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Summary  
A large number of pharmaceutical substances are administered as racemates, consisting of 

two enantiomers with typically different pharmacodynamic and pharmacokinetic profiles. 

Thus, stereoselective analysis is important in drug development, therapeutic drug monitoring 

and research. Chiral separation by chromatographic methods such as HPLC and GC require 

expensive stationary phases. In contrast, in capillary electrophoresis (CE), enantioselective 

separation can be obtained using one or several chiral selectors which are added to the 

background electrolyte. Separation of enantiomers is based on different binding affinities with 

the enantiomers and/or different migration velocities of the formed analyte-selector 

complexes. High resolution can be achieved by varying type and concentration of chiral 

selector as well as buffer properties (pH, ionic strength, other additives etc.). Typical chiral 

selectors are neutral or charged cyclodextrins, proteins and bile acids. The simplicity of the 

technique makes enantioselective CE an attractive, promising and economic methodology for 

drug and metabolite analysis in pharmaceutical preparations, body fluids, tissues and 

microsomal preparations.  

In the first part of this thesis, fundamental aspects of enantioselective CE were investigated 

using computer simulation. Dynamic computer simulators provide insight into the buffer 

system and improve understanding of the electrophoretic separation process. Simulation 

allows to predict proper separation and detection conditions for analytes prior to experiments. 

Using an extended version of the dynamic computer simulator GENTRANS, the interaction 

of methadone and its main metabolite EDDP with neutral chiral selectors were simulated. 

Experimentally determined complexation constants and mobilites of the formed complexes 

were employed as additional input parameters. Simulated electropherograms were 

qualitatively in good agreement with the experimental results. 

In the second and third parts of the thesis, enantioselective CE was applied to study ketamine 

metabolism in an off-line study. Ketamine is a chiral phencyclidine derivative used in 

anesthesia. In vitro and also in vivo studies showed a higher affinity for the NMDA-receptors, 

higher anesthetic potency and shorter recovery time for S-ketamine compared to R-ketamine. 

The aims in this project were to characterize the kinetics of CYP 3A4 mediated ketamine N-

demethylation in vitro including KM, Vmax and to investigate the stereoselective metabolism of 

this pathway. Furthermore, the inhibition kinetics of this pathway by ketoconazole, a potent 

CYP3A4 inhibitor, was investigated. Results showed a higher formation rate for S-

norketamine after incubation of racemic ketamine as well as incubation of the single 
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enantiomers. Data obtained in the absence of ketoconazole revealed that the N-demethylation 

occurred stereoselectively. Inhibition kinetics by ketoconazole fitted best to a one-site competitive 

model and no stereoselectivity could be demonstrated.  

In the forth and final part of this thesis, an on-line method was developed to investigate the in 

vitro N-demethylation of ketamine via CYP3A4, with the incubation performed in-capillary with 

subsequent electrophoretic separation and detection of the ketamine enantiomers. Kinetic 

parameters obtained compared well with those of the off-line study mentioned above and the 

metabolic step was stereoselective, confirming the results of the off-line assay. After additional 

improvements, the in-capillary method should be widely applicable to assess enzymatic activity in 

a fast, low-cost and automated way. 
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A.  Introduction 

A.1.  Enantioselective capillary electrophoresis 

Many pharmaceutical substances are administrated as racemates, consisting of two 

enantiomers with different affinities for binding receptors or metabolizing enzymes. Thus, 

stereoselective analysis and quantitation is important for investigating pharmacokinetics in the 

context of drug development and for routine therapeutic drug monitoring [1-4]. 

Chromatographic methods, such as HPLC and GC, with expensive chiral stationary phases, 

are widely applied for stereoselective analysis of drugs and metabolites [1]. Due to high 

resolution, short analysis time, low consumption of chemicals and solvents, and low cost of 

columns, enantioselective capillary electrophoresis (CE) is an established and attractive 

methodology for drug and metabolite analysis in pharmaceutical preparations, body fluids, 

tissues and microsomal preparations [5-12]. In this approach, the presence of one or several 

chiral selectors, such as charged or neutral cyclodextrins, proteins, bile acids or crown ethers, 

enable the separation of the enantiomers under the influence of an electric field [13]. 

Enantioselective separation is based upon different binding affinities of the enantiomers to the 

chiral selector and/or different migration velocities of the formed complexes. For a given pair 

of enantiomers, high-resolution depends on type and concentration of the chiral selector as 

well as buffer properties (pH, ionic strength, other additives etc.). In most CE modes, 

including capillary zone electrophoresis (CZE), capillary isotachophoresis (CITP) and 

micellar electrokinetic capillary chromatography (MECC), the chiral selector is a buffer 

additive. The selector can also be bound to a packing material (capillary 

electrochromatography (CEC)) [14] or attached to the inner wall of a capillary (open tubular 

CEC) [15].  

 

A.2.  Computer simulation of electrophoretic processes 

Dynamic computer simulators for electrophoresis are useful tools to provide insight 

into buffer systems and to investigate the electrophoretic transport of analytes. The 

performance of simulations prior to laboratory experiments does not only improve the 

understanding of the underlying processes, including the dynamics of separation, but might 

also ease to find proper separation and detection conditions for analytes [16-22].  
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Dynamic computer models are based upon equations derived from the transport concepts in 

solution together with user-inputted conditions, such as concentrations, mobilities, diffusion 

coefficients, pKa values, electric field strength or current density, column length and its 

segmentation. Component distributions are calculated and profiles of the column properties as 

function of electrophoresis time are obtained. Many dynamic models of various degrees of 

complexity have been described in the literature [17,18]. Most of them, including 

GENTRANS [19], SIMUL5 [20] and SPRESSO [21] which differ in certain aspects but 

produce identical results when employed with equal input data [22], are one-dimensional with 

the transport of each component through the electrophoretic space being the result of 

protolysis, electromigration, diffusion and imposed and/or electrically driven bulk flow. 

Recently, GENTRANS and SIMUL5 were extended for handling chiral electrophoretic 

separations. This required the inclusion of complexation constants and specific mobilities of 

formed 1:1 analyte-selector complexes in solution [23,24]. 

 
 
A.3.  Ketamine 

Ketamine is not only known as a drug of abuse in rave parties [25]. The use of this 

phencyclidine derivative in human and veterinary clinical practices has been established since 

1970 [26-29]. Ketamine is used for the induction of anesthesia and as an anesthetic drug for 

short term surgical interventions. Also, in subanesthetic doses, it is used as an analgesic for 

postoperative pain relief. Furthermore, when applied perioperatively, ketamine was also 

shown to reduce postoperative pain and opioid consumption, and reported to prevent 

induction of postoperative hyperalgesia [30,31]. Its use in the treatment of major depressive 

disorders is also being investigated and discussed [32]. The rapid onset of the antidepressant 

effect of ketamine is a relevant advantage compared to currently available antidepressant 

medications, which take several weeks to months to achieve the effects. Ketamine binds with 

high-affinity as a noncompetitive antagonist mainly on N-methyl-D-aspartate (NMDA) 

receptors. Interactions with opioid receptors, muscarinic acetylcholine receptors, voltage-

gated channels and monoaminergic receptors also contribute to the neuropharmacological 

effects of ketamine [26-29,33].  

Ketamine consists of a racemic mixture of two enantiomers, S- and R-ketamine. The 

S-enantiomer has a four times higher affinity for the NMDA receptor than the R-enantiomer 

and also binds to the µ- and κ- opioid receptors. S-Ketamine has a two to three-fold higher 
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anesthetic potency compared to the racemate. Lower doses of the S-enentiomer are therefore 

needed to maintain an equal state of anesthesia. Also, fewer side effects and shorter recovery 

times are seen with the single enantiomer preparation [33-35]. 

The metabolism of ketamine has been studied in humans and various animal species, 

both in vivo and in vitro. It was found that ketamine is metabolized by a superfamily of a 

hepatic enzyme system, the cytochrome P450 (CYP) enzymes, through the N-demethylation 

to norketamine followed by hydroxylation of norketamine at various locations of the 

cyclohexanone and chlorophenyl rings and the formation of 5,6-dehydronorketamine. To a 

marginal extent, direct hydroxylation of ketamine prior to N-demethylation is also shown to 

occur [36–44]. With various CYP enzymes involved in the metabolic pathway of ketamine, 

drug-drug interactions must be taken into account. The activity of the metabolizing enzymes 

can be influenced by genetic and extrinsic factors. Genetic variations of several CYP enzymes 

and co-administration of other drugs which are substrates, inhibitors or inducers of these 

enzymes result in inter- and intra-individual variations in the pharmacokinetic profiles. In 

particular, when a chiral drug undergoing stereoselective metabolism is applied as a racemic 

mixture, these factors will impact on the pharmacokinetics of the enantiomers, possibly also 

resulting in a different pharmacodynamic profile. Thus, to describe the pharmacokinetic 

profile of enantiomers with different pharmacodynamics by determining the relevant kinetic 

parameters and to predict the potential for drug-drug interactions is important and of major 

interest in established drugs as well as those under investigation [45,46]. 

 

A.4.  Goals of this dissertation  

The goals of this dissertation were to study fundamental aspects of enantioselective 

CE and to assess the CYP3A4 mediated N-demethylation of ketamine in vitro using 

enantioselective CE for analysis of the samples. The sulfated β-cyclodextrin used so far as 

chiral selector in the ketamine project consists of an ill-defined mixture of stereoisomers 

which varies from batch to batch resulting in separation variations and limitations [47]. Thus, 

during the course of this dissertation, highly sulfated γ-cyclodextrin was introduced for the CE 

separation and analysis of ketamine and norketamine enantiomers.  

In the first study, the dynamics of the enantioselective CE separation was investigated 

by computer simulation using GENTRANS with the new extension for handling 

complexation equilibria in solution [23]. For that purpose, complexation constants as well as 

mobilities of cationic model drugs in absence and presence of neutral cyclodextrins had to be 
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determined using CZE at low pH. These data, together with the conditions of the buffer 

systems, were used as inputs for the simulations and simulated electropherograms were 

compared to those obtained experimentally.  

The second project comprised the complete characterization of the CYP3A4 mediated 

ketamine metabolism in vitro using enantioselective capillary electrophoresis. This work was 

performed in the context of an ongoing multidisciplinary research cooperation involving 

clinicians, pharmacologists, scientists from Vetsuisse Bern and Zürich, US, Argentina and our 

laboratory. This longterm research cooperation includes in vitro and in vivo studies of 

stereoselective metabolism of ketamine in different species, using sulfated cylcodextrins as 

chiral selectors for the enantioselective CE separation [43,44,48-53]. The present study started 

with the identification of human CYP450 enzymes involved in the biotransformation of 

ketamine and norketamine. Ketamine N-demethylation activity was shown for several CYP 

enzymes, mainly CYP3A4 and CYP2B6, whereas norketamine metabolites were formed only 

by CYP2B6 and CYP2A6. The results from this qualitative study, which was the subject of 

the master thesis of S. Portmann (University of Basel, 2008), revealed that CYP3A4 shows no 

activity on the metabolism of norketamine. Thus, the goal of my work was to elucidate the 

kinetics of the stereoselective N-demethylation of ketamine to norketamine mediated by 

CYP3A4 [54,55]. Ketoconazole is a potent and specific CYP3A4 inhibitor and was therefore 

used to determine the inhibition kinetics including the inhibition constant, after incubation of 

ketamine as racemate and as single enantiomers, as a third project [55].  

All in vitro experiments performed so far were carried out manually. Incubation 

samples were extracted at alkaline pH and analysed with capillary electrophoresis. In addition 

to the ecologic and economic advantages mentioned above, CE also offers to be a unique and 

efficient microreactor for chemical reactions with subsequent on-line separation and detection 

of the reaction products. Advantages compared to off-line assays such as automation, lower 

consumption of materials and lower cost, are obvious. This technique, known as 

electrophoretically mediated microanalysis (EMMA), is based on mixing of injected zones 

containing the analyte and the reagents, followed by the occurrence of the enzymatic reaction 

either in presence or absence of the applied electric field, and finally the electrokinetic 

transport of the detectable product through an on-column detector or into a detector placed at 

the capillary end. Latest advances of this technique and its applications are well summarized 

in recent reviews [56,57]. The aim of the fourth topic of the present dissertation was to 

develop a suitable EMMA method to characterize the in vitro kinetics of ketamine N-

demethylation mediated by CYP3A4. The kinetic Michaelis-Menten parameters Vmax and Km 
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together with the stereoselectivity of this pathway determined by this EMMA method were 

compared with the data obtained by the off-line assay.  
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B. Methods, results and discussions 
The content of this dissertation is subject of three publications and one manuscript 

accepted for publication. Therefore, the present chapter contains these manuscripts describing 

the development of this thesis, starting with the study of the fundamental aspects of 

enantioselective capillary electrophoresis, followed by investigation of CYP3A4 mediated 

ketamine metabolism using enantioselective CE in an off-line modus and ending by the 

development of an EMMA method to investigate this pathway in an on-line assay. 
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Abstract 

GENTRANS, a comprehensive one-dimensional dynamic simulator for 

electrophoretic separations and transport, was extended for handling electrokinetic chiral 

separations with a neutral ligand. The code can be employed to study the 1:1 interaction of 

monovalent weak and strong acids and bases with a single monovalent weak or strong acid or 

base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool 

to investigate the dynamics of chiral separations and to provide insight into the buffer systems 

used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte 

stacking across conductivity and buffer additive gradients, changes of additive concentration, 

buffer component concentration, pH and conductivity across migrating sample zones and 

peaks, and the formation and migration of system peaks can thereby be investigated in a 

hitherto inaccessible way. For model systems with charged weak bases and neutral modified 

β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities and 

mobilities of selector-analyte complexes have been determined by CZE, simulated and 

experimentally determined electropherograms and isotachopherograms are shown to be in 

good agreement. Simulation data reveal that CZE separations of cationic enantiomers 

performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak 

which has a small impact on the buffer composition under which enantiomeric separation 

takes place. 
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1  Introduction 

Enantiomeric resolution is of central importance in pharmaceutical, pharmacological, 

agrochemical, environmental, biomedical and forensic considerations. Not surprisingly, the 

demand for enantioselective separation and analysis techniques increased considerably over 

the years. Stereospecific analyte monitoring is widely accomplished via use of 

chromatographic methods which require rather expensive chiral stationary phases [1-2]. 

During the past two decades, enantioselective separations by capillary electromigration 

methods have undergone a spectacular development and have shown to provide high-

resolution at low cost [3-9]. For enantiomeric separation under electrokinetic conditions, a 

chiral selector or a mixture of selectors, proper buffer conditions (pH, ionic strength, micelles, 

additives etc.) and temperature are required. Compared to HPLC, capillary electrophoresis 

(CE) provides higher efficiency, is simpler, faster and cheaper, and consumes no or a much 

smaller amount of organic solvents. CE not only represents a complementary tool to the 

widely applied chromatographic methods, it also offers the possibility of bringing 

enantioselective separations and analyses into the routine arena. Enantiomeric separation in 

CE is based upon differential interaction between analytes and the selector or selectors and/or 

differences in the migration of the formed complexes. Thus, complex formation and the 

migration behavior of complexed and free solutes are the phenomena to be assessed for 

proper description of chiral CE [5,10-16].  

Dynamic computer simulation of electrophoretic processes has demonstrated 

considerable value as a tool to gain insight into particular combinations of experimental 

conditions, to determine separation conditions well before any laboratory experiments are 

undertaken, and for educational purposes. Dynamic computer models are based upon 

equations derived from the transport concepts in solution together with user-inputted 

conditions, such as concentrations, mobilities, diffusion coefficients, pKa values, electric field 

strength or current density, column length and its segmentation. Component distributions are 

calculated and profiles of the column properties as function of electrophoresis time are 

obtained. Many dynamic models of various degrees of complexity have been described in the 

literature [17,18]. Most of them, including GENTRANS [19], SIMUL5 [20] and SPRESSO 

[21] which differ in certain aspects but produce identical results when employed with equal 

input data [22], are one-dimensional with the transport of each component through the 

electrophoretic space being the result of protolysis, electromigration, diffusion and imposed 

and/or electrically driven bulk flow. These models do not include any chemical equilibria 
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with buffer additives, conversion equilibria of solutes, or solute interactions with column 

walls or filling material, and can thus not be employed for electrokinetic capillary 

chromatography (EKC), including enantiomeric separations.  

For free solution configurations, only few dynamic electrophoretic models dealing 

with non acid-base chemical equilibria were reported. Dubrovčáková et al. [23] presented a 

mathematical model and numerical solution for the addition of a neutral complexation agent 

to moving boundary systems of strong electrolytes. Tesařová et al. [24] described a version of 

SIMUL which accounts for the additional equilibria that occur in the EKC separation of 

analytes in the presence of a neutral cyclodextrin and a charged surfactant (SDS) which 

includes the monomer-micelle equilibrium of the surfactant. Horáková et al. [25] have used 

this code to examine the mechanism of the accumulation of a weak acid using a dynamic pH 

junction and then mobilization of the neutral analyte by a sweeping front. In another effort 

and using simplified continuity equations, Dubský et al. [26] reported the development of a 

dynamic model of CE of interconverting enantiomers. Recently, GENTRANS was extended 

with algorithms that describe chemical equilibria between solutes and a buffer additive, an 

approach that enables simulation of the impact of chemical interactions in EKC [27], 

including those of transient trapping and sweeping in micellar EKC [28]. 

The only existing software for prediction of chiral separations in capillary zone 

electrophoresis is based upon a steady-state simulation program and allows the study of the 

impact of complex formation constants and mobilities on enantiomer separation [29,30]. Thus 

far, no generalized code which permits the simulation of the dynamics of electrokinetic chiral 

separations has been reported in the literature. This prompted us to extent the GENTRANS 

EKC code for handling of chiral separations, i.e. consideration of complexation constants and 

specific mobilities of formed 1:1 analyte-selector complexes in solution. For evaluation, 

complexation constants and mobilities of protonated cationic model drugs in presence of 

neutral cyclodextrins were determined experimentally by capillary zone electrophoresis 

(CZE) at low pH and simulated electropherograms and isotachopherograms were compared to 

those obtained experimentally. Furthermore, simulation data could be compared to those 

predicted by a newly developed version of SIMUL5 into which 1:1 complexation equilibria 

were incorporated and which became available to us prior to its publication [31,32].  
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2  Simulation of enantiomer migration with GENTRANS 

GENTRANS is based upon the one-dimensional isothermal electrophoretic computer 

simulation model of Bier et al. [33] which is described in detail in Mosher et al. [34] and later 

publications [18,19,22]. The computer program used for simulating enantiomer separations is 

essentially the same as that previously used for the high-resolution simulation of EKC 

separations of alkylphenyl ketones under real experimental conditions [27] and for the 

examination of the mechanisms of transient trapping and sweeping in normal migration 

micellar EKC [28]. The EKC version of GENTRANS allows the study of the impact of 

chemical equilibria other than protolysis on the dynamics of electrophoretic separations. For 

that purpose it comprises algorithms to account for the interaction with an electrolyte additive. 

It is restricted to the interaction of monovalent weak and strong acids and bases with a single 

monovalent weak or strong acid or base additive and considers the following four 

relationships. 

