slicing’). However, not all Argonautes are cleavage competent – some recruit other 

factors necessary for silencing. S. pombe Ago1 does have slicing activity, which is required for 

siRNA maturation (Buker et al., 2007). 

 

Recently, the first full-length eukaryotic Argonaute crystal structures were reported, including 

that of human Ago2 (Elkayam et al., 2012; Nakanishi et al., 2012; Schirle and MacRae, 2012) 

(Figure II). While the overall architecture and the active site structure are conserved with 

prokaryotes, there are many extended loops and additional secondary structures specific to the 

eukaryotic Argonautes. Since these insertions are external, they are likely to generate surfaces 

for interactions with Ago-binding proteins. Although the biological functions of prokaryotic 

Argonautes are unknown, the conservation of structure implies that all kingdoms of life most 

likely use this enzyme in fundamentally the same way. 
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Most organisms have multiple copies of Argonaute, which can be specialized for different 

functions. For example, of the 5 Argonaute members in Drosophila melanogaster the miRNA 

pathway predominantly uses AGO1, whereas the siRNA pathway uses AGO2 (Okamura et al., 

2004). There are eight, ten and 27 Argonaute paralogues in humans, Arabidopsis thaliana, and 

C. elegans, respectively.  The Argonaute family of proteins can be split into three subfamilies. 

Those most similar to Arabidopsis Argonaute-1, the Ago clade, are usually involved in siRNA- 

and miRNA-mediated pathways and are fairly ubiquitously expressed. Members of the Piwi (P-

element induced wimpy testis) clade associate with piRNAs and are primarily expressed in the 

germline. The remaining Argonaute members have been identified so far only in C. elegans, and 

are therefore referred to as worm-specific AGOs, or WAGOs. 

 

Dicer 
 

Dicer proteins are dsRNA-specific ribonucleases of the RNase III family. They usually consist of 

a PAZ domain, followed by two RNase III domains and a dsRNA binding domain (dsRBD) 

(Figure II). The N-terminus often contains an RNA helicase domain, which may be important for 

processivity on long dsRNA substrates (Welker et al., 2011). The helicase/ATPase activity of S. 

pombe Dicer is required for siRNA generation in vitro and in vivo (Colmenares et al., 2007). The 

two RNase III domains of Dicer enzymes cleave dsRNA on opposite strands to produce a 

staggered duplex of ~21-25 nt, with 5' phosphates, 3' hydroxyl groups, and 2-nt 3' overhangs. 

The distance between the PAZ domain, which anchors the end of the substrate, and the RNase III 

(~1200 residues) and a resolution limit (2.8 Å)
that are at a complexity level exceeding more
than 90% of entries in the current PDB. Although
difficulties may arise in obtaining sufficient num-
bers of adequate crystals to support multicrystal
determinations, advantages will accrue in being
liberated from the need for derivatization or
selenomethionine incorporation.
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The Crystal Structure of
Human Argonaute2
Nicole T. Schirle and Ian J. MacRae*

Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate
RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2)
reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6
of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base
pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function
in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding
pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182
(GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches
for harnessing the untapped therapeutic potential of RNA silencing in humans.

RNA silencing processes, such as the
RNA interference (RNAi) andmicroRNA
(miRNA) pathways, are mediated by

a specialized family of RNA-binding proteins
namedArgonaute. Argonaute proteins bind small
regulatory RNAs [21 to 23 nucleotides (nt)] and
use the encoded sequence information to locate
and silence complementary target RNAs. Targeted
RNAs are silenced either by direct cleavage via
the endonucleolytic “slicing” reaction catalyzed
by someArgonaute proteins (1, 2) or byArgonaute-
mediated recruitment of additional silencing factors
(3–5). Structural studies of prokaryotic homologs,
which use DNA guides to recognize and cleave
target oligonucleotides, revealed a bilobed archi-
tecture composed of four globular domains (N,
PAZ, MID, and PIWI) connected through two
structured linker domains (L1 and L2) (6). The two
lobes form the walls of a central cleft that cradles
guide DNAs and complementary targets (7–9).
An ribonuclease H-like active site in the PIWI

domain catalyzes the cleavage of target nucleic
acids (6, 10, 11). Although structures of isolated
PAZ, MID, and MID-PIWI domains from several
eukaryotic Argonaute proteins have been reported

(12–18), the extent to which the structures and
mechanisms of full-length Argonautes resemble
those of their prokaryotic cousins is not known.

We determined the crystal structure of full-
length human Argonaute2 (Ago2) to a resolu-
tion of 2.3 Å (table S1). Ago2 has a bilobed
structure reminiscent of that seen in prokaryotes
(Fig. 1 and fig. S1). However, the lobes of Ago2
do no align with the corresponding lobes derived
from prokaryotic structures, revealing large
structural differences between Argonautes from
different kingdoms of life (Fig. 2A and fig. S2).
In contrast, the individual domains of Ago2 su-
perimpose reasonably well with their prokaryotic
counterparts (Fig. 2B). Therefore, the major ar-
chitectural differences between prokaryotic and
eukaryotic Argonautes appear mainly in the rel-
ative positions of well-conserved core domain
structures (figs. S3 and S4). The core domains in
Ago2 also have extended loops and additional
secondary structures, not present in bacteria, that

Department of Molecular Biology, The Scripps Research In-
stitute, La Jolla, CA 92037, USA.

*To whom correspondence should be addressed. E-mail:
macrae@scripps.edu

Fig. 1. Structure of human Ago2. (A) Schematic of the Ago2 primary sequence. (B) Front and top views of
Ago2 with the N (purple), PAZ (navy), MID (green), and PIWI (gray) domains and linkers L1 (teal) and L2
(blue). A generic guide RNA (red) can be traced for nucleotides 1 to 8 and 21. Tryptophan molecules
(orange) bind to tandem hydrophobic pockets in the PIWI domain.
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(~1200 residues) and a resolution limit (2.8 Å)
that are at a complexity level exceeding more
than 90% of entries in the current PDB. Although
difficulties may arise in obtaining sufficient num-
bers of adequate crystals to support multicrystal
determinations, advantages will accrue in being
liberated from the need for derivatization or
selenomethionine incorporation.
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The Crystal Structure of
Human Argonaute2
Nicole T. Schirle and Ian J. MacRae*

Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate
RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2)
reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6
of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base
pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function
in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding
pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182
(GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches
for harnessing the untapped therapeutic potential of RNA silencing in humans.

RNA silencing processes, such as the
RNA interference (RNAi) andmicroRNA
(miRNA) pathways, are mediated by

a specialized family of RNA-binding proteins
namedArgonaute. Argonaute proteins bind small
regulatory RNAs [21 to 23 nucleotides (nt)] and
use the encoded sequence information to locate
and silence complementary target RNAs. Targeted
RNAs are silenced either by direct cleavage via
the endonucleolytic “slicing” reaction catalyzed
by someArgonaute proteins (1, 2) or byArgonaute-
mediated recruitment of additional silencing factors
(3–5). Structural studies of prokaryotic homologs,
which use DNA guides to recognize and cleave
target oligonucleotides, revealed a bilobed archi-
tecture composed of four globular domains (N,
PAZ, MID, and PIWI) connected through two
structured linker domains (L1 and L2) (6). The two
lobes form the walls of a central cleft that cradles
guide DNAs and complementary targets (7–9).
An ribonuclease H-like active site in the PIWI

domain catalyzes the cleavage of target nucleic
acids (6, 10, 11). Although structures of isolated
PAZ, MID, and MID-PIWI domains from several
eukaryotic Argonaute proteins have been reported

(12–18), the extent to which the structures and
mechanisms of full-length Argonautes resemble
those of their prokaryotic cousins is not known.

We determined the crystal structure of full-
length human Argonaute2 (Ago2) to a resolu-
tion of 2.3 Å (table S1). Ago2 has a bilobed
structure reminiscent of that seen in prokaryotes
(Fig. 1 and fig. S1). However, the lobes of Ago2
do no align with the corresponding lobes derived
from prokaryotic structures, revealing large
structural differences between Argonautes from
different kingdoms of life (Fig. 2A and fig. S2).
In contrast, the individual domains of Ago2 su-
perimpose reasonably well with their prokaryotic
counterparts (Fig. 2B). Therefore, the major ar-
chitectural differences between prokaryotic and
eukaryotic Argonautes appear mainly in the rel-
ative positions of well-conserved core domain
structures (figs. S3 and S4). The core domains in
Ago2 also have extended loops and additional
secondary structures, not present in bacteria, that

Department of Molecular Biology, The Scripps Research In-
stitute, La Jolla, CA 92037, USA.

*To whom correspondence should be addressed. E-mail:
macrae@scripps.edu

Fig. 1. Structure of human Ago2. (A) Schematic of the Ago2 primary sequence. (B) Front and top views of
Ago2 with the N (purple), PAZ (navy), MID (green), and PIWI (gray) domains and linkers L1 (teal) and L2
(blue). A generic guide RNA (red) can be traced for nucleotides 1 to 8 and 21. Tryptophan molecules
(orange) bind to tandem hydrophobic pockets in the PIWI domain.
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Figure II 2D domain structure and 3D 
crystal structure of human Ago2. L1 and 
L2 are linkers. A generic guide RNA 
(red) can be traced for nucleotides 1-8 
and 21. Tryptophan molecules (orange) 
bind to pockets in the PIWI domain, 
which may mediate interactions with 
GW proteins. Adapted from (Schirle 
and MacRae, 2012).  
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domains is thought to act as a ruler to produce sRNAs of characteristic lengths (Macrae et al., 

2006). S. pombe Dcr1 has an unusual PAZ domain, which may explain the size variability of 

fission yeast siRNAs compared with other organisms. Interestingly, although S. cerevisiae lacks 

both Dicer and Argonaute homologues, Dicer enzymes were recently identified in some budding 

yeasts (Drinnenberg et al., 2009). These only have one RNase III domain and are thought to act 

as dimers, binding cooperatively along the dsRNA substrate such that the distance between 

consecutive active sites determines the length of the siRNAs (Weinberg et al., 2011). So far, 

attempts to crystallize the large and complicated metazoan Dicers have failed, and structural 

insights into the overall architecture have come from electron microscopy studies (Lau et al., 

2012) (Figure III).  

 

 
 

 
 

Some organisms, such as mammals and C. elegans, possess only one Dicer enzyme, which can 

produce functionally different sRNAs. Others, including Drosophila and plants, have several 

Dicers, which have become specialized for different RNAi pathways. For example, Drosophila 

DCR1 produces miRNAs, whereas DCR2 produces siRNAs (Lee et al., 2004b). In Arabidopsis, 

which has four Dicer-like (DCL) proteins, DCL1 produces miRNAs, and DCL2 makes viral 

siRNAs (Xie et al., 2004).  
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Supplementary Fig. 1). Eight independent 3D reconstructions of 
the tagged Dicer were generated by the random conical tilt (RCT) 
method, and the L-shaped portion of each reconstruction was aligned 
with the refined Dicer structure. The point of streptavidin attach-
ment (estimated as the central point in the bridging region between 
Dicer and streptavidin densities) was then mapped onto the refined 
structure. The estimated attachment points lie within a 10-Å radius 
located at the front of the head region (Fig. 2b), revealing that the 
PAZ domain—and thus the site of dsRNA end recognition—is in the 
very top of the molecule, in the front of Dicer’s head.

Platform domain is tightly associated with PAZ domain
Upon recognition of dsRNA by PAZ, Dicer then cleaves the substrate ~22 nt  
from the open helical end. In the simple Dicer enzyme from the protozoan 
G. lamblia, a ‘platform’ domain separates PAZ from the RNase III catalytic 
site by a distance of ~70 Å, thereby providing the structural basis for pro-
duction of RNAs 25–27 nt in length32. Human Dicer has been proposed 
to use a similar measuring mechanism26, although its products are 4 nt 
shorter. We identified the position of the platform domain in the human 
Dicer EM map by inserting the AviTag between residues Asp886 and  
Ser887. For platform-labeled particles, streptavidin density extended from 
the back of the head in 2D class averages (Fig. 2c and Supplementary 
Fig. 1), and 3D reconstructions from eight class averages mapped the 
point of attachment to a region of radius 10 Å in the back of the Dicer 
head (Fig. 2d). The position of the platform suggests that both PAZ and 
the platform are tightly associated, as in the case of G. lamblia Dicer.

dsRNA cleavage by RNase III domains occurs in body
It has previously been proposed that a fixed spacing between the PAZ and 
RNase III domains in human Dicer could lead to cleavage of dsRNA ~22 nt  
from the open helical end26. To test this model directly, we tagged the 

RNase IIIb domain with streptavidin (residues  
Asn1780–Glu1800 were replaced with the 
AviTag). Streptavidin density was apparent in 
2D class averages and extended from the body 
of the L, approximately 55 Å from the PAZ 
domain (Fig. 2e and Supplementary Fig. 1). 
The tagged RNase IIIb loop appears to be more 
mobile than the loops labeled in the PAZ and 
platform domains, as the estimated points of 

streptavidin attachment for eight different RCT models lie within a 20-Å 
radius, with the labeled loop extending out from the right side of the body 
(Fig. 2f). Consistent with this arrangement, a reconstruction of Dicer 
lacking the C-terminal double-stranded RNA-binding domain, which 
lies adjacent to the tagged loop in the RNase IIIb domain12, is missing 
density from the right side of the body (Supplementary Fig. 2).

Human Dicer core rearranged relative to G. lamblia Dicer
Based on the positions of the streptavidin tags, we docked the platform-
PAZ module and RNase III domains from the G. lamblia Dicer crystal 
structure into the EM map of human Dicer (Fig. 2g). Although the 
head easily accommodated the platform-PAZ module, the RNase III 
domains of G. lamblia Dicer could not be fit into the body of the EM 
map without a major rearrangement relative to the platform (Fig. 3).  
Rearranging these domains established a 3D model for the architecture 
of the human Dicer nuclease core. Conceptually, the core of the human 
enzyme is similar to G. lamblia Dicer; both have PAZ and RNase III 
domains separated by a specific distance. However, relative to their 
PAZ domains, the RNase III active sites of human and G. lamblia Dicer 
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Figure 1 The conserved domain structure 
of metazoan Dicer. (a) Schematic of the 2D 
domain structure of human Dicer with crystal 
structures homologous to each module. The 
“?” indicates the major unannotated region. 
Structures are derived from PDB 4A36 (Ref. 38),  
2KOU39, 2FFL40 and 3C4T41. (b) The EM map  
of Dicer (EMD-1646), shown in three orientations.
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Figure 2 Mapping the nuclease core of human Dicer. (a–f) The 2D 
class averages and estimated attachment sites. The 2D class averages 
of Dicer (a,c,e) are labeled with streptavidin in the PAZ, platform or 
RNase IIIb domain (left) and corresponding RCT reconstruction (yellow) 
superimposed on the unlabeled Dicer map (gray). Streptavidin (red) 
is shown docked into the additional density. Estimated streptavidin 
attachment sites are indicated with a magenta, cyan or orange sphere. 
Estimated streptavidin attachment sites from eight RCT reconstructions 
on the refined Dicer map are also shown (b,d,f). (g) Crystal structures of 
the PAZ-platform and RNase III modules (PDB 2FFL40) docked into the 
EM map of Dicer, based on streptavidin-labeling results. Purple spheres 
indicate the positions of labeled sites in the crystal structures.
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Dicer architecture is conserved
The function of the Dicer helicase has been enigmatic: it has been 
suggested to contribute to substrate binding in human Dicer35,36, 
facilitate pre-miRNA recognition in D. melanogaster Dcr-1 (ref. 24), 
and catalyze translocation on long dsRNA substrates in C. elegans 

Dcr-1 and D. melanogaster Dcr-2 (refs. 23,25). Considering the diver-
gent functions reported for the Dicer helicase, we wondered how the 
architecture of Dicer varies between different species. To explore this 
issue, we extended our EM analysis to a sample of D. melanogaster 
Dcr-2. Dcr-2 is one of the best studied Dicer enzymes and differs from 
human Dicer in that it requires ATP to cleave dsRNA and is believed 
to couple ATP hydrolysis to translocation on long dsRNA23,37. The 
2D class averages of Dcr-2 contained many L-shaped particles simi-
lar to those observed in the class averages of human Dicer (Fig. 6a). 
Furthermore, projection-matching using Dcr-2 particles led to an 
L-shaped reconstruction with dimensions markedly similar to those 
of the human enzyme (Fig. 6b). We therefore conclude that despite 
clear functional differences among various forms of the enzyme, the 
overall three-dimensional architecture of Dicer is well conserved.

DISCUSSION
The structural analysis of Dicer presented here allows reconciliation 
of the seemly disparate functions of the helicase observed in differ-
ent Dicer homologs. Adjacent to the RNase III domains, the helicase  
is positioned to bind the stem-loops of pre-miRNAs (Fig. 7a,b). 
This explains how the helicase contributes to pre-miRNA bind-
ing in human Dicer36 and selective processing of pre-miRNAs in  
D. melanogaster Dcr-1 (ref. 24). For processive Dicers23,25 the helicase 
could use ATP hydrolysis to translocate dsRNA into the nuclease core 
of the enzyme. The helicase is positioned to remain bound to long 
dsRNAs after cleavage and formation of each siRNA product, provid-
ing a structural basis for processivity on long substrates (Fig. 7c).

The previously proposed structural model for Dicer suggested the 
opposite orientation for the nuclease core, with the PAZ domain in the 
body, adjacent to the helicase, and RNase III domains in the head17–20. 
This model implies that the ends of dsRNA substrates bind within the 
body and extend out past the head, never directly interacting with the 
helicase. It has thus been difficult to explain how the helicase could 
facilitate processivity or substrate binding if it is positioned on the 
opposite side of the molecule from where the dsRNA feeds in. We 
have now experimentally determined the 3D positions of the PAZ, 
RNase III and helicase domains, allowing us to exclude this model and 
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Figure 5 Conformational states of the Dicer helicase. (a) The 2D 
class averages and corresponding RCT reconstructions of two distinct 
conformations of human Dicer observed when stained in the presence 
of a dsRNA substrate. (b) Alignment of the RCT maps showing the 
conformational differences between the two reconstructions. (c) Docking 
RIG-I into the base of the L reveals that the two observed conformations 
of the Dicer helicase resemble RIG-I in its apo (PDB 4A2P38) and dsRNA-
bound forms (PDB 4A36, ref. 38). (d) Overlay of the EM density maps 
of each helicase conformation shows a large scale rearrangement similar 
to that observed in the RIG-I crystal structures. The arrows indicate the 
direction of movement in the proposed conformational change.
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Figure 6 Comparison of human and D. melanogaster Dicer structures.  
(a) Class averages of corresponding views of D. melanogaster (Dm) Dicer2 
and human (Hs) Dicer particles. (b) Reconstructions of D. melanogaster 
Dicer2 and human Dicer reveal that the two proteins share a common 
overall shape and many 3D features.
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Figure 7 Architecture and mechanism of Dicer. (a) Segmented map of 
human Dicer with crystal structures of homologous domains docked.  
(b) Model for pre-miRNA recognition. A pre-miRNA hairpin is modeled 
into the proposed binding channel of Dicer, with the stem-loop fit in the 
RNA-binding cleft of the helicase. (c) Schematic for processive dicing. 
The helicase translocates dsRNA into the nuclease core (1). The PAZ 
domain (purple) recognizes the dsRNA end, positioning RNase III (orange) 
for cleavage (2). The siRNA product is released while the dsRNA substrate 
remains bound to the helicase (3). Docked crystal structures were the 
same as used in Figure 1.

Figure III 2D domain structure and 
3D architecture of human Dicer based 
on electron microscopy. HEL1, HEL2i 
and HEL2 are the predicted globular 
domains of the helicase. DUF283 = 
domain of unknown function. The ‘?’ 
indicates a major unannotated region. 
Adapted from (Lau et al., 2012).  
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RNA-dependent RNA polymerase 
 

In some organisms, RNA-dependent RNA polymerases (RdRPs) are required for amplification 

of RNAi responses, producing ‘secondary’ siRNAs. So far, RdRPs have been identified in 

plants, fungi, protozoa and nematodes. In C. elegans, secondary siRNAs are required for the 

inheritance of RNAi effects (Grishok et al., 2000). In addition, RdRPs are responsible for the 

phenomenon of ‘transitivity’ observed in plants and worms, whereby primary siRNAs targeted 

against one part of a gene promote the production of secondary siRNAs homologous to regions 

3' or 5' of the initial target (Sijen et al., 2001; Vaistij et al., 2002). The main route for secondary 

siRNA production in plants is thought to be unprimed 5' to 3' RNA synthesis starting at the 3' 

end of target transcripts, followed by Dicer cleavage (Figure IVa). Most C. elegans secondary 

siRNAs, called 22G-RNAs due to their size and 5'G bias, have 5' triphosphates and are 

predominantly complementary to the target RNA. This suggests that they are produced as 

individual products in a primer-independent manner on the mRNA template, rather than being 

Dicer products (Pak and Fire, 2007; Sijen et al., 2007) (Figure IVb). The 22G-RNAs are usually 

loaded onto members of the WAGO group (Yigit et al., 2006). 

 

 

Amplification in plants

DCL

AGO

RdRP

RdRP
DCL4

AGO AGO

Amplification in C. elegans
Long dsRNA Long dsRNA

DCR-1
Primary siRNAs Primary siRNAs

Target mRNA Target mRNA RDE-1

RdRP

RdRP
RdRP

WAGO
Secondary siRNAs Secondary siRNAs(22G-RNAs)

Primerindependentsynthesis

Target cleavage followedby RdRP recruitment RdRP recruitment
RDE-1

WAGO WAGOWAGO

a b
Figure IV Secondary siRNA 
production in plants and C. 
elegans. (a) In plants, a 
primary siRNA guides target 
cleavage, which allows RNA 
synthesis from the 3' end. The 
resulting dsRNA is cleaved by 
Dicer-like 4 to give secondary 
siRNAs of both orientations. 
(b) In C. elegans, a primary 
siRNA bound to the ‘primary 
Argonaute’ RDE-1 guides 
RdRP recruitment. The RdRP 
mediates primer independent 
synthesis of secondary siRNAs, 
which are predominantly 
antisense to the target. Adapted 
from (Ghildiyal and Zamore, 
2009). 
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Rdp1-dependent transitivity has also been reported in S. pombe (Simmer et al., 2010). Rdp1 has 

been shown to function in a primer-independent manner in vitro (Motamedi et al., 2004; 

Sugiyama et al., 2005), although all detectable centromeric siRNAs have a 5' monophosphate 

(Djupedal et al., 2009). Therefore, it is likely that Rdp1 mediates primer-independent second-

strand synthesis, creating long dsRNAs that are then cleaved by Dcr1 (Colmenares et al., 2007). 

 

siRNA-mediated silencing 
 

siRNAs are usually derived from long exogenous dsRNAs such as viruses, which are cleaved 

into ~21 nt sRNAs by Dicer (Bernstein et al., 2001). The strand that directs silencing is called the 

guide strand while the other, which is destroyed, is called the passenger strand. The guide strand 

bound to an Argonaute constitutes the minimal mature RNA-induced silencing complex (RISC). 

siRNAs usually bind to their targets with perfect complementarity and mediate post-

transcriptional cleavage of the target RNA by the Piwi domain of the Argonaute. While the role 

of this pathway is best characterised for the response to exogenous dsRNAs, various endogenous 

siRNA (endo-siRNA) pathways have been identified, most readily in species possessing RdRPs 

and more recently in Drosophila and mammals (Okamura and Lai, 2008). For example, endo-

siRNAs can repress transposable elements in Drosophila somatic cells that lack the piRNA 

pathway (Chung et al., 2008; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008). 

This pathway depends on the siRNA-generating DCR2 and the predominant siRNA effector 

AGO2. 

 

miRNA-mediated silencing 
 

miRNAs, around 20-24 nt long, are generally derived from precursor transcripts called primary 

miRNAs (pri-miRNAs), produced by RNA polymerase II (Pol II) (Lee et al., 2004a). The pri-

miRNA is first processed in the nucleus by Drosha, another RNase III endonuclease, to produce 

a 60-70 nt hairpin pre-miRNA (Lee et al., 2003). The pre-miRNA is exported and cleaved by 

Dicer in the cytoplasm. In plants, DCL1 fulfils the roles of both Drosha and Dicer in the nucleus. 

A few miRNAs in Drosophila and mammals are nearly fully complementary to their mRNA 
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targets and can direct cleavage (Yekta et al., 2004). Since plant miRNAs are highly 

complementary to their targets, it was assumed that this would be the predominant mode of their 

silencing activity (Rhoades et al., 2002). However, there is also evidence for widespread 

miRNA-mediated translational repression (Brodersen et al., 2008). In contrast to plants, most 

miRNAs in Drosophila and mammals have limited complementarity, restricted to the 5' ‘seed 

region’ (Lewis et al., 2003). The small size of the seed region means that a single miRNA can 

regulate many different genes. It has been proposed that extensive pairing to a target RNA 

exposes the small RNA to nucleotidyl transferases and 3'-to-5' exonucleases (unless it is 2'-O-

methylated at the 3' end), making it unstable (Ameres et al., 2010; Ameres et al., 2011). This 

provides an explanation for the partial complementarity between animal miRNAs and their 

targets. The mode of miRNA-mediated repression in animals can involve both repression of 

translation and degradation of the target mRNA. Several recent papers indicate that repression of 

translation initiation generally precedes deadenylation and mRNA decay (Bazzini et al., 2012; 

Bethune et al., 2012; Djuranovic et al., 2012). 

 

piRNA-mediated silencing 
 

First discovered in Drosophila (Aravin et al., 2001), ~24-32 nt piRNAs are required for germline 

development and fertility. They do not require Dicer for their production and bind to members of 

the Piwi clade of Argonautes. Primary piRNA biogenesis is thought to occur mainly via the 

processing of long single-stranded transcripts produced from piRNA clusters. Many piRNAs 

correspond to repetitive sequences such as transposable elements and can mediate their cleavage 

(Brennecke et al., 2007; Gunawardane et al., 2007). Although Drosophila and mammals most 

likely lack RdRP activity, a mechanism for piRNA amplification does exist in the germline. This 

is known as the ‘ping-pong’ cycle and was first proposed based on observations made in 

Drosophila (Brennecke et al., 2007; Gunawardane et al., 2007), which have three Piwi proteins: 

Piwi, Aubergine (Aub), and AGO3. Piwi and Aub are mainly associated with antisense piRNAs, 

whereas AGO3 harbours mainly sense piRNAs. Sense and antisense piRNAs targeting individual 

transposons tend to have overlapping 5' ends separated by exactly 10 nt, the distance that Piwi 

proteins cleave their targets from the 5' end of the guide. These observations suggested the 
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following amplification cycle: an Aub-associated piRNA antisense to an expressed transposon 

mediates cleavage of its target. This results in a new sense piRNA that associates with AGO3. 

The sense piRNA base pairs with an antisense piRNA cluster transcript, and mediates cleavage 

to generate another Aub-bound antisense piRNA, identical to the initiator piRNA. The cycle only 

acts efficiently if a target transcript is present, so will amplify piRNAs targeting active 

transposons. In this way, it is analogous to RdRP-dependent amplification, which also uses the 

target transcript to amplify functionally relevant small RNAs. However, in contrast to secondary 

siRNA production, the ping-pong cycle does not result in transitivity. Signatures of the ping-

pong cycle have been found in diverse organisms including zebrafish, Xenopus laevis and 

mammals. Although the exact mechanisms of piRNA-mediated silencing are unclear, they are 

likely to include both transcriptional and post-transcriptional aspects (Olovnikov et al., 2012) 

(see discussion). 

 

RNAi-mediated heterochromatin formation 
 

Although the small RNAs described above are thought to predominantly mediate post-

transcriptional gene silencing (PTGS) in the cytoplasm, RNAi also has well-characterised roles 

in heterochromatin formation in plants, Tetrahymena thermophila, and S. pombe. 

Heterochromatin was originally distinguished from euchromatin cytologically as regions of 

chromosomes that do not undergo post-mitotic decondensation, but remain condensed during 

interphase (Heitz, 1928). Although chromatin has traditionally been classed as either repressive 

heterochromatin or active euchromatin, it is now clear that chromatin domains are more complex 

(Filion et al., 2010). Nonetheless, the type of chromatin I will be referring to as heterochromatin 

is generally characterised by histone hypoacetylation and methylation of histone H3 lysine 9 

(H3K9me) (Rea et al., 2000). Di- and trimethylated H3K9 is recognized and bound by the 

conserved heterochromatin protein 1 (HP1) proteins via their chromodomain (Bannister et al., 

2001; Lachner et al., 2001). HP1 proteins also contain a C-terminal chromoshadow domain that 

is thought to mediate protein-protein interactions, including self-association.  
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Since heterochromatin is highly compact, and presumably less accessible to the transcription 

machinery, it has traditionally been viewed as transcriptionally inactive. However, studies in the 

last decade or so have challenged this assumption. Firstly, with the advent of genome-wide 

techniques for studying transcription, including next generation sequencing technologies, it has 

become clear that transcription is more widespread than anticipated, and is not restricted to 

euchromatin (Kapranov et al., 2007; Wilhelm et al., 2008). Secondly, small RNAs produced 

from heterochromatic regions are actually essential for the formation of heterochromatin in 

several organisms (detailed below). In general, these sRNAs guide Argonautes to nascent 

transcripts and target chromatin modifications. 

 

RNA-directed DNA methylation in plants 
 

RNA-mediated chromatin modification was first observed in plants (Wassenegger et al., 1994). 

Although the mechanism was not understood at the time, it is now known that small RNAs play 

a key role in RNA-directed DNA methylation (RdDM) (Figure V) (Matzke et al., 2009; Zhang 

and Zhu, 2011). Repetitive genomic sequences including transposons and centromeric repeats 

produce 24 nt siRNAs that target DNA methylation to silence these regions and other loci that 

are homologous to the siRNAs. Briefly, the plant-specific RNA polymerase IV (Pol IV) 

transcribes precursors that are processed by the RdRP RDR2 and the Dicer-like DCL3 to 

produce siRNAs that load onto AGO4 (Herr et al., 2005). Another plant-specific RNA 

polymerase, Pol V, produces transcripts that presumably act as scaffolds for association of 

AGO4-siRNA complexes and subsequent chromatin modification (Wierzbicki et al., 2008). The 

extended C-terminal domain (CTD) of Pol V contains WG/GW repeats that provide a platform 

for interaction with AGO4 (El-Shami et al., 2007). It is likely that the siRNAs interact with the 

nascent RNA, although it is possible that they pair with target DNA exposed by Pol V 

transcription. The de novo methyltransferase DRM2 is thought to be primarily responsible for 

the DNA methylation (Cao and Jacobsen, 2002). Intriguingly, it was shown recently that RdDM 

is not a solely nuclear process, as AGO4 is loaded with heterochromatic siRNAs in the 

cytoplasm and AGO4-mediated slicing is required to produce the mature complex that can enter 

the nucleus (Ye et al., 2012). 
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RNA-directed DNA elimination in Tetrahymena 
 

In the ciliated protozoan Tetrahymena, an extreme example of RNAi-directed heterochromatin 

formation leads eventually to DNA elimination of transposon-related sequences from the newly-

developing somatic (macronuclear) genome (Kataoka and Mochizuki, 2011) (Figure VI). During 

sexual conjugation, the whole germline (micronuclear) genome is bidirectionally transcribed, 

probably by Pol II, and processed in the nucleus by the Dicer Dcl1p to ~28-30 nt ‘scan’ RNAs 

(scnRNAs) (Malone et al., 2005; Mochizuki and Gorovsky, 2005). These scnRNAs associate 

with the Argonaute Twi1p in the cytoplasm. Similar to the situation in plants, Twi1p slicer 

activity is required for subsequent localization of the Twi1p-scnRNA complex to the parental 

macronucleus. In this case, Giw1p binds to Twi1p only in the context of the mature complex and 

mediates its nuclear import (Noto et al., 2010). Once in the parental macronucleus, it is thought 

that base-pairing interactions between the scnRNAs and nascent non-coding transcripts from the 

parental macronuclear genome mediate scnRNA degradation. Therefore, this ‘scnRNA selection’ 
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AGO4
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siRNAs
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nucleus
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Figure V Model for RNA-directed 
DNA methylation in plants. Pol IV 
transcription of repetitive sequences 
followed by RDR2 activity produces 
dsRNA substrates for DCL3 in the 
nucleus. The resulting siRNAs are 
loaded onto AGO4 in the cytoplasm, 
where cleavage of the passenger strand 
occurs. The mature AGO4-siRNA 
complex can enter the nucleus and 
target homologous regions, probably 
by base-pairing with Pol V-dependent 
transcripts. GW repeats in the C-
terminal domain of Pol V stabilise the 
association of AGO4. Chromatin is 
subsequently modified by the de novo 
DNA methyltransferase DRM2.  



20	
  
	
  
	
  

leaves only those scnRNAs with no homologous sequences in the parental macronuclear 

genome. The remaining scnRNAs, still bound to Twi1p, relocate to the newly-developing 

macronucleus where they target homologous sequences and mediate methylation of H3K9 and 

H3K27. Subsequent binding of chromodomain proteins marks these regions for excision by a 

PiggyBac transposase-like protein (Cheng et al., 2010). Therefore, this elegant mechanism 

ensures elimination of any sequences not present in the parental macronucleus. 

 

 
 

In the fission yeast S. pombe, siRNAs are essential for centromeric heterochromatin assembly 

(White and Allshire, 2008), as discussed in detail below. 

Twi1p

Long dsRNA
Micronuclear genome
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Figure VI Model for RNA-directed 
DNA elimination in Tetrahymena. The 
whole micronuclear (germline) 
genome is transcribed and processed 
by Dcl1p to produce ~28-30 nt 
scnRNAs. These associate with the 
Argonaute Twi1p in the cytoplasm, 
where cleavage of the passenger strand 
occurs. Giw1p associates with the 
mature Twi1p-scnRNA complex and 
mediates its import to the parental 
macronucleus. Base-pairing with 
nascent transcripts induces degradation 
of homologous scnRNAs, leaving only 
those matching sequences not present 
in the macronucleus. These scnRNAs, 
still bound to Twi1p, enter the 
developing macronucleus and target 
histone modifications to homologous 
regions. Subsequent binding by 
chromodomain proteins directs these 
regions for elimination. Many details 
of this process are still unclear.  
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Heterochromatin formation in S. pombe 
 

RNAi-mediated heterochromatin formation in S. pombe is perhaps the most extensively studied 

example of nuclear RNAi. All three major regions of heterochromatin in S. pombe, the 

centromeres, mating-type region and telomeres, contain dg and/or dh repeats that serve as RNAi-

dependent heterochromatin nucleation centres. However, the exact mechanisms of silencing 

differ at each. 

 

Centromeric heterochromatin 
 

In S. pombe, the central kinetochore binding site is flanked by innermost repeats (imr) which in 

turn are surrounded by outermost repeats (otr) comprising the heterochromatic dg and dh repeats. 

Ten years ago, it was shown that all three major components of the RNAi machinery present in 

S. pombe, Ago1, Dcr1 and Rdp1, are essential for the formation of centromeric heterochromatin 

(Volpe et al., 2002). Loss of RNAi-mediated heterochromatin formation is accompanied by 

defects in chromosome segregation (Provost et al., 2002). As a result of intense study, the 

mechanistic details and key components of this process are now quite well-characterised (Figure 

VII). The RNA-induced transcriptional silencing complex (RITS; consisting of Ago1, Chp1 and 

Tas3) (Verdel et al., 2004) is loaded, via the Argonaute siRNA chaperone complex (ARC; 

consisting of Ago1, Arb1 and Arb2) (Buker et al., 2007), with Dcr1-dependent single-stranded 

siRNAs. RITS is guided to chromatin via base-pairing of the Ago1-bound siRNA with 

complementary sequences in RNA Pol II nascent transcripts (Buhler et al., 2006). The 

importance of Pol II in the process is demonstrated by mutants in two different Pol II subunits 

that are defective in heterochromatin formation but not general transcription (Djupedal et al., 

2005; Kato et al., 2005). Once tethered via nascent transcripts, RITS recruits CLRC (Clr4-Rik1-

Cul4 complex), a complex containing the sole S. pombe H3K9 methyltransferase Clr4 (Bayne et 

al., 2010). Similar to Tetrahymena, RNAi-directed histone methylation provides a binding site 

for HP1 homologues such as Swi6 and Chp2, and can additionally stabilize binding of RITS via 

the chromodomain-containing Chp1 component. However, instead of mediating DNA 

elimination, these HP1 proteins are thought to promote transcriptional gene silencing (TGS; see 
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below). Clr4 itself also contains a chromodomain that binds H3K9me, which is thought to 

promote spreading of heterochromatin (Zhang et al., 2008). RITS also helps to recruit the RNA-

dependent RNA polymerase complex (RDRC; consisting of Rdp1, Cid12 and Hrr1), amplifying 

the process by generating more dsRNA substrates for Dcr1 (Motamedi et al., 2004; Sugiyama et 

al., 2005). Thus, the RNAi machinery acts in a positive feedback loop on centromeric repeats, 

guaranteeing high levels of H3K9 methylation and rapid turnover of centromeric RNAs into 

siRNAs. This ‘in cis’ model is supported by crosslinking of RITS and RDRC subunits to 

chromatin (Cam et al., 2005; Motamedi et al., 2004; Noma et al., 2004).  
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Figure VII Model for RNAi-mediated heterochromatin formation at centromeres in S. pombe and the major 
protein complexes involved.  Repression of centromeric transcripts and maintenance of high levels of H3K9me 
depends on a positive feedback loop. Dcr1-dependent siRNAs from the centromeric repeats guide the RITS 
complex to nascent Pol II transcripts via complementary base-pairing. RITS recruits the Clr4-containing CLRC 
complex, which mediates H3K9 methylation. This stabilizes RITS association with chromatin via the Chp1 
component. RITS helps to recruit RDRC, and Dcr1 processing of the resulting dsRNA produces more siRNAs, 
as well as contributing to CTGS. In addition to stabilizing RITS association, H3K9me creates binding sites for 
HP1 proteins, including Chp2. Chp2 recruits the SHREC complex, containing the HDAC Clr3. Deacetylation 
of H3K14 by Clr3 reduces transcription. Therefore, tight repression involves a combination of TGS and CTGS.  
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Whereas in most other eukaryotes tested introduction of an artificial source of siRNAs is 

sufficient to trigger PTGS of any homologous locus, RNAi-mediated repression and assembly of 

heterochromatin in S. pombe occurs inefficiently in trans and depends to some extent on the 

chromosomal location of the target gene (Buhler et al., 2006; Iida et al., 2008; Simmer et al., 

2010). The reason for this cis-restriction is not clear.  

 

Transcriptional versus co-transcriptional gene silencing 
 

Repression of heterochromatin involves mechanisms that restrict RNA Pol II access to the DNA, 

ensuring TGS. In S. pombe, this strongly depends on the acetylation level of histone H3 lysine 14 

(H3K14). Whereas H3K14 acetylation correlates with active transcription, deacetylation of 

H3K14 restricts the access of Pol II to heterochromatin and thus limits transcription in S. pombe 

(Sugiyama et al., 2007; Yamada et al., 2005). Deacetylation of H3K14ac occurs downstream of 

H3K9 methylation and is mediated by the class II histone deacetylase (HDAC) Clr3, a 

component of the Snf2/Hdac-containing repressor complex (SHREC) (Bjerling et al., 2002; 

Sugiyama et al., 2007). SHREC can be recruited to heterochromatin by physically interacting 

with the HP1 Chp2 (Fischer et al., 2009; Motamedi et al., 2008). In addition, Swi6 associates 

with the class I HDAC Clr6, which has broader specificity (Nicolas et al., 2007; Yamane et al., 

2011). 

 

However, the fact that, contrary to the traditional assumption, heterochromatin is not completely 

inaccessible to the transcription machinery shows that TGS cannot be the only mode of 

silencing. Indeed, deleting components of the SHREC complex resulted in only partial 

derepression of centromeric transcripts compared to clr4∆ cells (~10-20%), whereas a 

comparable increase in Pol II occupancy was observed (Motamedi et al., 2008). Therefore, it is 

likely that the rest of the silencing involves RNAi-mediated co-transcriptional gene silencing 

(CTGS), by direct degradation of the heterochromatic RNAs as they are transcribed (Buhler et 

al., 2006; Noma et al., 2004). Other factors are likely to be involved in CTGS. For example, in 

cells lacking the non-canonical poly(A) polymerase Cid14, heterochromatic transcripts are 

increased, while the structure of heterochromatin remains intact (Buhler et al., 2007). It is 
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thought that polyadenylation by Cid14 targets RNA for degradation via the RNA exosome 

and/or the RNAi pathway. In summary, TGS and CTGS cooperate to ensure tight repression of 

centromeric transcripts in S. pombe (Figure VII). 

 

Mating-type region and telomeres 
 

The RNAi machinery is also required for establishment of heterochromatin at the mating-type 

region and subtelomeres, but redundant mechanisms ensure maintenance in the absence of 

RNAi. At the mating-type region, RNAi acts via the cenH (centromeric homology) sequence, 

which has 96% similarity to dg and dh, to nucleate heterochromatin formation. However, only 

when RNAi deletions are combined with deletion of Atf1 or Pcr1 is silencing lost (Jia et al., 

2004). Atf1 and Pcr1 contain basic leucine zipper (bZIP) DNA binding domains with strong 

homology to the activating transcription factor/cAMP response element-binding (ATF/CREB) 

protein family. Atf1 and Pcr1 form a heterodimer and are involved in environmental stress 

responses. They act in parallel with the RNAi pathway to establish and maintain heterochromatin 

at the mating-type locus, perhaps by direct recruitment of Clr4/Swi6 (Jia et al., 2004). 

Interestingly, a role for the Drosophila homologue of Atf1, dATF-2, in heterochromatin 

formation has been shown (Seong et al., 2011). 

 

Genes encoding RecQ type DNA helicases tlh1 and tlh2, located at the ends of chromosome 1 

and 2 respectively, have high homology to the cenH sequence (Kanoh et al., 2005). The 

telomeric repeat-binding protein Taz1 and RNAi act redundantly to establish heterochromatin at 

telomeres, although other yet-to-be-identified factors are also involved (Hansen et al., 2006; 

Kanoh et al., 2005). Taz1 and Ccq1 may cooperate to recruit SHREC to the telomere ends 

(Sugiyama et al., 2007).  

