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 SUMMARY 
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Summary 
Cancer is one of the leading causes of death. A primary tumor forms when cells 

start to proliferate in an uncontrolled way and stop reacting to restraining signals. 

Tumors that reach a critical volume induce angiogenesis, a vascular remodeling 

process that provides nutrients and oxygen to the degenerated cell mass. Upon further 

tumor progression to a malignant cancer, cells acquire the ability to invade the 

surrounding tissue. In order to do so, formerly epithelial tumor cells undergo an 

epithelial to mesenchymal transition (EMT). This process of cell-cell detachment, 

breaching through the basement membrane and gaining migratory capabilities is the 

first step of the metastatic cascade. Metastasis is a process that allows tumor cells to 

leave the primary lesion and disseminate via the vascular system to secondary sites. 

Metastases, as the fatal feature of cancer, lead in most of the cases to patients’ death. 

Furthermore, metastasis, as the end stage of malignant disease, until now is 

incurable. This is due to the fact that metastases are spread systemically throughout 

the body and are often multifocal. Moreover, they even can establish from a 

disseminated tumor cell months after the primary tumor has already been surgically 

removed. Another barely controllable feature of cancer is tumor relapse. Even after a 

thorough surgery with the aim to completely remove the primary tumor and eventual 

draining lymph nodes combined with chemotherapy, patients relapse redeveloping 

cancerous lesions. Resistance to chemotherapy and establishment of metastases has 

both been accounted for to the abundance of cancer stem cells (CSC) within the tumor 

mass. These CSCs are endowed with the ability to evade chemotherapeutic drugs, 

they are mesenchymal in nature, migratory and invasive, and, most importantly, they 

are able to establish cancer and metastasis de novo. 

The work of my thesis has been dedicated to investigate the process of metastasis 

and the function of cancer initiation. Tumor initiation has recently been associated 

with EMT. To understand the functional circumstances how EMT cells gain the 

ability to form tumors, I used cellular murine breast cancer models. These model 

systems allowed me to study cells’ behavior before and after EMT in vitro and in 

vivo. In vitro experiments validated the observation of others that EMT cells indeed 

resemble cancer stem cells by being able to form hollow spheres and being 

susceptible to the CSC-specific drug salinomycin. In vivo studies revealed that EMT 
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cells initiate tumors with a much earlier onset and with a higher efficiency when 

limited amounts of cells were injected orthotopically into mice compared to their 

epithelial counterpart. Moreover, EMT cell-generated cancers are highly vascularized 

already in the early phase of tumor establishment. Knockdown studies of the main 

pro-angiogenic factor VEGF-A revealed that it is required for early tumor onset. 

Thus, tumor angiogenesis is not only an effect of early and fast EMT-tumor 

progression. Further supporting this notion are limiting dilution experiments, which 

suggest that tumor initiation in EMT cells is a multifactorial event. This concept was 

validated by the observation that 10 EMT cells could initiate a tumor, whereas 

VEGF-A knockdown cells could not. Hence, EMT-induced tumor initiation is 

achieved by the ability of promoting angiogenesis. 

EMT can be induced by the cytokine TGFβ. Normally, cells that experience TGFβ 

signaling become quiescent or die due to induction of apoptosis. Cancer cells can 

overcome these effects and react to TGFβ by undergoing EMT. As part of my thesis, I 

could show that the transcription factor Dlx2 is an important switch that allows cells 

to react to TGFβ by undergoing EMT without facing apoptosis induction. Dlx2 exerts 

its anti-apoptotic, pro-survival function by directly reducing TGFβRI expression and 

inducing the expression of the epidermal growth factor receptor ligand betacellulin. 

Another feature of EMT is the gain of cell motility. Cell migration is extremely 

important for cancer cells in order to leave their primary site and to disseminate. I 

have found ephrinB2 expression upregulated during EMT. EphrinB2 is a member of 

the Eph-ephrin signaling network that is known to be crucial for cell-cell 

communication. Thereby, cells that do not belong to the same entity repulse each 

other, restricting intermingling of tissue. Furthermore, ephrinB2 is required for 

neuronal axon guidance and angiogenesis. In my thesis, I showed that EMT cells need 

ephrinB2 to efficiently migrate. As an explanation for this phenotype I described that 

a knockdown for ephrinB2 led to an over-stabilization of focal adhesions. Cells 

normally use focal adhesions to hold on to an extracellular matrix (ECM) surface. 

Over-stabilization of focal adhesions attaches cells too firmly to the ECM and, hence, 

cells cannot retract their rear-end anymore which decreases cell motility. 

In summary, I succeeded in gathering further insights into tumor initiation, EMT, 

and with this, the metastatic process. 
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1 General Introduction 

1.1 Cancer 
The term cancer summarizes a large group of diseases with common features but 

different origins, locations, behaviors and outcomes. A tumor is defined by a cell 

mass that proliferates uncontrolled and its associated microenvironment. When a 

tumor becomes malignant by leaving the tissue it originated from, it is called cancer. 

These cancer cells invade the surrounding tissue and leave their primary site via blood 

or lymphatic vessels to initiate a tumor at secondary site, i.e. metastasis. Metastatic 

spread is in most cases the fatal event of the disease. While the best cure of a tumor is 

surgery, predominantly metastases are often not removable due to their multiplicity 

and their hiding nature. The most recent therapeutic strategy, in addition to removal of 

the primary tumors, is systemic treatment by targeted therapy and by chemotherapy 

that is meant to hit the residual cancer cells and more importantly the ones that 

already have left the primary site. 

Cancer, starting with an uncontrolled proliferation of cells, can occur in every 

tissue. Mostly, tumors arise from epithelial cells forming carcinoma when progressing 

to invasive forms. Cancer can originate from other tissues than epithelium: 

melanomas from melanocytes, sarcomas from supporting tissues like bone, muscle 

and vessels, leukemias from the blood, lymphomas from lymph glands and gliomas 

from nerve tissue. Summing up all cancers worldwide, the World Health Organization 

(WHO) reported 7.6 million deaths of cancer in the year 2008, which makes cancer 

the leading cause of death (13 % of all deaths). Furthermore, the WHO states that an 

avoidance of the key risk factors like tobacco use, obesity, unhealthy diet, lack of 

physical activity, alcohol abuse, pollution, UV-exposure and viral infections, 

together with an early diagnosis of cancer could reduce cancer deaths worldwide by 

30 %. Directly linking tobacco use being a high risk factor is the notion that 

lung cancer is the leading cause of cancer deaths (1.77 million), followed by 

stomach (736,000), liver (695,000), colorectal (608,000), breast (458,000) and 

cervical cancer (275,000) (1). 

While avoiding certain types of cancer risk factors like smoking can be achieved 

relatively easily, early recognition is not. Early lesions and often even big and far 
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progressed ones are mostly not hurting or disturbing patients, which often leads to late 

diagnosis of the disease. To counteract this fatal feature of cancer, screening methods 

are of high relevance to eradicate a tumor early and to avoid spreading of malignant 

cells. Additionally, research is constantly trying to understand cancer better with its 

different forms and stages in order to improve treatments. 

1.1.1 Hallmarks of cancer 
Leaders in the cancer biology field, Hanahan and Weinberg, describe in a review 

the hallmarks of cancer, features every cancer has to fulfill in order to be able to 

establish, progress and metastasize (2). These hallmarks will be summarized briefly in 

the following section. 

Sustained proliferative signaling and evading growth suppressors 

A tumor starts to evolve by an uncontrolled growth of abnormal, mutated cells that 

go through the cell cycle and proliferate, even though no further cells have to be 

generated for the normal homeostasis of the organ. Normally, cells are under the tight 

control of growth promoting and growth restricting signals only allowing them to 

enter the cell cycle when there is a need for increased cell numbers or cell turnover. 

Cancer cells uncouple these normally well-dosed growth stimuli mostly by mutations 

of so-called oncogenes or tumor suppressor genes, which leads to hyperproliferate. 

In most cases sustained proliferation is achieved by gain of function mutations of 

the key mitotic pathways, e.g. B-Raf mutations are found in about 40 % of 

melanomas driving the mitogen-activated protein (MAP)-kinase pathway. In many 

tumors the protein kinase B (PKB) effector is artificially kept active by mutations of 

the catalytic subunit of the phosphoinositide 3-kinase (PI3K). Also upstream receptors 

of mitogenic stimuli can be overexpressed or activated in an uncontrolled manner 

making the receptors either more responsive to growth stimuli or even dispensable. 

Growth factors themselves can be overproduced stimulating the cancer cell not only 

in an autocrine loop but also acting on neighboring cells in a paracrine manner. 

But even mitogenic signals can be too excessive forcing cells into senescence by 

so-called oncogenic stress. Cells avoid this stress by uncoupling oncoproteins from 

their senescence activity or counteract the mitotic proteins up to a certain point. 

Cancer cells fueling themselves with mitogenic stimuli are not enough to sustain 

proliferation. Factors that inhibit mitogenic signals or their transduction have to be 
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mutated or downregulated as well. Upon these, the tumor suppressor PTEN is one of 

the most famous silenced genes. PTEN’s missing direct counteraction of PI3K leads 

to a mitotic brake loosening. Two other proto-typical tumor suppressor genes 

opposing directly the cell cycle entry and progression and being often found mutated 

are TP53 and the retinoblastoma-associated (RB). Whereas Rb integrates signals 

mostly from outside the cell and halts the cells before entering the cell cycle, p53 

senses stresses and damages form inside the cells not only inducing cell cycle 

inhibitory proteins but also being able to force cells into apoptosis. As exemplified, 

cells have various ways to control cell proliferation. 

Resisting cell death 

Every cell is able to commit suicide by programmed cell death, the so-called 

apoptosis. Apoptosis is a tool of multi-cellular organisms to balance cell numbers and 

to eradicate old or damaged cells in a physiological way. The integrity of the whole 

organ or organism is favored over the fate of an individual cell. In cancer this 

principle is lost. As mentioned above, aberrant cell stress like DNA damage leads to 

an induction of cell death in normal cells. Again, p53, the main player to sense 

unbearable DNA abnormalities and to force apoptosis, is mutated or inhibited in a lot 

of tumors, which allows cancer cells to survive. But also other proteins either pro- or 

anti-apoptotic are found changed in cancers making cells resistant or less sensitive to 

cell death. Further upstream, survival signals, very much like proliferation signals, 

help cells to tip the balance more to the survival side than to the apoptotic one. 

Transforming growth factor beta (TGFβ) is one example of a protein influencing both 

apoptosis and survival and is rendered to the more survival activity site in cancer. 

More details on how TGFβ function changes during cancer progression will be 

discussed below (3.3). 

Enabling replicative immortality 

Cells have an intrinsic cell-division counter, the telomeres. Telomeres are DNA 

repeats on each chromosome that are shortened with every replication cycle. After a 

certain amount of DNA duplications the telomeres become too short and cells go into 

replicative senescence or even apoptosis. This phenomenon can be observed when 

primary cells are taken into culture. After limited passages, cells first go into 

senescence and then into crisis. Only few cells overcome this crisis and become 

immortalized mostly by activating the telomere-prolonging enzyme telomerase. A 
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similar way of infinite proliferation is believed to be gained by cancer cells. However, 

neoplasms with critically shortened telomeres have been observed in patients. Here 

chromosomal endjoinings of theses short telomeres of different chromosomes have 

occurred without an induction of senescence or apoptosis. In this case, where possibly 

p53-sensed chromosomal damage could not be translated into apoptosis, oncogenic 

chromosomal translocation of the genome could even favor further malignant 

mutations. A later reacquisition of telomerase activity would then stabilize the 

corrupted genome and thereby the cancer cell. 

Inducing angiogenesis 

Every tissue needs to be supplied with oxygen, nutrients and the possibility to 

evacuate metabolic waste and carbon dioxide in order to survive. This need is 

especially high in proliferating, energy consuming cells like tumor cells. The 

mechanism of tumor angiogenesis and its possible relevance in tumor initiation will 

be further discussed in the introductory section ‘tumor angiogenesis’ (1.3) and the 

results part ‘VEGF-mediated angiogenesis links EMT-induced cancer stemness to 

tumor initiation’ (3.1). 

Activating invasion and metastasis 

As mentioned above, dissemination of tumor cells and colonization at secondary 

sites can rarely be cured. Cancer cells gain the ability to detach themselves from the 

epithelial network and invade as single cells or in sheets the surrounding tissue. This 

process has to be accompanied by resistance to apoptosis and the capability to 

actively migrate. The epithelial to mesenchymal transition orchestrates all these 

features of single cell invasion that allows cancer cells not only to invade but also to 

intravasate into blood or lymphatic vessels. EMT will be described in more detail 

below (1.4). 

In order to metastasize it is not enough to invade and intravasate. The survival in 

the foreign surroundings (blood stream and secondary site) and the capacity to 

establish a new tumor are challenging tasks for cancer cells. The reverse process of 

EMT, the mesenchymal to epithelial transition (MET), is favoring the latter. It has 

become clear that cancer cells alone are not able to achieve all the metastatic process 

in an autonomous way but need the stromal compartment in the primary and 

secondary site as well. Fortunately, the metastatic process is full of obstacles making 

it a rare event. The metastatic process will be discussed in more detail below (1.5). 



Cancer GENERAL INTRODUCTION 

5 

Enabling hallmarks: Genome instability and mutation and tumor-promoting 

inflammation 

Genomic instability is a feature of a lot of cancer cells. In normal cells DNA 

damages activate repair mechanisms and if too dramatic they lead to cell senescence 

or death (already mentioned in the example of telomeres). Cancer cells seem to 

acquire resistance to genomic guardian molecules like p53 and thereby tolerate 

genomic changes. Genomic instability can lead to oncogenic translocations like 

BCR-ABL or AML1-ETO and to loss of function mutations of tumor suppressor genes 

(3,4). Rendering the genome more instable by inactivating maintenance molecules 

gives tumor cells the opportunity to adapt and evolve to their needs faster. 

An inflammatory surrounding can cause malignancy. This notion depicts already 

that factors released by immune cells can not only supply cancer cells with growth 

factors but also generate malignant cancer cells to begin with. The interaction with 

inflammatory cells and cancer cells can be visualized in highly infiltrated cancers. 

Nowadays, the supportive action of the immune system to cancer is well established, 

although cancer cells can also be recognized and attacked by the immune system. 

Emerging hallmarks: Evading immune destruction and reprogramming energy 

metabolism 

As mentioned above, cancer cells can be detected by the immune system as 

degenerated and with this to be cleared from the body. This line of defense against 

cancer is particularly effective in virus-induced cancer types. To evade the destruction 

by an anti-tumoral immune response cancer cells are selected for being as least 

immunogenic as possible or being able to suppress an immune reaction, for instance 

by TGFβ secretion. If a tumor can escape immune surveillance the cancer cells can 

use inflammatory cells and their cytokines for their profit. 

Reflecting the unstable supply of oxygen to tumor cells due to chaotic 

angiogenesis and uncontrolled proliferation of cells, the metabolism of cancer cells 

changes. It has been described that most cancer cells switch to the rather inefficient 

aerobic glycolysis, a phenomenon called the Warburg effect. To gain enough energy, 

mainly relying on glucose as an energy donor, cancer cells upregulate the expression 

of e.g. glucose transporters. The switch of cancer cells to aerobic glycolysis as the 

main metabolic pathway has been described repeatedly but the exact reason for this 

phenomenon still remains elusive. 
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1.2 Breast cancer 
The breast is a gland comprised of different cell types. Mammary stem cells 

(MaSC) give rise to different mammary epithelial cells thereby originating the 

mammary gland. MaSCs differentiate via committed progenitor states into 

myoepithelial cells and into luminal cells that can be further subdivided into ductal 

and alveolar luminal epithelial cells. Apart from the importance of MaSCs during the 

development of the mammary gland, MaSCs also maintain the tissue homeostasis. 

Upon other cells, adipocytes, ECM, fibroblasts, immune cells and vasculature 

surround the epithelial glandular structure (Fig. 1). Since the breast is an organ that is 

under constant change during a female lifetime due to huge hormonal alteration (i.e. 

puberty, pregnancy, nursing and weaning), MaSCs have to rebuilt mammary 

epithelium very often. The intrinsic ability of mammary cells to invade the mammary 

fat tissue, to remodel and reconstruct constantly the mammary gland structure makes 

the breast epithelium particularly prone to cancerous events (5). 

 

 

Figure 1: Schematic depiction of a mammary duct. 
Mammary ducts are comprised of the different indicated epithelial cells that are surrounded by a basement 
membrane. Around the glandular structures extracellular matrix and stromal cells are resident. 

 

The WHO declares breast cancer the most common cancer in the female 

population (1). But as pointed out before also breast cancer is a heterogeneous disease 

and has to be identified and treated accordingly. 
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1.2.1 Classical and immunopathological classification of breast 

cancer 
Breast cancer can be classified with different methods. The two most common 

classical pathology categories are based on morphology and structural organization. 

They are invasive ductal carcinoma, not otherwise specified (IDC NOS) with about 

75 % and invasive lobular carcinoma (ILC) with about 10 % of cases of all breast 

cancers. The residual categories are comprised of types like metaplastic, 

neuroendocrine, medullary, tubular breast cancer and many others. While structural 

classifications are subdividing the different breast cancer kinds, more important for an 

adequate treatment are immunopathological classifications that use the main markers: 

estrogen receptor (ER), progesterone receptor (PR) and human epidermal receptor 2 

(HER2). For clinicians the ER-status is of great relevance since ER-positive patients 

can be treated with anti-estrogen therapy although breast cancer that exceeds only 1 % 

ER-positive cells is referred to as ER-positive already. HER2-positive breast cancer 

can be treated with targeted therapy, a monoclonal antibody against HER2 

(trastuzumab). Not surprisingly, ER+/HER2- tumors have the best prognosis due to 

effective treatment against ER-signaling. With the targeted therapy against 

HER2-positive tumors those cancers have an intermediate prognosis, which is true for 

triple-positive (ER+PR+HER2+) as well as for HER+/ER- breast cancer types. The 

worst prognosis has a triple-negative tumor (ER-/PR-/HER2-) where none of the 

above-mentioned therapies can be applied. Extensive research to find treatments also 

for this type of breast cancer is ongoing (6). 

1.2.2 Molecular classification of breast cancer 
Another way to categorize breast cancer is by gene expression profiling (7). So far, 

six major molecular subtypes could be determined by gene expression profiling: 

luminal A, luminal B, basal-like, claudin-low, HER2-overexpressing and 

normal-breast-like (8). The titles of the subtypes already indicate that they are named 

after the normal breast cells they resemble and might have originated from. Among 

the luminal subtype, which is the most common type of invasive ductal and invasive 

lobular carcinomas, HER2 overexpression is associated with poor overall survival. 

The luminal A and B subtypes express the estrogen receptor and have a good 

prognosis. The basal-like subtype of breast cancer is the most aggressive one and 
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shows high intratumoral heterogeneity. Indicative for a basal-like subtype is the lack 

of expressing hormone receptors (ER and PR) and HER2. The claudin-low subtype of 

breast cancer is triple-negative as well but in addition is alike normal stem cells in 

gene expression profile and is enriched for cancer stem cells. Furthermore, the 

claudin-low subtyped cancer cells rather have a mesenchymal morphology and they 

resemble EMT cells in shape and gene expression. The normal-breast-like subtype is 

similar to the normal gland and usually has a good prognosis (5,6). 

It is widely believed that the various subtypes of breast cancer have originated by 

transformation from their cognate cell type named after. But there is also the 

possibility that transformed mammary stem cells can transform and give rise to more 

differentiated breast cancer subtypes. One could further speculate that cells from the 

triple-negative basal-like breast cancer subtype or others could have undergone an 

EMT after transformation to become cancer stem cell-like. Notably, a generation of 

cancer stem cell-like cells by induction of EMT in normal cancer cells was reported 

(9). This matter will be further discussed in the cancer stem cell section 1.6.4. 

 

 

Figure 2: Hierarchy of a normal breast and their according molecular breast cancer subtypes. 
Mammary stem cells (MaSC) are capable to self-renew and to differentiate along the arrow to the right into 
progenitor and differentiated cells that compose the mammary ducts and alveoli. The according subtypes of breast 
cancer either arise by transformation from the depicted epithelial cells or directly from the MaSC or its 
transformed equivalent, the cancer stem cell (CSC) by partial differentiation. The opposite could be true for the 
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CSC that either arises from a transformed MaSC or from a more differentiated cancer subtype by 
undergoing EMT. 
Additional to the molecular subtypes the predominant immunopathological classifications by ER, PR and HER2 
status are indicated as an attempt to combine both classification parameters. 

 

1.2.3 Mouse models of breast cancer 
Although the human mammary gland has some morphological differences to the 

mouse mammary gland, the development of both tissues underlies the same hierarchy. 

Many studies in mouse models to mimic breast cancer have helped to understand the 

human disease better. To study the progression of breast cancer and the molecules 

playing a role in it, a big cohort of transgenic mice has been generated. One of the 

most used promoters to study genes specifically in the breast is the mouse mammary 

tumor virus LTR promoter (MMTV). The MMTV-Neu model, where the rat homolog 

of activated Neu/ErbB2/HER2 protein is expressed specifically in the mammary 

gland, reflects about 20 % of human breast cancers with ERBB2 gene amplifications. 

These mice develop multifocal adenocarcinoma accompanied with lung metastasis 

(10). Another breast cancer mouse model, used later in this thesis, is the expression of 

polyoma-middle-T antigen (PyMT) under the control of the MMTV promoter 

(MMTV-PyMT). PyMT mainly transforms cells by activating Src, PI3K and protein 

kinase C. These mice develop multifocal mammary adenocarcinomas with lymph 

node and lung metastases after short latency (11). The resemblance of this breast 

cancer model to human breast cancer can be exemplified by the gradual loss of the 

estrogen and progesterone receptor as well as by an overexpression of ErbB2 in late-

stage metastatic cancer (10). 

Transplantation of tumor cells into the mammary fat pad (comprised of fibroblasts, 

adipocytes, endothelial cells and macrophages) is an easy tool to study cancer in an 

orthotopic site (10). 

1.3 Tumor angiogenesis 
In order to be supplied with nutrients and oxygen cells have to be in the proximity 

of blood vessels. In cancer where cells proliferate uncontrolled forming a bigger and 

bigger cell mass, the use of existing vessels is not sufficient anymore and the 

diffusion range to blood vessels becomes a limiting factor for cancer cell survival. 

Therefore, big tumor parts that are too distant from blood supply either die, forming 
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necrotic regions, or adapt their microenvironment by inducing angiogenesis. The 

latter way of action is called the angiogenic switch (12-14). 

1.3.1 The mechanism of angiogenesis 
Angiogenesis is a process in which pre-existing endothelial cells are reacting to 

signals that turn them into active endothelial cells that will originate new vasculatures. 

The most prominent way of angiogenesis is the sprouting of vessels. Active 

endothelial cells remodel vessels by first loosening cell-cell adhesions to neighboring 

cells. The endothelial cell at the sprouting point of the vessel, the tip cell, starts 

migrating following a gradient of pro-angiogenic signals. The endothelial cells 

adjacent to the tip cell, the stalk cells, divide to elongate the stalk of the sprouting 

vessel. Finally, the newly formed tube is stabilized by the recruitment of perivascular 

cells, pruned and matures to become fully remodeled and functional (15). This 

classical way of angiogenesis in which pre-existing vessels grow and remodel 

themselves, is supported by the presence of bone marrow-derived cells. These cells 

can trans-differentiate into endothelial cells thereby contributing to the structure of the 

vessel as well. This generation of new endothelial cells by precursor cells is called 

vasculogenesis in the adult. Even tumor cells were reported to be able to 

trans-differentiate into endothelial cells or imitate vascular structures, a phenomenon 

named vascular mimicry (16). 

Tumor cells that are located too far away from vessels experience hypoxia. Thus, 

tumor cells react by stabilization of hypoxia-induced factor 1 alpha (HIF1α). HIF1α 

in turn, activates the expression of the main angiogenic factor, vascular endothelial 

growth factor (VEGF) (17). VEGF is secreted by tumor cells and reaches quiescent 

endothelial cells that express the corresponding VEGF receptor (VEGFR) and 

promptly react to the VEGF gradients with angiogenesis. Upon hypoxia together with 

the release of VEGF the production of other factors, including platelet-derived growth 

factor (PDGF), fibroblast growth factor (FGF), angiopoietins and stromal cell-derived 

factor 1 (SDF1) are stimulated. This cytokine cocktail additionally recruits myeloid 

cells to the tumor further releasing pro-angiogenic factors and stimuli. These factors 

help increasing angiogenesis and tumor cell invasion (18). 
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Figure 3: Sprouting tumor angiogenesis. 
Tumor cells that experience hypoxia secrete various angiogenic factors. These factors activate endothelial cells. 
The tip cell leads the sprouting vessel towards the hypoxic tumor whereas the neighboring stalk cells proliferate. 
Sprouting of an existing vessel is accompanied by pericyte detachment, ECM remodeling and platelet activation. 
Endothelial progenitor cells (EPC) can further contribute to the vessel formation. Due to the leakiness of tumor 
vessels, tumor cells can intravasate more easily and use the blood circulation to disseminate (15). 

 

In more detail, when vessels sense angiogenic factors released by various sources 

(inflammatory or tumor cells), matrix metalloproteinases (MMP) are secreted and 

degrade the basement membrane shared by endothelial cells and pericytes. Pericytes 

detach from endothelial cells. Upon loosening of cell-cell junctions vessels dilate and 

become permeable to plasma proteins, which deposit an extracellular matrix bed 

suitable for vessel sprouting. This permeability increases by VEGF signaling. Further 

molecules of VEGF and FGF get released and made accessible by proteases from the 

ECM, further increasing the pool of angiogenic factors. In the tip cell, VEGF-A binds 

to VEGFR2 and to its Neuropilin co-receptors (Nrp) that in turn upregulate the Notch 

ligands Dll4 and Jag1. In this way, the tip cell senses guidance cues like ephrins and 

semaphorins with their filopodia that allows them to start to migrate directionally. On 

the other hand, stalk cells expressing the notch receptor, react to the exposed Dll4 on 

the tip cell. The Notch signaling leads to a downregulation of the main VEGF-A 

receptor, VEGFR2 and an upregulation of VEGFR1. By expressing mainly the 

VEGFR1 receptors and less VEGFR2, the stalk cell is less sensitive to VEGF but 
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rather reacts to Wnt, PlGF and FGF signaling by proliferating and forming a 

prolonged tube behind the tip cell. In order to be fully matured after sprouting, the 

vessel needs to get covered by pericytes and new ECM has to be deposited (19). 