(i) interaction of dissociated analyte (A) with dissociated additive (Add) 

A A-AddAdd+A A-AddAdd+ [A-Add]
[A][Add]K1 =
[A-Add]
[A][Add]K1 =

  (1) 

(ii) interaction of dissociated analyte (A) with undissociated additive (HAdd) 

A A-HAddHAdd+A A-HAddHAdd+ [A-HAdd]
[A][HAdd]K2 =
[A-HAdd]
[A][HAdd]K2 =

   (2) 

(iii) interaction of undissociated analyte (HA) with dissociated additive (Add) 

HA HA-AddAdd+HA HA-AddAdd+ [HA-Add]
[HA][Add]K3 =
[HA-Add]
[HA][Add]K3 =

  (3) 

(iv) interaction of undissociated analyte (HA) with undissociated additive (HAdd) 

HA HA-HAddHAdd+HA HA-HAddHAdd+ [HA-HAdd]
[HA][HAdd]K4 =
[HA-HAdd]
[HA][HAdd]K4 =

  (4) 

In all cases it is assumed that the equilibria are instantaneous which means that the 

kinetics of complex formation do not play a considerable role during migration. In contrast to 

the previous version, in which the analyte-additive complex was assumed to have the same 

electrophoretic mobility as the additive [27], the code was modified to allow the specification 

of distinct mobilities of all analyte-additive complexes. For the simulation of charged 
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enantiomer separation in presence of a neutral additive, this was an important change as the 

code would have otherwise not accounted for the migration of the charged complexes. 

Furthermore, GENTRANS calculates diffusion from entered mobilities. Thus, in an addition 

to the electrophoretic mobility and the pKa values of each component in the system, it is also 

necessary to input the complexation constants and the mobilities of the analyte-additive 

complexes. A neutral additive, such as the neutral cyclodextrins used in this work at low pH, 

is implemented as a weak acid with a pKa value of 14. To simplify matters, the model does 

not take into account the dependence of mobilities, pKa values and complexation constants on 

ionic strength, viscosity and temperature. 

 

3  Materials and Methods  

3.1  Chemicals and samples 

All chemicals used were of analytical or research grade. Racemic methadone (as 

hydrochloride) and codeine were obtained from the Inselspital Pharmacy (Bern, Switzerland). 

Racemic 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP, as hydroiodide) was 

from Alltech-Applied Science Labs (State College, PA, USA). NaH2PO4, KH2PO4 and 

NaCH3COO were from Merck (Darmstadt, Germany). Heptakis(2,6-di-O-methyl)-β-

cyclodextrin (DIMEB) and methanol were from Sigma Aldrich (Buchs, Switzerland) and (2-

hydroxypropyl)-β-cyclodextrin (OHP-β-CD) with a degree of substitution of ~0.6 was 

purchased from Fluka (Buchs, Switzerland). The pH of the separation buffers was adjusted 

with concentrated phosphoric acid (85%, Merck, Darmstadt, Germany) or acetic acid (Merck, 

Darmstadt, Germany). Samples for CZE were prepared in 10-fold diluted running buffer in 

absence of a chiral selector. 

 

3.2  Electrophoretic instrumentation for CZE and running 

conditions 

All CZE measurements were performed on a BioFocus 3000 capillary electrophoresis 

system (Bio-Rad Laboratories, Hercules, CA, USA), equipped with a 50 µm ID untreated 

fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA). The total length of the 

capillary was 50 cm (45.4 cm to the detector). The capillary was mounted in a user-assembled 
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cartridge. Sample injection was effected by applying a positive pressure of 5 psi*s (initial 

sample zone: about 1.2 % of column length). Carousel and cartridge temperatures were 

maintained at 25°C and detection was effected at 195 nm. Each day, the capillary was first 

rinsed for 5 min with 0.1 M NaOH, 5 min with water and 3 min with running buffer. Between 

runs the capillary was rinsed with running buffer containing the chiral selector for 3 min. 

Three buffer systems were investigated, configurations that were previously employed for the 

analysis of methadone and EDDP enantiomers [35-38]. System 1 comprised OHP-β-CD in a 

75 mM KH2PO4 (which was adjusted to pH 2.5 with concentrated phosphoric acid). A 

constant voltage of 17 kV (current about 62 µA) was applied and the OHP-β-CD 

concentration was varied between 0 and 64 mM. System 2 contained DIMEB in 90 mM 

NaH2PO4 (adjusted to pH 2.3 with concentrated phosphoric acid) and 10 % methanol. The 

applied voltage was 20 kV (current about 59 µA) and the DIMEB concentration ranged 

between 0 and 57.6 mM. System 3 comprised OHP-β-CD in a 42.82 mM sodium acetate 

(adjusted to pH 4.07 with concentrated acetic acid, voltage: 20 kV, current about 7.5 µA, 0-64 

mM chiral selector). For estimation of electroosmosis, caffeine (50 µg/mL) was used as 

sample. 

 

3.3  Determination of complex constants and complex mobilities  

The electrophoretic mobilities of the detected protonated bases were determined as 

function of cyclodextrin (additive) concentration under consideration of electroosmosis. For 

each concentration, the electroosmotic mobility was calculated from the detected caffeine 

peak and the obtained value was subtracted from the experimentally determined net mobility 

of the analyte, this providing the effective mobility (ueff) of the analyte. Then, ueff vs. additive 

concentration plots were constructed and the data were correlated with the relationship [10-

16] 

ueff = (uf + ucKx)/(1 + Kx)        (5) 

where uf and uc are the mobilities of the free analyte and the analyte-additive complex, 

respectively, K is the apparent complexation constant, and x is the cyclodextrin concentration. 

Non-linear regression analysis using SigmaPlot Scientific Graphing Software version 10 

(SPSS, Chicago, IL, USA) provided values for uc and K while values for uf were determined 

experimentally (ueff in absence of cyclodextrin).  
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3.4  ITP data 

The capillary ITP data are those of Lanz et al. [38] and were obtained on a Tachophor 

2127 analyzer (LKB AB, Bromma, Sweden) featuring conductivity detection at the column 

end. It was equipped with a 28 cm PTFE capillary of 0.5 mm ID and the cooling temperature 

was set to 13 °C. Separations were performed at a constant current of 200 µA (voltage: 4-8 

kV) and, for detection, the current was reduced to 50 µA after 10 min of current flow. 1 µL of 

10 mM racemic methadone hydrochloride was used as sample. The leader (catholyte) was 

composed of 10 mM sodium acetate that was adjusted with acetic acid to pH 4.3 and 

contained OHP-β-CD as chiral selector. 10 mM acetic acid was used as anolyte (terminator). 

 

3.5  Execution of computer simulations and data evaluation 

The programs were executed on Windows XP or Windows 7 based PC’s featuring 

Intel Core i5 2.8 GHz processors. The component's input data for simulation are summarized 

in Tables 1 and 2. Simulation data were evaluated as profiles along the column at specified 

time intervals and, for comparison with experimental data, as time-based profiles which 

would be produced by a detector at a specified column location, i.e. segment number. For 

making plots, simulation data were imported into SigmaPlot Scientific Graphing Software 

version 10 (SPSS, Chicago, IL, USA). 

Table 1. Physico-chemical input parameters of buffer components used for simulation 
 

System Compound pKa Mobility 
(10-8 m2/Vs) 

1 Potassium - 7.62 
Phosphoric acid 2.00 b) 3.67 

Chloride - 7.96 
OHP-β-CD a) 1.00 

2 Sodium - 5.19 
Phosphoric acid 2.00 b) 3.67 

Chloride - 7.96 
Iodide  7.96 

DIMEB a) 1.00 
3 Sodium - 5.19 

Acetic acid 4.76 4.24 
Chloride - 7.12 

OHP-β-CD a) 1.00 
 

a) Neutral cyclodextrins were entered as a weak acid with pKa = 14. 
b) Phosphoric acid was treated as monovalent weak acid. 
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Table 2. Analyte parameters used for simulations 
 

Sys-
tem 

Chiral 
selector 

Compound pKa Compound 
mobility a) 
(10-8 m2/Vs) 

Complex 
constant b) 
(L/mol) 
 

Complex 
mobility b) 
(10-8 m2/Vs) 

1 OHP-β-CD 
 

S-methadone 8.9 1.80 187.6 0.536 
R-methadone 8.9 1.80 131.7 0.510 

2 DIMEB S-methadone 8.9 1.35 473.9 0.418 
R-methadone 8.9 1.35 379.0 0.402 
R-EDDP 9.6 1.55 366.6 0.406 
S-EDDP 9.6 1.55 344.5 0.402 
Codeine 8.2 1.35 0 0 
Marker c) 8.2 1.00 100000 0.200 

3 OHP-β-CD S-methadone 8.9 2.14 197.0 0.817 
R-methadone 8.9 2.14 136.9 0.796 

 
a) Free analyte mobility uf determined by CZE under consideration of electroosmosis (cf. Section 3.3). 
b) Complex constant and complex mobility values are those for complexation of the protonated bases with 

the neutral cyclodextrin obtained by non-linear regression analysis to Eq. 5. 
c) Hypothetical marker with large complexation constant and assumed mobilities. 

 

4  Results and discussions  

4.1  Selection of separation systems and determination of input 

parameters for simulation 

Methadone has become the most widely used drug for opiate dependency treatment 

and is also administered for the management of chronic pain. Both methadone and its primary 

metabolite EDDP are chiral weak bases. Their enantiomers were analyzed in our laboratory in 

urinary extracts and in in vitro samples using CE at acidic pH with neutral cyclodextrins as 

chiral selectors [35-37]. Furthermore, the enantiomers of methadone were separated by 

analytical and preparative enantioselective isotachophoresis [38]. Thus, methadone and EDDP 

enantiomers served as model compounds for simulations.  

For the three CZE systems listed in Section 3.2, complexation constants and the 

mobilities of the selector-analyte complexes were determined as described in Section 3.3. In 

absence of the chiral selectors, electroosmotic mobilities for systems 1 to 3 were determined 

to be 0.327 x 10-8 m2/Vs, 0.455 x 10-8 m2/Vs and 2.46 x 10-8 m2/Vs, respectively. Due to an 

increase of viscosity, somewhat smaller values (up to 20 % and in a selector concentration 

dependent fashion) were obtained in presence of the buffer additives. Complexation constants 

and mobilities of the selector-analyte complexes are presented in Table 2. As an example, 

regression graphs for the two methadone enantiomers in system 1 are presented in Figure 1 
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together with a graph showing the difference of the effective mobilities of the two methadone 

enantiomers as function of the OHP-β-CD concentration. Similar graphs were obtained with 

the other systems (data not shown). The calculated selectivities and conditions for maximum 

resolution are summarized in Table 3. 
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Figure 1. Effective methadone enantiomer mobility as function of OHP-β-CD concentration together with 

regression graphs for buffer system 1. The insert depicts the calculated difference of methadone enantiomer 

mobilities as function of OHP-β-CD concentration. 

 

For the enantiomers of methadone and EDDP, complexation constants were 

determined to be between 130 and 480 L/mol (Table 2). These values are comparable to those 

of many other small molecular mass compounds (a comprehensive list of K values is given as 

Table 2 in the supporting information of Ref. [39]). In all three systems, R-methadone was 

found to have a lower binding affinity than S-methadone (Table 2) and the enantiomers of 

methadone could be separated easily (Table 3) which is in agreement with previous data from 

our laboratory [35-37]. For the separation of EDDP enantiomers, DIMEB [37] was known to 

be the superior selector compared to OHP-β-CD [35]. Thus, data for the latter buffer additive 

were not assessed. With DIMEB as selector, R-EDDP was found to bind more strongly than 

S-EDDP (Table 2). Separability of the two enantiomers is significantly lower compared to the 

enantiomers of methadone (Table 3). The selector concentrations at which highest mobility 
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differences are present are similar (1.9 and 2.3 mM for methadone and EDDP, respectively, 

Table 3).  

The mobility values of the selector-analyte complexes for the enantiomers of 

methadone and EDDP were noted to be between 0.4 x 10-8 m2/Vs and 0.8 x 10-8 m2/Vs (Table 

2). It was interesting to realize that, for all three systems, the mobilities of the S-methadone 

complexes were somewhat higher compared to those of the R-methadone complexes. In 

analogy to the work of Dubský et al. [16], it is assumed that this is due to the fact that the 

chiral selectors used are products comprising multiple isomers. For EDDP, the mobility 

difference is smaller. In all cases studied, the complex with a higher complexation constant 

has also a higher mobility of the complex. 

Table 3. Enantioselectivity of binding and conditions of maximum mobility difference 
 

System Chiral selector Compound alphaR/S a) dumax b) 
(10-9 m2/Vs) 

Selector concentration 
at dumax 
(mM)  
 

1 OHP-β-CD Methadone 0.702 0.999 5.7 
2 DIMEB Methadone 0.800 0.457 1.9 
2 DIMEB EDDP 1.064 0.157 2.3 
3 OHP-β-CD Methadone 0.695 1.098 5.6 

 
a) Enantioselectivity of binding: AlphaR/S= KR/KS 
b) Maximum difference of effective mobilities of enantiomers 

 

4.2  CZE separation of methadone enantiomers 

The separation of methadone enantiomers in presence of OHP-β-CD was investigated 

using the potassium phosphate buffer at pH 2.5 (system 1 of Tables 1 to 3). The buffer used 

for simulation was composed of 75 mM KOH and 102.22 mM phosphoric acid (calculated 

pH: 2.51) and contained 8 mM OHP-β-CD. Having a sample comprising racemic methadone 

and chloride (28.90 µM each) in 10-fold diluted buffer without chiral selector and using the 

input data listed in Tables 1 and 2 provided the separation dynamics of the methadone 

enantiomers presented in Figure 2A. The two buffer components, as well as chloride, were 

assumed to have no interaction with OHP-β-CD. Under the employed conditions of constant 

current density (27328.7 A/m2 which corresponds to 53.66 µA in a 50 µm ID capillary) and 

constant electroosmotic flow (EOF, 102.43 µm/s; mobility of 0.301 x 10-8 m2/Vs), the two 

enantiomers are predicted to become separated within 1 min and require a separation distance 

of less than 4 cm. The current density applied corresponds to the initial voltage gradient of 
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340 V/cm which was used in the experiment. Similarly, the EOF value corresponds to that 

determined experimentally. For the simulation in absence of the chiral selector, the same 

current density was employed, but a somewhat larger EOF (111.18 µm/s; mobility of 0.327 x 

10-8 m2/Vs) which corresponds to that determined experimentally was used. As expected, the 

enantiomers of methadone comigrated in absence of the chiral selector (Figure 2B).  
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Figure 2. Separation of methadone enantiomers with 8 mM OHP-β-CD in buffer system 1 with a sample 

composed of racemic methadone and chloride (28.9 µM each) in 10-fold diluted buffer without additive. 

Computer predicted dynamics of methadone between 0 and 1 min (at 0.2 min interval) with the cathode on the 

right, (A) in presence and (B) in absence of the chiral selector. The sample initially occupied 3 % of column 

length. The simulation was performed with a 20 cm column divided into 50000 segments (4 µm mesh) at a 

constant current density of 27328.7 A/m2 (initial voltage: 6800 V) and a constant EOF of (A) 102.43 µm/s and 

(B) 111.18 µm/s. The inserts in panels A and B depict the stacking of S-methadone between 0.01 and 1.0 min 

predicted by simulation in absence of EOF. Methadone simulation data obtained with undiluted buffer in the 

sample in presence and absence of complexation with OHP-β-CD are depicted in panels C and D, respectively. 

All other conditions are identical to those of panels A and B, respectively. S and R refer to S-methadone and R-

methadone, respectively. 

 

Simulation provides insight into sample stacking which occurs at the interface between 

sample and buffer. This is particularly the case when the conductivity of the sample solution 

is lower compared to the conductivity of the buffer [40] and is thus seen in the data presented 

in panels A and B of Figure 2. Stacking is predicted to occur rapidly after power application 
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(within the first 2 s; see data presented as inserts in Figure 2 which were obtained in 

simulations without EOF). In absence of the chiral selector, the enantiomers of methadone 

become concentrated about eight-fold (insert Figure 2B). Complexation with the neutral 

cyclodextrin is predicted to further enhance this effect almost two-fold (insert Figure 2A). A 

simulation performed in absence of the electric field gradient between sample and buffer 

(sample dissolved in buffer without chiral selector) revealed the concentration enhancement 

by complexation alone (Figure 2C). With less stacking, separation of the enantiomers 

proceeds at a lower pace and thus requires a larger separation distance (compare data of 

panels A and C of Figure 2). In absence of complexation and an electric field gradient, no 

change in the methadone plateau concentration and no enantiomer separation are predicted 

during analyte migration (Figure 2D). 

The simulations of Figure 2 were conducted under conditions which are typically used 

in laboratory experiments. For 1 min of electrophoresis, simulation time intervals for the data 

of Figures 2A and 2B were 28.13 h and 24.15 h, respectively. Having a sample prepared in 

buffer without the chiral selector, i.e. without the buffer discontinuity due to the sample 

matrix, the time intervals were much shorter (1.88 h and 1.60 h for data of panels 2C and 2D, 

respectively), indicating that handling of the strong buffer gradient which provides the 

required stacking of the analytes is the bottleneck in simulation. With GENTRANS, a mesh of 

4 µm and data smoothing [22] are required to solve this task in the mentioned time frame. In 

order to be able to simulate detector profiles comparable to those monitored experimentally in 

a capillary of 50 cm length, a total of 125000 segments together with an electrophoresis time 

of about 18 min (Figure 3B) would be required. This would take up to several months to 

complete. Thus, in order to cut the execution time, the 20 cm column used for the simulation 

of Figure 2 was periodically extended by a specified number of segments at the cathodic end 

and cut by the same amount of segments at the anodic end such that the actual simulation 

column always had a 20 cm length and a mesh of 4 µm. Care had to be taken that the 

methadone enantiomers were not removed by the shift. The simulation of the detector profile 

at 90 % of column length could thereby be accomplished in less than one week. Detector 

profiles for the configuration of Figures 2A and 2B with detection at 45 cm are depicted in 

Figure 3A. These data reveal that peak concentrations are significantly higher at the point of 

detection compared to the analyte concentration in the sample (compare peak concentrations 

with those of Figures 2A, 2B and 4), indicating that analyte stacking remains effective 
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throughout the separation column. Simulation data (Figure 3A) were found to qualitatively 

compare well with those obtained experimentally (Figure 3B).  
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Figure 3. CZE detector data of the configuration of Figure 2 with a 50 cm capillary and having an absorption 

detector placed at 45 cm (90 % of column length). (A) Computer predicted detector profiles at 6 Hz (for 

simulation conditions see text), (B) experimental data and (C) comparison of detected (solid line) and simulated 

(dotted line) peak shape for R-methadone. The upper graphs in panels A and B are data obtained in absence of 

the chiral selector (data depicted with a y-axis offset). S and R refer to S-methadone and R-methadone, 

respectively. 

 

Experimentally detected analyte peaks were found to be somewhat broader than those 

predicted by simulation and this despite the shorter detection time interval in the experiment 

compared to that of the simulation data. For visualisation, the predicted peak for R-methadone 

was shifted along the x-axis and adjusted in peak height to match the experimental data 

(Figure 3C). The narrower peak width obtained in the simulation suggests that not all 

dispersing factors are considered in the simulation. It is important to note that experiments 

and simulations used approximately the same initial sample plug length, namely 1.2 % of the 

total column length. Thus, a significant impact of a difference in the sampled amount can be 

ruled out. The experiments were performed at constant voltage which explains the differences 

in detection times of the peaks. Under constant voltage conditions and the buffer discontinuity 

due to the sample matrix, both the current and the electroosmotic flow are not constant 

[19,40]. During the course of the run, the current increases between 5 and 10 %. Furthermore, 
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input data for buffer components (Table 1) are temperature, ionic strength and medium 

dependent and are therefore not exactly reflecting those which are present under the 

experimental conditions. 

