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Abstract

The recent combination of Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) is of emerging interest in clinical routine. On the
one hand, MRI is a widely-used diagnostic tool in medical practice. The ex-
cellent soft-tissue contrast offers reliable anatomical information. On the other
hand, PET is a key imaging technique in nuclear medicine. It shows the func-
tional metabolism thus providing information on the biochemical and physiolog-
ical processes of the patient. The recently developed MR/PET hybrid system
combines these advantages in one whole-body system.

The integration of the PET detector in an MR system is a new challenge. In
particular, new concepts for the attenuation correction of the PET data are
required. This attenuation correction can be performed based on the MR data.
However, the MR field-of-view (FoV) is limited by intrinsic physical restrictions
such as By inhomogeneities and gradient nonlinearities. It has been reported
that the PET quantification is biased due to the limitation of the MR-based
FoV. Thus, new acquisition techniques are required for imaging beyond the FoV
limitation. This was addressed in this thesis.

A novel method was developed to compensate the distortions arising from the
gradient nonlinearity and the By inhomogeneity by using an optimal gradient
amplitude. This imaging technique was implemented in a spin-echo-based se-
quence featuring multi-slice acquisition, bipolar readout and continuous table
movement. Thereby, an extension of the FoV was achieved. The optimal se-
quence parameters were determined inline and applied automatically. No further
user interaction or hardware modifications were required. The additional acqui-
sition time is easily tolerable for clinical routine.

In a patient study the improvement achieved by the proposed method was ver-
ified. The reported bias in the PET reconstruction was reduced significantly.
Therefore, the proposed technique improves the MR-based attenuation correc-
tion of the PET emission data. Furthermore, the achieved FoV extension might
be of interest for diverse MR applications such as image-guided therapy or mea-
suring of large patients. In summary a method has been developed that improves
the PET quantification in MR/PET hybrid imaging.
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Chapter 1: Introduction

In medical diagnosis, magnetic resonance imaging (MRI) has become one of the
most important imaging modalities over the last few decades. Since the pioneer-
ing work of Mansfield and Lauterbur in 1973 [1, 2], honored by the Nobel Prize in
2003, and the introduction into clinical use in the 1980s, MRI is both essential in
clinical routine and subject of an increasing number of fascinating research and
further technical developments. MRI is a non-invasive imaging modality. The
most commonly used application in clinical routine is the cross-sectional image
acquisition of anatomical data. In comparison to different imaging modalities
such as Computer Tomography (CT) or Positron Emission Tomography (PET),
MRI offers an excellent soft-tissue contrast without the use of ionizing radiation.
While MRI has various advantages in distinguishing anatomical structures, PET
is required to visualize the functional processes of the body. Particularly in on-
cology, neuroimaging and cardiology, PET is an important technique. Consid-
ering the complementary information provided by MRI and PET a combination
into one hybrid system is obvious.

1.1 MR/PET Hybrid Imaging

In multimodal imaging, a recent accomplishment is the successful integration of
MRI and PET into one clinical whole-body system for true simultaneous acquisi-
tion [3—14]. In contrast to the established PET/CT hybrid imaging modality, the
MR/PET hybrid system offers an excellent soft-tissue contrast. Functional and
anatomical information can be acquired simultaneously and the radiation-dose
of the CT can be spared. Thus, MR/PET is of emerging interest for many clin-
ical applications such as abdominal imaging [15], tumor neuroimaging [16, 17],
diffusion tensor imaging [18], prostate cancer [19], cardiac metabolism [20], car-
diac function [21] and whole-body oncology [22]. Figure 1.1 shows images from
a whole-body MR /PET acquisition.

1.1.1 Magnetic Resonance Imaging

An MR experiment typically employs three types of electromagnetic spin inter-
actions: a strong static magnetic Bp-field aligns the spin magnetization, MR
signal excitation is performed by a radiofrequency Bj-field and a time-varying
gradient field allows for the spatial encoding of the MR signal. In the presence
of a homogeneous static magnetic field the energy level of the nuclei splits into
sub-levels according to the Zeeman effect. The energy spectrum is quantized
with equally spaced energy levels dependent on the strength of the magnetic
field

E,, = vhmBy, (1.1)
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Chapter 1: Introduction

Figure 1.1: Whole-body MR/PET acquisition in a patient with suspicion for
tumor recurrence of cervix cancer. Coronal T2 weighted inversion recovery se-
quence (A). Corresponding superimposition (B). FDG-PET (C). Adapted from
[15].

where 7 is the gyromagnetic ratio, i the Planck constant, m the quantum num-
ber and By the strength of the main magnetic field.

The transition between neighboring energy levels can be induced by the radiofre-
quency Bi-field. The energy of the Bi-field EFrp = hwrpr has to be equal to the
difference between the adjacent energy levels to allow such a transition. Thus,
the resonance condition is:

wWRrF = wy = vBy. (1.2)

For the image formation it is essential to extract the contribution factor of each
voxel from the total signal. Such a spatial encoding of the signal is achieved by
three linear space-dependent gradient fields

Beg=G-7 (1.3)

which are superimposed to the static magnetic field. Therefore, the resonance
frequency becomes space-dependent and can be described in the rotating frame
of reference (wp=0) as

w(@)=~-G-F. (1.4)
Thus, the complex MR signal is spatial encoded by the gradient field and can
be described as

S(t) = / PBrp() G (1.5)
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Chapter 1: Introduction

where p(7) is the spin density distribution. In this formula the relaxation ef-
fects are neglected and a homogeneous By-field and an ideal gradient linearity
are assumed. Consequences of the non ideal case are discussed in the next
chapter.

1.1.2 Positron Emission Tomography

As shown in Figure 1.2 the basic principle of PET imaging is the detection and
reconstruction of annihilating photon events [23]. The patient is injected with

pe=n+ et + v, ib% HO CH,
p P P p P e, ! .
@P ositron b
P range ' g
Neutron-deficient
isotope

“FDG
injection

z
p(s.$) : é

(f)

(d)

Figure 1.2: Schematic description of the basic principles of PET imaging. In a
[T -decay a neutron-deficient isotope emits a positron (a). The 2 annihilation
photons are detected in coincidence (b). Deoxyglucose labeled with the positron-
emitter 18F (c). PET detector ring registers a pair of annihilation photons (d).
Positron annihilation events are stored in sinograms where each element of the
sinogram contains the number of annihilations in a specific projection direction
(e). Reconstructed image (f). Adapted from [23]

a radiotracer, usually deoxyglucose labeled with a positron-emitter *F. In a
BT -decay this neutron-deficient isotope emits a positron which then annihilates
with an electron. The two annihilation photons are detected in coincidence by
the PET detector ring. The coincidence events are grouped into the projection
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Chapter 1: Introduction

directions and stored in a sinogram where each element of the sinogram contains
the number of annihilations in a specific projection direction. A filtered back
projection or iterative expectation-maximization algorithms are used for image
reconstruction.

1.1.3 Characteristics of MRI and PET

The combination of PET and MRI combines the advantages of both systems:
high sensitivity, high spatial resolution and excellent soft tissue contrast. The
latest PET detector offers a very sensitive detection of radioisotopes in the or-
der of picomolar concentrations [24]. MRI provides a spatial resolution in the
sub-millimeter range and allows for different tissue contrasts. The complemen-
tarity of these characteristics suggests an integrative approach. However, for
the interference-free integration of the PET detector in an MRI system several
challenges have to be overcome as described in the next section.

1.2 Challenges in MR/PET

MR and PET are complementary in the clinical information they provide, but
their physical functionalities usually interfere when operated in close proximity.
Without any technical modifications, the MRI magnetic field interferes with the
conventional PET detectors that are used in clinical PET/CT systems and that
employ photomultiplier tubes (PMT). In the past, several modifications to the
PET detector, e.g. connecting light fibers [25] or using avalanche photodiodes
(APD) [7, 26], have been discussed and effectually implemented to overcome
the interference between the modalities in an integrated system. Figure 1.3
shows the sensitivity of conventional PMT-based PET detectors and APDs to
the magnetic field. Figure 1.4 schematically shows the integration of the PET
detector in the MR hardware structure.

Besides the hardware integration a new challenge in MR/PET is the attenua-
tion correction of the PET data. This attenuation correction can be performed
based on the MR data. However, the MR contrast is independent of the elec-
tron density of the tissue and thus contains no direct information of the photon
attenuation magnitude. A rough overview of the concepts of MR-based atten-
uation correction for the hardware and the human tissue is given in the next
section. The next chapters provide a more detailed description.

13
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Conventional APD-based
PET detectors PET detectors

B=0 Bz0 B=0 Bz0

Figure 1.3: Effect of magnetic fields on the readout map of PET detectors.
While the conventional PMT-based detectors are highly sensitive to even small
magnetic fields, the detector-element map of the APD-based detectors is undis-
torted even if operating inside a magnetic field of 7T. Adapted from [12].

1.3 MR-based Attenuation Correction

The emitted 511 keV photons may be attenuated on their pathway by either
MR equipment, the PET gantry, or the patient’s body. Therefore, the PET
reconstruction must be corrected for attenuation. The attenuation correction
factors

ACF = exp(—/,u(r)dr) (1.6)

for the PET emission data are computed as the line of integrals of 511 keV
photon attenuation p along each line of response of the PET detector [27].
In contrast to a PET/CT system where the attenuation-coefficient data are
generated by converting the CT images to an attenuation map at 511 keV, in
MR/PET the attenuation map and the corresponding attenuation correction are
more challenging to generate. The MR hardware inside the PET field-of-view
(FoV), particularly the surface coils and the patient table, can be manufactured
of less attenuating components, or, preferably, attenuating components can be
placed outside the PET FoV. The attenuation correction of residual hardware

14
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Magnet shielding coil H MR
Primary magnet coil \ S B PET
Gradient coil N \ CF Rbiaesitiem
PET detector N
RF body coil x \
N\ \ Magnet cryostat

Figure 1.4: Integrated whole-body MR/PET system showing the integration
of the PET detectors in the MR hardware structure. From inside to outside:
RF body coil, PET detector, gradient coil assembly, primary magnet coil, and
magnet shielding coil. Adapted from [14].

can be performed by considering the position and the attenuation coefficients of
each hardware component [28].

For the human attenuation correction new concepts are required. Several ap-
proaches are available for generating an attenuation map from an MR image

[29-34]. Segmentation in different body compartments [34] and an atlas reg-
istration approach [33] have been proposed. Figure 1.5 shows the PET recon-
struction before and after the performed human attenuation correction.

MR information containing the whole patient anatomy within the visible PET
FoV is required to perform an unbiased human attenuation correction. How-
ever, the MR-based field-of-view (FoV) is limited due to physical restrictions
such as inhomogeneity of the main magnetic field and nonlinearity of the gra-
dient field [35-40]. This FoV limitation causes truncations in the MR-based
attenuation correction map and might hamper an accurate attenuation correc-
tion in MR/PET hybrid imaging [41]. The impact on the FoV limitation is
shown in Figure 1.6.

1.4 MR-based FoV Extension

In conventional MR Fourier transform imaging, a proper spatial encoding re-
quires a homogeneous main magnetic field and linear gradient fields. These con-
ditions are fulfilled for typical FoV volumes at iso-center positions. At off-center

15
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<

Figure 1.5: Human attenuation correction. Two-point Dixon-based attenuation
correction map segmented in soft-tissue, fat, lung-tissue and background (A).
Maximum intensity projection (MIP) of PET reconstruction without (B) and
with attenuation correction (C). Note the improved visibility of lesions in C.

Figure 1.6: Reconstruction bias due to FoV limitation in attenuation correction
expressed as percentile deviation from the correct uptake. Adapted from [41].
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Chapter 1: Introduction

positions, inhomogeneities of the main magnetic field and gradient nonlinearities
cause geometrical distortions of body regions located outside the specified FoV,
such as the patient’s arms [37, 38, 42]. Typical truncations of the patient’s arms
are shown in Fig. 1.5A. However, the distortion due to the inhomogeneity of
the main magnetic field scales with the applied gradient strength, whereas the
distortion due to the gradient nonlinearity is constant [35, 39]. In this thesis
it is shown that an optimal gradient strength can be found to compensate the
distortion due to the described field imperfections.

1.5 Aim and Outline of this Thesis

In this thesis a new method for MR-based FoV extension is described. The
distortion due to the inhomogeneity of the main magnetic field is compensated
by the distortion due to the nonlinearity of the gradient field using an optimal
gradient amplitude. The dependency of geometrical distortions on the applied
gradient strength is analyzed in simulations and phantom measurements. After
validation of the proposed method, various implementations are developed aim-
ing at a reduction of the measurement time and an optimization of the workflow.
Finally, the impact of the new imaging technique is shown for 12 patients.