1.3.2 Anti-angiogenic therapy 
Angiogenesis is often not properly controlled and coordinated when tumors initiate 

it to get enough blood supply. An overproduction of VEGF and other angiogenic 

factors by tumor cells, cancer associated fibroblasts, immune cells and platelets leads 

to inefficient hyper-proliferation of endothelial cells. Without restricting signals 

that regulate for instance pruning, this unbalanced mixture of angiogenic factors gives 

rise to immature, leaky blood vessel resembling a wound rather than a proper 

vascularized tissue (20).  

Angiogenesis could be an ideal drug target for anti-cancer therapy because blood 

supply is a limiting step in tumor development and also the highway for dissemination 

of tumor cells to distant organs (21). Additionally, the structure of tumor vessels is 

different compared to vessels in normal tissue. Tumor vessels are often chaotically 

branched, originating a tortuous blood flow and are leaky. This has advantages and 

disadvantages for a tumor. A disadvantage would be the inefficient perfusion 

due to immature vessels. A clear advantage instead would be the reduced 

accessibility to chemotherpeutics and the increased ability of disseminating cells to 

enter the blood stream. 

One of the classical mouse models used to study angiogenic effectors and various 

anti-angiogenic treatments is the insulinoma model Rip1Tag2. In this model of 

multi-step carcinogenesis, the angiogenic switch from a pre-vascular hyperplasia to a 

highly vascularized and invasive tumor occurs in a defined manner (22). Extensive 

studies either overexpressing or knocking out different VEGFs, as well as treatments 

with inhibitors or interference with auxiliary factors like MMP9 gave a lot of insights 

on how tumor angiogenesis is modulated (14). For instance, blockage of VEGF-A 

signaling has led to a normalization of tumor blood vessels, not only with a reduction 

of vessel numbers but also the presence of less fenestrated and less sprouted vessels 

and a better coverage by pericytes. As a consequence, the tumor volume in treated 

mice decreased (23). Overall, VEGF-A and its bioavailability has been revealed to be 
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the most important factor for tumor angiogenesis, however compensatory effects by 

FGF were shown (14,24,25). 

1.3.3 Clinical data 
The main task for cancer research it to translate results from experiments in animal 

models into clinical applications. VEGF signaling, being the most important 

pro-angiogenic factor, is used as a therapeutic target in cancer patients. However, 

anti-VEGF antibody therapy has been proven effective only in a limited number of 

cancer types. Initially, a study with untreated metastatic colorectal cancer patients 

showed an improved progression-free and overall survival when chemotherapy was 

supplemented with a humanized monoclonal anti-VEGF antibody (bevacizumab) 

(26). However, in an recent adjuvant therapy against stage II and III colon carcinoma 

bevacizumab combined with chemotherapy only shortly prolonged disease 

free-survival and did not show benefit after 3 years when compared to chemotherapy 

alone (27). As a consequence of these and other studies, bevacizumab treatment is 

only approved for metastatic colorectal cancer. In studies for metastatic breast cancer 

the addition of bevacizumab to paclitaxel (mitosis inhibitor, chemotherapeutic) as a 

first line therapy increased the progression free survival but had barely any effect on 

overall survival of patients (28). Nonetheless, bevacizumab is used for metastatic 

breast cancer in Europe, whereas the US Food and Drug Administration (FDA) has 

withdrawn its approval for this cancer type. These few examples already show that 

the type of cancer as well as the stage of the cancer has to be taken into account to 

predict whether bevacizumab treatment would be effective. Furthermore, the exact 

mode of treatment and the interpretation of clinical trials depending on the different 

endpoints defined have to be considered carefully to be able to draw a conclusion 

from a clinical trial (29). To date, bevacizumab has been approved by the FDA for the 

treatment of metastatic colorectal cancer and metastatic non-squamous non-small-cell 

lung cancer in association with chemotherapy. In recurrent glioblastoma multiforme 

bevacuzimab is used as a single therapy and in metastatic renal cell carcinoma in 

association with interferon-α (19). 

Having observed resistance development against bevacizumab alone (30), multi-

target receptor tyrosine kinase inhibitors like Sunitinib (blocking VEGFR, PDGFR) 

have been tested with the hypothesis that in this way both the endothelial cells and the 
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pericytes would be attacked. As a result, the detachment of pericytes would render 

endothelial cells more sensitive to VEGF-A inhibition, because they lose their 

proximate VEGF-source (20). Sunitinib has proven to be a superior therapy for 

metastatic renal-cell carcinoma than interferon-α (31). 

In conclusion, it turns out that a targeted therapy against angiogenesis in most 

cases is not as effective as hoped. Several questions about anti-angiogenic treatment 

remain to be solved: how do resistance mechanisms occur, which other factors apart 

from VEGF-A should be targeted and with which treatment schedule? Furthermore, 

the highly debated question whether anti-angiogenic therapy leads to more aggressive 

tumors has to be answered. 

1.4 Epithelial to Mesenchymal Transition 
An epithelial to mesenchymal transition (EMT) is a process in which epithelial 

cells lose their epithelial morphology and properties and gain mesenchymal, 

fibroblastoid ones. The process of EMT is characterized by high plasticity allowing 

cells to completely or partially change their cellular characteristics and even to 

reverse from the mesenchymal state back to the epithelial one (mesenchymal to 

epithelial transition, MET) (Fig. 4). 

1.4.1 The three types of EMT 
One can distinguish three kinds of EMT: the type I developmental EMT, type II 

wound healing/fibrotic EMT and type III oncogenic EMT. All different types of 

EMT follow very similar molecular changes and resemble each other on the cellular 

level. Major differences between these EMTs are of temporal nature and their 

functional outcome. 

As the name already states, developmental EMT (type I) occurs during the 

development of an organism. One early example is when primitive epithelial cells 

change into mesenchymal cells in order to migrate to their designated place to form 

the primary mesenchyme. At the new site, these EMT cells can undergo the reverse 

process of EMT, i.e. MET, and form a new epithelium. This example can be observed 

during the developmental process of the kidney. 

When an epithelium gets injured, cells at the edge of the wound undergo EMT 

(type II) in order to migrate into it, pulling the epithelial sheet behind to close the 

lesion. Constant wounding and associated inflammation of tissue can induce fibrosis. 
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Fibrosis is comprised of many fibroblasts and cells that had undergone EMT  

and stay in this state without complete repair of the tissue into a normal  

epithelium. Inflammation and fibrosis have been shown to be potent inducers of 

neoplastic lesions. 

Oncogenic type III EMT is used by carcinoma cells to leave the tumor mass, break 

through the basement membrane, invade the surrounding tissue and ultimately seed 

metastasis. The resistance to anoikis, gain of motility and the breakdown of ECM are 

essential features of EMT allowing cells to disseminate. In most of the cases, 

carcinoma cells that have undergone EMT and have reached a secondary site undergo 

MET to establish metastases (32,33). 

1.4.2 Breakdown of cell-cell junctions 
An epithelial layer is composed of individual cells that are in tight contact to their 

basement membrane via integrins in hemidesmosomes and in close association to 

their neighboring cell via desmosomes, adherens (AJ) and tight junctions (TJ). These 

structures allow a high organization of an epithelium with a clear separation of 

basolateral and apical areas. An early sign of EMT is the resolution of these cell-cell 

junctions and with this the loss of epithelial polarity. As a component of adherens 

junctions E-cadherin is the most important epithelial marker. During the first steps of 

EMT, E-cadherin gets displaced from AJs, which initiates their collapse. Apart from 

the decrease of E-cadherin levels during EMT, also catenins and proteins of tight 

junctions, like ZO-1, occludins and claudins get displaced from AJs and TJs. (34). 

β-catenin, which is both a protein of the adherens junction complex and the effector 

of Wnt signaling is not only displaced from the cell membrane but is with this more 

abundant for Wnt signaling in the cytoplasm and nucleus. Nuclear β-catenin is one of 

the invasiveness markers in tumors since it modulates expression of potent mitogenic 

factors such as c-Myc and CyclinDs but also other migration and metastasis proteins 

like fibronectin, MMP-7 and S100A4, respectively (35). 

E-cadherin is the main marker for epithelial cells and its downregulation seems to 

be crucial for EMT. It has been shown in various model systems that the sole 

repression of E-cadherin expression can trigger EMT. In vivo, the loss of E-cadherin 

could be observed in a panel of carcinomas where the loss of E-cadherin expression 

correlates with a bad prognosis. This notion is further underlined with the observation 
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that forced sustained E-cadherin expression leads to more differentiated and less 

invasive carcinomas (36,37). 

Not surprisingly, cells have many means by which E-cadherin expression can be 

modulated. Transcriptional repression of E-cadherin can either be accomplished by 

direct binding to its promoter by e.g. snail1, snail2, ZEB1, ZEB2, E47 and KLF8 or 

indirectly by e.g. twist, goosecoid and FoxC2. The different transcriptional repressors, 

although all regulating E-cadherin as their main target to induce EMT, distinguish 

from each other by modulating additional processes like cell polarity or survival as 

well. In diverse tissues and cancers, different E-cadherin repressors may be of 

importance (38). To sustain repression of E-cadherin expression its promoter can be 

hypermethylated or the gene (CDH1) can be lost or mutated, a phenomenon often 

found in human cancer. Additionally, E-cadherin can be modified post-translationally. 

A hyperactivation of tyrosine kinases like c-Met, Src or EGFR leads to 

phosphorylation of E-cadherin which results in its proteosomal degradation. But also 

cleavage of E-cadherin and a subsequent dislocation from adherens junction by e.g. 

MMPs, ADAMs or caspases has been reported (39). 

While the loss of epithelial characteristics during EMT are reasonably well 

understood, the knowledge about the gain of expression of mesenchymal markers like 

N-cadherin, as well as the upregulation of extracellular matrix components and the 

intermediary filament vimentin is by far less profound (40). 

1.4.3 Cytoskeleton rearrangement 
Epithelial cells are motile but within the restriction to their epithelial layer. In 

contrast, mesenchymal cells can detach and move freely by different modes of 

migration. A very striking phenotypic difference between cells before and after an 

EMT are the aforementioned changes in cell shape and polarization. These changes in 

morphology go along with drastic cytoskeleton rearrangements. While epithelial cells 

have actin filaments organized cortically like a belt under the plasma membrane and 

express cytokeratins, mesenchymal cells have a fibroblastoid shape and exhibit highly 

dynamic actin cables within the cytoplasm (called stress fibers) and the intermediate 

filament vimentin (34). 
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1.4.4 Invasion by basement membrane degradation 
Epithelial cells are separated from adjacent tissue by the basement membrane 

(BM). Without contact of epithelial cells to the BM, epithelial cells undergo anoikis 

(41). Furthermore, epithelial cells can only move laterally along the BM. The integrity 

of a BM, supported by ECM or other cells (like myoepithelial cells in the mammary 

gland) has been shown to be crucial to impede invasion (42). To overcome this border 

and to invade the neighboring tissue EMT cells secrete metalloproteinases (MMP). 

The upregulation and activation of MMPs in EMT cells does not only allow them to 

dissolve the BM to migrate though ECM but also unleashes ECM-bound growth 

factors making them bioavailable for cancer cells (43). Conversely, some MMPs have 

been shown to be able to induce EMT themselves (38). 

1.4.5 Gain of motility 
Whereas epithelial cells migrate only in 2 dimensions on the basement membrane, 

mesenchymal cell movement has to cope with the complexity of 3 dimensions. 

Migration through ECM instead of on ECM can be accomplished by different means. 

Neoplastic cells adopt already known migration mechanisms used by other cell types 

for example by fibroblasts or during morphogenesis. 

Cells either migrate in a single cell mode or collectively. In the collective cell 

migration mode cell-cell junctions remain intact allowing a whole sheet, tube, strand 

or cluster of cells to move concertedly. The collective cell migration mode is 

predominantly found in squamous cell carcinomas where finger-like structures invade 

the surrounding tissue and even intravasate and disseminate as a cohort (35). 

Single cell migration instead, can be further subdivided into a mesenchymal and an 

amoeboid version, both used by cancer cells. In the amoeboid cell migration mode the 

rapid movement of round cells is achieved by cytoplasmic streaming which allows 

squeezing through the ECM. In contrast, the mesenchymal cell migration mode is 

rather slow and uses in a highly coordinated way the ECM as strings to pull and slide 

on by attaching on it with focal adhesions. Adaptation or interchange between cell 

migration modes to upcoming obstacles or cues is possible (44). 

Displacement of E-cadherin and thereby the adhesion junction’s disintegration 

initiates migration. p120-catenin, for instance, normally bound to the intracellular part 

of E-cadherin is released and thus can either bind N-cadherin or translocate to the 
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cytoplasm where it indirectly activates the RhoGTPase family members Cdc42, 

Rac1 and represses RhoA. These GTPases are the key modulators of actin 

cytoskeleton remodeling and induce filopodia, lamellipodia and stress fiber 

formation, respectively (35). 

Cells that have undergone EMT mostly use the proteolytic, mesenchymal cell 

migration mode. Here, a poorly polarized, sessile cell within extracellular matrix gets 

stimulated to move in a certain direction. Stimuli can be of various natures e.g. 

hypoxia or gradients of growth factors. The migration cycle begins with the formation 

of a protrusion at the leading edge, i.e. pseudopod. The pseudopod forms by actin 

polymerization and filament assembly in the direction of movement. Small filopodia 

within the pseudopod sense the micronenvironment. Focal contacts, integrin-rich 

structures connected to the actin cytoskeleton, attach the cell to the ECM substrate 

firmly, pulling and realigning ECM fibers. Cells use proteases to cleave ECM that is 

in the way of the cell soma. Having generated enough space to traverse the ECM, the 

cortical actin cytoskeleton helps the cell to push and branch confining ECM. To 

finally move the whole cell, actomyosin filaments contract and the rear end of the 

cell retracts. Due to the firmer attachment of adhesions in the leading edge than  

in the trailing one a cell moves directional. A new path is left behind allowing  

more cells to follow (44). 

1.4.6 Resistance to apoptosis 
As mentioned above, epithelial cells that lose contact to the basement membrane 

undergo anoikis (41). Since a hallmark of EMT is specifically to lose connection to 

the basement membrane, cells have to be able to resist anoikis. How this tolerance is 

achieved has not been completely understood, but it is likely that active PI3K 

signaling accompanying EMT plays a major role. Besides resistance to anoikis, EMT 

cells are also more resistant to apoptosis, chemotherapy and oncogene-induced 

senescence. The evasion from chemotherapy can be monitored when carcinomas are 

treated with various cytotoxic agents. After treatment in fact, the surviving cells show 

a relative enrichment of a mesenchymal gene signature (40). Again, factors that 

induce EMT by repressing E-cadherin expression can antagonize apoptosis 

mechanism as well. The same is true for oncogene-induced senescence where for 

example ZEB1 has been shown to downregulate p63 and p73 that in turn cannot 
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induce the main cell cycle inhibitors and senescence inducers p21 and proteins of the 

Ink4 locus, respectively, anymore (45). How TGFβ exhibits its anti-apoptotic function 

will be discussed in more detail later (3.3). 

 

 

Figure 4: Schematic representation of epithelial and mesenchymal cells. 
Epithelial cells reside with an apico-basal polarity in a layer of epithelial cells. Adherens and tight junctions and a 
cortical organization of actin filaments stabilize this polarity. Upon EMT, these junctions are resolved, the apico-
basal polarity is lost and a rear-front polarity emerges. Instead of cortical actin filaments mesenchymal cells show 
stress fibers. While epithelial cells are attached to the BM via Integrins, mesenchymal cells are able to migrate and 
invade by the secretion of MMPs that opens the ECM and by cell-matrix adhesions like focal adhesions that allows 
efficient migration. Colors in the scheme correspond to colors in the notes of the figure. 

 

1.4.7 EMT inducing signals 
EMT can be initiated by several different factors, among these are HGF, EGF, 

Wnt, NOTCH, VEGF, extracellular matrix proteins, TGFβ and many more. Often, 

different stimuli complement each other in inducing EMT. The signaling cascades 

activated by all these factors have in common that they converge on targeting 

E-cadherin expression. As a shortcut to extracellular signals, overexpression of 

transcriptional repressors of E-cadherin are sufficient to induce EMT in cells. The 

same is true for the genetic loss of CDH1, showing again the central role of the loss of 

E-cadherin during EMT (38).  
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1.5 Metastasis 
Metastatic spread of cancer, considered as stage IV tumor, marks the disease as 

largely incurable and results in poor prognosis and short overall survival. Systemic 

spreading and resistance to existing therapy explains why more than 90 % of 

mortality from cancer is associated with metastases (46). 

1.5.1 The linear versus the parallel progression model 
There is a great debate going on whether dissemination of cancer cells that form 

metastases occurs late, after progression of cancer to full malignancy (linear 

progression model), or at early stages of tumor progression (parallel progression 

model). The latter model assumes a development of disseminated tumor cells (DTC) 

into metastatic lesions independent of the primary tumor. Indications for both 

phenomena have been found in patients. Very early during tumorigenesis, DTC can 

be found already in the bone marrow of patients (47). But it has been shown that 

these cells, that reside in the bone marrow, do not form metastases for a long 

time, if at all (42). Also, metastatic spread correlates best with tumor size. Final proof 

for both theories has not been achieved because early DTC could stay dormant and 

never establish a metastasis. On the other hand, metastases arise often long after the 

primary tumor has been surgically removed favoring the hypothesis that DTC had to 

leave the primary tumor before. Assuming that parallel progression indeed happens, 

even more effort should be made to understand DTC and their development at the 

secondary site. In this case early surgery of tumors would not be preventive for 

metastatic disease (47). 

1.5.2 The invasion-metastasis cascade 
The invasion-metastasis cascade describes the stepwise process cancer cells have 

to follow to be able to seed metastases at secondary sites (48). Cells have to be 

extremely plastic and adaptable in order to achieve all steps. This makes metastatic 

spread a rather inefficient process. It has been estimated that less than 0.01 % of cells 

that enter the systemic circulation are able to establish macrometastases (49). 

First, an established epithelial tumor has to acquire the ability to breach through 

mechanical restrains like the basements membrane in order to be able to invade 

locally. In a sheet of invading epithelial cells the association to their neighboring cell 
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is kept, whereas when single cells invade also these junctions have to be broken. The 

EMT process, as mentioned above, would provide the requirements for these first 

steps of metastasis (40). 

Cells that have left their epithelial embedding and breached the basement 

membrane have to be able to actively migrate to traverse the surrounding stroma. 

Again cells that have undergone EMT have gained this capability. Invading cells can 

also use amoeboid type of cell migration instead of the mesenchymal cell motility 

mode mentioned above, that is dependent on proteases, stress-fibers and integrins. 

This type of migration, as the name already indicates, resembles amoebae that 

squeeze through ECM rather than degrade it or use it to pull themselves through the 

ECM fibers. That is why the amoeboid mode is independent of proteases, stress-fibers 

and integrins but Rho/Rock-dependent. Reacting to microenvironmental cues cells 

can switch between different modes of migration (50). 

Within the stromal compartment, cancer cells experience the presence of other cell 

types like fibroblasts, immune cells and endothelial cells. These cells react to the 

cancerous surrounding by becoming activated. Activated stromal cells in turn 

influence cancer cells by promoting invasiveness (51). 

Cancer cells that have infiltrated the surrounding tissues have to use systemic 

routes to disseminate throughout the body. For this purpose cancer cells take 

advantage of the lymphatic or blood vascular system. In order to do so, intravasation 

in vessels has to be accomplished. Entrance into vessels is favored by both the 

invasive property of cancer cells themselves and by the leaky structure of 

tumor-associated vessels. 

Circulating tumor cells (CTC) have to cope with several stress sources within the 

bloodstream. Among these is the deprivation from ECM, which induces anoikis in 

epithelial cells, shear forces applied by blood flow and immune attacks mostly 

accomplished by natural killer cells within the blood. To overcome these obstacles 

cancer cells co-opt mechanisms of blood coagulation by shielding themselves with 

platelets and forming microemboli (42). 

It has been noted for a long time already that certain types of cancer disseminate to 

specific secondary sites. Whereas breast cancer cells seed to lung, liver, bone and 

brain, other cancer types might show another metastatic tropism. The metastatic target 

organ is certainly directed by accessibility, such as organs with more easily exited 
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vessels like bone and liver due to their fenestrated sinusoid. Moreover, specific 

signatures within cancer cells that target distinct organs could be discovered. 

Additional to the decision on where to home, cancer cells have to extravasate 

the vessels to be able to reach the secondary tissue. To extravasate, cancer cells can 

secrete factors making the vessel permeable to pass through. Angiopoietin-like 4 

(Angptl4), as an example, is secreted already by the primary tumor in order to make 

lung capillaries less tight. Angptl4 favors specifically the lung as secondary 

site, because its effect on the vasculature seems to be specific for lungs 

endothelial cells (52). 

CTC that have reached a secondary site have to interact with the organ tissue by 

either staying dormant for a while or by starting to build up a metastasis. It has been 

shown that the establishment of new tumors at secondary sites is facilitated by the 

formation of the so-called premetastatic niche. The premetastatic niche, a metastasis 

favorable microenvironment, is induced by tumor cells that are believed to secrete 

factors like VEGF, PlGF, TGFβ and TNFα which in turn induces the expression of 

inflammatory proteins of the S100 family in the target organ. The following 

recruitment of bone marrow-derived hematopoietic cells prepares the advent of cancer 

cells and with this the formation of the premetastatic niche. More and more factors 

influencing homing and the niche preparation on the tumor site and on the niche site 

are being discovered (53). Just recently the group of David Lyden has published that 

not only secreted proteins induce a premetastatic niche but that also exosomes, small 

membrane vesicles shed by tumors, can educate bone marrow progenitor cells to help 

establish metastases (54). 

Metastases often resemble their primary tumor although DTC must have gone 

through a lot of adaptation steps in order to be able to reach secondary sites. In most 

of the cases heterogeneous carcinomas give rise to heterogeneous metastases 

comprising of well-differentiated and less differentiated parts. Because disseminating 

cell are rather dedifferentiated, EMT-like when reaching the metastatic site, these 

cells have to undergo an MET to form an epithelial secondary cancer. Thus gene 

expression changes favoring an EMT phenotype in the primary tumor have to be 

reversible which is indeed often the case for example by epigenetic silencing of 

CDH1 (55). Whether all cells undergo MET and restart EMT-MET cycles when 
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disseminating further or whether some cells stay in their EMT and more cancer stem 

cell-like state has not been answered yet. 

 

 

Figure 5: Schematic representation of tumor progression and metastasis. 
In an epithelial layer, cells (red) are connected to each other by tight junctions (TJ, yellow), adherens junctions 
(AJ, yellow) and desmosomes. Furthermore, cells adhere to their basement membrane (BM, black) with 
hemidesmosomes (black). Upon an oncogenic event, epithelial cells start to hyperproliferate. Some cells of this 
hyperplasia become invasive by undergoing an EMT (blue). The EMT cells resolve the BM and infiltrate the 
surrounding tissue depicted here by extracellular matrix (ECM, black) with cancer-associated fibroblasts (CAF, 
purple) and immune cells (purple). In order to disseminate further, EMT cells intravasate into vessels (here blood 
vessels in brown, with erythrocytes in red and immune cells in purple). Circulating tumor cells have to survive in 
the blood stream and extravasate at the site of secondary tumor growth. To establish a metastasis, EMT cells 
undergo an MET (red) but some might stay dormant in a mesenchymal state (blue). 
 

1.6 Cancer stem cells 
It has been known for a long time that organs are composed of a hierarchy of cells, 

where stem cells at the apex of the hierarchy would be the ones being able to divide 

asymmetrically to self-renew but also to give rise to progenitor cells and ultimately 

originate the whole organ. This concept is now being expanded to cancer, recognizing 

cancer as an organ as well. In cancer, the stem cell is not necessarily the cell 
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originating the tumor in the first place but rather the driving force to fuel growth, 

progression and metastasis (56). 

1.6.1 The concept of cancer stem cells 
The progression of cancer has been described to occur via the clonal evolution 

model. In this model, successive mutations giving proliferative and survival 

advantages let individual cell clones overgrow the rest of the cells. Thereby, tumors 

evolve constantly and become highly heterogeneous (57). This concept of tumor 

cells being under continuous selection for the ‘fittest’, most adapted cell is now 

being integrated in the hierarchical model of somatic stem cells (58). After a long 

discussion on whether cancer stem cells (CSC) really exist, the CSC idea is now 

accepted for many cancer types after having been described originally in acute 

myeloid leukemia (59,60). 

Cancer stem cells are defined by being able to self-renew by asymmetric cell 

division and by being able to reconstitute the phenotypic complexity of the tumor they 

had originated from. Additionally, in vitro CSCs should have the ability to form 

spheres from a single cell when cultured in non-adherent conditions and for infinite 

passages (61). These characteristics support the idea that only a specific proportion of 

tumor cells have the potential to propagate a tumor in a recipient mouse, which would 

be the tumor initiating cells (TIC). 

Additionally, CSCs are drug-resistant because of their highly debated slower 

proliferation and their capacity to actively shuttle drugs out of their cell body. 

Furthermore, CSCs have been reported to be more efficient in DNA repair 

mechanisms helping to cope with radiation therapy. Resistance to therapeutic agents 

makes CSC not only the tumor propagating cells, but also the most potent cells to 

survive cancer treatment and to cause relapse (56). In contrast to the drug resistance 

feature of cancer stem cells, it has been found that CSCs and also EMT cells are more 

susceptible to salinomycin (62), an antibiotic acting by inhibition of the Wnt pathway 

(63). Along theses lines, treatments that induce differentiation of cancer (stem) cells 

would allow targeting cells that are otherwise difficult to target. All these 

observations fit very well with the notion that undifferentiated cancers are in most 

cases associated with poor prognosis and relapse, arguing that these cancers would 

comprise more CSCs than differentiated cancers do (64). 
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Great effort has been spent to identify CSCs by specific combinations of surface 

marker expression, but only limited success for some cancer types could be achieved, 

because the markers identified are very much dependent on the cancer subtype. 

Furthermore, the expression of markers is not exclusive for CSCs, making it difficult 

to isolate a pure CSC population rather than enriching for CSCs only. To sort CSCs 

by surface marker expression seems to be even more unreliable in mouse cells or 

cultured cell lines. However, the gold standard to identify a proportion of CSCs or 

better tumor initiating cells (TIC) is by serial transplantation of cells into recipient 

animals (65). Thereby, it is of great importance to transplant the suspected CSC/TIC 

into the adequate surrounding which would be an orthotopic site in either syngeneic 

or immunocompromised animals to effectively validate this concept (66). The 

drawback of using immunocompromised mice is the ignorance of the immune system 

on cancer progression, as mentioned above (1.1.1). However, human cells injected 

into mice will never trigger the same immune reaction as cancer cells that arise 

spontaneously within a patient (64). 

