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 „Und Gott sprach: Es werde Licht! und es ward Licht.  

Und Gott sah, daß das Licht gut war.  

Da schied Gott das Licht von der Finsternis“ 

1 Mose 1 vs 3-4, Luther Bibel 1545 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“God spoke “Light!” and light appeared.  

God saw that light was good and separated light from dark.” 

Genesis 1 vs 3-4, The Message translation  
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Abstract 

 

 

 
This thesis contains complementary synthetic and computational studies of transition 

metal complexes with polypyridyl ligands for use either as water oxidation catalysts or 

for application in dye-sensitised solar cells (DSSCs).  

 

Chapter 1 introduces the reasons for researching water splitting catalysts and describes a 

number of current techniques used to do so; from photoelectrochemical cells to the use of 

transition metal polypyridyl complexes. It also introduces three commercially available 

types of solar cells; silicon, thin film and the dye-sensitised solar cell.    

 

Chapter 2 describes the synthesis of seven ruthenium(II) complexes with substituted  

4'-(4-pyridyl)-2,2':6',2''-terpyridine ligands and their photophysical and electrochemical 

properties. Density Functional Theory (DFT) calculations were used to explore the 

compositions of the highest occupied- and lowest unoccupied molecular orbitals (HOMO 

and LUMO, respectively) and Time Dependent DFT (TD-DFT) was used to predict the 

absorption spectra of the complexes. 

 

Chapter 3 contains information on water soluble ruthenium(II) complexes, their 

synthesis, photophysical and electrochemical properties and their activity as water 

splitting co-catalysts. A mechanism to explain the variable activities of the complexes is 

also put forward.  

 

Chapter 4 describes the synthesis of two homoleptic Cu(I) complexes. One complex 

involves a simple 6,6'-dimethyl-2,2'-bipyridine ligand. The other complex contains a 

ligand with extended π-conjugation. The properties of the Cu(I) complexes are studied in 

terms of their suitability for use in DSSCs. A strategy of ligand-exchange on the surface 

of titanium dioxide (TiO2) is then utilised to form surface-bound heteroleptic Cu(I) 

complexes and efficiences of these complexes in DSSCs were measured.   
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Chapter 5 details the development of a suitable basis set to be used in both DFT and TD-

DFT to predict the absorption spectra of the homoleptic Cu(I) complexes in Chapter 4 

and the accuracies of the predicted spectra are assessed. The properties of the 

uncharacterised, heteroleptic Cu(I) complexes were then predicted and the effects of the 

anchoring ligands on the overall properties of the complexes were assessed.  

 

Chapter 6 describes the synthesis of two mono-substituted bipyridine-based ligands and 

their corresponding homoleptic chiral copper(I) complexes. Variable temperature nuclear 

magnetic resonance (VT-NMR) experiments are described, along with the photophysical 

properties of the ligands and complexes.  

 

Chapter 7 consists of the overall conclusions and an outlook. 
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Abbreviations 
 

 

Å  Angstrom 

bpy  2,2'-bipyridine 
nBu  n-Butyl 
tBu  t-Butyl 

calc.  calculated 

COSY  correlation spectroscopy 

CPCM  conductor-like polarisable continuum model 

CV  cyclic voltammetry 

δ  chemical shift 

D  deuterium 

DFT  density functional theory 

dmbpy  6,6'-dimethyl-2,2'-bipyridine 

DSSC  dye-sensitised solar cell 

E  standard half-cell potential 

ε  absorption coefficient in mol dm-3 cm-1 

EA  elemental analysis 

Eh  Hartree 

eq.  equivalent 

ESI  electrospray ionization 

Et  ethyl 

eV  electron volt 

ff  fill factor 

η overall conversion efficiency from solar to electrical energy for a 

photovoltaic device 

HF  Hartree-Fock 

HMBC  heteronuclear multiple bond configuration 

HMQC heteronuclear multiple quantum coherence 

HOMO highest occupied molecular orbital 

Hz  hertz 

ic  internal conversion 

ILCT  intra-ligand charge transfer 
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Isc  short circuit current 

isc  intersystem crossing 

IR  infra-red (s, strong; m, medium; w, weak) 

ITO  indium tin oxide 

J  coupling constant 

K  Kelvin 

λem  emission wavelength 

λex  excitation wavelength 

λmax  wavelength at maximum absorbance  

L  ligand 

LC  ligand centered transition 

LLCT  ligand to ligand charge transfer 

LMCT  ligand to metal charge transfer 

LUMO  lowest unoccupied molecular orbital 

M  parent ion 

MALDI-TOF matrix assisted laser desorption ionisation – time of flight 

MC  metal centred transition 

MLCT  metal to ligand charge transfer 

mmol  milimol 

MO  molecular orbital 

MS  mass spectrometry 

mV  millivolt 

m/z  mass to charge ratio 

N3  [Ru(4,4'-(dicarboxy)-2,2'-bipyridine)2(SCN)2] 

N719  [Ru(4,4'-(dicarboxy)-2,2'-bipyridine)2(SCN)2][TBA]2 

nHOMO next highest occupied molecular orbital 

NIST  National Institute of Standards and Technology 

nm  nanometre 

NMR nuclear magnetic resonance (signals identified as d, dd, t, m, br which 

mean doublet, doublet of doublets, triplet, multiplet and broad, 

respectively)  

NOESY nuclear Overhauser enhancement spectroscopy 

PCM  polarisable continuum model 
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Ph  phenyl 

ppm  parts per million 

qpy  2,2':6',2″:6″,2‴-quaterpyridine 

rt  room temperature 

SCN  thiocyanate 

TBA  tetrabutylammonium 

TBAPF6 tetrabutylammonium hexafluoridophosphate 
tBu  tert-butyl  

TD-DFT time dependent density functional theory 

TFL  Transport for London 

THF  tetrahydrofuran 

TiO2  titanium dioxide 

TLC  thin layer chromatography 

TMS  trimethylsilane 
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vs.  Versus 
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General Experimental Section 

 

1H and 13C NMR spectra were recorded on a Bruker DRX-500 MHz NMR spectrometer; 

chemical shifts are referenced to residual solvent peaks with TMS = δ 0 ppm.  

 

MALDI-TOF mass spectra were recorded on a PerSeptive Biosystems Voyager 

spectrometer. Electrospray mass spectra were recorded on a Bruker esquire 3000plus. 

 

Electronic absorption and emission spectra were recorded using an Agilent 8453 

spectrophotometer and Shimadzu RF-5301 PC spectrofluorometer, respectively. Solution 

lifetime measurements were made using an Edinburgh Instruments mini-τ apparatus 

equipped with an Edinburgh Instruments EPLED-300 pico-second pulsed diode laser 

(λex = 467 or 404 nm, pulse width = 75.5 or 48.2 ps, respectively) with the appropriate 

wavelength filter. The quantum yields were measured with an absolute PL quantum yield 

spectrometer C11347 Quantaurus_QY from Hamamatsu. 

Solid state electronic absorption spectra of Cu(I)-containing dyes on TiO2 were measured 

using a Varian Cary 5000 with a conducting glass with a TiO2 layer as a blank. 

 

TGA-MS measurements were carried out on a Mettler Toledo TGA/SDTA851e with 

Pfeiffer Vacuum ThermostarTM.  

 

IR spectra were recorded on a Shimadzu FTIR-8400S spectrophotometer (solid samples 

on a Golden Gate diamond ATR accessory). 

 

In chapter 2 electrochemical measurements were carried out using an Eco Chemie 

Autolab PGSTAT system with glassy carbon working and platinum auxiliary electrodes; 

a silver wire was used as a pseudo-reference electrode. Solvent was dry, purified MeCN 

and 0.1M [nBu4N][PF6] was used as supporting electrolyte. An internal reference of 

Cp2Fe was added at the end of each experiment.  

In chapter 3 electrochemical measurements were carried out using an Eco Chemie 

Autolab PGSTAT system with a Ag/AgCl working electrode and a Pt counter electrode . 

Solvent was deionised water and NaHSO4 was used as the supporting electrolyte.  



 ix 

In chapter 4 electrochemical data were recorded using a CH Instruments potentiostat 

(model 900B) with glassy carbon working and platinum auxiliary electrodes; a silver 

wire was used as a pseudo-reference electrode. Solvents for the electrochemistry were 

dry and purified, and the supporting electrolyte was 0.1 M [nBu4N][PF6]; an external 

reference of Cp2Fe was measured at the start and again at the end of each experiment. 
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Chapter 1 

Introduction 

1.1 General Introduction 

 

The world’s fossilised energy resources are finite and the impact of their use is already 

being felt worldwide. Global warming, melting ice caps and repeated flash flooding are 

all symptoms of human dependence on fossil fuels to provide the 14 terawatts (TW) of 

power that are used every year
1
. In order to reduce such dependence, alternative fuel 

sources, such as hydrogen gas for use in fuel cells, are being developed by means of the 

catalytic splitting of water – a focus of this thesis. Nuclear power, wind turbines, tidal 

barriers, geothermal energy, hydroelectric dams and biogas are also in use, along with the 

other focus of this thesis: solar cells.  

 

1.2 Water Splitting 

 

Water splitting (Eqn. 1.1) is a process carried out in plants by means of photosynthesis.  

 

                                                                           (Eqn. 1.1) 

 

In photosynthesis sunlight is absorbed by a plant and the energy from the sunlight is 

converted into chemical energy whereupon carbon dioxide and water are converted into 

sugars and molecular oxygen (Eqn. 1.2).   

 

                                                                 (Eqn 1.2) 

 

This process provides ~130 TW of power per year
2
, which is far more than is consumed 

by the human race. For this reason research has recently blossomed in the area of 

artificial photosynthesis – chemically mimicking photosynthesis. This process is a way of 

producing hydrogen that can then be stored and used as a source of fuel.   
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Hydrogen is becoming more common as a fuel source for road transport. BMW recently 

manufactured 100 test cars (BMW Hydrogen 7) which can be powered by either petrol or 

hydrogen
3
. The cars have conventional internal combustion engines, which can burn 

either petrol or hydrogen in the cylinders. Honda have developed a car (Honda FX 

Clarity) which runs on electricity, which is produced from the combination of hydrogen 

and oxygen (Eqn. 1.3) by means of a fuel cell
4
. A fuel cell is a device that converts 

chemical energy from a fuel to electrical energy by means of a chemical reaction with 

oxygen or another oxidising agent
5
.  

 

                                                                     (Eqn. 1.3) 

 

The same technology is used in the newest fleet of London buses, which were introduced 

in 2011
6
. The fuel cell that combines the hydrogen and oxygen works at  

40-60 % efficiency and the only emission from the bus is water vapour.  

 

Hydrogen is also used as a feedstock for the synthesis of fertilisers, pharmaceuticals and 

plastics.  

 

As the demand for hydrogen grows, more efficient ways of generating hydrogen are 

needed. There are multiple ways of photochemically splitting water (Eqn. 1.1) to generate 

molecular hydrogen and molecular oxygen
7-14

, for example: photoelectrochemical cells, 

heterogeneous catalysis involving semiconductor particles with co-catalysts attached, 

quantum dots and homogeneous catalysis using dyes.  

 

The workings of a photoelectrochemical cell are depicted in Fig. 1.1.  
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Fig. 1.1 Schematic of a photoelectrochemical cell redrawn from ref [
10

].  

 

Fujishima and Honda were the first to report this method of water splitting
15

. Titanium 

dioxide (TiO2) in the rutile form was used as the semiconductor electrode in conjunction 

with nanoparticulate platinum (Pt) as the counter electrode. On illumination there is hole-

electron separation within the TiO2 nanoparticles. The holes oxidise water to molecular 

oxygen and protons. The electrons migrate to the Pt counter electrode where the protons 

are reduced to molecular hydrogen. The photoelectrochemical cell only absorbs light in 

the UV region of the spectrum as TiO2 has such a large bandgap energy (3 eV).  

Since the discovery by Fujishima and Honda, work has been carried out on substituting 

the TiO2 in the photoelectrochemical cell for another substrate or substrates which will 

absorb visible light. This work has been the subject of recent reviews
7, 9

. Methods such as 

chemical doping or the use of more than one semiconductor in parallel are being 

developed. The advantage of these newer systems is that they absorb visible light and 

therefore have a higher efficiency than the Fujishima/Honda system. However, the 

chemically doped and parallel systems tend to be much less stable.  

 

O2 
Out 

H2 
Out 

Power Source 
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electrode 

Window 
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Another approach to splitting water is the use of heterogeneous catalysts. The advantages 

of heterogeneous catalysis over the photoelectrochemical cell are that there is no need for 

direct illumination or transparent materials, which can often be expensive.  

The heterogeneous catalyst can be prepared in one of two ways
16

; 

(i)   Both the water oxidation catalyst and the water reduction catalyst are grafted   

        onto the same semiconductor particle or one semiconductor part (Fig. 1.2, left). 

(ii) The semiconductor particles have only a water oxidation catalyst or a water    

        reduction catalyst grafted onto them and the water splitting takes place in the  

        presence of an electrolyte (Fig. 1.2, right). 

 

  

Fig. 1.2 The two types of heterogeneous catalyst for water splitting catalysis, redrawn 

from reference [
16

]. 

 

The one-step system (Fig. 1.2, left) is problematic as oxygen and hydrogen are produced 

simultaneously and the mixture of the two gases is explosive, so energy consuming 

separation of the gases is required. Also, catalysts that are efficient at water splitting are 

often efficient at the back reaction; the reaction between hydrogen and oxygen to form 

water, and so a steady state system can be reached.  

For these reasons a two step system (Fig. 1.2, right) is preferred
9, 14

. As water oxidation 

and water reduction are happening at different sites, the reaction products can be 

collected separately, removing the possibility of the recombination reaction. However, 

the two step system is more complicated as it necessitates the use of a redox couple.  
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Quantum dots are small semiconductor particles whose band gap energy depends on the 

size of the dot. The absorption spectrum of a quantum dot (QD) can therefore be tuned by 

engineering the size of said QD. An emerging area of research is to use these QDs to 

sensitise large band gap semi-conductors, such as ZnO or TiO2, which are known to be 

good water splitting catalysts (Fig. 1.3). This enables the overall system to absorb visible 

light.  

 

 

 

Fig. 1.3 The deposition of ZnS quantum dots onto ZnO nanorods
17, 18

. 

 

The advantage of this type of water splitting catalysis is: 

(i) the simple engineering of the absorption spectrum of the quantum dot  

(ii)  on acceptance of a photon a quantum dot can generate multiple hole-electron pairs
19

,    

       which can lead to increased efficiency of the system.  

However, charge carriers which have been photogenerated can react with other quantum 

dots, instead of water, which decreases the overall efficiency of the system.   

 

The use of quantum dots is not the only way to sensitise a large band-gap semiconductor.  

In 1979 Graetzel et al. discovered that by using [Ru(bpy)3]
2+

 (bpy = 2,2'-bipyridine) as a 

sensitiser for TiO2 and Pt as a counter-electrode, visible light could be used to produce 

both hydrogen and oxygen from water
20, 21

. This type of water splitting catalysis involves 

both homogeneous and heterogeneous catalysis, which adds complexity. As such, 

research into the use of dyes for solely homogeneous water splitting catalysis is also 

being carried out. In 1978 Graetzel et al. reported the use of [Ru(bpy)3]
2+

 as a 

photosensitiser to evolve hydrogen from water
22

. Research into the use of dyes as water 

reduction agents continues to date and has recently been reviewed by Bernhard et al.
23

. 

The more challenging side of water splitting, the four electron water oxidation process, is 

one of the subjects of this thesis and is introduced in detail in Chapter 3.   

 

ZnS 
QDs 
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1.3 Solar Cells 

 

The working principles of water splitting are shared in some cases by solar cells. Both 

involve the irradiation of large band-gap semiconductors with visible light to induce a 

flow of electrons and holes, which can then carry out “work”.  

 

Solar cells were first used on a large scale in space to power satellites. Now, with 

increasing research in the field and decreasing costs of the solar cells themselves, they 

can be found in a plethora of different electrically powered devices (examples in Fig. 1.4). 

 

  

Fig. 1.4 Left, two solar lanterns (B&Q) and one solar battery pack (IKEA) charging in 

the sunlight. Right, as night falls the solar lanterns switch themselves on using the energy 

gained during the daytime, the battery pack can be used to power a light. 

Photographs taken by J. Rudd October 2012.  

 

The most prevalent type of solar cell today is the silicon solar cell. The manufacturing 

costs have decreased dramatically since they were first invented and the cost per Watt of 

electricity from solar panels in places such as California and Japan is decreasing towards 

the cost per Watt of electricity from the grid (this is termed, approaching grid parity)
24

. 

The working principles of a silicon solar cell are depicted in Fig. 1.5. 
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Fig. 1.5 The working principles of a silicon solar cell
25

. 

 

Silicon itself is a poor conductor as its electrons are all involved in bonding the silicon 

atoms together to form a lattice. However, it is possible to dope silicon, which results in a 

silicon lattice with defects. For use in a solar cell one silicon wafer is n-doped  

(n = negative); that is, atoms such as phosphorus, which have five electrons in their outer 

shell, are introduced into the lattice. The other silicon wafer is p-doped (p = positive) 

with an atom such as boron, which only has three electrons in its outer shell. An electric 

field is formed when the two wafers come into contact with one another. On irradiation 

electrons start to flow towards the n-side of the cell and the resulting holes flow towards 

the p-side of the cell. This results in a current, which can be used to do ‘work’.  

The overall efficiency of the cell is limited as some wavelengths do not have enough 

energy to displace an electron and some wavelengths have more energy than is required, 

so the excess energy is lost. 

 

With the recent rapid uptake of silicon for both solar panels and for use in electronics, the 

demand and therefore cost of silicon has started to rise. For this reason another type of 

solar cell using thin film technology is becoming more competitive
26

. Thin film solar 

cells have been used in calculators for many years but the production cost and lower 

efficiencies (compared to silicon cells) have prohibited the development of large scale 

arrays. Thin film solar cells work on the same principle as the silicon solar cells with p-

type and n-type doping facilitating the flow of current. Thin film cells have an additional 

i layer which is photovoltaically active
27

. Thin layers of photovoltaic material are 

Metal contacts 

p-type silicon 

n-type silicon 

External circuit  
with load 

hv 
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deposited sequentially onto a substrate, commonly glass resulting in a cell with a 

thickness of approximately ten micrometres
27

. Thin film solar cells can but do not always 

incorporate silicon and the most efficient cells so far (17.3%) are manufactured from 

cadmium and tellurium by a company called First Solar
28

. Other thin film cells are made 

from copper indium diselenide (CIS) and copper indium gallium diselenide (CIGS). 

 

A further type of solar cell that is becoming competitive is the dye-sensitised solar cell 

(DSSC). This research was pioneered by Michael Graetzel in the late 1980s and has 

resulted in a solar cell that is made of low cost materials and has a simple structure
29

. A 

further advantage of this type of solar cell is that it can be flexible and therefore has a 

greater range of uses than the silicon solar cells.  Originally, the dye tris(2,2'-bipyridyl-

4,4'-carboxylate)ruthenium(II) (Fig 1.5) was used to sensitise TiO2 in order to convert 

sunlight into current. A ruthenium compound was used as it was capable of absorbing 

visible light and the carboxylate groups were used to anchor the ruthenium complex to 

the TiO2. In 1991 the reported efficiency of the DSSC was 7.1% 
30

. Over the years 

research to optimise the TiO2 and other components of the DSSC have lead to 

incremental rises in efficiency
29

.  Research into the optimisation of the ruthenium dye 

itself had also been underway with the aim of synthesising a dye that could absorb over 

the entire visible spectrum. This was achieved in 2001 with the synthesis of the “black 

dye” (Fig 1.5) and the efficiency at that time was reported to be 10.4% 
31

. Further 

development of the DSSC has increased this efficiency to 11% 
32

 and DSSCs are now 

commercially available
33

.  

 

 

Fig. 1.5 Left, the cation in tris(2,2'-bipyridyl-4,4'-carboxylate)ruthenium(II), right, the 

ruthenium complex known as the “black dye”. 
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In an effort to make DSSCs even more cost-effective and environmentally friendly, 

research into the use of earth-abundant first-row transition metals is underway. To date 

polypyridyl iron
34

, zinc
35

 and copper
36

 complexes for the sensitisation of TiO2 have been 

reported and it is under this umbrella that the second topic of this thesis falls. For further 

introductory information see Chapter 4. 
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Chapter 2 

Alkylated bis{4'-(4-pyridyl)-2,2':6',2''-terpyridine}ruthenium(II) complexes 

2.1 Introduction  

For decades, ruthenium complexes with 2,2'-bipyridine derivatives have dominated 

the field of photochemistry, with long lifetimes, high quantum yields and a variety of 

applications from solar cells to water-splitting catalysts1-4. However, cis-

bis(bipyridine) and tris(bipyridine) complexes are chiral and can, therefore, be present 

in reactions as enantiomers, which are difficult to separate5.  In the more recent past, 

research has moved towards ruthenium complexes with achiral, tridentate, 2,2':6',2''-

terpyridine (tpy) ligands. Synthesis of these tpy ligands is facile using a one-pot 

synthesis method developed by Hanan and coworkers in 20056. However, the 

complex [Ru(tpy)2]
2+ is photophysically inferior to [Ru(bpy)3]

2+ in many ways; the 

quantum yield is much poorer (<0.000027 compared to 0.041), the lifetime is shorter 

(0.25 ns compared to ~850 ns)8, 9 and the complex does not emit light, in fluid 

solution, at room temperature. Subsequently, much research has been carried out into 

tuning the tpy ligand to improve the photophysical properties of the corresponding 

Ru(II) complex10-12. 

 

Fig. 2.1 A simplified Jabłonski diagram, representing the effect of light on a Ru(II) 

complex. Green line denotes radiationless decay.  

 

In order to tune a complex, the photophysical properties of said complex must first be 

understood (Fig. 2.1).  

On absorption of light, an electron is promoted from a d-orbital centred on ruthenium 

to a vacant π* orbital on the ligand. This is known as a metal-to-ligand charge transfer 

3MC 

Energy 

1MLCT 

3MLCT hƲ 

hƲ 

isc 
ic 

  So 
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(MLCT). The triplet (3) MLCT state is populated through intersystem crossing (isc),  

which involves a change in spin state. For ruthenium complexes, the intersystem 

crossing is so fast, compared to the subsequent internal conversion (ic), that it can be 

thought of as instantaneous. From the 3MLCT there are two possibilities: 

1) internal conversion (ic) to a 3MC state and then non-radiative decay back to 

the ground state; 

2)  radiative decay from the 3MLCT state back to the ground state, which is 

known as phosphorescence.  

 

In the case of [Ru(tpy)2]
2+, the 3MC lies very close in energy to the 3MLCT 1. This is 

due to the distorted octahedral geometry around the ruthenium ion, caused by the 

presence of the terpyridine ligands. As the potential wells of the 3MC and 3MLCT 

overlap, movement of electrons allows population of the 3MC state, making all decay 

non-radiative, which means that the complex does not emit light1.  

The amount of radiative decay is quantified by the quantum yield, which is the 

amount of radiative decay divided by the amount of light absorbed. For a {Ru(tpy)2}-

based complex, as the light emitted can only be measured if it came from the 3MLCT 

state, the quantum yield gives a good indication of how much electron density has 

undergone IC and decayed from the 3MC state. The lifetime of a complex quantifies 

the decay of intensity of the luminescent emission.  

The tuning of the complex is necessary to optimise the energy gap between the 3MC 

and the 3MLCT states. The ideal complex would have a high energy 3MC and a low 

energy 3MLCT, thus maximising radiative decay and minimising IC. To this end 

many different substituents have been attached to tpy and the resulting ligand 

complexed to ruthenium12.  

 

A paper by Maestri et al. detailing the effects of addition of different electron-

donating and electron-withdrawing substituents to the tpy moiety was published in 

199513. A range of tpy ligands with different electron-accepting and -donating 

substituents were complexed to ruthenium and the photophysical and electrochemical 

properties were studied. It was found that the ligand-centered bands of the tpy were 

considerably shifted to shorter wavelengths by the presence of electron-donating 

substituents in the absorption spectrum. The spin-allowed MLCT band undergoes an 

increase in intensity and a red-shift, regardless of the nature of the substituent. 
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Electron-accepting substituents increased the luminescence quantum yield and the 

excited state lifetime but electron-donating substituents had the opposite effect. 

Through correlation of the Hammett σ-parameters, the electrochemical redox 

properties and the energy of the luminescent level it was found that: 

• electron-accepting substituents have a larger stabilisation effect on the LUMO 

π
* ligand-centred orbital than on the HOMO t2g metal orbital.  

• electron-donating substituents have a larger destabilisation on the HOMO t2g 

metal orbital than on the LUMO π* ligand-centred orbital. 

 

Just over ten years later, a paper by Beves et al. reporting the substitution of tpy in the 

4'-position with a further 4-pyridyl moiety and the subsequent methylation of the 

pyridyl moiety was published14. The MLCT absorbance of the pyridyl-substituted 

complexes was red-shifted (λmax = 487-492 nm) compared to the [Ru(tpy)2]
2+ complex 

(λmax = 475 nm)9 and one of the methylated complexes was even more red-shifted 

(λmax = 507 nm).  

 

Following these two studies, it was decided to alkylate bis{4'-(4-pyridyl)-2,2':6,2''-

terpyridine}ruthenium(II) complexes, henceforth denoted as [Ru(pytpy)2]
2+, at the 

terminal pyridyl moiety with a range of electron-donating and electron-withdrawing 

substituents, (Fig 2.2).  

 

 

 

Fig. 2.2. The substituents were added to the [Ru(pytpy)2]
2+ complex (left), annotated 

with their electronic contribution to the complex (right)   
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In adding these various substituents, it was hoped that the properties of the cation 

could be tuned, increasing the quantum yield and lifetime, and red-shifting both the 

absorbance and the emission of the complex. To aid our understanding of the effect 

(or lack of effect) that these substituents have on the {Ru(tpy)2} core both density 

functional theory (DFT) and time-dependent density functional theory (TD-DFT) 

calculations have been carried out. The results of the calculations are discussed later 

in this chapter.  

 

DFT calculations are starting to be used more and more to complement and elaborate 

on experimental observations. Both DFT and TD-DFT calculations have recently 

been used to investigate the HOMO-LUMO gaps and predict the absorption spectra of 

Ru(II) complexes, with bpy-type ligands, for application in Dye-Sensitised Solar Cells 

(DSSCs)15-17. In the published work17, the agreement between the experimentally 

obtained and the calculated UV-vis spectra was poor, with disagreement of λmax up to 

90 nm for the MLCT but valuable information about the composition of the HOMO 

and LUMO on the complex was obtained. This information included where the 

HOMO and LUMO were localised, showing that the LUMO resides on the bipyridine 

with the anchoring group substituent, which means that the complex will be capable 

of binding to and injecting an electron into the TiO2 layer in a DSSC. The calculations 

also predicted the energy levels of the HOMO and LUMO of the complex, which is 

also important for prediction of the complex’s use in DSSCs. If the energies of the 

HOMO and LUMO of the dye are not compatible with the band energies of the TiO2, 

the DSSC will be inefficient18.  

 

Investigations into {Ru(tpy)2}-type complexes using DFT and TD-DFT calculations 

have also been carried out19-23. Generally the works referenced use the calculations to 

corroborate experimental data or explore the experimental data in more depth. Work 

carried out by Berlinguette et al21 used DFT and TD-DFT to explain the effect of a 

conjugate spacer between a tpy moiety and a triphenylamine moiety. Batista et al19 

combined experiment and theory  to investigate the triplet potential energy surfaces of 

three Ru-tpy containing complexes and found that there were several 3MC and 
3MLCT states close in energy. They also found that the inclusion of solvent in the 

calculations was critical in order to correctly describe these triplet excited states.      
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A recent publication details the effect of protonation of [Ru(pytpy)2]
2+ 23. Calculations 

were performed on [Ru(pytpy)2]
2+, [Ru(Hpytpy)(pytpy)]3+ and [Ru(Hpytpy)2]

4+ and 

the predicted UV-vis spectra showed good agreement (within 20 nm) with the 

experimental data. The energy gap between the 3MLCT and the 3MC was also 

investigated and it was found that “population of lower-lying MC states [were] held 

responsible for the reduced quantum yields and emission lifetimes observed for the 

nonprotonated Ru(II) compound.”23 

 

The work in this chapter was completed in collaboration with Dr. Michael Devereux 

and is published in:  

E.C. Constable, M. Devereux, E.L. Dunphy, C.E. Housecroft, J.A. Rudd and  

J.A. Zampese, Dalton Trans., 2011, 40, 5505-5515.  

 

2.2 Synthesis of [Ru(R-pytpy)2][PF6]4 Complexes 

 

Ruthenium complexes of the ligands depicted in Fig. 2.3, are described in this section.  

 

 

Fig. 2.3 Ligands 1-7 with labelling for 1H NMR spectroscopic assignments. 

 

The starting material for the complexes [Ru(L)2][PF6]4 was [Ru(pytpy)2][PF6]2. This 

was synthesised by reacting two equivalents of 4'-(4-pyridyl)-2,2':6',2''-terpyridine 

with one equivalent of RuCl3·3H2O, in ethylene glycol, in a microwave oven for three 

minutes (Scheme 2.1)14. A catalytic amount of N-ethylmorpholine is required to 

reduce the oxidation state of the ruthenium from +3 to +2. This method of 

synthesising [Ru(pytpy)2][PF6]2 greatly reduces the reaction time compared to the 

method of Cargill Thompson, which required refluxing pytpy and RuCl3.6H2O in 
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ethanol for six hours24. The [Ru(pytpy)2][PF6]2 complex was then alkylated by heating 

it at reflux in acetonitrile with 120 equivalents of the appropriate alkylating agent. 

(Table 2.1) A large excess of the alkylating agent was required to alkylate both 

pendant pyridines and the progress of the reaction was monitored using spot TLC.  
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Scheme 2.1 Synthesis of a [Ru(R-pytpy)2][PF6]4 complex. 

 

When the reaction was judged complete, the product of the reaction was purified 

chromatographically. After work-up, the product was isolated as a red powder in 

moderate to good yield (Table 2.1). 
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Complex Reaction Time (h) Yield (%) 

[Ru(1)][PF6]4 12 70 

[Ru(2)][PF6]4 12 79 

[Ru(3)][PF6]4 12 42 

[Ru(4)][PF6]4 72 64 

[Ru(5)][PF6]4 12 62 

[Ru(6)][PF6]4 4 73 

[Ru(7)][PF6]4 48 38 

 

Table 2.1 Reaction times and yields of the Ru(II) complexes of ligands 1-7 with PF6 

counter-anions 

 

2.3 Results and Discussion 

 

2.3.1 1H NMR Spectroscopy 

 

For solubility reasons, complexes [Ru(L)2][PF6]4 L+= 2-6 were measured in d6-

DMSO and complexes [Ru(L)2][PF6]4 L
+= 1, 7  were measured in d3-MeCN (Tables 

2.2 and 2.3)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Complex 

(substituted with) 

 

B3 

 

C2 

 

C3 

 

A3 

 

A4 

 

A6 

 

A5 

 

Ha 

[Ru(pytpy)2][PF6]2 

(unsubstituted) 

9.62 9.14 9.02 8.47 8.11 7.57 7.30 N/A 

 

[Ru(2)2][PF6]4 

(cyanobenzyl) 

9.77 9.65 9.20 9.10 8.17 7.59 7.34 6.13 

[Ru(3)2][PF6]4 

(nitrobenzyl) 

9.77 9.66 9.21 9.09 8.17 7.59 7.34 6.18 

[Ru(4)2][PF6]4 

(ethyl) 

9.78 9.52 9.17 9.12 8.17 7.58 7.33 4.80 

[Ru(5)2][PF6]4 

(cyano) 

9.80 9.61 9.25 9.12 8.17 7.58 7.33 6.08 

[Ru(6)2][PF6]4 

(allyl)  

9.79 9.48 9.19 9.12 8.17 7.58 7.33 6.35 

Table 2.2 Comparison of shifts (δ/ppm) on alkylation and between alkylations for 

complexes measured in d6-DMSO at room temperature. (N/A means not applicable.) 

 

Complex 

(substituted with) 

 

B3 

 

C2 

 

C3 

 

A3 

 

A4 

 

A6 

 

A5 

 

Ha 

[Ru(pytpy)2][PF6]2 

(unsubstituted) 

9.06 8.98 8.67 8.16 7.97 7.42 7.20 N/A 

[Ru(1)2][PF6]4 

(benzyl) 

9.16 9.12 8.79 8.72 8.03 7.45 7.26 5.93 

[Ru(7)2][PF6]4 

(octyl) 

9.14 9.01 8.77 8.70 8.02 7.46 7.25 4.69 

Table 2.3 Comparison of shifts (δ/ppm) on alkylation and between alkylations for 

complexes measured in CD3CN at room temperature. (N/A means not applicable.) 

 

A representative spectrum of [Ru(7)2][PF6]4 is depicted (Fig. 2.4). 
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Fig. 2.4 1H NMR spectrum of [Ru(7)2][PF6]4, in CD3CN; 500 MHz, CD2HCN(*), 

25ºC. 

 

The appearance of only one set of pytpy signals (A, B, C) indicates successful 

alkylation of both pyridyl moieties. The majority of the pytpy signals can easily be 

assigned using the splitting patterns and by comparing the spectra of the product and 

the parent [Ru(pytpy)2][PF6]2 (Tables 2.2 and 2.3). The singlet at δ 9.14 ppm is 

ascribed to proton B3. To assign the other peaks, a COSY spectrum was measured. 

The spectrum showed couplings between the AB doublets at δ 9.01 and 8.76 ppm, 

which meant that these signals could be ascribed to the C ring.  

COSY analysis showed couplings between the signals at δ 8.69, 8.02, 7.45 and 7.25 

ppm and these signals were ascribed to the A ring. The triplet splitting of the signal at 

δ 8.02 and doublet of doublets splitting at δ 7.25 ppm determined the assignment of 

A
4 and A5 and the specific assignment was achieved by comparing the shifts to the 

parent [Ru(pytpy)2][PF6]2 complex. The same process was followed to ascribe A3 and 

A
6. The assignment of C2 and C3 required the use of a NOESY spectrum to assign 

these signals unambiguously. A NOESY correlation between the singlet at δ 9.14 ppm 

(ascribed to B3) and the AB doublet at δ 8.76 ppm meant that the AB doublet at δ 8.76 

ppm could be ascribed to C3. 
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Relative to the parent [Ru(pytpy)2][PF6]2 complex, upon alkylation all pytpy signals 

were deshielded and the signals due to protons A
3, C

2 and C
3 were most affected, 

regardless of substituent (Tables 2.2, 2.3). The chemical shift of the signal ascribed to 

A
3 was shifted downfield, compared to the parent complex, to δ 9.11 ppm for all 

complexes, regardless of the substituent. The chemical shifts of the signals ascribed to 

C
2 and C3 were shifted downfield, compared to the parent complex, but their specific 

chemical shift depended on the substituent. When the substituent was electron-

withdrawing the C2 and C3 signals were downfield, compared to when the substituent 

was electron-donating.  

 

New signals, due to the substituent, were also observed in the NMR spectra of the 

alkylated complexes. The signal for Ha (the -NCH2- protons), which occurs between δ 

4.69 and 6.18 ppm is characteristic for this set of complexes (Table 2.3 and 2.4). The 

shift of this signal depends on the electronegativity of the substituent. For example, 

the Ha signal for complex [Ru(3)2][PF6]4  is downfield (δ 6.18 ppm) relative to the Ha 

signal of [Ru(4)2][PF6]4 (δ 4.80 ppm) due to deshielding effects from the phenyl and 

the cyano group at the para position. However, complex [Ru(7)2][PF6]4 has an octyl 

substituent, which is much less electron-withdrawing, therefore more shielded and the 

signal, correspondingly, is at δ 4.69 ppm. The parent complex [Ru(pytpy)2][PF6]2 was 

compared with compounds [Ru(L)2][PF6]2 (L
+ = 2-6) in d6-DMSO (Table 2.2) and 

compounds [Ru(L)2][PF6]2  (L
+ = 1, 6) in d3-MeCN for solubility reasons (Table 2.3).    

The splitting and integrals of the peaks in the aliphatic region confirmed the octyl 

chain.  

 

2.3.2 13C{1H} NMR Spectroscopy 

 

The 13C NMR spectrum for [Ru(7)2][PF6]4 is depicted in Fig. 2.5. The signals were 

assigned using DEPT, HMQC and HMBC techniques. Again, the appearance of only 

one set of pytpy signals confirmed the alkylation of both pendant pyridyl moieties and 

eight signals in the aliphatic region of the spectrum also confirmed that the complex 

had an octyl substituent. However, it was not possible to unambiguously ascribe all 

signals in the aliphatic region of the spectrum because the signals in the proton 

spectrum appeared so close together that distinguishing between cross peaks in the 

HMQC and HMBC spectra was not feasible.  
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Fig. 2.5 13C{1H} NMR spectrum of [Ru(7)2][PF6]4 in CD3CN; 500 MHz, CD3CN(*), 

25ºC.  

 

The signal for a, which occurs between δ 47.6 and 62.7 ppm across the series of 

complexes, is characteristic for this set of complexes (Tables 2.4 and 2.5). As 

observed for the Ha proton signal, the shift of the a signal in the carbon spectrum is 

dependent on the electronegativity of the substituent; the more electronegative the 

substituent, the more downfield the signal (Tables 2.4 and 2.5). For solubility reasons, 

complexes [Ru(L)2][PF6]4 L+= 1, 7 were measured in d3-MeCN and complexes 

[Ru(L)2][PF6]4 L
+= 2-6  were measured in d6-DMSO.  

  

 

 

 

 

 

Table 2.4 Comparison of shifts of a between complexes measured in d3-MeCN.  