In chapter 2 a detailed analysis of the hardware-dependent causes of FoV lim-
itations is performed. The inhomogeneity of the main magnetic field and the
nonlinearity of the gradient field are characterized and the influence of the spatial
encoding is discussed. The proposed extended FoV imaging technique is intro-
duced in chapter 3. The improvement is validated in simulations and phantom
measurements. Chapter 4 describes three different implementations of the FoV
extending method. Firstly, a multislice spin-echo-based sequence is developed
to allow for the optimal gradient amplitude for each slice position. Secondly, a
dual-echo spin-echo-based sequence is implemented to reduce the distortion of
both patient’s arms in the same radio-frequency (RF) excitation train. Thirdly,
the proposed transaxial FoV extension method is combined with a continuous
table move technique to achieve an additional extended FoV coverage also in
axial direction. Finally, in chapter 5 the impact of the proposed acquisition
technique on the PET quantification is shown in a patient study.
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2.1 Introduction

In MRI, it is well known that a precise spatial-encoding is inherently limited
by the By inhomogeneity of the main magnetic field and the nonlinearity of the
gradient field. Particularly for large FoVs, the MR image is prone to hardware-
related geometrical distortions [1-6]. However, several applications such as an
MR-based attenuation correction or an MR-based radiotherapy treatment plan-
ning are of growing interest and require methods for sufficient image fidelity also
for very large FoVs [7]. In this chapter, the distortion is analyzed in terms of
an FoV extension even at regions of interest outside the specified FoV.

The standard approach of distortion reduction is the use of very strong gradients
and an applied post-processing gradient distortion correction. Strong gradients
reduce the distortions due to By inhomogeneity as derived in detail in the next
section. The nonlinearity of the gradient field is known from the design and can
thus be used for a post-processing correction of that part of the distortion, which
is due to the nonlinearity. However, while this is feasible within the specified
FoV, it might fail outside the specified FoV (radius |r| >25 c¢cm from iso-center).
Here, the gradient slope decreases drastically and might even be inverted so
that pixels at different positions are encoded with the same frequency. Hence, a
post-processing correction is not feasible anymore as shown in the results section
of this chapter.

Many approaches of distortion reduction within the specific FoV have been pro-
posed [8-16]. Several methods are based on single point acquisition techniques
including a refocusing pulse for each point in k-space [17-19]. In terms of spe-
cific absorption rate (SAR), these techniques are not well applicable for human
imaging [20]. Cho et al. investigated the correction of By including chemical
shifts and susceptibility using a so called view-angle-tilting technique [21]. A
gradient in slice-select direction was added simultaneously to the readout gradi-
ent, producing a tilted slice, which corrected the field inhomogeneity dependent
geometrical distortion. The patent of the same author describes an imaging
technique in fringe fields requiring full phase encoding in the x- and y-direction
[22]. A method in the presence of a static field with a permanent gradient was
proposed by Epstein et al. [20]. This so called slant-slice imaging technique
acquires entire lines of k-space with each readout and features low-SAR. Chang
and Fitzpatrick developed a very simple method of distortion reduction due to
By inhomogeneities [14]. This gradient-reversal technique requires two identical
acquisitions except for the polarity of the readout gradient. An extension of
the view-angle-tilting with an additional z-phase encoding was presented by Lu
et al. [23]. This technique was successfully used for imaging in the presence
of metal-induced field inhomogeneities and was thus called Slice Encoding for
Metal Artifact Correction (SEMAC). While the view-angle-tilting reduces the
in-plane distortions, the z-phase encoding eliminates the through-plane distor-
tion.
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Although the presented methods achieved interesting results in distortion re-
duction due to By inhomogeneities, none of these techniques aimed a correction
of the strong distortions due to the gradient nonlinearities outside the specified
FoV. Langlois et al. demonstrated a simple approach to correct the gradient
nonlinearities within a FoV of up to 384 mm [15]. In this chapter, we will
analyze the distortion due to both the By inhomogeneities and the gradient
nonlinearities. These analyses were not limited to the specified FoV but also
included regions outside the usual specified FoV (diameter > 500 mm). A novel
compensation method of both error sources allowing a significant FoV extension
of up to 600 mm in diameter is proposed in the following chapter 3.

2.2 Theory

In the absence of any By field inhomogeneity and gradient nonlinearity effects,
the received signal S can be represented in 3D-Fourier-transform NMR:

S(k) = / dBrp()ei2r B, (2.1)

where p(7) is the spin density distribution and k= %’yét is the k-vector.

The Fourier-transform (FT) assumes a homogeneous main magnetic field and
linear gradients. In the non-ideal case, By inhomogeneities and gradient nonlin-
earities may perturb the spatial encoding. The deviation of actual phase/frequency
values from the expected ones leads to distortions in the image space.

Taking gradient nonlinearities into account, in 2D Fourier-transform spin echo
(SE) imaging the k-vector is modified as follows:

. 1 . .

bny = 5 "1Gtoy = kyy = 5 (G + AG)tay, (2.2)

where « is the gyromagnetic ratio, G is the ideal gradient vector, AG is the
gradient nonlinearity and ¢, , = (T'E — t, 7,) are the gradient-on times for the
signal readout t and phase encoding 7.

Assuming the time of the spin echo coincides with the time of the gradient echo
[24], the presence of inhomogeneities ABy in the main magnetic field leads to
an additional phase offset by a factor of

é(t) = YABy(TE — t). (2.3)

Therefore, the signal in the presence of gradient nonlinearities and inhomo-
geneities in the main magnetic field is:

S(Gx, Gy) — / /p(m, n Zo)e—iv(:ngc—i-zAGx—&—ABo)(TE—t)e—iv(yGy+yAGy)Ty dzdy.

Ty

(2.4)
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In comparison with the ideal case the pixel will be shifted in the readout direc-

tion
ABGI (:Cv Y, Z) + ABO(:’Ua Y, Z)

"= , 2.5
T =x+ a. a. (2.5)
in the phase-encoding direction
/ ABG (.’L’, Y, Z)
y =yt oo (26)
y
and in the through-plane direction
/ AB AB
2 =24 Gz(ZE?y?Z) + 0(1’,y,2)7 (27)

G. G.

where x,y, z are the actual positions, J:/,y,, 2 are the distorted positions and
Aéé = AG - 7 is the magnetic field produced by the gradient nonlinearity
of AG [1, 5]. The distortion in the phase-encoding direction depends only on
the gradient nonlinearities, whereas the distortion in the readout direction and
in the slice-select direction depends on the gradient nonlinearities and the By
inhomogeneities.

2.3 Materials and Methods

2.3.1 Measurements of Magnetic Fields

Measurements of the main magnetic field and the gradient field were performed
using a half-moon probe array (Metrolab Instruments SA, Geneva, Switzerland).
The probe array (Fig. 2.1) contains 24 NMR probes rotating around the mag-
netic field axis with 24 angular positions per turn. It was placed at the magnet’s
iso-center with an accuracy of £1 mm. An additional fine adjustment of the
probe array’s z-position was performed by seeking the intersection point of a
positive and a negative applied gradient. An identical iso-center position of the
main magnetic field and the gradient coil was assumed. The local field frequen-
cies were measured at 576 positions (24 NMR probes, 24 angular positions) on
a sphere’s surface of 500 mm in diameter. The gradient field was determined by
setting a gradient offset of 1 mT/m and subtracting of the main magnetic field
data. The resulting field parameters were stored in spherical harmonics.

2.3.2 Simulation of Distortion

Simulations were performed using Matlab R2010b (The MathWorks, Inc., Nat-
ick, MA, USA). The magnetic field values were calculated using spherical har-
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Figure 2.1: Magnetic-field camera consisting of 24 NMR probes. The mea-
surement device is adjusted to the iso-center and placed parallel to the main
magnetic field axis. A spherical magnetic field plot can be acquired by rotating
around the magnetic field axis in 24 angular positions.

monic expansion from the measured spherical harmonic coefficients:

Nmaax n§mé 12

B(r,0,¢) = Z Z (%)n P (cos 0) [Apm cos me + By, sin mg) ,

n=0 m=0
(2.8)
where A, and B, are the spherical harmonic coeflicients, P,,, are the as-
sociated Legendre functions and rg is the normalization radius [25, 26]. The
maximum order of n is n,,4,; = 23 and the maximum order of m is Mypee = 12.
All further simulations were based on these measured field values.

In-plane Distortion

The in-plane distortion in the readout direction was simulated voxel-wise accord-

ing to Eq. 2.5 for the By inhomogeneity, the gradient nonlinearity, and both.
The FoV was set to x,y = £300 mm to achieve also quantitative distortion data
outside the usual specified FoV. Simulation parameters were: transversal slice

at iso-center position (z = 0 m), in-plane matrix: 256 * 256, readout gradient
Gro =5 mT/m.

For a specific position outside the usual specified FoV (x = -0.284 m, y =
0.028 m, z = 0 m) the distortion in readout direction was simulated for different
readout gradient amplitudes Gro=[4+1.03 mT/m, +1.56 mT/m, £2.12 mT /m,
4+3.31 mT/m, £4.52 mT/m, £5.72 mT/m, £6.90 mT/m, +8.09 mT/m, 9.39 mT /m].
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Through-plane Distortion and Slice Profile

The through-plane distortion was simulated according to Eq. 2.7 due to both
the the By inhomogeneity and the nonlinearity of the slice-select gradient. Sim-
ulation parameters were: transversal slice at iso-center position (z=0m), 5mm
thickness, in-plane resolution: 2.0 * 2.0 mm?, slice-select gradient G'gg = 20 mT /m.
The slice profiles of 7 slices (z=[-0.12 m, +0.12 m], distance of 40 mm, thickness
of 5 mm) were simulated in an extremely extended FoV (0.646 m diagonal) using

a slice-select gradient of G, = 20 mT/m.

2.3.3 Phantom Measurements

Experiments for validating the stated dependency of the in-plane distortion in
frequency-encoding direction on the By inhomogeneity and gradient nonlinearity
(Eq. 2.5) have been performed using a grid-structure phantom (Fig. 2.2) con-
sisting of spheres of 1 cm in diameter placed on a 2 * 2 * 2 cm? grid. A reference

Figure 2.2: Grid-structure phantom consisting of spheres of lcm in diameter
placed on a 2 * 2 * 2 cm? grid.

scan of the phantom at the iso-center position and multiple measurements of the
phantom shifted in x-direction were performed using the same readout gradient
amplitudes as in the simulation. A spin echo sequence was used to acquire a
FoV of 500 * 500 mm? shifted to an extreme off-center position (-350 mm < x
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< 150 mm, -250 mm < y < 250 mm, z = 0 mm) with an in-plane matrix of
256*256, TE = 12 ms, TR = 300 ms, and 5 mm slice thickness. The image
positions of the spheres were assigned to the real positions defined by the grid
geometry. The determined distortions in readout direction were analyzed and
compared to simulations depending on the applied gradient amplitudes.
Experiments for analyzing the through-plane distortion have been performed
using a slice-phantom. The dimension of the phantom was 40 * 6 * 1 cm?. To
image the distortion in the z-direction the slice-phantom was positioned in the
x-,y-direction at z = 0 m and coronal slices were acquired. The readout gradi-
ent was varied in amplitude and polarity, G, = 1.62 mT/m, G, = -1.62 mT/m,
G, = 19.56 mT/m.

2.4 Results

2.4.1 Frequency Mapping

The simulated frequency-encoding is shown one-dimensionally for the x-axis
(<30 ecm < x < 30 cm, y = 0 m, z = 0 m) in Figure 2.3. Using a strong
readout gradient of G, = 40 mT/m the achieved frequency was linear with the
x-position within the usual specified FoV but became nonlinear at very off-center
positions (x > 25 cm). Here, the slope of the gradient decreased significantly
with increasing distance from iso-center and was even inverted at position x =
29 cm.
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Figure 2.3: Simulation of frequency mapping based on the measured field co-
efficients. The x-gradient is plotted for an extended range in the x-direction
(-30 cm < x < 30 cm, y = 0 m, z = 0 m). While the x-gradient is linear within
the specified FoV (A), the slope decreases significantly and is even inverted
at an extreme off-center position (B) using the maximum gradient amplitude
of 40 mT/m. An injective frequency mapping required for a post-processing
distortion correction is not possible.
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2.4.2 In-plane Distortion

The pixel-wise simulation of the in-plane distortion in the readout direction is
shown in Fig. 2.4. The transversal slice was analyzed at the iso-center position

0.3 -0.3 -0.3 0.03

02 A -0.2 -0. C 0.02

0.1 01 0.01

0.1 0.1 0.01 '3'
02 0.2 0.02

03 0.3 0.3 0.03

03 -02 01 0 01 02 03 -03 02 -01 03 02 01 0 01 02 03
x[m] x[m]

Figure 2.4: In-plane distortion in the readout direction D[m] due to By in-
homogeneity (A), gradient nonlinearity (B) and both (C). Transversal slice at
iso-center position (z = 0 m), in-plane matrix: 256 * 256, readout gradient
Gro = 5 mT/m. The readout direction was set to the x-axis.