In breast cancer, as the first solid cancer, a cancer stem cell-enriched population 

could be sorted out of primary human tumors by the surface marker combination 

CD44+ CD24-/low ESA+ Lineage- which gave rise to tumors when only 200 cells were 

injected, a 50 fold higher tumorigenicity as compared to the unsorted cell population 

(67). But again, proving this marker combination useful for several human tumors, 

there are still high variations between patients, murine tumor models and even cell 

lines in expressing those markers (64). 

1.6.2 The origin of cancer stem cells 
The origin of CSCs is still controversial and a subject of constant discussion. There 

are formally two possibilities how CSCs originate. The first is transformation of 

somatic stem cells rendering the stem cell more proliferative. The second possibility 

is a gain of self-renewal capacity and de-differentiation of a progenitor or even a more 

differentiated cancer cell. Both ways of sources of cancer stem cells have been 

described and are still heavily debated (68,69,59). In any case, it is very likely that the 

microenvironment surrounding a CSC plays an important role. For instance it has 

been reported that the proximity to blood vessels is a microenvironmental cue that 

helps brain cancer stem cells to maintain their self-renewing capabilities (70). 
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1.6.3 The stromal progression model 
The stromal progression model has been proposed as a combination of the clonal 

evolution model, the cancer stem cell theory and also including the relevance of 

microenvironmental cues (71). This model not only explains tumor initiation but also 

metastatic progression of cancer. In the stromal progression model the importance of 

cancer cells to activate and interact with stromal cells and their secreted factors is 

stressed. The origin of the CSC that could either arise by mutation from a somatic 

stem cell or by dedifferentiation of ‘normal’ cancer cell is not distinguished. Here, the 

CSC is not only dependent on the surrounding signals to stay in its stem cell-like state 

but can also be generated through cues coming from the stroma. In addition to CSCs, 

all cancer cells are dependent on the microenvironment. While cancer is progressing 

from adenoma to carcinoma and finally to metastases, tumor cells experience 

different stromal compartments which influence each other. In order to be able to seed 

metastasis efficiently and to grow out at secondary sites, tumor cells either have to be 

able to modify the microenvironment at arrival or have to educate it via cytokines 

beforehand. Cells that are not being welcomed by the target stroma either die or stay 

dormant until the necessary signals are being provided. Moving the microenvironment 

in the focus of tumor progression and anticipating that plasticity of CSCs could make 

it difficult to eradicate them without allowing other cells to dedifferentiate to form 

new CSCs, the microenvironment could be a potential drug target. Disturbing the 

cancerous microenvironment would prevent CSCs to find or create their niche needed 

for efficient tumor progression and metastatic spread. 

1.6.4 Cancer stem cells and EMT 
The Weinberg lab was the first to integrate EMT and the cancer stem cells theory 

with each other, even arguing that EMT cells would be cancer stem-like cells (9). 

EMT, an important process during development where a lot of cell plasticity is 

required, is co-opted by epithelial cancer cells to invade and metastasize. Now, 

studies have shown that cells that have undergone EMT are not only important for 

that step of tumorigenicity but also for the maintenance of a tumor by serving as a 

sub-population of cancer stem cells shown by the overlapping claudin-low gene 

signature (72). Furthermore, it has been found that relapsed tumors after either 

endocrine therapy (letrozol) or chemotherapy (docetaxel) show a claudin-low 
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characteristic signature. Whether the relative increase in CSCs is generated by 

selection of resistant cells or by pushing cells into an EMT is not clear yet. However, 

these residual cells could give rise to an even more aggressive relapsed tumor (73). 

The notion that cancer stem cells in the breast have a mesenchymal gene signature 

like cells that have undergone EMT holds also true for normal breast stem cells. This 

observation argues rather for a general mesenchymal phenotype of stem cells in 

which epithelial cells can transit into by EMT (74). 

 

 
Figure 6: EMT and cancer stem cells during breast cancer development. 
The mammary gland is composed of epithelial cells and the basal/myoepithelial compartment. In the latter, the 
mammary stem cells (MaSC) are located in. One model describes that cancer stem cells (CSC) develop upon 
mutation and transformation of normal MaSCs: upon transformation, MaSCs start to proliferate, divide 
asymmetrically and migrate into the epithelial compartment and seed to secondary sites (left panel). Another way 
how CSCs could arise is through an EMT of carcinoma cells induced by extracellular stimuli. These newly formed 
CSC would expand and disseminate to secondary sites as well (right panel). At the metastatic site some of the 
mesenchymal CSC undergo an MET to grow out (74). 

 

The possibility of the acquisition of a cancer stem cell phenotype by differentiated 

cancer cells forced to undergo EMT in vitro has been shown by the gain of the breast 

cancer stem cell specific surface markers CD44+CD24-/low, the ability to efficiently 

form mammospheres and the initiation of tumors when 1000 cells were injected into 

mice. Additionally, the opposite is true: freshly isolated human breast or breast tumor 
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cells sorted for CD44+CD24-/low were shown to be the breast (cancer) stem cell 

sub-population revealing a mesenchymal gene expression pattern like cells that had 

undergone EMT (9). Anyhow, the existence of cancer stem cells and their association 

to EMT cells is still controversially debated in the field (71,75). With my PhD thesis 

work, I hope to have generated new insights into this important topic to better 

understand tumor-initiating cells. 
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2 Aim of the study 
Epithelial to mesenchymal transition (EMT) is a cellular process of cancer cells that 

aims to invade the surrounding tissue and to metastasize. TGFβ is one of the major 

signals that can stimulate EMT. Furthermore, TGFβ can induce apoptosis in 

non-transformed cells. Another hallmark of EMT is the gain of cell motility, which 

cancer cells use to migrate into surrounding tissues and to disseminate. Apart from 

these classical EMT-associated features EMT has also been implicated in tumor 

initiation and cancer stemness. 

 

During the course of my study, several questions concerning EMT and its features in 

vitro and in vivo have been addressed: 

 

I. Are cells that underwent EMT cancer stem cell-like? More importantly, 

which mechanism would lead to increased tumorigenicity? 

 

II. What factors are generally important for EMT and for which part of EMT 

would they be relevant? 

 

III. Which factors influence cells to undergo TGFβ-induced EMT instead  

of apoptosis? 
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3.1.1 Abstract 
Tumor progression and metastatic spread are associated with the ability of cancer 

cells to gain invasiveness and migrate to secondary organs. Epithelial to mesenchymal 

transition (EMT), the mechanism determining the malignancy switch of tumor cells, 

is associated with enrichment of cancer stem cells (CSC) and increased 

tumorigenicity (9). The ultimate hallmark of cancer stemness and of metastatic cells is 

their capability to initiate de novo tumors (65). Moreover, once the tumor is 

established CSCs promote tumor growth through their self-renewal and differentiation 

ability. However, the mechanism underlying the increased tumorigenicity of 

mesenchymal tumor cells remains unsolved. We show that upon EMT, breast cancer 

cells increase their ability to be propagated as organized mammospheres and gain 

sensitivity to the CSC-specific drug salinomycin. EMT confers stem cell-like 

behaviors and characteristics and ultimately results in an increase in tumor initiation 

potential associated with induced angiogenesis. In our models, EMT-induced 

angiogenesis occurs through upregulation of the pro-angiogenic factor VEGF-A. In 

addition, inhibition of VEGF-A in the tumor initiating cells (TIC) is associated with 

loss of tumorigenicity. We propose a novel interpretation of the cancer stemness 

feature by introducing EMT-induced angiogenesis as the connecting mechanism 

between cancer stemness and tumor initiation. Tumor initiating cells, cancer stem 

cells with angiogenic properties, drive the early stages of tumorigenicity. In this 

perspective we envisage opportunities of therapeutic intervention: targeting VEGF-A 

in the appropriate cancerous cellular sub-population, i.e. the TIC, would result in 

inhibition of tumor growth. 

 

3.1.2 Results 
Tumor progression is associated with EMT that converts epithelial cells into 

migratory tumor cells and sets the stage for metastatic spread. Recent evidence 

demonstrates that EMT is associated with the generation of cancer stem cells and 

increased tumorigenicity (9). This prompted us to investigate this hypothesis in breast 

cancer using three defined in vitro models of EMT and in vivo orthotopic 

transplantations. The MTflECad cell line, established from a mammary tumor of an 
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MMTV-Neu;fl/flECad transgenic mouse undergoes EMT by Cre-mediated genetic 

ablation of the E-cadherin gene (MT∆ECad) (76). To trigger EMT we treated Py2T 

cells, derived from a mammary gland tumor of an MMTV-PyMT transgenic mouse, 

as well as NMuMG cells with TGFβ. Gene expression profiling of MTflECad cells 

undergoing EMT showed that, in addition to the activation of cellular motility and 

adhesion pathways, EMT induced the expression of genes belonging to the 

angiogenesis and development network (Fig. 7a). The most relevant genes in these 

pathways were validated by qRT-PCR (Supplementary Fig. 1a). EMT also conferred 

stem cell-like properties to MTflECad, NMuMG, and Py2T cells by inducing the 

formation of organized hollow mammospheres compared to the epithelial ones 

(Fig. 7b, d, e), that could be reduced by culturing conditions that excluded cell 

aggregation (Fig. 7c) (61). N-cadherin was present at the cell-cell contacts in 

MT∆ECad cells spheroids, while MTflECad spheres expressed E-cadherin and low 

levels of N-cadherin as expected for mesenchymal and epithelial cell respectively 

(Fig. 7d). Sequential spheroid passagings induced a cadherin switch at the cell-cell 

contacts in the MTflECad mammospheres (Supplementary Fig. 1c). 

In addition, EMT conferred increased sensitivity to the cancer stem cell specific 

drug salinomycin, supporting the hypothesis that EMT would enrich the cancer stem 

cell population (Fig. 7f) (62). 
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Figure 7: Cancer stem cell properties of cells undergoing EMT. 
(a) Gene expression profiling by micro array analysis of MTflECad and MT∆ECad cells was performed using R. 
Genes differentially regulated at least two fold in MT∆ECad cells compared to MTflECad cells were analyzed 
for their gene ontology by GO_term analysis tool. Selected GO_terms are listed with their corresponding 
adjusted p-value. 
(b) MTflECad/MT∆ECad, NMuMG -/+ TGFβ and Py2T cells -/+ TGFβ were cultured over two passages in 
non-adherent, mammosphere conditions. Representative light microscopic pictures of the different epithelial and 
mesenchymal counterpart cell lines cultured in 3D as mammospheres are shown. Scale bars, 100 µm. 
(c) Either 100 or 1000 MTflECad and MT∆ECad cells expressing GFP were plated in methylcellulose containing 
media to rule out cell aggregation instead of sphere formation out of single cells. Quantification and representative 
light microscopic pictures of mammospheres grown for 4 days are depicted. Scale bars, 200 µm. 
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(d) Confocal analysis of M2 mammospheres stained for E-cadherin (green), N-cadherin (red) and DAPI (blue). 
The left pictures show one focal plane of the spheres, the right picture shows a surface rendering. Scale 
bars, 30 µm. 
(e) 3D reconstruction of epithelial (-TGFβ) and mesenchymal (+TGFβ) Py2T cells grown for two passages in 
mammosphere conditions. Nuclei are stained with Hoechst (blue), PI (red) stains the dead cells and CFSE (green) 
as membrane dye of the cells that are slowly proliferating. 
(f) MTflECad and MT∆ECad cells were treated for 72h with the indicated concentrations of salinomycin. The 
percentage of apoptotic cells was measured by Annexin V FACS. Mean of three independent experiments with 
SEM are displayed, using paired Students t-test for significance evaluation with * p < 0.05 and ** p < 0.01. One 
representative micrograph of MTflECad and MT∆ECad cells treated for 72 hours with 10-6 M salinomycin is 
shown. Scale bar, 100 µm. 

 

To identify CSCs a panel of surface markers proven valid in experimental primary 

tumors and human cellular systems was tested (Supplementary Table I) (77-83). In 

our system these markers were not suitable to identify an EMT-induced 

sub-population, supporting a controversial debate on the validity of this approach 

(56). The tumorigenicity potential of unsorted MTflECad and MT∆ECad cells, the 

defining feature for EMT-induced cancer stem cells, was therefore assayed with in 

vivo orthotopic transplantation experiments in BALB/c Rag2-/-;commonγ-/- (RG) mice. 

Histological examination of tumor sections showed a distinctive morphology. 

MTflECad cells, belonging to the normal-like subtype of tumor cells, gave rise to 

tumors with epithelial morphology, defined borders and central necrotic areas 

(Fig. 8a). Tumors that were originated from the mesenchymal lineage, with the 

claudin-low signature (MT∆ECad), showed an invasive phenotype, fibroblast-like 

appearance and absence of necrosis (Fig. 2a), in line with published data (72). 

Additionally, the tumors arose with a different growth kinetic depending on their 

epithelial or mesenchymal origin. In vivo limiting dilution experiments showed that 

when cells were cultured in 2D prior to transplantation, MT∆ECad cells had a higher 

tumor take rate than MTflECad cells (Fig. 8b). When cells were cultured as 

mammospheres before injection, this pattern became more obvious, revealing an 

inefficient tumor take rate for MTflECad. Strikingly, as few as 10 TIC-enriched 

MT∆ECad cells could efficiently grow as tumors (Fig. 8c).  

In conclusion, EMT generated a better tumor initiating capability, which could be 

further increased via TIC’s enrichment (mammosphere culturing). Tumors and cell 

lines were characterized at the protein level and upon EMT several genes involved in 

tumorigenicity were found to be upregulated (TIMP-1, galectin-1, MMPs, P-selectin); 

(Supplementary Table II)(84-87). Orthotopically transplanted mesenchymal cells 

form bigger metastases than their epithelial counterparts (Fig. 8d-f). Consistent 

findings were obtained in a metastasis formation assay where a distinctive lung 
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colonization phenotype was observed: MTflECad cells gave rise to many small 

metastases, while MT∆ECad cells gave rise to few but bigger ones (Fig. 8g, h). This 

phenotype, observed independently of the pre-culturing conditions of cells (data not 

shown), was partially explained by the strong vascularization present in the 

MT∆ECad metastases (Fig. 9d) as well as by the reduced levels of apoptosis in the 

mesenchymal metastases (Supplementary Fig. 2a, b). Because we observed no 

differential ability of tumor cells to be able to persist in the blood stream and/or 

home to the lungs (Supplementary Fig. 2c) we hypothesized that the difference in 

amount of metastases could be due to the genetic impairment of MT∆ECad cells 

to undergo MET. 
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Figure 8: EMT cells have a higher tumor initiation potential accompanied by bigger metastases to the lung. 
(a) MTflECad and MT∆ECad cells were transplanted in PBS into the 9th mammary fat pad of female RG mice. 
Tumors were taken out individually when they reached the size of 1.5 cm3. H&E staining of the tumor front (left) 
or tumor center (right) are shown. Black squares indicate which part of the picture is depicted in a higher 
magnification in the upper right corner. Scale bar, 100 µm or µ10 m in the zoomed picture. 
(b) 2D cultured MTflECad and MT∆ECad cells were transplanted in limiting dilutions into the mammary fat pad 
of RG mice (x-axis shows the amount of cells injected). The tumor onset of individual mice is plotted. The 
experiment was finally terminated 160 after injection, mice that had not developed tumors until then are recorded 
with a tumor onset of 160 days. MTflECad cells gave rise to tumors in 100, 84.6, 57.1 and 28.6 % of the cases 
when 1000, 200, 50 and 10 cells were injected, respectively. MT∆ECad cells gave rise to tumors in 100 % of the 
cases when 1000, 200 or 50 cells were injected, whereas 0 % of tumor take was monitored when only 10 
MT∆ECad cells had been injected. 
(c) Mammosphere cultured MTflECad and MT∆ECad cells were transplanted in limiting dilutions into the 
mammary fat pad of RG mice (x-axis shows the amount of cells injected). The tumor onset of individual mice is 
plotted. The experiment was finally terminated 160 after injection, mice that had not developed tumors until then 
are recorded with a tumor onset of 160 days. Here, MTflECad cells gave rise to tumors in 66.6, 33, 37.5 and 0 % 
of the cases when 1000, 200, 50 or 10 cells were injected, respectively. MT∆ECad cells gave rise to tumors in 
100 % of the cases when 1000 or 200 cells were injected and in 85.7 and 75 % of the cases when only 50 or 
10 cells had been injected, respectively. 
(d) The above-mentioned mice were individually sacrificed when the tumors had reached the size of about 1.5 
cm3. Tumors and lungs were taken out for analysis. Representative H&E pictures of metastases seeded by 
MTflECad and MT∆ECad tumors to the lung are shown. Scale bars, 100 µm. 
(e) The amount of metastases in the lung per mouse was plotted per genotype and per pre-culturing condition of 
the tumor cells injected. 
(f) Size distribution of metastases in the lung in proportion to all metastases seeded per genotype and per 
pre-culturing condition is shown (MTflECad 2D: N = 19, M2: N = 2; MT∆ECad 2D: N = 14; M2: N = 14 mice). 
(g) Representative H&E staining of lung sections 3 weeks after injection of 106 MTflECad and MT∆ECad cells 
into the tail vein of 8 weeks old MMTV-Neu mice. Scale bars, 2 mm and 100 µm in the zoomed pictures. 
(h) Experimental metastases were quantified for the amount per lung and their mean size. 
Statistical significances were calculated using Mann-Whitney U test with * p < 0.05 ** p < 0.01 and 
*** p < 0.001. The 10-cell comparison was statistically evaluated using a Fisher’s exact test with *** p < 0.001. 

 

In vivo, EMT induced active angiogenesis in the mesenchymal tumors and 

metastases explaining the difference in tumor takes, onset and metastasis size as an 

advantage mechanism for tumor cell colonization and survival (Fig. 9a-d, and 

Supplementary Fig. 3a). Vessels within the tumors and metastases were functional 

(Supplementary Fig. 3b). Consistent with these findings, in a spontaneous model of 

pancreatic cancer, loss of E-cadherin in the β-cells of the pancreatic tumor islets 

(Rip1Tag2;∆ECad)! (76) also correlated with induced angiogenesis (Supplementary 

Fig. 3c). Furthermore, in contrast to mesenchymal tumors, epithelial tumors had 
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strong hypoxic areas distant to vessels and showed big internal areas of necrosis 

associated with high levels of apoptosis, probably due to the lack of vascularization 

(Fig. 9e and Supplementary Fig. 3d, e). This phenotype correlated with high levels of 

VEGF-A protein and mRNA produced by MT∆ECad cells at time of injection 

(Fig. 9a-d and f-g). Mammosphere culturing caused a further increase in VEGF-A 

levels in the mesenchymal cells (Fig. 9g). VEGF-A upregulation upon EMT was also 

validated in another cellular system (Supplementary Fig. 3f).  

In line with these findings, barely palpable mesenchymal tumors were highly 

vascularized, in comparison to their epithelial counterpart, stressing the relevance of 

angiogenesis in the early events of tumor growth (Supplementary Fig. 3g). Moreover, 

the elevated levels of VEGF-A in epithelial tumors argued in favor of a slow 

adaptation to their need of VEGF-A in order to achieve tumor initiation. Additionally, 

hypoxia, as a potent inducer of VEGF-A expression should not be neglected 

(Fig. 3e, h and Supplementary Fig. 5b) (17). 

 

 

Figure 9: Tumors formed by mesenchymal cells are highly vascularized. 
(a) Tumor sections of MTflECad and MT∆ECad cells were stained for the endothelial marker CD31 (green) and 
DAPI (blue) by immunofluorescence.  
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(b, c) CD31-positive counts per area (b) and the area fraction (c) of CD31 staining were quantified using ImageJ 
software. N = 6 mice; Statistical significance was calculated using Mann Whitney U test with ** p < 0.01 and 
*** p < 0.001. 
(d) Metastases formed after intravenous injection of MTflECad and MT∆ECad cells were stained 
immunohistochemically for CD31 (brown) and counterstained with hematoxylin (purple). Representative pictures 
of both conditions are shown. 
(e) Hypoxia in MTflECad and MT∆ECad tumors was visualized by injecting pimonidazole into mice before 
sacrificing them and staining by immunofluorescence for its adducts (red), CD31 (green) and DAPI (blue) was 
performed. Representative pictures of both types of tumors are shown. 
(f) Analysis of secreted VEGF-A protein in the supernatant of MTflECad and MT∆ECad cells by ELISA. The 
mean of 3 independent measurements is plotted with the SEM. Statistical significances were calculated using 
Students t-test with ** p < 0.01. 
(g) qRT-PCR of MTflECad and MT∆ECad cells cultured in 2D or in 3D mammosphere conditions were analyzed 
for their relative expression of VEGF-A. Fold changes to MTflECad 2D cultured cells are plotted. 
(h) VEGF-A protein abundance was measured in tumor lysates by ELISA. 
Scale bars, 100 µm. 

 

To determine the importance of VEGF-A in tumor angiogenesis and tumor onset, 

shVEGF-A MT∆ECad were orthotopically transplanted into RG mice and compared 

to MT∆ECad cells expressing a non-targeting shRNA (MT∆ECad shCtr) (Fig. 4a, b 

and Supplementary Fig. 4a). While MT∆ECad shCtr cells gave rise to tumors after 30 

days, no tumors were palpable at this time in mice transplanted with MT∆ECad shVA 

#1 or MTflECad expressing a non-targeting shRNA. The epithelial MTflECad shVA 

#1 tumor onset was slightly delayed compared to the MTflECad cells. Additional 

small hairpins against VEGF-A were used to validate the results obtained with shVA 

#1 (Fig. 4c, d, Supplementary Fig. 4b). Tumors lacking VEGF-A expression exhibited 

significantly reduced angiogenesis compared to the MT∆ECad and the vascularization 

extent was comparable to the one of MTflECad tumors (Fig. 4e-g), showing that 

reduced VEGF-A levels impaired angiogenesis and delayed tumor onset. These 

results showed that VEGF-A is required for EMT-induced angiogenesis in the early 

events of tumor initiation, in line with results in skin and brain (88-90). 

No difference was instead observed in the vasculature of MTflECad cells upon 

depletion of VEGF-A (Fig. 4b and also Fig. 2). VEGF-A knockdown was effective in 

MTflECad and MT∆ECad cells and slightly affected cell growth (Supplementary 

Fig. 4c). High VEGF-A levels, necessary for tumor initiation and incidence, were 

proven essential in the TIC-enriched population. Strikingly, TICs relied on the 

presence of VEGF-A for their tumorigenic properties as shown in Fig. 4h where 10 

mammosphere-cultured shVEGF-A MT∆ECad cells were no longer able to originate 

tumors when orthotopically transplanted. 
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Figure 10: Tumor cell-derived VEGF-A is required for early tumor onset and tumor angiogenesis. 
(a) Secreted VEGF-A protein levels in the supernatant of MTflECad and MT∆ECad cells that have been infected 
with a non-targeting short hairpin (shCtr) or one against VEGF-A (shVA #1), were assessed by ELISA. The mean 
of 3 independent measurements is plotted with the SEM. Statistical significances were calculated using paired 
Students t-test with * p < 0.05. 
(b) 200 knockdown cells for VEGF-A (shVA #1) and their controls (shCtr) were injected into the mammary fat 
pad of RG mice. The onset of the different tumors was plotted and the knockdown tumors were compared to their 
control by Mann Whitney U test with ** p < 0.01. 
(c, d) Additional small hairpins against VEGF-A (shVA #4, shVA #5, shVA #8) were used to validate the result 
from shVEGF-A #1. The knock down-efficiency was tested by assessing the levels of VEGF-A in the cell 
supernatant by ELISA. The mean of 3 independent measurements is plotted with the SEM (c). The onset of these 
tumors was determined (d). 
(e) The vascularization of MT∆ECad shCtr and shVEGF-A #1 tumors was analyzed by CD31 (green) 
immunofluorescence staining. Representative pictures are shown. Scale bars, 100 µm.  
(f, g) The degree of vascularization was quantified by counting the amount of CD31-positive vessels per area (f) 
and the area fraction of vessels (g). Statistical analysis of the quantifications was performed by Mann Whitney U 
test with *** p < 0.001 with N = 4 mice. 
(h) MT∆ECad cells infected with a control shRNA (shCtr) or one against VEGF-A (shVA #1) were cultured for 2 
passages as mammospheres. After dissociation of the spheres, 10 cells were injected in PBS into the 9th fat pad of 
RG mice. The tumor onset was monitored and plotted. The experiment was finally terminated 160 after injection, 
mice that had not developed tumors until then are recorded with a tumor onset of 160 days. Statistical analysis of 
the quantifications was performed by Fisher’s exact test wit * p < 0.05. 

 

Having established a crucial role of VEGF-A in EMT-associated increased 

tumorigenicity we investigated the role of the other VEGF members in cell lines and 

tumor extracts and found them to be upregulated upon EMT. (Supplementary 

Fig. 5a, b). However, knockdown experiment of VEGF-C showed no differential 

tumor growth in vivo (Supplementary Fig. 5c-f).  
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Mesenchymal tumor cells showed a five-fold induction of VEGFR1 mRNA 

expression both in 2D and M2 conditions that was associated with upregulation of the 

Nrp1 and Nrp2 co-receptors not excluding a potential role of the VEGF-VEGFR1-

Nrp2 loop in stemness and tumor take (Supplemental Fig. 6a). 

In mice, transplanted with MTflECad or MT∆ECad cells, treatment with the 

VEGFR inhibitor PTK787/ZK222584 (PTK) significantly impaired vascularization 

and tumor growth of both tumor types showing the essential role of angiogenesis 

during tumor progression (Supplementary Fig. 6b, c). However, in vitro cells were 

insensitive to PTK treatment (Supplementary Fig. 6d).  

Overexpression of VEGF-A in MTflECad (Supplementary Fig. 7a, b) significantly 

increased tumor vessel number and area without resulting in induced tumor onset 

(Supplementary Fig. 7e) and proved VEGF-A not to be sufficient to enhance tumor 

initiation alone (Supplementary Fig. 7d). In these tumors apoptosis was decreased to 

values comparable to the MT∆ECad ones while no difference in the proliferation rate 

was detected (Supplementary Fig. 7f, g). Other factors were therefore necessary to 

complete the induction. MMP abundance was found increased in MT∆ECad tumors 

possibly allowing a higher bioavailability of VEGF-A in these tumors compared to 

MTflECad tumors (Supplementary Table II). In vitro data also showed that while 

MT∆ECad cells conditioned medium supported HUVEC growth, MTflECad 

conditioned media could not (Supplementary Fig. 8). Accordingly, VEGF-A 

overexpression in MTflECad cells restored, whereas VEGF-A knockdowns in 

MT∆ECad cells decreased HUVEC survival. 

 

3.1.3 Discussion 
Standardized assays for stemness evaluation were used to explain the mechanism 

underlying EMT-induced tumorigenicity. While some of the CSC hallmarks were 

revealed, other assays (surface markers, ALDH+ side population and general drug 

resistance, data not shown) were proven unsuitable to properly address this question. 