 

 

 

 [Ru(1)2][PF6]4 

(benzyl) 

[Ru(7)2][PF6]4 

(octyl) 

a 

(δ/ppm) 

65.4 62.7 

A2/B2   

   A6  C4   
  

   B4 

  A4 

 C3 

    a 

  e/f/g, 
    

  c/d  e/f/g     h 
  A5 

 e/f/g 

      b 
   B3 

   A3   C2 

*  * 



 23 

 [Ru(2)2][PF6]4 

(cyanobenzyl) 

[Ru(3)2][PF6]4 

(nitrobenzyl) 

[Ru(4)2][PF6]4 

(ethyl) 

[Ru(5)2][PF6]4 

(cyano) 

[Ru(6)2][PF6]4 

(allyl) 

a 

(δ/ppm) 

62.5 62.0 56.2 47.6 62.1 

Table 2.5 Comparison of shifts of a between complexes measured in d6-DMSO.  

 

2.3.3 Mass Spectrometry 

 

An attempt to characterise the complexes using ESI mass spectrometry (positive 

mode) was made. However, the only peak observed in the spectrum was that of the 

parent [Ru(pytpy)2]
2+ complex. As NMR spectroscopy had confirmed formation of 

the product, it was assumed that, although a soft technique, ESI was detaching the 

substituent from the {Ru(pytpy)2} core. For this reason, MALDI-TOF mass 

spectrometry was used. It was possible to observe peaks corresponding to [M - 3PF6]
+ 

in all cases, as well as either [M - 4PF6]
+ or [M - 2PF6]

+. It was also possible to 

observe fragmentation by loss of alkyl substituents. This gave rise to peaks ascribed to 

[Ru(L)(Hpytpy)]+ and [Ru(Hpytpy)2]
+. 

 

2.3.4 Absorption Spectroscopy 

 

The complexes described in this chapter were designed with different electron- 

donating and electron-withdrawing substituents, in order to tune the energy gap 

between the 3MLCT and 3MC states. Absorption spectroscopy was used to investigate 

these complexes and ascertain the extent to which the 3MLCT energy level was 

affected by each substituent.  

 

It has previously been reported that both protonation and methylation of a 

[Ru(pytpy)2]
2+ complex cause the MLCT to red-shift to λmax = 507 nm, from 488nm 

for the parent complex14. This same red-shift occurred for all complexes 

[Ru(L)2][PF6]4 (L+ = 1-7). However, little change in between complexes was 

observed (range of λmax = 509-516 nm), as depicted in Fig. 2.6. The only difference 

between complexes was the molar absorption coefficient (ε) which, for the MLCT 

band, ranged from 48.7 × 103 (L+ = 7) to 29.7 × 103 (L+ = 3) dm3 mol-1 cm-1.  
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The most intense bands were due to ligand π�π* transitions. Of these the band 

centred at 277 nm (276 nm for L+ = 4) was the most intense for all complexes. There 

was also a marked difference in the ε values of this band, which ranged from 10.4 × 

104 (L+ = 2) to 63.3 × 103 (L+ = 1) dm3 mol-1 cm-1.  

 

 

 

Fig. 2.6 Absorption spectra for [Ru(L)2][PF6]4 (L
+ = 1-7), measured in acetonitrile. 

All solutions are of 10-6 mol dm-3 concentration. 

 

The data recorded for the MLCT and the ligand centred transitions are summarised 

and compared to the parent [Ru(pytpy)2][PF6]2 complex (Table 2.6). The results 

demonstrate that changing the substituent not only has very little effect on the shift of 

the MLCT band but also no effect on the absorption maximum of any of the π�π* 

bands. The lack of MLCT shift suggests that changing the substituent has no effect of 

the {Ru(tpy)2} core. This could be due to the N-CH2 group preventing delocalisation 

of the π character from the terminal pyridyl moiety, which is explored in greater depth 

later in a TD-DFT study.  
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Table 2.6 A summary of the photophysical data, recorded in MeCN, for the Ru(II) 

complexes of ligands 1-7. 

 

2.3.5 Emission Spectroscopy 

 

Further investigation into the effect of alkylating the [Ru(pytpy)2]
2+ complex was 

carried out using emission spectroscopy. If the gap between the 3MLCT and the 3MC 

states had been increased, the complexes would emit at room temperature with a 

longer lifetime and a higher quantum yield, compared to the parent [Ru(pytpy)2]
2+ 

complex.  

MeCN solutions of the complexes were excited in the MLCT band (λex = 510 nm), 

which resulted in a broad emission between 620 and 850 nm. Compared to the parent 

[Ru(pytpy)2][PF6]2 complex, the emission was red-shifted and λem was generally 

Complex MLCT  

(ε/103 dm3 

mol-1 cm-1) 

     

Ru(pytpy)2][PF6]2 488 (30.9) 312 

(61.6) 

  273 

(78.4) 

238 

(43.5) 

[Ru(1)2][PF6]4 511 (34.3) 341 

(26.4) 

313 

(21.1) 

292 sh 

(46.8) 

277 

(63.3) 

241 

(29.9) 

[Ru(2)2][PF6]4 512 (40.6) 341 

(36.8) 

312 

(40.6) 

285 sh 

(87.6) 

277 

(104.2) 

 

[Ru(3)2][PF6]4 513 (29.7) 342 

(26.3) 

312 

(23.3) 

288 sh 

(68.0) 

277 

(85.7) 

240 sh   

(46.2) 

[Ru(4)2][PF6]4 509 (30.3) 341 

(34.0) 

309 

sh 

(29.6) 

284 sh 

(88.4) 

276 

(103.0) 

241 sh 

(47.3) 

[Ru(5)2][PF6]4 516 (41.9) 333 sh 

(39.4) 

312 

(52.0) 

283 sh 

(69.8) 

275 

(93.7) 

242 sh 

(36.9) 

[Ru(6)2][PF6]4 510 (44.0) 341 

(43.3) 

313 

(38.9) 

285 sh 

(76.6) 

277 

(92.7) 

241 

(56.4) 

[Ru(7)2][PF6]4 510 (48.7) 341 

(46.7) 

313 

(40.6) 

285 sh 

(87.6) 

277 

(103.4) 

240 sh 

(69.6) 

λmax 
(ε/103 dm3 mol-1 cm-1) 
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centered around 728 nm, with two obvious outliers; L+ = 7 where λem = 701 nm and  

L+ = 2, where λem = 741 nm. The emission intensities do not differ greatly from one 

another. The spectra are depicted in Fig. 2.7.  
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Fig. 2.7 Emission spectra for [Ru(L)2][PF6] (L+ = 1-7) measured in acetonitrile. All 

solutions are of 10-6 mol dm-3 concentration.  

 

As with the absorption spectra, there are no obvious differences between the emission 

spectra of the complexes. There are also no overt differences between either the 

lifetimes or the quantum yields of the complexes (Table 2.7). However, there are 

many differences between the parent [Ru(pytpy)2][PF6]2 complex and the alkyl-

substituted complexes. Firstly, the emission maxima of the alkyl-substituted 

complexes are red-shifted by up to 86 nm. Secondly, the lifetime of the complex has 

been extended by up to 163 ns. Finally, the quantum yield has increased by a 

minimum of a factor of 2.5 (L+=3) and up to a factor of 200 (L+=1).  

The emission maxima, lifetimes and quantum yields are summarised in Table 2.7.   
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Complex Emission  

Max (nm) 

 

τ (ns) 

 

Quantum  

Yield (%)  

(+/- 0.1%) 

Ru(pytpy)2][PF6]2
25 655 3 0.04 

[Ru(1)2][PF6]4 728 160a 0.73 

[Ru(2)2][PF6]4 741 115a 0.38 

[Ru(3)2][PF6]4 730    105a 0.01 

[Ru(4)2][PF6]4 715  162a 0.35 

[Ru(5)2][PF6]4 703 129a 0.05 

[Ru(6)2][PF6]4 727 145a 0.45 

[Ru(7)2][PF6]4 701 166a 0.44 

Table 2.7 A summary of the photophysical properties of Ru(II) complexes with ligands 

1-7, recorded in MeCN, a means the error is +/- 15 ns. 

 

2.3.6 Electrochemistry 

 

Cyclic voltammetry was used to examine the oxidation and reduction potentials of 

each complex. Oxidation of the complex is the removal of an electron from the 

highest occupied molecular orbital (HOMO). Reduction is the insertion of an electron 

into the lowest unoccupied molecular orbital (LUMO) of the complex. For the 

complex to do work, such as water splitting, the oxidation potential needs to be 

appropriate; high enough to be above the oxidation potential of water but not so high 

that oxidation of the complex is impossible.  

The measurements were carried out in an MeCN solution of the complex using 0.1M 

TBAPF6 as the supporting electrolyte. Ferrocene was added at the end of each 

measurement as a reference. A square wave voltammagram was also measured as a 

‘check’; data are not shown. 

For all complexes a reversible one-electron oxidation was observed around 1.0 V (vs 

Fc/Fc+), which is attributed to the oxidation of RuII to RuIII. Two reversible one-

electron ligand-centred reductions around -1.05 V and -1.45 V (vs Fc/Fc+), were also 

observed for all complexes. The two reductions are attributed to the injection of an 

electron into an unoccupied ligand π* orbital, to form a radical anion.  

Fig. 2.8 depicts a representative cyclic voltammagram; [Ru(1)2][PF6]4. 
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Fig. 2.8 Cyclic Voltammagram for [Ru(1)2][PF6]4 (MeCN, 0.1M TBAPF6, internal 

reference; ferrocene). 

 

The data for all of the complexes are summarised in Table 2.8. Further ligand-centred 

reductions are observed for each complex, around -1.7 V, but in the case of L+ = 3 this 

reduction is irreversible and in the cases of L+ = 5, 7 the reduction is quasi-reversible. 

For complex L+ = 1 (Fig. 2.8) the asymmetry of the reduction peak at -1.0 V suggests 

the possibility of two reduction processes at close potentials. For complexes L+ = 3, 5 

and 7 a further reduction around -2.0 V is observed and this is irreversible in all cases.   
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Complex Ru2+/Ru3+ 

(V) 

    

[Ru(pytpy)2][PF6]2 +0.95  -1.54 -1.80  

[Ru(1)2][PF6]4 +1.07/ 

+0.96 

-0.98/ 

-1.17 

-1.45/ 

-1.58 

-1.68/ 

-1.81 

 

[Ru(2)2][PF6]4 +1.06/ 

+0.96 

-0.97/ 

-1.13 

-1.44/ 

-1.56 

-1.67/ 

-1.79 

 

[Ru(3)2][PF6]4 +1.12/ 

+0.98 

-1.00/ 

-1.20 

-1.30/ 

-1.49 

-1.69irr -2.22irr 

[Ru(4)2][PF6]4 +1.05/ 

+0.95 

-1.04/ 

-1.23 

-1.52/ 

-1.62 

-1.73/ 

-1.84 

 

[Ru(5)2][PF6]4 +1.08/ 

+0.96 

 

-0.87/ 

-1.04 

-1.35/ 

-1.46 

-1.56/ 

-1.71qr 

-1.99irr 

[Ru(6)2][PF6]4 +1.07/ 

+0.97 

-1.03/ 

-1.17 

-1.50/ 

-1.57 

-1.71/ 

-1.80 

 

[Ru(7)2][PF6]4 +1.06/ 

0.94 

-1.05/ 

-1.21 

-1.51/ 

-1.61 

-1.73/ 

-1.84qr 

-1.94irr 

Table 2.8 A summary of the redox potentials for Ru(II) complexes with ligands 1-7. 

Measurements carried out in MeCN, using 0.1M TBAPF6 as the electrolyte and 

referenced to Fc/Fc+.   qrQuasi-reversible;  irrIrreversible 

 

The alkyl-substituted complexes have a higher Ru(II)/Ru(III) redox potential than that 

of the parent [Ru(pytpy)2][PF6]2 complex. This means that abstraction of an electron 

from the HOMO of the alkylated complexes requires more energy than for the parent 

complex. The negligible change in redox potentials between complexes complements 

the photophysical data leading to the conclusion that changing the substituent has a 

negligible effect on the {Ru(tpy)2} core.  

 

 

 

 

 

Ligand centred reductions (V) 
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2.3.7 Crystal Structures 

 

Crystal structures of the following complexes were obtained: 

• [Ru(1)2][PF6]4•H2O 

• [Ru(3)2][PF6]4 

• [Ru(4)2][PF6]4•H2O 

• [Ru(6)2][PF6]4•2MeCN 

• [Ru(7)2][PF6]4 

 

Red blocks of [Ru(1)2][PF6]4•H2O were grown by slow evaporation of an acetonitrile 

solution of the complex and the structure confirmed benzylation at both terminal 

pyridine rings. The crystal structure solves in the P -1 space group, with a poor R 

factor of 15.0 %. The asymmetric unit contains 2 independent cations with 7 whole 

PF6 counter-anions, 2 half PF6 counter-anions and two water molecules.  

 

The structure of one of the [Ru(1)2]
4+ cations is depicted in Fig. 2.9 and selected bond 

lengths and angles are listed in the caption.   

 

Fig. 2.9 Structure of one of the [Ru(1)2]
4+ cations with ellipsoids plotted at 50% 

probability and hydrogen atoms omitted for clarity. Selected bond parameters:  

Ru1-N1 = 2.07 (1), Ru1-N2 = 1.97(1), Ru1-N3 = 2.06(1), Ru1-N5 = 2.07(1),  

Ru1-N6 = 1.969(7), Ru1-N7 2.06 (1), N4-N21 = 1.50 (2), N8-C48 = 1.46(2) Å;  

N2-Ru1-N1 = 79.5(4), N2-Ru1-N3 = 78.9 (4), N5-Ru1-N6 = 79.4(4),  

N6-Ru1-N7 = 78.5(4)°. 

 

Ru1 

N1 
  N2 

  N4 
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N6 

N7 
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As expected for a [Ru(X-tpy)2]
n+ (X = any substituent) complex the ruthenium atom 

coordinates two ligands through the nitrogen atoms of the terpyridine moieties. The 

terpyridine ligands are almost orthogonal to one another; the angle between the planes 

is 89.03º (plane 1: N1, C5, ring containing N2 and C11, N3, plane 2: N5, C32, ring 

containing N6 and C38, N7). The Ncentral-Ru-Ncentral vector was expected to be linear, 

with an N4-Ru1-N8 angle of 180º, however, a bowing of the [Ru(1)2]
4+ cation is 

observed. This bowing is also present  for [Ru(pytpy)2][PF6][NO3]•DMSO26 and 

[Ru(pytpy)][PF6][NO3]
27 (N4-Ru1-N8 angles are 169.11(4)º and 176.03(7)º, 

respectively). Compared to these two complexes the bowing of [Ru(1)2][PF6]4 is 

much greater (163.4º), which is probably due to the effect that the benzyl substituent 

has on the packing (see later). The bond lengths and angles within the Ru-tpy unit are 

unexceptional. The N4-C21 and N8-C48 bond lengths of 1.50(2) and 1.46(2) Å, 

respectively, are consistent with single bonds between each pendant pyridine N atom 

and the benzyl group.  

Two independent cations reside in the asymmetric unit. The cations differ most 

greatly in the orientation of the benzyl substituents. For comparison, the two 

complexes have been overlaid and are depicted in Fig. 2.10. 

  

 

 

Fig. 2.10 An overlay of the two independent cations in the asymmetric unit, black dots 

denote the centroids. 

 

The core {Ru(tpy)2} regions of the cations are similar. In one complex (blue) both of 

the benzyl substituents are orientated in the same direction. In the other complex (red) 

one benzyl substituent is almost orthogonal (angle between planes 86.8º) to the 

terminal pyridyl moiety, to which it is attached. (Plane 1 is the terminal pyridine ring, 

C21 

  • 
  • 
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plane 2 is the benzyl ring.)  The distance between the centroids of the two rings is 

4.8Å and the centroid-C21-centroid angle is 111.3º. The other benzyl group is roughly 

perpendicular to the terminal pyridyl group, with the angle between the planes of 

74.8º. The distance between the two centroids is also 4.8Å, and the centroid-C48-

centroid angle, 111.5º, is effectively the same as for the previously described 

substituent. The centroid to centroid bond lengths and angles are consistent with the 

carbon atom being constrained to tetrahedral geometry by bonding to four different 

groups. (Plane 1 is the terminal pyridine ring, plane 2 is the benzyl ring.) 

 

The complexes pack with intermeshing benzyl groups. Within the crystal lattice there 

are extensive short contacts between hydrogen atoms and fluorine atoms of the 

hexafluorophosphate counter-anions (e.g. H4-F4 2.56Å). 

 

            

 

Fig. 2.11 Packing of the cations in [Ru(1)2][PF6]4•H2O with the {Ru(pytpy)2}- core in 

blue and the pendant benzyl groups in red. 
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The cations were expected to pack with two dimensional tpy embrace layers28-32 and 

some intercalation of the cations can be observed (Fig 1.11 top). However, the benzyl 

substituent distorts the tpy-tpy embrace by occupying the space between the tpy units, 

forcing them apart (Fig. 2.11 bottom). This also prohibits π-stacking throughout the 

lattice.   

 

Red blocks of [Ru(3)2][PF6]4 were grown by diffusing diethyl ether into a 

nitromethane solution of the complex. The structure has an R factor of 10.6%, which 

has been improved from 16.8% by using SQUEEZE33 to remove disordered anions 

and solvent molecules. The unit cell contains four independent cations and, like 

[Ru(1)2][PF6]4•H2O, the crystal solves in the  P -1 space group. Although the two 

complexes solve in the same space group, the unit cell of [Ru(3)2][PF6]4 has a c-axis 

length almost double that of  [Ru(1)2][PF6]4•H2O (50.95 Å compared to 27.76 Å, 

respectively). This is due to the number of cations in the asymmetric unit; four cations 

of [Ru(3)2]
4+ vs two cations of [Ru(1)2]

4+. The structure of one of the independent 

[Ru(3)2]
4+ cations is depicted in Fig. 2.12 and selected bond lengths and angles are 

described in the caption. 

 

 

 

 

 

 

 

 

 

 

Fig 2.12 Structure of the [Ru(3)2]
4+ cation with ellipsoids plotted at 50% probability 

and hydrogens omitted for clarity. Selected bond parameters: Ru1-N1 = 2.099(7), 

Ru1-N2 = 1.986(8), Ru1-N3 = 2.095(7), Ru1-N5 = 2.0082(7), Ru1-N6 = 1.995(5), 

Ru1-N7 = 2.088 (7), N19-N22 = 1.493 (7), N47-C50 = 1.523(8) Å;  

N2-Ru1-N1 = 79.0(2), N2-Ru1-N3 = 77.8 (2), N5-Ru1-N6 = 78.1(2),  

N6-Ru1-N7 = 79.2(2)°. 
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Two ligands are coordinated to the ruthenium atom, resulting in an octahedral 

geometry. The two terpyridines are close to orthogonal; the angle between the planes 

is 89.7º. As for [Ru(1)2]
4+ there is a bowing of the cation backbone away from 

linearity but, by comparison, for [Ru(3)2]
4+ this bowing is less pronounced  

(N4-Ru1-N8 = 173.4º). The bond lengths and angles around the {Ru(tpy)2} core are 

unremarkable. The N19-C22 and N47-C50 bond lengths of 1.493(7) and 1.485(7) Å 

respectively, are consistent with single bonds between the N atom of the pendant 

pyridine and the nitrobenzyl substituent. These bond lengths are also very similar to 

the analogous bonds in [Ru(1)2][PF6]4•H2O. 

              

 

           

Fig. 2.13 Packing of the cations with the {Ru(pytpy)2}- core in blue and the pendant 

nitrobenzyl groups in red. 

 

Typical tpy-tpy embraces28-32 are observed in the packing of [Ru(3)2]
4+, with both 

face-to-face and edge-to-face interactions. The edge-to-face distances range from 2.35 

to 2.93 Å and the face-to-face distances are longer, 3.61-3.85 Å. The majority of 

nitrobenzyl subsituents pack orthogonally to the {Ru(pytpy)2} core and, therefore, do 
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not disrupt the packing. Some π-stacking34 is observed between the nitrobenzyl 

groups, centroid-centroid distance = 3.76 Å, (Fig 2.14). No π-stacking is observed 

between the pyridylterpyridine units.    

 

 

Fig. 2.14 π-stacking between the two benzyl rings of the nitrobenzyl subsituents  

(benzyl rings depicted in purple, centroids in yellow). 

 

Red needles of [Ru(4)2][PF6]4•H2O were grown by diffusing diethyl ether into an 

acetone solution of the complex. The structure has a reasonable R factor of 6.6 % and 

solves in the space group P 21/c. The asymmetric unit contains one [Ru(4)2]
4+ cation, 

four PF6
- counter-anions and one water molecule. One ethyl group is disordered over 

two positions and has been modelled over two sites with fractional occupancies of 

0.76 and 0.24. All four PF6
- counter-anions and the water molecule are disordered.  

 

The two ligands coordinate orthogonally to the central ruthenium atom (angle 

between the tpy planes is 87.8º) causing an octahedral geometry of the cation. There 

is a slight bowing of the cation from linearity; N4-Ru1-N8 angle = 171.5º, more than 

that of [Ru(3)2]
4+ but less than that of [Ru(1)2]

4+. The bond lengths and angles are 

standard for this type of complex. The N4-C21 and N8-C43 bond lengths are 

consistent with analogous bond lengths for the aforementioned [Ru(L)2]
4+ complexes.  

 

 

 

 

 

 

 



 36 

 

 

 

 

 

 

 

 

 

Fig. 2.15 Structure of the [Ru(4)2]
4+ cation with ellipsoids plotted at 50% probability 

and hydrogens omitted for clarity. Ethyl groups shown in the major occupancy 

position. Selected bond parameters: Ru1-N1 =2.076(4) , Ru1-N2 =1.981(3),  

Ru1-N3 =2.088(4), Ru1-N5 =2.082(3), Ru1-N6 = 1.976(3), Ru1-N7=2.075(3), 

 N4-N21 = 1.49(2), N8-C43 = 1.486(7) Å; N2-Ru1-N1 = 79.4(1),  

N2-Ru1-N3 = 78.4 (1), N5-Ru1-N6 = 78.7(1), N6-Ru1-N7 = 78.9(1)°. 

 

   

Fig. 2.16 (left and centre) Packing of the cations. (right) Intermeshing of the ethyl 

groups. {Ru(pytpy)2}-core in blue, pendant ethyl substituents in red. 

 

The cations pack with typical tpy-tpy Dance embraces28-32. There are face-to-face and 

edge-to-face interactions between the terpyridine moieties, uninterrupted by the ethyl 

substituents. The ethyl groups are directed above and below the plane and are all 

oriented in the same direction. There are also extensive CH…F packing interactions 

throughout the lattice (e.g. H24-F31 2.64 Å). 

 

    N1 

   N3 

     N2 

    N5 

  N6 

  N7       N4 

      N8 

   C21 

          C43 

 Ru1 



 37 

Small red blocks of [Ru(6)2][PF6]4 were grown by slow evaporation of an acetonitrile 

solution of the complex. The structure solves in the Cc space group with a good  

R factor of 4.7 %. The asymmetric unit contains one [Ru(6)]4+ cation, four PF6
- 

anions, one of which is disordered, two molecules of acetonitrile and one water 

molecule. The structure of the [Ru(6)2]
4+ cation is depicted below and selected bond 

lengths and angles are listed in the caption.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.17 Structure of the [Ru(6)2]
4+ cation with ellipsoids plotted at 50% probability  

and hydrogens omitted for clarity. Allyl groups shown in the major occupancy 

positions. Selected bond parameters: Ru1-N1 = 2.058 (2), Ru1-N2 = 1.981 (2),  

Ru1-N3 = 2.067 (2), Ru1-N5 = 2.096(2), Ru1-N6 = 1.981(3), Ru1-N7 = 2.097(3),  

N4-C21 = 1.57(1), C21-C22 = 1.50(2) , C22-C23 =1.13 (2), N8-C44 = 1.536(6), 

C44-C45 = 1.471(7) , C45-C46 =1.28(1) Å ; N1-Ru1-N2 = 78.56 (9),  

N2-Ru1-N3 = 78.93(9), N5-Ru1-N6 = 78.5(1), N6-Ru1-N7 = 78.9(1)°.  

 

The two ligands are coordinated orthogonally to the central ruthenium atom and the 

angle between the two terpyridine planes is 79.0º. The ligand is disordered, and the 

fractional occupancies of the C21-C22-C23 allyl chain are 0.289 (4) and 0.711(4). 

The occupancies of the C44-C45-C46 chain are 0.80 and 0.20. The structure confirms 

successful alkylation at the pendant pyridyl moieties and the N4-C21 and C21-C22 

bond lengths indicate single bonds. The C22-C23 and C45-C46 bond lengths are 

shorter, 1.13(2) Å and 1.28(1) respectively, which are consistent with double bonds 

between the two carbon atoms. The ruthenium – nitrogen bond lengths are typical of 

{Ru(tpy)2}- based complexes.   

   N1 

  N3 

N2 

  N8       C44 

  N4 

  Ru1 

   C45 

   C46      N7 

     C21 

   C22 

     C23 

     N6 

       N5 
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Fig. 2.18 Packing of the cations with the {Ru(pytpy)2}- core in blue and the pendant 

allyl groups in red 

 

As previously discussed, these types of complexes are expected to pack with tpy-tpy 

embraces28-32. This [Ru(6)2][PF6]4 complex is an exception, similar to [Ru(1)2][PF6]4, 

because the allyl substituents occupy the spaces between the tpy units, forcing them 

apart, thereby distorting the usual tpy-tpy embrace. As such, there are no interactions 

between the terpyridine moietys. There are, however, short contacts between the 

acetonitrile molecule and the pendant pyridyl group (e.g. H43A – N200, 2.543Å) and 

between various hydrogen atoms and fluorine atoms of the hexafluorophosphate 

anions (e.g. H1A-F23, 2.386Å).  

 

Red needles of [Ru(7)2][PF6]4•H2O•MeCN were grown by very slow evaporation of a 

deuterated acetonitrile solution of the complex. The crystal structure solves in the P -1 

space group, with a poor R factor of 13.1% due to the poor quality of the crystals.  



 39 

The asymmetric unit contains one cation, two ordered PF6
- anions, two disordered 

PF6
- counter-anions, one acetonitrile molecule and one water molecule.  

 

The unit cell has similar dimensions to that of [Ru(1)2][PF6]4. It is shorter in a, 8.7018 

(7) Å, compared to 13.488 (3) Å, and b, 12.5549 (10) Å compared to 16.934 (3) Å 

and slightly longer in c, 30.067 (3) Å compared to 27.758 (6) Å. The decrease in the 

length of the a and b axes is due to the asymmetric unit containing one cation for 

[Ru(7)2][PF6]4•H2O•MeCN compared to two for [Ru(1)2][PF6]4•H2O. The structure of 

the [Ru(7)2]
4+ cation is depicted in Fig 2.19 and selected bond lengths and angles are 

listed in the caption. One of the terminal pyridyl moieties is disordered and modelled 

over two positions, with fractional occupancies of 0.43 and 0.57, only the major 

occupancies shown in Fig. 2.19.  

 

 

 

 

 

 

 

Fig. 2.19. Structure of the [Ru(7)2]
4+ cation with ellipsoids plotted at 50% probability 

and hydrogens omitted for clarity. Selected bond parameters: Ru1-N1 = 2.085 (7), 

Ru1-N2 = 1.975 (7), Ru1-N3 = 2.062 (7), Ru1-N5 = 2.069 (7), Ru1-N6 = 1.960 (6), 

Ru1-N7 = 2.078 (7) N4-C21 = 1.50 (1), N8-C49 = 1.46 (3) Å; N2-Ru1-N1 = 78.5 (3), 

N2-Ru1-N3 = 78.7 (3), N5-Ru1-N6 = 77.5 (3), N6-Ru1-N7 = 79.4 (3)°.   

 

The bond lengths and angles of the cation are unexceptional and the two ligands 

coordinate to the central ruthenium atom in the expected, orthogonal, manner. The 

angle between the two terpyridine planes is 89.6º. The C-C bond lengths of the octyl 

chain are all typical of single bonds and are in the range of 1.47(1) to 1.57(1) Å, with 

an average C-C bond length of 1.52 Å.  The bowing of the cation away from linearity 

(N4-Ru1-N8 = 170.5º) is of a similar magnitude to that observed for [Ru(4)2][PF6]4. 
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Fig. 2.20 Packing of the cations with the {Ru(pytpy)2}- core in blue and the pendant 

octyl groups in red 

 

Van der Waals interactions are dominant causing the octyl chains to align themselves, 

which greatly influences the packing of the complex. As such, neither face-to-edge 

and edge-to-edge interactions, nor π-stacking between the terpyridine units are 

observed. There are extensive CH….F interactions throughout the crystal lattice (e.g. 

H32 –F45 2.63Å) and interactions between the acetonitrile molecule and the octyl 

chain (e.g. H50-N100 2.73Å). 

 

2.4 DFT and TD-DFT Calculations 

 

The findings of the experimental data were that the photophysical and electrochemical 

properties of the complexes did not change, regardless of the nature of the substituent. 

To investigate the reason for the lack of effect of the substituent DFT and TD-DFT 

calculations were carried out on the set of complexes. The LANL2DZ basis set was 

used to describe the Ru and the 6-31G* basis set was used to describe the other (non-

metal) atoms. The solvent was added into the calculations using the standard Gaussian 

09 polarizable continuum model (PCM), specifying acetonitrile as the solvent and 
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predicted TD-DFT transitions were calculated using the ab initio, B3LYP method. 

(see experimental section for more details.) 

To validate the calculations a comparison between the calculated bond lengths and the 

bond lengths determined by crystallography was done for three of the cations. These 

were [Ru(1)2]
4+, [Ru(3)2]

4+
 and [Ru(4)2]

4+ although less can be learnt by comparing 

the data for [Ru(3)2]
4+ as the crystallographic R factor was so poor. The comparison is 

tabulated in Table 2.9 and the values of x and y are given in the table description. 

(x and y  refer to the numbers of the terminal pendant pyridyl nitrogens as defined in 

the crystallography section of this chapter. §Section 2.3.7.)  

 

Parameter L+ = 1 

(DFT) 

L+= 1  

(exp) 

L+ = 3  

(DFT) 

L+ = 3  

(exp) 

L+ = 4  

(DFT) 

L+ = 4  

(exp) 

Ru1-N1 2.129 2.099(7) 2.127 2.099(7) 2.128 2.076(3) 

Ru1-N2 2.017 1.986(8) 2.015 1.986(8) 2.015 1.981(3) 

Ru1-N3 2.127 2.095(7) 2.128 2.095(7) 2.128 2.088(3) 

Ru1-N5 2.127 2.0082(7) 2.126 2.0082(7) 2.128 2.082(4) 

Ru1-N6 2.016 1.995(5) 2.015 1.995(5) 2.015 1.976(3) 

Ru1-N7 2.129 2.088(7) 2.128 2.088(7) 2.128 2.075(4) 

N4-C21 1.518 1.50(2) 1.497 1.501(7) 1.494 1.487(19) 

Nx-Cy 1.518 1.46(2) 1.500 1.501(7) 1.494 1.486(6) 

N2-Ru1-N1 78.27 79.5(4) 78.31 77.8(2) 78.33 79.37(14) 

N2-Ru1-N3 78.24 78.9(4) 78.30 79.3(2) 78.30 78.44(14) 

N5-Ru1-N6 78.30 79.4(4) 78.34 78.8(2) 78.33 78.70(14) 

N6-Ru1-N7 78.27 78.5(4) 78.24 78.1(2) 78.30 78.95(14) 

Table 2.9 Comparison between calculated and X-ray crystal structure determined 

bond lengths and angles for complexes [Ru(L)2]
4+ where L+ =1 (x=8, y=48), 3 (x=47, 

y=50), 4 (x=8, y=43). Atom numbering corresponds to figs 2.9, 2.13 and 2.16. 

 

The agreement between the calculated and experimental structures is good. The 

calculated bond lengths are generally slightly over-estimated by <0.1Å and the 

calculated bond angles agree with the crystal structure data to within 1.1°. The 

calculations predict that the substituent at the terminal pyridyl moiety will have a 

small effect on the C-N bond length but this is not reproduced experimentally. As the 
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agreement between the calculated and experimental data is good the level of 

calculation chosen is correct. The energy and structure of the complexes were then 

minimised again in the presence of the solvent and pictures of the highest lying 

occupied and lowest lying unoccupied molecular orbitals were generated using the 

program Molekel35.  

 

The lowest lying unoccupied molecular orbitals are purely ligand based and the 

highest lying occupied molecular orbitals are metal based. The localisation of the 

molecular orbitals on each complex explained the lack of difference in the 

photophysical and electrochemical properties in the series. The HOMO and  

(HOMO−1) are predominantly metal based and do not change from complex to 

complex and, therefore, cannot effect a change between the properties of the 

complexes. Furthermore, the LUMO and (LUMO+1) do not extend beyond the 

terminal pyridyl moiety, due to the break in conjugation caused by the –CH2- group. 

As neither the metal orbitals nor the ligand orbitals change with substituent the MLCT 

would not be expected to change either. Molecular orbitals of representative 

complexes are depicted in Figs. 2.21 and 2.22.   

 

 

 

Fig. 2.21 Top left, [Ru(3)2]
4+ (HOMO−1), top right, [Ru(3)2]

4+ HOMO  

Bottom left  [Ru(6)2]
4+ (HOMO−1), bottom right, [Ru(6)2]

4+ HOMO 
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Fig. 2.22. Top left, [Ru(3)2]
4+ LUMO, top right, [Ru(3)2]

4+ (LUMO+1) 

Bottom left  [Ru(6)2]
4+ LUMO, bottom right, [Ru(6)2]

4+ (LUMO+1) 

 

As can be observed in Fig 2.22 the LUMO and (LUMO+1) are related in their orbital 

character. They are very close in energy but are not degenerate, which is known as 

being ‘accidentally degenerate’. This is true for all of the complexes in this study.  

 

TD-DFT was also used to further investigate the set of complexes. The predicted  

absorption spectra are depicted in Fig. 2.23 
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Fig. 2.23 The predicted absorption spectra for [Ru(pytpy)2][PF6]2 and[Ru(L)2][PF6]4 

(L+=1-7). 

 

The calculated spectra accurately reproduce the red shift upon alkylation of the parent 

[Ru(pytpy)2]
2+ complex. The calculations predict one major peak around 500 nm 

(depending on substituent) and a shoulder at ~450 nm. The predicted shoulder at  

~450 nm explains the non-gaussian shaped MLCT peak observed experimentally. The 

calculations do not reproduce λmax exactly but the difference between the 

experimental and calculated values is a maximum of 44 nm. This is acceptable 

considering previously published calculations on ruthenium polypyridyl complexes 

where the predicted experimental and calculated UV-vis spectra differ by up to  

100 nm15-17, 22. The agreement between the spectra is depicted more clearly in  

Fig. 2.24, which contains the calculated and experimental UV-vis spectra of 

[Ru(4)2]
4+.  
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Fig. 2.24 Comparison of calculated and experimental MLCT band of complex 

[Ru(4)2]
4+  

 

The transitions which contribute to the MLCT band, for all complexes, are 

summarised (Table 2.10). 
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Complex λmax / nm Orbital Contributions 

[Ru(1)2]
4+ 478.4 48% (LUMO+1)←(HOMO−1)  

47% LUMO←(HOMO−2)  

[Ru(2)2]
4+ 486.3 38% LUMO←(HOMO-2)  

34% (LUMO+1)←(HOMO−1)  

13% LUMO←(HOMO−1)  

10% (LUMO+1)←(HOMO−2)  

[Ru(3)2]
4+ 488.3 38% LUMO←(HOMO−2)  

34% (LUMO+1)←(HOMO−1)  

13% LUMO←(HOMO−1)  

10% (LUMO+1)←(HOMO−2)  

[Ru(4)2]
4+ 478.8 48% (LUMO+1)←(HOMO−1)  

47% LUMO←(HOMO−2)  

[Ru(5)2]
4+ 504.6 46% LUMO←(HOMO−2)  

45% (LUMO+1)←(HOMO−1)  

[Ru(6)2]
4+ 481.6 36% LUMO←(HOMO−1)  

31% (LUMO+1)←(HOMO−2)  

14% LUMO←(HOMO−2)  

13% (LUMO+1)←(HOMO−1)  

[Ru(7)2]
4+ 480.9 53% LUMO←(HOMO−1)  

38% (LUMO+1)←(HOMO−2)  

 
Table 2.10 A summary of the transitions making up the MLCT band for all complexes. 
 

2.5 Conclusion 

 

Functionalisation of the previously known [Ru(pytpy)2][PF6]2 complex with a variety 

of n-alkyl and n-aryl substituents resulted in complexes with red-shifted MLCT and 

emission bands and higher oxidation potentials, when compared to the parent 

complex. The type of substituent had a negligible effect on the photophysical and 

electrochemical properties of the molecule and this was explored using DFT. The 

DFT lead to the conclusion that the –CH2- bridge between the pendant pyridyl ring 

and the substituent broke the π-conjugation system. These complexes could have 

application as water oxidation catalysts, which is discussed in the next chapter.  
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2.6 Experimental 

 

General Synthesis of [Ru(L)2][PF6]4: 

 

[Ru(pytpy)2][PF6]2 and the appropriate alkylating reagent (120 eq.) were dissolved in 

acetonitrile (50 cm3) and refluxed at 90 ºC for between 3 and 72 hours. The reaction 

was monitored by spot TLC. The volume of solvent was then reduced to c.a. 5 cm3 

and the complex was purified using column chromatography (SiO2, see text for 

eluent). Acetonitrile was removed under reduced pressure. [NH4][PF6] was added to 

precipitate [Ru(L)2][PF6]4. The salt was collected on celite, washed with copious 

amounts of water, EtOH and Et2O. It was then redissolved in MeCN, dried in vacuo 

and the product was isolated as a red powder. 