(z = Om) for an extended FoV of up to 300 mm in transaxial direction. The
distortion due to the By inhomogeneity (Fig. 2.4A) and the gradient nonlinear-
ity (Fig. 2.4B) caused a total distortion as shown in Figure 2.4C due to both
hardware-related effects. While the distortion within the usual specified FoV
is rather small, the distortion due to the By inhomogeneity and the gradient
nonlinearity is significantly larger at very off-center positions |z| > 25 cm. The
By inhomogeneity caused a pixel distortion to the same direction for both the
left off-center position (|z| < 25 c¢m) and the right off-center position (|z| >
25 c¢cm). The gradient nonlinearity caused a pixel distortion toward iso-center
for both the left and the right off-center position. Thus, the total distortion
which can be expressed as superimposition of both field errors causes showed a
significantly larger distortion for the right off-center position than for the left
off-center position.

To validate the simulation results, the in-plane distortion was measured using
the grid-structure phantom. Figure 2.5 shows transversal slices of the phantom
placed at both iso-center (A) and off-center positions (B, C). The deviation
from the assumed actual grid structure is indicated with green vectors from the
assumed position to the distorted position for each sphere. The distortion of
each sphere was quantified relative to the sphere closest to the iso-center (red
marked sphere: undistorted reference position). While the mean distortion of
all spheres of the phantom placed at iso-center (Fig. 2.5A) was below 1 mm,
there was a significant distortion at very off-center positions. Using a readout
gradient strength of G, = -8.09 mT/m (Fig. 2.5B) the maximum distortion
of Dro = 19 mm was observed at position (x = -284 mm, y = 28 mm, z =
0 m). At the same position the distortion was reduced to Dro = 6 mm using a
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Figure 2.5: Transversal slices of grid-structure phantom. While the reference
scan at iso-center position showed very small distortions below Dro = 1 mm
(A), the observed distortions were more prominent for measurements at very
off-center positions of up to 286 mm distant from iso-center (B, C). The mag-
nitude of distortion in readout direction using a readout gradient amplitude of
Gro = -8.09 mT/m (B) differed significantly from the distortion using a gradi-
ent amplitude of Gro = -2.12 mT/m (C). Readout direction was left to right.
Note the different magnitude of in-plane distortion.

readout gradient amplitude of G, = -2.12 mT/m (Fig. 2.5C).

The measured magnitude of distortion as a function of distance from the iso-
center is shown in Figure 2.6 for different readout gradient amplitudes. While
the distortions were rather small at positions close to the iso-center, the dis-
tortions increased with a strong dependency on the applied readout gradient
amplitude for regions outside the usual specified FoV (x > 25 cm). The largest
measured distortion at position (x =-284 mm, y = 28 mm, z = 0 m) was Do =
28 mm using a readout gradient amplitude of G, = 9.39 mT/m and Drp =
6 mm using a readout gradient amplitude of G, = -2.12 mT/m.

Figure 2.7 shows both the simulated and the measured distortion at position
(x =-0.284 m, y = 0.028 m, z = 0 m). Stepping through the readout gra-
dient amplitudes changed the magnitude and the direction of distortion. The
measured dependency of the gradient amplitude on the distortion was in good
agreement with the simulation data, taking usual errors of By- and gradient
field measurements into account.

2.4.3 Through-plane Distortion

In the slice-select direction the By inhomogeneity and the gradient nonlinearity
of the slice-select gradient cause a through-plane distortion as simulated in Fig-
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Figure 2.6: Measured distortion in readout direction versus distance from iso-
center. The distortion was measured using the grid-structure phantom placed
at iso-center position (brown markers) and at extreme off-center positions of
up to 30 cm in the x-direction for three different readout gradient amplitudes,
Gro = -8.09 mT/m (blue markers), Gro = -2.12 mT/m (green markers), and
Gro = 9.39 mT/m (red markers). While the reference measurement at iso-
center showed no significant distortion, the measured distortion increased with
increasing distance from iso-center. Note also the dependency on the readout
gradient strength.
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Figure 2.7: In-plane distortion in readout direction versus applied readout gra-
dient at extreme off-center position (x =-0.284 m, y = 0.028 m, z = 0 m). Pixel
distortion in simulation data (e) and in phantom measurement (o) are shown.
There was no post-processing distortion correction applied.
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ure 2.8. While no through-plane distortion was observed at iso-center position,

z[m]
0,02 )

Through-plane Distortion [m]

Figure 2.8: Simulation of through-plane distortion using a slice-select gradient
of G, = 20 mT/m. Transversal slice at z = 0 position was distorted in the slice
direction outside the usual specified FoV.

the slice shape tended warping with distance from iso-center and was signifi-
cantly warped out of slice at very off-center positions (|z| > 25 cm) outside the
usual FoV. However, the observed magnitude of simulated through-plane dis-
tortion was dependent on the off-center position. Using a slice-select gradient
of G, = 20 mT/m the absolute value of through-plane distortion |D| was below
5 mm at position (x = 0 m, y = -300 mm, z = 0 m), above 12 mm at positions
(x = [-300 mm, 300 mm|, y = 0 m, z = 0 m) and up to 18 mm at positions (y >
250 mm).

The second effect of By inhomogeneity and gradient nonlinearity on the slice
excitation was the change in slice thickness. In Figure 2.9 slice profiles of 5 mm
thickness were simulated at positions z = (-0.12 m, -0.08 m, -0.04 m, 0 m,
+0.04 m, +0.08 m, +0.12 m) in an extremely extended FoV (0.646 m diagonal).
While the slice thickness is identical to the nominal value at iso-center position,
the slice thickness changed at very off-center positions and depended on the
slice position. Using a slice-select gradient of G, = 20 mT/m, a decrease in
slice thickness was observed additionally to the through-plane distortions at all
simulated slice positions.

In the slice-phantom experiment, distortions in the z-direction were observed.
The readout direction was set to the z-direction to visualize the expected through-
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Figure 2.9: Simulation of slice profiles using a slice-select gradient of G, =
20 mT/m. Excitation frequencies and bandwidth were set to simulate slice
profiles of 5 mm thickness at positions z = (-0.12 m, -0.08 m, -0.04 m, 0 m,
+0.04 m, 4+0.08 m, +0.12 m) in an extremely extended FoV (0.646 m diagonal).

plane distortion of a transversal plane. Figure 2.10 shows these distortions for
different gradient amplitudes. While the distortion in the z-direction was small
within the usual specified FoV, the distortion increased with increasing distance
from iso-center. Furthermore, the polarity of the distortion changed by chang-
ing the direction of the gradient amplitude from G, = 1.62 mT/m (Fig. 2.10A)
to G, = -1.62 mT/m (Fig. 2.10B). Using a large gradient amplitude of G, =
19.56 mT/m, the distortion was reduced (Fig. 2.10C). In addition, a distortion
of constant magnitude was observed in the x-direction (phase-encoding).

2.5 Discussion

The hardware-dependent distortions were observed to be prominent outside the
usual specified FoV. While the distortions within the specified FoV appeared to
be rather small (mm) and can be corrected in post-processing, the distortions
increased significantly (cm) outside the specified FoV. In those regions, the gra-
dient slope might decrease drastically and might even be inverted so that several
pixels at different positions are encoded by the same frequency. Therefore, a
post-processing distortion correction might fail.

The results of the phantom measurements are in good agreement with those
obtained from simulations. Thus, the distortion outside the specified FoV can
mainly be described by the By inhomogeneities and the gradient nonlinearities.
However, for an accurate description of the distortion behavior, object-related
distortions such as object-induced By inhomogeneities at tissue-air interfaces
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C  G,=1956mTim

Figure 2.10: Measurement of through-plane distortion. Coronal slices of a slice
phantom, which was positioned in the x-,y-plane at z=0m, were acquired with
readout in the z-direction. The readout gradient was varied in amplitude and
polarity, G, = 1.62 mT/m (A), G, = -1.62 mT/m (B), G, = 19.56 mT/m
(C). Note the different distortion behavior in the z-direction dependent on the
readout gradient amplitude and polarity.
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have to be taken into account [1]. In this thesis, the analysis and the correction
were focused on the object-induced distortions.

In the slice-select direction the observed out of plane warping and the varying
slice thickness are known as potato chip effect and bow-tie effect, respectively
[27-29]. Both effects increased with increasing distance from iso-center. Typi-
cal truncation artifacts due to the FoV limitations occur in the patient’s arms.
However, in a first order approximation the patient’s arms can be assumed to
be homogeneous in the axial direction. Therefore, in this thesis the focus lies
on the reduction of the in-plane distortion.

The in-plane distortion was dependent on the position and the readout gradient
amplitude with pixel shifts from Omm to more than 30 mm at very off-center
positions outside the usual specified FoV. Both the through-plane distortion
and the scanner-induced in-plane distortion in the readout direction were the
superimposition of the distortion due to the By inhomogeneity and the gradi-
ent nonlinearity. The distortion due to gradient nonlinearities was independent
on the gradient amplitude. The distortions due to By inhomogeneities scaled
inversely proportional with the gradient amplitude. Thus, with increasing gra-
dient amplitude, the magnitude of the total distortion tended asymptotically
to the one caused by the gradient nonlinearity. For very small gradient am-
plitudes the total distortion increased due to the dominating influence of the
By inhomogeneity. However, an optimal gradient amplitude corresponding to
zero-distortion was found even at very off-center positions outside the specified
FoV. In the following chapter 3, a compensation method of the distortion due
to the By inhomogeneity and the distortion due to the gradient nonlinearities is
proposed using an optimal gradient amplitude.

2.6 Conclusion

Strong distortions might hamper a faithful spatial encoding at typical positions
of the patient’s arms. However, the magnitude of the distortion in frequency-
encoding direction is dependent on the readout gradient. Thus, an optimal
gradient amplitude can be found to achieve minimal distortion. A detailed anal-
ysis of the feasibility of distortion reduction using an optimal space-dependent
gradient amplitude is presented in the following chapter.
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Chapter 3: MR-based FoV Extension

3.1 Introduction

The MR FoV is well-known to be limited in all geometric directions due to By
inhomogeneities and nonlinearities in the gradient field [1-7]. The limitation
of the restricted MR FoV is often encountered with the patient’s arms, which
can be positioned outside the nominal MR FoV. In the previous chapter the
distortions were analyzed outside this usual specified FoV. In this region, strong
MR signal distortions occurred. These FoV restrictions can cause a truncation
of the MR image and, therefore, can bias the PET data reconstruction [8].
However, the spatial integrity of the attenuation map for attenuation and scatter
correction is essential for three reasons. First, the attenuation correction factors
ACF = exp(— [ p(r)dr) for the PET emission data are computed as the line
of integrals of 511keV photon attenuation p along each line of response of the
PET detector [9]. This means that slight distortion of the attenuation map of
1 values can have a big impact on the ACF because of the exponential in the
mentioned formula. Second, a distortion-free attenuation map is required for
scatter computation [10-13]. Third, for the computation of scatter scaling a
precise contour of the object needs to be known in order to identify the data
region that can be used for scaling [14, 15].

Medical experts have stated that a maximum bias of 10 % with respect to
PET/CT is acceptable for MR-based attenuation correction [8]. The distortion
due to a PET signal attenuation of 10 % along a single line of response of a
coincidence event is calculated as follows:

IIO = exp(—p(r)Ar) L09= Ar= —In(0.9)/(0.1em™!) = 1.05¢m. (3.1)
This calculation yields an MR pixel distortion of Ar = 1.05 c¢m in the atten-
uation map, e.g. if the patient’s arm is squeezed by lcm in the MR image,
where [j is the initial intensity, I is the intensity after attenuation, and u(r) =
0.1 cm~ ! is the attenuation coefficient for soft-tissue. For a more detailed analy-
sis additional factors must be taken into account. The magnitude by which any
voxel in the reconstructed volume is affected by an error in the attenuation map
is proportional to the ratio of lines of response passing through both the voxel
and the erroneous area in the attenuation map. As an approximation for the
given experiment, this effect can be considered to be proportional to the solid
angle covered by the distorted objects outside the FoV with respect to a central
voxel. As second order effects, scatter effects and potential missegmentations
of fat and soft-tissue can be considered but their effect is considered to be less
prominent. However, the value of Ar above can be used as an estimation of
the impact of distortions on the MR-based attenuation correction. In this work,
Ar is considered to be the maximum acceptable spatial error for an adequate
attenuation correction.