The buffer additive responsible for complexation of the analytes, OHP-β-CD, is 

predicted to deviate from its initial value of 8 mM at the locations of the two interacting 

analytes (Figure 4). No such changes of the OHP-β-CD concentration are predicted with the 

use of zero mobility for the selector-analyte complexes which indicates that the migration of 

the charged complexes produces the OHP-β-CD peaks (data not shown). OHP-β-CD itself is 

neutral and does not migrate under the influence of the electric field. The predicted 

concentration peaks created by the analytes are small (less than 1 % deviation from the preset 

8 mM of OHP-β-CD). They migrate in the same way as the concentration bulges of the 

neutral complexing additive previously described by Dubrovčáková et al. [23] for 

isotachophoretic configurations of monovalent strong components. During the course of 

electrophoretic transport, the peaks become smaller and diffuse as they are associated with the 

peaks of the analytes (Figure 4). Predicted OHP-β-CD peak profiles reflect the separation of 

the methadone enantiomers (insert in Figure 4).  
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Figure 4. Computer predicted concentration distributions of the two methadone enantiomers (lower graphs) and 

associated profiles of OHP-β-CD (top graphs) after 1, 5, 10 and 15 min of power application for the 

configurations of Figures 2A and 3. The insert depicts the OHP-β-CD deviations across the migrating sample 

components during enantiomer separation (0.2, 0.4, 0.6, 0.8 and 1.0 min time points of Figure 2A). S and R refer 

to S-methadone and R-methadone, respectively.  
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4.3  Visualization of buffer system insights by computer 

simulation 

Simulation can be employed to provide insight into the buffer system used. Chiral 

separations of cationic compounds are most often conducted at low pH, e.g. via use of 

phosphate buffers.  Thus, the second system studied here was a pH 2.4 buffer composed of 90 

mM NaOH, 132 mM phosphoric acid (calculated pH: 2.39), 1.8 mM DIMEB and 10 % 

methanol, a buffer which was previously used to analyze the enantiomers of methadone and 

EDDP in alkaline extracts of urine and in vitro samples after incubation of methadone with 

single CYP450 enzymes [37]. Simulation was employed to visualize the separation of the 

enantiomers of methadone and EDDP (K values between 344 and 474 L/mol, Table 2) 

together with two achiral marker compounds in an electroosmosis free environment (Figure 

5). To characterize the configuration, codeine with no experimental evidence of an interaction 

with DIMEB (K = 0 L/mol) and a hypothetical marker substance M with a very large 

interaction constant (100000 L/mol) were added to the sample. In that example, codeine is 

migrating without retardation due to complexation whereas M is migrating with the mobility 

of its complex with DIMEB (Figure 5). The two buffer components, as well as chloride and 

iodide from the sample, were assumed to have no interaction with DIMEB. All input data 

used for simulation are listed in Tables 1 and 2. The simulation was performed in a 5 cm 

column divided into 10000 segments at a constant 1000 V for 2 min of electrophoresis 

(current density change from 17663.4 to 18321.9 A/m2) and in absence of electroosmosis. 

The data presented in Figure 5 were obtained with the sample being applied in 10-fold 

diluted buffer and without chiral selector. Initial distributions of analytes, buffer components, 

pH and conductivity are depicted as dotted line graphs whereas solid line profiles represent 

those obtained after 12 s of power application (200 V/cm). For the presented time point, 

analytes are shown to become stacked as was discussed for Figure 2A and the distributions of 

the enantiomers of methadone and EDDP indicate that enantiomeric separation is in progress. 

Codeine, which has an ionic mobility equal to methadone but lower compared to EDDP, is 

migrating the fastest. Both EDDP and methadone are retarded due to complexation with 

DIMEB. The same is true for the hypothetical marker M. Diffusion is calculated from the 

mobility values. Thus, codeine which is not complexed appears as the broadest peak and M 

with its highest affinity to DIMEB is predicted as sharpest peak. Using SIMUL5 in the newly 
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extended complex version [31] with the same input data provided identical results (data not 

shown). 

In addition to the analyte dynamics, simulation provides insight into the distributions 

of all buffer components, ionic strength, pH and conductivity. The buffer additive responsible 

for complexation of the analytes, DIMEB, is predicted to deviate from its initial value of 1.8 

mM at the locations of the analytes in a K value dependent fashion. The higher the 

complexation constant, the stronger becomes the increase of DIMEB. For codeine, there is no 

change (see insert in Figure 5), for marker M almost 0.1 mM. No changes of the DIMEB 

concentration are predicted with the use of zero mobility for the selector-analyte complexes 

which indicates that the migration of the charged complexes produces the DIMEB peaks as 

was discussed for the OHP-β-CD case presented in Figure 4. DIMEB itself is neutral and does 

not migrate under the influence of the electric field. Computer simulation also reveals small 

deviations of phosphoric acid and sodium, conductivity and pH across the analyte peaks 

(Figure 5). Furthermore, simulation visualizes the formation of a cationic migrating system 

peak which has a much higher mobility than the analytes (Figure 5). Using Peakmaster [41], 

the system eigenmobility was calculated to be 4.38 x 10-8 m2/Vs, a value which corresponds 

with the migration predicted by simulation. A comparative migrating system peak with a 

mobility of 5.24 x 10-8 m2/Vs is predicted for the buffer configuration of Figure 2 (data not 

shown). The migrating system peak depicted in Figure 5 encompasses deviations in the two 

buffer components, conductivity and pH. As there is no interaction between phosphoric acid 

and sodium with DIMEB assumed, there is no change in DIMEB across the migrating system 

peak. Simulation further reveals a rather broad shape of the rear boundary of the migrating 

system peak. This boundary essentially extends all the way to the stationary boundary at the 

location of the initial interface between sample and buffer. Thus, the actual buffer 

composition around the locations of the analytes is slightly different compared to the initial 

buffer (Figure 5).   
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Figure 5. Simulation data for buffer system 2 with 1.8 mM DIMEB and having a sample composed of racemic 

methadone (28.90 µM), racemic EDDP (24.68 µM), codeine (33.4 µM), a marker base M (16 µM), chloride 

(28.90 µM), iodide (24.68 µM) and 10-fold diluted buffer without additive. The sample initially occupied 1 % of 

column length and was placed between 3 and 4 % of column length. The simulation was performed with a 5 cm 

column divided into 10000 segments (5 µm mesh) at a constant voltage of 1000 V and in absence of EOF. Solid 

line graphs are profiles obtained after 0.2 min of power application whereas initial profiles are drawn as dotted 

lines. S represents a cationically migrating system peak, M refers to a cationic marker with K=100000 L/mol, 

MET refers to methadone and COD stands for codeine. Peaks 1, 2, 3 and 4 refer to changes associated with M, 

methadone, EDDP and codeine, respectively. The cathode is on the right. 

 

Simulation and experimental detector plots for the configuration of Figure 5 are 

presented in Figure 6. Enantioselective simulations were performed with a 20 cm long 

capillary as described for Figure 3 having a 4 µm mesh, a constant current density of 

32365.34 A/m2 (initial voltage: 8000 V) and a constant EOF of 160 µm/s towards the cathode. 

Simulations in absence of DIMEB were made at the same current density and with an EOF of 

180 µm/s. Computer predicted electropherograms depicting the analytes as concentration 

peaks are presented in Figure 6A. For the simulation data presented in panel B of Figure 6, 

concentration values were adjusted to absorption at 195 nm in relation to methadone. Using 

20 µM solutions, EDDP and codeine were determined to absorb 1.173-fold and 0.334-fold 

compared to methadone at this wavelength. Comparison of these data with those monitored 

experimentally (compare data of panel B and C of Figure 6) suggest that there is qualitative 

agreement between simulation and experimental data and this despite the fact that the buffer 
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contained 10 % methanol and the input parameters of the buffer components used (Table 1) 

are those for an aqueous system. 
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Figure 6. CZE detector plots of the configuration of Figure 5 in a 50 cm capillary having an absorption detector 

placed at 45 cm (90 % of column length). Computer predicted detector responses at 6 Hz showing the peaks (A) 

in concentration units and (B) in concentration units adjusted to differences in absorption. Panel C depicts the 

experimental data. Simulations were performed with a 4 µm mesh at a constant current density of 32365.34 A/m2 

and a constant EOF of 160 µm/s. The upper graphs, depicted with a y-axis offset, are corresponding data 

 

4.4  Simulation of isotachophoretic separation of methadone 

enantiomers 

The simulation code is not restricted to the use of CZE configurations with analytes 

that interact with an additive. Other electrophoretic modes, including isotachophoresis, and 

the interaction between buffer components and the additive can also be considered as was 

previously shown by Dubrovčáková et al. [23] for moving boundary configurations 

comprising strong electrolytes. Our code was employed to simulate the isotachophoretic 

separation of methadone enantiomers in presence of OHP-β-CD, a configuration which was 

previously characterized by capillary isotachophoresis and employed for the isolation of 

methadone enantiomers by recycling free fluid isotachophoresis [38]. The leader was 

composed of 10 mM NaOH and 40 mM acetic acid (calculated pH 4.29). The sample 

comprised racemic methadone and chloride (20 mM each) and 10 mM acetic acid (pH 3.39) 

served as terminator. For simulation, a 10 cm column divided into 20000 segments (5 µm 
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mesh) with the sample being placed between 5 and 6 % of column length was assumed and a 

constant current density of 250 A/m2 was applied. Input values used for the simulation are 

those of system 3 given in Tables 1 and 2. It is important to realize that the CZE buffer used 

to determine the analyte parameters had a similar but not equal composition as the ITP leader. 

Computer predicted isotachophoretic zone patterns in presence and absence of an interaction 

between the methadone enantiomers and 5 mM of OHP-β-CD are depicted in panels A and B, 

respectively, of Figure 7. All other components were assumed not to be complexed with 

OHP-β-CD. In absence of the interaction (Figure 7B), there is no enantiomer separation. 

Methadone is shown to produce a cationic isotachophoretic zone with a 2.81 mM plateau 

concentration for each methadone enantiomer which migrates between sodium (leading ion) 

and H+ (terminating ion). The zone is characterized with sharp front and rear boundaries. The 

rear boundary features a conductivity dip which is comparable to previously described 

isotachophoretic configurations [42]. Having the interaction between the methadone 

enantiomers and 5 mM OHP-β-CD (Figure 7A), simulation predicts an ITP separation of the 

methadone enantiomers. R-methadone with the lower complexation constant is forming an 

isotachophoretic zone between leader and S-methadone because its net mobility (1.65 x 10-8 

m2/Vs in the ITP zone) is larger compared to that of S-methadone (1.54 x 10-8 m2/Vs). The 

formed zones not only differ in the enantiomer plateau concentration (4.34 vs. 4.00 mM), pH 

(3.90 vs. 3.86), conductivity (29.6 vs. 27.7 mS/m) and acetic acid concentration (36.74 vs. 

36.87 mM), but also in the concentration of OHP-β-CD (5.76 vs. 5.95 mM). OHP-β-CD itself 

is neutral and does not migrate under the influence of the electric field. The deviation from the 

supplied 5 mM OHP-β-CD across the ITP zones is due to the migration of the charged 

complexes and comparable to the predictions of Dubrovčáková et al. [23] for strong 

electrolytes. No changes of the OHP-β-CD concentration are predicted with the use of zero 

mobility for the selector-analyte complexes (data not shown). Furthermore, the S-methadone 

zone is predicted to slowly decompose at its rear end with an increasing part of S-methadone 

extending into the adjusted acetic acid terminator where its mobility (effective mobility of S-

methadone of 1.49 x 10-8 m2/Vs behind moving boundary at position 8.6 cm of Figure 7A) is 

insufficient to catch up with the plateau zone in which the effective mobility of S-methadone 

is 1.54 x 10-8 m2/Vs. The S-methadone plateau migrates in an enforced isotachophoretic 

configuration with the conductivity of the zone being lower compared to that of the terminator 

(Figure 7A, upper graph). Using SIMUL5 in the newly extended complex version [31] with 
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the same input data provided comparable results (data not shown). A careful study of the 

instability of the S-methadone zone is outside the scope of this investigation. 
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Figure 7. Isotachophoresis of methadone enantiomers (A) in presence and (B) in absence of the interaction with 

5 mM OHP-β-CD between a leader composed of 10 mM NaOH and 40 mM acetic acid (calculated pH 4.29) and 

10 mM acetic acid (pH 3.39) as terminator. The sample comprised racemic methadone and chloride (20 mM 

each) and initially occupied 1 % of column length at the anodic column end. Simulations were performed with a 

10 cm column divided into 20000 segments (5 µm mesh) at a constant current density of 250 A/m2 and without 

any EOF. Profiles presented are for 10 min of electrophoresis time. The cathode is to the right. In the lower 

panels, the y-axis scale for the buffer components (dotted lines) is on the right. Key: HAc, acetic acid; S, S-

methadone; R, R-methadone. 

 

ITP data of methadone predicted by computer simulation were compared with 

experimental results from the literature [38]. Figure 8A depicts simulated detector profiles 

obtained for the configurations of Figure 7 and having a conductivity detector placed at 85 % 

of column length (column position 8.5 cm). The data are presented as 1/conductivity vs. time 

profiles and are compared to experimental data from the literature (Figure 8B). Without a 

chiral selector (top graphs of Figure 8), methadone is producing a cationic isotachophoretic 

zone between leader (L) and adjusted terminator (T) which is characterized with a sharp front 

boundary and a rear boundary featuring a conductivity dip. The conductivity of the 

methadone zone is predicted and experimentally determined to be between the conductivities 
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of the leader and the adjusted terminator. By adding 5 mM of OHP-β-CD to the leader, 

enantiomeric separation was predicted by simulation and observed experimentally (lower 

graphs in Figure 8). R-methadone with the lower complexation constant is forming an 

isotachophoretic zone between leader and S-methadone. The obtained conductivity patterns 

were found to compare well to those monitored experimentally. This suggests that simulation 

with input data which were determined by CZE in a buffer similar to the leading electrolyte 

predicts realistic isotachophoretic patterns. 
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Figure 8. Cationic isotachopherograms (A) predicted by computer simulation and (B) monitored experimentally 

for analysis of racemic methadone with no chiral selector (top graphs), and 5.0 mM OHP-β-CD (bottom graphs) 

in the leader. The simulated responses represent 10 Hz data of 1/conductivity for a detector positioned at 85 % of 

column length of the configurations depicted in Figure 7. For other conditions see text. The experimental data 

are from Ref. [38]. Key: L, leader; T, adjusted terminator; S, S-methadone; R, R-methadone. 

 

5  Concluding remarks  

GENTRANS extended for handling the interaction of monovalent compounds with 

neutral cyclodextrins is demonstrated to be a valuable tool to investigate the dynamics of 
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chiral separations and provide insight into the buffer systems used in chiral CE and chiral 

isotachophoresis at power levels that are typically used in experiments. Analyte stacking 

across conductivity and cyclodextrin gradients, changes of cyclodextrin concentration, buffer 

concentration, pH and conductivity across migrating sample zones and peaks, and the 

formation and migration of system peaks can thereby be investigated in a straightforward way 

which was hitherto inaccessible by dynamic computer simulation. For model systems with 

chiral charged weak bases and neutral modified β-CDs at acidic pH, for which complexation 

constants, ionic mobilities and mobilities of selector-analyte complexes have been determined 

by CZE, simulated and experimentally determined electropherograms and 

isotachopherograms are shown to be in good agreement. CZE data obtained with protonated 

weak bases and a neutral modified β-CD as chiral selector in acidic phosphate buffers 

illustrate that (i) such chiral separations are best performed with the sample being applied in 

diluted separation buffer without complexing agent, and (ii) chiral separation takes place 

behind a cationic migrating system peaks with a broad rear boundary that slightly changes the 

buffer composition at the site of enantiomer migration and separation. In addition to the 

increase in analytical sensitivity, sample stacking provides faster enantiomer separation along 

a shorter distance. The one-dimensional and isothermal code is not restricted to the 

investigated cases which feature interactions between weak bases as samples and neutral 

cyclodextrins as buffer additives. It is general and can be employed to study the interaction of 

monovalent weak and strong acids and bases in any electrophoretic configuration with a 

single weak or strong acid or base additive.  
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Abstract 

Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an 

anesthetic drug for short term surgical interventions and in subanesthetic doses for 

postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. 

Enantioselective capillary electrophoresis with multiple isomer sulfated β-cyclodextrin as 

chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine 

and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine 

and subsequently the biotransformation of norketamine to other metabolites were studied via 

analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic 

norketamine with nine recombinantly expressed human cytochrome P450 enzymes and 

human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, 

CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the 

only enzymes which enable the hydroxylation of norketamine. The latter two enzymes 

produced metabolic patterns similar to those found in incubations with human liver 

microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were 

best described with the Michaelis-Menten model and the Hill equation, respectively. This is 

the first study elucidating the individual enzymes responsible for hydroxylation of 

norketamine. The obtained data suggest that in vitro biotransformation of ketamine and 

norketamine is stereoselective. 
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1  Introduction 

Ketamine ((R,S-2-(2-chlorophenyl)-2-methylamino)cyclohexanon, for chemical 

structure see Fig. 1), is a phencyclidine derivative that is used in human and veterinary 

clinical practice since 1970. Ketamine’s mechanism of action has not been fully elucidated 

yet, but it is considered that the most important neuropharmacological effects of ketamine are 

mediated through its non-competitive antagonism at the N-methyl-D-aspartate (NMDA) 

receptor. Interactions of ketamine with opioid receptors, muscarinic acetylcholine receptors 

and different voltage-gated channels have been described. Because of rapid onset and short 

duration of action, ketamine is frequently used for induction of anesthesia and for short term 

surgical procedures. Due to its hallucinogenic effects even at subanesthetic doses it is abused 

by medical personnel and ketamine (also known as special K) became popular among the 

European party scenes as a drug of abuse where it is taken intranasally, injected, smoked, or 

ingested as part of a drink. Ketamine consists of a racemic mixture of two enantiomers, S-

ketamine and R-ketamine. The S-enantiomer has a four times higher affinity for the NMDA 

receptor than the R-enantiomer and also binds to the μ and κ opioid receptors. The anesthetic 

potency of S-ketamine is two to three times higher than that of the racemic mixture. The 

incidence of unwanted side-effects at equal plasma concentrations is identical for both 

enantiomers, but since lower doses of the S-enantiomer are needed to maintain an equal state 

of anesthesia, fewer side-effects and shorter recovery times are seen with the single 

enantiomer preparation. The pKa value of ketamine is 7.5 and it is therefore positively 

charged at physiological pH. The partition coefficient, also named the log P (octanol/water) 

value, accounts for 3.1. Due to its high lipid solubility and low protein binding (20-50% is 

bound to plasma proteins), ketamine is extensively distributed throughout the body. The half-

life of the parent compound has been reported to be about 3h and it can be administered 

intravenously, intramuscularly, orally, rectally, subcutaneously, epidurally and on the 

transnasal route [1-8]. 

The metabolism of ketamine has been studied in humans and various animal species. It 

was found that ketamine, incubated with human liver microsomes (HLM), is metabolized by 

the hepatic cytochrome P450 (CYP) enzyme system through N-demethylation to norketamine 

followed by hydroxylation of norketamine at various locations at the cyclohexanone and 

chlorophenyl rings and the formation of 5,6-dehydronorketamine [8-14]. The major metabolic 

phase I pathway for S-ketamine is depicted in Fig. 1. Direct hydroxylation of ketamine prior 

to N-demethylation is also possible but occurs to a marginal extent. The same metabolites are 
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observed for other species in vitro [14-17], as well as in vivo in humans and animals [15,18-

23]. 