 

Establishing interactions of the RNAi machinery with the genome 
 

A controversial question with regard to RNAi-mediated silencing in fission yeast is how the 

RNAi machinery is brought to certain regions of the genome in the first place. The 
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interdependence of the RNAi and chromatin modifying pathways due to the positive feedback 

loop make it difficult to identify the initial trigger. Several possibilities have been proposed: (1) 

formation of dsRNA by base pairing of sense and antisense centromeric transcripts, (2) folding 

of single stranded centromeric transcripts into hairpin structures (Djupedal et al., 2009), (3) 

recruitment of RITS and RDRC by low levels of H3K9me, which are present in RNAi mutants 

(Partridge et al., 2007), and (4) random association of degradation products with Argonaute 

(Halic and Moazed, 2010). In the latter model, it was proposed that Dcr1- and Rdp1-independent 

degradation products, so-called primal RNAs (priRNAs), guide Argonaute to the repeats to begin 

the amplification process. Consistent with this, the authors found lower levels of H3K9me in 

ago1∆ compared to dcr1∆ or rdp1∆ cells (Halic and Moazed, 2010). This model has been 

challenged by the finding that CLRC components, and not RNAi factors, play a critical role in 

assembling centromeric heterochromatin when Ago1 is physically separated from Tas3-Chp1, 

and that indistinguishable low levels of H3K9me remain at centromeres in all three RNAi 

mutants (Shanker et al., 2010). Therefore, how the initial establishment of RNAi-chromatin 

interactions occurs remains unclear. 

 

Cell cycle regulation of heterochromatin 
 

Several papers provide evidence that transcription of centromeric repeats and production of 

siRNAs is highest in S phase, corresponding to lower levels of H3K9me and Swi6 (Chen et al., 

2008; Kloc et al., 2008). During G2, RITS is recruited and the positive feedback loop establishes 

robust silencing. It is thought that phosphorylation of H3S10 in mitosis inhibits Swi6 binding, 

since this mark has been shown to antagonize the binding of chromodomain proteins to H3K9me 

(Fischle et al., 2005; Hirota et al., 2005). Therefore TGS is somewhat relieved in G1/S, allowing 

increased transcription and siRNAs. This model provides a possible explanation for the paradox 

of transcriptionally active heterochromatin, since the transcriptional activity is mainly restricted 

to S phase. However, it does not provide an explanation for how the positive feedback loop is 

started. 
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Roles for nuclear RNAi outside heterochromatin in S. pombe 
 

While much is known about the role of RNAi at heterochromatin in fission yeast, relatively little 

is known about functions in euchromatin. At some regions, Ago1 cooperates with histone variant 

H2A.Z, Rrp6 (3'-to-5' exoribonuclease component of the nuclear exosome) and Clr4 to silence 

antisense transcripts (Zofall et al., 2009). At specific meiotic genes, the Mmi1 RNA surveillance 

machinery can recruit H3K9me and RITS, although their contribution to silencing in vegetative 

cells appears to be small (Hiriart et al., 2012; Zofall et al., 2012). 

 

At some convergent gene pairs, inefficient transcription termination in G1 results in overlapping 

transcripts and presumably dsRNA, leading to RNAi-dependent deposition of H3K9me3 and 

Swi6 (Gullerova and Proudfoot, 2008). Swi6 recruits cohesin (Nonaka et al., 2002), which is 

then concentrated to the intergenic region, presumably by the action of the Pol II machinery 

(Lengronne et al., 2004), promoting efficient transcription termination throughout G2. Loss of 

cohesin in M phase leads again to inefficient transcription termination in G1. Recently, it has 

been shown that genes encoding RNAi components often occur in co-transcribed convergent 

gene pairs and participate in an autoregulatory process (Gullerova et al., 2011). Their RNAi-

dependent downregulation in G1/S is thought to contribute to relief of centromeric silencing in 

this phase, while in G2 accumulation of cohesin prevents overlapping transcription and restores 

their expression to promote centromeric silencing.  

 

Nuclear organisation of the RNAi pathway in S. pombe 
 

When I started my PhD, little was known about the subcellular localization of Dcr1, and the 

microscopy data available contradicted the known role for Dcr1 in the nucleus (Carmichael et al., 

2006). Since then, live-cell imaging studies from our lab have shown that GFP-Dcr1 forms 

nuclear peripheral foci (Emmerth et al., 2010) (Figure VIIIa). Dcr1 appears to be tethered to 

nuclear pores since in a nup120∆ mutant, which shows a pore-clustering phenotype, Dcr1 

clusters to one side of the nucleus (Figure VIIIa). The dsRBD was shown to be required for 

nuclear retention of Dcr1 and consequently centromeric silencing. Subsequent structural studies 
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revealed that zinc-coordination by the dsRBD is critical for proper folding of the domain and 

hence for Dcr1 nuclear localization (Barraud et al., 2011) (Figure VIIIb). However, the relevance 

of Dcr1-pore association was not clear, since no mutant was identified where loss of pore 

interaction but not loss of nuclear localization occurred. It is possible that interaction between the 

dsRBD and a pore component (directly or indirectly) is required for nuclear retention. 

 

 
 

In recent years, the importance of nuclear organisation in genome regulation has become 

increasingly apparent. In particular, the nuclear periphery seems to have both repressive and 

activating properties. Studies in budding yeast suggest that the nuclear periphery between pores 

is generally a repressive environment, while nuclear pores are important for activation of certain 

genes (Taddei et al., 2010). Similarly, in metazoan cells, the nuclear lamina is generally a 

repressive environment whereas genes associated with nuclear pore complexes (NPCs) are 

generally active or at least moderately transcribed (Kind and van Steensel). There is 

accumulating evidence from S. cerevisiae that transcription factors (TFs) are involved in 

targeting certain genomic regions to nuclear pores. For example, the upstream regions of genes 

enriched for some S. cerevisiae nuclear pore components have over-representation of the Rap1 

binding motif (Casolari et al., 2004). In another study, genetic and biochemical experiments 

demonstrated a link between the Rap1 activation complex and NPCs (Menon et al., 2005). 

Several inducible genes, for example GAL1, GAL2, INO1, HXK1 and HSP104, are targeted to 

the NPC upon activation and, at least in some cases, the gene promoter is required for this 

(Dieppois et al., 2006; Taddei, 2007). DNA ‘zip’ codes within the promoters of some genes are 

GFP-Dcr1

nup12
0D

GFP-Dcr1-SHSS

WT

a b Figure VIII Subcellular localization of Dcr1. 
(a) Fluorescence microscopy of living cells 
showing the localization of GFP-Dcr1 in wild 
type and nup120∆ cells, in which NPCs cluster. 
Figure taken from (Emmerth et al., 2010). (b) 
Left: live-cell imaging of the zinc motif mutant 
GFP-Dcr1-SHSS. Scale bars = 2 µm. Right: 
cartoon representation of the lowest energy 
NMR solution structure of the Dcr1 C-
terminus. The zinc coordinating residues 
(CHCC) are shown as sticks in light blue. The 
zinc ion is shown as a grey sphere. Figure taken 
from (Barraud et al., 2011).  
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necessary and sufficient for targeting to NPCs (Ahmed et al., 2010; Light et al., 2010). Recently, 

it was shown that the transcription factor Put3 is required for targeting via one of these zip codes 

(Brickner et al., 2012). Furthermore, a transcriptional repressor has been implicated in tethering 

certain genomic regions to the nuclear lamina in mammalian cells (Zullo et al., 2012), suggesting 

that TF-mediated genome organisation at the nuclear periphery is widespread. In contrast to 

other eukaryotes, not much is known about the role of nuclear localization in gene regulation in 

S. pombe (Olsson and Bjerling, 2011). The fact that S. pombe Dcr1 associates with nuclear pores 

suggests the intriguing possibility that Dcr1 could be involved in gene regulation in these foci. 

 

Aim of the thesis 
 

The aim of my PhD project was to investigate interactions, beyond those previously 

characterised, of the RNAi machinery and associated factors with the fission yeast genome. A 

particular focus was on Dcr1, which cannot be efficiently cross-linked to chromatin. Next, I 

aimed to characterise the mechanism of recruitment to bound regions and to investigate possible 

functions of the RNAi machinery at regions outside the well-studied heterochromatic loci. 
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Part I: RNAi-mediated co-transcriptional gene silencing in euchromatin 
 

 

 

 

 

 

 

In order to study the interactions between Dcr1 and the fission yeast genome, I chose to use an 

alternative chromatin profiling technique called DamID (DNA adenine methyltransferase 

identification). First developed in Drosophila (van Steensel and Henikoff, 2000), DamID 

involves fusion of the protein of interest to the adenine methyltransferase Dam from E. coli 

(Figure 1A). On interaction of the fusion protein, which is expressed at low levels in addition to 

the endogenous copy of the protein of interest, with chromatin, Dam methylates the N6 position 

of adenine in the sequence context GATC. Methylated fragments can be isolated using 

methylation-specific restriction enzymes, and then PCR amplified and hybridised to tiling arrays. 

Comparing the methylation pattern in a strain expressing the fusion protein with that in a strain 

expressing Dam alone shows which regions of the genome were bound by the protein of interest. 

DamID has a major advantage over chromatin immunoprecipitation (ChIP) in that the 

methylation will occur even upon transient, indirect and weak interactions, whereas ChIP 

requires a robust interaction to achieve cross-linking. The disadvantage is that it is impossible to 

look at a particular time window, since the methylation will continually accumulate.  
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Results published in: 
- Woolcock K, Gaidatzis D, Punga T, Bühler M (2011). Dicer associates with chromatin to repress genome 

activity in Schizosaccharomyces pombe. Nat Struct Mol Biol 18(1):94-9. 
- Woolcock K, Stunnenberg R, Gaidatzis D, Hotz H-R, Emmerth S, Barraud P, Bühler M (2012). RNA 

interference keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev 26(7):683-92. 
∗ Highlighted in Holoch D and Moazed D (2012). RNAi in fission yeast finds new targets and new 

ways of targeting at the nuclear periphery. Genes Dev 26(8):741-5. 
See Appendix for the above manuscripts.  
 

Figure 1A Outline of the DamID 
technique. The protein of interest is 
expressed at low levels as a fusion 
protein with Dam, a DNA adenine 
methyltransferase from E. coli. 
Therefore Dam leaves methyl 
marks close to the genomic binding 
sites. A Dam only control is carried 
out in parallel. 
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First, I tested the DamID approach by carrying it out for three proteins for which ChIP in 

combination with microarrays (ChIP-chip) had already been published; Swi6, Rdp1 and Ago1 

(Cam et al., 2005). The DamID showed a good overlap with the ChIP-chip profiles, despite 

having generally lower enrichments (Figure 1B). I therefore proceeded to carry out DamID for 

Dcr1. In support of the ‘in cis’ model for RNAi-mediated heterochromatin formation, the results 

showed that Dcr1 is enriched at centromeric regions, although with lower enrichment than for 

Swi6, Rdp1 and Ago1 (Figure 1C). Dcr1 is not enriched at the other major regions of 

heterochromatin (Figure 1C). Interestingly, Dcr1 showed enrichment not only at centromeres, 

but also at several euchromatic regions, particularly loci producing ncRNAs and long terminal 

repeats of retrotransposons (LTRs) (Figure 1C). A similar pattern was seen at these regions for 

Rdp1 and Ago1, but not Swi6, suggesting that the core RNAi components might be involved in 

regulating these regions independently of their role in heterochromatin formation. 
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Figure 1B Testing the DamID approach. Swi6, Ago1 and 
Rdp1 maps for chromosome II as determined by DamID or 
ChIP-chip. Major heterochromatic regions are labelled. The 
signal was averaged over every 500 probes. y axes are DamID 
and ChIP enrichments on log2 scale.  
Figure 1C The RNAi machinery is enriched at both 
heterochromatic and euchromatic regions. Top: enrichments 
(log2) of the indicated proteins at heterochromatic regions 
compared with euchromatin. Bottom: enrichments (log2) at 
the indicated genomic features present in euchromatin. 
Individual columns represent biological replicates. (Tf2) Tf2 
LTR retrotransposons; (wtf) with Tf2-type LTRs. 
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To investigate this possibility, I used quantitative real-time PCR (qPCR) to test several of the 

bound regions for changes in expression upon deletion of the RNAi components. Indeed, I 

observed an increase in RNA levels for several loci in all three RNAi mutants (Figure 1D and 

data not shown), suggesting that RNAi acts to silence these regions. The silencing depends on 

the RNase III activity of Dcr1 (Figure 1D), therefore I expected to see siRNAs mapping to the 

silenced regions. Surprisingly, however, very few total or Ago1-bound small RNAs are produced 

from these regions according to published deep sequencing data (Emmerth et al., 2010; Halic and 

Moazed, 2010) (data not shown). In addition, RNAi association with these regions does not seem 

to result in H3K9 methylation and Swi6 binding (Figure 1C and data not shown), suggesting that 

the silencing mechanism is distinct from that occurring at heterochromatin. This led us to 

propose a model whereby RNAi-mediated CTGS can also occur on euchromatin, but that any 

small RNAs produced by such a mechanism are not functional and therefore rapidly degraded 

(Woolcock et al., 2011). 

 

 
 

There had been indications in the literature that RNAi-mediated silencing of certain regions 

could function to repress neighbouring genes. I therefore hypothesised that LTRs or ncRNAs 

could create a local concentration of the RNAi machinery, facilitating repression of nearby 

genes. Indeed, replacing Dcr1-associated ncRNAs or LTRs with the URA3 gene resulted in 

upregulation of a nearby gene in some cases (Figure 1E). However, subsequent removal of the 

URA3 reversed this effect, suggesting that the upregulation was due to insertion of the URA3 and 

not removal of the ncRNA/LTR. Therefore, it seems unlikely that RNAi association with certain 
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features has an effect on surrounding gene expression. This would make sense if the silencing 

mechanism does not involve recruitment and spreading of chromatin modifications, but rather 

direct co-transcriptional degradation of nascent transcripts, as I hypothesise below. 
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Figure 1E Dcr1 association with 
LTRs and ncRNAs does not seem to 
affect nearby gene expression. Several 
genes that are upregulated in dcr1∆ 
cells and located within 5 kb of an 
LTR or ncRNA that is enriched by 
Dam-Dcr1 were assessed for RNA 
levels in the indicated backgrounds. 
RNA levels were normalized to actin 
and shown as fold increase compared 
to wild type. Error bars represent s.d., 
n = 2 biological replicates.  
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Part II: Establishment of RNAi-genome interactions 
 

 

 

 

Several models have suggested that either H3K9 methylation or initial targeting of Ago1 by 

small RNAs is required to provide the initial trigger for RNAi-mediated heterochromatin 

formation (Halic and Moazed, 2010; Shanker et al., 2010). Surprisingly, the absence of either 

Clr4, Rdp1, Ago1 or combinations of these did not alter the binding pattern of Dcr1 (Figure 2A). 

Similarly, Rdp1 association with euchromatin is independent of Clr4, Ago1 and Dcr1, and some 

residual Rdp1 association is present at centromeres in all three mutants (Figure 2B). This 

suggests that siRNA production can potentially occur at these regions independently of H3K9me 

or other RNAi components, although H3K9me clearly stabilizes the association of RITS and 

RDRC with heterochromatin and priRNAs may be required to prime the amplification of 

siRNAs. 

 

Since Dcr1 co-localizes with nuclear pores according to microscopy (Emmerth et al., 2010), I 

hypothesised that genomic regions shown to be associated with Dcr1 by DamID correspond to 

regions close to nuclear pores. To test this, I did DamID for Nup85, a scaffold nucleoporin and 

part of the Nup107-120 complex (Bai et al., 2004), and Amo1, which localizes in a punctate 

nuclear peripheral pattern that does not overlap with pores (Pardo and Nurse, 2005). Indeed, 

Nup85 DamID shows a very strong correlation with Dcr1 DamID, whereas Amo1 shows no 

strong enrichment at any genomic region (Figure 2C). This confirms that the foci seen by 

microscopy reflect real Dcr1 localization and are not an artefact of Dcr1 overexpression. 

Furthermore, it indicates that most, if not all, of the interactions between Dcr1 and chromatin 

occur at pores. In this way, compartmentalisation may be responsible for targeting RNAi 

components to certain genomic regions and providing substrate specificity.  

 

Results published in Woolcock K, Stunnenberg R, Gaidatzis D, Hotz H-R, Emmerth S, Barraud P, Bühler M 
(2012). RNA interference keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev 
26(7):683-92. 
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Figure 2 Interactions between chromatin 
and the RNAi pathway occur at nuclear 
pore complexes, independently of small 
RNAs. (A-B) Dcr1 and Rdp1 enrichments 
(log2) in the mutant backgrounds indicated. 
Individual columns represent biological 
replicates. (C) Left: representation of 
Nup85 and Amo1 locations at the nuclear 
periphery. Right: comparisons of Dcr1 
enrichment (log2) at individual features 
with Nup85 and Amo1 enrichments (log2).  
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Part III: RNAi-mediated regulation of protein-coding genes 
 

 

 

 

To learn more about the functional relevance of Dcr1 association with euchromatin at nuclear 

pores, I focused on protein-coding genes. Interestingly, Dcr1 and Nup85 show a preference for 

promoter regions of genes, as does Rdp1 to a lesser extent, whereas Ago1 does not (Figure 3A). 

This suggests that Dcr1/Rdp1 may have a role at promoter regions, perhaps affecting 

transcription, or that genes associated with Dcr1/nuclear pores do so via their promoter regions. 

 

 
 

Looking at the types of genes with the highest enrichment for Dcr1 and Nup85, I realised that 

many of them are involved in responses to stressful conditions. However, using GO term 

analysis did not identify any particular groups of genes that are preferentially enriched, except 

for around 10 genes with the term ‘glucose catabolic process’. Furthermore, previously defined 

stress response genes, the so-called induced and repressed core environmental stress response 

(CESR) genes (Chen et al., 2003), did not show a significant preferential enrichment for Nup85 

or RNAi components (data not shown). As an alternative way to look at stress response genes, I 

used previously published ChIP-chip data for Atf1 (Eshaghi et al., 2010), a well-characterised 

stress response transcription factor also known to be involved in heterochromatin formation at 

the mating-type region (Jia et al., 2004). Atf1 is thought to be constitutively bound to its targets. 

Upon stress, Atf1 is phosphorylated by the MAP kinase Sty1 and activates transcription. I 

focused my analysis on a group of genes that were shown to have Atf1 bound to their probable 
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Results published in Woolcock K, Stunnenberg R, Gaidatzis D, Hotz H-R, Emmerth S, Barraud P, Bühler M 
(2012). RNA interference keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev 
26(7):683-92. 

Figure 3A Promoter regions are preferentially 
associated with Dcr1 and Rdp1 at NPCs. Left: 
enrichments (log2) of the indicated proteins at 
tandem, divergent, and convergent intergenic 
regions. Individual columns represent biological 
replicates. Right: average enrichments 1 kb on 
either side of the beginning of ORFs. One 
representative replicate shown for each experiment.  
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promoter regions under normal conditions (Eshaghi et al., 2010), and which I refer to as BANCs, 

for ‘bound by Atf1 under normal conditions’. Nup85 and RNAi components show a strong 

preference for this group of genes compared to all others, whereas Swi6 and Amo1 do not 

(Figure 3B). As well as implicating the RNAi machinery in regulation of this group of genes, 

these results suggest that their association with Atf1, rather than the fact that they are stress 

response genes, is a defining feature for their preferential association with Nup85/RNAi. 

 

 
 

 

 

To test whether these genes are regulated by RNAi, I used tiling arrays to compare their 

expression in wild type and RNAi mutant strains. Indeed, BANCs show preferential upregulation 

compared to other genes in all three RNAi mutants (Figure 3C). This is not the case for swi6∆, 

confirming that the upregulation is not an indirect effect of losing heterochromatin, which can be 

considered a stressful condition (Figure 3C). BANCs are also preferentially upregulated in clr4∆ 

cells (data not shown); however, since Clr4 has been proposed to methylate another component 

of the pathway (Gerace et al., 2010), this could be an indirect effect. RNA levels of some heat 

shock genes tested decrease more slowly, after the initial response to elevated temperature, in 

cells lacking Dcr1 compared to wild type (data not shown). I propose that RNAi-mediated CTGS 

is occurring at these genes in association with nuclear pores (Woolcock et al., 2012) (Figure 3D). 

This may help to keep stress response genes in check under normal conditions, allowing more 

rapid upregulation and export upon their induction, and may contribute to the transient nature of 

stress responses. Although there is a relative enrichment of Ago1-bound sRNAs mapping to 
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Figure 3B Atf1-bound genes are preferentially associated with the RNAi machinery at NPCs. DamID 
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BANCs, this enrichment remains in dcr1∆ (Figure 3E). Therefore, rather than being functional 

siRNAs, these may simply be degradation products. 
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Part IV: Further characterisation of the properties and nuclear environment 
of BANCs 
 

 

 

To further characterise BANCs, I re-annotated other genome-wide datasets to enable comparison 

of this group with all other genes. High-throughput sequencing of cDNA (RNA-seq) shows that 

BANCs have a wide range of transcription under normal conditions, and are generally 

moderately transcribed (Figure 4A). Pol II ChIP-chip shows a similar picture (Figure 4A). 

 

 
Interestingly, BANCs seem to be generally depleted for histones (Figure 4B) judging by ChIP-

chip data. In fact, it is known that certain induced stress response genes in S. pombe display a 

large nucleosome depleted region at their promoters, with an average size of 400 bp under non-

induced conditions (Sanso et al., 2011). This supports the idea that BANCs have potential for 

high levels of transcription even under normal conditions, but are kept in check by repressive 

mechanisms.  
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Figure 4A BANCs as a group have 
average expression levels. Published 
datasets (Wilhelm et al., 2008) were 
reanalyzed and annotated to enable 
comparison of RNA-seq and Pol II 
ChIP-chip between BANCs and all other 
genes. 

Figure 4B BANCs are generally 
depleted for histones. Published 
datasets (Cam et al., 2005) were 
reannotated to enable comparison of 
H3K9me2 and H3K4me2 ChIP-chip 
between BANCs and all other genes. 
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In addition to the RNAi machinery, other factors that can influence gene expression are enriched 

at BANCs. For example, the DNA-binding factor Sap1, shown to be recruited by LTRs 

(Zaratiegui et al., 2011b), also has a preference for BANCs (Figure 4C). Several HDACs, which 

have a negative impact on transcription, show a similar preference (Figure 4D). Consistent with a 

contribution to silencing, BANCs are preferentially upregulated in a clr6-1 HDAC mutant 

(Figure 4E). Therefore, I believe that nuclear pores provide a special subnuclear environment 

where various factors come together to influence the expression of genes tethered there. 
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In addition to the RNAi machinery, BANCs are preferentially associated with other repressive factors. Publicly 
available datasets were reannotated to enable comparison between BANCs and all other genes. (C) Sap1 ChIP-
seq (Zaratiegui et al., 2011b). (D) ChIP-chip for HDACs Clr1, Clr2 and Clr3 (Sugiyama et al., 2007). (E) 
Microarray expression analysis for the clr6-1 mutant allele (Nicolas et al., 2007). 



41	
  
	
  
	
  

Part V: Role for transcription factors in genome organisation at nuclear pores 
 

 

 

The fact that Atf1 binding seems to be a defining feature for preferential Nup85/Dcr1 binding 

suggested a role for Atf1 itself in the association of BANCs with Nup85/Dcr1. To investigate 

this, I deleted the atf1 gene and performed DamID for both Nup85 and Dcr1. Excitingly, the 

significant preference for BANC association with Nup85 is lost in atf1∆ (Figure 5A), 

demonstrating that Atf1 is either directly or indirectly involved in tethering these genes to 

nuclear pores. However, to my surprise, Dcr1 preference for BANCs was not significantly 

abolished (Figure 5B). Therefore, Dcr1 association with BANCs is not simply a consequence of 

co-localization at nuclear pores, and some other feature of BANCs seems to be recognized by 

Dcr1 (see discussion). 

 

 
 

llllll
l
llllllllllll
l
lllllll
l
l
ll
l

l

l
l
ll

No Yes

-
2

-
1

0
1

2

P < 2.2e-16

BANC

D
a

m
-
N

u
p

8
5

,
 
W

T
 
(
l
o

g
2

)

l
lllll

l

ll
ll
l

l

ll

l
l

l
l

l

lllll

l

l

l

llll
l
lll

ll

l

l

llll

l

lll
ll

-
1

0

1
2

P = 0.001913

No Yes

BANC

-
2

D
a

m
-
N

u
p

8
5

,
 
atf1Ä 

(
l
o

g
2

)

l

l
l

ll

l

l
ll
llllll

l

lll
l
lllll

ll

lll

l

llll
lll

l

-
2

-
1

0
1

2

P = 2.055e-10

No Yes

BANC

D
a

m
-
N

u
p

8
5

,
 
p

c
r
1Ä (lo

g
2

)

ll
ll
lll

l

lllll

l

lll
lllllllllll

l

l

-
2

-
1

0
1

2

P = 1.112e-12

D
a

m
-
D

c
r
1

,
 
W

T
 
(
l
o

g
2

)

No Yes

BANC

l

lll

l
ll

lll
l
l

ll

lll

lll

l

l

lll

l

l

l
l
l

ll
lll

llll
ll

ll

-
2

-
1

0
1

P = 1.992e-10

D
a

m
-
D

c
r
1

,
 
atf1Ä 

(
l
o

g
2

)

No Yes

BANC

ll

l

ll

l
l
l

ll

llll

ll
l

ll

lll

l

l

ll

l

l
l
llll

llll

l
l

llll

P = 3.978e-07

D
a

m
-
D

c
r
1

,
 
p

c
r
1Ä (lo

g
2

)

-
1

0

1

No Yes

BANC

5A

5B

Unpublished observations 

Nup85, but not Dcr1, preference for 
BANCs is abolished in atf1∆ cells. (A) 
Nup85 DamID in wild type, atf1∆ and 
pcr1∆ cells. (B) Dcr1 DamID in wild 
type, atf1∆ and pcr1∆ cells. 



42	
  
	
  
	
  

Although centromeric regions do not strongly associate with Nup85, the weak interaction that 

does exist is clearly lost in an atf1∆ strain (and to a lesser extent in pcr1∆) (Figure 5C). Similar 

to BANCs, the association with Dcr1 is not lost (Figure 5C). Nonetheless, Atf1-mediated 

tethering to the pores may have a function in centromeric heterochromatin formation. Perhaps 

the interaction occurs transiently in S phase when heterochromatic marks are at their lowest. In 

support of this idea, chromatin seems to interact more freely with nuclear pores in the absence of 

H3K9me (Figure 5D). Quantification of centromeric RNA levels shows lower levels in atf1∆ 

dcr1∆ double mutants than in dcr1∆ single mutants (Kasia Kowalik, personal communication). 

This suggests that Atf1 promotes transcription of pre-siRNA transcripts. Whether association 

with nuclear pores is important for this transcriptional activation remains to be determined. 
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(C) Nup85, but not Dcr1, association with centromeres 
is lost in atf1∆ and, to a lesser extent, pcr1∆ cells. 
Nup85 and Dcr1 enrichments (log2) at heterochromatic 
regions compared with euchromatin in the indicated 
backgrounds. (D) Loss of H3K9me increases 
association of heterochromatic regions with Nup85. 
Nup85 enrichment (log2) at heterochromatic regions 
compared to euchromatin in wild type and clr4∆ cells. 
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Part VI: Regulation of RNAi at elevated temperatures 
 

 

 

 

Since CTGS contributes to repression of Atf1-bound stress response genes under normal 

conditions, I wondered whether CTGS would be impaired under stress conditions to enable gene 

induction. One way in which this could occur is via re-localization either of the RNAi machinery 

or the loci themselves. Results from both DamID and microscopy experiments suggest that the 

loci do not move upon heat shock (Figure 6A-B). Similarly, Dcr1 localization does not seem to 

change at short time points after temperature increase, judging by microscopy. This could not be 

tested by DamID, which is not suitable for studying the dynamics of protein-genome 

interactions. While it is still possible that another aspect of CTGS is inhibited under stressful 

conditions, these results support a model whereby CTGS continues to be active after stress but is 

overcome by strong transcriptional activation of stress response genes. 

 

 
 

 

 

 

 

 

 

Although Dcr1 localization does not seem to change initially, it was observed that Dcr1 loses its 

nuclear localization when cells are subjected to higher temperatures for a prolonged period, and 
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26(7):683-92. 

Genes associating with RNAi components do not change their nuclear localization upon temperature increase. 
(A) Left: summary of the LacO/LacI-GFP system used to analyse the location of individual heat-shock genes 
(Taddei et al., 2004). Live cells with GFP-LacI-marked lacO::hsp16+ locus and the nuclear membrane marker 
mCherry-Cut11 were imaged at 30°C (single-plane confocal image). Right: heat shock gene localization was 
assigned to one of three concentric nuclear zones of equal area. Percentage of cells with the GFP focus at the 
nuclear periphery (zone I) before and after a 1 h shift to 39°C is shown. Experiments done by Rieka 
Stunnenberg. (B) Comparison of the genome-wide Nup85 DamID enrichment (log2) at 30°C and 36°C. BANCs 
remain preferentially enriched for Nup85 at 36°C.  
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accumulates in patches in the cytoplasm (Figure 6C). This is unlikely to be an artefact of the 

GFP tag since Cid14-GFP does not show this behaviour (Rieka Stunnenberg, personal 

communication). Furthermore, the observation is supported by DamID, as the amount of DNA 

obtained for a Dam-Dcr1 strain is much lower if the cells are grown at higher temperatures, 

demonstrating overall lower levels of methylation (Figure 6D). Overall protein levels of Dcr1 do 

not change drastically (data not shown). Loss of Dcr1 from the nucleus may abrogate CTGS and 

could be responsible for the reactivation of certain heat shock genes after prolonged heat shock, 

perhaps contributing to thermotolerance. 

 

 
 

 

 

 

 

 

A likely explanation for loss of nuclear Dcr1 at higher temperatures comes from structural 

studies of the dsRBD. Structural integrity of the dsRBD is crucial for Dcr1’s nuclear retention, 

and disrupting the coordination of a zinc ion results in relocalization of Dcr1 to the cytoplasm 

accompanied by loss of centromeric silencing (Barraud et al., 2011). Differential scanning 

fluorimetry shows that the dsRBD becomes unstable at higher temperatures, beginning to unfold 

around 34-38°C (Figure 6E). Therefore, unfolding of the dsRBD may cause the loss of nuclear 

localization at higher temperatures. In support of this idea, BANCs are preferentially upregulated 

at normal temperatures in strains with a disrupted Dcr1 dsRBD (Figure 6F). 
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Dcr1 loses its nuclear localization at higher temperatures. (C) Fluorescence microscopy of living cells 
expressing GFP-Dcr1. Cells were grown at 30°C, temperature was shifted to 39°C, and confocal images 
were taken at the indicated times after this shift. Although not visible here, some nuclear rim signal remains 
up to 4 h. Recovery of nuclear Dcr1 was monitored over 4 h after shifting the temperature from 39°C (cells 
having been at this temperature overnight) back to 30°C. Experiments done by Rieka Stunnenberg. (D) 
Much lower DamID library concentrations are obtained from Dam-Dcr1 strains when performed at 36°C 
compared with 30°C (confirmed by at least four independent replicates). 
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Dcr1 may not be the only component to be regulated by temperature. Using DamID, it appears 

that Rdp1 shows similar behaviour, since DNA levels obtained at the end of the protocol are 

lower at 39°C compared to 30°C (data not shown). No other Dam fusion proteins tested showed 

this behaviour. Microscopy for GFP-Rdp1 supports the idea that Rdp1 loses its nuclear 

localization at elevated temperatures (Rieka Stunnenberg, personal communication). 

Interestingly, Dcr1 and Rdp1 are large proteins (158 and 139 kDa, respectively) and may unfold 

more easily at higher temperatures. In conclusion, several components of the RNAi pathway in 

S. pombe may be regulated by a temperature increase. 
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Unfolding of Dcr1’s C-terminal domain is likely responsible for the loss of nuclear localization at higher 
temperatures. (E) Thermal unfolding of Dcr1’s C-terminal domain (shown in Figure VIIIb) monitored by 
differential scanning fluorimetry. Dotted line: temperature at which unfolding transition begins. (F) Expression 
analysis by tiling array (Barraud et al., 2011) showing differential expression at BANCs compared with all other 
genes in a Dcr1 mutant in which the dsRBD can no longer coordinate a zinc ion (dcr1-SHSS) and in a Dcr1 
mutant lacking the C-terminal 33 amino acids (dcr1-∆C33). Both of these are unable to fold the dsRBD properly 
and hence lose nuclear retention properties.  
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Part VII: Role of Cid14 in co-transcriptional gene silencing 
 

 

 

 

 

 

 
 

 

 

In addition to the studies described above, I contributed to two other manuscripts published by 

our lab, specifically relating to the role of the non-canonical poly(A) polymerase Cid14 in 

CTGS. The functional homologue of Cid14 in S. cerevisiae polyadenylates nuclear RNAs as part 

of an exosome-mediated RNA turnover pathway (LaCava et al., 2005; Vanacova et al., 2005; 

Wyers et al., 2005). In S. pombe, Cid14 has previously been implicated in ribosomal RNA 

processing and heterochromatic gene silencing (Buhler et al., 2007; Buhler et al., 2008; Wang et 

al., 2008a; Win et al., 2006). Interestingly, heterochromatin remains largely intact in cid14∆ 

cells, despite a loss of silencing, suggesting a role in CTGS (Buhler et al., 2007). 

 

In the first study, comparing genome-wide differential expression in cid14∆ cells with published 

ChIP-chip data for H3K9me2 and Swi6 (Cam et al., 2005), revealed a small set of 

heterochromatic genes upregulated in cid14∆, most of which are subtelomeric genes (Keller et 

al., 2010). Subsequently, I used DamID to test whether Cid14 physically associates with 

chromatin (Keller et al., 2012), since attempts to crosslink it to heterochromatic regions had 

failed. This revealed an association of Cid14 with the centromeres, mating-type region and 

telomeres (Figure 7A), supporting a role for Cid14 in the degradation of heterochromatic 

transcripts. Interestingly, the association of Cid14 with the mating-type region and telomeres was 

lost in a swi6∆ mutant (Figure 7A). The major results from the study revealed that Swi6 binds 

RNA, primarily via its hinge region, and that this binding competes with H3K9me association 

(Keller et al., 2012). Similar to cid14∆ cells, strains in which Swi6 can no longer bind RNA have 

Results published in: 
- Keller C, Woolcock K, Hess D, Bühler M (2010). Proteomic and functional analysis of the noncanonical 

poly(A) polymerase Cid14. RNA 16(6):1124-9. 
- Keller C, Adaixo R, Stunnenberg R, Woolcock K, Hiller S, Bühler M (2012). HP1Swi6 mediates the 

recognition and destruction of heterochromatic RNA transcripts. Mol Cell 47(2):215-27. Highlighted in: 
∗ Ren J and Martienssen RA (2012). Silent decision: HP1 protein escorts heterochromatic RNAs to 

their destiny. EMBO J 31(15):3237-8. 
∗ Schuldt A (2012). Chromatin: RNA eviction by HP1. Nat Rev Mol Cell Biol 13(8):478-9. 
∗ Creamer KM and Partridge JF (2012). Should I stay or should I go? Chromodomain proteins seal the 

fate of heterochromatic transcripts in fission yeast. Mol Cell 47(2):153-5.  
See Appendix for the above manuscripts.  
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impaired silencing but largely intact heterochromatin, particularly at the mating-type region and 

telomeres. In combination with the DamID, these findings support a model whereby Swi6 

recognises transcripts from heterochromatin, dissociates from H3K9me-marked nucleosomes as 

a result of RNA binding, and passes the RNA to Cid14, which then initiates degradation (Figure 

7B). Cid14 can associate with centromeres independently of Swi6 (Figure 7A). Similarly, Cid14 

associates with euchromatic regions, including BANCs, independently of Swi6 (Figure 7C) and 

may also play a role in CTGS at these regions. Further studies are required to investigate which 

factors are required for Cid14 association with these regions. 
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Figure 7 Cid14 may be involved in CTGS at both 
heterochromatic and euchromatic regions. (A) DamID 
enrichment (log2) for Cid14 at heterochromatin and 
euchromatin in wild type and swi6∆ cells. (B) Model for 
Swi6-mediated degradation of heterochromatic RNA. Swi6 
(blue) associates dynamically with H3K9-methylated 
nucleosomes. It binds newly synthesized RNA (red) and 
dissociates as a result of competition between RNA- and 
H3K9me-binding (light blue). The RNA is then passed to 
Cid14, which initiates degradation. (C) Cid14 associates 
preferentially with BANCs in both wild type and swi6∆ cells.  
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Possible mechanisms of CTGS 
 

The results summarized above describe a novel function for the RNAi machinery in repression of 

euchromatic regions in S. pombe. Pol II occupancy (of either S5-P or S2-P forms) (Zaratiegui et 

al., 2011a) does not significantly change at BANCs in dcr1∆ compared to wild type (data not 

shown). Furthermore, I detected no H3K9me2 enrichment at LTRs and heat shock genes (data 

not shown), and the lack of Swi6 association implies that H3K9me is not a feature of BANCs 

(Figure 3B). These observations support a model in which CTGS does not inhibit transcription 

but rather acts by degrading the nascent transcripts. There are several possibilities that can be 

envisaged for the exact mechanism of CTGS, which I will outline below (see also Figure 8): 

• Slice and torpedo – this mode requires the slicer activity of an Argonaute protein. Small 

RNAs are not necessarily required for targeting Ago1 to the nascent transcript but are 

required for cleavage. The creation of a free 5' end would make the downstream RNA 

fragment susceptible to exonuclease activity, which could catch up with Pol II and force 

termination, as in the ‘torpedo’ model for transcription termination (Kim et al., 2004; 

Teixeira et al., 2004; West et al., 2004). 

• Dice and torpedo – in this mode, Dicer would recognize a hairpin formed in the nascent 

transcript and cleave without the need for Ago1. This could again result in a torpedo-like 

eviction of Pol II downstream of the cleavage site.  

• Dice and trash – in this case Rdp1 would create dsRNA by reverse transcribing the nascent 

transcript, which is then processed by Dcr1. Small RNAs are again not necessary for 

targeting but may be required to prime synthesis by Rdp1. It is also possible that bidirectional 

overlapping transcription creates dsRNA substrates for Dcr1 without the need for Rdp1. 

Processing by Dcr1 could function in a similar way to exonucleases in the torpedo model, 

causing premature termination of Pol II.  

 

Careful experiments will be required to test which, if any, of these models is true. Although 

repression of BANCs as a group of genes requires Dcr1, Rdp1 and Ago1, it could be that 

different subgroups depend only on one or two components, according to the models above. 

RNA secondary structures with the potential to be recognized by Dcr1 may be encoded by Dcr1-
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associated genes. If torpedo-like events do occur, then Pol II occupancy downstream of the 

cleavage site is expected to decrease. Furthermore, 5'-to-3' exoribonucleases would be required 

for degradation of the downstream fragment and Pol II eviction. Since transcription is likely to 

oppose the deposition of repressive histone marks, loss of Pol II may result in an increase in 

H3K9me or histone deacetylation. Since BANCs associate with several HDACs, I propose that 

the repressive factors at NPCs have to be overcome by strong transcriptional activation. 

 

 

Figure 8 Possible mechanisms for RNAi-mediated 
co-transcriptional gene silencing. (A) Active 
transcription may oppose repressive modifications 
such as methylation of H3K9. (B) Ago1-mediated 
slicing of the nascent transcript creates a free 5' end 
that is subject to degradation by exonucleases, 
causing eviction of downstream Pol II as in the 
‘torpedo’ model for transcription termination. (C) 
Dcr1 recognises a secondary structure formed in the 
nascent transcript and cleaves, again resulting in 
torpedo-like eviction of downstream Pol II. (D) Rdp1 
creates long dsRNA, perhaps primed by Ago1-bound 
sRNAs, which are then processed by Dcr1. This may 
again result in a torpedo-like mechanism.  
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Nuclear organisation of RNAi 
 

The organisation of RNAi targets at NPCs would be a neat way of separating different RNAi 

pathways. For example, the dynamic and relatively active environment around pores (Casolari et 

al., 2004; Kalverda et al., 2010) could create an unfavourable environment for heterochromatin 

formation, despite the presence of the RNAi components. In contrast, the major regions of 

heterochromatin do not interact strongly with pores, although it is possible that a transient 

association plays a role in pre-siRNA transcription at centromeres (see Part V). In some cases, 

gene association with nuclear pores is known to enhance transcription (Brickner and Walter, 

2004; Taddei et al., 2006). While diffusion of mRNAs to NPCs is not thought to be rate limiting 

for export (Shav-Tal et al., 2004), it could be that NPC localization promotes expression by 

coordinating transcription and export, as proposed many years ago by the ‘gene gating’ 

hypothesis (Blobel, 1985). It seems likely that the localization of BANCs at NPCs keeps them 

poised for rapid induction and export.  

 

Nuclear pores have been shown to play important regulatory roles in other processes. For 

example, certain types of DNA damage in S. cerevisiae are recruited to pores where repair takes 

place (Nagai et al., 2008), and incorporation of the nucleoporin Nup210 into the NPC is required 

for myogenic and neuronal differentiation in mammalian cells (D'Angelo et al., 2012). In higher 

eukaryotes, many nucleoporins are actually mobile and are found in the nucleoplasm, where they 

can associate with active genes and stimulate their expression (Capelson et al., 2010; Kalverda et 

al., 2010). It is possible that the recruitment to active genes occurs due to an affinity of the 

nucleoporin for certain TFs (discussed below). In summary, accumulating evidence shows that 

NPCs are not only sophisticated mediators of transport between the nucleus and cytoplasm, but 

also play regulatory roles in many other processes. 

 

The subnuclear organisation of RNAi in S. pombe is reminiscent of the subcellular organisation 

of RNAi pathways in other organisms. For example, miRNA pathway components were found to 

associate with endosomes and multivesicular bodies (MVBs) in both human and Drosophila 

cells, and blocking MVB formation impairs miRNA-mediated silencing (Gibbings et al., 2009; 

Lee et al., 2009). A mitochondrial outer membrane protein, MITOPLD, is involved in formation 
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of nuage, a perinuclear structure required for piRNA biogenesis and function, in mice (Huang et 

al., 2011; Watanabe et al., 2011). In Arabidopsis, proteins involved in RdDM are concentrated in 

nuclear Cajal and AB bodies (Li et al., 2008; Li et al., 2006a; Pontes et al., 2006). Finally, 

components of the RNAi process ‘meiotic silencing by unpaired DNA’ (MSUD) in Neurospora 

crassa co-localize in a perinuclear region (Alexander et al., 2008; Shiu et al., 2006). Such 

organisation is likely to enhance the specificity and efficiency of RNAi pathways, and allow 

better regulation.  

 

The role of transcription factors in genome organisation 
 

The finding that Atf1 is required for preferential association of BANCs with pores supports 

hypotheses that propose a role for TFs in organising chromatin at pores in other organisms (see 

introduction). The way in which Atf1 is able to tether its target genes to pores remains unknown. 

Preliminary biochemical data (TAP purification followed by mass spectrometry) does not reveal 

any obvious nuclear periphery interaction partners for Atf1 (data not shown). Further 

biochemical work will be required to determine how Atf1 associates with nuclear pores.  