The present work proposes a new method that compensates field imperfections
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and extends the MR-based FoV. Based on measurements of both the main mag-
netic field and the gradient field, we were able to compute a pixel-wise prediction
of distortion due to By inhomogeneities and gradient nonlinearities. Analyses
of these two error fields outside the specified FoV have shown the feasibility
of superimposing both sources of distortion in a compensatory way. The gra-
dient error field scales linearly with the gradient amplitude, whereas the By
inhomogeneity is independent of the gradient amplitude [2]. Consequently, an
optimized amplitude of the readout gradient can be determined and used as
a scaling parameter to reduce the distortion at a specific position [16]. This
method offers an extended FoV in the transaxial plane out to 600 mm diameter
on the MR part of an MR/PET system and, therefore, has the potential to
extend the range of the MR-based PET attenuation correction.

3.2 Theory

The dependency of the pixel distortion on the By inhomogeneity and the gra-
dient nonlinearities in 2D spin-echo was derived in section 2.2 and validated
in section 2.4. Based on these equations, an optimal gradient can be found
pixel-wise to compensate the distortion due to the By inhomogeneities and the
distortion due to the gradient nonlinearities.

The distortion in the readout direction is

/ ABg,(z,y,z)  ABy(z,y,z)
_ x 2
T =x+ T + G, (3.2)

where z is the actual position and 2" the distorted position.

The gradient nonlinearities AG scale with the gradient strength G. Thus, the
second term in Eq. 3.2 is constant and can be written as the relative gradient
error:

—

AB~
‘= —=C, (3.3)
G

Therefore, the distortion in readout direction depends directly on the applied
readout gradient

L . AB
Dro(Gro) = ¢+ =—2. (3.4)
Gro

An optimal readout gradient can be determined to achieve zero-distortion

_ = |
Dro(GRro,opt) = 0 at a certain position

. AB
GRO,opt = - EO- (35)

In this chapter it is shown that this optimal readout gradient is in the range
of technically feasible gradient strengths and can cause a significant distortion
reduction.
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3.3 Materials and Methods

3.3.1 Simulations

Simulations were performed using Matlab R2010b (The MathWorks, Inc., Nat-
ick, MA, USA). The magnetic field values were calculated using spherical har-
monic expansion from the measured spherical harmonic coefficients as described
in Chapter 2. Our algorithm uses the field parameters A,,, and B, (Eq. 2.8)
as an input for further calculations. The field plot measurement has to be per-
formed only once for a specific scanner and is, therefore, not time relevant in
patient measurements. Based on the measured field values, the distortion due
to the By inhomogeneities and the nonlinearities of the gradient field was cal-
culated voxel-wise for optimized and non-optimized gradients according to Eq.
3.4.

The distortion in readout direction was simulated along a line at (x = [-0.3 m,
+0.3m}, y =0 m, z= 0 m) using maximum gradient strengths (G, = £45 mT/m)
and optimal gradient strengths (G opt(z = —0.3m) =-5.38 mT /m and Gy ope(z =
+0.3m) = 2.84 mT/m) for distortion reduction at the left and the right edge
of the extended FoV. No post-processing distortion correction was applied. A
distortion simulation in the slice-select direction along the same line was per-
formed for gradient amplitudes of G, = 45 mT/m, G, op(z = —0.3m) =
-43.0 mT/m, and G opt(z = +0.3m) = -15.34 mT/m. Furthermore, the distor-
tion in the readout direction was calculated along a line at (x = 0.28 m, y =
0m, z = [-0.12 m, +0.12 m]) using gradient amplitudes of G, = £45 mT/m and
Gzopt(z = 0m) = 2.86 mT/m. The distortion in the slice-select direction along
the same line was simulated using gradient amplitudes of G, = £45 mT/m,
Gopt(z = —0.09m) = 3.36 mT/m, and G, opt(2 = +0.09m) = -5.42 mT /m.
The optimal readout gradient strength and the optimal slice-select gradient
strength causing zero-distortion were calculated according to Eq. 3.5 one-
dimensionally along a line at (x = 0.28 m, y = 0 m, z = [-0.12 m, +0.12 m]).
Furthermore, the optimal readout gradient was determined voxel-wise in three
dimensions (x, y = [-0.3 m, 0.3m], z = [-0.15 m, +0.15 m]) and plotted for
cylinder volumes at typical patient’s arm positions at (x = £0.26 m, radius =
0.04 m, length = 0.3 m).

The slice profiles of 7 slices (z = [-0.12 m,+0.12 m], distance of 40 mm, thickness
of 5 mm) were simulated in an extremely extended FoV (0.646 m diagonal) using
the maximum slice-select gradient of G, = 45 mT/m and a gradient strength
G opt(z = —0.04m) = 5 mT /m optimized for slice position z = -0.04 m.
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3.3.2 Sequence Design

A modified multislice 2D spin-echo-based sequence was developed featuring the
calculation and the automatic use ot the optimal readout gradient amplitude for
each slice individually [17]. The field parameters were read from an input coeffi-
cients file based on the measurements described above. The By inhomogeneities
and the readout gradient nonlinearities were calculated for each optimization re-
gion and each slice position using spherical harmonic field expansion (Eq. 2.8).
The optimal readout gradient amplitudes were calculated according to Eq. 3.5
and adjusted automatically. No further user interactions were needed.

A detailed description of the sequence design, called HUGE (By Homogeniza-
tion Using Gradient Enhancement), is given in chapter 4.

3.3.3 Phantom Studies

HUGE achieves a distortion reduction at a region of interest which is preferably
as large as the patient’s arm. The feasibility of achieving a sufficient image
fidelity was confirmed using an arm-like tube phantom. The structure of the
patient’s arm was assumed to be homogeneous in the z-direction. Therefore,

Figure 3.1: Structure phantom consisting of 43 tubes of 13 mm in diameter
each. The tube phantom, 130 mm in diameter and 650 mm in length, was built
to model a patient’s arm.

such a structure phantom (diameter: 130 mm, length: 650 mm, homogeneous
in z-direction, filled with 1.25 g NiSO4 x 6H20 + 5 g NaCl per 1000 g H2O)
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was built with 43 tubes, each with 13 mm in diameter, to model a patient’s
arm (Fig. 3.1). The phantom was placed outside the normal specified FoV at
(x = £0.3 m). Transversal planes were acquired with an in-plane resolution of
1.56*1.56 mm?, slice thickness SL = 5 mm, echo time TE = 7.7 ms, repetition
time TR = 300 ms. A quantification of image fidelity determined as percentage
deviation from reference measurement at iso-center position was performed for
optimized and non-optimized gradient amplitudes.

3.3.4 In Vivo Studies

In vivo experiments were performed on healthy volunteers. MR measurements
were acquired on a 3T Biograph mMR system (Siemens Healthcare, Erlangen,
Germany). The scanner and coil hardware were not adapted. Maximum ampli-
tude achievable by the gradient system was 45 mT/m and the maximum slew
rate was 200 T/m/s. The volunteer’s arms were placed as far apart as possible
(x = +£0.3 m). At the outer positions, the patient’s arms could not be cov-
ered completely by a local coil. To demonstrate the feasibility of the proposed
method in clinical routine, only the body coil was used as transmit /receive coil
and a corresponding loss in signal to noise ratio was accepted. The FoV was
set to 600mm with 1.88*1.88 mm? in-plane resolution and 5 mm slice thickness.
Informed consent was obtained from all volunteers.

3.4 Results

3.4.1 Distortion in an extended FoV

Using non-optimized gradients, strong distortions were observed at off-center
positions in an extended FoV of up to 600 mm in diameter. Figure 3.2 shows
typical pixel-distortions of the tube phantom placed at the off-center position
x = -0.3 m. Small distortions at the edges of the specified FoV were usually re-
moved by a regular post-processing distortion correction, which was not applied
in this experiment. However, in the extended FoV the distorted pixels were
squeezed so strongly that correcting them by a post-processing method was not
possible at the spatial resolution of clinical MR images. In the coronal view the
structure inside the phantom was vertical. The strength and the polarity of the
observed distortion, which was identified as a deviation from the ideal vertical
lines, was position-dependent. Swapping the readout gradient polarity changed
the polarity of the distortion direction in readout direction.
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Gro= -1.03 mT/m

{ Gro= +1.03 mT/m

Figure 3.2: Off-center measurement, coronal plane. The spherical phantom was
placed at iso-center position and the tube phantom was aligned to the z-axis
touching the body coil at position x = -300 mm outside the specified FoV. No
post-processing distortion correction was applied. Readout gradients were G, =
1.03 mT/m (above) and G, = -1.03 mT/m (below). In readout direction, the
polarity swap of the readout gradient fliped the distortion direction.
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3.4.2 Field Measurements and Simulations

All simulations were based on measured field values. The field plots are shown
in Fig. 3.3. The observed pattern of the inhomogeneity of the main magnetic
field ABy (Fig. 3.3A) and the pattern of the nonlinearity of the x-gradient
field AG, (Fig. 3.3B) are similar both with respect to symmetry in z-direction
(ABy(z,y,+2z) = ABy(x,y, —z) and AGx(z,y,+2) = AGx(z,y, —z)) and with
respect to the position of roots (ABy(z = +£0.3m,y = Om, z ~ £0.04m) = 0
and AGz(z = £0.3m,y = Om,z ~ £0.04) = 0), whereas the pattern of
the nonlinearity of the z-gradient field (Fig. 3.3C) is different both with re-
spect to symmetry (AG(z,y, +2) = —AG,(z,y,—z)) and to position of roots
(AG,(x = £0.3m,y = Om, z =~ (—0.06m, 0m, 0.06m)) = 0).

The distortion in the readout direction (Fig. 3.4A) depends strongly on the
readout gradient strength at the edges of the extended FoV (|z| > 0.25 m),
whereas no significant influence of the gradient was observed on the distortion
at iso-center position. Using the optimal readout gradient amplitude results
in a significant distortion reduction of up to 0.03m and a maximum residual
distortion of 0.01lm compared to using the maximum readout gradient. The
distortion in the slice-select direction (Fig. 3.4B) was reduced by 4mm to a
maximum residual distortion of below 2 mm for x > +0.25 m using the optimal
slice-select gradient. In the region of x < -0.25 m the distortion was already
below 1 mm using the maximum gradient strength and thus was not further
reduced significantly.

The z-dependency of the distortion in the readout direction at (x = 0.28 m, y =
0 m, z = [-0.12 m, 0.12 m]) is shown in Fig. 3.4C. Using the readout gradi-
ent optimized for the z = 0 m position reduced the distortion at this position
as specified but also reduced the distortion at a region of z = [-0.1 m 0.1 m]
compared to the maximum readout gradient strength. Figure 3.4D shows the
distortion in the slice-select direction as a function of z-position at the same
off-center position. The maximum gradient strength caused no distortion at the
z=0m position, whereas for other z-positions a significant distortion reduction
(0.028 m at z = -0.09 m and 0.014 m at z = +0.09 m) was achieved by optimized
gradients.

The optimal gradient strengths corresponding to zero-distortion at (x = 0.28 m,
y =0 m, z = [-0.12 m, 0.12 m]) were observed to be in the range of £8 mT/m
for the readout gradient (Fig. 3.4E) and +20 mT /m for the slice-select direction
(Fig. 3.4F) with few exceptions. The exceptions were poles in the function of
optimal gradients. Here, the nonlinearity tended faster toward zero than the
By inhomogeneity at the z-positions of z ~ 4+0.03 m for the readout gradient
and z &~ 0 m for the slice-select gradient and thus the optimal readout gradient
increased according to (Eq. 3.5). However, the distortion in readout direction
(Fig. 3.4C) was acceptably low and independent of the gradient strength at
these positions (z ~ £0.03 m) due to low amount of nonlinearity and By inho-
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Figure 3.3: Contour plots of measured field values. By inhomogeneity of the
main magnetic field (A), nonlinearity of the x-gradient ABg, (B) and of the
z-gradient ABg, (C) are shown (isolines in 7). Coronal view of an extremely
extended FoV (0.646m diagonal).