 

 
Figure 1. Chemical structures for S-ketamine, S-norketamine, 5-hydroxynorketamine and S-5,6-

dehydronorketamine. The asterisk marks the formation of a carbon stereogenic center which is formed upon 

hydroxylation of norketamine at the cyclohexanone ring. 

 

The pharmacological activities of the metabolites have not been well studied in 

humans. In view of the growing interest concerning ketamine as a therapeutic agent and a 

drug of abuse, knowledge of the metabolism of ketamine in humans and the involved 

cytochrome P450 enzymes is of importance. Previous studies with lymphoblast-expressed 

CYP enzymes evidenced that CYP3A4, CYP2B6 and CYP2C9 are mainly responsible for the 

biotransformation of ketamine to its active metabolite norketamine [11,12]. Furthermore, 

incubation of the two ketamine enantiomers with 12 single CYP enzymes revealed also N-

demethylation activities for CYP2A6, CYP2C8, CYP2C19 and CYP2D6 [11]. In vitro studies 

with individual enzymes concerning metabolites other than norketamine could not be found in 

the literature. Thus, efforts in elucidating the CYP enzymes involved in the metabolism of 

ketamine and norketamine were undertaken. In addition the stereoselectivity of each 

metabolic pathway was investigated. This work was executed in the context of a 

multidisciplinary research cooperation elucidating the metabolism and the pharmacokinetics 

of ketamine in different species. The project includes studies in vitro [14,15,17,24] and in vivo 

[15,22,23,25-29] for which enantioselective capillary electrophoresis (CE) with multiple 

isomer sulfated β-cyclodextrin (β-CD) as chiral selector [15,22,23] was employed to analyze 

the stereoisomers of ketamine and its metabolites in equine, canine and human biosamples. 

The main goal of this project was to identify human CYP enzymes which are involved 

in the biotransformation of ketamine to norketamine in vitro and to elucidate which of these 

enzymes catalyze the formation of further metabolites. Individual recombinant human CYP 

enzymes from a baculovirus expression system (referred to as SUPERSOMES) were used for 

that task. Special emphasis was put on the stereoselective aspect of ketamine 
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biotransformation by using enantioselective CE for detection of analytes. Racemic ketamine 

and norketamine were incubated with CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, 

CYP2C19, CYP2D6, CYP3A4 and CYP2E1 SUPERSOMES, and data were compared to 

those obtained with incubation of the same compounds with HLM and human liver cytosol. 

Furthermore, the kinetics of ketamine to norketamine N-demethylation were examined for 

CYP3A4 and CYP2B6 and compared to those obtained with HLM. Two kinetic models 

(Michaelis-Menten and Hill) were fitted to the experimental data. 

 

2  Materials and Methods 

2.1  Chemicals, reagents and solutions 

Racemic ketamine hydrochloride was obtained from the pharmacy of the Inselspital 

(Bern, Switzerland). Norketamine as hydrochloride solution in methanol (1 mg/mL of the free 

base) was purchased from Cerilliant (Round Rock, USA) and (+)-pseudoephedrine 

hydrochloride was from Fluka (Buchs, Switzerland). Sulfated β-CD (7-11 mol sulfate/mol β-

CD) was obtained from Sigma-Aldrich Chemie (Schnelldorf, Germany). Tris and HCl (37 %) 

were from Merck (Darmstadt, Germany), H3PO4 (85 %), ethyl acetate and diammonium 

hydrogenphosphate from Fluka (Buchs, Switzerland), and dichloromethane from Biosolve 

(Valkenswaard, The Netherlands). Calibrator and control samples used for quantification of 

ketamine and norketamine enantiomers were prepared in 100 mM phosphate buffer (pH 7.4). 

Baculovirus-insect-cell-expressed human CYP3A4 + P450 Reductase + cytochrome 

b5 SUPERSOMES, human CYP2C19 + P450 Reductase + cytochrome b5 

SUPERSOMES, human CYP2D6*1 + P450 Reductase SUPERSOMES, human CYP1A1 

+ P450 Reductase SUPERSOMES, human CYP1A2 + P450 Reductase SUPERSOMES, 

human CYP2C9*1 (Arg144) + P450 Reductase + cytochrome b5 SUPERSOMES, human 

CYP2B6 + P450 Reductase + cytochrome b5 SUPERSOMES, human CYP2A6 + P450 

Reductase + cytochrome b5 SUPERSOMES, and human CYP2E1 + P450 Reductase + 

cytochrome b5 SUPERSOMES were purchased from Gentest (Woburn, MA, USA, 

distributed through Anawa Trading, Wangen, Switzerland). The mixed gender pool of HLM, 

containing CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, 

CYP3A4, CYP4A and flavin monooxygenase (FMO), with a protein concentration of 20 

mg/mL in 250 mM sucrose, pooled human liver cytosol and the nicotinamide adenine 
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dinucleotide phosphate (NADPH) regenerating system were also from Gentest. The 

regenerating system comprises two solutions, solution A composed of 31.0 mM NADP+, 66 

mM glucose-6-phosphate (G-6-P) and 66 mM MgCl2 and solution B containing 40 U/mL 

glucose-6-phophate dehydrogenase in 5 mM sodium citrate. The microsomes were stored in 

aliquots at –80 °C and the NADPH regenerating system was kept at –18 °C until use. 

 

2.2  In vitro reactions and sample preparation for metabolic 

studies 

 A mixture containing substrate (either 50 µM racemic ketamine or 50 µM racemic 

norketamine) and NADPH regenerating system (1.55 mM NADP+, 3.3 mM G-6-P, 0.4 U/mL 

G-6-P dehydrogenase, 3.3 mM MgCl2) in 100 mM potassium phosphate buffer (pH 7.4) was 

preincubated at 37°C for 3 min. In case of CYP2C9, a 100 mM Tris buffer (pH 7.5) was used 

instead of the phosphate buffer. For most CYP enzymes (1A1, 1A2, 3A4, 2C19, 2D6 and 2C9 

with CYP content of 1000 pmol/mL), the enzymatic reaction was started at 37°C after 

addition of a 16.3 µL aliquot of SUPERSOMES to a 760 µL reaction solution, which 

provided microsomal incubation mixtures comprising 21 pmol CYP/mL. For CYP2E1, which 

has twice the CYP content compared to the other SUPERSOMES used, the microsomal 

solution was diluted two-fold prior to addition of 16.3 µL of the diluted solution. Aliquots of 

200 µL were withdrawn from the reaction mixture after 0, 60 and 120 min of incubation and 

immediately mixed with 500 µL sodium hydroxide (0.2 M) and 30 µL of the internal standard 

solution (30 µg/mL (+)-pseudoephedrine hydrochloride). For CYP2B6, CYP2A6, HLM and 

cytosol, the reaction was commenced with 32.5 µL of SUPERSOMES, HLM or cytosol added 

to 1510 µL reaction solution and aliquots of 200 µL were withdrawn from the reaction 

mixture after 0, 60, 120 and 180 min of incubation. All experiments were performed in 

duplicates. For extraction, 5 mL of a dichloromethane/ethylacetate (75:25 %, v/v) solvent 

mixture was added to the sample. The tubes were closed, shaken for 10 min and centrifuged at 

about 3500 x g for 5 min. The upper aqueous phase and the protein aggregates were removed 

with a glass pipette under vacuum and the organic phase was decanted into a rounded bottom 

tube. After acidification with a drop of hydrochloric acid (37 %), the organic solvent was 

evaporated under a stream of air at about 40°C. Residues from the evaporation were dissolved 

in 200 µL methanol and vortexed. After evaporation, the residues were redissolved in 30 µL 

of 5 mM Tris-phosphate buffer (pH 2.5).  
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2.3  In vitro reactions and sample preparation for kinetic studies 

 For the characterization of the ketamine N-demethylation with individual CYPs, 

kinetic studies were performed with 10 substrate concentrations of racemic ketamine ranging 

from 5 to 1000 µM. The CYP content was 24 pmol/mL, the incubation time was 8 min and 

the final volume was 200 µL. Linearity of the norketamine formation rate was established 

previously with respect to microsomal protein and incubation time [14,17]. After incubation, 

enzymatic reactions were stopped by adding 500 µL sodium hydroxide (0.2 M) to the sample. 

50 µL of the internal standard solution was added prior to extraction. All experiments were 

performed in duplicates. For the extraction, 3 mL of dichloromethane/ethylacetate (75:25 %, 

v/v) was added to the sample. The closed tubes were shaken for 10 min and centrifuged at 

about 3500 x g for 5 min. The upper aqueous phase and the protein aggregates were removed 

and the organic phase was decanted into a rounded bottom tube. After acidification with a 

drop of 50 mM phosphoric acid (phosphoric acid was used instead of HCL to prevent 

corrosion of the water bath), the organic solvent was evaporated under a stream of air at about 

45 °C. Residues were dissolved in 200 µL methanol and vortexed, evaporated to dryness and 

redissolved in 50 µL of 5 mM Tris-phosphate buffer (pH 2.5).  

 

2.4  CE instrumentation and analytical conditions 

A Proteome Lab PA 800 instrument or a P/ACE MDQ capillary electrophoretic 

system (both Beckman Coulter, Fullerton, CA, USA) equipped with a 50 µm ID fused-silica 

capillary (Polymicro Technologies) of 45 cm total length (effective length of 34 cm) was 

used. Samples were introduced from 0.5 mL polypropylene vials by applying a vacuum of 1.0 

psi (1 psi = 6894.8 Pa) for 7 s (metabolic pattern) or for 6 s (kinetic study). The applied 

voltages were -17.0 kV (reversed polarity, current about –35 µA) and –20 kV (about -45 µA), 

respectively. The temperature of the circulating cooling fluid in the capillary cartridge and 

around sample trays was set to 20 0C. A positive pressure of 0.1 psi to induce a buffer flow 

towards the anode was applied during the entire run. An on-column UV variable wavelength 

detector set to 195 nm was employed for analyte detection. The running buffer was composed 

of 35 mM (metabolic pattern) and 50 mM (kinetic study) Tris, phosphoric acid (pH 2.5) and 

10 mg/mL of sulfated β-CD (70%/30% blend of batches 13112JD and 13307MA). Fresh 

buffer was prepared every day. Before each experiment, the capillary was sequentially rinsed 
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with 0.1 M NaOH (2 min, 20 psi), bidistilled water (1 min, 20 psi) and running buffer (1 min, 

20 psi). Quantitation of ketamine and norketamine enantiomers was based upon internal 

calibration using corrected peak areas (areas divided by detection time). Aqueous calibrators 

containing 0.5, 2.5, 7.5, 15.0 and 30.0 µM of each enantiomer were employed as described 

previously [14]. A typical electropherogram obtained with a calibrator sample is shown as top 

graph in Fig. 2. Assay specifications were the same as reported by Schmitz et al. [14,17]. 

Small differences of the chiral selector concentration in the running buffer resulted in 

appreciable differences in detection times from day to day (Fig. 2). Based on the internal 

calibration used and frequent renewal of the calibration data, however, these variations did not 

have an impact on quantitation. 
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Figure 2. Electropherograms obtained after a 2 h incubation of selected single CYP enzymes with 50 µM 

racemic ketamine and a calibrator sample containing 15 µM of each ketamine and norketamine enantiomer. For 

presentation purposes, data are plotted with a y-scale offset of 8 mAU. Key: S-K, S-ketamine, R-K, R-ketamine, 

S-NK, S-norketamine, R-NK, R-norketamine, IST, internal standard. 
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2.5  Data analysis 

Initial enantiomer substrate concentration against the norketamine formation rate 

(pmol norketamine/min/pmol CYP) was plotted and analyzed by two mathematical models 

(Michaelis-Menten and Hill) using nonlinear least square regression analysis on the Graph 

Pad Prism 4 software (Graph Pad Software, San Diego, USA) and SigmaPlot version 10.0 

(SPSS, Chicago, IL, USA). Curves were compared between enantiomers with a paired 

student´s T-test using Microsoft Excel software (Microsoft, Seattle, USA). A p value < 0.05 

was considered significant. 

 

3 Results and Discussion 

3.1  Identification of enzymes catalyzing N-demethylation of 

ketamine 

Screening of nine human CYP enzymes for ketamine N-demethylation was performed 

in 2-h incubations using 50 µM racemic ketamine. Samples withdrawn at 0, 60 and 120 min 

were analyzed be enantioselective CE using a 35 mM Tris-phosphate buffer (pH 2.5) 

containing 10 mg/mL of sulfated β-CD as a mixture from two different lots. Selected 

electropherograms are presented in Fig. 2 and N-demethylation results are summarized in Fig. 

3. The data reveal that CYP3A4, CYP2C9, CYP2A6, CYP2D6, CYP2B6 and CYP2C19 are 

responsible for norketamine formation. Norketamine was not detected in the samples 

comprising CYP1A2, CYP1A1, CYP2E1 and human liver cytosol instead of a CYP (bottom 

graph in Fig. 2, other data not shown). Quantitation of the enantiomers of ketamine and 

norketamine was accomplished as described previously for HLM and liver microsomes of 

other species [14]. 

The data presented in Fig. 3 suggest that highest demethylation activity is obtained 

with CYP2B6, followed by CYP3A4, CYP2C19, CYP2A6, CYP2C9 and CYP2D6. 

Similarly, Yanagihara et al. [11] reported ketamine N-demethylation activities in microsomes 

from human B-lymphoblastoid cell lines expressing the same six enzymes and CYP2C8, 

CYP2E1 and CYP1A1, whereas no responses were observed for CYP1A2, CYP1B1 and 

CYP4A11. Among the CYP enzymes tested, only CYP2B6, CYP3A4 and CYP2C9 showed 

high activities, whereas the responses with the other enzymes were small with those of 
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CYP2E1 and CYP1A1 being the smallest. Furthermore, Hijazi and Boulieu [12] reported that 

lymphoblast expressed CYP2B6 showed higher demethylation activity than CYP3A4 and 

CYP2C9 which is in agreement with the Yanagihara et al. [11] data for the same three 

enzymes. Our data were generated with individual baculovirus cDNA-expressed human CYP 

enzymes. Compared to the behavior of the lymphoblast expressed enzymes reported in the 

literature, a higher activity of CYP2C19 compared to that of CYP2C9 was observed. 

Otherwise, qualitative agreement was noted between the two systems. The fact that CYP1A1 

and CYP2E1 did not reveal any activity does not make a significant difference as the 

activities reported by Yanagihara et al. [11] were very small. Lack of analytical sensitivity of 

the CE assay used in our work could be responsible for this difference. 
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Figure 3. Ketamine demethylation data of single CYP enzymes for incubations with 50 µM racemic ketamine 

after 0, 60 and 120 min of incubation time. Key: S-K, S-ketamine, R-K, R-ketamine, S-NK, S-norketamine, R-

NK, R-norketamine. 

 

The data presented in Figs. 2 and 3 suggest that ketamine is demethylated in a 

stereoselective manner. Electropherograms obtained after metabolism of ketamine in the 

presence of single CYP enzymes reveal apparent stereoselectivities. This is particularly 

obvious for CYP3A4 when its electropherogram (second graph from top in Fig. 2) is 

compared to that of a calibrator sample in which equal amounts of the enantiomers are present 

(top graph in Fig. 2). For CE analysis of racemic mixtures, the first detected enantiomer peak 

is higher compared to the second (top graph in Fig. 2). For the CYP3A4 data, the peak for S-

ketamine is smaller than that of R-ketamine which indicates that S-ketamine is faster 

metabolized compared to R-ketamine. The same is true for the quantitative data presented in 

Fig. 3. Furthermore, data obtained with CYP2B6 revealed the formation of other peaks that 
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could be related to metabolites of norketamine (cf. Section 3.2). Norketamine peaks at 120 

min are smaller compared to those at 60 min suggesting that further metabolites are formed 

from norketamine (Fig. 3). Similarly, incubation of ketamine with HLM revealed the presence 

of norketamine and four of its metabolites, as previously described [14]. 

 

3.2 Identification of enzymes catalyzing the formation of 

norketamine metabolites 

Incubation of 50 µM racemic norketamine with the nine SUPERSOMES revealed the 

CYP enzymes involved in the formation of norketamine metabolites. Analysis of the samples 

was done in the same way as for the incubations of ketamine. Selected electropherograms are 

presented in Fig. 4. The data revealed that norketamine metabolites are formed by CYP2A6 

and CYP2B6. No norketamine metabolites were detected by enantioselective CE for 

CYP3A4, CYP2C9, CYP2C19, CYP2D6, CYP1A1, CYP1A2 and CYP2E1 (Fig. 4, depicting 

data for CYP3A4 only).  

The obtained electropherograms monitored for the incubations with CYP2B6 and 

CYP2A6 revealed peaks for the stereoisomers of norketamine, 5,6-dehydronorketamine and 

three hydroxylated norketamine metabolites with hydroxylation at the cyclohexanone ring as 

shown in Fig. 4. The enantiomers of 5,6-dehydronorketamine were identified as described in 

[23], whereas hydroxylated norketamine metabolite peaks (peaks I, III and IV in Fig. 4) were 

identified as described in [15]. Identification of the metabolites occurred via spiking with 

standards which were extracted from pony urine and characterized by LC-MS and LC-MSn 

[15,23]. All peaks labeled with the prefixes S and R stem from S-norketamine and R-

norketamine, respectively. In previous work from our laboratory working with in vivo and in 

vitro samples of equines [15], it could be concluded that compounds I and III are precursors 

of 5,6-dehydronorketamine. Furthermore, because Woolf and Adams [9] did not observe the 

formation of 5,6-dehydronorketamine in incubations of 6-hydroxynorketamine with HLM, it 

could be assumed that hydroxynorketamine compounds I and III represent stereoisomers of 5-

hydroxynorketamine. The data presented here are in agreement with this assumption. 5,6-

dehydronorketamine is detected in the experiments with CYP2B6 in which 

hydoxynorketamine compounds III and I were found (center graph of Fig. 4). The data 

obtained with CYP2A6 did reveal a significant amount of compound I but almost no 

compound III (tiny peak for R-III only) and a small amount of R-DHNK (top graph of Fig. 4). 
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This suggests that compound III is more likely to be converted into 5,6-dehydronorketamine. 

Without having standards of these compounds, however, absolute proof cannot be obtained. 

As discussed previously, compound IV is most likely (Z)-6-hydroxynorketamine [15]. The 

formation of compound II (tentatively assigned to 4-hydroxynorketamine), which was found 

in in vivo samples of equines [15] and possibly also in vitro with HLM [14], was not observed 

in the experiments with the two individual CYP enzymes. Compounds I, III and IV are 

identical to those found in incubations of ketamine with liver microsomes of humans, cats and 

horses [14] and in incubations of norketamine with HLM (data not shown). 
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Figure 4. Electropherograms obtained after a 2 h incubation of selected single CYP enzymes with 50 µM 

racemic norketamine. For presentation purposes, data are plotted with a y-scale offset of 8 mAU. Asterisks mark 

peaks that are unrelated to norketamine metabolites. Key: S-NK, S-norketamine, R-NK, R-norketamine, S-

DHNK, S-5,6-dehydronorketamine, R-DHNK, R-5,6-dehydronorketamine, I, II and IV, hydoxylated 

norketamine metabolites, IST, internal standard. 
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Incubation of CYP2B6 with racemic norketamine revealed that S-norketamine was 

metabolized faster than R-norketamine (center graph of Fig. 4). This difference was not 

observed with CYP2A6 (top graph of Fig. 4). However, it is apparent that hydroxylated 

norketamine metabolites and 5,6-dehydronorketamine is formed in a stereoselective manner. 

