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Abstract 

The structure of a protein is crucial to understand its function. Despite this importance, 

experimentally solved structures are only available for a small portion of the currently known protein 

sequences. Comparative or homology modeling is currently the most powerful method used in order 

to predict the structure from sequence by the use of homologous template structures. Models, 

hence, need to be accurate regarding their three-dimensional coordinates and must represent the 

biological active state of the target protein in order to be useful for scientists. 

Four goals are pursued in this work in this area of research. Firstly, we increase the coverage of 

homology modeling by introducing a method which is able to identify and align evolutionary distant 

template structures.  The resulting template search and selection procedure is hierarchical. Closely 

related template structures are identified accurately and efficiently by standard tools.  

A computationally more complex method is invoked in order to identify evolutionary more distant 

template structures with high precision and accuracy. Integrated into an automated modeling 

pipeline, the developed method is competitive compared to other protein structure prediction 

methods.  

Secondly, the automated modeling pipeline is applied to a large set of protein sequences to increase 

the structural coverage of sequence space. The resulting models and associated annotation data are 

stored in a relational database and can be accessed online in order to allow scientists to query for 

their protein of interest. Efforts are made to update a selected set of sequences regularly by 

shortening the update process without losing accuracy. It is found that the structural coverage of 

seven proteomes is increased considerably by this large scale modeling approach.  

Thirdly, the modeling of quaternary structure is addressed. Significant room for improvement in the 

field of quaternary structure prediction is found when assessing the current state-of-the-art methods 

in a double blind prediction experiment. Novel similarity measures are therefore developed to 

distinguish proteins with different quaternary structure. We further create a template library built of 

structures in their previously defined most likely oligomeric state, to extent the concept of homology 

modeling towards the prediction of oligomeric protein structures. In order to select template 

structures which share the same quaternary structure with the target structure, a variety of 

evolutionary and structural features are investigated. It is shown, that using a combination of these 

features for the first time predicts the quaternary structure with high accuracy.  

Finally, the performances of methods which predict non-folded (intrinsically disordered) protein 

segments are assessed. Current issues are addressed in a field of very active research as more and 

more proteins are found to be hubs in interaction networks with considerable disordered portions in 

their tertiary structure. In general it is found that such methods perform well, even within the limits 

of the test set. 
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1 Introduction 

1.1 The importance of protein structures 

Proteins are essential components of the cell and are involved into metabolism, signaling 

cascades, nutrient transports and provide structural stability (e.g. by forming large filaments). 

They are crucial for function and maintaining the complex cellular machinery and they also 

ensure the survival and replication of the cell.  Understanding the function role of proteins is 

important to study the mechanism of diseases, thus, understanding the functional aspects of 

proteins are of great interest for the scientific community.  

The function of a protein is ultimately defined by its three-dimensional structure. For example, 

enzymes achieve their function often by binding substrates. Thereby, the specificity of the 

substrate is accomplished by the spatial arrangement of amino acids at the protein surface. The 

shape and the composition of the surface play also an important role for the interaction with 

other proteins. Overall, a tight relation between function and structure can be observed. As a 

consequence, the insight into the spatial arrangement of amino acids is an important 

prerequisite to determine the functional mechanisms of proteins. 

Anfinsen pioneering work has shown that the three-dimensional structure is a direct 

consequence of the amino acid sequence.8 Based on its observation that proteins refold into the 

same structure again after removal of a denaturant, he suggested that the native structure of a 

protein must be the thermodynamically most favorable. However, Levinthal made the argument 

that the numbers of conformations which are required to find the energetically most favorable 

structure are far too high to be sampled randomly9 (known as ”Levinthals paradox”10). As a 

consequence, he suggested that folding happens along “pathways”, which restrict the number of 

“visited” structures considerably.  In a modern view, the pathways can be interpreted as folding 

funnel whereas parallel routes exist to the bottom of the funnel, the global minimum of free 

energy of the structure.11 It is generally assumed that protein folding starts with the forming of 

local secondary structure elements. During the folding process they are packed closely together 

to build the tertiary structure of the protein. The spatial arrangement of secondary structure 

elements are defined as “folds” and it has been thought that only a limited number of such 

protein folds exist.12  Driving forces of folding are the formation of stabilizing interactions (i.e. 

hydrogen bonds, salt bridges and disulfide bonds) and the hydrophobic effect. 
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Protein sequences can be altered by evolutionary events, such as mutations or deletions and 

insertions caused by changes of the underlying DNA sequence. In order to maintain the function 

of a protein, the protein structure must be, to a certain extent, robust against changes in its 

sequence. Indeed, it has been shown, that the structure is more conserved than the sequence 

between proteins which share a common ancestor.13 

1.2 Experimental methods to determine protein structures 

In order to investigate the functional mechanisms of proteins, such as the binding of ligands in 

an active site, protein structures need to be solved with atomic resolution. X-Ray crystallography 

and Nuclear Magnetic Resonance (NMR) are the two most widely used techniques to solve 

macromolecular structures experimentally. 

X-Ray crystallography 

Solving of a protein structure using X-Ray crystallography involves several consecutive steps. The 

most difficult procedure is the growth of an adequate crystal. Crystallization success is 

dependent on many factors and requires a high level of expertise. In the final crystal the proteins 

are arranged in a symmetrical order.  Once a sufficiently large crystal has been obtained, the 

crystal is placed in an intense X-ray beam of a single wavelength. The beam is dispersed by the 

electrons in the protein and interfering X-Ray waves can be recorded on a screen behind the 

crystal. The intensity of the reflections is related to the amplitude of the dispersed beam and can 

be used, in combination with the phases, to calculate the electron density map of the protein. 

The phases cannot be determined by the experiment itself and have to be estimated using 

techniques like isomorphous or molecular replacement. Once the electron density map has been 

built, the protein structure is fitted using standard geometries for bond length and angle.  The 

resolution of a structure (in Angstrom) denotes the distance at which two points can be 

distinguished in the electron density map. Another qualitative descriptor is the R-Factor, which is 

calculated by comparing a recomputed diffraction map (derived from the fitted protein 

structures) with the observed diffraction map in the experiment. An R-Factor of less than the 

resolution divided by ten characterizes a reliable protein structure.  
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NMR 

Nuclear magnetic resonance (NMR) is used to determine the structure of macromolecules in 

solution. NMR is a spectroscopic technique and bases on the change of the magnetic spin of 

nuclei if the protein is irradiated by a short pulse of radiation. The resonance of the nuclei 

caused by the pulse depends on the direct atomic environment. Based on this effect, couplings 

between pairs of structurally closed atoms to generate constrains in form of distances and 

angles. To derive the correct coordinates of a protein structure, these constrains need to be 

satisfied, however, if not enough constrains were observed or contradict each other, the result is 

an ensemble of structures rather than one finite solution. Nevertheless, one of the strengths of 

NMR is that biological relevant changes in the structural conformation can be observed, caused 

for example by ligand binding. Hence, NMR can be used to examine the dynamics of a protein in 

solution.   

1.3 Resources for protein structures  

Experimentally solved structures are deposited in Protein Data Bank (“PDB”)14. The PDB was 

established in the early seventies to make the small but growing number of solved protein 

structures available to the scientific community. The structure of a protein is deposited with its 

spatial atomic x,y,z coordinates in a text file. Details about the performed experiment are 

specified in additional sections of the file. Entries in the PDB database can be identified by a four 

letter code.  

In the last decades, the PDB has become a central place for the deposition of macromolecular 

structures. This includes also nucleic acids such as DNA and RNA structures. The current release 

of the PDB (November 2011) consists of 77’000 structures for around 43’000 proteins and the 

number of structures has been exponentially grown in the last years. The vast majority of 

structures have been solved by X-Ray techniques followed by NMR.  

As of today, the Protein Data Bank is the central place to start with in case of investigating 

macromolecular structures. Many journals require a deposition in the PDB if structural aspects 

are discussed on an unpublished protein structure.  

Many other databases are derived from the PDB such as CATH15 and SCOP16, which classify 

protein structures in families based on their structural similarity. 
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1.4 The sequence – structure gap 

The discussed techniques for the determination of protein structures are time consuming and 

not always applicable. Thus, only for a small set of currently known protein sequences structural 

information can be provided.  As can be seen in Figure 1, the number of structures deposited in 

the PDB is greatly exceeded by the number of curated UniProt  protein sequences (“Swiss-

Prot”)17 and even more if considering all protein sequences directly derived from known DNA 

sequences (“TrEMBL”)18. As of today (November 2011), the UniProtKB (Swiss-Prot + TrEMBL) 

database19, consists of 18.7 million protein sequences compared to only 77 000 protein 

structures deposited in the PDB, leading to an enormous difference between known protein 

sequences and experimentally determined protein structures. 

 

Figure 1 Comparison between sequence and structure databases growth. Swiss-Prot17 is a set of curated proteins, 
TrEMBL18 is the translated DNA-database EMBL. The number of protein sequences is of several magnitudes higher 
than the number of known protein structures (PDB20). 
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1.5 Modeling of protein structures 

As discussed in the previous chapter, the vast majority of proteins do not have experimental 

information about their structure. It is expected that the number of protein sequences is further 

growing in an exponential scale, caused by the availability of high-throughput sequence 

methods, which allow fast and cheap sequencing of complete genomes.  The widening gap 

between protein sequences and structures has caused, over the last decades, the development 

of a variety of computational approaches in order to “calculate” a protein structures from 

sequence.  

“De novo” or “ab initio” methods are based on physical principles and try to imitate the folding 

process. Such methods have to sample a large number of conformations and require very 

accurate energy functions to identify structures in the global minima of free energy. To decrease 

the number of conformations, which needs to be visited, some methods use information of 

known structures to guide the sampling process.21-23 Despite the improved strategies for 

sampling, it remains difficult to distinguish if a protein is in its native state or trapped in a local 

minimum. Such methods are computationally very demanding and can only be used for small 

systems.  

Homology (“comparative”) modeling techniques base on homologue (i.e. share a common 

ancestor) proteins which serve as structural “templates”.  It has been demonstrated by Chothia 

and Lesk in the mid-eighties that the evolutionary distance is directly linked to structural 

deviation between two proteins.13 The evolutionary distance between two proteins can be 

estimated by the number of identical residues after aligning their sequences in an optimal way. 

Comparative modeling relies on the availability and identification of suitable template 

structures. By the continuous growth of structures in PDB and resulting increasing availability of 

template structures, comparative modeling becomes more and more attractive.  

However, structural similarity does not require necessarily sequence similarity. It has been 

observed that the environment around a residue is more conserved than the residue itself.  

Hence, contact preferences can be derived for a particular type of amino acid.24,25 “Threading” 

uses this type of information in order to calculate the fitness of a target sequence in a given 

environment. Either the environment of the original template structure is used (“frozen 

approximation”) or the environment is replaced by target sequence during the threading process 

(“defrosted approximation”).  To align the sequences optimally, dynamic programming is used; 

based on an energy function which scores how well the sequence fits in its environment. 
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Threading is mainly used to identify the correct fold if no homologue template structures can be 

identified for a given sequence. 

Many methods use a combination of the three described principles, for example, by sampling 

fragments of homologue template structures to explore new conformations21-23. However, if 

homologue template structures can be identified, comparative modeling will be the first choice.  

The range of biological questions, which can be answered by protein models, is wide and 

depends on the quality of the model. The quality is mainly evaluated based on the accuracy of 

the spatial coordinates compared to real structures. However, the accuracy of a model needs to 

be estimated, because in a real life scenario the native structure is not known. Often, the 

accuracy of models is roughly estimated by the fraction of identical residues between the target 

and template sequence. Additionally, several approaches have been developed in recent years 

to estimate the quality of a predicted model (for details please see paragraph 2.1.3 below). 

Typical applications of protein models are shown in Figure 2. If the sequence identity between 

template and target is sufficiently high (>50%), models can be used to investigate catalytic 

mechanism or to design and improve ligands (Figure 2A). Models above this threshold do show 

only little deviation to the crystallized structure, often caused by incorrect sidechains, small 

distortions in the arrangement of secondary structure elements, and misplaced loops on the 

surface of the protein.  Models in the medium accuracy region (30%-50%) are useful for example 

for molecular replacement in order to obtain the phases for the experimental determination of 

the target structure using X-Ray Crystallography or for site directed mutagenesis (Figure 2B,C). In 

such models, the overall structural error increases in form of distortion of the core, loop 

modeling errors and sporadic alignment errors.26 Models in the low accuracy region often do not 

exceed more than 30% sequence identity. Errors in such models are often caused by alignment 

errors. However, even such low accuracy models can be useful in order to investigate the fold of 

the protein and derive principle functional relationships (Figure 2D,E). It has been also shown 

that low accuracy models can be used in combination with data from electron microscopy or 

other experimental data to model large macromolecular complexes.27 By the combination with 

experimental data, protein structure prediction widened its range of application considerably.  
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Figure 2 Typical applications of protein models depending on their evolutionary distance to the target (a-e). Figure 
taken from Baker28. 

1.6 Assessing the accuracy of protein modeling procedures 

The accuracy of models is usually noted as the structural deviation from the true protein 

structure, which is determined by experiment.  Two metrics are well established in order to 

reflect the structural deviance between two protein structures: the Root Mean Squared 

Deviation (“RMSD”) and the Global Distance Test (GDT-TS)29: 
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RMSD reflects the structural divergence between two structures (a, b) on a common set of 

residues with n atoms and can be defined as: 

𝑟𝑚𝑠𝑑(𝑎, 𝑏) = �
1
𝑛
� (𝑎𝑖𝑥 − 𝑏𝑖𝑥)2

𝑛

𝑖=1
+ (𝑎𝑖𝑦 − 𝑏𝑖𝑦)2+(𝑎𝑖𝑧 − 𝑏𝑖𝑧)2 

The RMSD is expressed in angstrom and calculated after superposition of the two structures. 

However, the RMSD similarity measure is not optimal for the comparison between a model and 

its native structure. One reason is the disproportionate impact of large structural deviation even 

if they occur for example at the termini in one of the structure. In contrast, the GDT-TS score 

calculates the fraction of residues which can be superposed under a certain threshold and thus 

reflects more the agreement of the model to the reference structure: 

 𝐺𝐷𝑇 − 𝑇𝑆 =
(𝐺𝐷𝑇 − 1 + 𝐺𝐷𝑇 − 2 + 𝐺𝐷𝑇 − 4 + 𝐺𝐷𝑇 − 8)

4
  

GDT-1, GDT-2, GDT-4, GDT-8 reflect the fraction of model Cα-atoms which are less distant then 

1, 2, 4 and 8 Å after optimal superposition with the native structure. However, the selection of 

cutoffs is somewhat ambiguous. In order to increase the sensitivity of the global distance test, 

cutoffs of 0.5, 1, 2 and 4 Å have been proposed (GDT-HA).2   

To estimate the performance of a protein structure modeling method an appropriate benchmark 

is required to assess the accuracy of the models compared to their reference structure. 

However, the available benchmark sets can vary in size and difficulty; therefore a comparison 

between modeling methods become difficult for the user of homology modeling services. To 

overcome this problem, the accuracy of protein structure prediction methods is evaluated 

biannually in the CASP (“Critical Assessment of techniques for protein structure prediction”) 

experiment30. The CASP installments are organized as a double blind experiments were 

predictors do not have access to the native structure throughout the modeling period. The 

native structures are kept on hold and get released to the PDB if the prediction season has 

finished. On the other hand the assessors of the predictions do not know the real names of the 

predictors and are not biased by knowing details about the applied methods. This ensures a fair 

evaluation of the predictions which are based on a predefined set of target structures.  

CASP is organized in different modeling categories. The main categories cover the modeling of 

the three dimensional structure of proteins and consists since 2006 of the following sub-groups:  
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1. TBM – ‘Template based modeling’ 

Homologue template structures can be identified in order to model the structure of the 

target.  

2. FM – ‘Template Free modeling’  

No suitable template structures can be identified for this set of targets.  

The prediction of the native protein structures also includes the correct prediction of the 

quaternary structure and a reliable estimation of the modeling error. 

There exist two types of predictors: 

• “Server” predictors are asked to model the protein structures in a fully automated 

fashion and without manual intervention. “Server” groups receive the sequences of the 

target proteins via email and have to respond within 2 days.   

• “Human” predictors can choose the most suitable strategy according to the expertise 

and knowledge, for example by extracting relevant information from literature. 

“Human” predictors have a prediction time slot of 4 weeks. Additionally, they can use 

models submitted by the “server” groups, to either verify their own predictions or use 

them as input.   

The CASP experiment is not limited to the prediction of three dimensional coordinates. The 

following categories in the context of protein structure prediction are additionally evaluated: 

• Prediction of disordered segments  

• Prediction of residue-residue contacts  

• Prediction of functional binding sites 

• The assessment of models regarding their reliability (This includes also the estimation of 

the modeling errors in a residue wise fashion) 

If the prediction slot for a particular target has closed, the native structure is accessible for the 

assessors. Predictions are assessed according to their accuracy by applying established 

assessment criteria. 

The goal of CASP is twofold. Firstly, the most successful methods are identified and ranked 

according to different criteria like the overall structural accuracy or the ability of modeling 

correct side chains. Secondly, the assessment can highlight strengths and weaknesses of the 

methods, thereby suggesting further areas for future improvements. 

All methods are assessed on the same set of targets (according to the category, they attended) 

using appropriate scores which are selected by the assessors. This guarantees a fair comparison 

of the results.   
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Users of protein structure prediction methods can have questions with different biological 

backgrounds. Modeling a binding site so that the model can be used for docking studies requires 

a different focus, than modeling of proteins which have only few or no homologue template 

structures. Thus, a detailed assessment of modeling methods within CASP can help to identify 

methods which fit best to a specific biological question.   

The results of the experiment are discussed during a meeting which is held after the prediction 

season. Assessors as well as the most successful predictors present and discuss their work and 

pinpoint the achievements and failures of the applied modeling techniques.  
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2 Modeling of tertiary protein structures 

2.1 The homology modeling approach 

Homology or comparative modeling is currently known as the most accurate method to 

generate protein models.30 As can be seen in Figure 3, the modeling procedure can be divided 

into four consecutive steps: 

1. The identification and selection of homologue structures (“templates”)  

2. The alignment between the template and the target sequence 

3. The calculation of the model based on alignment information and the identified 

template structures including the prediction of the regions without alignment 

information (i.e. loops) and the refinement  of the protein model 

4. Estimation of the accuracy of the resulting model(s). 

 

Figure 3 The four main steps in homology modeling (green boxes). 

2.1.1 Template identification and alignment with the target sequence 

The first two steps in creating a protein model are the identification of suitable template 

structures and the generation of an alignment between template and target sequences. 
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Identification of homologue sequences involves querying a database with experimentally 

determined structures (“template library”). 

For the identification of closely related template structures, sequence-sequence comparison 

methods like FASTA31 and BLAST32 were developed. BLAST stands for “Basic Local Alignment 

Tool” and became a standard method for the identification and alignment of protein and 

nucleotide sequences. However, more sophisticated methods are needed for the identification 

of lower levels of evolutionary relatedness (<40% sequence identity). Based on the assumption 

that structural and functional important residues are conserved in the family of the protein, 

position specific scoring matrices (PSSMs) were developed. A PSSM (“Profile”) consist of the 

probabilities that a particular residue type appear in the column of a multiple sequence 

alignment which consists of homologue protein sequences. A widely known method using 

PSSMs is PSI-BLAST (Position Specific Iterative –BLAST)32. A typical procedure for template 

identification with PSI-BLAST is the (iterative) construction of a profile for the target sequence 

using evolutionary related protein sequences followed by “profile to sequence” search of 

protein sequences contained in a template library.  

Further, profile-profile based methods were developed in order to increase the sensitivity of 

sequence based fold recognition.33 Thus, profiles are generated for the target and the template 

sequences in order identify homologue template structures. More recently, profiles have been 

replaced by Hidden Markov Models and Generalized Profiles34-36, which also allow position 

dependent gap penalties. In addition, structural information may be incorporated into the 

profile to increase alignment accuracy.37-39 By using this approach, HHsearch40 was the first 

method which allowed the alignment of two HMMs. HMM-profiles are built using culled 

versions of NCBIs nr database ; redundant sequences are thereby excluded to guarantee high 

quality of the underlying multiple sequence alignment.  

2.1.2 Model building  

Protein models are generated based on the structural information given by the template 

structures and the alignment between templates and target sequences. When applying the rigid 

body assembly approach, conserved structural parts of the template structure are copied to the 

model.41 The generated model is then subjected to refinement methods to account for violations 

in the stereochemistry and the geometry of the model. Another approach relies on the 

derivation of spatial constraints (e.g. distances and angles) from one ore multiple template 

structures.42 To calculate a model, the violations of the spatial constraints must be minimized. 

Therefore optimization strategies like the conjugate gradient method43 are applied.  
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A variety of refinement strategies were developed in order to optimize regions without sufficient 

alignment information. This includes loop modeling procedures (see review of Fiser44) and the 

correct placement of sidechains by using rotamer libraries45.  

In summary, the precision of rigid body assembly and restrained based modeling is comparable. 

Other factors like the identification of suitable template structures and the correct alignment of 

the target and template sequence play a more important role for the final model accuracy.  

2.1.3 Structural evaluation and assessment 

It is crucial for the usability of a model to estimate its accuracy. Error in the stereochemistry of 

models can be detected using tools such as PROCHECK46 or WHATCHECK47. A second type of 

scoring functions which try to identify structural errors in models are physics based energy 

functions like VERIFY3D48 and GROMOS49 or knowledge based potentials like ANOLEA50 or 

QMEAN51. The latter are often used to identify the most accurate model amongst a set of 

alternative models based on either different template structures or provided by different 

modeling routines. However, the accuracy of a prediction can also vary within a model. Regions 

which are functional important are known to be more conserved in evolution than for example 

residues between secondary structure elements which are exposed to the solvent. In such 

regions (“loops”) structural deviation can often be observed between a model and its native 

structure. Hence, it is important to identify such regions by assigning an error estimate on a per-

residue level.  

2.1.4 Automated modeling procedures  

Overall, the success of comparative modeling relies on many factors including the availability of 

suitable homologous structures, the correct alignment between target and template sequences, 

and the functional divergence between the target protein and the template. Dependent on the 

given situation, different strategies needs to be applied and the results must be carefully 

evaluated. This requires a sufficient level of expertise in structural biology and the use of highly 

specialized programs which are often computationally intensive and thus require adequate 

hardware settings. 

In order to make comparative modeling available for a larger community of biomedical 

researcher, automate modeling procedure were established. Today, there are a large number of 

such services accessible over the worldwide web. Biologist can choose an appropriate method 

according to their needs and expertise. In addition most of the server which participate at the 

CASP evaluation can be accessed online.52  
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Because an automated pipeline does not know a priori about the difficulty of modeling a 

particular protein, automated modeling requires “internal” expertise in order calculate accurate 

models. This includes the fast and accurate modeling of proteins with closely related 

homologous template structures as well as the identification and correct alignment of template 

structures with large evolutionary distance to the target protein. A final selection step needs to 

be applied in order to provide accurate and biological relevant models. 

2.1.5 The SWISS-MODEL system  

Over 15 years ago, The SWISS-MODEL server was developed in order to make comparative 

modeling available to a large community. Since then SWISS-MODEL has been constantly 

developed and is one of the widely used modeling server.53-55 

The SWISS-MODEL workspace comprises a variety of computational tools which allows 

predicting structural models for the protein of interest and the analysis of their expected 

quality.56 As of today 2000 requests are processed daily by the SWISS-MODEL workspace. 

According to their expertise, the users can choose between three different modeling 

approaches. 

Automated mode 

The automated approach was designed in order to provide an easy to use interface which 

requires only little user intervention. The user has to specify only the sequence of the target 

protein or as its Uniprot accession code in order to start the modeling process. Automated 

modeling involves identification and selection of suitable template structure, calculation of the 

model including the estimation of the expected quality. 

Alignment mode 

For more distantly related target and template proteins, multiple sequence alignments can help 

increasing the quality of the alignment between template and target protein sequences. The 

alignment mode provides an interface where user can upload a curated multiple sequence 

alignment of sequences of the template, target and closely related family members.  

Project mode 

Difficult modeling projects require a more detailed investigation of the alignment between 

target and template sequences. Visual inspection and manual modification of the alignment 

often increases the accuracy of the resulting model.57  The “Project mode” allows the submission 

of a project file, which contains the template structure and the sequence alignment between 
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target and template sequences. Project files can be generated, modified and displayed by the 

visualization software DeepView54. Project files are also part of the output of the “automated 

mode” and “alignment mode”, thus, a generated model can be further refined and iteratively 

resubmitted to the “project mode”. 

2.2 Definition of the Problem 

As stated in the introduction of this chapter, one of the most important steps to generate 

accurate models is the identification of suitable template structures and the correct alignment of 

their sequences to the target sequence. However, in many cases only templates with low 

sequence similarity can be identified. Such remote homologue template structures provide often 

useful information for the protein of interest but also require precise and accurate alignment 

tools.  

In the original version of SWISS-MODEL, BLAST solely was used for template identification and 

alignment. It has been shown, that BLAST often creates errors in the sequence alignment below 

40% sequence identity or is unable to detect remote homologue structures.  

Thus, we developed a protocol to improve the sensitivity (i.e. the identification of remote 

homologue template structures) and the quality of the models of the automated SWISS-MODEL 

pipeline based on template structures with high as well as low sequence identity by introducing 

a profile-profile alignment approach.  

2.3 Improvement of the SWISS-MODEL homology modeling pipeline 

Comparative modeling relies on the identification of protein structures which are homologue to 

the target protein. Thus, it is essential to apply methods which are sensitive and accurate in 

respect to the identification of suitable template structures. This is even more important for 

procedures without any manual intervention, because such applications do not know a priori the 

difficulty to model a particular protein. Hence, an automated template search routine must be 

designed in order to find closely related template structures as well as evolutionary distant 

templates.  

The identification of closely related template structure is straightforward, because the sequence 

alignment is unambiguous. As a rule of thumb, sequence alignments generated with automated 
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procedures can be considered reliable if more than 40% of the residues are identical.58 

BLAST32 is known as accurate and fast tool for the identification of such closely related template 

structures and is widely used. In addition, the BLAST package is still under development and 

updates are released at regular intervals. As a result we have chosen BLAST to identify closely 

related template structures. However, below 30% sequence identity alignment errors increase 

rapidly when using sequence-sequence alignment techniques.28 To overcome this limitation, 

several methods were developed to increase the specificity of BLAST towards more distant 

related template structures (see paragraph 2.1.1.). 

To identify successful modeling methods, the results of the biannual protein modeling 

benchmark experiment CASP can be used. Within the “Template based Modeling” (TBM) 

category it can be expected that top ranked methods are more successful in the detection and 

alignment of templates for a given target sequence than others. 

Hence, we examined the results of the CASP7 sever assessment category52 to identify accurate 

template search methods. “Server” groups are asked to process the submission fully automated 

and have to respond within 48 hours. These guidelines fit best to the needs of the SWISS-MODEL 

server pipeline, because they reflect real modeling situations where long waiting times are 

undesirable.   

Figure 4 show the assessment of the “server” participants within the TBM-category of the CASP7 

installment.52 Three different evaluation scores were applied (HB, AL0, GDT-HA), where two of 

them focus more on the global accuracy of the submitted models (AL0, GDT-HA) and one focus 

on the accuracy of the hydrogen bond network within the model (HB). As shown in Figure 4 (see 

Battey et al52 for details of the assessment), two groups (I-TASSER and HHpred) are considerably 

more accurate compared to the other participants. The top ranked group 25 (“I-TASSER”) is 

developed by the group of Zhang23. I-TASSER uses a threading procedure to identify possible 

template structures for the target sequence. However, this method is computational expensive 

(~10 h per query,52) and embedded as part of an iterative modeling procedure. The modeling 

routine of I-TASSER uses fragments of high scoring template structures for the assembly of the 

model and hence does not represent the classical single template modeling schema. The second 

top ranked method is HHpred59, which is based on the identification and alignment of template 

structures using profiles based on Hidden Markov Models (“HHsearch”)40, followed by a 

modeling protocol based on the comparative modeling software MODELLER60. The accuracy of 

the HHpred server relies on its sensitivity to identify evolutionary distant template structures 

and the correct calculation of the alignment between the template and target sequence. HHpred 
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had an average response time of ~10 minutes in CASP7 and can be considered as a fast and 

reliable modeling server. The template search routine (“HHsearch”) is freely accessible and can 

be installed as stand-alone program. To run the program, firstly a HMM-profile for the target 

sequence needs to be built. Secondly, the target profile is queried against a template library of 

HMM-profiles. The quality of the alignment is further increased by a realign procedure which 

uses the Maximum Accuracy algorithm. Based on the result of our CASP7 assessment of server 

predictions and the performance and availability of the tool we decided to use HHsearch as 

template identification tool for more distantly related structures.  

 

Figure 4 Performance of CASP7 server groups. Two groups 25 and 213 (“I-TASSER” and “HHpred”) outperform 
clearly the other methods in their number of significant wins on common predicted target structures. Figure taken 
from Battey et al.52 

Hierarchical combination of template search methods 

To combine the speediness of BLAST and its accuracy to detect closely related template 

structures with the ability of HHsearch to identify and align evolutionary distant template 

structures, we deployed a hierarchical template search protocol. (See Figure 5 for a schematic 

representation). 

Firstly, BLAST is launched to search for closely related template structures within our template 

library. We use very conservative thresholds, to ensure high alignment accuracy. BLAST hits are 

only retained if more than 60% of the residues are conserved within the sequence alignment 

and the E-value does not exceed 0.0001.   
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Secondly, HHsearch is started if either (1) no suitable template structures were found by BLAST 

(2) if the target sequence was not fully covered by BLAST hits. For the latter criteria we used a 

threshold of 25 residues, which reflects roughly the size of a small domain. If an additional 

HHsearch run is required, a profile-HMM of the target sequence is built. This involves several 

rounds of PSI-BLAST against culled versions of the NCBI-nr database. The target HMM-profile is 

then queried against the templates HMM-profile library which is culled so that two sequences in 

template library do not share more than 70% sequence identity. Templates are retained 

according to the recommended cutoffs (P-value > 50) by the authors of the programs. Finally, 

the list of template structures is subjected to the template selection procedure described below 

(paragraph 2.3.1). 