 

Since Atf1 seems to be involved in tethering its target genes to nuclear pores, I wondered 

whether other TFs perform a similar function. One way to check this is to look for a preferential 

association of genomic regions containing known TF motifs with Nup85. Unfortunately, there is 

no database for S. pombe TF motifs, so I used the S. cerevisiae Jaspar database. The motif for the 

S. cerevisiae ATF/CREB family transcription factor CST6 is extremely similar to that of Atf1 

(TGACGT). Creating a score for association of a certain TF weight matrix with Nup85 DamID 

(Dimos Gaidatzis, see Additional Methods) gives CST6 a high score, which decreases in atf1∆ 

(Figure 9A), suggesting that this approach is sound. As expected, the score for CST6 does not 

change between wild type and atf1∆ for Dcr1 DamID (Figure 9B). Several other TF motifs have 

a high score for association with Nup85 and Dcr1, suggesting that these TFs might similarly help 

tether their target genes to pores. However, deletion of three such TFs does not affect genome 

association with Nup85 (Kasia Kowalik, personal communication). It is possible that several TFs 

act redundantly to tether their targets to nuclear pores.   
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A recent genome-wide chromosome conformation capture study in S. pombe revealed significant 

associations among highly transcribed genes and those with shared GO terms, including 

metabolic processes and response to stimulus (Tanizawa et al., 2010). The associating genes 

often contain similar DNA motifs in their promoters. It remains to be seen whether such 

clustering depends on transcription factors, and whether the associations occur near NPCs. 

Evidence from mammalian cells that the transcription factor Klf1 mediates preferential co-

associations of Klf1-regulated genes (Schoenfelder et al., 2010) suggests that transcription 

factor-mediated genome organisation may be a widely-conserved phenomenon. 

 

How does Dcr1 recognise its substrates? 
 

The mechanism by which Dcr1 associates with pores is unknown, and again biochemical studies 

do not reveal any obvious interaction partners (Stephan Emmerth). Surprisingly, while Nup85 

preference for BANCs is lost in atf1∆, Dcr1 preference is not. Similarly, centromeres lose their 

weak association with pores in atf1∆, but Dcr1 remains bound there. These results suggest that, 

at least to some extent, Dcr1 is found at pores because its targets are localized there. Therefore, it 

may independently be able to recognize its targets.  

 

I tested several aspects of Dcr1 function for a possible involvement in target recognition (data 

not shown). Mutating either one or both of the RNase III domains of Dcr1 had almost no effect 

on Dcr1 association with the genome, as did mutation of a residue important for in vitro RNA 

binding properties of the dsRBD (Barraud et al., 2011). Deletion of ers1, which results in loss of 
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centromeric heterochromatin (Roguev et al., 2008; Rougemaille et al., 2008), similarly had no 

effect. It was recently shown that Ers1 associates with Swi6 and helps to recruit RDRC to 

heterochromatin (Hayashi et al., 2012; Rougemaille et al., 2012). Although Ers1 also co-purifies 

with Dcr1 (Rougemaille et al., 2012), the DamID results suggest that Ers1 has no role in Dcr1 

recruitment. Finally, deletion of abp1, which also localizes to LTRs and is involved in their 

repression (Cam et al., 2008), did not change Dcr1 association. 

 

Interestingly, splitting genes into those with high and low expression shows that Dcr1 (and to a 

lesser extent Nup85) has a preference for more highly transcribed genes (Figure 10). Therefore, 

RNA level/other transcription factors/Pol II could promote recognition. It will be interesting to 

test whether the point mutations of Pol II subunits Rpb2 and Rbp7 that affect centromeric 

silencing (Djupedal et al., 2005; Kato et al., 2005) affect Dcr1 recruitment to chromatin and 

BANC silencing. 

 
 

Possible conservation of RNAi-mediated TGS/CTGS in other eukaryotes 
 

C. elegans 
 

Work on nuclear RNAi in C. elegans is clearly reminiscent of CTGS in fission yeast. Both 

exogenous and endogenous siRNAs can silence nuclear-retained RNAs or nuclear-localized 

polycistronic RNAs. The evidence suggests that the siRNAs are mainly generated by RdRPs 

acting on mRNA templates in the cytoplasm (Guang et al., 2008). The siRNAs associate with the 
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Argonaute protein NRDE-3 (nuclear RNAi defective-3; lacks residues required for slicer 

activity) in the cytoplasm and are subsequently transported to the nucleus (Guang et al., 2008). 

NRDE-3 associates with pre-mRNA that has complementarity to the siRNAs and recruits other 

NRDE factors, resulting in H3K9 methylation of the surrounding histones (Burkhart et al., 2011; 

Guang et al., 2010). A reduction in pre-mRNA and a decrease in Pol II occupancy occurs 3' to 

the site of RNAi, implying a block in transcription elongation (Guang et al., 2010). Nuclear run-

on assays confirm an NRDE-2/3-dependent inhibition of RNA Pol II transcription 3' to the site of 

RNAi. However, it is possible that Pol II inhibition is a secondary consequence of another co-

transcriptional silencing activity associated with the NRDE pathway, which could be 

cleavage/degradation. For example, cleavage of the nascent transcript by a NRDE component or 

interacting partner could result in exonucleolytic degradation from the unprotected 5' end of the 

newly-created RNA fragment. The exonuclease would then catch up with Pol II and promote 

termination, as described for the ‘torpedo’ model above. If active transcription counteracts H3K9 

methylation, eviction of RNA Pol II from chromatin by the torpedo might explain the observed 

increase in this repressive histone modification. The importance of the H3K9 methylation for 

silencing is unclear. Indeed, H3K9me occurs throughout the targeted gene, while inhibition of 

transcription only occurs 3' to the site of RNAi, suggesting that H3K9me is not responsible for 

silencing (Burkhart et al., 2011). However, chromatin factors have previously been implicated in 

RNAi-mediated transgene silencing in C. elegans (Grishok et al., 2005; Robert et al., 2005). 

More recently, it was shown that RNAi-mediated heritable silencing in the C. elegans germline 

depends on chromatin factors including the putative H3K9 methyltransferase SET-25 and the 

HP1 homologue HPL-2 (Ashe et al., 2012; Shirayama et al., 2012). Intriguingly, the nucleoporin 

npp-4 affects both transposon silencing in the germline and RNAi-mediated transgene silencing 

in the soma (Grishok et al., 2005; Vastenhouw et al., 2003). 

 

Drosophila 
 

The existence of nuclear RNAi pathways in other eukaryotes is still debated. Evidence often 

stems from loss-of-function studies, making it difficult to rule out indirect effects, and the 

absence of RdRP-mediated amplification means that siRNA levels are likely to be low. 
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Furthermore, reports on the impact of RNAi pathways on chromatin modification are sometimes 

contradictory. Nonetheless, in Drosophila, endo-siRNAs, which mostly map to transposable 

elements, have been implicated in heterochromatin formation in somatic cells (Fagegaltier et al., 

2009). In addition, there are several interesting links between chromatin and the piRNA pathway. 

piRNA pathway components have been implicated in H3K9 methylation of chromatin in the 

soma (Pal-Bhadra et al., 2004). Furthermore, Piwi is distributed along polytene chromosomes 

and interacts directly with HP1a (Brower-Toland et al., 2007). However, another study showed 

that HP1 can associate with piRNA clusters in somatic cells independently of both endo-siRNA 

and piRNA pathways, and provided evidence that Piwi may actually oppose HP1 recruitment at 

some regions (Moshkovich and Lei, 2010). In the germline, loss of piRNAs is accompanied by a 

decrease in repressive and an increase in active histone modifications on several upregulated 

transposons (Klenov et al., 2007). In addition, CpG DNA methylation is impaired in the male 

germline of some Piwi family mutants in mice (Aravin et al., 2008; Carmell et al., 2007; 

Kuramochi-Miyagawa et al., 2008). As well as this possible impact of the piRNA pathway on 

chromatin, there is evidence that heterochromatin can affect piRNA production. For example, 

mutations in the HP1 homologue Rhino, the H3K9 methyltransferase SetDB1 and a Rhino-

interacting protein called Cutoff all impair piRNA generation (Klattenhoff et al., 2009; Pane et 

al., 2011; Rangan et al., 2011). Therefore, similar to the case in S. pombe, it is possible that the 

small RNA pathway can affect chromatin and, vice versa, chromatin can affect small RNA 

production.  

 

As mentioned before, CTGS mechanisms may produce small RNAs that are not actually 

functional and the silencing effect does not necessarily involve chromatin modifications. 

Therefore, a better way to assess the action of the RNAi machinery in the nucleus is by 

investigating direct association with the genome. This has been done in Drosophila using both 

polytene chromosome staining and ChIP. In one study, DCR2 and AGO2 were shown to 

associate with many euchromatic and transcriptionally active loci, including heat shock genes 

(Cernilogar et al., 2011). Knockdown of DCR2 or AGO2 resulted in upregulation of some of 

these transcripts. Interestingly, one of these heat shock clusters, the hsp70 locus, is known to be 

associated with NPCs (Kurshakova et al., 2007). These results are clearly reminiscent of the 
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observations in fission yeast, although in contrast to my findings, the association of DCR2 seems 

to be dependent on the presence of AGO2 in Drosophila (Cernilogar et al., 2011). It is important 

to note that, while the authors show the presence of AGO2-bound small RNAs matching to heat 

shock loci, which increase upon heat shock, these are not necessarily functional and could simply 

be degradation products. 

 

Another study looked at AGO2 association using ChIP coupled to massively parallel sequencing 

(ChIP-seq) and similarly showed association with many euchromatic regions, but not with 

regions shown to produce endo-siRNAs (Moshkovich et al., 2011). The regions bound by AGO2 

overlap with insulator proteins, including CP190 and CTCF (Moshkovich et al., 2011). Since 

insulator proteins are often involved in organising chromatin at the nuclear periphery (Guelen et 

al., 2008; Kalverda and Fornerod, 2010; van Bemmel et al., 2010), it is tempting to speculate that 

the association of the RNAi machinery with the periphery that is seen in fission yeast could be 

conserved in Drosophila. Furthermore, the authors report an AGO2 preference for promoters, 

similar to what I observed for Dcr1 and Rdp1 in fission yeast.  

 

Other eukaryotes 
 

In contrast to Drosophila, where miRNA and siRNA pathways have been roughly segregated 

into DCR1/AGO1- and DCR2/AGO2-mediated processes, respectively, mammals possess only 

one Dicer enzyme, loss of which results in early embryonic lethality (Bernstein et al., 2003). 

Separating the effects of Dicer perturbation on the miRNA pathway and on other RNAi-

mediated processes is therefore challenging (Benetti et al., 2008; Sinkkonen et al., 2008). 

Nonetheless, some reports have implicated Dicer in silencing centromeric repeats in mammals, 

although there are contradictory findings as to whether changes in chromatin modifications 

accompany the loss of silencing in Dicer mutants (Fukagawa et al., 2004; Kanellopoulou et al., 

2005; Murchison et al., 2005). Thus, it is possible that RNAi in mammals is dispensable for the 

integrity of heterochromatin but might still contribute to tight repression. A potential example of 

such repression is the processing of Alu RNAs, which incidentally are abundant in 

heterochromatin, by DICER1 in the human eye (Kaneko et al., 2011). In age-related macular 
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degeneration, decreased levels of DICER1 mRNA are responsible for an increase in double-

stranded Alu RNAs, and subsequent cytotoxicity. The RNA accumulation occurs in both nuclear 

and cytoplasmic compartments. Using antisense oligonucleotides targeting Alu sequences blocks 

DICER1 reduction-induced cytotoxicity, despite persistent global miRNA expression deficits. 

Whether such repression occurs in association with chromatin remains to be investigated. 

 

Artificial targeting of siRNAs to promoter regions in human cells can affect transcript levels and 

induce chromatin modifications in an Argonaute-dependent manner, reminiscent of the 

observations in C. elegans (Janowski et al., 2006; Kim et al., 2006; Morris et al., 2004; Morris et 

al., 2008; Ting et al., 2005; Weinberg et al., 2006). However, these studies have reported both 

repressive and activating effects, apparently dependent on the cell context (Janowski et al., 2007; 

Li et al., 2006b; Schwartz et al., 2008; Ting et al., 2005), and the effect does not always seem to 

involve chromatin modifications (Janowski et al 2005, Napoli et al 2009). If the effects are co-

transcriptional, however, then chromatin modifications are not necessary and could be a 

consequence of silencing/activation. I believe that efforts to map interactions between the RNAi 

machinery and mammalian genomes, and to perturb the subcellular localization of RNAi 

components, will be more informative as to whether endogenous RNAi-mediated TGS/CTGS 

processes are conserved. Argonaute proteins have been found in the nuclei of mammalian cells 

(Robb et al., 2005; Weinmann et al., 2009), and a recent study showed interaction of human 

DICER1 with several nuclear pore components (Ando et al., 2011), providing encouraging hints 

that such processes exist. 

 

Although S. cerevisiae is one of the few eukaryotes lacking the RNAi machinery, there is some 

evidence that the dsRNA-specific RNase III, Rnt1p, can also have co-transcriptional functions. 

For example, it was proposed that Rnt1p co-transcriptionally degrades RNAs involved in the 

glucose-sensing pathway (Lavoie et al., 2012). Furthermore, co-transcriptional cleavage by 

Rnt1p can ensure proper transcription termination (Ghazal et al., 2009; Rondon et al., 2009), 

similar to a recently described role for Arabidopsis DCL4 (Liu et al., 2012) and the requirement 

for Dcr1 in transcription termination within S. pombe centromeric repeats (Zaratiegui et al., 



59	
  
	
  
	
  

2011a). Therefore, co-transcriptional functions of RNase III enzymes may also exist in 

organisms lacking the RNAi pathway. 

 

Physiological relevance of CTGS 
 

While the above studies strongly hint at a possibly conserved function of nuclear RNAi pathways 

that is consistent with the concept of CTGS, the physiological relevance of such a mode of 

genome regulation is not clear. The fact that CTGS in fission yeast seems to occur preferentially 

at stress response genes near nuclear pores suggests that this mechanism functions to keep 

certain genes poised for expression, enabling very rapid upregulation and export under stress 

conditions. This is conceptually similar to the well-studied phenomenon of Pol II pausing at heat 

shock genes in Drosophila (Guertin et al., 2010). The association of DCR2 and AGO2 with heat 

shock loci in Drosophila suggests a similar function, and the results even indicate that DCR2 and 

AGO2 affect Pol II pausing at these genes (Cernilogar et al., 2011). It is interesting to note that 

DCR2 and AGO2 are required to compensate for temperature fluctuations in the developing 

Drosophila embryo (Lucchetta et al., 2009). It remains to be seen whether other CTGS 

mechanisms, like those in C. elegans, are also involved in regulating responses to environmental 

changes. There are already some hints in this direction, for example genes upregulated in several 

RNAi mutants overlap with those induced upon exposure of C. elegans to pathogens or toxins 

(Welker et al., 2007). 

 

Interestingly, after long periods of elevated temperature, fission yeast Dcr1 leaves the nucleus 

(Figure 6B), indicating that environmental conditions can regulate the RNAi pathway. This could 

be required for adapting in the longer term, for example by enabling upregulation of transcripts 

involved in thermotolerance. However, the loss of Dcr1 from the nucleus upon heat results in a 

maximum increase in centromeric transcripts of ~5-fold, much less than the 60-100-fold increase 

seen in dcr1∆ cells. Although it was previously reported that silencing of transgenes inserted into 

heterochromatin is alleviated at higher temperatures (Allshire et al., 1994), we see only a mild 

increase in otr1R::ura4+ transcripts after up to 8 h of heat shock (Kasia Kowalik, personal 



60	
  
	
  
	
  

communication). This suggests that compensatory mechanisms may exist to keep centromeres 

silent at higher temperatures. 

 

There is also evidence from other organisms that temperature can influence RNAi pathways. For 

example, RNAi in plants is more efficient at higher temperatures, with levels of siRNAs, but not 

miRNAs, positively correlating with temperature (Szittya et al., 2003). In contrast, RNAi-

mediated silencing of transgenes in the C. elegans germline is enhanced by culturing the worms 

at lower as opposed to higher temperatures (Strome et al., 2001). It is possible that higher or 

lower temperatures affect pairing of small RNAs with their targets. However, it could be that 

more sophisticated regulation of RNAi pathways in response to temperature changes, 

exemplified by the relocalization of fission yeast Dicer, is behind these observations.  
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Part I: RNAi-mediated co-transcriptional gene silencing in euchromatin 
 

For DamID, RNA isolation, cDNA synthesis and quantitative RT-PCR, see the Methods sections 

of the published manuscripts found in the Appendix (Woolcock et al., 2011; Woolcock et al., 

2012). In addition, a detailed DamID bench protocol and R scripts used for analysis have been 

deposited in the Bühler laboratory protocols database and are available on request. 

 

Replacement and deletion of Dcr1-associated ncRNAs and LTRs 

 
Fission yeast strains were grown at 30°C in YES. All strains (listed in Table 1) were constructed 

following a standard PCR-based protocol (Bahler et al., 1998). Fragments ~500 bp either side of 

the LTR or ncRNA were linked by a fusion PCR strategy and transformed into an LTR∆::URA3 

(C.a.) or ncRNA∆::URA3 (C.a.) strain, respectively, followed by counter-selection on 5-FOA. 

The RNA level of the nearby Dcr1-regulated gene (within 5 kb, measuring from the middle of 

the LTR/ncRNA to the middle of the gene) was then determined by quantitative RT-PCR, done 

as previously described (Emmerth et al., 2010). Primer pairs used for PCR reactions are listed in 

Table 2.  

 

Table 1 
Strain Genotype Source 
SPB30 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 

and Tadh1 terminator) 
1 

SPB830 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) dcr1∆::hph 

2 

SPB757 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR4480∆::URA3 

2 

SPB760 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR4480∆ 

2 

SPB831 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR4480∆ dcr1∆::hph 

2 

SPB758 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR3517∆::URA3 

2 

SPB761 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR3517∆ 

2 

SPB832 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR3517∆ dcr1∆::hph 

2 

SPB759 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR1452∆::URA3 

2 

SPB762 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR1452∆ 

2 
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SPB833 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator) LTR1452∆  dcr1∆::hph 

2 

SPB866 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)  ncRNA540∆::URA3 

2 

SPB908 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)   ncRNA.540∆ 

2 

SPB929 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)   ncRNA.540∆  dcr1∆::hph 

2 

SPB867 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)  ncRNA472∆::URA3 

2 

SPB910 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)   ncRNA.472∆ 

2 

SPB931 h+ leu1-32 ade6-M210 ura4DS/E otr1R(SphI)::GFP+/NAT (ura4 promoter 
and Tadh1 terminator)   ncRNA.472∆  dcr1∆::hph 

2 

1 = Bühler lab strain collection, 2 = This study 
	
  

Table 2 
Name Number Sequence 
hsp9 for mb1733 GAACAAGGCAAGGAGAAAATGACT 
hsp9 rev mb1734 AATGGATTCCTTGGCCTTGTC 
SPBC215.11c for mb1735 CAGCTTCTTCCGCCGTAGAT 
SPBC215.11c rev mb1736 ACCATGTCGCCAACCTTGA 
SPCC737.04 for mb1739 GGTACGACCGGGAGACGTT 
SPCC737.04 rev mb1740 CAAATGGCGGCCCAACT 
hsp16 for mb3059 AAAGCACCGAGGGTAACCAA 
hsp16 rev mb3060 TGGTACGAGAGAATGAGCCAAA 
SPCC18B5.02c for mb2473 TCAAAGACTTGTGCCGAAAGG 
SPCC18B5.02c rev mb2474 CAAACGAAGAGCGCTTTTGC 
act1 for mb555 TCCTCATGCTATCATGCGTCTT 
act1 rev mb556 CCACGCTCCATGAGAATCTTC 
 
 

Part II: Establishment of RNAi-genome interactions 
 

See Methods section in the published manuscript found in the Appendix (Woolcock et al., 2012).  

 

Part III: RNAi-mediated regulation of protein-coding genes 
 

See Methods section in the published manuscript found in the Appendix (Woolcock et al., 2012). 

 

Part IV: Further characterisation of the properties and nuclear environment of BANCs 
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Previously published datasets were reannotated to enable comparison of BANCs with all other 

genes (Cam et al., 2005; Nicolas et al., 2007; Sugiyama et al., 2007). Deep sequencing datasets 

(Wilhelm et al., 2008; Zaratiegui et al., 2011b) were reanalysed using the FMI deep sequencing 

pipeline and annotated to enable comparison of BANCs with all other genes. RNA polymerase II 

ChIP-chip (Wilhelm et al., 2008) was reanalysed as previously described (Woolcock et al., 

2012). 

 

Part V: Role for transcription factors in genome organisation at nuclear pores 
 

Fission yeast strains were grown at 30°C in YES. All strains (listed in Table 3) were constructed 

following a standard PCR-based protocol (Bahler et al., 1998). DamID was done as previously 

described (Woolcock et al., 2012).  

 

Table 3 
Strain Genotype Source 
SPB492 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   

leu1∆::nmt1(81x)-dam-myc-kan 
1 

SPB381 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-dcr1-kan 

1 

SPB1151 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-nup85-kan 

2 

SPB711 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-kan  clr4∆::nat 

1 

SPB1426 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-nup85-kan  clr4∆::nat 

3 

SPB1433 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-kan  atf1∆::nat 

3 

SPB1434 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-dcr1-kan  atf1∆::nat 

3 

SPB1435 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-nup85-kan  atf1∆::nat 

3 

SPB1436 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-kan  pcr1∆::nat 

3 

SPB1437 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-dcr1-kan  pcr1∆::nat 

3 

SPB1438 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-nup85-kan  pcr1∆::nat 

3 

1 = (Woolcock et al., 2011), 2 = (Woolcock et al., 2012), 3 = This study 
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Part VI: Regulation of RNAi at elevated temperatures 
 

See Methods section in the published manuscript found in the Appendix (Woolcock et al., 2012). 

 

Part VII: Role of Cid14 in co-transcriptional gene silencing 
 

See Methods sections in the published manuscripts found in the Appendix (Keller et al., 2012; 

Keller et al., 2010).  

 

Additional Methods 
 

Motif enrichment analysis in DamID data 

 
Jaspar core fungi (21.12.2011) weight matrices were downloaded from http://jaspar.cgb.ki.se/ 

and were used to scan the S. pombe genome with a minimum meme score of 10. This resulted in 

a list of 753956 predicted binding sites for 160 transcription factors (TFs). Clustering of the 

binding sites (in windows of 10 bp) revealed one pair of TFs (MA0338.1 and MA0339.1) with 

identical binding sites. MA0339.1 was therefore removed from further analysis. To determine if 

the DamID signal from various experiments can be explained by TF binding, we performed a 

linear regression (in windows of 1000 bp) using the number of TF binding sites as predictors and 

the DamID signal as the response variable. The coefficients obtained from the regression were 

used as the inferred contribution of every TF to the DamID signal. 
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Dicer associates with chromatin to repress genome activity 
in Schizosaccharomyces pombe
Katrina J Woolcock, Dimos Gaidatzis, Tanel Punga & Marc Bühler

In the fission yeast S. pombe, the RNA interference (RNAi) pathway is required to generate small interfering RNAs (siRNAs) that 
mediate heterochromatic silencing of centromeric repeats. Here, we demonstrate that RNAi also functions to repress genomic 
elements other than constitutive heterochromatin. Using DNA adenine methyltransferase identification (DamID), we show that 
the RNAi proteins Dcr1 and Rdp1 physically associate with some euchromatic genes, noncoding RNA genes and retrotransposon 
long terminal repeats, and that this association is independent of the Clr4 histone methyltransferase. Physical association of RNAi 
with chromatin is sufficient to trigger a silencing response but not to assemble heterochromatin. The mode of silencing at the 
newly identified RNAi targets is consistent with a co-transcriptional gene silencing model, as proposed earlier, and functions 	
with trace amounts of siRNAs. We anticipate that similar mechanisms could also be operational in other eukaryotes.

S. pombe contains single genes encoding the RNAi proteins Argonaute, 
Dicer and RNA-dependent RNA polymerase (ago1+, dcr1+ and rdp1+, 
respectively). Deletion of any of these genes results in loss of hetero-
chromatic gene silencing, markedly reduced levels of histone H3 Lys9 
(H3K9) methylation (H3K9me) at centromeric repeat regions, and 
defects in chromosome segregation1,2. S. pombe expresses endogenous 
siRNAs, most of which correspond to heterochromatic regions and 
are found single stranded in an Ago1-containing complex, called the 
RNA-induced transcriptional silencing complex (RITS; consisting of 
Ago1, Chp1 and Tas3)3,4. Current models for RNAi-mediated hetero-
chromatin formation in S. pombe propose that noncoding transcripts 
from repetitive elements are processed by Dcr1 into siRNAs, which 
guide the RITS complex to chromatin via complementary base-pairing 
of the Ago1-bound siRNA with the nascent RNA4,5. Subsequently 
this leads to recruitment of CLRC, a protein complex that contains 
the sole S. pombe H3K9 methyltransferase Clr4 (ref. 6). H3K9me  
further stabilizes binding of RITS to chromatin via its subunit Chp1 
and provides binding sites for the heterochromatin proteins Swi6 and  
Chp2. RITS can also recruit the RNA-directed RNA polymerase  
complex (RDRC; consisting of Rdp1, Cid12 and Hrr1), generating 
more double-stranded RNA substrates for Dcr1 and amplifying the 
process7,8. Notably, it is assumed that this entire process occurs in cis  
on chromatin. This is directly supported by chromatin immuno
precipitation (ChIP) experiments that demonstrate a physical asso-
ciation of Ago1 and Rdp1 with chromatin1,9. However, attempts 
to cross-link Dcr1 to centromeric heterochromatin have failed1. 
Therefore, definitive proof for the cis model has been lacking, and 
the available data do not allow us to rule out the possibility that siRNA 
processing could occur off chromatin10.

Although siRNAs are essential for proper heterochromatin 
assembly at centromeric repeats, they function poorly in de novo  
formation of heterochromatin at ectopic sites5,11–13. Furthermore,  

the accumulation of siRNAs and the methylation of H3K9 are mutually  
dependent processes in S. pombe, and the physical association of 
Ago1 with chromatin is lost in Clr4-deficient cells7,9,14,15. Notably, 
low levels of H3K9me persist at centromeres in RNAi-deficient 
cells, and genetic and biochemical analysis of the requirements for 
establishment and maintenance of centromeric heterochromatin 
have provided evidence that low levels of H3K9me play a crucial 
role in the initial steps of heterochromatin formation1,16,17. It has 
therefore been proposed that a siRNA-independent mechanism pro-
vides some low levels of H3K9me at centromeric repeats to allow the  
initial recruitment of the RNAi machinery to centromeres. This would 
then trigger a positive feedback loop to promote more efficient Clr4 
recruitment and thus high levels of H3K9me and siRNAs18. How Clr4 
is initially recruited to centromeres is debated. This process could be 
mediated by Dcr1-independent small RNAs, as recently proposed19. 
Alternatively, Clr4 might also be recruited via yet-to-be-identified 
cis-acting nucleation sites, as has been demonstrated for other hetero
chromatic loci in S. pombe20.

In addition to its role in heterochromatin formation at centromeric 
repeats, the RNAi pathway has recently been implicated in the transient  
recruitment of the HP1 homolog Swi6 to some convergent gene pairs 
(CGPs)21. It is proposed that inefficient transcription termination at 
the studied CGPs leads to overlapping transcription in the G1 phase 
of the cell cycle, creating a double-stranded substrate for Dcr1. The 
resulting siRNAs would then target the RITS complex to the inter-
genic region, leading to H3K9 methylation and Swi6 binding. Swi6 in 
turn recruits cohesin, which ensures proper transcription termination 
for the remainder of the cell cycle. So far, this mechanism has been 
demonstrated only for a few gene pairs, and it remains unclear how 
widespread it is among CGPs across the whole S. pombe genome.

Here, we use DamID to probe the fission yeast genome for interactions  
with RNAi and heterochromatin proteins in a cell cycle–independent 
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manner. We demonstrate that Swi6 can be recruited to a few but not 
all CGPs via the RNAi pathway, and we show for the first time that 
Dcr1 physically associates with chromatin, providing direct evidence 
for RNAi-mediated heterochromatin formation in cis at centromeric 
repeats. Unexpectedly, in the absence of H3K9 methylation, Dcr1, and 
to a certain extent Rdp1, can still associate with chromatin. On the 
basis of our results we propose that pre-existing H3K9 methylation 
is dispensable for siRNA generation, but not for proper loading of 
siRNAs onto Ago1, a process that ensures high levels of siRNAs and 
robust H3K9 methylation at centromeric repeats. In the absence of 
H3K9 methylation, Rdp1 and Dcr1 can still function on chromatin 
to trigger RNA decay but fail to accumulate high levels of siRNAs, 
a silencing mode that is consistent with a co-transcriptional gene 
silencing (CTGS) model, as proposed earlier5,22.

RESULTS
Interactions of Swi6 and Rdp1 with the S. pombe genome
Previous genome-wide studies of RNAi-dependent heterochromatin 
formation in S. pombe have mainly used the ChIP technique to map 
interactions of proteins with chromatin9,23, and deep sequencing 
technologies to identify sites of siRNA production19,24,25. Notably,  
S. pombe has an extended G2 phase, and as many of these studies used 
asynchronous cultures, they could have missed the association of 
proteins with chromatin or the production of small RNAs outside G2.  
Furthermore, attempts to immunoprecipitate certain components 
of the pathway with heterochromatin have failed1,26, perhaps owing 
to insufficient sensitivity of the ChIP technique to detect indirect 
or weak interactions of proteins with chromatin. Similarly, even 
deep sequencing may be unable to detect small RNAs of very  
low abundance or stability. To address these problems, we took 
advantage of DamID27, a highly sensitive chromatin profiling tech-
nique that is well suited to capture even transient protein-chromatin 
interactions that might occur during the cell cycle (Fig. 1a and 
Supplementary Fig. 1).

We first tested Swi6 and Rdp1, two proteins that are fully func-
tional when fused to Dam (Supplementary Fig. 2) and for which 
genome-wide chromatin association profiles have been determined 
using ChIP in combination with microarrays (ChIP-on-chip)9. We 
hybridized samples from three independent DamID experiments to 
S. pombe tiling arrays from Affymetrix. A first analysis of the data 
revealed that DamID is a reliable method to detect both stable and 

transient Swi6 associations with the S. pombe genome (Fig. 1 and 
data not shown). Comparing our data with the ChIP-on-chip data 
showed that DamID revealed all known major heterochromatic sites 
as well as their association with Rdp1 (Fig. 1b,c). As expected, Dcr1 
was only partially required for Swi6 association with subtelomeric 
regions (as assessed by pseudogenes, most of which are located in 
subtelomeres) and the mating type locus, whereas Swi6 association 
with centromeric repeats was greatly affected in dcr1∆ cells (Fig. 1d  
and Supplementary Fig. 3). To investigate whether the DamID 
approach reveals so-far-unknown heterochromatic regions, we looked 
for regions that were enriched in the DamID but not in the ChIP-on- 
chip data and that were not located near known heterochromatic 
regions (Supplementary Table 1). This revealed a list of 28 elements 
for Swi6 and 11 elements for Rdp1 (Supplementary Tables 2 and 3). 
Notably, most of the newly identified Swi6-associated loci seem to be 
dependent on Dcr1, and many are part of a CGP and/or found near 
a noncoding RNA (ncRNA) gene.
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Dcr1 associates with chromatin independently of Clr4
A major advantage of using DamID is that it allows the detection 
of indirect protein-chromatin associations28. ChIP is inefficient in 
detecting interactions of proteins that do not bind to chromatin 
directly but rather bind via other proteins or chromatin-associated 
RNAs. For example, an association of Dcr1 with pericentromeric 
heterochromatin has so far not been demonstrated by ChIP1, although 
current models propose that Dcr1 generates siRNAs in cis on centro-
meric chromatin29. We therefore set out to test whether Dam–Dcr1 
would reveal any association with chromatin. Indeed, Dcr1 was 
revealed to be associated with centromeric repeats (Fig. 2), provid-
ing the first direct evidence that the entire RNAi machinery operates 
in cis to promote the assembly of centromeric heterochromatin.

An intriguing feature of the S. pombe RNAi pathway is that Clr4 is 
necessary for the accumulation of high siRNA levels. Consistent with 
previous studies5,14,15,19, centromeric siRNA levels were drastically 
reduced when H3K9 methylation was prevented by either deleting  
clr4+ or mutating H3K9 to H3R9 (Fig. 3a and data not shown),  
suggesting that Dcr1 might be recruited to centromeric repeats in 
a heterochromatin-dependent manner to generate siRNAs. DamID 
allowed us to test this model directly by comparing Dcr1 profiles 
in wild-type and clr4∆ cells. Unexpectedly, we found that Dcr1 still 

associated with centromeric repeats in clr4∆ cells (Fig. 3b). Notably, 
this pattern of Clr4 independence is seen throughout the genome for 
Dcr1 (Fig. 3c). Moreover, Rdp1 binding to centromeric repeats was 
significantly (P = 0.0205) reduced but not completely lost in clr4∆ cells 
(Fig. 3b,d). Therefore, the low centromeric siRNA levels observed in 
heterochromatin-deficient cells cannot be explained by the absence 
of the siRNA-processing machinery at centromeric repeats.

RNAi machinery contributes to long terminal repeat silencing
Having shown that Dcr1 directly associates with its known targets, we 
looked for other putative Dcr1-associated loci and found that it also 
associates with some euchromatic regions, including ncRNA genes and 
long terminal repeats (LTRs) (Fig. 4a). In total, we found 128 elements 
to be associated with Dcr1, 53 of them LTRs and 30 of them ncRNA 
genes (Supplementary Table 4). There are 13 full-length copies of the 
Tf2 LTR retrotransposon in the S. pombe genome, and ~250 solo LTRs 
or LTR fragments30. Using only unique probes and extending the LTR 
sequences by 200 bp on either side showed that ~65% of LTRs are asso-
ciated with Dcr1. Unlike for centromeric repeats, we were able to con-
firm Dcr1 association with LTRs by ChIP (Fig. 4), suggesting that Dcr1 
is more tightly associated with LTRs than centromeric repeat DNA.

Similar to what we saw for Dcr1, we also found Rdp1 to be associa
ted with LTRs (Fig. 4b). In contrast to Dcr1, the dependency of Rdp1 
binding on Clr4 differs between different genomic regions (Figs. 3b,d  
and 4b). The association of Rdp1 with LTRs is independent of Clr4. 
Notably, those genomic features, such as LTRs, that show Clr4-
independent Rdp1 binding are also those enriched in the Dcr1 DamID 
(Fig. 4a,b), suggesting that Rdp1 and Dcr1 may have a joint role in 
regulating these loci independently of heterochromatin. Indeed, 
transcripts originating from retrotransposon LTRs31 were upregulated 

Figure 3  Clr4 dependency of Dcr1 or Rdp1 association with chromatin.  
(a) Northern blot for centromeric siRNAs in wild-type and heterochromatin-
defective (H3K9R) cells. snoR69 serves as a loading control. (b) Swi6, 
Rdp1 and Dcr1 enrichment at centromeric repeat elements in wild-type  
and heterochromatin-defective (clr4∆) cells. Error bars represent the  
s.e.m. (n = 3). P values were generated using the Student’s t-test.  
(c,d) Comparisons of DamID signal quantified at annotated features across 
the genome in wild-type and heterochromatin-defective (clr4∆) cells. Each 
axis shows the average of three independent biological replicates.  
(c) Dcr1 association is Clr4-independent across the whole genome.  
(d) Rdp1 association depends on Clr4 at some loci but not at others.
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input, is shown. Error bars represent s.e.m. (n = 3). P value was generated 
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in dcr1∆ and rdp1∆ cells (Fig. 5a,b). Similarly, LTR silencing was also 
affected in cells lacking the third fission yeast RNAi protein Ago1, 
implicating the S. pombe RNAi machinery in LTR repression (Fig. 5b). 
Notably, LTR derepression was significantly lower (P = 0.043 and  
P = 0.045, respectively) in clr4∆ or swi6∆ cells than in RNAi- 
deficient cells (Fig. 5b), suggesting that the conventional RNAi- 
mediated heterochromatin assembly pathway contributes only partly 
to their silencing. Consistent with this, Swi6 was not enriched at LTRs 
(Fig. 4c and data not shown). This is in contrast to the pattern for 
centromeric repeats, which are highly enriched for Swi6 and for which 
silencing is not significantly different (P > 0.05) between clr4∆ or 
RNAi-deficient cells (Figs. 4c and 5c). Notably, silencing of Tf2 retro
transposon open reading frames (ORFs) was only slightly affected 
in RNAi and heterochromatin-deficient cells (Fig. 5b). Therefore, it 
seems likely that RNAi functions redundantly with other pathways 
to silence transposable elements in S. pombe32,33.

Finally, it has previously been proposed that LTRs could regulate 
the expression of nearby genes in S. pombe, which led us to speculate 
that LTRs could function to create a local concentration of Dcr1, 
facilitating degradation of transcripts produced at nearby genes 
(Fig. 5a). However, comparing the enrichment of Dam–Dcr1 at LTRs 
with the expression of nearby genes in dcr1∆ cells did not reveal an 
overall positive correlation (Fig. 5d). Therefore, repression of nearby 
genes is unlikely to be a general feature of dispersed solo LTRs in  
S. pombe, although at this point we cannot rule out that some specific 
genes (Supplementary Table 5) are under direct control of LTRs and 
their associated RNAi proteins.

LTR silencing functions with trace amounts of siRNAs
A key feature of all RNAi-related pathways known to date is the 
presence of small RNAs that guide proteins of the Argonaute-Piwi family 
to their targets34,35. These mediate target RNA degradation, transla-

tional repression, or methylation of histone 
tails or DNA36–38. Therefore, the presence of 
siRNAs is a good criterion to define RNAi-
mediated regulation. Because LTR silenc-
ing is dependent on all three S. pombe RNAi 
proteins (Fig. 5b), we expected to see sub-
stantial amounts of Dcr1-dependent siRNAs 
originating from Dcr1-associated LTRs and 
ncRNAs. However, we were not able to detect 
such siRNAs by northern blot techniques 
(data not shown). Even deep sequencing 
of total small RNAs or Ago1-bound small 
RNAs revealed only very few reads mapping 
to these sites (Table 1). Notably, although 
mutations in the RNase III domains of Dcr1, 
which abolish the processing of double-
stranded RNAs into siRNAs, had the same 
effect on LTR silencing as deleting the dcr1+ 
gene (Fig. 5e), only 29 out of 3 × 106 reads 
that map to the S. pombe genome could be  
uniquely assigned to LTRs (Table 1). These 
results demonstrate that siRNAs must be gene
rated at LTRs, but that they are of extremely 
low abundance. Notably, these trace amounts 
of siRNAs seem to be sufficient to trigger a  
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Figure 5  The S. pombe RNAi machinery contributes to LTR repression. (a) Schematic representation of LTRs and their position relative to protein coding 
genes (dark blue) or Tf2 retrotransposon ORFs (light blue). (b) Tf2 LTR and ORF transcript levels in the indicated mutant strains. (c) Dcr1, Ago1, Rdp1 
and Clr4 are equally important for repression of centromeric repeats (cendg). (d) Genes within 5 kb of an LTR (measured from the middle of the gene 
to the middle of the LTR) were assessed for expression in Dcr1-deficient cells and for Dcr1 association with the nearby LTR. Genes whose expression 
was at least 1.5-fold increased in a dcr1∆ mutant and whose nearby LTR had at least 1.4-fold enrichment in the DamID data are highlighted in red and 
listed in Supplementary Table 5. (e) Tf2 LTR transcript levels in different dcr1 mutants. D937A and D1127A are mutated sites in the RNaseIII catalytic 
centers of Dcr1. (b,c,e) RNA levels were normalized to actin and represented as fold increase compared to wild type. Error bars represent s.e.m., n = 6 
biological replicates for dcr1∆, n = 3 biological replicates for all other mutants. P values were generated using the Student’s t-test.

Table 1  Small RNAs sequenced from wild-type and dcr1∆ cells
Ago1-bound small RNAs Total small RNAs

Wild type dcr1∆ Wild type dcr1∆

Reads % Reads % Reads % Reads %

rRNA 1,705,697 56.72 4,883,712 91.57 52,742 55.51 226,615 69.97

tRNA 32,115 1.07 258,906 4.85 30,300 31.89 80,781 24.94

snRNA 728 0.02 5,669 0.11 418 0.44 1,798 0.56

snoRNA 650 0.02 1,994 0.04 283 0.30 909 0.28

3′ UTR 5,948 0.20 46,313 0.87 234 0.25 774 0.24

5′ UTR 2,982 0.10 1,998 0.04 129 0.14 164 0.05

mRNA 23,320 0.78 100,589 1.89 2,835 2.98 9,499 2.93

Intron 1,113 0.04 4,753 0.09 408 0.43 964 0.30

Centromeric 1,204,754 40.06 18,191 0.34 7,072 7.44 1,333 0.41

Mating type region17,528 0.58 61 0.00 62 0.07 9 0.00

Replication origin 18 0.00 156 0.00 4 0.00 3 0.00

Pseudogene 1,247 0.04 138 0.00 23 0.02 25 0.01

LTR 29 0.00 471 0.01 11 0.01 22 0.01

wtf 19 0.00 154 0.00 152 0.16 70 0.02

ncRNA 11,296 0.38 10,078 0.19 341 0.36 915 0.28

Total 3,007,444 100 5,333,183 100 95,014 100 323,881 100

Weighted number of small RNA reads for different genomic features from deep sequencing of Ago1-bound small 
RNAs19 or total small RNAs in wild-type and dcr1∆. The number of reads for total small RNAs is lower, as barcoding 
was used to sequence several samples in one lane. snRNA, small nuclear RNA; snoRNA, small nucleolar RNA;  
UTR, untranslated region; wtf, with Tf2-type LTRs.
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silencing response but function poorly in establishing a hetero
chromatic domain (Figs. 4c and 5b,e). Similar to centromeric siRNAs 
in heterochromatin-deficient cells, the very low abundance of LTR 
siRNAs cannot be explained by the absence of the siRNA-processing 
machinery because both Rdp1 and Dcr1 are physically associated with 
LTRs (Fig. 4a,b). Therefore, we speculate that it may be Ago1 loading 
rather than siRNA biogenesis that depends on H3K9 methylation. We 
assume that unloaded siRNAs are prone to degradation, which would 
explain their low abundance in the absence of H3K9me.

DISCUSSION
In this study, we used DamID to probe the fission yeast genome 
for interactions with RNAi and heterochromatin proteins in a cell 
cycle–independent manner. Our findings provide new insights into 
the order of events during RNAi-mediated heterochromatin assembly 
and directly implicate RNAi proteins in repressing genomic elements 
other than the well-characterized centromeric repeats. Below, we 
discuss the implications of these findings for our understanding of 
nuclear RNAi.