The specific content of individual CYP450 isoforms in HLM vary strongly. Relative amounts 

of the CYP2A6, CYP2B6 and CYP3A4 enzymes are reported to be 4.0, 0.2 and 28.8 %, 

respectively [30]. Thus, it was interesting to find that norketamine is only metabolized by two 

CYP enzymes which have a low abundance (total of 4.2 % of CYP content in liver 

mirosomes). To the contrary, ketamine is demethylated by CYP enzymes whose total CYP 

content in liver microsomes approximates 53 %. 

 

3.3  Characterization of N-demethylation kinetics of ketamine 

For CYP2B6 and CYP3A4, the two enzymes with highest demethylation activity (Fig. 

3), the demethylation kinetics were assessed via determination of the norketamine formation 

rate as function of substrate concentration using an incubation time interval of 8 min. 

Preliminary experiments revealed that an 8 min incubation was within the linear range of 

norketamine formation and did not produce any detectable metabolites of norketamine. 

Racemic ketamine was applied and the ketamine enantiomer concentration was varied 

between 2.5 and 500 µM. The concentrations of the norketamine enantiomers were 

determined by enantioselective CE and their formation rates were calculated in relation to the 

incubation time and the amount of CYP enzyme involved. Data are presented in Fig. 5 and 

were evaluated according to the Michaelis-Menten and Hill kinetic models. The single site 

Michaelis-Menten model is based on 

v = Vmax [S] / (Km + [S])        (1) 

whereas the Hill equation is expressed by 

v = Vmax [S]n / (K’n + [S]n)        (2) 

where v is the product formation rate (velocity) of the metabolic reaction, [S] is the substrate 

concentration, Km is the Michaelis-Menten constant which is the concentration at which the 

formation rate is 50 % of Vmax, Vmax is the maximum formation rate, K’ is a constant of the 

autoactivation model which is equivalent to Km when n = 1, and n is the Hill coefficient 

[17,31,32]. Standard parameters such as regression coefficient (R2) and F-test were used to 
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determine the quality of a fit to a specific model. For model comparison with the F-test, p < 

0.05 means that the alternative model (Hill model) fits the data significantly better. The 

determined parameters are summarized in Table 1. For the experiment with CYP3A4, the Hill 

equation (Eq. (2)) did not provide a better fit to the experimental data (p > 0.05, Table 1), 

indicating that autoactivation does not take place. No difference was found for the correlation 

coefficients (R2) and n values were determined to be close to unity (Table 1). Thus, the 

experimental data can best be described with the Michaelis-Menten model (Eq. (1)). For the 

kinetics of S- and R-ketamine N-demethylation, significant differences between Km and Vmax 

values were observed with both values being higher for the formation of S-norketamine 

compared to R-norketamine (Table 1). The two curves were found to differ significantly (p = 

0.004). Thus, the conclusion can be drawn that the demethylation of ketamine via CYP3A4 

occurs stereoselectively. For the experiment with CYP2B6 the Hill equation (Eq. (2)) was 

found to provide a better fit to the experimental data (p < 0.05, Table 1), indicating that 

autoactivation does take place. The correlation coefficients (R2) obtained for the Hill model 

were closer to unity compared to those with the Michaelis-Menten model (Table 1). The Hill 

coefficients for S-norketamine and R-norketamine formation were 0.47 and 0.59, 

respectively. In contrast to the case with CYP3A4, these values are not close to unity. The 

regression curves for S-norketamine and R-norketamine formation appear to be almost 

superimposed with that for R-norketamine being lower compared to that for S-norketamine 

(Fig. 5B) and calculated Vmax values differ less than 10 % (Table 1). It was surprising to 

realize, that the two curves were found to differ significantly (p = 0.018) from a statistical 

point of view, indicating that N-demethylation of ketamine by CYP2B6 is stereoselective as 

well. There would be no significant difference if the regression curves would intersect. 
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Intrinsic clearance (CLint), which defines the rate of metabolism for a given drug 

concentration, and maximal clearance due to autoactivation (CLmax), which provides an 

estimate of the highest clearance attained as substrate concentration increases before any 

saturation of the enzyme sites, were calculated according to CLint = Vmax / Km and CLmax = 

(Vmax / K’) [(n-1) / n(n-1)1/n], respectively [31]. Clearance values are listed in Table 1. The 

data reveal that the clearance for CYP2B6 is larger compared to CYP3A4. Furthermore, 

calculated clearance values for the formation of S-norketamine are significantly larger 

compared to those of R-norketamine in all cases. 

Figure 5. Enantioselective kinetics 

of norketamine formation by (A) 

CYP3A4 and (B) CYP2B6. Racemic 

ketamine was incubated for 8 min 

with 24 pmol CYP/mL reaction 

mixture and norketamine formed 

was quantitated by enantioselective 

capillary electrophoresis. Symbols 

denote the mean of duplicates. Solid 

and dotted lines are predicted values 

based on nonlinear regression 

analysis using (A) the Michaelis-

Menten equation and (B) the Hill 

equation. Key: ● = S-norketamine 

(S-NK),  = R-norketamine (R-

NK). 
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Table 1. Kinetic parameters for N-demethylation of ketamine and model comparison a) 
 

Enzyme 

system 

Product Michaelis-Menten model Hill model F-test f) 

  R2 Km 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLint
b) 

[µL/min/ 
Pmol CYP] 

R2 K’ c) 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLmax
d) 

[µL/min/ 
pmol CYP] 

n e) p-value 

CYP3A4 S-NK 0.9934 61.18 38.95 0.64 0.9951 76.27 42.21 0.87 0.8676 0.1644 

CYP3A4 R-NK 0.9929 53.36 31.79 0.60 0.9929 53.79 31.89 0.62 0.9930 0.9501 

CYP2B6 S-NK 0.8957 11.89 26.25 2.21 0.9639 43.08 36.60 3.65 0.4743 0.0083 

CYP2B6 R-NK 0.9423 17.61 27.01 1.53 0.9773 37.38 33.66 2.81 0.5937 0.0135 

HLM S-NK 0.9705 62.80 13.41 0.21 0.9742 80.76 14.52 0.32 0.8194 0.3536 

HLM R-NK 0.9703 69.58 12.64 0.18 0.9723 83.60 13.42 0.26 0.8619 0.5132 
 

a) Data for incubation of racemic ketamine derived from mean values of duplicate determinations. 
b) CLint = Vmax / Km. 
c) K’ is equivalent to Km when n=1. 
d) CLmax = (Vmax / K’) [(n-1) / n(n-1)1/n]. 
e) n = Hill coefficient. 
f) Model comparison. 
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3.4  Comparison with in vitro data obtained with HLM 

In order to approximate the in vivo situation metabolite formation from ketamine 

incubated with single CYP enzymes was compared to incubations with HLM containing a 

mixture of enzymes composed of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP4A and FMO. In incubations of HLM with 

ketamine and norketamine all metabolites produced by CYP2B6 and CYP2A6 were detected. 

These data suggest that the detected metabolites are mainly formed from norketamine and not 

via hydroxylation of ketamine followed by N-demethylation of hydroxyketamine metabolites. 

Thus, N-demethylation of ketamine is the major metabolic step in man as was previously 

reported for equines [15]. 

The kinetic data for the N-demethylation in presence of HLM, which were assessed 

with racemic ketamine at 10 different concentrations (6 - 2000 µM) and having a final protein 

concentration of 0.5 mg/mL (total CYP content: about 6 pmol/mL) [14], are included in Table 

1. Data analysis with both models, Michaelis-Menten and Hill, resulted in reasonable fits. For 

both enantiomers, the p-values of the F-test were determined to be higher than 0.05 and the 

Hill coefficients (n) to be close to unity. This suggests that the Michaelis-Menten fit is better, 

which is in agreement with the results discussed by Kharasch et al. [10] and Schmitz et al. 

[14]. A difference in the N-demethylation rates of the ketamine enantiomers was observed 

with HLM. Compared to S-norketamine, a smaller amount of R-norketamine was formed 

which is consistent with our previous findings [14,24]. The formation curves for S- and R-

norketamine were found to differ significantly (p = 0.0003). Furthermore, clearance for the S-

enantiomer was significantly larger compared to the R-enantiomer, which is in agreement 

with data published by Yanagihara et al. [11]. The clearance values were smaller than those 

observed for the two single CYPs (Table 1). 

 

4  Conclusions 

The enantioselective CE assay for analysis of ketamine and its metabolites in 

microsomal preparations has been successfully used to identify individual CYP enzymes that 

are involved in the metabolism of ketamine and norketamine. The findings indicate that a 

large proportion of the CYP enzymes in the liver are involved in the demethylation of 

ketamine whereas only two low abundant enzymes metabolize norketamine. To our 
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knowledge, the presented data are the first which identify enzymes that are involved in 

biotransformation of norketamine to further metabolites in man. Results from our study reveal 

norketamine to be the major metabolite resulting from ketamine metabolism. Among the 

enzymes tested, CYP3A4 and CYP2B6 could be shown to be the major enzymes responsible 

for the N-demethylation of ketamine. Hijazi and Boulieu [12] observed that a correlation 

between ketamine N-demethylation activity and CYP3A4- and CYP2B6-specific activities 

exists in human microsomes. This conclusion is in agreement with our results. For these two 

enzymes, analysis by enantioselective CE provided the in vitro pharmacokinetics of the 

formation of the norketamine enantiomers in incubations with racemic ketamine. CE is 

thereby shown to be an attractive approach to elucidate differences in the stereoselectivity in 

the investigated metabolic steps in vitro. Furthermore, CYP2B6 and CYP2A6 were found to 

be the only CYP enzymes to produce all metabolites found in incubations with ketamine or 

norketamine and HLM. CYP2B6 was long considered not to be of importance in drug 

metabolism. New investigations indicate the high relevance of this enzyme in the metabolism 

of a number of drugs. It particularly catalyzes various oxidative reactions of non-planar, 

weakly basic and fairly lipophilic compounds with one or two hydrogen bond acceptors [33], 

such as ketamine [11,12] and methadone [34,35]. 
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Abstract 

Enantioselective capillary electrophoresis with sulfated cyclodextrins as chiral 

selectors was used to determine the CYP3A4 catalyzed N-demethylation kinetics of ketamine 

to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral 

phencyclidine derivative, was incubated with recombinant human CYP3A4 from a 

baculovirus expression system as racemic mixture and as single enantiomers.  Alkaline 

liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM 

Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 

mg/mL) or highly sulfated γ-cyclodextrin (2 %, w/v). Data obtained in absence of 

ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-

Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) 

kinetics. Data generated in the presence of ketoconazole as inhibitor could best be fitted to a 

one-site competitive model and inhibition constants were calculated using the equation of 

Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for 

the incubation of racemic ketamine were found to be larger compared with those obtained 

with the incubation of single ketamine enantiomers.  
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1  Introduction 

Ketamine is a phencyclidine derivative that is used in human and veterinary clinical 

practice. Due to the rapid onset and short duration of action, ketamine is commonly used for 

the induction of anesthesia and for short-term surgical operations. Ketamine is also known as 

a popular drug of abuse. Among the interactions on opioid receptors, muscarinic acetylcholine 

receptors and different voltage-gated channels, its neurophysiological effect is mainly based 

on the noncompetitive antagonism on the N-methyl-D-aspartate (NMDA) receptor. Although 

the pharmacodynamic mechanism is not fully understood yet, there are discussions and 

investigations about the use of ketamine in the treatment of major depressive disorders. Due 

to the rapid onset of the antidepressant effect within days, ketamine shows relevant benefits 

compared with common antidepressants, which take weeks to months to achieve their effects. 

Ketamine consists of a racemic mixture of two enantiomers, S-ketamine and R-ketamine. The 

S-enantiomer has a four times higher affinity for the NMDA receptor than the R-enantiomer 

and also binds to the μ and κ opioid receptors. The anesthetic potency of S-ketamine is two to 

three times higher than that of the racemic mixture. The incidence of undesirable effects at 

equal plasma concentrations is identical for both enantiomers, but since lower doses of the S-

enantiomer are needed to maintain an equal state of anesthesia, fewer side effects and shorter 

recovery times are seen with the single enantiomer preparation [1-7]. 

The metabolism of ketamine has been studied in humans and various animal species, 

both in vivo and in vitro. It was found that ketamine is metabolized by the cytochrome P450 

(CYP) enzyme system through N-demethylation to norketamine followed by hydroxylation of 

norketamine at various locations of the cyclohexanone and chlorophenyl rings and the 

formation of 5,6-dehydronorketamine. Direct hydroxylation of ketamine prior to N-

demethylation is also possible but occurs to a marginal extent [8-16]. Recently, the 

metabolism of ketamine via CYP enzymes was characterized in vitro [17]. Among several 

CYP enzymes investigated, CYP3A4 and CYP2B6 were identified as the most active 

enzymes involved in the N-demethylation of ketamine. Furthermore, CYP2B6 and CYP2A6 

were noted to be the only enzymes responsible for the formation of norketamine metabolites 

[17]. The pharmacological activities of the metabolites have not been well studied. With so 

many involved CYP enzymes, drug-drug interactions must be taken into account, when 

ketamine is given with other substrates, inhibitors or inducers of the involved enzymes. 

Particularly when chiral drugs such as ketamine are given as a racemic mixture, the 

enantiomers might be metabolized differently, resulting in another pharmacokinetic profile. 
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Finding kinetic parameters for prediction of potential drug-drug interactions has been of 

major interest in drug discovery and development. 

During the past two decades, enantioselective capillary electrophoresis (CE) was 

shown to represent an appealing methodology for the assessment of the stereoselectivity of 

drug metabolism [18-20], including the determination of kinetic parameters of enzymatic 

reactions in vitro [16,17,21-24]. A multidisciplinary research cooperation elucidating the 

metabolism and the pharmacokinetics of ketamine in different species is currently undertaken. 

The complete project includes studies in vitro and in vivo for which enantioselective CE with 

sulfated cyclodextrins (CD) as chiral selectors are being employed to determine the 

stereoisomers of ketamine and its metabolites in equine, canine and human biosamples [15-

17,24,25-29]. Thus far, the metabolism of ketamine was characterized using enantioselective 

CE with multiple isomer sulfated β-CD, an ill-defined mixture of stereoisomers which varies 

from batch to batch resulting in undesired separation variations and limitations [29]. This 

prompted us to search for other suitable sulfated CDs, including highly sulfated γ-CD [30]. 

Data obtained with highly sulfated γ-CD for the analysis of ketamine and norketamine 

enantiomers in alkaline extracts of in vitro samples are reported in this paper for the first time. 

Enantioselective CE was used for the first time (i) to characterize the complete kinetics of N-

demethylation of ketamine to norketamine via CYP3A4 and (ii) to determine the inhibitory 

effect of ketoconazole, a potent inhibitor on CYP3A4 [31], on the ketamine demethylation in 

vitro. For these tasks, ketamine in absence and presence of ketoconazole was incubated with 

recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and 

as single enantiomer, and the stereoselectivity of the N-demethylation biotransformation 

pathway was investigated. For the elucidation of the kinetic parameters and the inhibition 

constants, obtained data were fitted to various models using nonlinear regression analysis.  

 

2  Materials and methods 

2.1  Chemicals and reagents 

Racemic ketamine hydrochloride was obtained from the pharmacy of the Inselspital 

(Bern, Switzerland) and single enantiomers R- and S-ketamine were kindly provided from CU 

Chemie Uetikon (Lahr, Germany). Norketamine as hydrochloride solution in methanol (1 

mg/mL of the free base) was from Cerilliant (Round Rock, USA) and (+)-pseudoephedrine 
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hydrochloride was from Fluka (Buchs, Switzerland). Sulfated β-CD (7-11 mol sulfate/mol β-

CD) was obtained from Sigma-Aldrich Chemie (Schnelldorf, Germany) and highly sulfated γ-

CD (20 % w/v solution) was kindly provided by Beckman Coulter (Fullerton, CA, USA). 

Ketoconazole was from Sigma-Aldrich (Buchs, Switzerland), Tris from Merck (Darmstadt, 

Germany), H3PO4 (85 %), potassium dihydrogen phosphate and di-potassium hydrogen 

phosphate from Fluka, and ethyl acetate and dichloromethane from VWR International 

(Leuven, Belgium). Calibrators and controls used for quantification were prepared in 100 mM 

phosphate buffer (pH 7.4). Baculovirus-insect-cell-expressed human CYP3A4 + P450 

reductase + cytochrome b5 SUPERSOMES as well as the nicotinamide adenine 

dinucleotide phosphate (NADPH) regenerating system were from Gentest (Woburn, MA, 

USA, distributed through Anawa Trading, Wangen, Switzerland). The enzyme was stored as 

aliquots at -80°C.  

 

2.2  In vitro reactions for kinetic studies 

 Racemic ketamine, S- and R- ketamine were incubated with CYP3A4 at ten substrate 

concentrations ranging from 2.5 to 500 µM per enantiomer. The incubation mixture had a 

final volume of 200 µL and also included NADPH regenerating system consisting of 1.55 

mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 

3.3 mM MgCl2 and 50 μM sodium citrate in 100 mM potassium phosphate buffer (pH 7.4). 

The mixture was preincubated at 37°C for 4 min. The enzymatic reaction was initiated by 

adding CYP3A4 (CYP content: 24 pmol/mL), lasted 8 min and was stopped with 500 µL 

sodium hydroxide (0.2 M) [17]. After addition of 50 µL internal standard solution (30 

µg/mL), the samples were extracted as described in Section 2.4. All experiments were 

performed in duplicates. 

 

2.3  In vitro reactions for inhibition studies 

 Substrate, NADPH regenerating system and ketoconazole in 100 mM potassium 

phosphate buffer (pH 7.4) were mixed and preincubated at 37°C for 4 min. The enzymatic 

reaction was started by addition of CYP3A4 (24 pmol/mL), lasted 8 min and was stopped by 

adding 500 µL sodium hydroxide (0.2 M) to the sample. After adding 50 µL of internal 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 62 

standard solution, the samples were extracted as described in Section 2.4. All experiments 

were performed in duplicates. 

2.4  Sample preparation 

 For the extraction, 3 mL of dichloromethane/ethylacetate (75:25 %, v/v) were added to 

the sample. The closed tubes were shaken for 10 min and centrifuged at about 3500 x g for 5 

min. The upper aqueous phase and the protein aggregates were removed and the organic 

phase was decanted into a rounded bottom tube. After acidification with 100 µL of 50 mM 

phosphoric acid, the organic solvent was evaporated under a stream of air at about 50 0C. 

Residues were dissolved in 200 µL methanol and vortexed, evaporated to dryness and 

redissolved in 50 µL of 5 mM Tris-phosphate buffer (pH 2.5).  

 

2.5  CE instrumentation and analytical conditions 

A Proteome Lab PA 800 instrument (Beckman Coulter, Fullerton, CA, USA) equipped 

with a 50 µm ID fused-silica capillary (Polymicro Technologies, AZ, USA) of 45 cm total 

length (effective length of 34 cm) was used. Samples were introduced from 0.5 mL 

polypropylene vials by applying a vacuum of 1.0 psi (1 psi = 6894.8 Pa) for 6 s. The 

temperature of the circulating cooling fluid in the capillary cartridge and around sample trays 

was set to 20 0C. A positive pressure of 0.1 psi to induce a buffer flow towards the anode was 

applied during the entire run. An on-column UV variable wavelength detector set to 195 nm 

was employed for analyte detection. The buffers used comprised 50 mM Tris, phosphoric acid 

(pH 2.5) and chiral selector. Ten milligram per milliliter of sulfated β-CD (50 %/50 % blend 

of batches 03711JA and 83297MJ) served as chiral selector for the determination of the 

kinetic constants and 2 % w/v of highly sulfated γ-CD was used for the inhibition studies. 