 

Figure 5 Schematic workflow of the hierarchical template selection used in the workspace. Submitted target 
sequences are subjected to BLAST. If necessary an additional HHsearch query is performed to identify more distant 
related template structures. Identified template structures are merged and subjected to the template selection 
procedure (paragraph 2.3.1). 

Secondly, HHsearch is started if either (1) no suitable template structures were found by BLAST 

(2) if the target sequence was not fully covered by BLAST hits. For the latter criteria we used a 

threshold of 25 residues, which reflects roughly the size of a small domain. If an additional 

HHsearch run is required, a profile-HMM of the target sequence is built. This involves several 

rounds of PSI-BLAST against culled versions of the NCBI-nr database. The target HMM-profile is 

then queried against the templates HMM-profile library which is culled so that two sequences in 

template library do not share more than 70% sequence identity. Templates are retained 
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according to the recommended cutoffs (P-value > 50) by the authors of the programs. Finally, 

the list of template structures is subjected to the template selection procedure described below 

(paragraph 2.3.1). 

This hierarchical template search protocol has several advantages. The closely related template 

structures with unambiguous alignment can be identified quickly with very high accuracy. 

Because building a HMM-profile for the each query sequence is time-consuming and 

computational demanding, the usage of BLAST as a first template search tool decreases the 

computational load without a loss of alignment quality. Further, it has been shown that BLAST 

performs more accurately in identifying closely related template structures than methods which 

rely on profile information.61 The applied procedure ensures that information about close 

sequence relationships is not dispersed by the subsequent profile based search strategies. By 

the hierarchical combination of both search approaches we merge the speediness and accuracy 

of BLAST for closely related template structures, with the ability of HHsearch to identify distant 

related template structures and align them correctly. In summary the current procedure 

increases the sensitivity of the previous SWISS-MODEL automated pipeline which was based on 

BLAST solely. 

2.3.1 Template selection procedure 

Template selection is an important step in modeling especially when more than one template is 

identified for the same target sequence. In this case, a decision has to be taken about which 

template structure(s) will be subjected to the modeling routine. This task becomes difficult if the 

available template structures cover different regions of the target sequence. This is a common 

scenario for multidomain proteins which appear frequently in eukaryotic systems.62 In addition, 

users of an automated modeling routine may want to answer different biological questions with 

the help of comparative models. For example, one user is interested in the active site of a 

catalytic domain whereas another needs information about the relative orientation between 

two domains. The first user requires an accurate model of the binding site: however, the second 

user will be more interested in a model which covers both domains. In addition, computing all 

possible models for a given protein based on all available template structures in not necessarily 

the best solution. In fact, users which are non-experts in the field of comparative modeling are 

often confused if several models for the same target region are computed and presented 

without any biological information attached. 
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To meet the expectations of users with different biological questions, we deployed a method 

which selects the evolutionary closest templates on one hand but also tries to achieve the best 

coverage of the target sequence.  

Proteins consist often of more than one functional domain, especially in Eukaryotic organisms.63 

As a consequence, a more sophisticated template selection protocol is required to guarantee the 

best template for a particular region of the target sequence. We have therefore developed a 

template selection approach which uses different types of sequence features to select the best 

template for a given region of the target sequence. It has been shown that the evolutionary 

distance (i.e. the sequence identity between target and template sequences) is a good indicator 

for the expected quality of a model.13,28,58,64 

We therefore use the sequence identity as a first criterion to rank all detected template 

structures. If more than one template can be identified with a given sequence identity, we chose 

the template based on the E-value reported by the template search methods. The E-value 

implicitly combines the sequence identity between target and template sequences with the 

length of the alignment. In general, lower E-values are assigned to longer hits. As a consequence, 

a template which covers more residues of the target sequence will be preferred over another 

template with the same sequence identity. If the sequence identity and E-value of the templates 

are non-distinguishable, the experimental resolution of the template structure will be taken into 

account, favoring a X-ray diffraction derived structure with the highest resolution. The target-

template alignment is then submitted to the SWISS-MODEL algorithm ProModII54 in order to 

calculate the three-dimensional coordinates of the model. Afterwards, the model is refined by 

using the GROMOS force field49. If the modeling of the select template structure fails due for 

example difficulties in the loop reconstruction process, the next template which is identified 

using the described criteria is submitted to the modeling process. 

New templates are added recursively if they either increase the coverage of the target sequence 

or elongate a model by at least 25 residues. Modeling is terminated if all selected templates 

have been analyzed.   

2.3.2 Accuracy of the SWISS-MODEL Pipeline 

The accuracy of the automated SWISS-MODEL pipeline is evaluated within the CAMEO 

(“Continuous Automated Model EvaluatiOn”) project. CAMEO (www.cameo3d.org)  continuously 

benchmarks the accuracy of automated protein modeling methods. CAMEO submits the 

sequences of protein structures which will become public in the next official PDB release to the 
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participating prediction servers. The timeframe for model prediction is 48 hours; the assessment 

of the models takes places if the PDB structure is released. Hence, the model quality evaluation 

occurs as blind experiment, where the predictors do not have access to the structure during the 

prediction period. Currently there are three automated modeling server registered to CAMEO, 

and data has been accumulated for a period of 16 weeks: 

1. “server0” : SWISS-MODEL56 “ 

2. “server1” : ModWeb65 

3. “server2”: HHpred59  

 

Figure 6 Performance of the SWISS-MODEL pipeline compared to HHpred and ModWeb. The panels show the 
performance in terms of average accuracy, RMSD, response time and the number of target for which at least one 
model was produced. 

Figure 6A shows the average accuracy for each week and server. The average accuracy combines 

coverage of the target sequence with the structural accuracy of the model and is comparable to 

the GDT-HA score. It can be observed that SWISS-MODEL performs comparably well to HHpred 

and better than ModWeb. If using RMSD as similarity measurement, SWISS-MODEL outperforms 

ModWeb as well as HHpred. The analysis of average accuracy and RMSD indicates that SWISS-

A B 

C D
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MODEL builds shorter but more accurate models than HHsearch, which however outperforms 

SWISS-MODEL in terms of model coverage. In addition, CAMEO analyzes the modeling time and 

the number of targets for which at least one model is returned by the target. SWISS-MODEL 

performs comparable to HHpred regarding the computation time. Both methods had one outlier 

indicating a high load on their server in that period. Regarding the number of submitted models 

all three servers perform similarly. 

In summary, the results show that the fully automated SWISS-MODEL pipeline server performs 

well compared to other standard modeling servers in the field in terms of both, the accuracy and 

responsiveness. Nevertheless, the benchmarking period is restricted to 17 weeks and 418 

targets, which limits the significance of the evaluation results. More detailed results are 

expected with the assessment of coming PDB released target sequences.  

2.3.3 Discussion 

2.3.3.1 Template identification 

In the SWISS-MODEL expert system we apply a hierarchical template search to handle the 

different levels of difficulty for identifying and aligning target to templates sequences. In 

comparison, ModWeb uses PSI-BLAST for the identification of template structures whereas 

HHpred is based on HHsearch as template search tool. PSI-BLAST as well as HHsearch are known 

for their strength in identifying remotely related templates. However a recent study has shown 

that simple sequence-sequence alignment tools are often superior to tools which use 

evolutionary information if the template is a close homologue of the target protein. As a result, 

we apply BLAST for the identification of closely related templates.  The higher accuracy in terms 

of RMSD is likely an effect of BLAST. BLAST builds typically rather short alignments. If analyzing 

the results for RMSD in combination with the “average accuracy”-score, which accounts also for 

coverage, it seems that SWISS-MODEL predicts shorter models with high accuracy. In contrast, 

HHpred focus more on the prediction of models with high coverage. In addition, methods which 

require the generation of a profile are usually computational intensive and significantly extend 

the overall modeling time. By using BLAST as first template identification tool, we shorten the 

computation time without losing sensitivity and alignment accuracy. However, the 

computationally efficiency of modeling routines itself is hard to estimate using the data from 

CAMEO, because the response time also includes the overall load of server, hardware archicture 

etc.  
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Currently, a culled version (max. 70% sequence identity between two sequences) of the PDB is 

used to compile the HMM-template library, mainly because of performance reasons and the fact 

that clusters of proteins which share more than 70% sequence identity are highly similar 

regarding their structure. It can be expected, that by using all structures, the accuracy could be 

improved, when applying an appropriate template selection. 

2.3.3.2 Template selection 

The selection of the templates which are submitted to the modeling routine is mainly based on 

the evolutionary distance as quality criteria combined with the optimal coverage of the target 

sequence.   

Additionally, it is has been shown in recent CASP editions that the use of quality estimation 

methods can help to distinguish near-native from non-native protein structure models66. Many 

methods model the target sequence based on all template structures at hand and use model 

quality estimation methods (MQE) for the selection of the final model. As a consequence the 

incorporation of such methods into the template selection process should increase the accuracy 

in identifying suitable template structures.  

Finally, it has to be noted that the purpose of protein models submitted to benchmark 

experiments like CASP may differ from that of a model used by biomedical researchers in order 

to guide their experiments. The evaluation of the template based modeling category within 

CASP requires the submission of one model which ideally covers the complete target sequence.  

As such the predictors have to find an optimal trade-off between coverage and quality of the 

submitted models. The limitation of submitting only one model make sense within the CASP 

experiment in order to force groups to develop methods which model accurate and complete 

models, however, it is may be less relevant for a biomedical researcher.  For the latter, a shorter 

but more precise model would be preferred for investigating for instance an active site, whereas 

a longer model could provide information about the relative domain orientation, likely with a 

lower accuracy. As a consequence, the “quality” of the model depends on the biological 

application and can be hardly expressed in numbers.  Because SWISS-MODEL was designed to 

provide models for non-experts, we have chosen the approach which selects models according 

to biological applications rather than maximizing the accuracy for one single model. 
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2.4  Implementation  

The described automated homology modeling routine is implemented as a modular PERL 

framework and integrated in the SWISS-MODEL workspace (“automated mode”) and the SWISS-

MODEL Repository. In the “automated mode” of the SWISS-MODEL Workspace the user have to 

specify the target sequence or its UniProt accession code in order to obtain the protein structure 

models. A detailed description of the various modeling modes and the general use of the SWISS-

MODEL workspaces is presented in a protocol which was recently published in Nature 

protocols3. Currently the SWISS-MODEL workspace is one of the mostly used homology 

modeling server in the biomedical community, with about 2000 requests for the automated 

SWISS-MODEL pipeline per day.  The applications of the automated modeling pipeline within the 

SWISS-MODEL Repository are discussed in the next chapter.  

2.5  The SWISS-MODEL Repository and associated resources 

The following chapter was published as journal paper.4  

My contributions were the follow:  

• Development of the automate modelling pipeline 

• Application of the automated modelling pipeline to a large set of protein sequences 

• Development and design of a relational database  

• Development of an incremental update procedure 

SWISS-MODEL Repository (“http://swissmodel.expasy.org/repository/”) is a database of three-

dimensional protein structure models generated by the SWISS-MODEL homology-modelling 

pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date 

collection of annotated three-dimensional protein models generated by automated homology 

modelling for all sequences in Swiss-Prot and for relevant models organisms. Regular updates 

ensure that models are based on the current state of sequence and structure databases, 

including new template structures and building models for new target sequences, as well as 

accounting for improvements in the underlying modelling pipeline. As of September 2008, the 

database contains 3.4 million entries for 2.7 million different protein sequences from the 

UniProt database. SWISS-MODEL Repository allows the users to assess the quality of the models 

on the database, search for alternative template structures, and to build models interactively via 

SWISS-MODEL Workspace (http://swissmodel.expasy.org/workspace/). Annotation of models 
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with functional information and cross-linking with other databases such as the Protein Model 

Portal module (http://www.proteinmodelportal.org) of the PSI Structural Genomics Knowledge 

Base facilitates the navigation between protein sequence and structure resources. 

Introduction  

Three dimensional protein structures are crucial for understanding protein function at a 

molecular level. In recent years, tremendous progress in experimental techniques for large scale 

protein structure determination by X-ray crystallography and NMR has been achieved. Structural 

genomics efforts have contributed significantly to the elucidation of novel protein structures67, 

and to the development of technologies, which have increased the speed and success rate at 

which structures can be determined and lowered the cost of the experiments68,69. However, the 

number of known protein sequences grows at an ever higher rate as large scale sequencing 

projects, such as the Global Ocean Sampling expedition, are producing sequence data at an 

unprecedented rate70. Consequently, the last release of the UniProt19 protein knowledgebase 

(version 14.0) contained more than 6.5 millions sequences, which is about 100 times the number 

protein structures currently deposited in Protein Data Bank20 (~ 53’000, September 2008) . For 

the foreseeable future, stable and reliable computational approaches for protein structure 

modelling will therefore be required to derive structural information for the majority of proteins, 

and a broad variety of in silico methods for protein structure prediction has been developed in 

recent years.  

Homology (or comparative) modelling techniques have been shown to provide the most 

accurate models in such cases, where experimental structures related to the protein of interest 

were available. Although the number of protein sequence families rises at a rate that is linear or 

almost linear with the addition of new sequences70, the number of distinct protein folds in 

nature is limited12,67 and the growth in the complexity of protein families appears as a result of 

the combination of domains. Complete structural coverage of whole proteomes (on the level of 

individual soluble domain structures) by combining experimental and comparative modelling 

techniques appears therefore as a realistic goal, and is already been pursued e.g. by the Joint 

Center for Structural Genomics for the small model organism Thermotoga maritima (JCSG)71,72. 

Assessment of the accuracy of methods for protein structure prediction, e.g. during the bi-

annual CASP  (Critical Assessment of Techniques for Protein Structure Prediction) experiments2,73 

or the automated EVA project64, has demonstrated that comparative protein structure modelling 

is currently the most accurate technique for prediction of the 3D-structure of proteins. During 

the CASP7 experiment, it became apparent that the best fully automated modelling methods 
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have improved to a level where they challenge most human predictors in producing the most 

accurate models23,40,52. Nowadays, comparative protein structure models are often sufficiently 

accurate to be employed for a wide spectrum of biomedical applications, such as structure 

based drug design74-78, functional characterisation of diverse members of a protein family79, or 

rational protein engineering for e.g. the humanization of therapeutic antibodies, or the study 

function properties of proteins80-84.  

Here, we describe the SWISS-MODEL Repository, a database of annotated protein structure 

models generated by the SWISS-MODEL Pipeline, and a set of associated web based services 

that facilitate protein structure modelling and assessment. We emphasize the improvements of 

the SWISS-MODEL Repository which have been implemented since our last report85. These 

include a new pipeline for template selection, the integration with interactive tools in the SWISS-

MODEL Workspace, the programmatic access via DAS (Distributed Annotation System)86, the 

implementation of a reference frame for protein sequences based on md5 cryptographic hashes, 

and the integration with the Protein Model Portal module (http://www.proteinmodelportal.org) 

of the PSI Structural Genomics Knowledge Base87,88. 

Repository Contents, Access and Interface 

Homology Modelling 

The SWISS-MODEL Repository contains models that are calculated using a fully automated 

homology modelling pipeline. Homology modelling typically consists of the following steps: 

Selection of a suitable template, alignment of target sequence and template structure, model 

building, energy minimization and / or refinement, and model quality assessment.  This requires 

a set of specialized software tools as well as up to date sequence and structure databases. The 

SWISS-MODEL pipeline (version 8.9) integrates these steps into a fully automated workflow by 

combining the required programs in a PERL based framework. 

Since template search and selection is a crucial step for successful model building, we have 

implemented a hierarchical template search and selection protocol, which is sufficiently fast to 

be used for automated large scale modelling, sensitive in detecting low homology targets, and 

accurate to correctly identify close target structures. In the first step, segments of the target 

sequence sharing close similarity to known protein structures are identified using a conservative 

BLAST32 search with restrictive parameters (E-value cut-off : 10-5, 60% minimum sequence 

identity to sequences of the SWISS-MODEL Template Library SMTL56). This ensures that 

information about close sequence relationships is not dispersed by the subsequent profile based 
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search strategies61. If  regions of the target sequence remain uncovered, in the second step a 

search for suitable templates is performed against a library of Hidden Markov Models for SMTL 

using HHSearch40. Templates resulting from both steps are ranked according to E-Value, 

sequence identity, resolution and quality of the template structures. From this ranked list, the 

best templates are progressively selected to maximize the length of the modelled region of the 

protein. New templates are added if they significantly increases the coverage of the target 

sequence (spanning at least 25 consecutive residues), or new information is gained (e.g. 

templates spanning several domains help to infer relative domain orientation).  For each 

selected target-template alignment, 3-dimensional models are calculated using ProModII54 and 

energy minimized using the Gromos force field49. The quality of the resulting model is assessed 

using the ANOLEA mean force potential50.   

Depending on the size of the protein and the evolutionary distance to the template, model 

building can be relatively time-consuming. Therefore, comprehensive databases of pre-

computed models85,89,90 have been developed in order to be able to cross-link in real-time model 

information with other biological data resources, such as sequence databases or genome 

browsers. 

Model Database 

The SWISS-MODEL Repository is a relational database of models generated by the automated 

SWISS-MODEL pipeline based on protein sequences from the UniProt database19. Within the 

database, model target sequences are uniquely identified by their md5 cryptographic hash of 

the full length raw amino acid sequence. This mechanism allows reducing the redundancy in 

protein sequence databases entries, and facilitates cross-referencing with databases using 

different accession code systems. Mapping between UniProt and various database accession 

code systems to our md5 based reference system is derived from the iProClass data base91. 

Regular updates are performed for all protein sequences in the SwissProt database 17, as well as 

complete proteomes of several model organisms (Homo sapiens, Mus Musulus, Rattus 

norvegicus, Drosophila melanogaster, Arabidopsis thaliana, Escherichia coli, Bacillus subtilis, 

Saccharomyces cerevisiae, Caenorhabditis elegans , Hepacivirus). Regular incremental updates 

are performed to include new target sequences from the UniProt database and to reflect new 

template structure information becoming available, whereas full updates are required to 

account for major improvements in the underlying modelling algorithms. The current 

SWISSMODEL-Repository release contains 3,45 million models for 2,72 million unique 

sequences, built on 26,185 different template structures (34,540 chains), covering 48.8% of the 
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entries from UniProt (14.0.), and more specifically 65.4% of the unique sequences of Swiss-Prot 

(56.0.), the manually annotated section of the UniProt knowledgebase. The size of the models 

ranges from 25 up to 2059 residues (e.g. fatty acid synthase beta subunit from Thermomyces 

lanuginosus) with an average model length of 221 residues.  

Graphical User Web Interface 

The web interface at http://swissmodel.expasy.org/repository/ provides the main entry point to 

the SWISS-MODEL Repository. Models for specific proteins can be queried using different 

database accession codes (e.g. UniProt AC and ID, GenBank, IPI , Refseq) or directly with the 

protein amino acid sequence (or fragments thereof, e.g. for a specific domain). For a given target 

protein, a graphical overview illustrating the segments for which models (or experimental 

structures) are available is shown (Figure 7). Functional and domain annotation for the target 

protein is retrieved dynamically in real time using web service protocols to ensure that the 

annotation information is up-to-date. UniProt annotation of the target protein is retrieved via 

REST queries (http://www.uniprot.org). Structural domains in the target protein are annotated 

by PFAM domain classification92, which is retrieved dynamically by querying the InterPro93 

database using the DAS protocol86. The md5 based reference frame for target proteins allows to 

update the database accession mappings in between modelling release cycles. This ensures that 

cross references with functional annotation resources such as InterPro correspond to proteins of 

identical primary sequence, thereby avoiding commonly observed problems with incorrect 

cross-references as a result of instable accession codes or asynchronous updates of different 

data resources. Finally, for each model, a summary page provides information on the modelling 

process (template selection and  alignment), model quality assessment by ANOLEA50 and 

Gromos49, and in page visualization of the structure using the Astex Viewer 94 plugin.  
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Figure 7 Typical view of a SWISS-MODEL Repository entry. For the UniProt entry P53354, the α-amylase I (EC 
3.2.1.1; 1,4-α-D-glucan glucanohydrolase) from Aedes aegypti (Yellowfever mosquito), a model covering the active 
amylase domain is shown, including information on the template structure used for model building, the target–
template sequence alignment, and quality assessment of the model. Functional annotation such as PFAM domain 
structure and UniProt annotation of the protein sequence is retrieved dynamically. Links to SWISS-MODEL 
Workspace enable the user to run additional model quality assessment tools on the model, or search the template 
library for alternative template structures. 

Integration with SWISS-MODEL Workspace  

The SWISS-MODEL Repository is a large-scale database of pre-computed three-dimensional 

models. Often however, one may be interested in performing additional analyses either on the 

models themselves, or on the underlying protein target sequence. We have therefore 

implemented a tight link between the entries of the SWISS-MODEL Repository and the 

corresponding modules in the SWISS-MODEL Workspace, which provides an interactive web 

based, personalized working environment 54,56,95. Besides the functionality for building protein 

models it provides various modules to assess protein structures and models. The estimation of 

the quality of a protein model is an important step to assess its usefulness for specific 

applications. In particular, models based on template structures sharing low sequence identity 

require careful evaluation. Therefore, entries from the Repository can be directly submitted to 
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the Workspace for quality assessment using different global and local quality scores such as 

DFire96, ProQRes97 or QMEAN51. 

The default output format for models in the Repository is DeepView project files54, which 

provides the possibility to manually adjust errors identified in the underlying alignment and 

resubmit the request to Workspace for modelling.  Since new protein structures are 

deposited daily in the PDB, databases of pre-computed models will exhibit a certain delay in 

incorporating new templates, depending the respective update cycles. The Repository links 

therefore directly to the corresponding template search module in Workspace, which allows to 

interactively running searches for newly released templates. The direct cross-linking between 

Repository and Workspace allows combining the advantages of the database of pre-computed 

models with the flexibility of an interactive modelling system. 

Interoperability 

Programmatic Access 

One of the major challenges of computational biology today is the integration of large amounts 

of diverse data in heterogeneous formats. Very often, data exchange within one domain, e.g. 

sequence-based data resources, is relatively straightforward, but seamless exchange between 

resources serving different data types, such as genome browsers and protein structure 

databases, is less common due to the lack of common and accepted standards. The "Distributed 

Annotation System" (DAS)86 is a light-weight mechanism for webservice-based annotation 

exchange. The DAS concept relies on a XML specification which defines the communication 

between server and client. Queries can be executed by sending a specific http-request, to the 

DAS server. The result of the DAS-Server request is a human readable and easy-to-parse XML-

document following the Biodas specifications (http://www.biodas.org).  

The DAS-Server of the SWISSMODEL-Repository is based on the DAS/1 standard and can be 

queried by primary UniProt accession codes or md5-hashs of the corresponding sequences. 

Individual models for a query sequence (“SEGMENT”) are annotated as “FEATURE”, with 

information about the start and stop position in the target sequence, template-sequence 

identity, and the URL to the corresponding SWISS-MODEL Repository entry. The DAS service 

allows SWISS-MODEL Repository be cross-linked with other resources using the same standards, 

e.g. genome browsers. The SWISS-MODEL Repository DAS service is accessible at 

http://swissmodel.expasy.org/repository/das/xxxxx. 
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PMP – The Protein Model Portal 

One of the major bottlenecks in the use of protein models is that, unlike for experimental 

structures, modeling resources are heterogeneous and distributed over numerous servers. 

However, it is often beneficial for the user to directly compare the results of different modeling 

methods for the same protein. We have therefore developed the Protein Model Portal as a 

component of the PSI structural genomics knowledge base87,88. This resource provides access to 

all structures in the PDB, functional annotations, homology models, structural genomics protein 

target tracking information, available protocols, and the potential to obtain DNA materials for 

many of the targets. The Protein Model Portal currently provides access to several million pre-

built models from four PSI centers, ModBase90, and SWISS-MODEL Repository85,89. 

Future Directions 

SWISS-MODEL Repository will be updated regularly to reflect the growth of the sequence and 

structure databases. Future releases of SWISS-MODEL Repository will include models of 

oligomeric assemblies, as well as models including essential cofactors, metal ions, and structural 

ligands. Structural clustering of the Swiss Model Template Library will also allow us to routinely 

include ensembles of models for such proteins, which undergo extensive domain movements.  

Citation 

Users of SWISS-MODEL Repository are requested to cite this article in their publications. 

Acknowledgements 

We are grateful to Rainer Pöhlmann, [BC]2 & Biozentrum University of Basel, for professional 

systems support, Pascal Benckert for fruitful discussions on model quality assessment, and 

Jürgen Kopp for pioneering work on earlier versions of SWISS-MODEL Repository. We thank 

James Battey for critically reading the manuscript. We are indebted to Dr. Michael Podvinec for 

his enthusiastic support and excellent coordination of the Scrum process for the SWISS-MODEL 

team. We grateful to Eric Jain for the swift implementation of md5 based REST queries on the 

UniProt server, and Wendy Tao, John Westbrook, and Helen Berman (RCSB) for the great 

collaboration on the PSI SGKB Protein Model Portal. Computational resources for SWISS-MODEL 

Repository are provided by [BC]2 Basel Computational Biology Center (http://www.bc2.ch) and 

Vital-IT (http://www.vital-it.ch). The PSI SGKB Protein Model Portal was supported by the 

National Institutes of Health NIH as a sub-grant with Fox Chase Cancer Center grant 3 P20 

GM076222-02S1, and as a sub-grant with Rutgers University, under Prime Agreement Award 



32 
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2.6  Current status of the SWISS-MODEL Repository 

This section describes the current status of the SWISS-Model Repository and highlights recent 

improvements. In addition a more detailed view about the technical implementation is given. 

The current release of the SWISS-MODEL Repository consists of 3,2 million model entries for 2,3 

million unique sequences of the UniProt database (release 2011_09,  September 21, 2011). In 

the last update cycle (2011-10-06, October 10, 2011) 122,348 unique sequences were 

considered for revision (for details of the update procedure please see paragraph 2.6.1). 

One of the major advantages of a protein structure model database is the possibility to include 

annotation of other data resources, thus providing biological relevant information in one view. 

Cross-references were established with two other important protein resources.  

Cross-references to STRING 

 

Figure 8 Cross reference to the STRING database98. A) If a homology model for a protein described in STRING exists, 
the according structure is displayed. B) If for a particular homology model a STRING protein entry exists, a crosslink 
to STRING including the interaction network is displayed. 

Cross references were established between the SWISS-MODEL Repository and STRING98, a 

database of known and predicted protein interactions. As such, STRING represents a valuable 

resource for user to investigate if a particular protein is involved into protein interaction 

networks. Screenshots of the STRING website and the SWISS-MODEL Repository website are 

A B 
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shown in Figure 8. Within STRING, proteins for which a homology model exists are linked to the 

SWISS-MODEL Repository via a mouse over menu (Figure 8, panel A). Likewise, the SWISS-

MODEL Repository displays a thumbnail of the protein interaction network if the protein was 

analyzed by STRING (panel B). Currently there are 587’855 proteins linked to STRING (v 9.0) and 

regular updates on both sites are performed. 

Cross-references to UniProt-KB 

Cross-links were also established from the UniProt database19 to the SWISS-MODEL repository. If 

a particular UniProt sequence has been modeled by the SWISS-MODEL Repository pipeline, the 

target sequence is annotated in the Cross-reference section of the UniProt entry.  

2.6.1 Update procedure 

A protein model which was built by comparative modeling relies on the template situation at the 

time it is calculated. Hence, a protein model is per definition outdated if new template 

structures are released. As a consequence, it is essential for the accuracy of the models that 

regular updates are carried out in order to examine if new template structures become 

available.  

Because the number of sequences in protein sequence databases is rapidly increasing, an update 

of the complete SWISS-MODEL Repository based on the latest release of the UniProt database 

(~17million sequences in Nov. 2011), would be computationally very intensive and could not be 

performed regularly using the SWISS-MODEL modeling pipeline. We therefore decided to limit 

the number of sequences for regular updates and selected seven proteomes which are of 

interest to the scientific community. They are frequently refereed as “model organisms” to 

examine important biological questions. The sequences of complete proteomes are available for 

download on the UniProtKB website (“http://www.uniprot.org”). 

 Table 1 shows seven proteomes updated regulary in the SWISS-MODEL Repository and their 

actual number of sequences (Uniprot release 2011_08). In total 185 206 UniProt entries are 

revised in a four weeks update cycle or if new UniProt sequences are released. 

Two different situations need to be addressed during an update cycle: 

1. New target sequences were released (e.g. by UniProt). 

2. New (potential) template structures were added to the template library. 
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The first scenario can be approached by modeling the new target sequences using the standard 

modeling pipeline. The latter scenario, which will affect all proteins during the update cycle, 

needs more efforts, because it is not known a priori if a recently published template is 

homologous to a previously modeled target sequence. Thus, it needs to be proven if any of the 

template structures provide new structural information for the target sequence. However, this 

step is computational very intensive. We have therefore modified the automated SWISS-MODEL 

pipeline in order to decrease the overall CPU time: 

Scientific name Taxonomy id Number of Sequences 
Homo Sapiens 9606 56,582 
Mus Musculus  10090 44,837 
Escherichia coli (strain K12) 833333 4,304 
Saccharomyces cerevisiae 
(Bakers yeast)  

559292 6,627 

Arabidopsis thaliana  3702 32,689 
Caenorhabditis elegans 6239 22,630 
Drosophila melanogaster 7227 17,537 
Total  185,206 

 Table 1 Proteomes in the current SWISS-MODEL Repository update cycles. The number of sequences was 
calculated based on UniProt release 2011_08. 

BLAST-Batch mode 

All sequences in the current update are subjected to BLAST in a “batch” mode. Therefore, groups 

of 100 target sequences are consecutively queried against the current template library. Thereby 

the BLAST database is kept in memory. This procedure decreases the load onto the file system 

by avoiding I/O intensive operations for loading the BLAST database into the memory for each 

single sequence.  

Incremental template search using HHsearch  

Profile generation is a computational intensive approach, because several rounds of PSI-BLAST 

are required. To avoid profile generation for target sequences which were already modeled in 

previous updates, all HMM- profiles were stored and reused for further updates.  