49



Chapter 3: MR-based FoV Extension

o1 0.01;
— E ¢
: A s B
s Mo post-processing distortion correction 2 5 Mo post-processing distortion correction
£ oos. Booos
g 5 °
© 9° B o °
=] 2 o N o
S 09 D -
g z -
c e >
= G, = -45mT/m c + 6,=-45mTim
£ 005 —— G optix=-0.3m) = -5 38mT/m gooos|, —— G _optx=-0.3m) = 43 OmT/m
% G“opl(x=0 3m) = 2.84mTim E \/ Gioplcx!D 3m) =-15.34mT/m
a - k] | _
o G, =45mT/m | 2 o G =45mT/m
01 - = 001 =
03 02 0.1 0 0.1 0z 03 0.3 02 0 092 03
x-position [m] x-position [m)]
o1 0.08

D Extremne off-center position outside the specified Fo':
004

(x=0.28m, y=0m, z=[-0.12m, +0.12m]) s 9

(x=0.28m, y=0m, z=[-0.12m, +0.12m])

C Extremne off-center position outside the specified Fo'
© 6

o
&

s .

oo ®

0.05 + G, =-45mTim
Gl.cpl(z=0) =2.88mT/m
o G, =45mTim

—— G, opl(z=-0.08m) = 3 36mTim
G,.0pt(z=0.09m) = -5.42mT/m
© G,=45mTm

Distortion in readout direction [m]
o

Distortion in slice-select direction [m]
&

'0‘&‘2 .nhs 004 0 004 abs 012 %52 Doa 004 0 0.04 008 012
2z-position [m] z-position [m)]
10 30,
s o E
EE Ex F
B
E s ° = ®o
5 0® o2 2 10 ° o
-] a9 o® oo {1 o o
s 0° 2 009000, 2 0® o °o P
Zoo ° o % oo o %o o
30 @ o o 0®
% & oo
8 810
T 5 »
£ o ]
= E 20
= 2
" ‘ o o
-0.12 -0.08 -0.04 0 0.04 0.08 012 012 -0.08 -0.04 0 0.04 0.08 0.12
z-position [m] z-position [m]

Figure 3.4: Distortion in readout direction (A) and slice-select direction (B)
were simulated along a line at (x = [-0.3 m +0.3 m], y = 0 m, z = 0 m) for the
maximum gradient amplitudes of +£45 mT/m and for the gradient amplitudes
optimized for off-center positions at z = +0.3 m. There was no post-processing
distortion correction applied. Simulation of distortion are shown for readout
direction (C) and slice-select direction (D) as a function of z-position at extreme
off-center positions (x = 0.28 m, y = 0 m, z = [-0.12 m, +0.12 m]) using the
maximum gradient amplitudes and the gradient amplitudes optimized for slice
position z = 0 m and z = £0.09m. Optimal readout gradients (E) and optimal
slice-select gradients (F) corresponding to zero-distortion were calculated as a
function of z-position (x = 0.28 m, y = 0 m, z = [-0.12 m +0.12 m]).
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mogeneity (Fig. 3.3A,B). The distortion reduction in slice-select direction (Fig.
3.4D) was improved by a strong gradient due to low amount of nonlinearity
(Fig. 3.3C) and non-negligible amount of By inhomogeneity (Fig. 3.3A) at this
position (z ~ 0 m).

In the previous chapter, it was shown that the frequency mapping might fail
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Figure 3.5: Simulation of frequency mapping based on the measured field co-
efficients. The x-gradient is plotted for an extended range in the x-direction
(-30 cm < x < 30 cm, y = 0 m, z = 0 m). While the x-gradient is linear within
the specified FoV (A), the slope decreases significantly and is even inverted at
an extreme off-center position (a) using the maximum gradient amplitude of
40 mT/m. A linear slope was achieved even outside the specified FoV using a
readout gradient amplitude of 2.84 mT/m (B) optimized for this specific region
of interest at off-center position (b).

at off-center positions outside the usual specified FoV (Fig. 3.5A,a). The simu-
lated frequency-encoding is shown one-dimensionally for the x-axis (-30 cm < x
<30 cm, y =0m, z=0m). Using a strong readout gradient of G, = 40 mT/m
the achieved frequency dependency became nonlinear at very off-center positions
(x > 25 cm). The slope of the gradient decreased significantly with increasing
distance from iso-center and was even inverted at position x = 29 cm. Using
a readout gradient amplitude optimized for a specific region of interest a linear
slope was achieved even outside the specified FoV (Fig. 3.5B,b). Furthermore,
the voxel-wise simulation of the optimal readout gradient showed that the values
within the volume of cylinders, which modeled the patient’s arms with respect
to the dimensions and the positions, were in the range of technically feasible
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Figure 3.6: Voxel-wise simulation of the optimal readout gradients Gro opt
[mT/m]. Main Cartesian planes (x,y = £300 mm, z = £150 mm) and arm-
like tubes (radius = 40 mm, length = 300 mm) are plotted. Voxel resolution is

1 cm3.

gradient strengths for clinical scanners (Fig. 3.6).

The simulation of slice profiles showed distortions in slice-select direction and
changes in slice thickness at the edges of an extended FoV (Fig 3.7). The dis-
tortion of the slice at z = -0.04 m excited by the maximum gradient strength
(Fig. 3.7A) was significantly reduced by the optimal gradient amplitude (Fig
3.7B), whereas the slice thickness tended to decrease with respect to distance
from iso-center.

3.4.3 Phantom Experiments

A quantification of the readout gradient dependency on the distortion in read-
out direction was achieved in simulations and in phantom experiments. The
optimal readout gradient caused a change of the space-dependent distortion.
Figure 3.8 shows the pixel-wise distortions for a transversal plane at z = 0 m
using optimized and non-optimized gradients for the usual position of the right
patient’s arm (x = -0.3 m, y = 0 m). The distortion is locally reduced to zero at
a specific position but may be higher at other positions. In the phantom study,
we observed a significant overall distortion reduction in a region of interest di-
mensioned as large as a patient’s arm. Using a non-optimized readout gradient
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Figure 3.7: Simulation of slice profiles using a slice-select gradient of G,=
+45 mT/m (A) and G, = 5 mT/m (B). Excitation frequencies and bandwidth
were set to simulate slice profiles of 2mm thickness at positions z = (-0.12 m,
-0.08 m, -0.04 m, 0 m, +0.04 m, +0.08 m, +0.12 m) in an extremely extended
FoV (0.646 m diagonal). The gradient amplitude in (B) was determined to
reduce the distortion of the highlighted slice profile at position z = -0.04 m.

in amplitude and polarity of G, = 2.48 mT/m caused a distortion-related de-
viation of 32.1 % from the reference measurement at iso-center position (Fig.
3.8a). A non-optimized gradient amplitude of G, = -5 mT/m resulted in a
deviation of 15.4 % (Fig. 3.8b). HUGE decreased the overall deviation to 8.5 %
by applying one single optimized readout gradient, here G opr = -2.48 mT/m,
for the entire region of interest (Fig. 3.8c).

3.4.4 Volunteer Experiments

Distortion reduction of both patient arms was achieved. Figure 3.9 shows a
transversal plane of the patient’s arms. In the non-optimized mode, the pa-
tient’s arms were significantly distorted outside the normal specified FoV. Sev-
eral pixels were squeezed. Using HUGE, adapting the optimal readout gradients
for imaging at off-center positions allowed for a distortion-reduced acquisition
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Figure 3.8: Pixel-wise simulation of distortions D [mm] in readout direction for
an extremely extended FoV (a-c) and corresponding measurements of the tube
phantom touching the body coil at position x = -300 mm (A-C). Transversal
plane at z = 0 m, matrix size is 2562. Readout gradient strengths are G, =
+2.48 mT/m (A), G, = -5 mT/m (B) and G5 = -2.48 mT/m (C). There was
no additional post-processing distortion correction applied.

Figure 3.9: Transversal slice, field-of-view: 600mm. Typical distortions of the
patient’s arms located at off-center positions (A) were reduced using an optimal
readout gradient for the left and right patient’s arm (B).
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of both arms of the patient.

3.5 Discussion

The proposed sequence-based imaging technique, HUGE, offers a significant
in-plane distortion reduction in the presence of gradient nonlinearities and By
inhomogeneities. Distortions at off-center positions can be reduced using an
optimal space-dependent readout gradient. Even outside the normal specified
FoV, a significant distortion reduction was achieved in simulations, in phantom
and in volunteer measurements.

The conventional procedure in distortion reduction is the use of very large gra-
dients. This simple approach reduces the By influence but not the distortion
caused by the nonlinearity of the gradient field. However, the distortion is tolera-
bly small within the normal FoV and can be further corrected in post-processing.
This is not the case at the edges of an extended FoV. Here, the distortions are
very large and several pixels might superimpose so that a robust post-processing
distortion correction cannot be achieved. The imaging technique presented in
this work reduced the source of distortion before spatial encoding. An optimal
readout gradient can be determined such that the distortion caused by the By
inhomogeneities compensates the distortion caused by the gradient nonlinear-
ities. Furthermore, the optimal gradient strength was typically much smaller
than the maximum gradient strength and thus allowed for a higher signal-to-
noise ratio.

The dependency of the in-plane distortion in the frequency-encoding direction
on the applied readout gradient amplitude, as described by Bakker et al. [2],
was confirmed in the phantom experiment. The observed distortion in the phan-
tom experiment was consistent with the results obtained in simulations. These
simulations were performed based solely on measurements of the gradient field
and the By field. Thus, the measured distortion in the phantom experiments
can be fully explained by the nonlinearities of the gradient field and the By
inhomogeneities. Consequently, the measured values for the magnetic fields and
the aforementioned dependency of the readout gradient on the distortion is suf-
ficient to determine the optimal readout gradient amplitude.

Although the overall spatial variation of the By field is of much higher order than
that of the gradient fields, the variation of the readout gradient (x-gradient) is
comparable to that of the main magnetic field regarding symmetry and position
of roots at the region of interest z = [-0.12 m,+0.12 m], which covers the range
of a typical PET FoV in z-direction. Consequently, the distortion in readout
direction can be reduced at a region, which is acceptably large in terms of cross-
section of the patient’s arm and slice thickness, by using only one single optimal
readout gradient. In simulations, the readout gradient optimized for the z =
0 m position reduced the distortion significantly along a line at z = 4+0.08 m
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and in-plane for a cross-section of a patient’s arm. The phantom and volun-
teer experiments confirmed that significant distortion reductions can already be
achieved outside the specified FoV by applying only one single readout gradient
per arm position and per slice. Furthermore, the voxel-wise simulation showed
that the optimal readout gradients are in the range of technically feasible gra-
dient strengths.

The spatial variation pattern of the slice-select gradient (z-gradient) is different
in symmetry and does not adequately match that of the main magnetic field.
Although an optimal slice-select gradient was found for each z-position and the
distortion was reduced in simulations, a residual change in slice thickness was
observed at the edges of simulated slice profiles. However, in a first approxima-
tion the structure of the patient’s arm can be assumed to be homogeneous in
the z-direction. Thus, for the purpose of this study, which is the improvement of
the MR-based attenuation correction, an adequate in-plane distortion reduction
in the extended FoV is sufficient. The requirement of a distortion below lcm,
as defined in the introduction of this chapter, was fulfilled. Furthermore, the
required resolution for an accurate MR-based attenuation correction given by
the PET resolution, which is limited to about 2 mm? by the PET crystal geom-
etry, was achieved in phantom and volunteer experiments. Again, the presented
technique provides MR data of regions outside the normal FoV for an improved
MR-based attenuation correction of PET data. It does not provide MR images
for clinical diagnosis. If such an image quality is required, the distortion in
slice-select direction has to be taken into account and a distortion reduction by
an optimized slice-select gradient and RF pulse has to considered.

Due to the system-dependent architecture of the main magnetic field coil and
the gradient coil and an individual iron configuration of the passive shim, the
pattern of field imperfections outside the specified FoV differs from system to
system. Thus, a system-specific coefficient file of gradient nonlinearities and By
inhomogeneities was obtained from individual measurements for each system
and was provided to the user.

The sequence implementation is based on a multi-slice spin echo sequence and
allows for an individual optimal readout gradient amplitude for each slice. The
acquisition time was 43 s per arm position for each bed position and was thus
short enough to allow the proposed method in clinical routine.

The proposed technique can reduce the distortion in the readout direction, but
not in the phase-encoding direction. As Eq. 2.6 shows, the By inhomogeneities
do not cause a distortion in the phase-encoding direction and can therefore not
be used to compensate gradient-related distortions. For the purpose of imaging
the patient’s arms outside the specified FoV at typical positions (x = +0.3 m,
y ~ 0 m), it is essential to assign the phase-encoding direction to the y-direction.
The patient’s arms are nearly at the center-position related to the y-direction.
Nonlinearities of the y-gradient coil at this position can thus be neglected.