Fresh buffer was prepared every day. The applied voltage was –20 kV (currents of about -45 

µA and -60 µA, respectively). Before each experiment, the capillary was sequentially rinsed 

with 0.1 M NaOH (2 min, 20 psi), bidistilled water (1 min, 20 psi) and running buffer (1 min, 

20 psi). Quantitation of ketamine and norketamine enantiomers was based on internal 

calibration using corrected peak areas (areas divided by detection time). Aqueous calibrators 

containing 0.5, 2.5, 7.5, 15.0 and 30.0 µM of each enantiomer were employed as described 

previously [16,17,24]. Assay specifications were comparable to those reported by Schmitz et 

al. [16,24]. 
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2.6  Data analysis 

Initial enantiomer substrate concentration was plotted against the norketamine 

formation rate (pmol norketamine/min/pmol CYP) and analyzed by two mathematical models 

(Michaelis-Menten and Hill) using nonlinear least square regression analysis on the GraphPad 

Prism 4 software (GraphPad Software, San Diego, USA) and SigmaPlot version 10.0 (SPSS, 

Chicago, IL, USA). Various inhibition models and model comparisons with F-test (p = 0.05) 

were investigated with GraphPad Prism 5 (GraphPad Software). Kinetic curves were 

compared with paired Student´s t-test using Microsoft Excel (Microsoft, Seattle, WA, USA) 

and data sets were evaluated with the t-test using SigmaStat for Windows version 1.0 (Jandel, 

Corte Madera, CA, USA). A p-value < 0.05 was considered significant. 

 

3  Results and discussion 

3.1  Enantioselective CE of ketamine and norketamine with 

sulfated CDs 

In this study, the enantioselective separation of ketamine and norketamine was 

performed with two different sulfated CDs. Multiple isomer sulfated β-CD (Aldrich) was 

employed for the characterization of the kinetic parameters of the N-demethylation and highly 

sulfated γ-CD (Beckman Coulter) for the inhibition study. As discussed previously, separation 

of the enantiomers of ketamine and norketamine can be obtained by using a 50 mM Tris-

phosphate buffer (pH 2.5) containing 10 mg/mL of sulfated β-CD in an untreated fused-silica 

capillary and having reversed polarity, indicating that the migrating drug complexes have a 

negative charge (strong complexation) [15-17,28,29]. Sulfated β-CD from Aldrich comprises 

a mixture of β-CD molecules with 7-11 mol sulfate/mol β-CD [30] and the distribution of 

these molecules varies strongly from batch to batch which was found to have a significant 

impact on the separation of ketamine enantiomers but not for norketamine [29]. With selected 

batches, the ketamine enantiomers could not be completely resolved whereas others provided 

a nice separation of the ketamine enantiomers but R-ketamine almost comigrated with S-

norketamine. Thus, best results for the resolution of the stereoisomers of ketamine and its 

metabolites were obtained with mixtures of two batches [17,29]. Typical electropherograms 

obtained with a 50:50 mixture of two batches (Section 2.5) are presented in Fig. 1. The 

samples analyzed are those from in vitro incubations containing ketamine and norketamine, 
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which were used to determine the CYP3A4 catalyzed kinetics of the N-demethylation of 

ketamine. In agreement with previous investigations [17], no additional ketamine and 

norketamine metabolites were detected.  

It is worth noting that the used 50:50 mixture of two batches of sulfated β-CD is 

different to that used previously [16]. For every new batch, optimized conditions have to be 

elucidated. In order to avoid such efforts for our future activities with ketamine, highly 

sulfated CDs were tested for the analysis of the enantiomers of ketamine and norketamine. 

Compared with the sulfated β-CD product described above, highly sulfated CDs encompass a 

higher degree of sulfation (12 and 13 mol sulfate/mol CD for highly sulfated β-CD and γ-CD, 

respectively) and a much narrower heterogeneity [30]. Highly sulfated β-CD could not be 

used because ketamine enantiomers were not resolved [29]. Highly sulfated γ-CD, however, 

provided complete separation of ketamine and norketamine enantiomers (Fig. 2). This 

configuration was used to analyze the in vitro samples containing ketoconazole as inhibitor of 

CYP3A4. Compared with the data obtained with sulfated β-CD of Aldrich, the relative order 

of the enantiomers of ketamine and norketamine was the same. The appearance of the internal 

standard, however, was completely different (compare data of Figs. 1 and 2).  

 

Figure 1. Electropherograms obtained with 10 

mg/mL sulfated β-CD (A) for a calibrator 

sample containing 15 µM of each ketamine and 

norketamine enantiomer and (B-D) after 8 min 

incubation with CYP3A4 of (B) 50 µM 

racemic ketamine, (C) 25 µM S-ketamine and 

(D) 25 µM R-ketamine. Key: S-K, S-ketamine; 

R-K, R-ketamine; S-NK, S-norketamine; R-

NK, R-norketamine; IST, internal standard 

((+)-pseudoephedrine). Sample preparation and 

CE analysis were performed as described in 

Sections 2.4 and 2.5, respectively.  
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Figure 2. Electropherograms obtained with 2 

% w/v of highly sulfated γ-CD (A) for a 

calibrator sample containing 15 µM of each 

ketamine and norketamine enantiomer and (B-

D) after 8 min incubation with CYP3A4 of (B) 

114.6 µM racemic ketamine, (C) 72.7 µM S-

ketamine and (D) 57.2 µM R-ketamine. Other 

conditions and key as in Fig. 1.   

 

 

 

 

 

 

 

3.2  CYP3A4 mediated N-demethylation kinetics of ketamine 

CYP3A4 was recently shown to be one of the most active CYP enzymes which 

catalyze the demethylation of ketamine to norketamine and was found not to produce any 

further metabolites [17]. Racemic ketamine and single enantiomers were incubated at 

enantiomer concentrations between 2.5 and 500 µM. The demethylation pathway was 

investigated by enantioselective CE and the formation rate was calculated in relation to the 

incubation time and the amount of CYP enzyme involved. Typical electropherograms are 

presented in Fig. 1 and the calculated norketamine formation rates as function of substrate 

concentration are depicted in Fig. 3. Data were evaluated according to the Michaelis-Menten 

and Hill models. The single site Michaelis-Menten model is based on 

v = Vmax [S] / (Km + [S])        (1) 

whereas the Hill equation is expressed by 

v = Vmax [S]n / (K’n + [S]n)        (2) 

where v is the product formation rate (velocity) of the metabolic reaction, [S] is the substrate 

concentration, Km is the Michaelis-Menten constant which is the concentration at which the 
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formation rate is 50 % of Vmax, Vmax is the maximum formation rate, K’ is a constant of the 

autoactivation model which is equivalent to Km when n = 1, and n is the Hill coefficient 

[32,33]. Standard parameters such as coefficient of determination (R2) and F-test were used to 

determine the quality of a fit to a specific model. For model comparison with the F-test, p < 

0.05 means that the alternative model (Hill model) fits the data significantly better. The 

determined parameters are summarized in Table 1.  

For the incubation of racemic ketamine with CYP3A4, the Hill equation (Eq. 2) did 

not provide a better fit to the experimental data (p > 0.05, Table 1), indicating that 

autoactivation does not take place. No difference was found for the correlation coefficients 

(R2) and n values were determined to be close to unity (Table 1). Thus, for racemic ketamine, 

the experimental data can best be described with the Michaelis-Menten model (Eq. 1). For the 

kinetics of S- and R-ketamine N-demethylation, significant differences between Km and Vmax 

values were observed with both values being higher for the formation of S-norketamine 

compared to R-norketamine (Table 1). The experimental data from incubations with single 

enantiomers resulted in a better fit with the Hill equation (p < 0.05, Table 1). The 

corresponding n values were shown to be smaller than unity, indicating a model of negative 

cooperativity binding. As found in the incubations of racemic ketamine, incubation of single 

enantiomers also resulted in higher Km and Vmax values for the formation of S-norketamine 

compared to R-norketamine (Table 1). The kinetic parameters Km and Vmax were higher when 

single enantiomers were incubated separately. Similar observations were made for the 

incubation of ketamine with human liver microsomes [16]. After incubation of both, racemic 

ketamine and single enantiomers, the formation rates of S- and R-norketamine were found to 

differ significantly using a paired Student’s t-test (p = 0.004 and p = 0.002, respectively). The 

stereoselective metabolism was particularly obvious when both enantiomers were incubated 

separately (Fig. 3). Intrinsic clearance (CLint), which defines the rate of metabolism for a 

given drug concentration, and maximal clearance due to autoactivation (CLmax), which 

provides an estimate of the highest clearance attained as substrate concentration increases 

before any saturation of the enzyme sites, were calculated according to CLint = Vmax / Km and 

CLmax = (Vmax / K’) [│(n-1)│ / n(│n-1│)1/n], respectively [32]. Clearance values are listed in 

Table 1. The calculated clearance values for incubations with single enantiomers were higher 

than in the experiments with racemic ketamine, and this for both enantiomers. After 

incubation with racemic ketamine as well as with single enantiomers, clearances for S-
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norketamine are larger compared to those of R-norketamine. Thus, the conclusion can be 

drawn that the demethylation of ketamine via CYP3A4 occurs stereoselectively. 
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Figure 3. Norketamine formation by CYP3A4 for racemic ketamine and single ketamine enantiomers. Symbols 

denote the mean of duplicates. Lines are predicted values based on nonlinear regression analysis using the 

Michaelis-Menten model (for incubation of racemic ketamine) and the Hill equation (for single ketamine 

enantiomers). 

 

Using data produced by enantioselective CE, the stereoselective kinetics of ketamine 

N-demethylation by CYP3A4 in vitro could be determined. Incubation of single enantiomers 

resulted in higher values for the kinetic parameters compared to incubation of racemic 

ketamine. This is plausible as the ketamine enantiomers have different enzyme affinities and 

might interfere in each other’s metabolism. For incubation of racemic ketamine Vmax of both 

enantiomers is up to 40 % smaller compared with the incubation of single enantiomers. The 

influence on the binding constant Km is less impressive. The demethylation of ketamine via 

CYP3A4 occurs stereoselectively. Although this is an in vitro result, possible interactions 

should be considered when this racemic drug is administered in vivo. 
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Table 1. Kinetic parameters for N-demethylation of ketamine and model comparison a) 
 

Substrate Product Michaelis-Menten model Hill model F-test b) 

  R2 Km 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLint
c) 

[µL/min/ 
pmol CYP] 

R2 K’ d) 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLmax
e) 

[µL/min/ 
pmol CYP] 

n f) p-value 

Rac. ketamine S-NK 0.9934 61.18 38.95 0.64 0.9951 76.27 42.21 0.87 0.8676 0.1644 

Rac. ketamine R-NK 0.9929 53.36 31.79 0.60 0.9929 53.79 31.89 0.62 0.9930 0.9501 

S-ketamine S-NK 0.9904 72.65 78.71 1.08 0.9958 122.4 94.77 1.57 0.7686 0.0207 

R-ketamine R-NK 0.9931 57.21 41.17 0.72 0.9963 76.39 45.75 1.06 0.8223 0.0435 

 
a) Data for all incubations derived from mean values of duplicate determinations. 
b) Model comparison. 
c) CLint = Vmax / Km. 
d) K’ is equivalent to Km when n=1. 
e) CLmax = (Vmax / K’) [│(n-1│) / n(│n-1│)1/n]. 
f) n = Hill coefficient. 
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3.3  Ketoconazole inhibition of CYP3A4 catalyzed N-

demethylation of ketamine 

 The inhibition of N-demethylation via CYP3A4 was investigated using ketoconazole 

as a potent and specific inhibitor of CYP3A4. The experiments were performed at inhibitor 

concentrations ranging from 0.1 to 2 µM. Based on recommendations of the Food and Drug 

Administration guidance [31], both substrate and inhibitor concentrations should be varied to 

cover ranges above and below the substrate’s values for Km and inhibition constant Ki. As the 

Ki values for ketoconazole reported in the literature cover a rather broad range (0.0037 – 0.18 

µM in [31], 0.015 – 8 µM according to Thummel and Wilkinson [34]), inhibitor 

concentrations higher than those recommended in [31] were applied in this study. The 

adopted range of inhibitor concentration was determined experimentally. No metabolites 

could be detected when more than 2 µM of ketoconazole was applied, whereas almost no 

inhibition activity was observed at an inhibitor concentration < 0.1 µM. The substrate 

concentrations investigated were 0.25 Km, 0.50 Km, 1.0 Km and 2.0 Km (Km values were 

determined in the kinetic studies described above, Table 1).  

For each of all four substrate concentrations studied, the norketamine formation rate 

was plotted against the logarithm of inhibitor concentration and evaluated by nonlinear 

regression analysis according to the one-site competition model [35] based on 

Y=Bottom + (Top-Bottom)/(1+10^(X-LogIC50))  (3) 

where X is the substrate concentration, Y is the logarithm of inhibitor concentration, IC50 is 

the concentration of inhibitor that reduces enzymatic activity to 50 %, whereas Top and 

Bottom are the upper and lower limits of the curve. In this context, the norketamine formation 

rate without inhibitor was set as the top of the curve, while zero was set as the lower limit as 

no metabolite would be expected with complete inhibition. With the calculated IC50, the 

inhibition constant Ki can be determined according to the equation of Cheng and Prusoff [36]  

Ki = IC50 / (1 + [S]/Km)    (4) 

where [S] is the substrate concentration and Km is the Michaelis-Menten constant determined 

in the previous part of this study. Experimental data together with the fitted curves are 

presented in Fig. 4, and the determined values of IC50 and Ki (expressed as mean ± SD of the 

values obtained with the four substrate concentrations) are summarized in Table 2. For both 

enantiomers, the IC50 values and the inhibition constants were significantly higher for 
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incubation of racemic ketamine compared to the data obtained with incubation of the single 

enantiomers. The presence of one enantiomer seems to influence the inhibition of N-

demethylation of the other, as the two substrates and the inhibitor compete for the same 

enzyme. Comparing the two enantiomers applied as racemate, the obtained IC50 and the Ki 

values do not differ (p > 0.05). The same is true for the corresponding values of the 

incubations with single enantiomers.  

 

Table 2.  IC50 values and inhibition constants with ketoconazole for 

CYP3A4 mediated N-demethylation of ketamine 

Substrate Product IC50 [µM] Ki [µM] 

Racemic 
ketamine S-NK 0.66 ± 0.16 0.38 ± 0.15 

Racemic 
ketamine R-NK 0.70 ± 0.19 0.39 ± 0.20 

S-ketamine S-NK 0.25 ± 0.04 0.14 ± 0.03 

R-ketamine R-NK 0.27 ± 0.08 0.16 ± 0.09 

 
Data represent mean ± SD of the four data sets and values of each data set were derived 
from mean values of duplicate enantioselective CE determinations which were fitted to a 
one site competition model. 

 
The used one-site competition model is based on a competitive model. The data sets 

were fitted by nonlinear regression analysis to various other inhibition models, including 

competitive inhibition, uncompetitive inhibition, noncompetitive inhibition and mixed mode 

inhibition, using the experimentally determined kinetic parameters Vmax and Km. For model 

comparison with the F-test, p < 0.05 means that the alternative inhibition model fits the data 

significantly better. For all data sets, the competitive model was found to be significantly 

better compared to the other models (data not shown), which validated the assumption that 

ketoconazole inhibits CYP3A4 mediated N-demethylation of ketamine in a competitive 

manner such that Eq. 3 can be used for data analysis. 

With enantioselective CE, ketoconazole inhibition of the CYP3A4 mediated N-

demethylation of ketamine could be characterized and the inhibition constants Ki were 

determined. In principle, an inhibition constant describes the affinity between inhibitor and 

enzyme, independent of the substrates. Specific experimental factors, such as the amount and 

type of enzyme and the substrates, were found to have an impact on the inhibition constant 
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[37]. Literature values for ketoconazole as the inhibitor of CYP3A4 using different substrates 

range from 0.0037 to 8 µM [31,34]. In the present study, Ki values between 0.14 and 0.40 µM 

were obtained. Incubation of racemic ketamine with ketoconazole resulted in higher Ki values 

for both enantiomers compared with incubations of single enantiomers. In the presence of two 

substrates with different affinities to the metabolizing enzyme and a specific competitive 

inhibitor on CYP3A4, it requires more inhibitor to reduce the enzyme activity, measured as 

norketamine formation rate, compared with incubations of single enantiomers where the 

inhibitor only has to compete with one substrate. 

 

Figure 4. Enantioselective kinetics of CYP3A4 mediated N-demethylation of ketamine inhibited by 

ketoconazole to (A and C) S-norketamine and (B and D) R-norketamine after incubation of (A and B) racemic 

ketamine, (C) S-ketamine and (D) R-ketamine at four substrate concentrations. Inhibitor concentrations were 

varied from 0.1 to 2 µM. Symbols denote the mean of duplicates. Solid lines are predicted values based on 

nonlinear regression analysis using a one site competition model. Key: [I] = inhibitor concentration; substrate 

concentrations: ■ = 0.25 Km, ▲= 0.5 Km, ▼= 1 Km, ♦ = 2 Km (for Km values, see Table 1). 
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4  Concluding remarks 

Highly sulfated γ-CD was found to nicely separate the enantiomers of ketamine and 

norketamine and to be suitable for their determination in extracts of in vitro samples. With 

highly sulfated γ-CD, the disturbing batch-to-batch variations in ketamine enantiomer 

separation observed with sulfated β-CD are not expected. Using enantioselective CE for 

measuring the metabolite formation rate and evaluation of the data with different models, in 

vitro kinetics of N-demethylation of ketamine via CYP3A4 and inhibition by ketoconazole 

were characterized and relevant kinetic parameters Vmax, Km and inhibition constant Ki were 

determined. Significant differences in the metabolism pathway and also inhibition kinetics 

with ketoconazole were demonstrated. Data obtained in the absence of ketoconazole revealed 

that the N-demethylation occurred stereoselectively. No stereoselective difference was 

observed in the inhibition study with ketoconazole, but inhibition constants for the incubation 

of racemic ketamine were found to be larger compared with those obtained with incubation of 

single ketamine enantiomers. The calculated values must be interpreted with caution. Further 

studies and also in vivo results would be needed to emphasize the clinical relevance. Although 

this is an in vitro experiment, possible drug-drug interactions should be considered when 

racemic drugs are administered in vivo. To date, a number of papers appeared in the scientific 

literature in which the use of enantioselective CE for the determination of kinetic parameters 

of enzymatic reactions in vitro is discussed [16,17,21-24]. Although inhibitory effects on CYP 

enzymes have been studied before [25,38], to the best of our knowledge, this is the first 

publication in which enantioselective CE is being used to determine inhibition constants of a 

single CYP enzyme. Similarly, micellar electrokinetic capillary chromatography in an achiral 

medium was recently employed to determine Ki values for sulfaphenazole and ketoconazole 

to inhibit the CYP2C9 catalyzed hydroxylation of diclofenac [39]. The presented work 

demonstrates that enantioselective CE is an attractive methodology to assess the 

stereoselectivity of drug metabolic reactions in vitro. 
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Abstract 

Execution of an enzymatic reaction performed in a capillary with subsequent electrophoretic 

analysis of the formed products is referred to as electrophoretically mediated microanalysis 

(EMMA). An EMMA method was developed to investigate the stereoselectivity of the 

CYP3A4 mediated N-demethylation of ketamine. Ketamine was incubated in a 50 µm ID bare 

fused-silica capillary together with human CYP3A4 Supersomes using a 100 mM phosphate 

buffer (pH 7.4) at 37°C. A plug containing racemic ketamine and the NADPH regenerating 

system including all required co-factors for the enzymatic reaction was injected, followed by 

a plug of the metabolizing enzyme CYP3A4 (500 nM). These two plugs were bracketed by 

plugs of incubation buffer to ensure proper conditions for the enzymatic reaction. The rest of 

the capillary was filled with a pH 2.5 running buffer comprising 50 mM Tris, phosphoric acid 

and 2 % w/v of highly sulfated γ-cyclodextrin. Mixing of reaction plugs was enhanced via 

application of -10 kV for 10 s. After an incubation time of 8 min at 37 °C without power 

application, the capillary was cooled to 25 °C within 3 min followed by application of - 10 kV 

for the separation and detection of the formed enantiomers of norketamine. Norketamine 

formation rates were fitted to the Michaelis-Menten model and the elucidated values for Vmax 

and Km were found to be comparable to those obtained from the off-line assay of a previous 

study. The data obtained revealed that CYP3A4 N-demethylation of ketamine occurs in a 

stereoselective manner.  
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1 Introduction 

Investigation of drug metabolism has gained increasing interest and importance in 

drug discovery and development. Metabolism of drugs often involves the hepatic cytochrome 

P450 enzyme system. The pharmacokinetics of drugs, particularly chiral drugs undergoing 

stereoselective metabolism, can differ enormously, depending on the activities of the 

metabolizing enzymes, which are influenced by extrinsic and genetic factors. Metabolizing 

enzymes can be induced, inhibited or occupied by other drugs such that drug-drug interactions 

must be taken into account. Also, genetic variations of the enzymes can be very important. 