If the HMM-profile of the query and the HMM-profile of the templates are identical to the last 

update, a new alignment step is not required. We therefore queried the target profile against a 

template library which consists only of template HMM-profiles which have been released since 

the last update. In order to select the template structures for modeling, a list was built 

containing the templates from BLAST, the incremental HHSearch run and the template 

structures identified from the last update cycle. 
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Modeling 

The list of identified templates is then compared with the list of successful modeled templates in 

the previous update cycle. If the current selection of templates is different from the previously 

selected, the current set of templates is subjected to ProModII; if no new templates were 

selected, the coordination files from the previous update were used. 

Figure 9 shows a schematic representation of the SWISS-MODEL repository update procedure as 

described in the previous paragraphs. CPU intensive operations such as BLAST, HHsearch and 

modeling with ProModII are calculated in parallel on our computational powerful inhouse 

cluster.  

  

Figure 9  The SWISS-MODEL Repository update schema. The target sequences are fetched from the UniProt 
database and subjected to BLAST in Batch mode. Based on information of the previous update an incremental 
HHSearch template library is built and queried with the cached HMM-profile of the target sequence. If the selected 
template structures are different from the previous set of models, the templates are modeled by ProModII. The 
relational database is updated and the coordination files as well as the profiles and template reports are deposited 
for further updates.  
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2.6.2 Performance 

In order to evaluate the performance of the update procedure the average CPU time per protein 

has been determined. Thus, we compared the CPU times of the automated pipeline of the 

SWISS-MODEL Workspace server to the procedure applied in a regular update cycle of the 

SWISS-MODEL Repository. In both cases the difference between “Start” and “Finish” time in the 

corresponding status file was calculated for all sequences with less than 1500 residues. In case of 

the SWISS-MODEL workspace (“workspace pipeline”), submissions for a period of 2 weeks were 

considered (~10,700 modeling jobs), for the SWISS-MODEL Repository (“repository update 

pipeline”) all new sequences of the last update cycle (2011-10-06, October 10, 2011) were 

considered (~115 000 target sequences).  

The increase in CPU time ranges from about 3.4 minutes for sequences up to 50 residues to 4 

hours for sequences with 1500 residues (Figure 10, upper panel). For proteins of size of 300-350 

residues the standard “workspace pipeline” is a factor of 2.5 slower than the incremental 

“repository update pipeline”. With increasing sequence length the gap between the “workspace 

pipeline” and the “repository update pipeline” is steadily increasing. Considering protein models 

with 1000 residues, the standard “workspace pipeline” requires 5 times more CPU time.   

To calculate the absolute CPU time difference we used the distribution of sequence lengths in 

the latest SWISS-MODEL update (Release 28) (see Figure 10, lower panel) and multiply them 

with the average times calculated for the standard “workspace pipeline” and the pipeline 

implemented in the Repository update procedure. If one would use the standard ”workspace 

pipeline” for updating the SWISS-MODEL Repository ~83 000 CPU hours in total would be 

necessary. This shows the tremendous computational effort which would be required. In 

contrast the “repository update pipeline” is able to update all proteins in about 800 CPU hours.  

In summary, the comparison shows that incremental update procedure decreases the overall 

CPU time considerably. Despite the exclusion of the initial profile generation for HHsearch, it has 

been shown that regular updates for a selected set of proteins can be performed in reasonable 

time.  Currently, the time limiting step in the SWISS-MODEL homology pipeline is the profile 

generation by HHsearch for the target sequences. Profile-generation involves several rounds of 

PSI-BLAST against protein sequence databases to search for homologous proteins. Such 

sequence databases grow exponentially, as an example, TrEMBL doubled its size in the last two 

years and holds now about 17.8 million sequences. This implies also higher demands for the 

computational systems (e.g. RAM memory), especially if parallel computing is performed. As a 
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consequence the generation of profiles for newly added proteomes will considerably influence 

the overall computation time. 

 

Figure 10 Performance of the incremental update procedure. (Upper panel) CPU times for a protein of a given 
length. A considerable acceleration can be observed if using the incremental update procedure. Please note that 
the BLAST-Batch process and the Profile building were not taken into account. (Lower Panel) Distributions of 
sequence length in the last regularly update cycle. 
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2.6.3 MySQL database-schema 

The usefulness of calculated protein models relies on the visualization and accessibility of the 

data. The SWISS-MODEL Repository can be accessed via website or programmatically by the DAS 

protocol86. In order to enhance the functionality of the resource, different database identifier 

can be used to query the SWISS-MODEL repository. Various sequence databases often rely on 

the same set of sequences but use different accession code systems for the identification of 

sequences. It is therefore useful to provide an interface which can be queried with accession 

codes of various databases or the sequence itself. Therefore the accession code systems are 

mapped to the UniProt accession code. This information is provided by the IProClass database91. 

However, the mapping is time-critical and requires a fast mapping between accession code and 

md5 hashes of the target sequences to display the model quickly after entering the accession 

code on the website.  

 

Figure 11 Database schema of the SWISS-MODEL Repository. The smr_model table stores relevant meta 
information of the protein models. Database identifiers were mapped to md5 hashes to identify the correct model 
entries. smr_book stores the status of performed updates.  

To achieve fast response times, we implemented a MySQL database to store relevant 

information about the protein models, the mapping between the different accession code 

systems and the md5 of the target sequence and information about the update process itself. 
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Figure 11 shows a schematic representation of the database design. The database schema can 

be divided into two functional parts: 

Information management 

• smr_model: Holds all relevant annotation to display a particular model. This includes 

information about the used template structure, the sequence identity between 

template and target sequences, coverage of the target, model and revision dates. This 

information is primarily used for visualization on the SWISS-MODEL repository page 

•  uniprot: Consists of a representation of the current UniProt Knowledge database. This 

includes the UniProt accession code, the length of the sequence, taxonomy information 

and the md5 hash of the corresponding sequence.  

• Mapping tables translate common used database identifier to UniProt accession code. 

These are derived using the PIR database91. The corresponding model(s) in the smr_table 

can be identified using the UniProt accession code-md5 relation. The mapping 

procedure was developed within the Protein Model Portal project5.  

Update handling 

• smr_book: The content of this table helps to organize the regularly updates of the 

SWISS-MODEL Repository. It stores the sequence, md5, status, uniprot and pdb-release 

of the last update cycle. If a regularly update is performed, sequences are fetched from 

this table. 

2.6.4 Statistics and structural coverage of proteomes 

The current SWISS-MODEL Repository (release of October 10, 2011, based on UniProt release 

2011_09, September 21, 2011) consist of totally 3’223’059 models for 2’293’270 distinct UniProt 

sequences. The total number of modeled sequences is composed by the initial modeling of the 

complete UniProtKB (14.0) in 2008 and the seven proteomes which have been regularly updated 

(see Table 1). To estimate the structural coverage of these proteomes, we calculated the 

structural coverage of all residues in a particular proteome. The E.coli proteome display the 

highest structural coverage; more than 45% of the residues in the proteome can be modeled 

with sequence identity greater than 30% (Figure 12). The structural coverage for eukaryotic 

systems is much lower ranging from 18% to 21% for C.elegans and human, respectively. 

However, a study estimated that about 18% of all residues in the human proteome are 

disordered and hence do not show a regular protein structure99 . Similar percentages are 
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reported for other eukaryotic systems and thus lowering the fraction of residues without any 

structural information.  

 

Figure 12 Structural coverage of residues in various proteomes. In addition the predicted fraction of disordered 
residues is shown 99. Disorder predictions for the mouse genome were not found but can be assumed to be 
comparable to other closely related organisms.
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3 Modeling of quaternary protein structures 

3.1  Introduction 

3.1.1 Function of oligomeric proteins 

Proteins often accomplish their function either by interacting with other proteins or by forming 

macromolecular complex by self-assembly.  Protein complexes are involved into any type of 

cellular processes, thus contributing considerably to the vital ity and survival of the cell. 

Types of oligomeric proteins 

In the enzyme database BRENDA100 more than 75% of the enzymes are annotated as complexes. 

Two types of protein complexes can be distinguished. Homo-oligomers are formed by the 

assembly of self-interacting units of the same protein. In contrast, hetero-oligomers are formed 

by the assembly of subunits which are different in sequence and structure. It is estimated that 

between 50%-70% of oligomers are homo-oligomers101,102 and the majority of the complexes 

annotated in BRENDA are homo-oligomers100.  

Furhter, oligomers can be divided into permanent or transient complexes.103 Permanent 

complexes are usually very stable and disassembly of the complex leads to unfolded monomers. 

In contrast, transient complexes may exist also as stable monomers and assemble temporarily 

based on physical and chemical interaction with other proteins. Transient complexes are 

proposed to control signaling cascades and pathways in vivo and thus are very important for the 

functioning of the cell.  

Reasons for oligomeric assembly 

Despite the abundance of oligomers in the cell only little is known about the mechanism of 

oligomerization and their general benefits. Goodsell and Olson101 proposed advantages for larger 

proteins in general and the formation of oligomeric proteins: 

 

1. Building large complexes out of small subunits reduces errors due to protein translation. 

Because the error rate of translation increases with increasing gene length, smaller genes are 

less likely to contain translational errors. In addition, error prone subunits can be detected and 

exchanged in the systems with identical subunits (homo-oligomers). As a result, this leads to a 

more error tolerant system. 
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2. The genetic space required for coding the information of one single subunit of a protein 
complex is smaller than for monomeric proteins of the same size.  Examples are capsids of 
viruses, which are typically, build by only a small number of distinct subunits. As a consequence, 
the required genetic space is only little compared to the space needed for coding larger 
monomers.  On the other side, the discovery of large amounts of non-coding DNA in higher 
organisms104  argues against this argument as general driving force for oligomerization. 

3. The relative orientation of subunits can have regulatory functions, e.g. by relative changes in 
the conformation of the subunits. One example is the allosteric regulation of hemoglobin. 

Finally, Marianayagam105 proposed advantages for enzyme regulation and activation: for 

example, the close location of multiple active sites in oligomeric structures  places enzyme 

activity under the multifaceted regulation of oligomerization.  Other benefits can be identified 

for signal transduction in pathways and the regulation and construction of large structural units 

in the cell (e.g. actin filaments). Another example: the assembly of complexes can be triggered 

by the protein concentration in the cell. If the function is coupled to the oligomeric state (e.g. if 

the binding pocket consists of residues from more than one chain), the assembly can be seen as 

a censoring system which reacts on the cellular environment.  

Symmetry in oligomers  

In general, oligomers can be divided into two groups of symmetry:  open and closed symmetry. 

Open symmetry can be observed in large complexes responsible for the cellular stability (e.g. 

Actin and Tubulin). In theory, complexes having an open symmetry can assemble infinitely in 

space if no limiting factors are present.  In contrast, proteins adopting closed symmetry are finite 

in space and are mainly built by cyclic or dihedral symmetry. In addition, a small fraction of 

protein complexes have cubic symmetry. The following description of symmetry in protein 

complexes was adopted from Goodsell101. 

Cyclic symmetries consist of one single axis of rotational symmetry. C1 consists of one subunit 

(monomers), whereas C2 denotes a dimeric protein and so forth. In general higher cyclic 

symmetries (>2) require face-to-back interfaces, with at least two different types of interfaces 

on the surface.   

Dihedral symmetries consist of an additional perpendicular axis of two-fold symmetry. The 

lowest dihedral state is D2, which consists of two C2-Dimers. Oligomeric complexes having 

dihedral symmetry can consist of several types of interfaces. This implies advantages, e.g. for 

allosteric control.  
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Figure 13 Different types of oligomeric symmetries. Courtesy of E.Levy (Cambridge, UK). 

Protein complexes having cubic groups are usually involved into storage and transport. They 

contain threefold symmetries with another nonperpendicular rotational axis. It has been 

proposed very early by Watson and Crick106,  that icosahedral symmetries play an important role 

in the formation of virus capsids.  

3.1.2 Stability of Interfaces 

The disassembly of protein complexes can be described using the standard Gibbs free energy: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

The Gibbs free energy consists of two terms, which describe the enthalpic and entropic change 

in the system. A spontaneous chemical reaction requires in total a gain in the overall entropy 

(second law of thermodynamics). In this respect, the increase in enthalpy (i.e. the energy which 

is transferred from the system to the surrounding) must be higher than the loss of entropy (e.g. 

the restriction of the translational or rotational freedom). Krissinel concretize the concept of 

Gibbs free energy in order to describe the assembly or disassembly of macromolecular 

complexes.107 
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∆𝐺𝑑𝑖𝑠𝑠0 = −∆𝐺𝑖𝑛𝑡 − 𝑇∆𝑆 

The dissociation energy can be written as ∆𝐺𝑑𝑖𝑠𝑠0  ; a negative delta G indicates the disassembly of 

a complex whereas a positive value denotes a stable complex.  

∆𝐺𝑖𝑛𝑡 reflects the binding enthalpy between the subunits. As such it contributes positively to the 

interface stability. In contrast, the absolute temperature (T), and the change towards lower 

entropy in the system (∆𝑆) drive the assembly to less stable states.  

The main forces for interface stability, as proposed by Chothia and Janin108, are the hydrophobic 

interactions between non-polar residues. Presenting hydrophobic residues at the protein surface 

lowers the overall entropy in the system and is considered to be energetically unfavored. Thus, 

the burial of hydrophobic patches contributes positively to interface stability. 

Other contributors to interface stability are contact interactions like hydrogen bonds, salt 

bridges and disulfide bonds. Out of these three types of interaction, hydrogen bonds appear to 

be the most frequent (6-8 hydrogen bonds per 1000Å2)109 and are likely the most important 

contributor to interface stability. Salt bridges appear to be less frequent (~1 salt bridges per 

1000Å2 )109, and have about the same energetic contribution to the interface stability like 

hydrogen bonds (~0.6-1.5 kcal/mol). Disulfide bonds occur even less frequent but contribute 2-8 

kcal/mol due to their covalent binding character. Hence, the main effectors for interface stability 

are the burial of hydrophobic atoms and non-covalent interactions between subunits.   

Interface destabilizing effects are caused by a decrease in entropy which reduces the 

dissociation energy and as a consequence leads to less stable complexes. The calculation of the 

absolute entropic contribution is not yet solved, but can be estimated by the summation of 

translation, rotational, vibrational and symmetrical entropy.107 Entropic contributions are rather 

mass and size dependent and are, in contrast to enthalpy contributions, only marginally 

influenced by a specific residue distribution of the interfaces.  

Janin110 compared the composition of groups of atoms in the interface compared to the surface. 

He observed that non-polar atom groups are observed more frequently in interfaces than in 

surfaces. The amino acid composition of interfaces has been investigated in detail in many 

publications103,111-114. The conclusion is that aromatic and aliphatic residues are more frequent in 

the interfaces, i.e. they occur on average twice as often in the interface than in the whole 

surface. Conversely, charged residues (with the exception of Arginine) are less frequent in the 

interface by the same order of magnitude.  
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3.1.3 Evolution of oligomeric complexes 

Proteins with similar sequences are likely to also share their quaternary structure. In an earlier 

study, Alloy115 found that the interaction between complexes is conserved for structures sharing 

more than 30% sequence identity. Later, Levy116 has shown that in the range between 30%-40% 

sequence identity, 30% of the proteins described in the PiQsi117 resource have a different 

quaternary structure and below 30% sequence identity half of the homologues changes their 

quaternary structure.  Another study reported that the probability to find a pair of proteins with 

similar quaternary structure is given for the majority of cases if the identity between the 

sequences of the two proteins is greater than 50%.118 

Levy116 also investigated the occurrence of cyclic and dihedral symmetries during evolution. They 

found that whenever there is a chance to choose between cyclic or dihedral symmetries, an 11-

fold preference for the latter is observed.  This can be explained by the interface geometry, 

whereas for cyclic symmetries two interfaces were involved into complex assemblies (face-to-

back), dihedral symmetries often consist of interfaces which are face-to-face (or back-to-back). 

See Figure 14 for a schematic representation. 

 

Figure 14 Evolutionary paths of dihedral and cyclic oligomeric assemblies. Assembly of dihedral complexes can take 
several pathes, whereas cyclic symmetries can evolve only by one pathway. Figure taken from Levy et al116. 
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Assuming the same number of subunits, interfaces formed by dihedral symmetries are more 

likely to occur by random mutations than complexes with cyclic symmetries119 120. Dihedral 

systems can evolve in multiple steps (C1-C2-D4) whereas cyclic system must evolve in one step 

(C1-C4), (See Figure 14,116). As a consequence complexes of dihedral symmetries evolve often 

through their cyclic intermediates.116,121 

Amino acid substitutions may affect the stability of the protein complex interfaces and thereby 

lead to the assembly or disassembly of protein complexes. The exchange of surface residues by 

hydrophobic and large protruding residues may lead the formation of oligomers.122 The design of 

oligomeric proteins based on single mutations supports this hypothesis123. One example is the 

mutation of a single surface residue to a nonpoloar residue in order to promote the assembly of 

a symmetric tetramer based on a dimer. Single point mutations can be disruptive for the 

function of the protein and the cause of several diseases. One example is the disease fructose 

intolerance caused by a mutation in the interface of the enzyme 1,6 biphosphate aldolase A. The 

consequence of this mutation is a decreased stability of the tetrameric protein, associated with a 

decreased activity of the enzyme.124  

Another explanation for the modulation of oligomeric protein during evolution is the insertion 

and deletion of small fragments in the interfaces. Hashimoto125 has shown that about one 

quarter of the insertions and deletions in homologue proteins is located in the interface and has 

an impact onto the stability of the complex.  

Similar quaternary structure between two proteins implies to some extent evolutional pressure 

to the interface residues. Several studies have used the Shannon entropy to calculate the 

flexibility in evolution for a single interface residue on a multiple sequence alignment which 

consists of homologue sequences.126-128 It has been shown that interface residues are more 

conserved than surface residues. Elcock & McCammon126 uses the ratio between interface and 

surface conservation to distinguish between biological interfaces and crystal contacts, because 

the latter behave more like surface residues in respect to their evolutionary conservation. 

3.1.4 Comparison of oligomeric complexes 

The comparison of quaternary structures was the target of many studies. 

For example Levy et al102 use a graph-based approach to explore differences in topology 

between several types of oligomeric assemblies. Subunits are considered as nodes, whereas 

interfaces between subunits are defined as edges. In order to compare two complexes based on 
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their topology, a modified version of the A* algorithm129 is used. This method does not engage in 

a deeper evaluation of the interface geometry. 

To describe differences in the relative orientation between subunits, several concepts were 

developed in recent years. Aloy et al115 developed iRMSD (interaction RMSD) to calculate the 

similarity between two binary complexes. The RMSD is calculated by firstly superpose A on its 

equivalent chain in the other complex (A’). The same procedure is applied to chain B in order to 

get a superposition on B’.  After superposition, 14 coordinates are used to calculate the final 

root mean square deviation: the center of mass of the subunit plus six additional points which 

were calculated by adding or subtracting 5Å to the x,y and z coordinates of the center of mass. 

Similar approaches involve only the interface residues for the superposition, or limit the 

superposition only to one chain, when calculating the RMSD130. 

For the evaluation of predicted protein complexes within the CAPRI experiment131, the fraction 

of correctly predicted contacts is computed. This is defined as the number of correct residue-

residue contacts in the predictions divided by all contacts in the native complex.130 A more fine 

grained score was developed by Xu et al132 for the comparison of homodimeric complexes. Q 

score calculates the weighted mean of differences in distances between equivalent residue 

pairs. Equivalent residue pairs are identified by a sequence alignment or structural superposition 

of the subunits. The weighting function decreases the influence of distant residue-residue 

contacts to the overall score. 

3.1.5 Modeling of quaternary structures 

Protein structure elucidation at atomic level is needed to determine the function of a protein in 

detail, e.g. to characterize the interface area between two subunits or identifying residues which 

are in contact with the ligand. However, there are only about 75 000 experimentally solved 

structures deposited in the Protein Database20 compared to the number of known protein 

sequences, which  is exponentially increasing: i.e. there are more than 17 million sequences in 

the UniProt Knowledge Database( release 2011_09, September 2011).  One reason for this huge 

gap between the number of protein sequences and known protein structures is the 

development of high throughput sequencing methods in recent years. Comparative or homology 

modeling can help narrowing this gap. These methods are known to be the most accurate to 

calculate a protein structure based on evolutionary related protein (template) structures 2,73. 

Because of the large impact and abundance of protein complexes in nature, several studies has 

investigated evolutionary conservation of protein complexes 
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As described in the paragraph “Evolution of oligomeric complexes”, several studies have shown 

that the quaternary structure between two evolutionarily closely related proteins can be 

assumed to be similar. In recent years, several methods were published which use this relation 

to model the quaternary structure of a structural unknown target proteins based on the 

quaternary structure of related template structures. The M-Tasser approach by Chen 133 was 

developed for the prediction of homodimers. It first builds a monomeric model using the protein 

prediction method TASSER22 and then superposes the model onto the members of the template 

library in order to generate a dimeric complex. The generated dimers are then subjected to a 

refinement method, which improves the overall interface geometry. Weerayuth134 developed 

Protinfo PPC, a webserver which queries its template library using PSI-BLAST32 and SSEARCH135 to 

identify template structures which match the submitted query sequences. The complexes in the 

template library are based on biological unit files provided by the protein database. Models are 

built based on a multiple sequence alignment which is built between the target sequence and 

homologues template sequences. Additional homologue sequences from the UniProt sequences 

are added to increase the overall alignment quality. BISC136 calculates models based on 

experimentally verified protein-protein interactions from functional genomics databases. The 

sequences of the interacting domains are used to query a template library which is based on 

PISA107 (see next section for details) and the identified template structures are processed using 

MODELLER60. 

Further, interface residues are predicted by sequence alone. For example, ISIS137 uses different 

input features to train a neural network. 

Another approach to calculate the structure of protein complexes are protein-protein docking 

procedures. Most methods rely on an exploration step to determine the initial configuration of 

the involved subunits. Later, near-native solutions are identified using scoring functions which 

incorporates energy, geometric complementarity, propensities, and other terms which distinct 

interfaces from surfaces. Promising candidates are subjected to further refinement steps. In 

addition methods like HADDOCK138 or RosettaDock139 allow the predictor to incorporate 

additional data like NMR data, sequence conservation or mutation data  to restrain the 

conformational search. 

The accuracy of docking routines is assessed in the CAPRI experiment (Critical Assessment of 

Predicted Interactions)131, which is organized in a similar way as CASP140. Predictors are asked to 

submit their predictions for protein complexes which are structurally characterized but not yet 

public available. The accuracy of the submitted models is then evaluated by assessors, which do 
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not know the real names of the predictors. Practically, docking techniques are often used for 

exploring transient interaction between structures which are already known. 

3.1.6  Annotation of quaternary structures 

Despite recent advances of protein structure determination by X-Ray crystallography the true 

biological active state of a protein often remains unknown. The correct quaternary state must 

hence be estimated by analyzing the given conformations in the crystal cell if no additional 

information from direct solution experiments is available. In addition to its native state, the 

protein in a crystal often undergoes interactions caused by the dense packing. Hence, it is 

important to distinguish true biological interactions from interactions caused by crystallization 

(so called “crystal contacts”). This effect cannot be observed for structures solved by NMR. 

Nevertheless only few NMR structures address oligomeric proteins or protein-protein 

interactions.  

It has been observed that the extent of the  buried surface area upon complex formation is a 

very important descriptor to distinguish crystal contacts from biological interfaces141. Contacts 

caused by crystal packing bury in many cases less surface area than biological interfaces. Since 

this is not always the case, methods were developed to incorporate other properties of 

physiological interfaces like evolutionary conservation, electrostatic potentials, hydrophobicity, 

shape complementary and aminoacid composition. Machine learning techniques like neural 

networks142, random Forests143, Support Vector Machines144 or Bayes classification145 were 

frequently used to combine such attributes. Other approaches try to verify quaternary structure 

annotation by literature review117,146, or consider the crystal packing of homologue proteins147 to 

decide if a particular interface is biological relevant.  

However, many of these studies rather describe theoretical concepts and do not apply their 

methods to structural databases in a regular and up-to-date fashion. Annotation methods which 

apply their prediction method in a consequent way to new released structures are the Biounit 

annotation within the PDB entry itself and PISA (Protein Interfaces, Surfaces and Assemblies; 148). 

PQS was disabled in summer 2010 and replaced by PISA as the main quaternary structure 

annotation system supported by the European Bioinformatics Institute. 

PISA 

PISA148 estimates the thermodynamical stability of protein complexes by calculating a pseudo 

dissociation energy. This includes an enthalpic (interface stabilizing) and an entropic (interface 
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destabilizing) term. Interface stabilizing contributions are hydrogen bonds, salt bridges, disulfide 

bridges and buried hydrophobic area between interacting subunits. In contrast, the entropic 

term consists of translational, rotational and symmetrical entropy. Complexes which have 

positive dissociation energy are considered to be stable. The final score is trained and optimized 

on a set of protein complexes with manually characterized oligomeric states and reaches an 

average accuracy of 83%.148 If more than one complex can be built by applying the symmetry 

operators to the chains in the asymmetric unit, the assemblies are ranked according to their 

oligomeric state (larger assemblies supersede smaller assemblies). Thus, one configuration is 

always ranked first. Predictions for all structures solved by X-ray in the current release of the 

PDB can be accessed and downloaded via the EBI website (www.ebi.uk.co). PISA replaced PQS as 

the default tool for the automated annotation of biological assemblies in the PDB.  

PDB 

The quaternary structure annotation of a deposited protein structure can be found in the 

REMARK300/350 sections of the header. The REMARK300 section contains information of 

experiments which were used to determine the correct oligomeric state or other information 

about quaternary structure assignments. This section is free text and can only be hardly used for 

automated procedures. Nevertheless it contains often important information (e.g. if a particular 

complex can be supported by other experiments). The subsequent part (“REMARK350”) consists 

of information on how to build the biological unit(s) using the chain(s) in the asymmetric unit 

file. According to the PDB, all likely quaternary structures, which can be built by applying the 

symmetry operators of the crystal cell are computed and reported (“SOFTWARE DETERMINED 

QUATERNARY STRUCTURE”).  The applied software is PQS (for earlier deposited entries) or PISA. 

If such an assembly is considered to be biological relevant by the authors, a corresponding 

REMARK can be given (“AUTHOR DETERMINED BIOLOGICAL UNIT”). Additionally, the matrices to 

build the biological unit (i.e. translation and rotation matrices for all chains in the asymmetric 

unit) are denoted. 

An example for the REMARK300/350 section is given in Figure 15.  The authors of a dimeric 

histidine triad protein from Sinorhizobium meliloti 1021 (PDB-ID: 3nrd) give additional 

information about their preference for a particular quaternary structure.  
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REMARK 300                                                                       
REMARK 300 BIOMOLECULE: 1, 2, 3, 4                                               
REMARK 300 SEE REMARK 350 FOR THE AUTHOR PROVIDED AND/OR PROGRAM                 
REMARK 300 GENERATED ASSEMBLY INFORMATION FOR THE STRUCTURE IN                   
REMARK 300 THIS ENTRY. THE REMARK MAY ALSO PROVIDE INFORMATION ON                
REMARK 300 BURIED SURFACE AREA.                                                  
REMARK 300 REMARK: CRYSTAL PACKING AND ANALYTICAL SIZE EXCLUSION                 
REMARK 300 CHROMATOGRAPHY ANALYSES SUPPORT THE ASSIGNMENT OF A DIMER AS A        
REMARK 300 SIGNIFICANT OLIGOMERIZATION STATE IN SOLUTION.                        
REMARK 350                                                                       
REMARK 350 COORDINATES FOR A COMPLETE MULTIMER REPRESENTING THE KNOWN            
REMARK 350 BIOLOGICALLY SIGNIFICANT OLIGOMERIZATION STATE OF THE                 
REMARK 350 MOLECULE CAN BE GENERATED BY APPLYING BIOMT TRANSFORMATIONS           
REMARK 350 GIVEN BELOW.  BOTH NON-CRYSTALLOGRAPHIC AND                           
REMARK 350 CRYSTALLOGRAPHIC OPERATIONS ARE GIVEN.                                
REMARK 350                                                                       
REMARK 350 BIOMOLECULE: 1                                                        
REMARK 350 AUTHOR DETERMINED BIOLOGICAL UNIT: DIMERIC                            
REMARK 350 SOFTWARE DETERMINED QUATERNARY STRUCTURE: DIMERIC                     
REMARK 350 SOFTWARE USED: PISA                                                   
REMARK 350 TOTAL BURIED SURFACE AREA: 5160 ANGSTROM**2                           
REMARK 350 SURFACE AREA OF THE COMPLEX: 11880 ANGSTROM**2                        
REMARK 350 CHANGE IN SOLVENT FREE ENERGY: -124.0 KCAL/MOL                        
REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B                                   
REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000             
REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000             
REMARK 350   BIOMT3   1  0.000000  0.000000  1.000000        0.00000             
REMARK 350                                                                       
REMARK 350 BIOMOLECULE: 2                                                        
REMARK 350 AUTHOR DETERMINED BIOLOGICAL UNIT: DIMERIC                            
REMARK 350 SOFTWARE DETERMINED QUATERNARY STRUCTURE: DIMERIC                     
REMARK 350 SOFTWARE USED: PISA                                                   
REMARK 350 TOTAL BURIED SURFACE AREA: 3820 ANGSTROM**2                           
REMARK 350 SURFACE AREA OF THE COMPLEX: 12060 ANGSTROM**2                        
REMARK 350 CHANGE IN SOLVENT FREE ENERGY: -99.0 KCAL/MOL                         
REMARK 350 APPLY THE FOLLOWING TO CHAINS: C, D                                   
REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000             
REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000             
REMARK 350   BIOMT3   1  0.000000  0.000000  1.000000        0.00000             
REMARK 350                                                                       
REMARK 350 BIOMOLECULE: 3                                                        
REMARK 350 SOFTWARE DETERMINED QUATERNARY STRUCTURE: TETRAMERIC                  
REMARK 350 SOFTWARE USED: PISA                                                   
REMARK 350 TOTAL BURIED SURFACE AREA: 10420 ANGSTROM**2                          
REMARK 350 SURFACE AREA OF THE COMPLEX: 22500 ANGSTROM**2                        
REMARK 350 CHANGE IN SOLVENT FREE ENERGY: -238.0 KCAL/MOL                        
REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C, D                             
REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000             
REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000             
REMARK 350   BIOMT3   1  0.000000  0.000000  1.000000        0.00000             
REMARK 350                                                                       
REMARK 350 BIOMOLECULE: 4                                                        
REMARK 350 SOFTWARE DETERMINED QUATERNARY STRUCTURE: OCTAMERIC                   
REMARK 350 SOFTWARE USED: PISA                                                   
REMARK 350 TOTAL BURIED SURFACE AREA: 26040 ANGSTROM**2                          
REMARK 350 SURFACE AREA OF THE COMPLEX: 39790 ANGSTROM**2                        
REMARK 350 CHANGE IN SOLVENT FREE ENERGY: -581.0 KCAL/MOL                        
REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C, D                             
REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000             
REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000             
REMARK 350   BIOMT3   1  0.000000  0.000000  1.000000        0.00000             
REMARK 350   BIOMT1   2  1.000000  0.000000  0.000000        0.00000             
REMARK 350   BIOMT2   2  0.000000 -1.000000  0.000000        0.00000             
REMARK 350   BIOMT3   2  0.000000  0.000000 -1.000000       85.24100   
Figure 15 REMARK300/350 section of 3nrd, a histidine triad protein. Additional information about the performed 
experiments is given in the REMARK300 section. All relevant PISA predictions are annotated in the REMARK350, 
however the author supports only the dimer hypothesis.  
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In the REMARK350 section four different assemblies were specified. All assemblies were 

calculated using the PISA algorithm. The oligomeric state was predicted by PISA to be dimeric 

(“BIOMOLECULE 1,2”), tetrameric (“BIOMOLECULE 3”) or octameric (“BIOMOLECULE 4”). Based 

on their own analysis (see REMARK300 section) the author decided to assign dimeric to be the 

most likely quaternary state. 