The eluents are defined as follows: 

A Sol = 7:1:0.5 MeCN: H2O: sat. KNO3 

B Sol = 7:2:2 MeCN: H2O: sat. KNO3 

C Sol = 10:0.5:1.5 MeCN: H2O: sat. KNO3 

 

[Ru(1)2][PF6]4 

 

Reaction time: 12 hours 

Column Eluent: B Sol (Rf = 0.33) 

Yield: 153.3 mg, 69.7 % (starting with mg [Ru(pytpy)2][PF6]2) 

 
1H NMR: (500 MHz, CD3CN, 25ºC, TMS) δ/ppm: 9.12 (4H, s, B

3),  

9.08 (4H, d, J = 6.5 Hz, C2), 8.75 (4H, d, J = 6.6 Hz, C3), 8.68 (4H, d, J = 8.1 Hz, A3), 

8.00 (4H, t, J = 7.9Hz, A
4) 7.59 (10H, m, D), 7.42 (4H, d, J = 5.4 Hz, A

6),  

7.23 (4H, t, J = 7.5Hz, A5), 5.89 (4H, s, a);  
13C NMR: (126 MHz, CD3CN, 25ºC, TMS) δ/ppm: 158.24 (A2), 156.82 (B2), 154.00 

(C4), 153.55 (A6), 146.28 (C2), 139.49 (A4), 133.77 (D), 130.58 (D), 130.29 (D1),  

128.91 (A5), 127.63 (C3), 125.95 (A3), 123.25 (B3), 65.27 (a); 

Found:  C, 42.29; H, 3.00; N, 7.45; C54H42F24N8P4Ru.3H2O  

requires C, 42.17; H, 3.15; N, 7.29;  

MALDI-TOF (MeCN): m/z 1340.5 [M-PF6]
+ (calc. 1339.2), 1196.3 [M-2PF6]

+  

(calc. 1194.2), 1050.3 [M-3PF6]
+ (calc. 1049.2)  
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[Ru(2)2][PF6]4 

 

Reaction time: 12 hours 

Column Eluent: B Sol, (Rf = 0.30) 

Yield: 215.5 mg, 78.9 % (starting with 180 mg [Ru(pytpy)2][PF6]2) 

 
1H NMR: (500 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 9.77 (4H, s, B3),  

9.65 (4H, br d, J = 6.3 Hz, C2), 9.20 (4H, br d, J = 6.3 Hz, C3),  

9.10 (4H, d, J = 8.1 Hz, A3), 8.17 (4H, t, J = 7.6 Hz, A4), 8.05 (4H, d, J = 8.2 Hz, D3), 

7.82 (4H, d, J = 8.2 Hz, D2), 7.59 (4H, d, J = 5.3 Hz, A6), 7.34 (4H, m, A5),  

6.13 (4H, s, a);  
13C NMR: (126 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 157.4 (A2/B2), 155.4 (A2/B2),  

152.5 (A6), 151.8 (C4), 146.1 (C2), 139.9 (B4), 139.6 (D1), 138.6 (A4), 133.2 (D3), 

129.5 (D2), 128.1 (A5), 126.0 (C3), 125.2 (A3), 122.3 (B3), 118.4 (D4),  

112.2 (D-C≡N), 62.54 (a);  

Found:  C, 41.64; H, 2.86; N, 8.86; C56H40F24N10P4Ru.4H2O  

requires C, 41.88; H, 3.01; N, 8.72;  

MALDI-TOF (MeCN): m/z 1245.0 [M-2PF6]
+  (calc. 1244.2), 1100.0 [M-3PF6]

+ 

(calc. 1099.2)  

 

[Ru(3)2][PF6]4 

Reaction time: 12 hours 

Column Eluent: A Sol, (Rf = 0.29) 

Yield: 67.2 mg, 41.6 % (starting with 100 mg [Ru(pytpy)2][PF6]2) 

 
1H NMR: (500 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 9.77 (4H, s, B

3),  

9.66 (4H, d, J = 6.5 Hz, C
2), 9.21 (4H, d, J = 6.6 Hz, C

3),  

9.09 (4H, d, J = 8.1 Hz, A3 ), 8.41 (4H, d, J = 8.7 Hz, D2), 8.17 (4H, t, J = 7.7 Hz, A4),  

7.90 (4H, d, J = 8.7 Hz, D
2), 7.59 (4H, d, J = 5.5 Hz, A

6), 7.34 (4H, m, A
5),  

6.18 (4H, s, a);  
13C NMR: (126 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 157.6 (A2/B2), 155.6 (A2/B2),  

152.3 (A6), 152.0 (C4), 145.1 (C2), 141.6 (D1), 141.3 (D4), 129.8 (D2), 128.0 (A5), 

125.8 (C3), 125.0 (A3), 124.2 (D3), 122.1 (B3), 62.0 (a);  
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Found:  C, 39.62; H, 3.06; N, 8.65; C54H40 F24N10P4Ru.3H2O  

requires C, 39.84; H, 2.85; N, 8.60.  

MALDI-TOF (MeCN): m/z 1431.7 [M-PF6]
+ (calc. 1429.1), 1285.6 [M-2PF6]

+  

(calc. 1284.2), 1150.4 [Ru(3)(Hpytpy)(PF6)2]
+ (calc. 1149.1),  

1005.3 [Ru(3)(Hpytpy)(PF6)]+ (calc. 1004.2), 995.5 [M-4PF6]
+ (calc. 994.2),  

723.2 [Ru(pytpy)(Hpytpy)]+ (calc. 723.3).  

 

[Ru(4)2][PF6]4 

 

Reaction time: 72 hours 

Column Eluent: B Sol, (Rf = 0.30) 

Yield: 80.6 mg, 64.3 % (starting with 80 mg [Ru(pytpy)2][PF6]2) 

 
1H NMR: (500 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 9.78 (4H, s, B

3),  

9.52 (4H, d, J = 6.6 Hz, C2), 9.17 (4H, d, J = 6.6 Hz, C3), 9.12 (4H, d, J = 8.1 Hz, A3), 

8.17 (4H, t, J = 7.7 Hz, A4), 7.58 (4H, d, J = 5.4 Hz, A6), 7.33 (4H, t, J = 6.5 Hz, A5), 

4.80 (4H, m, a), 1.73 (6H, t, J = 7.3 Hz, b);  
13C NMR: (126 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 157.6 (A2/B2), 155.6 (A2/B2),  

152.6 (A6), 150.8 (C4), 145.4 (C2), 140.0 (B4), 138.5 (A4), 128.0 (A5), 125.2 (C3), 

125.1 (A3), 122.0 (B3), 56.2 (a), 16.0 (b);  

Found   C, 36.96; H, 2.75; N, 8.07; C44H38F24N8P4Ru.3H2O  

requires C, 37.38; H, 3.14; N, 7.93;  

MALDI-TOF (MeCN): m/z 1216.8 [M-PF6]
+ (calc. 1215.1), 1071.6 [M-2PF6]

+  

(calc. 1070.2), 926.8 [M-3PF6]
+ (calc. 925.2), 782.1 [M-4PF6]

+ (calc. 780.2)  

 

[Ru(5)2][PF6]4 

 

Reaction time: 12 hours 

Column Eluent: B Sol, (Rf = 0.54) 

Yield: 67.3 mg, 61.6 % (starting with 100 mg [Ru(pytpy)2][PF6]2) 
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1H NMR: (500 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 9.80 (4H, s, B
3),  

9.61 (4H, d, J = 6.5 Hz, C2), 9.25 (4H, d, J = 6.5 Hz, C3), 9.12 (4H, d, J = 8.1 Hz, A3), 

8.17 (4H, t, J = 7.7 Hz, A4)7.58 (4H, d, J = 5.4 Hz, A6) 7.33 (4H, t, J = 6.5 Hz, A5),  

6.08 (4H, s, a);  
13C NMR: (126 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 157.4 (A2/B2), 155.5 (A2/B2),  

152.5 (A6+C
4), 146.4 (C2), 139.5 (B4), 138.6 (A4), 128.1 (A5), 125.4 (C3), 125.2 (A3),  

122.2 (B3), 114.3 (C≡N), 47.6 (a);  

Found:  C, 36.35; H, 2.55; N, 9.84, C44H32F24N10P4Ru.4H2O  

requires C, 36.35; H, 2.77; N, 9.63;  

MALDI-TOF (MeCN): m/z 1092.4 [M-2PF6]
+ (calc. 1092.1), 947.4 [M-3PF6]

+  

(calc. 947.2), 908.6 [Ru(5)(Hpytpy)(PF6)]
+ (calc. 908.1), 869.3 [Ru(Hpytpy)2(PF6)]

+ 

(calc. 869.1) 

 

[Ru(6)2][PF6]4 

 

Reaction time: 4 hours 

Column Eluent: B Sol, (Rf = 0.20) 

Yield: 100.4 mg, 73.2 % (starting with 100 mg [Ru(pytpy)2][PF6]2) 

 
1H NMR: (500 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 9.79 (4H, s, B

3),  

9.48 (4H, d, J = 6.7 Hz, C2), 9.19 (4H, d, J = 6.7 Hz, C3), 9.12 (4H, d, J = 8.2 Hz, A3),  

8.17 (4H, t, J = 7.8 Hz, A4), 7.58 (4H, d, J = 5.5 Hz, A6), 7.33 (4H, t, J = 6.8 Hz, A5), 

6.35 (2H, ddt, b), 5.59 (2H, d, J = 10.2 Hz, c1), 5.51 (2H, d, J = 17.2 Hz, c2),  

5.43 (4H, d, J = 5.9 Hz, a);  
13C NMR: (126 MHz, d6-DMSO, 25ºC, TMS) δ/ppm: 157.4 (A2/B2), 155.6 (A2/B2),  

152.5 (A6), 151.3 (C4), 145.7 (C2), 139.9 (B4), 138.5 (A4), 131.5 (b), 128.0 (A5), 

125.3 (C3), 125.1 (A3), 122.1 (B3), 121.6 (c), 62.1 (a);  

Found:  C, 38.68; H, 2.92; N, 8.44; C46H38F24N8P4Ru.2H2O  

requires C, 38.91; H, 2.98; N, 8.44;  

MALDI-TOF (MeCN): m/z 1240.7 [M-PF6]
+ (calc. 1239.1), 1093.7 [M-2PF6]

+ (calc. 

1094.2), 1055.7 [Ru(6)(Hpytpy)(PF6)2]
+ (calc. 1054.1), 949.7 [M-3PF6]

+ (calc. 949.2), 

910.6 [Ru(6)(Hpytpy)(PF6)]
+ (calc. 909.2), 764.5 [Ru(6)(Hpytpy)]+ (calc. 764.2)  
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[Ru(7)2][PF6]4 

 

Reaction time: 48 hours 

Column Eluent: C Sol, (Rf = 0.36) 

Yield: 121.7 mg, 38.4 % (starting with 200 mg [Ru(pytpy)2][PF6]2) 

  
1H NMR: (500 MHz, CD3CN, 25ºC, TMS) δ/ppm: 9.14 (4H, s, B

3),  

9.01 (4H, d, J = 6.6 Hz, C2), 8.77 (4H, d, J = 6.5 Hz C3), 8.70 (4H, d, J = 8.1 Hz, A3), 

8.02 (4H, t, J = 7.9 Hz A
4), 7.46 (4H, d, J = 5.5 Hz A

6), 7.25 (4H, m, A
5),  

4.69 (4H, t, J = 7.6 Hz, a), 2.13 (4H, s, b), 1.46 (8H, m, c+d), 1.35 (12H, m, e+f+g), 

0.93 (6H, t, J = 6.7 Hz, h);  
13C NMR: δC (126 MHz, CD3CN, 25ºC, TMS): 158.3 (A2/B2), 156.7 (A2/B2), 153.8 

(A6), 155.6 (C4), 146.2 (C2), 142.0 (B4), 139.5 (A4), 128.9 (A5), 127.5 (C3), 126.0 

(A3), 123.3 (B3), 62.7 (a), 32.3 (e/f/g), 31.7 (b), 29.5 (e/f/g), 29.4 (c/d), 26.6 (c/d), 

23.25 (e/f/g), 14.4 (h);  

Found:  C, 42.28; H, 4.26; N, 7.24; C55H60F24N8P4Ru.3H2O  

requires C, 42.15; H, 4.33; N, 7.08;  

MALDI-TOF (MeCN): m/z 1384.1 [M-PF6]
+ (calc. 1383.3), 1239.6 [M-2PF6]

+ (calc. 

1238.3), 1094.5 [M-3PF6]
+ (calc. 1093.4) 

 

Computational Methods  

 

Complexes [RuL2]
4+ with L+ = 1-7 and [Ru(pytpy)2]

2+ were modelled using TD-DFT 

implemented in the Gaussian 0936. Each complex was initially geometry-optimized 

using the RHF method with a 3-21G basis set applied to non-metal 

atoms, and the Los Alamos National Laboratory 2 double ζ (LANL2DZ) effective 

core potential (ECP) used to describe the Ru2+ centre37. A double-zeta Ru basis set  

associated with the LANL2DZ ECP was taken from the Basis Set Exchange38. The 

ECP and basis set were defined explicitly in Gaussian 09 using the 'GEN' and 

'Pseudo=Read' keywords. Frequency calculations were performed at this level of 

theory for each complex to confirm the identification of a local minimum energy 

structure. Further refinement of complex geometries followed using the B3LYP 

hybrid density functional39 and a larger 6-31G(d) basis set for non-metal atoms, with 

the same Ru2+ ECP/basis set combination as before. The Integral Equation Formalism 
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polarisable continuum model (PCM) was used during geometry optimization and for 

subsequent TD-DFT calculations to describe solvation of each complex in MeCN to 

more closely match the experimental conditions40-43. A similar level of calculation has 

been applied to a series of [Ru(tpy)2]
2+ complexes20, and the general reliability of the 

LANL2DZ ECP combined with the B3LYP hybrid density functional for transition 

metal complexes has been highlighted44. Predicted TD-DFT UV-VIS transitions were 

calculated at the B3LYP level, and simulated spectra were generated from the 

Gaussian 09 output using the GaussSum program45. Grids containing orbital densities 

were written as 'cube' files by Gaussian 09, and were used to generate isodensity 

surfaces for selected MOs using the Molekel35. 
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Chapter 3 

Water soluble alkylated bis{4'-(4-pyridyl)-2,2':6',2"}-terpyridine}ruthenium(II) 

complexes for application as water oxidation catalysts. 

3.1 Introduction 

In the search for new efficient fuel sources, scientists have looked to nature for 

inspiration. Plants are capable of using the sun’s energy to convert CO2 into 

carbohydrates and to split water into protons and oxygen via photosynthesis. The 

oxidation of water to produce oxygen (Eqn. 3.1) is challenging as it is a four electron 

process.     

                                           2H2O → 4H
+
 + 4e

-
 + O2                                                      (Eqn. 3.1) 

 

In plants, this process is carried out by photosystem II (Fig. 3.1). A manganese-oxygen 

cluster [MnCa] oxidises water and passes electrons on to the amino acid tyrosine, which 

in turn delivers them to P680
1
. P680 is a chlorophyll cluster that absorbs light at 680 nm 

and acts as a photosensitiser
2
. These cascade reactions are a vital part of photosynthesis 

and the structure of the oxygen evolving unit was found to be a cubane-like Mn3CaO4 

cluster
3, 4

.  

 

Fig. 3.1 A representation of the processes involved in photosystem II in plants
1
. 

 

To further understand this [MnCa] cluster, research has been carried out towards the 

synthesis of mononuclear and polynuclear Mn clusters for testing as water oxidation 

catalysts (WOCs)
5-7

. In 1985 Tames et al. reported the first dinuclear Mn complex that 
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was active as a water oxidation catalyst
5
 and in 1999 Brudvig et al. reported the first 

functional model for photosystem II
8
. This model was a dinuclear Mn complex with two 

2,2ʹ:6ʹ,2ʺ-terpyridine ligands, two coordinated water molecules and two bridging-µ-oxido 

ligands (Fig. 3.2).   

 

 

 

Fig. 3.2 The cation in [H2O(tpy)Mn
III

(O)2Mn
IV

(tpy)OH2][NO3]3, the first functional 

model for photosystem II
8
.  

 

Polypyridine ligands have also been used in ruthenium complexes which demonstrate 

catalytic water oxidation ability. Whitten et al., in 1976, described the use of ruthenium 

complexes with surfactant-functionalised bipyridine ligands (Fig. 3.3), which were 

prepared as chloroform films, to oxidise water
9
. 

 

 

Fig. 3.3 First reported water-splitting ruthenium complexes
9
.  
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Thereafter, little progress was made in the field until 2005 when Thummel et al. reported 

three novel mononuclear ruthenium complexes which showed WOC activity
10

. These 

complexes contained polypyridyl ligands and a coordinated water molecule, and could 

produce O2 with a turnover number (TON) of 260. TON is the number of moles of 

substrate (in this case water) that one mole of catalyst can convert before becoming 

inactive
11

. Following this, many ruthenium-pyridyl complexes were reported and have 

been the subject of recent reviews
6, 7, 12, 13

.  

 

In general, ruthenium complexes which are active as water oxidation catalysts consist of 

the following: a polydentate (bis- to tetra-dentate) polypyridyl ligand, one or more 

pyridine ligands and either a coordinated water molecule or a coordinated halide (Fig. 

3.4)
13

.  

 

 

Fig. 3.4. A representative structure of a ruthenium-based water oxidation catalyst,  

X = H2O, n = 2, X = Cl, Br, I, n = 1.  

 

Many possible types of complexes are summarised in a recent paper by Thummel et al.
14

 

where a family of 28 mononuclear Ru(II) complexes were synthesised and tested as 

catalysts for water splitting. In this family of complexes the highest TON achieved was 

1170, in 24 hours. 

 

The reaction mechanism of water oxidation by ruthenium complexes of the afore-

mentioned type has been studied in detail by Meyer et al.
15

. The mechanism has been 

shown to be dependent on the ruthenium atom being able to coordinate a water molecule 

and then achieve oxidation states of +4 and +5 by forming a Ru=O double bond (Fig. 

3.5).  
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Fig. 3.5 Proposed single site water oxidation mechanism for rutheniumpolypyridyl 

complexes with one coordinated water molecule
15

. 

 

The most active ruthenium complex reported to date, prepared by Sun et al., has a 

turnover frequency (TOF) of 300 s
-1

, which is comparable to the rate of oxygen 

production by photosystem II (Fig. 3.6)
16

. TOF is the turnover per unit time
11

. 

 

 

Fig. 3.6 [Ru(bda)(isoq)2] (H2bda = 2,2’-bipyridine-6,6’-dicarboxylic acid; isoq =  

isoquinoline). The most active water oxidation catalyst reported to date
16

. 

 

Reported in this chapter are homoleptic ruthenium complexes which have neither a 

coordinated water molecule nor a coordinated halide. Therefore, water oxidation by the 
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aforementioned mechanism is not possible. However, they can be used in conjunction 

with another emerging class of compounds for water oxidation catalysis, the 

polyoxometallates (POMs)
6, 12, 17-22

.  

 

POMs are metal oxido clusters that can include heteroanions, such as SO4
2-

 or PO4
3- 17, 23

.  

 

        

          (TBA)10[P4V6W30O120]   Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O 

     (TBA = tetrabutylammonium) 

 

Fig. 3.7 General examples of POMS prepared by (left) Cronin et al.
24

 and (right) Hill et  

al.
21

. 

 

POMs have a number of advantages over the aforementioned ruthenium-based 

complexes
13, 17, 23

. A lack of organic ligands means that they are highly stable, even under 

harsh conditions
25

. The POM can undergo at least four sequential reductions without the 

structural integrity of the cluster shell being damaged and can, therefore, be thought of as 

an electron sink
17

. POMs have very strong LMCT absorptions in the UV  

(ε > 1 × 10
4
  dm

3
 mol

-1
 cm

-1
) which tail into the visible region of the spectrum. The band 

is a result of promotion of an electron from an oxygen bonding orbital into an anti-

bonding orbital and is formally an O→M (M = metal) LMCT
17

. To aid the absorption of 

visible light a photosensitiser (often [Ru(bpy)3]
2+ 6, 17-21

) is used in cooperation with the 

POM (Fig. 3.8). 
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Fig. 3.8 The use of [Ru(bpy)3]
2+ 

as a photosensitiser for a POM, figure redrawn from 

reference 
18

. 

 

The [Ru(bpy)3]
2+

 is excited on absorption of light to [Ru(bpy)3]
2+*

. This excited state is a 

better reducing agent than its ground state and it reduces the S2O8
2-

 to SO4
2-

 whilst itself 

being oxidised to [Ru(bpy)3]
3+

 (the same process occurs for a [Ru(bpy)3]
2+ 

complex in the 

ground state). The ruthenium complex then returns to the ground state, [Ru(bpy)3]
2+

, by 

gaining an electron from the POM. This cycle is repeated four times, at which point the 

POM has enough energy to break the O-H bond and oxidise the water to O2 and 4H
+
. The 

system is photocatalytic and, therefore, repeats itself, with only the consumption of 

S2O8
2- 18

.  

 

The exact mechanism of water oxidation by the POM system is a current subject of 

debate. Some reports suggest that the POM is a pre-catalyst that decomposes over time or 

on oxidation to a metal oxide species which is the active catalyst
26-28

. There are also 

studies on aggregates which arise from ion-pairing of the negatively charged POM and 

the positively charged dye sensitiser
29-32

. Further mechanistic studies have been carried 

out specifically investigating water exchange at the metal core of the POM
33

. 

    

The POM with the highest water oxidation activity reported to date is based on cobalt and 

has the formula Na10[Co4(H2O)2(PW9O34)2]
20, 34

. When used in conjunction with 

[Ru(bpy)3]
2+

, the turnover number can reach >220 and the quantum yield can be as high 

as 30 %
20

. To further improve the system, it is possible to optimise two components: the 
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POM itself and the photosensitiser. The work in this chapter describes the synthesis of 

homoleptic ruthenium complexes as photosensitiser alternatives to [Ru(bpy)3]
2+

. 

 

3.2 Synthesis of [Ru(R-pytpy)2][HSO4]4 Complexes 

 

The complexes described in Chapter 2 were designed for application as water oxidation 

co-catalysts. In order for this application to be realised, the complexes needed to be water 

soluble. This was effected through anion exchange of the [Ru(pytpy)2][PF6]2 and 

[Ru(L)2][PF6]4 (L
+
 = 1-7) complexes with [Bu4N][HSO4] (Scheme 1) to give 

[Ru(pytpy)2][HSO4]2 and [Ru(L)2][HSO4]4 (L
+
 = 1-7) respectively.  

 

 

 

Scheme 3.1 A general synthesis for [Ru(L)2][HSO4]4 complexes (L
+
 = 1-7). 

 

Ten equivalents of tetra-n-butylammonium hydrogensulfate were added to a stirred 

solution of the relevant complex in a mixture of 9:1 acetonitrile:dichloromethane. A red 

precipitate formed immediately and was isolated as a red powder, which was soluble in 

water but insoluble in common organic solvents. The red powder was then stirred in 

boiling acetonitrile for ca. 20 minutes to remove both excess [Bu4N][HSO4] and the 

tetrabutylammonium hexafluoridophosphate ([Bu4N][PF6]), which forms during the 

reaction. The reaction yields are summarised in Table 3.1 
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Complex Yield (%) 

[Ru(pytpy)2][HSO4]2 79 

[Ru(1)2][HSO4]4 99 

[Ru(2)2][HSO4]4 60 

[Ru(3)2][HSO4]4 98 

[Ru(4)2][HSO4]4 99 

[Ru(5)2][HSO4]4 66 

[Ru(6)2][HSO4]4 82 

[Ru(7)2][HSO4]4 68 

 

Table 3.1 Summary of yields of [Ru(pytpy)2][HSO4]2 and the Ru(II) complexes of ligands 

1-7 with HSO4
-
 counter-anions.  

 

3.3 Results and Discussion 

 

3.3.1 
1
H NMR Spectroscopy 

 

Proton NMR spectroscopy was used to confirm that the [Ru(L)2]
4+ 

cation had been 

unaffected by the anion exchange.  

 

 

Fig. 3.9 Ligands 1-7 with labelling for 
1
H NMR spectroscopic assignments. 
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Fig. 3.10  
1
H NMR spectrum of [Ru(2)2][HSO4]4 in D2O; 500 MHz, 25ºC, TMS. 

 

As previously described (§Ch. 2) for the [Ru(L)2][PF6]4 complexes, the signals were 

assigned using the 1D 
1
H NMR spectrum in conjunction with 2D COSY and NOESY 

spectra. The appearance of both one set and the correct number of signals (Fig. 3.10) 

confirms that the [Ru(L)2]
4+

 core of the complex has been unaffected by the anion 

exchange. The singlet, for [Ru(2)2][HSO4]4  at δ 6.08 ppm (Fig. 3.10) is assigned to the 

H
a
 proton and is characteristic of this set of complexes. The signal shifts, depending on 

the electron-donating or -withdrawing properties of the substituent, between δ 4.78 and 

6.14 ppm (L
+
 = 7 and 3, respectively). When L

+
 = 4 (ethyl-substituted) or L

+
 = 7 (octyl-

substituted), this signal is coincident with the peak due to residual HOD. This is 

confirmed by a cross-peak present in the HMQC spectrum (Fig. 3.11) 
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Fig. 3.11 Partial HMQC spectrum of [Ru(4)2][HSO4]4 showing that the CH2 (a) peak lies 

under the residual HOD peak of the solvent, 500 MHz, D2O, 25ºC, TMS. 

 

3.3.2 
13

C{
1
H} NMR Spectroscopy 

 

All 
13

C NMR measurements were referenced with respect to Na[Me3Si(CH2)3SO3] (DSS) 

with the methyl signal set to δ 0.0 ppm. The signals were assigned using DEPT, HMQC 

and HMBC techniques, however, it was not possible to unambiguously ascribe all 

signals. The 
13

C{
1
H} spectrum of [Ru(6)2][HSO4]4 with added DSS is depicted in Fig. 

3.12. 

 HOD 

    Ha 

Hb 

Ca 

Cb 
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Fig. 3.12 
13

C{
1
H} NMR spectrum of [Ru(6)2][HSO4]4 in D2O; 126 MHz, 25ºC, DSS. 

 

3.3.3 Mass Spectrometry 

 

Electrospray ionisation mass spectrometry (ESI-MS) was used to characterise the 

[Ru(pytpy)2][HSO4]2 complex. A peak corresponding to the cation was observed at m/z 

361.0, which corresponded to the loss of both anions; [M-2HSO4]
2+

. 

The [Ru(L)2][HSO4]4 complexes were characterised using MALDI-TOF mass 

spectrometry. The fragmentation patterns confirmed successful anion exchange as 

fragmentation peaks corresponding to [M-nHSO4]
+
 (n= 1-3) were observed. Peaks 

corresponding to the loss of one substituent were also present for most complexes. The 

base peaks, assigned to [Ru(Hpytpy)2]
+
, [Ru(Hpytpy)(pytpy)]

+
 and [Ru(pytpy)2]

+
 at m/z 

724, 723 and 722, respectively, were also present in the spectra.  

 

3.3.4 Elemental Analysis and Thermogravimetric Analysis 

 

Elemental analysis of [Ru(2)2][HSO4]4 and [Ru(3)2][HSO4]4 pointed to the formation of 

hydrates. This was unsurprising given the ability of HSO4
-
 anions to form hydrogen 

bonds. It was not possible to obtain elemental analysis of the anhydrous complexes, due 

to their hygroscopic nature. Therefore, TGA was used to quantify the theory that the 

elemental analyses were consistent with the formation of hydrates. TGA-MS analysis of a 

sample of [Ru(3)2][HSO4]4 showed an initial 2.3% weight loss (≤200
o
C) followed by two 
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further steps of water loss (2.4 and 4.7% weight loss between 200 and 400
o
C). Sample 

decomposition occurred at higher temperatures. The initial degradation steps correspond 

to loss of 2H2O, 2H2O and 4H2O, consistent with the elemental analytical data of the 

complex: Found: C 42.42, H 3.64, N 9.32; C54H44N10O20RuS4·8H2O requires C 42.49,  

H 3.96, N 9.18.  

 

3.3.5 Absorption Spectroscopy  
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Fig. 3.13 Absorption spectra for [Ru(pytpy)2][HSO4]2 and [Ru(L)2][HSO4]4 (L
+
 = 1-7), 

measured in water at concentrations of 10
-6

 mol dm
-3

. 

 

To be effective as photosensitisers for the POM (§ Introduction), the ruthenium 

complexes should ideally absorb over the entire visible spectrum. The broad MLCT 

absorptions (390-560 nm for [Ru(pytpy)2][HSO4]2 and 390-580 nm for all other 

complexes) cover a large proportion of the visible spectrum.  
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As observed for the [Ru(L)2][PF6]4 complexes (§ Chapter 2) the MLCT band is red-

shifted on alkylation of the pendant pyridyl moiety. The energy of the MLCT band is the 

same for [Ru(pytpy)2][PF6]2 and [Ru(pytpy)2][HSO4]2 (λmax = 490 nm) and this is also 

true for each [Ru(L)2][HSO4]4 complex, except for [Ru(3)2][HSO4]4  and [Ru(5)2][HSO4]4  

(Fig. 3.13), which are slightly red-shifted (518 nm), compared to 513 nm for their PF6
-

precursors.  
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Fig. 3.14 A comparison of the absorption properties of [Ru(5)2][PF6]4 (solid black line) 

and [Ru(5)2][HSO4]4 (dashed black line). Concentration = 10
-6

 mol dm
-3

. 

 

The change in anion and solvent, from PF6
-
 in MeCN to HSO4

-
 in water, affects the 

ability of the complexes to absorb light. The molar absorption coefficients for the MLCT 

band ranges from 19.6 x 10
3
 (L

+
 = 7) dm

3
 mol

-1
 cm

-1
 to 37.8 x 10

3
 (L

+
 = 1)

 
for the HSO4

-
 

salts, compared to 29.7 x 10
3 

(L
+
 = 3) to 48.7 x 10

3
 (L

+
 = 7) for the PF6

-
 salts. In general 

the HSO4
-
 water-soluble salts are weaker absorbers than their PF6

-
 precursors but the ε 

values are in the same order of magnitude. However, ε values of 10
4 

mol dm
-3

 cm
-1 

means 

the complexes are still good absorbers and, therefore, reasonable catalyst candidates
35

. 

In the UV region of the spectrum the most intense band for the majority of complexes 

was around 276 nm. This band arises from a π�π
* 

transition on the pytpy ligand
36

. The 

data for all complexes are summarised in Table 3.2. 
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Table 3.2 A summary of the electronic absorption  data, recorded in water at 

concentrations of 10
-6

 mol dm
-3

, for the Ru(II) complexes of ligands 1-7. 

 

3.3.6 Emission Spectroscopy 

 

If an excited state is energetically accessible it can often be observed by the presence of 

phosphorescent decay
37

. This is important in the water splitting cycle as it is the excited 

state that is required to do the ‘work’. In solution all of the complexes were emissive. A 

water solution of the complex [Ru(pytpy)2][HSO4]2 was excited at 490 nm, resulting in a 

broad emission centered on λem = 660 nm.  

Complex MLCT  

(ε, 10
-3

 dm
3
 

mol
-1

 cm
-1

) 

     

[Ru(pytpy)2][HSO4]2 490 

(33.1) 

 313 

(58.1) 

 274 

(75.5) 

239 

(39.6) 

[Ru(1)2][HSO4]4 511 

(37.8) 

341 

(34.4) 

308 

(30.8) 

281 sh 

(62.2) 

276 

(75.4) 

241 

(48.2) 

[Ru(2)2][ HSO4]4 513 

(33.7) 

342 

(31.8) 

310 

(26.1) 

284 sh 

(58.2) 

277 

(67.8) 

 

[Ru(3)2][ HSO4]4 518 

(29.8) 

342 

(21.8) 

307 

sh 

(18.1) 

285 sh 

(57.4) 

277 

(67.3) 

 

[Ru(4)2][ HSO4]4 508 

(24.6) 

340 

(23.9) 

308 

(11.4) 

287 sh 

(36.1) 

276 

(50.3) 

 

[Ru(5)2][ HSO4]4 518 

(35.1) 

342 

(33.6) 

307 

(32.2) 

283 sh 

(64.2) 

277 

(78.3) 

238 

(53.5) 

[Ru(6)2][ HSO4]4 511 

(32.1) 

340 

(29.2) 

309 

(25.9) 

288 sh 

(51.1) 

276 

(64.2) 

237 

(41.9) 

[Ru(7)2][ HSO4]4 510 

(19.6) 

340 

(14.6) 

308 

(20.2) 

282 sh 

(41.7) 

276 

(49.0) 

 

λmax 

(ε, 10
-3

 dm
3
 mol

-1
 cm

-1
) 
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Water solutions of complexes [Ru(L)2][HSO4]4 were excited in the MLCT band,  

λex = 510 nm, which resulted in emission from the complexes between 600 and 850 nm, 

with λmax generally centred around 724 nm. The spectra are depicted in Fig. 3.15. 
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Fig. 3.15 Emission spectra for [Ru(pytpy)2][HSO4]2 and  [Ru(L)2][HSO4]4 (L
+
 = 1-7), 

measured in water. All solutions are of 10
-6

 mol dm
-3

 concentration. 

 

The complex [Ru(1)2][HSO4]4 emits with the highest intensity and complex 

[Ru(5)2][HSO4] emits with the lowest intensity, which follows the trend observed for the 

PF6
-
 salts. The emission of the HSO4

-
 salts overall was weaker than their precursor PF6

-
 

salts.  

The phosphorescence lifetimes of the complexes were also measured. There is a slight 

decrease in lifetime for the HSO4
-
 salts compared to the PF6

-
 salts. The emission maxima 

and lifetimes are summarised in Table 3.3.  
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Table 3.3 A summary of the emission properties of Ru(II) complexes with ligands 1-7,  

 recorded in water at concentrations of 10
-6

 mol dm
-3

. 

 

Although the lifetimes appear short for phosphorescence it is important to note that the 

measurements were carried out at room temperature in aerated solvent and both of these 

factors should decrease the lifetime. The measurement was also carried out in water and 

the 
3
O2 present quenches the 

3
MLCT state, further decreasing the lifetime. The lifetime of 

the complex needs to be long enough for the electron transfer to the S2O8
2-

 (reducing it to 

SO4
2-

) and ≥70 ns should be sufficient. The lifetimes are similar to that of an analogous 

complex reported by Kaledin et al.
35

.    

 

3.3.7 Electrochemistry 

 

Cyclic voltammetry was used to investigate the electrochemical properties of the 

complexes selected for testing as WOCs. The complexes selected were 

[Ru(pytpy)2][HSO4]2 and [Ru(L)2][HSO4]4 (L
+
 = 1, 2, 4 and 6).  

To be used as a WOC the complex needs to have an oxidation potential above the half 

reaction of water oxidation (2H2O → O2 + 4H
+
 + 4e

-
) but within a value that allows for 

oxidation. The measurements were carried out in a water solution of the complex using 

0.1M NaHSO4 as the electrolyte, with a glassy carbon working electrode, Ag/AgCl 

Complex Excitation 

Wavelength 

(nm) 

Emission  

Max (nm) 

 

τ (ns) 

(+/- 15 

ns) 

[Ru(pytpy)2][HSO4]2 490 660 73 

[Ru(1)2][HSO4]4 510 719 135 

[Ru(2)2][HSO4]4 510 722 108 

[Ru(3)2][HSO4]4 510 724 103 

[Ru(4)2][HSO4]4 510 732 146 

[Ru(5)2][HSO4]4 510 734 98 

[Ru(6)2][HSO4]4 510 716 137 

[Ru(7)2][HSO4]4 510 722 142 
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reference electrode and a Pt wire counter-electrode. The measurements were referenced 

to Ag/Ag
+
. Fig. 3.16 depicts a representative cyclic voltammagram of [Ru(2)2][HSO4]4, 

showing only the Ru(II)/Ru(III) oxidation; a meaningful reduction spectrum could not be 

obtained. 
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Fig. 3.16 Cyclic Voltammagram for [Ru(2)2][HSO4]4 (H2O, 0.1M NaHSO4, vs. Ag/Ag
+
). 

Only oxidation process shown. 

 

A broad quasi-reversible oxidation wave was observed for all complexes. This was 

attributed to the oxidation of Ru
II
 to Ru

III
. The [Ru(pytpy)2][HSO4]2  complex is more 

easily oxidised than the [Ru(L)2][HSO4]4 complexes. The data are summarised in Table 

3.4.  

Complex Redox potential (V) Eox - Ered (V) 

[Ru(pytpy)2][HSO4]2 +1.21 1.25 – 1.16 

[Ru(1)2][HSO4]4 +1.24 1.25 – 1.17 

[Ru(2)2][HSO4]4 +1.22 1.26 – 1.18 

[Ru(4)2][HSO4]4 +1.22 1.26 – 1.17 

[Ru(6)2][HSO4]4 +1.22 1.32 - 1.12 

Table 3.4 A summary of the redox potentials for Ru(II) complexes with ligands 1-7. 

Measurements carried out in water using 0.1M NaHSO4 as the electrolyte and            

referenced to Ag/Ag
+
.  

 

It is reported that [Ru(bpy)3]
3+

 can act as a water oxidation catalyst
18, 19

 and so it is 

probable that these complexes can also oxidise water. Cyclic voltammetry only gives 

information on what is happening at the tip of the electrode and not of the bulk sample.  
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If the water is being oxidised then not all of the Ru(III) will be reduced by the tip of the 

electrode as it will have already been reduced by the water. Therefore, the Ru(II)/Ru(III) 

oxidations are quasi-reversible.  

 

3.3.8 Water Oxidation Activity 

 

This work was carried out in collaboration with members of the Hill research group at 

Emory University (Atlanta).  