RNAi-dependent Swi6 recruitment
The main function of the RNAi pathway in S. pombe was long thought 
to be assembly and maintenance of a heterochromatic structure at 
centromeric repeats. More recently, it has been demonstrated that 
RNAi also plays a key role in the transient recruitment of Swi6 to 
CGPs in the G1 phase or early S phase of the cell cycle21. Consistent 
with those results, we found Dcr1-dependent association of Swi6 with 
additional CGPs. However, on a genome-wide scale, Swi6 associates 
with only a few CGPs and shows no preference for association with 
CGPs when compared to other intergenic regions (data not shown), 
suggesting that Swi6 recruitment is unlikely to be a general or specific 
feature of CGPs in S. pombe.

Notably, our results revealed that there is a general agreement 
between the Dcr1-dependency of Swi6 binding to chromatin and 
association of such sites with Dcr1 itself. For example, Swi6 associa-
tion with centromeres and ncRNAs requires Dcr1, and Dcr1 is associa
ted with these regions. In contrast, Swi6 binding to the mating type 
region and telomeres is only partially dependent on Dcr1 (refs. 39,40), 
and Dcr1 does not associate with these regions. However, this does 
not apply for CGPs. Although Swi6 binding to CGPs is generally 
Dcr1-dependent, association of Dcr1 itself with these loci is not 
always observed (Supplementary Table 2), suggesting that RNAi does 
not necessarily need to act on chromatin to recruit Swi6 to CGPs. 
Consistent with this, RNAi proteins appeared to be largely excluded 
from CGPs on a genome-wide scale (Supplementary Fig. 4). We note 
that this does not rule out that the RNAi machinery may also function 
off chromatin to regulate the abundance of transcripts originating 
from CGPs on a truly post-transcriptional level11 without recruiting 
Swi6, an intriguing possibility that deserves further study.

Heterochromatin-dependent accumulation of siRNAs
A remarkable observation in studies of RNAi in S. pombe is that the 
abundance of centromeric siRNAs depends on Clr4 or any of its 
associated proteins7,14,15. Unexpectedly, we found that Clr4 is dispens
able for the association of Dcr1 and, partially, Rdp1 with centromeric 
repeats. These proteins were also found at euchromatic regions in 
the S. pombe genome, further demonstrating that H3K9 methyla-
tion is not a prerequisite for the association of the siRNA biogenesis 
machinery with chromatin. Based on these results, we favor a model 
in which efficient loading onto Ago1 rather than the biogenesis of  
siRNAs depends on H3K9me. We propose that Rdp1- and Dcr1-bound  

loci are poised for heterochromatin assembly, but that this is prevented  
by inefficient loading of Ago1 if H3K9 methylation is low or absent. 
If H3K9 methylation levels at such sites reach a certain threshold, 
this would then trigger a self-enforcing positive feedback mecha-
nism in which siRNA-loaded RITS stably binds to the target locus 
via interactions with nascent RNA as well as methylated H3K9. This 
would lead to the recruitment of more Rdp1 and thereby activate 
siRNA amplification, eventually resulting in high levels of H3K9 
methylation. This model predicts that alternative Clr4 recruitment 
mechanisms exist, which have yet to be identified. We note that ATF-
CREB family proteins could serve this function at the mating type 
locus, where they have been shown to act in a parallel mechanism to 
the RNAi pathway to establish heterochromatin39. In summary, our 
data are consistent with a model in which some pre-existing H3K9 
methylation is required for triggering an siRNA amplification loop, 
which is essential for efficient heterochromatin formation8,36. This 
may explain why siRNAs function poorly in de novo formation of 
heterochromatin in trans5,11–13. Notably, we provide evidence that 
Dcr1 and Rdp1 can function to degrade RNA in association with 
chromatin outside constitutive heterochromatin. This is consistent  
with a co-transcriptional gene silencing (CTGS) mechanism, as 
proposed earlier for heterochromatin silencing5,22.

In contrast to yeast and plants, there is little evidence for a direct 
role of RNAi in gene silencing at the level of chromatin in other 
eukaryotes. Notably, this study demonstrates that even highly sen-
sitive deep sequencing approaches may fail to identify all possible 
direct targets of the RNAi pathway. In addition, if CTGS were the 
only conserved function of RNAi in the nucleus of higher eukaryotes, 
attempts to find RNAi-dependent histone or DNA modifications in 
human cells could fail. Our results are opening up new avenues to 
address these issues, and we believe that approaches similar to those 
used in this study will disclose regions of other genomes that are 
under direct control of the RNAi pathway.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/nsmb/.

Accession codes. NCBI Gene Expression Omnibus: All datasets are 
deposited under accession number GSE24360.

Note: Supplementary information is available on the Nature Structural & Molecular 
Biology website.
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ONLINE METHODS
Strains and plasmids. Fission yeast strains (grown at 30 °C in YES medium, 
MP Biomedicals no. 4101-532) and plasmids used in this study are described in 
Supplementary Tables 6 and 7. All strains were constructed following a standard 
PCR-based protocol41 or by random spore analysis. DamMyc was cloned from 
pNDamMyc using XhoI and AscI into expression vectors pJR-L-3x or pJR-L-81x 
for high or low expression of the fusion, respectively42. For expression of unfused 
Dam, a stop codon was introduced after the Myc sequence. The protein of interest 
was inserted at the C terminus of DamMyc using ApaI and SmaI restriction sites. 
For PCR-based insertion of the fusion protein into the yeast genome, the whole 
sequence, including nmt1(81×) promoter and terminator, was cloned into plasmid 
pFA6a-kanMX6 (ref. 41) using In-Fusion PCR Cloning (Clontech) with PacI and 
BglII sites. This plasmid was used for PCR-based insertion of the construct into 
the leu1 locus. Primer sequences used for cloning are available upon request. 
Constructs on plasmids and in yeast strains were confirmed by sequencing.

DamID. Strains expressing either unfused Dam or Dam fusion proteins were 
grown to OD600 = 0.4. Approximately 5.3 × 107 cells were harvested, washed 
once with water and flash frozen in liquid nitrogen. Cells were spheroplasted in 
500 µl spheroplast buffer (1.2 M sorbitol, 100 mM KHPO4, pH 7.5, 0.5 mg ml−1  
Zymolyase (Zymo Research), 1 mg ml−1 lysing enzyme from Trichoderma 
harzianum (Sigma)). Genomic DNA was isolated using the DNeasy Blood 
and Tissue Kit (Qiagen). The DamID protocol was carried out as previously 
described43, except that dUTP was included in the PCR reaction to allow frag-
mentation and labeling using the GeneChip Whole Transcript Double-Stranded 
DNA Terminal Labeling Kit (Affymetrix). The fragmented and labeled DNA was 
hybridized to GeneChip S. pombe Tiling 1.0FR Arrays (Affymetrix).

RNA isolation, cDNA synthesis and quantitative RT-PCR. Done as  
described previously10. Primer pairs used for PCR reactions can be found in 
Supplementary Table 8.

Statistical analysis. All P values were generated using the Student’s t-test  
(two-tailed distribution, two-sample unequal variance). All error bars show the 
s.e.m., where n is at least three independent biological replicates.

Chromatin immunoprecipitation and northern blotting. Dcr1-TAP ChIP 
was done as described5 except that cross-linking was done with 3% fresh  
formaldehyde. Sheep anti-mouse IgG Dynabeads (Invitrogen) were used. 
Centromeric siRNAs were isolated and detected by northern blotting as  
described previously5.

Expression profiling. Previously published datasets were used for expression 
analysis of dcr1∆ cells10.

Normalization of the tiling array data from DamID experiments. All tiling  
arrays were processed in R44,45, using bioconductor46 and the packages 
tilingArray47 and preprocessCore. The arrays were RMA background corrected, 
quantile normalized and log2 transformed on the oligo level, using the following 
command: expr <- log2(normalize.quantiles(rma.background.correct(exprs(read 
Cel2eSet(filenames,rotated = TRUE))))). Contrasts were computed on the oligo 
level by subtracting respective columns of expression.

Reannotation of the Affymetrix S. pombe Tiling 1.0FR Array. The sequences  
of the 1174792 perfect-match oligos were extracted from the BPMAP file  
Sp20b_M_v04.bpmap (http://www.affymetrix.com/estore/browse/products.jsp?
navMode=34000&productId=131500&navAction=jump&aId=productsNav#1_3) 
using the readBpmap function from the affxparser package. Alignment to the 
S. pombe genome (8 May 2009, http://www.sanger.ac.uk/Projects/S_pombe/) 
was done by using the software bowtie (version 0.9.9.1)48, allowing for up to  
100 matches per oligo.

Correcting a bias caused by variable fragment size between GATC restriction 
sites. While inspecting oligo level contrasts in a genome browser, we noticed 
enrichment breakpoints coinciding with GATC restriction sites (Supplementary 
Fig. 1c). We therefore speculated that during sample preparation, certain 
fragment sizes might be depleted or enriched. Plotting the fragment sizes between 
two GATC restriction sites against the average enrichment in the corresponding 
fragment confirmed this observation on a genome-wide scale (Supplementary 
Fig. 1d). We speculated that this resulted from small differences in the sample  
preparation process, probably during the step of size selection. In addition to 
fragment size–dependent mean enrichment or depletion, we noticed discontinuity 
of the contrast variability coinciding with GATC restriction sites. We plotted the 
fragment sizes between two GATC restriction sites against the s.d. of the enrich-
ment in the corresponding fragment and observed discontinuities on a genome-
wide level (Supplementary Fig. 1d). Both observed effects are highly unlikely 
to be of biological origin because they are tightly correlated to the fragment size 
between GATC restriction sites. Therefore, we designed software that would 
at least partially reverse the bias and correct the initial data. For every contrast 
independently, the corrector walks through all the fragments (between GATCs) 
and adjusts the mean and the s.d. of all the oligos that are located within the 
fragment. The adjustment is dependent on fragment size, and the extent of cor-
rection is determined from the lowess fit of the corresponding contrast. In more 
detail, for a given fragment size, the value of the lowess smoother is evaluated and 
compared to the average level of the given contrast. The corrector therefore does 
not modulate the overall mean or the variability of the contrasts. Supplementary 
Figure 1c shows the result of the corrector for one genomic locus.

S. pombe genome annotation. The S. pombe annotation file pombe_160708.
gff was downloaded from http://www.sanger.ac.uk/Projects/S_pombe/ and used 
to compile annotation categories for rRNA, tRNA, snRNA, snoRNA, 3′ UTR,  
5′ UTR, mRNA, intron, centromeric, telomeric, mating type region, replication 
origin, pseudogene, LTR, wtf (‘with Tf2-type LTRs’) and ncRNA. Intergenic 
regions were generated from the mRNA annotation, not considering any regions 
interrupted by rRNA, tRNA, centromeric, snRNA, snoRNA and mating type 
region. Using the tiling arrays, we computed (differential) expression values 
for either individual features (for example, a transcript) or whole annotation  
categories by averaging enrichment values for all the oligos overlapping the 
respective regions. In the case of individual feature quantification, we considered 
only features covered by at least 50 oligos.

Reannotation of various publicly available datasets. Publicly available data-
sets9,10,19 were downloaded and remapped to the S. pombe genome (8 May 2009) 
and reannotated based on the categories described above.

Deep sequencing. For Ago1-bound small RNAs, previously published data were 
downloaded and reannotated as above19. For total small RNAs, sample libraries 
were prepared and analyzed as previously described10.
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Figure S1. Establishment of DamID (DNA adenine methyltransferase 
identification) in S. pombe. DamID is based on the expression of a fusion 
protein consisting of a protein of interest and DNA adenine methyltransferase 
(Dam) from E. coli1,2. On interaction of the fusion protein with chromatin, Dam 
methylates the N6-position of adenine in the sequence context GATC. Thus, 
Dam leaves G6mATC marks close to the genomic binding sites, which can be 
mapped by a methylation-specific PCR protocol. Because methylation is a 
covalent modification, DamID is well-suited to capture even very transient 
protein-chromatin interactions that might occur during the cell cycle. 
Furthermore, the Dam will methylate DNA even if the interaction of the fusion 
protein with chromatin is indirect. (a) To detect sequences that were 
methylated by the fusion proteins, genomic DNA is isolated and cut between 
GAme and TC nucleotides with the methylation-sensitive restriction enzyme 
DpnI. A double-stranded adaptor oligo with a 32 bp 5' overhang, which 
ensures directional ligation, is then ligated to the blunt ends. After cutting 
unmethylated GATCs with DpnII, adapter-ligated DNA fragments are amplified 
by PCR using adapter-specific primers with 5' TC nucleotides (to exclude non-
specific ligation products). dUTP was included in the PCR reaction to allow 
fragmentation and labelling using the GeneChip Whole Transcript Double-
Stranded DNA Terminal Labelling Kit (Affymetrix). Finally, the fragmented and 
labelled DNA was hybridised to GeneChip S. pombe Tiling 1.0FR Arrays 
(Affymetrix). (b) GATC-GATC fragment size distribution for the S. pombe 
genome. (c,d) Correcting a bias caused by variable GATC fragment sizes. 
Plotting the fragment sizes between two GATC restriction sites against the 
average enrichment in the corresponding fragment on a genome-wide scale 
reveals that certain fragment sizes might be depleted or enriched during 
sample preparation (d, left panel). In addition to fragment size-dependent 
mean enrichment/depletion, we noticed discontinuity of the contrast variability 
coinciding with GATC restriction sites (d, right panel). Both observed effects 
are highly unlikely to be of biological origin because they are tightly correlated 
to the fragment size between GATC restriction sites. Therefore, we designed 
a software that corrects the initial data (see Online Methods). The result of the 
corrector for one genomic locus is shown in c.   
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Figure S2. Functionality of Dam fusion proteins. Silencing assays confirm the 
ability of the Dam fusion proteins to rescue the silencing defect in the 
corresponding mutants. Serial 10-fold dilutions of the strains indicated on the 
right transformed with the plasmids indicated on the left were spotted on 
PMGc –leu plates (nonselective, N/S) or on PMGc –leu plates containing 2 
mg ml–1 5-FOA. Growth on 5-FOA indicates efficient silencing of the 
centromeric imr1R::ura4+ reporter. Note that for the actual DamID 
experiments, the Dam fusion proteins were expressed at very low levels in 
addition to the endogenous, unfused protein.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nature Structural & Molecular Biology: doi:10.1038/nsmb.1935



 
 

 
 
Figure S3. Swi6 association with chromatin in dcr1 cells. (a) To investigate 
the role of the RNAi pathway in Swi6 localization, we compared Dam-Swi6 
profiles obtained from dcr1+ and dcr1 backgrounds. As expected, this 
analysis revealed RNAi-dependent as well as RNAi-independent sites. (b) 
Swi6 enrichments (log2) at the indicated genomic features in wild-type and 
dcr1∆ cells. Three and two biological replicates have been performed for WT 
and dcr1 strains, respectively.  
 
 
 
 
 
 
 

 
 
Figure S4. RNAi proteins appear to be largely excluded from CGPs on a 
genome-wide scale. (a) Dcr1 enrichments (log2) at the four classes of 
intergenic regions in wild-type and clr4∆ cells. Three biological replicates are 
shown for each strain. MM and PP (minus/minus and plus/plus) indicate the 
orientation of tandem genes. (b) Rdp1 enrichments (log2) at the four classes 
of intergenic regions in wild-type and clr4∆ cells. Three biological replicates 
are shown for each strain. MM and PP (minus/minus and plus/plus) indicate 
the orientation of tandem genes.  
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Table S1. Regions of constitutive heterochromatin 
Heterochromatic region Chromosome Start End 
Telomeric1L 1 1 50000 
Telomeric1R 1 5510000 5579133 
Telomeric2L 2 1 50000 
Telomeric2R 2 4480000 4539804 
Telomeric3L 3 1 40000 
Telomeric3R 3 2425000 2452883 
Centromeric1 1 3700000 3870000 
Centromeric2 2 1580000 1670000 
Centromeric3 3 1040000 1200000 
Mating type region 2 2100000 2150000 
Major heterochromatic regions with some extension to ensure that novel sites identified from 
the DamID data do not result from methylation by Dam fusion protein binding to nearby 
heterochromatic regions.  
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Table S2. Novel Swi6-associated loci 

Feature Dam-Swi6 (log2) Swi6 ChIP (log2) Dam-Dcr1 (log2) 

  dcr1+ dcr1∆     

SPBPB2B2.02 

SPAC13A11.03 

SPNCRNA.197 

SPNCRNA.279 

SPBC19C2.07 

SPBPB2B2.04* 

SPAC23E2.03c 

SPAC27D7.11c 

SPAC227.16c 

SPBPB2B2.05 

SPBC19C2.04c 

SPNCRNA.532 

SP�CRNA.168 

SPAC869.08 

SPBC14F5.04c 

SPAC869.05c 

SPNCRNA.145 

SPAC1F8.03c 

SPCC553.10 

SPAC1834.03c 

SPNCRNA.399 

SPBC359.02 

SPNCRNA.296 

SPBPB2B2.01 

unknown_620 

unknown_3798 

unknown_3802 

SPBC1815.01  

1.266621681 

1.247052975 

1.173856755 

1.129665062 

1.111015163 

1.099250773 

1.032393317 

1.014538632 

0.970910911 

0.970112588 

0.963255303 

0.960384436 

0.956261927 

0.948295049 

0.941786449 

0.916961546 

0.908651294 

0.901326331 

0.891801019 

0.887827731 

0.8654731 

0.853663447 

0.847781713 

0.844524264 

0.831949575 

0.80768859 

0.80768859 

0.803424125 

‐0.022903266 

0.300104609 

‐0.06786726 

0.04127715 

‐0.222406315 

‐0.107754397 

0.129163949 

‐0.0947493 

‐0.110333958 

0.065271928 

‐0.191450909 

0.046281359 

‐0.137817348 

0.721026999 

‐0.161276795 

0.130233563 

‐0.149164936 

0.047000152 

‐0.076048337 

‐0.304995936 

‐0.304190403 

‐0.249680576 

‐0.340362566 

0.242268479 

‐0.315108294 

‐0.466368227 

‐0.466368227 

‐0.030706663 

0.22070635 

0.25643665 

‐0.2710698 

‐0.0864296 

0.21940964 

0.15387857 

0.26652809 

0.16694791 

‐0.0719933 

0.3392878 

0.46052083 

0.02111018 

‐0.2968082 

0.39284101 

0.21773268 

0.17242578 

‐0.4926407 

0.12299647 

0.2138203 

‐0.0373482 

‐0.0874251 

‐0.195947 

‐0.3423216 

0.40006994 

‐0.0399484 

‐0.3692244 

‐0.3692244 

0.12664465   

0.5876396 

0.151431188 

0.501524993 

0.556387235 

0.38906384 

‐0.086087212 

0.140016041 

0.484248522 

0.631237116 

‐0.414691622 

‐0.060563741 

0.05171897 

0.614459775 

‐0.356402345 

0.734211716 

‐0.657978447 

0.866290854 

‐0.691886634 

0.451001961 

0.664834577 

0.717631838 

0.514928651 

0.940978153 

‐0.181109807 

0.943168828 

0.644035178 

0.644035178 

0.279539263 

  
Features enriched in the Dam-Swi6 data (>0.8, log2 scale), not enriched in the Swi6 ChIP-on-
chip data (<0.6, log2 scale), and not located near major heterochromatic regions 
(Supplementary Table S1). There have been previous suggestions that Swi6 is involved in 
silencing meiotic genes3 and perhaps genes upregulated in meiosis in this list represent 
further such examples. Genes highlighted in grey have been shown to be upregulated at least 
4-fold in meiosis3. *Pseudogene. Features annotated as unknown are LTRs. 
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Table S3. Novel Rdp1-associated loci 

Feature Dam-Rdp1 (log2) 

SPBPB21E7.09 2.09799 

SPAC17A2.11 1.668033 

SPBC32F12.11 0.917882 

unknown_620 0.889006 

SPBC354.12 0.880252 

unknown_3829 0.845338 

SPBC119.02 0.836566 

SPCC1672.09 0.820059 

SPAC19A8.07c 0.814912 

SPNCRNA.332 0.811095 

unknown_531 0.806447 
Features enriched in the Dam-Rdp1 data (>0.8, log2 scale), not enriched in the Rdp1 ChIP-
chip data (<0.6, log2 scale), and not located near major heterochromatic regions 
(Supplementary Table S1). Features annotated as unknown are LTRs.  
 
 
Table S4. Dcr1-associated loci 

Feature 

Dam-
Dcr1 
(log2)  Feature 

Dam-
Dcr1 
(log2)  Feature 

Dam-
Dcr1 
(log2) 

SPAC17A2.11 1.246964  SPAC7D4.09c 0.737494  unknown_3063 0.666806

SPNCRNA.387 1.143789  unknown_1719 0.735387  SPAC1834.03c 0.664835

SPCC24B10.20 1.090641  unknown_2818 0.735113  unknown_1639 0.662543

SPNCRNA.469 1.054236  SPBC14F5.04c 0.734212  SPAC1687.17c 0.661774

SPAC57A10.03 1.03911  SPBC23G7.11 0.733575  unknown_619 0.657924

SPNCRNA.439 1.014889  SPCC63.12c 0.730904  unknown_780 0.657456

SPNCRNA.472 1.005094  SPNCRNA.421 0.730431  SPNCRNA.155 0.656766

SPBC4F6.04 0.981193  SPNCRNA.525 0.728069  SPNCRNA.237 0.653962

SPCC1259.07 0.974006  unknown_1431 0.721326  unknown_3593 0.652254

SPBC409.21 0.964686  unknown_1697 0.719434  SPBC685.05 0.652148

unknown_620 0.943169  unknown_2548 0.719113  unknown_698 0.651785

SPNCRNA.296 0.940978  SPNCRNA.399 0.717632  SPAC343.12 0.650878

SPNCRNA.332 0.924709  unknown_13 0.715096  SPNCRNA.221 0.650563

SPNCRNA.415 0.904669  unknown_1886 0.711988  unknown_1885 0.647831

SPNCRNA.379 0.887773  unknown_699 0.710248  SPAC105.02c 0.647665

SPNCRNA.175 0.884519  SPAPB15E9.01c 0.709698  SPAC521.02 0.647019

SPNCRNA.145 0.866291  unknown_1360 0.707601  unknown_2541 0.646898

SPAC18B11.09c 0.862558  SPNCRNA.411 0.706481  SPAC18B11.08c 0.645914

SPBC1D7.01 0.860722  SPNCRNA.431 0.703951  unknown_1315 0.645199

unknown_531 0.835815  unknown_3449 0.702362  unknown_3798 0.644035

SPBC1703.11 0.832071  unknown_3831 0.701926  unknown_3802 0.644035

SPBC1685.03 0.826125  unknown_4387 0.699969  SPAC343.02 0.642145

SPBC19C2.12 0.819405  unknown_2542 0.699859  unknown_3465 0.641222

SPAC57A10.11c 0.818052  unknown_4386 0.699277  unknown_1961 0.639982

SPNCRNA.131 0.817684  unknown_1522 0.696831  SPNCRNA.233 0.635686

SPAC23D3.01 0.817057  unknown_3451 0.69633  unknown_1358 0.635191
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SPNCRNA.194 0.811847  SPBC1685.13 0.695668  SPAC13C5.02 0.631373

SPAC22H12.01c 0.792662  Tf2-7 0.695058  SPAC227.16c 0.631237

unknown_1916 0.783729  unknown_2490 0.688903  unknown_2103 0.631186

SPBC19C2.13c 0.777821  SPAC2F3.02 0.688141  SPAC222.03c 0.631117

SPNCRNA.478 0.775839  SPCC417.02 0.685889  unknown_4173 0.630443

SPBC651.06 0.775208  unknown_4174 0.685775  SPAC15F9.01c 0.630107

SPNCRNA.322 0.773464  SPNCRNA.217 0.681086  unknown_1223 0.627735

SPAC19G12.06c 0.77256  unknown_1749 0.675744  SPNCRNA.277 0.625973

SPCC1494.02c 0.772505  SPNCRNA.190 0.674626  SPNCRNA.385 0.614742

unknown_4480 0.765607  unknown_2817 0.673732  SPNCRNA.168 0.61446

SPCC1753.03c 0.764799  unknown_197 0.673159  SPAPB1E7.11c 0.612076

unknown_1520 0.763412  unknown_1274 0.672967  unknown_2167 0.60741

unknown_3464 0.755937  unknown_230 0.672292  SPBC1709.19c 0.60623

SPNCRNA.442 0.746347  SPCC1450.06c 0.671318  SPNCRNA.69 0.605496

unknown_1784 0.741609  unknown_3839 0.670541  unknown_1963 0.604434

unknown_1273 0.741253  unknown_1429 0.669648  SPAC5D6.09c 0.600758

SPBC1718.05 0.740688  SPBC342.06c 0.667307     
List of features with Dam-Dcr1 association >0.6 (log2, average of 3 biological replicates) 
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Table S5. Genes near a Dcr1-associated LTR that are upregulated in 
dcr1∆ cells 
Gene  nearby LTR description  

SPAC13D1.01c Tf2-7 Tf2-7 retrotransposable element 

SPAC167.08 Tf2-2 unknown_1358 retrotransposable element 

SPAC26A3.13c Tf2-4 unknown_2817 retrotransposable element 

SPAC26F1.04c etr1 unknown_4372 enoyl-[acyl-carrier protein] reductase 

SPAC27E2.08 Tf2-6 unknown_3465 retrotransposable element 

SPAC2E1P3.03c Tf2-3 unknown_2541 retrotransposable element 

SPAC513.07  unknown_2541 
flavonol reductase/cinnamoyl-CoA 
reductase family 

SPAPB15E9.03c Tf2-5 unknown_3449 retrotransposable element 

SPAPJ691.02  Tf2-7 yippee-like protein 

SPBC1289.14  unknown_3829 adducin 

SPBC1289.17 Tf2-11 unknown_3831 retrotransposable element 

SPBC16A3.02c  unknown_3704 mitochondrial peptidase (predicted) 

SPBC1E8.04 
Tf2-10-
pseudo unknown_1522 retrotransposable element: pseudo 

SPBC215.11c  unknown_3517 
aldo/keto reductase, unknown 
biological role     

SPBC24C6.09c  unknown_1867 
phosphoketolase family protein 
(predicted)   

SPBC9B6.02c Tf2-9 unknown_1429 retrotransposable element 

SPCC1020.14 Tf2-12 unknown_698 retrotransposable element 

SPCC569.09  unknown_1963 sequence orphan 

SPCC737.04  unknown_1452 
S. pombe specific UPF0300 family 
protein 6     

SPCPB16A4.06c  unknown_834 sequence orphan 
Genes within 5 kb of an LTR (measured from the middle of the gene to the middle of the LTR) 
were assessed for expression in dcr1∆ cells and for Dcr1 association with the nearby LTR. 
The list shows those genes whose expression was at least 1.5-fold increased in a dcr1∆ 
mutant and whose nearby LTR had at least 1.4-fold enrichment in the DamID data. For the 
calculation of Dam-Dcr1 enrichment at LTRs, only unique probes were included and the LTRs 
were extended by 200 bp either side in order to minimize the influence of cross-hybridisation 
between closely related LTRs on the analysis. 
 
 

Nature Structural & Molecular Biology: doi:10.1038/nsmb.1935



Table S6. Strains used in this study 
Strain Genotype Source
SPB47 h-3.1/4.1::his3+ h3.3/h4.3::arg3+  ade6-210 otr1R(Sphl)::ade6+ 1 
SPB50 h+ 3.2-K9R h3.1/h4.1::his3+ h3.3/h4.3::arg3+  ade6-210 

otr1R(Sphl)::ade6+ 
1 

SPB74 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210 2 
SPB80 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ 2 
SPB81 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ dcr1D::TAP-

kan 
2 

SPB82 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+  
rdp1D::TAP-kan 

2 

SPB88 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ swi6D::nat 2 
SPB94 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  dcr1::nat 2 
SPB95 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  clr4::kan 2 
SPB96 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  swi6::nat 2 
SPB147 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ dcr1+::TAP 2 
SPB330 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   

leu1::nmt1(81x)-dam-myc-swi6-kan 
3 

SPB380 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1::nmt1(81x)-dam-myc-kan 

3 

SPB381 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1::nmt1(81x)-dam-myc-dcr1-kan 

3 

SPB432 h?, otr1R::ura4+ OR  imr1R::ura4+  
leu1::nmt1(81x)-dam-myc-kan clr4∆::nat 

3 

SPB433 h?, otr1R::ura4+ OR  imr1R::ura4+  
leu1::nmt1(81x)-dam-myc-dcr1-kan clr4∆::nat 

3 

SPB482 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1::nmt1(81x)-dam-myc-kan clr4∆::nat 

3 

SPB483 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1::nmt1(81x)-dam-myc-swi6-kan clr4∆::nat 

3 

SPB491 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210    
leu1::nmt1(81x)-dam-myc-swi6-kan dcr1∆::hph 

3 

SPB492 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1::nmt1(81x)-dam-myc-kan 

3 

SPB494 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1::nmt1(81x)-dam-myc-rdp1-kan 

3 

SPB624 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ 
KAN/TAP::dcr1-D937A 

2 

SPB676 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+ dcr1-D937A, 
D1127A-TAP-kan 

3 

SPB709 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 leu1∆::nmt1(81x)-dam-
myc-dcr1-kan clr4∆::nat 

3 

SPB711 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  leu1∆::nmt1(81x)-
dam-myc-kan  clr4∆::nat 

3 

SPB712 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  leu1∆::nmt1(81x)-
dam-myc-rdp1-kan  clr4∆::nat 

3 

SPB763 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  rdp1∆::kan 3 
SPB764 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  ago1∆::kan 3 
1 = Robin Allshire4, 2 = Danesh Moazed, 3 = This study 
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Table S7. Plasmids used in this study 
Name Common name 
pMB85 pJR-3xL 
pMB237 pJR-3xL-DamMyc(STOP) 
pMB117 pREP-nmt1-Swi6 
pMB421 pJR-3xL-Rdp1 
pMB262 pJR-3xL-Dcr1 
pMB259 pJR-3xL-DamMyc-Swi6 
pMB257 pJR-3xL-DamMyc-Dcr1 
pMB419 pJR-3xL-DamMyc-Rdp1 
pMB399 pFA6a - 81xL - DamMyc(STOP)-kanMX6 
pMB293 pFA6a - 81xL - DamMyc-Swi6-kanMX6 
pMB452 pFA6a - 81xL - DamMyc-Rdp1-kanMX6 
pMB314 pFA6a - 81xL - DamMyc-Dcr1-kanMX6 
 
 
 
Table S8. Primers used for quantitative RT-PCR 
Name Sequence 
Tf2 LTR for CCTCGTTCCTCAGTTCAGTTATGA 
Tf2 LTR rev CGGTGAGTTTTCCTTGTGATCTATT 
Tf2 ORF for TTTTCGTGGTAGTTGACCGATTT 
Tf2 ORF rev TGCTCTGCTGTAATGGATTTCG 
cendg for AAGGAATGTGCCTCGTCAAATT 
cendg rev TGCTTCACGGTATTTTTTGAAATC 
act1 for TCCTCATGCTATCATGCGTCTT 
act1 rev CCACGCTCCATGAGAATCTTC 
For ChIP:  
Tf2 LTR for TGATAGGTAACATTATAACCCAGT 
Tf2 LTR rev ACGCAGTTTGGTATCTGATT 
Tf2 ORF for GGTAGGCAGTTTATGTGCTC 
Tf2 ORF rev AGAACAGCCTCGTATGGTAA 
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RNAi keeps Atf1-bound stress response
genes in check at nuclear pores
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RNAi pathways are prevalent throughout the eukaryotic kingdom and are well known to regulate gene expression
on a post-transcriptional level in the cytoplasm. Less is known about possible functions of RNAi in the nucleus. In
the fission yeast Schizosaccharomyces pombe, RNAi is crucial to establish and maintain centromeric hetero-
chromatin and functions to repress genome activity by a chromatin silencing mechanism referred to as
cotranscriptional gene silencing (CTGS). Mechanistic details and the physiological relevance of CTGS are
unknown. Here we show that RNAi components interact with chromatin at nuclear pores to keep stress response
genes in check. We demonstrate that RNAi-mediated CTGS represses stress-inducible genes by degrading mRNAs
under noninduced conditions. Under chronic heat stress conditions, a Dicer thermoswitch deports Dicer to the
cytoplasm, thereby disrupting CTGS and enabling expression of genes implicated in the acquisition of
thermotolerance. Taken together, our work highlights a role for nuclear pores and the stress response transcription
factor Atf1 in coordinating the interplay between the RNAi machinery and the S. pombe genome and uncovers
a novel mode of RNAi regulation in response to an environmental cue.

[Keywords: RNAi; CTGS; NPC; stress response; thermoswitch; Atf1 transcription factor]
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The fission yeast Schizosaccharomyces pombe has been
an invaluable model to study the assembly of centromeric
heterochromatin, which depends on the processing of long
noncoding repeat RNAs into double-stranded siRNAs by
Dcr1 (Volpe et al. 2002; Moazed 2009). Double-stranded
siRNAs are found in the ARC chaperone complex (con-
sisting of Ago1, Arb1, and Arb2), which is involved in
siRNA maturation (Buker et al. 2007). Mature, single-
stranded siRNAs are found in the RNA-induced tran-
scriptional silencing complex (RITS; consisting of Ago1,
Chp1, and Tas3) (Verdel et al. 2004) and function to target
RITS to nascent chromatin-bound transcripts. Subse-
quently, this recruits Clr4, the enzyme that methylates
histone H3 at Lys 9 (H3K9). H3K9 methylation, a hallmark
of heterochromatin, is crucial to stabilize the association of
RITS with chromatin via Chp1, triggering a self-enforcing
positive feedback mechanism in which RITS recruits the
Rdp1-containing RNA-directed RNA polymerase complex
(RDRC) (Motamedi et al. 2004). This activates siRNA ampli-
fication, which eventually leads to high levels of H3K9

methylation and functional heterochromatin at centromeric
repeats. Although this pathway has been investigated in
great detail, the mechanisms by which the RNAi machinery
is initially targeted to centromeric repeats have remained
elusive (Halic and Moazed 2010; Shanker et al. 2010).

Whereas the involvement of RNAi in the assembly of
centromeric heterochromatin is well established, addi-
tional roles remain ill-defined. Recently, we obtained
evidence that the RNAi pathway might also function to
repress genomic elements other than the well-studied
regions of constitutive heterochromatin. We proposed a
cotranscriptional gene silencing (CTGS) model, in which
RNAi functions in direct association with euchromatin to
trigger RNA decay (Woolcock et al. 2011). The physiolog-
ical relevance of this mode of genome regulation and,
similar to centromeric heterochromatin, how specific tar-
geting of RNAi components to particular regions in the
genome is achieved are not known.

Results

Nuclear RNA turnover proteins physically associate
with the S. pombe genome

An inherent difficulty in studying the cross-talk between
the RNAi machinery and chromatin has been that some

5Corresponding author.
E-mail marc.buehler@fmi.ch.
Article published online ahead of print. Article and publication date are
online at http://www.genesdev.org/cgi/doi/10.1101/gad.186866.112.
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RNAi components hardly cross-link to chromatin. A
solution to this problem is DNA adenine methyltransfer-
ase identification (DamID), a highly sensitive method
that allowed us to map Dcr1 interactions with the genome
(Woolcock et al. 2011). To profile other RNA turnover
proteins implicated in chromatin silencing, we produced
and compared genome-wide binding maps for Dcr1, Rdp1,
Ago1, Arb1, Cid14, Rrp6, and the heterochromatin protein
HP1Swi6 by DamID in combination with tiling arrays (Fig.
1A). Of the RNAi proteins, Ago1 and Rdp1 show a high
enrichment at major heterochromatic regions, as observed
for HP1Swi6. Dcr1 is also enriched at centromeric hetero-
chromatin but not at other heterochromatic loci. Surpris-
ingly, Arb1 is not enriched at any region. Thus, whereas
Dcr1, RITS, and RDRC operate in close proximity to
heterochromatin, ARC is the only RNAi complex that
seems to function further away (Fig. 1A).

The Cid14 nucleotidyltransferase and the RNA exosome
have been recently suggested to be involved in siRNA 39

end processing by untemplated nucleotide addition and
trimming, respectively (Halic and Moazed 2010). Consis-
tent with an involvement in siRNA maturation, Cid14
shows an enrichment similar to that observed for Dcr1 at
centromeric heterochromatin (Fig. 1A). This indicates that
siRNA maturation by the exosome and Cid14 is initiated
in association with chromatin. Interestingly, the nucleus-
specific 39-to-59 exoribonuclease Rrp6 is depleted at cen-
tromeres. Therefore, trimming of siRNAs is most likely
mediated by another exonuclease, which is consistent
with the observation that centromeric siRNA levels are
drastically reduced in cid14D but not rrp6D cells (Buhler
et al. 2007). In contrast to centromeric heterochromatin,
Rrp6 is slightly enriched at the mating type locus and
telomeres, which is in line with its role in RNAi-indepen-
dent repression at these regions (Buhler et al. 2007).

Although not generally enriched in euchromatin, RNAi
factors and Cid14 do associate with particular euchro-
matic loci. Except for Arb1, all RNAi proteins are enriched
to similar levels at long terminal repeats (LTRs), consistent
with an increase in RNA from LTRs in RNAi mutants (Fig.
1B; Woolcock et al. 2011). Similar profiles can be observed

at regions coding for long intergenic noncoding RNAs
(lincRNAs), snoRNAs, and snRNAs, as well as at replica-
tion origins. wtf and tf2 retrotransposons are exceptional,
as they are specifically enriched by Dcr1 and Cid14 only
(Fig. 1B).

Taken together, these DamID experiments provide a
comprehensive data set for interactions of the S. pombe
genome with nuclear RNA turnover proteins implicated
in chromatin silencing. Importantly, we found that the
core RNAi machinery associates with many noncoding
regions of the genome and certain protein-coding genes.

Interactions between chromatin and the RNAi
pathway occur at nuclear pores independently
of Argonaute

A unifying feature of RNAi pathways is that Argonaute-
containing complexes are guided to their respective
targets by small RNAs. Coherent with this paradigm, a
transcriptome surveillance mechanism in which Ago1
associates with random, Dcr1-independent RNA degra-
dation products in S. pombe has been recently proposed
(Halic and Moazed 2010). These small RNAs are referred
to as primal RNAs (priRNAs) and may function to target
Ago1 to chromatin independently of Dcr1 or the H3K9
methylation status. Subsequently, RDRC and Dcr1
would be recruited and the siRNA amplification loop
started. Indeed, the high enrichment observed for Rdp1 at
centromeres is strongly affected in ago1D, dcr1D, and clr4D

cells (Fig. 2A), implicating H3K9 methylation and a func-
tional RNAi pathway in the establishment of the positive
feedback loop. However, although reduced, the association
of Rdp1 with chromatin is not completely lost in ago1D,
dcr1D, or clr4D cells (Fig. 2A). Similarly, the enrichment of
Dcr1 with centromeres remains unaffected in ago1D,
rdp1D, or clr4D cells (Fig. 2B). These results demonstrate
that neither priRNAs nor H3K9 methylation is required for
targeting Dcr1 and Rdp1 to centromeric chromatin ini-
tially. However, Clr4 stabilizes RITS and RDRC association
with heterochromatin, and priRNAs might be required to
prime the amplification of centromeric siRNAs.

Figure 1. DamID for RNAi and nuclear surveillance
components reveals association with genomic regions
in both heterochromatin and euchromatin. (A) Enrich-
ments (log2) at heterochromatic regions compared with
euchromatin. (B) Enrichments (log2) at the indicated
genomic features present in euchromatin. Individual
columns represent biological replicates. (Tf2) Tf2 LTR
retrotransposons; (wtf) with Tf2-type LTRs.
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A requirement for priRNAs in actively targeting the
RNAi machinery to euchromatic sites can also be ruled
out because neither Dcr1 nor Rdp1 association with
euchromatic loci was affected in ago1D cells (Fig. 2C,D).
This raises the question of how RNAi components and
specific regions of the genome are brought in close prox-
imity, if not by small RNAs. Intriguingly, Dcr1 accumu-
lates at the nuclear periphery in association with pores
(Emmerth et al. 2010). Similarly, heterochromatin local-
izes at the nuclear periphery, prompting us to speculate
that the interaction between RNAi components and the
S. pombe genome might be orchestrated at the nuclear
envelope. To test this hypothesis, we performed DamID for
two nuclear peripheral proteins (Fig. 2E): Nup85, a scaffold

nucleoporin and part of the Nup107–120 complex (Bai
et al. 2004), and Amo1, which localizes to the nuclear rim
in a punctate pattern that does not overlap with nuclear
pore complex (NPC) components (Pardo and Nurse 2005).
In contrast to Amo1, which does not strongly associate
with specific regions of the genome, Nup85 is enriched
at several genomic loci (Fig. 2F,G; Supplemental Fig. S1).
Intriguingly, comparing the sites associated with Dcr1 or
Nup85 revealed a strong correlation across the whole
genome, demonstrating that NPCs preferentially associate
with genomic loci that are also targets of Dcr1 (Fig. 2G).
Furthermore, Ago1 seems to be largely dispensable for the
association of Nup85 with the genome (Supplemental Fig.
S1). These results strongly suggest that the interactions
between chromatin and the RNAi pathway are coordi-
nated by one or several components of the NPC and not by
small RNAs. Because nuclear pore association of Dcr1
does not depend on a functional RNAi pathway or hetero-
chromatin (Emmerth et al. 2010), Dcr1 is likely to interact
with NPCs directly.

Dcr1 binds promoter regions and Atf1-bound genes
at nuclear pores

Although genes as a class are not generally enriched in
the DamID data (Fig. 1B), we noticed that certain genes
are strongly enriched for RNAi components. We observed
that Nup85, Dcr1, and Rdp1 are depleted from the inter-
genic region between convergent genes (Fig. 3A). In con-
trast, Dcr1 and Nup85 are enriched most highly at divergent
intergenic regions and intermediately at tandem ones,
suggesting that Dcr1 and Nup85 preferentially associate
with promoter regions. This is confirmed by the profiles of
the average DamID enrichment of Dcr1 and Nup85 1 kb
on either side of the translation start site (Fig. 3B). Rdp1
shows a less-pronounced decrease in enrichment from the
59 end to the 39 end.