This example highlights several issues. Firstly, more than one quaternary structure can be 

assigned for the chains present in the asymmetric unit. Thus, a unique annotation for a given set 

of chains cannot be assumed.  Secondly, the annotation given by the author can support one or 

many of these assemblies, none of them or can suggest other assemblies which were not 

predicted by the software.  

Finally, if the authors do not have evidence for one of the proposed assemblies, annotation by 

the authors is absent. 

This results in a mixture of sources of quaternary structure annotation. Different types of 

software can be used to calculate assembly structures based on the asymmetric unit. Author 

annotation can then support one of these hypotheses. 

PiQsi 

Another resource of quaternary structure information is the manually curated PiQsi database117. 

PiQsi relies on the analysis of literature and closely related homologue structures. The structural 

sources for the annotation are biological unit files provided by the PDB, annotated either by the 

authors or by the automated approaches like PQS and PISA. The human annotator can choose 

between the following states: “NO“, “PROBNOT”, “PROBYES” and “YES” depending on his own 

investigation and interpretation of the data: 

1. “NO” indicates that the quaternary structure as annotated by the PDB is correct. 

2. ”PROBNOT” indicates that the quaternary structure as annotated by the PDB is “likely” 

correct. 

3. “YES” indicates an erroneous assignment by the PDB.  

4. “PROBYES indicates a likely erroneous assignment by the PDB.  

The curator’s assignment of states depends on his investigation and interpretation of the data. 

Additionally, the annotator can create his own annotation. However, the deposition of the 
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corrected coordination file is not possible. Unfortunately, PiQsi annotation is only available for 

around 15 000 structures, which is less than one fifth of the currently available structures in the 

PDB and currently, no new annotations are added.  

3.2 Definition of the problem 

Modeling of proteins in their correct quaternary structure results in a more detailed view of 

their biological function. If the concept of comparative or homology modeling is applied, the 

quaternary structure must be deduced from homologue template structure. The following 

questions are addressed: 

Firstly, the accuracy of state-of-the-art template based oligomer modeling methods needs to be 

evaluated in order to identify the weakness and strengths of already existing methods.  

Secondly, similarity scores need to be developed to elucidate the similarity in quaternary 

structure between two homologues proteins.   It is thereby important to incorporate the 

oligomeric state as well as the geometrical accuracy between the interfaces. A score which 

classifies the quaternary structure between two proteins as similar or dissimilar is essential in 

order to develop methods for the prediction of quaternary structures. 

Thirdly, it has to be analyzed which descriptors are required to identify template structures, 

which share their quaternary structure with the target protein. The quaternary structure of 

template structures needs to be estimated using automated annotation tools.  

3.3 Material and Methods  

Assessment of quaternary structures in CASP9 

Target preparation 

For all CASP9 TBM targets, we determined the most probable biological active quaternary 

structure in the following way: For the definition of the oligomeric assembly state, we relied 

primarily on the assignment by the authors (“REMARK 350”). For targets solved by NMR, having 

no “REMARK 350” section, the oligomeric state was defined by their assembly of chains in the 

PDB entry. Targets without or with ambiguous assignments by authors were inspected manually 

taking into account PISA annotation148 and the “REMARK 300” section. Targets with ambiguous 
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assignment of the oligomeric state which could not be resolved satisfactorily by visual inspection 

were excluded from the evaluation.  For two targets, the structure was not yet deposited in the 

PDB. Table SI provides the oligomeric state assignment for all targets used in this assessment. 

Coordinate sets representing the biological units were downloaded from the PDB protein 

database or PISA respectively using the PDB code for the targets reported on the CASP9 target 

website. Residues in the experimental structure of the oligomeric assembly were mapped to the 

CASP target sequence chain-by-chain, and only amino acid residues corresponding to the CASP 

target sequence were included. 

Oligomeric Predictions 

Predictions were considered as oligomer predictions if a model consisted of multiple chains, and 

the oligomeric state of a prediction was interpreted as the number of chains found in the 

corresponding coordinate file submitted to the prediction center. Groups with at least one 

oligomeric model submission were included in the evaluation. Groups “55 MUFOLD-MD”, “117 

3-D JIGSAW_V4-5” and “333 DELCLAB” submitted models with inconsistent chain naming and 

were therefore excluded from this evaluation. Human groups were evaluated using the targets 

labeled as “human/server”, Server groups on all targets. Group “353 SAMUDRALA” (registered 

as “human”) submitted in total only one oligomeric prediction (T0516) which is classified as 

“server” and was therefore not included in the assessment. 

Numerical Oligomeric State Assessment 

We calculated the fraction of correctly predicted oligomeric states (dimer, trimer, tetramer, etc.) 

by normalizing with the maximum number of oligomeric structures, either in the target or in the 

prediction set, in order to account for over-prediction of oligomeric states: 

𝐴𝑐𝑐𝑂𝑙𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑟𝑖𝑐 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

max(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑟𝑖𝑐 𝑡𝑎𝑟𝑔𝑒𝑡𝑠,𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

In order to assess the quality of the structure of the predicted complex, we evaluated how 

accurately the interfaces of the oligomeric complexes were modeled. This analysis accounts for 

the correct number of interfaces as well as the correct orientation by calculating a “Contact 

Agreement Score” Sagree which reflects the fraction of correctly modeled interface contacts in the 

complex:   

𝑆𝑎𝑔𝑟𝑒𝑒 =  
∑ 𝑓(𝑥𝑖𝑗,𝑦𝑖𝑗)𝑖,𝑗

∑ 𝑔𝑖,𝑗 (𝑥𝑖𝑗,𝑦𝑖𝑗)
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With xij, and yij
 being the total number of contacts between residues i and j in the target 

sequence. Two residues were considered to be part of the protein-protein contact interface, if 

they were located in different chains and their corresponding Cβ atoms (Cα for GLY) were less 

than 12 Å apart. Sagree ranges from 0 and 1, with Sagree = 1 indicating that all contacts in the target 

complex are present in the model.  Sagree = 0 indicates, that none of the contacts in the target 

complex are present in the model. Note that Sagree is undefined if either one of the two 

compared structures is monomeric, and was set to zero in this case. 

Naïve oligomeric assembly predictors 

To be able to estimate the difficulty of the different targets, two naïve predictors were included 

in the assessment: group “998 NaïveSeqId”, and group “999 NaïveCoverage”. HHSearch40  was 

used to identify homologue template structures in the PDB, and all hits showing sequence 

identity with the target of less than 15% or coverage less than 15% were discarded. Group “998 

NaïveSeqId” sorted possible templates first by highest sequence identity in the target-template 

alignment and second by coverage of the target sequence by the alignment, giving precedence 

to the first criterion, and selected the highest ranked template. Conversely, group “999 

NaïveCoverage” selected the model, where its target-template alignment reached the highest 

coverage to the target sequence, and within the same coverage had the highest sequence 

identity, in this order of importance. 

For the selected template, the first oligomeric assembly assigned by PISA148 was used to build 

oligomeric pseudo-models. Models were built by copying the backbone atoms and the Cβ atoms 

(except for Glycine) of the aligned regions in the sequence alignment 

Development of a score to derive similarity between homologous quaternary 
structures 

Similar to the procedure described by Xu132, an interface was defined if two chains have at least 

10 residue contacts and at least one atomic contact. A residue contact was defined as two Cβ-

atoms with a distance less than 12Å. An atomic contact was defined if two non-hydrogen atoms 

were not more than 5Å apart. 
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All accessible surface areas were calculated using NACCESS149  with its default settings. 

Analysis of the QscoreOligomer in dependence to the similarity of the quaternary structure was 

performed on the same dataset as described in the next section. 

Error bars were generated by calculating 100 intervals using 70% of the targets in the set. 

Development of a method for template based modeling of oligomeric protein 
structures  

General definitions  

Definition of interfaces 

Accessible surface areas were calculated using NACCESS149 with its default settings. Residues 

were labeled as “surface” if at least 5% of its relative surface area can be accessed. A residue 

was labeled as “interface” if at least 0.1Å2 were buried. A residue was considered as “core” 

residue if at least one atom was fully buried. The total buried surface area per chain was defined 

as follows:    

𝐵𝑆𝐴𝐶ℎ𝑎𝑖𝑛 = � 𝐴𝑆𝐴𝑖
𝑖≤𝑐ℎ𝑎𝑖𝑛𝑠

− 𝐴𝑆𝐴𝐶𝑜𝑚𝑝𝑙𝑒𝑥  

We defined an interface to be biological relevant if at least 500 Å2 were buried.  

Classification procedure 

Random forests150 were used with its default configuration (500 trees, number of variables used 

at each split: 5, “random Forest” library151 within R) for all classification procedures. Unlike 

otherwise stated, two thirds of the targets in the dataset were used for training and one third 

for testing. In order to calculate the sensitivity and specificity we used the probabilities if being 

correct as emitted from the random forest.   

Classification accuracy  

Three different score were applied in order to calculate the classification accuracy: 

•  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁
𝑇𝑁+𝐹𝑃

 

• 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃
𝑇𝑃+𝐹𝑁
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With TP, TN, FP, FN, being true positives, true negative, false positives and false negative 

respectively. 

• AUC (“area under curve”) 

The raw class probabilities of the classifier were used as input to visualize ROC curves and to 

calculate the area under curve (ROCR package152 in R). 

Oligomeric Template Library 

Benchmark sets 

The literature test set was compiled by using the dataset published by Gorin and Bordner143. 

Entries which had distinct SEQRES sequences were removed from the set. The PiQsi test set was 

compiled by downloading the complete list of all annotated protein structures in PiQsi117. All 

proteins which had differing SEQRES entries within their PDB header were removed, the 

remaining set of consisted of 10 865 sequences and was submitted to the PISCES server153  and 

culled on 70% sequence identity level (max R-factor:0.3, maximum resolution: 3.0Å ).   

Quaternary Structure annotation  

The PISA annotation was derived from the corresponding XML file downloaded from the EBI 

website (http://www.ebi.ac.uk/msd-srv/prot_int/pi_download.html). The top ranked annotation 

was used to determine the oligomeric state by counting the number of macromolecular chains 

in the XML file. If no XML file was found, the structure was flagged as “No annotation”.  

PDB files were downloaded from the official RCSB repository. The PDB author annotation was 

extracted from the “REMARK350” section (given as “AUTHOR DETERMINED BIOLOGICAL 

UNIT”).If the authors did not assign an oligomeric state to the structure or one chain was 

annotated by the authors in more than one “biological unit”, the structure was flagged as “No 

annotation”. The oligomeric state was derived by the counting the number of chains annotated 

in the “biological unit” multiplied by the number of translation/rotation matrices. 

Annotations by PiQsi were derived using the field (“No. sub (corrected)”) in the annotation file 
provided by PiQsi117.  

Dataset 

Target proteins 

The dataset of target proteins was compiled using quaternary structure annotations of PISA107 

and PiQsi117.  



58 
 

Only those entries which are labeled “NO” in their PiQsi error state (i.e. the annotation in the 

“REMARK 350” section of the PDB is correct) and the oligomeric state is confirmed by PISA (i.e. 

using the “first” annotation in the corresponding assembly XML file) were used. If a complex 

consists of more than one chain in the asymmetric unit, the entry was only kept if all chains had 

the same SEQRES sequence (=Homo-oligomer). The remaining 5328 sequences were submitted 

to the PISCES server 153 and culled on a 30% sequence identity level, using only entries with a 

maximum resolution of 3.0Å and R-factor of maximum 0.3. 

Template identification 

To detect homologue template structures a profile-profile search of the target sequence against 

the oligomer template library using the HHSearch Package40 was performed. Only templates 

with a reliable sequence alignment, all hits having a P-value greater than 50, a sequence identity 

greater than 15% and a minimum of 20% coverage of the target sequence were retained. If 

multiple instances of the same PDB target were found (e.g. a dimer appears more than once in 

the asymmetric unit), the one with the highest coverage to the target sequence was used. Only 

monomeric or homo-oligomeric template structures were considered (see definitions above). 

Model selection 

Models were calculated by the following procedure: 

1. Conserved Residues were copied using the coordinates of all heavy-atoms in the 

template structure 

2. Non-conserved residues were modeled by copying only the main chain atoms. In an 

additional step sidechain-atoms were modeled using SCRWL4154 with its default settings. 

The relative ratio between surface and interface area was defined as follows: 

𝐴𝑆𝐴𝑟𝑎𝑡𝑖𝑜 =  ln
𝐴𝑆𝐴𝐶ℎ𝑎𝑖𝑛
𝐵𝑆𝐴𝐶ℎ𝑎𝑖𝑛

 

The largest chain in the complex was selected to calculate ASAratio. AsaChain denotes the accessible 
surface area where as BSAChain reflects the buried surface area of that chain.  

Grouping of templates with similar quaternary structure 

To detect groups of similar quaternary structures agglomerative hierarchical clustering was 

applied.  
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Firstly, all templates were considered as single groups. Two groups were merged if their average 

QscoreOligomer was greater than 0.5. The average QscoreOligomer between two groups was 

defined as follow: 

𝑄𝑠𝑐𝑜𝑟𝑒𝑂𝑙𝑖𝑔𝑜𝑚𝑒𝑟𝐺1𝐺2 =  
1

𝑛𝐺2𝑛𝐺1
� � 𝑄𝑠𝑐𝑜𝑟𝑒𝑂𝑙𝑖𝑔𝑜𝑚𝑒𝑟(𝑥,𝑦)

𝑦∈𝐺2𝑥∈𝐺1
 

G1,G2 stand for group 1, group 2 respectively and x,y for template 1 in group1, and template 2 

in group 2. 

For sequence clustering CD-HIT 155 was used in its default settings. 

Evolutionary conservation of interfaces 

To calculate the multiple sequence alignments (MSA), the SEQRES sequence of the  target 

protein was searched against the UniRef100156 using three iterations of PSI-BLAST32. A sequence 

was only added to the MSA if it covered at least 80% of the target sequence and had a maximum 

e-value of 0.001. The template alignment sequence was mapped on to the complete target 

sequence. Thus, deletions in the target sequence were removed.  

The Shannon entropy157 SColumn of each alignment column was calculated using either all 20 

standard residues types or 6 groups of physiological similar residue types (as defined by Guharoy 
127): 

𝑆𝑐𝑜𝑙𝑢𝑚𝑛 = �𝑝𝑖 ln 𝑝𝑖
𝑖

 

The average conservation was calculated by weighting the column entropies with the 

corresponding accessible surface area, buried surface area for surfaces 〈𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒〉   and 

interfaces 〈𝑆𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒〉 respectively: 

〈𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒〉 =  
∑ 𝑎𝑠𝑎𝑖𝑆𝑖𝑖
∑ 𝑎𝑠𝑎𝑖𝑖

 

〈𝑆𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒〉 =  
∑ 𝑏𝑠𝑎𝑖𝑆𝑖𝑖
∑ 𝑏𝑠𝑎𝑖𝑖

 

The log-ratio of entropy between surface and interface residues was finally defined as followed: 

𝑆𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =  ln(
1 + 〈𝑆𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒〉
1 + 〈𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒〉

) 
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Sconservation is defined as the log-ratio between the average interface and surface entropy. The 

addition to one prevents undefined values if 〈𝑆𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒〉  or 〈𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒〉  are zero. 

To calculate Sconservation on different multiple sequence alignments, all sequences were sorted 

according to decreasing evolutionary distances. We then decreased successively (in steps of 5% 

sequence identity) the level of sequence identity which is included into the multiple sequence 

alignment. To distinguish models with correct quaternary structure from models with incorrect 

quaternary structure, a random Forest was trained using the 20 SConservation as input variables. The 

binary output variable was set 0 if the quaternary structure between template and target was 

different (QscoreOligomer <0.5) and to 1 if the quaternary structure of the template was similar 

to the template. To ensure that coverage is not the main reason for being labeled incorrect, we 

excluded all templates structures if the sequence alignment covers not more than 80% of the 

target sequence. Additional we excluded all template structures burying less than 500Å2 

(BSAChain).  

QMEAN 

For the analysis of the discriminative power of mean force potentials the normalized version 

QMEAN451  was used. Structural deviation between model and target structure were calculated 

by the program TMscore158. 

3.4 Results & Discussion 

3.4.1 Assessment of oligomeric models in CASP9 

The section “Assessment of oligomeric models in CASP9“ was published recently as part of the 

official CASP9 TBM assessment.7  

Evaluation of oligomer modeling 

Many proteins form stable higher order quaternary structures in the form of complexes or 

oligomeric assemblies. In fact, proteins which form exclusively monomeric structures are a 

minority, while the majority of proteins in a cell is involved in complexes and assemblies in some 

form159. The prediction targets in CASP do not form an exception, and a large fraction of them is 

forming stable oligomeric assemblies in their native state: 53 prediction targets in the 
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assessment were homo-oligomeric complexes, while only 43 were monomers1

The task of predicting protein structures in CASP includes prediction of the quaternary structure. 

According to the CASP format definition, quaternary structure predictions should be submitted 

in the same frame of reference, with the first chain labeled as A and subsequent chains following 

the latin alphabet, e.g. a tetramer's chains should be labeled as A, B, C, D. Here, we evaluated 

how well predictors identified the correct oligomeric state of the target, and how accurately the 

predictions resembled the structure of the complexes. To be able to estimate the difficulty of 

the different targets, two naïve predictors were included in the assessment: group “998 

NaïveSeqId”, and group “999 NaïveCoverage”. These naïve predictors assume that the 

oligomeric state of the target is the same as the one of the closest template which can be 

identified by standard sequence search methods. In case of group “998 NaïveSeqId”, the 

template with the highest sequence identity to the target was selected, in case of group “999 

NaïveCoverage”, the one covering the largest fraction of the target sequence.  

. Frequently, it is 

only in the context of this assembly that we can understand their function, e.g. when active sites 

are located in the interface between subunits, and the protomeric structure is often not 

sufficient to study functional aspects in an accurate and complete fashion. It is also often 

observed that the isolated subunits do not represent self-sufficient globular structures without 

the interactions with their neighboring subunits. In these cases, predicting (and also assessing) 

targets as monomeric structures does not make much sense.  

The oligomeric state of CASP9 targets ranges from “Monomeric” to “Tetrameric”, with a 

majority of multimeric targets. For multimeric targets the most abundant state is “Dimer” (41 

Targets), followed by “Tetramer” (9) and “Trimer” (3). Hetero complexes were not observed. The 

“human/server” category consists of 20 monomers, 16 dimers, 3 trimers and 2 tetramers.  

We included all groups in the evaluation which submitted at least one model as oligomer. The 

majority of targets was predicted as monomeric (83% “human/server”, 78% “server” category), 

followed by dimeric predictions (13% “human/server”, 18% “server”). This indicates that many 

of the groups only submitted a fraction of their predictions as oligomers.  Only for a small 

number of groups does the oligomeric state distribution of the predictions resemble the one of 

the experimental target structures (See Figure 16). 

                                                           
1 Some targets, for which the oligomeric state assignment by the experimentalist was ambiguous, were 
excluded from this part of the assessment. 
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Successful modeling of oligomeric complexes relies on the identification of the correct 

oligomeric state of the unknown target protein, and then on constructing a realistic model for 

the quaternary structure. The fraction of correctly identified oligomer states over the number of 

submitted models (AccRel column in Table 2) ranges between 79% (“282 Taylor”) to 36% (“20 

dokhlab”) for “human” and 66% (“452 Seok-server”) to 45% (“102 Bilab-ENABLE”) for  “server 

groups”,  respectively. However, these numbers are dominated by the assignment of monomeric 

structures. In the context of CASP it is not possible to determine if a monomeric submission was 

an explicit choice for monomer or just a “non-oligomeric” prediction. (If a predictor would 

submit only monomeric models, an accuracy of 47% and 53% would be achieved for 

“human/server” and all targets, respectively.) Also, submitting oligomeric predictions only for a 

small set of targets (“cherry picking”) increases the chance to achieve good accuracy in this 

measure.  

We therefore calculated the fraction of correctly predicted states for oligomeric targets only, 

normalizing by the maximum number of oligomeric structures, either in the target or in the 

prediction set (See Materials and Methods for details). Two human groups (“458 Bilab-solo”, 

“242 Seok”) and the two naïve predictors predicted more than 50% of their oligomeric targets 

correctly. Remarkably, group “458 Bilab-solo” was able to characterize more than three quarters 

(76%) of the oligomeric states in the “human/server” targets correctly. In the “server” category, 

the naïve predictor based on sequence identity, classified most accurately 55% of the targets 

(See Table 2). 
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Figure 16 Distribution of oligomeric states amongst the submitted models. Panel A shows the fraction of different 
oligomeric states in the set of predictions made by “human” groups for the targets in the “human/server” category. 
Panel B displays the same data for the set of the submissions made by “server” groups for all evaluated targets. 
Both panels show on the left the actual distribution of the oligomeric states in the experimental target structures 
for comparison (see text). 

In our visual inspection of the predictions, we observed a substantial fraction of physically 

impossible models with parts of the structures overlapping, severe steric clashes, or isolated 

chains in space - lacking a protein-protein interface. We calculated the fraction of models which 

contained more than 10 backbone-backbone clashes or were lacking inter-chain contacts (all C-β 

–C-β distances > 12Å). In general, server groups tended to build more unrealistic models than 
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human groups. Among the groups having at least 5 oligomeric predictions, the server group “102 

Bilab-ENABLE” had with 36% the highest fraction of unrealistic models (SeeTable 2). 

Table 2 Summary table of oligomeric predictions 

Category Group Group# ∑oligomer 
predictions 

Total AccRel AccOli %  unrealistic ∑ SAgree 

Human Seok-meta 16 6 40 57.5% 23.8% 0.0% 1.2 
Human dokhlab 20 1 22 36.4% 0.0% 0.0% 0.0 
Human Jones-UCL 104 1 39 53.8% 4.8% 0.0% 0.0 
Human LEE 114 2 41 51.2% 4.8% 20.0% 0.6 
Human GeneSilico 147 9 41 61.0% 28.6% 11.1% 2.3 
Human BAKER 172 5 41 61.0% 23.8% 0.0% 1.8 
Human Seok 242 13 40 75.0% 57.1% 7.7% 3.1 
Human sessions 278 2 41 51.2% 4.8% 0.0% 0.4 
Human Taylor 282 2 14 78.6% 9.5% 0.0% 1.3 
Human SWA_TEST 297 1 41 51.2% 4.8% 0.0% 0.8 
Human bujnicki-

kolinski 
299 6 40 62.5% 23.8% 0.0% 2.2 

Human Bilab 423 19 37 51.4% 42.9% 15.8% 1.3 
Human disco3 439 3 5 60.0% 9.5% 0.0% 1.0 
Human Bilab-solo 458 20 40 77.5% 76.2% 0.0% 4.9 
Human MidwayFoldi

ngHuman 
477 1 39 48.7% 4.8% 0.0% 0.6 

Server ProQ2 1 3 96 46.9% 3.8% 33.3% 0.9 
Server Bilab-

ENABLE 
102 90 94 44.7% 45.6% 35.6% 7.6 

Server PconsR 173 1 96 44.8% 0.0% 100.0% 0.1 
Server YASARA 228 21 57 63.2% 28.3% 9.5% 5.1 
Server Gws 236 6 96 50.0% 9.4% 33.3% 1.9 
Server Pcomb 273 3 96 46.9% 3.8% 33.3% 1.0 
Server ProQ 296 3 96 46.9% 3.8% 0.0% 0.8 
Server Seok-server 452 30 96 65.6% 43.4% 6.7% 6.4 
Server NaiveSeqId 998 50 86 60.5% 54.7% 20.0% 8.1 
Server NaiveCovera

ge 
999 50 86 57.0% 50.9% 8.0% 9.8 
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Figure 17 Interface agreement scores S(Agree) summed over all targets in the “human/Server” category. “458 Bilab-
solo” clearly outperforms all other groups. In general, predictions by “human” predictors (blue) are not more 
accurate than “server” groups (red), and only “458” outperforms a naïve control predictor in this analysis. 

In order to characterize the accuracy of the predicted oligomeric structures, we calculated a 

“Contact Agreement Score” Sagree which reflects the fraction of correctly modeled interface 

contacts in the complex and thereby accounts for the correct number of interfaces as well as 

their correct orientation (see Materials and Methods). Sagree–score ranges from 1 for a perfectly 

predicted complex to 0 for a completely incorrect one. To estimate the overall performance for 

each group, we summed up the Sagree–score for each target. This procedure rewarded successful 

modeling of the complex but did not penalize unsuccessful attempts, which also accounts for the 

fact that is was often not clear if a “single chain” submission should be considered as explicit 

choice for a monomer or no attempt was made to predict the oligomeric state. When 

considering the “human/server” subset of targets, group “458 Bilab-solo” submitted overall the 

most accurate predictions (see Figure 10, ∑  Sagree = 4.9). By evaluating the server groups on all 

targets, the naïve predictor which uses the template with best coverage was the most accurate 

(“999 NaïveCoverage”), followed by the second naïve predictor ( “998 NaïveSeqId”). To 

investigate if human predictors were able to submit more accurate models than servers, we 

compared server and human groups on the subset of “human/server” targets. Among the best 
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five groups there were two human predictors, two server predictors and the naïve predictor 

“999 NaïveCoverage”. The human group “458 Bilab-Solo” outperformed all other groups, but a 

general trend that human groups predict more accurately could not be observed.  For most 

targets (except T0584, T0517, T0598), “458 Bilab-solo” predictions achieved an accuracy similar 

to the top predicting groups and thus performed on a constant level (Figure 18). 

 

Figure 18 Interface agreement scores S(Agree) summed over all targets in the “human/Server” category. “458 Bilab-
solo” clearly outperforms all other groups. In general, predictions by “human” predictors (blue) are not more 
accurate than “server” groups (red), and only “458” outperforms a naïve control predictor in this analysis. 

Despite the fact that the quaternary structure is often essential for the understanding of the 

biological function of a protein and more than half of all CASP9 targets are oligomers, only a 

small fraction of the participating groups in CASP9 submitted oligomeric models. The overall 

performance of the participating server groups compared to the two naïve predictors was rather 

poor. As shown in Figure 16B most of the sever groups submitted mainly monomeric 

submissions, except group “102 Bilab-ENABLE”, who submitted mainly oligomeric models. 

Unfortunately, a significant part of these models contained clashes or have non-interacting 

subunits. In general, the accuracy of the server oligomer predictions appeared rather low. The 

high rate of unrealistic models reveals that the complexity of oligomeric modeling is currently 
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not handled properly by automated approaches. Obviously, there is a great opportunity for 

significant improvement in modeling of quaternary structures of proteins in future CASPs.  

Example of an oligomer target 

Ignoring the quaternary structure of a protein can lead to models which cannot explain 

important physiological properties, or even to structures with a disrupted functional site. One 

example is T0576 (PDB 3NA2), a functionally uncharacterized protein from Leptospirillum 

rubarum. This target shows in its oligomeric form an extensive interaction network at the 

interface between the monomers. If only the monomeric structure is considered, one beta sheet 

remains exposed, extending into the solvent in a situation that is obviously not energetically 

favorable.  In the dimeric form, sheet pairing causes the exposed hydrophobic residues to 

become buried (Figure 19). A homologue structure of this target (a putative heme-binding 

protein from Anabena Variabilis - PDB: 3FM2), shows a very similar configuration of the binding 

site, and includes two zinc ions located in the clefts formed by the two chains. This finding 

supports the hypothesis that the dimeric form of target T0576 is a requirement for its biological 

function.  

The group that submitted the best prediction for this target, “458 BILAB-solo” (Sagree=0.79), was 

successful in modeling the interface region, including the sheet pairing. Almost all inter-chain 

contacts present in the interface region of the target have been correctly modeled in the 

prediction. For biological applications, the usefulness of a correct oligomeric model like the one 

discussed here, which shows the protein in what is likely to be its functional state, clearly 

exceeds the one of any monomeric model. 
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Figure 19 T0576 – example for a dimeric prediction target in CASP9 (group “458 Bilab-solo”). An isolated monomeric 
subunit would not form a self-contained structure, and leave several of the β-sheet interactions unsatisfied. 

3.4.1.1 Discussion 

Despite the fact that the quaternary structure is often essential for the understanding of the 

biological function of a protein and more than half of all CASP9 target appeared to be oligomers, 

only a small fraction of the participating groups in CASP9 submitted oligomeric models. 