Figures 3.17 and 3.18 show the preliminary water oxidation results when using the afore-

described dyes in the water splitting system (Fig. 3.8).  
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Fig. 3.17 Water oxidation activity of the [Ru(pytpy)2][HSO4]2 and [Ru(L)2][HSO4]4 

complexes at pH 8. Measurements were carried out in the dark with 0.125 mM dye,  

2.5 mM Na2S2O8 and 4 µM Co4-POM (for full details see experimental section). 

 

After ~20 minutes the reaction stops for all dyes except [Ru(1)2]
4+

. This is due to the 

consumption of the sacrificial electron donor, persulfate. The reaction involving 

[Ru(1)2]
4+

 continues for a further ~ 15 minutes, at which point it also stops. However, 

Time (min.) 
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under these experimental conditions this dye is more effective at oxidising water than the 

standard [Ru(bpy)3]
2+

 dye. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18 Water oxidation activity of the [Ru(pytpy)2][HSO4]2 and [Ru(L)2][HSO4]4 

complexes at pH 9. Measurements were carried out in the dark with 0.125 mM dye,  

2.5 mM Na2S2O8 and 4 µM Co4-POM (for full details see experimental section). 

 

On increasing the pH from 8 to 9 the reactions involving all dyes yield a higher amount 

of O2. After ~20 minutes the reaction stops for all dyes except [Ru(L)2]
4+ 

(L = 1, 2, 6). 

This is due to the consumption of the sacrificial electron acceptor, persulfate. The 

reaction involving [Ru(6)2]
4+

 continues for a further ~ 10 minutes, at which point it also 

stops. The reactions involving [Ru(1)2]
4+

 and [Ru(2)2]
4+ 

continue for 40 minutes. Under 

these experimental conditions the [Ru(1)2]
4+

 dye is again more effective at oxidising 

water than the standard [Ru(bpy)3]
2+

 dye. 

 

The different activities of the complexes are explained as follows: 

1. The activity of [Ru(pytpy)2]
2+ 

is expected to be different to that of the other dyes 

as it has a +2 charge as opposed to a +4 charge.  
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2. The initial rates of reaction of the +4 dyes are all the same, which follows the 

trend observed in the photophysical and electrochemical properties of the dyes.  

3. The change in they dyes’ overall ability to oxidise water can be explained in terms 

of their susceptibility to basic attack at the C2 proton (Fig. 3.19). 

 

 

Fig. 3.19 Proposed mechanism of basic attack at the C2 proton on the terminal pyridyl 

rings of the [Ru(L)2]
4+

 (L = 1, 2, 4, 6) dyes. 

 

Basic attack at C2 destroys the aromaticity of the pyridyl group to form a hydroxopyridyl 

species. This species can then be oxidised to form the pyridone, which will behave 

differently to the original pyridyl. Confirmation of the different susceptibilities to basic 

attack of the complexes can be obtained by looking at the Mulliken charges, using DFT 

(Table 3.5). 

 

Complex Stability 

(high to low) 

Mulliken Charge  

on C2 

[Ru(pytpy)2]
2+ 

1 0.146 

[Ru(2)2]
4+ 

2 0.138 

[Ru(4)2]
4+ 

3 0.128 

[Ru(6)2]
4+ 

4 0.131 

[Ru(1)2]
4+ 

5 0.142 

Table 3.5 The relationship between the stability of the dye and the Mulliken Charge on 

C2. (DFT carried out using B3LYP/LANL2DZ/6-31G*, see Chapter 2 for details)  

 

As has already been stated, the [Ru(pytpy)2]
2+ 

behaves differently as it has a +2 overall 

charge and can therefore be ignored. For complexes [Ru(L)2]
4+ 

(L = 1, 4, 6) the trend in 
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Mulliken charge follows the trend in stability, ie. the more electropositive C2 is, the more 

susceptible the complex is to basic attack and, therefore, the less stable that complex is.  

The [Ru(2)2]
4+ 

dye behaves differently and this is due to the potential for hydrolysis at the 

cyano group, which results in a zwitterion. The charge of the complex subsequently 

decreases from +4 to +2 and it would, therefore, be expected to behave in a similar 

manner to that of [Ru(pytpy)2]
2+

, which is observed experimentally (Fig. 2.19).  

 

3.4 Conclusion 

 

In summary, the [Ru(L)2][HSO4]4
 
complexes demonstrated very similar photophysical 

and photochemical properties to their [Ru(L)2][PF6]4 parent complexes. Selected dyes 

showed water oxidation activity when used in conjunction with the Co4-POM of the Hill 

group
34

. The different catalytic activities of the dyes could be rationalised in terms of the 

overall charge of the complex and their susceptibility to basic attack at the C2 position of 

the terminal pyridine moiety. Use of the dye [Ru(1)2]
4+ 

resulted in the higest O2 yield and 

longest running reaction. Under the experimental conditions used it performed more 

effectively than the standard [Ru(bpy)3]
2+

 dye. Further work in this area should be carried 

out into alternative sacrificial electron donors to enable a longer running water oxidation 

reaction.   
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3.5 Experimental 

 

General Synthesis of [Ru(L)2][HSO4]4: 

 

The complex [Ru(L)2][PF6]4 was stirred with ten equivalents of [N(
t
Bu)4][HSO4] in a 

mixture of 9:1 acetonitrile:dichloromethane for 30 min, during which time a precipitate 

formed. The precipitate was filtered over celite and washed with 20 cm
3
 acetonitrile, then 

re-dissolved in deionised water, which was subsequently removed under reduced 

pressure, yielding a red powder. The red powder was stirred in 30 cm
3
 boiling acetonitrile 

for 20 min, to remove any remaining [N(
t
Bu)4][PF6], filtered over a sinter and washed 

with 20 cm
3
 EtOH and 20 cm

3 
Et2O. The product was isolated as a red powder. 

 

[Ru(pytpy)2][HSO4]2 

 

Yield: 107 mg, 78.7% (starting with 150 mg of [Ru(pytpy)2][HSO4]2) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.30 (s, 4H, B

3
),  

9.13 (d, J = 5 Hz, 4H, C
2
), 8.83 (d, J=10 Hz, 4H, C

3
), 8.72 (d, J=10 Hz, 4H, A

3
),  

7.99 (t, J = 20 Hz, 10 Hz, 4H, A
4
), 7.46 (d, J = 5 Hz, 4H, A

6
),  

7.22 (t, J = 10, 5 Hz, 4H A
5
);  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.1 (A

2
/B

2
), 158.8 (A

2
/B

2
), 156.9 (C

4
), 

154.9 (A
6
), 145.2 (C

2
), 144.5 (B

4
), 141.2 (A

4
), 130.5 (A

5
), 128.4 (C

3
), 127.6 (A

3
),  

124.7 (B
3
) 

ESI-MS: m/z 361.0 [M-2HSO4]
2+

 (base peak, calc. 361.1); 

Found: C 48.29, H 3.70, N 11.05;  C40H30N8O8RuS2·4H2O requires: C 48.63, H 3.88,  

N 11.34. 

 

[Ru(1)2][HSO4]4 

 

Yield: 150 mg, 99.1% (starting with 174 mg of [Ru(1)2][HSO4]4) 
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1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.25 (s, 4H, B

3
),  

9.21 (d, J = 5.3 Hz, 4H, C
2
), 8.81 (d, J = 5.3 Hz, 4H, C

3
), 8.68 (d, J = 7.7 Hz, A

3
),  

7.95 (t, J =7.3 Hz, 4H, A
4
), 7.59 (m, 4H, D

2
), 7.56 (m, 6H, D

3
+D

4
),  

7.42 (d, J = 5.2 Hz, 4H, A
6
), 7.18 (m, 4H, A

5
), 5.97 (s, 4H, a).  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.0 (A

2
/B

2
), 158.8 (A

2
/B

2
),  

156.0 (C
4
), 154.9 (A

6
), 148.0 (C

2
), 143.7 (B

4
), 141.2 (A

4
), 135.4 (D

1
), 132.9 (D

4
),  

132.5 (D
3
), 132.1(D

2
), 130.5 (A

5
), 129.2 (C

3
), 127.6 (A

3
), 124.6 (B

3
), 67.3 (a).  

MALDI-TOF: m/z 1193.1 [M – HSO4]
+
 (calc. 1195.1). 

 

[Ru(2)2][HSO4]4 

 

Yield: 41.7 mg, 59.6% (starting with 80 mg of [Ru(2)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.28 (s, 4H, B

3
),  

9.25 (d, J = 5.6 Hz, 4H, C
2
), 8.87 (d, J = 5.6 Hz, 4H, C

3
), 8.70 (d, J = 7.9 Hz, A

3
),  

7.97 (t, J = 7.6 Hz, 4H, A
4
), 7.94 (d, J = 8.1 Hz, 4H, D

3
), 7.73 (d, J = 8.0 Hz, 4H, D

2
), 

7.44 (d, J = 5.2 Hz, 4H, A
6
 ), 7.20 (m, 4H, A

5
), 6.09 (s, 4H, a).  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.1 (A

2
/B

2
), 158.8 (A

2
/B

2
), 155.0 (A

6
),  

148.4 (C
2
), 131.2 (A

4
), 140.7 (D

1
), 136.4 (D

3
), 132.4 (D

2
), 130.6 (A

5
), 129.4 (C

3
), 

127.7 (A
3
), 124.7 (B

3
), 122.7 (D-C≡N), 115.4 (D

4
), 66.5 (a), (C

B4
 and C

C4
 not resolved).  

MALDI-TOF: m/z 839.0 [Ru(2)(Hpytpy)]
+
 (calc. 839.2), 723.9 [Ru(pytpy)(Hpytpy)]

+
 

(calc. 723.2). Found: C 46.42, H 3.60, N 10.00; C56H44N10O16RuS4·6H2O requires  

C 46.37, H 3.89, N 9.66 (see text). 

 

[Ru(3)2][HSO4]4 

 

Yield: 230 mg, 97.9% (starting with 267 mg of [Ru(3)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.29 (s, 4H, B

3
),  

9.27 (d, J = 6.4 Hz, 4H, C
2
), 8.88 (d, J = 5.5 Hz, 4H, 

C3
), 8.70 (d, J = 7.8 Hz, A

3
),  

8.39 (d, J =20 8.2 Hz, 4H, D
3
), 7.97 (t, J = 7.6 Hz, 4H, A

4
), 7.80 (d, J =8.2 Hz, 4H, D

2
), 

7.44 (d, J = 4.7 Hz, 4H, A
6
), 7.20 (m, 4H, A

5
), 6.14 (s, 4H, a).  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.0 (A

2
/B

2
), 158.8 (A

2
/B

2
), 154.9 (A

6
),  
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151.4 (D
4
), 148.5 (C

2
), 143.5 (D

1
), 141.2 (A

4
), 132.9 (D

2
), 130.5 (A

5
), 129.5 (C

3
),  

127.7 (A
3
), 127.4 (D

3
), 124.7 (B

3
), 66.1 (a), (B

4
 and C

4
 not resolved).  

MALDI-TOF: 1001.6 [M –3HSO4]
+
  

(calc. 1001.1), 724.0 [Ru(Hpytpy)2]
+
 (calc. 724.2)  

Found: C 42.42, H 3.64, N 9.32; C54H44N10O20RuS4·8H2O requires C 42.49, H 3.96,  

N 9.18 (see text). 

 

[Ru(4)2][HSO4]4 

 

Yield: 257 mg, 98.7% (starting with 304 mg of [Ru(4)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.27 (s, 4H, B

3
),  

9.18 (d, J = 6.3 Hz, 4H, C
2
), 8.81 (d, J = 6.4 Hz, 4H, C

3
), 8.69 (d, J = 7.9 Hz, A

3
),  

7.96 (t, J = 7.8Hz, 4H, A
4
), 7.44 (d, J = 5.1 Hz, 4H, A

6
), 7.20 (m, 4H, A

5
),  

4.80 (coincident with solvent, a), 1.75 (t, J = 7.3 Hz, 6H, b).  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm 160.0 (A

2
/B

2
), 158.8 (A

2
/B

2
), 155.5 (C

4
),  

154.9 (A
6
), 147.7 (C

2
), 143.9 (B

4
), 141.1 (A

4
), 130.5 (A

5
), 129.1 (C

3
), 127.6 (A

3
),  

124.6 (B
3
), 60.0 (a), 18.4 (b).  

MALDI-TOF: m/z 850.4 [Ru(4)(Hpytpy)(HSO4)]
+
 (calc. 849.2),  

821.4 [Ru(Hpytpy)2(HSO4)]
+
 (calc. 821.1), 751.3 [Ru(4)(Hpytpy)(HSO4)]

+
  

(calc. 752.2), 723.3 [Ru(pytpy)(Hpytpy)]
+
 (calc. 723.2).  

 

[Ru(5)2][HSO4]4 

 

Yield: 95.5 mg, 65.9% (starting with 163 mg of [Ru(5)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm 9.36 (d, J = 6.5 Hz, 4H, C

2
),  

9.33 (s, 4H, B
3
), 8.98 (d, J = 6.6 Hz, 4H, C

3
), 8.72 (d, J = 8.1 Hz, A

3
),  

7.98 (t, J = 7.5 Hz, 4H, A
4
), 7.45 (d, J = 5.3 Hz, 4H, A

6
), 7.21 (m, 4H, A

5
),  

6.09 (s, 4H, a).  
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13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm 159.9 (A

2
/B

2
), 158.8 (A

2
/B

2
), 157.7 (C

4
),  

154.9 (A
6
), 148.6 (C

2
), 143.1 (B

4
), 141.2 (A

4
), 130.5 (A

5
), 129.6 (C

3
), 127.7 (A

3
),  

124.7 (B
3
), 116.6 (b), 50.5 (a).  

MALDI-TOF m/z 859.8 [Ru(5)(pytpy)(HSO4)]
+
 (calc. 859.1),  

761.6 [Ru(5)(pytpy)]
+
 (calc. 762.2), 722.3 [Ru(pytpy)2]

+
 (calc. 722.2).  

 

[Ru(6)2][HSO4]4 

 

Yield: 148 mg, 81.6% (starting with 210 mg of [Ru(6)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.28 (s, 4H, B

3
),  

9.16 (d, J = 5.9 Hz, 4H, C
2
), 8.84 (d, J = 5.8 Hz, 4H, C

3
), 8.70 (d, J = 7.9 Hz, 4H, A

3
), 

7.97 (t, J= 7.6 Hz, 4H, A
4
), 7.45 (d, J = 5.3 Hz, 4H, A

6
), 7.21 (m, 4H, A

5
),  

6.27 (m, 2H, b),  5.66 (d, J = 10.3 Hz, 2H, c1), 5.63 (d, J = 17.2 Hz, 2H, c2),  

5.39 (d, J = 6.1 Hz, 4H, a).  

13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.0 (A

2
/B

2
), 158.8 (A

2
/B

2
), 156.0 (C

4
),  

154.9 (A
6
), 148.0 (C

2
), 143.8 (B

4
), 141.2 (A

4
), 132.6 (b), 130.5 (A

5
), 129.1 (C

3
),  

127.7 (A
3
), 126.2 (c), 124.6 (B

3
), 66.1 (a).  

MALDI-TOF: m/z 803.2 [Ru(6)2]
+
 (calc. 804.2), 763.2 [Ru(6)(pytpy)]

+
 (calc. 763.2), 

724.0 [Ru(Hpytpy)2]
+
 (calc. 724.2).  

Found: C 42.84, H 3.65, N 8.99; C46H42N8O16RuS4·5H2O requires C 43.09, H 4.09,  

N 8.74 (see text). 

 

[Ru(7)2][HSO4]4 

 

Yield: 35 mg, 68% (starting with 58 mg of [Ru(7)2][HSO4]4) 

 

1
H NMR: (500 MHz, D2O, 25ºC, TMS) δ/ppm: 9.29 (s, 4H, B

3
),  

9.17 (d, J = 6.4 Hz, 4H, C
2
), 8.83 (d, J = 6.4 Hz, 4H, C

3
), 8.71 (d, J = 8.1 Hz, 4H, A

3
), 

7.98 (t, J = 7.8 Hz, 4H, A
4
), 7.45 (d, J = 5.4 Hz, 4H, A

6
), 7.21 (m, 4H, A

5
),  

4.78 (t, overlapping solvent, a), 2.13 (m, 4H, b), 1.44 (m, 8H, c+d),  

1.34-1.30 (overlapping m, 12H, e+f+g), 0.87 (t, J = 6.8 Hz, 6H, h).  
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13
C NMR: (126 MHz, D2O, 25ºC, TMS) δ/ppm: 160.0 (A

2
/B

2
), 158.8 (A

2
/B

2
), 155.5 (C

4
),  

154.8 (A
6
), 147.9 (C

2
), 143.8 (B

4
), 141.1 (A

4
), 130.4 (A

5
), 129.0 (C

3
), 127.6 (A

3
),  

124.6 (B
3
), 64.7 (a), 33.7 (e/f/g), 33.4 (b), 30.9 (c/d), 30.8 (e/f/g), 28.1 (c/d), 24.7 (e/f/g), 

16.2 (h).  

MALDI-TOF: m/z 1237.8 [M – HSO4]
+
 (calc. 1239.3), 949.6 [M – 4HSO4]4

+
  

(calc. 948.4), 723.3 [Ru(pytpy)(Hpytpy)]3
+
 (calc. 723.2).  

 

Light-driven Catalytic Experiments 

 

Measurements were carried out by Dr. Yurii Geletii and Hongjin Lv at Emory University 

in Atlanta. 

The light-driven water oxidation was performed in a cylindrical cuvette (NSG, 32UV10) 

with a total volume of ~2.5 ml. The cell was filled with 2.0 ml of reaction solution with 

0.125 mM dye, 2.5 mM Na2S2O8, 4 µM Co4P2-POM catalyst (in 80 mM sodium borate 

buffer (initial pH 8.0/ 9.0). The reaction cell was sealed with a rubber septum, carefully 

deairated and filled with Ar. All procedures were performed with a minimum exposure to 

ambient light. The reaction was initiated by turning on the LED-light source (λ = 490 nm; 

light intensity 7 mW, beam diameter ~0.4 cm). 

A magnetically-coupled stirring system (SYS 114, SPECTROCELL) was used to mix 

reaction solutions (4×10
3
 RPM). The O2 concentration in the headspace was quantified 

by GC. The solution pH was measured after the reaction. 

 

Analysis of dioxygen in the reaction headspace was performed using a computer 

controlled Agilent 6850 model gas chromatograph equipped with a thermal conductivity 

detector and a HP-MOLESIEVE capillary GC column (30 m x 0.535 mm x 25.00 µm) 

Argon was used as a carrier gas. Typically, the O2 yield was quantified by withdrawing a 

gas sample from the headspace without stopping the reaction. Contamination of the head-

space with air was corrected by quantification of N2 present in the head-space (from the 

N2 peak in the GC traces). 
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Chapter 4 

Copper(I) Polypyridyl Complexes for Application in DSSCs. 

4.1 Introduction 

Nearly a decade after the Kyoto treaty1 entered into force there is an increasing usage of 

energy sources which offer an alternative to the consumption of fossil fuels. One of these 

alternative energy sources is solar energy. There are a number of different types of solar 

cell available (§Introduction) and the focus of this project has been on dye-sensitised 

solar cells (DSSCs)2.  

 

Dye sensitised solar cells consist of the following components (Fig. 4.1)2-6: 

• Counter electrode – This is a transparent conducting oxide and the most 

commonly chosen type is fluorine doped tin oxide (FTO).  

 

• Semiconductor – This is the main component of a DSSC. Titanium dioxide 

(TiO2) is the most frequently used in DSSCs. It was found that sheets of TiO2 

were not efficient enough so nanoparticles are now used7. This results in a larger 

surface area, which means that more dye particles can bind per unit area of the 

TiO2. There are three polymorphs of TiO2 but anatase is used as it has the largest 

energy gap between the valence and the conductance bands (bandgap = 3.2 eV). 

 

• Dye –A dye, which is capable of absorbing visible light and binding to TiO2, is 

used as a sensitizer because the band gap of TiO2 is so large it is poor at absorbing 

visible light.  Research into many organic and inorganic dyes has been carried out 

over the years and the most efficient sensitisers to date are based on ruthenium 

polypyridyl complexes. 

 

• Redox couple – The most common redox couple is iodide (I-)/triiodide (I3
-) but 

alternatives include cobalt(II)/cobalt(III), thiocyanate/trithiocyanate and organic 

systems such as TEMPO8.    

 

The working principles of a DSSC are depicted in Fig. 4.1. 
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Fig. 4.1 The principles of a dye-sensitised solar cell. 

 

On absorption of light, the dye (S) is promoted to an excited state (S*) as an electron is 

transferred from the highest-occupied molecular orbital (HOMO) of the complex, to the 

lowest unoccupied molecular orbital (LUMO) (step 1, eqn. 4.1). (This is a simplified 

model because there are multiple molecular orbitals close in energy around both the 

HOMO and the LUMO.) The electron is then injected into the TiO2 leaving the dye in an 

oxidised state (S+) (step 2, Eqn 4.2).  

S0 + hυ → S*     (Eqn. 4.1) 

S* → S+ + e-     (Eqn. 4.2) 

The counter-electrode donates two electrons to I3
-, generating I- (step 3, Eqn. 4.3).  

I3
- + 2e- (Pt) → 3I-  (Eqn. 4.3) 

 

e- 

 S0/S+ 

S* 

  I-/I3
- 

Load 
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 VB 
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e- 
e- 

e- 

FTO TiO2 Dye I3/I3
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The I- then reduces the oxidised dye back to its original state (step 4, Eqn. 4.4) and the 

whole cycle can start again.  

2S+ + 3I- → 2S + I3
-    (Eqn. 4.4) 

Ideally, to be an efficient sensitiser, a dye needs to have the following characteristics2-6, 9: 

• It must be able to absorb light over the entire visible spectrum and into the near 

infra-red. 

• It must have anchoring groups, such as –COOH, -H2PO3, -CN, to enable binding 

to the TiO2 nanoparticles. 

• In its excited state, the dye must be higher in energy than the conductance band of 

the TiO2 so that injection of an electron is faster than excited state decay.  

• In its oxidised state, the dye needs to be more positive in energy than the redox 

couple, to enable reduction of the dye.   

 

To compare solar cells and determine the efficiency four parameters are used2-6, 9-11.  

1. IPCE – Incident monochromatic photon-to-electron conversion, also known as 

the external quantum efficiency. The IPCE is defined as the number of electrons, 

generated by light, in the external circuit, divided by the number of incident 

photons as a function of excitation wavelength. 

 

2. Voc – Open circuit photovoltage. This is determined by the gap between the 

electrolyte (ie. redox couple) redox potential and the quasi Fermi level of TiO2 

under illumination.  

  

3. Jsc – Short circuit current density. This is the number of electrons being injected 

into the TiO2 by the dye and it is limited by the absorption properties of said dye. 

For example, a dye with an absorption onset of 800 nm has a theoretical 

maximum Jsc of 26 mA cm-2, whereas a dye with an absorption onset of 550 nm 

only has a theoretical maximum Jsc of 10 mA cm-2. 

 

4. ff – Fill factor. This is a number between 0 and 1 which expresses the ratio of the 

theoretical maximum power to the actual power obtained and is calculated using 

Eqn 4.5. 



 86 

                                                      
ocsc VJ

P
ff

×
=

max                                           (Eqn. 4.5) 

The overall efficiency (η) of a solar cell is calculated as follows (Eqn 4.6): 
 

                                                         
in

ocsc

P

FFVJ ××
=η                                         (Eqn. 4.6)                               

where Pin is the intensity of the incident light. 

 

Since Graetzel’s first DSSC publication in 19917, ruthenium has been the transition metal 

of choice when synthesising dyes for dye-sensitised solar cells and to date the most 

efficient DSSCs have been fabricated using ruthenium polypyridyl complexes (Fig 4.2). 

 

 

                                    “black dye”                                       N719 

Fig. 4.2 Two of the best ruthenium polypyridyl complexes to date for application as 

sensitisers in DSSCs2, 12.  

 

The dye N719 is often viewed as the research “standard”12 and publications reporting 

efficiencies of solar cells using new dyes usually quote the efficiency values with respect 

to that of a cell made with N719, fabricated under the same conditions.  

However, quoted efficiencies are dependent upon the construction of the cell, electrolyte 

etc. and comparisons across a range of measurements carried out in different laboratories 

can sometimes be meaningless. 

 

Now, a new area of research is emerging utilising the transition metal, copper. There are 

two major advantages of copper over ruthenium. The advantage of copper is its 

availability; not only is it much more abundant in the Earth’s crust than ruthenium but it 

can also be recovered from scrap metal, it is also easier to extra from its ore than 
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ruthenium. Due to its availaibility, copper is much cheaper than ruthenium. One gram of 

ruthenium powder from Sigma Aldrich costs 272 CHF, compared to  

one gram of copper powder for 0.20 CHF (prices correct August 2012). The first reported 

use of a Cu(I) complex as a photosensitiser was by Sauvage et al in 199413. The complex 

consisted of two carboxyphenyl substituted phenanthroline ligands encapsulating a Cu(I) 

centre (Fig 4.3). 

 

 

Fig. 4.3 Tetrasodium bis(2,9-(4-carboxylatophenyl)-1,10-phenanthroline)copper(I) 

tetrafluoridoborate. The first Cu(I) complex used as a photosensitiser, reported by 

Sauvage et al.13.  

 

In methanol solution the complex showed an MLCT band with λmax = 440 nm (ε = 3000 

dm3 mol-1 cm-1) and a shoulder at 560 nm (ε = 1100 dm3 mol-1 cm-1). The dye was 

anchored to TiO2 by means of the carboxylate groups and the photocurrent was measured. 

The fill factor (ff) was found to be 0.6, the open circuit voltage (Voc) was 0.6 V and the 

photocurrent was measured at 0.6 mA cm-2. The fill factor and the open circuit voltage 

were reasonable for a DSSC but the photocurrent was very poor. 

The next publication describing the use of Cu(I) dyes as photosensitisers was not until 

2002 when Hamada et al. reported a homoleptic Cu(I) complex with carboxy 

functionalised bipyridine ligands (Fig 4.4)14.   
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Fig. 4.4.  Bis(4,4',6,6'-tetramethyl-2,2'-bipyridine-5,5'-dicarboxylic acid) copper(I) 

chloride reported by Hamada et al.14.  

 

The complex exhibited an MLCT absorption with λmax = 450 nm  

(ε = 6400 dm3 mol-1 cm-1) and as such, was suitable for use as a sensitiser for a DSSC. 

The Voc was slightly higher than that of Sauvage’s complex (630 mV) as was the short 

circuit current (3.9 mA cm-2). The IPCE was 30% at 460 nm. 

 

Six years later the Constable group reported two complexes (Fig 4.5) which were very 

effective photosensitisers, resulting in DSSC devices with efficiencies of 1.9 and 2.3% 

(compared to N719 with an efficiency of 9.7%)15.  

 

 

      A                                               B 

Fig. 4.5 The two Cu(I) complexes reported by Constable et al. in 200815. 

 

The MLCT band of complex B (λmax = 506 nm) is red-shifted compared to that of 

complex A (λmax = 495 nm). Complex B is also more efficient at absorbing light  

(ε = 3650 dm3 mol-1 cm-1 compared to ε = 450 dm3 mol-1 cm-1). Therefore, it is 

unsurprising that complex B results in a device with a higher efficiency than that of 

complex A. (The ff, Jsc, and IPCE values are all higher for the device using complex B 

than for the device using complex A.) 
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A further paper detailed similar homoleptic Cu(I) complexes with various substituents 

(Fig 4.6)16.  

 

 

Fig. 4.6 The set of Cu(I) complexes reported by Constable et al. in 200916. 

 

The most efficient device used the copper complex with carboxylic acids in the 5 and 5' 

positions of the bipyridine ligands. The efficiency of the device (0.45%), was much 

poorer than those previously reported by the same group. However, the efficiency of the 

DSSC incorporating N719, prepared in same way, was only 5.0%. 

In 2010 Robertson et al. reported the first heteroleptic Cu(I) complex for application in a 

DSSC17. To circumvent the challenging synthesis of 6,6'-substituted bipyridines a rigid 

POP (POP = bis{2-(diphenylphosphanyl)phenyl}ether) ligand was used to sterically 

hinder oxidation of the Cu(I) centre. A 4,4'-bis(carboxylic acid) substituted bipyridine 

ligand completed the complex (Fig. 4.7). 

 

 

Fig. 4.7 The first heteroleptic Cu(I) complex tested in a DSSC17. 

 

Assessing the efficacy of this dye is difficult as the efficiency of the device incorporating 

N719 was measured as being 3.05%. However, the low efficiency of the copper complex-

containing device (η = 0.053%) is in part due to the irreversibility of the Cu(I)/Cu(II) 

oxidation17. If the Cu(II) cannot be reduced by the I-/I3
- redox couple, an electrical cycle 
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cannot be established and the device will quickly die. Another deficiency of the dye is 

that the MLCT band is only just into the visible region (λmax = 394 nm).  

 

In the same year copper(I) complexes based on N-phenylpyridin-2-methanamine ligands 

were reported by Constable et al.(Fig 4.8)18. Although the MLCT bands of these 

complexes were in the visible region of the spectrum with  λmax = 499-511 nm the 

efficiencies of the complexes were very poor; η = 0.23 and 0.006%, compared to N719,  

η = 4.60%. The poor efficiencies were explained using low level DFT calculations. These 

calculations lead to the conclusion that the LUMO was not on the anchoring moieties of 

the complexes, which meant that injection of an electron into TiO2 would be poor.  

 

 

Fig. 4.8 The two Cu(I) dyes based on N-phenylpyridin-2-methanamine ligands18. 

 

In 2011, a paper reporting DSSC devices using heteroleptic Cu(I) dyes was published19. 

In order to make the heteroleptic complexes, Constable et al. exploited the lability of 

Cu(I) complexes. By first attaching anchoring ligands (Fig 4.9), such as 6,6'-dimethyl-

[2,2'-bipyridine]-4,4'-carboxylic acid, to TiO2 coated on FTO and then dipping this 

electrode into a solution of a homoleptic copper(I) complex, a ligand exchange could be 

carried out in situ. This method bypasses the challenge of synthesising and isolating 

heteroleptic copper(I) complexes.  

 

 

Fig. 4.9 Anchoring ligands used by the Constable group19. 
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The homoleptic complexes consisted of a copper(I) ion coordinated to two 6-aryl 

substituted bipyridine ligands. Aryl substituents were chosen because thiophene had 

previously been used to tune the properties of 2,2'-bipyridine19. The devices using the 

phosphonate-substituted anchoring ligand were the most efficient, regardless of the aryl 

substituent. The highest efficiency, 1.51%, was obtained after mixing the homoleptic 

furan-substituted copper(I) complex with the phosphonate-substituted anchoring ligand 

(N719 efficiency = 4.50% measured under the same conditions). 

 

Heteroleptic complexes are desirable for use in DSSCs so that one of the ligands can be 

designed with groups that will anchor to the TiO2 and the other ligand can be designed 

with groups to optimise the light absorption and redox properties of the complex. In this 

chapter one of the homoleptic complexes synthesised is [Cu(dmbpy)2][PF6] (dmbpy = 

6,6'-dimethyl-2,2'-bipyridine), chosen due to its structural simplicity20-22. There are 

previous reports of the crystal structure of this complex with BF4
- counter anion23 and 

ClO4
- counter anions24 as well as the absorption spectrum of [Cu(dmbpy)2][ClO4] in 

ethanol and acetone25 and [Cu(dmbpy)2][PF6] in dichloromethane26. To date there have 

been no reports of the full characterisation of [Cu(dmbpy)2][PF6] or its application in 

DSSCs. The second homoleptic complex utilises a ligand based on dmbpy which has 

extended π-conjugation using triphenylamine groups. Organic DSSCs sensitised with 

molecules containing triphenylamine groups have shown promising efficiencies27-29.        

In this chapter the same approach to heteroleptic complexes will be used as described in 

reference [19].  

The ligands 8 and 9 depicted in Fig 4.10, and complexes thereof, are described in this 

chapter. 

 

 

 

Fig. 4.10 Ligands 8 and 9 with labelling for spectroscopic assignments. 
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4.2 Synthesis of ligand 9 and corresponding Cu(I) complexes 

 

The starting material for 9 was 6,6'-dimethyl-2,2'-bipyridine (8), which was commercially 

available. Compound 9 was synthesised by stirring one equivalent of 8 with 2.3 

equivalents of 4-(diphenylamino)benzaldehyde in dry DMF for two days in the dark, 

using potassium tert-butoxide (KOtBu) as the base (Scheme 4.1). The yield of the 

reaction was 55 %.  

 

Scheme 4.1 The synthesis of compound 9.  

 

The synthesis of the copper(I) complexes was carried out by dissolving one equivalent of 

[Cu(MeCN)4][PF6] in acetonitrile and stirring (ultrasonicating for 9) it with a chloroform 

solution of the relevant ligand for 30 minutes. The solution changed from colourless to 

red on addition of the ligand and the product was isolated as a red powder, after 

precipitation with diethyl ether (Schemes 4.2 and 4.3).   

 

 

Scheme 4.2 The synthesis of [Cu(8)2][PF6], yield 77%.  
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Scheme 4.3 The synthesis of [Cu(9)2][PF6], yield 81%. 

 

4.3 Results and Discussion 

 

4.3.2 1H NMR Spectroscopy 

  

[Cu(8)2][PF6] was measured in CD3CN and the spectrum is depicted (Fig 4.11). 

Fig. 4.11 1H NMR spectrum of [Cu(8)2][PF6] in CD3CN; 500 MHz, 25ºC, TMS, H2O(*). 

 * 

  a 

   A3 
    A4 

     A5 
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The appearance of one set of signals indicates that the complex is homoleptic. The singlet 

at δ 2.22 ppm was ascribed to the methyl substituent due to the chemical shift and the 

integral.  

The triplet at δ 8.02 ppm was ascribed to proton A4 due to the splitting and protons A3 

and A
5 were assigned by their chemical shift. Proton A

5 is much more shielded than 

proton A
3 due to the +I effect of the methyl substituent, which means that the signal 

ascribed to A5 is further upfield compared to A3. 

 

 

 Fig. 4.12 1H NMR spectrum of 9 in CDCl3; 500 MHz, residual CHCl3 (*), 25ºC, TMS. 

 

The 1H NMR spectrum of 9 (Fig. 4.12) was assigned using both COSY and NOESY 

techniques. The starting point for assignment was the triplet at δ 7.81 ppm which, due to 

the splitting, had to be ascribed to proton A
4. From the COSY spectrum it was then 

possible to ascribe the two doublets at δ 8.41 and 7.39 ppm to A3 and A5 by looking for 

COSY cross-peaks (Fig. 4.13) from the triplet at δ 7.81 ppm. The specific assignment of 

A
3 and A5 was done by comparison with a spectrum of 6,6'-dimethyl-2,2'-bipyridine.  

  * 

 C3 

  a + C2   

    A3 
     A4 

    b 

   B2 

     A5 

C4 + B3 
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Fig. 4.13 Partial COSY spectrum of 9 (500 MHz, CDCl3, 25ºC, TMS) to show cross peaks 

between  A3, A4 and A5. 

 

Assignment was continued from the broad doublet at δ 7.73 ppm, which had a J coupling 

of 16.0 Hz. The large coupling constant indicated that this signal was due to a proton on a 

trans-alkene bond. The COSY spectrum (Fig 4.14) enabled location of the other broad 

trans-doublet (Fig 4.14) in the overlapping signals at δ 7.15 ppm, highlighted by a red 

circle. A NOESY interaction between the peak at δ 7.73 ppm and a doublet at δ 7.15 ppm 

(Fig 4.15) meant that the former peak could be ascribed to proton b and the latter peak 

ascribed to proton B2. This meant that the broad doublet in the multiplet at δ 7.15 ppm 

could be ascribed to proton a. A COSY cross peak between the doublet at δ 7.15 ppm and 

the multiplet at δ 7.07 ppm enabled the assignment of the peak at δ 7.07 ppm as B3. A 

NOESY correlation is observed between the peak ascribed to B3 and a multiplet at δ 7.15 

ppm, which means that the multiplet can be assigned as C
2. Protons C

3 and C
4 are 

subsequently ascribed to the multiplets at δ 7.28 and δ 7.07 ppm, respectively, by 

observation of  COSY cross peaks with C2. 
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 Fig. 4.14 Partial COSY spectrum of 9 (500 MHz, CDCl3, 25ºC, TMS) to show cross peak 

between protons a and b. Red circle highlights broad doublet.  

Fig. 4.15 Partial NOESY spectrum of 9 (500 MHz, CDCl3, 25ºC, TMS) to show NOE 

interaction between the protons ascribed to b and B2. 
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The 1H NMR spectrum of [Cu(9)2][PF6] was measured in CDCl3 and was assigned using 

COSY and NOESY techniques (Fig. 4.16).  

 

  

Fig. 4.16 1H NMR spectrum of [Cu(9)2][PF6] in CDCl3; 500 MHz, residual CHCl3 (*), 

25ºC, TMS. 

 

As for compound 9, assignment of the 1H NMR spectrum of [Cu(9)2][PF6] started with 

the triplet peak at δ 7.85 ppm, which was ascribed to proton A4. Compared to the ligand 

A
4 proton, this signal was shifted slightly downfield. COSY correlations identified the 

doublets at δ 7.90 and δ 7.74 ppm as A3 and A5. By comparison with the ligand spectrum 

the doublet at δ 7.90 ppm could be ascribed to A3 and the doublet at δ 7.74 ppm could be 

ascribed to A5.  