Intriguingly, we noticed that many of the genes with
the highest enrichment for RNAi proteins are involved
in responses to stressful conditions. RNAi components
show a weak preference for induced core environmental
stress response (CESR) genes (Chen et al. 2003) and a
strong preference for genes that we refer to as bound by
Atf1 under normal conditions (BANC; as judged by chro-
matin immunoprecipitation [ChIP]–chip data) (Fig. 3C–F;
Eshaghi et al. 2010). Atf1 is a basic leucine zipper (bZIP)
transcriptional activator and is constitutively bound to
its targets (Kon et al. 1997). Upon stress, it becomes
phosphorylated and causes an increase in transcription of
most of its target genes (Lawrence et al. 2007). Importantly,
HP1Swi6 has no preference for BANCs, demonstrating that
they are euchromatic (Supplemental Fig. S2). Finally,
Nup85 shows a strong preference for BANCs, indepen-
dently of Ago1, whereas Amo1 is depleted (Fig. 3G,H;
Supplemental Fig. S2E). These results demonstrate that
the RNAi machinery associates with protein-coding genes
that are implicated in responses to stressful conditions.
These genes are bound by the Atf1 transcription factor and
colocalize with the RNAi machinery at NPCs, indepen-
dently of small RNAs/Argonaute.

Figure 2. Interactions between chromatin and the RNAi path-
way occur at NPCs, independently of small RNAs. (A–D) Rdp1
and Dcr1 enrichments (log2) in the mutant backgrounds indicated.
Individual columns represent biological replicates. (E) Represen-
tation of Nup85 and Amo1 locations at the nuclear periphery.
(F,G) Comparison of Dcr1 enrichments (log2) at individual features
with Amo1 and Nup85 enrichments, respectively.
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RNAi contributes to repression of stress response genes

The physical association of the core RNAi machinery
with stress response genes strongly suggests that RNAi
is involved in cellular responses to environmental stress
conditions. To test this hypothesis, we did expression
profiling in strains lacking dcr1+, ago1+, or rdp1+. Indeed,
BANC genes are significantly up-regulated in all mutants
(Fig. 4A–C). Importantly, they are not up-regulated in
a swi6D mutant, confirming that the activation of BANC
genes upon deletion of RNAi factors is not an indirect
effect of losing heterochromatin, which can be considered
a stressful condition (Fig. 4D). Ago1-bound small RNAs
that are significantly enriched for BANCs compared with
other genes further support the conclusion that the RNAi
machinery is directly involved in repressing these loci
(Fig. 4E). However, these small RNAs do not seem to be
required for the organization of BANCs, Dcr1, and Rdp1
at NPCs, which is independent of Ago1, and their func-
tional relevance is unclear. In summary, the RNAi ma-
chinery associates with BANC genes independently of
small RNAs/Argonaute, although all three core compo-
nents of the RNAi machinery are required for BANC
repression.

To study the effect of stressful insults on expression of
Atf1-bound genes in the absence or presence of RNAi, we
chose heat shock as a paradigm and monitored expression
of candidate heat-shock genes over time. Consistent with
impaired repression of BANC genes in the absence of
RNAi, heat-shock RNA levels in dcr1D cells, compared
with wild type, are higher under noninduced conditions
(Fig. 4F; data not shown). Interestingly, RNA polymerase
2 (RNAP2) occupancy changes at some but not all heat-
shock genes in dcr1D cells (Fig. 4G; Supplemental Fig. S3).
Thus, cotranscriptional degradation of RNA might feed
back on RNAP2 at some genes. When grown at elevated
temperatures, we observed that RNA levels of certain
heat-shock genes decrease at a slower rate after their initial
induction in dcr1D compared with wild-type cells (Fig.
4H,I; data not shown).

These results demonstrate that RNAi, when associated
with BANCs, contributes to their repression under normal
conditions. This regulation can occur on a truly cotran-
scriptional RNA decay level, although a regulatory effect

on transcription at some genes cannot be ruled out at this
point. We propose a model in which Atf1-bound stress
response genes are recruited to NPCs and poised for rapid
mRNA export, but kept in check by RNAi-mediated
CTGS under normal conditions. Upon stress, strongly
increased transcription rates simply overcome CTGS,
with most transcripts escaping cotranscriptional degra-
dation and accumulating to high levels. After a transient
burst of transcription, CTGS contributes to the subse-
quent decrease in RNA levels.

This model predicts that the association of NPCs with
Dcr1 and BANC genes is not disturbed under stressful
conditions. Indeed, live-cell imaging of cells in which
individual heat-shock genes have been tagged with the
LacO/LacI-GFP system did not reveal significant delocal-
ization of heat-shock genes (Fig. 5A,B). Similarly, the
association of Dcr1 with NPCs was not affected under
oxidative stress conditions or short exposure to elevated
temperatures (Supplemental Fig. S4). By DamID, associa-
tions of Nup85 with the genome remained unchanged at
elevated temperatures, as did Dcr1–genome associations
under osmotic or oxidative stress conditions (Fig. 5C,D;
Supplemental Fig. S5).

Dcr1 translocates to the cytoplasm under chronic heat
stress conditions

In contrast to temporary heat-shock conditions, we ob-
served a striking translocation of Dcr1 to the cytoplasm
when cells were exposed to chronic heat stress (Fig. 6A).
Consistent with this observation, DamID in the Dam–
Dcr1 strain, but not the Dam-only strain, resulted in much
lower DNA concentrations at the end of the protocol when
performed at elevated temperatures (Fig. 6B), indicating
that Dam–Dcr1 has left the nucleus and cannot further
methylate DNA. Remarkably, Dcr1 protein levels are
comparable at low and high temperatures (Supplemental
Fig. S6), and perinuclear Dcr1 localization is restored
within 1–2 h when cells are shifted back to 30°C after
prolonged heat stress, hinting at a possible thermosensi-
tive switch that regulates the nucleo–cytoplasmic distri-
bution of Dcr1 (Fig. 6A).

We previously demonstrated a nucleo–cytoplasmic
shuttling function for the dsRNA-binding domain (dsRBD)

Figure 3. Promoter regions and genes associated with Atf1 colocalize with the RNAi machinery at NPCs. (A) Dcr1, Rdp1, Ago1, and
Nup85 enrichments (log2) at tandem, divergent, and convergent intergenic regions. Individual columns represent biological replicates.
(B) Average enrichments 1 kb on either side of the beginning of ORFs. One representative replicate is shown for each experiment. (C)
BANCs are defined as having an Atf1 ChIP–chip peak under nonstressful conditions in their probable promoter regions (Eshaghi et al.
2010). (D–H) DamID enrichment (log2) at BANCs (‘‘Yes’’; 261 genes) compared with all other genes (‘‘No’’; 4715 genes).
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of Dcr1 (Emmerth et al. 2010). However, the physiological
relevance of this property has remained mysterious.
Intriguingly, the translocation phenotype as a response
to chronic heat stress is reminiscent of Dcr1 alleles that
harbor mutations in the dsRBD. These mutations either
abolish the coordination of zinc, which aids proper folding
of the dsRBD, or alter the protein–protein interaction
surface required for nuclear retention (Fig. 6C; Barraud
et al. 2011). Because the integrity of the dsRBD is crucial
for nuclear retention of Dcr1, we monitored, by hetero-
nuclear nuclear magnetic resonance (NMR), potential
structural changes upon temperature increase. We noticed

a global temperature instability of the domain, revealed by
protein precipitation from ;35°C and progressive disap-
pearance of NMR signals. Consistent with this observa-
tion, differential scanning fluorimetry (Niesen et al. 2007)
revealed a melting temperature of 45°C for the domain
(Fig. 6D). Interestingly, the initiation of the unfolding
transition occurs around 34°C–38°C—the same temper-
ature at which Dcr1 starts leaving the nucleus. Therefore,
the Dcr1 translocation phenotype that we observed at
temperatures >36°C can most likely be attributed to the
temperature sensitivity of Dcr1’s dsRBD.

We propose that the dsRBD of Dcr1 constitutes a thermo-
switch that has nuclear retention and NPC interaction
properties at temperatures up to 34°C (Emmerth et al.
2010; Barraud et al. 2011). At higher temperatures, the
protein–protein interaction surface necessary for nu-
clear retention dissipates and the domain switches to
a nuclear export promoter. As a result, RNAi no longer
represses BANCs. Consistent with this, BANC genes are
significantly up-regulated in Dcr1 mutants that cannot
fold the dsRBD properly under normal conditions (Fig.
6E,F). We speculate that this thermoswitch might play an
important role in activating chronic heat-shock pathways.

Discussion

This work points to a critical function for a key stress
response transcription factor, Atf1, and nuclear pores in
coordinating the interplay between the RNAi machinery
and the S. pombe genome. That RNAi components colo-
calize with their targets independently of an Argonaute
protein is unusual for RNAi–target interactions. For the
establishment of RNAi-mediated CTGS, we foresee the
requirement of a scaffold such as the NPC that brings
the RNAi machinery and the target locus in close prox-
imity. We propose a model in which transcription factors
mediate the specific recruitment of genomic loci such as
BANC genes to NPCs, where they meet the RNAi
machinery (Fig. 7A). A scaffolding function similar to the
one proposed here for NPCs might be attributed to
endosomes, multivesicular bodies, or mitochondria in
mammalian RNA silencing pathways (Gibbings et al.
2009; Huang et al. 2011; Watanabe et al. 2011).

Besides its crucial role in assembling noncoding repeats
into heterochromatin, our work reveals that the S. pombe
RNAi pathway also contributes to the regulation of pro-
tein-coding genes in response to environmental cues. Our
results demonstrate that RNAi serves a general function to
repress stress response genes. Although we cannot rule out
a direct impact on transcription rates at some genes, we
favor a CTGS model in which RNAi generally functions
on a truly post- or cotranscriptional level by degrading
newly synthesized RNA in association with its gene.

Whereas RNAi is involved in the regulation of heat-
shock gene expression, the RNAi pathway itself is
regulated in a unique temperature-dependent manner.
Temperatures >34°C trigger a thermoswitch that deports
Dcr1 to the cytoplasm. Importantly, although reversible,
the kinetics of Dcr1 translocation to the cytoplasm is slow.
Complete loss of perinuclear Dcr1 signal was only observed

Figure 4. RNAi contributes to cotranscriptional degradation of
BANCs. (A–D) Expression analysis by tiling arrays showing
differential expression of BANCs (‘‘Yes’’; 261 genes) compared
with all other genes (‘‘No’’; 4715 genes) in dcr1D, rdp1D, ago1D,
and swi6D. (E) Small RNA deep-sequencing data (Halic and
Moazed 2010) was reannotated to show the number of Ago1-
bound sRNAs at BANCs compared with all other genes. (F)
RNA levels of candidate heat-shock genes in dcr1D relative to
wild-type cells at 30°C were determined by quantitative RT–
PCR. Actin mRNA was used for normalization. (G) RNAP2
enrichment at candidate heat-shock genes in dcr1D relative to
wild-type cells at 30°C. U6 snRNA was used for normalization.
otr1R::ura4+ is located within centromeric heterochromatin and
serves as a positive control. (H,I) RNA levels of candidate heat-
shock genes were measured by quantitative RT–PCR in wild-
type and dcr1D cells 0 min, 30 min, 1 h, 1 h 40 min, 2 h 10 min,
3 h 10 min, 4 h 10 min, 5 h 10 min, and 7 h 10 min after shifting
to 39°C. RNA levels were normalized to actin and are repre-
sented as fold increase compared with wild-type at 30°C.
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after several hours. This indicates that RNAi-mediated
CTGS occurring at nuclear pores is only disrupted com-
pletely under chronic heat-shock conditions. Consistent
with this idea, two heat-shock genes, hsp104+ and hsp16+,
show reaccumulation of mRNA when incubated for >4 h
at 39°C (Fig. 4H,I). Intriguingly, these genes have been
implicated in the acquisition of thermotolerance (Yoshida
and Tani 2005; Senechal et al. 2009), which requires mild
pretreatment of cells with sublethal heat stress (Ribeiro
et al. 1997). We speculate that transcription of certain genes
is activated by mild heat shock, but the response is kept
transient by RNAi-mediated CTGS, which remains func-
tional for several hours (Fig. 7B). Upon prolonged incuba-
tion at elevated temperatures or recurrent heat shock, the
Dcr1 thermoswitch could contribute to reactivation of
such genes to help the cells tolerate temperatures that
would otherwise be deadly (Fig. 7C). Interestingly, loss of
silencing at centromeres after chronic heat stress amounts
to a maximum increase in RNA of approximately fivefold,
much less than the ;100-fold increase observed in dcr1D

cells under normal conditions (data not shown), suggesting
the existence of compensatory mechanisms that keep
some regions repressed under chronic heat stress despite
loss of Dcr1 from the nucleus.

Finally, we note that RNAi components have recently
been implicated in heat-shock gene regulation in Dro-
sophila melanogaster and that human Dicer has been
demonstrated to physically interact with a nuclear pore
protein (Ando et al. 2011; Cernilogar et al. 2011). This
suggests that mechanisms similar to the ones described
here might also be operational in animals.

Material and methods

Strains and plasmids

Fission yeast strains (grown at 30°C in YES medium; MP Bio-
medicals no. 4101-532) and plasmids used in this study are

described in Supplemental Tables S1 and S2. All strains were
constructed using a standard PCR-based protocol (Bahler et al.
1998). LacO repeats were inserted into the genome as described
previously (Rohner et al. 2008). Constructs on plasmids and in
yeast strains were confirmed by sequencing.

DamID

DamID was done as previously described (Woolcock et al. 2011).
For DamID under stress conditions, the cells were grown to
OD600 ;0.5, diluted again to OD600 = 0.08, and grown again to
OD600 ;0.4. This should dilute out parental methylation so that
the new methylation pattern reflects association of the fusion
protein with the genome under the stress condition. Heat: 36°C;
osmotic: cells grown in YES with 1 M sorbitol; oxidative: cells
grown in YES with 0.5 mM H2O2.

S. pombe genome annotation

Two annotations sets (‘‘chromosomal regions’’ and ‘‘genomic
elements’’) were created and can be used in the form of GFF, BED,
or Fasta files. The sequence of the genomic DNA is taken from
the assembly ‘‘pombe_09052011.fasta’’ (downloaded from ftp://ftp.
sanger.ac.uk/pub/yeast/pombe/GFF).

Chromosomal regions

The three chromosomes were split into centromere, euchroma-
tin, subtelomere, telomere, and mating type regions using the
coordinates described in Supplemental Table S4. The centromere
ranges were taken from http://www.sanger.ac.uk/Projects/
S_pombe/centromere.shtml. The mating type region and the
chromosome ends were divided into regions of high H3K9me2
(telomeres and mating type region) and lower H3K9me2 (sub-
telomeres) enrichment based on published data (Cam et al. 2005).

For the Fasta files, the ‘‘mating_type_region’’ sequence frag-
ment provided in the genomic DNA file was used instead of the
region on chromosome 2. The euchromatin was extended to
include the whole range from 1,644,747 to 4,497,199. The ‘‘Spmit’’
and the ‘‘telomeric_contig’’ sequences from the genomic DNA file
were used as well.

Figure 5. Genes associating with RNAi components
do not change their nuclear localization upon temper-
ature increase. (A) Summary of the LacO/LacI-GFP
system used to analyze the location of individual
heat-shock genes (Taddei et al. 2004). Live cells with
GFP-LacI-marked lacO::hsp16+ locus and the nuclear
membrane marker mCherry-Cut11 were imaged at
30°C (single-plane confocal image). (B) Heat-shock gene
localization was assigned to one of three concentric
nuclear zones of equal area (shown in A). Percentage of
cells with the GFP focus at the nuclear periphery (zone
I) before and after a 1-h shift to 39°C is shown. (Dotted
line) Random localization. (C) Comparison of the ge-
nome-wide Nup85 enrichment (log2) at 30°C and 36°C.
(D) BANCs remain highly enriched for Nup85 at 36°C.
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Genomic elements

Initial identification of elements is based on the features described
in the GFF file ‘‘pombe_09052011.gff’’ (downloaded from ftp://ftp.
sanger.ac.uk/pub/yeast/pombe/GFF).

The sequence ranges of the following features were taken
directly from the GFF file. ‘‘rep_origin,’’ ‘‘LTR,’’ tRNA,’’ ‘‘snRNA,’’
and ‘‘snoRNA’’. ‘‘rRNA’’ was built from the rRNA features in the
GFF file plus adding SPRRNA.25 (misc_feature). ‘‘pre_rRNA’’ was
built from the ‘‘misc_feature’’ features in the GFF file, where the
phrase ‘‘ribosomal RNA’’ was present in the attributes column.
‘‘pseudogene’’ was built from the mRNA and ‘‘misc_feature’’
features in the GFF file, where the word ‘‘pseudogene’’ was present
in the attributes column, plus adding the mRNA features for
SPAC23A1.20 and SPCC622.17. ‘‘repeats’’ was built from the
‘‘repeat_region’’ feature, where the words ‘‘wtf’’ and ‘‘tf2’’ were not
present. Lists of ‘‘wtf’’ and ‘‘tf2’’ identifiers were built from the
mRNA features in the GFF file, where the words ‘‘wtf’’ and ‘‘tf2,’’
respectively, were present in the attributes column. Sequence
regions derived from ‘‘pseudogenes,’’ ‘‘wtf,’’ and ‘‘tf2’’ elements
were removed from the ‘‘unspliced_transcripts,’’ ‘‘3UTR,’’ and
‘‘5UTR’’ sets built from the mRNA, 39 untranslated region (UTR),
and 59 UTR features, respectively. The same restrictions were
applied to the ‘‘intron’’ set, in addition to the removal of ‘‘tRNA’’
intron sequences. ‘‘tf2’’ was built by adding the mRNA features
from the ‘‘tf2’’ list to the ‘‘misc_feature’’ features in the GFF file,

where the phrase ‘‘transpos’’ was present in the attributes column.
The ‘‘misc_RNA’’ features were separated based on conservation
between different fission yeasts (Rhind et al. 2011; Z Chen,
N Rhind, pers. comm.). ‘‘conserved_lincR’’ were conserved in
sequence and location. ‘‘semiconserved_lincR’’ were conserved in
location with at least one other species. ‘‘nonconserved_lincR’’
were the remaining ‘‘intergenic ncRNA’’ from the work by Rhind
et al. (2011). All remaining ‘‘misc_RNA’’ features (which included
all ‘‘antisense ncRNA’’ from the work by Rhind et al. [2011]) were
used for ‘‘longncRNA.’’

All resulting GFF files were used to create the BED and Fasta
files. In addition, a Fasta file for ‘‘mRNA’’ (i.e., spliced transcripts)
was built by combining the sequence for the 59 UTR (if
annotated), CDS (one or more per gene), and 39 UTR (if anno-
tated) features for each gene (after removing all features with
identifiers present on the ‘‘pseudogene,’’ ‘‘wtf,’’ and ‘‘tf2’’ lists).
The Fasta file for ‘‘wtf’’ was built from sequences of mRNA
features from the ‘‘wtf’’ list, where no splicing (i.e., no intron was
annotated) occurred. These sequence ranges were also used for
the corresponding GFF and BED files. For the remaining identi-
fiers, the sequence was built the same way as the ‘‘mRNA’’ file
and was added to the Fasta file. Furthermore, all BED and Fasta
files were split into four different files (e.g., ‘‘repeats.fa,’’ ‘‘repeats_
centromere.fa,’’ ‘‘repeats_subtelomere.fa,’’ and ‘‘repeats_telomere.
fa’’) depending on whether the start of the original feature was
within the ‘‘euchromatin,’’ ‘‘centromere,’’ ‘‘subtelomere,’’ and

Figure 6. The dsRBD of Dcr1 loses nuclear retention
properties at elevated temperatures. (A) Fluorescence
microscopy of living cells expressing N-terminally
tagged GFP-Dcr1. Cells were grown at 30°C, tempera-
ture was shifted to 39°C, and confocal images were
taken at the indicated times (in red). The nuclear
peripheral localization of Dcr1 is gradually lost and
accumulates in bright foci in the cytoplasm, although
some nuclear rim signal remains up to 4 h. Recovery of
nuclear Dcr1 was monitored during 4 h after shifting
the temperature from 39°C (cells having been at this
temperature overnight) back to 30°C (in blue). (B) Much
lower DamID library DNA concentrations are obtained
for Dam–Dcr1 strains when performed at 36°C com-
pared with 30°C (confirmed by at least four independent
replicates). (C) Cartoon representation of the Dcr1
dsRBD is shown on the left (Barraud et al. 2011). Zinc-
coordinating residues are indicated in blue, and the zinc
ion is shown as a yellow sphere. Visualization of the
dsRBD fold on the protein surface is shown on the right.
The residues highlighted in red form a protein–protein
interaction surface that is required to retain Dcr1 in the
nucleus (Barraud et al. 2011). (D) Thermal unfolding of
Dcr1’s C-terminal domain shown in C monitored by
differential scanning fluorimetry. (Dotted line) Temper-
ature at which unfolding transition initiates. (E,F)
Expression analysis by tiling array (Barraud et al.
2011) showing differential expression of BANCs com-
pared with all other genes in a Dcr1 mutant in which
the dsRBD can no longer coordinate a zinc ion and in
a Dcr1 mutant lacking the C-terminal 33 amino acids,
respectively. Both of these mutants are unable to fold
the dsRBD properly and hence lose nuclear retention
properties.
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‘‘telomere,’’ respectively, region describe above. The features
present on the ‘‘mating_type_region,’’ ‘‘Spmit,’’ and ‘‘telomeric_
contig’’ sequences were ignored. The Fasta file for the mitochon-
drion (i.e., ‘‘Spmit’’) was added as one separate sequence.

DamID analysis

DamID analysis was done as previously described (Woolcock
et al. 2011) but using the above annotation. Intergenic regions
were generated as previously described (Woolcock et al. 2011),
except that regions interrupted by an LTR were also excluded
from the analysis to prevent the high enrichments found at LTRs
from influencing the data. Profiles around translation start sites
were as follows: For each transcript, we selected all of the uniquely
mapping oligos that overlapped within a region of �1000 to 1000
from the start of the ORF. For each base, from the perspective of
the translation start site, we calculated the mean enrichment and
smoothed the resulting profiles with a lowess normalizer. Profiles
from multiple samples were made comparable by subtracting
their respective means.

Expression profiling

RNA isolation and processing were done as previously described
(Emmerth et al. 2010). All tiling arrays were processed in R
(Ihaka and Gentleman 1996) using bioconductor (Gentleman
et al. 2004) and the packages tilingArray (Huber et al. 2006) and
preprocessCore. The arrays were RMA background-corrected,
quantile-normalized, and log2-transformed on the oligo level
using the following command: expr < �log2{normalize.
quantiles[rma.background.correct(exprs{readCel2eSet[filenames,
rotated=TRUE]})]}. Oligo coordinates were intersected with the
genome annotation and used to calculate average expression
levels for individual genomic features (excluding those with <10
oligos) as well as broader annotation categories. In the latter case,
multimapping oligos were counted only once per category (avoid-
ing multiple counts from the same oligo).

Statistical analysis

Box plots and scatter plots were produced in R and show the
average of at least two biological replicates for all experiments
unless otherwise stated. All P-values were generated using the
R command t.test.

RNA isolation, cDNA synthesis, and quantitative RT–PCR

RNA isolation, cDNA synthesis, and quantitative RT–PCR were
done as previously described (Emmerth et al. 2010). Primer pairs
used for PCR reactions can be found in Supplemental Table S3.

ChIP

PolII ChIP was performed as previously described (Buhler et al.
2006) using the 8GW16 antibody (Covance) and M-280 sheep
anti-mouse IgG Dynabeads (Invitrogen). Primer pairs used for
PCR reactions can be found in Supplemental Table S3.

Live fluorescence microscopy

Images were acquired with a LSM710 laser-scanning confocal
microscope equipped with a multiline argon 458/488/514-nm
(25-mW) laser and a Plan-Apochromat 633/1,40 oil DIC M27
objective. Images were processed with ImageJ and Adobe Photo-
shop. In zoning assays, a second channel was added to visualize
cut11-mCherry using the DPSS 561-nm (15-mW) laser. In addition,
Z-stacks of 200-nm step size were taken and distance measure-
ments of the foci were extracted using the plug-in ‘‘PointPicker’’ of
ImageJ. Assignment of zones and statistical analysis was done as
previously described (Taddei et al. 2004). The cells were imaged in
a Ludin chamber coated with Lectin (BS-1, Sigma). For heat-shock
conditions, the microscope was preheated to 39°C, cells were kept
in a Ludin chamber, and pictures were acquired at different time
points.

To monitor Dcr1 relocalization in response to temperature
changes, cells expressing N-terminally GFP-tagged Dcr1 driven by
the nmt1 (33) promoter were grown in YES at 30°C or 39°C. After
the respective temperature shift, aliquots from log phase cells were
taken for each time point and spread onto agarose patches contain-
ing YES medium with 3% glucose. Images were acquired using 3.5%
laser power (argon, 488 nm) with a gain of 700, a pinhole of 1.5 AU,
and an averaging of 4. The microscope was preheated to 30°C for the
recovery experiments and to 39°C in the case of heat induction.

NMR and differential scanning fluorimetry (DSF)

Protein samples for NMR and DSF were prepared as previously
described (Barraud et al. 2011). NMR spectra were recorded with

Figure 7. Proposed model for RNAi-mediated CTGS of Atf1-
bound genes (BANCs) at nuclear pores. (A) The RNAi machin-
ery colocalizes with BANCs at pores, contributing to their
repression, presumably by degrading the nascent transcripts.
(B) Upon stress, Atf1 becomes rapidly and transiently phosphor-
ylated and causes strong transcriptional activation of BANCs.
After a transient burst of transcription, CTGS remains active
and contributes to the transient nature of the stress response.
(C) After several hours at elevated temperatures, Dcr1 is lost
from the nucleus, presumably due to unfolding of its dsRBD.
This abrogates CTGS and causes the reaccumulation of some
BANCs, which may be important for thermotolerance.
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a 0.2 mM 15N-labeled sample at temperatures ranging from 298
K to 318 K in a buffer containing 25 mM NaPi (pH 7.0), 75 mM
KCl, 2 mM DTT, and 10 mM ZnCl2 on Bruker AVIII-500 MHz.
Thermal unfolding was monitored in the same buffer conditions
by DSF in the presence of SYPRO orange using a real-time PCR
instrument (Bio-Rad CFX96). Excitation and emission wave
lengths were 492 nm and 610 nm, respectively. Melting temper-
ature value (TM) was calculated using the first derivative of the
unfolding transition.

Accession codes

All data sets were deposited under accession number GSE36214
(NCBI Gene Expression Omnibus).
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Supplementary Figures and Legends 1-6 

 
 
 
 

 
 

Figure S1. Nup85 interacts with several genomic regions, independently 
of Ago1, whereas Amo1 does not associate strongly with any class of 
features. (a) Enrichments (log2) at heterochromatic regions compared to 
euchromatin. (b) Enrichments (log2) at the indicated genomic features present 
in euchromatin. Individual columns represent biological replicates. 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

 
 
 
Figure S2. Cid14 is relatively enriched at BANCs, whereas Rrp6, Arb1 
and Swi6 are relatively depleted. (a-e) DamID enrichment (log2) at BANCs 
compared to all other genes. (e) Preferential association of BANCs with 
Nup85 is preserved in the absence of Ago1 (compare to Fig. 3G).  
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Figure S3. RNAi may influence RNAP2 occupancy on heat shock genes 
in some cases. (a) RNAP2 occupancy on the ura4+ gene that has been 
inserted into centromeric heterochromatin (otr1R::ura4+). Because 
centromeric heterochromatin is disrupted in RNAi mutants, transcription of this 
gene becomes more active in the absence of Dcr1. (b) From the same 
samples as used in (a), the amount of RNAP2 at different heat shock genes 
was also determined. This result demonstrates that RNAi might be involved in 
transcriptional repression of hsp16+ only (light and dark blue bars). Values 
are relative to the enrichment at hsp16+ in wt at 30°C, which is set to 1. (c) 
hsp104+ is shown as an example of heat shock gene regulation that might be 
mediated by promoter proximal pausing of RNAP2. Because wild-type and 

dcr1 cells are not different at normal or heat shock conditions, we conclude 
that RNAi does not contribute to RNAP2 pausing at this gene. Heat shock at 
39°C was for 15 min. 
Although transcription regulation at stress response genes in the presence or 
absence of RNAi will need to be studied in further detail and on a genome-
wide scale, our data strongly support a model in which stress response genes 
are poised for rapid mRNA export at NPCs, but kept in check by RNAi-
mediated co-transcriptional degradation (CTGS). Upon stress, strongly 
increased transcription rates simply overcome CTGS with most transcripts 
escaping co-transcriptional degradation and accumulating to high levels. After 
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a transient burst of transcription, CTGS contributes to the subsequent 
decrease in RNA levels. 
  

 
 
Figure S4. Dcr1 association with NPCs remains unaffected under 
oxidative stress conditions. Cells expressing N-terminally GFP tagged Dcr1 
were grown to exponential phase and treated with 0.5 mM H2O2 for 15 min 
and then spread on agarose patches. Images were captured on a Delta Vision 
built of an Olympus IX70 widefield microscope equipped with a CoolSNAP 
HQ2/ICX285 camera. Image stacks were acquired with a Z-step size of 200 
nm and deconvolved using the softworks (Delta Vision) software. 
 
 

 
 
Figure S5. Dcr1 association with the genome does not change under 
conditions of osmotic or oxidative stress. (a-b) Dcr1 DamID for cells 
grown in normal YES compared to cells grown in YES with 1 M sorbitol or 0.5 
mM H2O2, respectively. Only one replicate performed for each condition.  
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Figure S6. Dcr1 protein levels at normal and elevated temperatures. 
Western blot was performed with cells expressing GFP-tagged Dcr1 alleles. 
Cells were incubated at 30°C or 39°C for 8 hours, proteins extracted using 
TCA and separated on a NuPAGE® 4-12% Bis-Tris gel (Invitrogen). The 
following antibodies were used: GFP (Roche; 1:1000) and tubulin (Woods et 
al. 1989); 1:3000). This result demonstrates that total levels of Dcr1 are 
similar before and after translocation of Dcr1 to the cytoplasm (compare with 
Figure 6).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

Supplementary Tables 

 
 
Table S1. Strains used in this study 
Strain Genotype Source 
SPB492 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   

leu1∆::nmt1(81x)-dam-myc-kan 
1 

SPB330 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-swi6-kan 

1 

SPB381 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
leu1∆::nmt1(81x)-dam-myc-dcr1-kan 

1 

SPB494 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan 

1 

SPB926 h+ otr1R(Sph1)::ura4+ ura4-DS/E ade6-M210    
leu1∆::nmt1(81x)-arb1-myc-dam-kan 

2 

SPB927 h+ otr1R(Sph1)::ura4+ ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-ago1-kan 

2 

SPB1150 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-amo1-myc-dam-kan 

2 

SPB1151 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-nup85-kan 

2 

SPB435 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-kan 2 

SPB436 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-cid14-kan 2 

SPB437 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-rrp6-kan 2 

SPB711 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  clr4∆::nat 

1 

SPB709 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-dcr1-kan clr4∆::nat 

1 

SPB851 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-dcr1-kan  rdp1∆::hph 

2 

SPB852 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-dcr1-kan  ago1∆::hph 

2 

SPB853 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  rdp1∆::hph 

2 

SPB854 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  ago1∆::hph 

2 

SPB855 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  clr4∆::nat  rdp1∆::hph 

2 

SPB856 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  clr4∆::nat  ago1∆::hph 

2 

SPB857 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-dcr1-kan clr4∆::nat  rdp1∆::hph 

2 

SPB858 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210  
leu1∆::nmt1(81x)-dam-myc-dcr1-kan clr4∆::nat  ago1∆::hph 

2 

SPB712 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan  clr4∆::nat 

1 

SPB912 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan   dcr1∆::hph 

2 

SPB913 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan  dcr1∆::hph 

2 

SPB914 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan   ago1∆::hph 

2 

SPB915 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-kan  clr4∆::nat  dcr1∆::hph 

2 

SPB916 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan  clr4∆::nat   dcr1∆::hph 

2 

SPB917 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210   
leu1∆::nmt1(81x)-dam-myc-rdp1-kan  clr4∆::nat  ago1∆::hph 

2 
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SPB1475 h+ otr1R(SphI)::ura4+  ura4-DS/E ade6-M210 
 leu1∆::nmt1(81x)-dam-myc-nup85-kan ago1∆::hph 

2 

SPB74 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210 3 

SPB94 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210  dcr1∆::nat 3 

SPB96 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210 swi6∆::nat 3 

SPB763 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210 rdp1∆::kan 2 

SPB764 h+ otr1R(SphI)::ura4+  ura4-DS/E leu1-32 ade6-M210 ago1∆::kan 2 

SPB278 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+  
Kan-nmt1(3x)-gfp::dcr1 

2 

SPB1087 h+ ura4- ade6- leu1-32  cut11::mCherry-Nat  
dis1-promoter-GFP-lacI::his7+ lacO(8x4)LexA(4x)::hsp16+ 

2 

SPB1199 h+ ura4- leu1-32 dis1-promoter-GFP-lacI::his7+ 
lacO(8x4)LexA(4x)::hsp9+ cut11+::mCherry-natR 

2 

SPB1200 h+ ura4- leu1-32 dis1-promoter-GFP-lacI::his7+ 
lacO(8x4)LexA(4x)::hsp104+ cut11+::mCherry-natR 

2 

SPB354 h+ leu1-32 ura4-D18 ori1 ade6-216 imr1R(Nco1)::ura4+  
Kan-nmt1(3x)-nls-gfp::dcr1 

 

1 = (Woolcock et al.), 2 = This study, 3 = Danesh Moazed 

 
Table S2. Plasmids used in this study 
Name Common name 
pMB681 pFA6a - 81xL - arb1 - myc - dam - kanMX6 

pMB682 pFA6a - 81xL - dam - myc - ago1 - kanMX6 

pMB774 pFA6a - 81xL - amo1 - myc - dam - kanMX6 

pMB798 pFA6a - 81xL - dam - myc - nup85 - kanMX6 

pMB399 pFA6a - 81xL - dam - myc  - kanMX6 

pMB348 pFA6a - 81xL - dam - myc - cid14 - kanMX6 

pMB349 pFA6a - 81xL - dam - myc - rrp6 - kanMX6 

pMB308 placO(8x4)lexA(4x)-LEU2 

 
Table S3. Primers used for quantitative RT-PCR 
Name Sequence 
hsp16 for AAAGCACCGAGGGTAACCAA 

hsp16 rev TGGTACGAGAGAATGAGCCAAA 

hsp104 for CGTGAATCTCAGCCCGAAGT 

hsp104 rev TCAACGCGGAGTTGTCGAA 

hsp9 for GAACAAGGCAAGGAGAAAATGACT 

hsp9 rev AATGGATTCCTTGGCCTTGTC 

act1 for TCCTCATGCTATCATGCGTCTT 

act1 rev CCACGCTCCATGAGAATCTTC 

For ChIP:  

hsp16 for GATTGATGCAGATCGCATTGAG 

hsp16 rev TTGGGCAAGGTGACAGTCAATA 

hsp104 (-225) for TCCTTTCCTTCCCATAGTAACATCAT 

hsp104 (-225) rev GTTGAGGATGCCGCAGGTA 

hsp104 (248) for CGCTTGCCTGCTCAGGAT 

hsp104 (248) rev TCGCACTTTCAGGTGACAGAGT 

hsp104 (1839) for CGTGCTGGTCTTTCTGATCCTA 

hsp104 (1839) rev CGGAAGGACCGCAAAACA 

hsp104 (2428) for GAGGTTCAGAAACGGCTTCAAT 

hsp104 (2428) rev GCTTCGTCGCTAACCTCGAT 

hsp9 for GAACAAGGCAAGGAGAAAATGACT 

hsp9 rev AATGGATTCCTTGGCCTTGTC 

ura4 for TACAAAATTGCTTCTTGGGCTCAT 

ura4 rev AGACCACGTCCCAAAGGTAAAC 

U6 snRNA for GATCTTCGGATCACTTTGGTCAA 

U6 snRNA rev TGTCGCAGTGTCATCCTTGTG 
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Table S4. Chromosomal regions 
chromosome start end region 

1 1 19999 telomere 

1 20000 35599 subtelomere 

1 35600 3753686 euchromatin 

1 3753687 3789420 centromere 

1 3789421 5529999 euchromatin 

1 5530000 5571499 subtelomere 

1 5571500 5579133 telomere 

2 1 15799 subtelomere 

2 15800 1602263 euchromatin 

2 1602264 1644746 centromere 

2 1644747 2113999 euchromatin 

2 2114000 2136999 mating type region 

2 2137000 4497199 euchromatin 

2 4497200 4516199 subtelomere 

2 4516200 4539804 telomere 

3 1 1070903 euchromatin 

3 1070904 1137002 centromere 

3 1137003 2452883 euchromatin 

The coordinates are given in a 1-based notation. 
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PERSPECTIVE

RNAi in fission yeast finds new targets
and new ways of targeting at the
nuclear periphery

Daniel Holoch and Danesh Moazed1

Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

RNAi in Schizosaccharomyces pombe is critical for
centromeric heterochromatin formation. It has remained
unclear, however, whether RNAi also regulates the ex-
pression of protein-coding loci. In the April 1, 2012, issue
of Genes & Development, Woolcock and colleagues (pp.
683–667) reported an elegant mechanism for the condi-
tional RNAi-mediated repression of stress response genes
involving association with Dcr1 at the nuclear pore.
Unexpectedly, the initial targeting of RNAi components
to these genes does not require small RNA guides.

Not long after it was discovered as a mechanism of
dsRNA-mediated post-transcriptional gene silencing (Fire
et al. 1998), it became evident that RNAi also regulates
the genome at the level of transcription and chromatin
structure in a wide range of organisms. Roles for RNAi
have been identified in DNA elimination in Tetrahymena
thermophila, RNA-directed DNA methylation in plants,
and transcriptional gene silencing in Drosophila mela-
nogaster, Caenorhabditis elegans, and the fission yeast
Schizosaccharomyces pombe (Moazed 2009). In princi-
ple, RNAi could identify target loci through direct base-
pairing between its small RNA guides and DNA, but to
date, only targeting via complementary RNA transcripts
has been described. Consequently, RNAi-based regula-
tion at the chromatin level is thought to involve the in-
teraction of silencing proteins with nascent transcripts
(Bühler and Moazed 2007; Lejeune and Allshire 2011).
First described in S. pombe, this nascent transcript model
is strongly supported by the finding that small RNAs can
cause gene-specific arrest of elongating RNA polymerase
II in C. elegans and RNA polymerase IV- and polymerase
V-dependent DNA methylation in Arabidopsis thaliana
(Wierzbicki et al. 2009; Guang et al. 2010).

Extensive evidence that nascent transcripts serve as
targets of nuclear RNAi comes from studies in S. pombe,
in which the genes encoding a Dicer dsRNA nuclease

(dcr1+), an Argonaute protein (ago1+), and an RNA-
directed RNA polymerase (rdp1+) are each required for
establishment and maintenance of centromeric hetero-
chromatin (Volpe et al. 2002). Biochemical purifications
showed that Ago1 acts within a chromatin-bound RNA-
induced transcriptional silencing (RITS) complex (Verdel
et al. 2004). Subsequent studies revealed that RITS in-
teracts with noncoding centromeric transcripts and that
artificially enforcing its binding to a nascent euchromatic
RNA is sufficient to induce heterochromatic silencing of
the corresponding locus (Motamedi et al. 2004; Bühler
et al. 2006). Together, these results gave rise to the view
that RNAi is recruited cotranscriptionally to its nuclear
targets (Fig. 1A). Also consistent with this model are the
observations that centromeric siRNA accumulation is
disrupted in mutants of RNA polymerase II subunits or
splicing factors (Djupedal et al. 2005; Bayne et al. 2008).

Although S. pombe has proved a uniquely powerful
system for understanding RNAi-based silencing in the
nucleus, the cotranscriptional gene silencing (CTGS) mech-
anism, suggested by the above studies, still presents several
mysteries. Here, we focus in particular on two of them.
First, in contrast to many other RNAi systems, it has
been observed that S. pombe small RNAs alone do not
robustly recruit the RNAi machinery to targeted loci,
suggesting they must instead act in concert with other
molecular signals (Fig. 1B). Second, the physiological reg-
ulation of protein-coding genes by RNAi in S. pombe has
only recently begun to be appreciated.

A new study by Bühler and colleagues (Woolcock et al.
2012) offers exciting new insights into both of these
questions. By probing the genome-wide localization of
RNAi factors using the highly sensitive DNA adenine
methyltransferase identification (DamID) technique, they
uncover a role for RNAi in the regulation of a class of stress
response genes associated with the DNA-binding protein
Atf1 and nuclear pores. They present surprising and
compelling evidence for small RNA-independent re-
cruitment of RNAi components to their targets. Fi-
nally, they propose an attractive model that provides
a structural basis for the conditional relocalization of
Dcr1 and concomitant derepression of stress-inducible
genes.

[Keywords: RNAi; CTGS; NPC; stress response; thermoswitch; Atf1
transcription factor]
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Small RNAs and the recruitment of the RNAi machinery

In most organisms endowed with RNAi, short dsRNA
molecules of ;20–25 nucleotides (nt) in length, often the
products of a Dicer ribonuclease acting on endogenous or
exogenous dsRNA substrates, are sufficient to trigger a
sequence-specific silencing response (Meister and Tuschl
2004). Intriguingly, RNAi-mediated chromatin silencing in

S. pombe stands in stark contrast to this rule. For example,
high levels of hairpin-derived, Dcr1-dependent siRNAs
directed against the ura4+ gene are unable to elicit repres-
sion of the corresponding sequence in its native locus,
despite being loaded into the RITS complex (Iida et al.
2008; Simmer et al. 2010). Instead, one or more other
events are required to achieve hairpin-mediated silencing
(see below). Similarly, when ura4+ siRNAs are generated

Figure 1. Models for target recognition by the
S. pombe RNAi machinery. (A) At the robustly
silenced centromeric repeats, siRNAs bound to
the Ago1 subunit guide the RITS complex to
complementary nascent RNA targets and corre-
sponding sites on chromatin. RITS then promotes
the recruitment of the RNA-dependent RNA
polymerase complex (RDRC), containing Rdp1,
and Dcr1. Small RNA guides are thus necessary
for all targeting of the RNAi machinery to the
centromeres. (B) Expression of ura4+ hairpin tran-
scripts or tethering of RITS to ura4+ RNA yields
large pools of Dcr1-dependent ura4+ siRNAs that
bind to the RITS complex, but the native ura4+

locus is not targeted. Thus, small RNAs are not
sufficient to trigger recruitment of the RNAi
machinery to this gene. (C) The novel case of
the Atf1-bound genes identified by Woolcock
et al. (2012). Here, deletion of Ago1, the medi-
ator of small RNA-guided sequence specificity,
does not inhibit Dcr1 and Rdp1 recruitment to
chromatin. Therefore, small RNAs are not nec-
essary for the initial targeting of these loci.
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by tethering RITS to ura4 nascent transcripts, they fail
to guide RITS to a second allele of ura4 introduced on
another chromosome unless the gene encoding the Eri1
ribonuclease is deleted (Bühler et al. 2006). Together, these
results imply that siRNAs are not the only necessary
determinants of RNAi targeting in S. pombe.