Among the groups which submitted at least one oligomeric model, the group of M. Kakuta, with 

its predictors” Bilab”, “Bilab-solo” and “Bilab-ENABLE”, performed best.  In particular, the human 

predictor “Bilab-solo” was best in terms of oligomer classification and modeling accuracy (SAgree). 

Excluding our naive predictors, the server “Bilab-ENABLE” was the best server, even if it had a 

very high number of unrealistic models. The dominance of the method “Bilab-solo” can may be 

explained by the extensive use of manual inspection as stated in the submitted CASP-abstract. It 

seems that manual investigation of the template situation for the target of interest increase the 

overall accuracy considerably.  

The performance of the participating server groups compared to our naïve predictors is rather 

poor. Most of the sever groups submitted mainly monomeric submissions, except group “Bilab-

ENABLE”, who submitted mainly oligomeric models. Unfortunately, a significant part of their 

models contained clashes or have non-interacting subunits. In general, the accuracy of the 

participating server groups is rather low. The high rate of unrealistic models reveals that the 

complexity of oligomeric modeling can yet not be handled properly by automated approaches.   
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 In contrast to the overall server performance, the naïve predictor “NaiveCoverage” has shown a 

remarkable performance in oligomer classification and modeling performance. This indicates 

that a reasonable classification rate and modeling accuracy can be achieved with standard tools 

in the field.  

Although different scores were used for evaluation, the discrepancy between the observed 

accuracy in tertiary structure modeling and quaternary structure modeling is large. The accuracy 

of the top performing  modeling servers (i.e HHpred59 or I-Tasser23) has been slowly saturated 

over the last CASP experiments, however as described in the introduction, the biological 

usefulness of single chain models is limited. In contrast, the accuracies of oligomeric modeling 

methods observed in this experiment are rather low.  

One may explain the weak performance by the large evolutionary distance between template 

and the target and the resulting difficulty to identify the correct oligomeric state. It can be 

hypothesized that predictors submitted their models monomeric, if evidence for oligomeric 

complexes was not given. Currently the assessors cannot distinguish between explicitly modeled 

monomers and “single chain” models, which were submitted because of lacking evidence for a 

particular oligomeric state.  

Further, none of the top ranking “server” groups released their methods for the public audience. 

As a consequence, the results of this CASP assessment have only limiting implications for real life 

modeling. 

In summary, the field of oligomeric modeling is only slowly emerging in terms of accuracy of the 

models and availability of the methods and provides the opportunity for scientific achievement. 

As a consequence, the organizer of coming CASP experiments should account more for the 

biological completeness of models. This includes, besides the correct prediction of tertiary 

structure, the prediction of quaternary structure, biological relevant ligand and cofactors and 

implies an adequate error estimation of such models.   

3.4.2  Development of a score to derive similarity between homologues 
quaternary structures 

A requirement for the comparison of quaternary structures is a metric which reflects the 

structural divergence between two protein complexes. Naturally, the difference between 

oligomeric states of proteins can be described by their change in the number of subunits. 

However, this does not allow a comprehensive analysis of the differences between protein 
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complexes: the relative orientation of subunits can be different between protein complexes 

having the same oligomeric state. Conversely, oligomeric assemblies with different number of 

subunits can have structurally equivalent interfaces. For example, the structure of a D2-

Tetramer can be generated by applying relevant symmetry transformations to the structure of a 

C2-Dimer. When comparing the D2-Tetramer with the corresponding C2-dimer, the same 

interface type can be identified, even if the oligomeric states of the complexes are different. The 

assembly of dihedral oligomers from cyclic intermediates is a common path in evolution and 

appears in nature 11 times more frequently than expected.116 When the concept of comparative 

modeling is applied to quaternary structures, one can often identify templates which are, with 

respect to quaternary structure, evolutionary intermediates of the target protein. To study the 

mechanisms of assembly or disassembly of homologue oligomeric structures, a target function 

which evaluates both the differences in the number of subunits and the correct interface 

geometry is needed. 

Several scores were developed in the past, some, like the already mentioned iRMSD115, are 

based on superposition and focus on the differences in translation and rotation between 

subunits. These generally do not account explicitly for differences in the oligomeric state, mainly 

because such scores focus on the assessment of protein-protein docking methods, where the 

correct evaluation of the relative orientation of subunits is most important.  

Other scores are superposition-free, like the Q score132 and intent to describe small differences 

in the geometry of interfaces. However, the number of subunits is not considered explicitly. 

In this chapter we introduce a new score for the comparison of homo-oligomers, which accounts 

for differences in the number of subunits as well as the overall interface accuracy.  

Contact agreement function 

The focus in this study is on homo-oligomeric structures, which consists of multiple copies of the 

same subunit. As a consequence a particular residue i in the protein sequence can be observed 

in each subunit, and a contact xij between residue i and j appear at least once in a dimer and 

twice in tetramer etc. (see Figure 20 for a schematic representation).  

A relationship between two residues can be called a contact when the spatial distance between 

the two corresponding residues in different subunits is below a certain threshold. We used a 12Å 

threshold between the Cβ-atoms (Cα for Glycins) to define contacting residues. This threshold 
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was introduced by Xu132  to calculate the Q score (see subchapter “weighting function” for more 

details). 

The difference in in the total number of contacts between two equivalent residue pairs can be 

defined as follow:  

𝑓�𝑥𝑖𝑗,𝑦𝑖𝑗� = �1 −
�𝑥𝑖𝑗 − 𝑦𝑖𝑗�

max (𝑥𝑖𝑗,𝑦𝑖𝑗)
, max (𝑥𝑖𝑗,𝑦𝑖𝑗) > 0

0, max (𝑥𝑖𝑗,𝑦𝑖𝑗) = 0

� 

where xij and yij reflect the total number of contacts between residue i and j in structure A and  

B, respectively. 𝑓�𝑥𝑖𝑗, 𝑦𝑖𝑗� =0 indicates that none of the contacts between residue i and residue j 

in structure A can be observed in structure B (left example, Figure x). 𝑓�𝑥𝑖𝑗 ,𝑦𝑖𝑗� =0.5 indicates 

that half of the contacts between residue i and residue j in structure A are present in structure B 

(right example, Figure x). 𝑓�𝑥𝑖𝑗,𝑦𝑖𝑗� =1 indicates that the number of contacts between residue i 

and j in structure 1 (xij) and structure 2 (yij) is identical. As a result, the function 𝑓�𝑥𝑖𝑗 ,𝑦𝑖𝑗� 

reflects the contact agreement of corresponding residues in two complexes, which can differ 

either by the absolute number of contacts (i.e. different number of subunits) or by the 

orientation of their interfaces. 

 

Figure 20  A contact between residue i (yellow circle) and j (green circle) appear at least once in a dimeric complex 
and at least twice in a tetrameric homo-oligomer. The fraction of common contacts results in a score of 0 for the 
left comparison and a score of 0.5 for the right comparison if considering one residue pair.    

Weighting function 

It is worth examining the effect of long-range contacts on the score obtained by the f function. 

As shown in Figure 21 the number of long distance contacts for a particular residue is higher 
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than the number of short distance ones. As a consequence the long-range contacts contribute 

on average more to the overall score than short-range. Furthermore, once again as shown in 

Figure 21, small changes in the position of the reference residue result in a very different contact 

pattern; mainly because contacts close to the threshold of 12Å easily cross into the non-contact 

zone, and vice-versa. For example, in Figure 3, structure 2 loses three contacts and gains 2 new 

ones compared to Structure 1.  

 

 

Figure 21 Impact of the absolute distance between two residues. Distant contacts (blue circles) were more frequent 
and contribute more to the score than close contacts (green circles). Further, small variations in the position of 
residue i (red circle) lead to a different contact pattern (3 contacts were lost, two new contacts were formed).   

To account for the overrepresentation of distant contacts, we introduce a weighting function 

𝑤�𝑑𝑖𝑗�, conceptually similar to the one introduced together with the Q score scoring function132. 

The weighting function has been derived by Xu by evaluating a non-redundant set of dimeric 

protein structures and defines the probability to observe an atomic contact on given residue-

residue distance (Cβ-Cβ). As shown in Figure 22 the probability is equal to 1 if a residue-residue 

contact is closer than 5Å and decreases monotonically with increasing distance to 0 for residue-

residue distances larger than 12Å. The probability function was fitted to a Gaussian distribution 

with the following parameters 132: 

𝑤�𝑑𝑖𝑗� = 𝑓(𝑥) = �
                  1 , 𝑑𝑖𝑗 < 5

𝑒−2(
𝑑𝑖𝑗 −5
4.28 )2 , 𝑑𝑖𝑗 ≥ 5

� 
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With 𝑑𝑖𝑗 = min (𝑑𝑖𝑗
1����,𝑑𝑖𝑗

2����). 𝑑𝑖𝑗1
����,𝑑𝑖𝑗

2���� denotes the average distance between residue i and j in 

structure 1, structure 2 respectively.   

 

Figure 22 Probability to observe and atomic contact under different residue-residue distances. The probability 
function was derived by Xu132 using a set of non-redundant set of dimeric PDB structures. Figure taken from Xu 132.  

By combining the weighting function with the contact agreement function f described 

previously, the final QscoreOligomer metric can be defined as the weighted mean of the contact 

agreement scores for all equivalent residues in structures A and B: 

𝑄𝑠𝑐𝑜𝑟𝑒𝑂𝑙𝑖𝑔𝑜𝑚𝑒𝑟 =
∑ 𝑤�𝑑𝑖𝑗� 𝑓�𝑥𝑖𝑗 ,𝑦𝑖𝑗�𝑖,𝑗

∑ 𝑤�𝑑𝑖𝑗�𝑖,𝑗
 

QscoreOligomor ranges from 0 to 1. A value of 1 means that all contacts in structure A are 

present in structure B, with the correct number of subunits and identical interface geometry.  

When considering monomeric structures, QscoreOligomer obviously cannot be defined 

according to the formulas described previously, as no intersubunit contacts can be observed. We 

then define the QscoreOligomer between two monomeric proteins to have a value of 1, and one 

between a monomeric protein and an oligomer to have a value of 0. 

Separation of similar and dissimilar quaternary structures 



74 
 

QscoreOligomer reflects the similarity between two proteins regarding their quaternary 

structure. However, numbers are not very intuitive to answer questions about the qualitative 

similarity between two structures. In terms of tertiary structure similarity, the question if two 

proteins share a common fold requires a binary answer. In terms of quaternary structure 

similarity, we evaluated on which level of QscoreOligomer, two proteins can be considered as 

“similar” regarding their quaternary structures. 

We applied the following test to evaluate if the quaternary structure between two structures is 

‘similar’ and calculated QscoreOligomer-scores for a non-redundant set of target-template pairs. 

To establish a QscoreOligomer cutoff which defines similarity of oligomeric complexes, the range 

of possible QscoreOligomer values was partitioned into bins, and the fraction of similar 

quaternary structures for a given QscoreOligomer bin was calculated. We define the quaternary 

structure between two complexes as similar if: 

1. The number of subunits in both structures is identical  

2. A biological relevant interface (BSAChain >500Å2), between two chains in structure 1 has 

at least one structurally equivalent in structure 2. To evaluate structural equivalence we 

used the Q score as developed by Xu. Xu proposed a cutoff of 0.1132 and of 0.2147 to 

distinguish interfaces which are similar in orientation and overall geometry.  

 

As shown in Figure 23, more than 80% of the target-model pairs were correctly classified as 

similar  for QscoreOligomer  > 0.5 and Q score >0.1 (Figure 23 “blue line”). If applying the more 

stringent interface similarity cutoff for Q score (0.2), the fraction of similar quaternary structures 

reaches 80% for QscoreOligomer > 0.55.  We investigated some model-target protein pairs in the 

“grey zone” range from QscoreOligomer of 0.50 to 0.55. The number of subunits can be 

expected to be identical in this QscoreOligomer range and the main difference seems to come 

from coverage (i.e. missing residues) in one of the two complexes. Since the orientation and the 

number of subunits were in most of the cases identical, a cutoff value of 0.5 QscoreOligomer 

was in the end chosen to differentiate similar and dissimilar quaternary structures. 
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Figure 23 QscoreOligomer - Quaternary structure Similarity. Two complexes were considered similar if all interfaces 
BSAChain >500Å2 have a Q score > 0.1 (0.2).  A cutoff of 0.5 was chosen to distinguish between similar and dissimilar 
quaternary structures. Error bars were calculated by leave-out 30% of the targets in the testset.  

Discussion 

The developed QscoreOligomer introduces a new scoring function for the comparison of the 

quaternary structure of oligomeric proteins. Conceptually, the QscoreOligomer score is very 

similar to the Q scoring function developed by Xu. However, the original term describing 

differences in distances is replaced by a contact agreement score. As a result, QscoreOligomer 

can be applied on the direct comparison of complexes which are different in their number of 

subunits, and is not limited to the analysis of binary interaction as the Q score is. We also show 

that a QscoreOligomer cutoff differentiating pairs of complexes with “similar” quaternary 

structure from “dissimilar” ones can be defined.  

QscoreOligomer score is symmetrical, which means the result does not depend on the order of 

the two structures being compared, and does not require choosing one of them as reference. 

However, QscoreOligomer depends on the identification of equivalent residue contacts in the 

two structures, and this requires a sequence alignment between the two proteins. This limits the 

use of QscoreOligomer to homologue protein structures which can be aligned properly. This also 

makes QscoreOligomer strongly dependent on the coverage of the interfaces. A possible 

solution for this problem could be the structural superposition of the subunits of the two 

structures. Equivalent residues could then assigned depending on spatial proximity (e.g. < 3.5Å). 
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An extension of QscoreOligomer towards the comparison of hetero-oligomers is in general 

possible but would require a clear matching of different subunit sequences between the two 

protein complexes. One could then in principle work with a hypothetical sequence resulting 

from the concatenation of the sequences of single subunits.  

In the following paragraph we used QscoreOligomer to compare the quaternary structure of 

templates with their corresponding target structure. 

3.4.3 Development of a method for template based modeling of oligomeric 
protein structures 

3.4.3.1 Oligomeric Template Library 

Modeling of protein complexes based on comparative modeling techniques relies on the 

accuracy and completeness of the used library of template structures. This requires regular 

updates, by adding recently published experimentally solved structures on one hand, but most 

importantly it requires the correct annotation of the template structures regarding their 

biological relevant quaternary structure. Besides the correct quaternary structure, which is 

required for the analysis described in this thesis, correct template annotation regarding the 

presence and position of ligands and cofactors in the complex are also necessary, even if they 

are not necessary for the assembly of the complex.     

An accurate oligomeric template library consists of template structures in their biologically 

relevant form. To select an appropriate annotation method for all PDB entries we benchmarked 

the assignment of the PDB versus the heuristic classification algorithm of PISA. As described 

earlier, the PDB annotation consists of multiple sources. Since the author assignment also 

includes human expertise we focused on this type. 

Though, to ensure good performance of a public available modeling service, a template library 

which represents the current state of biological relevant protein structure space is needed. 

Continuous and regularly quaternary structure annotation for protein structures is only provided 

by a limited number of services (i.e. PISA and PQS). 

To estimate the classification error of the PDB and PISA annotations, a dataset from literature160 

with manually verified oligomeric structures was used. The resulting dataset consisted of 390 

protein structures. Among them 138 Structures were annotated monomeric (See Table 3). 
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Oligomeric State Testset Literature Testset PiQsi 
1 138 853 
2 133 671 
3 36 87 
4 51 265 
5 2 2 
6 19 83 
7 0 3 
8 5 22 
10 2 8 
11 0 1 
12 4 23 
13 0 1 
14 0 2 
16 0 1 
24 0 12 
60 0 1 
Total 390 2035 

Table 3 Composition of the investigated testsets. The literature testset was based on a study from Bordner and 
Gorin143. The PiQsi testset was compiled by using sequences which have an evolutionary distance of maximal 70% 
sequence identity to each other sequence in the testset. Only entries which share the same sequence were 
retained. 

As described in the introduction of this chapter, a specific biological unit within the PDB 

REMARK350 section can be either annotated by the author, based on results from software, or 

any combination of them. Since we wanted to benchmark explicitly the ability of the authors to 

annotate a structure correctly only those annotations were investigated. If author assignment 

was missing or ambiguous (i.e. one chain appears in at least two authors’ assigned complexes), 

no correct annotation was assumed. For the “PISA” annotation, the top ranked assembly 

calculated by the PISA server was used. Additionally we included also PiQSi annotations for 

those entries which were found in the database (43% of the structures in the testset). (See 

Material and Methods for more details)  

It was assumed that PISA annotates biological active state most correctly or at least as accurate 

as the notation of the PDB107,132 148 . As seen in Table 4, the comparison between PISA and PDB 

reveals a better performance of the annotation given by the PDB authors (87.9% versus 82.6%). 

Both methods tend to predict higher oligomeric states. For 2.8% of the targets, PDB annotation 

provides no information (1.3% for PISA). PiQsi reaches an overall accuracy of 97.6%.  
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Correct Lower predicted Higher predicted No annotation 

Literature 

    PDB 87.9% 2.8% 6.4% 2.8% 

PISA 82.6% 6.2% 10.0% 1.3% 

SMOTL 91.5% 2.8% 5.4% 0.3% 

PiQsi 97.6% 1.8% 0.6% - 

     PiQsi 

    PDB 82.1% 5.3% 10.7% 1.9% 

PISA 81.1% 8.0% 10.0% 1.0% 

SMOTL 83.3% 5.3% 11.2% 0.1% 

Table 4 Observed accuracies using the predictions of the annotation methods of the PDB, PISA and the schema of 
the SWISS-MODEL oligomeric template library. A prediction was considered to be correct, if the oligomeric state 
was annotated correctly.  Results were reported for the literature and PiQsi testset.  The results for PiQsi were 
normalized against the total number of annotations given by PiQsi. 

Since PiQSi seems to have a very high classification rate, we used the PiQsi database as an 

additional benchmark set. We removed all Hetero complexes (entries with distinct SEQRES 

sequences) and clustered the remaining sequences in a way that two sequences from the testset 

do not share more than 70% sequence identity. This resulted in a set of 2035 protein structures 

(see Table 3). The difference in the accuracy of predicted results between the two methods is 

not as clear as for the literature testset (82.1% accuracy for PDB, 81.1% for the PISA method, 

Table 4); in this case only a small improvement can be observed. Further, as shown in Table 4, 

for this testset 32 (1.9% of the total number) structures did not have an author assignment; two 

of them were assigned ambiguously. PISA did not provide annotation for 20 (1.0%) entries. The 

overall analysis of the classification accuracy based on two different testset reveals that the 

annotation given by the authors in the PDB is superior to the prediction accuracy of PISA.  

We visually inspected predicted assemblies and the following observations have been made. 

Firstly, ligand and cofactors were removed by PISA if they do not contribute to the interaction 

energy. This can be neglected, when investigating only the quaternary structure of a protein. 

However, the biological usefulness of such structures is dramatically increased by ligand and co-

factor information. Thus, the annotations of the PISA webserver were only of limited use for the 

purpose at hand. In contrast, the biological unit files of the PDB contained all relevant ligand and 
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cofactors, even if the prediction was accomplished by PISA. Secondly, NMR structures were 

obviously not supported by PISA, since they do not have crystal contacts. The quaternary 

structure must be calculated from the NMR experiment itself. Because such structures can 

provide structural information when other information is not available, they have to be included 

into a complete and up-to-date template library. Thirdly, author annotation is often missing (i.e. 

if the authors of the PDB entry do not have any information of the correct quaternary state) or 

ambiguous(i.e. if more than one biological active state exists or cannot be distinguished, a 

particular chain appears in more than one biological unit file). Fourthly, PISA renames it chains 

when applying symmetry operators to a particular set of chains, while PDB splits chains with the 

same name by introducing a MODEL tag. In both cases the chain of a complexes has to be 

renamed so that a chain letter appear only once in a complex.  Fifthly, PDB and PISA consider 

small peptides as macromolecular chains. For example, the HIV-Protease (PDB-ID: “1hiv”) is 

annotated as hetero-trimer, the structure consists of a peptide which is bound between the two 

protease chains (see Figure 24 ).   

 

Figure 24 Structure of HIV-Protease (PDB-ID: “1hiv”). The complex consists of one peptide (shown in ball and stick) 
which binds in the interface of two macromolecular chains. Contradictory to PISA and PDB, this structure is labeled 
as dimeric Homooligomer in the SWISS-MODEL oligomer template library 

Because the annotations of the authors superseded the predictions of the automated PISA 

server, an oligomeric template library using the PDB annotation system was compiled. Only if an 

author statement was missing or ambiguous, the annotation of PISA was taken into account. 
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Figure 25 shows the decision tree to build the oligomeric template library. As can be seen only 

structures classified as proteins (“prot”) or proteins complexed with nucleotides (“protein-nuc”) 

were considered. In addition, we included only structures solved by diffraction or NMR 

techniques.  

More precise, the REMARK350 section was parsed and only biological units annotated by the 

authors were used as oligomeric templates. If a PDB files missed the REMARK350 section and 

the structure was solved by NMR, the chains as found in the PDB entry were considered as the 

correct quaternary structure. We excluded all other cases without REMARK350 section from the 

template library. If the author state was missing or ambiguous (i.e. if a chain appears in more 

than one author annotated biological unit), the top ranked PISA annotation was used instead. 

Since PISA often does not annotate ligands correctly, we checked if one of the biological unit 

files of the PDB entry corresponded to the assembly suggested. The identified biological unit file 

was then used to create the corresponding template structure; otherwise the complex was built 

using the transformation matrices as stated in the PISA XML file.  

 

Figure 25 Decision schema of the SWISS-MODEL oligomer template library (SMOTL). Since PISA predictions often 
lack essential ligands and cofactors we used PDB anntotation where possible. X-Ray structures without a 
REMARK350 were excluded and manually checked. NMR structures lacking a REMKAR350 section were annotated 
as they appear in the PDB file. 
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The determination of the oligomeric state was based on the number of macromolecular chains 

(> 10 residues) in the template complex. Thus, the oligomeric state of 1hiv changes from Hetero-

trimer to Homo-dimer. To model the complex correctly, only the two protease chains have to be 

identified. 

All ligands/cofactors and modified residues which do not have a SEQRES entry were merged into 

one chain (‘z’ chain), as well as all peptide chains with less than 10 residues. We then rename all 

chains for a particular PDB entry so that a particular letter is unique for a PDB identifier. The 

current PDB format provides only one column for chain naming; this implies a maximum number 

of 62 chains in the assembly. Thus, we excluded structures with more than 60 chains (e.g virus 

capsides). 

To ensure the template library of quaternary structures being up-to-date, a fully automated 

update procedure was generated. The up-date script downloads, parses and processes all 

recently released PDB entries as described above. Relevant information about the generation of 

an entry of the template library of quaternary structures is given in the header of file (see Figure 

26). This includes the original chains of the PDB entry, the used annotation (PDB/PISA), the 

oligomeric state (number of protomers) and the type (i.e Homo/hetero oligomer). 

REMARK    SwissModel Oligomer Template File Version. 0.1  9-Oct-2007  
REMARK    EXPDB File 3nrv based on PDB 3nrv and Biological unit file 
3nrv.pdb1.gz                 
REMARK    Generated at BIOZENTRUM http://www.swissmodel.unibas.ch     
REMARK    DeepView:    http://www.expasy.org/spdbv/                   
REMARK    SWISS MODEL: http://swissmodel.expasy.org/                  
REMARK    ----------------------------------------------------------- 
REMARK    This is the first draft of the oligomeric template library 
REMARK    ----------------------------------------------------------- 
REMARK    EXPDB_Oli ORI_CHAINS  AC 
REMARK    EXPDB_Oli ASSIGNMENT  PDB:AUTHOR 
REMARK    EXPDB_Oli SOURCEFILE  3nrv.pdb1.gz    
REMARK    EXPDB_Oli PROTOMERS   2  
REMARK    EXPDB_Oli STATE       HOMO  
REMARK    ----------------------------------------------------------- 
SEQCOR  A QKINIDRHATAQINMLANKLMLKYTQKFGIGMTEWRIISVLSSASDCSVQ 
SEQCOR  A KISDILGLDKAAVSRTVKKLEEKKYIEVYAINLTEMGQELYEVASDFAIE 
SEQCOR  A REKQLLEEFEEAEKDQLFILLKKLRNKVDQM 
SEQCOR  B INIDRHATAQINMLANKLMLKSSTAYTQKFGIGMTEWRIISVLSSASDCS 
SEQCOR  B VQKISDILGLDKAAVSRTVKKLEEKKYIEVNGHSEDKRTYAINLTEMGQE 
SEQCOR  B LYEVASDFAIEREKQLLEEFEEAEKDQLFILLKKLRNKVDQM 
REMARK  A CHAIN A TO A 
REMARK  A NA 
REMARK  B CHAIN C TO B 
REMARK  B NA 
Figure 26 Header of structure 3nrv_1.pdb in the SWISS-MODEL template library. 

We used the two previously described benchmark sets to estimate the accuracy of this 

procedure compared to PDB and PISA alone. As shown in Table 4 the classification accuracy is 

higher compared to the PDB author annotation and the automated PISA method. This indicates 
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that the strategy to use the top ranked PISA annotation is a valuable approach if no or 

ambiguous PDB-Author annotation is available. Annotations made by PISA lack often important 

ligand/cofactor and were, as a consequence not suitable for the systematic deployment in 

template pipeline. 

3.4.3.2 Categorization of template structures in terms of quaternary structure 
similarity to the target 

In order to apply the concept of homology modeling for the prediction of oligomeric complexes, 

suitable template structures need to be identified. This implies the identification of templates 

which have the same quaternary structure than the target protein. In the following chapter we 

discuss a function which classifies template structures according to quaternary structure 

similarity. 

3.4.3.2.1  Dataset of oligomeric protein structures 

In literature one can find several test sets which were used to assess the performance of 

methods detecting biological relevant interfaces among all inter-protein contacts occurring in a 

crystal.114,143,161 To ensure that the structures in the benchmark set are correctly annotated, an 

extensive literature review process is necessary. Typically this limits the number of protein 

structures in a given set considerably.  

To overcome the problem of non-correctly annotated proteins we used the annotation of the 

PiQsi database117. We used only those PDB entries for the set, which are flagged as “correct” 

regarding their PDB annotation. Because the annotation within the PDB is not always 

unambiguous (see section “Oligomeric Template Library” for details), we used only those entries 

confirmed by PISA107. 

Another problem is the evolutionary distance amongst all proteins in the dataset. Because an 

overrepresentation of closely related proteins introduces a bias in the results of the analysis 

(which cannot be easily generalized to the overall protein structure landscape), the remaining 

set of sequences was culled to reduce bias towards large protein families with similar quaternary 

structure. 

The resulting dataset consisted of 571 target structures. The number of subunits varied between 

1 (monomeric) and 24 with dimeric proteins as the most abundant oligomeric type. Even 

numbers of subunits were overrepresented (except monomers). 
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We are aware that the ratio between the homo-oligomeric and monomeric protein structures 

most likely does not represent the true distribution of oligomeric state in nature (Monomeric 

proteins are expected to appear more frequent). However, because the focus is set on the 

modeling of oligomeric structures, we used monomeric target proteins as negative control. 

 

Figure 27 Composition of the dataset. The most abundant state is dimeric, followed by monomers and tetramers 

Template selection 

The way how template structures are identified and aligned is crucial for the success for 

comparative modeling. The last CASP installment has shown that methods which detect and 

align templates using profile-profile comparison were most accurate7, notably also for 

identifying and aligning distant related protein sequences. We therefore decided to use 

HHsearch40 to identify homologue templates.  

Modeling 

The correct and accurate modeling of quaternary structures includes modeling of insertions and 

deletions and the refinement of the final model under a symmetrical perspective. However, this 

can be considered as a non-trivial task and is beyond the scope of this work. In addition, the 

accuracy of the final model would be influenced by the modeling routine itself, for example if 

loops would be wrongly predicted and thus falsify the analysis.  As a consequence, we used only 
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a rudimentary approach for the modeling of the three-dimensional coordinates. Coordinates 

were taken from the template structure and if the residues were not identical in the sequence 

alignment subjected to SCWRL4154, a standard sidechain modeling method. Regions without 

alignment information were not modeled. This procedure guarantees that the performance of 

the used modeling engine does not influence the evaluation. It has to been noted that for some 

parts of the analysis the model was used, whereas in others the template structure itself.   

Models with a low coverage of the target sequence may lack significant parts of the interface 

and do not show any biological relevance. An analysis has shown that such models do not have 

any residue-residue contacts or consisted of very unrealistic interfaces. In this study we excluded 

all models which do not cover at least 20% of the target sequence. However, there are likely 

unrealistic models having higher coverage. Therefore, an additional filtering procedure has been 

put into the place to exclude such models. 

 

Figure 28 The log ratio between surface and interface area (ASAratio). Models with a QscoreOligomer of at least 0.1 
are colored in blue and perform similar as native structures. Models below a QscoreOligomer of 0.1 are colored in 
red. Considerably negative ratios were observed for the latter. Visual inspection supports the non-native character 
of such models.  
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A rigid interface area cutoff, as proposed previously is not applicable, because small proteins 

form often small interfaces.161  We therefore calculated the log-odd ratio between interface and 

surface area (ASAratio , see Material and Methods for details) and evaluated to what extend 

unrealistic structures can be distinguished from near-natives ones. As can been seen in Figure 28 

the ASAratio of native homo-oligomeric proteins varies between -0.5 and -3, indicating a 

coherence between interface and surface size (i.e. small surfaces correlate with small interfaces) 

. The ASAratio of all models was calculated and split into two groups based on a QscoreOligomer 

cutoff of 0.1. Thus, the models were divided into the groups “realistic” (QscoreOligomer >=0.1) 

and “unrealistic/incorrect” (QscoreOligomer <0.1). The ASAratio – values have been analyzed 

according to the groups they belonged to. Hence, the “unrealistic/incorrect” group of models 

spans a very wide range of ASAratio (from 0 less than -10). Contradictory, the models having at 

least a QscoreOligomer of 0.1 have shown values in the same range as the target structures. 

Visual inspection of models below a threshold of -4 supports the hypothesis that such models do 

not represent realistic biological complexes. Such models were often incomplete and cover only 

a small part of the template structure. Thus, we decided to exclude all models ASA ratio < -4. 