However, in vivo tumorigenicity assay successfully proved the principle of 

EMT-induced stemness. Indeed we could show that EMT increased tumor initiation 

ability and that EMT-induced angiogenesis, the mechanism by which this occurred, 

was crucial for early tumor onset. Moreover, upon EMT the enrichment of TIC 
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enabled 10 cells to effectively initiate tumors with increased angiogenesis, a capacity 

that was abrogated in the absence of VEGF-A. Tumor initiation required the presence 

of TICs within the correct and permissive microenvironment (88,89). A central 

role for VEGF-A in tumor progression has emerged from our studies and was 

supported by recent findings (91-97). We speculated that EMT-induced VEGF-A 

created an optimal microenvironment for TICs to establish and grow as a highly 

vascularized tumor.  

The calculated CSC frequency of MT∆ECad (1:14.2 in M2 and 1:33.4 in 2D) and 

of MTflECad cells (1: 691.7 in M2 and 1: 81.4 in 2D) could not be statistically 

verified. On the basis of the ELDA function, the single hit hypothesis was rejected 

(p = 0.0072 for M2 and p = 0.02 for 2D in MT∆ECad cells, and p = 0.76 in M2 and 

p = 0.68 in 2D in MTflECad) (98). The values obtained indeed supported a multi-hit 

event, where TIC achieved tumor initiation in a concerted action with other factors, 

such as VEGFA-induced angiogenesis. All together our data showed that increased 

tumor take rate was a phenomenon that could not be simply described by the presence 

of one tumor initiating cell (single hit hypothesis) and we concluded that activation of 

angiogenesis was one of the additional required events. In the absence of VEGF-A 

mammosphere formation ability was not abrogated indicating angiogenesis and 

stemness as separate events. We propose a novel interpretation of the cancer stemness 

features by introducing the angiogenesis event as a link between the two phenomena. 

 

3.1.4 Material & Methods 
For in vitro mammospheres culturing an adapted version of previously described 

protocol was used (61). For in vivo experiments mammospheres were collected after 

M2 and a single cell suspension was obtained by trypsinization. Cells resuspended in 

PBS were transplanted into the 9th mammary gland of 7-10 weeks old females 

BALB/c Rag2-/-;commonγ-/- (a kind gift from T. Rolink). Tumor growth was 

monitored and measured with the caliper. Tumor volume was obtained by the formula 

L x l2 x 0.543 (with L = biggest measure, l = shortest measure). Mice were checked 

routinely and individually sacrificed when tumors reached 1500 mm3. Mammospheres 

stainings were performed upon 4 % PFA fixation, with permeabilization 0.1 % Triton 

X-100, and over night stainings for N-cadherin (33-3900 Zymed) and E-cadherin 
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(13-1900 Zymed). Confocal sequential images were acquired using the Leica SP5 

confocal microscope and 3D images were generated using IMARIS software. 

MMTV-Neu mice were injected intravenously with 106 MTflECad and MT∆ECad 

cells resuspended in PBS. After 3 weeks mice were sacrificed, H&E stained lungs 

paraffin-embedded sections were analyzed for lung metastasis. For the trap assay, 106 

GFP-tagged cells were inoculated i.v. into MMTV-Neu mice,  GFP-positive cells 

were scored in lung sections 3 days after injections. 

Cryosections and paraffin sections were prepared as described previously (76). 

7 µm cryostat sections of tumor samples were permeabilized with 0.1 % Triton-X100 

in PBS, blocked with 5 % goat serum or BSA for 1 hour at RT, stained over night at 

4°C with primary antibodies against CD31 (1:50; 440274, BD Pharmigen) followed 

by fluorescent-conjugated secondary antibodies (Alexa-Fluor, Invitrogen), nuclei 

were counterstained with DAPI. To measure hypoxia mice were injected i.p. with 

60 mg/kg hypoxyprobe for 30 min before sacrifice and OCT sections were processed 

according to manufactory instructions (HypoxyprobeTM -1 Kit, HPI, USA). 

Immunofluorescence pictures were acquired with a Leica DMI 4000. ImageJ was 

used for processing and analysis of the signal intensity. Apoptosis was measured after 

72 hours of salinomycin treatment by Cy5-Annexin V (559934, BP Pharmigen) 

staining following the manufactory protocol. 
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3.1.5  Supplementary data 
 

 

Supplementary Figure 1: Validation of genes within each GO_term in all three cellular EMT systems and 
the cadherin switch in late-passage MTflECad mammospheres. 
(a) Differentially expressed genes representative for each GO_term were validated in the three EMT systems 
MTflECad/MT∆ECad, NMuMG -/+ TGFβ and Py2T -/+ TGFβ by qRT-PCR. Fold changes of gene expression in 
the mesenchymal cells relative to their epithelial counterparts are indicated. 
(b) Representative picture of passage 6 mammospheres (M6) cultured MTflECad and MT∆ECad cells stained for 
DAPI (blue), E-cadherin (red) and N-cadherin (green). E-cadherin staining in MT∆ECad cells is not shown due to 
the deletion of CDH1 in these cells. 

 

 

Supplementary Figure 2: Characterization of experimental metastases. 
(a) Proliferating cells within the metastases were analyzed by staining for Ki67 (N = 6 mice).  
(b) Apoptotic cells were visualized by TUNEL staining and counted within the lung metastases (N = 6 mice). 
(c) 106 MTflECad-GFP and MT∆ECad-GFP cells were injected into the tail vein of 8-week old MMTV-Neu mice. 
3 days after injection, lungs were taken out and the amount of GFP-positive cells per lung section was quantified 
(N = 2 mice). 
One datapoint represents one field of view. Statistical analysis of the quantifications was performed by Mann 
Whitney U test with *** p < 0.001. 
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Supplementary Figure 3: Active angiogenesis in further EMT models. 
(a) Blood vessels induced by MT∆ECad tumors are active, visualized by co-staining of CD31 (green) to indentify 
vessels and the angiogenic receptors VEGFR2 (red) and VEGFR3 (red). 
(b) Perfusion of vessels was visualized by injecting FITC-Lectin into mice prior to sacrifice. Co-staining of the 
endothelial marker CD31 (red) and Lectin (green) shows functionality of the blood vessels in MTflECad and 
MT∆ECad tumors as well as in experimental metastases of MT∆ECad cells. 
(c) Representative CD31 staining and quantification of control Rip1Tag2 (RT2) tumors and Rip1Tag2 tumors with 
a β-cell specific CDH1 knockout (β−∆ECad;RT2). One datapoint represents one mouse.  
(d, e) MTflECad and MT∆ECad tumors were analyzed for apoptosis (d) and proliferation (e) by 
immunofluorescence staining for cleaved Caspase3 and pHistone3, respectively (N = 4 mice).  
(f) qRT-PCR analysis of the cellular EMT model Py2T showing an upregulation of VEGF-A expression in the 
mesenchymal Py2T +TGFβ cells. 
(g) MTflECad and MT∆ECad cells were injected into RG mice. When the first tumors were just palpable all mice 
were sacrificed and mammary glands were taken out for analysis. CD31 staining revealed that already very small 
MT∆ECad tumors (about 2 mm in diameter) are highly vascularized. 
Scale bars, 100 µm. Statistical analysis of the quantifications was performed by Mann Whitney U test with 
*** p < 0.001. 

 

 

Supplementary Figure 4: In vitro and in vivo characterization of VEGF-A signaling interference. 
(a) The knockdown efficiency of the shRNA against VEGF-A (shVA #1) was monitored by qRT-PCR. The 
MTflECad shCtr sample was used as reference to set the fold change. Notably, the knockdown of VEGF-A in 
MTflECad cells is not effective in cells, which changes in vivo (d). 
(b) The knockdown efficiency of the further shRNA against VEGF-A (shVA #4, #5, #8) was monitored by qRT-
PCR. The MT∆ECad shCtr sample was used as reference to set the fold change. 
(c) Growth curves for MTflECad and MT∆ECad cells with or without knockdown of VEGF-A 
(N = 2 experiments). 
(d, e) VEGF-A protein abundance was measured in tumors by ELISA. Statistical significance was calculated using 
Mann Whitney U test with * p < 0.05. 
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Supplementary Figure 5: Angiogenic factors are upregulated in MT∆ECad cells and tumors but are not 
necessary for early tumor onset. 
(a) Expression analysis by qRT-PCR reveals an upregulation of the angiogenic factors VEGF-B, VEGF-C and 
VEGF-D in MT∆ECad cells when compared to MTflECad cells (2D MTflECad cells set to fold 1). 



RESULTS VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation 

48 

(b) Expression analysis by qRT-PCR of tumor samples shows an increased expression of VEGF-C and VEGF-D 
in MT∆ECad originated tumors compared to MTflECad tumors. No change in VEGF-A mRNA expression 
levels could be observed. mRNA expression levels are plotted as fold changes using the mean of MTflECad tumor 
as the reference. 
(c) MTflECad and MT∆ECad tumors were analyzed for their VEGF-C protein levels by ELISA which do not 
reflect the mRNA expression levels of VEGF-C (Supplemental Fig. 4). 
(d) Both, MTflECad and MT∆ECad tumors show barely any lymphatic vessels visualize by Lyve1 staining 
(green). Most Lyve1-positive cells are also F4/80-positive indentifying them as macrophages. 
(e) qRT-PCR was performed in order to assess the knockdown efficiency of the 2 small hairpins against VEGF-C 
(shVC #2 and shVC #4). MTflECad cells were set to fold 1. 
(f) 200 cells were transplanted orthotopically into RG mice and the tumor onset was measured. 
Scale bars, 100 µm. Statistical significances were calculated by Mann-Whitney U test with ** p < 0.01, 
*** p < 0.001. 

 

 

Supplementary Figure 6: Tumor growth is impaired open VEGFR inhibitor treatment in vivo. 
(a) Expression analysis by qRT-PCR reveals an upregulation of VEGFR1, Nrp1 and Nrp2 in MT∆ECad cells 
when compared to MTflECad cells (2D MTflECad cells set to fold 1). VEGFR2 and VEGFR3 are not expressed in 
either of the cells (data not shown). 
(b, c) RG mice were injected with 105 MTflECad or MT∆ECad cells and treated daily per os with the solvent 
polyethylene glycol (CTR) or with 75 mg/kg of the pan VEGFR inhibitor PTK787/ZK222584 (PTK). The 
experiment was terminated after 15 day of treatment. The tumor weight was measured (b) and the microvessel 
density was assessed (c) (N = 3 mice). Statistical significances were calculated by Mann-Whitney U test with 
** p < 0.01 and *** p < 0.001. 
(d) Growth curves of MTflECad cells and MT∆ECad cells treated with solvent polyethylene glycol (CTR) or 
5 µM PTK were performed twice. 
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Supplementary Figure 7: VEGF-A overexpression in MTflECad cells is not sufficient to induce an early 
tumor onset. 
200 MTflECad cell either overexpressing a control vector (Ctr) or VEGF-A were injected orthotopically into RG 
mice. Mice were sacrificed when the tumors reached the volume of 1.5 cm3. 
(a, b) ELISA of secreted VEGF-A in MTflECad cells (a) or in their formed tumors (b) reflects the overexpression 
of VEGF-A. 
(c) Tumor onset of MTflECad cells overexpressing VEGF-A or not (Ctr) was monitored and mice were sacrificed 
when the tumor reached the volume of 1.5 cm3. 
(d) H&E stained light microscopic pictures of these tumors show less necrotic areas within the tumors but 
otherwise no morphological change. 
(e) The angiogenic effect of the overexpression of VEGF-A was quantified by CD31 staining. VEGF-A 
overexpressing MTflECad tumors have more vessels and a higher CD31 area fraction (N = 4 mice). 
(f, g) MTflECad tumors overexpressing a control vector or VEGF-A were analyzed for apoptosis (f) and 
proliferation (g) by immunofluorescence staining for cleaved Caspase3 and pHistone3, respectively (N = 4 mice). 
Scale bars, 100 µm. Statistical significances were calculated by Mann-Whitney U test with * p < 0.05 and 
*** p < 0.001. 
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Supplementary Figure 8: MT∆ECad supernatant enables endothelial cells to grow in vitro. 
(a) Human umbilical vein endothelial cells (HUVEC) were grown in conditioned media of MTflECad cells with 
VEGF-A overexpression (VEGF-A) or without (Ctr) or in conditioned media of MT∆ECad cells expressing the 
different shVEGF-A constructs as indicated. Conditioned media were refreshed 2 days after plating and after 
5 days of cultivation the vital HUVEC cells were counted with a Neubauer chamber by trypan blue exclusion. As a 
negative control unconditioned media of MTflECad and MT∆ECad cells and as a positive control HUVEC media 
(M199) was used. To determine the effect of VEGF-A alone, unconditioned media was supplemented with 10, 2 
and 0.5 ng/ml recombinant murine VEGF-A (rmVEGF-A). Cell numbers are represented as % of cells of 
HUVECs treated with 10 ng/ml rmVEGF-A. Mean values of 4 different experiments are plotted with the SEM. 
Statistical significances where calculated by paired Student’s t-test with * p < 0.05, ** p < 0.01. 

 

CD24+ adherent M1 M2 M3 
MTflECad 76.5% (+/- 8.2) 63.1% (18.9) 51.5% (43.9) 50.1%(36.6) 
MT∆ECad 94.3% (+/- 3.2) 74.0% (7.5) 78.1% (10.0) 74.9% (23.2) 
Py2T 87.3% (+/- 5.3) 98.5% 91% 82.3% 
Py2T LT 95.7% (+/- 1) 97.7% 93.7% 96.6% 
E9 97.8% (+/- 2.6) 99.1% (0.4) 98.7% (1.0) 97.6% (1.6) 
E9 LT 99.1% (+/- 1.4) 91.7% (1.8) 91.6% (0.1) 99.1% (0.9) 

     
CD29+ adherent M1 M2 M3 

MTflECad 99.8% (+/-0.2) 99.7% (0.5) 99.8% (0.1) 99.9% (0) 
MT∆ECad 99.9% (+/-0.2) 63.1% (0.2) 99.9% (0.1) 99.9% (0.1) 
Py2T 99.8% (+/-0.1) 100% 99.9% 99.9% 
Py2T LT 99.9% (+/-0.1) 100% 99.8% 100% 
E9 99.9% (+/-0.1) 99.5% (0.3) 99.3% (0.9) 98.9% (1.4) 
E9 LT 99.8% (+/-0.2) 99.4% (0.4) 99.6% (0.1) 100% (0) 

     
CD49f+ adherent M1 M2 M3 

MTflECad 96.8% (+/-2) 99.4% (0.2) 99.5% (0.4) 99.9% (0.1) 
MT∆ECad 98.6% (+/-1.1) 99.8% (0.1) 99.7% (0.3) 99.9% (0.1) 

Supplementary Table I: cancer stem cells surface marker expression. 
Cancer stem cells surface marker expression analysis evaluated by FACS of epithelial and mesenchymal cells. 
Values represent the percentage of positive cells per each staining. Cells analyzed were either cultured in 2D or 3D 
in three sequential passages (M1-3). 2 or 3 replicates with standard deviation in parenthesis are shown. 
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Cells: 

MT∆ECad/MTflECad   
Tumors: 

MT∆ECad/MTflECad 
IGF-II 6.84  Pro-MMP-9 6.34 
VCAM-1 5.19  GAS2 5.62 
GAS1 4.91  MIP-1γ 3.85 
Axl 4.56  bFGF 3.46 
CTACK 2.92  VCAM-1 3.06 
IL-4 2.78  4-1BB 2.76 
IL-12 p70 2.73  thymus CK1 2.43 
GM-CSF 2.65  galectin 2.39 
P-selectin 2.62  MMP-3 2.02 
IL-2 2.61  CYCL16 1.94 
fractalkine 2.55  JAM-A 1.91 
galectin1 2.53  sTNFRI 1.82 
sTNFRII 2.53  FcγRIIB 1.82 
IL-3 2.51  cardiotropin-1 0.53 
BLC 2.47  osteopontin 0.35 
PF-4 2.46  E-cadherin 0.19 
eotaxin 2.43  
IGFBP-3 2.36  
CXCL16 2.35  
IFNγ 2.32  
SDF-1α 2.30   
L-selectin 2.27  
MIP-3β 2.27  
MCP1 2.23  
IL-10 2.22  
MIP-2 2.20  
IL-1β 2.20  
IL-12 p40/p70 2.18  
IL-1α 2.17  
IL-13 2.16  
Timp-1 2.13  
TPO 2.12  
VEGF 2.04  
KC 1.98  
lymphotactin 1.95  
TCA-3 1.94  
IL-3Rβ 1.92  
MIP-1g 1.88  
bFGF 1.86  
EGF 0.47  
JAM-A 0.47  
neprilysin 0.40  
MAdCAM-1 0.37  
HAI-1 0.32  
osteopontin 0.22  
MFG-E8 0.14  
IL-1rα/IL1F3 0.13  
E-cadherin 0.03  

 

Supplementary Table II: protein array. 
Lysates from MTflECad and MT∆ECad cells and tumors were compared for expression of 144 proteins. Ratios 
between MT∆ECad and MTflECad lysates are shown. 
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3.1.6 Supplementary Methods 

Antibodies 

Antibodies: VEGFR2 (R&D Systems, AF644), VEGFR3 (R&D Systems, AF743), 

cleaved Caspase3 (1:100, Asp175, 9664, Cell Signaling), pHistone3 (1:200, 06-570, 

Millipore), Lyve1 (1:200, 103-PA50S/0412P02-2, ReliaTech), F4/80 (1:100, 

MCAO497, Serorec), Ki-67 (1:50, clone Tec3 DAKO), CD31 for IHC (clone 

ER-MP12, Bachem, T-2001), TUNEL (in situ death detection kit, Roche, 1684817) 

Cell lines and reagents 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) expressing 

E-cadherin has been described earlier (99). MTflECad and MT∆ECad cells were 

previously described from our lab (76). Py2T cells were established from an 

MMTV-PyMT mammary gland tumor (100). Py2T, NMuMG, MTflECad and 

MT∆ECad cells were cultured in DMEM supplemented with glutamine, penicillin, 

streptomycin and 10 % FCS (Sigma-Aldrich). NMuMG and Py2T, cells were treated 

with 2 ng/ml TGFβ (R&D Systems) without serum deprivation and replenished every 

three days. MTflECad and MT∆ECad cells received 10-4-10-7 mM salinomycin 

(Sigma-Aldrich) for 72 hours. HUVECs were cultured in M199 supplemented with 

40 µg/ml bovine pituitary gland extract, 80 U/ml Heparin, 20 % FCS, glutamine, 

penicillin and streptomycin. 

Mammospheres formation assay 

Cells were grown in non-adherent ULA-plates (Cornig) in DMEM/F12 (SIGMA) 

supplemented with B27 (GIBCO), 20 ng/ml EGF (Invitogen), 20 ng/ml bFGF 

(Invitrogen), 1 U/ml Heparin (Roche), glutamine, penicillin, streptomycin and 1 nM 

estradiol (Sigma), seeded at 200,000 cells/ml (M1) and passaged every seven days 

by trypsin dissociation and subsequent re-plating at clonal density of 50,000 cells/ml 

(from M2 onwards) (61). One fourth of fresh medium was added every second 

day. To avoid aggregates formation 1 % methylcellulose (SIGMA) was added to 

the medium.  

RT-qPCR 

To evaluate transcripts relative expression levels, RNA was isolated using 

TriReagent (Sigma-Aldrich), reverse transcribed with MMLV reverse transcriptase 

(Promega, Wallisellen, Switzerland), and cDNA was quantified by qPCR (StepOne 
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Plus, Applied Biosystems) using Mesa Green pPCR MasterMix plus (Eurogentec). 

The following primers have been used: 

mRNA Forward primer (5’-3’) Reverse primer (5’-3’) 

Rpl19 ctcgttgccggaaaaaca tcatccaggtcaccttctca 

VEGF-A actggaccctggctttactg tctgctctccttctgtcgtg 

Nrp1 cccggaggaatgttctgtc ccaatgtgagggccaactt 

Nrp2 atggctggacacccaattt atggttaggaagcgcaggt 

VEGFR1 acctccgtgcatgtgtatga catggacagccgataggac 

fibronectin cccagacttagtgtggcaatt aatttccgcctcgagtctga 

Snail1 ctctgaagatgcacatccgaa ggcttctcaccagtgtgggt 

ZEB1 gccagcagtcatgatgaaaa tatcacaatacgggcaggtg 

Pdgfrb acctgcagagacctcaaaaggtg ctgatcttcctcccagaaagtcaca 

Itga5 caccaccattcaatttgacagca gctcctctcccttggcactgta 

Id3 gaggagcttttgccactgac gctcatccatgccctcag 

VEGF-B cccagccaccagaagaaa acattgcccatgagttccat 

VEGF-C aacacacagaagtgcttcctt ttcgcacacggtcttctgta 

VEGF-D gcacctcctacatctccaaacag ggcaagcacttacaacccgtat 
 

Rpl19 was always used for normalization (∆Ct). Results are presented as fold change 

of the normalized (∆∆Ct). 

Viral infections: 

Lentiviral shRNA constructs were purchased from Sigma-Aldrich: (Mission Non-

Targeting shRNA control vector, SHC002; shVEGF-A #1: TRCN0000066818, #4: 

TRCN0000304451, #5: TRCN0000310985, #8: TRCN0000316047). Retroviral 

pAMFG-mVEGF-A_IRES_CD8 expression vector was a kind gift from A. Banfi, 

University of Basel. 

Viral expression plasmids were transfected into packaging cell lines (Plat-E for 

retroviruses, HEK293T for lentiviruses) using FugeneHD (Roche). HEK293T cells 

were additionally transfected with the packaging vector pR8.92 and the envelope 

encoding plasmids pVSV. One day conditioned virus-containing supernatant was 

harvested, filtered with a 0.45 µm pore filter, supplemented with 8 ng/ml polybrene 

and added to the target cells. The target cells were centrifuged with the viral 
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supernatant for 90 min, 1000 xg, 30 °C, followed by 3 hours incubation at 37 °C and 

5 % CO2 afterwards cells were given fresh medium. 

ELISA 

Cell culture supernatants and tumor lysates were analyzed for the presence of 

mVEGF-A (Quantikine ELISA kit; R&D MMV00) and mVEGF-C (Platinum ELISA 

kit from eBioscience), following the manufacturer’s instructions.  

FACS staining 

For FACS analysis of surface receptors we have used the following antibodies: 

CD24-Biotin (553260, BD Pharmigen), CD44-PE (553143, BD Pharmigen), 

CD49f-biotin (MCA699BT, Serotec), CD90 (Thy1.1), EPCAM (347197 BD), and 

mammospheres cultured cells were stained for 1hr at RT with combinations of 

different antibodies, followed by secondary antibody coupled to fluorochromes, PI 

stained, and analyzed at the FACSCanto II, population was gated for living cells and 

doublets were excluded. 

Histological analysis 

Rip1Tag2;∆ECad mice carrying a deletion of the E-cadherin gene specifically 

in the β-islets of Langerhans were previously described by us (76). BALB/c 

Rag2-/-;commonγ-/- mice were kindly provided by T. Rolink. 

The preparation of histology samples and cryo-samples was done as described 

before (76).  

Trap assay 

106 GFP-labeled MTflECad or MT∆ECad cells were injected i.v. into MMTV-Neu 

mice. 3 days after injection, mice were sacrificed and lungs were embedded in OCT. 

Each lung was cut through with 35 µm sections, stained with DAPI and analyzed for 

GFP-positive cells per field. 

Lectin perfusion 

To detect vessels permeability mice were injected i.v. with 100 µl of 1 mg/ml 

fluorescein-conjugated lycopersicon esculentum lectin (FL-1171, Vector 

Laboratories) followed by PFA perfusion after 2 min. 

PTK treatment 

To block VEGF signaling mice were treated daily p.o. with 75 mg/kg 

PTK787/ZK222584 for 14 days starting one day after tumor cells transplantation.  
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Statistical analysis 

Statistical analysis and graphs were generated with the help of GraphPad Prism 

software (GraphPad Sofware Inc, San Diego, CA) using the indicated methods. 

Microarray processing and data analysis 

RNA was isolated from MTflECad and MTΔECad cells using TriReagent 

(Sigma-Aldrich) and RNA quality and quantity evaluated with the Agilent 2100 

Bioanalyzer (Agilent Technologies). The RNA was processed to cDNA according to 

Affymetrix protocols and analyzed on the Affymetrix 430a2 mouse array. Raw 

microarray data were normalized with Robust Multi-Array (RMA) and analyzed 

using R software (www.r-project.org). Microarray probesets were annotated 

to mouse Refseq IDs with the brainarray annotation package 

(http://brainarray.mbni.med.umich.edu/Brainarray/). Differentially expressed genes 

between MTflECad and MTΔECad were determined using linear modeling with 

limma and Empirical Bayes Statistics. Probesets were considered differentially 

expressed if they showed a least 2-fold change in expression, an average log 

expression of at least 3 and logOdds of at least 0. Differentially expressed genes were 

analyzed for GO term enrichment in R. GO categories with an adjusted p-value of 

0.01 or smaller (by Benjamini & Hochberg), containing between 1000 and 200 genes 

per category to avoid getting too general or too specific pathways, are reported. R 

version R2.13.0 and the packages limma_3.8.2 and GO.db_2.5.0 were used. 
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3.2 The functional role of ephrinB2 in mesenchymal 

cell migration 

3.2.1 Abstract 
Cancer and its progression to metastatic disease is one of the leading causes of 

death. The invasive phenotype of cancer cells and metastatic spread is often 

associated with epithelial to mesenchymal transition (EMT). The hallmarks of 

the EMT process are the loss of epithelial cell polarity and cell-cell adhesions, 

accompanied by CDH1 silencing and a gain of migratory and invasive 

capabilities (32). 

In order to investigate factors changing upon EMT, three independent cellular 

model systems were investigated on their gene expression level. Upon others, the 

expression of ephrinB2 was found to be commonly upregulated. EphrinB2 is a 

member of the Eph-ephrin cell-cell communication system, which allows cells to 

react upon binding to each other by Eph-mediated forward and ephrin-mediated 

reverse signaling. Eph-ephrin signaling predominantly uses the actin cytoskeleton to 

conduct its output, which is mostly cell repulsion. 

I show that in NMuMG cells that underwent EMT, as well as in mesenchymal 

MT∆ECad cells, siRNA-mediated knockdown of ephrinB2 reduces the cells’ general 

migratory capability. This effect on migration is carried out by an over-stabilization of 

focal adhesions, not allowing cells to retract they rear end. In this way, ephrinB2 

knockdown cells, when plated on a thin line of substrate, rather elongate than move 

forward independent of cell-cell contacts. Investigating the role of ephrinB2 in breast 

cancer, a knockout of efnb2 in breast epithelial cells could not reveal a critical role of 

ephrinB2 for tumor growth or metastasis. 