In MR/PET, the additional image data in an extended MR-based FoV acquired
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with HUGE can be used to support the PET attenuation correction. It involves
four steps. First, a single measurement of the system-specific gradient nonlinear-
ities and By inhomogeneities. Second, the calculation of the space-dependent
optimal readout gradient amplitude. Third, the scan of multiple transversal
slices using the individual optimal gradient amplitudes. Fourth, processing the
additional information, that is the position and undistorted structure of pa-
tient’s arm, for the PET attenuation correction.

HUGE has the potential to decrease the reported bias of the PET data re-
construction [8]. Hence, it is of interest for any kind of whole-body MR/PET
examinations, performed either simultaneously in one integrated system or se-
quentially in two separate systems. In addition, an extended FoV could also be
relevant for radiotherapy and biopsy.

3.6 Conclusion

In conclusion, a function was implemented in the multi-slice spin-echo-based se-
quence which calculates and adapts the optimal readout gradient for each slice
and arm position. No hardware modifications were required and no further user
interactions were needed. Distortion-reduced acquisitions of the patient’s arms
at typical off-center positions have been achieved. Therefore, HUGE has the
potential to improve MR-based PET attenuation correction.

In the following chapter, HUGE is further improved concerning measurement
time and FoV extension in z-direction. The use of a bipolar dual-echo imple-
mentation allows to scan both arm positions simultaneously by applying both
individual optimal readout gradient amplitudes during one excitation interval
thereby saving additional acquisition time [18]. A combination of the presented
method and a continuously moving-table technique [19] extends the FoV in
transaxial and longitudinal direction and is presented in the following chapter.
Finally, in chapter 5 the developed technique is used in whole-body MR/PET
examinations of patients to validate the improvement on the PET reconstruc-
tion.
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Implementation
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4.1 Introduction

In the previous chapter, a method was proposed featuring an MR-based FoV
extension using an optimized readout gradient amplitude. This optimal read-
out gradient amplitude allowed for a compensation of the distortion due to By
inhomogeneity and gradient nonlinearity. Thus, the distortion was significantly
reduced at specific positions outside the usual specified FoV. Furthermore, it
was shown that a total distortion reduction was achieved at a region of interest
as large as the patient’s arm using one single optimal gradient amplitude. How-
ever, this optimal readout gradient amplitude is space-dependent and differs
both for the slice position (z-position) and the arm position (x-position). To
make MR acquisitions with optimal and different readout gradient amplitudes
for each slice position and arm position fast enough for clinical routine, new
implementation concepts and sequence designs are required.

In this work three different implementation approaches of an MR-based FoV
extension were developed. The objectives were a significant distortion reduc-
tion, a sufficient volume coverage of the patient’s body parts located outside the
usual specified FoV and an acquisition time short enough for clinical routine.
All sequence designs were spin-echo-based to ensure a sufficient signal rephasing
in face of very strong By inhomogeneities.

A multislice 2D spin-echo-based sequence was developed that calculates and
adapts the readout (RO) gradient for each slice position automatically and of-
fers an extended FoV in multiple slices during one single scan. However, the
optimal RO gradient depends on the position of the region of interest and there-
fore differs for optimization of the left and the right patient’s arm. Thus, a 2D
SE-based sequence was implemented using a dual-echo acquisition with opti-
mized RO gradients for distortion-reduced imaging of both the left and the right
patient’s arm. Nevertheless, the optimal gradient amplitude has to be modified
for each slice position. However, the number of slice positions can be reduced to
one using Continuous Table Movement (CTM) [1-5]. Finally, a combination of
the mentioned transaxial FoV extension and CTM is presented. In experiments
on volunteers, a significant distortion reduction has been achieved at off-center
positions of up to 300 mm off from the iso-center.

4.2 Materials and Methods

4.2.1 Sequence Design 1: Automatic Selection of Optimal Read-
out Gradient in Multi-Slice Spin-Echo

A multislice 2D spin-echo-based sequence was developed that calculates and
adapts the optimal readout gradient amplitude for each slice individually [6].
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The use of the spin echo condition avoids signal loss caused by dephasing in the
presence of By inhomogeneities. As shown in Fig. 4.1, the sequence consists

LA
A

ST

Amplitude and polarity
adapted for each slice

A

v

PE

Figure 4.1: Diagram of a multislice spin-echo-based sequence. The applied ra-
diofrequency (RF) and the gradients in readout direction (RO), phase-encoding
direction (PE) and slice-select direction (SS) are shown schematically. The
strength and the polarity of the optimal readout gradient are calculated and
adapted for each slice and patient arm’s position. The prephase gradient mo-
ment is adjusted accordingly to allow for a rephased signal at t = TE.

of a generic slice-select and a phase-encoding gradient. The readout gradient
amplitude and the prephase moment are adapted to fulfill the following require-
ments:

e Accurate frequency mapping in 2D spatial encoding, despite field inhomo-
geneities and gradient nonlinearities. This is achieved by compensation of
frequency mismapping due to By phase offsets and gradient nonlinearities.
The readout gradient amplitude is calculated according to (Eq. 3.5).

e Maintenance of the conventional spin echo condition of readout gradient
moment nulling to avoid signal dephasing, although the readout gradi-
ent strength varies with slice position. This is achieved by adapting the
prephase gradient moment of the standard spin echo sequence for each
slice to allow for a rephased signal at t = TE.
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e Transaxial FoV extension to 600 mm.

The regions to be optimized, i.e. the patient’s arm positions, were automatically
determined from the user’s slice positioning. The field parameters were read
from a file containing input coefficients based on the measurements described
above. The By inhomogeneities and the readout gradient nonlinearities were
calculated for each optimization region and each slice position using spherical
harmonic field expansion (Eq. 2.8). The optimal readout gradient amplitudes
were calculated according to (Eq. 3.5) and adjusted automatically. No further
user interaction was needed. In whole-body measurements, the sequence proto-
col was set to be run in multi-bed stations mode to achieve best possible FoV
coverage in z-direction. The patient’s arms can be acquired entirely in length
by three bed positions of 25 cm each (neck, thorax and abdomen) and thus the
measurement can be integrated in the typical MR-PET workflow. Each slice po-
sition was measured twice using the optimal readout gradient amplitude for the
left and the right patient’s arm, respectively. The acquisition time was 43 sec
per arm position (left /right) for each bed position, 11 slices of 5 mm and 20 mm
spacing, TR = 400 ms, FoV = 600 mm, phase-encode FoV = 210 mm, matrix =
320 * 96.

4.2.2 Sequence Design 2: Bipolar Dual Echo Spin-Echo

A dual-echo SE sequence was modified to handle RO gradients with different
polarity and amplitude (FIG. 4.2A). An additional prephase moment ensures
the spin echo condition for the second echo. The readout gradients have been
adapted to acquire a distortion-reduced transaxial slice of the right patient’s arm
in the first echo and of the left patient’s arm in the second echo. The optimal
space-depending RO gradients were calculated automatically by the sequence
according to (Eq. 3.5).

A volunteer experiment was performed on a 3T whole-body system, and a
transversal slice at z = 0 was acquired. The field-of-view was set to 600 mm
with 1.18 * 1.18 mm? in-plane resolution and 5 mm slice thickness.

4.2.3 Sequence Design 3: Continuous Table Movement

An optimal readout gradient corresponding to zero distortion was calculated
for the right volunteer’s arm position and the left volunteer’s arm position at
slice position z = 0 (iso-center). A half-Fourier single-shot turbo spin-echo
(HASTE) sequence was modified to continuously slide the volunteer through the
optimized slice at an off-center position during measurement using continuous
table movement (CTM). In a volunteer experiment transversal slices at an off-
center position (x = -300 mm) were acquired during continuous table movement
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using a non-optimized readout gradient and an optimized readout gradient. The
transaxial FoV was set to 500 mm with 1.95 * 1.95 mm? in-plane resolution and
5 mm slice thickness. The total FoV in z-direction was set to 705 mm.
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Figure 4.2: Diagram of bipolar dual-echo SE sequence with optimized readout
gradients (A) and corresponding echoes of a transversal slice (B). 1st echo: gra-
dient optimization for the right volunteer’s arm, 2nd echo: gradient optimization
for the left volunteer’s arm (green arrows)
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4.3 Results

4.3.1 Multi-Slice Spin-Echo-Based Implementation

A significant distortion reduction was achieved at multiple slice positions. Figure
4.3 shows transversal slices at (z = [-100 mm, -80 mm, -60 mm, -40 mm]) with
and without adapting the gradient amplitude for each slice position and for
both arm positions (left/right). While the standard spin-echo-based sequence
produced strong distortions at the patient’s arms resting along the body, the
automatic and position-dependent adjustment of the gradient amplitude allowed
for a faithful spatial-encoding.

SP = F100.0 mm SP = F80.0 mm

-
"t

A

Figure 4.3: Transversal slices acquired at different z-positions. Distortions at off-
center positions (red arrows) can be reduced by using the proposed optimization
method at multiple slice positions (green arrows).
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4.3.2 Bipolar Dual Echo Implementation

A distortion reduction of both the volunteer’s left arm and the volunteer’s right
arm was achieved during one single measurement scan using a bipolar dual
echo acquisition with optimized RO gradients. Figure 4.2B shows the acquired
images. In the first echo, the right volunteer’s arm was imaged nearly faithfully
without any post-processing correction, whereas the left volunteer’s arm was
strongly distorted. This distortion of the left volunteer’s arm was minimized in
the second echo.

4.3.3 Continuous Table Movement

The volunteer’s arms resting along the body were imaged entirely in length.
Figure 4.4 shows the off-center measurement using continuous table movement
(CTM) . The measurement was performed with and without the use of an op-
timal gradient amplitude at position z = 0. In the non-optimized case, a large
proportion of the right volunteer’s arm was truncated due to strong distortions
(Fig. 4.4A). This distortion was significantly reduced using a readout gradient
amplitude optimized as proposed (Fig. 4.4B). The data were acquired without
spacing between the slices. Thus, no interpolation was required. Consequently,
the magnitude of distortion did not vary with slice position.

Off-Center, FoV = 500 mm
X = [-300mm, +200mm)]

Non-optimized

Off-Center, FoV = 500 mm
X = [-300mm, +200mm]
Optimized

Figure 4.4: 3D shaded surface display of volunteer measured with an transax-
ial oriented HASTE sequence using continuous table movement. Distortions
and signal voids at off-center positions (A) can be reduced using an optimized
readout gradient (B).

67



Chapter 4: Implementations

4.4 Discussion

As shown in chapter 3 the optimal gradient amplitude corresponding to zero-
distortion is space-dependent and thus varies with slice position and patient’s
arm position. The multi-slice spin-echo-based implementation analyzed in this
chapter allowed for an inline computation and application of the gradient am-
plitude optimized for each slice position. An in-plane distortion reduction in the
frequency-encoding direction was achieved at several slice positions. However,
each slice has to be acquired twice to optimize for both the left and the right
patient’s arm position.

The two-fold measurement of the same slice can be avoided by implementing a
dual-echo SE-based sequence. Dual-echo SE imaging with automatically opti-
mized readout gradients extended the transaxial FoV simultaneously in positive
and negative frequency-encoding direction.

Both the variation of the magnitude of distortion with slice-position and the need
of interpolation between these slices became obsolete with the use of continu-
ous table movement. Truncation artifacts of the volunteer’s arm were reduced
by sliding the volunteer through the optimized slice. Therefore, a whole-body
acquisition of the complete anatomy with an transaxial FoV of up to 600 mm
and an arbitrary total FoV in table moving direction can be acquired. The
proposed method of an transaxial FoV extension using an optimized readout
gradient field combined with continuous table movement significantly reduced
typical truncation artifacts at off-center positions. From a workflow perspec-
tive, this method could optimally be combined with a PET acquisiton using
continuous table movement [7].

4.5 Conclusion

Distortion reductions can be achieved in multiple slices. An automatic opti-
mization of the gradient amplitude was achieved for each slice position. The
optimization of both the left and the right patient’s arm in the same excita-
tion train is feasible with the bipolar dual-echo approach. Continuous table
movement allows for a full coverage of the patient’s arm with minimal residual
distortion and without the need of interpolation.