There are currently several clues as to what, in addition
to small RNAs themselves, might trigger the initial re-
cruitment of RNAi components (Fig. 1B). One possibility
is that a minimal level of methylation of histone H3 on
Lys 9 (H3K9me), a key heterochromatic signature, is oblig-
atory to stabilize RITS for de novo silencing (Iida et al. 2008;
Schalch et al. 2009). Such a requirement, and possibly
other features, could make certain genomic loci more
susceptible than others to small RNA-guided targeting of
RNAi factors. Consistent with this notion are indepen-
dent observations that displacing ura4+ from its native
locus can potentiate it for hairpin-mediated silencing (Iida
et al. 2008; Simmer et al. 2010). Importantly, hairpin-
programmed silencing seems to be favored by the presence
of antisense transcription or pre-existing H3K9me at the
targeted locus (Iida et al. 2008). A role for bidirectional
transcription in targeting the RNAi machinery might also
help explain why centromeric repeats are so robustly
silenced. Indeed, the widespread presence of complemen-
tary transcripts appears to allow the repeats to be targeted
by Ago1-bound primal RNAs even in the absence of Dcr1
(Halic and Moazed 2010).

The work of Woolcock et al. (2012) represents a sea
change in our understanding of RNAi recruitment to
chromatin. Extending previous DamID analyses that un-
covered for the first time a physical association between
Dcr1 and the genome (Woolcock et al. 2011), the new
results show that, remarkably, binding of Dcr1 to both
heterochromatin and euchromatin is unchanged in cells
lacking Ago1 or Rdp1. Likewise, although Rdp1 associa-
tion with heterochromatin requires Ago1 and Dcr1, con-
sistent with previous chromatin immunoprecipitation data
(Sugiyama et al. 2005), its euchromatic binding profile is
very similar to that of Dcr1 and is also unchanged when
Ago1 or Dcr1 is deleted. These findings reveal the exis-
tence of a mechanism for targeting components of the
RNAi machinery to chromatin that is entirely distinct
from previous models in that it does not rely on Ago1 or
its small RNA guides (Fig. 1C). Until now, it has been
taken for granted that small RNAs are indispensable,
because deletion of Dcr1 abrogates the interactions of
RITS and Rdp1 with one another and with centromeric
repeats (Motamedi et al. 2004; Verdel et al. 2004;
Sugiyama et al. 2005), but the DamID results from
Woolcock et al. (2012) build a very different case for the
euchromatic targets of RNAi and raise a host of new
questions.

First, in addition to asking why siRNAs are not suffi-
cient to recruit RNAi, we now are prompted to ask why
they are not always necessary. In other words, if not
siRNAs, what brings Dcr1 and Rdp1 to specific chroma-
tin sites? The investigators attribute this phenomenon
to the subnuclear colocalization of these proteins with
targeted loci near the nuclear pore complex (NPC) (discussed

below). It remains to be seen whether small RNA-
independent targeting also occurs at loci not bound to
nuclear pores. A second question regards the adaptive
significance of this recruitment mechanism. Are Dcr1
and Rdp1 maintained at certain sites in order to keep the
cell poised to preferentially amplify specific small RNA
pools, or is the early timing of association prior to small
RNA generation not critical for silencing itself? The in-
vestigators have uncovered an ideal system in which to
study how physical targeting of RNAi might be uncoupled
from repression and small RNA amplification.

The role of subcellular localization in regulating
the activity of RNAi

Trafficking between the nucleus and cytoplasm has long
been known to be instrumental in the cell’s execution
of RNAi. In the microRNA (miRNA) pathway, natively
synthesized hairpin miRNA precursors undergo two suc-
cessive processing steps in the nucleus and cytoplasm. The
karyopherin Exportin 5 mediates their transport across the
nuclear envelope and is essential for miRNA-dependent
repression (Yi et al. 2003), and overexpression experiments
suggest that it may be a limiting component of the pathway
(Yi et al. 2005). In human cells, the Argonaute Ago2
has been shown to localize to the nucleus in an Importin
8-dependent manner, an activity that influences its ability
to repress many targets, although the mechanism is not
yet well defined (Weinmann et al. 2009). Not surprisingly,
RNAi silencing pathways that operate specifically in the
nucleus have also evolved ways of directing components
to this compartment (for a review, see Ketting 2011). A
notable example is the C. elegans Argonaute NRDE-3,
which binds siRNAs in the cytoplasm and transports
them to the nucleus, where it can silence corresponding
genes undergoing transcription elongation (Guang et al.
2008, 2010). Analogously, the Tetrahymena Argonaute
Twi1p binds to siRNAs in the cytoplasm and carries them
into the nucleus with essential help from the binding
protein Giw1p, which appears to sense successful con-
version of siRNAs from a duplex to single-stranded form
(Noto et al. 2010).

In S. pombe cells, siRNAs are currently only known to
be generated and function within the nucleus. Neverthe-
less, Bühler and colleagues (Emmerth et al. 2010; Barraud
et al. 2011) have reported that Dcr1 has the potential to
shuttle between the nucleus and cytoplasm and that a
C-terminal zinc coordination motif and a dsRNA-binding
domain (dsRBD) orchestrate its nuclear retention. Within
the nucleus, overexpressed Dcr1 resides in NPC-proximal
foci, and deletion of the C terminus suggests that this
localization is critical for heterochromatic silencing of the
centromeric repeats (Emmerth et al. 2010). It has remained
unclear, however, whether the nuclear retention mecha-
nism is actively exploited by the cell to regulate Dcr1
activity or whether the apparent association of Dcr1 with
the NPC is physiologically relevant.

In their new study, Woolcock et al. (2012) present
significant advances on both of these fronts. First, their
genome-wide DamID analyses reveal a very strong cor-
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relation between the genomic sites bound by Dcr1 and
the nucleoporin Nup85, but not Amo1, a perinuclear pro-
tein not associated with the NPC. The average Dcr1- and
Nup85-binding positions relative to ORF start sites also
match exquisitely well, with association occurring pref-
erentially upstream. Together, these observations argue
that the NPC-proximal localization of Dcr1 may guide it
specifically to Nup85-bound target loci, bypassing Ago1
and small RNAs as determinants of sequence specificity
(see above). A second major insight into Dcr1 subcellular
localization comes from differential scanning fluorimetry
experiments in which the dsRBD critical for nuclear re-
tention unfolds at high temperatures. Consistent with a pre-
vious mutational analysis of the dsRBD (Barraud et al. 2011),
subjecting live cells to the temperatures that compro-
mised the dsRBD structure also abrogated nuclear re-
tention of overexpressed Dcr1. Although indirect effects
are not ruled out, the data support an elegant model in
which the effects of heat shock on Dcr1 structure tip the
balance toward cytoplasmic localization, with important
consequences for silencing. In addition to the regulation
of stress-inducible genes associated with NPCs (see below),
this might also help explain an old observation that the
canonical centromeric targets of Dcr1 are derepressed at
high temperatures (Allshire et al. 1994).

RNAi-mediated silencing of protein-coding genes
in fission yeast

Although the molecular mechanisms of RNAi are widely
conserved, its cellular roles are tremendously varied across
species (Ketting 2011). One peculiarity of RNAi in S. pombe
has been its apparent lack of protein-coding targets. Until
recently, RNAi in fission yeast was not known to function
outside the assembly of constitutive heterochromatin do-
mains. Interestingly, convergent protein-coding gene pairs
have been found to produce overlapping readthrough tran-
scripts specifically in the short G1 stage of the S. pombe cell
cycle. Transient heterochromatin develops in the corre-
sponding intergenic regions in a manner that requires
ago1+ and dcr1+, suggesting that dsRNA may form and
trigger RNAi-dependent regulation of these loci (Gullerova
and Proudfoot 2008). As it turns out, many genes encoding
RNAi components belong to convergent gene pairs, and
their expression is autoregulated by this mechanism in
a manner that is also critical for their role in centromeric
silencing (Gullerova et al. 2011). In a distinct mechanism,
Woolcock et al. (2012) identify as novel physiological
targets of RNAi the class of genes bound by the stress
response transcription factor Atf1. DamID shows that
these loci are associated with NPCs and, under normal
growth conditions, Dcr1, Rdp1, and Ago1. Importantly,
expression analysis indicates that Dcr1, Rdp1, and Ago1
are all required for their repression. In at least some cases,
RNA polymerase II occupancy is not affected by dcr1+

deletion, implying that repression occurs by both tran-
scriptional gene silencing and CTGS. As a plausible mech-
anism for release of these genes from RNAi repression
during heat shock, the investigators suggest cytoplasmic
export of Dcr1 by temperature-induced structural changes

in its C terminus (see above), and the genes are in-
deed constitutively derepressed in mutants of the Dcr1
C terminus.

Intriguing differences stand out between the autoreg-
ulation of RNAi genes and the RNAi-mediated repres-
sion of Atf1-bound genes. First, autoregulated RNAi
genes belong to convergent gene pairs; it is therefore
their 39 ends that are targeted by the RNAi and hetero-
chromatin components (Gullerova et al. 2011). In con-
trast, Atf1-bound genes are bound by the RNAi machin-
ery predominantly at their promoters (Woolcock et al.
2012). This suggests that the mechanism repressing the
latter genes intervenes earlier in the process of transcrip-
tion to generate a dsRNA signal. A second, related differ-
ence is that silencing at convergent gene pairs relies on
Dcr1 and Ago1, but not Rdp1, contrary to Atf1-bound loci
(Gullerova et al. 2011; Woolcock et al. 2012). Thus, whereas
overlapping transcripts themselves are a sufficient source
of dsRNA for regulation of convergent genes, stress-
inducible genes seem to require Rdp1 to synthesize the
dsRNA trigger, presumably using a nascent transcript as
a template. Silencing of the Atf1-bound genes resembles
centromeric silencing in this regard, but paradoxically,
heterochromatin is absent, as Swi6 is not enriched at
these loci, and the H3K9 methyltransferase Clr4 is not
required for Dcr1 and Rdp1 binding (Woolcock et al.
2012). However, the Clr4 enzymatic activity was recently
shown to contribute to centromeric siRNA generation
independently of H3K9 (Gerace et al. 2010), so the possi-
bility remains to be tested that it might participate in
euchromatic RNAi as well.

Life beyond post-transcriptional gene silencing

Despite its widespread conservation, the RNAi machinery
has been lost in certain organisms such as Saccharomyces
cerevisiae (Drinnenberg et al. 2009). In the evolution of
S. pombe, RNAi was retained but acts primarily at the
chromatin level. Mechanistically, the S. pombe variant of
RNAi stands apart from canonical post-transcriptional
gene silencing, which potently targets protein-coding
genes for repression with the mere presence of dsRNA.
S. pombe instead features transcriptional and cotranscrip-
tional silencing pathways with intricate targeting require-
ments and a role mainly in repressing noncoding repeats. In
this context, the regulation of Atf1-bound stress-inducible
genes, whose initial physical targeting is surprisingly in-
dependent of small RNAs, represents a novel adaptive role
for RNAi. In future studies, it will be interesting to see
whether silencing within this broad class of genes occurs
by a uniform mechanism. The new data (Woolcock et al.
2012) hint at the possibility that both transcriptional gene
silencing and CTGS may be at work, depending on the
locus. Given the absence of heterochromatin, this sug-
gests the action of another transcriptional repression path-
way yet to be determined. Additionally, the noncanonical
poly(A) polymerase Cid14, which targets aberrant tran-
scripts for exosomal degradation, is also enriched at these
genes (Woolcock et al. 2012), so RNAi-independent RNA
processing might also be involved. These and other new
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questions raised by this important work await further
study.
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Proteomic and functional analysis of the noncanonical

poly(A) polymerase Cid14
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ABSTRACT

The fission yeast Cid14 protein belongs to a family of noncanonical poly(A) polymerases which have been implicated in a broad
range of biological functions. Here we describe an extensive Cid14 protein–protein interaction network and its biochemical
dissection. Cid14 most stably interacts with the zinc-knuckle protein Air1 to form the Cid14–Air1 complex (CAC). Providing
a link to ribosomal RNA processing, Cid14 sediments with 60S ribosomal subunits and copurifies with 60S assembly factors. In
contrast, no physical link to chromatin has been identified, although gene expression profiling revealed that efficient silencing of
a few heterochromatic genes depends on Cid14 and/or Air1.

Keywords: TRAMP; CAC; heterochromatin silencing; ribosome biogenesis; poly(A) polymerase; Cid14

INTRODUCTION

Proper gene expression requires polyadenylation of most
eukaryotic mRNA 39 ends by the canonical poly(A) poly-
merase (PAP), which has been shown to be important for
RNA export, translation, and RNA stabilization. Besides
the canonical PAP, eukaryotic cells possess noncanonical
PAPs, which have been implicated in a broad range of bio-
logical processes and are conserved from yeast to humans.
The fission yeast Schizosaccharomyces pombe encodes six non-
canonical PAPs: Cid1, Cid11, Cid12, Cid13, Cid14, and Cid16
(Stevenson and Norbury 2006). Although initially classified as
noncanonical PAPs, some of these enzymes have been
demonstrated to add U residues (Kwak and Wickens 2007;
Rissland et al. 2007). Cid14 is a nuclear enzyme which pref-
erentially adds purines to RNA substrates in vitro, functions
in ribosomal RNA (rRNA) processing and heterochromatic
gene silencing, and is required for faithful chromosome
segregation, proper siRNA generation by the RNA interfer-
ence (RNAi) pathway, and maintenance of genomic integrity
of the ribosomal DNA (rDNA) locus (Win et al. 2006; Bühler
et al. 2007, 2008; Wang et al. 2008; Bühler 2009).

Cid14 is a functional ortholog of the two noncanonical
PAPs, Trf4p/5p, found in the distantly related budding yeast
Saccharomyces cerevisiae (Win et al. 2006). Both Trf4p and

Trf5p are found together with predicted zinc-knuckle pro-
teins Air1p/2p and the helicase Mtr4p in complexes termed
TRAMP4 (Trf4p–Air1p/2p–Mtr4p; LaCava et al. 2005;
Vanacova et al. 2005; Wyers et al. 2005) and TRAMP5
(Trf5p–Air1p–Mtr4p; Houseley and Tollervey 2006). The
TRAMP complexes are considered to be cofactors of the
yeast nuclear exosome that functions to process or degrade
RNAs (Mitchell et al. 1997; Mitchell and Tollervey 2000).

Here we report the existence of a single TRAMP-like
complex in S. pombe, consisting of Mtr4, Cid14, and Air1.
Whereas Air1 and Cid14 form a stable complex, the asso-
ciation with Mtr4 is weak and occurs only in the presence of
both Cid14 and Air1. Moreover, Cid14 sediments with 60S
ribosomal subunits and copurifies with 60S assembly factors,
providing a link to its role in ribosomal RNA processing.
Previously we have shown that efficient silencing of trans-
gene insertions at heterochromatic loci depends on Cid14
(Bühler et al. 2007). Here we demonstrate that silencing of
a few endogenous heterochromatic genes depends on Cid14.
In contrast to the factors implicated in ribosome biogenesis,
no components have been identified that would link Cid14
to chromatin. Therefore, we propose that Cid14 functions
off chromatin to control gene expression.

RESULTS AND DISCUSSION

Cid14 stably associates with the zinc-knuckle
protein Air1

Previously, we have shown that Cid14 copurifies with
a large number of proteins, including ribosomal proteins
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(RPs) and two proteins that are homologs of the budding
yeast Mtr4p and Air1p/2p (Bühler et al. 2007). To better
characterize this protein–protein interaction network, we
revisited affinity chromatography under various condi-
tions. We started our analysis by tandem affinity purifica-
tions of fully functional C-terminally TAP-tagged Cid14
(Cid14-TAP; Bühler et al. 2007) at different salt concen-
trations followed by analysis of the purification by SDS
polyacrylamide gel electrophoresis and mass spectrometry.
LC-MS/MS analysis of tryptic digests of protein mixtures of
Cid14-TAP and control purifications revealed that Cid14
copurifies specifically with Air1 (SPBP35G2.08c), Mtr4
(SPAC6F12.16c), and a large number of RPs at 150 mM
NaCl (Fig. 1A,D). Association with Mtr4 and RPs was
gradually lost with increasing NaCl concentrations or upon
treatment with RNase I (Fig. 1B,D). The only detectable

interaction preserved at 500 mM NaCl was with Air1 (Fig.
1A,D; Supplemental Table S1). Thus, Cid14 and Air1 form
a stable complex, independently of Mtr4. We refer to this
complex as Cid14–Air1 Complex (CAC). Similarly, Trf4p
has been shown to stably associate with either Air1p or
Air2p in S. cerevisiae. Interestingly, this interaction is
necessary for PAP activity (Vanacova et al. 2005; Wyers
et al. 2005). In contrast, Cid14 shows PAP activity in-
dependently of Air1 (Bühler et al. 2007).

Mtr4, Cid14, and Air1 form a TRAMP-like complex
in S. pombe

At low salt concentrations, Cid14 reproducibly copurified
with Mtr4 and Air1, suggesting that a TRAMP-like com-
plex also exists in S. pombe. To verify this, we constructed
a strain expressing a C-terminally TAP-tagged Air1 protein
(Air1-TAP). Affinity purification followed by mass spec-
trometry identified Cid14 and Mtr4 as Air1-interacting
proteins, as well as RPs (Fig. 1C). Mtr4 and RP association
was also sensitive to high salt concentrations (Fig. 1E and
data not shown). Similarly, 500 mM NaCl washes have
been demonstrated to dissociate Mtr4p from Trf4p, Trf5p,
and Air2p in S. cerevisiae (LaCava et al. 2005). RNAse
treatment of the Cid14-TAP complex bound to IgG beads
prior to release by TEV cleavage did not abolish the
recovery of Air1 and Mtr4 (Fig. 1B), whereas binding of
RPs, in particular 40S ribosomal proteins, was reduced
(Fig. 1B,D; Supplemental Table S1). This makes it unlikely
that Mtr4, Cid14, and Air1 interact via substrate RNAs.
Based on these results, we conclude that a TRAMP-like
complex does exist in S. pombe.

In S. cerevisiae, Trf4p can either interact with Air1p or
Air2p, suggesting the existence of two TRAMP complexes
containing either Air1p or Air2p associated with Trf4p and
Mtr4p (Wyers et al. 2005). Although S. pombe encodes for
more than one Air1p/2p homolog, we consistently identi-
fied Air1 by LC-MS/MS from Cid14-TAP purifications
(Supplemental Table S1). To rule out that a related zinc-
knuckle protein could substitute in the absence of Air1, we
purified Cid14-TAP expressed in air1D cells. These purifi-
cations did not reveal any other Air1 homologs associating
with Cid14 (Fig. 2C,E; Supplemental Table S1). Thus, Air1
is the sole zinc-knuckle protein interacting with Cid14.
Furthermore, we purified Air1-TAP from cid14D cells and
found no other Cid14 homologs copurifying with Air1
(Fig. 2D). In conclusion, the association of CAC with Mtr4
represents the only TRAMP-like complex in S. pombe.
Importantly, Cid14-TAP purifications from air1D cells
revealed that Mtr4 no longer interacts with Cid14 in the
absence of Air1 (Fig. 2C,E). This may suggest that Air1
mediates the interaction with Mtr4. However, Mtr4 was
also lost when we purified Air1-TAP from cid14D cells (Fig.
2D,E). Therefore, an intact CAC complex is required for
TRAMP formation in fission yeast.

FIGURE 1. Cid14 interacts with Air1, Mtr4, and ribosomal proteins.
(A) Silver-stained gel showing Cid14-TAP purifications under in-
creasing salt conditions. The positions of Mtr4 (126 kDa), Cid14-CBP
(83 kDa), a Cid14 degradation product, Air1 (35 kDa), and a molec-
ular weight marker (left) are indicated. CBP, calmodulin binding
peptide. (B) Silver-stained gel showing an RNase-treated Cid14-TAP
purification. Five-hundred units of RNase I were added after the TEV-
cleavage reaction for 1 h at RT. (C) Silver-stained gel showing an Air1-
TAP purification (150 mM NaCl). (D,E) Table summarizing the LC-
MS/MS results of the TAP purifications under various conditions (see
also Supplemental Table S1). TAP elutions were TCA-precipitated
and processed for LC-MS/MS analysis. RPs, ribosomal proteins. Black,
gray, and white boxes indicate peptides that are, respectively, of high
abundance, medium abundance, or absent in LC-MS/MS.

Characteristics of the fission yeast TRAMP complex

www.rnajournal.org 1125



Cid14 associates with 60S ribosomal subunits
and assembly factors

The results described above show that Cid14 resides in at
least two biochemically distinct protein complexes, CAC
and TRAMP. Importantly, Cid14 has previously been
shown by gel filtration experiments to be part of a complex
much larger than CAC and TRAMP (Win et al. 2006).
Consistently, sucrose gradient fractionation indicated that
Cid14 is part of both low and high molecular weight
protein assemblies (Fig. 2A). We observed the same for
Air1, but not Mtr4. Mtr4 sedimented mainly in fraction 2,
which represents its own molecular weight of z126 kDa
(Fig. 2A,B). Thus, Mtr4 seems unlikely to be a stable
component of any larger protein assemblies. Furthermore,
only a small fraction of the Mtr4 population seems to be
associated with CAC to form spTRAMP, similar to what
has also been described for Mtr4p in S. cerevisiae (LaCava
et al. 2005).

The high number of copurifying RPs and the sedimen-
tation of Cid14 in high molecular weight fractions is
indicative of an association with ribosomes. Interestingly,
Cid14 has been reported to be involved in 25S rRNA
processing (Win et al. 2006), suggesting that Cid14 might

interact with ribosomal proteins during
assembly of the large ribosomal subunit.
Therefore, we performed ribosome frac-
tionation on sucrose gradients ranging
from 10% to 50% by centrifugation for
15 h followed by Western blotting to
detect Cid14-TAP. Consistent with its
known role in 25S rRNA processing,
Cid14 was mainly detected in fractions
representing the 60S large ribosomal
subunit (Fig. 3A). Importantly, five
proteins known to be involved in 60S
biogenesis could be identified by LC-
MS/MS after reducing the complexity
of our Cid14-TAP purification by SDS-
PAGE separation and performing the
tryptic digest on individual gel bands
(Fig. 3B). Thus, we conclude that the
higher molecular weight Cid14 com-
plex represents a 60S ribosomal sub-
unit assembly protein–protein interac-
tion network.

Silencing of a few endogenous
heterochromatic genes depends
on Cid14

Previously we have shown that efficient
silencing of transgene insertions at het-
erochromatic loci depends on Cid14
(Buhler et al. 2007). However, it re-

mained to be tested to what extent Cid14 also functions
in heterochromatic silencing of endogenous genes and
whether this depends on an intact TRAMP complex.
Therefore, we hybridized total RNA isolated from wild-
type, cid14D, and air1D cells to affymetrix tiling arrays.
Taking the average of two biological replicates and using
a cutoff of 1.5-fold, 149 and 323 genes were shown to be
up-regulated in cid14D and air1D cells, respectively, while
73 and 86 were down-regulated (Fig. 4A,B). Interestingly,
the genes differentially expressed in cid14D and air1D cells
overlapped only partially, suggesting that Air1 and Cid14
can also function outside the CAC or TRAMP complexes
(Fig. 4A,D). Consistent with this, we noticed that both
Cid14 and Air1 associated with high molecular weight
protein assemblies independently of each other (Fig. 2F,G).

Comparing the expression in cid14D to previously
published H3K9me2 and HP1Swi6 ChIP-on-chip data
(Cam et al. 2005) revealed that only a small set of
heterochromatic genes was up-regulated in cid14D (Fig.
4E; Supplemental Table S2). The majority of these are
subtelomeric genes, as previously described (Wang et al.
2008). Importantly, not all of these heterochromatic genes
were up-regulated in air1D cells, suggesting that an intact
CAC and/or TRAMP complex is not always necessary to

FIGURE 2. Cid14 resides in high and low molecular weight complexes. (A) Sucrose gradient
fractionation under low salt conditions (150 mM NaCl). Individual fractions from sucrose
density gradients were analyzed by Western blotting with antibodies recognizing Cid14-HA,
Air1-TAP, or Mtr4. (B) Sucrose gradient fractionation under high salt conditions (500 mM
NaCl). The analysis was performed as in A. (C) Silver-stained gel showing Cid14-TAP
purifications performed with wild-type and air1D cells. (D) Silver-stained gel showing Air1-
TAP purifications performed with wild-type and cid14D cells. (C,D) Salt concentration was
150 mM. (E) Table summarizing LC-MS/MS results of TAP purifications shown in C and D.
Black, gray, and white boxes indicate peptides that are of high abundance, medium abundance,
and absent in LC-MS/MS, respectively. (F,G) S. pombe lysates from cid14-TAP air1D and air1-
TAP cid14D cells were separated by sucrose density gradient centrifugation. (A,B,F,G) S. pombe
total cell lysates were loaded onto an 18%–54% sucrose gradient and protein complexes were
separated by ultracentrifugation at 39,000 rpm for 18 h.
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silence heterochromatin (Supplemental Table S2). Al-
though future work on Air1 and its RNA binding proper-
ties will be required to rule out alternative functions, we
speculate that Air1 functions as an RNA adaptor to support

the association of Cid14 with its substrate. Depending on
yet to be determined characteristics of a Cid14 substrate,
Air1 might be more or less important for this.

Conclusions

Our findings that Cid14 associates with 60S ribosomal
subunits and with proteins known to be involved in 60S
biogenesis strongly suggest that Cid14 is directly involved
in the assembly of pre-ribosomes. This is further supported

FIGURE 3. Cid14 associates with 60S ribosomal subunits and 60S
ribosome assembly factors. (A) Sedimentation behavior of Cid14-TAP
in 10%–50% ribosome sucrose gradients. UV profile (OD at 254 nm)
with ribosomal subunits, mono- and polysomes is indicated. Samples
were treated with cycloheximide to stabilize or puromycin to disrupt
polysomes. Twenty-four fractions were collected and analyzed by
Western blotting against Cid14-TAP. (B) Cid14-TAP and control
purifications from 20 g of cells were separated by SDS-PAGE followed
by Coomassie-staining. Bands were cut out and LC-MS/MS analysis
was performed on in-gel processed samples. Positions of the bands
and the corresponding proteins indentified by LC-MS/MS are in-
dicated. %, percent sequence coverage; # number of unique peptides.

FIGURE 4. Differential gene expression in cid14D and air1D cells.
(A,B) Venn diagrams showing the number of genes up- or down-
regulated at least 1.5-fold in cid14D or air1D cells compared to wild
type (P = 0.05) on S. pombe tiling arrays. Two biological replicates
were analyzed. (C) Heatmap displaying the genes which were up- or
down-regulated at least 1.5-fold (P = 0.05) in cid14D cells compared
to wild type on S. pombe tiling arrays. (D) Heatmap displaying the
genes which were up- or down-regulated at least 1.5-fold (P = 0.05) in
air1D cells compared to wild type on S. pombe tiling arrays. (C,D)
Artificially scaled expression values are shown for the strains indicated
(�1.5 is set for the gene with the lowest expression and +1.5 is set for
the gene with the highest expression). (E) Comparison of genes up-
regulated in cid14D cells to previously published H3K9me2 ChIP-on-
chip data (Cam et al. 2005). Asterisks in red indicate those genes that
have a value >0.6 (log scale) in both the expression and ChIP
experiments (listed in Supplemental Table S2).
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by the nucleolar localization of Cid14 and its role in rRNA
metabolism (Win et al. 2006; C Keller and M Bühler,
unpubl.). Therefore, we propose that Cid14 is physically
linked to ribosome biogenesis. Cid14 also functions in
eliminating a variety of RNAs, amongst them transcripts
originating from subtelomeric heterochromatin (this study;
Bühler et al. 2007; Wang et al. 2008). In contrast to RPs and
ribosome assembly factors, we were not able to identify
proteins which could link Cid14 to heterochromatin phys-
ically. Therefore, we favor a model in which Cid14 rec-
ognizes and eliminates heterochromatic RNAs off chroma-
tin. Finally, our biochemical and functional data suggest
that Cid14 may at least partially function outside of an
intact TRAMP complex. Future work will be required to
elucidate substrate characteristics and requirements for
Cid14 and/or the TRAMP complex.

MATERIALS AND METHODS

Strains and plasmids

Fission yeast strains used in this study are described in Supple-
mental Table S3 and were grown at 30°C in YES (Yeast Extract
with Supplements). All strains were constructed following a stan-
dard PCR-based protocol (Bahler et al. 1998).

Tandem affinity purification

A 2-L culture of TAP-tagged S. pombe cells (OD at 600 nm � 2)
was pelleted, washed once in ice-cold PBS, resuspended in 1/4
pellet volume of lysis buffer (6 mM Na2HPO4, 4 mM NaH2-

PO4dH2O, 1% NP-40, 150 mM NaCl, 2 mM EDTA, 1 mM EGTA,
50 mM NaF, 4 mg/mL leupeptin, 0.1 mM Na3VO4, 1 mM PMSF,
13 Protease Inhibitors Complete EDTA free [Roche]), and
pelleted into N2(l). Ten grams of cells were then disrupted by
cryo-grinding with a Retsch MM 400 (3 3 3 min at 30 Hz).
Sixteen milliliters of lysis buffer was added to the powder and
stirred for ca. 15 min in the cold room. The salt concentration was
now adjusted, if required. The lysate was spun for 25 min at
12,000 rpm (4°C). The supernatant was then incubated with 200
mL of IgG-Sepharose for 2 h at 4°C on a rocker. The beads were
transferred to a column and washed three times with 10 mL of
washing buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1%
NP-40) and once with TEV-cleavage buffer (10 mM Tris-HCl [pH
8.0], 150 mM KOAc, 0.1% NP-40, 0.5 mM EDTA, 1 mM DTT).
The TEV-cleavage reaction was performed using 50 U of acTEV
(Invitrogen) in 1 mL of TEV-cleavage buffer for 1 h at 25°C.
Where indicated, the RNase I (Ambion) treatment was subse-
quently performed for 1 h at RT using 500 U. The eluate was then
transferred to a new column and the old column was washed out
with 0.5 mL of TEV-c buffer. Three milliliters of Calmodulin-
binding buffer (CAM-B: 10 mM Tris-HCl [pH 8.0], 150 mM
NaCl, 1 mM Mg[OAc]2, 1 mM imidazole, 2 mM CaCl2, 10 mM
b-mercaptoethanol), 4.5 mL of 1 M CaCl2, and 150 mL of
Calmodulin-Sepharose were added and incubated for 1 h at 4°C
on a rocker. The beads were washed twice with 1.5 mL CAM-B
(0.1% NP-40) and once with 1.5 mL CAM-B (0.02% NP-40). The
purified proteins were eluted from the column using 1 mL of

CAM-E (=CAM-B, but replacing the CaCl2 with 10 mM EGTA).
The eluate was split into two aliquots and each of them was TCA-
precipitated. One pellet was resuspended in 13 LDS sample buffer
and run on a 4%–12% NuPAGE gel (Invitrogen) using MOPS
buffer followed by silver- or Coomassie-staining (Colloidal Blue
Staining kit, Invitrogen). The other pellet was used for mass spec-
trometric analysis.

Sucrose density gradient centrifugation

The lysate was prepared as for the TAP purifications (0.5 g of cryo
ground powder). After the high-speed spin, 300 mL of the lysate
was loaded onto a 18%–54% sucrose gradient (buffered with
20 mM Tris-HCl [pH 7.5], 150 mM KCl, 1 mM DTT, 1 mM
PMSF). Complexes were separated by ultracentrifugation for 18 h
at 39,000 rpm (4°C) with an SW40 rotor (Beckman). The gradient
was unloaded from the bottom with 70% sucrose. Twelve
fractions of 1 mL were taken using a fraction collector while
reading the absorbance at 254 nm with a UV reader. Twenty-eight
microliters of the fractions was separated on a 4%–12% NuPAGE
gel, blotted to nitrocellulose (1.5 h at 200 mA), and the proteins of
interest were detected using the ECL system. Antibodies were used
at 1:10,000 (a-PAP, Sigma), 1:20 (a-HA, FMI monoclonal
antibody), 1:3000 (a-Mtr4, custom polyclonal, Eurogentec).

For the ribosome fractionation, 100 mg/mL cycloheximide or
1 mM puromycin was added to 250 mL of an exponentially
growing S. pombe culture. The culture was incubated for another
10 min at 30°C and then pelleted. The cells were washed once and
then resuspended in 0.5 mL of lysis buffer (20 mM Tris-HCl [pH
7.5], 150 mM KCl, 5 mM MgCl2, 1 mM EGTA, 1 mM PMSF, 13

Protease Inhibitors Complete EDTA-free [Roche], 100 mg/mL
Cycloheximide or 1 mM puromycin). For the puromycin treated
sample, the MgCl2 concentration in all buffers was reduced to
1 mM. One milliliter of glass beads was added and the cells were
disrupted using a bead-beater (4 3 30 sec). The lysate was spun
for 15 min at 16,000 rpm, 4°C, and then 300 mL of the
supernatant was loaded onto a 10%–50% gradient, which was
prepared as described above. The ultracentrifugation was carried
out for 15 h at 27,000 rpm in a SW40 rotor (Beckman). In this
case, 24 fractions of 0.5 mL were collected as described above.

Mass spectrometry

SDS-PAGE separated proteins and TCA-precipitated and acetone-
washed protein pellets were reduced with TCEP, alkylated with
iodoacetamide, and digested with trypsin. The generated peptides
were analyzed by NanoLC-MSMS on a 4000Q Trap as described
(Supplemental Table S1; Hess et al. 2008). The proteins were
identified with Mascot searching Uniprot 15.6 (Perkins et al.
1999).

S. pombe tiling arrays and data analysis

RNA was isolated from cells collected at OD600 = 0.5 using the hot
phenol method (Leeds et al. 1991). The isolated RNA was
processed according to the GeneChip Whole Transcript (WT)
Double-Stranded Target Assay Manual from Affymetrix using the
GeneChip S. pombe Tiling 1.0FR. For analysis of the tiling arrays,
an R-based script was used, which is available upon request. We
used the genome and annotations from the S. pombe Genome

Keller et al.
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Project (http://www.sanger.ac.uk/Projects/S_pombe/). The oligos
from the Affymetrix .BPMAP file were remapped using bowtie
and the .GFF file was used to map them to the genes. The resulting
.CDF file is available upon request. The expression data from
cid14D was compared to ChIP-on-chip data for H3K9me2
(Cam et al. 2005) by plotting, for each annotated element,
enrichment/input for the ChIP data against cid14D/wt for the
expression data. The average of two biological replicates was taken
for each data set.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
Tiling array data are reposited at the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/), accession number GSE20905.
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SUMMARY

HP1 proteins are major components of heterochro-
matin, which is generally perceived to be an inert
and transcriptionally inactive chromatin structure.
Yet, HP1 binding to chromatin is highly dynamic
and robust silencing of heterochromatic genes can
involve RNA processing. Here, we demonstrate by
a combination of in vivo and in vitro experiments
that the fission yeast HP1Swi6 protein guarantees
tight repression of heterochromatic genes through
RNA sequestration and degradation. Stimulated by
positively charged residues in the hinge region,
RNA competes with methylated histone H3K9 for
binding to the chromodomain of HP1Swi6. Hence,
HP1Swi6 binding to RNA is incompatible with stable
heterochromatin association. We propose a model
in which an ensemble of HP1Swi6 proteins functions
as a heterochromatin-specific checkpoint, capturing
and priming heterochromatic RNAs for the RNA
degradation machinery. Sustaining a functional
checkpoint requires continuous exchange of HP1Swi6

within heterochromatin, which explains the dynamic
localization of HP1 proteins on heterochromatin.

INTRODUCTION

Heterochromatin is a distinct chromatin structure that is late

replicating, gene poor, and rich in transposons or other parasitic

genomic elements. Heterochromatic structures are required for

proper centromere function, repression of recombination, sister

chromatid cohesion, and the maintenance of telomere stability,

and they also play an essential role in heritable gene silencing

in a variety of organisms from yeast to humans (Grewal and

Jia, 2007). One hallmark of heterochromatin is its association

with members of the highly conserved heterochromatin protein

1 (HP1) family of proteins (James and Elgin, 1986). HP1 proteins

consist of an N-terminal chromodomain (CD) and a structurally

related C-terminal chromo shadow domain (CSD), separated

by a hinge region. The CSD can mediate homodimerization of

HP1 and binding to other proteins through a degenerate penta-

peptide motif, PxVxL (Cowieson et al., 2000; Smothers and
Henikoff, 2000). The CD binds the N-terminal tail of histone H3

when it is di- or trimethylated with high specificity but low affinity

(Bannister et al., 2001; Jacobs and Khorasanizadeh, 2002;

Jacobs et al., 2001; Lachner et al., 2001; Nielsen et al., 2002)

and the hinge region has been implicated in nucleic acid binding

(Muchardt et al., 2002). The fission yeast Schizosaccharomyces

pombe contains two HP1 homologs, HP1Chp2 and HP1Swi6,

which both bind to methylated lysine 9 of histone H3 (H3K9)

and are involved in heterochromatin silencing (Grewal and Jia,

2007). In contrast to other eukaryotes, S. pombe contains only

a single member of the SUV39 histone methyltransferase family

of proteins, Clr4, which is responsible for the methylation of

H3K9 (Nakayama et al., 2001).

Heterochromatin is generally perceived to be a structurally

rigid and static chromatin compartment that is inaccessible to

the transcription machinery, yet several findings challenge this

view. For example, the H3K9 methyl-binding affinity of HP1

proteins can be rather low, and their association with hetero-

chromatin is surprisingly dynamic (Cheutin et al., 2004, 2003;

Festenstein et al., 2003; Schalch et al., 2009). Furthermore,

recent work has revealed that both RNAi-dependent and -inde-

pendent RNA turnover mechanisms are crucial for the quies-

cence of heterochromatic sequences in S. pombe, indicating

that silencing of heterochromatin does not occur exclusively at

the transcriptional level (Bühler et al., 2007). Repression of

marker genes when inserted into heterochromatin depends on

the noncanonical poly(A) polymerase Cid14, which is thought

to target the heterochromatic RNA for degradation via the

RNA exosome and/or the RNAi pathway. Similarly, silencing of

subtelomeric genes marked by H3K9 methylation also depends

on Cid14 (Keller et al., 2010; Wang et al., 2008). Importantly,

heterochromatic gene silencing is impaired in Cid14 mutant

strains, yet heterochromatin remains intact (Bühler et al.,

2007). Thus, some level of transcription within heterochromatin

is possible, and pathways to cope with the unwanted hetero-

chromatic RNA do exist (Bühler, 2009). However, themechanism

of specific recognition of heterochromatic transcripts and thus

their targeting for the Cid14-dependent degradation has re-

mained elusive.

HP1Swi6, one of the two S. pombe heterochromatin proteins,

is best known for its critical role in proper centromere function.

In swi6 mutant cells, centromeres lag on the spindle during

anaphase, and chromosomes are lost at a high rate (Ekwall

et al., 1995). This is associated with a failure in the recruitment

of cohesin to pericentromeric heterochromatin (Bernard et al.,
Molecular Cell 47, 215–227, July 27, 2012 ª2012 Elsevier Inc. 215
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2001; Nonaka et al., 2002). Thus, one function of HP1Swi6 is the

attraction of a high concentration of cohesin to S. pombe centro-

meres, which guarantees proper chromosome segregation.

HP1Swi6 has also been implicated in the recruitment of cohesin

outside constitutive heterochromatin, thus regulating transcrip-

tion termination between convergent gene pairs (Gullerova and

Proudfoot, 2008). Besides cohesin subunits, HP1Swi6 also co-

purifies with a diverse set of other nuclear nonhistone proteins

that are involved in a variety of nuclear functions such as

chromatin remodelling and DNA replication (Fischer et al.,

2009; Motamedi et al., 2008). Even though many of these inter-

actions remain to be confirmed, HP1Swi6 may partner with

many different factors and ensure genomic integrity. Apart

from these functions, HP1Swi6 is also required for heterochro-

matic gene silencing, but on a mechanistic level this is poorly

understood.

Here, we demonstrate that HP1Swi6 serves a general function

linking transcription within heterochromatin to downstream RNA

turnover. HP1Swi6 binds RNA via a molecular mechanism that

involves the hinge region, the CD, and the N-terminal domain.

Rather than tethering heterochromatic transcripts to chromatin,

HP1Swi6 complexed with RNA dissociates from H3K9-methyl-

ated nucleosomes and escorts its associated RNAs to the

RNA decay machinery. This detachment of HP1Swi6 from chro-

matin results from a competition mechanism that combines

the interactions of RNA and methylated H3K9 to HP1Swi6 on

the single-molecule level with dynamic exchange between the

histone-bound and -unbound HP1Swi6 ensemble. Our results

provide an explanation for the dynamic localization of HP1

proteins on heterochromatin and reveal insights into the role of

RNA in the regulation of higher order chromatin structures.

RESULTS

Heterochromatic mRNA Transcripts Are Not Translated
into Protein
Previous work revealed that the noncanonical polyA-polymerase

Cid14 processes or eliminates a variety of RNA targets to control

processes such as the maintenance of genomic integrity,

meiotic differentiation, ribosomal RNA maturation, and hetero-

chromatic gene silencing (Keller et al., 2010; Wang et al., 2008;

Win et al., 2006). The effect of cid14+ mutations on heterochro-

matin silencing has previously been studied using the ura4+

reporter gene/5-FOA assay (Bühler et al., 2007). Because this

assay does not allow a quantification of the resulting protein

levels, and because it is also compromised by a general sensi-

tivity of cid14+ mutant cells to 5-FOA (Figure S1), we created

reporter strains carrying a gfp+ transgene inserted at the inner-

most centromeric repeat region (imr1R::gfp+) or at the mat3M

locus (mat3M::gfp+) (Figure 1A). Consistent with previous results

(Bühler et al., 2007), heterochromatic gfp+ mRNA levels from

centromeric locations increased significantly in clr4D and

dcr1D cells, but only modestly in cid14D cells (Figure 1B), with

no corresponding increase in GFP protein levels upon cid14+

deletion (Figures 1C and S1A). Therefore, Cid14 plays a redun-

dant role, if any at all, in the silencing of a reporter gene located

in centromeric heterochromatin. In contrast, deleting the cid14+

gene resulted in strongly elevated gfp+ mRNA levels from the
216 Molecular Cell 47, 215–227, July 27, 2012 ª2012 Elsevier Inc.
mating-type locus. Unexpectedly, however, this was not accom-

panied by a concomitant increase in GFP protein levels (Figures

1D and E).