 

3.2.2 Introduction 

3.2.2.1 The Ephrin system 

The ephrin system is comprised of Eph receptors (Eph) and Eph receptor 

interacting ligands (ephrins). Eph receptors form the largest group of receptor tyrosine 

kinases (RTK). Their extracellular part is composed of a globular ligand-binding 
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domain, a cysteine-rich region, and two fibronectin type III repeats. Their intracellular 

parts comprise a juxta-membrane region, a tyrosine kinase domain, a sterile α motif 

(SAM) protein-protein interaction domain, and a C-terminal PDZ-binding site (Fig. 

11). Eph receptors include members of the EphA subclass (EphA1-8, 10) and 

members of the EphB subclass (EphB1-4, 6), however, EphA10 and EphB6 lack 

kinase activity. The subdivision into A and B categories can be attributed to the 

ligands they bind to. Whereas the ephrinA ligands (ephrinA1-5) are proteins that 

are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors, 

ephrinB ligands (ephrinB1-3) are transmembrane proteins with a C-terminal 

intracellular part. This intracellular part can be bound by Src-homology-2 (SH2) 

domain adaptor proteins and by proteins carrying a PDZ-motif. Despite the 

preferential binding of class A and B receptors and ligands within their group, 

high promiscuity allows even binding across subclasses, although with lower 

affinities (101). 

Eph-ephrin expression pattern 

Ephrins and their receptors are classically expressed on opposing cells allowing 

contact-depending communication between them. The main output of such a contact 

between different cells is repulsion mediated by actin cytoskeleton remodeling. Other 

examples for Eph-ephrin signaling outputs are modulations in morphology, migration, 

invasion and cell adhesion. 

Ephrins’ and Eph receptors’ most prominent function is their role during neuronal 

development by axon guidance and during vasculogenesis and angiogenesis. Being 

essential for arterious and venous endothelial cell determination, ephrinB2 and 

EphB4, respectively, mark exclusively their subtype of blood vessels. Along this line, 

the Eph-ephrin system is extremely important for tissue pattern formation. The 

differential expression of ligands and receptors on cell surfaces leads to repulsion as 

soon as different cells come in contact to each other. This repulsive effect restricts the 

mixture of cell types that are not supposed to intermingle (102). The importance of 

segregation of cell types has been shown in various tissue examples such as the 

intestine (103). Eph-ephrin system components are also expressed in lymphoid organs 

and lymphocytes where direct communication between cells is crucial for positive and 

negative selection of lymphocytes (104). 
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Eph-ephrin signaling 

Eph-ephrin signaling is extremely complex. Apart from the promiscuity of ligands 

and receptors, both entities are able to transduce signals in their cells. So-called 

forward signaling by Eph receptors stimulates intracellular signals. In contrast to 

classical RTK signaling, Eph receptors are poor Ras-MAPK and PI3K-PKB pathway 

activators and rather induce RhoGTPase signaling. Ephrins, on the other side, lack 

intrinsic kinase activity and thus use members of the non-receptor tyrosine kinase 

family, i.e. src family kinase proteins, to conduct so-called reverse signaling (Fig. 11). 

Apart from signaling via phosphorylation, Eph receptors and ephrinB ligands 

additionally have C-terminal PDZ domain-binding sites (101). The importance of the 

PDZ domain-binding sites has been demonstrated by its removal in the ephrinB2 

protein, leading to major developmental defects in the lymphatic system and during 

angiogenesis when conditionally expressed in endothelial cells (105,106). 

Another level of complexity for Eph-ephrin signaling is introduced by the fact that 

receptor/ligand dimers have to bind to other Eph/ephrin dimers to form tetramers 

which further cluster laterally to achieve full signaling strength. The amount of lateral 

clustering within cells decides how strong a signal is. The signal could be even 

inhibitory if only few clusters are formed or if unclustered soluble ligands are applied 

to receptor expressing cells. In the case where receptors and ligands are expressed on 

the same cell, it is not totally clear which effect is predominant, but it has been found 

that interaction of receptors and ligands in cis would mask rather than stimulate 

signaling. Apart from reacting with each other in cis, Eph receptors and ephrins can 

also act in parallel being located in different subcellular membrane patches (107). 

Upon trans-binding of receptors and ligands and further lateral clustering, the 

whole cell-cell interaction complex is internalized by the cell. This often occurs 

together with the surrounding plasma membrane patches allowing repulsion of cells. 

This effect can be realized by cleavage of either the Eph receptor or the ligand e.g. by 

ADAM10 (a disintegrin and metalloproteinase domain 10) (Fig. 11). Internalization 

of Eph-ephrin complexes results in their destruction and ultimately leads to signal 

termination. While strong kinase-dependent Eph signaling mainly results in repulsion, 

weaker signaling by less clustering or strong phosphatase activity leads to cell 

adhesion. The association of Eph-ephrin clusters with E-cadherin further favors 

adhesion (108). 
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Uncoupling the function of the Eph-ephrin system, single molecules of ligands and 

receptors can act independently of each other though crosstalk with various signaling 

systems. These include epidermal growth factor receptor (EGFR), fibroblast growth 

factor receptor (FGFR) and Wnt signaling. Like most signal transducers, also the 

Eph-ephrin system can be influenced by other pathways, thus being embedded into 

the whole cellular signaling network (109). 

 

 
 

 

Figure 11: Schematic representation of Eph-ephrin signaling. 
(a) EphB receptors (dark blue) with there indicated domains bind with the globular domain to ephrins (light blue) 
expressed by opposing cells. Upon receptor-ligand binding, Ephs cross phosphorylate (P) each other leading to 
active forward signaling. In the opposing cells clustering of ephrins leads to e.g. recruitment of src family kinases 
(SFK), which phosphorylate ephrins. Phosphorylated ephrins conduct reverse signaling. 
(b) Repulsion of opposing cells can be carried out when ADAM10 or other proteolytic enzymes cut the whole 
Eph-ephrin complex which leads to its internalization, segregation of cells and consequently to termination of 
Eph-ephrin signaling. 
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The Eph-ephrin system in cancer 

Ephrins and Eph receptors have been found both up- and downregulated in cancer. 

EphA2, for instance, is upregulated in many cancers and correlates with cancer 

progression and poor clinical outcome. More specifically, in breast cancer EphA2 

expression is predominant in the more aggressive basal subtype. Another example for 

an association with cancer malignancy is EphB4 expression. On the other hand, 

several proteins of the Eph-ephrin system, such as EphA1, EphA5, EphB4 and 

EphB6, have been found downregulated in advanced cancers, arguing for 

anti-cancerous effects of these factors, at least in specific cancer types. Speaking for a 

more general tumor-suppressive function is the notion that Eph receptors seem to 

have a remarkable ability to oppose oncogenic signaling pathways like H-Ras or 

PI3K. Again, the complexity of the system allows different members of the 

Eph-ephrin network to be pro- or anti-tumorigenic. Most likely, the combination and 

amount of Ephs and ephrins expressed, as well as the signaling network they are 

embedded in, play a major role in determining the significance that each molecule 

would have during tumor development (109). 

Interestingly, the expression of Eph-ephrin molecules on cancer cells alone might 

not decide whether tumor growth is promoted or repressed. The surrounding tissue, 

expressing the matching ligand or receptor, could keep tumor cells from invading by 

conducting repulsive effects. In addition to the confinement by neighboring cells, an 

overactivation of the Eph-system can lead to tight adhesion of cells within the tumor. 

As an example, ephrinB2 is present in endothelial cells and adjoining smooth muscle 

cells and pericytes (109). 

EphrinB2 

EphrinB2, encoded by the Efnb2 gene, serves as a ligand for the Eph 

receptors EphB2, EphB3, EphB4 and EphA4 (110). The crystal structure of ephrinB2 

binding to EphB2 has been solved to get deeper insight into the nature of this 

association (111). 

During vascular development, as mentioned above, arterial endothelial cells 

express ephrinB2 while venous endothelial cells are marked by EphB4. The relevance 

of ephrinB2 expression during vascular development is strengthened by the 

observation that Efnb2 knockout mice die early (E11.5) due to a failure to properly 

remodel the embryonic vasculature (112). The differential expression of ephrinB2 and 



RESULTS The functional role of ephrinB2 in mesenchymal cell migration 

62 

its receptors does not only lead to boundary formation within the capillary endothelial 

cells but is also important for communicating with surrounding mesenchymal cells to 

form a mature vasculature (113). 

The mechanistic role of ephrinB2 during angiogenesis has recently been unraveled. 

EphrinB2 has been shown to be essential for VEGFR2 internalization and activity, 

allowing tip cell filopodia extension in angiogenic vessels (106). Similar results could 

be demonstrated during angiogenic and lymphangiogenic growth, where ephrinB2 

was necessary for VEGFR3 internalization and signaling (114). Along theses lines, an 

antibody targeting ephrinB2 reduces endothelial cell migration in vitro and the 

number of blood and lymphatic vessels as well as tumor growth in vivo (115). 

On the cell biology level, human umbilical vein endothelial cells (HUVECs) react 

to ephrinB2 overexpression by increased random migration associated with 

repeated contraction-expansion cycles. This motility phenotype is independent of 

receptor binding but dependent on ephrinB2’s C-terminal PDZ-motif (116). 

EphrinB2-deficient smooth muscle cells show defective focal adhesion 

formation, poor spreading, non-polarized lamellipodia and increased non-directional 

motility (117). 

In the mammary gland, ephrinB2 expression is limited to luminal epithelial cells, 

whereas EphB4, ephrinB2’s cognate receptor, is predominantly expressed by 

myoepithelial cells. The expression of both proteins is highly dependent on estrogen 

abundance (118). Overexpression of ephrinB2 within the mammary gland, using the 

MMTV promoter, leads to a delayed mammary gland development. During pregnancy 

and lactation, overexpression of ephrinB2 results in precocious differentiation. The 

transgenic expression of an ephrinB2 variant that is unable to perform reverse 

signaling (ephrinB2∆C) delays epithelial differentiation (119). In two models of 

mammary carcinogenesis, the Wap-Ras and Wap-Myc transgenic mice, ephrinB2 

expression was lost upon tumor progression (118). Additionally arguing for reverse 

signaling opposing tumor progression is the finding that ephrinB2∆C transgenic 

expression in mice leads to shorter tumor latency and increased metastasis in an 

MMTV-Neu breast cancer model. However, the overexpression of wild type ephrinB2 

has no effect on tumor latency or metastasis (119). 

A full knockout of Efnb2 results in embryonic lethality around E11 (112). 

Therefore, conditional alleles of Efnb2 have been generated (120). A conditional 
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knockout of Efnb2 in the mammary gland under the control of the wap-cre promoter 

(active at the 13th day of pregnancy) causes a disturbed architecture of the mammary 

gland that is not able to properly produce milk. Additionally, less E-cadherin staining 

between epithelial cells was observed, resulting in an instable mammary gland 

epithelium, associated with cell death (121). On the other hand, embryonic stem cells 

that are deficient for the E-cadherin gene show increased levels of ephrinB2 

expression, which can be rescued by re-expressing E-cadherin in these cells (122). 

Although it is clear that ephrinB2 is crucial during angiogenesis and migration of 

cells, not a lot is known about its function in cancer cells. Studies of ephrinB2 in 

melanoma cells have found that stimulation with ephrinB2 induces EphB4 forward 

signaling that increases RhoA activity and cell migration (123). Along this line, 

overexpression of ephrinB2 in B16 melanoma cell leads to activation of focal 

adhesion kinase (FAK), increased β1-integrin-mediated adhesion to laminin and 

fibronectin and cell migration (124). Similar results have been found in glioma cells 

(125). In contrast to these observations, stimulation of breast cancer cells with 

ephrinB2 leads to Ephb4-dependent inhibition of proliferation, migration and invasion 

(126). In patients, positive correlations between ephrinB2 expression in melanoma, 

glioma, oesophageal squamous carcinoma, uterine endometrial, uterine cervical and 

ovarian cancer and tumor progression have been found (107). These correlations not 

necessarily need to reflect a pro-tumorigenic function of ephrinB2 in tumor cells but 

could also result from its function in tumor-associated angiogenesis and with this its 

expression in blood vessels. 

 

3.2.3 Results 

3.2.3.1 EphrinB2 is upregulated in EMT cellular systems 

In order to study what drives EMT in a comprehensive manner, three different 

cellular systems of EMT were used to evaluate the differential gene expression profile 

between epithelial cells and their mesenchymal counterparts. These three cellular 

EMT systems comprise a human breast cancer cell line, MCF7 cells, that upon a 

stable knockdown of E-cadherin become mesenchymal (76). The second cell line is 

the normal murine mammary gland, NMuMG that can be triggered to undergo EMT 

by addition of recombinant TGFβ (99). And the third system is the MTflECad cell 
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line that had been established from an MMTV-Neu tumor in which the E-cadherin 

gene is flanked by LoxP sites. In vitro, upon Cre-recombinase infection these cells 

excise the E-cadherin gene and thereby become the mesenchymal cell line MT∆ECad 

(76) (Fig. 12a). Using these three systems and comparing the gene expression 

differences identified by microarray analysis, ephrinB2 was found to be commonly 

upregulated upon EMT (Fig. 12b). 

This upregulation of ephrinB2 during EMT could be validated both on protein 

level (Fig. 12c) and on mRNA expression level (Fig. 12d, e). Evaluating whether 

possible receptors for ephrinB2 would be present to stimulate its reverse signaling 

activity, qRT-PCR analysis revealed that EphB2, EphB3, Ephb4 and EphA4 are all 

expressed in the NMuMG and in the MTflECad/MT∆ECad system. EphB2 

expression is upregulated during EMT in both models (Fig. 12f). 
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Figure 12: EphrinB2 is upregulated during EMT. 
(a) Light microscopic pictures of the three different EMT systems (NMuMG cells without or with TGFβ for at 
least 20 days (NMuMG +TGFβ), MTflECad versus MT∆ECad cells and MCF7 shCtr versus shE-cadherin cells) 
used for gene expression profiling. Scale bars, 100 µm. 
(b) Gene expression profiling by cDNA microarray was performed for all three EMT systems. Gene expression 
changes of 2 fold were taken into account for comparing the systems in a Venn diagram. 
(c) Immunoblotting was performed in order to verify the upregulation of ephrinB2 in all three systems on protein 
level. NMuMG cells were treated for the indicated days with TGFβ or had been with TGFβ for at least 20 days, 
considering them long term treated (NMuMG/lt). MTflECad (fl) cells were compared to MT∆ECad (delta) cells 
and MCF7 cells infected with a control shRNA (shCtr) to shE-cadherin (shECad) infected cells. NMuMG cells 
overexpressing ephrinB2 were used as positive control for the ephrinB2 immunoblot. N-cadherin serves as control 
to verify the change from the epithelial state cells to the mesenchymal ones. Tubulin was used as a loading control. 
(d, e) qRT-PCR analysis of the murine EMT systems shows the differential expression of ephrinB2 between the 
epithelial and the mesenchymal cell. 
(f) qRT-PCR analysis of the different Eph receptors, expressed in the indicated cell lines. Relative mRNA 
expression is depicted as ∆ct values. 

 

3.2.3.2 Neither overexpression nor ablation of ephrinB2 affects EMT  

The NMuMG cellular system is ideal to monitor the actual transition from the 

epithelial to the mesenchymal cell state over time (99). This transition is accompanied 

by changes of marker proteins. Upon others, the mesenchymal proteins N-cadherin 

and NCAM are gained during the TGFβ-treatment, whereas the epithelial E-cadherin 

gets downregulated (76). To investigate whether an overexpression of ephrinB2 

(Fig. 13a) or a knockdown of ephrinB2 (Fig. 13b) would interfere with the EMT 

process, NMuMG cells were stably infected with an EphrinB2 overexpression 

construct or a small hairpin RNA (shRNA) against ephrinB2. These modified cells 

were then treated with TGFβ over time and the lysates were evaluated for changes in 

protein levels. Neither gain of function experiments (Fig. 13a) nor loss of function 

experiments (Fig. 13b) had a striking effect on the EMT process in NMuMG cells. 

Also the levels of phosphorylated focal adhesion protein kinase (pFAK) did not 

change by miss-expression of ephrinB2. Additionally, the range of ephrinB2 

overexpression could be documented in Figure 13a, whereas the admittedly weak 

knockdown is barely visible on the immunoblot but could be verified by qRT-PCR 

analysis (Fig. 13c). 
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Figure 13: Neither overexpression nor ablation of ephrinB2 affects EMT. 
(a, b) Immunoblotting of NMuMG cells either overexpressing (a) or with a knockdown of ephrinB2 (b) during 
TGFβ treatment. Lysates of cells treated with TGFβ for the indicated time points were loaded on a gel and protein 
levels of the different EMT markers, as indicated, were assessed. Tubulin serves as a loading control. 
(c) To evaluate the knockdown efficiency of the shRNA against ephrinB2, qRT-PCR analysis of two independent 
time courses of NMuMG cells treated with TGFβ was performed. Untreated NMuMG cells that express the control 
shRNA were use as reference and set to fold 1. Mean values with SEM are shown. 
 

3.2.3.3 Mesenchymal cells are more motile than their epithelial counterparts. 

Another hallmark of EMT, apart from the marker changes, is to gain migratory 

capacity in contrast to immobile epithelial cell (35). As a tool to investigate the role of 

ephrinB2 in the mesenchymal cells, the MT∆ECad cells as well as long term 

TGFβ-treated NMuMG cells (NMuMG/lt) were used as a model system to study cell 

migration. This gain of motility in mesenchymal cells compared to their epithelial 

counterpart was validated in a transwell migration assay (Fig. 14a, b) where the cells 

squeeze through pores following an increasing gradient of serum and by tracking 

nuclei of cells that randomly move in an un-stimulated way (Fig. 14c, d). 
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Figure 14: Mesenchymal cells are more motile than their epithelial counterparts. 
(a, b) Cells were plated on Boyden chamber inserts using a gradient of FBS as an attractant to move through the 
pores of the insert. After 16 hours all cells were fixed and cells that had migrated through the pores were stained 
with DAPI for their nuclei and counted. 
(c, d) In order to track cells that randomly move, cells were seeded sparsely on cover slips, put in a Ludin chamber 
and monitored for 16 hours every 12 minutes by live cell microscopy. To be able to track cells, nuclei were stained 
with Hoechst and this nuclear staining was used to quantify cell movement using MetaMorph software. To 
visualize cell viability DIC images were taken. Each dot represents one cell. 

 

3.2.3.4 siRNAs against ephrinB2 efficiently reduce its expression levels. 

I discovered that ephrinB2 is upregulated in the more motile cells that had 

undergone EMT. Since ephrinB2 is implicated in cell motility, I decided to 

knockdown EphrinB2 in the mesenchymal state cells and assessed whether ephrinB2 

plays a role in this gain of motility upon EMT (116,117,123-125). 

To first determine whether siRNA-mediated knockdown would be effective, 

mesenchymal cells were transfected with two different siRNAs against ephrinB2 

(siEfnb2 #1 and siEfnb2 #3 in MT∆ECad cells; siEfnb2 #1 and siEfnb2 #2 in 

NMuMG/lt cells) and always compared to a control siRNA (siCtr). Observing the 

morphology of the cells after siRNA transfection, only in the mesenchymal 

NMuMG/lt cells a slight increase in a rounded-up shape, accompanied by a decrease 

in protrusions could be monitored (Fig. 15a). This observation pointed towards a more 

epithelial, less spread morphology and with this a less migratory phenotype of the 

cells. To evaluate the efficacy of the siRNAs transfected against ephrinB2, 

qRT-PCR analysis was used documenting a reproducible knockdown of ephrinB2 

mRNA levels in MT∆ECad cells (Fig. 15b) as well as in NMuMG/lt cells (Fig. 15c). 
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The efficient reduction of ephrinB2 protein level was additionally shown by 

immunoblotting (Fig. 15d, e).  

 

 

Figure 15: siRNAs against ephrinB2 efficiently reduce its expression levels. 
(a) Light microscopic pictures of MT∆ECad and NMuMG/lt cells transfected with a control siRNA (siCtr) or with 
different siRNAs against ephrinB2. Scale bars, 100 µm. 
(b, c) qRT-PCR of ephrinB2 expression in MT∆ECad (b) and NMuMG/lt cells (c), setting the siCtr value to fold 1. 
(d, e) Immunoblotting of ephrinB2 in control siRNA and ephrinB2 knockdown cells in MT∆ECad cells using total 
Erk protein (tErk) as a loading control (d) and in NMuMG/lt cells using tubulin as a loading control (e). 

 

3.2.3.5 EphrinB2 is important in mesenchymal cell motility. 

Knowing that ephrinB2 expression levels can effectively be reduced by 

siRNA-mediated knockdown, mesenchymal cell lines were transfected with two 

different siRNAs against ephrinB2 in order to investigate whether this would have an 

influence on cell migration as suggested from literature (116,124,125). Cells were 
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plated in a Boyden chamber and their migration towards a gradient of fetal bovine 

serum (FBS) was measured. MT∆ECad cells (Fig. 16a) as well as NMuMG/lt cells 

(Fig. 16b) react to a knockdown of ephrinB2 with a decrease in their motility. Another 

assay to assess motility is the scratch wound closure assay. In this assay cells are 

monitored while closing a gap, scratched in a confluent cell monolayer, as opposed to 

the transwell migration assay or the tracking assay where single cells migrate. Also 

under this condition MT∆ECad cells migrate slower, resulting in a delayed wound 

closure (Fig. 16c). NMuMG/lt cells were imaged while moving randomly on a cover 

slip in a Ludin chamber in complete absence of a given stimulus. By tracking the 

Hoechst-stained nuclei I could retrieve the reduced distance that cells with an 

EphrinB2 knockdown moved over time (Fig. 16d). 

 

 

Figure 16: Knockdown of ephrinB2 in mesenchymal cells slows down their motility. 
(a, b) Boyden chamber transwell migration assays of MT∆ECad (a) and NMuMG/lt cells (b) were performed 
using 2 different siRNAs against ephrinB2. The amount of migrated siCtr cells were set to 100 %. The mean value 
of 6 (a) and 3 (b) independent experiments with the SEM is shown. 
(c) MT∆ECad cells were seeded to confluency in a 24 well dish. The wound closure of a scratch applied to the 
monolayer of cells was monitored every 30 minutes. The percentage of wound closure, setting the initial wound 
area to 0 %, is plotted against the time. The mean value of 3 independent experiments with the SEM is shown. 
(d) NMuMG/lt cells were seeded sparsely on a cover slip, stained with Hoechst and put into a Ludin chamber. 
Images were taken every 12 minutes and nuclei were tracked afterwards using MetaMorph software. Each data 
point represents one cell. 
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3.2.3.6 Decreased motility is not caused by activity changes in the small GTPases 

Rac1, RhoA or Cdc42 
Having assessed that ephrinB2 is needed for cells that have undergone EMT to 

effectively migrate, I investigated the mechanism by which the cell migration capacity 

is affected. 

The main remodelers of the actin cytoskeleton, the migratory machinery of a cell, 

are small GTPases. Among these, the most famous ones involved in cell migration are 

RhoA, Rac1 and Cdc42 (50). In order to assess whether their activity would be 

changed by an ephrinB2 knockdown that could explain the reduction in velocity of 

the cells, GTPase activity pulldown assays were performed. Lysates of cells 

transfected with a control siRNA or siRNAs against ephrinB2 (siEfnb2 #1, siEfnb2 #3 

or a mixture of both siRNAs) was used to pull down either the GTP-bound, active 

forms of Cdc42, Rac1 or RhoA. The immunoprecipitates were then loaded on an 

immunoblot to determine the amounts of active Cdc42 and Rac1 (Fig. 17a) or the 

active form of RhoA (Fig. 17b). EphrinB2 knockdown cells did not show changes in 

Rac1 and Cdc42 activity, only for RhoA activity a minor change for only one siRNA 

could be measured repeatedly, leading to the conclusion that these prominent small 

GTPases do not play a role in ephrinB2’s way of action on cell migration. 

 

 

Figure 17: Decreased motility is not caused by activity changes in the small GTPases Rac1, RhoA or Cdc42. 
(a, b) MT∆ECad cells were transfected with a control siRNA (siCtr) or with siRNAs targeting ephrinB2 
(siEfnb2 #1, siEfnb2 #3 or a mixture of both). Lysates of these cells were used to pull down the active GTP-bound 
versions of Cdc42, Rac1 (a) or RhoA (b). Both input samples and pulldown samples were loaded on a gel and the 
levels of Cdc42, Rac1 and RhoA were determined by immunoblotting. Tubulin (a) and total Erk (b) serve as a 
loading control. Both experiments are representative of two independent pulldown experiments performed. 
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3.2.3.7 EphrinB2 knockdown cells over-stabilize their focal adhesions 

Since the small GTPases do not change with a knockdown of ephrinB2 and also 

the actin cytoskeleton seems to be normal in shape (Fig. 18a) I focused my attention 

on the focal adhesions of the cells. A cell uses its focal adhesions (FA) to make 

contact to the surface on which it holds on in order to move forward (44). Plating 

MT∆ECad cells on cover slips and staining for the focal adhesion marker pFAK 

revealed that the focal adhesions in ephrinB2 knockdown cells are bigger in size but 

less in number, especially in the body of the cells (Fig. 18a). Having observed this 

phenomenon, I quantified the size and abundance of focal adhesions of the cells 

(Fig. 18b). Surprisingly, quantification only partially coincided with the results 

obtained by stainings, most likely due to the high variations in shape of the MT∆ECad 

cells in general. 

To decrease the amount of diversity within the cell population, minimizing the 

different cell shapes and sizes observed upon 2D culturing conditions, I plated the 

cells on 10 µm thin lines of poly-L-lysine. This technique of patterning a surface in 

order to restrict cell spreading on a thin, 1D-like, line was done in collaboration with 

the Pertz group (University of Basel). Since focal adhesion dynamics are at least as 

important as their abundance and size (50), I stably infected cells with a construct for 

paxillin-GFP, a component of focal adhesions (127). Following paxillin-GFP by live 

imaging microscopy allowed me to monitor focal adhesions while cells were moving 

(128). To investigate whether ephrinB2 plays a role in focal adhesion dynamics, 

MT∆ECad cells were transfected with siRNAs against ephrinB2 and a control siRNA 

and plated on the 10 µm lines coated with poly-L-lysine. After spreading on the lines 

and being adherent over night, cells were monitored by live imaging microscopy. A 

picture of the focal adhesions depicted by paxillin-GFP and a DIC picture for general 

cell shape was taken every 5 minutes. Showing an image of the cells every 

100 minutes elucidates that control cells mostly stabilize and destabilize their focal 

adhesions while they are moving forward. In contrast, ephrinB2 knockdown cells tend 

to stick to their distal focal adhesions, over-stabilizing them and making it difficult for 

them to move in one direction (Fig. 18c). The phenomenon to be stuck with the focal 

adhesions, but still trying to move, is accompanied by the cell becoming longer and 

longer over time. To quantify the differences in length of the cells on the lines, cells 

were fixed and stained with phalloidin in order to visualize the whole cell. As 
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observed already in the movies, cells with a knockdown of ephrinB2 are consistently 

longer than their control cells (Fig. 18d).  