Further, all models with at least 2 subunits, but without any buried residue were excluded. The 

remaining set of models and their corresponding template structures were used as dataset.  

Grouping of templates with similar quaternary structure 

We analyzed the sequence identity distribution of all target proteins in the set. For 88% of all 

targets, a template with more than 80% of the sequence identity was available. To a certain 

extent, this is an artifact by using the PDB as source for the target proteins and does not 

represent a typical model situation, whereas template structure with lower sequence identity 

would be expected. In addition, such closely related templates bias, for example, the mean or 

the width of particular cluster considerably. As a result, we excluded all template structures 

sharing more than 80% sequence identity to the target. 

To analyze common characteristics of templates with similar quaternary structure we grouped 

all templates of a specific target according their quaternary structure. In order to do that, we 

used the QscoreOligomer as a distance metric and applied hierarchical clustering to generate 

groups of “similar” quaternary structure (see Material and Methods for details).  
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Based on this initial set of template groups we applied three additional filters which resulted 

finally into four template sets: 

1. All – All models/template structures after processing as described in the previous 

sections 

2. Culled – To decrease the impact of templates which are very similar in sequence and 

quaternary structure (e.g. identical structures which were deposited in the PDB with 

different ligand), all sequence in a group were culled at a 90% sequence identity level 

3. Culled/NoMonomers – Monomers have taken a special role in the dataset, because they 

are always clustered into one group. To avoid biases in the evaluation, we removed all 

monomeric templates in this set 

4. Culled/NoSingletons – All groups which consist of only one template were excluded.  

The four template sets were used in the section “Characteristics of groups with similar 
quaternary structure” 

3.4.3.2.2 Quaternary structure similarity between template and target 

The template sets contained 68875 homologue template structures for 571 target proteins (107 

monomers, 464 multimers).  The number of templates for each target ranged from 2 (PDB-ID: 

“1b25”, “1sg3”) to 849 (Cyclin-dependent kinase, PDB-ID: “1gz8”) (mean =123 templates).  All 

template structures were grouped according to their quaternary structure similarity (see 

Material and Methods). Merging templates within a cluster at a sequence identity level of 90% 

decreases the average number of templates to 38 (min: 1 – max: 207). This indicated a high level 

of redundancy in the template set. Out of 571 target proteins, 32 did not have any homologue 

templates with similar quaternary structure; another 54 shared their quaternary structure only 

with templates having more 80% sequence identity. In total 15% of the targets did not have 

similar templates below a sequence identity of 80%. In order to determine the reason for this 

remarkably high fraction, we visually investigated some of the targets from the set. 63% of the 

targets lacked template structures at an evolutionary distance where similar quaternary 

structures can be expected (above 40% sequence identity). Other reasons for non-conservation 

were domain-swapping events (e.g Focal Adhesion Kinase, PDB-ID: “1k04”) or pH dependent 

assembly (Ricin A chain, PDB-ID: “1uq5”). One could argue against the decision of using such 

targets to investigate the evolution of oligomeric structures. On the other hand, their inclusion 

makes the test set mirror more closely a real life modeling situation, where efforts have to be 

taken not to assign an incorrect quaternary state to the target. With increasing evolutionary 

distance, the chance to observe a template with similar quaternary structure is constantly but 
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slowly decreasing (Figure 29). For more than 50% of the targets, a correct (i.e. similar in 

quaternary structure to the target) structural template sharing less than 30% sequence identity 

to the target could be identified. Analyzing these highly conserved templates has shown 

deviation in tertiary structure, like shifts in the sequence of helices, loops with different 

geometry, but conservation of the overall interface geometry. 

Summarizing the given data reflect the large variability between protein families regarding their 

conservation of the quaternary structure. It has been shown that similar quaternary structure 

can be identified for a considerable fraction of targets. However, proposing a general cutoff is 

not useful in this context. As a result, the classification of template structures regarding their 

quaternary structure similarity requires additional criteria. 

   

Figure 29 Lowest sequence identity of template structures sharing the same quaternary structure as the target. 15% 
of the target sharing their quaternary structure only with templates which are less distant than 80% sequence 
identity. However, for more than half the targets templates with similar QS can be identified below 30% sequence 
identity.  

We calculated the probability to observe a correct template structure at a given evolutionary 

distance in order to the estimate how accurate the conservation of quaternary structure can be 

explained by the sequence identity alone. 

As shown in Figure 29, the chance to find a correct template structure is slowly decreasing to a 

sequence identity of 40%. Below 40% sequence identity the chance to identify a template 

structure with similar quaternary structure is considerably decreasing. This is in agreement with 

previous studies.115,116 However the probability to be correct for closely related template 

structures (>40% sequence identity) is rather low, from 0.6 up to 0.8 (if sequence identity >90%).  
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Figure 30 Probability of finding a template with similar quaternary structure on a given evolutionary distance. A) all 
targets including their template structures B) Only multimeric targets C) All targets with PiQsi approved clusters D) 
Only Multimeric targets with approved PiQsi clusters.  

To ensure that the success of identifying the correct quaternary structure is not biased by 

identifying monomeric templates for monomeric targets, we investigated if the removal of 

monomeric targets (19% of all targets) decreases the level of conservation. A significant 

decrease cannot be observed (see Figure 30, “red line”), indicating that the error rate for 

monomeric targets is only slightly decreased compared to multimeric targets.  

The overall results show, firstly, that for the majority of targets remote template structures with 

similar quaternary structure can be identified.  Secondly, the range of evolutionary distance 

between target and template structures which share the same quaternary structures is wide and 

flexible. Choosing an absolute sequence identity cutoff is thus not useful in that context, 

because it neglects the variety in conservation between protein families. Thirdly, selecting 

templates with similar quaternary structure needs consideration of additional attributes and 

cannot be distinguished by evolutionary distance alone. 
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3.4.3.2.3 Verified quaternary structure annotation  

To investigate to what extent wrongly assigned quaternary structures (e.g. Complexes consisting 

of interfaces made by crystal contacts) decrease the probability to find a correct template 

structure, all groups without at least one template structure having a PiQsi error state “NO” or 

“PROBNOT” were excluded.  

As shown in Figure 30, the average accuracy on a certain sequence identity level increased by 

approximately 8-10% for templates which share more than 30% sequence identity with the 

target. This indicates the importance of correctly annotated template structures. Unfortunately, 

manual annotation of quaternary structure is only available for a small part of currently 

deposited proteins in the PDB.  

3.4.3.2.4 Characteristics of groups with similar quaternary structure 

The selection of a single template structure based on sequence identity alone involves risk. Since 

the change in quaternary structure (e.g. from dimeric to tetrameric) appear in a rather direct 

way, the selection of a template structure based on sequence identity alone is somewhat 

random, especially if template structures with different quaternary structures exist (a likely 

scenario for templates sharing low sequence similarity) at a particular sequence identity level. 

One example is the dimeric aldehyd dehydrogenase (PDB-ID:”1ad3”) which appear in three 

different oligomeric states (dimeric, tetrameric, hexameric) between 20%-30% sequence 

identity. We therefore asked if the analysis and comparison of the quaternary structure of all 

templates can be used to identify the correct quaternary structure for the target.  

Xu132 have shown that crystal interfaces can be distinguished from biological interfaces by the 

analysis of interface clusters with similar geometry. Large clusters, which contain interfaces of X-

Ray structures having different crystal parameters have been identified to be biological 

relevant.132 Based on these results, we decided to group the identified template structures for a 

specific target according to their quaternary structure. The study of Xu132 is based on dimeric 

proteins and uses an interfacewise score as distance measure. Since we are interested in 

identifying the correct quaternary structure, our recently developed QscoreOligomer was used 

as a distance criterion (see “Dataset” for details) to group templates with similar quaternary 

structure. 

The total number of groups for all 571 targets is 5865; on average a target consists of 

approximately 10 groups, with one group as minimum and 40 groups as maximum (PDB-ID: 
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“1jbe”).  The number of group does not necessarily represent the number of possible oligomeric 

states, because it includes singletons that represent different alignments among similar 

structures or structures with an incorrectly assigned quaternary state (e.g. crystal contacts). In 

total 2991 singleton groups were detected. 72 targets have only one template with similar 

quaternary structure and thus representing singletons. 

Here we tested, if the analysis of groups of similar quaternary structures provides additional 

information for the correct classification of template structures. Four different set of templates 

were compiled as described in Material and Methods. 

3.4.3.2.5 Average distance of group members to the target 

It has been shown that groups of similar binding modes are on average more conserved in 

evolution than non-conserved binding modes (binding modes reflect the difference in 

orientation between two subunits162).118 This is in agreement with the observation that the 

quaternary structure is more likely to be similar if the evolutionary distance is decreasing.115,116  

We therefore calculated for all four template sets the probability to have similar quaternary 

structure to the target depending on the average evolutionary distance of the whole group to 

the target.  

As can be seen in Figure 31, three out of four template sets have shown very similar 

performances. The probability is constantly increasing to its maximum of 0.3 at a level of 50-60% 

sequence identity for “All”, “Culled”, “Culled/NoMonomers”. If considering the set 

“Culled/NoSingletons” at its maximum, the probability is doubled compared to the remaining 

three sets. This indicates a large impact of the group size to the classification accuracy. 

Interestingly, the probability decreases if the average sequence distance of the group is higher 

than 60% sequence identity. The number of templates for a particular target is decreasing 

significantly if the sequence identity between template and target ranges between 50% and 

80%. Groups with an average sequence identity in this region are representing groups with only 

a little number of members. In addition, more than 50% of the targets share their quaternary 

structure with template structures of less than 30% sequence identity. Since the number of 

templates is increasing with increasing evolutionary distance, distantly related template 

structures dominate the average distance to the target sequence. 
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Figure 31 The probability to observe a correct group based on the average distance to the target sequence. The 
probability to identify the group reaches it maximum between 50-60% sequence identity. Groups with more than 
one template structure are twice as likely to be correct at that level of conservation.  

3.4.3.2.6 Consensus among template structures 

Encouraged by this dependency of the overall probability on the group size, we analyzed to what 

extend the size of the group can be used for classification. 

Thus, we calculated the probability of observing a group with the same secondary structure as 

the target depending on the number of templates in the group. Only three template sets were 

analyzed, because the only difference between the set “Culled” and “Culled/NoSingletons” was 

the deletion of groups with only one template in the latter. As expected from the analysis shown 

in Figure 31, the probability to observe the same quaternary structure as the target was very low 

for groups made of only one template structure. With increasing number of template structures 

in a group, the probability to observe a correct quaternary structure increased. The lower 

probabilities seen for the dataset containing redundant sequences (“All”) showed a large bias 

introduced by the overrepresentation of some protein families in the template set.   
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Figure 32  Absolute number of members in the group. The probability that a particular group is correct increases 
with the number of members. Reducing the redundancy within a group increases the probability to be correct 
considerably.  

The number of templates varied from target to target (as described in the section “Quaternary 

structure similarity between template and target”) and the absolute number of templates in a 

particular group revealed not to be a reliable descriptor if only few templates were present in 

the group. Hence, we took as reference the fraction of templates in each group (i.e. the number 

of templates in the group normalized by the absolute number of templates for that target).   

As shown in Figure 33, the probability is steadily increasing with increasing relative group size. In 

general two observations can be made. First, the non-redundant templates set with monomers 

removed have shown the best performance. Groups consisting of monomeric templates alone 

were on average larger than groups with multimeric template structures, independently from 

the quaternary structure of the target. Secondly, all four sets showed a lower probability to be 

identify the correct quaternary structure if the relative group size became very large. This effect 

was more apparent in targets which did not have any template group with the correct 

quaternary structure, and a very low total number of templates. 

In general the analysis revealed a strong dependency of the conservation of quaternary 

structure within the family on the group size. The probability to observe a group with similar 

quaternary structure to the target can be clearly linked to the relative group size.   
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Figure 33 Relative group size. Instead of the absolute number of templates within a group, the relative group size 
was considered. The probability increased compared to the absolute number of members.  

3.4.3.2.7 Evolutionary range within groups of similar quaternary structure 

We hypothesized, that groups consisting of a wide range of evolutionary distances to the target 

(=large width), were more likely to be correct than groups of templates which share similar 

evolutionary distances to the target. Since the evolutionary distances to the target within a 

group is not necessarily normal distributed, we used four scores to define the evolutionary range 

within a group. 

• The maximal width of the group characterized by the distance between the maximum and 

minimum sequence identity.  

• The distance between 90% and 10% quantiles of the sequence identities within the group. 

• The distance between the average evolutionary distance and minimal evolutionary distance. 

• The standard deviation within the group. 

 The four calculated scores are shown in Figure 34. Independent of the used criteria, a high 

correlation between the width of the group and the probability to be correct can be observed. 

Most reliable were the maximum evolutionary width and the distance from the average of the 

group to the minimal evolutionary distance as they did not show bins with unexpected low 

accuracy. The standard deviation has shown a similar trend, but most of the groups were located 
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in the first bin. Groups which had an evolutionary width of 15% within the group were correct in 

more than half of the cases. For all four scores, the deletion of monomeric groups increased the 

probability on given width.  

Discussion of analyzing the properties of grouped quaternary structures  

Group characteristics were identified as good descriptor for the classification of templates 

regarding to their quaternary structure similarity to the target. 

The probability of sharing similar quaternary structure as the target structure increased when 

considering the size and the evolutionary range within the groups. The average distance has 

shown a rather weak performance mainly because a considerable amount of targets share their 

quaternary state also with very remotely relate template structures. Thus, the average mean is 

pulled towards larger evolutionary distances.  

In general, the range of evolutionary distances and the size of groups reflect the overall 

conservation of the quaternary structure in the protein family of the target very well. The 

dependence of the probability on size and width of a particular group indicates that for most of 

the targets the quaternary structure is conserved within the family and can be identified using 

these two attributes.  

However, the analysis of such group characteristics requires a sufficient number of template 

structures.  This cannot be always guaranteed; in many cases a classification between correct 

and incorrect quaternary structure is required if only one template structure is available.  
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Figure 34 Four different distances were used to describe the evolutionary range within groups. A) Maximal distance width B) 90%/10% quantiles C) Distance from the average of the group to 
the member with the highest sequence identity D) The standard deviation within a group. For all four criteria, the probability to observe a group with similar quaternary structure is increasing 
with increasing distances. 
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3.4.3.2.8 Conservation of interface residues in evolution 

If an interface is relevant for the function of a protein, it requires some form of robustness 

against evolutionary events.163 Interface residues must retain their interface stabilizing character 

in order to contribute to the complex stability yielding to a high conservation. For example, the 

mutation of a large hydrophobic residue to a small hydrophilic residue is not favored, because 

the burial of hydrophobic atoms has been proposed as a main contributor to interface 

stability.122 Surface residues are known to be more tolerant to mutations because a direct 

coupling to functionality is in general not given (an exception are surface residues which are 

involved into functional task such as active sites or DNA/RNA binding). As a consequence, the 

average surface conservation is considered to be lower than the average interface conservation. 

An example for evolutionary conservation within an interface is given in Figure 35. A dimeric 

superoxide dismutase was queried against the UniRef50156 in order to build a multiple sequence 

alignment. Residues in the interfaces (marked with a red bar) shown indeed a higher level of 

conservation, as indicated by the blue background color in the corresponding rows. In contrast, 

surface residues (not marked) are not conserved.    

 

Figure 35 Multiple sequence alignment (MSA) of manganese superoxide dismutase (“1ix9”). Residues which were 
involved into interface assembly (indicated by red bars) were more conserved than surface residues. For clarity not 
all sequences of the MSA are shown.  

Several studies have used the ratio between interface and surface conservation to characterize 

biological interfaces and distinguish them from non-biological ones (e.g. crystal contacts).126,164  

It has been shown that interfaces caused by crystal contacts are more similar to surfaces than to 

biological interfaces regarding their conservation in evolution.  

We examined if this principle can be used in order to classify template structures according to 

their quaternary structure similarity to the target protein. We hypothesized that the target 

interface is more conserved than the target surface. Conversely, the interface conservation is 
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similar to the surface conservation if the interface disappeared during evolution (i.e. by 

mutations). In the next chapter we will formulate a score, which describes the ratio between 

interface and surface conservation.   

The Shannon entropy as measure for conservation 

A widely used metric, which reflects the conservation of a particular residue during evolution, is 

the Shannon entropy157. The Shannon entropy, named after its inventor Claude E. Shannon, 

quantifies the expected value of information contained in a message. It can be written as: 

𝐻(𝑋) = −� 𝑝𝑖 log𝑝𝑖
𝑛

𝑖=1
 

Basically, the Shannon entropy can be seen as measure of uncertainty of a system with discrete 

states (𝑥𝑖: 𝑖 = 1, … ,𝑛 ). If all states occur with equal probability, H(X) reaches its maximum, 

whereas if only one state occurs H(X) = 0. Equivalently, the Shannon entropy is low if a residue is 

conserved and high if many mutations have occurred during evolution. The per residue entropy 

(SColumn) is calculated using the amino acid frequencies derived of the particular column in a 

multiple sequence alignment.  In  order to tolerate mutations which does not change the 

essential nature of the side chain(e.g. Val to Ile), it has been proposed to group residues by their 

physiochemical character.126 Hence, two sets (20 standard amino acids; 7 groups suggested by 

Guharoy127) of residues were used in order to calculate the column wise entropy SColumn. 

It has been proposed that not all interface residues equally contribute to the interface 

stability.165 The burial of large hydrophobic residues upon assembly has been identified as a 

major contributor to interface stability165 and the mutation of them often leads to interface 

disruption122. In order to account for the varying contribution of residues, based on their buried 

surface area, it was proposed to implement the average entropy as weighted mean126 (see 

Material and Methods for details). As a result, interface residues   were weighted by their buried 

surface area, surface residues by their accessible surface area in order to calculate the average 

interface entropy and average surface entropy respectively. Thus, the ratio between interface 

and surface conservation defines if a particular side is more conserved than the surface. 

In order to calculate the ratio between interface and surface conservation for the target protein, 

we used the accessible surface area/buried surface areas from the template structure and 

mapped them  to the corresponding target residues based on alignment information. According 

to this procedure, we formulated SConservation as the log ratio between interface and surface 
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entropy (see “Material and Methods” for details). Thus, negative values indicate that, on averge, 

the interface is more conserved than the surface. 

SConservation relies on the number of sequence in the multiple sequence alignment and the 

evolutionary distance between them. However, the alignment depth (i.e. the evolutionary 

distance between the target and the sequence with the highest sequence identity) is assumed to 

play an important role for the absolute value of SConservation. An alignment, built of very closely 

related sequences, does not contain much evolutionary information because of missing 

evolutionary events. As a consequence, the average entropy of the surface and the interface are 

expected to be low, yielding SConservation scores of zero. A similar ratio was expected if all 

sequences are included. In this scenario, mutations frequently occurred in the interface and the 

surface, yielding to a balanced entropy ratio.  

Introducing the concept of evolutionary fingerprints 

We investigated how SConservation changed for an increasing alignment depth and therefore we 

successively added sequences with a decreasing sequence identity to the multiple sequence 

alignment.     

As an example, we calculated the SConservation values of a dimeric d-lactate dehydrogenase (PDB-ID: 

“2dld”) as shown in Figure 36 (A, “green line”). In the beginning, the multiple sequence 

alignment only consisted of sequences which are closely related to the target sequence. With 

increasing alignment depth the evolutionary distance increased. The resulting SConservation-scores 

were analyzed according to their absolute values. As a result, the interface was only slightly 

more conserved than the surface, indicated by an almost flat line. Similar results were observed 

for the remaining targets in the set (data not shown). 

In order to reason these findings, we investigated the surface of the dehydrogenase regarding its 

residue wise conservation. Therefore, we used the multiple sequence alignment depth when 

SConservation reaches its minima (55% sequence identity). In panel Figure 36 (B), the molecule is 

shown in its dimeric form and the surface of one subunit is colored by applying a gradient from 

blue (low SColumn) to red (high SColumn) according to the residue wise level of conservation. The 

interface, built by the catalytic domain of 2dld, buried about 8600Å2. Analyzing the entropy in 

the interface reveals high conservation (low SColumn) for most of the interface residues (Figure 36 

C). In contrast, the surface is less conserved than the interface indicated by red patches. 

However, conserved residues have been identified around the active site of the protein. As 

shown in Figure 36 (D), residues, which were involved into the binding of NADH, show a similar 
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level of conservation as the interface residues. As a result, surface residues which were involved 

in other functional tasks, like ligand binding or nucleotide binding, increase the overall 

conservation of the surface, thus lowering the discriminative power.  

 

 

 

 

 

Figure 36 Analysis of the interface conservation for the d-lactate dehydrogenase (PDB-ID: “2dld”). The surface is 
colored according to the residue specific conservation (low entropy(blue); high entropy(red))  A) Using all surface 
residues results in a flat SConservation. Excluding the most conserved surface residues decreases SConservation 
considerably B) The structure of 2dld, one chain is colored according to the entropy of each residue on a max 
alignment depth of 55%. C) A subunit of 2dld. The interface region has clearly shown lower entropy than the rest of 
the surface. D) The active site of 2dld is evolutionary constrained and increased the averaged surface entropy.    

To exclude functional important surface residues other than interface residues, we only retained 

surface residues which were among the 75%/50%/25% of the residues reflecting the highest 

values for SColumn. As illustrated in Figure 36 (A), the majority of SConservation-values were 
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considerably lower with a decreasing cut-off of residues with high SColumn We recalculated the 

SConservation scores for the remaing targets using in total 4 sets of surface residues. 

As a result, three consecutive domains of SConservation have been identified: 

1. Decreasing SConservation-values: 

Sequences added to the MSA had a higher mutation rate at the surface than in the 

interface, which led  negative SConservation values. 

2. Constant SConservation-values: 

Sequences added to the MSA had a stable mutation rate between surface and interface.  

3. Increasing SConservation-values: 

By adding more distant related sequences, SConservation increased. With increasing 

evolutionary distance the conservation of the quaternary structure was less likely, 

especially if the sequence identity was very low (<25% sequence identity). In addition, 

the number of sequences added at each bin increased exponentially. In combination 

with low sequence identities this decreased the chance to include sequences which 

shared the same quaternary structure. 

The described characteristics can be observed in almost all targets in the testset. Differences 

were observed in the length of the section and the absolute values of SConservation.  

The level of conservation of the interface compared to the surface calculated on different 

alignment depths can be seen as evolutionary snapshots. The shape and form of such curves 

follow a certain pattern and are therefore “evolutionary fingerprints”, as they represent the 

conservation of interfaces during evolution.      

Analyzing the evolutionary fingerprints of superoxide dismutase 

We evaluated in what sense the evolutionary fingerprint was different from what we would 

expect from native structures. We therefore mapped the surface/interface classification from 

the template to the target sequence and calculated an evolutionary fingerprint for each 

target/template (see Material and Methods for details) investigating how well one can 

distinguish correct from incorrect templates. 

Figure 37 shows in the lower part the subunit of a dimeric manganese superoxide dismutase 

mutant from E.Coli (PDB-ID “1ix9”). Superoxide Dismutases (SOD) degrade superoxide anion 

radicals, which were toxic to biological systems 166 and appear mainly homodimeric or 

homotetrameric in vivo.167  
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Figure 37 Template structures were identified at a sequence identity level of 40% in dimeric and tetrameric form 
(upper structures) for the manganese superoxide dismutase (SOD). The interface and surface residues were 
mapped onto one subunit of the SOD. The dimeric interface of the template is colored green. The tetrameric 
interface consists of two patches, the first is similar to the dimeric form (because of dihedral symmetry), the second 
patch is colored red. 

The template structures, which were identified at an evolutionary distance around 40% 

sequence identity, were either dimeric or tetrameric (See Figure 37 for a schematic 

representation). We mapped the surface and interface residues of each template onto the 

target sequence and calculated the evolutionary fingerprint for each mapping separately. As 

shown in Figure 38, two diverse evolutionary fingerprints patterns can be observed. Template 

structures in tetrameric form show only slightly increased conservation compared to the surface. 

Evaluating the interface residues of the dimeric form results in an increased level of 

conservation compared to their surface.  

This supports our hypothesis that interfaces occurring in the template but not in the target 

perform more “surface” like according to their conservation in evolution.  



102 
 

 

Figure 38 The evolutionary fingerprints of dimeric and tetrameric template structures for SOD, after mapping their 
interface and surface definitions to the target sequence. The correct (“dimeric”) and incorrect (“tetrameric”) 
quaternary structure is colored red and green, respectively. The set with 75% of the fewest conserved surface 
residues was used. 

Distinguish conserved interfaces from incorrect interface using evolutionary 

information 

Firstly, we investigated if the minimal Sconservation can be distinguished between native and non-

native quaternary structures.  Therefore we identified the minimal SConservation -values per 

template and target. The resulting distributions are shown in Figure 39. On average, SConservation 

for native quaternary structures (-0.45) is lower than for non-native quaternary structures (-

0.38). The difference was statistically significant on a 95% confidence level (“students t-test”, p < 

2.2e-16). However visual inspection of the distribution shows large overlapping areas between 

both distributions. As a result, defining an absolute cutoff to distinguish both classes was not 

useful in this context. 

In order to evaluate if a classifier was able to learn the difference in shape and orientation 

between correctly assigned and incorrectly assigned quaternary structures, we used the 

machine learning method random forest151. All four surface residue sets were used in order to 

test if random forests perform considerably better on one set.  

Figure 40 shows the ROC curves based on the classification of the random forests. The area 

under curve (AUC) was 0.65, 0.67, 0.67, and 0.66 for 100%, 75%, 50%, 25% of the fewest 

conserved surface residues, respectively. Only a minor decrease in AUC was observed if all 

surface residues were used. The fraction of true positives over all “correct” labeled fingerprints 

(Sensitivity) was rather low for all four sets. Again the sets with excluded surfaces residues 
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perform slightly better than if all surface residues were used. However, all four classifier labeled 

correct quaternary structure assignments frequently as “incorrect”, thus under predicting 

“correct” fingerprints.   

 

Figure 39 Distribution of the correct (black line) and incorrect assigned quaternary structures. The residue set with 
75% of the surface residues was used.  

The reason for this is twofold. Firstly, an interface was defined as buried area of one subunit, 

even if the interactions origin from different subunits. Due to symmetrical reasons, a tetramer 

can be seen as a dimer of dimer116, leading to at least two distinct chainwise interfaces. When 

assigning surface and interface residues from a tetrameric template structure to a dimeric target 

structure, a significant part of the interface residues show interface typical conservation pattern 

despite dissimilar quaternary structures.  

This leads to an incoherent signal, since some parts of the interface were more conserved 

compared to the surface whereas as other interface residues were not. Indeed if reviewing 

evolutionary fingerprints of all targets after assigning interface/surface residues of the template, 

a high number of targets have shown slightly lower SConservation scores for dissimilar quaternary 
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structures than for similar ones. However the change in shape and orientation between targets 

is much larger and thus the evolutionary fingerprints can be not separated by the classifier. 

 

 

 Specificity Sensitivity AUC 

100%  surface residues 0.79±0.03 0.37±0.04 0.65±0.02 

75% surface residues 0.83±0.03 0.37±0.05 0.67±0.01 

50% surface residues 0.83±0.03 0.37±0.04 0.67±0.02 

25% surface residues 0.84±0.03 0.35±0.05 0.66±0.02 

 

Figure 40 Performance of the targetwise interface entropy calculation. The achieved area under the curve is 
improved compared to the complexwise . 

To increase discrimination power, we calculated the evolutionary fingerprints of interfaces in a 

chainwise manner. The resulting ROC curves (Figure 41) reaches higher classification accuracy 
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compared to the complexwise interface definition. Similar AUCs were observed for all four 

classifiers and were increased on average by 0.08 units. If considering only chain wise interfaces 

the sensitivity decreases to 0.63 for the set using 75% and 25% surface residues set and 0.59 for 

the set of 100% and 50% surface residues.  

 

 

Specificity  Sensitivity AUC 

100%  surface residues 0.68±0.03 0.60±0.04 0.69±0.01 

75% surface residues 0.64±0.04 0.64±0.05 0.70±0.02 

50% surface residues 0.62±0.03 0.66±0.06 0.70±0.02 

25% surface residues 0.59±0.04 0.66±0.06 0.68±0.01 

 

Figure 41 Performance of the chainwise interface entropy calculation. The achieved area under the curve is 
improved compared to the complexwise. 
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The performance of identifying truly similar interfaces (sensitivity) is roughly doubled and being 

highest among the classifier using 100% and 25% of the fewest conserved surface residues.    

The classification per chainwise interface requires additional efforts to estimate a probability of 

the whole complex. 

To decide if a particular template structure is a “quaternary homologue” of the target, the 

probabilities of each chainwise interface classification has to be converted in order to calculate 

the likelihood of the total complex. This became important if the oligomeric state is larger than 

2, which implies at least two interfaces. For example, a tetramer is often built by dimerization of 

an already assembled dimer (hexamers by dimerization of trimers etc.). This assembly path is 

observed more frequently than expected116 and it is likely that larger interfaces were built earlier 

in evolution than smaller interfaces118. To decide if a proposed quaternary state is homologue to 

the target structure, a similar assembling procedure based on the predicted probabilities has to 

be performed. To calculate an overall probability a graphwise consideration of the problem is 

likely to be useful. Similarity between target and template regarding their quaternary state can 

be assumed if the given complex can be assembled by interfaces predicted to be similar. 

The analysis has shown a better classification performance if excluding conserved surface 

residues. However the argumentation that conserved surface residues are always involved in 

functions which were not in related to complex assembly is precarious. If testing a dimeric 

template structure on a target protein which is tetrameric (D2-symmetry of the template dimer), 

the surface would consist of conserved residues, the ones which are in the tetrameric interface 

but not in the dimeric. Comparing the surface and interface entropy would result in a more 

balanced conservation ratio indicating that assigning a dimeric state is probable wrong. If 

excluding such wrongly assigned surface residue, the discrimination power decreases.  