To test whether mRNAs originating from heterochromatic

genes engage in translation at all, we set out to profile their asso-

ciation with polyribosomes (Figure 1F). S. pombe cell lysates

were separated on sucrose gradients and RNA was extracted

from the individual fractions. The relative amount of a given

mRNA in each fraction was then quantified by quantitative

real-time RT-PCR (qRT-PCR). As expected, act1+ mRNA was

highly enriched, whereas the nuclear U6 snRNA was absent

from the polysomal fractions (Figure 1F). When transcribed

from its endogenous locus, mRNA encoded by the ura4+ gene

was also highly enriched in polysomes (data not shown). Simi-

larly, ura4+ mRNA originating from a mat3M::ura4+ reporter

was found in the polysomal fractions in the absence of the

H3K9 methyltransferase Clr4. However, no considerable associ-

ation with polysomes was observed for heterochromatic ura4+

reporter mRNA in wild-type or cid14D cells (Figure 1F).

Thus, although heterochromatic mRNAs can be over 10-fold

more abundant in cid14D cells than in wild-type cells, they are

not translated into protein effectively.

HP1Swi6 Functions as an H3K9 Methylation-Specific
Checkpoint to Assemble Translationally Incompetent
Ribonucleoprotein Particles
Atypical processing of 50 or 30 ends of heterochromatic mRNAs

could explain why heterochromatic mRNAs do not engage in

translation. However, our analysis of mRNA termini revealed no

major differences between heterochromatic and euchromatic

transcripts (Figure S2 and data not shown), suggesting that

heterochromatic mRNAs per se do not contain aberrant features

that would signal their destruction or render them translationally

inactive. Rather, transcripts emerging from heterochromatin

are more likely to be channeled into the RNA decay pathway

by the assembly of a heterochromatin-specific ribonucleopro-

tein particle (hsRNP). Therefore, we postulate the existence of

an H3K9 methylation-specific checkpoint that would function

on chromatin and assemble emerging transcripts into hsRNPs

that are translationally incompetent and prone for degradation

(Figure 2A).

Obvious candidates for proteins that could function as such

a checkpoint are HP1 proteins, because they have been re-

ported to have affinity for both H3K9-methylated histone H3 tails

and RNA. Therefore, HP1 proteins might capture heterochro-

matic RNAs in an H3K9 methylation-specific manner. The

S. pombe genome contains two HP1 homologs, HP1Chp2 and

HP1Swi6. Interestingly, even though HP1Swi6 is essential for the

full repression of heterochromatin, its contribution to transcrip-

tional gene silencing is minimal. Furthermore, heterochromatic

RNAs have been observed to copurify with HP1Swi6 but not

HP1Chp2 (Motamedi et al., 2008).

Therefore, we tested whether heterochromatic mRNAs would

become translated in cells lacking HP1Swi6. Consistent with

the checkpoint model, GFP protein expression from the

mat3M::gfp+ allele was restored in swi6D and swi6D cid14D

cells (Figure 2B). However, deletion of swi6+ also resulted in

a significant reduction in H3K9me2 at mat3M::gfp+ (Figure 2C),



Figure 1. Heterochromatic mRNAs Are Not Translated into Protein

(A) Diagram representing DNA organization at the centromere of chromosome I and at the mating-type locus (chromosome II). cnt1, central core; imr1, innermost

repeats; otr1, outermost repeat. gfp+ reporter transgenes are driven by the ura4+ promoter, whereas the ORF is followed by a natMX6 cassette (Tadh1

terminator).

(B) Quantitative real-time RT-PCR showing gfp+mRNA levels in imr1R::gfp+ cells. Mean values normalized to act1+ are shown (n = 3). Error bars represent SEM;

p values were calculated using the Student’s t test.

(C) Western blot showing GFP protein levels in imr1R::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(D) Quantitative real-time RT-PCR showing gfp+ mRNA levels in mat3M::gfp+ cells. Mean values normalized to act1+ are shown (n = 14). Error bars represent

SEM, p values were calculated using the Student’s t test.

(E) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(F) A representative polysome profile (OD 254 nm) with monosomal (fractions 1–5) and polysomal fractions (fractions 6–12 polysomal) is shown on the left. RNA

levels were determined by quantitative real-time RT-PCR and the enrichment in the polysomal fraction was calculated as a percentage of the total. Error bars

represent SEM. Act1+ RNA and U6 snRNA served as positive and negative controls, respectively.
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not allowing us to definitely assign the checkpoint function to

HP1Swi6. In contrast, deletion of swi6+ or cid14+ or both did

not significantly lower H3K9 methylation levels at the subtelo-

meric tlh1/2+ genes, yet resulted in a strong upregulation of

the respective mRNAs (Figures 2D and 2E). Importantly, associ-

ation of tlh1/2+ mRNA with polysomes was only observed in

cells lacking swi6+ but not cid14+ (Figure 2F). These results

place HP1Swi6 upstream of Cid14 and directly support a model

in which HP1Swi6 acts on H3K9-methylated nucleosomes and

promotes the assembly of translationally incompetent hsRNPs.

HP1Swi6 Binds RNA via the Hinge Region
The above results implicate HP1Swi6 in the checkpoint model as

the H3K9 methylation ‘‘reader,’’ yet it was not clear whether

HP1Swi6 itself or any of its interacting proteins could capture

heterochromatic RNAs. Whereas RNA-binding affinity has
been demonstrated for mammalian HP1a (Muchardt et al.,

2002), it was not known whether fission yeast HP1Swi6 can

bind RNA directly. We purified recombinant HP1Swi6 and per-

formed electrophoretic mobility shift assays (EMSA) using

various RNA and DNA probes. In these assays, recombinant

HP1Swi6 bound efficiently to the different RNAs but only

weakly to DNA (Figure 3B). Furthermore, RNA binding could be

competed with unlabeled RNA probes (Figure S3). HP1Swi6

consists of four domains: An N-terminal domain (NTD, residues

1–74), which is presumably flexibly disordered; a chromodomain

(CD, residues 75–139), which binds K9-methylated histone tails

(Bannister et al., 2001); a hinge region (H, residues 140–264);

and a C-terminal chromo shadow domain (CSD, residues 265–

328) (Cowieson et al., 2000). The hinge region of mammalian

HP1a has been implicated in RNA binding (Muchardt et al.,

2002). To test whether the hinge region also confers RNA binding
Molecular Cell 47, 215–227, July 27, 2012 ª2012 Elsevier Inc. 217



Figure 2. HP1Swi6 Prevents Translation of Heterochromatic RNAs

(A) Checkpoint model for the specific recognition of mRNA originating from heterochromatin. When H3K9 is unmethylated (clr4D or euchromatin), the checkpoint

cannot assemble and mRNAs are exported and translated. In WT and cid14D cells, the checkpoint assembles on H3K9 methylated nucleosomes and captures

heterochromatic mRNA transcripts. Eventually, these mRNAs are degraded in a Cid14-dependent manner. In the absence of Cid14 (cid14D), heterochromatic

mRNAs accumulate but are not translated because they are retained by the checkpoint.

(B) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(C and D) ChIP experiment showing that H3K9me2 levels at mat3M::gfp+ are significantly reduced in swi6D and cid14D swi6D cells but not in cid14D cells.

H3K9me2 levels at the telomeric tlh1+ and tlh2+ genes are not significantly reduced in cid14D, swi6D, and cid14D swi6D cells. Enrichment was determined by

quantitative real-time PCR. Mean values normalized to act1+ are shown (n = 4). Error bars represent SEM, p values were calculated using the Student’s t test.

(E) tlh1/2+ mRNA levels were determined by quantitative real-time RT-PCR. Mean values normalized to act1+ are shown (n = 9). Error bars represent SEM, p

values were calculated using the Student’s t test.

(F) tlh1/2+mRNA associates with polysomes in swi6D but not in cid14D cells, although total mRNA levels are not significantly different in swi6D and cid14D cells

(E). Enrichment of tlh1/2+mRNA in polysomal fractions of the indicated mutants was determined by polysome profiling as in Figure 1F. Error bars represent SEM.
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properties to HP1Swi6, we purified recombinant CD, hinge, and

CSD. In contrast to the CD and the CSD, the isolated hinge

region was sufficient for strong RNA binding (Figure 3B). By

using NMR chemical shift titrations monitored on amide reso-

nances in the flexible hinge region, we determined the binding

constant of full-length HP1Swi6 to a 20-mer RNA as 38 ± 13 mM

(Figure 3C). These results demonstrate that HP1Swi6 is able to

bind RNA alone and that the hinge region is substantially

involved in this binding interaction.

Design of an HP1Swi6 Mutant that Affects RNA
but Not H3K9me Binding
Because heterochromatin at certain loci disintegrates upon

removal of the swi6+ gene (Figure 2C), we aimed to develop an

HP1Swi6 mutant with compromised RNA- but normal H3K9me-

binding affinity. Therefore, we mutated the positively charged

residues of the hinge region, 20 lysines and 5 arginines, to

alanines (Figure 4A). For the resulting mutant protein, HP1Swi6-
218 Molecular Cell 47, 215–227, July 27, 2012 ª2012 Elsevier Inc.
KR25A, RNA binding was indeed drastically reduced when

compared to the wild-type protein (Figure 4B). For the subse-

quent use of the protein in vivo, we assessed the impact of these

25 mutations on protein architecture by solution NMR spectros-

copy using recombinant HP1Swi6 and HP1Swi6-KR25A protein.

Based on the full-length proteins and subconstructs thereof,

we established complete sequence-specific resonance assign-

ments for the isolated CD (residues 75–139) (Figure S4A), as

well as domain-specific resonance assignments for the NTD,

the hinge region, and the CSD of wild-type HP1Swi6. The chem-

ical shift dispersion and intensities of the resonances in full-

length HP1Swi6 indicated the CD and the CSD to be folded

domains and the NTD and the hinge region to be flexibly

unfolded polypeptide segments, as expected from predictions

of the secondary structure. Analysis of the 13Ca and 13Cb

secondary chemical shifts of the isolated CD indicates three

b-strands and one large a-helix at the C-terminal end of the

domain (Figure S4E), which is well in agreement with the known



Figure 3. HP1Swi6 Is an RNA-Binding Protein

(A and B) Electrophoretic mobility shift assay (EMSA) using recombinant

HP1Swi6, HP1Swi6 subdomains or GST and different substrate nucleic acids

(see Supplemental Information). RNA probes were labeled with fluorescein-

UTP by in vitro transcription. DNA probes were produced by standard PCR.

Protein-nucleic acid complexes were separated on 1.6%-TB agarose gels and

the signal detected using a typhoon scanner.

(C) NMR chemical shift perturbation assay. The open circles are combined

amide chemical shifts Dd=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04$Ddð15NÞ2 +Ddð1HÞ2

q
of three selected amide
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secondary structure elements in the homologous human chro-

mobox homolog 3 (Kaustov et al., 2011). Importantly, 2D

[15N,1H]-TROSY NMR spectra revealed the subspectra for the

CD, the CSD, and the NTD, but not the hinge region of recombi-

nant HP1Swi6-KR25A, to be essentially identical to wild-type

HP1Swi6 (Figures 4D and 4E). Thus, the 25 Lys and Arg to Ala

mutations in the hinge region abolish RNA binding without

affecting the global fold of the CD and CSD domains or having

a structural effect on the unfolded NTD. Binding to methylated

H3K9 is, therefore, expected to be maintained in the HP1Swi6-

KR25A mutant. This we could confirm by surface plasmon

resonance (SPR) measurements (Figure 4C). The binding

constants of wild-type and HP1Swi6-KR25A to an immobilized

peptide corresponding to residues 1–20 of a K9 trimethylated

histone H3 tail (H3K9me3 peptide) (2.5 ± 0.5 mM and 7.8 ±

0.8 mM, respectively), were akin to and in correspondence with

published values for the individual domains (Jacobs and Khora-

sanizadeh, 2002; Schalch et al., 2009).
Silencing but Not the Integrity of Heterochromatin
Is Affected in the HP1Swi6 RNA-Binding Mutant
To study the functional relevance of RNA binding through the

hinge region of HP1Swi6, we replaced the endogenous swi6+

open reading frame (ORF) with the HP1Swi6-KR25A mutant

ORF. Consistent with previous results that assigned a nuclear

localization signal (NLS) function to the hinge region (Wang

et al., 2000), we observed that the HP1Swi6-KR25A protein

localized mainly to the cytoplasm (Figure S5A and data not

shown). Therefore, we added an N-terminal SV40 NLS to the

wild-type and mutant HP1Swi6 alleles, which restored the char-

acteristic heterochromatic foci in the nucleus and the specific

association with RNA from heterochromatic regions (Figures

5A and S5B–S5F). Furthermore, in contrast to swi6D cells,

neither NLS-HP1Swi6- nor NLS-HP1Swi6-KR25A-expressing

cells were sensitive to thiabendazole (TBZ), showing that RNA

binding to HP1Swi6 is not required for proper chromosome

segregation (Figure 5B). Importantly, the H3K9 methylation

defect observed at the mat3M::gfp+ locus in swi6D cells

(Figure 2C) was rescued by the nls-swi6-KR25A allele (Fig-

ure 5D). Similarly, H3K9 methylation within telomeric hetero-

chromatin remained unaffected in nls-swi6-KR25A cells (Fig-

ures 5E and 5F).

These results demonstrate that neither H3K9 methylation nor

recruitment of HP1Swi6 to heterochromatin depend on RNA

binding through the hinge region of HP1Swi6. However, silencing

of heterochromatic genes was nonfunctional in nls-swi6-KR25A

cells (Figures 5G–5J). Thus, RNA binding to HP1Swi6 is required

for full repression of heterochromatic genes but dispensable

for the integrity of heterochromatin. In summary, with nls-swi6-

KR25A we created a separation-of-function allele of HP1Swi6

that fails to repress heterochromatic genes but still fulfills its

architectural roles, with no impact on H3K9 methylation or chro-

mosome segregation.
resonances plotted versus the RNA concentration. The line is the result of

a nonlinear least-squares fit of a single binding curve to the data. The resulting

dissociation constant KD is indicated.
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Figure 4. Characterization of HP1Swi6-KR25A

(A) Domain architecture of HP1Swi6. The two folded domains are indicated as ellipses, the two flexible domains as wavy lines. The amino acid sequence of the

hinge region (residues 140–264) is given below. Lys and Arg residues that are mutated to Ala in the HP1Swi6-KR25A protein are marked in green.

(B) EMSA showing that RNA binding of HP1Swi6-KR25A is strongly impaired compared with the wild-type protein. A 100 nt centromeric RNA probe was used.

(C) SPR sensorgrams for binding of HP1Swi6 (black) and HP1Swi6-KR25A (green) to an H3K9me3 surface. The protein concentrations are from bottom to top 0,

0.015, 0.047, 0.15, 0.43, 1.3, and 3.8 mM.

(D and E) Comparison of 2D [15N,1H]-TROSY correlation spectra of HP1Swi6 (black) and HP1Swi6-KR25A (green). In (D), the downfield region of the spectrum is

plotted at a low base level, showing mainly resonances from folded parts of the proteins. The sequence-specific resonance assignments for the CD and domain-

specific assignments for the CSD (labeled ‘‘CSD’’) are indicated. In (E), the random-coil region of the same spectra are plotted at high base level, showing mainly

resonances from the flexibly disordered NTD and hinge region. Domain-specific resonance assignments are shown for those resonances that are altered by the

KR25A mutations. These are all located in the hinge region (‘‘H’’). The complete domain-specific resonance assignments are given in Figure S4.
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HP1Swi6 Binding to K9 Methylated Histone
H3 Is Highly Dynamic
Consistent with published results (Cheutin et al., 2004), fluores-

cence recovery after photobleaching (FRAP) experiments re-
220 Molecular Cell 47, 215–227, July 27, 2012 ª2012 Elsevier Inc.
vealed that HP1Swi6 proteins are highly dynamic at the cellular

ensemble level in vivo (Figure S5A). For proteins that are bound

tightly to chromatin, recovery kinetics can be expected to be

slow or not detectable, as observed for the telomere-binding



Figure 5. RNA Binding through the Hinge Region of HP1Swi6 Is Required for Silencing but Not Maintenance of Heterochromatin

(A)Microscopy of livingS. pombe cells expressing C-terminally Dendra2-taggedHP1Swi6 variants driven from the endogenous promoter. Cells were grown in YES

medium at 30�C. To restore nuclear localization of the HP1Swi6-KR25A mutant (Figure S4), a SV40 NLS was added N-terminally. Scale bar = 2 mm.

(B) In contrast to swi6D cells, cells expressing the RNA-bindingmutant NLS-HP1Swi6-KR25A are not sensitive to thiabendazole (TBZ), indicating that chromosome

segregation is normal. Cells were spotted on YES agar plates containing either 0 or 14 mg/l TBZ.

(C) Schematic diagram showing the location of three heterochromatic genes at the telomeres of chromosome I and II. tlh1+ and tlh2+ produce identical tran-

scripts (Mandell et al., 2005). CEN, centromere; TEL, chromosome end.

(D–F) ChIP experiments demonstrating that H3K9me2 levels are not significantly reduced at mat3M::gfp+ (D), tlh1/2+ (E), and SPBCPT2R1.07c (F) in nls-swi6+

and nls-swi6-KR25A cells compared with wild-type cells. Mean values normalized to act1+ are shown (n = 4). Error bars represent SEM, p values were calculated

using the Student’s t test.

(G) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin serves as

a loading control.

(H–J) Quantitative real-time RT-PCR showing mat3M::gfp+ (I), tlh1/2+ (K), or SPBCPT2R1.07c (L) transcript levels in the respective mutants. Mean values

normalized to act1+ are shown (n = 5). Error bars represent SEM, p values were generated using the Student’s t test.
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protein Taz1 (Figure S5B). This is not the case for HP1Swi6, for

which fluorescence recovered rapidly after photobleaching

with an exponential lifetime of 1.8 ± 0.1 s (Figure S5C). This

dynamic exchange of the HP1Swi6 ensemble from chromatin

in vivo is qualitatively consistent with the rapid exchange

dynamics we observed in NMR peptide titration experiments

in vitro. We found that the resonances of the CD involved in

H3K9me3 peptide binding underwent line broadening due to

intermediate chemical exchange. This indicates kinetic on/off

rates for the exchange between bound and unbound forms of

individual HP1Swi6 molecules in the range of about 0.01–

1.0 ms-1, corresponding to lifetimes of 1–100 ms. These in vivo

and in vitro data thus demonstrate the highly dynamic behavior

of HP1Swi6 and rule out the possibility that individual HP1Swi6

molecules remain tightly bound to heterochromatin for minutes

or longer. Therefore, HP1Swi6 alone cannot tether heterochro-

matic RNAs to chromatin.

Localization of the HP1Swi6 Interaction Sites
with RNA and H3K9me
To obtain insight into the interactions of HP1Swi6 with RNA and

methylated H3K9 at the atomic level, we used NMR chemical

shift perturbation to identify residues structurally involved in

these interactions. To this end, we monitored amide moiety

chemical shifts, which are sensitive to structural changes of

the polypeptide backbone. For the interaction of full-length

HP1Swi6 with the H3K9me3 peptide, we observed chemical shift

changes for 21 out of the 65 residues in the CD, as well as for one

tryptophan side chain indole moiety (Figures 6A and 6B). The

location of these residues in the amino acid sequence in HP1Swi6

corresponds to the location of the known binding pocket for the

peptide in homologous domains (Jacobs and Khorasanizadeh,

2002; Kaustov et al., 2011; Nielsen et al., 2002). No significant

chemical shift changes occurred for the backbone amide reso-

nances of the CSD, but smaller chemical shift perturbations

were observed for 8 residues of the N-terminal domain and 1

residue of the hinge region (Figure 6B). On the other hand, inter-

action with 20-mer-GFP RNA induced chemical shift changes for

resonances of three different domains: 13 residues from the

hinge region, 19 from the CD, and 10 from the N-terminal domain

(Figures 6C and 6D). Furthermore, all resonances of the CD

underwent line broadening at intermediate RNA concentrations

due to intermediate exchange indicating kinetic on/off rate

constants for RNA binding below about 1 ms-1.

These data show that binding of RNA as well as binding of

H3K9me3 peptide to HP1Swi6 occurs by a molecular mechanism

that includes structural changes in three domains of HP1Swi6.

The observation that these interaction sites partially overlap

thereby points toward the intriguing possibility that histone tail

and RNA binding are not independent. Rather, these could be

competitive processes, meaning that HP1Swi6 dissociates from

H3K9-methylated nucleosomes when complexed with RNA.

Consistent with this idea, steady-state competition assays using

SPR showed competitive behavior (Figure 6E). At substoichio-

metric RNA:HP1Swi6 ratios, the initial SPR response increased.

This can be rationalized by the dimeric nature of HP1Swi6 caused

by its CSD, which leads to complexes with 2 RNA and 2 peptide-

binding sites. At concentrations above stoichiometry, however,
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the SPR response decreased with increasing RNA concentra-

tion, indicating competition for the peptide surface. Importantly,

the 20-mer GFP-RNA did not bind to the immobilized peptide

surface in a control experiment under the same buffer conditions

(Figure S6D). Furthermore, binding of the HP1Swi6 -KR25A

mutant to H3K9me was insensitive and noncompetitive to the

addition of RNA (Figures 6E and S6D).

In summary, our results implicate a mechanism by which RNA

and methylated H3K9 compete for HP1Swi6 binding at the

ensemble as well as the single-molecule level. Binding of RNA

to HP1Swi6 structurally involves the hinge, the CD, and the NTD

and impedes binding of HP1Swi6 to methylated H3K9. Thus,

rather than tethering RNA to heterochromatin firmly, HP1Swi6

dynamically complexes with RNA and dissociates from H3K9-

methylated nucleosomes.

Cid14 Functions in the Vicinity of Heterochromatin
The above results have established HP1Swi6 as a crucial constit-

uent of hsRNPs, tagging RNAs as a result of their heterochro-

matic origin and priming them for degradation. Importantly, the

dynamic properties of HP1Swi6 imply that the degradation of

heterochromatic RNA originating from telomeres and the

mating-type locus occurs off chromatin, but it is unclear whether

Cid14 would join the hsRNP before or after dissociation from

H3K9 methylated nucleosomes. If it would occur before dissoci-

ation from heterochromatin, it should be possible to crosslink

Cid14 to telomeres or the mating-type locus. However, ChIP

experiments did not show enrichment of Cid14 at these loci

(data not shown), suggesting that Cid14 joins the HP1Swi6/RNA

complex only after dissociation from heterochromatin.

To test whether this still occurs in close proximity to hetero-

chromatin, we employed the DNA adenine methyltransferase

identification method (DamID, Figure 7A), a sensitive chromatin

profiling technique that is suited to capture indirect or transient

protein–chromatin interactions. We generated strains that

express HP1Swi6 and Cid14 fused to the Dam DNA methyltrans-

ferase (Figure 7A; Woolcock et al., 2011) and assessed GATC

methylation throughout theS. pombe genome using tiling arrays.

As expected, HP1Swi6 was highly enriched at the mating-type

locus, the centromeres, and the telomeric regions when

compared to a Dam-only control (Figure 7B). Similarly, GATC

methylation within the different heterochromatic regions was

also observed for Dam-Cid14, demonstrating that Cid14 resides

in close proximity to heterochromatin. Importantly, GATC meth-

ylation by Dam-Cid14 at the mating-type locus and telomeres

is fully dependent on HP1Swi6 and not as strong as for Dam-

HP1Swi6 (Figure 7C). This indicates that Cid14 joins hsRNPs after

assembly and dissociation from heterochromatin at the mating-

type region and the telomeres.

In conclusion, these results demonstrate that Cid14 resides in

the vicinity of heterochromatin and that heterochromatic RNA

originating from telomeres or the mating-type locus is delivered

to Cid14 in a close spatial and temporal correlation to the disso-

ciation of HP1Swi6 from H3K9-methylated nucleosomes. We

speculate that the actual degradation of heterochromatic RNA

might also occur near heterochromatin. The functional relevance

of the HP1Swi6-independent association of Cid14 with centro-

meric heterochromatin remains unknown.



Figure 6. Localization and Competition of the

HP1Swi6 Interactions

(A–D) Overlay of 2D [15N,1H]-TROSY correlation spectra of

HP1Swi6. The spectra are plotted in (A) and (C) at low base

level, showing mainly resonance peaks from the two fol-

ded domains CD and CSD. The spectra are plotted in (B)

and (D) at high base level, showing mainly resonances

from the flexibly unfolded hinge and N-terminal domains.

Residue type and number indicate sequence-specific

resonance assignments for the CD. ‘‘H,’’ ‘‘N,’’ and ‘‘Trp’’

denote resonances from the hinge region, the NTD, and

tryptophan side chains, respectively. (A and B) Black:

HP1Swi6; blue: 138 mM HP1Swi6 + 513 mM H3K9me3

peptide. (C and D) Black: HP1Swi6; red: 95 mM HP1Swi6 +

560 mM RNA.

(E) SPR responses for competitive binding of H3K9me3

and RNA to HP1Swi6. A constant concentration of 1 mM

HP1Swi6 (black circles) or 5 mM HP1Swi6-KR25A (red

squares) with increasing concentrations of 20-mer GFP-

RNA was injected to the H3K9me3 surface. The maximal

SPR response after 200 s injection is plotted versus the

RNA:protein concentration ratio. For each of the two

proteins, the response in the absence of RNA was set to

zero (raw data, see Figure S6D).
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Figure 7. Cid14 Functions in the Vicinity of Heterochromatin

(A) In DamID, a Dam fusion protein is expressed at very low levels. On interaction of the fusion protein with chromatin (red), Dam methylates the adenine in the

sequence context of GATC, which can be mapped by a methylation-specific PCR protocol.

(B and C) HP1Swi6 and Cid14 enrichments from DamID experiments (log2) at chromosomal regions.

(D) Model for HP1Swi6-mediated degradation of heterochromatic RNA. HP1Swi6 proteins associate with H3K9-methylated nucleosomes (gray) only transiently and

readily exchange from heterochromatin (dark blue). This continuous exchange of HP1Swi6 prevents saturation of heterochromatin with RNA. In case transcription

within heterochromatin occurs, HP1Swi6 binds the newly synthesized RNA (red) and dissociates from H3K9 methylated nucleosomes as a result of competition

between RNA and the histone tail for HP1Swi6 binding (light blue). Subsequently, the RNA is passed on to Cid14 (red), which in turn initiates RNA degradation.
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DISCUSSION

Association of HP1 Proteins with RNA
It was recognized earlier that proteins involved in chromatin

regulation have the ability to bind RNA, although the functional

relevance of this interaction has remained elusive. RNA binding

was first demonstrated for the CDs of MOF and MSL-3, pro-

teins involved in dosage compensation in Drosophila (Akhtar

et al., 2000). For mammalian HP1a, the hinge region has

been implicated in RNA binding (Muchardt et al., 2002). Here

we demonstrate that HP1Swi6, the fission yeast homolog of

HP1a, can also bind RNA directly. Importantly, we have found

that the interaction of HP1Swi6 with RNA mechanistically

includes the hinge region, the CD, and the NTD, a property

that could be easily overlooked when working with isolated

domains. Therefore, it will be interesting to revisit the RNA-

binding properties of other HP1 proteins, such as mammalian

HP1a, b, or g, by approaches similar to those in this study. It

might be that different HP1 isoforms display important differ-

ences in their interaction with RNA, which could reveal novel

insights into their functional diversification. It will also be very

interesting to elucidate the structural basis of the RNA and

peptide binding of HP1Swi6 at the atomic level, which should

give additional insights into the biophysical nature of their

competitive binding mechanism.
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It has been speculated that the functional relevance of the

RNA affinities of HP1a or the dosage compensation complex

might be the targeting to chromatin by major satellite or roX

noncoding RNAs, respectively (Akhtar et al., 2000; Maison

et al., 2002, 2011). In such a model, RNA is proposed to be

involved structurally in the assembly of a higher order chromatin

structure by serving as a recruitment platform. This is unlikely to

apply to S. pombe HP1Swi6, as neither H3K9 methylation nor

recruitment of HP1Swi6 to heterochromatin depends on RNA

binding. In contrast, RNA bound to HP1Swi6 dissociates from

chromatin as a result of exchange with the cellular HP1Swi6

ensemble and a decrease in affinity for methylated H3K9.

Stable Repression of Heterochromatin through RNA
Sequestration and Degradation
The results of our work reinforce previous findings that hetero-

chromatin is not always refractory to transcription, yet is tightly

repressed. We demonstrate here that HP1Swi6 assures coupling

between heterochromatin transcription and RNA turnover by

serving as an H3K9 methylation-specific checkpoint. Based on

the data presented, we propose a model for the action of the

HP1Swi6 ensemble, which dynamically exchanges with the bulk

in a maintenance cycle. Free RNA is captured in the eviction

cycle and passed on to the degradation machinery. Constant

flux of RNA-unbound HP1Swi6 from the bulk ensemble prevents
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saturation of heterochromatin with RNA. Competition between

RNA and methylated H3K9 for HP1Swi6 binding at the ensemble

level guarantees that RNA-free HP1Swi6 is preferably recruited

to heterochromatin, thereby sustaining a functional checkpoint

on the H3K9-methylated nucleosome and ensuring constant

turnover of heterochromatic RNAs (Figure 7C).

In our model, HP1Swi6 functions on chromatin to bind to and

assemble emerging heterochromatic transcripts into special

RNPs, which we refer to as hsRNPs. Thereby, HP1Swi6 guaran-

tees specific and tight repression of heterochromatic genes on

at least two levels. First, HP1Swi6 prevents protein synthesis by

sequestration of mRNAs from ribosomes, most likely through

nuclear retention. Thus, a heterochromatic mRNA remains

repressed even in the absence of RNA degradation. This

explains why classical PEV screens failed to recover RNA decay

factors such as Cid14. Notably, Cid14 itself is involved in the

processing of ribosomal RNA and also associates with 60S

ribosomal proteins (Keller et al., 2010; Win et al., 2006), raising

the possibility that loss of Cid14 might result in a general defect

in translation. However, association of euchromatic mRNAs

with polyribosomes, as well as protein expression levels, remain

unaffected in cid14D cells (Figure 1 and data not shown),

strongly arguing against such an indirect effect. Second, the

HP1Swi6 ensemble ensures elimination of heterochromatic

mRNAs by capturing the RNA at the site of transcription and

escorting it to the degradation machinery. Rather than the clas-

sical features of an aberrant RNA, such as a truncated open

reading frame or defective 50 or 30 ends, our data suggests that

it is the physical association of a heterochromatic mRNA with

HP1Swi6 that primes it for destruction. We note that artificial

tethering of HP1Swi6 to a euchromatic mRNA does not result in

RNA degradation (data not shown), suggesting that canonical

mRNPs are immune to HP1Swi6-mediated RNA turnover.

Furthermore, since the kinetics of RNA binding to HP1Swi6 are

fast, the hsRNPs may be stabilized by additional factors.

However, at this point we can only speculate on such contribu-

tions by additional proteins or other molecules.

Concluding Remarks
In this study, we have discovered a function for one of the fission

yeast HP1 proteins that provides the missing link between

transcriptional origin and Cid14-dependent degradation of

heterochromatic mRNAs. Our results highlight the role of RNA

as a negative regulator of HP1Swi6 binding to chromatin and

provide insights into the repression of heterochromatic domains

at a posttranscriptional level. The high degree of conservation of

HP1 proteins and heterochromatin-mediated gene silencing

phenomena suggest that our findings may also apply to other

eukaryotes.

Our work has revealed that HP1Swi6, in addition to its role in

proper centromere function, also guarantees tight repression

of heterochromatic genes through RNA sequestration and

degradation. Interestingly, the Drosophila HP1 protein Rhino

has been linked recently to the piRNA pathway (Klattenhoff

et al., 2009). In analogy to our checkpoint model, Rhino may

bind the initial sense transcript at the heterochromatic trans-

poson locus and subsequently escort it to the perinuclear

‘‘nuage’’ structure, where it can enter the ping-pong amplifica-
tion cycle. Thus, rather than forming repressive chromatin, Rhino

might specify the recognition and ensure efficient elimination of

transposon RNA.

Finally, our results add another layer of complexity to the

crosstalk between RNA and chromatin. In contrast to the

emerging theme that RNA can serve as a scaffold to assemble,

recruit, or guide chromatin-modifying complexes to their respec-

tive targets (Wang and Chang, 2011), we demonstrate that they

may also function as ‘‘repellents.’’ RNA-mediated eviction might

be a possible mechanism that counteracts HP1 spreading along

the chromatin fiber or the formation of ectopic heterochromatin.

Importantly, neither coding potential nor stability is important for

an RNA to function as a repellent, offering a possible molecular

function for the many short-lived, low-abundant noncoding

RNAs that are present in the eukaryotic cell.

EXPERIMENTAL PROCEDURES

Strains and Plasmids

Fission yeast strains and plasmids used in this study are described in Supple-

mental Information.

Western Blot and Polysome Profiling

Total proteins from exponentially growing cells were extracted using TCA and

separated by SDS-PAGE. Antibodies for western blotting were used at the

following concentrations: GFP (Roche; 1:3000), tubulin (Woods et al., 1989;

1:5000), Swi6 (Bioacademia; 1:10,000). Polysome profiling is described in

Supplemental Information.

Chromatin Immunoprecipitation and Gene Expression Analysis

RNA isolation, cDNA synthesis, and quantitative RT-PCR was performed as

described in Emmerth et al. (2010). Chromatin immunoprecipitation (ChIP)

was performed as described in Bühler et al. (2006), using 2.5 mg of an antibody

against dimethylated H3K9 (Kimura et al., 2008).

Electrophoretic Mobility Shift Assay (EMSA)

The desired amount of protein was diluted into 9 ml of 1 3 electrophoretic

mobility shift assay (EMSA) buffer (20 mM HEPES-KOH [pH 7.5], 100 mM

KCl, 0.05% NP-40) and incubated for 10 min at RT. The substrate was added,

incubated at 30�C for 30 min, and followed by gel electrophoresis (1.6% TB-

agarose). Fluorescently labeled RNA was detected using a TyphoonTM 9400

Gel Scanner. RNA labeling is described in Supplemental Information.

Recombinant Protein Expression and Purification for NMR

Expression and purification was performed as described in Supplemental

Information with the following modifications. Bacteria were grown in 6 l of

M9 minimal medium containing 15N-NH4Cl as a nitrogen source. Induction

was carried out using 0.5 mM IPTG. The lysate was incubated with 10 ml of

glutathione-sepharose FF (GE). The protein was released from the gluta-

thione-resin by TEV-cleavage o/n at 4�C using acTEV (Invitrogen). This was

followed by Source15Q ion exchange chromatography (GE Healthcare). The

purification was completed by size exclusion chromatography (Superdex

200; GE Healthcare) in 50 mMMES pH 6.5, 100 mM KCl, 5 mM DTT. The puri-

fied complex was concentrated to 100 mM by centrifugal filtration.

Solution NMR Spectroscopy and SPR

NMR experiments were performed on Bruker 800 MHz and 600 MHz spec-

trometers. The sequence-specific resonance assignments for the isolated

HP1Swi6 CD (residues 75–139) were obtained from the two APSY-type exper-

iments 4D APSY-HNCACB (15 projections) and 5D APSY-HNCOCACB

(16 projections) (Gossert et al., 2011; Hiller et al., 2005, 2007) and subsequent

automated backbone assignment by the algorithm MATCH (Volk et al., 2008).

For SPR, samples were analyzed using a Biacore T-100 instrument (GE

Healthcare). Further details are given in Supplemental Information.
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DamID

DamID was carried out as previously published (Woolcock et al., 2011). Coor-

dinates of heterochromatic regions are given in Supplemental Information.
ACCESSION NUMBERS

DamID data sets were deposited under accession number GSE36956 (NCBI

Gene Expression Omnibus).
SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, Supplemental Experimental

Procedures, Supplemental References, and five tables and can be found

with this article online at doi:10.1016/j.molcel.2012.05.009.
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i.e., Andrea Scrima, Eric Fischer, and Mahamadou Faty, for technical advice

and sharing awesome equipment; Laurent Gelman for assistance with FRAP

analysis; and Heinz Gut and Hans-Rudolf Hotz for help with domain mappings

and bioinformatics. Research in the lab of M.B. is supported by the Swiss

National Science Foundation, the European Research Council, and the Gebert
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Supplemental Data 

 
 

 
 
Figure S1, Related to Figure1. The Noncanonical PolyA-polymerase Cid14 Confers 
Resistance to 5-FOA 
(A and B) Cells were spotted on PMG agar plates containing either 0 or 2 mg/L 5-FOA. The 
ura4+ gene encodes orotidine 5’-phosphate decarboxylase, which converts 5-FOA to toxic 5-
fluorouracil. Therefore, cells can only grow on 5-FOA containing medium if the ura4+ gene is 
absent or silenced.  
(A) Growth on 5-FOA containing medium indicates that the centromeric ura4+ reporter 
(imr1R::ura4+) is efficiently silenced by heterochromatin. Deletion of the gene encoding the 

histone H3 methyltransferase Clr4 (clr4 ) disrupts heterochromatin and silencing of 

imr1R::ura4+ is lost. Similar to clr4 cells, cells lacking the cid14+ gene or cells expressing a 
catalytically inactive Cid14 (cid14DADA) cannot grow on 5-FOA.  
(B) Cells lacking a functional ura4+ gene (ura4DS/E) grow on 5-FOA media in the absence of 

heterochromatin (clr4 ), but not in the absence of Cid14 (cid14 ) or if Cid14 has lost its 
polyadenylation activity (cid14DADA). Therefore, the inability of imr1R::ura4+ cells to grow on 
5-FOA when expressing cid14

+
 mutants (A) is unlikely to result from defective 

heterochromatin silencing. Rather, 5-FOA is converted into 5-fluorouracil or another toxic 
substance by a ura4+-independent, endogenous pathway that becomes activated in the 
absence of Cid14. Alternatively, 5-FOA itself is toxic, but is usually degraded by an enzyme 
that is only expressed in the presence of functional Cid14. 
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Figure S2, Related to Figure 2. Heterochromatic mRNAs Are Properly Processed 
(A) Schematic diagram outlining RNAseH and RACE-PAT assays, which were used to assess 
the polyadenylation status of heterochromatic RNAs in different mutants.  
(B) Evaluation of the polyadenylation status of heterochromatic mat3M::gfp+ mRNAs by the 
RNaseH assay. Total RNA was separated on an agarose gel and transferred to a nylon 
membrane. GFP RNA was detected using specific 

32
P-labelled DNA oligos. In the presence of 

oligodT (+oligodT), polyA tails are degraded by RNAseH. The appearance of two bands upon 
polyA tail removal is consistent with the presence of two major polyadenylation sites in the 
Tadh1 terminator present in this gfp+ reporter. As expected, the distal site is used more 
frequently. The smear in the -oligodT lanes indicates the heterogenous polyA tail length of the 
GFP mRNA. Importantly, no major qualitative differences can be observed for euchromatic or 

heterochromatic GFP mRNAs in wt, clr4 , or cid14  cells.  
(C) The polyadenylation status of heterochromatic mat3M::ura4+ mRNAs was assessed as in 
B. Instead of agarose, polyacrylamide  was used to separate RNAseH treated RNA. 
(D) RACE-PAT assay to determine the polyadenylation state of tlh1/2+ mRNAs. 1/10th of the 
RT reaction was used as input for the PCR in cid14Δ and clr4Δ cells.  
(E) Total RNA was extracted from cells expressing either gfp+ from a euchromatic 
(ura4Δ::gfp+) or heterochromatic (mat3M::gfp+) locus. The RNA was subsequently treated 
with terminator 5’-phosphate dependent exonuclease, which selectively degrades 5’-
monophosphorylated RNA, while leaving 5’-me7G-capped RNA intact. The efficiency of the 
reaction was determined by comparing the amount of degraded 25S and 18S RNA (5’-
monophosphorylated) versus 5S RNA (stable) on a Agilent Total RNA Nano Chip. The 
relative amount of a given RNA was quantified in untreated and exonuclease-treated samples 
by quantitative real-time RT-PCR. The terminator exonuclease resistant population reflects 
the relative amount of 5’-me7G-capped RNA.  
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Figure S3, Related to Figure 3. HP1
Swi6

 Is an RNA-Binding Protein 
(A) SDS-PAGE of the recombinant HP1

Swi6 
proteins that were used for NMR and SPR (pH 

6.5), or EMSA (pH 7.5).  
(B) EMSA demonstrating that binding of HP1

Swi6
 to a fluorescently labelled RNA probe can be 

competed by an unlabelled RNA probe.  
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Figure S4, Related to Figure 4. Creation of a Mutant HP1

Swi6
 that Fails to Bind RNA but 

Keeps Its Other Molecular Properties 
(A) 2D [

15
N,

1
H]-HSQC spectrum of the isolated CD (residues 75–139). Sequence-specific 

resonance assignments are indicated. 
(B) Domain-specific assignments for the amide resonances arising from flexibly disordered 
segments of the polypeptide chain. On a 2D [

15
N,

1
H]-TROSY spectrum of full-length HP1

Swi6
, 

the residues are identified which are part of the hinge region (“H”) and the N-terminal domain 
(“N”). The part in red dashed lines is shown enlarged in (C). 
(C) Enlargement of the central part of the spectrum (B). Resonances from the N-terminal 
domain are indicated “N”. All other resonances belong to the hinge region. 
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(D) The chromatograms of HP1
Swi6

 and HP1
Swi6

-KR25A that were loaded onto a Superdex200 
size exclusion column show that the KR25A mutation does not affect the dimeric state of 
protein.  