The signals corresponding to the protons on the A ring of the complex have significantly 

different shifts to those of the ligand (Table 4.1), the signal for proton A
3 is shifted 

upfield and the signal for proton A5 is shifted downfield on complexation. This is due to 

the nitrogen atom becoming deshielded by donating electron density to the copper, which 

subsequently affects the A ring protons.   
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An NOE interaction between A5 and the broad doublet at δ 7.12 ppm ascribes the broad 

doublet to proton b (Fig 4.18). Due to their proximity in space an NOE interaction can be 

observed between A5 and b, this interaction is not observed between A5 and a as a is not 

conformationally aligned in such a way to allow an NOE interaction to occur. A COSY 

correlation between the peak ascribed to b and a broad doublet at δ 6.77 ppm assigns the 

broad doublet at δ 6.77 ppm as proton a (Fig 4.17). A NOE interaction between b and the 

doublet at δ 6.67 ppm ascribes that doublet to proton B2 (Fig 4.18). 

 

Fig. 4.17 Partial COSY spectrum of [Cu(9)2][PF6] (500 MHz, CDCl3, 25ºC, TMS) to 

show cross  peak between protons a and b. Red circles highlight broad doublets. 

 

 b  a 

 a 

 b 
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Fig. 4.18 Partial NOESY spectrum of [Cu(9)2][PF6] (500 MHz, CDCl3, 25ºC, TMS) to 

show NOE interaction between the protons ascribed to b and A5 (lower line) and b and 

B
2 (upper line). 

 

From B2 a COSY correlation to the doublet at δ 6.79, which overlaps with the signal for 

proton a, enables assignment of said doublet as B3. A weak NOE interaction between B3 

and the triplet at δ 7.30 ppm means that the triplet can be ascribed to proton C3. (There is 

also a strong NOE interaction between B3 and 
C

2.) Finally COSY correlations between C3 

and the multiplet at δ 7.08 ppm means that the multiplet can be assigned to protons C2 

and C4, which is confirmed by the integrals. 

 

On complexation the bipyridine unit of the ligand undergoes a conformational shift from 

transoid to cisoid (Fig 4.19), which has a significant effect on the shift of the a, b and B2 

peaks in the 1H NMR spectrum (Table 4.1).  

 

  b 

  b 

 A5 

 A5 

 B2 
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Fig 4.19 Conformational changes of ligand 9 on binding to copper. 

 

Compound a b B
2 

9 7.15 7.74 7.49 

[Cu(9)2][PF6] 6.77 7.12 6.67 

Table 4.1 Comparison of shifts (δ/ppm) on complexation of compound 9. Spectra  

measured in CDCl3 at room temperature.  

 

Compared to the ligand, the signals for protons a and b are shifted upfield. This is 

because i) the alkene protons are forced into close proximity with the copper atom and ii) 

the effect of the nitrogen atoms on the alkene protons is lessened as the nitrogen atoms 

are complexed to copper. The signal for B
2 is most affected on complexation of the 

ligand and this is due to the close proximity of the protons to the copper ion.  
 

4.3.2 13C NMR Spectroscopy 

 

The 13C{1H} NMR spectrum of [Cu(8)2][PF6] was measured in CD3CN and assigned 

using HMQC and HMBC techniques. The chemical shifts and peak assignments can be 

found in the experimental section at the end of this chapter.  

 

The 13C{1H} NMR spectrum of 9 was measured in CDCl3 and is depicted in Fig 4.20.   
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Fig. 4.20 13C{1H} NMR spectrum of 9 in CDCl3; 126 MHz, 25ºC, TMS. 

 

The peaks arising from 13C-H carbons were assigned using the HMQC spectrum. The 

cross-peaks involving the alkene protons and their respective carbon signals were very 

distinct (Fig 4.21). The quaternary carbon signals were assigned using the HMBC 

spectrum. Proton C3 had an HMBC interaction with a signal at δ 147.5 ppm, which was 

assigned to C1. Proton B2 had a HMBC interaction with a signal at δ 148.5 ppm, which 

was assigned to B
4. Proton B

3 had a HMBC interaction with a signal at δ 130.8 ppm, 

which was assigned to B1. Proton A4 had HMBC interactions with signals at δ 156.1 and 

δ 155.3 ppm, which were assigned to the A ring (Fig 4.22). Proton b had an HMBC 

interaction with the signal at δ 155.3 ppm, which was assigned to A
6 (Fig 4.22). By 

deduction, the signal at δ 156.1 ppm was then assigned to A2.   

A2  A6  B4 

 C1 

 A4 B1  b 

    B3+C4 

  A5    A3 

  B2 

  a 

 C3  C2 
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Fig 4.21 Partial HMQC spectrum of compound 9, measured in CDCl3 at 25ºC.  

 

        

Fig 4.22 HMBC spectrum of compound 9, measured in CDCl3 at 25ºC, depicting the  

            interactions between H(A4) and C(A2), C(A6) and H(b) and C(A6) specifically.  
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The 13C NMR spectrum of [Cu(9)2][PF6] was measured in CDCl3 and is depicted in Fig. 

4.23.   

 

Fig 4.23 13C{1H} NMR spectrum of [Cu(9)2][PF6] in CDCl3; 126 MHz, 25ºC, TMS. 

 

The 13C{1H} NMR spectrum was assigned using HMQC and HMBC techniques. In the 

HMQC spectrum the alkene signals were easily identified as observed in the HMQC 

spectrum of compound 9 (Fig. 4.21). All carbons except the quaternary carbons were 

assigned using the HMQC spectrum. The quaternary carbons were assigned by use of the 

HMBC spectrum in the same way that has previously been described for compound 9. 
 

3.3.3 Mass Spectrometry 

 

[Cu(8)2][PF6] was characterised using MALDI-TOF mass spectrometry. The 

fragmentation patterns confirmed complexation as fragmentation peaks corresponding to 

[M-PF6]
+ (m/z 431.0) and [M-8-PF6]

+ (247.0) were observed.  

Compound 9 was characterised using ESI mass spectrometry and a peak corresponding to 

[M+H]+ (m/z 695.3) was observed, confirming that the synthesis of the compound had 

been successful.  
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[Cu(9)2][PF6] was also characterised using ESI mass spectrometry. Successful 

complexation was confirmed by the observation of a peak corresponding to [M-PF6]
+ 

(m/z =1453.7) in the spectrum. The base peak, assigned to [9+H]+ (m/z 695.3), was also 

present in the spectrum.  

 

4.3.4 Absorption Spectroscopy 

 

As discussed in the introduction to this chapter, to be truly efficient as photosensitisers 

for DSSCs the copper complexes should ideally absorb over the entire visible spectrum. 

There are currently many examples of ruthenium complexes which have this property, 

the most famous being “the black dye”30, but no copper complexes yet meet this criterion. 

Whilst copper complexes are not at this stage of development, they do give rise to an 

MLCT band in the red-orange region of the spectrum, thus absorbing some visible light. 

UV-vis spectroscopy was used to ascertain how much light from the visible spectrum was 

absorbed by the compounds described in this chapter.  

0

5

10

15

20

25

30

220 270 320 370 420 470 520 570

Wavelength (nm)

ε
 x

1
0

-3
 (

d
m

3
 m

o
l-1

 c
m

-1
)

[Cu(8)2][PF6]

8

 

Fig. 4.24 Absorption spectra for 8 (red line) and [Cu(8)2][PF6](black line) measured in 

MeCN with a concentration of 10-5 mol dm-3.  

 

Compared to the ligand (8), the complex is much more strongly absorbing (Fig. 4.24). A 

new band with λmax = 452 nm is observed for the complex, which gives rise to its red 
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colour and means that the complex absorbs visible light. This band is due to an MLCT 

transition; promotion of an electron from an occupied copper d-orbital to an empty ligand 

π* orbital. The UV region of the spectrum is dominated by ligand-based π→π* 

transitions. The data are summarised in Table 4.2.    

 

 

  

 

 

 

 

 

Table 4.2 A summary of the absorbance data, recorded in acetonitrile, for 8 and 

[Cu(8)2][PF6] with concentrations of 10-5 mol dm-3.  
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Fig. 4.25 Absorption spectra of 9 (green line) and [Cu(9)2][PF6] (blue line) measured in 

CH2Cl2 with concentrations of 10-6 mol dm-3.  

 

The absorptions of compound 9 and its copper(I) complex (Fig. 4.25) are much more 

intense than those of the [Cu(8)2][PF6] complex. This is due to the extended π-system of 

ligand 9, compared to ligand 8. The spectrum of 9 contains two peaks with λmax = 296 

and 389 nm. The latter absorption gives rise to the yellow-orange colour of the compound.  

Compound MLCT 

(ε, 103 dm3 

mol-1 cm-1) 

     

8   300 

(1.07) 

289  

(1.70) 

245 

(1.05) 

239 

(1.13) 

[Cu(8)2][PF6] 457 

(3.47) 

311 sh 

(18.68) 

302 

(27.19) 

266 

(18.66) 

246 

(20.3) 

241 sh 

(18.90) 

λmax 
(ε, 103 dm3 mol-1 cm-1) 
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In the case of the complex [Cu(9)2][PF6] these peaks are slightly red-shifted to 299 and 

400 nm. The peak with λmax = 400 nm tails further into the visible region, giving rise to 

the orange colour of the complex. Contrary to the case of [Cu(8)2][PF6], no MLCT peak 

is observed in the UV-vis spectrum of  [Cu(9)2][PF6] and this is explored later using DFT 

and TD-DFT (§ Chapter 5). The data for both compounds are summarised in Table 4.3. 

 

Compound 

 

  

9 296 (53.6) 389 (97.3) 

[Cu(9)2][PF6] 299 (185.4) 400 (235.5) 

 

Table 4.3 A summary of the absorption data, recorded in dichloromethane, for 9 and  

[Cu(9)2][PF6] 

 

4.3.5 Excitation and Emission Spectroscopy 

 

In the cycle of a DSSC it is the excited state of the copper complex that does the ‘work’, 

which in this case is the donation of an electron to the titanium dioxide. If an excited state 

is energetically accessible it can be observed by the presence of luminescent decay, 

provided that the lifetime is sufficiently long and the non-radiative processes are not too 

efficient. Emission spectroscopy was used to identify luminescent decay and, in the case 

of 9 and [Cu(9)2][PF6], excitation spectroscopy was used to confirm the origin of the 

emission.  

 

The excitation and emission spectra of [Cu(8)2][PF6] were measured in acetonitrile and 

the spectra are depicted in Fig. 4.26. 

 

 

 

λmax  (ε, 103 dm3 mol-1 cm-1) 
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Fig. 4.26 Emission spectra of [Cu(8)2][PF6] measured in acetonitrile after exciting into a  

ligand-based absorption at 300 nm and the MLCT band at 454 nm. 

 

Excitation into the ligand-based absorption band at 300 nm gives rise to a ligand-based 

emission in the UV region of the spectrum with λem = 351 nm, which tails into the visible 

region of the spectrum. Excitation into the MLCT band results in two emissions. The first 

in the blue-green region of the spectrum, with λem = 525 nm and the second in the orange-

red region, with λem = 690 nm, which also tails into the red region.  

The lifetime of the emission with λem = 525 nm was 4 ns and the lifetime of the emission 

with λem = 690 nm was 2 ns. For application in DSSCs the lifetime of the complex needs 

to be longer than the timescale of electron injection from the complex in its excited state 

into TiO2. Electron injection happens on the picosecond timescale2 and as such this 

complex fulfils said criterion. An attempt was made to measure the quantum yield of the 

complex using the Quantaurus instrument but the quantum yield was below the detectable 

limit of the machine (< 0.1%).   
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Fig. 4.27 Emission and excitation spectra of 9 measured in dichloromethane depicting 

emission spectra from excitation into the absorption bands at 299 and 391 nm and an 

excitation spectrum recorded after scanning the excitation holding the emission at  

473 nm.  

 

Excitation into the absorption bands at 291 and 391 nm of compound 9, gave rise to the 

same emission spectrum, which has λem = 473 nm (Fig. 4.27). By holding the emission at 

473 nm and scanning the excitation wavelengths, the excitation spectrum of the complex 

is obtained, which consists of two peaks with λex = 291 and 391 nm. This confirms the 

origin of the emission with λem = 473 nm. 
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Fig. 4.28 Emission and excitation spectra of [Cu(9)2][PF6]  measured in 

dichloromethane depicting an emission spectrum (-) from excitation into the absorption 

band at 300 nm and an excitation spectra after scanning the excitation holding the 

emission at 342 (-·-) and then 475(- -) nm.  

 

Excitation into the absorption band at 300 nm of complex [Cu(9)2][PF6] (Fig. 4.28) gives 

rise to two emissions. One emission is very weak and has λem = 342 nm, the other 

emission is stronger and has λem = 475 nm. The latter emission is the same as that 

observed for the ligand (compound 9). From the excitation spectrum it can be determined 

that the emission also has the same origin as that of the ligand, namely the absorption 

around 391 nm. This is unsurprising given the similarity of the absorption spectra of the 

ligand and its corresponding copper complex. Measuring the excitation spectrum whilst 

holding the emission at 342 nm gives rise to a peak with λex = 257 nm. The emission at 

342 nm is, therefore, ligand-based.  

 
The data for ligand 9 and its copper complex are summarised in Table 4.4.  
 

Compound 
 

λex λem λem λex λem 

9 291  473 391 473 
[Cu(9)2][PF6] 300 342 475   

Table 4.4 A summary of the emission data, recorded in dichloromethane, for 9 and 

[Cu(9)2][PF6] 
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The lifetime of the [Cu(9)2][PF6] complex was 2 ns, which is longer than the rate of 

electron injection. The quantum yield of the complex was reasonable; 37 % in aerated 

dichloromethane solution at room temperature.  

 

4.3.6 Electrochemistry 

 

A desirable property of a dye for DSSC application is that it is able to donate an electron 

to TiO2. A further desirable property is that the oxidised dye can be reduced back to the 

ground state by the I-/I3
- redox couple. The oxidation potential of a dye can be explored 

using cyclic voltammetry.  

All measurements were carried out using a solution  of the complex in an organic solvent 

(see figure captions for details), using 0.1M TBAPF6 as the electrolyte, a glassy carbon 

working electrode, Pt wire as the counter-electrode and silver wire as a pseudo-reference 

electrode, measurements were referenced to Fc/Fc+. 
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Fig. 4.29 Cyclic Voltammagram for [Cu(8)2][PF6] (MeCN, 0.1M TBAPF6, internal 

reference; ferrocene), oxidative (black) and reductive (blue) scans  shown. 

 

In the oxidative cycle of [Cu(8)2][PF6] (Fig. 4.29), a reversible, one-electron oxidation 

wave is observed at E1/2 = + 0.17 V. This is attributed to a Cu(I)/Cu(II) oxidation. The 

low oxidation potential and reversibility mean that this dye is a potential candidate for 

application in DSSCs.  
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Two reductions are observed in the reductive cycle (Fig. 4.29); a small peak at -1.37 V 

and a large peak at -1.79 V. The peak at -1.13 V could either correspond to the reduction 

at -1.37 V, rendering said peak quasi-reversible, or it could be due to deposition of by-

products from decomposition of the complex.  
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Fig. 4.30 Cyclic Voltammagram for 9 measured (dichloromethane, 0.1M TBAPF6, 

internal reference; ferrocene). 

 

Three oxidation waves are observed in the cyclic voltammagram of 9 (Fig 4.30). The first, 

with E1/2 = 0.43 V, and second, with E1/2 = 0.47 V, are largely reversible. The third, at 

0.66 V, is very broad and could be due to a slow electron transfer or two overlapping one 

electron processes. The extensive overlapping means that it is difficult to ascertain 

reversibility. It is postulated that the oxidation of the compound leads to the sequential 

formation of radical cations centered on the triphenylamine groups. In order to obtain 

more information spectroelectrochemistry was employed (Fig. 4.31). 
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Fig. 4.31. Spectroelectrochemistry of ligand 9, measured in dichloromethane. 

 

Using spectroelectrochemistry it is possible to observe changes in the UV-vis spectrum of 

the compound as a result of changing the voltage. The peak at λmax = 302 nm is due to the 

bipyridine unit31 and is only slightly affected by increasing the voltage. The peak at  

λmax = 399 nm is greatly affected on increasing the voltage, which indicates that the 

triphenylamine group is being oxidised. The growth of the peak with λmax = 505 nm is 

indicative of the formation of a radical cation as removal of an electron from the HOMO 

raises the level of the SHOMO (second highest occupied molecular orbital), decreasing 

the HOMO-LUMO gap and, therefore, giving rise to a peak at a longer wavelength than 

the original32. This also puts forward the postulation that although many processes are 

observed in the cyclic voltammagram, they are similar processes occurring over the 

triphenylamine moieties at opposite sides of the molecule as there is only one overall 

change in the UV-vis spectrum on oxidation, confirmed by the isosbestic point in the 

spectroelectrochemistry.    
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Fig. 4.32 Cyclic Voltammagram for [Cu(9)2][PF6] measured (dichloromethane, 0.1M 

TBAPF6,  internal reference; ferrocene), depicting the oxidations of the complex only. 

 

The cyclic voltammagram of [Cu(9)2][PF6] (Fig. 4.32) differs slightly from that of the 

corresponding ligand. Two broad oxidation waves are observed; the first, centered at  

0.33 V, is made up of at least three overlapping quasi-reversible oxidations, the second, 

centered at 0.60 V is also quasi-reversible. The first broad oxidation wave is coincidental 

with the expected oxidation of Cu(I)/Cu(II). Spectroelectrochemical studies of the 

complex gave very similar results to that of the ligand. As will be discussed in Chapter 5 

calculations at the B3LYP level indicate that the HOMO of the complex is centered on 

the triphenylamine groups, which supports the postulation in regard to the oxidation of 

these groups. Overall the complex is more easily oxidised than the ligand and as it has a 

quasi-reversible oxidation at low potential it is a plausible candidate for application in 

DSSCs.  
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4.3.7 Crystal Structures 

 

Red blocks of [Cu(8)2][PF6] were grown by diffusing diethyl ether into an acetonitrile 

solution of the complex. The structure solved in the monoclinic P21/c space group with a 

very good R factor of 2.93 %. The asymmetric unit contains one cation and one PF6
- 

anion. The structure of the cation is depicted in Fig. 4.33. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.33 Structure of [Cu(8)2][PF6] with ellipsoids plotted at 50% probability and the 

hydrogens removed for clarity. Selected bond parameters: Cu1-N1 =2.0249(9),  

Cu1-N2 = 2.0471(9), Cu1-N3 = 2.0446(9), Cu1-N4 = 2.0335(9) Å; 

N1-Cu1-N2 = 81.13(4), N1-Cu1-N3 = 127.51(4), N3-Cu1-N4 = 81.59(4),  

N2-Cu1-N4 = 132.08(4)°. 

 

The structures of [Cu(8)2][BF4]
23 and [Cu(8)2][ClO4]

24 have previously been reported. By 

comparison, the Cu-N1 and Cu-N4 bond lengths in the structure of [Cu(8)2][PF6] are 

slightly shorter and the Cu-N2 and Cu-N3 bond lengths are slightly longer than those of 

previously reported structures (Table 4.5). The N1-Cu-N2 and N3-Cu-N4 bond angles are 

smaller than those reported for [Cu(8)2][BF4] and the same as those reported for 

[Cu(8)2][ClO4] (Table 4.5). The N1-Cu-N3 bond angle is smaller and the N2-Cu-N4 bond 

angle is larger than those reported for both [Cu(8)2][BF4] and [Cu(8)2][ClO4] (Table 4.5)  

 

 

 

    N1   N2 

  N3 

   N4 

Cu1 
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Bond (Å)/ 
Angle (°) 

[Cu(8)2][BF4] [Cu(8)2][ClO4] [Cu(8)2][PF6] 

Cu- N1 2.052(1) 2.047(2) 2.0249(9) 
Cu-N2 2.018(1) 2.029(2) 2.0471(9) 
Cu-N3 2.024(1) 2.021(2) 2.0446(9) 
Cu-N4 2.040(1) 2.045(2) 2.0335(9) 
    
N1-Cu-N2 81.66(6) 81.13(9) 81.13(4) 
N3-Cu-N4 82.22(6) 81.72(10) 81.59(4) 
N1-Cu-N3 128.46(4) 130.42(9) 127.51(4) 
N2-Cu-N4 130.33(7) 128.48(9) 132.08(4) 

Table 4.5 Comparison of selected bond parameters for [Cu(8)2][BF4], [Cu(8)2][ClO4] 

and [Cu(8)2][PF6]. 

 

The angle between the two bipyridine planes is 76.37°, which is considerably smaller 

than that observed in the structures of [Cu(8)2][BF4] (80.9°) and [Cu(8)2][ClO4] (80.7°).   

As in the case of [Cu(8)2][BF4] and [Cu(8)2][ClO4], the bipyridine ligands are not planar 

and twists of 10.56° around the N3-N4 bipyridine and 0.61° around the N1-N2 bipyridine 

C-C bonds are present in the structure.   

The [Cu(8)2]
+ cations pack in chains (Fig. 4.34). There is one crystallographically 

independent CH-π interaction between H141 and the py ring containing N2 (x, y, -1+z) 

which leads to propagation of chains that follow the crystallographic c axis (Fig 4.35).  

There are also extensive CH….F interactions throughout the lattice.  

   

Fig. 4.34 Packing of the [Cu(8)2]
+ cations viewed along the (left) a axis and (right) b axis.  
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Fig. 4.35 Face to edge interaction between H141 and the ring including N2 (H141-

centroid distance = 2.587 Å). 

 

Yellow plates of 9 were grown by slowly diffusing hexanes into a dichloromethane 

solution of the compound. The structure solved in the orthorhombic Pbca space group 

with an R factor of 3.84 %. The asymmetric unit contains half a molecule. The second 

half of the molecule is generated by symmetry and is related to the first half by an 

inversion centre. 

The structure of the molecule is depicted in Fig. 4.36 and selected bond lengths and 

angles are listed in the caption. 
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 Fig. 4.36 Structure of 9 with ellipsoids plotted at 50% probability and hydrogens omitted  

 for clarity. Selected bond parameters: N1-C5 = 1.352(2), C5-C6 = 1.467(2),  

C6-C7 = 1.337(2), C7-C8 = 1.461(2), C11-N2 = 1.425(2), N2-C14 = 1.418(2),  

N2-C20 = 1.417(2) Å; N1-C5-C6 = 117.6(1), C5-C6-C7 = 123.7(1), 

C6-C7-C8 = 127.2(1), C11-N2-C14 = 119.3(1), C11-N2-C14 = 119.3(1),  

C14-N2-C20 = 120.3(1)°. 

 

As expected the bipyridine unit is in the trans-conformation. This is to minimise electron 

repulsion between the two nitrogen lone pairs. Due to half of the molecule being 

generated by symmetry the bipyridine unit is planar. The bond lengths around the 

bipyridine ring and triphenylamine unit are unexceptional. The C5-C6 and C7-C8 bond 

lengths are consistent with single bonds. In comparison, the C6-C7 bond is contracted 

and has a smaller bond length, which is consistent with a double bond. The C8-C13 ring 

is twisted slightly, relative to the bipyridine, and the angle between the planes is 30.11° 

(Plane 1 = ring containing N1, plane 2 = ring containing C8).   

The molecules pack with intermeshing triphenylamine moieties (Figs. 4.37 and 4.38). 

There are no interactions between the bipyridine moieties. 

  

  N1  N2 

C5  C6 

C7 C8 

C11 

 C20 

C14 
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Fig. 4.37 Packing of the molecules, (left) atoms coloured by element, (right) red and blue  

colours highlight the intermeshing of the triphenylamine units. Both viewed along the a 

axis.  

 

 

 

Fig. 4.38 Packing of the molecules, (top) atoms coloured by element, (bottom) red and 

blue colours highlight the intermeshing of the triphenylamine units. Both viewed along 

the b axis.  
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Orange plates of [Cu(9)2][PF6] were grown by slowly diffusing hexanes into a 

dichloromethane solution of the complex. The crystal solved in the tetragonal P4/n space 

group with an R factor of 4.72 %. Unidentifiable electron density within the lattice voids 

was removed using the program SQUEEZE33 which slightly improved the R factor to 

4.65 %. The asymmetric unit contains one quarter of the complex and a quarter of a 

disordered PF6
- anion. The structure of the [Cu(9)2]

+ cation is depicted in Fig. 4.39 and 

selected bond lengths and angles are listed in the caption.  

 

 

 

Fig. 4.39 Cation in [Cu(9)2][PF6] with ellipsoids plotted at 50% probability and 

hydrogens omitted for clarity. Selected bond parameters: Cu1-N1 = 2.038(2),  

N1-C1 = 1.353(2), C5-C6 = 1.481(3), C6-C7 = 1.320(3), C7-C8 = 1.465(3),  

C11-N2 = 1.418(3), N2-C14= 1.411(3), N2-C20 = 1.426(3) Å; N1i-Cu1-N1 = 80.48(6),  

N1-C1-C6 = 113.9(2), C1-C6-C7 = 125.9(2), C6-C7-C8 = 122.5(2),  

C11-N2-C14 = 122.1(2). C11-N2-C20 = 119.0(2), C14-N2-C20 = 118.8(2) °. 

  

Upon coordination, the geometry of the bipyridine domain has changed from trans to cis 

and the two ligands coordinate orthogonally (angle between the planes is 89.7°) to the 

copper atom, causing a tetragonal geometry of the cation. The bond lengths of the ligand 

  N1 

  Cu1   C6 

   C1 

 C7 

    C8 

C11 

    N2 

   C20 

 C14 

  N1
i
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are virtually unchanged on coordination. Of note are the C1-C6 and N2-C20 bonds, 

which are slightly elongated upon complexation. As in the case of the ligand the short 

C6-C7 bond lengths are confirmation of a double bond.    

The ligands wrap tightly around the Cu+ ion (Fig 4.40) which probably causes the twist in 

the bipyridine (angle between pyridine planes is 16.6º).  

 

Fig. 4.40  Space-filling diagram of the [Cu(9)2]
+ cation in [Cu(9)2][PF6] with  the two 

ligands shown in red and blue. 
 
The complexes pack with intermeshing triphenylamine groups (Fig 4.41). Similarly to the 

packing of compound 9, there are no interactions between the bipyridine groups. The  

numerous CH….F interactions throughout the lattice play an important role in the crystal 

packing.   

        

Fig. 4.41 Packing of the cations with red and blue colours highlighting the intermeshing 

of the triphenylamine units, (right) viewed along the a axis, (bottom) viewed along the b 

axis.  
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4.3.8 DSSCs Incorporating the Cu(I) Complexes 

 

The following discussion is based on data obtained by Liselotte Siegfried and Dr. Biljana 

Bozic-Weber in the in-house solar cell laboratory.  

The lability of Cu(I) has been exploited to form heteroleptic complexes bound to titanium 

dioxide, starting from a homoleptic complex in the following step-wise manner: 

First, the anodes for the solar cells (see experimental section) were dipped into DMSO 

solutions of ligands 10, 11, 12 or 13 (Fig. 4.42). After washing and drying, the electrodes 

were immersed in EtOH solutions of [Cu(8)2][PF6] or CH2Cl2 solutions of [Cu(9)2][PF6] 

for 64 hours. During this period, the TiO2 changed from colourless to orange. When the 

slides were washed with EtOH, the orange colour was retained, indicating that ligand 

exchange at copper(I) had occurred with formation of a surface-bound heteroleptic 

complex. It is unlikely that the bound species is the homoleptic complex [Cu(L)2]
+ (L = 8, 

9) since ligands 8 and 9 have no substituents capable of binding the complex to the 

surface.  

The anchoring ligands that were used are depicted in Fig 4.42.  

 

 

Fig. 4.42 Structures of the anchoring ligands, 10-13. The anchoring groups are the 

carboxylic or phosphonic acids or their conjugate bases. 

 

The cells were measured two days after sealing and the efficiencies are given in Table 4.6. 

Cells made using complex [Cu(9)2][PF6] were generally more efficient than those made 

with [Cu(8)2][PF6]. The greater efficiency is attributed in part to the greater light-

harvesting ability of [Cu(9)2][PF6] due to the extended π-conjugation of the ligand. It is 

also thought that the bulky triphenylamine groups may help to minimise back migration 

of an electron from the semiconductor to the dye (§ Chapter 5).    

For both starting complexes, ligand exchange with 11 or 12 resulted in DSSCs with the 

highest efficiency and this is consistent with previously reported DSSCs made in the 
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Constable group19. Combination with ligand 13 resulted in DSSCs with the poorest 

overall efficiencies and this may be due to steric crowding at the copper(I) centre, 

particularly in the case of [Cu(9)(13)][PF6]. 

   

[Cu(L)2]
+ L' Jsc / A cm-2 Voc / mV ff η / % 

[Cu(8)2]
+ 10 0.003 518 0.58 1.03 

[Cu(8)2]
+ 11 0.004 618 0.46 1.18 

[Cu(8)2]
+ 12 0.006 563 0.45 1.63 

[Cu(8)2]
+ 13 0.001 536 0.64 0.49 

[Cu(9)2]
+ 10 0.001 482 0.65 0.47 

[Cu(9)2]
+ 11 0.005 609 0.60 1.95 

[Cu(9)2]
+ 12 0.005 555 0.60 1.70 

[Cu(9)2]
+ 13 0.001 555 0.63 0.51 

N719  0.018 718 0.58 7.29 

Table 4.6 DSSC efficiency data two days after the sealing of the cell, compared to N719 

prepared under the same conditions. 

 

The DSSCs were measured again, seven days after sealing (Table 4.7). The efficiencies 

of the cells with [Cu(9)2]
+/11 and [Cu(9)2]

+/12 were much improved and as such show 

comparable efficiency to those reported by Bessho et al. in 200915. Although it is unclear 

why the efficiency has increased so much, it could be due to the rearrangement of 

aggregates on the surface of the TiO2
34-36. From in-house observations this appears to be 

a general phenomenon for Cu(I) containing dyes in sealed cells.    

 

 

 

 

 

 

 

 

 



 123 

 

[Cu(L)2]
+ L' Jsc / A cm-2 Voc / mV ff η / % 

[Cu(8)2]
+ 10 0.004 530 0.58 1.17 

[Cu(8)2]
+ 11 0.005 643 0.44 1.30 

[Cu(8)2]
+ 12 0.006 595 0.46 1.69 

[Cu(8)2]
+ 13 0.001 563 0.63 0.45 

[Cu(9)2]
+ 10 0.002 522 0.66 0.64 

[Cu(9)2]
+ 11 0.006 627 0.61 2.35 

[Cu(9)2]
+ 12 0.007 579 0.60 2.33 

[Cu(9)2]
+ 13 0.002 562 0.63 0.57 

N719 - 0.018 718 0.58 7.29 

Table 4.7 DSSC efficiency data seven days after the sealing of the cell, compared to N719 

prepared under the same conditions. 

 

4.4 Conclusions 

 

Two homoleptic copper(I) complexes were synthesised for application in dye sensitised 

solar cells. One complex [Cu(8)2][PF6] was very simple, utilising the 6,6'-dimethyl-2,2'-

bipyridine ligand and the other [Cu(9)2][PF6], based on the same ligand, had extended π-

conjugation. The absorption properties of [Cu(9)2][PF6] were consistent with extended π-

conjugation, in that the complex absorbed more light than the simpler [Cu(8)2][PF6] 

complex. Both complexes were capable of being oxidised to their corresponding 

copper(II) complexes and being reduced back to the copper(I) complex, which meant that 

they were suitable for use in a DSSC. Finally heteroleptic complexes were made in situ 

and their efficiencies measured. It was found that DSSCs made with [Cu(9)2]
+/11 and 

[Cu(9)2]
+/12 had the highest efficiencies; 2.35 and 2.33 % respectively seven days after 

sealing the cells, compared to an efficiency of 7.29% with N719. 
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4.5 Experimental 

 

9 

Synthesis:  

Compound 8 (550 mg, 2.98 mmol) and 4-(diphenylamino)benzaldehyde (1.87 g,  

6.87 mmol) were stirred in dry DMF (70 cm3) in a reaction flask and KOtBu (1.005g, 

8.96 mmol) was added. The vessel was flushed with N2 for 10 min and the reaction 

mixture was stirred for 56 h in the dark after which time a dark yellow solid precipitated. 

This was filtered and dried in air. The crude product was dissolved in the minimum 

amount of CH2Cl2 and purified by column chromatography (SiO2, CH2Cl2). The first 

(orange) fraction was collected and solvent was removed in vacuo. Compound 9 was 

isolated as a yellow powder  

 

Yield: 1.13 g, 54.7% 

  
1H NMR: (500 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 8.41 (dd, J = 7.8, 0.6 Hz, 2H, A3),  

7.81 (t, J = 7.8 Hz, 2H, A4), 7.73 (d, J = 16.0 Hz, 2H, b), 7.49 (dAB, J = 8.6 Hz, 2H, B2), 

7.39 (dd, J = 7.7, 0.6 Hz, 2H, A
5), 7.28 (m, 4H, C

3), 7.15 (m, 10H, C
2+a),  

7.07 (m, 8H, C4+B
3).  

13C NMR (126 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 156.1 (A2), 155.3 (A6), 148.1 (B4), 

147.6 (C1), 137.4 (A4), 132.4 (b), 130.8 (B1), 129.5 (C3), 128.2 (B2), 126.5 (a), 124.9 

(C3), 123.4 (B3/C4), 123.3 (B3/C4), 121.9 (A5), 119.5 (A3).  

ESI: m/z 695.3 [M + H]+ (calc. 695.3)  

Found: C 85.49, H 5.64, N 7.96; C50H38N4·0.5H2O requires C 85.32, H 5.58, N 7.96. 

Melting point: 241.4 °C 
 

[Cu(8)2][PF6] 

 

Synthesis: 

[Cu(MeCN)4][PF6] (37.3 mg, 0.100 mmol) was dissolved in MeCN (2 cm3) and the 

solution was added to a solution of compound 8 (36.8 mg, 0.200 mmol) in CHCl3  

(5 cm3). The solution immediately became red in colour and was stirred for 30 min. 

Addition of Et2O (10 cm3) afforded a red precipitate, which was collected by filtration 
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over Celite. The product was washed with H2O and Et2O and removed from the Celite by 

dissolution in MeCN. Solvent was removed in vacuo and [Cu(8)2][PF6] was isolated as 

red crystals.  

Yield: 44.6 mg, 77.3% 

 
1H NMR: (500 MHz, CD3CN, 25 ºC, TMS) δ/ppm: 8.26 (d, J = 8.0 Hz, 2H, A3),  

8.02 (t, J = 7.9 Hz, 2H, A4), 7.50 (d, J = 7.7 Hz, 2H, A5), 2.22 (s, 6H, a)  
13C NMR: δC (126 MHz, CD3CN, 25 ºC, TMS): 158.4 (A6), 152.6 (A2), 139.2 (A4), 

126.7 (A5), 120.4 (A3), 25.2 (a).  

MALDI-TOF: m/z 431.0 [M – PF6]
+ (calc. 431.1), 246.5 [M – 8 – PF6]

+ (calc. 247.0). 

Found: C 49.38, H4.18, N 9.63; C24H24N4CuPF6·0.5H2O requires  

C 49.19, H15 4.30, N 9.56. 

 

[Cu(9)2][PF6] 

 

Synthesis: [Cu(MeCN)4][PF6] (26.8 mg, 0.0719 mmol) was dissolved in MeCN (2 cm3) 

and the solution was added to a solution of 2 (100 mg, 0.14 mmol) in CHCl3 (10 cm3). 

The solution immediately changed from yellow to orange and was ultrasonicated 

for 60 min. The solvents were then removed in vacuo and [Cu(9)2][PF6] was isolated as 

an orange powder. 

 

Yield: 92.5 mg, 80.4 %  

 
1H NMR: (500 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 7.90 (d, J = 7.6, 4H, A3),  

7.85 (t, J = 7.8 Hz, 4H, A4), 7.74 (d, J = 7.7 Hz, 4H, A5), 7.30 (t, J = 7.9 Hz, 16H, C3), 

7.12 (d, J = 16.3 Hz, 4H, b), 7.08 (m, 24H, C2+C
4), 6.79 (d, J = 8.6 Hz, 8H, B3) 

overlapping with 6.77 (d, J = 16.3 Hz, 4H, a), 6.67 (d, J = 8.6 Hz, 8H, B2).  
13C NMR: (126 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 155.5 (A6), 152.2 (A2), 148.9 (B4),  

147.1 (C1), 138.0 (A4), 135.0 (b), 129.6 (C3), 128.8 (B1), 127.9 (B2) 125.1 (C2),  

124.7 (a), 123.9 (C4), 122.4 (A5), 122.3 (B3), 119.9 (A3).  

ESI: m/z 1453.7 [M – PF6]
+ (calc. 1452.6), 695.5 [2 + H]+ (calc. 695.3).  