Focal adhesion over-stabilization explains the decrease of cell migration in 

ephrinB2 knockdown cells. Repulsion, being the main output of Eph-ephrin 

signaling, could additionally have an effect on cell migration behavior. To investigate 

whether repulsion between cells was changed upon ephrinB2 knockdown, differently 

labeled cells were transfected with siRNAs, mixed and monitored by live cell 

imaging microscopy. Quantifying the time cells adhered to each other, revealed a 

decrease of cell repulsion when ephrinB2 knockdown cell were confronted with each 

other (Fig. 18e). 
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Figure 18: EphrinB2 knockdown cells over-stabilize their focal adhesions and stretch. 
(a) Immunofluorescence staining of MT∆ECad cells transfected with control siRNA (siCtr) or siRNAs against 
ephrinB2 (siEfnb2 #1, siEfnb2 #3). Cells were labeled by marking their actin cytoskeleton with phalloidin (red) 
and their focal adhesions with an antibody against pFAK (green). The nuclei are labeled with DAPI (blue). The 
upper panel shows cells in close cell-cell contact, whereas the lower panel shows cells in sparse conditions. 
(b) 2D cultured cells were stained for their focal adhesions. Pictures of single cells where acquired in high 
resolution to be able to quantify positive signals with ImageJ software. The amount of focal adhesions per cell and 
the mean size of focal adhesions per cell are shown. Every data point represents one cell. 
(c) MT∆ECad cells with an ephrinB2 knockdown were seeded on 10 µm thin lines coated with poly-L-lysine. 
Every 5 minutes pictures of the cells (DIC) and of the focal adhesions (paxillin-GFP) were taken. Single pictures 
in a 100 min time interval are shown for each condition. 
(d) MT∆ECad cells spread on 10 µm lines coated with poly-L-lysine with or without an ephrinB2 knockdown 
were fixed and stained with phalloidin. Images where taken and the length of each cell was measured by 
MetaMorph software. 
(e) MT∆ECad-GFP or MT∆ECad-mCherry cells were transfected with a control siRNA or with siEfnb2 #1. The 
indicated cells were mixed, imaged with live cell microscopy and the duration of adhesion was quantified. 

 

3.2.3.8 EphrinB2 ablation in the polyoma-middle-T breast cancer model does 

neither change tumor growth nor lung metastases. 

Since ephrinB2 seems to play a role in cell migration, I wanted to figure out 

whether a decrease of cell motility by a knockout of Efnb2 would affect tumor growth 

or, more importantly, metastasis. An elegant way to study breast cancer is a mouse 

model where breast epithelial cells express the viral oncogene polyoma-middle-T 

(PyMT) under the control of the mouse mammary tumor virus LTR promoter 

(MMTV) (129). To first examine whether breast tumors of this model would express 

ephrinB2, I stained tumor sections for ephrinB2 by immunhistochemistry. Indeed, 

breast tumors originating in MMTV-PyMT mice (Mpy) show positive staining for 

ephrinB2 in cells mainly at the edges of the tumors (Fig. 19a, left panel), whereas the 

center of the tumor lacks ephrinB2 (Fig. 19a, middle and right panel). 

Since the mice carrying the Efnb2 gene that is flanked by loxP sites (Efnb2 fl/fl) 

were in a C57BL/6 background (120), these mice were backcrossed for 6 generations 

into FVB/N mice. Taking advantage of the Mpy breast cancer model system in 

FVB/N background, I crossed Mpy mice with Efnb2 fl/fl mice. To compare mice that 

carry the knockout or not, the resulting Mpy;Efnb2 fl/fl mice were further crossed 

with a mouse expressing a breast specific Cre-recombinase transgene (MMTV-Cre) 

(130). To validate the effectiveness of the knockout, RNA was isolated from tumor 

pieces and the expression levels of ephrinB2 were examined by qRT-PCR. Only a 

marginal overall reduction of ephrinB2 expression in fl/fl;Mpy;Mcre mice could be 

monitored (Fig. 19b). The observation that total tumor RNA did not show a decrease 

in ephrinB2 levels does not exclude a functional knockout in the mammary epithelial 

cells of these mice, since the knockout is a conditional one and tumors are composed 
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of many more cells than the actual cancer cells. Further arguing for a ‘contamination’ 

of the total tumor mRNA result is the notion that cells like endothelial cells and mural 

cells express ephrinB2 as well (106,114,116,117). To analyze the tumorigenicity of 

the mice, the whole mammary gland, mostly composed of cancerous tissue, was taken 

out and weighted after sacrificing mice at 12.5 weeks of age. No difference in tumor 

weight could be observed, comparing mice, which should have a full Efnb2 knockout 

in the breast epithelium to mice that have only one Efnb2 allele floxed or mice that do 

not even express the Cre-recombinase (Fig. 19c). 

Since EMT and cell migration is rather implicated in metastasis than in tumor 

growth itself, I analyzed the lungs of tumor-bearing mice for metastases. In order to 

do so, lungs were sectioned, stained with H&E and then screened by light microscopy 

to count metastases (Fig. 19d). Additionally, the metastases were scored for their size 

to see whether there would be growth differences (Fig. 19e). Unexpectedly, there is 

neither a difference in the amount of lung metastases nor in their size distribution 

between the compared genotypes. 
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Figure 19: Efnb2 ablation in a polyoma-middle-T breast cancer model does neither change tumor growth 
nor lung metastasis. 
(a) Immunhistochemistry staining of ephrinB2 (brown) in MMTV-PyMT tumors. Nuclei were counterstained by 
hematoxylin (blue). The left panel represents the tumor edge towards the stroma whereas the middle and right 
panels depict the central tumor mass. Scale bars, 100 µm. 
(b) qRT-PCR analysis of RNA isolated from MMTV-Polyoma-middle-T (Mpy) mice which carry either two 
floxed alleles of efnb2 (fl/fl) or only one (fl/wt) and express MMTV-Cre (Mcre) or not. The y-axis shows 
∆ct values. 
(c) After 12.5 weeks, tumor-bearing mice with the indicated genotypes were sacrificed and all mammary glands 
with tumors were weighted. 
(d, e) Lungs of tumor-bearing mice were taken out, sectioned, stained with H&E and metastases were counted and 
scored for their size. The amount of metastases per mouse, represented by 4 sections per mouse, is shown in panel 
(d) whereas the size distribution is depicted in panel (e). 

 

3.2.3.9 Efnb2 ablation in the MMTV-Neu-IRES-Cre breast cancer model does 

neither change tumor growth nor lung metastases. 
Another breast cancer model that has a longer progression time and is less 

aggressive than the Mpy model is the MMTV-Neu mouse model (11). Here, an 

activated version of the Neu protein is specifically expressed in the mammary gland 

and leads, after a delay of about 5 months, to breast cancer. Immunohistochemical 

staining for ephrinB2 in these tumors barely showed any expression of ephrinB2 and 

if so only the invasive front of the tumor was positive (Fig. 20a). This observation is 

not surprising and would fit nicely to the hypothesis that only invasive cells in the 

tumor that have undergone EMT would upregulate ephrinB2 in contrast to the 

epithelial bulk of the tumor cells. 

To use the MMTV-Neu model for a conditional knockout of Efnb2 in the breast 

epithelium a modified version of the MMTV-Neu, the MMTV-Neu-IRES-Cre (NIC) 

mouse model, was used (131). In this mouse model, cells that express the activated 

form of the Neu oncogene also express the Cre-recombinase on the same transcript 

making sure that the tumor cells have recombined their DNA for having a knockout of 

the gene of interest, in this case Efnb2, that is flanked by LoxP sites. Since ephrinB2 

could barely be detected on protein level in the Neu-induced breast tumors, I relied on 

qRT-PCR analysis for the expression of ephrinB2 and an inside on the knockout 

efficiency. Not surprisingly, no difference in ephrinB2 expression in the tumor 

carrying one or both Efnb2 floxed alleles could be detected (Fig. 20b). Notably, the 

∆ct values obtained from Mpy tumors as well as from NIC tumors are very similar, 

despite the observation that ephrinB2 was much more abundant in Mpy tumors 

visualized by immunhistochemistry stainings (Fig. 19a, b and Fig. 20a, b). Again, the 

knockout effect of Efnb2 could have been masked by non-mammary epithelial cells 

within the tumor that express ephrinB2. Without knowing the efficiency of the 
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conditional Efnb2 knockout in this breast cancer model, I anyway investigated the 

tumor mass of mice after 23 weeks of age. For these tumors where the penetrancy of 

tumor formation is not equal to all mammary glands, only the ones having a tumor, 

the glands 2, 3, 4, 7, 8 and 9 were taken out with their tumors and weighted. No 

difference in tumor weight between NIC;fl/fl and NIC;fl/wt mice could be detected 

(Fig. 20c). The more relevant analysis of the lung metastases also revealed no 

difference in the amount of metastases (Fig. 10d). The size distribution of the lung 

metastases which are in general much bigger than the ones found in the Mpy-system 

rather gave the opposite tendency of having less small sized metastases in the Efnb2 

knockout mice compared to mice that still carry one intact Efnb2 allele (Fig. 20e). 

 

 
 



The functional role of ephrinB2 in mesenchymal cell migration RESULTS 

77 

Figure 20: Efnb2 ablation in an MMTV-Neu_IRES-Cre breast cancer model does neither change tumor 
growth nor lung metastasis. 
(a) Immunhistochemistry staining of ephrinB2 (brown) in MMTV-Neu tumors. Nuclei were counterstained by 
hematoxylin (blue). The left panel represents the tumor edge towards the stroma whereas the right panel depicts 
the central tumor mass. Scale bars, 100 µm. 
(b) qRT-PCR analysis of RNA isolated from MMTV-Neu-IRES-Cre (NIC) mice, which carry either two floxed 
alleles of Efnb2 (fl/fl) or only one (fl/wt). The y-axis shows ∆ct values that are normalized to Rpl19. 
(c) After 23 weeks tumor-bearing mice with the indicated genotypes were sacrificed and mammary glands 2, 3, 4, 
7, 8, 9 with tumors were weighted. 
(d, e) Lungs of tumor-bearing mice were taken out, sectioned, stained with H&E and metastases were counted and 
scored for their size. The amount of metastases per mouse represented by 3 sections per mouse is shown in panel 
(d) whereas the size distribution is depicted in panel (e). 

 

3.2.4 Discussion 
The ability of cells, to move not only within the tumor but also away from the bulk 

of the primary tumor cells, is a hallmark of EMT and one of the causes of live 

threatening metastatic disease (46). To study the molecular mechanisms underlying 

this gain of motility in cells that have undergone EMT, I have searched for genes 

commonly regulated in different cellular EMT systems and found ephrinB2 

consistently upregulated. EphrinB2’s implication on cell motility has long been 

known but never put in association to the process of EMT (116,117,123-125). 

In the present study, I demonstrated that a reduction of ephrinB2 levels in cells that 

have undergone EMT leads to a decrease in cell migration. This phenomenon was 

validated in two independent EMT model systems. The generality of impairment of 

cell motility was shown, using three different migration assays. This allows 

concluding that the effect of ephrinB2 knockdown holds true for directed cell 

migration towards a gradient or to close a gap, as well as random cell migration. Cell 

migration speed is further reduced by diminished cell repulsion in the case when 

ephrinB2 knockdown cells get in contact with each other. 

The investigated cellular EMT systems express various Eph receptors ephrinB2 

could use to interact with, either on its own cell or coming in contact with another 

cell. Arguing for a reverse signaling effect of ephrinB2 knockdown on cell migration 

is the notion that also single cells show a reduction of motility (cell tracking assay), 

excluding a cell-cell contact dependent Eph-ephrin signaling output in this case. An 

impact of ephrinB2 reverse signaling on cells’ morphology and motility independent 

of Eph-receptor binding has been shown before (115,117). Here, the PDZ binding 

motif plays an important role (116). To elucidate also in our system whether the 

reduction in migration is due to less reverse signaling of ephrinB2 or due to less 
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activation of ephrin’s receptors, further studies would be required. One approach to 

follow up this question would be an attempt to rescue the ephrinB2 knockdown by a 

version of ephrinB2 that lacks its C-terminus. This mutant should only rescue the lack 

of receptor activation but not the reduction in reverse signaling. A similar experiment 

would be the rescue of the knockdown phenotype by addition of clustered 

recombinant ephrinB2 to cells, which would directly activate receptor signaling. 

A connection between focal adhesion turn over, motility and ephrinB2 has been 

made before (117). The authors explained this phenomenon by less focal adhesions in 

general and enlarged ones at the periphery. This defect in FA maturation and with this 

an unstable, undirected migration was further explained by a decreased activation of 

CrkII/CrKL p130 (CAS) by ephrinB2. Also in our mesenchymal cellular systems, I 

found less but bigger FAs especially at the protrusions of cells. In contrast to the 

aforementioned study, where these big FAs were immature and led to unstable 

lamellipodia, I found that enlarged FAs account for an over-stabilization, not allowing 

a cell to retract its rear end. Supporting our hypothesis that over-stabilized FAs lead to 

slower migration is the notion, that a limiting step in migration speed is the force of 

FAs attaching to a substrate and with this their turn-over rate (50). The results of my 

study are descriptive in nature and further quantification would be necessary using a 

more standardized assay. Forcing cells on thin lines as well as a powerful techniques 

like total internal reflection microscopy (TIRF) would allow a better space-resolved 

analysis of FAs. 

Unexpectedly, my loss-of-function studies in two breast cancer models, has not 

shown any effect of ephrinB2 on tumor growth and metastatic seed. Studies in 

patients have revealed for numerous cancer types that ephrinB2 correlates with tumor 

progression (107). On the other hand, studies in murine breast cancer have stated the 

opposite (118). In this study, ephrinB2 expression was lost during breast cancer 

progression, however, overexpression of ephrinB2 had no effect on metastasis. In 

contrast, transgenic expression of a C-terminal deficient ephrinB2 protein 

(∆C-ephrinB2) led to shorter tumor latency and more metastases. These contradictory 

results could be explained by a dominant-negative effect of the ∆C-ephrinB2 version 

blocking specifically reverse signaling. With my Efnb2 knockout analyses in the 

different breast cancer models, I hoped to add another piece of information to this 

puzzle. Unfortunately, the lack of an effect of Efnb2 knockout on metastasis without 
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the important control of whether the excision of the efnb2 gene really happened in the 

mice does not allow excluding an effect of ephrinB2 in breast cancer progression. 

Optimization of the ephrinB2 staining protocol is needed, since further staining 

attempts, apart form the initial ones characterizing the breast cancer models, remained 

unsuccessful. However, comparisons between patients’ expression data that include 

all tumor cell types for analysis and mouse data where the transgene is expressed 

specifically in one type of cell, have to be done carefully. 

Having generated data both agreeing and disagreeing with the literature, one 

always has to keep the immense complexity of Eph-ephrin signaling in mind. The fact 

that the whole system is highly promiscuous and that clustering is of great relevance 

in this pathway, together with the fact that forward, reverse and even 

receptor-independent signaling can take place has to be considered. These facts do not 

allow studying ephrins by focusing only on one factor and neglecting the complexity 

of the system. 

In summary, I am confident to state that ephrinB2 plays a functional role during 

EMT, which is manifested by its effect on cell migration. Most likely, the need of 

ephrinB2 signaling during cell migration lies in its role in focal adhesion 

stabilization and turnover. However, whether this phenomenon of ephrin-modulated 

mesenchymal cell migration is of relevance during tumor progression needs to be 

further investigated. 

 

3.2.5 Material and Methods 

3.2.5.1 Reagents and antibodies 

Antibodies 

N-cadherin (1:2000; Takara, M142), E-cadherin (1:3000; Transduction Labs, 

610182), ephrinB2 (1:500 for WB; 1:10 for IHC; R&D AF496), NCAM (1:2000; 

Sigma-Aldrich, OB11, #9672), pY297FAK (1:1000 for WB and 1:100 for IF; BD 

611806), tubulin (1:6000, Sigma-Aldrich T-9026), tErk (1:10000; Sigma-Aldrich 

M7927), Cdc42 (1:250; active Cdc42 pull-down and detection Kit, Thermos 

scientific, 89857), Rac1 (1:1000, Transduction Lab; R56220), RhoA (1:200; Active 

Rho pull-down and detection Kit, Thermos scientific, 89854), paxillin (1:100; BD 

610052), Alexa-Fluor 488 and 568 (1:200, Molecular Probes), 
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Reagents 

Recombinant human TGFβ1 (R&D #240-B), DAPI (Sigma-Aldrich), phalloidin 

Alexa-Fluor 568 (1:200; Molecular Probes, A12380), hematoxylin (Sigma-Aldrich), 

eosin (Sigma-Aldrich). 

3.2.5.2 Cell lines and cell culture 

Cell lines 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) expressing 

E-cadherin has been described earlier (99). MTflECad cells that were established 

from an MMTV-Neu-fl/fl-ECad mammary gland tumor and in vitro induced to 

undergo EMT by Cre-recombinase-mediated loss of cdh1 (MT∆ECad). Both, 

MTflECad/MT∆ECad and MCF7 shE-cadherin have been described earlier (76).  

Cell culturing 

NMuMG, MTflECad, MT∆ECad and MCF7 cells were cultured in Dulbecco’s 

modified eagle medium (DMEM) supplemented with glutamine (2 nM), penicillin 

(100 U), streptomycin (0.2 mg/l) and 10 % FCS (all from Sigma-Aldrich).  

For high resolution live imaging microscopy DMEM without phenolred was used 

(Sigma-Aldrich D1145). 

Lenti viral infection and plasmids 

cDNA encoding murine ephrinB2 (kindly provided by K. Nobes, Universitiy of 

Bristol, UK) was subcloned into a lentiviral expression vector pLenti-CMV-puro 

(kindly provided by M. Kaeser, University of Bern, Switzerland). The 

pLenty-CMV-puro paxillin-GFP vectors were kindly provided by Olivier Pertz 

(University of Basel, Switzerland). Expression vectors pLKO.1-puro for small 

hairpins were purchased from Sigma-Aldrich (shEfnb2: TRCN0000066494; Mission 

non-target shRNA control vector (shCtr): SHC002). In order to get lentiviral particles, 

a lentiviral expression plasmid was transfected into HEK293T cells together with the 

packaging vector pR8.92 and the envelope encoding plasmids pVSV using FugeneHD 

(Roche). The first day after transfection medium of HEK293T was changed. The 

second day, the virus-containing supernatant was harvested, filtered with a 0.45 µm 

pore filter, supplemented with 8 ng/ml polybrene and added to the target cells. The 

target cells were centrifuged with the viral supernatant for 90 min, 1000 xg, 30 °C, 

followed by 3 hours incubated at 37 °C and 5 % CO2 and then cells were given fresh 



The functional role of ephrinB2 in mesenchymal cell migration RESULTS 

81 

medium. Selection with 1 µg/ml puromycin (Sigma-Aldrich) was started 2 days after 

infection and stopped 3 days later. 

Retroviral infection and plasmids 

Retroviral expression plasmids (pGabe, pChabe (132)) were transfected using 

FugeneHD (Roche) into the retroviral packaging cell line PlatE (Cell Biolabs) (133). 

One day after transfection, medium was changed and retroviral supernatant was 

conditioned for 1 day. Retrovirus-containing supernatant was filtered through a 

0.45 µm pore filter and added together with 8 ng/ml Polybrene to target cells. Target 

cells were centrifuged with the virus for 90 min, 30 °C, 1000 xg and incubated 

for 3 hours at 37 °C, 5 % CO2 before the viral supernatant was exchanged with normal 

growth medium. FACS sorting was used to purify highly GFP or mCherry-positive 

cells.  

siRNA transfection 

siRNAs against ephrinB2 were purchased from Invitrogen (Stealth RNAi; #1: 

EFNB2MSS203804; #2: EFNB2MSS203805; #3: EFNB2MSS203806) and as a 

control the stealth siRNA negative universal control medium from Invitrogen 

was used (45-2001). For knockdown experiments 5 nM siRNA were reversely 

transfected into cells using LipofectAMINE RNAiMAX (Invitrogen) according to 

manufacture’s instruction. 

3.2.5.3 Migration assays 

Transwell migration assay 

Cells were trypsinized, washed in PBS and resuspended in medium containing 

2 % FBS instead of the normal 10 %. After counting the cells and diluting them in 

the 2 % FBS containing medium, a cell suspension with the concentration of 

1.5x 105/ml was prepared. 8 µm pore Boyden chambers (Falcon BD, Franklin Lakes, 

NJ) were put into a 24-well plate with 600 µl of medium containing 20 % FBS. 100 µl 

of the cells suspension was administered to the upper compartment. NMuMG/lt cells 

had all media supplemented with TGFβ. 16 hours after incubation at 37 °C and 

5 % CO2 the chambers were washed once with PBS and then fixed with 4 % 

Paraformaldehyde (PFA) for 15 min at room temperature. After washing the inserts 

again, cells on the upper part of the chamber were scratched away with a cotton stick. 

The remaining cells that had migrated through the pores on the lower side of the 
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inserts’ membrane were stained for 5 minutes with 0.5 µg/ml DAPI, washed again 

and then kept in PBS. To analyze the amount of migrated cells, Boyden chamber 

inserts were put on a slide and pictures were taken with a 10x objective. ImageJ 

software was used to quantify migrated cells. 

Scratch wound assay 

Cells were seeded on 24-well image lock plates (Essen Bioscience) and grown to a 

confluent monolayer. One scratch through the center of the well was applied with a 

10 µl pipette tip using the scratch device from Essen Bioscience. The gap closure was 

monitored by sequential pictures taken every 30 minutes with the IncuCyte (Essen 

Bioscience). The initial gap was set to 0 % wound confluency and the IncuCyte 

software was used to calculate the gap confluency of each picture taken. 

Tracking assay 

Cells were seeded on 18 mm cover slips and stained with 3.3 µg/ml Hoechst 

(33342 Invitrogen) in full medium for 30 min, 37 °C, 5 % CO2. After staining, cells 

were washed 5 times with medium and then put into a Ludin chamber (Life Imaging 

Services) filled with full medium. DIC and blue-fluorescent images of the cells were 

taken every 12 minutes with a 10x objective by a Leica DMI 6000 live imaging 

microscope by 37 °C within a Ludin box (Life Imaging services). Cell movements 

were measured by tracking the Hoechst-stained nuclei throughout the movie using 

MetaMorph software. Cell viability was monitored by DIC images. 

Repulsion assay 

GFP or mCherry-expressing MT∆ECad cells were trypsinized, counted, mixed 

with equal numbers in a reaction tube and plated on 18 mm cover slips. After 

overnight incubation by 37°C, 5 % CO2, cover slips were transferred into Ludin 

chambers and cells were imaged for 16 hours, taking a red, green and DIC picture 

every 12 minutes. The time of cell adhesion was quantified by analyzing the movies. 

Line assay 

In order to produce a 10 µm thin line pattern, tissue culture plates (µ-Dish35mm, high, 

obliterate, ibidi 88156) were treated with plasma for 5 seconds, 100 % power in a 

plasma cleaner (Femto Science, model: CUTE-MP). To make the dish anti-adhesive, 

the surface was covered with 0.5 mg/ml PLL-PEG (SUSOS, Zürich) for 30 min at 

room temperature (RT), the dish was washed with 0.22 µm filtered ddH2O, dried and 
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a PDMS line pattern was applied on the dish (kindly provided by K. Martin, group 

Pertz, University of Basel). To burn away the PLL-PEG on the unprotected culture 

dish surface, the plate was plasma treated for 2 min, 100 % power. The PDMS line 

pattern was removed and lines were coated with 0.02 % poly-L-lysine for 1 h at RT. 

The culture dish was washed with water, dried and silicone culture-inserta (ibidi, 

80209) were placed into it. Cells were plated into these inserts, incubated over night at 

37 °C, 5 % CO2. Imaging of cells on lines was performed by 37 °C in a Nikon Ti-E 

live imaging microscope. This assay was done in collaboration with O. Pertz’ group, 

University of Basel. 

3.2.5.4 Quantitative RT-PCR 

To evaluate transcripts relative expression levels, RNA was isolated using 

TriReagent (Sigma-Aldrich) following the protocol, reverse transcribed with MMLV 

reverse transcriptase (Promega, Wallisellen, Switzerland), and cDNA was quantified 

by quatitative PCR (qPCR) (Step One Plus, Applied Biosystems) using Mesa Green 

qPCR MasterMix plus (Eurogentec). Rpl19 was always used for normalization (∆Ct). 

Results are represented as fold change of the normalized ∆∆Ct or as ∆Ct-values. To 

determine mRNA expression levels, the following qPCR primers have been used: 
 

mRNA: Forward primer (5’-3’): Reverse primer (5’-3’): 

Rpl19 ctcgttgccggaaaaaca tcatccaggtcaccttctca 

ephrinB2 tctttggagggcctggat ccagcagaacttgcatcttg 

EphB2 tggactctacgacagcaacg gtcgtagccgctcacctct 

EphB3 ccactcaagctctactgcaatg gctttgtaactcccaggagga 

EphB4 actgggacatgagcaacca tctgccaacagtccagcat 

EphA4 aggtgtctgactttggcatgt cagtccaccggataggaatc 

 

3.2.5.5 Immunoblotting 

Protein extracts were obtained by lysing cells with RIPAplus buffer (150 mM 

NaCl, 2 mM MgCl, 2 mM CaCl2, 0.5 % NaDOC, 1 % NP40, 0.1 % SDS, 10 % 

Glycerol, 50 mM Tris pH 8.0, 2 mM Na3VO4, 10 mM NaF, 1 mM DTT, and a 1:200 

dilution of stock protease inhibitor cocktail for mammalian cells (Roche)) directly on 

the culturing dish after having washed them with ice cold PBS. Lysing cells were 
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transferred to a reaction tube and lysis could happen for 30 min on ice. Lysates were 

spined down and protein concentrations in cleared lysates were measured by DC 

Protein Assay (BioRad Laboratories). Equal amounts of protein were diluted in 

SDS-PAGE loading buffer (10 % glycerol, 2 % SDS, 65 mM Tris, 1 mg/100 ml 

Bromphenolblue, 1 % betamercaptoethanol) and resolved by SDS poly acrylamide gel 

electrophoresis (SDS-PAGE). Resolved proteins were transferred to polyvinylidene 

fluoride (PVDF) membranes (Millipore) by tank blotting, blocked with 5 % skim 

milk powder in Tris-buffered saline with 0.05 % Tween 20 (TBST) and incubated 

with the indicated antibodies. HRP conjugated antibodies were detected using 

enhanced chemiluminescence. 