(E) Secondary chemical shifts for the 
13

C  and 
13

C  chemical shifts of the isolated CD 
(residues 75–139) relative to random coil values. Above the amino acid sequence of the 

domain, the secondary structure elements inferred from these shifts, three -strands and one 

-helix, are indicated.  
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Figure S5, Related to Figure 5.  RNA Binding through the Hinge Region of HP1

Swi6
 Is 

Required for Silencing but Not Maintenance of Heterochromatin 
(A) Cells expressing HP1

Swi6
-KR25A with or without an SV40 NLS

 
were fractionated into total 

and cytoplasmic fractions. Proteins were separated by SDS-PAGE and detected by Western 
blot. Cytoplasmic Tubulin and nuclear Histone H3 serve as fractionation controls.  
(B) Microscopy of living S. pombe cells co-expressing C-terminally Dendra2-tagged HP1

Swi6
 

variants and C-terminally mCherry-tagged Taz1 driven from their endogenous promoters. 
Cells were grown in YES medium at 30°C. To restore nuclear localization of the HP1

Swi6
-

KR25A mutant (Figure S4), a SV40 NLS was added N-terminally.  
(C) Microscopy of living S. pombe cells co-expressing C-terminally Dendra2-tagged HP1

Swi6
 

variants and C-terminally mCherry-tagged Cnp1 driven from their endogenous promoters. 
Cells were grown in YES medium at 30°C. To restore nuclear localization of the HP1

Swi6
-

KR25A mutant (Figure S4), a SV40 NLS was added N-terminally.  
(D-F) RIP experiment demonstrating that HP1

Swi6
 but not HP1

Swi6
-KR25A interacts with 

heterochromatic RNA in vivo. TAP-tagged Swi6 was immunoprecipitated and the RNA was 
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isolated followed by cDNA synthesis. The amount of co-immunoprecipitated RNA was 
quantified by quantitative real-time RT-PCR and normalized to act1+ mRNA. The amount of 
RNA co-immunoprecipitated with HP1

Swi6
-KR25A is shown relative to the amount of RNA that 

co-immunoprecipitates with HP1
Swi6

. As a control for unspecific background RNA binding in 
this pulldown experiment, U6 snRNA levels were measured (D). 
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Figure S6, Related to Figure 6. Dynamic Exchange of HP1

Swi6 
from Chromatin on the 

Ensemble Level In Vivo and the Influence of RNA Binding on H3K9me Binding 
Properties 
(A) Representative images of Fluorescence Recovery After Photobleaching (FRAP) 
performed with a cell expressing HP1

Swi6
-Dendra2. Pictures were taken before, immediately 

after, 2 seconds after, and 13 seconds after photobleaching. Red circle indicates the 
heterochromatin focus subjected to photobleaching.   
(B) FRAP analysis of cells expressing Taz1-GFP. Average relative fluorescence intensities of 
8 bleached foci (cells) with a gliding time-average of 3 frames are shown.  
(C) FRAP analysis of cells expressing HP1

Swi6
-Dendra2. The fluorescence intensities were 

normalized to an unbleached focus in the same image. Average relative fluorescence 
intensities of 37 bleached foci (cells) with a gliding time-average of 3 frames are shown. 
(D) SPR responses for competitive binding of H3K9me3 and RNA to HP1

Swi6
. Top panel: A 

constant concentration of 1 μM HP1
Swi6

 with increasing concentrations of 20mer GFP-RNA 
was injected to an H3K9me3 surface for 200 s. The color code indicates the RNA 
concentrations in nM. Middle panel: same experiment without HP1

Swi6
, showing that RNA 

does not bind to the peptide surface under the experimental conditions used. Bottom panel: 
same experiment as in the top panel but using 5 μM HP1

Swi6
 KR25A instead of 1 μM HP1

Swi6
 

wild-type. 
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Supplemental Experimental Procedures 

 
Strains and Plasmids 
Fission yeast strains were grown at 30°C in YES. All strains were constructed following a 
PCR-based protocol (Bahler et al., 1998) or standard mating and sporulation. Point mutations 
were created using the QuickChange Lightning Site-directed mutagenesis kit (Stratagene). 
The Swi6-KR25A hinge region fragment was created by gene synthesis (Integrated DNA 
Technologies, Inc.) and linked by a fusion PCR strategy to give rise to Swi6-KR25A. This was 
then cloned into a bacterial GST-expression vector. This plasmid was either transformed into 
bacteria for recombinant protein expression or used as a template for PCR-based gene 
targeting in S. pombe. All Swi6 mutant strains were created by transformation into a 
swi6Δ::ura3+ (c.a.) strain (ORF deletion) followed by counterselection on 5-FOA. The 
Dendra2 protein sequence (Chudakov et al., 2007) was reverse translated in silico using 
yeast codons. The template for PCR-based gene targeting was created by gene synthesis 
(Integrated DNA Technologies, Inc.) followed by cloning into a pFA6a-link-plasmid series 
vector (Sheff and Thorn, 2004),  
All strains were confirmed by sequencing. Plasmid sequences and detailed maps are 
available upon request.  
 
Silencing Assays 
Serial 10-fold dilutions of the strains indicated were plated on PMGc (nonselective, NS) or on 
PMGc plates containing 2 mg/mL 5-Fluoroorotic Acid. For ade6-reporter strains, the cells 
were spotted on YES, YE low ade (22.5 mg/L adenine). For TBZ assays, the cells were 
spotted on YES plates containing 14 μg/mL Thiabendazole (TBZ) (Sigma T5535). 
 
RNA Probe Labelling for EMSA 
DNA templates were generated by PCR on S. pombe genomic DNA using primers containing 
T7 polymerase promoter sequences. In-vitro transcription was performed using the T7 RNA 
polymerase MEGA script kit (Ambion). For the synthesis of labeled probes, a mix of 0.6 mM 
UTP and 0.4 mM Fluorescin-UTP (Roche, 2.5 mM) was used. The reaction was carried out 
for 1h at 37°C followed by a 15 min incubation with 1 μL Turbo DNaseI (37°C). The reaction 
was phenol-chloroform extracted and purified over G50 spin columns (Amersham) to remove 
unincorporated nucleotides.  
 
Recombinant Protein Expression and Purification 
Recombinant proteins were expressed as N-terminal GST-fusion proteins in Rosetta (BL21) 
bacteria. A 1L culture was grown in LB + antibiotics until OD600=0.4. The cells were grown for 
another 2h at 20°C (OD600 around 0.6), followed by induction of expression of the GST-fusion 
proteins with 0.5 mM IPTG. The culture was grown o/n at 20°C. The cells were pelleted, 
washed and frozen in N2(l). For protein purification, the cell pellet was resuspended in 5 pellet 
volumes of lysis buffer (25 mM Tris-HCl (pH 7.5), 500 mM NaCl, 1% Triton-X100 + Protease 
Inhibitors) and sonicated 6 x 30 sec at 50%. The lysate was spun at 16’000 rpm, 4°C for 30 
minutes and cleared by filtration (0.45 μm). The extract was incubated with 1 mL of 
glutathione-agarose (Sigma) and rotated for 2h at 4°C. After 3 washes (25 mM Tris-HCl (pH 
7.5), 500 mM NaCl, 0.1% Triton-X100) the protein was eluted using 50 mM reduced 
glutathione. The eluate was dialysed o/n into 50 mM HEPES (pH 7.5), 200 mM KCl, 10% 
Glycerol. This recombinant protein was used for EMSA.  
 
Polysome Profiling 
A detailed protocol for polysome profiling in S. pombe is available upon request. Briefly, 50 
mL of cells were grown to an OD of 0.5-0.6. Cycloheximide was added to a final concentration 
of 100 μg/μL and the culture was incubated for another 10 min at 30°C. The cells were 
pelleted and flash frozen in N2(l). Lysis was performed by bead-beating in 200 μL of lysis 
buffer and 500 μL glass beads followed by removing insoluble material by centrifugation. 140 
OD260 were loaded onto a 15-60% sucrose gradient and separated by ultracentrifugation for 
2h at 39’000 rpm (Beckman SW40 rotor). The gradient was unloaded from the bottom with 
70% sucrose. Fractions were collected while monitoring the absorbance at 254 nm. RNA was 
isolated from the fractions using phenol-chloroform extraction followed by isopropanol 
precipitation. RNA recovery was determined by UV absorbance. cDNA was synthesized from 
500 ng RNA using the Affinity Script Multiple Temperature cDNA synthesis kit (Stratagene) 
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and subsequently quantified by qRT-PCR. The data was analyzed as described in (Ding and 
Grosshans, 2009), calculating the RNA enrichment relative to the total amount of RNA in a 
given fraction.  
 
mRNA Polyadenylation State Assays 
The polyadenylation state of mRNAs was assayed by RACE-PAT or oligo(dT)/RNase H-
Northern analysis as described in (Salles et al., 1999). To increase resolution in the RNAseH-
Northern assay, an oligo (mb1314) that anneals 100 bp before the STOP codon of the GFP 
ORF was included in the RNaseH cleavage reaction. RNA was isolated from 50 mL of 
exponentially growing cells using the hot phenol method. 50 μg of total RNA was incubated 
with 2 uL mb1314 (100 μM) and with or without oligo dT (10 μL of 100 ng/μL) in a total volume 
of 68 μL. This was incubated at 65°C for 5 min and slowly cooled down to RT. 8 μL of 10 x 
buffer, 1 μL RNasIn Plus (Promega) and 1.5 μL RNaseH (New England Biolabs) were added 
followed by a 30 min incubation at 37°C. The RNA was phenol-chloform extracted followed by 
ethanol precipitation. The pellet was resuspended in 20 μL of 100% formamide, denatured 
and separated on a 2.4% MOPS-agarose gel. After capillary transfer in 20 x SSC to a 
positively charged nylon membrane and UV crosslinking, PNK-labelled oligos 
(mb1315/mb1316) were hybridized o/n at 35°C. The membrane was washed 3 x 15 min in 0.5 
x SSC, 0.1% Triton-X100 at 35°C. Signal was detected using a Phosphorscreen.  
 
5’-Dependent Terminator Exonuclease Assay 
Total RNA was isolated using the hot phenol method. The RNA was subjected to DNase 
digestion using the Absolutely RNA Miniprep Kit (Stratagene). 1 μg RNA was treated with 1 
μL of terminator 5’phosphate-dependent exonuclease (Epicentre) for 2h at 30°C. Control 
reactions were incubated for 2h at 30°C in the absence of the enzyme. The reaction was 
terminated by phenol-chloroform extraction followed by isopropanol precipitation.1/10

th
 of the 

reaction was analyzed on a Agilent Bioanalyzer 2100 (Eukaryote Total RNA Nano Chip). 500 
ng of RNA was used for cDNA synthesis and quantification by qRT-PCR.  
 
Live Cell Imaging and FRAP Analysis  
Imaging was performed on an Olympus IX81 microscope equipped with a Yokogawa CSU-X1 
spinning disk, a UPlanFLN 40x/1.3 objective, a CascadeII camera (Photometrics, AZ), a 
491nm laser line (Cobolt, Sweden), a Semrock Di01-T488/568 dichroic and a Semrock FF01-
525/40-25 emission filter. All devices were piloted with the software Metamorph (Molecular 
Devices Inc, CA). For FRAP experiments, a UGA-40 module (Rapp-Optoelectronics, 
Hamburg) equipped with a 473nm laser line and a chroma Z405/473rpc-xt dichroic was 
installed on the setup. In Metamorph, image acquisition was done using the live replay menu 
with an exposure time of 100ms and binning 2 for the camera. The bleaching region was a 
diffraction-limited spot, bleach time was 20ms. The acquired images were analyzed using the 
open source Fiji software (Walter et al., 2010). The fluorescence intensities were normalized 
to an unbleached focus in the same image and pre-bleach intensities were averaged and set 
to 1. Growth conditions for live cell microscopy were described in (Emmerth et al., 2010). 
Images were acquired at room temperature. 
 
Solution NMR Spectroscopy 
The sequence-specific resonance assignments for the isolated HP1

Swi6
 CD (residues 75–140) 

were obtained using a 750 M sample of [U-
13

C,
15

N]-labeled CD sample in 50 mM MES-KOH 
pH 6.5 buffer with 100 mM KCl, 5 mM DTT and 5%/95% D2O/H2O. The assignments were 
obtained from the two triple-resonance APSY-type experiments 4D APSY-HNCACB (15 
projections) and 5D APSY-HNCOCACB (16 projections) (Gossert et al., 2010; Hiller et al., 
2005; Hiller et al., 2007) and subsequent automated backbone assignment by the algorithm 
MATCH (Volk et al., 2008). These experiments were recorded at 25°C on a Bruker 600 MHz 
spectrometer equipped with a room-temperature triple-resonance probe in a total experiment 
time of 63 h. The assignments of the CD were transferred to full-length HP1

Swi6
 by a 

comparison of the [
15

N,
1
H]-correlation patterns, which were found to be highly similar (Figs. 4 

& S4). The domain-specific resonance assignments of the NTD, the hinge region and the 
CSD were obtained by identifying the individual substracta from HP1

Swi6
 subconstructs: 

isolated CD, CD+hinge, CD+hinge+CSD, NTD+CD+hinge. 
The NMR titration experiments were performed at 25°C on a Bruker 800 MHz spectrometer 
equipped with a cryogenic triple-resonance probe. 2D [

15
N,

1
H]-TROSY experiments 
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(Pervushin et al., 1997) of 50–120 M samples of [U-
15

N]-Swi6 in 50 mM MES-KOH pH 6.5 
buffer with 100 mM KCl, 5 mM DTT and 5%/95% D2O/H2O were recorded. Typically, 1024 
and 90 complex points were recorded in the direct and indirect dimension, respectively in total 
experiment times of 8–12 h for each spectrum. H3K9me3 peptide from a 1 mM stock solution 
or 20mer GFP-RNA from a 3 mM stock solution of the same buffer were added.   
 
Surface Plasmon Resonance (SPR) 
Samples were analyzed using a Biacore T-100 instrument (GE Healthcare). H3K9me3 
peptide was covalently bound to a CM5 chip by amine coupling achieving a final density of 
1985 RU. All measurements were recorded as subtracted sensorgrams relative to a flow 
channel with blank amine immobilisation. Sensorgrams were recorded at 25 °C and flow rate 

of 50 l min
-1

 using 25 mM NaPi pH 7.0, 150 mM KCl, 5mM DTT, 0.1% P20, 62.5 g ml
-1

 BSA 
and 5% Glycerol as running buffer. All samples were diluted in running buffer prior to 
injection. Each sample was injected for 200 sec and dissociation was recorded for 300 sec. A 
regeneration step was performed at the end of each cycle by injecting 5 mM NaOH for 30 sec 
followed by a stabilization period of 50 sec. For the determination of binding constants, 
increasing concentrations of HP1

Swi6
 or HP1

Swi6
-KR25A were injected. For the competition 

assay, samples of 1 M Swi6 with increasing amounts of RNA were injected. 
 
Dam-ID 
DamID was carried out as previously published (Woolcock et al., 2011). Average enrichment 
values were calculated for all the oligos overlapping the major heterochromatic regions: 
mating type locus (chromosome 2, 2114000-2137000), telomeres (chromosome 1, 1-20000 
and 5571500-5579133; chromosome 2, 4516200-4539804), and centromeres (chromosome 
1, 3753687-3789421, chromosome 2, 1602264-1644747, chromosome 3, 1070904-1137003). 
 
RNA Immunoprecipitation (RIP) 
RIP was performed essentially as described in (Gilbert and Svejstrup, 2006). IgG-dynabeads 
(expoxy-coupled) that have been pre-blocked using E.coli tRNA were used for the 
immunoprecipitation of the TAP-tagged proteins. An additional DNaseI-digestion step was 
included before the cDNA synthesis with random primers.  
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Supplemental Tables 
 

Table S1. Plasmids  
 
pMB247 

 
pFA6a-Cid14DADA-TAP-hphMX6 

 
Template for PCR based gene targeting  
(Creation of Cid14DADA::TAP allele) 
 

pMB680 pGEX empty n-term GST fusion vector with TEV and Thrombin cleavage site 
 

pMB714 pGEX-Swi6 Swi6 purification (N-term GST, TEV and Thrombin cleavage site) 
 

pMB715 pGEX-Swi6-KR25A Swi6-KR25A purification (N-term GST, TEV and Thrombin cleavage 
site) 
 

pMB776 pGEX-Swi6-CD Swi6-Chromodomain purification (N-term GST, TEV and Thrombin 
cleavage site) 
 

pMB768 pFA6a-link-Dendra2-hphMX Template for PCR based gene targeting (C-term Dendra2 tagging) 
 

 
 

Table S2. Primers for Real-Time PCR 

  Forward Primer Reverse Primer 

cendg mb549/mb550 AAGGAATGTGCCTCGTCAAATT TGCTTCACGGTATTTTTTGAAATC 

cendh mb551/mb552 GTATTTGGATTCCATCGGTACTATGG ACTACATCGACACAGAAAAGAAAACAA 

gfp+ mb820/mb821 CGAAAGATCCCAACGAAAAGAG TCCCAGCAGCTGTTACAAACTC 

ura4+ mb553/554 TACAAAATTGCTTCTTGGGCTCAT AGACCACGTCCCAAAGGTAAAC 

tlh1/2+ mb682/683 CGTGTGCAAGCCGTCAAA GCTCGAGTTGTGCTGAAATGTC 

SPBCPT2R1.07c mb3006/mb3007 TGGTGTTGCTCCAAAGTGTAGTGGA GACAGTTGCCTCCGGTAAATGGATTC 

    

Control Genes    

U6 snRNA mb1281/mb1282 GATCTTCGGATCACTTTGGTCAA TGTCGCAGTGTCATCCTTGTG 

act1+ mb555/mb556 TCCTCATGCTATCATGCGTCTT CCACGCTCCATGAGAATCTTC 

fbp1+ mb557/mb558 CTGGCCAGCTTATTCAACTTCAT GATTTCGTCGAGATCTTTTTTCATG 

    

 

Table S3. Primers for RNaseH Assays 

  Target Purpose 

mb1315 TTACAAACTCAAGAAGGACCATGTGGTCTCTC GFP probe 

mb1316 TTTGTATAGTTCATCCATGCCATGTGTAATCCCA  GFP probe 

mb1314 GATTGTGTGGACAGGTAATGG GFP cleavage 

    

 
Table S4. RNA Probes 
  Length Purpose 

20-GFP-RNA AUGGGUAAAGGAGAAGAACU 20nt NMR 
 

150-GFP-RNA 
 

ggAGUAAAGGAGAAGAACUUUUCACUGGAGUUGUCCCAAUUCUUGUUGAAUUAGA
UGGUGAUGUUAAUGGGCACAAAUUUUCUGUCAGUGGAGAGGGUGAAGGUGAUGC
AACAUACGGAAAACUUACCCUUAAAUUUAUUUGCACUACUG 

150nt EMSA 
 
 

700-GFP-RNA 
 

ggAGUAAAGGAGAAGAACUUUUCACUGGAGUUGUCCCAAUUCUUGUUGAAUUAGA
UGGUGAUGUUAAUGGGCACAAAUUUUCUGUCAGUGGAGAGGGUGAAGGUGAUGC
AACAUACGGAAAACUUACCCUUAAAUUUAUUUGCACUACUGGAAAACUACCUGUU
CCAUGGCCAACACUUGUCACUACUUUCACUUAUGGUGUUCAAUGCUUUUCAAGAU
ACCCAGAUCAUAUGAAACGGCAUGACUUUUUCAAGAGUGCCAUGCCCGAAGGUUA
UGUACAGGAAAGAACUAUAUUUUUCAAAGAUGACGGGAACUACAAGACACGUGCU
GAAGUCAAGUUUGAAGGUGAUACCCUUGUUAAUAGAAUCGAGUUAAAAGGUAUUG
AUUUUAAAGAAGAUGGAAACAUUCUUGGACACAAAUUGGAAUACAACUAUAACUC
ACACAAUGUAUACAUCAUGGCAGACAAACAAAAGAAUGGAAUCAAAGUUAACUUCA
AAAUUAGACACAACAUUGAAGAUGGAAGCGUUCAACUAGCAGACCAUUAUCAACA

711nt EMSA 
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AAAUACUCCAAUUGGCGAUGGCCCUGUCCUUUUACCAGACAACCAUUACCUGUCC
ACACAAUCUGCCCUUUCGAAAGAUCCCAACGAAAAGAGAGACCACAUGGUCCUUC
UUGAGUUUGUAACAGCUGCUGGGAUUACACAUGGCAUGGAUGAACUAUACAAA 

 
 
 
 

100-cen-RNA ggCGUGCGAUCGGGCCGCGACUGGCCAUUUUCAAGGAUAUAUCGAAUCAAAUUUA
GGUAUUGCUCUUCUUCUGUAUUUCUAUAUUCGGAGGAAGUAAAU 

99nt EMSA 
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Table S5. Strain Table           

 

  

F
ig

u
r
e
 

Genotype 

S
o

u
r
c
e

 

Comment 

spb28 wt 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX * gfp+ driven by ura4+ promoter 

spb38 clr4Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb36 dcr1Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX dcr1∆::kanMX * gfp+ driven by ura4+ promoter 

spb313 cid14Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb342 wt 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb361 dcr1Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 dcr1∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

      

spb342 wt 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb374 cid14Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb535 cid14Δ clr4Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4- leu1-32 ade6- clr4D::hph cid14∆::kanMX * gfp+ is driven by ura4+ promoter; 
ura4D18 or DS/E; ade6-M210 or 

216 

spb721 swi6Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ * gfp+ driven by ura4+ promoter 

spb723 cid14Δ swi6Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ cid14∆::kan  * gfp+ driven by ura4+ promoter 

      

spb1071 swi6-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb1240 nls-swi6-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb1241 nls-swi6-KR25A-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb342 wt 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb939 swi6Δ 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ (ORF deletion only) * gfp+ driven by ura4+ promoter 

spb1226 nls-swi6 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6 * gfp+ driven by ura4+ promoter 

spb1227 nls-swi6-KR25A 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A * gfp+ driven by ura4+ promoter 
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spb435 dam 6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-kan    

spb436 dam-cid14 6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-cid14-kan   

spb1386 dam swi6  6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-kan swi6∆::ura3+ (ORF deletion only)   

spb1387 dam-cid14 swi6  6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-cid14-kan swi6∆::ura3+ (ORF deletion only)   

      

spb65 wt, ura4+ S1 972h- 1 

spb221 wt S1 h- imr1R(Nco1)::gfp+::natMX * gfp+ driven by ura4+ promoter 

spb295 clr4Δ S1 h- imr1R(Nco1)::gfp+::natMX clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb294 cid14Δ S1 h- imr1R(Nco1)::gfp+::natMX cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb373 cid14DADA S1 h- imr1R(Nco1)::gfp+::natMX cid14DADA-TAP::hphMX * gfp+ driven by ura4+ promoter 

spb342 wt S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb739 cid14DADA S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14DADA-TAP::hphMX * gfp+ driven by ura4+ promoter 

      

spb29 wt, ura4+ S2 h+ otr1R(SphI)::ura4+ leu1-32 ade6-M210 ura4∆::gfp::natMX * end. ura+ ORF replaced with gfp+  

spb342 wt S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb76 no gfp S2 h90 mat3M(EcoRV)::ura4+ ura4-DS/E leu1-32 ade6-M210 2 

      

spb342 wt S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb1055 swi6-KR25A S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-KR25A * gfp+ driven by ura4+ promoter 

spb1468 swi6-Dendra2 

cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-Dendra2::hphMX cnp1-

mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1450 nls-swi6-Dendra2 

cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-Dendra2::hphMX cnp1-

mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1469 nls-swi6-KR25A-Dendra2 
cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A-Dendra2::hphMX 
cnp1-mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1439 NLS-TAP-Swi6 S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 NLS-TAP-Swi6 * gfp+ driven by ura4+ promoter 

Spb1493 NLS-TAP-Swi6-KR25A S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 NLS-TAP-Swi6-KR25A 

 

* gfp+ driven by ura4+ promoter 

 
Source:  *this study, 1Charles Hoffmann, 2Danesh Moazed 
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Heterochromatin is classically perceived to be refractory to

transcription because of its compact structure. However,

Keller et al (2012) now demonstrated that heterochromatic

transcripts can accumulate even when heterochromatin is

normally packaged. By tracking down the fate of these

heterochromatic RNAs, they revealed a new post-trans-

criptional mechanism of silencing in heterochromatin that

involves the dynamic turnover of HP1Swi6 between its free,

chromatin-bound and RNA-bound forms. The latter form

escorts heterochromatic RNA to degradation.

In eukaryotes, chromatin can be classified into two states:

euchromatin, which is loosely packed and actively tran-

scribed, and heterochromatin, which remains condensed

during interphase. The compact structure of heterochromatin

is critical for its widespread roles in chromosome integrity,

stability and transposon silencing around centromeres and in

other repeat-rich regions, such as subtelomeric regions.

Heterochromatin is relatively devoid of coding sequences,

and reporter genes embedded are tightly repressed under

most situations. The compact structure of heterochromatin

was generally thought to be inert and refractory to trans-

cription (Gasser and Cockell, 2001). However, HP1

(heterochromatin protein 1), which binds the conserved

heterochromatin mark, histone H3 lysine 9 methylation

(H3K9me) and serves as the structural basis for the

condensed state of heterochromatin, undergoes very active

turnover between the chromatin-bound and -free states

(Cheutin et al, 2003; Maison and Almouzni, 2004).

Furthermore, heterochromatin is not as ‘silent’ as initially

thought, and undergoes substantial transcription. But the

transcripts are quickly processed by RNA interference

(RNAi), which utilizes 20- to 30-nt small RNA to guide

cleavage or translational inhibition of target transcripts

(Carmell and Hannon, 2004), and to release RNA

polymerase II (Zaratiegui et al, 2011). RNA degradation also

participates in this process, and its role is newly interpreted

by Keller et al (2012).

Although the detailed mechanisms underlying the estab-

lishment and maintenance of heterochromatin vary in differ-

ent species, the principles are conserved from yeast to

human. Much work has been done in the fission yeast

Schizosaccharomyces pombe to understand how the enzymes

responsible for the deposition of heterochromatic marks are

recruited to specific regions of the genome, and has revealed

a complicated network of mechanisms both dependent and

independent of RNAi (Buhler et al, 2007; Grewal and Jia,

2007). The involvement of RNA turnover in this network is

known but not well understood.

Keller et al (2012) set out to understand the role of RNA

degradation by tracking down the fate of heterochromatic

transcripts. They used a cid14 mutant, which has defects in

polyadenylation-assisted RNA turnover (Wang et al, 2008)

and observed accumulation of transcripts from reporter genes

embedded in heterochromatic regions. Interestingly, such

derepression is not accompanied by heterochromatin

decondensation. They also found a discrepancy between

mRNA and protein levels, suggesting that these reporter

gene transcripts are assembled into translation-incapable

HP1

RNA polymerase

HP1HP1HP1HP1

Heterochromatic mRNA

H3K9me

HP1

HP1

A

B

C

Cid14-mediated RNA degradation

Figure 1 HP1Swi6 undergoes rapid turnover between its (A) free,
(B) H3K9me-bound and (C) heterochromatic RNA-bound forms.
The major structural component of heterochromatin, H3K9me-
bound HP1Swi6 (B) exchanges dynamically with its free ensemble
(A). Contrary to the classical view, RNA polymerase can get access
to heterochromatin, but the transcripts are captured by HP1Swi6 (C)
and escorted to Cid14-mediated RNA degradation. RNA competes
with H3K9me for binding with HP1Swi6 and causes structural
change to HP1Swi6. Thus, both heterochromatin and HP1Swi6–RNA
association contributes to the tight repression of genes within
heterochromatin.
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ribonucleoprotein particles. The authors then hypothesized

that Swi6, an HP1 homologue in S. pombe, may be central to

these particles by targeting and escorting heterochromatic

RNA for degradation, because of its dual affinity for both

H3K9me and RNA (Motamedi et al, 2008). Keller et al (2012)

confirmed HP1Swi6–RNA association and further explored

the structural basis of both interactions. They found that

overlapping regions of HP1Swi6 were important for both

interactions, and demonstrated alternation between them

and induced structural change of HP1Swi6 after binding to

either partner. Such alternation and structural change are

important for HP1Swi6 targeting RNA from heterochromatic

regions, and may prevent HP1Swi6 binding non-specifically

to euchromatic mRNA. To explore the function of the newly

identified HP1Swi6–RNA association, the creation of a

separation-of-function mutant was necessary, as HP1Swi6

also has a structural role in heterochromatin. Guided by

the structural information obtained for these interactions,

the authors designed a mutant that abolishes RNA-binding,

while not affecting heterochromatin structure, and indeed,

observed that heterochromatic transcripts were no longer

degraded, nor were they inhibited from being translated.

In summary, Keller et al (2012) have revealed another level

of tight repression of heterochromatic genes through

uncovering the dynamic turnover of HP1Swi6 between its

free, H3K9me-bound and RNA-bound forms (Figure 1). The

structural component of heterochromatin, HP1Swi6 serves as

the unidentified link to capture heterochromatic transcripts

onsite and escort them towards eventual degradation.

Because of the high conservation of HP1, it is possible that

a similar mechanism contributes to the tight repression of

heterochromatin in higher eukaryotes.
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EVICTION NOTICE

The formation of heterochromatin 
requires the conserved 
heterochromatin protein 1 (HP1), 
which can associate directly and 
dynamically with Lys9 trimethylated 
tails of histone H3 (H3K9me3). Bühler 
and colleagues find that, in fission 
yeast, this ensures local capture of 
heterochromatic mRNAs and their 
targeting for mRNA decay. 

Although heterochromatin has 
traditionally been regarded as a 
region that is transcriptionally 
repressed, recent findings indicate 
that heterochromatin silencing can 
occur post-transcriptionally and that 
RNA processing is also important for 
this. For example, the non-canonical 
poly(A) polymerase Cid14 mediates 
heterochromatic mRNA processing. 
In this study, the authors first showed 
that, although loss of Cid14 results in 
higher levels of heterochromatic 
mRNAs, these are not translated into 
protein. They thus hypothesized that 
these mRNAs might be targeted into 
ribonucleoprotein particles that are 
refractory to translation. 

In addition to having affinity for 
H3K9me3 tails, mammalian HP1 has 
been shown to bind RNA, suggesting 
that the HP1 homologue in fission 

 C H R O M AT I N

RNA eviction 
by HP1

yeast, HP1Swi6, might have a role 
in diverting heterochromatic 
mRNAs away from the 
translation machinery. Indeed, 
in the absence of HP1Swi6, 
heterochromatic mRNAs could be 
translated. Moreover, HP1Swi6 was 
found to directly bind RNA in vitro, 
as previously observed in mammalian 
cells, and the hinge region of HP1Swi6 
is sufficient for this. 

So what is the role of HP1Swi6 
binding to mRNA? To answer this 
question, the authors constructed an 
HP1 protein that contained 
25 mutations in the Lys and Arg 
residues of its hinge region 
(HP1Swi6-KR25A) and thus could no 
longer bind RNA, although its overall 
protein folding was intact, as was its 
ability to bind an immobilized peptide 
corresponding to H3K9me3. 
Expression of HP1Swi6-KR25A (fused 
with a nuclear localization sequence 
to ensure its localization to the 
nucleus) at the endogenous swi6 
locus revealed that, although RNA 
binding via the hinge region is not 
required for HP1Swi6 association  
with heterochromatin or for the 
overall structural integrity of 
heterochromatin, the affinity of 
HP1Swi6 for RNA is crucial for the 
repression of heterochromatic genes. 

 Next, the authors used 
fluorescence recovery after 
photobleaching (FRAP) experiments 
to confirm that the association of 
HP1Swi6 with chromatin is dynamic 
in vivo. By using a nuclear magnetic 

resonance 
(NMR)-based assay they 

observed that binding of HP1Swi6 to 
RNA and methylated H3K9 occurs 
through multiple domains. 
Interestingly, further biophysical 
analysis revealed that RNA and 
H3K9me3 binding are competitive 
processes; the authors therefore 
concluded that HP1Swi6 association 
with heterochromatic RNAs actually 
triggers its release from 
heterochromatin owing to weakened 
H3K9me3 binding of HP1Swi6 when 
bound by RNA. Finally, chromatin 
profiling analysis also placed Cid14 
nearby to heterochromatin, 
suggesting that a rapid ‘hand-off’ of 
mRNA from HP1Swi6 to Cid14 for 
processing might be possible. 

Thus, although transcription can 
occur at heterochromatic loci, the 
methylation of Lys9 on histone H3 
provides a local checkpoint through 
recruitment of HP1Swi6. The association 
of HP1Swi6 with locally transcribed 
heterochromatic mRNAs results in its 
dissociation from chromatin and 
targeting of mRNAs for decay. 

Alison Schuldt

ORIGINAL RESEARCH PAPER Keller, C. et al. 
HP1Swi6 mediates the recognition and destruction 
of heterochromatic RNA transcripts. Mol. Cell  
7 Jun 2012 (doi:10.1016/j.molcel.2012.05.009)
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mean gene expression levels that occur

as cells change state. Deciphering the

structure of gene expression noise and

dynamics in the context of biological

programs represents an emerging frontier

in understanding how evolution shapes

transcriptional programs, and it will be

interesting to see how these concepts

extend to metazoan cells.
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Should I Stay or Should I Go?
Chromodomain Proteins Seal the Fate
of Heterochromatic Transcripts in Fission Yeast
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In this issue of Molecular Cell, Ishida et al. (2012) and Keller et al. (2012) show distinct outcomes for hetero-
chromatic RNAs that bind different chromodomain proteins; Chp1 tethers transcripts to centromeres,
whereas Swi6HP1-bound transcripts are evicted from chromatin and destroyed.
Posttranslational modification of histones

and the proteins that recognize these

changes coordinate the arrangement

and utilization of chromatin. Heterochro-

matin is characterized by transcriptional

silencing, histone hypoacetylation, and

enrichment for methylation on K9 and

K27 of histone H3. Silencing can occur

via reduction in RNA polymerase ac-

cess (transcriptional suppression) and

through posttranscriptional destruction

of RNA. Chromodomain proteins bind

to H3K9me2/3- or K27me3-marked chro-

matin and recruit additional chromatin

regulatory complexes that can reinforce

and spread the heterochromatic signals.

Despite being among the earliest-identi-

fied and best-known nonhistone pro-

teins associated with heterochromatin,

themechanistic details of how chromodo-
main proteins such as HP1 (heterochro-

matin protein 1) act to silence transcription

are poorly understood. Keller et al. (2012)

provide evidence that the fission yeast

HP1 homolog Swi6 directly captures

heterochromatin-associated transcripts

and targets them for degradation.

The fission yeast S. pombe harbors four

chromodomain proteins that are known

to recognize H3K9 methylation, including

two HP1-like proteins, Swi6HP1 and

Chp2HP1, which have largely nonoverlap-

ping activities that contribute to hetero-

chromatic silencing. Chp2HP1 acts to

silence heterochromatin at the transcrip-

tional level. In contrast, Swi6HP1 has

been implicated as associating with

a variety of chromatin-modifying factors

and, unlike Chp2HP1, associates with

RNA in vivo. Swi6HP1 is presumed to be
largely involved in the co- or posttran-

scriptional processing of heterochro-

matic transcripts rather than acting as

a barrier to prevent transcription itself

(Motamedi et al., 2008).

Until recently, it was not knownwhether

Swi6HP1 associates with RNA directly or

through an intermediary protein. Keller

et al. (2012) demonstrated that recom-

binant Swi6HP1, like HP1 isoforms in other

organisms (Muchardt et al., 2002), binds

RNA directly in vitro primarily through

the hinge domain, with contributions

from other regions including the chromo-

domain. Mutation of positively charged

residues within the hinge (Swi6-KR25A)

disrupted the association of RNA with

Swi6HP1 in vivo. The mutant protein

was still capable of being recruited to

heterochromatin by its affinity for H3K9
ll 47, July 27, 2012 ª2012 Elsevier Inc. 153
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Figure 1. Alternative Fates for Heterochromatic Transcripts
Capture by Swi6HP1 leads to eviction from chromatin and degradation medi-
ated by Cid14, capture by Chp1 or chromatin-bound Clr4Suv39 leads to reten-
tion on chromatin, and failure to be ‘‘caught’’ by chromodomain proteins
allows exit from the nucleus and translation.
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methylation (which was unaf-

fected by these mutations),

but was not competent for

silencing. Thus, RNA-binding

activity does not target

Swi6HP1 to heterochromatin.

Instead, binding of transcripts

to Swi6HP1 appears to be an

early step in their pathway to

destruction.

What does Swi6HP1 do with

RNA once estranged from

chromatin? Keller et al. pre-

sent evidence that Swi6HP1

prevents the translation of

transcripts, possibly by re-

taining them in the nucleus,

and instead ‘‘passes’’ tran-

scripts into the exosome and

RNAi degradation pathways

(Figure 1). The authors note
that there is no known biochemical

feature of heterochromatic transcripts

that signals for their destruction. They

suggest a model where association with

Swi6HP1 may ‘‘mark’’ the RNA for degra-

dation. However, artificially tethering

Swi6HP1 to transcripts is not sufficient

to induce silencing. Therefore, while

Swi6HP1 seems to act early in this path-

way, much remains unclear, such as

how Swi6HP1 feeds RNA into degradation

pathways. What other factors, in addition

to the Cid14 polyadenylase, contribute

to this process?

Perhaps the most intriguing finding of

this work is that, contrary to prior specu-

lation that Swi6HP1 may bind RNA and

H3K9 methylation simultaneously and

thus act as a tether of nascent transcripts

to chromatin, RNA actually impedes the

binding of Swi6HP1 to H3K9 methylation

in vitro. This implies that binding to

spurious transcripts disengages Swi6HP1

from chromatin, rather than stabilizing it.

Furthermore, the authors convincingly

argue against a role of Swi6HP1 as a

structural component of heterochromatin

by reaffirming its dynamic interaction

with the chromosome.

In a contrasting study, Ishida et al.

(2012) demonstrate that the two other

H3K9me binding chromodomain proteins

in fission yeast, Chp1 and Clr4Suv39, the

homolog of Suv39 proteins, have the

propensity to bind RNA by their chromo-

domains. This activity is enhanced,

however, or in thecaseofClr4Suv39’s chro-
154 Molecular Cell 47, July 27, 2012 ª2012 E
modomain, only revealed, when the chro-

modomain is also bound to H3K9me2.

Thus, for Chp1 and Clr4Suv39, which are

required for the establishment of hetero-

chromatin, chromatin-bound proteins

exhibit stronger RNA binding activity

than the free forms, suggesting that the

heterochromatin-bound proteins tether

heterochromatic transcripts to hetero-

chromatin (Figure 1).

Very interestingly, Ishida et al. gener-

ated two separation-of-function mutants

in Chp1’s chromodomain that accumu-

late centromeric transcripts to similar

levels but which, viewed in the light of

the Keller et al. results, exhibit distinct

fates for the transcripts. One Chp1mutant

(amut1), which associates with centro-

meric chromatin but is incapable of

binding to RNA, allows efficient trans-

lation of centromeric heterochromatin

reporter transcripts into protein. A second

Chp1 mutant (W44A), which retains

RNA binding activity but cannot bind

H3K9me2, shows defective translation of

reporter gene transcripts. This second

mutant exhibits properties similar to

those ascribed to Swi6 by Keller et al.

(2012), raising the possibility that this

mutant Chp1 is now functioning like

Swi6, binding transcripts off chromatin

and passing them on for destruction.

Alternatively, mislocalization of Chp1

may allow Swi6 to bind centromeric

transcripts.

Chromodomain proteins are present

at all heterochromatic loci in fission
lsevier Inc.
yeast, but the cellular abun-

dance and affinity for binding

chromatin are distinct, which

may set up competition

between different proteins for

binding to heterochromatic

transcripts and result in

different outcomes. Swi6 is

more abundant than the other

proteins and shows the lowest

affinity for binding H3K9me2/

3, whereas Chp1 is relatively

rare and has high affinity for

H3K9me (Schalch et al.,

2009). Perhaps the fate of

transcripts at different loci

also differs—the Keller study

focuses on the mating type

and telomeres, whereas

Ishida’s study focuses on

centromeres. Experiments de-
signed to explain how the various chromo-

domain proteins cooperate to bind

chromatin and RNA at different regions of

the genome will be important for devel-

oping an integrated model for how they

function.

The research of Keller and Ishida and

colleagues raises questions about the

role of chromodomain proteins in RNA

binding and processing in fission yeast

andhigher eukaryotes alike. It seems likely

that behaviors of various HP1 isoforms

and chromodomain bearing proteins

such as Polycomb can be partially ex-

plained by their differential ability to bind

RNA and how this binding affects their

canonical interaction with methylated

histone H3 (Bernstein et al., 2006). Further

complexity can be assumed because of

the incorporation of many chromodomain

proteins into larger complexes that

include other RNA-binding and process-

ing activities (Verdel et al., 2004; Hong

et al., 2005). Recent research suggests

that HP1 proteins can function within

euchromatin to regulate splicing and elon-

gation (Vakoc et al., 2005; Saint-André

et al., 2011). It will be interesting to know

whether there is similar interplay between

RNA and chromatin binding in these

instances.
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In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1
complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1
signaling during stress.
The TOR kinase, as part of TOR complex 1

(TORC1), is a central regulator of cell

growth in eukaryotes with effects on

cancer development, aging, and metabo-

lism. In optimal conditions, TORC1 drives

mass accumulation by promoting protein

synthesis while repressing catabolic path-

ways such as autophagy (Figure 1A).

However, in the absence of growth

hormones, or during stress or starvation,

TORC1 is inactivated, limiting growth. A

key issue is how TORC1 is regulated.

Several pathways stimulate TORC1 in

response to growth factors, including the

PI3 kinases, AKT, ERK, and the tuberous

sclerosis proteins TSC1/TSC2, which are

all regulators of tumor progression. Insight

has also recently emerged into how

TORC1 is controlled by stress and nutri-

ents. For example, TORC1 is activated by

small GTPases, called Rags, in part

through recruitment to the vacuolar

membrane (Figure 1A). Strikingly, the Rag

GTPases are only activated when leucine

levels are high as sensed by the leucyl

transfer RNA synthase (Bonfils et al.,

2012). Incontrast, duringstressor nitrogen

starvation, another small GTPase located

on the vacuolar membrane, Rho1, tran-
siently binds to TORC1, releasing it from

the membrane and triggering its inactiva-

tion (Yan et al., 2012) (Figure 1B). In this

issue of Molecular Cell, work from Taka-

hara and Maeda (2012) now suggest that

TORC1 is also repressed during stress by

sequestration into cytoplasmic messen-

ger ribonucleoprotein (mRNP) aggregates

known as stress granules (Figure 1B).

The authors first identify a link between

stress granule formation and TOR when

they find that in Saccharomyces cerevi-

siae, overexpression of Pbp1 suppresses

growth defects caused by a hyperactive

TOR allele and reduces the recovery of

TOR activity during alleviation of nitrogen

or glucose starvation. Pbp1 and its human

ortholog Ataxin-2 both promote stress

granule formation and have roles in regu-

lating messenger RNA (mRNA) function

(Nonhoff et al., 2007; Buchan et al.,

2008). Stress granules are conserved

cytoplasmic aggregates of nontranslating

mRNPs in association with some transla-

tion initiation factors and mRNA binding

proteins (Buchan and Parker, 2009).

Stress granules are typically observed

under conditions, such as stress, in which

translation initiation is limited and non-
translating mRNPs accumulate and

aggregate. The function of mRNP aggre-

gation into stress granules is not fully

understood, but it is suggested to regu-

late mRNA translation and degradation,

as well as to affect signaling pathways.

Such functions are consistent with stress

granule formation correlating with better

survival during stress (Kwon et al., 2007;

Eisinger-Mathason et al., 2008).

Takahara and Maeda’s main argument,

that sequestration of TORC1 in stress

granules is inhibitory for TORC1 function,

is supported as follows: First, the authors

show that Kog1 (a TORC1 subunit) and

Tor1 can localize in stress granules and

coimmunoprecipitate with Pbp1. Second,

they demonstrate that the ability of Pbp1

to downregulate TOR signaling, coimmu-

noprecipitate with TORC1, and recruit

TORC1 into stress granules depends on

Pbp1’s ability to self-associate, which is

also necessary for Pbp1 to both localize

within and promote assembly of stress

granules. Third, kinetic analysis showed

that recovery of TOR signaling after stress

correlates with its exit from stress

granules, while genetic and chemical

approaches that alter stress granule
ll 47, July 27, 2012 ª2012 Elsevier Inc. 155
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