Found: C 73.98, H 4.76, N 7.71; C100H76CuF6N8P·MeCN·H2O requires  

C73.92, H 4.93, N 7.61.  
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Preparation of Solar Cells: 

 

TiO2 paste was prepared adapting the procedure of Grätzel and coworkers37; changes to 

the published procedure were the use of a porcelain (in place of alumina) mortar, 

sonicator bath in place of an ultrasonic horn, terpineol (CAS: 8000-41-7) rather than α-

terpineol, and the omission of the three roller mill treatment. The FTO glass (Solaronix 

TCO22-7, 2.2 mm thickness, sheet resistance ≈7 Ω square–1) was cleaned by sonicating 

in acetone, EtOH, Hellmanex® surfactant (2% in water), water and EtOH baths 

sequentially for 10 min. After treatment in a UV-O3 system (Model 256-220, Jelight 

Company Inc), the FTO plates were immersed in aqueous TiCl4 solution (40 mmol dm-3) 

at 70ºC for 30 min, and washed with H2O and EtOH. Nanocrystalline TiO2 electrodes 

were made by doctor blading the TiO2 paste onto a conducting glass slide and keeping 

them at room temperature for 10 min to allow the paste to mature to minimize surface 

irregularities. The electrode was then gradually heated under an air flow at 70°C for 30 

min, 135°C for 5 min, 325°C for 5 min, 375°C for 90 min, 450°C for 15 min, and 500°C 

for 15 min. After annealing, the TiO2 film was treated with 40 mM TiCl4 solution as 

described above, rinsed with H2O and EtOH and sintered at 500°C for 30 min. After 

cooling to ≈80°C, each electrode was immersed in a DMSO solution of anchoring ligand 

10, 11, 12 or 13 (1 mmol dm–3) for 24 h. The colourless slide was removed from the 

solution, washed with DMSO and EtOH, and dried. The electrode with adsorbed 

anchoring ligand was immersed in an EtOH solution of [Cu(8)2][PF6] or a CH2Cl2 

solution of [Cu(9)2][PF6] (0.4 mmol dm–3) and this was left to stand for 64 h during 

which time the slide turned orange. The electrode was removed from the solution and 

was washed with EtOH. To prepare the counter electrode, a hole was drilled in an FTO 

glass plate (cleaned and pre-treated as above). The perforated sheet was heated in air for 

15 min at 450°C to remove organic residues and was then washed as described for the 

working electrode. The Pt catalyst was deposited on the FTO glass by coating with a drop 

of H2PtCl6, 5 mmol dm–3 in propan-2-ol and heated to 400°C for 15 min. The dye-

covered TiO2 electrode and Pt counter-electrode were assembled using thermoplast hot-

melt sealing foil (Solaronix, Meltonix 1170-25 Series, 25 microns thick) by heating while 

pressing them together. The electrolyte comprised LiI (0.1 mol dm–3), I2 (0.05 mol dm–3), 

1-methylbenzimidazole (0.5 mol dm–3) and 1-butyl-3-methylimidazolinium iodide (0.6 

mol dm–3) in methoxypropionitrile, and was introduced into the cell by vacuum 
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backfilling. The hole on the counter electrode was finally sealed using the hot-melt 

sealing foil and a cover glass. Measurements were made by irradiating from behind using 

a light source SolarSim 150 (100 mW cm–2 = 1 sun). The power of the simulated light 

was calibrated by using a reference Si photodiode. The standard dye N719 was purchased 

from Solaronix. The active area of the cell was 0.288 cm2 and the cell was not masked 

during the measurements.   
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Chapter 5 

A DFT and TD-DFT investigation of copper(I) polypyridyl complexes with 

application in DSSCs 

5.1 Introduction 

Copper(I) complexes are a promising, cheap option to potentially use as sensitisers in dye 

sensitised solar cells (DSSCs)1, 2. Homoleptic complexes containing suitable anchoring 

ligands have shown reasonable efficiencies in DSSCs3-5 but in order to incorporate both 

anchoring groups into the complex and allow the properties to be tuned, the use of 

heteroleptic complexes offers greater flexibility6, 7. Heteroleptic complexes can be made 

by attaching an anchoring ligand to nanoparticles of titanium dioxide (TiO2, anatase) and 

then placing the TiO2 into a solution of a homoleptic copper(I) complex. This leads to the 

formation of a heteroleptic complex, attached to the surface of the TiO2. There is 

however a problem with this approach; due to the lability of Cu(I), a statistical mixture of 

heteroleptic and homoleptic complexes will be present in solution around the TiO2. It is 

not possible to isolate and characterise the heteroleptic complex. The only current means 

of characterising this heteroleptic complex is as the surface-bound species by means of 

solid state absorption spectroscopy and mass spectrometry6. Therefore, the properties of 

such a complex are currently not well understood.  

 

DFT and TD-DFT have been used to investigate ruthenium-based sensitisers for DSSCs, 

examining both structural and electronic properties of the dye in question and probing the 

transitions making up its absorption spectrum.  

The first notable study was carried out by Fantacci et al. in 2003 in a first principles 

investigation of the dye N3 (Fig. 5.1)8.  

 

Fig. 5.1 The cis- and trans-structures of the N3 dye. 
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In order to validate the studies, the optimised geometries of the two stereoisomers of the 

complexes were compared to experimental crystallographic data. The agreement between 

the experimental and calculated data was good, verifying the choice of method and basis 

set. The highest occupied molecular orbital HOMO, (HOMO−1) and (HOMO−2) orbitals 

were found to be quasi-degenerate and predominantly localised on the thiocyanate  

(SCN-) ligands with minor contributions from the ruthenium d-orbitals. The (HOMO−4),  

(HOMO−5) and (HOMO−6) were localised on the metal atom whilst the LUMO to  

(LUMO+5) orbitals were based on the bipyridine ligands with substantial contributions 

from the carboxylic acid groups. This is favourable for injection of an electron into TiO2 

on excitation of the molecule. Using TD-DFT the predicted shape of the absorption bands 

and the separation of said bands was in reasonable agreement with experimental data, 

although the prediction of the specific positions of the bands was limited.  

 

In 2006 Barolo et al. investigated a ruthenium complex with a tetradentate ligand, N886 

(Fig 5.2)9. Although the complex was characterised experimentally with 4'-tbutyl 

substituents, these were replaced by methyl substituents for computational convenience.  

 

N

N

COOH

N

N

HOOC

Ru

NCS

SCN  

Fig. 5.2 The structure of the N886 dye, with 
t
Bu substituents replaced with methyl groups 

 

The calculations focussed on the effect of deprotonation of the carboxylic acid groups on 

the energy levels of the HOMO and LUMO of the complex and it was found that 

deprotonation of the –COOH groups led to greater destabilisation of the LUMO rather 

than the HOMO. The HOMO and nHOMOs (next HOMOs) possessed ruthenium d-

orbital and thiocyanate character whereas the LUMO and nLUMOs (next LUMOs) were 

localised on the quaterpyridine (qpy) ligand, specifically the pyridine moieties with 

carboxylic acid substituents. Using TD-DFT to calculate the absorption spectrum of the 

di-protonated complex resulted in very good (within 15 nm) agreement with experimental 
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data, except in the case of the lowest-energy band. This band was predicted at 699 nm 

and observed experimentally at 637 nm. The transition is the result of electron promotion 

from a mixed ruthenium-thiocyanate orbital to an orbital based on the qpy ligand9. A 

higher energy band also involves promotion to an orbital based on the qpy ligand. The 

HOMO and LUMO of a Ti38O72 cluster were also calculated and compared to the energy 

levels of the dye to explore how favourable the injection of an electron from the dye into 

the TiO2 was.  

 

A similar study was carried out by Nazeeruddin et al in 2007 on the dye N945 (Fig. 5.3)10. 

N
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NCS
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COOH
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O
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O

O

 

Fig. 5.3 The structure of the N945 dye. 

 

It was found that the HOMO, (HOMO−1) and (HOMO−2) all had ruthenium d-orbital 

character, with significant contribution from the thiocyanate ligands. The LUMO and 

(LUMO+2) were localised on the carboxylic acid substituted bipyridine and the 

(LUMO+1) and (LUMO+3) were localised on the other bipyridine ligand. The energy 

levels of the orbitals were also calculated and compared to previous results for a model 

TiO2 nanoparticle. The results suggested that the LUMO and LUMO+1 were of a suitable 

energy match with the conductance band edge of TiO2 for favourable electron injection. 

This was corroborated experimentally as high photocurrents were measured.  

 

DFT and TD-DFT studies have also been carried out on Cu(I) complexes. In 2010 

Robertson and coworkers investigated the properties of four heteroleptic Cu(I) complexes 

(Fig. 5.4) of which one was then used in a DSSC7.  
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Fig. 5.4 Heteroleptic Cu(I) complexes investigated by Robertson et al.
7
  

 

TD-DFT calculations carried out at the B3LYP/LANL2DZ level gave rise to two classes 

of transitions, MLCT and LLCT, in the low energy region of the spectrum. The spectrum 

of A contained one predicted MLCT transition at 416 nm. The spectrum of B contained 

an LLCT band at 509 nm and another at 420 nm. Calculations predicted one MLCT band 

at 402 nm for compound C and for D an MLCT band at 481 nm and a mixed MLCT, 

LLCT band at 383 nm. The MLCT and LLCT bands were consistently predicted at lower 

energy than those observed experimentally, although the red shift from A to B was well 

reproduced.     

 

A similar problem was observed in TD-DFT calculations carried out by Lu et al., which 

were reported in 2009 and 201111,12. The DFT calculations were carried out at the 

B3LYP/6-31G* and B3LYP/DZVP levels and the results were very similar. The anion 

was excluded from the calculations as, apart from minor geometry changes, it made little 

difference to the outputs of the calculations. It was found that geometry optimisation 

calculations at the B3LYP/DZVP level resulted in slightly longer bond lengths than when 

optimisations were calculated at the B3LYP/6-31G* level. When carrying out the TD-

DFT calculations (also at the B3LYP/6-31G* level) the absorption spectra predicted 

contained MLCT bands at much lower energy than experimentally observed but trends 

were well reproduced.  

The calculated dyes were based on copper(I) bis(6,6'-dimethyl-2,2'-bipyridine) with 

different substituents at the 4- and 4'-positions of the bipyridine units: 

 

P

O

P

Cu

N N

N N

D
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• Ethenyl groups to add conjugation 

• Carboxylic acid or ester groups to look at protonation effects 

• Heteroaromatic groups such as selenophene, furan and thiophene to adjust 

molecular orbital energies and compositions. 

It was found the enhancing π-conjugation destabilises HOMOs and stabilises LUMOs 

and that the introduction of heteroaromatic groups stabilises HOMOs much more than 

LUMOs as the HOMO is based not only on the copper atom but also on the 

heteroaromatic-substituted ligand.  

 

In order to minimise the synthesis of multiple dyes, which is both expensive and time-

consuming, the aim of this chapter is to demonstrate that DFT and TD-DFT can be used 

to develop a method of screening multiple heteroleptic copper(I) complexes which could 

be used in DSSCs. In order to validate the method used theoretical data for the 

homoleptic complexes will be compared to experimental data. The heteroleptic 

complexes will then be calculated and the results rationalised in terms of efficiencies in 

DSSCs.  

In this study, the following homoleptic complexes have been investigated (Fig. 5.5).  

 

           
 

Fig. 5.5 The homoleptic complexes studied, (left) [Cu(8)2]
+
, (right) [Cu(9)2]

+
. The 

counter-anions were omitted from the calculations. 

 

5.2 Calculation Details 

 

The DFT calculations were carried out as follows: For [CuL2]
+ (L = 8 or 9), the TD-DFT 

calculations were based upon known crystallographic data (this work). For [CuLL']+ (L = 
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8 or 9, L' = 10-12) calculations were started from optimised structures of [Cu(8)2]
+ and 

[Cu(9)2]
+ and were computationally modified. Initial energy optimisation was carried out 

at the Hartree-Fock (HF) level with a 3-21G* basis set, followed by HF/6-31G*. 

Frequency calculations were carried out at this level to confirm that a minimum energy 

had been achieved. The structures were further relaxed with the hybrid 3-parameter Lee-

Yang-Parr functional13, 14 B3LYP/6-31G*. To account for solvent effects, the conductor-

like polarisable continuum model15, 16 (CPCM) was used. The CPCM was used in 

geometry optimisation and for subsequent TD-DFT calculations.  

As many of the calculations are computationally demanding, the influence of a 

considerably larger basis set (6-311++G**) was assessed by alternatively using an 

extended basis set on either the metal atom or on all ligand atoms. For the smaller 

complexes the entire calculation was also carried out with the 6-311++G** basis set 

throughout. Explorative calculations were also carried out with a LANL2DZ basis set on 

the Cu atom and 6-31G* for the remaining system. Predicted electronic transitions were 

calculated at the B3LYP level and simulated spectra were generated from the Gaussian 

09 output using the GaussSum program, version 2.217. 

The conversion factor from Hartree to eV is 1 Eh = 27.21128505 eV, taken from the 

NIST website 2010 values18. All calculations were carried out using the Gaussian 09 

program package19. 

 

5.3 Results and Discussion 

 

In order to validate the geometry optimisations, the calculated structures were compared 

to experimentally obtained crystallographic structures (this work) (Table 5.1).  
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Parameter [Cu(8)2]
+ 

(DFT) 
[Cu(8)2]

+  
(expt) 

[Cu(9)2]
+  

(DFT) 
[Cu(9)2]

+  
(expt) 

Cu1–N1 / Å 2.004 2.0248(9) 2.020 2.038(2) 

Cu1–N2 / Å 2.004 2.0472(9) 2.020 2.038(2) 

Cu1–N3 / Å 2.004 2.0447(9 2.020 2.038(2) 

Cu1–N4 / Å 2.004 2.0335(9) 2.020 2.038(2) 

N1–Cu1–N2 / o  82.92 81.13(4) 83.06 80.48(6) 

N1–Cu1–N3 / o 124.24 127.51(4) 131.56 125.64(6) 

N2–Cu1– N3 / o 124.24 114.67(4) 131.56 125.64(6) 

N1–Cu1– N4 / o 124.17 125.93(4 131.56 125.64(6) 

N2–Cu1–N4 / o 124.11 132.08(4) 131.56 125.64(6) 

N3–Cu1–N4 / o 82.92 81.59(3) 83.06 80.48(6) 

Table 5.1 Comparison of DFT and single crystal X–ray structural parameters for the 

coordination spheres in [Cu(8)2]
+
 and [Cu(9)2]

+
. Atom numbering corresponds to Figs. 

4.33 and 4.39, experimental data are from chapter 4.  

 

Although the Cu1-Nx (x = 1-4) bond lengths were slightly underestimated by the 

calculations, the geometries calculated using DFT were still realistic. The absorption 

spectra of the complexes were then calculated and the results compared with 

experimental data.  
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 Fig. 5.6 Calculated (6-31G* basis set) versus experimental electronic absorption spectra 

of [Cu(8)2]
+ 

in acetonitrile. The first fifty transitions were calculated. The figure was 

generated using the output of the GaussSum program
17

. 
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The agreement in the high energy region of the spectrum is good (Fig. 5.6). However, the 

TD calculations predict two MLCT bands in the visible region with λmax = 378, 532 nm, 

which are not observed experimentally. The band at 378 nm has two components, 

(HOMO-1) → (LUMO+2) and HOMO → (LUMO+3). The transition at 532 nm has two 

major components and these are depicted in Fig. 5.7.  

 
Fig. 5.7 The components of the MLCT band with λmax = 532 nm in [Cu(8)2]

+
. 

 

The (HOMO−1) is predominantly metal based with some contribution from the pyridine 

rings. The LUMO and (LUMO+1) are predominantly ligand-based with some Cu d-

orbital involvement. Whilst the band centered at 378 nm may be rationalised as 

corresponding to the tail of the experimentally observed band at 312 nm, the calculated 

band centered at 532 nm is 80 nm red-shifted with respect to the experimentally observed 

band with λmax = 460 nm. The over-estimation of the MLCT red-shift is also observed in 

reports by Lu et al.
11, 12.    

 

The absorption spectrum of [Cu(9)2]
+ was also calculated using TD-DFT (Fig. 5.8) and 

the agreement between the experimental and calculated spectra was better than that 

obtained for [Cu(8)2]
+, the smallest basis set (6-31G*) was used. 
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Fig. 5.8 Calculated (6-31G* basis set) versus experimental electronic absorption spectra 

of [Cu(9)2]
+ 

in acetonitrile. The first fifty transitions were calculated. The figure was 

generated using the output of the GaussSum program
17

. 

 

The lowest energy absorption in the experimental spectrum has λmax = 390 nm and the 

TD calculation predicts a spectrum with a band at λmax = 435 nm. The calculated and 

experimental spectra, therefore, are in tolerable agreement with one another, compared to 

some reports of ruthenium polypyridyl complexes where the predicted and calculated 

absorption spectra differ by up to 100 nm8, 10, 20, 21.  

 

In order to obtain more accurately predicted UV-vis spectra a larger basis set was 

employed. Diffuse functionals were also added to the calculations as electron density is 

generally more spread out over molecules in the excited state. Starting from the geometry 

optimised structures using the 6-31G* basis set the geometry was further optimised using 

the 6-311++G** basis set in the presence of acetonitrile by means of the CPCM.  

The TD-DFT calculations were then also carried out using the 6-311++G** basis set, 

also including the CPCM (Fig. 5.9).   
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Fig. 5.9 Calculated versus experimental electronic absorption spectra of [Cu(8)2]
+ 

in 

acetonitrile. The first fifty transitions were calculated. The figure was generated using the 

output of the GaussSum program
17

. 

 

As for the calculation with the 6-31G* basis set, the agreement between the predicted and 

experimental spectra in the high energy region of the spectra is good. In the visible region 

the accuracy is much improved by using the 6-311G** basis set; only one MLCT band is 

predicted and it is red-shifted by 29 nm (λmax = 489 nm) with respect to the experimental 

peak (λmax = 460 nm). However, using such a large basis set is computationally intensive 

and time-consuming. Whilst it is feasible for a small molecule such as [Cu(8)2]
+, this is 

not the case for larger molecules. Therefore, a split basis set employing the 6-311++G** 

basis set to describe the copper atom and the 6-31G* basis set to describe the carbon, 

hydrogen and nitrogen atoms was used.  Starting from the geometry optimised structures 

using the 6-31G* basis set the geometry was further optimised using the split basis set (6-

311++G** on Cu and 6-31G* on C, H, N) in the presence of acetonitrile by means of the 

CPCM. The TD-DFT calculations were also carried out using the split basis set and 

including the solvent model (Fig. 5.10).  
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Fig. 5.10 Calculated versus experimental electronic absorption spectra of [Cu(8)2]
+ 

in 

acetonitrile. The first fifty transitions were calculated. The figure was generated using the 

output of the GaussSum program
17

. 

 

The agreement between the calculated and experimental spectra improved again on 

employment of the split (6-311++G**/6-31G*) basis set. One MLCT transition centered 

at 470 nm is predicted, which is red-shifted by 10 nm compared to the experimental 

spectrum (λmax = 460 nm). The MLCT transition has four components which are depicted 

in Fig. 5.11, and involves the orbitals (HOMO−1), HOMO, LUMO and (LUMO+1).  
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Fig. 5.11 The components of the calculated MLCT band at 470 nm for [Cu(8)2]
+
 (basis 

set: 6-311++G** on Cu and 6-31G* on the ligand atoms). Isodensity surfaces for the 

MOs were generated from the Kohn-Sham orbitals using the MOLEKEL program
22

. 

 

The character of the orbitals changes very little on altering the basis set. The HOMO and 

(HOMO−1) have predominantly Cu d-orbital character, with some contribution from the 

pyridine rings, particularly the nitrogen atoms. The LUMO and (LUMO+1) are 

essentially ligand based.  

 

One further possibility for calculating the absorption spectra for these types of complexes 

is the use of the split basis set LANL2DZ23/6-31G*. The spectrum of [Cu(8)2]
+ was 

calculated using this split basis set and the result was very similar to that obtained from 

using 6-311++G**/6-31G* (Fig. 5.12). 
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Figure 5.12. Predicted absorption spectra for [Cu(8)2]
+
 showing that use of the 

LANL2DZ/6-31G* basis set is as good as the use of the 6-311++G**/6-31G* basis set. 

 

The LANL2DZ/6-31G* calculation predicts an MLCT λmax that is slightly blue-shifted, 

compared to experiment and the 6-311++G**/6-31G* calculation predicts an MLCT λmax 

that is slightly red-shifted compared to experiment. Both calculations reproduce the high 

energy absorptions well.  

It is concluded that the electronic absorption spectrum of [Cu(8)2]
+ can be realistically 

captured using either the LANL2DZ/6-31G* or the 6-311++G**/6-31G* split basis set.  

 

The absorption spectrum of [Cu(9)2]
+ was predicted using the split basis set  

(6-311++G** on Cu, 6-31G* on C, H and N) and the results are depicted in Fig. 5.13. 
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Fig. 5.13 Calculated versus experimental electronic absorption spectra of [Cu(9)2]
+ 

in 

acetonitrile. The first fifty transitions were calculated. The figure was generated using the 

output of the GaussSum program
17

. 

 

The change in basis set has little effect on the predicted UV-vis spectrum. The transition 

centered at 438 nm comprises of both MLCT and ligand-based transitions, depicted in 

Fig. 5.14, and contributing orbitals are depicted in Fig. 5.15.  

 

 

 

Fig. 5.14 Transitions making up the band at 438 nm in the calculated electronic 

absorption spectrum of [Cu(9)2]
+ 

using a 6–311++G** basis set on Cu and 6–31G* 

basis set on the ligand atoms.  
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Fig. 5.15 Molecular orbitals (MOs) that contribute to the transitions that make up the 

calculated MLCT band at 438 nm for [Cu(9)2]
+
 (basis set: 6-311++G** on Cu and 6-

31G* on the ligand atoms). Isodensity surfaces for the MOs were generated from the 

Kohn-Sham orbitals using the MOLEKEL program
22

. 

 

The majority of the molecular orbitals are predominantly ligand-based, accounting for the 

similarities in the photophysical and electrochemical properties of the ligand and the 

complex. Dominance of the triphenylamine moeties’ contribution to the HOMO and 

(HOMO–1) supports the findings from the spectroelectrochemistry (§ 4.3.6). 

 

As the level of agreement between the experimental and calculated data is satisfactory for 

both complexes [Cu(L)2]
+ (L = 8, 9) TD-DFT calculations were carried out for 

heteroleptic complexes of the type [Cu(L)(L')]+ where L = 8, 9 and L' = 10-12 (see Fig 

5.16 for structures of 10-12), using the split 6-311++G**/6-31G* basis set. 
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Fig 5.16 Structures of the anchoring ligands, 10-12. 

 

The UV-vis spectra of the complexes were calculated (Fig. 5.17)  
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Fig. 5.17 Calculated (6-311++G**/6-31G*) electronic absorption spectra of 

[Cu(8)(L')]+ 
(L' = 8, 10-12) in acetonitrile. The first fifty transitions were calculated. The 

figure was generated using the output of the GaussSum program
17

. 
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Complex λmax/nm Orbital Contributions 
 

[Cu(8)2]
+ 470 45% LUMO←(HOMO–1) 

40% (LUMO+1)←HOMO 

7% (LUMO+1)←(HOMO–1) 

7% LUMO←HOMO  

[Cu(8)(10)]+ 504 

 

86% LUMO←HOMO 

12% (LUMO+1)←(HOMO–1) 

 418 97% LUMO←HOMO 

[Cu(8)(11)]+ 486 

 

81% LUMO←HOMO 

15% (LUMO+1)←(HOMO–1) 

 382 91% (LUMO+2)←HOMO 

4% LUMO←(HOMO–3) 

[Cu(8)(12)]+ 491 

 

 

 

71% LUMO←HOMO 

16% (LUMO+1)←(HOMO–1) 

7% LUMO←(HOMO–1) 

3% (LUMO+3)←HOMO 

 414 77% (LUMO+2)←HOMO 

19% (LUMO+2)←(HOMO–1) 

Table 5.2 Orbital contributions to the electronic absorption transitions making up the 

MLCT band in the visible region for [Cu(8)2]
+
 and [Cu(8)(L')]+ 

(L' = 10-12).  

 

 For all of the heteroleptic complexes [Cu(8)(L')]+ the HOMOs have predominantly 

copper d-orbital character with some minor contribution from the pyridine rings (Figs. 

5.18 and 5.19).  
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Fig. 5.18 Highest occupied MO involved in transitions contributing to the calculated 

absorption spectra of [Cu(8)(10)]
+
 (right), [Cu(8)(11)]

+
 (centre), and [Cu(8)(12)]

+
 (left). 

 

The (HOMO−1) orbitals are also predominantly metal based, except in the case of 

[Cu(8)(10)]+ where there is significant contribution from ligand 8. This is also the case 

for the (HOMO−3) orbital of [Cu(8)(11)]+.  

 

         

Fig. 5.19 Second highest occupied MO involved in transitions contributing to the 

calculated absorption spectra of [Cu(8)(10)]
+
 (right), [Cu(8)(11)]

+
 (centre), and 

[Cu(8)(12)]
+
 (left). 

 

The LUMO and (LUMO+1) orbitals of the complex [Cu(8)(10)]+ are unexpectedly both 

metal- and ligand-based (Fig. 5.20). For favourable injection of an electron from the 

molecule in its excited state into the conductance band of TiO2, the LUMO should lie on 

the anchoring ligand (ligand 10 for this complex). As this is not the case, a poorer 
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efficiency would be expected from a DSSC incorporating [Cu(8)(10)]+ as the sensitiser. 

This is validated by experiment (Table 5.3).    

 

[CuL2]
+ L' ISC / A cm–2 

VOC / V ff η / % 

[Cu(8)2]
+ 10 0.004 0.530 0.58 1.17 

[Cu(8)2]
+ 11 0.005 0.643 0.44 1.30 

[Cu(8)2]
+ 12 0.006 0.595 0.46 1.69 

N719 - 0.018 0.718 0.58 7.29 

 

Table 5.3 DSSC efficiency data seven days after sealing. The [Cu(8)2]
+
 complex is 

introduced for surface exchange as the [PF6]
-
 salt.  

 

        

Fig 5.20 Lowest unoccupied MOs involved in transitions contributing to the calculated 

absorption spectrum of [Cu(8)(10)]
+
,
 
LUMO+1 (left), LUMO (right). The anchoring 

ligand 10 is at the top of each graphic.  

 

In complex [Cu(8)(11)]+, the LUMO and (LUMO+2) orbitals are localised on the 

anchoring ligand, 11 (Fig. 5.21). The (LUMO+1) is localised on ligand 8 but as 

contribution of the transition (HOMO−1)→(LUMO+1) is small this should not greatly 

affect the efficiency of a DSSC incorporating this dye.  
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Fig 5.21 Lowest unoccupied MOs involved in transitions which contribute to the 

calculated absorption spectrum of [Cu(8)(11)]
+
. The anchoring ligand 11 is at the top of 

each graphic. (LUMO+2) (left), (LUMO+1) (centre),and LUMO (right). 

 

For complex [Cu(8)(12)]+ all of the unoccupied molecular orbitals involved in transitions 

contributing to the MLCT bands are localised on the anchoring ligand (Fig. 5.22). This 

indicates that the dye is a potential candidate for use as a sensitiser in DSSCs.  

 

           

Fig 5.22 Lowest unoccupied MOs involved in transitions which contribute to the 

calculated absorption spectrum of [Cu(8)(12)]
+
. The anchoring ligand 12 is at the top of 

each graphic. LUMO+2 (left), LUMO+1 (centre), and LUMO (right). 

 

The efficiencies of the cells follow the same trend as the orbital contribution to the 

complexes. The higher the proportion of unoccupied molecular orbital localised on the 
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anchoring ligand, the greater the efficiency of the DSSC (Table 5.3). This gives a basis 

for screening complexes in silico before synthesis so that only dyes which have a large 

proportion of the unoccupied electron density on the anchoring ligands are made for use 

in DSSCs.    

 

The UV-vis spectra of the heteroleptic complexes using 9 were also calculated (Fig. 5.23). 

The spectra are more complicated than those of complexes incorporating ligand 8 as the 

band in the visible region of the spectrum is made up of multiple transitions.  
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Fig. 5.23 Calculated (6-311++G**/6-31G*) electronic absorption spectra of 

[Cu(9)(L’)]
+ 

(L’ = 10-12) in acetonitrile. The first fifty transitions were calculated. The 

figure was generated using the output of the GaussSum program
17

. 

 

All three spectra predict two absorption bands, the first in the UV region of the spectrum 

and the second in the visible region. For all complexes the band centred around 435 nm is 

the result of multiple MLCT and LLCT transitions. The orbitals involved in transitions 

for [Cu(9)(10)]+, [Cu(9)(11)]+ and [Cu(9)(12)]+ are depicted in Figs. 5.24, 5.25 and 5.26 

respectively. (For transition tables see appendix) 
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Fig 5.24 Highest occupied and lowest unoccupied MOs in [Cu(9)(10)]
+
. The anchoring 

ligand 10 is at the bottom of each graphic. 

 

The (HOMO−6) orbital is the only occupied molecular orbital which participates in 

transitions and has predominantly metal character. The (HOMO−5), (HOMO−4) and 

(HOMO−1) orbitals are based on the anchoring ligand and the (HOMO−3) and 

(HOMO−2) orbitals are located on 9. Both the HOMO and the LUMO orbitals are 

centred on the triphenylamine unit of 9, as is the (LUMO+3). The (LUMO+1) resides 

mainly on the bipyridine moiety of 9 and the only LUMO character residing on the 

anchoring ligand is that of (LUMO+2). This is not favourable for electron injection into 
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TiO2 when the dye is used in DSSCs. Correspondingly; this complex shows a poor 

efficiency when used in a solar cell (Table 5.4).    
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Fig 5.25 Highest occupied and lowest unoccupied MOs in [Cu(9)(11)]
+
. The anchoring 

ligand 11 is at the bottom of each graphic. 

 

Both (HOMO−6) and (HOMO−5) have predominantly 9 character with some 

contribution from the metal d-orbitals. The (HOMO−4) is predominantly based on 9, in 

contrast to the (HOMO−3) and (HOMO−2), which are predominantly metal based. Both 

(HOMO−1) and the HOMO are spread over half of ligand 9, in a similar manner to that 
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of (LUMO+2) and (LUMO+3). The LUMO and (LUMO+4) orbitals reside on the 

anchoring ligand, 11 and the (LUMO+1) orbital resides on the bipyridine unit of 9. Use 

of this complex in a DSSC results in an efficiency of 2.35% (Table 5.4), which is the best 

efficiency of all the dyes described in this chapter.   
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Fig 5.26 Highest occupied and lowest unoccupied MOs in [Cu(9)(12)]
+
. The anchoring 

ligand 12 is at the bottom of each graphic. 
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The (HOMO−5), (HOMO−3) and (HOMO−2) orbitals have predominantly copper  

d-orbital character with minor contributions from the pyridine rings. The (HOMO−4), 

(HOMO−1) and HOMO are all ligand 9 based. The LUMO, (LUMO+2) and (LUMO+5) 

orbitals all reside on the anchoring ligand and, correspondingly, a good efficiency of 

2.33% is observed when this complex is used in a DSSC. The (LUMO+1) and 

(LUMO+4) are based on the bipyridine unit of 9 and (LUMO+3) is delocalised over half 

of ligand 9. 

 

[CuL2]
+ L' ISC / A cm–2 

VOC / V ff η / % 

[Cu(9)2]
+ 10 0.002 0.522 0.66 0.64 

[Cu(9)2]
+ 11 0.006 0.627 0.61 2.35 

[Cu(9)2]
+ 12 0.007 0.579 0.60 2.33 

N719 - 0.018 0.718 0.58 7.29 

 

Table 5.4 DSC efficiency data 7 days after sealing, compared to standard dye N719 

measured under the same conditions. [Cu(9)2]
+
 is introduced for surface ligand 

exchange as the [PF6]
-
 salt. 

 

Complex HOMO-LUMO  
gap / eV 

 Complex HOMO-LUMO  
gap / eV 

[Cu(8)2]
+ 3.42 

 
 [Cu(9)2]

+ 2.87 
 

[Cu(8)(10)]+ 2.87  [Cu(9)(10)]+ 0.23 
[Cu(8)(11)]+ 3.17  [Cu(9)(11)]+ 2.60 
[Cu(8)(12)]+ 3.11  [Cu(9)(12)]+ 2.66 

Table 5.5 Calculated HOMO-LUMO gaps for [Cu(8)(L')]+
 (L' = 8, 10, 11, 12) and 

[Cu(9)(L')]+
 (L' = 9, 10, 11, 12). The conversion factor from Hartrees to eV was  

1 Eh = 27.21128505 eV, taken from the NIST website 2010 values
18

. 

 

The HOMO-LUMO gaps for the homoleptic and heteroleptic complexes are compared in 

Table 5.5. The energy gap is reduced on going from [Cu(8)2]
+ to [Cu(9)2]

+, and the same 

trend is observed between pairs of compounds with a common anchoring ligand, e.g. 

HOMO-LUMO [Cu(8)(10)]+ > [Cu(9)(10)]+. The HOMO-LUMO gap for [Cu(8)(10)]+ is 

surprisingly small; however the character of these orbitals is very similar as both are 
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based on the triphenylamine units of 9. The HOMO→LUMO transition does not 

contribute to the calculated band in the absorption spectrum and so the similarity of the 

orbital character appears to be an artefact of the calculation. 
 

5.4 Conclusions 

 

In summary, a number of basis sets have been screened to find a suitable basis set for 

predicting the absorption spectra of both homo- and heteroleptic Cu(I)-bipyridine 

complexes to an acceptable degree of accuracy. For the cation [Cu(8)2]
+ it was found that 

either the LANL2DZ/6-31G* or the 6-311++G**/6-31G* basis set could be used. For the 

[Cu(8)(L)]+ complexes an MLCT band involving transitions from orbitals localised on 

the copper atom to orbitals localised on bipyridine were predicted and the increasing 

localisation of the unoccupied molecular orbital on the anchoring ligand from L = 10 to L 

= 12 mirrors the increasing efficiencies of the dyes when used in DSSC devices.  

For the [Cu(9)2]
+
 complex, it was found that using the 6-311++G** basis set resulted in 

an acceptable level of agreement with the experimental spectrum. For the [Cu(9)(L)]+ 

complexes, a band in the visible region of the absorption spectrum is predicted, as a result 

of multiple transitions. The complex [Cu(9)(10)]+ shows little involvement of the 

anchoring ligand in these transitions and, correspondingly, a poor efficiency is observed 

when this complex is used in a DSSC. However, for complexes [Cu(9)(11)]+ and 

[Cu(9)(12)]+ the dominant unoccupied molecular orbitals were predicted over the 

anchoring ligand, which is necessary for efficient electron injection. The orbital character 

in the HOMOs of these dyes is dominated by the non-anchoring ligand, suggesting that 

ligand 9 enhances the performance of the sensitizer by minimizing back-migration of an 

electron from the semiconductor to the dye. The use of [Cu(9)(11)]+  and [Cu(9)(12)]+ in 

DSSCs results in the most efficient cells. 

Further work includes the testing of this choice of basis set by calculation of the 

properties of more Cu(I) complexes and comparing them to experimental data. It may 

also be prudent to calculate the properties of heteroleptic complexes attached to TiO2 

nanoparticles to ascertain which properties change when the dye is in situ.  
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5.6 Appendix 

 

Orbital contributions to the electronic absorption transitions making up the band 

in the visible region of the absorption spectrum for [Cu(9)2]
+ and oscillator strengths. 

 

Wavelength 
(nm) 

f Transition 

562 0.043 62% LUMO←HOMO 
28% LUMO←HOMO−4 
2% LUMO+1←HOMO–4 
2% LUMO+1←HOMO 

499 0.035 16% LUMO←HOMO−5 
21% LUMO←HOMO−3 
20% LUMO+1←HOMO 
17% LUMO+2←HOMO 
5% LUMO+1←HOMO−4 
7% LUMO+2←HOMO−4 
2% LUMO+3←HOMO−4 
5% LUMO+3←HOMO 

498 0.2653 88% LUMO←HOMO−1 
4% LUMO+3←HOMO 

493 0.069 12% LUMO+1←HOMO−4 
19% LUMO←HOMO−3 
49% LUMO+1←HOMO 
7% LUMO←HOMO−5 
2% LUMO←HOMO−2 
4% LUMO←HOMO 

491 0.2597 89% LUMO←HOMO−2 
2% LUMO←HOMO−1 

477 0.1417 15% LUMO+3←HOMO−4 
18% LUMO+2←HOMO 
46% LUMO+3←HOMO 
6% LUMO+2←HOMO−4 
3% LUMO←HOMO−2 
2% LUMO←HOMO−1 
4% LUMO+4←HOMO 

472 0.0385 14% LUMO←HOMO−5 
45% LUMO←HOMO−3 
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6% LUMO+2←HOMO−4 
2% LUMO+4←HOMO−4 
3% LUMO+1←HOMO 
4% LUMO+2←HOMO 
9% LUMO+4←HOMO 

470 0.1556 13% LUMO+4←HOMO−4 
60% LUMO+4←HOMO 
3% LUMO←HOMO−5 
7% LUMO←HOMO−3 
2% LUMO+1←HOMO−2 
5% LUMO+3←HOMO 

463 0.2442 13% LUMO+2←HOMO−5 
44% LUMO←HOMO−4 
25% LUMO←HOMO 
4% LUMO←HOMO−5 
5% LUMO+3←HOMO−5 
2% LUMO←HOMO−3 

456 0.2201 14% LUMO+2←HOMO−5 
12% LUMO←HOMO−4 
24% LUMO+2←HOMO−3 
4% LUMO←HOMO−5 
6% LUMO+3←HOMO−5 
8% LUMO+1←HOMO−3 
9% LUMO+3←HOMO−3 
2% LUMO+4←HOMO−2 
3% LUMO+4←HOMO−1 
4% LUMO←HOMO 
3% LUMO+2←HOMO 

454 0.36 47% LUMO+1←HOMO−2 
13% LUMO+2←HOMO−1 
8% LUMO+4←HOMO−3 
4% LUMO+2←HOMO−2 
3% LUMO+3←HOMO−2 
8% LUMO+1←HOMO−1 
5% LUMO+1←HOMO 
3% LUMO+4←HOMO 

453 0.0557 68% LUMO+1←HOMO−3 
5% LUMO+1←HOMO−4 
6% LUMO+2←HOMO−3 
5% LUMO+1←HOMO−2 
6% LUMO+2←HOMO−1 
4% LUMO+5←HOMO 

451 0.1084 10% LUMO+1←HOMO−2 
41% LUMO+2←HOMO−1 
16% LUMO+3←HOMO−1 
5% LUMO+1←HOMO−3 
7% LUMO+3←HOMO−3 
7% LUMO+2←HOMO−2 
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4% LUMO+3←HOMO−2 
2% LUMO+1←HOMO−1 

444 0.0905 18% LUMO+1←HOMO−2 
51% LUMO+2←HOMO−2 
13% LUMO+3←HOMO−2 
5% LUMO+4←HOMO−3 
2% LUMO+1←HOMO−1 
3% LUMO+2←HOMO 

436 0.0367 22% LUMO+2←HOMO−3 
52% LUMO+3←HOMO−3 
2% LUMO+3←HOMO−5 
4% LUMO+1←HOMO−4 
7% LUMO+4←HOMO−3 
5% LUMO+3←HOMO−1 

434 0.5181 39% LUMO+1←HOMO−4 
10% LUMO+4←HOMO−1 
15% LUMO+1←HOMO 
7% LUMO←HOMO−5 
4% LUMO←HOMO−4 
3% LUMO+3←HOMO−2 
5% LUMO+3←HOMO−1 
4% LUMO+2←HOMO 

432 0.0845 11% LUMO+2←HOMO−3 
13% LUMO+4←HOMO−2 
15% LUMO+2←HOMO−1 
25% LUMO+3←HOMO−1 
11% LUMO+4←HOMO−1 
4% LUMO+1←HOMO−4 
4% LUMO+2←HOMO 
4% LUMO+3←HOMO 

430 0.0555 63% LUMO+4←HOMO−3 
4% LUMO+2←HOMO−3 
2% LUMO+3←HOMO−3 
2% LUMO+1←HOMO−2 
8% LUMO+2←HOMO−2 
4% LUMO+4←HOMO−2 

427 0.0568 12% LUMO+2←HOMO−3 
10% LUMO+3←HOMO−3 
48% LUMO+4←HOMO−2 
2% LUMO←HOMO−5 
2% LUMO+2←HOMO−5 
6% LUMO+4←HOMO−3 
5% LUMO+3←HOMO−2 
3% LUMO+4←HOMO−1 

420 0.8285 23% LUMO+2←HOMO−5 
14% LUMO+2←HOMO−3 
12% LUMO+4←HOMO−2 
8% LUMO+3←HOMO−5 
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5% LUMO←HOMO−4 
9% LUMO+1←HOMO−4 
6% LUMO+3←HOMO−3 
5% LUMO+3←HOMO−2 
4% LUMO+4←HOMO−1 

415 0.1099 24% LUMO+2←HOMO−4 
44% LUMO+3←HOMO−4 
13% LUMO+3←HOMO 
5% LUMO+5←HOMO−1 
6% LUMO+2←HOMO 

411 0.1905 16% LUMO+4←HOMO−4 
63% LUMO+5←HOMO−3 
5% LUMO+1←HOMO−5 
3% LUMO+5←HOMO−2 
5% LUMO+5←HOMO 

410 0.0429 25% LUMO+5←HOMO−2 
50% LUMO+5←HOMO−1 
7% LUMO+4←HOMO−4 
7% LUMO+5←HOMO−3 
3% LUMO+4←HOMO 

397 0.0402 19% LUMO←HOMO−5 
31% LUMO+2←HOMO−4 
15% LUMO+3←HOMO−4 
4% LUMO←HOMO−8 
3% LUMO←HOMO−6 
6% LUMO+2←HOMO−5 
4% LUMO+3←HOMO−5 
2% LUMO+1←HOMO−4 
5% LUMO+5←HOMO−4 

 

Orbital contributions to the electronic absorption transitions making up the band 

in the visible region of the absorption spectrum for [Cu(9)(10)]+ and oscillator strengths. 