In summary, the applied approach of using evolutionary fingerprints to distinguish native from 

non-native interfaces works well, at least if binary interactions were used. The concept relies 

mainly on the hypothesis that assembly of disassembly of interface occur at a certain 

evolutionary distance. The assumption that assembly or disassembly of quaternary structures is 

a pure function of evolutionary distance was simplified. As discussed in the introduction single 

point mutation can lead to oligomerization123 on one hand or disrupting of the complex on the 

other. Therefore the weighted mean was likely not sensitive enough to cover mutations of only a 

small number of residues.  
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Another source of errors are functional residues which are, for example, part of an interface in 

one complex, but also involved important for the active sites. The same residue would be still 

conserved in a monomeric version of the protein, even if the oligomeric state has changed. 

Further work is required to characterize the function of conservation in the interface compared 

to the surface and the implication to oligomerization.  

3.4.3.2.9  Analysis of mean force potentials 

Mean force potentials were designed to discriminate between native and non-native protein 

models. We investigated to what extent mean force potentials can be used to discriminate 

models with correct quaternary structure from models with incorrect quaternary structure. 

Therefore, we calculated the QMEAN4norm score168  for all models to assess the overall quality 

of the model. A QMEAN4norm of one indicates high agreement with experimentally solved 

structures, whereas a QMEAN4norm score of zero reflects non-native properties of the 

investigated protein structure.  

Firstly, we examined if mean force potentials were able to distinguish between models with 

correct quaternary structure and incorrect quaternary structure. Therefore, the models were 

splitted according to their similarity to the target’s quaternary structure. Figure 42 shows the 

quartiles of QMEAN4-norm scores of correctly and incorrectly models. On average, models with 

incorrect quaternary structure got lower QMEAN4norm-scores assigned than models with the 

correct quaternary structure. The difference between their medians was significant at the 5% 

level which is indicated by the non-overlapping notches in the boxplot.   

The analyzed sets of models included also models which show large structural deviations to the 

target structure and hence got penalized by a low QMEAN4norm-score independent if the 

quaternary structure was correct or not. To exclude this effect, the structural agreement 

between target and model on the level of tertiary structure was calculated using the global 

distance test (GDT_TS)29. Hence, models with large structural deviations were excluded (GDT_TS 

<0.6). The resulting medians of QMEAN4-norm score were increased by 0.06 for correct models 

and 0.08 for incorrect models compared to the set which consisted of all models. The difference 

between the medians of the correct and incorrect set was statistically significant. 

Finally, we investigated if QMEAN4-norm was able to distinguish between correct and incorrect 

quaternary structure if the models was built on an evolutionary distant template structures. 

Thus, all models based on templates sharing more than 30% sequence identity were excluded. 
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The QMEAN4-norm levels for both classes were decreased compared to the previous described 

testsets, but can be still distinguished on a significant level. 

Figure 42 Differences in QMEAN score for different sets of target structures. Different set of models were used A) 
all models in the dataset B) All models where a subunit has a better GDT_TS score than 0.6 C)  All models with 
sequence identity between model and template sequence is lower than 30%. In all three sets QMEAN was able to 
discriminate between models with the correct and incorrect quaternary structure. 

In order to evaluate if the difference in QMEAN4norm-score was a general feature for all targets, 

we repeated the analysis on target level and asked if correct models received on average higher 

scores than incorrect models. As shown in Figure 43, 473 out of 571 targets had templates with 

correct and incorrect models. For 74.6% of the targets, models with correct quaternary structure 

reached a better QMEAN energy than incorrect models. For 120 targets the QMEAN energy was 

not able to discriminate between incorrect and correct template structures. We manually 
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investigated some of the outliers having very low energy for their correct models. As a result, 

low energies were frequently assigned if the sequence identity between template and target is 

very low (< 20% sequence identity, although the quaternary structure was very similar) or a 

model consisted of large unaligned regions.  

 

Figure 43 Averaged difference in QMEAN4norm between correct and incorrect groups. The average energy was 
calculated using the median, to prevent that outlier dominate the Energy. For a majority of target structures 
QMEAN4norm assigns higher scores for groups with the correct quaternary states.  

In general, it can be concluded that the QMEANnorm was able to distinguish between models 

with correct and incorrect quaternary structure. However, models with incorrect quaternary 

structure but correct tertiary structure were superior to models with correct quaternary 

structure and unknown tertiary structure accuracy. The per target analysis of correct and 

incorrect models have shown that the majority of models were classified to be more accurately 

than incorrect models. It can be said that the quality as estimated by QMEANnorm-score 

depends much on other factors for example the accuracy of the tertiary structure. To estimate 

the interface accuracy directly a score which was trained on the physiochemical properties of 
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native interfaces is required. Hence, energy functions used in Docking methods  (e.g. 

RosettaDock139) can be used as a basis for further developments. 

3.4.3.2.10  Final Classification of template structures 

To classify if the quaternary structure of a template is similar to the target, we used random 

Forests. Random Forests consist of a large number of decision trees, built by random selection of 

an ensemble of input variables.150  They are known to be very accurate and insensitive for 

overfitting effects. We used random Forest in order to train a classifier which predicts if the 

template shares its quaternary structure (“correct”) with the target or not (“incorrect”). 

To assess the binary classification performance of the predictors we calculated the sensitivity 

and specificity. To evaluate the reliability of the given probabilities, receiver operating 

characteristics (ROC) curve were calculated. ROC curves reflect the true positive rate and the 

false positive rate under varying thresholds. The area under curve (AUC) can be interpreted as 

the ability of the classifier to rank positive hits higher than negative hits.169  

In order to estimate the robustness of the classifier we applied bootstrapping to calculate the 

sensitivity, specificity and AUC after randomly labeling two thirds of the targets as training set 

and one third as test set (see Material and Methods for details). 

The following input variables were used to train the classifier: 

1. Sequence related characteristics 

a. Sequence identity in target-template sequence alignment 

b. Coverage of the target sequence 

2. Group attributes (parameters were similar for all templates one group): 

a. PiQsi state of group 

b. Average evolutionary distance to the target sequence 

c. Absolute group size 

d. Relative group size 

e. Min-Max width of the group 

f. Distance between the 90%/10% quantiles 

g. Distance from the average sequence identity to the highest sequence identity in 

the group 

3. Conservation in the protein interface 
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a. Evolutionary fingerprint after mapping the interface/surface definition to the 

target 

4. Model related characteristics 

a. QMEANnorm -score 

b. ASAratio 

Firstly, we evaluated the performance of a predictor using sequence related characteristics. This 

includes the sequence identity and coverage between the target and template sequence. As 

shown in Table 5, predicting the reliability of the template structure only with sequence features 

is rather weak. Despite a good performance in identifying true negatives (i.e. templates which do 

not share their quaternary structure with the target), the sensitivity of 0.38 indicates limited 

capability to identify true positives (i.e. templates with similar quaternary structures to the 

target). 

 Specificity Sensitivity AUC 

Sequence 0.79±0.02 0.38±0.03 0.65±0.01 

Sequence+Conservation 0.90±0.02 0.36±0.03 0.69±0.03 

Sequence+Conservation+Model 0.90±0.01 0.40±0.03 0.72±0.03 

Sequence+Conservation+Model+Group 0.89±0.02 0.75±0.07 0.92±0.02 

Table 5 Performance of different characteristics. The specificity, sensitivity and area under curve were used as 
evaluation criteria. The use of group information increases the performance considerably.  

By adding the information about the conservation of the interface in evolution to the classifier, 

the specificity was increased to a value of 0.9. This indicates that considering the evolutionary 

fingerprints improved the identification of incorrect templates. Compared to the classifier which 

used solely sequence features, the sensitivity remains on a similar level; AUC was slightly 

increased. Further, we trained a classifier using sequence features, conservation in the interface 

and model related features (i.e. the QMEANnorm score and the ASAratio of the model). As can be 

seen in Table 5, the accuracy was only slightly increased compared to the previous classifiers.   

Finally, we added group specific characteristics of templates, which share similar quaternary 

structure among themselves. The overall performance increased significantly for two out of 

three scores. Whereas the specificity remains on a similar level, sensitivity and the AUC 

outperformed the previous classifier clearly. The sensitivity has been increased to 0.75, which 

indicates a fairly good performance in the identification of correct templates. In order to 

visualize the differences in the AUC among the different classifiers, we plotted the 

corresponding receiver operating curves; the AUC can be directly identified as area under the 
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ROC curve. Because the reported values in Table 5 are averaged over 10 independent training 

and testing iterations, an arbitrarily classifier was chosen for visualization. As shown in Figure 44, 

the ROC curve of the classifier based on all input features (colored in red) clearly outperforms 

the remaining three classifiers in terms of AUC. This indicates the group characteristics 

contribute significantly to the classification accuracy. 

 

Figure 44 ROC curves for different classifiers. The classifier which uses all features clearly outperformed the 
remaining set of classifier.  

To estimate if it is more difficult to classify templates of oligomeric target structures or of 

monomeric target structures, we evaluated the performance separately using a classifier with all 

input features (Sequences+Conservation+Model+Group). 

Monomeric templates were correctly identified for the vast majority of the monomeric target 

structures (Sensitivity: 0.96), however the specificity decreases compared to the complete 

testset by 0.13. For oligomeric targets, the specificity is similar to the overall testset but lower 

compared the monomeric set. In contrast the sensitivity has improved to 0.81 (compared to 0.75 

for the complete testset and 0.62 for the monomeric testset). The area under curve is similar for 
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both sets and slightly better than for the complete set. As a result, the classifier is more 

successful on classifying template structures for oligomeric targets than for monomeric targets.  

 

Specificity Sensitivity AUC 

Monomeric targets 0.96±0.04 0.62±0.14 0.95±0.02 

Oligomeric targets 0.89±0.03 0.81±0.08 0.94±0.02 

Table 6 Comparison of prediction accuracy between oligomeric and monomeric targets. All input features were 
used to train the random Forest. Predicting monomeric targets reveal in an higher sensitivity but lower specificity 
compared to oligomeric targets.  

In summary, a classifier based on input variables deduced from sequence, conservation and 

model based parameters reaches a remarkable classification accuracy. When considering the 

balance between sensitivity and specificity, the classifier tends to be rather conservative in 

labeling template structures “correct” which is indicated by a low sensitivity. Based on the given 

results it became evident that the classifier has problems to classify correctly monomeric 

templates for monomeric targets.  A likely explanation is the different performance of 

monomeric templates in terms of clustering. An analysis of the input parameters which 

contributed most to prediction success have shown that attributes of the groups are most 

responsible for the classification success. Monomeric templates are in that sense different 

because they always become merged in the same cluster. Based on these observations, it is 

likely that the accuracy can be improved if training and testing a classifier for the prediction of 

monomeric targets only.  

A rigorous classification of templates regarding their quaternary structure similarity to the target 

is not known to the authors. Modeling of quaternary structures is currently mainly assessed by 

two blind tests. Predictions are submitted in the context of CAPRI installment involves often the 

assembly of complexes by docking techniques, such as RosettaDock170 or HARDDOCK138. 

However, docking procedures can be compared with ab initio and thus is out of the scope of this 

method. Another category within CAPRI is the ranking of complexes and the identification of the 

nearest native model. It cannot be expected that our classification is accurate in this type of 

benchmark, because our method requires a reasonable amount of templates. The template 

based modeling category within the CASP installments provides a benchmark sets which fits well 

the criteria for an external benchmark set. As shown in the last CASP assessment most 

predictors do not submit any oligomeric model, and those which did, performed worse (except 

one) than a naïve predictor7. We will assess the accuracy of our predictors by using the CASP 

testset and try to identify bottlenecks which need to be addressed in the future. 
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3.5 Current Implementation within the SWISS-MODEL homology 
pipeline 

A rudimentary oligomer modeling protocol was integrated in the SWISS-MODEL homology 

pipeline (see Chapter 2). Based on our findings of the conservation of the quaternary structure 

related to the evolutionary distance (Figure 30), we decided to classify the templates quaternary 

structure as correct, if the sequence identity exceeds 60%. On this level the probability to 

observe a correct template was almost 70%.  Currently only homo-oligomeric complexes are 

supported.  

 

Figure 45 Quaternary structure prediction for a Mn  superoxide dismutase of Haemophilus ducreyi. The model was 
predicted as dimer and consists of two Manganese ions.  

Figure 45 shows a model of a superoxide dismutase from Haemophilus ducreyi. The model was 

built on 1i0h, a manganese superoxide dismutase of E. Coli., sharing around 70% sequence 
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identity. It has to be noted that the model contains two manganese ions and thus represent a 

protein in its biological active form. Based on the discussed results, an improved oligomeric 

modeling protocol will be soon implemented. 

3.6 Outlook 

3.6.1 Amino acid composition 

A well-known characteristic of interfaces is the different amino acid composition in the interface 

compared to the surface. Several studies have shown that large hydrophobic residues are more 

abundant in the interface than in surface.103,113,171,172 In contrast, polar residues like lysine or 

aspartic acid appear more frequent in the surface due to their hydrophilic character. A 

preliminary analysis confirmed this also for our dataset. Figure 46 (upper panel) shows the 

amino acid composition of all targets in the dataset. As a result, hydrophobic residues appear 

more frequent in interfaces than in the surface (as indicated by a positive log odd ratio). 

However, it is less likely to observe large hydrophobic residues in general (Figure 46, lower 

panel). 

In general this could be used as a criterion to distinguish if an interface remains its typical 

“composition” during evolution. In principle one could calculate the difference between the 

residue composition of the template and the residue composition in the hypothetical target 

interface. However, such a procedure would neglect the fact, that for example large 

hydrophobic residues could be mutated to residues which are involved into the formation of salt 

bridges and thus remaining their interface stabilization character.  

A likely more successful approach would be the combination of evolutionary related sequence. 

The evolutionary fingerprint introduced in the section “Conservation of interface residues during 

evolution” could be adapted to evaluate how the amino acid composition changes by 

evolutionary events. Hypothesizing, that a proposed interface which is conserved in evolution 

would remain interface typical residues. Nevertheless, it was shown that the mutation of single 

residues can lead to interface disruption123 in such cases the interface composition of the 

remaining interfaces remain identical. 
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Figure 46 Amino acid preferences for all target interfaces in the dataset. Hydrophobic residues are overrepresented 
in interfaces compared to surfaces (upper panel), although their occurrence is in general lower (except Leucine). 
Only surface/interface residues were used to calculate the statistics  

3.6.2 Coevolution of residues  

Another aspect which was used to predict interaction sites, are coevolving residues. Interface 

residues which are essential for interface stability are known to be more conserved in evolution 

than surface residues (see introduction “Evolution of oligomeric complexes”). As a consequence 

the mutation of interfacial residues requires also adaption of the interacting residues to avoid 

electrostatically non-favored situations.  For example, Burger173 uses a Bayesian approach to 
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identify pairs of residues which had similar mutation pattern and thus are more likely to be close 

in space in than pairs of residues which uncorrelated mutations. 

This is a valuable approach for the identification of interaction sites between two proteins. 

However, homo-oligomeric complexes are not well suited for this type of analysis because of 

their symmetrical arrangement of interacting resides. Residue i can coevolve with residue j 

because of “internal” reasons, e.g. they are close in space within one subunits, or they can 

coevolve because residue i interacts with residue j in the other subunit. In addition, it becomes 

obvious that a residue which is conserved in one interface is also conserved in the other 

interface. This can be explained by the symmetrical arrangement of most oligomeric assemblies. 

3.6.3 Hetero-Oligomer 

When predicting homo-oligomeric assemblies, it comes naturally to the question of prediction of 

hetero-oligomeric complexes.  

The prediction of hetero-oligomeric complexes was targeted by many researchers. The field can 

be divided into two parts. The prediction of obligate hetero-oligomeric complexes can be 

compared to the prediction of homo-oligomeric assemblies as described in this work. As an 

extension to the described comparative modeling protocol, all sequences which are involved 

into the target protein must be known beforehand. For example the prediction of the hetero-

dimeric complex hemoglobin, requires the sequences of the α-chain and the β-chain. Both 

sequences need to be identified in a template structure to apply comparative modeling and to 

avoid protein-protein docking. 

The described techniques for the evaluation of the similarity between template and target 

interface can be in principles also used for the evaluation of hetero-oligomeric complexes.  It is 

assumed that the clustering approach as well as the conservation in interfaces gives similar 

results as for homo-oligomeric complexes. For prediction of hetero-oligomeric complexes, the 

identification of coevolving residues is likely beneficial. 

Protein-Protein Interaction (PPI) plays an important role in the cell since they are often involved 

into regulation of signaling pathways. The application of large scale experiments like yeast to 

hybrid methods, results in a large amount of characterized protein-protein interactions. Such 

data consists often of binary interactions between two proteins. In general, interfaces of 

transient complexes are not showing such extensive interface characteristics as described for 

obligate interfaces and, thus, are difficult to predict by such features. 
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4 Assessment of disorder predictions in CASP7 

The widely accepted sequence-to -structure-to-function has been established for many years in 

the scientific community and has been derived from structural genomics.174  However, in the 

previous decades functional active but intrinsically flexible proteins has been observed. For a 

long time such proteins have been seen as rather as an exception then the rule.  However, it has 

been shown that the functional impact of such proteins is wide. As a consequence, a new class 

of proteins can be defined, where the function is not directly linked to a well-defined three-

dimensional structure and determined by the “unstructured” character itself. Such proteins are 

usually highly dynamic and non-uniform and are therefore often call “intrinsically disordered”.175  

Disordered proteins can be broadly classified into two types: (1) Proteins which are disordered 

throughout their complete length (“natively unfolded proteins”) and (2) proteins which consist 

of long disordered stretches (>30-40 residues) but are structural well-defined otherwise.  

Since the sequence of a protein determines the three-dimensional structure, it can be assumed 

that the sequence also determines the disorder of non-folding protein structures. It has been 

shown that sequences of disordered protein are depleted by hydrophobic residues such as C, W, 

Y, F, I, V, and L and enriched in M, K, R, S, Q, P, and E.176  It makes it easy to understand, that a 

reduced level of hydrophobic residues and a higher level of polar residues hinder the folding 

process.177 

Several studies applied prediction methods to various genomes in order to predict the 

percentage of disordered proteins in a certain proteome.99,178 It has been proposed that about 

25 to 30% of eukaryotic proteins are mostly disordered178 and that more of the half of them 

have at least long regions of disorder179. In addition, it has been shown that more than 70% of 

the signaling proteins have long disordered regions.180 In contrast, bacteria and archaea were 

predicted to have much lower rates of long disordered regions in their genomes, ranging from 

16-45% and 26-51%, respectively.178,179 The increased level of disorder in eukaryotic systems if 

very likely related to increased cellular signaling.181  

More than 30 different types of functions which are linked to disorder have been identified. 

Most of them are connected to cell cycle control, and transcriptional and translational control 

and indicate the large functional importance of disordered structures for the cell.182  

 

In the following, a published manuscript is included:  
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“Assessment of disorder predictions in CASP7”  

My contributions were the follows:  

• Implementing a framework for the statistical analysis of the submitted predictions 
• Calculation of the scores 

 

Abstract 

Intrinsically unstructured regions in proteins have been associated with numerous important 

biological cellular functions. As measuring native disorder experimentally is technically 

challenging, computational methods for prediction of disordered regions in a protein have 

gained much interest in recent years. As part of the seventh Critical Assessment of Techniques 

for Protein Structure Prediction (CASP7), we have assessed 19 methods for disorder prediction 

based on 96 target proteins. Prediction accuracy was assessed using detailed numerical 

comparison between the predicted disorder and the experimental structures. On average, 

methods participating in CASP7 have improved in accuracy in comparison to the previous 

assessment in CASP6. Overall, however, no improvement over the best methods in CASP6 was 

observed in CASP7. Significant differences between different prediction methods were identified 

with regard to their sensitivity and specificity in correctly predicting ordered and disordered 

residues based on a protein target sequence, which is of relevance for practical applications of 

these computational tools. 

Introduction 

Intrinsic disorder in proteins, i.e. the presence of unstructured regions in functional proteins, has 

been a focus of much attention recently, as it has been shown to be implicated in important 

biological roles, such as translation and transcriptional regulation, cell signaling and molecular 

recognition in general. Several studies report indeed examples of disordered proteins implicated 

in important cellular processes, undergoing transitions to more structured states upon binding 

to their target ligand, DNA, or other proteins (for review see references 177,183,184). 

In recent years much effort has been invested in the experimental characterization of native 

disorder in proteins as well as in the development of predictive methods to gain more insights 

into the functional and biological role of natively unfolded proteins.185-187 For instance, whole 

genomes have been scanned in silico for the presence of disordered regions in order to examine 

the frequency of unstructured regions in different organisms and to provide hints of the 

different biological role they might be involved.99,182 New biological functions linked to native 
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disorder are emerging, such as self-assembly of multiprotein complexes or involvement in RNA 

and protein chaperones.188,189 Therefore computer aided methods for detecting disordered 

regions are becoming a valuable tool for the functional annotation of proteomes and the design 

of laboratory experiments aimed at identifying interaction or regulatory sites.  

The presence of unstructured regions in proteins is also known to complicate high-throughput 

structural determination, as they can hinder the crystallization of proteins or interfere with NMR 

experiments. To overcome these problems, computational approaches have been used to screen 

for such elements, thus complementing the use of programs to detect low complexity regions in 

protein sequences .190,191 

Since the first disorder prediction method was developed a decade ago,192 an increasing number 

of groups have been developing methods to predict the occurrence of native disorder in 

proteins. Starting with CASP5 in 2002, the accuracy of disorder prediction methods has been 

assessed as part of the experiment.193,194 In this paper we present the detailed numerical 

evaluation of the predictions submitted by 19 groups participating in CASP7 in the category of 

disorder prediction. Predictions were compared with experimental structures for 96 target 

proteins, 85 of which solved by X-ray and 11 by NMR experiments.195 The number of structures 

solved by NMR available for the assessment has increased since 2002, but still the dataset is 

mainly characterized by protein structures solved by crystallography, which are generally known 

to contain only relatively short unstructured regions. For this reason the result of the present 

assessment may only be partially indicative for the accuracy of the participating methods in 

predicting longer regions of disorder. 

Methods 

Data processing and definition of disordered residues in CASP7 targets 

The assessment of the disorder category of the CASP7 experiment consisted of the evaluation of 

1694 predictions for 96 protein targets from 11 expert and 8 server groups (see Table I). The 

majority of the groups submitted predictions for more than 80% of the targets, one group made 

predictions for only 10 targets. The format for the submitted predictions corresponds to the 

format of previous CASP experiments.193,194 For each residue of the target a binary classification 

for order or disorder should be assigned (O/D) together with a measure of the probability (P) for 

the residue of being disordered, a real number between 0 and 1.  

For the assessment of disorder prediction in CASP7, residues in 96 target structures were 

classified as "ordered" or "disordered" respectively. Residues in targets solved by X-ray 
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structures were classified as disordered if no coordinates for the crystallized residues were 

present. For targets solved by NMR, those residues whose conformation was not sufficiently 

defined by NMR restraints, i.e. exhibit high variability within the ensemble or were annotated as 

disordered in REMARK 465 by the experimentalists, were considered as disordered. At the time 

of our assessment, the target sequences given to the predictors were compared with the 

structures of the targets deposited in the Protein Data Bank (PDB)14 or submitted to the 

organizers of the experiment. In case of discrepancies, the sequence deposited in the PDB (or by 

the organizers) was considered. In addition, for 5 out of 96 targets no information about the 

sequence of the expressed protein used for the experiment (SEQRES) was reported in the 

submitted structure file. For these targets, the N- and C- termini of the assessed target sequence 

were defined by the first and last residue for which coordinates were present. Thus, 19,816 of 

the initial 19,891 residues were used for the assessment.  

The fraction of disordered residues of the 96 targets ranges from 0% (targets T0283, T0286, 

T0290, T0297, T0303, T0308, T0319, T0329, T0340, T045, T0346, T0367, T0371, T0374, T0375 

and T0386) up to 60% for target T0352, which is 117 resides long and contains 66 disordered 

residues. Figure 1 shows the distribution of the length of disordered regions in CASP7. The 

dataset is characterized by a relatively high number of short disordered regions (smaller than 10 

residues) whereas few long disordered regions are present. Target T0351 contains the longest 

disordered stretch which is 47 residues long. Overall, the number of disordered residues in the 

96 targets is 1189, representing 6% of the total number of residues. 

For the analysis of the accuracy of the predictions, we have chosen to evaluate only disordered 

segments in the experimental target structures with more than 3 contiguous disordered 

residues. Shorter regions are more likely to represent experimental artifacts than intrinsic 

disorder, and have therefore been omitted in the present work. 
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Figure 47. Length distribution of disordered regions in CASP6 and CASP7 targets. Bars in the graph correspond to 
the number of regions of a given length specified on the x-axis of the plot. Both dataset are biased towards a higher 
number of of relatively short disordered regions. 

Evaluation Criteria 

The predictions of the different participating groups were assessed on a per-residue level. Based 

on the P values assigned to each prediction, the results were compared using receiver operating 

characteristic (ROC) curves, a widely used method to assess the performance of a classifier 

system and its dependence upon its discrimination threshold. This method has been applied by 

several investigators in the field and in the previous CASP experiment. 99,194 For each threshold 

value of P (the probability of being disordered) the fraction of true positive predictions was 

plotted versus the fraction of false positives, whereby residues with a P value equal to or greater 

than the threshold value were considered disordered. The performance criterion used for our 

analysis is the area under the curve (AUC), which was computed using the trapezoid rule.152 It 

has been demonstrated that there is a clear relationship between this quantity and the Wilcoxon 

(or Mann-Whitney) statistics.196 The value for the AUC ranges from 0.5 to 1, in the case of a 

random classifier and perfect predictor respectively. In contrast to CASP6, the CASP7 predictor 

groups assigned sufficiently distinct P values to their yes/no predictions, allowing comparison of 

the results with smooth ROC curves (Figure 2, Table II). The only exception is group 284 who 

made use of only P values of 1 and 0.  
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Figure 48. ROC curves of disorder predictions submitted by 19 groups and generated by the naïve predictor. The 
area under the curve (AUC) was used as a measure for the accuracy of the individual methods. The majority of the 
groups used continuous P-values associated with their disorder predictions. Group 284 used only two values 0 and 
1 for P. For the naive predictor P-values were assigned asP = 1/(1 + separation from terminus). 

In addition, the different group’s predictions were evaluated by how well their binary 

classification correctly identifies the negatives cases (Specificity) or the positive cases 

(Sensitivity): 
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where TP is the number of true positives (correctly identified disordered residues), FP false 

positives (predicted as disordered, but experimentally ordered), TN true negatives (correctly 

identified ordered residues), and FN false negatives (predicted as ordered but experimentally 

disordered), respectively. A well performing prediction method would have both high sensitivity 

and specificity. These measures can therefore be combined into a single one as the product or 

the average, which has been used by some investigators as a measure of the overall accuracy 

(ACC):197 
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As already indicated in the previous two CASP experiments, a simple Q2 measure, similar to the 

Q3 measure for the evaluation of secondary structure prediction algorithms, is not appropriate 

due to the unbalanced rate of ordered versus disordered residues in the dataset. By simply 

predicting all the residues as ordered, this would yield a Q2 of on average 90%. A weighted 

score, rewarding a correctly predicted disordered residue more than an ordered one, overcomes 

this problem. Such measure adopted for the assessment of the present experiment is the 

weighted score Sw introduced by Dunbrack and coworkers in CASP6:194  
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The Sw score ranges from -1 to +1 and predicting all the residues in the targets to be ordered 

would results in a score equal to 0.  Wdisorder and Worder are adjustable weights which in the 

present work were set to the rates of ordered and disordered residues respectively, i.e. Wdisorder 

= 94.53 and Worder  = 5.47 for groups predicting all targets. As different groups may have 

predicted different subsets of targets, the specific values for Wdisorder and Worder for each group 

vary slightly (Table II). In general, the frequency of disordered residues at the N- and C-termini of 

proteins is higher than average. For this reason we decided to include in our assessment several 

naïve predictors, assigning between 1 and 10 residues at the N- and C-termini of the target 

sequences as disordered. 

To test the statistical significance of the assessment we used a bootstrapping procedure: 80% of 

randomly chosen target structures were assessed repeatedly 1000 times to derive standard 

error of each binary score reported in Table II. For ROC curves, the standard errors were 

estimated according to Hanley and McNeil.196 Finally, the statistical significance of the difference 
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in performance between the various groups was tested by comparing the ROC AUC measures 

using two different non-parametric tests for comparing ROC curves from correlated 

samples.198,199 This statistical analysis was performed using the statistical packages MedCalc 

version 9.2.1.0 (MedCalc Software, Mariakerke, Belgium) and Accumetric version 1.1 

(Accumetric Corporation, Montreal, Quebec). 

Results 

Evaluation of prediction accuracy 

Figure 2 shows the ROC curves for the 19 groups that participated in the experiment, and 

additionally for the different naïve predictors. As noted before only the results of group 284 are 

not assessed well by ROC curves since they used only two discrimination cut-offs.  The values of 

the area under the curve together with the results of the different binary predictions are 

summarized in Table II and plotted in Figure 3 ranked by the ROC AUC. According to the accuracy 

measured by ROC curves, groups 590, 253, 443 and 470 are the best performing groups and 

differ significantly from the others as evidenced in the statistical analysis test reported in Table 

III. Group 590 has the highest sensitivity and Sw score of all the participating groups. The Sw 

score rewards correct disorder predictions but penalizes to a lesser extent incorrect disorder 

prediction and this is reflected in the relatively high (compared to the top groups) FP rate (1-

Sspec) of this group. The same is true for the ACC, which is highly correlated to the Sw score. On 

the other hand group 253 has a lower Sw score than 590 - still in the same range of the rest of 

the top groups - but compensates with a lower FP rate. The results of group 443 lie in between 

these two examples, being on average less sensitive but more specific than group 590 and less 

specific but more sensitive than group 253. Group 470 is characterized by a relatively high 

specificity, comparable to group 253, although it is slightly less sensitive. The results of the other 

participating groups are either characterized by a FP rate in the range of group 590 or 443, but 

do not match the same high Sw or Sensitivity scores. Or possess a lower FP rate but are less 

sensitive than groups 253 and 470.  
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Figure 49 Assessment of disorder prediction by different scores. For each group, the area under the ROC curve 
(AUC), ACC, Sw scores, and FP rate are shown. In this plot, groups are ordered according to decreasing AUC of their 
respective ROC curves. The numerical values of each score are reported in Table II. 