3.2.5.6 Immunofluorescence 

Cells grown on cover slips were once washed with PBS and fixed for 15 min, RT 

with 4 % PFA. Cover slips were washed 3 times with PBS and permeabilized for 

5 min in 0.5 % Nonidet P40 (Fluka) in PBS. Cells were blocked for 30 min in 3 % 

bovine serum albumine (BSA, Sigma-Aldrich) in PBS containing 0.01 % 

Triton-X-100 (Fluka Analytical) (PBS-T). After 3 washes with PBS-T, 1st antibodies, 

diluted in blocking solution, were incubated for 1.5 h at RT on the cover slips. After 2 

washings with PBS-T, cells were incubated with 0.5 µg/ml DAPI in PBS-T for 10 

min, washed again 2 times with PBS-T and then mounted with fluorescent mounting 

medium (Dako, S3023). Confocal imaged were taken with the confocal, Zeiss LSM 

510 Meta microscope. Epi-fluorescent pictures were obtained with the Leica DMI 

4000 microscope. 

In order to evaluate the length of a cell, cells were plated on 10 µm lines as 

described above, fixed, stained with phalloidin Alexa 568 and imaged with the scan 

slide tool of MetaMorph software. MetaMorph software was further used to quantify 

the lengths of cells imaged. 

3.2.5.7 Immunhistochemistry 

For immunhistochemistry of ephrin-B2 the PerkinElmer TSA amplification was 

used following its instructions. 

3.2.5.8 Mice 

MMTV-PyMT (129), MMTV-Neu (11), MMTV-Cre (130), MMTV-Neu-IRES-

Cre (both kindly provided by W. J. Muller, McGill University, Canada) (131) and 
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Efnb2 floxed mice (kindly provided by R. Adams, MPI Münster, Germany) (120) 

were all bred within FVB/N background. 

For genotyping of mice the following primers were used:  
 

mRNA: Forward primer (5’-3’): Reverse primer (5’-3’): 

MMTV-PyMT cggcggagcgaggaactgaggagag tcagaagactcggcagtcttaggcg 

Efnb2 floxed alleles cttcagcaatatacacaggatg tgcttgattgaaacgaagcccga 

MMTV-NIC cggtcgatgcaacgagtgatgagg ccagagacggaaatccatcgctcg 

MMTV-Neu ggaagtacccggatgaggagggcatatg ccgggcagccaggtccctgtgtacaagccg 
 

3.2.5.9 Statistics 

Statistical analysis and graphs were generated with the help of GraphPad Prism 

software (GraphPad Sofware Inc, San Diego, CA) using paired, two-sided t-tests with 

* p < 0.05 ** p < 0.01 and *** p < 0.001. 
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3.3 The two faces of TGFβ: tumor suppressor and 

metastasis promoter 
— review manuscript — 

 

The transforming growth factor beta (TGFβ) is a famous cytokine mostly studied 

in development and cancer. Its canonical signaling has been described many years 

ago, but other factors feeding in and additional non-canonical pathways are being 

more and more explored and complicate the picture of TGFβ’s action. The dual role 

of TGFβ signaling, being lost in a variety of human cancers as a tumor suppressor yet 

on the other hand being able to promote tumor progression and metastasis, is 

controversially discussed. In this review, we describe the current state of research on 

TGFβ signaling combined with data of in vivo studies in mice and man. We 

explicitly stress controversial data in order to provide insights into the complexity of 

TGFβ signaling. 

3.3.1  The modes of action of TGFβ signaling  

3.3.1.1 Canonical TGFβ signaling 

The most studied signaling cascade stimulated by TGFβ is the canonical TGFβ 

pathway using Smad proteins as signal transducers. The cytokine TGFβ binds to 

TGFβ receptor II (TGFβRII) which, upon interaction, hetero-tetramerizes with 

TGFβ receptor I (TGFβRI). The TGFβRIII can present TGFβ to the TGFβRII 

beforehand, thereby further facilitating ligand-receptor interaction. Ligand-bound 

TGFβRII acts as serine/threonine kinase that phosphorylates its partner TGFβRI. 

TGFβRI, a serine/threonine kinase as well, recruits the receptor Smads (R-Smads), 

Smad2 and Smad3, and phosphorylates them at their C-terminus. The phosphorylated 

complex of Smad2/3 binds Smad4, the common Smad, and together they translocate 

into the nucleus. In the nucleus, Smad2/3/4 can either transactivate or repress target 

gene expression. Only Smad3 and Smad4 directly bind to a specific DNA motif, the 

Smad binding element (SBE) (Fig. 21a). Because Smads alone are poor DNA binders, 

other transcriptional co-activators or co-repressors are needed for effective 

transcriptional regulation (134). 
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3.3.1.2 Non-canonical TGFβ signaling 

The ligand-bound TGFβR complex activates not only the canonical Smad pathway 

but also several other non-canonical ones (135). TGFβR-complexes can stimulate 

c-Jun N-terminal kinase (JNK) signaling via map kinase kinase 4 (MKK4) which for 

instance, induces the expression of the extracellular matrix protein fibronectin and 

thereby is important for cell migration (136). 

The mitogen activated protein kinase (MAPK) p38 is another non-canonical target 

of TGFβ  signaling. p38 is induced after association of αvβ3-integrin, bridged by the 

focal adhesion kinase (FAK), with TGFβRII. Upon this interaction, Src 

phosphorylates TGFβRII on Tyr284. The created phospho-tyrosine site at the receptor 

can be bound by the adapter protein Grb2 which further downstream leads to an 

enhanced p38 activity (137-139). A different way to induce p38 and JNK signaling by 

TGFβ is the interaction of TGFβRI with TRAF6, which activates TGFβ activated 

kinase (TAK1) leading ultimately to p38 and JNK activation (140). The importance of 

p38 as a TGFβ output was shown in normal mammary gland cells. Here, the 

activation of p38 by a mutant TGFβRI that cannot activate Smads is sufficient to 

induce apoptosis. Furthermore, the activation of p38 is required for epithelial to 

mesenchymal transition (EMT) but not for arresting cells in the cell cycle (141). JNK 

and p38 can increase canonical TGFβ signaling by phosphorylating Smad3 in its 

linker region, which enhances its signaling activity (142,143). 

Another non-canonical branch of TGFβ signaling leads to cell growth via PI3K, 

PKB, mTor and S6 kinase (S6K) (144). Additionally, TGFβ can affect S6K by the 

activation of the phosphatase PP2A, which dephosphorylates and thereby inactivates 

p70S6K leading to a cell cycle arrest in G1 (145). 

To make TGFβ signaling even more complex, Lee et al. have reported that 

TGFβRI cannot only act as a serine/threonin kinase but also as a tyrosine kinase. 

Thus, the TGFβR complex can phosphorylate ShcA on a serine and a tyrosine residue 

which further downstream leads to an activation of the extracellular-signal regulated 

kinase (Erk) thereby mimicking signaling of receptor tyrosine kinases (RTKs) (146). 

Apart from the classical cell survival, apoptosis and proliferation pathways 

discussed below, TGFβ has an impact on cell shape. Major changes in cell 

morphology are initiated by TGFβ. TGFβ phosphorylates the polarity complex 

protein Par6, which in turn recruits the ubiquitin ligase Smurf1 that targets the 
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GTPase RhoA for proteasomal degradation leading to tight junctions breakdown 

(147). On the other hand, ΤGFβ can activate RhoA and thereby its effector ROCK, 

inducing stress fibers, EMT and cell cycle arrest (148) (Fig. 21b). 

The non-canonical signaling branches modulated by TGFβ have emerged to be of 

great relevance. Clearly, TGFβ-induced signaling is more complex than the single 

Smad pathway because it involves many non-canonical signaling branches as well. 

3.3.1.3 Fine tuning of TGFβ signaling and negative feedback loops 

To modulate TGFβ signaling the different players of the pathway can be positively 

or negatively modified. The inhibitory Smad7 is a direct target of TGFβ signaling and 

acts in a negative feedback mechanism on the TGFβR complex (149). Smad7 binds to 

and re-localizes Smad ubiquitin regulatory factors, Smurf1 and Smurf2, from the 

nucleus to TGFβRs. Smurfs are E3-ubiquitin ligases and their interaction leads to 

ubiquitination of TGFβRI and ultimately to its proteasomal degradation (150,151). In 

addition to the recruitment of ubiquitin ligases, Smad7 accompanies phosphatases to 

the TGFβR complex reverting their activation (152). Inhibiting the canonical pathway 

only, Smad7 competes with receptor Smads for binding to TGFβRI, thereby 

antagonizing signal transduction (153). 

Another way to tune TGFβ signaling in a negative feedback loop is by 

transcriptionally repressing TGFβRII expression. The transcription factor Dlx2 is 

upregulated by canonical TGFβ signaling and directly represses the expression of 

TGFβRII (154). 

The TGFβR complex is not only regulated negatively but also positively. 

Sumoylation of TGFβRI in an active TGFβR-complex increases its ability to recruit 

and phosphorylate Smad3 thereby enhancing Smad signaling (155). Activated TGFβ 

receptors are constitutively internalized. Endocytosis can lead to degradation of the 

TGFβR complex. However, when the receptors are internalized in clathrin-coated 

pits, SARA (Smad anchor for receptor activation) presents Smad2 to the receptors, 

thereby facilitating pathway activation. (156,157). 

In addition to TGFβ receptors, Smads are an entity that can also be regulated in a 

variety of ways. The first step of TGFβ pathway activation, the recruitment of the 

R-Smads to the activated receptors, is facilitated by the interaction with SARA, 

cytoplasmic PML and Elf (157-159). Later on, the subsequent accumulation of active 
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Smad2/3/4 complexes in the nucleus depends on Taz (WWTR1), which binds and 

links it to the transcription machinery (160). 

Apart from the localization of Smads, R-Smads can be covalently modified in 

various ways. Linking integrin signaling to TGFβ function, the adaptor protein 

p130Cas is phosphorylated upon adhesion or growth factor stimulation. 

Phosphorylated p130Cas binds to Smad3 and inhibits its phosphorylation and thereby 

its activity (161). The phosphatase PPM1A can remove the phosphorylation of 

R-Smads gained by the active TGFβRI. This leads to shuttling R-Smads out of the 

nucleus and reverts their activation (162). PPM1A can dephosphorylate RanBP3, a 

component of the nuclear export machinery. As a consequence, Smads are excluded 

from the nuclei in a higher efficiency, which further decreases their activity (163). 

Smad4, on the other hand, is modified by monoubiquitination. Ubiquitination of 

Smad4 by Tif1γ prevents its binding to p-Smad2. This effect is opposed by the 

de-ubiquitinase FAM. Monoubiquitination of Smad4, regulating its binding ability to 

R-Smads, makes this modification the equivalent to phospho-modifications of the 

R-Smads (164). 

Protein stability is yet another issue not only important for the TGFβ receptors but 

also for R-Smads. GSK3β phosphorylates inactivated Smad3, marking it for 

ubiquitination and further degradation. Thereby, Smad3 levels can become a limiting 

factor in canonical TGFβ signaling (165). 

As exemplified by the different modifications on all TGFβ pathway components, 

TGFβ signaling can be influenced in various ways. For example, interfering with the 

stability, localization and availability of TGFβ receptors, R-Smads and Smad4, can 

modulate the TGFβ signaling strength. 

3.3.2 The main outcome of TGFβ signaling 

3.3.2.1 TGFβ induces cytostasis and differentiation 

The main effect of TGFβ signaling, using the canonical Smad pathway, is to arrest 

cells in the G1-phase of the cell cycle (166). In order to do so, Smad3/4 uses the 

co-transcription factors E2F4/5 and C/EBPβ to repress the expression of the potent 

mitogenic transcription factor c-Myc (167,168). c-Myc function can additionally be 

indirectly repressed by TGFβ. Smad2/3, in certain cell types even without Smad4 
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binding, interacts with the inhibitory kappa kinase alpha (IKKα) and together induces 

the c-Myc antagonists Mad1, Mad2 and Ovol1 (169). 

TGFβ signaling not only represses mitogenic factors such as c-Myc, but also 

induces the expression of cell cycle inhibitors. The most prominent ones are the 

cyclin-dependent kinase inhibitor genes CDKN1A and CDKN2B, which are 

transactivated by Smad complexes, using FoxO as co-transcription factor (170,171). 

Additionally, TGFβ can interfere with the recruitment of c-Myc to the CDKN2B 

promoter via Miz1 and thereby de-represses the expression of this cell cycle inhibitor 

(172). Smad transcription complexes directly activate another member of the cell 

cycle inhibitors of the Ink4 locus, i.e. p19Arf, yet its expression can additionally be 

dependent on p38 activity shown in MEFs and in vivo during mouse development. 

This stimulation is ancillary to p19Arf’s prominent role as an oncogene sensor (173). 

The classical Smad4 target gene plasminogen activator inhibitor 1 (PAI-1) is 

reported to be critical for TGFβ-induced cell cycle arrest in several cell types. The 

authors speculate that PAI-1’s cytostatic activity is achieved by attenuating 

PI3K/PKB signaling (174). More globally, TGFβ signaling can decrease translation 

by increasing directly the expression of 4E-BP1, which sequesters the eukaryotic 

translation initiation factor-4F ultimately leading to G1 arrest (175). 

To force cells not only into cell cycle arrest but also into differentiation, Smads 

directly repress the inhibitors of differentiation (Id1-3) (176,177). 

Taken together TGFβ can provoke a G1-arrest by directly increasing the amount of 

cell cycle inhibitory proteins like p15, p21 and 4E-BP1 as well as by repressing 

mitogenic factors like c-Myc and Ids (Fig. 21c). 

3.3.2.2 TGFβ induces apoptosis 

TGFβ-activated signaling has many means by which it can force a cell into 

apoptosis (178). The canonical TGFβ pathway can directly influence the apoptotic 

machinery by upregulating the pro-apoptotic protein Bim (179) and DAPK, an 

inducer of the mitochondrial based apoptosis (180). Another target of canonical TGFβ 

signaling that propagates apoptosis is the inositol phosphatase SHIP. SHIP alters the 

intracellular pool of phospholipids and inhibits the survival factor PKB, thereby 

favoring cell death over survival (181).  

Further prominent inducers of apoptosis are the stress kinases p38 and JNK (182). 

MAP-kinase p38 is not only a non-canonical target of TGFβ signaling, but is also 
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induced via up-regulation of the stress-inducible protein Gadd45b by Smads (183). 

Interestingly, p38 can phosphorylate and thereby stabilize p53, which can then initiate 

its pro-apoptotic transcriptional program. This interaction is supported by Smad7’s 

function as a scaffold for both proteins (184). TGFβRII binds to DAXX, a Fas-

associated protein, which activates JNK, thus another way to induce apoptosis (185). 

Furthermore, activation of the apoptosis-related protein in the TGFβ signaling 

pathway (ARTS), which activates caspase 3, is crucial for TGFβ-induced apoptosis in 

several cell types and can even restore the ability of TGFβ to induce apoptosis in 

normally TGFβ-insensitive cell lines (186) (Fig. 21d). 

TGFβ can not only induce apoptosis but also inhibit it. It has been shown that 

in starved cells TGFβ can protect cells against apoptosis by phosphorylating Jun and 

inhibiting JNK (187). Another way to rescue cells from apoptosis is TGFβ’s ability 

to induce EGFR signaling, thereby, shifting the balance from apoptosis to 

survival (154,188). 

3.3.2.3 TGFβ induces Epithelial to Mesenchymal Transition (EMT) 

EMT is a process that occurs physiologically during embryonic development and 

wound healing as well as in malignant cells in order to invade foreign tissue (189). A 

main inducer of EMT is TGFβ. Active Ras can further enhance this effect (190). 

Yang et al have shown in hepatocytes that the decision whether TGFβ induces 

apoptosis or EMT is made by the cell cycle state. Cells that are in G1/S-phase readily 

undergo EMT upon TGFβ stimulation whereas cells in G2/M-phase respond to TGFβ 

mostly with apoptosis (191). The induction of EMT is not only dependent on 

canonical TGFβ signaling but also on TGFβ’s ability to induce p38 via the non-

canonical route (141). 

Loss of cell adhesion and polarity is a hallmark of EMT both induced by TGFβ. 

TGFβ leads to a loss of tight junctions by degrading RhoA in a non-canonical 

fashion as mentioned above. The loss of adherens junctions is mainly accomplished 

by transcriptional repression of the classical epithelial protein E-cadherin. The 

transcriptional repressor Snail is a direct target of canonical TGFβ signaling, 

which together with Smad3/4 represses CDH1 gene expression, thereby inducing 

EMT (147,192). 

TGFβ signaling is not only important for the induction of EMT but also for 

sustained EMT. In MCF10A breast cancer cells the DNA methyltransferase DNMT1 
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methylates the epithelial genes CDH1, CGN, CLDN4 and KLK10 upon which their 

expression is silenced in the cells that have undergone EMT. Withdrawal of TGFβ in 

mesenchymal cells reverts their EMT phenotype, accompanied by a loss of the 

methylation marks on the aforementioned genes (193) (Fig. 21e). 

 

 

Figure 21: An overview of canonical and non-canonical TGFβ signaling and the main outcomes. 
(a) Upon binding to its receptors, TGFβ induces canonical Smad signaling. Smad complexes induce and repress 
transcription of target genes. 
(b) TGFβ signaling additionally activates non-canonical pathways. 
(c-e) The main outputs of TGFβ signaling are cytostasis (c), apoptosis (d) and EMT (e) but also proliferation and 
survival signaling can be stimulated. Here, the different genes activated or repressed by TGFβ signaling are 
depicted. The colors used for the pathway components reflect the colors of their main output. 
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3.3.3 What goes wrong with TGFβ signaling in cancer 

3.3.3.1 Mutations 

Loss-of-function mutations of TGFβ pathway components can be found in a lot of 

human cancers like colon, pancreas, head and neck, ovarian and gastric cancer and 

could be recapitulated by genetically engineered mice. Remarkably, other cancer 

types like breast, prostate, glioma, melanoma and hematopoietic cancer only seem to 

lose the tumor suppressive parts of the TGFβ pathway selectively and keep its tumor 

promotive function untouched (194,195). 

TGFβ receptors 

Loss-of-function mutations in the TGFβRII gene are often found in colon cancer 

with microsatellite instability. The TGFβRII gene has a poly-adenine repeat sequence, 

which is a hot spot for mutations when the cellular DNA repair mechanisms are 

impaired (196). The same mutations have been reported in replication error-positive 

glioma and gastric cancer (197,198). To prove the relevance of loss of TGFβRII in 

cancer, a genetic deletion of TGFβRII has been analyzed in mice. Conditional 

deletion of TGFβRII in the colon epithelium has revealed no significant histological 

changes. However, in combination with an oncogenic stimulus, loss of TGFβRII 

became overt by a more rapid onset and an increased number of neoplasms (199) as 

well as a higher grade of malignancy (200). Similar results have been found in murine 

models for pancreas cancer (201), head-and-neck squamous cell carcinoma (202), 

breast (203) and skin cancer (204). 

The TGFβRI gene was found in human colorectal cancer to be either mutated 

(TβR-I(6A)) or germline allele-specific expressed which both leads to a decrease in 

function and, thereby, to a weakening of TGFβ signaling (205,206). Other point 

mutations or a loss of the TGFβRI gene have been found only rarely in some studies 

(194). A reduction in TGFβRI expression can be readily observed in gastric cancer 

where the TGFβRI locus is silenced by methylation (207). In order to mimic the 

decrease of TGFβ signaling, mice with a heterozygous deletion of TGFβRI have been 

generated. Deletion of one TGFβRI allele led to faster development and growth of 

tumors in a colorectal cancer model. Remarkably, the tumors kept the second allele 

of the TGFβRI gene, being still able to use TGFβ signaling but in a down-tuned 

manner (208). 
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The TGFβRIII’s function is to present TGFβ to the TGFβRII increasing the 

probability of receptor complex formation. In renal cell carcinoma, TGFβRIII 

has been found mutated early in carcinogenesis, whereas a second hit in the 

TGFβRII gene was monitored later during malignant progression (209). Also in non-

small cell lung cancer TGFβRIII was found mutated and the loss of TGFβRIII 

expression correlated with disease progression (210). Epigenetic silencing of 

TGFβRIII linked to advanced cancer progression has been described in ovarian and 

prostate cancer (211,212). 

Summing up, all three TGFβRs can be found mutated in human cancer. Whereas 

the TGFβRII is the most commonly lost receptor, TGFβRI and TGFβRIII rather lose 

the functionality of one allele. Also the frequency of mutations in cancer is higher for 

TGFβRII than for the other two receptors. 

Smads 

Apart from mutations in the TGFβ receptors, which mostly block the whole TGFβ 

signaling, the canonical pathway components, the Smads, are found mutated in human 

cancers as well. So far, only one group has been able to report a loss of Smad3 

expression in gastric cancer (213). Also for the other receptor Smad, Smad2, 

mutations are only rarely found (214-216).  

The most prominent Smad, to be lost or mutated in several cancers and even called 

a tumor suppressor, is DPC4 (217). Mutated versions of Smad4 proteins are usually 

unable to bind to R-Smads and thereby unable to carry out TGFβ-induced signaling 

(218). The role of Smad4 as a tumor suppressor has been validated in a conditional 

mouse model where Dpc4 is deleted in the breast. Here, the sole loss of DPC4 could 

induce hyperplasia and trans-differentiation of the mammary epithelium into 

squamous cell carcinoma accompanied by β-catenin stabilization (219). In 

combination with an additional oncogenic driver mutation Dpc4 knockout mice are 

giving rise to more aggressive tumors than the oncogenic mutations alone (220). 

3.3.4 From tumor suppressor to tumor promoter 

3.3.4.1 TGFβ signaling: tumor suppressor and metastasis inducer  

Dysregulation of the TGFβ pathway in humans, genetically recapitulated in mice, 

shows a higher risk for cancer in various organs hinting to a tumor suppressive role of 

TGFβ. Controversially, overactivation of the pathway seems to have a bad outcome as 
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well. Several studies where TGFβ is overexpressed in a tumorigenic setting 

complement the aforementioned tumor suppressive role of the pathway. However, 

progressing tumors, that have overcome the tumor suppressive function of TGFβ, are 

more invasive and more metastatic, eventually accompanied by an EMT phenotype 

(221,222). Along this line, in experimental metastasis models in mice TGFβRI kinase 

inhibitors could reduce the number and size of metastases (223). The same is true 

when different TGFβ inhibitors were administered to tumor bearing mice (224-226). 

These examples hint to TGFβ being an early tumor suppressor but later during tumor 

progression a metastasis inducer. 

Arguing against the role of TGFβ as a tumor suppressor are findings that loss of 

function mutations arise rather late during tumor progression (227-229). Having said 

that, it is most likely that other factors in the tumor influence the outcome of TGFβ 

signaling and thereby favor or select against genetic alterations in the TGFβ pathway. 

In most of the cases TGFβ seem to be a tumor suppressor but when this function is 

overcome, TGFβ increases the malignancy of cancer. 

3.3.4.2 TGFβ stands for poor prognosis 

That TGFβ does not only arrest cells in G1 or induces apoptosis is indicated by the 

observation that high TGFβ plasma levels in patients with cancer are predictive for a 

poor prognosis, especially after surgery (194). An additional indication for a poor 

prognosis is that TGFβ levels are increased in tumors that have metastasized 

compared to the ones that have not (230). A high deposition of TGFβ in cancer cells 

and in the surrounding extracellular matrix has been found at tumor fronts and in 

lymph node metastases of breast cancer patients (231). This has an effect on tumor 

development what has been shown in a mouse model overexpressing TGFβ1 in 

keratinocytes. These cells give rise to less tumors when challenged with carcinogenes 

but tumors that do arise are much more aggressive (221). 

How do the notions that TGFβRII and DPC4 are tumor suppressor genes and that 

high levels of TGFβ correlate with poor prognosis fit together?  

3.3.4.3 Transcription cofactors conduct the output 

Smad complexes are very poor transactivators, so they need additional 

transcription cofactors to enhance their ability to induce transcription. That is why the 

availability and activity of transcription cofactors plays a major role on the output of 

canonical TGFβ signaling. The transcription cofactors not only decide about the 
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strength of transactivation but also about the genes to be targeted. Loss of 

transcription cofactors can down-modulate the tumor suppressive arm of TGFβ 

signaling, leaving the non-canonical pathway untouched (195). In the following 

section, transcription cofactors found underrepresented or overrepresented in human 

cancers will be addressed. 

Runx3 normally binds to and helps Smad2/3 complexes to induce cell cycle arrest 

and apoptosis. Upon loss or mutation of RUNX3, which is often found in gastric 

cancer, TGFβ cannot fulfill its tumor suppressive role anymore (232). TSC2 is 

another tumor suppressor that binds to Smad2/3 and is important for TGFβ’s ability to 

transcriptionally increase p21 and p27 levels in order to halt cells in G1-phase (233). 

Overrepresented in human gastric cancers are the two similar DNA-binding proteins 

Ski and SnoN which are able to interfere with Smad signaling by disrupting the Smad 

complex and recruiting transcriptional repressor complexes to target genes. Normally, 

TGFβ signaling itself can oppose this interference by helping the ubiquitin ligase 

Arcadia to target Ski and SnoN, leading to their degradation. In several cancer types 

Arcadia has been found downregulated, allowing SnoN to accumulate and repress 

canonical signaling by substituting Smad2/3 as partners for Smad4 (234,235). 

Another way to disturb Smad signaling is by an isoform change of C/EBPβ to its 

inhibitory version LIP. C/EBPβ is a transcriptional modulator that is required for 

Smad/FoxO complexes to activate transcription of the cell cycle inhibitor p15. It is 

also essential for Smad/E2F4/5 complexes to repress c-Myc expression. Both of this 

is critical for TGFβ’s ability to arrest cells in the cell cycle. In metastatic breast cancer 

this action of TGFβ is selectively lost, most likely due to the expression of the 

c/EBPβ inhibitory form LIP (168). 

Supporting TGFβ’s tumor-promotive function, IKKα can bind to Smad3, 

facilitating Smad complex formation on promoters of the EMT-inducer like Snail and 

Slug and provoking tumor progression (236). 

3.3.4.4 Shift from canonical to non-canonical signaling 

Some TGFβR mutations affect only a branch of TGFβ signaling, so that TGFβRs 

are still able to activate non-canonical signaling pathways. 