 

Wavelength 
(nm) 

f Transition 

484 0.0323 33% LUMO+1←HOMO−1 
60% LUMO+1←HOMO 
4% LUMO+2←HOMO−1 
 

481 0.4163 71% LUMO+2←HOMO 
3% LUMO←HOMO−3 
3% LUMO←HOMO−2 
8% LUMO+2←HOMO−1 
6% LUMO+3←HOMO−1 
2% LUMO+4←HOMO−1 

456 0.113 20% LUMO+2←HOMO−3 



 161 

22% LUMO+2←HOMO−2 
29% LUMO+2←HOMO−1 
4% LUMO+1←HOMO−3 
6% LUMO+1←HOMO−2 
6% LUMO+1←HOMO−1 
3% LUMO+3←HOMO−1 
5% LUMO+2←HOMO 

444 0.4481 10% LUMO+3←HOMO−2 
62% LUMO+3←HOMO−1 
2% LUMO+2←HOMO−1 
6% LUMO+2←HOMO 
6% LUMO+3←HOMO 
5% LUMO+4←HOMO 

440 0.044 13% LUMO←HOMO−6 
37% LUMO+1←HOMO−2 
12% LUMO+2←HOMO−2 
13% LUMO+3←HOMO 
2% LUMO+4←HOMO−2 
2% LUMO+1←HOMO−1 
6% LUMO+4←HOMO−1 
6% LUMO+4←HOMO 

439 0.0799 22% LUMO+1←HOMO−2 
44% LUMO+3←HOMO 
3% LUMO+3←HOMO−2 
4% LUMO+4←HOMO−2 
9% LUMO+4←HOMO−1 
8% LUMO+4←HOMO 

433 0.1185 36% LUMO←HOMO−6 
15% LUMO+1←HOMO−2 
15% LUMO+3←HOMO 
10% LUMO+4←HOMO 
7% LUMO←HOMO−4 
2% LUMO+4←HOMO−2 
5% LUMO+3←HOMO−1 
5% LUMO+4←HOMO−1 

431 0.2702 29% LUMO←HOMO−6 
10% LUMO+3←HOMO−1 
17% LUMO+4←HOMO−1 
12% LUMO+3←HOMO 
10% LUMO+4←HOMO 
4% LUMO←HOMO−4 
3% LUMO+2←HOMO−2 
7% LUMO+4←HOMO−2 

421 0.1904 40% LUMO+4←HOMO−1 
39% LUMO+4←HOMO 
2% LUMO+3←HOMO−2 
8% LUMO+5←HOMO 

417 0.1785 49% LUMO+5←HOMO−1 
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26% LUMO+5←HOMO 
3% LUMO+2←HOMO−3 
8% LUMO+5←HOMO−2 
2% LUMO+4←HOMO−1 
8% LUMO+4←HOMO 

409 0.0513 17% LUMO+1←HOMO−3 
41% LUMO+3←HOMO−2 
7% LUMO+2←HOMO−3 
8% LUMO+2←HOMO−2 
3% LUMO+2←HOMO−1 
4% LUMO+5←HOMO−1 
6% LUMO+3←HOMO 
6% LUMO+4←HOMO 

406 0.0991 43% LUMO+1←HOMO−3 
28% LUMO+3←HOMO−2 
9% LUMO+2←HOMO−2 
5% LUMO+4←HOMO−2 
3% LUMO+3←HOMO−1 
3% LUMO+4←HOMO−1 
2% LUMO+3←HOMO 

403 0.041 24% LUMO+1←HOMO−3 
21% LUMO+2←HOMO−3 
18% LUMO+4←HOMO−2 
7% LUMO←HOMO−7 
5% LUMO←HOMO−4 
4% LUMO+1←HOMO−2 
4% LUMO+2←HOMO−2 
6% LUMO+4←HOMO−1 

 

Orbital contributions to the electronic absorption transitions making up the band 

in the visible region of the absorption spectrum for [Cu(9)(11)]+ and oscillator strengths. 

 

Wavelength  
(nm) 

f Transition 

478 0.1443 21% LUMO+1←HOMO−3 
10% LUMO←HOMO−2 
14% LUMO+1←HOMO−2 
30% LUMO+1←HOMO−1 
9% LUMO←HOMO−3 
3% LUMO+1←HOMO 
7% LUMO+2←HOMO 

464 0.2154 15% LUMO+1←HOMO−3 
13% LUMO+1←HOMO−2 
47% LUMO+1←HOMO−1 
4% LUMO+2←HOMO 

451 0.068 15% LUMO+1←HOMO−3 
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10% LUMO+1←HOMO−1 
39% LUMO+1←HOMO 
10% LUMO+2←HOMO 
3% LUMO←HOMO−3 
6% LUMO+1←HOMO−2 
4% LUMO+2←HOMO−2 
7% LUMO+2←HOMO−1 

442 0.4719 20% LUMO+1←HOMO−1 
17% LUMO+2←HOMO−1 
38% LUMO+2←HOMO 
4% LUMO←HOMO−3 
2% LUMO←HOMO−2 
3% LUMO+1←HOMO−2 
8% LUMO+2←HOMO−2 

434 0.1323 51% LUMO+2←HOMO−1 
27% LUMO+2←HOMO 
9% LUMO+2←HOMO−2 
4% LUMO+3←HOMO−1 
2% LUMO+1←HOMO 

428 0.1036 11% LUMO+1←HOMO−2 
12% LUMO+3←HOMO−2 
42% LUMO+3←HOMO−1 
5% LUMO←HOMO−6 
8% LUMO←HOMO−5 
2% LUMO←HOMO−4 
2% LUMO+1←HOMO−1 
5% LUMO+2←HOMO 
6% LUMO+3←HOMO 

424 0.1707 24% LUMO←HOMO−6 
34% LUMO←HOMO−5 
10% LUMO←HOMO−4 
10% LUMO+3←HOMO−1 
5% LUMO+3←HOMO−2 
3% LUMO+2←HOMO 
5% LUMO+3←HOMO 

411 0.0363 14% LUMO+4←HOMO−2 
44% LUMO+4←HOMO−1 
30% LUMO+4←HOMO 

410 0.2965 18% LUMO+1←HOMO−3 
15% LUMO+1←HOMO−2 
21% LUMO+3←HOMO−1 
23% LUMO+3←HOMO 
7% LUMO+2←HOMO−2 
3% LUMO+2←HOMO−1 

405 0.0549 23% LUMO+2←HOMO−3 
32% LUMO+2←HOMO−2 
12% LUMO+4←HOMO 
4% LUMO+1←HOMO−3 
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4% LUMO+1←HOMO−2 
2% LUMO+5←HOMO−2 
7% LUMO+2←HOMO−1 
6% LUMO+5←HOMO−1 
3% LUMO+5←HOMO 

396 0.0353 51% LUMO+2←HOMO−3 
14% LUMO+2←HOMO−2 
11% LUMO+3←HOMO−2 
4% LUMO←HOMO−7 
7% LUMO+3←HOMO−3 
2% LUMO+2←HOMO−1 
5% LUMO+2←HOMO−1 
2% LUMO+3←HOMO 

 

Orbital contributions to the electronic absorption transitions making up the band 

in the visible region of the absorption spectrum for [Cu(9)(12)]+ and oscillator strengths. 

 

Wavelength 
(nm) 

f Transition 

473 0.3897 11% LUMO←HOMO−3 
15% LUMO+1←HOMO−3 
21% LUMO+1←HOMO−1 
13% LUMO+3←HOMO−1 
13% LUMO+1←HOMO 
6% LUMO←HOMO−2 
3% LUMO+1←HOMO−2 
3% LUMO+3←HOMO−2 
9% LUMO+3←HOMO 

468 0.2013 39% LUMO+1←HOMO−3 
16% LUMO+1←HOMO−2 
16% LUMO+1←HOMO−1 
14% LUMO+1←HOMO 
3% LUMO←HOMO−2 
3% LUMO+2←HOMO 
2% LUMO+4←HOMO 

450 0.1386 16% LUMO+4←HOMO−2 
15% LUMO+1←HOMO−1 
13% LUMO+1←HOMO 
16% LUMO+3←HOMO 
18% LUMO+4←HOMO 
6% LUMO←HOMO−3 
2% LUMO←HOMO−2 
7% LUMO+3←HOMO−2 
3% LUMO+4←HOMO−1 

444 0.1268 11% LUMO+4←HOMO−2 
22% LUMO+1←HOMO 
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31% LUMO+4←HOMO 
6% LUMO←HOMO−3 
3% LUMO←HOMO−2 
9% LUMO+1←HOMO−2 
6% LUMO+1←HOMO−1 
3% LUMO+4←HOMO−1 

433 0.4728 73% LUMO+3←HOMO−1 
10% LUMO+3←HOMO 
2% LUMO←HOMO−3 
3% LUMO+4←HOMO−2 

422 0.0391 72% LUMO+2←HOMO−2 
4% LUMO+3←HOMO−2 
4% LUMO+2←HOMO 
5% LUMO+3←HOMO 
4% LUMO+5←HOMO 

416 0.0912 34% LUMO+3←HOMO−2 
13% LUMO+3←HOMO 
23% LUMO+5←HOMO 
2% LUMO+1←HOMO−3 
8% LUMO+3←HOMO−3 
3% LUMO+1←HOMO−2 
4% LUMO+5←HOMO−2 
4% LUMO+4←HOMO−1 

415 0.5465 55% LUMO+4←HOMO−1 
22% LUMO+4←HOMO 
8% LUMO+1←HOMO−3 
7% LUMO+1←HOMO−2 

404 0.0641 29% LUMO+4←HOMO−2 
13% LUMO+5←HOMO−1 
10% LUMO+4←HOMO 
12% LUMO+5←HOMO 
7% LUMO←HOMO−5 
3% LUMO←HOMO−4 
2% LUMO+1←HOMO−3 
8% LUMO+3←HOMO−3 
5% LUMO+4←HOMO−3 
2% LUMO+4←HOMO−1 

391 0.0327 88% LUMO+2←HOMO−3 
5% LUMO+3←HOMO−3 
3% LUMO+7←HOMO−3 
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Chapter 6 

Copper(I) complexes with pendant pyridyl functionalities for application in DSSCs 

6.1 Introduction 

 

The necessary properties of copper(I) complexes for use in dye-sensitised solar cells have 

been described in chapter 4. One important requirement of the complex is that it absorbs 

over a large portion of the visible spectrum. Complexation of one or more quaterpyridine 

ligands, 4,4':2',2'':4'',4'''-quaterpyridine (Fig. 6.1) to ruthenium has been reported to red-

shift the absorption spectrum of the complex compared to that of [Ru(bpy)3]
2+ 1-3

.  

 

 

Fig. 6.1    4,4':2',2'':4'',4'''-Quaterpyridine.  

 

As it is, this ligand is unsuitable for complexation to copper(I) atoms. To eliminate the 

possibility of auto-oxidation of the copper(I) atom it is necessary to incorporate blocking 

groups, typically methyl substituents, at the sites adjacent to the N,N' metal binding sites 

of the bipyridine unit. Synthesis of this 6',6''-dimethyl-4,4':2',2'':4'',4'''-quaterpyridine 

ligand has previously been attempted by members of the Constable group and has been 

unsuccessful. Consequently, another ligand with four pyridine groups and substitutions in 

the 6,6'-positions of the 2,2'-bipyridine unit was developed.  

Coe et al. reported the use of a ligand with four pyridine groups and substitution in the  

4- and 4'-positions of the 2,2'-bipyridine unit (Fig. 6.2)
4
. However, this ligand was still 

unsubstituted in the 6- and 6'-positions.  

 

 

Fig. 6.2  4,4'-Bis((E)-2-(pyridin-4-yl)vinyl)-2,2'-bipyridine reported by Coe et al in 20104. 



 167 

Therefore, the initial aim of this chapter was to synthesise 6,6'-bis((E)-2-(pyridin-4-

yl)vinyl)-2,2'-bipyridine. The use of this ligand has been previously reported by 

Shonfield et al. in 1999
5
 but details of the synthesis were not published. For that reason, a 

number of synthetic routes to obtain this compound were attempted and are detailed in 

Fig. 6.3. 
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Fig. 6.3 Failed synthetic procedures to the quaterpyridine ligand. 

 

All of the synthetic approaches detailed in Fig. 6.3 failed and so a stepwise procedure of 

first synthesising the 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(1-(pyridin-4-yl)ethanol) and then 

dehydrating it to form the alkene was adopted (Scheme 6.1).  
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Scheme 6.1 Proposed synthetic route to 6,6'-bis((E)-2-(pyridin-4-yl)vinyl)-2,2'-bipyridine. 

 



 168 

The stepwise procedure failed; regardless of the number of equivalents of 4-pyridine 

carbaldehyde and lithium diisopropylamide (LDA) added to the reaction, it was only 

possible to form the mono-substituted compound, 2-(6'-methyl-[2,2'-bipyridin]-6-yl)-1-

(pyridin-4-yl)ethanol (14). The product of this reaction was then dehydrated to form the 

mono-substituted compound (E)-6-methyl-6'-(2-(pyridine-4-yl)vinyl)-2,2'-bipyridine (15). 

The ligands depicted in Fig 6.4, and complexes thereof, are described in this chapter. 

 

 

Fig. 6.4 Ligands 14 and 15 with labelling for spectroscopic assignments.  

 

6.2 Synthesis - Ligands 

 

The starting material for 14 was 6,6'-dimethyl-2,2'-bipyridine (8), which was 

commercially available. Compound 14 was synthesised in a stepwise manner (Scheme 

6.2) by first deprotonating 8 using LDA in dry THF at -78°C. Then 1.3 equivalents of 

pyridine-4-carbaldehyde were added and the reaction was left to warm to room 

temperature, whilst stirring, overnight. The compound was extracted into 

dichloromethane and purified using column chromatography. The yield of the reaction 

was 65%.  

 

Scheme 6.2 The synthesis of compound 14.  

 

A by-product formed during the reaction and was identified, using 
1
H NMR spectroscopy 

and X-ray crystallography, as pyridin-4-yl isonicotinate (16), a compound related to the  

4-pyridine carbaldehyde starting material (Fig. 6.5).   
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Fig. 6.5 Compound 16, the by-product formed during the synthesis of 14. 

 

Compound 15 was synthesised by refluxing 14 in acetic acid overnight (Scheme 6.3). 

 

 

Scheme 6.3 The synthesis of compound 15.  

 

The compound was then neutralised with sodium hydrogencarbonate (NaHCO3) and 

extracted with dichloromethane and purified by column chromatography. By carrying out 

a very slow column and collecting very small fractions it was possible to isolate a small 

amount of pure 15 from the early fractions. In the later fractions, 15 is contaminated by 

the related enol compound, 17 (Fig. 6.6), which is formed as a by-product in the reaction. 

This compound has almost the same Rf value as 15 regardless of the solvent system and 

the compounds 15 and 17 even co-crystallise.  

 

Fig. 6.6 Compound 17 in the keto- and enol-tautomeric forms. 

 

Initially it was thought that the formation of the enol was due to the presence of oxygen 

in the reaction. However, repeating the reaction under Schlenk conditions gave the same 

products, 15 and 17, in the same yield.  
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6.3 Results and Discussion (I) 

 

6.3.1
 1

H NMR Spectroscopy - Ligands  

 

The 
1
H NMR spectrum of compound 14 was measured in CDCl3 and the spectrum is 

depicted in Fig. 6.7.  

 

 

Fig. 6.7 1H NMR spectrum of 14 (500 MHz, CDCl3, 25ºC, TMS) CHCl3 (*),  

Ethylacetate (ǂ). 

 

The 
1
H NMR spectrum of 14 (Fig. 6.7) was assigned using both COSY and NOESY 

techniques. The singlet at δ 2.64 ppm was ascribed to the methyl substituent due to the 

chemical shift and the integral. The two signals with integrals of two were assigned to the 

C ring and the specific assignment of the peaks was done using a NOESY spectrum. The 

signal at δ 8.57 ppm showed no NOESY cross peaks and was therefore assigned as C
2
. 

The signal at δ 7.36 ppm showed a NOESY cross peak to the doublet of doublets at  

   C2 

    B3     A3 

    B4  A4    C3 

   A5     B5 

    d 

     c 

   b 

   * 

     ǂ 

    a 
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δ 5.26 ppm and was assigned to proton C
3
. The broad singlet at δ 6.55 ppm was assigned 

to d as –OH signals are commonly broad and consequently the signal at δ 5.26 ppm could 

be ascribed to c. A COSY cross peak between c and the multiplet at δ 3.20 ppm assigned 

the multiplet as b. Protons b show a NOESY cross peak with a doublet at δ 7.10 ppm, 

which ascribes said doublet as proton B
5
. A COSY cross-peak to the triplet at δ 7.76 ppm 

leads to the assignment of the triplet as B
4
, which in turn assigns the doublet at δ 8.34 

ppm as B
3
, due to a COSY cross peak between B

4
 and said doublet. A NOESY peak 

between B
3
 and the doublet at δ 8.07 ppm ascribes the doublet as A

3
 and the A ring is 

assigned in the same manner as the B ring, which was just described.   

 

The 
1
H NMR spectrum of 15 was measured in CDCl3 and was assigned using COSY and 

NOESY techniques (Fig. 6.8).  

 
Fig. 6.8 1H NMR spectrum of 15 (500 MHz, residual CHCl3 (*), CDCl3, 25ºC, TMS). 

Only aromatic region shown. 

 

The appearance of two broad doublets at δ 7.71 and 7.42 ppm in the 
1
H NMR spectrum is 

confirmation that the dehydration reaction was successful. These broad doublets had J 

couplings of 16 Hz, indicating that they correspond to a double bond with trans- 

stereochemistry. The rest of the spectrum was assigned following the same procedure as 

described for 14. 

Compared to 14, the signals ascribed to B
4
, B

5
, C

2
 and C

3 
are shifted downfield in the 

spectrum of 15 (Table 6.1). This is due to the extended π-conjugation in 15. 
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Compound B
4
 B

5
 C

2
 C

3
 

14 7.76 7.10 8.57 7.36 

15 7.83 7.42 8.62 7.47 

 Table 6.1 Comparison of shifts (δ/ppm) for compounds 14 and 15. Spectra measured in 

CDCl3 at room temperature. 

 

6.3.2 
13

C{
1
H} NMR Spectroscopy - Ligands  

 

The 
13

C{
1
H} NMR spectrum of 14 was measured in CDCl3 and is depicted in Fig 6.9. 

 

 

Fig. 6.9 13C{1H} NMR spectrum of 14 (126 MHz, CDCl3, 25ºC, TMS). 

 

The spectrum was ascribed using HMQC and HMBC techniques along with a DEPT 135 

spectrum (Fig. 6.10). The assignment of b was facile as –CH2- groups “point down” in 

DEPT 135 spectra. 

   

Fig. 6.10 DEPT135 spectrum of 14 specifically showing the signal ascribed to b. 
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The peaks arising from 
13

C-H carbons were assigned using the HMQC spectrum and the 

quaternary carbon signals were assigned using the HMBC spectrum. Proton C
2
 had an 

HMBC interaction with a signal at δ 152.9 ppm, which was assigned to C
4 

(Fig. 6.11). An 

HMBC interaction between proton c and a signal at δ 158.3 ppm meant that said signal 

could be ascribed to B
6
. Proton B

4 
had two HMBC interactions; one to the peak at δ 158.3 

ppm, already ascribed to B
6
, and one to a peak at δ 155.7, ascribing the latter peak to B

2
. 

The assignment of the peak at δ 155.7 ppm was confirmed on observation of a HMBC 

interaction between proton A
3
 and the signal ascribed to B

2
. The carbon signal for A

2
 was 

assigned after observation of a HMBC interaction from B
3
 to a signal at δ 154.8 ppm.  

Proton A
4
 showed two HMBC interactions, the first to the signal at δ 154.8 ppm, 

confirming the assignment as A
2
 and the second to a signal at δ 158.4 ppm, assigning this 

latter signal to A
6 

(Fig. 6.11).  

 

Fig 6.11 HMBC spectrum of compound 14, measured in CDCl3 at 25ºC, depicting the  

interactions between H(A4) and C(A2), C(A6) and H(C3) and C(C4) specifically.  

 

The 
13

C{
1
H} spectrum of 15 was also measured in CDCl3 and the spectrum was assigned 

using HMQC and HMBC techniques. The cross peaks between the alkene protons and 

their respective carbon signals were very distinct (Fig. 6.12). All carbons except the 

 C3     B4        A4 

A3    B3  

 C4  

 A2  

 A6  
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quaternary carbons were assigned using the HMQC spectrum. The quaternary carbons 

were assigned using the HMBC spectrum in the manner previously described for 14.   

 

 

Fig. 6.12 Partial HMQC spectrum of 15, measured in CDCl3 at 25ºC.  

 

6.3.3 Mass Spectrometry – Ligands 

 

Compounds 14 and 15 were characterised using ESI mass spectrometry. For 14, a peak 

corresponding to [M+Na]
+ 

was observed at m/z 314.2 which was in good agreement with 

the calculated peak (314.1) and therefore confirmed that the synthesis of the compound 

had been successful.  

Two peaks were observed in the ESI mass spectrum of 15. These peaks corresponded to 

[M+K]
+
 and [M+Na]

+ 
at m/z 312.1 and 296.2 respectively. Again the experimentally 

observed values were in good agreement with the calculated values and confirmed that 

the dehydration of the alcohol to form the alkene had been successful.  
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6.3.4 Absorption Spectroscopy - Ligands 
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Fig. 6.13 Absorption spectra for 14 and 15 measured in dichloromethane (10-5 mol dm-3). 

 

The electronic absorption spectra are dominated by ligand-based π→π* transitions and 

the data are summarised in Table 6.2. 

 

 

    

 

 

 

 

Table 6.2 A summary of the photophysical data, recorded in dichloromethane, for 14 and 

15. 

 

The absorptions at 247, 283, 293 and 303 nm of compound 14 are all due to the 

bipyridine unit
6
. This is unsurprising as there is no conjugation between the bipyridine 

moiety and the pendant pyridyl unit. No absorption due to the pendant pyridyl unit is 

observed in the spectrum.  

The absorption spectrum of 15 is very different. Contribution to the spectrum from the 

bipyridine unit is observed in the high energy region of the spectrum, namely the peak 

with λmax = 285 nm. The lower energy peaks are a result of the conjugation between the 

pendant pyridyl ring and the bipyridine unit through the double bond.  

Compound  

 

    

14  303 

(16262) 

293 

(24883) 

283 sh 

(20261) 

247 

(15440) 

15 342 sh 

(7215) 

327 

(11612) 

 285 

(18186) 

 

λmax 

(ε, dm
3
 mol

-1
 cm

-1
) 
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6.3.5 Emission and Excitation Spectroscopy - Ligands 
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Fig. 6.14 Emission spectra of 14 measured in dichloromethane. 

 

The origins of the emissions at 329, 342 and 359 nm were confirmed by measuring 

excitation spectra. The emission centred at 480 nm could be due to the formation of an 

exciplex. The excitation spectrum, when holding the emission at 480 nm, is dissimilar to 

the absorption spectrum (Fig. 6.15). 
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Fig. 6.15 Excitation spectrum of 14 measured in dichloromethane. 

 

The dissimilarity between the absorption and excitation spectra indicates that the origin 

of the emission is through a non-luminescent absorption. Further investigation by testing 

the effect of a more polar solvent, such as methanol, on the exciplex needs to be carried 

out.   
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Fig. 6.16 Emission spectra of 15 measured in dichloromethane. 

 

The emission spectrum of 15 is red-shifted compared to that of 14 due to the extended π-

conjugation. The origins of the emissions at 358, 374 and 394 nm were confirmed by 

measuring excitation spectra.  

 

6.3.6 Crystal Structures - Ligands 

 

Single colourless needles of 14 were grown by diffusion of hexanes into a 

dichloromethane solution of the complex. The crystal solves in the monoclinic P21/c 

space group with a reasonable R factor of 7.8%.  The asymmetric unit contains one 

molecule of 14. The structure of the molecule is depicted in Fig. 6.17 and selected bond 

lengths and angles are listed in the caption. 
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Fig. 6.17 Structure of 14 with ellipsoids plotted at 50% probability and hydrogen atoms 

omitted for clarity. Selected bond parameters: N1-C2 = 1.344(5), N1-C6 = 1.342(5), 

N2-C7 = 1.353(5),  N2-C11 = 1.341(5), N3-C14 = 1.345(5), N3-C18 = 1.330(6),  

C11-C12 = 1.509(6), C12-C13 = 1.550(5), C13-O1 = 1.407(5), C13-C16 = 1.497(6) Å; 

N1-C2-C1 = 116.1(3), N2-C11-C12 = 118.0(3), C11-C12-C13 = 112.9(3),  

C12-C13-C16 = 109.2(3), C14-N3-C18 = 116.2(4)°. 

 

As expected, the bipyridine unit is in the trans-conformation. The bond lengths around 

the bipyridine and pyridine units are unexceptional. The C11-C12 and C13-C16 bonds 

are the same length, within experimental error, and the lengths are consistent with single 

bonds.  By comparison, the C12-C13 bond is elongated slightly but still consistent with a 

single bond. As expected the C13-O1 bond is longer than the single C-C bonds and 

shorter than the ring C-C bonds. The molecule is not planar and the rings containing 

atoms N1 and N2 are essentially coplanar. The molecules pack in chains due to hydrogen 

bonds between the –OH group (H1) on one molecule and the nitrogen atom (N3) of the 

pendant pyridyl ring on another molecule and both enantiomers can be observed in the 

packing (Fig. 6.18). 

 

 

  N1 

 C2 

 C1 

  C6 
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 C12 
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  C14 
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 Fig. 6.18 Packing of 14 with the hydrogen bonds between the molecules denoted by 

dashed blue lines. 

 

Colourless blocks of 15 were grown following the same procedure for 14. The crystal 

solved in the monoclinic C2/c space group with a good R factor of 3.6%. The asymmetric 

unit contains one molecule of 15 and there is no solvent present in the crystal lattice. The 

structure of 15 is depicted in Fig. 6.19 and selected bond lengths and angles are listed in 

the caption. 

 

 

 

 

 

 

 

 

 

Fig. 6.19 Structure of 15 with ellipsoids plotted at 50% probability and hydrogen atoms 

omitted for clarity. Selected bond parameters: C11-C12 = 1.467(1), C12-C13 = 1.334(1), 

C13-C16 = 1.467(1) Å; N1-C2-C1 = 116.32(9), N2-C11-C12 = 114.89(9),  

C11-C12-C13 =126.77(9), C12-C13-C16 = 124.17(9)°. 

 

As for 14 the bipyridine unit is in the trans-conformation. The main differences between 

the structures of 14 and 15 are the absence of the alcohol group in the structure of 15 and 

the shortening of the C12-C13 bond. Both of these differences are confirmation that the 

dehydration of the alcohol to form the alkene was successful. All other bond lengths are 

unremarkable.  

   N1 

     N2 

    N3 

C11 

C12 

 C13 

C16 

  C2 

C1 
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The packing of the molecules is determined by hydrogen bonds between the proton on 

one pendant pyridyl moiety (H18) and the nitrogen atom of another pendant pyridyl 

moiety (N3). This is depicted in Fig. 6.20. 

 

Fig. 6.20 Packing of 15 with the hydrogen bonds between the molecules denoted by 

dashed red lines. 

  

As stated in Section 6.2, ligand 15 co-crystallises with the reaction by-product, 

compound 17. This is depicted in Fig. 6.21. Yellow blocks were grown through slow 

evaporation of an ethylacetate and hexane solution. The crystal solves in the monoclinic 

P21/c space group with a good R factor of 3.8%. Ligand 15 is predominantly present in 

the crystal, with 17 present a third of the time. Compound 17 is present as the enol form 

of the keto-enol tautomer and there is an internal hydrogen bond between the bipyridine 

nitrogen and the proton of the enol moiety (denoted by the dashed blue line in Figs. 6.22) 

 

Fig. 6.21 The structure in the asymmetric unit of the co-crystallised compounds 15 and 

17. Ellipsoids plotted at 50% probability. 

H of alkene 

OH of enol 
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Fig. 6.22 (Left) The desired compound, 15. (Right) The reaction by-product, 17. 

Ellipsoids plotted at 50% probability in both cases.  

 

The molecules pack with a mixture of face-to-face and edge-to-face interactions between 

the pyridine rings (Fig. 6.23). Contrary to the structures of 14 and 15 there is no 

hydrogen-bonding utilising the pendant pyridine nitrogen.  

 

 

Fig. 6.23 Packing of the structure of co-crystallised 15 and 17 with the short contacts 

denoting edge-to-face and face-to-face interactions with dashed red lines. 

 

Compound 16 was another by-product, formed during the reaction of 8 with 4-pyridine 

carbaldehyde. Colourless needles were grown by evaporation of ethyl acetate and hexane 

from a solution of the compound. The crystal solved in the monoclinic P21/c space group 

with a reasonable R factor of 6.26 %. The asymmetric unit contained one molecule of 16 

and it is depicted in Fig. 6.24. As the compound was a reaction by-product there is no 

detailed discussion following the picture of the structure. 
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Fig. 6.24. Structure of 16 with ellipsoids plotted at 50% probability and hydrogens 

omitted for clarity.  

 

6.4 Synthesis - Cu(I) Complexes 

 

The Cu(I) complexes were synthesised by addition of two equivalents of the relevant 

ligand, in chloroform, to one equivalent of [Cu(NCMe)4][PF6], in acetonitrile. The 

complexes were isolated as red powders in good yield.  

 

Scheme 6.3 Synthesis of [Cu(14)2][PF6], yield = 70 %. 

 

Scheme 6.4 Synthesis of [Cu(15)2][PF6], yield = 85 %.  

 

6.5 Results and Discussion (II) 

6.5.1 Section Introduction 

Chiral copper(I) complexes arise from the coordination of two asymmetric ligands to a 

copper(I) atom and were first reported by Thummel et al. in 2001
7
. As Cu(I) is labile, the 
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ligands exchange in solution and so variable temperature NMR was used to investigate 

the rates of  ligand exchange in acetonitrile and chloroform. Sauvage et al. also reported 

chiral Cu(I) complexes in 2006
8
. Variable temperature NMR and introduction of an 

enantiopure chiral anion to the complexes were used to ascertain the stereoisomers 

present in solution and the stability of those isomers. The chirality of the copper(I) is 

denoted ∆ or Λ
9
.  

 

6.5.2 
1
H NMR Spectroscopy – Cu(I) Complexes 

 

The 
1
H NMR spectrum of [Cu(15)2][PF6] was measured at room temperature and the 

signals were found to be broad, which lead to the hypothesis that the pendant pyridine 

group (ring C) was rotating in a hindered fashion on the NMR timescale. Therefore, 

variable temperature NMR spectroscopy was used to investigate the effect of temperature 

on the rotation of the C ring (Fig. 6.25).  
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Fig. 6.25 Variable temperature 1H NMR (500 MHz, CD2Cl2, TMS) of [Cu(15)2][PF6], 

(red) 295 K, (yellow) 285 K, (green) 275 K, (dark green) 265 K, (blue) 255 K,  

(royal blue) 245 K, (purple) 235 K. Only the aromatic region is shown.  

 

At room temperature, the signal due to C
2
 is so broad that it is almost indistinguishable 

from the baseline. The signal for C
3
 is also very broad and only barely distinguishable 

from the baseline. In a static structure, two signals for protons C
2
 and C

6 
and two signals 

for protons C
3
 and C

5 
are expected as the environnents of these pairs of protons are 

different. By cooling the NMR sample down, the C ring rotation slows and two two-site 

exchanges are expected to be frozen out. It is expected to observe the splitting of the 

braod signal for C
2
 into two signals and the broad signal for C

3
 also splitting into two 

signals. However, even after being cooled to 205 K, only two signals due to the C ring 

are observed and this suggests that another process is also occurring. This simultaneous 

   C2    C3 

  b+c 

  B4        A4          B3 A3    B5 
  A5 
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process is probably due to the interconversion of enantiomers
10

. The signal due to the 

methyl groups does not change throughout the cooling process.        

The 
1
H NMR spectrum was assigned by means of a COSY spectrum, which was 

measured at 205 K, and by comparison of the 
1
H NMR spectrum of the ligand with the 

1
H NMR spectrum of the complex. 

 

The 
1
H NMR spectrum of [Cu(14)2][PF6] was more complicated than that of 

[Cu(15)2][PF6] due to the presence of an asymmetric carbon atom in each ligand, 

resulting in diastereoisomers and enantiomers of the complex (Fig. 6.25). The 

asymmetric chiral carbon atoms in the following structures are assigned according to the 

rule set out by Cahn, Ingold and Prelog
11

 and as such, are denoted R or S. Due to the 

asymmetric ligand and the chiral centres in [Cu(14)2][PF6], the product of the reaction 

consisted of six possible complexes; a mix of diastereoisomers and enantiomers (Fig. 

6.26). 

 

Fig. 6.26 The combinations of enantiomers and diastereoisomers possible for [Cu(14)2]
+.   
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The compounds ∆-R,R and Λ-S,S are enantiomers and so only one signal due to each 

proton environment for both of these compounds was expected in the NMR. The same is 

true for compounds ∆-S,S and Λ-R,R. ∆-R,S is an enantiomer of Λ-S,R and ∆-S,R is an 

enantiomer Λ-R,S. The compounds ∆-R,S and ∆-S,R are chemically equivalent, as are  

Λ-S,R and Λ-R,S. The four pairs of enantiomers (∆-R,R+Λ-S,S and ∆-S,S+Λ-R,R and ∆-

R,S+Λ-S,R and Λ-R,S+ ∆-S,R) are diastereoisomers of one another. Assuming that the 

signals for ∆-R,S+Λ-S,R and Λ-R,S+ ∆-S,R are coincident, then three sets of signals 

should be observed in the 
1
H NMR spectrum of [Cu(14)2][PF6].  

At room temperature the spectrum of the complex is broad, consequently variable 

temperature NMR was used to try to observe the separation of diastereoisomers on 

cooling (Fig. 6.27).  

 

Fig. 6.27 Variable temperature 1H NMR (500 MHz, CD3CN, TMS) of [Cu(15)2][PF6], 

(red) 298 K, (yellow) 295 K, (green) 283 K, (light blue) 273 K, (royal blue) 263 K, 

(purple) 253 K. Only the aromatic region is shown.  

 

On cooling, the broad peaks observed at room temperature begin to split and the very 

broad signal at δ 6.70 ppm becomes sharper.  
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The presence of diastereoisomers is more easily identifiable in the aliphatic region of the 

spectrum, specifically the CH(OH) and methyl signals (Fig. 6.28). The –CH2– signal (b) 

changes very little on cooling and is therefore not shown.   

 

 

   

 Fig. 6.28 Variable temperature 1H NMR (500 MHz, CD3CN, TMS) of [Cu(15)2][PF6], 

(red) 298 K, (yellow) 295 K, (green) 283 K, (light blue) 273 K, (royal blue) 263 K, 

(purple) 253 K. Only the aliphatic region is shown.  