We were further interested to see if the methods would perform differently on short or long 

segments of protein disorder and evaluated target regions with disordered stretches longer or 

shorter than 10 residues separately. This slightly deviates from the definition of long and short 

regions of other authors.99,197 However as mentioned earlier, the CASP7 dataset is biased 

towards relatively short disordered regions and in this way the two target subsets would contain 

a comparable number of disordered residues: 646 for the “longer” subset and 431 for the 

“shorter” one. To obtain these two subsets, regions shorter (but longer than 3) or longer than 10 

residues were eliminated from the target sequences for the calculation of the different scores. 

The results are heterogeneous: some groups perform better on "longer" disordered regions 

(e.g., group 253 and group 470), whereas others appear more accurate on "shorter" regions.  

Group 590 has comparable accuracy on both long and short disordered regions. The prediction 

method described in the abstract of group 590 is indeed a specialized predictor for both short 

(≤ 30) and long (> 30) disordered regions.197 Group 253 also describes a method specially 

designed for short (< 40) or long (> 40) disordered regions.200 However, since only 2 regions 

longer than 40 residues are present in the CASP7 targets, this dataset is not suitable for the 

assessment of prediction methods specialized for long disordered regions of more than 40 

residues.   

Since disordered regions are commonly found at the amino and carboxyl ends of proteins we 

also compared the results of predicting terminal versus internal disordered regions in proteins. 

10 consecutive residues were removed at both N- and C- termini from the target sequences. 

About 42% of the total number of disordered residues of the CASP7 targets are located within 

the 10 residues at the terminal regions of the target proteins and the results of Figure 4 
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unambiguously show that for all the methods assessed it is easier to detect terminal disordered 

regions than internal ones. This is most likely explained by the bias of the available training data, 

where terminal disordered regions are overrepresented compared to those in the middle of 

protein sequences. 

 

Figure 50  Internal versus terminal disordered regions. Disorder prediction was evaluated for full-length target 
sequences (black), and sequences with 10 residues removed at both the N- and C-termini (grey). ROC 
AUC, Swscores, and FP rate indicate that disorder in terminal residues is easier to identify than in internal regions of 
the protein. 

To investigate whether 3-dimensional information from homologous proteins would influence 

the accuracy of detecting disorder in protein, we separated the CASP7 targets into two sub-sets, 

“3D-homologous” and “3D-non-homologous”, depending on whether a homologous protein 

with known three-dimensional structure could be found by PSI-Blast.32 Based on this definition 

the “3D-homologous” subset contained 59 targets and the “3D-non-homologous” 37 targets, 

respectively.  The results for the “homologous” and “non-homologous” categories are 

summarized in Table IV and show that the influence of related proteins with known structure 

differs from group to group. Methods of e.g. groups 443 or 140 seem to take advantage (directly 

or indirectly) of three-dimensional information, more than other groups like 590, 253 or 470. In 

particular predictions of group 443 for the homologous set of proteins are more accurate (based 

on ROC curve analysis) then the rest of the groups (p (443,140) = 0.002 when comparing groups 443 

and 140 on common targets, p (443,590) < 0.0001, p (443,470) < 0.0001 and p (443,253) < 0.0001 

respectively). There are some cases where the results of the "3D-non-homolgous" sub-set seem 

to outperform the prediction obtained in the "3D-homologous" sub-set. However, this is due to 

an overall rather poor performance of these methods for the "3D-homologous" subset of 

proteins.  

To conclude, the results of the best 6 predictor groups are depicted in form of pie charts in 

Figure 5. It is evident that in general these methods are more accurate in correctly predicting 
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ordered residues than in predicting disordered ones, due in part to the lower number of 

disordered residues available for the training of these type of predictors.  

 

Figure 51 Confusion matrix. Confusion matrix with the TP (blue), FP (red), FN (green), and TN (yellow) predictions of 
groups 590, 253, 443, 470, 140, and 609 are shown as numerical values and graphical representation (pie chart). 

 While the assessment so far was based on a per residue basis, we also analyzed the 

results based on a per target basis. The ROC AUC and the Sw scores of individual targets 

averaged over the top 6 groups were analyzed. There is indeed a negative correlation between 

the ROC AUC and the Sw scores and the percent of disordered residues of the targets, indicating 

that the higher the proportion of disordered residues in a target is, the less accurate the 

predictions are. From the pie charts is also evident that the false positive rate is in general higher 

than the true positive rate, although groups like 253 and 470 have a more balanced error rate 

than others. There is in general a trade-off between sensitivity and specificity and more sensitive 

methods pay the price of having a 2- to 4- fold higher number of FP than TP predictions. 

Comparison with CASP6 

The prediction results for the present experiment were compared with the results of CASP6. A 

comparable number of groups participated in both CASP experiments and although this year 96 

targets were available for prediction, compared to the 66 of CASP6, figure 1 shows that the 

distribution of the length of contiguous disordered regions is similar to the distribution of two 

years ago. We compared the predictions of CASP6 and CASP7 on same criteria (ROC curves, Sw 

and FP rate). The results indicate that on average the methods participating in CASP7 perform 
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better than those in CASP6. Additionally we evaluated the results of a subset of groups which 

participated in both CASP6 and CASP7 (groups 590, 470, 443 and 140). None of the methods of 

CASP7 outperform the best methods of the past experiment. In conclusion, if we assume the 

comparison based on the same scores for different data sets to be valid, it appears that several 

groups have improved the accuracy of their individual methods in comparison to CASP6. 

However, no improvement over the best methods in CASP6 was observed in CASP7. 

Discussion 

In our assessment of disorder prediction submitted for the CASP7 target proteins, the accuracy 

of the predictions by four groups was higher than the remaining methods: group 253 (K. 

Shimizu, S. Hirose, N. Inoue, S. Kanai and T. Noguchi, National Institute of Advanced Industrial 

Science and Technology, Japan), group 443 (T. Ishida, and K. Kinoshita, Human Genome Center, 

University of Tokyo, Tokyo), group 470 (K. Bryson, D.T. Jones, University College London, UK) and 

590 (K. Peng, P. Radivojac, S. Vucetic, A.K. Dunker, Z. Obradovic, Temple University, Philadelphia, 

PA). However, individual methods are characterized by different trade-offs between sensitivity 

and specificity, either by correctly identifying more disordered residues at the cost of over 

prediction, or by having a more modest sensitivity but a more balanced error rate. Depending on 

the type of application, methods with either higher sensitivity or specificity may be more 

appropriate. While not correctly identifying disordered regions could cause experimental 

difficulties e.g. for protein expression and crystallization, over-prediction of disordered regions 

might also lead to misinterpretations with serious consequences, e.g. designing expression 

constructs for experimental structure solution by X-Ray or NMR which are too short may result 

in dysfunctional or instable proteins. 

In comparison with the previous CASP experiment, it appears that the field has converged, 

however it seems that with the present type of algorithms it is difficult to improve on the 

plateau reached by the best groups. An obvious limitation is that the available dataset for 

training of the algorithms is still suboptimal since it is biased by structures solved by X-ray 

crystallography. Indeed, crystallographic data may be misleading as regions that are disordered 

in solution may adopt an ordered conformation upon crystallization. Conversely, the absence of 

well defined electron density may not necessarily prove the lack of structure of a protein region. 

Furthermore, X-ray datasets contain notably fewer and shorter disordered regions than would 

be expected for in vivo native protein disorder. Therefore, other experimental techniques such 

as NMR may be preferred for the detection of native disorder, and in the future provide a better 

dataset for both development and assessment of the accuracy of disorder prediction. It has been 
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suggested that new impulse in the development of new algorithms may result from 

incorporation of other data source than sequences.177 One attractive idea could be to make use 

of detectable homology to proteins with known structures. Although this might on average 

improve the accuracy of the prediction, this approach could introduce additional bias towards 

the dataset of the currently known domain structures within the PDB, and might not improve 

predictions for proteins where no structural homology can be detected, i.e. the proteins for 

which sequence-based prediction methods are most needed. 
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Group Targets  
predicted 

Residues  
predicted P-values D(cutoff) O(cutoff) 

132 96 19816 cont. >=0.50  <0.50 
96 140 19816 cont. >=0.50  <0.50 
95 153 19723 cont. >=0.50  <0.50 
96 168 19816 cont. >=0.594843  <=0.553115 

188 10   2221 cont. <0.50 >=0.50 
253 96 19816 cont. >=0.50  <0.50 
271 94 19368 cont. >=0.50  <0.50 

96 272 19816 cont. >=0.50  <0.50 

284 95 19494 0.0,1.0 1 0 

393 96 19816 cont. >=0.594843  <=0.553115 

443 96 19816 cont. >=0.50  <0.50 

96 470 19816 cont. >=0.50  <0.50 

96 538 19816 cont. >=0.50  <0.50 

572 95 19816 cont. >=0.50  <0.50 

590 95 19541 cont. >=0.50  <0.50 

82 594 16687 cont.* >=0.85  <=0.85 

93 609 19231 cont.** >0.5 <=0.50 

681 75 15180 cont. >=0.50  <=0.50 

686 96 19816 cont. >0.5 <=0.5 

 

Table I: Overview of disorder prediction data assessed in CASP7.  For each participating group, the number of predicted targets and number of 
predicted residues is shown. Groups registered as prediction servers are underlined. Most groups provided continuous P-values for disorder prediction, 
except groups 284, providing only binary predictions (0/1), group 594 (*) providing P-values in steps of 0.01, and group 609 (**) in steps of 0, 0.25, 0.33, 
0.5, 0.66, 0.75, 1. Group 188 used “inverse” P values, in other words a lower (instead of a higher) P value is associated with greater probability of 
disorder.  
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Groups Nb targets Nb residues Word Wdis Ssens Sspec Sw ACC ROC (AUC) FP rate 

590 95 19429 5.52 94.48 0.837 0.725 0.562 ± 0.043 0.781 0.860 ± 0.007 0.163 
253 96 19704 5.47 94.53 0.966 0.454 0.420 ± 0.052 0.710 0.850 ± 0.007 0.034 
443 96 19704 5.47 94.53 0.924 0.556 0.481 ± 0.049 0.740 0.844 ± 0.008 0.076 
470 96 19704 5.47 94.53 0.953 0.425 0.378 ± 0.043 0.689 0.837 ± 0.008 0.047 
140 96 19704 5.47 94.53 0.854 0.597 0.451 ± 0.049 0.726 0.822 ± 0.008 0.146 
609 93 19120 5.43 94.57 0.912 0.527 0.440 ± 0.047 0.720 0.804 ± 0.008 0.088 
271 94 19256 5.57 94.43 0.883 0.536 0.419 ± 0.043 0.710 0.804 ± 0.008 0.117 
272 96 19704 5.47 94.53 0.839 0.591 0.430 ± 0.044 0.715 0.798 ± 0.008 0.161 
538 96 19704 5.47 94.53 0.971 0.327 0.298 ± 0.045 0.649 0.796 ± 0.008 0.029 
572 96 19704 5.47 94.53 0.947 0.396 0.343 ± 0.035 0.672 0.777 ± 0.008 0.053 
153 95 19613 5.49 94.51 0.908 0.383 0.291 ± 0.042 0.646 0.758 ± 0.009 0.092 
681 74 15098 6.25 93.75 0.906 0.371 0.277 ± 0.058 0.639 0.726 ± 0.010 0.094 
393 96 19704 5.47 94.53 0.788 0.558 0.346 ± 0.040 0.673 0.724 ± 0.009 0.212 
168 96 19704 5.47 94.53 0.788 0.558 0.346 ± 0.040 0.673 0.724 ± 0.009 0.212 
132 96 19704 5.47 94.53 0.971 0.201 0.172 ± 0.055 0.586 0.704 ± 0.009 0.029 
686 96 19704 5.47 94.53 0.971 0.338 0.309 ± 0.038 0.655 0.704 ± 0.010 0.029 
594 82 16586 5.87 94.13 0.993 0.066 0.058 ± 0.013 0.529 0.671 ± 0.100 0.007 

naiv10 96 19704 5.47 94.53 0.926 0.367 0.293 ± 0.043 0.646 0.646 ± 0.009 0.074 
naiv9 96 19704 5.47 94.53 0.934 0.341 0.275 ± 0.040 0.638 0.638 ± 0.009 0.066 
naiv8 96 19704 5.47 94.53 0.943 0.313 0.256 ± 0.037 0.628 0.628 ± 0.009 0.057 
naiv7 96 19704 5.47 94.53 0.951 0.285 0.237 ± 0.034 0.618 0.618 ± 0.009 0.049 

284 95 19382 5.53 94.47 0.937 0.280 0.218 ± 0.053 0.609 0.609 ± 0.009 0.063 
naiv6 96 19704 5.47 94.53 0.960 0.254 0.214 ± 0.031 0.607 0.607 ± 0.009 0.040 
naiv5 96 19704 5.47 94.53 0.968 0.217 0.185 ± 0.026 0.592 0.592 ± 0.009 0.032 
naiv4 96 19704 5.47 94.53 0.975 0.178 0.154 ± 0.022 0.577 0.577 ± 0.009 0.025 
naiv3 96 19704 5.47 94.53 0.983 0.134 0.117 ± 0.016 0.558 0.558 ± 0.009 0.017 
naiv2 96 19704 5.47 94.53 0.990 0.089 0.079 ± 0.011 0.539 0.539 ± 0.009 0.010 
naiv1 96 19704 5.47 94.53 0.995 0.045 0.040 ± 0.005 0.520 0.520 ± 0.009 0.005 
188(*) 10 2204 4.08 95.92 0.997 0.222 0.219 n.a. 0.610 0.290 ± 0.024 0.003 

* Group 188 submitted predictions for only 10 targets and used “inverse” P values, in other words a lower (instead of a higher) P value is associated with greater probability of disorder.  
Calculating the area under the curve (AUC) for inverted P-values would result in AUC = 0.710.  

Table II: Assessment results of disorder prediction.  See text for details 
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 590 253 443 470 140 609 271 272 538 572 153 681 393 168 132 686 594 
590 ------- 0.072 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
253 0.170 ------- 0.328 0.010 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
443 0.013 0.382 ------- 0.153 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
470 <0.001 0.044 0.266 ------- 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
140 <0.001 <0.001 <0.001 0.020 ------- 0.027 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
609 <0.001 <0.001 <0.001 <0.001 0.068 ------ 0.957 0.613 0.352 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
271 <0.001 <0.001 <0.001 <0.001 0.002 0.964 ------ 0.177 0.066 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
272 <0.001 <0.001 <0.001 <0.001 <0.001 0.674 0.233 ------ 0.335 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
538 <0.001 <0.001 <0.001 <0.001 <0.001 0.445 0.147 0.442 ------ 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
572 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 0.007 0.021 ------- 0.052 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
153 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.074 ------ 0.198 0.001 0.001 <0.001 <0.001 <0.001 
681 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.207 ------ 0.688 0.688 0.002 0.001 <0.001 
393 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.693 ----- 1.000 0.057 0.048 <0.001 
168 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.693 1.000 ----- 0.057 0.048 <0.001 

132 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.084 0.084 ----- 0.982 0.128 

686 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.068 0.068 0.984 ------ 0.003 

594 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.146 0.004 ----- 

284 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.049 

 
Table III. Statistical comparison between the 19 groups based on the ROC area under the curve (AUC). The top right of the table shows the 
comparison calculated by applying the non parametric test by  De Long et al. and in the lower left by the non parametric test by Hanley and McNeil on a 
common set of targets. Significant differences between the groups (p-values of less than 0.05) are highlighted in grey. 
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3D-

Homologous 
3D Non-

Homologous  
Groups ROC (AUC)  ROC (AUC) p-value 

590 0.860 0.838 0.159 
253 0.838 0.820 0.249 
470 0.840 0.815 0.110 
609 0.796 0.808 0.481 
443 0.885 0.806  < 0.001 
140 0.862 0.788  < 0.001 
572 0.765 0.781 0.369 
681 0.560 0.776 < 0.001 
272 0.796 0.762 0.046 
271 0.816 0.759 0.001 
538 0.812 0.757 0.001 
132 0.663 0.725 0.001 
153 0.840 0.704 < 0.001 
393 0.757 0.704 0.004 
168 0.757 0.704 0.004 

naiv10 0.649 0.641 0.677 
686 0.808 0.627  < 0.001 
594 0.775 0.619  < 0.001 
284 0.648 0.580 0.004 

 

Table IV: Comparing 3D-homologous versus 3D-non-homologous target subsets. The predictions of 19 groups for the two subsets of targets are 
compared using the ROC - AUC. The statistical significance between the ROC curves is assessed by the non parametric test by Hanley and McNeil on non 
correlated samples. Significant differences between the two subsets (p-values of less than 0.05) are highlighted in grey. 
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5 Conclusion 

The number of available protein sequences greatly exceeds the number of available protein 

structures. Reliable and automated modeling procedures are therefore required to close the gap 

between the number of experimentally determined structures and of known protein sequences. 

An essential step in modeling is the identification and alignment of suitable template structures. 

In order to improve the sensitivity of identifying template structures which are evolutionary 

distant we used a method which was among the top predictors in the double blind experiment 

CASP. A hierarchical template selection was developed in order to favor fast and accurate 

sequence-sequence alignment tools over the computationally demanding HMM-HMM 

alignment procedures when evolutionary distance between the target and template sequence is 

small. Additionally, an approach that guarantees an optimal balance between model accuracy 

and target coverage was developed. The template search and selection routine was integrated 

into the homology modeling pipeline of SWISS-MODEL (as automated mode). The SWISS-MODEL 

homology modeling pipeline was then benchmarked against two other widely used modeling 

servers in a blind fashion. The benchmarking has shown comparable results in terms of model 

accuracy and response time. When considering the root mean square deviation between the 

model and target structures, SWISS-MODEL was ranked first amongst the three servers.   

The homology modeling pipeline was then applied to a large number of protein sequences 

deposited in the UniProt-knowledge database, in order to generate structural information. A 

regular updating procedure was set in place for a selected set of proteomes, which are of 

interest for the scientific community, in order to improve the quality of the models and the 

structural coverage. In order to reduce computational time, an incremental update procedure 

was developed. The database of models can be queried online using common database 

accession code or the sequence itself.  

To evaluate the current status of comparative quaternary structure modeling, we assessed those 

prediction methods which submitted oligomeric models within the CASP9 installment. The 

rigorous assessment of oligomeric prediction methods was performed for the first time.  

Because a systematic evaluation was not carried out in the past, we developed a novel set of 

scores which reflects the accuracy of oligomeric models. Two conclusions can be drawn. Firstly, 

only a minority of the predictors submitted oligomeric protein models. Secondly, the accuracy is 

not as high as it could be; two naïve predictors which rely on standard techniques were able to 
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outperform all participating methods, except one. The results have shown that additional efforts 

are required in order to push quaternary structure modeling towards higher accuracy.  

To develop an adequate modeling method for oligomeric protein structures, we identified in this 

study central aspects which are essential for the success of oligomeric modeling: 

To distinguish between similar and dissimilar quaternary structure, a metric which could be a 

used to compare the model and the target structure and reflect the difference in terms of 

number of subunits (i.e. oligomeric state) and accuracy of the interface modeling was 

determined to be essential. We established QscoreOligomer which can be seen as weighted 

mean of differences in the absolute number of contacts. QscoreOligomer weights down the 

influence of long range contacts and thus is robust against small positional changes of interfaces 

residues in one structure compared to the other. QscoreOligomer can be used for the 

assessment within further rounds of CASP, other systematic evaluation procedures, or by 

research groups which wants to improve their methods and thus need a robust score to 

benchmark their methods. 

To carry out homology modeling successfully, the availability of a template library that is 

updated often and promptly includes newly-released structures is crucial. This is even more 

important for oligomeric template structures, because the assignment of the biological relevant 

quaternary structure is not always unambiguous and often contains errors. We benchmarked 

the accuracy of different methods and approaches that were used to assign a biologically 

relevant quaternary structure to the majority of structures deposited in the PDB.  

We have shown that author assignment is the most valuable approach, at least for homo-

oligomers. Not all structures deposited in the PDB were annotated by the authors, nevertheless 

the ones that have been annotated can be used very successfully as template structures for 

homology modeling. The annotation given by PISA can be used as a second-line solution. Based 

on these criteria, we developed a template library is both complete and accurate and thus 

represents a valuable basis for the correct modeling of quaternary structure.  

One important, if not the most important, aspect when modeling the quaternary protein by 

comparative techniques, is the question whether a particular template structure has the same 

quaternary structure than the target. For that reason we investigated to what extend and under 

which conditions the oligomeric state of a protein being modeled can be deduced from template 

structures. 
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The analysis of similarity between the quaternary structure of the template and the one of the 

target has confirmed trends uncovered by previous studies, with the number of pairs with the 

same quaternary structure increasing linearly for sequence identity higher than 40% and with a 

sharp drop in structure conservation for lower sequence identity. However, it has been shown 

that even for closely related template structures it cannot be guaranteed that the quaternary 

structure is similar to the target. Furthermore, it was found that the evolutionary distance range 

at which at least one template with similar quaternary structure can be identified varies 

considerably among the target proteins. For the majority of targets suitable template structures 

can be found even if the evolutionary distance falls below 30%. Based on these observations, the 

conclusion can be drawn that the concept of comparative modeling can be applied to the 

prediction of homo-oligomeric protein structures, but for the selection of suitable templates, 

using exclusively evolutionary distance is a weak choice.  

In order to determine which strategies could be followed to accurately identify templates with 

the correct quaternary structure amongst many candidates for a given target, we applied 

clustering techniques and analyzed the characteristics of the resulting clusters. We also took into 

account manually annotated information about the quaternary structure of the template, 

evolutionary conservation in the interface and information about the protein complex being 

modeled. We found out that size and width of template clusters can be used successfully to 

select relevant templates. In general, a good performance is obtained by combining all cluster 

attributes using a random forest algorithm. A classifier based on this features was able to reach 

a high accuracy in identifying templates with correct quaternary structures compared to a 

classifier with relied on sequence features solely. To our knowledge this was the first attempt to 

classify template structures according to their quaternary structure similarity to the target. Thus, 

the discussed approach has the ability to enhance the accuracy of modeling routines 

considerably.  

Proteins which lack a well-defined three-dimensional structure are common among eukaryotic 

species and involved into many important functions. The prediction accuracy of sequence based 

methods which predict the occurrence of intrinsically disordered segments was evaluated in a 

double blind experiment. Four methods have been identified with a higher accuracy than the 

competitors. Highlighting the strengths and weaknesses of individual methods can help 

scientists choose a method which fits best their needs. 

A possible future enhancement of this work is a more in-depth analysis of the template cluster 

properties, which will lead to improved accuracy in template selection. This will require the 
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introduction of model quality estimates which are exclusively trained on oligomeric interfaces. 

Moreover, a more precise model-building procedure will be required in order to generate more 

realistic models. A first step in the future development of this project, however,  will  be the 

release of the developed software to the public, to allow other scientists to understand, validate 

and expand our analysis. 
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7 Supplementary Material 

Table SI:  Oligomeric states of CASP9 targets.  The definition of the oligomeric state for the 
assessment is based primarily on the assignment by the depositor (“REMARK 350”). The data set 
includes monomers, homo dimers, trimers and tetramers (column “state”). Targets without or 
with ambiguous assignments by authors were inspected manually taking into account PISA 
annotation   and the “REMARK 300” section (See “Comments” column).  Coordinate sets 
representing the biological units (column “PDB unit”) were downloaded from the PDB protein 
database based using the PDB code for the targets reported on the CASP9 target website. 

 

Target PDB-
ID 

Category State PDB 
unit 

Comments 

T0515 3mt1 HS 2 1  
T0516 3no6 S 4 1  
T0517 3pnx HS 3 1  
T0518 3nmb S 1 1  
T0519 - - - - Cancelled  
T0520 3mr7 HS 2 1  
T0521 3mse S 2 1  
T0522 3nrd S 2 1  
T0523 3mqo HS 2 1  
T0524 3mw

x 
S 1 1  

T0525 3mqz S 1 1  
T0526 3nre HS 1 1  
T0527 3mr0 S 1 1  
T0528 3n0x S 1 1  
T0529 3mwt HS - - Excluded due to ambiguous assignment . 
T0530 3npp S 2 1  
T0531 - - - - FM Target 
T0532 3mx3 S 1 1  
T0533 3mw

b 
S 2 2  

T0534 - - - - FM Target 
T0535 - - - - Cancelled  
T0536 3mxq S 4 1  
T0537 - - - - FM Target 
T0538 2l09 S 1 1  
T0539 2l0b S 1 1  
T0540 - HS - - No PDB entry. 
T0541 2l0d S 1 1  
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T0542 3n05 S 2 1  
T0543 2xrg HS 1 1  
T0544 - - - - FM Target 
T0545 2l3f S 1 1  
T0546 - - - - Cancelled  
T0547 3nzp HS - - REMARK 300: DIMER IN SOLUTION AND 

CRYSTAL, HOWEVER, THE BIOLOGICAL UNIT IS 
TETRAMER.  

T0548 3nng S - - REMARK 300: AUTHORS STATE THAT THE 
BIOLOGICAL UNIT IS A DIMER, NOT A 
TETRAMER. THE DIMER IN THE ASYMMETRIC 
UNIT MAY NOT BE THE REAL DIMER IN 
SOLUTION, HOWEVER. 

T0549 - - - - Cancelled  
T0550 3ngk HS - - REMARK 300: ANALYTICAL SIZE EXCLUSION 

CHROMATOGRAPHY WITH STATIC LIGHT 
SCATTERING SUPPORTS THE ASSIGNMENT OF A 
TRIMER AS A SIGNIFICANT OLIGOMERIZATION 
STATE IN SOLUTION. 

T0551 3obh S 2 1  
T0552 2l3b S 1 1  
T0553 - - - - FM Target 
T0554 - - - - Cancelled  
T0555 - - - - FM Target 
T0556 - - - - Cancelled  
T0557 2kyy S 1 1  
T0558 3no2 HS 1 1  
T0559 2l01 S 2 1  
T0560 2l02 S 2 1  
T0561 - - - - FM Target 
T0562 2kzx HS 1 1  
T0563 3on7 S 4 1  
T0564 2l0c HS 1 1  
T0565 3npf S 2 1 Complex assigned by PISA was used. 
T0566 3n72 HS 1 3 Hypothetic dimer interface is classified as only 

rarely stable. The largest monomeric chain was 
used. 

T0567 3n70 S 1 1 Dimer interfaces are mainly stabilized by SO4 
(buffer). The largest monomeric chain was used. 

T0568 3n6y HS 1 1  
T0569 2kyw HS 1 - NMR 
T0570 3no3 S 1 1  
T0571 3n91 HS 1 1  
T0572 2kxy S 1 - NMR 
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T0573 3oox S 1 1  
T0574 3nrf HS 4 1  
T0575 3nrg S 1 1  
T0576 3na2 HS 2 1 Author suggests two conformations. The dimer 

consistent with PISA assignment was used. 
T0577 - - - - Cancelled  
T0578 - - - - FM Target 
T0579 2ky9 HS 1 - NMR 
T0580 3nbm HS 1 1 Monomeric 
T0581 - - - - FM Target 
T0582 3o14 HS 1 1  
T0583 - - - - Cancelled  
T0584 3nf2 HS 2 1  
T0585 3ne8 S 2 1  
T0586 3neu HS 2 1  
T0587 - - - - Cancelled  
T0588 3nfv HS 1 1  
T0589 3net S 2 1  
T0590 2kzw HS 1 1  
T0591 3nra S 2 1  
T0592 3nhv HS 3 1  
T0593 3ngw S 1 1  
T0594 3ni8 HS 1 1  
T0595 - - - - Cancelled  
T0596 3ni7 HS 2 1  
T0597 3nie S 1 1  
T0598 3njc HS 2 1  
T0599 3os6 S 2 2  
T0600 3nja S 2 2 REMARK 300: EXPERIMENTALLY UNKNOWN. 

THE CHAINS A AND B, C AND D MAY FORM 
DIMERS RESPECTIVELY. 

T0601 3qtd S 2 1  
T0602 3nkz HS 2 2 REMARK 300: EXPERIMENTALLY UNKNOWN. 

THE CHAINS A AND B, C AND D MAY FORM 
DIMERS RESPECTIVELY. 

T0603 3nkd S 2 1  
T0604 3nlc HS 1 1  
T0605 3nmd HS 2 2  
T0606 3noh HS 1 1  
T0607 3pfe S 2 1  
T0608 3nyy HS 2 1  
T0609 3os7 S 1 1  
T0610 3ot2 HS 2 1  
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T0611 3nnr S 2 1  
T0612 3o0l S 2 1  
T0613 3obi S 4 1  
T0614 - - - - No PDB file 
T0615 3nqw S 2 1  
T0616 3nrt HS 2 2  
T0617 3nrv S 2 1  
T0618 - - - - FM Target 
T0619 3nrw HS 1 1  
T0620 3nr8 S 1 1  
T0621 - - - - FM Target 
T0622 3nkl HS 2 1  
T0623 3nkh S 2 1  
T0624 - - - - FM Target 
T0625 3oru HS 2 1  
T0626 3o1l S 2 1  
T0627 3oql HS 4 1  
T0628 3nuw HS 2 5 PISA suggested Dimer with 11 H-bonds and 7 

salt bridges in the interface; classified as stable 
T0629 2xgf HS 3 1  
T0630 2kyt HS 1 1  
T0631 - - - - Cancelled  
T0632 3nwz S 4 1 Authors assigned different states, but the 

tetramer is confirmed by PISA as most stable 
complex. The observed coenzyme A is interacts 
with both sides of the tetrameric interface. 

T0633 - - - - Cancelled  
T0634 3n53 S 2 3  
T0635 3n1u S 4 1  
T0636 3p1t S 2 1  
T0637 - - - - FM Target 
T0638 3nxh S 1 1  
T0639 - - - - FM Target 
T0640 3nyw S 4 1  
T0641 3nyi S 1 2 REMARK 300: EXPERIMENTALLY UNKNOWN.  IT 

IS LIKELY MONOMERIC. 
T0642 - - - - Cancelled  
T0643 3nzl HS 1 1  
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