In summary, the proposed distortion reduction method became feasible for clin-
ical use.
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Chapter 5: Clinical Applications

5.1 Introduction

As described in chapter 1, the attenuation correction of the PET emission data
is essential for PET quantification. In PET/CT the linear attenuation coef-
ficients (LAC) can directly be converted from the low-dose CT image to AC
maps at 511 keV [1]. In MR/PET the LACs cannot be obtained from the MR
image in the same way due to the fact that the MR contrast is independent of
the electron density of the tissue and thus contains no direct information about
the photon attenuation magnitude. A segmentation approach [2] in four tissue
compartments (air: 0 cm™!, lung: 0.018 cm™!, fat: 0.086 cm™! and soft-tissue:
0.10 ecm~!) based on a 2-point DIXON sequence [3, 4] is promising and results
in acceptable biases of standardized uptake values (SUV). Residual deviations
of the SUV can be explained by several causes [5]. The contribution of bone
tissue is ignored in current approaches where bone is treated as soft-tissue. The
radiofrequency (RF) surface coils contribute to the photon attenuation but are
typically not accounted for in the attenuation model [6]. Finally, the MR field-
of-view (FoV) is limited due to physical restrictions. Consequently, truncation
artifacts occur at the edges of the FoV in the AC map and thus the PET re-
construction can potentially be biased [7]. For the modeling of bone tissue, an
atlas-based approach was proposed by Hofmann et al. [8]. An alternative ap-
proach for bone segmentation was achieved by dedicated MR sequences using
ultrashort echo times [9]. The MR hardware inside the PET FoV, particularly
the surface coils and the patient table, can be manufactured of less attenuating
components, or, preferably, attenuating components can be placed outside the
PET FoV. The attenuation correction of residual hardware is done by consid-
ering the position and the attenuation coefficients of each hardware component
[10, 11]. For completion of the truncated attenuation map, Nuyts et al. showed
the feasibility of the prediction of the missing body contour from the atten-
uation PET emission data using a maximum-likelihood a-posteriori algorithm
(MLAA) [12]. However, this approach requires additional calculation time and
relies on sufficient radioactive tracer uptake in the truncated parts such as the
arms and the skin to successfully derive accurate data from the PET emission
data. Against this backdrop, in chapter 3 it has been shown that by consider-
ing the actual field plots of a specific MR/PET hybrid imager, space-dependent
optimal readout gradients can be found which compensate the distortion due to
the inhomogeneity of the main magnetic field and the distortion due the non-
linearity of the gradient field [13].

In this chapter, we will show a purely MR-based method for completion of
truncated AC maps in MR/PET hybrid imaging. In conventional MR Fourier-
transform imaging, proper spatial encoding requires a homogeneous main mag-
netic field and linear gradient fields. These conditions are fulfilled for typical
FoV volumes within the specified imaging FoV. At off-center positions inhomo-
geneities of the main magnetic field and gradient nonlinearities cause geometri-
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cal distortions of body regions located outside the specified FoV. These regions
often include the patient’s arms [14-16]. The distortions cause truncations in
the MR-based AC map and might hamper an accurate attenuation correction
in MR/PET hybrid imaging [7]. A complete non-truncated AC map for the
attenuating body tissue on the pathway of the 511 keV photons, however, is
important for exact attenuation correction and for the modeling and scaling of
scatter [17-22].

In this work, the MR-based FoV extension technique was used to complete the
truncated AC maps. Furthermore, the impact of the FoV extension technique
on the PET quantification was analyzed. The extended AC maps were ac-
quired for 12 patients who underwent an '*F-FDG PET/CT and subsequently
an MR/PET examination. Retrospective ordinary Poisson ordered-subsets ex-
pectation-maximization (OP-OSEM) reconstructions (3 iterations, 21 subsets)
of the PET data were performed using the conventional and the extended MR-
based AC maps. Quantitative comparisons of the attenuation corrected PET
reconstructions were conducted with the PET/CT scans of the same patients
as an intraindividual standard of reference.

5.2 Materials and Methods

Towards the aim to improve the MR-based attenuation correction of the PET
emission data, a spin-echo MR sequence was developed to reduce typical trun-
cation artifacts in the MR image due to FoV limitations. First, the conventional
DIXON-based AC map was measured. Then, additional MR acquisitions were
performed at bi-lateral off-center positions using the MR-based FoV extension.
The patient’s arms were segmented based on the distortion-reduced image. Fi-
nally, this additional segmentation result was used to complete the truncated
AC map (Fig. 5.1).

Simultaneous MR/PET scanning was performed on an integrated MR/PET
hybrid whole-body imaging system (Biograph mMR, Siemens AG Healthcare
Sector, Erlangen, Germany) at the Institute of Medical Physics, University
of Erlangen-Nuremberg, Germany. The intraindividual PET/CT comparison
scans were performed on a whole-body PET/CT scanner (Biograph mCT 64,
Siemens AG Healthcare Sector, Erlangen, Germany) at the University Hospital
Erlangen, Germany.

5.2.1 MR-based FoV Extension

Geometrical distortions at the edges of an extended FoV due to By inhomo-
geneities and gradient nonlinearities were compensated by using an optimal
readout gradient as it has been described in chapter 3. The optimal readout
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2-point DIXON based MR-based FoV extension using a
segmentation and assignment in 2D multislice spin-echo sequence
soft tissue, fat, lung and air with space-dependent readout
gradient optimized for each slice
v

Segmentation of patient's arms

:

Qualtity criterion: Exclusion of slices
showing a residual distortion of
more than 5mm

v
Linear interpolation in z-direction
'
| Assignment to soft tissue
AC map showing truncation !
artifacts at edges of large FoV AC map for patient's arms

e

Voxel-based completion of
truncated AC map

'
Extended AC map

Figure 5.1: Flow chart depicting main steps involved in reducing truncation
artifacts of the AC map.
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gradient corresponding to zero-distortion is space-dependent and might differ for
every voxel-position according to Eq. 3.5. However, it was shown that the use
of a single optimal readout gradient for each patient arm and each slice position
was sufficient to achieve a significant in-plane distortion reduction where the
patient’s arms are resting besides the body during the MR/PET examination.
The system-specific By inhomogeneities of the main magnet field and the non-
linearities of the gradient field were measured once using an MR probe device
as described in chapter 2.

A multislice 2D spin-echo-based sequence was implemented to determine and au-
tomatically apply the optimal gradient strength depending on the slice position
[23]. No hardware changes or user interactions were required. The measure-
ment of the patient’s arms over their entire length was separated into multiple
bed stations. Each slice position was measured twice using the optimal readout
gradient amplitude for the left and the right patient arm, respectively. The
acquisition time was 43 s per arm position (left/right) for each bed position.
Usually three or four bed stations are required for whole arm coverage. At each
bed position, 11 transaxial slices of 5 mm and 20 mm spacing were acquired,
TR = 400 ms, frequency-encode FoV = 600 mm, phase-encode FoV = 210 mm,
matrix = 320 * 96.

Using the optimal readout gradient, the distortion can usually be reduced sig-
nificantly for the center slice at z = 0 mm of each bed station but off-center
slices might show residual distortion. Thus, slices showing a distortion of more
than 5 mm compared to the center-slice were automatically excluded from fur-
ther post-processing. Assuming a homogeneous structure of the patient’s arm
in the z-direction, a linear interpolation between the non-excluded slices was
performed.

5.2.2 AC Map Completion

The conventional AC map was generated based on a 2-point DIXON technique,
which allows for segmentation into four tissue classes (soft-tissue, fat, lung and
air). The MR measurement was performed at three or four bed positions (head,
thorax, abdomen, and pelvis) and resulted in a composed AC map with a reso-
lution of 2.6 * 2.6 * 2.6 mm? and up to 500 * 330 * 922 mm? in volume coverage.
The extension of the AC map in the transaxial direction was performed using
Matlab R2010b (The MathWorks, Inc., Natick, MA, USA). The MR images
acquired in the extended FoV as described above were used to build a binary
mask containing the patient’s arms (Fig. 5.2). The pixels in the mask were as-
signed to the AC values of soft-tissue (1 = 0.1 cm™!) and air (u = 0 cm™!) for
the patient’s arms and the background, respectively. A pixel-wise completion
of the AC map was performed based on this mask where each pixel at the edge
region (20 cm < |x| < 30 cm) of the original AC map which was potentially
misassigned to background due to truncation artifacts was reassigned to the
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Figure 5.2: Distortion-reduced off-center acquisition and segmentation.
Transaxial slices acquired using the proposed FoV extension technique opti-
mized for the right patient’s arm (A) and the left patient’s arm (B) were used
for generating a binary mask (C) after segmentation of patient’s arms.

corresponding mask’s pixel value. The resolution of the MR data acquired in
the extended FoV was sufficient for a pixel-wise completion of the AC in the x-
and y-direction. However, the resolution in the z-direction was limited by the
number of slices to reduce acquisition time. Thus, a linear interpolation of the
binary mask was performed in the z-direction to achieve the same resolution as
in the original AC map.

5.2.3 Impact on the PET Reconstruction

For validating the improvement and the impact of the proposed MR-based FoV
extension of the AC map on the PET reconstruction, 12 patients who underwent
a ®F-FDG PET/CT and subsequently a simultaneous MR/PET examination
were measured using the described imaging technique.

The extended and the original (distorted) AC maps were used for retrospective
ordinary Poisson ordered-subsets expectation-maximization (OP-OSEM) recon-
structions [24] with 3 iterations, 21 subsets; Gaussian filter FWHM 4 mm.
The body weight corrected standardized uptake values (SUVj,, ) were calculated

as
CpET

Dppr/BW’
where Cppr is the tissue radioactivity concentration, Dpgr is the injected dose
and BW is the patient’s body weight.

To quantify the impact of the proposed method on the PET reconstruction,

SU Vi = (5.1)
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first the SUV,eqn values were compared in three spine lesions with those of
the CT-based PET reconstruction in one patient. Afterwards, an inter-patient
comparison of the different attenuation correction approaches was performed in
two three-dimensional regions of interest (ROIs) placed at the image position
of the liver and the spine of 12 patients respectively. To verify the potential
improvement of the quantitative PET reconstruction using our approach, a CT-
based AC PET reconstruction was performed and compared to the MR-based
AC PET reconstructions with and without extended FoV. Assuming a higher
impact of the FoV extension method for obese patients the quantitative com-
parison was performed on the patient with the largest body mass index (BMI:
33.60 kg/m?). The patient showed several osseous metastases. Three ROIs were
placed at spine lesions showing a mean SUV,,, > 5 and used for comparison be-
tween the MR-based AC PET reconstructions (Fig. 5.3) and the CT-based AC
PET reconstruction. To validate the impact of the proposed method, an inter-

Figure 5.3: MR/PET hybrid imaging of a patient with tracer active bone lesions
in sagittal (left), coronal (middle), and transaxial (right) orientation. Three
spine lesions were defined for intraindividual quantitative comparison between
MR-based attenuation correction with and without extended FoV and CT-based
attenuation correction.

patient study was performed comparing the MR-based AC PET reconstructions
with and without extended FoV in 12 patients. Furthermore, the purely MR-
based AC extension was compared to the PET-based truncation completion of
the body contour by the MLAA algorithm [12]. Three-dimensional ROIs were
placed in the liver and in the thoracic spine (Fig. 5.4). The position and the
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Figure 5.4: Coronal slice of PET reconstruction. Colored volumes (blue and
red) depict the defined three-dimensional regions of interest in the liver (VOI
1) and the thoracic spine (VOI 2) used for the inter-patient comparison of the
impact of the proposed MR FoV extension on the PET quantification. Only
voxels showing a SUV4, > 1 were included.

size of the ROIs were the same for the different PET reconstructions in each
patient but differed due to inter-patient anatomical variance.

5.2.4 Patient Population

This study involved 12 patients (6 male, 6 female, BMI: 23.91 kg/m? 4 5.35 kg/m?)
of the University Hospital Erlangen, Germany. Only patients who underwent
a PET/CT scan after clinical indications were examined in MR/PET. Thus,
the PET tracer was injected only once and additional radiation exposure was
avoided. The study was IRB approved by the local ethics committee. Written
informed consent was obtained from all patients before imaging.
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5.3 Results

The proposed MR-based FoV extension achieved an improvement of the AC
map in all patients. Figure 5.5 shows the AC map before and after the described
technique. Typical truncation artifacts of the patient’s arms (Fig. 5.5A) due to

Figure 5.5: Attenuation correction map without (A) and with the proposed FoV
extension (B). The typical truncation artifacts (red arrows) were significantly
reduced.