 

On cooling it is possible to observe the broad signal at δ 4.71 separating into two signals 

and the broad signal at δ 2.89 ppm becomes at least three signals. Contrary to the methyl 

signal of [Cu(15)2][PF6], which does not change on cooling, the methyl signal of 

[Cu(14)2][PF6] appears to split. Overall, the signals remain broad at 253 K, and lower 

temperature spectra need to be recorded if this investigation is to be expanded. It has not 

yet been possible to fully elucidate the processes that involve the interconversion of 

diastereoisomers and the interconversion of enantiomers (ie. the same process as in 

[Cu(15)2][PF6] 
10

).  

Methyl signals 
CH(OH) signals 
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Future work should include further investigation of the NMR spectra by changing the 

solvent to deuterated dichloromethane and cooling the sample further.  

 

The enantiomerically pure NMR solvating agent ∆-TRISPHAT was added, as  

[NBu4][ ∆-TRISPHAT], to the NMR sample of [Cu(14)2][PF6] to separate out the 

enantiomers by making them diastereoisomers, which are individually distinguishable in 

the NMR spectrum as, for example, [∆-R,R-Cu(14)2]
+
[∆-X]

-
 is chemically different to 

[Λ-R,R-Cu(14)2]
+
[∆-X]

-
. Six sets of signals were then expected in the 

1
H NMR spectrum.  

 

Fig. 6.29 Bottom, 1H NMR spectrum of [Cu(14)2][PF6] with added ∆-TRISPHAT  

(400 MHz, CD3CN, TMS,25°C), Top , 1H NMR spectrum of [Cu(14)2][PF6] without ∆-

TRISPHAT (500 MHz, CD3CN, TMS, 25°C). 

 

On addition of the ∆-TRISPHAT the broad signal at δ 8.54 ppm in the spectrum with no 

added ∆-TRISPHAT is shifted upfield to δ 8.35 ppm, where it overlaps with the doublet 

of doublets at δ 8.25 ppm. The broad signal at δ 8.05 ppm is split into a multiplet on 

C2 

 d 

c 
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addition of the ∆-TRISPHAT and the signal at δ 7.52 ppm becomes a well defined 

doublet. The signals due to the aliphatic protons at δ 6.60, 4.72, 3.56 and 2.89 ppm also 

become sharper on addition of the ∆-TRISPHAT. However, no significant changes are 

observed on addition of the ∆-TRISPHAT, which is consistent with previously reported 

copper(I) complexes at room temperature
12

.  

 

6.5.3 Mass Spectrometry 

 

Both Cu(I) complexes were characterised using ESI-MS and the main peak in the 

spectrum was due to [M-PF6]
+
. Initially both complexes were measured in acetonitrile but 

in this solvent the [M-PF6]
+
 peak was not observed for [Cu(15)2][PF6]. On changing the 

solvent to a mixture of dichloromethane and methanol it was possible to observe the  

[M-PF6]
+
 peak at m/z 609.2. A base peak at m/z 274.1, which was assigned to protonated 

ligand [15+H]
+
, was also observed. 

 

6.5.4 Absorption Spectroscopy 
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Fig. 6.30 The absorption spectra of ligand 14 (measured in dichloromethane at 10-5 mol 

dm-3) and its corresponding Cu(I) complex (measured in acetonitrile at 10-5 mol dm-3).  

 

Compared to the absorption spectrum of the ligand, a new peak, centred at 450 nm, is 

observed in the spectrum of [Cu(14)2][PF6] (Fig. 6.30). This is an MLCT band, which 

gives rise to the orange-red colour of the complex. The high energy region of the 

spectrum is very similar for both the ligand and the complex. A small amount of red-
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shifting is observed for the high energy absorptions of the complex but this could be 

attributed to the change in solvent.  
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Fig. 6.31 The absorption spectra of ligand 15 (measured in dichloromethane) and its 

corresponding Cu(I) complex (measured in acetonitrile).  

 

Due to the incomplete characterisation of [Cu(15)2][PF6] the concentration of the solution 

could not be accurately established. For this reason, the ligand and complex absorption 

spectra have been normalised for comparison (Fig. 6.31).  

It was thought that coordination of a ligand with extended π-conjugation would affect the 

MLCT band of the complex, however, the MLCT λmax of of both [Cu(14)2][PF6] and 

[Cu(15)2][PF6] are at 450 nm. The extended π-conjugation from [Cu(14)2][PF6] to 

[Cu(15)2][PF6] does affect the high energy absorptions as [Cu(15)2][PF6] absorbs a 

broader range of UV light compared to [Cu(14)2][PF6]. 

 

 

 

  

 

 

 

 

Table 6.3 A summary of the absorption data, recorded in dichloromethane, for 

[Cu(L)2][PF6] ( L = 14, 15) 

Compound MLCT 

 λmax 

(ε, 10
3
 dm

3
 mol

-1
 cm

-1
) 

 

 

   

[Cu(14)2][PF6] 450 

(1.9) 

312 sh 

(16.8) 

301 

(26.1) 

295 

(25.7) 

265 sh 

(20.1) 

[Cu(15)2][PF6] 450 326 

 

318 284  

λmax 

(ε, 10
3
 dm

3
 mol

-1
 cm

-1
) 
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6.5.5 Emission Data 

 

Excitation into the MLCT band of [Cu(14)2][PF6] gave rise to an emission at 521 nm. 

This emission had a lifetime of 4.6 ns, which is almost the same as the lifetime of the 

related [Cu(8)2][PF6] complex (4.0 ns). 

Due to the possibility of impurities in the [Cu(15)2][PF6] complex, emission and 

excitation spectra were not measured.   

 

6.5.6 Crystal Structures - Complexes 

 

Red plates of [Cu(15)2][PF6] were grown by evaporation of a dichloromethane-methanol 

solution of the complex. The crystal solved in the triclinic P-1 space group with a 

reasonable R factor of 7.69%. The asymmetric unit contains one cation, two half 

hexafluoridophosphate counter-anions and three water molecules. The cation is depicted 

in Fig. 6.32.  

 

 

 

 

 

 

 

 

 

 

Fig. 6.32 The cation [Cu(15)2]
+ with ellipsoids plotted at 50% probability and hydrogens 

omitted for clarity. Selected bond parameters: Cu1-N1 = 2.017(3), Cu1-N2 =2.045(4), 

Cu1-N4 =2.002(3), Cu1-N5 =2.039(4), C12-C13 = 1.338(5), C30-C31 = 1.345(6) Å; 

N1-Cu1-N2 = 80.7(1), N1-Cu1-N5 = 121.0(1), N2-Cu1-N4 = 115.6(1),  

N4-Cu1-N5 = 81.2(1)°. 

As expected, the ligand coordinates to the metal through the bipyridine nitrogen donor 

atoms. The bond lengths and angles are as expected. The geometry of the complex is 

N1 
N2 

 N3 

  N4 N5 

N6 

C12 

 C13 C30 

  C31 Cu1 
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neither square planar nor tetrahedral with the angle between the two bipyridine planes 

being 70.09°. 

The lengths of the alkene bonds C12-C13 and C30-C31 are both the same as each other 

(within experimental error) and the same as the length of the alkene bond in the crystal 

structure of the ligand. Of note are the intramolecular face-to-edge and face-to-face 

interactions in the cation (Fig. 6.33). 

 

    

Fig. 6.33 (Left) Intramolecular face-to-edge interaction between H35A and the bipyridine 

ring containing N1, (Right) Intramolecular face-to-face interaction between the pendant 

pyridyl ring containing N3 and the bipyridine ring containing N4.  

 

The packing also consists of multiple face-to-edge and face-to-face interactions between 

the chains of the cations (Fig. 6.34). Contrary to the packing of the ligand there is no 

intercation hydrogen bonding network through the pendant pyridyl nitrogens. This is 

because it is hydrogen bonding with water molecules present in the lattice instead. The 

water molecules surround the pendant pyridine sites preventing chains from forming 

along the c axis (Fig. 6.35).   

Both enantiomers are present in the structure and are related to one another by an 

inversion centre (marked by a blue dot in Fig. 6.35).  
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Fig. 6.34 Packing of the [Cu(15)2]
+ cations with interactions between the cations denoted 

by dashed blue lines. Hydrogen bonding between the pendant pyridyl nitrogens and 

water also shown.  

 

 

 

Fig. 6.35 The two enantiomers of the [Cu(15)2]
+ cation with water molecules blocking 

the pendant pyridine sites. Hydrogens are omitted for clarity and the blue dot marks the 

centre of inversion. 
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6.6 Conclusions  

 

Two chiral copper(I) complexes have been synthesised as racemates and characterised 

using a variety of techniques. Further investigation into the photophysical properties of 

[Cu(15)2][PF6] and the electrochemical properties of both [Cu(14)2][PF6] and 

[Cu(15)2][PF6] is necessary to decide whether the complexes are suitable for application 

in dye sensitised solar cells. If this is the case then a higher-yielding synthesis of the 

ligand should also be developed to enable a more efficient and cost-effective overall 

synthesis of both complexes.  
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6.7 Experimental 

 

14 

 

Synthesis: 

 

Under nitrogen, 8 (300 mg, 1.63 mmol) was dissolved in dry THF (30 cm
3
) and cooled to 

-78 °C. LDA (1.2 equivalents) was added, upon which the solution turned from 

colourless to black. The solution was left to stir for 30 minutes after which pyridine-4-

carbaldehyde (0.18 cm
3
, 1.2 eq., 1.95 mmol) was added. The solution turned from black 

to golden yellow. The reaction mixture was left to stir for 12 hours, during which time it 

warmed to room temperature. The reaction was then quenched with water  

(10 cm
3
) and extracted three times with DCM (3 x 15 cm

3
). The solvent was removed in 

vacuo, which resulted in a brown oil. The oil was purified by chromatography (SiO2, 

ethyl acetate: hexane: triethylamine, 48:33:2).  

 

Yield: 64.5 % 

 
1
H NMR: (500 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 8.57 (2H, dd, J = 6.1, 2.9 Hz, C

2
),  

8.34 (1H, d, J = 7.9 Hz, B
3
), 8.07 (1H, d, J = 7.8 Hz, A

3
), 7.76 (1H, t, J = 7.4 Hz, B

4
), 

7.72 (1H, t, J = 7.4 Hz, A
4
), 7.36 (2H, dd, J = 4.5, 1.5 Hz, C

3
),  

7.21 (1H, d, J = 7.6 Hz, A
5
), 7.10 (1H, d, J = 7.6 Hz, B

5
), 6.55 (1H, br s, H

d
),  

5.26 (1H, dd, J = 8.6, 2.9 Hz, H
c
), 3.20 (2H, m, H

b
), 2.64 (3H, s, H

a
);

  

13
C NMR (126 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 158.4 (A

6
), 158.3 (B

6
), 155.7 (B

2
), 

154.8 (A
2
), 152.9 (C

1
), 150.0 (C

2
), 138.3 (B

4
), 137.4 (A

4
), 123.8 (B

5
+A

5
), 121.0 (C

3
), 

119.8 (B
3
), 118.0 (A

3
), 72.1 (c), 44.4 (b), 24.8 (a);  

ESI-MS: m/z 314.2 [M+Na]
+
 (calc. 314.13)  

Found: C, 73.92; H, 6.15; N, 13.99; C18H17N3O requires C, 74.20; H, 5.88; N, 14.42;  

Melting Point: 116.4 °C  

IR (solid, υ/cm
-1

):  551 (m), 579 (m), 611 (m), 615 (m), 624 (m), 632 (s), 652 (m),  

663 (m), 744 (m), 750 (m), 789 (s), 807 (s), 826 (m), 976 (w), 999 (m), 1028 (w),  

1035 (w), 1060 (s), 1082 (m), 1093 (m), 1152 (m), 1225 (w), 1259 (w), 1295 (w),  

1326 (w), 1342 (w), 1381 (w), 1413 (m), 1435 (s), 1488 (w), 1557 (m), 1572 (s),  

1603 (m), 2846 (w), 2928 (w), 3021 (w), 3064 (w), 3180 (w).  
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15 

 

Synthesis:  

Under nitrogen, 14 (100 mg, 0.34 mmol) was refluxed in acetic acid (4 cm
3
) overnight, 

during which time the solution turned orange. The solution was then poured over ice and 

neutralised using a saturated NaHCO3 solution. The product was extracted four times 

with dichloromethane (4 x 15 cm
3
) and the solvent was removed in vacuo to give a brown 

oil. The product was purified by chromatography (SiO2, Ethyl acetate: Hexane: NEt3, 

15:1:0.5). 

 

Yield: 27.7 mg, 29.5% 

 

1
H NMR: (500 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 8.62 (2H, d, J = 6.1, 3.0 Hz, C

2
),  

8.38 (1H, dd, J = 7.9, 0.9 Hz, B
3
), 8.34 (1H, d, J = 7.7 Hz, A

3
),  

7.83 (1H, t, J = 7.8 Hz, B
4
), 7.75 (1H, t, J = 7.7 Hz, A

4
), 7.71 (1H, br d, J = 16 Hz, H

c
), 

7.47 (2H, dd, C
3
), 7.42 (1H, br d, J = 16 Hz, H

b
), 7.42 (1H, dd, J = 7.7, 0.9 Hz, B

5
),  

7.21 (1H, d, J = 7.6 Hz, A
5
), 2.65 (3H, s, H

a
); 

13
C NMR (126 MHz, CDCl3, 25 ºC, TMS) δ/ppm: 158.0 (A

6
), 156.6 (B

2
), 155.5 (A

5
), 

153.7 (B
6
), 150.3 (C

2
), 144.3 (C

1
), 137.7 (B

4
), 137.0 (A

4
), 132.7 (C

a
), 129.9 (C

b
), 123.6 

(A
5
), 122.8 (B

5
), 120.7 (B

3
), 118.4 (A

3
); 

ESI-MS: m/z 296.2 [M+Na]
+
 (calc. 296.12), 312.1 [M+K]

+
 (calc. 312.09)   

Found: C, 78.67; H, 5.38; N, 15.17; C18H15N3 requires C, 79.10; H, 5.53; N, 15.37 

IR (solid, υ/cm
-1

):  551 (s), 572 (m), 632 (s), 652 (m), 668 (m), 729 (m), 739 (m), 761 (w), 

781 (s), 807 (s), 821 (m), 829 (m), 863 (w), 874 (w), 903 (w), 954 (s), 973 (m), 989 (m), 

1082 (m), 1109 (w), 1151 (w), 1168 (w), 1235 (w), 1256 (w), 1279 (w), 1369 (w),  

1387 (w), 1411 (s), 1435 (s), 1532 (w), 1552 (s), 1564 (s), 1575 (s), 1591 (s), 2913 (w), 

3032 (w), 3069 (w), 3999 (m). 
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[Cu(14)2][PF6] 

 

Synthesis:  

[Cu(MeCN)4][PF6] (64.0 mg, 0.17 mmol) was dissolved in MeCN (2 cm
3
) and the 

solution was added to a solution of compound 14 (100 mg, 0.34 mmol) in CHCl3 (5 cm
3
).  

The solution immediately became red in colour and was stirred for 30 min. Addition of 

Et2O (10 cm
3
) afforded a red precipitate, which was collected by filtration over Celite. 

The product was washed with H2O and Et2O and removed from the Celite by dissolution 

in MeCN. Solvent was removed in vacuo and [Cu(14)2][PF6] was isolated as a red 

powder. 

 

Yield: 94.4 mg, 69.6 % 

 

1
H NMR: (500 MHz, CD2Cl2, 298 K, TMS) δ/ppm: 8.52, 8.27, 8.22, 8.03, 7.66, 7.53, 

6.71, 

4.71, 3.58, 2.90 (all signals were broad, see text). 

ESI-MS: m/z 645.3 [M-PF6]
+ 

(calc 645.2) 

Found C, 52.33; H, 4.45; N, 10.33; C36H34N6CuPF6•2H2O requires C, 52.27; H, 4.63; N, 

10.16. 

 

[Cu(15)2][PF6] 

 

[Cu(MeCN)4][PF6] (17.7 mg, 0.047 mmol) was dissolved in MeCN (2 cm
3
) and the 

solution was added to a solution of compound 15 (26 mg, 0.095 mmol) in CHCl3 (5 cm
3
). 

The solution immediately became red in colour and was stirred for 30 min after which the 

solvents were removed in vacuo to leave a red powder. 

 

Yield: 30.6 mg, 85.0 % 

 

1
H NMR: (500 MHz, CD2Cl2, 205 K, TMS) δ/ppm: 8.34 (4H, br s, C

2
),  

8.25 (2H, d, J = 7.9 Hz, B
3
), 8.22 (2H, d, J = 8.1 Hz, A

3
), 8.10 (2H, t, J = 7.8 Hz, B

4
),  

8.00 (2H, t, J = 7.8 Hz, A
4
), 7.90 (2H, d, J = 7.8 Hz, B

5
), 7.47 (1H, d, J = 7.6 Hz, A

5
),  

7.04 (4H, m, overlapping b+c), 6.56 (4H, br s, C
3
), 2.25 (6H, s, a)  
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1
H NMR: (500 MHz, CD3CN, 298 K, TMS) δ/ppm: 8.47 (3H, br s, C

2
),  

8.30 (4H, br t, overlapping B
3
+A

3
), 8.10 (2H, t, J = 7.9 Hz, B

4
),  

8.04 (2H, t, J = 7.8 Hz, A
4
), 7.92 (2H, d, J = 7.8 Hz, B

5
), 7.54 (2H, d, J = 7.6 Hz, A

5
), 

7.22 (2H, br d, J = 16.4 Hz, b), 7.13 (2H, br d, J = 16.5 Hz, c), 6.75 (3H, br s, C
3
),  

2.33 (6H, s, a) 

13
C NMR: (500 MHz, CD3CN, 298 K, TMS) δ/ppm: 158.6 (A

6
), 155.1 (B

6
), 154.9 (C

4
), 

153.2 (A2/B
2
), 152.3 (A2/B

2
), 139.7 (B

4
), 139.5 (A

4
), 132.9 (b), 132.3 (c), 127.2 (A

5
), 

123.6 (B
5
), 122.4 (A

3
/B

3
), 121.7 (C

3
), 102.8 (A

3
/B

3
), 25.5 (a) 

ESI-MS: m/z 609.2 [M-PF6]
+ 

(calc 609.2), 274.1 [15+H]
+
 (calc. 274.2) 
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Conclusions and Outlook 

 

 

The first part of this thesis explored the substitution of a bis{4'-(4-pyridyl)-2,2':6',2"- 

terpyridine}ruthenium(II) complex with different electron donating and electron 

withdrawing moieties. It was found that regardless of the substituent the photophysical 

and electrochemical properties of the resulting complexes changed very little. DFT was 

used to investigate this finding and it was determined that the bridging –CH2- group of 

the substituent broke the conjugation between the electronically active part of the 

substituent and the pyridyl terpyridine moiety. This resulted in the LUMO of the complex 

being confined to the pyridyl terpyridine ligand for all complexes. In the TD-DFT 

calculations, use of the split LANL2DZ/6-31G* basis set resulted in the prediction of the 

absorption spectra of the complexes to within 20 nm of the experimental results.  

 

The alkylated bis{4'-(4-pyridyl)-2,2':6',2"-terpyridine}ruthenium(II) complexes were 

made water soluble by means of an anion exchange reaction and the photophysical and 

electrochemical properties of this set of complexes was found to be very similar to those 

of their hexafluoridophosphate pre-cursors. Use of these complexes as water-splitting  

co-catalysts resulted in differing activities. This was explained in terms of the 

susceptibility of the complex to basic attack at the C2 proton. Further studies into the 

kinetics of the water splitting reaction and stability tests on the ruthenium(II) complexes 

themselves are underway at Emory University. These results will lead to a better 

understanding of the properties required from the dye sensitisers, which will, in turn, lead 

to better dye design.  

 

The second part of this thesis detailed the development of copper(I) complexes for use in 

dye-sensitised solar cells. Initially two homoleptic Cu(I) complexes were synthesised, 

one with a simple structure, [Cu(8)2][PF6] and one utilising a ligand bearing 

triphenylamine units, bonded to the 6'-position of bipyridine through a double bond, 

[Cu(9)2][PF6]. It was found that that the complex incorporating triphenylamine groups 

lead to increases in the absorption coefficient and quantum yield of the complex, 

compared to the more simple complex.  
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A recently developed approach to making TiO2 surface-bound heteroleptic Cu(I) 

complexes incorporating carboxylate or phosphonic acid groups was used. The dyes were 

screened for their efficiency in DSSCs and it was found that dyes with ligand 9 had an 

enhanced performance. The best performing cell, which included the phosphonate anchor, 

gave an efficiency of 2.35 %, compared to 7.29 % for N719 under the same conditions.  

Research into substituting bipyridine with triphenylamine groups at different positions is 

now underway.  

 

DFT and TD-DFT calculations were used to investigate the properties of the homoleptic 

and heteroleptic Cu(I) complexes. A number of basis sets were screened and it was found 

that use of either the split basis set LANL2DZ/6-31G* or 6-311++G**/6-31G* resulted 

in a good prediction of the absorption spectrum of [Cu(8)2]
+
. Using the split basis set  

6-311++G**/6-31G*, TD-DFT calculations have been carried out to predict the 

electronic absorption spectra of the heteroleptic complexes [Cu(8)(L')]
+
 and [Cu(9)(L')]

+
 

(L' = 10, 11, 12). For [Cu(8)(11)]
+
 and [Cu(8)(12)]

+
, metal-to-anchoring ligand 

transitions contribute significantly to the absorption bands, whereas for [Cu(8)(10)]
+
 

there is little anchoring ligand involvement. This is consistent with the DSSC data, where 

use of [Cu(8)(10)]
+
 results in a DSSC with a poor efficiency. Use of [Cu(9)(11)]

+
 resulted 

in a DSSC with a high efficiency and, correspondingly, the calculations predict dominant 

phosphonate ligand character in the LUMO, which is necessary for efficient dye injection. 

Further calculations on a variety of Cu(I) complexes should be carried out to test the 

robustness of the choice of basis set.  

 

Finally, two chiral homoleptic Cu(I) complexes were synthesised as racemates. 

Development of the ligand synthesis is necessary to improve the yields and it may be 

possible to synthesise bis-subsituted bipyridine compounds using the Ullmann procedure. 

Further investigations into the electrochemical properties of the Cu(I) complexes should 

be carried out, alongside testing of the dyes as sensitisers in DSSCs. As the complexes 

bear pendant pyridyl groups it would also be sensible to look at the effect of protonation 

and methylation on the properties of the complexes.   



Crystallographic Data 

 

Compound [Ru(1)2][PF6]4 
Empirical Formula C54H42N8Ru·4(F6P)·H2O 

Formula Weight 1501.93 

Temperature / K 173(2) 

Crystal System Triclinic 

Space Group P-1 

Unit cell dimensions:  a / Å 13.488(3) 

 b / Å 16.934(3) 

 c / Å 27.758(6) 

 α / ° 94.43(3) 

 β / ° 103.78(3) 

 γ / ° 98.27(3) 

Volume / Å3 6053(2) 

Z 4 

Crystal Description red block 

Crystal Size / mm3 0.03 × 0.12 × 0.30 

Density / Mg m-3 1.646 

Absorption Coefficient / 
mm-1 

0.486 

Theta range for data 
collection / ° 

1.51 – 26.00 

Reflections collected 111421 

Independent reflections 23797 

R(int) 0.2214 

Completeness to theta / ° 
(%) 

26.00 (0.999) 

Parameters 1660 

Goodness of fit 1.096 

wR2 0.3677 

Final R1 [I>2sigma(I)] 0.1499 

 

 

 

 

 

 

 

 



Compound [Ru(3)2][PF6]4 
Empirical Formula C476H0N70Ru8O58·F242P46  

Formula Weight 14456.64 

Temperature / K 173(2) 

Crystal System Triclinic 

Space Group P -1 

Unit cell dimensions:  a / Å 17.279(3) 

 b / Å 17.415(3) 

 c / Å 50.947(10) 

 α / ° 98.35(3) 

 β / ° 93.85(3) 

 γ / ° 90.77(3) 

Volume / Å3 15130(5) 

Z 1 

Crystal Description Red blocks 

Crystal Size / mm3 0.05 × 0.25 × 0.40 

Density / Mg m-3 1.587 

Absorption Coefficient / mm-1 0.457 

Theta range for data 
collection / ° 

0.8383 – 0.9775 

Reflections collected 294313 

Independent reflections 64172 

R(int) 0.1260 

Completeness to theta / ° (%) 26.88 (0.985) 

Parameters 2470 

Goodness of fit 0.937 

wR2 0.2809 

Final R1 [I>2sigma(I)] 0.1061 

 

 

 

 

 

 

 

 

 

 

 



Compound [Ru(4)2][PF6]4 
Empirical Formula C44H38N8Ru·4(F6P)·H2O  

Formula Weight 1377.79 

Temperature / K 173(2) 

Crystal System Monoclinic 

Space Group P21/c 

Unit cell dimensions:  a / Å 18.322(4) 

 b / Å 8.8509(18) 

 c / Å 31.688(6) 

 α / ° 90.00 

 β / ° 95.16(3) 

 γ / ° 90.00 

Volume / Å3 5117.9(18) 

Z 4 

Crystal Description red needle 

Crystal Size / mm3 0.03 × 0.04 × 0.35 

Density / Mg m-3 1.786 

Absorption Coefficient / 
mm-1 

0.565 

Theta range for data 
collection / ° 

2.39 – 27.00 

Reflections collected 84418 

Independent reflections 11159 

R(int) 0.1627 

Completeness to theta / ° 
(%) 

27.00 (0.998) 

Parameters 925 

Goodness of fit 1.161 

wR2 0.1385 

Final R1 [I>2sigma(I)] 0.0664 

 

 

 

 

 

 

 

 

 

 



Compound [Ru(6)2][PF6]4 
Empirical Formula 4(C46H38N8Ru)·16(F6P)· 

5 (C2H3N)·3(H2O)  

Formula Weight 5795.09 

Temperature / K 173(2) 

Crystal System Monoclinic 

Space Group Cc 

Unit cell dimensions:  a / Å 25.5529(9) 

 b / Å 15.1322(7) 

 c / Å 16.2770(7) 

 α / ° 90.00 

 β / ° 117.0660(10) 

 γ / ° 90.00 

Volume / Å3 5604.6(4) 

Z 1 

Crystal Description red block 

Crystal Size / mm3 0.15 × 0.25 × 0.45 

Density / Mg m-3 1.715 

Absorption Coefficient / mm-

1 
0.521 

Theta range for data 
collection / ° 

 

Reflections collected 47951 

Independent reflections 12829 

R(int) 0.0372 

Completeness to theta / ° (%) 27.50 (0.998) 

Parameters 942 

Goodness of fit 1.049 

wR2 0.1132 

Final R1 [I>2sigma(I)] 0.0467 

 

 

 

 

 

 

 

 

 

 



Compound [Ru(7)2][PF6]4 
Empirical Formula C56H62F24N8OP4Ru 

Formula Weight 1544.09 

Temperature / K 123(2) 

Crystal System Triclinic 

Space Group P -1 

Unit cell dimensions:  a / Å 8.7018(7) 

 b / Å 12.5549(10) 

 c / Å 30.067(3) 

 α / ° 91.770(6) 

 β / ° 95.442(6) 

 γ / ° 98.367(6) 

Volume / Å3 3231.88 

Z 2 

Crystal Description red needle 

Crystal Size / mm3 0.03 × 0.08 × 0.45 

Density / Mg m-3 1.587 

Absorption Coefficient / mm-1 0.457 

Theta range for data collection 
/ ° 

0.8207 to 0.9864 

Reflections collected 42067 

Independent reflections 11406 

R(int) 0.1005 

Completeness to theta / ° (%) 25.05 (0.996) 

Parameters 1060 

Goodness of fit 1.118 

wR2 0.3352 

Final R1 [I>2sigma(I)] 0.1312 

 

 

 

 

 

 

 

 

 

 

 



Compound 9 
Empirical Formula C50H38N4 

Formula Weight 694.88 

Temperature / K 100 

Crystal System Orthorhombic 

Space Group Pbca 

Unit cell dimensions:  a / Å 8.9360(3) 

 b / Å 15.3904(5) 

 c / Å 26.8164(9) 

 α / ° 90 

 β / ° 90 

 γ / ° 90 

Volume / Å3 3688.0(2) 

Z 4 

Crystal Description yellow plate 

Crystal Size / mm3 0.020 × 0.100 × 0.220 

Density / Mg m-3 1.251 

Absorption Coefficient / mm-

1 
0.565 

Theta range for data 
collection / ° 

3.296 to 68.471 

Reflections collected 35364 

Independent reflections 3377 

R(int) 0.068 

Completeness to theta / ° (%) 67.102 (0.998) 

Parameters 244 

Goodness of fit 1.0410 

wR2 0.0384 

Final R1 [I>2sigma(I)] 0.0478 

 

 

 

 

 

 

 

 

 

 



Compound [Cu(8)2][PF6] 

Empirical Formula C24H24Cu1F6N4P1 

Formula Weight 576.99 

Temperature / K 123 

Crystal System Monoclinic 

Space Group P21/c 

Unit cell dimensions:  a / Å 12.7104(6) 

 b / Å 21.9632(11) 

 c / Å 8.7001(5) 

 α / ° 90 

 β / ° 94.692(2) 

 γ / ° 90 

Volume / Å3 2420.6(2) 

Z 4 

Crystal Description red block 

Crystal Size / mm3 0.060 × 0.130 × 0.210 

Density / Mg m-3 1.583 

Absorption Coefficient / mm-1 1.036 

Theta range for data collection 
/ ° 

1.856 to 32.588 

Reflections collected 35645 

Independent reflections 8817 

R(int) 0.030 

Completeness to theta / ° (%) 32.588 (0.999) 

Parameters 325 

Goodness of fit 1.0891 

wR2 0.0312 

Final R1 [I>2sigma(I)] 0.0301 

 

 

 

 

 

 

 

 

 

 

 



Compound [Cu(9)2][PF6] 

Empirical Formula C100H76Cu1F6N8P1 

Formula Weight 1666.32 

Temperature / K 123 

Crystal System Tetragonal 

Space Group P4/n 

Unit cell dimensions:  a / Å 15.1209(2) 

 b / Å 15.1209(2) 

 c / Å 18.2971(4) 

 α / ° 90 

 β / ° 90 

 γ / ° 90 

Volume / Å3 4183.48(12) 

Z 2 

Crystal Description orange plate 

Crystal Size / mm3 0.030 × 0.170 × 0.210 

Density / Mg m-3 1.316 

Absorption Coefficient / 
mm-1 

0.352 

Theta range for data 
collection / ° 

1.747 to 31.714 

Reflections collected 49103 

Independent reflections 7090 

R(int) 0.062 

Completeness to theta / ° 
(%) 

31.714 (0.997) 

Parameters 276 

Goodness of fit 1.0236 

wR2 0.0524 

Final R1 [I>2sigma(I)] 0.0494 

 

 

 

 

 

 

 

 

 

 



Compound 14 
Empirical Formula C18H17N3O 

Formula Weight 291.35 

Temperature / K 123(2) 

Crystal System Monoclinic 

Space Group P21/c 

Unit cell dimensions:  a / Å 7.6803(19) 

 b / Å 11.193(3) 

 c / Å 17.011(5) 

 α / ° 90.00 

 β / ° 90.329(10) 

 γ / ° 90.00 

Volume / Å3 1462.3(7) 

Z 4 

Crystal Description colourless needle 

Crystal Size / mm3 0.04 × 0.04 × 0.25 

Density / Mg m-3 1.323 

Absorption Coefficient / mm-1 0.084 

Theta range for data collection 
/ ° 

3.43 to 22.81 

Reflections collected 10463 

Independent reflections 3006 

R(int) 0.0589 

Completeness to theta / ° (%) 26.50 (0.992) 

Parameters 202 

Goodness of fit 1.023 

wR2 0.1903 

Final R1 [I>2sigma(I)] 0.0780 

 

 

 

 

 

 

 

 

 

 

 



Compound 15 
Empirical Formula C18H15N3 

Formula Weight 273.33 

Temperature / K 123(2) 

Crystal System Monoclinic 

Space Group C2/c 

Unit cell dimensions:  a / Å 31.0692(17) 

 b / Å 6.5480(4) 

 c / Å 13.7053(8) 

 α / ° 90.00 

 β / ° 100.287(3) 

 γ / ° 90.00 

Volume / Å3 2743.4(3) 

Z 8 

Crystal Description colourless block 

Crystal Size / mm3 0.05 × 0.30 × 0.30 

Density / Mg m-3 1.324 

Absorption Coefficient / mm-

1 
0.080 

Theta range for data 
collection / ° 

3.08 to 27.49 

Reflections collected 32903 

Independent reflections 3144 

R(int) 0.0271 

Completeness to theta / ° (%) 27.49 (0.996) 

Parameters 191 

Goodness of fit 1.032 

wR2 0.0955 

Final R1 [I>2sigma(I)] 0.0360 

 

 

 

 

 

 

 

 

 

 



Compound Co-crystallised 15 and 17 
Empirical Formula C18H15N3O0.31 

Formula Weight 278.31 

Temperature / K 123(2) 

Crystal System Monoclinic 

Space Group P21/c 

Unit cell dimensions:  a / Å 6.2417(2) 

 b / Å 8.6472(3) 

 c / Å 26.2360(10) 

 α / ° 90.00 

 β / ° 92.017(2) 

 γ / ° 90.00 

Volume / Å3 1415.16(9) 

Z 4 

Crystal Description yellow block 

Crystal Size / mm3 0.15×0.20×0.40 

Density / Mg m-3 1.306 

Absorption Coefficient / mm-1 0.081 

Theta range for data 
collection / ° 

3.11 to 33.07 

Reflections collected 12728 

Independent reflections 3101 

R(int) 0.0210 

Completeness to theta / ° (%) 27.10(0.996) 

Parameters 202 

Goodness of fit 1.047 

wR2 0.1053 

Final R1 [I>2sigma(I)] 0.0398 

 

 

 

 

 

 

 

 

 

 

 



Compound 16 
Empirical Formula C12H10N2O2 

Formula Weight 214.22 

Temperature / K 123 

Crystal System Monoclinic 

Space Group P21/c 

Unit cell dimensions:  a / Å 3.8672(14) 

 b / Å 10.873(4) 

 c / Å 23.976(9) 

 α / ° 90.00 

 β / ° 93.974(4) 

 γ / ° 90.00 

Volume / Å3 1005.7(6) 

Z 4 

Crystal Description colourless needle 

Crystal Size / mm3 0.020 × 0.030 × 0.310 

Density / Mg m-3 1.415 

Absorption Coefficient / mm-1 0.099 

Theta range for data 
collection / ° 

2.058 to 26.371 

Reflections collected 6134 

Independent reflections 2053 

R(int) 0.108 

Completeness to theta / ° (%) 26.371(1.000) 

Parameters 145 

Goodness of fit 1.1003 

wR2 0.0688 

Final R1 [I>2sigma(I)] 0.0626 

 

 

 

 

 

 

 

 

 

 

 



Compound [Cu(15)2][PF6] 
Empirical Formula C72H69Cu2F12N12O4.50P2 

Formula Weight 1591.44 

Temperature / K 123(2) 

Crystal System Triclinic 

Space Group P-1 

Unit cell dimensions:  a / Å 11.497(2) 

 b / Å 12.283(2) 

 c / Å 14.749(3) 

 α / ° 96.949(11) 

 β / ° 112.804(10) 

 γ / ° 103.550(12) 

Volume / Å3 1813.6(6) 

Z 1 

Crystal Description Red plate 

Crystal Size / mm3 0.02 × 0.10 × 0.45 

Density / Mg m-3 1.452 

Absorption Coefficient / 
mm-1 

0.719 

Theta range for data 
collection / ° 

2.02 to 25.05 

Reflections collected 23159 

Independent reflections 6379 

R(int) 0.0916 

Completeness to theta / ° 
(%) 

25.05 (0.991) 

Parameters 490 

Goodness of fit 1.029 

wR2 0.2050 

Final R1 [I>2sigma(I)] 0.0769 
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Poster and Oral Presentations: 

 

“Copper(I) Complexes for Application in Dye-Sensitised Solar Cells: A Comparative 

Experimental and TD-DFT Investigation” 

 

Nov. 2012   Oral presentation at the 1
st
 Clariant Chemistry Day, University of Basel (CH) 



June 2012     Poster and Flash Poster presentation presented at the Dalton Summer         

   School on Electronic Structural Methods in Inorganic Chemistry,  

   University of Edinburgh, UK. 

February 2012    Poster Presentation at the Central European Conference on      

   Photochemistry 2012, Bad Hofgastein, Austria 

 

“Water-soluble alkylated bis{4'-(4-pyridyl)-2,2':6',2"-terpyridine}ruthenium(II) 

complexes for use as photosensitizers in water oxidation: a complementary experimental 

and TD-DFT investigation” 

September 2011 Poster Presentation at the 5
th

 EuCheMS Nitrogen Ligands conference,  

                          Granada, E 

September 2011 Poster presentation at the SCS Fall Meeting, Lausanne, CH 

 

“Photophysical and electrochemical investigations of functionalised bis 4'-pyridyl-

2,2':6',2"-terpyridine Ru(II) complexes”  

February 2011    Oral Presentation at the 9
th

 Swiss Snow Symposium, Lenk, CH 

September 2010 Poster Presentation at the SCS Fall Meeting, Zurich, CH 

August 2010      Poster Presentation at the 3rd EuCheMS Conference, Nuernberg, DE   

                           An oral presentation of the poster was then featured in the Wiley  

                           electronic magazine “Chemistry Views” (05.10.10)  

June 2010           Poster and Flash Poster presentation presented at the Dalton Summer  

                           School on Electronic Structural Methods in Inorganic Chemistry,  

                           University of Edinburgh, UK.  

 