Thus, in vitro characterization of metabolism is essential during the research phase of drugs 

for elucidation of pharmacological data before going to preclinical and clinical stages.  

Capillary electrophoresis (CE) is an established and attractive methodology for 

elucidation of the metabolism of drugs in vitro due to high resolution, short analysis time and 

low consumption of chemicals and solvents [1-5]. Such determinations are typically 

performed in an off-line modus. After incubation of the substrate with the enzymes and 

extraction of the products formed, samples are analyzed by CE. Furthermore, CE has been 

shown to lend itself as unique and efficient microreactor for chemical reactions followed by 

the on-line assay of a reaction product. This technique is referred to as electrophoretically 

mediated microanalysis (EMMA) and is based on merging zones containing the analyte and 

the reagents, the occurrence of the enzymatic reaction either in presence or absence of the 

applied electric field, and finally the electrokinetic transport of the detectable product through 

an on-column detector or into a detector placed at the capillary end. The first CE study with 

an in-capillary enzymatic reaction was published by Bao and Regnier [6]. Latest advances in 

this technology and its advantages over the classical off-line methods, including automation, 

reduced consumption of chemicals and lower cost, are summarized in recent reviews [7,8]. 

EMMA can be employed to investigate the activity of single isoenzyme molecules, 

measurement of enzyme activity and kinetics, screening of enzyme inhibitors, the 

determination of inhibition constants and IC50 [7-10]. EMMA was also used to investigate 

drug metabolism via CYP450 enzymes. Activity of CYP3A4 for the metabolism of 

testosterone and nifedipine was determined by quantification of the reactant and product co-

factors NADPH and NADP [11]. Co-factor, CYP3A4, reaction buffer and substrate were each 

injected as separate plugs and mixed by application of voltage. Km and Vmax determined by 

EMMA were reported to be consistent with the values found in the off-line assay. In another 
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work, the metabolism of dextromethorphan to 3-methoxymorphinan by CYP3A4 in which the 

injected plugs were mixed by diffusion was studied [12]. Conditions for an EMMA-based 

stereoselective assay were reported for the S-oxygenation of cimetidine mediated by various 

isoforms of flavin-containing monooxygenase (FMO) [13]. Enantioselective separation was 

performed using sulfobuthylether-β-cyclodextrin as chiral selector. The kinetics of the 

stereoselective metabolism was evaluated and kinetic parameters were found to compare well 

to those obtained with an off-line incubation assay. In all these studies considerable efforts 

were necessary to optimize the in-capillary metabolic reaction and to separate, detect and 

quantify the metabolites produced. Alternatively to EMMA, a capillary microreactor was used 

to induce the metabolism of four different substrates mediated by CYP450 enzymes followed 

by collection of the whole content of the capillary and analysis of the samples by UHPLC – 

MS/MS [14]. 

In previous studies from our laboratory, the stereoselective metabolism of ketamine in 

different species was evaluated [15-20]. Ketamine, a chiral phencyclidine derivative, is 

known as an anesthetic drug and, in subanesthetic doses, as a postoperative analgesic. Due to 

the rapid onset of the antidepressant effect, its usage in major depressive disorders is being 

investigated. Ketamine interacts with opioid receptors, muscarinic acetylcholine receptors and 

different voltage gated channels. Its neurophysiological effect is mainly based on the 

noncompetitive antagonism on the N-methyl-D-aspartate (NMDA) receptor. For S-ketamine, 

affinity for the NMDA receptor was found to be four times higher than for the R-enantiomer 

and its anesthetic potency two to three times higher than that of the racemic mixture [21-27]. 

Based on in vitro and in vivo studies in humans and various animal species, it was shown that 

ketamine is metabolized mainly by the hepatic cytochrome P450 (CYP) enzyme system 

through N-demethylation to norketamine, which is then hydroxylated and further transformed 

to dehydronorketamine. To a marginal extent, direct hydroxylation of ketamine prior to N-

demethylation is also possible [15,16,28,29]. 

Various CYP450 enzymes were screened for their metabolizing activity on ketamine 

and norketamine, including CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, 

CYP2D6, CYP2E1 and CYP3A4, and a stereoselective metabolism via several enzymes was 

suspected [17]. Furthermore, CYP2C8 was found to catalyze the N-demethylation of 

ketamine but no metabolites of norketamine were detected (unpublished results). One of the 

main metabolic pathways goes via CYP3A4 whereas norketamine is not metabolized by this 

enzyme [17]. Consequently, the kinetics of ketamine N-demethylation mediated by CYP3A4 
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and its inhibition by ketoconazole was characterized [20]. In this off-line enzyme kinetics 

assay, alkaline extracts of incubations were analyzed by CE using sulfated β-cyclodextrin or 

highly sulfated γ-cyclodextrin as chiral selectors. Relevant kinetic parameters were 

determined and the metabolic reaction was confirmed to be stereoselective. As a continuation 

of that project, the aim of this study was to develop a suitable EMMA method to characterize 

the N-demethylation of ketamine mediated by CYP3A4, to determine kinetic parameters Vmax 

and Km, to investigate the stereoselectivity of this pathway analogously to the off-line assay 

and to compare the results. To our knowledge, this is the first EMMA based assay comprising 

a cytochrome P450 enzyme combined with a stereoselective separation of the products 

formed during the enzymatic reaction. 

 

2  Materials and Methods 

2.1  Chemicals and reagents 

Racemic ketamine hydrochloride was obtained from CU Chemie Uetikon (Lahr, 

Germany). Norketamine as hydrochloride solution in methanol (1 mg/mL of the free base) 

was from Cerilliant (Round Rock, TX, USA). Highly sulfated γ-cyclodextrin (20 % w/v 

solution) was purchased from Beckman Coulter (Fullerton, CA, USA). Tris was obtained 

from Merck (Darmstadt, Germany), H3PO4 (85%), potassium dihydrogen phosphate and di-

potassium hydrogen phosphate from Fluka (Buchs, Switzerland). Calibrators and controls 

used for quantification were prepared in 100 mM phosphate buffer (pH 7.4). Baculovirus-

insect-cell-expressed human CYP3A4+P450 reductase+cytochrome b5 SUPERSOMESTM as 

well as the nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system were 

obtained from Gentest (Woburn, MA, USA, distributed through Anawa Trading, Wangen, 

Switzerland). The enzyme was stored as aliquots at –80°C, while the NADPH regenerating 

system was stored as aliquots at -20°C. 

 

2.2  CE instrumentation and analytical conditions 

A Proteome Lab PA 800 instrument (Beckman Coulter) equipped with a 50 µm id 

fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA) of 44 cm total length 

(effective length of 34 cm) was used. The temperature in the capillary cartridge was set to 37 
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°C for establishment of proper EMMA conditions and reduced to 25 °C for the electrophoretic 

separation, while the sample tray was kept at the lowest possible temperature (around 10 °C). 

The running buffer was composed of 50 mM Tris, phosphoric acid (pH 2.5) and 2 % w/v of 

highly sulfated γ-cyclodextrin as chiral selector. Fresh buffer was prepared daily. Before each 

EMMA experiment, the capillary was sequentially rinsed with 0.1 M NaOH (3 min, 20 psi (1 

psi = 56894.8 Pa)), bidistilled water (2 min, 20 psi) and running buffer (2 min, 20 psi). After 

introduction of the plugs and incubation (see Section 2.3) the capillary was cooled down to 

25°C during 3 min. For the electrophoretic separation, both inlet and outlet ends of the 

capillary were dipped into the running buffer containing the chiral selector (Fig. 1B) and a 

positive pressure of 0.1 psi was used to induce a buffer flow towards the anode. The applied 

voltage for the separation was -10 kV (current about -35 µA). An on-column UV variable 

wavelength detector set to 195 nm was employed for analyte detection. For quantitation, 

norketamine was incubated on-line as described for ketamine in Section 2.3. The calibration 

was based on corrected peak areas (areas divided by detection time). Aqueous calibrators 

containing 10.0, 20.0, 40.0, 80.0 and 160.0 µM of each enantiomer were employed.  

 

2.3  EMMA procedure 

After filling the capillary with running buffer, and if not stated otherwise, four plugs of 

equal length were introduced by applying a vacuum of 1.0 psi for 4 s (Fig. 1A). The order and 

composition of the four plugs was as follows: 1) Incubation buffer consisting of 100 mM 

potassium phosphate buffer (pH 7.4); 2) racemic ketamine ranging from 10 – 500 µM per 

enantiomer, 40 mM NaOH and NADPH regenerating system comprising of 16.12 mM 

NADP+, 34.32 mM glucose-6-phosphate, 4.8 U/mL glucose-6-phosphate dehydrogenase, 

34.32 mM MgCl2 and 600 µM sodium citrate; 3) CYP3A4 (500 pmol/mL) in 100 mM 

potassium phosphate buffer (pH 7.4); 4) Incubation buffer. Between injections of plugs, the 

capillary was shortly dipped into water to avoid unwanted carryover of reactants and buffer 

components. The plugs were mixed by applying a voltage of -10 kV for 10 s, with the inlet 

end dipped into incubation buffer and the outlet end in running buffer (Fig. 1A). To determine 

the kinetic parameters in the kinetic study, the incubation time at 37 °C was 8 min.  
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Figure 1. Schematic representation of EMMA with (A) initial arrangement of plugs and configuration used 

during mixing, incubation and temperature adjustment, and (B) configuration employed during CE separation 

and detection. In the configuration of panel A, voltage is applied only during mixing. Key: IB, incubation buffer; 

E, CYP3A4 as metabolizing enzyme; N, NADPH regenerating system; S, racemic ketamine as substrate; RB, 

running buffer with 2 % highly sulfated γ-cyclodextrin as chiral selector; P, norketamine as product of the 

metabolic reaction; det, detector. CE conditions are described in Section 2.2 and composition of plugs and details 

of EMMA procedure are given in Section 2.3.  

 

2.4  Data analysis 

Initial enantiomer substrate concentration was plotted against the norketamine 

formation rate (pmol norketamine/min/pmol CYP) and analyzed by two mathematical models 

(Michaelis–Menten and Hill) using nonlinear least square regression analysis on the Graph 

Pad Prism 4 software (Graph Pad Software, San Diego, USA) and SigmaPlot version 10.0 

(SPSS, Chicago, IL, USA). Curves were compared between enantiomers with a paired 

student’s t-test using Microsoft Excel software (Microsoft, Seattle, USA). A p-value <0.05 

was considered significant. 

 

3  Results and discussion 

3.1  Optimization of EMMA conditions 

The plug mode as shown in Fig. 1A was applied to perform the EMMA assay. When 

using an EMMA method, the enzymatic reaction must be ensured throughout the incubation 

time. Ketamine should not be complexed with the chiral selector before being metabolized by 
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CYP3A4. Therefore, a plug with incubation buffer is injected prior to the plug which 

comprises the substrate and the co-factors and the vial on the injection side contains 

incubation buffer during mixing and incubation (Fig. 1A). Furthermore, the plug with 

incubation buffer behind the enzyme plug prevents the exposure of the enzyme to the low pH 

of the running buffer.  

Another aspect is the distribution of pH. While the metabolizing CYP3A4 enzyme is 

already provided in a 100 mM phosphate buffer at pH 7.4, the pH of the reaction plug with 

ketamine and NADPH regenerating system has to be adjusted to physiological pH. In the 

initial configuration employed, the pH in this plug was not adapted and no metabolic reaction 

was observed (Fig. 2A). After addition of 40 mM NaOH (pH between 7 – 7.5 as confirmed by 

a pH indicator paper), the anticipated reaction took place which was confirmed via detection 

of norketamine enantiomers during the electrophoretic separation (Figs. 2B, 2C, 2D). It is 

important to note that for electrophoretic separation and detection of the norketamine 

enantiomers the vial on the inlet side had to contain running buffer (Fig. 1B). The chiral 

selector bearing multiple negative charges thereby penetrates the reaction mixture and 

complexes the positively charged enantiomers of ketamine and norketamine. Ketamine and 

norketamine complexes are negatively charged and migrate towards the anode as reported 

previously [17,20].  

The temperature for the incubation was kept at 37°C, the body temperature. Analysis 

by CE directly after incubation at the same temperature would ease the experiment and 

shorten the analysis time. However, complete operation at 37 °C caused frequent breakdowns 

due to high current and permitted the metabolic reaction to continue. Therefore, a cooling 

time of 3 min was applied before starting the electrophoretic separation at 25 °C which 

provided reliable results. Optimization of plug length was another aspect. Plugs established 

with an injection time interval > 4 s would allow for a higher metabolite production but were 

found to broaden the peaks of the products (data not shown). On the other hand, with shorter 

plugs (2 s injection) lower amounts of products were generated (Fig. 2C) and bubbles were 

often formed which caused a breakdown of the current flow. No better data were obtained 

with unequal plug lengths.      
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Figure 2. Electropherograms obtained after incubation of 1 mM racemic ketamine for 8 min at 37 °C. (A) Initial 

configuration without mixing of plugs by voltage application. Plugs were injected by applying 1 psi for 6 s, pH 

of the NADPH / ketamine plug was not adjusted with NaOH, and running buffer contained 3.3 % highly sulfated 

γ-cyclodextrin. All other conditions as described in Sections 2.2 and 2.3. (B) Conditions as described in (A) but 

pH of NADPH / ketamine plug was adjusted with 40 mM NaOH, plug lengths were reduced to 1 psi for 4 s and 

2 % of chiral selector was used. (C) Conditions as in (B) but plug lengths were shortened to 0.5 psi for 4 s and 

plugs were mixed by applying -10 kV for 10 s. (D) Conditions as in (B) with plug mixing by applying a voltage 

of -10 kV for 10 s (method as described in Section 2.3). Peaks marked with asterisks stem from the NADPH 

regenerating system. Key: S-K, S-ketamine; R-K, R-ketamine; S-NK, S-norketamine; R-NK, R-norketamine. 

 

Separation of the formed metabolites from the components of the matrix is necessary 

for quantitation. Fluid flow, differencies of conductivity and viscosity in the plugs, and 

migration of many components with unknown mobility have an impact on the final 

electropherogram. When the plugs were mixed by diffusion only, i.e. without application of 

voltage, norketamine enantiomers were detected showing that the metabolic reaction occurred 

(Fig. 2B). While peaks of both ketamine enantiomers were detected separately, S-norketamine 

was found to be close to the second large peak produced by components of the NADPH 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 86 

regenerating system (Fig. 2B). After applying a mixing voltage of -10 kV for 10 s shortly 

after insertion of the plugs, the R-ketamine peak was found to comigrate with the second large 

peak from the NADPH regeneration system. Peaks for S- and R-norketamine, however, 

became better separated from the matrix (Fig. 2D). Furthermore, a higher metabolite 

production could be achieved. Using normal polarity, lower voltages or shorter time intervals 

for electrokinetic mixing, norketamine peaks were not fully resolved from other peaks. 

Electrophoretic separation in all cases was performed under the conditions described in 

Section 2.2 which are essentially those used previously for the off-line assay [20].  

Compared to the off-line assay, a higher amount of enzymes (500 nM) was applied to 

obtain sufficient metabolite formation. With the incubation performed within the capillary, it 

is important to mention that the fluid volume in which the reaction occurs is not exactly 

defined. Due to the low pH of the running buffer (pH 2.5), the appropriate conditions for the 

metabolic reaction are only assured in the four plug arrangement at pH 7.4 (Fig. 1). Each plug 

was created by a 4 s injection at 1 psi (Fig. 2D). Using the CE Expert Lite calculater of 

Beckman Coulter, the physical length of each of the four plugs inserted at 37 °C was 

estimated as being about 7 mm (1.6 % of total column length). In such a configuration, 

mixing of reactants is assumed to occur by both longitudinal diffusion and transverse 

diffusion from the laminar flow profile generated during pressure injection as was described 

in detail by Krylova et al. [30]. As application of an electric field for a short time (10 s) was 

found to increase metabolite production, it can be assumed that electrophoretic transport 

contributed to the mixing of the reactants as well. Proper analysis of the impact of 

electrophoretic mixing is beyond the scope of this work and will be dealt with separately.   

 

3.2  Assay characterization 

As proof of concept of the on-line incubation, qualitative studies were performed by 

incubating racemic ketamine at a concentration of 1 mM and 37 °C for 0, 8, 30 and 60 min 

(Fig. 3). Using the configuration as described in Section 2.3, metabolite production was found 

to increase during an incubation time investigated up to 60 min. Even when the incubation 

time at 37 °C was 0 min, norketamine was detected which indicates that the metabolic 

reaction occurred during the 3 min cooling time interval (lowest graph in Fig. 3). The data 

presented in Fig. 3 revealed that an incubation time interval of 8 min at 37 °C provided a 

substantial amount of norketamine enantiomers. No norketamine was detected when blank 
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incubations were performed using the same plug configuration both in absence of CYP3A4 or 

ketamine. For that purpose, corresponding plugs were replaced with a plug of incubation 

buffer (Fig. 4).  
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Figure 3. Electropherograms obtained 

for incubation of racemic ketamine (1 

mM) with CYP3A4 for 0, 8, 30 and 60 

min at 37 °C. On-line incubation and CE 

analysis were performed as described in 

Sections 2.3 and 2.2, respectively, and 

data are presented with a y-axis offset. 

Key: #, S-ketamine; S, S-norketamine; R, 

R-norketamine. 