FoV limitations were significantly reduced (Fig. 5.5B). Average body volume
increased by 5.08 % + 1.94 % in the AC map with total average body volume
coverage of 49.18 dm? for the limited FoV and 51.88 dm? for the extended FoV.
The resulting PET reconstructions are shown in Figure 5.6. The PET recon-
struction processed by the conventional MR-based AC without FoV extension
(Fig. 5.6A) showed a signal underestimation of both the patient’s arms and
of several spine lesions when compared to the PET reconstructions processed
by the proposed FoV extension (Fig. 5.6B) and by the MLAA algorithm (Fig.
5.6C). Figure 5.7 shows the voxel-wise change of SUV;,, values in the PET re-
constructions using the HUGE technique (Fig. 5.7A) and the MLAA algorithm
(Fig. 5.7B) each in relation to the AC without FoV extension. The largest
bias compared to the limited FoV was found in the patient’s arms and in the
thoracic spine for both HUGE and MLAA. The comparison of the PET recon-
structions using the MR-based FoV extension HUGE, the PET-based FoV ex-
tension MLAA and the CT-based attenuation correction was quantified in three
spine lesions and is shown in absolute SUVbw mean values and in percentage
deviation from the limited FoV AC PET reconstruction in Table 5.1. The stan-
dard deviations of all three-dimensional ROIs were between 1.49 and 2.97. The
largest deviation between the MR-AC PET reconstruction without FoV exten-
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Figure 5.6: PET reconstructions processed by MR-AC without any FoV exten-
sion algorithms (A), with the proposed MR-based FoV extension (B) and with
an extension by PET-based estimation (C). Note the better PET visibility of
the corrected arms in (B) and (C) and associated higher lesion activity for the
spine lesions.

A B

HUGE - limited FoV MLAA - limited FoV
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Figure 5.7: Voxel-based bias of PET reconstructions using MR-AC with pro-
posed FoV extension (A) and PET-based completion estimation (B) compared
to MR-AC without any FoV extension algorithms. Note the identical regions of
bias in the arms and the thoracic spine.
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MR-based AC with MR-based AC with
MR-based FoV extension | PET-based FoV extension
(HUGE) (MLAA)
VOI 1 (Liver)
Mean p + Std o: —0.05% =+ 5.44% —0.03% £ 6.75%
VOI 2 (Spine)
Mean p + Std o 6.19% +4.12% 14.74% + 8.54%

Table 5.2: Comparison of PET quantification using the MR-based AC with
proposed MR-based FoV extension and MR-based AC with PET-based FoV
completion. Values are given in percentage deviation from MR-based AC with-
out FoV extension. The three-dimensional VOIs were drawn in the liver and in
the thoracic spine of 12 patients as shown in Fig. 5.4.

sion and with FoV extension was found in ROI1 with a higher SUV},, value of
23.25 % using HUGE (SU Vi nuae,ron = 6.52, SUViy timitedrov,rRon = 5.29).
In comparison to the CT-based AC PET reconstruction (SU Vi, per/cT,RON =
7.08), the AC using HUGE underestimated the PET reconstruction by 7.91 %
and MLAA overestimated the PET reconstruction by 6.36 % in ROI 1. ROI 2
showed the smallest deviation with -1.14 % using HUGE (SU Vi, HuGE, ROI2 =
6.07, SU Vi timitedrov,rRor2 = 6.14). In relation to the CT-based AC PET re-
construction using HUGE underestimated the PET quantification by 2.72 %
(SUVhw.HUGE,ROI2 = 6.07) and MLAA overestimated the PET reconstruction
by 1.60 % (SUViwnmraarorz = 6.34) in ROI 2. ROI 3 showed a deviation of
4.52 % using HUGE (SU Vi, nuae,rors = 6.93) compared to using the limited
FoV (SUViy timitedrov,ror3 = 6.63). In comparison to the CT-based AC PET
reconstruction with HUGE underestimated the PET quantification by 5.07 %
(SUViw,vuGE,ROI3 = 6.93) and MLAA underestimated the PET reconstruction
by 8.22 % (SUVyw,mraa,ror3 = 6.70) in ROI 3.

The inter-patient comparison of the impact of the MR-based attenuation cor-
rected with limited FoV, HUGE and MLAA on the PET reconstruction quanti-
fied in the liver and the thoracic spine in 12 patients is shown in Table 5.2. While
the deviation of the mean SUV;,, using the extended FoV for the AC compared
to the limited FoV was small in the liver both using HUGE (AnucE jiver =
-0.05 % + 5.44 %) and using MLAA (Anpaativer = -0.03 % £+ 6.75 %), it
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was considerably large in the thoracic spine (ApyGE,spine = 6.19 % £ 4.12 %,
AMLAA,spine = 14.74 % + 8.54 %)

5.4 Discussion

The proposed MR-based FoV extension technique reduced significantly the typ-
ical truncation artifacts in the MR-based attenuation correction maps. The
AC maps represent the given patient anatomy more correctly. The average
body volume coverage increased by 5.08 % in 12 patients due to the FoV ex-
tension technique. The AC map completed with the MR-based FoV extension
improved the MR-based attenuation correction and thus the PET quantification
in MR/PET hybrid imaging.

The inter-patient study showed that the impact of HUGE and MLAA on the
PET reconstruction depends on the body region. While the mean percentage
deviation in the liver was insignificant with -0.05 % and -0.03 % using HUGE
and MLAA, respectively, the impact was remarkable in the thoracic spine with
6.19 % and 14.74 %. This can potentially be explained by the fact that the
lungs have a 5 times lower attenuation factor than soft-tissue and thus increase
the proportionate impact of the patient’s arms on the attenuation correction
in the thorax relative to the abdomen. The standard deviation of the stated
impact with up to 5.44 % for HUGE and 8.54 % for MLAA and the standard
deviation of the additional volume used for completion of the AC map with
1.94 % indicates that the potential improvement of an extended AC map is
highly patient-dependent. Both the amount of additional volume required for
filling the truncations and the positions of truncation artifacts in the AC map
differs for different patients and thus causes the observed variance in the impact
on PET quantification.

To verify that the observed impact also successfully causes an improvement of
the PET quantification, an intraindividual comparison to the PET/CT exami-
nation was performed exemplarily in the patient with the largest impact of the
FoV extension. Here, the PET/CT scan cannot be treated as a gold-standard
for the MR/PET quantification due to several aspects. Pharmacokinetic fac-
tors, such as enhancement and washout over time due to different time intervals
between injection time and start of the PET study (97 min p.i. for PET/CT
and 184 min p.i. for MR/PET), biological factors, such as patient motion and
patient exercise due to transport from one modality to the other, and physi-
cal factors, such as ROI definition, might hamper an accurate quantitative in-
traindividual comparison between the MR /PET and the PET/CT examination
[25-28]. Therefore, the comparison to PET/CT did not aim at a quantitative
agreement but was performed in one patient to show the reduced bias of the pro-
posed technique. The lesion-dependent bias between MR-based AC PET and
PET/CT was reduced to a maximum percentage deviation of 7.9 % by extending
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the MR FoV using HUGE. The comparison between the PET reconstructions
processed by MR-based attenuation correction algorithms and by a CT-based
attenuation correction validated that the observed impact improves the PET
quantification. Furthermore, medical experts have stated that a maximum bias
of 10 % with respect to PET/CT is acceptable for MR-based attenuation cor-
rection [5]. Thus, the residual bias typically does not affect diagnosis except as
part of several systematic errors that could sum up.

In comparison to the PET-based AC map completion using the MLAA algo-
rithm, the proposed technique is purely MR-based and thus independent of the
choice of radiotracer. While MLAA works best using radiotracers with sufficient
background uptake for computation of the body contour [7], the MR-based FoV
extension works also in case of little uptake in the patient’s arms. Further-
more, the MR-based approach did not require additional computation time as
MLAA. On the other hand, the MLAA algorithm could, in theory, be extended
to obtain attenuation values of the surface coils with medium to low attenuation
coefficients [12], which cannot be imaged by the purely MR-based attenuation
correction. Theoretically, the MR-based and the PET-based AC map comple-
tion can be combined such that the additional distortion-reduced MR data is
used as initial input for a faster and more accurate iterative calculation from
the PET emission data using MLAA.

While the DIXON-technique allows for segmentation in different tissue classes,
the proposed FoV extension technique in its current implementation assigns all
voxels of the truncated patient’s arms to soft-tissue. Thus, an additional fat-
water separation of the MR data acquired outside the specified FoV might cause
further improvement. However, a combination of the DIXON-technique and the
dedicated MR sequence for the distortion-free acquisition might be challenging
with respect to increasing measurement time and phase correction issues. Nev-
ertheless, the image contrast of the acquired patient’s arms (Fig. 5.2) already
seems promising for a histogram-based grayscale segmentation of fat [29], which
will be subject to further research.

The presented multislice spin-echo-based sequence implementation using opti-
mal readout gradients for each slice position achieved a significant overall distor-
tion reduction. However, the residual distortion varied with the slice position.
As mentioned, slices with a residual distortion of more than 5 mm were excluded
from further post-processing and linear interpolation was performed instead. A
further improvement might be a sequence implementation using continuous ta-
ble movement [30]. The data with such an approach is acquired only at the slice
position showing no residual distortion and the patient table moves the patient
through this slice. This modification is still a subject for further research but
initial results are promising [31, 32].
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5.5 Conclusion

The proposed technique successfully extends the MR FoV in MR-based atten-
uation correction and recovers the truncated body parts in the AC map. The
use of this completed AC map shows an improvement of PET quantification in
whole-body MR/PET hybrid imaging.

In comparison with PET-based approaches, the presented algorithm is purely
MR-based and thus also applicable to specialized PET tracers with little uptake
in the arms. Furthermore, the method might also be of interest for dynamic
PET acquisitions for special applications such as oncology and cardiology with
uptake distributions varying over time.
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Summary

In this thesis, a new method in whole-body MR /PET hybrid imaging was devel-
oped and validated. Typical truncation artifacts at the edge of large MR FoVs
were removed. As a result the MR-based attenuation correction was improved
significantly and the reported bias in PET quantification was reduced.

The By inhomogeneity and the nonlinearity of the gradient field are well known
as the major causes for hardware-dependent distortions. Since the region of
interest is usually within the specified FoV, the distortions for this specific re-
gion are usually small. In this work, the distortions were analyzed for regions
of interest outside the usual specified FoV. Simulations were performed based
on measurements of the main magnetic field and the gradient field. The simu-
lations were in good agreement with phantom experiments. While the observed
distortions are in the order of mm within the specified FoV, the distortions in-
creased with increasing distance from iso-center and could reach up to several
centimeters.

A dependency of the in-plane distortion on the readout gradient amplitude was
observed in the frequency-encoding direction. The distortion due to the By in-
homogeneity was inversely proportional to the gradient amplitude whereas the
distortion due to the nonlinearity of the gradient field was independent of the
gradient. Thus, an optimal gradient amplitude corresponding to minimal resid-
ual distortion was found. The gradient nonlinearity was compensated by the
By inhomogeneity. The optimal gradient amplitude was space-dependent and
varied with slice position and in-plane position. It was shown in simulations
and volunteer measurements that a successful distortion reduction was feasible
using one single optimal gradient amplitude for a region of interest as large as
the cross-section of a typical patient’s arm. Thus, the proposed imaging tech-
nique achieved a bi-lateral extension of the MR-based FoV.

The implementation of the FoV extension approach in a multi-slice spin-echo-
based sequence allows for acquisition times that are realistic in clinical rou-
tine. The calculation and application of the optimal gradient amplitude was
performed inline and for each slice position. No further user interactions or
hardware changes were required. Furthermore, the bipolar dual-echo implemen-
tation obviated the separate measurement of the left and the right patient’s
arm. Finally, with the combination of the proposed acquisition technique with
continuous table movement, full coverage of the patient’s arm resting along the
body was achieved. The patient’s body was slided through the optimal slice
position causing minimal residual distortion. No further interpolation between
slices was needed.

The impact of the achieved MR-based FoV extension on the PET quantification
was verified in a patient study. Typical truncation artifacts in the attenuation
correction maps were removed. The improved attenuation correction reduced
the reported bias in the PET quantification due to FoV limitations. Thus, the
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results were in good agreement with PET-based or CT-based attenuation cor-
rection approaches.

Conclusion

A novel method in MR/PET was developed and validated. The MR-based FoV
was significantly extended. Multiple acquisition approaches were implemented.
Finally, the improvement on the PET quantification was verified. In compari-
son with PET-based approaches, the presented algorithm is purely MR-based
and thus also applicable to specialized PET tracers with little uptake in the
arms. Furthermore, the method might also be of interest for dynamic PET ac-
quisitions for special applications such as oncology and cardiology with uptake
distributions varying over time.
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