 

Figure 4. Electropherograms obtained 

after incubation for 30 min in absence of 

(A) CYP3A4  or (B) ketamine by 

replacing the corresponding plug with a 

plug of incubation buffer and (C) in 

presence of all components showing the 

occurrence of the metabolic reaction. On-

line incubation and CE analysis were 

performed as described in Sections 2.3 

and 2.2, respectively, and data are 

presented with a y-axis offset. Key: #, S-

ketamine; S, S-norketamine; R, R-

norketamine. 
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From a previous study it is known that norketamine is not metabolized by CYP3A4 

[17]. Thus, calibration of norketamine formation was possible via incubation of norketamine 

(10-160 µM per enantiomer) instead of ketamine and otherwise identical conditions. Typical 

electropherograms of calibration samples are shown in Fig. 5. Over the tested concentration 

range, regression analysis revealed linear relationships. Mean (n= 6) values of the coefficients 

of determination R2 for S-norketamine and R-norketamine were calculated to be 0.992 and 

0.990, respectively. The RSD values were 0.64% and 0.46%, respectively. RSD values of the 

mean of the slopes were 5.34% and 7.11%, respectively, and the intercepts were smaller than 

the responses of the lowest calibrators. Two independent control samples containing 15 µM 

and 100 µM per norketamine enantiomer were analyzed on six different days. For the interday 

reproducibility of the higher control sample, the mean concentration values for S- and R-

norketamine were 101.33 and 101.39 µM, respectively (RSD of 16.89% and 16.46 %, 

respectively). For the lower control sample, corresponding values were 16.24 and 15.58 µM, 

respectively (RSD was 25.5% and 12.43%, respectively). All quantitative data were evaluated 

by external calibration. The use of an internal standard should improve imprecision of the 

quantitative data. Thus, an internal standard which is not affected by the enzyme and can be 

detected after R-norketamine and without interferences should be included in future work.  
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Figure 5. Electro-

pherograms with 0 to 160 

µM norketamine per 

enantiomer (from bottom 

to top, presented with a y-

axis offset) used for 

calibration. Norketamine 

was incubated for 8 min at 

37 °C and detected by CE 

as described in Sections 2.3 

and 2.2, respectively. Key: 

S, S-norketamine; R, R-

norketamine. 
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3.3  Determination of kinetic parameters 

Based on the data of Figs. 3-5, the EMMA assay was used to determine the kinetic 

parameters of the CYP3A4 mediated N-demethylation of ketamine. For that purpose, racemic 

ketamine was incubated for 8 min at 37 °C. Formation rate was calculated in relation to the 

incubation time and to the estimated amount of enzymes involved. Initial enantiomer substrate 

concentration was plotted against the norketamine formation rate (pmol 

norketamine/min/pmol CYP). Data obtained were curve-fitted using nonlinear regression 

analysis according to the Michaelis-Menten and Hill models. While the single-site Michaelis-

Menten model is expressed by ν = Vmax [S] /(Km+[S]) and the Hill equation is based on ν = 

Vmax [S]n /(K’n+[S]n) where v is the product formation rate (velocity) of the metabolic 

reaction, [S] is the substrate concentration, Km is the Michaelis–Menten constant, which is the 

concentration at which the formation rate is 50% of Vmax, Vmax is the maximum formation 

rate, K’ is a constant of the autoactivation model which is equivalent to Km when n=1, and n 

is the Hill coefficient [31, 32]. Standard parameters such as the coefficient of determination 

(R2) and F-test were used to determine the quality of a fit to a specific model. For model 

comparison with the F-test p<0.05 means that the alternative model (Hill model) fits the data 

significantly better. The determined parameters for the assumption of a two-fold dilution of 

the enzyme are summarized in Table 1. 

Data obtained from on-line incubation of racemic ketamine with CYP3A4 resulted in a 

better fit to the Michaelis-Menten model (Fig. 6). The coefficients of determination (R2) were 

similar and the Hill coefficients were smaller than unity. Nevertheless, model comparison 

using the F-test confirmed that the N-demethylation of ketamine via CYP3A4 can best be 

described with the Michaelis-Menten model (p> 0.05, Table 1). In the previous study with 

off-line incubation of racemic ketamine [20], the Michaelis-Menten model was also found to 

be superior for this pathway. Kinetic parameters Vmax and Km were determined in this study. 

Depending on the efficiency of plug-mixing by diffusion and electrokinetic transport during 

the short application of voltage, which is assumed to be associated with up to a four-fold 

dilution of the enzyme, the values for Vmax vary between 13.33 to 53.34 pmol 

norketamine/min/pmol CYP for the formation of S-norketamine and 10.04 to 40.16 pmol 

norketamine/min/pmol CYP for the formation of R-norketamine (lowest value is for no 

dilution). These data compare well with those obtained in the off-line assay (38.95 and 31.79 

pmol norketamine/min/pmol CYP for S- and R-norketamine, respectively, [20]). Furthermore, 

as observed in the off-line assay, kinetic parameters Vmax and Km obtained for the formation  
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Table 1. Kinetic parameters for N-demethylation of ketamine and model comparison a) 
 

Substrate Product Michaelis-Menten model Hill model F-test f) 

  R2 Km 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLint
b) 

[µL/min/ 
pmol CYP] 

R2 K’ c) 
[µM] 

Vmax 
[pmol/min/ 
pmol CYP] 

CLmax
d) 

[µL/min/ 
pmol CYP] 

n e) p-value 

Rac. ketamine S-NK 0.9825 122.3 26.67 0.218 0.9881 245.2 34.67 0.291 0.7616 0.1863 

Rac. ketamine R-NK 0.9705 107.5 20.08 0.187 0.9788 238.6 26.87 0.256 0.7203 0.2217 

 
a) Data for all incubations derived from mean values of duplicate determinations and assuming that the enzyme was diluted two-fold. 
b) CLint = Vmax / Km 
c) K’ is equivalent to Km when n=1 
d) CLmax = (Vmax / K’) [(│n-1│) / n(│n-1│)1/n] 
e) n = Hill coefficient 
f) model comparison 
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of S-norketamine were higher compared to R-norketamine. Using a paired Student’s t-test, the 

formation rates of both enantiomers were shown to differ significantly (p = 0.006), suggesting 

a stereoselective N-demetyhlation of ketamine via CYP3A4. These results are in accordance 

with those from the off-line study [20]. While values of Vmax were comparable to those 

obtained in the off-line study, the determined values for Km were about two-fold larger. 

Interestingly, the ratio of Km for S-norketamine formation to Km for R-norketamine formation 

was the same in both, the on-line and the off-line study (1.138 and 1.147, respectively). 

Consequently, the calculated intrinsic clearances CLint (Table 1) also differ from the values 

calculated in the off-line assay. However, such calculated values must be interpreted with 

caution. More studies and also in vivo results would be needed to emphasize the clinical 

relevance of the calculated kinetic parameters. 
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Figure 6. Kinetics of norketamine enantiomer formation by CYP3A4 after 8 min incubation with racemic 

ketamine at 37 °C. Symbols denote the mean of duplicates. Solid and dotted lines are predicted values based on 

nonlinear regression analysis using the Michaelis–Menten equation and assuming a two-fold dilution of the 

enzyme. Key:  S-norketamine (S-NK) and  R-norketamine (R-NK). 

 

It is known from the data presented in Fig. 3 that norketamine is also produced during 

the 3 min cooling period. Thus, the kinetic data were also evaluated considering a total 
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incubation time of 11 min (8 min incubation at 37 °C and 3 min cooling time). Analysis of the 

data revealed that only values for Vmax and clearances are thereby affected. They become 

27.28 % smaller compared to those obtained for the 8 min incubation time. With a reduction 

in temperature, the metabolite production rate is assumed to become lower such that the 

effective values should be between those obtained for incubation time intervals of 8 and 11 

min. To avoid this uncertainty, conditions without a cooling phase prior to separation and 

analysis of the products should be worked out. 

 

4  Concluding remarks 

In the current study, the N-demethylation of racemic ketamine mediated by CYP3A4 

in vitro was characterized using EMMA methodology. Injection of the reactants as multiple 

plugs enabled the enzymatic reaction and electrophoretic mixing enhanced product formation. 

By adding two incubation buffer plugs to bracket the plugs with the enzyme and substrates, 

these were well protected from the pH of the background electrolyte and the chiral selector in 

the running buffer. Additionally, optimization of other conditions, such as pH of the 

incubation medium, length of plugs, mixing voltage and temperature from rinsing to analysis 

were crucial for sufficient formation and detection of the metabolites. Although the running 

time of each analysis is higher compared with the off-line assay, the automated method with 

in-capillary incubation makes the off-line incubation followed by extraction of the products 

unnecessary. The amounts of reagents required and the overall workload are smaller for the 

on-line assay. Using highly sulfated γ-cylcodextrin as chiral selector, the kinetics of the 

stereoselective metabolism of ketamine via CYP3A4 was characterized and the relevant 

kinetic parameters were determined and found comparable to those of the off-line study [20]. 

The EMMA based study revealed that the metabolism of ketamine via CYP3A4 is 

stereoselective. To our knowledge, this is the first study using EMMA to assess the kinetics of 

enantioselective drug metabolism mediated by a CYP450 enzyme. Further work should be 

addressed to shorten the analysis time, e.g. by short-end injection as used in another EMMA 

assays [12, 33], to avoid the cooling phase after incubation, to understand the contribution of 

electrophoretic transport to plug mixing and to include an internal standard such that the 

EMMA method can be further improved and widely applied to assess enzymatic activity in a 

fast, low-cost and automated way.  

 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 93 

Acknowledgments 

Valuable discussions with Jitka Caslavska and Regula Theurillat are gratefully 

acknowledged. This work was funded by the Swiss National Science Foundation. 

 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 94 

References 

[1] Naylor, S., Benson, L.M., Tomlinson, A.J., J. Chromatogr. A. 1996, 735, 415-438. 

[2] Zaugg, S., Thormann, W., J. Chromatogr. A 2000, 875, 27-41. 

[3] Zhang, J., Konečný, J., Glatz, Z., Hoogmartens, J., Van Schepdael, A., Cur. Anal. 

Chem. 2007, 3, 197-217. 

[4] Scriba, G. K., J. Pharm. Biomed. Anal. 2011, 55, 688-701. 

[5] Caslavska, J., Thormann, W., J. Chromatogr. A 2011, 1218, 588-601. 

[6] Bao, J., Regnier, F. E., J. Chromatogr. 1992, 608, 217–224. 

[7]  Fan, Y., Scriba, G. K., J. Pharm. Biomed. Anal. 2010, 53, 1076–1090. 

[8]  Hai, X., Yang B.-F., Van Schepdael, A. Electrophoresis 2012, 33, 211-227. 

[9]  Xue, Q. F., Yeung, E. S., Nature 1995, 373, 681–683. 

[10]  Martín-Biosca Y., Asensi-Bernardi L., Villanueva-Camañas R. M., Sagrado S., 

Medina-Hernández M. J., J Sep Sci. 2009, 32, 1748-1756. 

[11]  Zhang J., Hoogmartens J., Van Schepdael A., Electrophoresis 2008, 29(17), 3694-

3700. 

[12]  Zeisbergerová, M., Řemínek, R., Mádr, A., Glatz, Z., Hoogmartens, J., Van 

Schepdael, A., Electrophoresis 2010, 31, 3256–3262. 

[13]  Hai, X., Adams, E., Hoogmartens, J., Van Schepdael, A., Electrophoresis 2009, 30, 

1248–1257. 

[14]  Curcio R., Nicoli R., Rudaz S., Veuthey J. L., Anal Bioanal Chem. 2010, 398, 2163 – 

2171. 

[15] Schmitz, A., Theurillat, R., Lassahn, P.-G., Mevissen, M., Thormann, W., 

Electrophoresis 2009, 30, 2912–2921. 

[16] Schmitz, A., Thormann, W., Moessner, L., Theurillat, R., Helmja, K., Mevissen, M., 

Electrophoresis 2010, 31, 1506–1516. 

[17] Portmann, S., Kwan, H. Y., Theurillat, R., Schmitz, A., Mevissen, M., Thormann, W., 

J. Chromatogr. A. 2010, 1217, 7942–7948. 

[18] Schmitz, A., Portier, C. J., Thormann, W., Theurillat, R., Mevissen, M., J. Vet. 

Pharmacol. Ther. 2008, 31, 446–455. 

[19] Capponi, L., Schmitz, A., Thormann, W., Theurillat, R., Mevissen, M., Am. J. Vet. 

Res. 2009, 70, 777–786. 

[20] Kwan, H. Y., Thormann, W., Electrophoresis 2011, 32, 2738-2745. 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 95 

[21] Baselt, R. C., Cravey, R. H., Disposition of Toxic Drugs and Chemicals in Man, 4th 

Edn, Chemical Toxicology Institute, Foster City, CA 1995, pp. 412–414. 

[22] Moffat, A. C., Osselton, M. D., Widdop, B., Galichet, L. Y. (Eds.), Clarke’s Analysis 

of Drugs and Poisons in Pharmaceuticals, Body Fluids and Postmortem Material, 3rd 

Edn, Pharmaceutical Press, London, UK 2004, pp. 1152–1153. 

[23] Adams, H. A., Werner, C., Anaesthesist 1997, 46, 1026–1042. 

[24] Craven, R., Anaesthesia 2007, 62, 48–53. 

[25] Sinner, B., Graf, B. M., Handb. Exp. Pharmacol. 2008, 182, 313–333. 

[26] Aroni, F., Iacovidou, N., Dontas, I., Pourzitaki, C., Xanthos, T., J. Clin. Phramacol. 

2009, 49, 957–964. 

[27] Machado-Vieira, R., Salvadore, G., DiazGranados, N., Zarate, C. A., Pharmacol. Ther. 

2009, 123, 143–150. 

[28] Kharasch, E. D., Labroo, R., Anesthesiology 1992, 77, 1201–1207. 

[29] Turfus, S. C., Parkin, M. C., Cowan, D. A., Halket, J. M., Smith, N. W., Braithwaite, 

R. A., Elliot, S. P., Steventon, G. B., Kicman, A. T., Drug Metab. Dispos. 2009, 37, 

1769–1778. 

[30] Krylova, S.M., Okhonin, V., Evenhuis, C.J., Krylov, S.N., Trends Anal. Chem. 2009, 

28, 987-1010. 

[31] Houston, J. B., Kenworthy, K. E., Drug Metab. Dispos. 2000, 28, 246–254. 

[32] Tracy, T. S., Hummel, M. A., Drug Metab. Rev. 2004, 36, 231–242. 

[33] Stahl, J. W., Catherman, A. D., Sampath, R. K., Seneviratne,C. A., Strein, T. G., 

Electrophoresis 2011, 32, 1492–1499. 

 



Enantioselective capillary electrophoresis: Fundamental aspects and application to the in vitro 
assessment of CYP3A4 mediated ketamine N-demethlyation 

 Hiu Ying Kwan Inauguraldissertation, 2012 Page 96 

C. Conclusions 
Enantioselective CE was confirmed to be an attractive, effective, low-cost and 

automatable methodology to assess drug metabolism. The principles of stereoselective 

separation using cyclodextrins were studied through computer simulation with GENTRANS. 

This valuable dynamic simulation tool provided better and improved comprehension of the 

complexation between analyte and chiral selector and insights into the buffer systems. 

Complexation constants and mobilities of analyte-chiral selector-complexes between charged 

weak bases and neutral cyclodextrins were determined experimentally at acidic pH. These 

data as well as other parameters describing the buffer systems were used as input data to 

perform the simulations. Simulated electropherograms were shown to be in good agreement 

with those obtained from the experiments. Furthermore, simulation with GENTRANS 

illustrated that the configuration with the sample dissolved in diluted buffer without 

complexing chiral selector resulted in a sample stacking effect and increased analytical 

sensitivity (Chapter B.1.; Electrophoresis 2012, 33, in press). 

Using CE with sulfated cyclodextrins as chiral selectors, the kinetics of the CYP3A4 

catalyzed N-demethylation of ketamine was characterized via analysis of extracts of 

incubations of racemic ketamine and single enantiomers together with CYP3A4 Supersomes. 

The Michaelis-Menten model was shown to fit best for the incubation of racemic ketamine, 

while the Hill equation provided the better fit for the formation of norketamine after 

incubations of single enantiomers. For both enantiomers, the elucidated kinetic parameters Km 

and Vmax were considerably higher after incubations of single enantiomers compared to those 

obtained from racemic ketamine. Furthermore, after incubations of ketamine as racemate and 

single enantiomers, formation rate of S-norketamine was higher compared to R-norketamine. 

Metabolisms of both enantiomers were shown to differ significantly confirming the 

stereoselective metabolism of ketamine (Chapters B.2./B.3.; [54,55]). 

Due to batch-to-batch variations of sulfated β-cyclodextrins used thus far, highly 

sulfated γ-cyclodextrins were firstly used in this ketamine project and were shown to nicely 

separate the ketamine and norketamine enantiomers. Highly sulfated γ-cyclodextrins provided 

reliable CE data for the inhibition study in which racemic ketamine and single enantiomers 

were incubated with CYP3A4 in the presence of ketoconazole, an antimycotic known as a 

potent CYP3A4 inhibitor. When data were fitted to various inhibition models by nonlinear 

regression analysis, the one-site competitive model was found to fit best for the inhibition 

kinetics. Using the equation of Cheng and Prusoff [58], inhibition constants were determined 
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and found to be in the range of the literature values for ketoconazole in inhibition studies of 

CYP3A4 and different substrates [59,60]. No stereoselective difference could be shown in the 

inhibition kinetics. Incubation of racemic ketamine with ketoconazole resulted in higher Ki 

values for both enantiomers compared to incubations of single enantiomers. This corresponds 

to our expectation as higher inhibitor concentrations are required to reduce the enzyme 

activity, measured as norketamine formation rate, when both enantiomers as substrates with 

different affinities to the enzyme are present, compared to incubations of single enantiomers 

where only one enantiomer is competing with the inhibitor for the enzyme. However, such in 

vitro determined kinetic parameters must be interpreted with caution. To emphasize the 

clinical relevance, further studies including in vivo data are necessary. Nevertheless, drug-

drug interactions must be considered when chiral drugs are administrated as racemic mixtures 

(Chapter B.3.; [55]). 

Chiral CE was successfully used to investigate drug metabolism of ketamine 

qualitatively and also quantitatively. As a progress of the current study, a method based on the 

EMMA technique was designed to characterize the CYP3A4 catalyzed N-demethylation of 

ketamine in an on-line modus. Reactants were injected into the capillary as multiple plugs 

bracketed by two incubation buffer plugs, assuring proper reaction conditions and protecting 

enzymes and ketamine from the extreme pH and from the chiral selector of the running 

buffer. Optimization of other conditions such as pH of the incubation medium, length of 

plugs, mixing voltage and temperature from rinsing to analysis were necessary to enable the 

enzymatic reaction, which was additionally enhanced by short electrophoretic mixing. After 8 

min incubation at 37°C, a cooling period of 3 min was introduced before the CE analysis was 

performed at 25°C. Norketamine formation rate was calculated by external calibration. Data 

obtained were fitted using nonlinear regression analysis and revealed a better fit for the 

Michaelis-Menten compared to the Hill equation. However, as a notable amount of 

norketamine was detected during the 3 min of cooling time, the enzymatic reaction must be 

assumed to continue during these 3 min at a reduced rate and thus, the total incubation time is 

between 8 – 11 min. Also, as no homogenous mixing of the reactants could be assured, the 

effective concentrations of enzymes could not be defined exactly. After consideration of these 

uncertainties, the value for Vmax could vary in a range which is comparable with the results 

obtained in the off-line study. Furthermore, as observed in the off-line assay, the investigated 

metabolic pathway was found to occur stereoselectively (Chapter B.4.; submitted for 

publication in Electrophoresis). 
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Although the running time of each analysis is higher compared to the off-line assay, 

the amounts of reagents and overall workload could be reduced with this automated EMMA 

method. A further effort to continue this project would include additional optimization of the 

EMMA method such as shortening of the analysis time, e.g. by short-end injection as used in 

other EMMA studies [61, 62], avoidance of the cooling phase after incubation, inclusion of an 

appropriate internal standard, which must not interfere with the enzymatic reaction and can be 

well separated from other components. Furthermore, a comprehensive insight into the 

contribution of electrophoretic transport to plug mixing could be gained by computer 

simulation for which input data should be elucidated. After all these improvements, the 

EMMA method should be widely applicable to assess enzymatic activity in a fast, low-cost 

and automated way. 
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