As mentioned above, p130Cas is able to inhibit TGFβR-mediated Smad2/3 

phosphorylation. p130Cas, which is often upregulated in breast cancer, shifts the 

TGFβ signaling from the canonical, rather tumor suppressive pathway, to the 
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non-canonical pathway (237). One of the strongest oncogenes, Ras, is able to induce 

phosphorylation of Smad2 and Smad3 via Erk, leading to their cytoplasmic retention, 

which makes them unavailable for TGFβ-induced canonical signaling. In normal 

epithelial cells, this inhibition of TGFβ signaling by Ras is just one way of fine-tuning 

the pathway. However, in cells that express oncogenic Ras or have a hyperactivated 

EGFR signaling, TGFβ-induced apoptosis is overridden by sequestration of the 

Smads (238). In a similar manner, the oncoprotein Raf is capable to induce TGFβ 

secretion, thereby synergizing with TGFβ to induce EMT. Here, TGFβ-mediated cell 

cycle arrest induction, could be transiently monitored, whereas the induction of 

apoptosis was inhibited. In this case, the selective action towards an EMT and not 

towards apoptosis was not due to inhibition of canonical TGFβ pathway, but rather to 

a general effect of the overstimulation of the MAPK pathway (239). Many researchers 

use cellular systems that are transformed by Ras or EGFR so that cells tolerate TGFβ 

treatment without having to deal with the apoptotic branch of TGFβ signaling of 

non-transformed cells. Acting on Smad4 to inhibit canonical TGFβ signaling, the 

transcription factor Dlx4 is able to sequester Smad4 from the R-Smads. Dlx4 is found 

upregulated in a number of cancers what could reflect its ability to specifically 

interfere with canonical TGFβ signaling, leaving the non-canonical untouched (240). 

It has been described that TGFβ can even promote the expression of c-Myc in 

cancer, completely changing TGFβ’s tumor suppressive function. This is achieved by 

inducing the expression of NFAT transcription factors in a calcineurin-dependent 

way. NFAT can replace the repressive canonical Smad3 complex on the c-Myc 

promoter leading to an upregulation of c-Myc and ultimately to cancer cell 

proliferation. This growth-promoting effect of TGFβ in cancer cells is specific for 

c-Myc expression (241). Summing up, c-Myc regulation by TGFβ seems to be a 

central event leading either to cytostasis or to cell proliferation. The outcome is 

depending on the contribution of other factors: the strength of the canonical signaling 

over the non-canonical effects of TGFβ  and on the overall survival (e.g. Ras, EGFR) 

over apoptotic signals in cells. 

3.3.4.5 Specific inhibition of tumor suppressive actions of TGFβ 

In tumors where no TGFβ signaling components are mutated, the cytostatic and 

apoptotic functions of TGFβ have to be inhibited in another way. In this section, 
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several mechanisms on how cells can evade the constraints by TGFβ will  

be highlighted. 

A strong pro-survival and proliferation signal is mediated via the PI3K/PKB 

pathway. Yet, it is not only the pathway alone that leads to cell survival but also its 

interaction with the TGFβ pathway. PKB is able to bind and sequester not yet 

activated Smad3 out of the nucleus without using its kinase activity. Therefore, 

Smad3 is not available for signaling and for the induction of apoptosis. The ratio 

between Smad3 and PKB seems to be important for the sensitivity of cells to 

TGFβ-induced apoptosis (242).  

Investigations of Smad2 and Smad have revealed their distinct roles. The adaptor 

protein DAB2 has been shown to specifically interfere with Smad2 phosphorylation 

leaving Smad3 unchanged. DAB2 is frequently epigenetically silenced in squamous 

cell carcinomas, which correlates with a poor patient prognosis. Thus, the loss of 

DAB2 leads to a de-repression of Smad2, upon which cancer cells have been 

described to become more motile and invasive without activating the tumor 

suppressive arm of TGFβ (243). Having described this phenomenon, it seems 

contradictory that a Smad3 knockout in keratinocytes leads to resistance to 

chemically-induced carcinogenesis, whereas loss of Smad2 had the contrary effect 

accompanied by cells undergoing EMT (244). Furthermore, in a breast cancer cell line 

a Smad3 knockdown has led expectedly to less Smad3-induced transcription, but the 

opposite is true for cells with a Smad2 knockdown. These differential roles of the 

R-Smads have been further underlined in a transplantation model. Here, Smad3 

knockdown cells were less metastatic than their parental cell line, whereas Smad2 

knockdown cells were even more metastatic (245). The existence of specific target 

genes for both Smads has been shown by selectively knocking them down, and also 

here only Smad3 seems to be necessary for TGFβ-induced cell cycle arrest (246). All 

in all, the normally described canonical TGFβ pathway seems to be oversimplified 

and further investigation of its modulators needs to be performed. 

In contrast to the aforementioned non-canonical inhibition of NFκB by TGFβ  in 

non-transformed cells, TGFβ can also activate NFκB in tumorigenic cells or cells that 

have undergone EMT. This activation is achieved by phosphorylation of the 

inhibitory protein IKK, via the TGFβ-activated kinase 1 (TAK1)-binding protein 

(TAB1), thus de-repressing NFκB (247,248). 
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In general, TGFβ has been described to be able to increase the amounts of several 

receptor tyrosine kinases (249). The abundance of more RTKs makes the cell more 

accessible to pro-survival signals and thereby less sensitive to apoptosis induced by 

TGFβ. Recently, we have been able to describe that Dlx2, which is upregulated via 

canonical TGFβ signaling, down-modulates the TGFβRII in a negative feed back 

loop, thereby reducing its ability to transactivate p21. Furthermore, Dlx2 directly 

upregulates the EGFR ligand betacellulin supporting cells to overcome TGFβ-induced 

apoptosis (154). Similarly, Wendt et al. have shown that the induction of EGFR 

stability by TGFβ during EMT increases invasiveness (250). 

As described above, c-Myc repression by TGFβ is a hallmark of TGFβ’s ability to 

induce cytostasis. However, some tumor cells explicitly lose this reaction to TGFβ, 

without major changes in other target gene expression, allowing c-Myc to drive cells 

further through the cell cycle even in the presence of active TGFβ signaling (251). 

Sasaki et al. have described that the Wnt signaling transcription factor LEF1 in 

association with β-catenin transactivates c-Myc. Normally, TGFβ signaling can 

oppose Wnt-induced c-Myc transcription, which is conducted by the TCF4/β-catenin 

transcriptional activator complex. In the case of tumor cells, where β-catenin binds to 

LEF1 instead, TGFβ cannot interfere with Wnt signaling anymore and therefore 

cannot oppose the induction of c-Myc expression (252). 

In gastric cancer miR-106b, miR-93 and miR-25 have been found overrepresented. 

These miRNAs are induced by E2F and target not only the S-phase-inducer E2F1 in a 

negative feedback loop, but they also affect the TGFβ-induced mRNA levels of the 

cytostatic protein p21 and of the pro-apoptotic protein Bim. Thereby TGFβ’s tumor 

suppressive actions are selectively inhibited (253). 

In summary, there are many ways a cell can selective lose only TGFβ’s tumor 

suppressive functions without inhibiting TGFβ signaling completely. One way would 

be by modulation of single TGFβ signaling molecules, like the Smads. Another way 

is the activation of RTK-signaling that can override TGFβ’s cytostatic and apoptotic 

function. Thus, the signaling environment TGFβ is embedded in plays a major role 

concerning the effect TGFβ can conduct in a cell. 
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3.3.4.6 TGFβ changes the microenvironment towards tumor growth and 

invasion 
Tumors normally evolve in a hypoxic environment. The induction of angiogenesis 

by growing tumors is not only necessary in order to deliver enough nutrients and 

oxygen, but also for disseminating cells to leave the primary cancer site. TGFβ 

signaling induces angiogenesis in tumors. Together with Smad3, the hypoxia-induced 

factor 1 alpha (HIF1α) initiates the expression of vascular endothelial growth factor 

(VEGF) (17,254). In contrast, it has been shown for gallbladder tumors and 

hepatomas that TGFβ suppresses angiogenesis in vivo (255,256). Again, the 

consequences of TGFβ signaling on tumor angiogenesis are dependent on additional 

signals within cells and the environment. 

Escape from the immune surveillance is a feature cancer cells have to acquire in 

order to establish a tumor. TGFβ has been described as a potent suppressor of 

immune reactions, which enables cancer cells to evade an attack by the immune 

system (257). An immuno-suppressive action is achieved when TGFβ induces 

expression and activation of IKK which interferes with survival signals conducted by 

NFκB in lymphocytes. TGFβ’s immunosuppressive function by reducing 

lymphocytes stands in contrast to TGFβ’s ability to act tumor suppressive in 

lymphomas where the immune cells themselves are the threat (247,258). 

Loss of TGFβ signaling is often found in colorectal cancer. This loss has been 

mimicked in a Dpc4-deficient mouse model of colorectal cancer. Here, the loss of 

TGFβ signaling in epithelial adenocarcinoma cells leads to secretion of CCL9 that in 

turn recruits myeloid derived suppressor cells (MDSC) (259). In mammary tumor 

models, the cytokines responsible for MDSC recruitment have been found to be 

CXCL5 and SDF-1. MDSCs facilitate invasion and metastasis via secretion of matrix 

metalloproteinases. Furthermore, MDSCs themselves secrete TGFβ that acts as a 

tumor suppressor in the microenvironment of cancer but has no effect on cancer cells 

in case of TGFβR loss (260). In this example, it is nicely shown how genetic loss of 

TGFβ signaling, together with TGFβ production within the tumor, synergizes to 

promote invasiveness and metastasis without affecting cancer cells directly. A similar 

phenomenon has been observed in humans, where high levels of TGFβ at the invasive 

front and high infiltration of MDSCs can be found (230,260). 
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Fibroblasts are another cell type that is susceptible to TGFβ signaling. Loss of 

TGFβ-responsiveness in fibroblasts by a TGFβRI knockout leads to 

hyperproliferation of activated fibroblasts accompanied by increased secretion of 

hepatocyte growth factor (HGF). This secreted HGF then stimulates epithelial cells, 

which surround fibroblasts and induces their proliferation, transformation 

and invasiveness (261). 

In summary, TGFβ signaling has many means to influence the tumor 

microenvironment favoring tumor progression. 

3.3.4.7 TGFβ as a mediator of metastatic spread 

TGFβ signaling in cancer cells that have overcome its tumor suppressive function 

can promote metastasis. Rendering cancer cells mesenchymal via induction of EMT is 

one way TGFβ directly favors metastatic spread (262). Apart from the function of 

TGFβ within cancer cells, it plays an additional role in metastatic tropism. Cancer cell 

that disseminate in order to colonize secondary organs follow distinct metastatic 

patterns which can be influenced by TGFβ signaling (52). 

An example for TGFβ signaling and its direct involvement in malignant 

colonization at secondary sites is breast cancer. The ER-negative subset of breast 

cancer, that shows a high TGFβ activity, primarily targets the lung for metastatic 

spread. TGFβ primes this cancer cells by inducing angiopoietin-like 4 (Angptl4) 

expression in a Smad-dependent manner. Angptl4 then helps the cancer cells to enter 

the lung parenchyma by loosening the endothelial cell-cell contacts, making the 

vasculature permeable for cancer cells’ extravasation (263). 

To attract disseminated cancer cells, also the future metastatic site can provide 

TGFβ. Bone, as secondary cancer target site, secretes TGFβ when it is being lysed by 

osteoclasts. The released TGFβ can activate the canonical TGFβ signaling within the 

cancer cells that have reached the bone, transactivating the metastasis genes IL11 and 

CTGF. IL11 and CTGF, in turn lead to maturation of osteoclasts and angiogenesis, 

respectively, which ultimately propagates osteolytic bone metastasis (264,265). In a 

study where a small molecule inhibitor of TGFβRI kinase (SD-208) was administered 

to mice, osteolytic bone metastasis were reduced (266). Supporting its clinical 

relevance, active TGFβ signaling has been shown by staining for p-Smad2 in breast 

cancer patients with bone metastases (267). 
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These examples demonstrate that TGFβ signaling can have a systemic effect to 

prepare sites of cancer cell dissemination. Therefore, TGFβ inhibition could be a 

potential therapeutic target to treat metastasis. 

3.3.5 How to use the knowledge about TGFβ for cancer therapy 
The TGFβ signaling status in sera of tumor patients is used as a biomarker to 

predict cancer aggressiveness and relapse (194). Mutations in TGFβ pathway 

components can be predictive but not meant to be targeted for therapy themselves. As 

an example, the integrity of the DPC4 gene in colorectal cancer does not only stand 

for a better prognosis but also predicts a beneficial reaction of tumors against 

5-fluoruracil-based adjuvant therapy (268). A very elegant study combines human 

sample analysis (histology and gene expression profiling) and combinatorial genetic 

modeling in mice. Using this method, the authors have shown that in a 

PTEN-negative tumor, often found in prostate intraepithelial neoplasia, loss of DPC4 

leads to more advanced stages and metastatic tumors. Loss of DPC4 was 

accompanied by the de-repression of the Smad4 target cyclinD1, and the invasion 

gene SPP1. Ding et al. have further shown that the status of these 4 factors (Smad4, 

cyclinD1, SPP1 and PTEN) can be used as a powerful marker for prostate cancer 

progression (269). 

On the other hand, considering TGFβ as a pro-metastatic element rather than a 

tumor suppressor, the TGFβ ligand itself would be a possible drug target. Especially, 

since TGFβ seems to have a major impact not only on tumor cells by inducing EMT, 

but also on the microenvironment which helps tumor cells to evade immune 

responses, invade or colonize secondary organs. In order to block the auto- and 

paracrine function of TGFβ, soluble TGFβRII:Fc was administered to murine breast 

cancer models. Here, the sequestration of TGFβ could reduce invasiveness and 

metastases (270). Furthermore, transgenic expression of this TGFβ inhibitor in 

mammary epithelial cells did not lead to as severe phenotypes as seen in TGFβ 

knockout mice, despite a high concentration of inhibitor throughout the body. 

Therefore, TGFβ sequestration, in contrast to complete TGFβ depletion, does not 

diminish mice’s lifespan and may be considered as an approach for human treatment 

as well (271). 
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The above-mentioned small molecule inhibitor of the TGFβRI kinase, SD-208, is 

suggested to be a potent inhibitor to block TGFβ signaling and thereby its 

pro-metastatic and immunosurveillance functions. Tumor bearing mice treated with 

SD-208 survived significantly longer than those treated with vehicle only (272). In 

order to avoid side effects of blocking TGFβ signaling systemically, Gorelik and 

Flavell suggest targeting TGFβ signaling only in T-cells. Hence, T-cells would be 

immune to TGFβ’s immun-suppressive function and therefore able to effectively 

attack tumor cells (273). 

3.3.6 Conclusive remarks 
TGFβ is of major interest in cancer biology. However, the dissection of its bivalent 

functions, as a tumor suppressor and as metastasis inducer, remains a challenge. The 

complexity of TGFβ signaling, both canonical and non-canonical, that can be 

modulated by various ways has to be further investigated to get a more complete 

picture of TGFβ’s functions. The cellular system and the animal models chosen to 

study TGFβ play an important role on the results being obtained. However, first 

great efforts to understand TGFβ’s way of action have been made. Then recent 

notions that TGFβ is not only relevant during tumorigenicity in cancer cells but 

also in the microenvironment has highlighted new fascets of TGFβ signaling. 

Therefore, the hope that targeted therapy against TGFβ pathway components reach 

the clinics is justified.  
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3.4 Transcription factor Dlx2 protects from TGFβ-induced 

cell-cycle arrest and apoptosis 
Transcription factor Dlx2 protects from
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Neha Tiwari, Lorenz Waldmeier,
Petra Schmidt, François Lehembre3

and Gerhard Christofori*

Department of Biomedicine, Institute of Biochemistry and Genetics,
University of Basel, Basel, Switzerland

Acquiring resistance against transforming growth factor
b (TGFb)-induced growth inhibition at early stages of
carcinogenesis and shifting to TGFb’s tumour-promoting
functions at later stages is a pre-requisite for malignant
tumour progression and metastasis. We have identified the
transcription factor distal-less homeobox 2 (Dlx2) to exert
critical functions during this switch. Dlx2 counteracts
TGFb-induced cell-cycle arrest and apoptosis in mammary
epithelial cells by at least two molecular mechanisms:
Dlx2 acts as a direct transcriptional repressor of TGFb
receptor II (TGFbRII) gene expression and reduces cano-
nical, Smad-dependent TGFb signalling and expression of
the cell-cycle inhibitor p21CIP1 and increases expression of
the mitogenic transcription factor c-Myc. On the other
hand, Dlx2 directly induces the expression of the epider-
mal growth factor (EGF) family member betacellulin,
which promotes cell survival by stimulating EGF receptor
signalling. Finally, Dlx2 expression supports experimental
tumour growth and metastasis of B16 melanoma cells and
correlates with tumour malignancy in a variety of human
cancer types. These results establish Dlx2 as one critical
player in shifting TGFb from its tumour suppressive to its
tumour-promoting functions.
The EMBO Journal advance online publication, 6 September
2011; doi:10.1038/emboj.2011.319
Subject Categories: signal transduction; molecular biology of
disease
Keywords: betacellulin; Dlx2; EGFR; metastasis; TGFb

Introduction

Transforming growth factor b (TGFb) plays a central role in
various biological processes such as development, tissue
homeostasis, fibrosis, and cancer. During gastrulation and
neural crest cell migration, TGFb induces cell motility and
invasiveness, thus enabling cells to migrate to distant sites
within the developing embryo. In contrast, in differentiated

epithelial tissue, TGFb primarily maintains tissue homeosta-
sis by promoting growth arrest and apoptosis, thus exerting
tumour suppressor function (Massague, 2008).

This ambivalent nature of TGFb signalling also plays a
critical role in cancer initiation and progression. At early
stages of tumourigenesis, TGFb functions as a tumour
suppressor by promoting cell-cycle arrest and apoptosis.
In contrast, during late stage tumourigenesis, TGFb exerts
malignant activities, such as inducing an epithelial–mesench-
ymal transition (EMT), supporting tumour angiogenesis, and
suppressing anti-tumuoral immune responses (Wakefield
and Roberts, 2002; Siegel and Massagué, 2003; Pardali and
Moustakas, 2007; Massague, 2008). The switch of TGFb
signalling from its tumour suppressor activity to a tumour-
promoting factor is achieved by at least two major modifica-
tions: the attenuation of pro-apoptotic TGFb signalling
and the activation of phosphoinositide 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) signalling
pathways (Huber et al, 2005). Tumour-suppressive TGFb
signalling is mediated by canonical, Smad-dependent TGFb
signalling. Upon ligand binding to TGFb receptors I and II, the
receptor-associated Smad proteins (Smad2/3) are phosphory-
lated, dissociate from the receptor complex, and translocate
to the nucleus in association with Smad4, where they
modulate the expression of specific target genes. Expression
of genes encoding anti-proliferative and pro-apoptotic factors
is induced, such as the cell-cycle inhibitors p15INK4B and
p21CIP1, while the expression of mitogenic factors like
c-Myc is repressed (Massague, 2004). In tumours, canonical
TGFb signalling is often suppressed, and cell-cycle arrest and
apoptosis are bypassed by reduced TGFb receptor II
(TGFbRII) expression or by mutational inactivation of Smad
proteins (Massague, 2008). Yet, cancer cells utilize TGFb to
promote tumour progression and survival by non-canonical
TGFb signalling, which mainly results in the activation of the
MAPK and the PI3K pathways (Gotzmann et al, 2002; Lee
et al, 2007b). A total loss of TGFb signalling impairs late stage
tumour progression and metastasis formation, demonstrating
a critical role of TGFb signalling for cancer malignancy
(Cui et al, 1996; Oft et al, 1998; Moustakas and Heldin,
2005). However, the molecular mechanisms underlying
the switch from TGFb’s growth inhibitory functions to its
tumour-suppressive activities are only poorly understood.

Here, we report that the transcription factor distal-less
homeobox 2 (Dlx2) is upregulated upon TGFb treatment
and attenuates growth-suppressive TGFb signalling in a
negative feedback loop. Moreover, Dlx2 induces mitogenic
epidermal growth factor receptor (EGFR) signalling by
directly inducing the expression of the EGFR-ligand betacel-
lulin. Together, these Dlx2 functions protect cells from TGFb-
induced cell-cycle arrest and apoptosis and supports primary
tumour growth and metastasis of B16 melanoma cells.
Finally, the clinical relevance of Dlx2 is underscored by the
observation that its expression correlates with the malignant
progression of various human cancer types.Received: 7 April 2011; accepted: 8 August 2011
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Results

Dlx2 expression is induced by canonical TGFb signalling
We have employed the normal murine mammary gland
(NMuMG) cells as an experimental system to dissect the
molecular mechanisms that enable epithelial cells to switch
TGFb signalling from proliferation suppressive to pro-survi-
val functions. These non-transformed, epithelial cells
respond with cell-cycle arrest and, partially, apoptosis during
the early phases of TGFb treatment. However, with ongoing
TGFb treatment, NMuMG cells overcome growth-suppressive
TGFb signalling and undergo EMT (Gal et al, 2008). To
identify genes critically required to overcome TGFb-mediated
growth suppression, NMuMG cells were treated with TGFb,
and changes in gene expression during TGFb treatment were
determined. Among a large number of genes changing in
their expression during TGFb treatment, Dlx2 mRNA was
found increasingly expressed after 2 days, with highest levels
after 6 days (Figure 1A), a time period during which TGFb-
induced cell-cycle arrest and apoptosis was most prominent.
Amplified Dlx2 mRNA levels were accompanied by increased
levels of Dlx2 protein as determined by immunoblotting
analysis (Figure 1B). Notably, increased levels of Dlx2 were
predominantly localized to the nucleus in TGFb-treated cells
(Figure 1C). That Dlx2 is a general target of TGFb signalling
was further confirmed in a murine breast cancer cell line
established from a tumour of a MMTV-Polyoma Middle
T (MMTV-PyMT) transgenic mouse and in B16 melanoma
cells (Supplementary Figure S1A). Dlx2 mRNA expression
was not significantly induced upon TGFb treatment in
NMuMG cells harbouring a stable knockdown of Smad4
(shSmad4-NMuMG) (Figure 1D; Deckers et al, 2006), indicat-

ing that Dlx2 gene expression depended on canonical TGFb
signalling.

Dlx2 promotes cell survival and proliferation during
TGFb treatment
We next investigated whether Dlx2 function was required for
cell survival during TGFb treatment. NMuMG cells were
transfected with siRNA against Dlx2 (siDlx2) or with control
siRNA (siCTR) (Supplementary Figure S1B), and changes in
proliferation and apoptosis were determined. The potential
protective function of Dlx2 was analysed at 6 days of TGFb
treatment, when cell death and detachment of cells from the
cell culture plate were most prominent. Notably, siDlx2-
NMuMG cells exhibited reduced cell numbers as compared
with control siRNA-transfected cells (Figure 1E).

To assess whether loss of Dlx2 function affected prolifera-
tion and/or apoptosis during TGFb treatment, we compared
the levels of proliferation (BrdU incorporation) and of apop-
tosis (Annexin V staining) between siCTR- and siDlx2-treated
NMuMG cells upon TGFb treatment. Proliferation was sig-
nificantly reduced and apoptosis was significantly increased
in the absence of Dlx2 upon TGFb treatment (Figure 1Fand G),
explaining the reduced cell number in TGFb-treated
siDlx2-NMuMG cells. These results were confirmed by the
diminished growth rate of TGFb-treated NMuMG cells in
which Dlx2 expression was ablated by stable expression of
shRNAs against Dlx2 (shDlx2-NMuMG) as compared with
control shRNA-transfected cells (shCTR-NMuMG) (Figure 1H;
Supplementary Figure S1C).

Next, we analysed whether the forced expression of Dlx2
affected proliferation and/or apoptosis of NMuMG cells in the

Figure 1 Dlx2 is a target of canonical TGFb signalling and is critical for survival during TGFb treatment of NMuMG cells. (A) Dlx2 mRNA
levels were determined by quantitative RT–PCR in NMuMG cells treated with TGFb for the days indicated. (B) Immunoblotting analysis of Dlx2
protein levels in NMuMG cells treated with TGFb for the days indicated and of cells stably expressing Dlx2 is shown. GAPDH was used as
loading control. (C) Subcellular localization of Dlx2 in NMuMG cells treated with TGFb or stably expressing Dlx2 (exo. Dlx2) was determined
by fluorescence microscopy. Scale bar¼ 100mm. (D) Dlx2 mRNA levels were determined by quantitative RT–PCR in stable Smad4 knockdown
(shSmad4) and control (shCTR) NMuMG cells treated with TGFb for the days indicated. (E–G) Dlx2-depleted (siDlx2) and control (siCTR)
NMuMG cells were treated with TGFb (2 ng/ml) for 6 days. Viable cells were counted by trypan blue exclusion using a Neubauer cell counting
chamber (E). Proliferation rates were determined by BrdU incorporation and flow cytometry (F). The rates of apoptosis were measured by
Annexin V staining and flow cytometry (G). (H) NMuMG cells stably expressing three independent shRNAs against Dlx2 (shDlx2 I–III)
or control shRNA (shCTR) were treated with TGFb (1 ng/ml), and cell numbers were determined using a Neubauer counting chamber at day 6
of TGFb treatment. Data are shown as mean±s.d. and are representative of three independent experiments. Statistical values are calculated by
using an unpaired, two-tailed t-test. *Pp0.05; **Pp0.01; ***Pp0.005.

Dlx2 and TGFb resistance
M Yilmaz et al

The EMBO Journal &2011 European Molecular Biology Organization2



Transcription factor Dlx2 protects from TGFβ-induced cell-cycle arrest and apoptosis RESULTS 

107 

presence or absence of TGFb. We stably infected NMuMG
cells with lentiviral vectors encoding HA-tagged, murine Dlx2
or firefly luciferase as control and used infected cell pools for
further analysis. Dlx2 was exclusively expressed in the
nucleus of stably infected NMuMG cells (Figure 2A). Dlx2-
expressing NMuMG cells exhibited a significantly increased
cell proliferation rate, as compared with control cells, and
showed no sensitivity towards TGFb-mediated growth inhibi-
tion (Figure 2B). Indeed, while control NMuMG cells ceased
growing in the presence of TGFb, Dlx2-expressing cells
increased in numbers in the absence as well as in the
presence of TGFb. Annexin V staining and BrdU incorporation
analysis revealed that, in comparison to control-transfected
cells, Dlx2-expressing NMuMG cells exhibited decreased
levels of apoptosis and proliferated at higher rates, respec-
tively (Figure 2C and D).

Together, these gain and loss-of-function experiments
demonstrate that Dlx2 is critical for cell survival and
proliferation during the growth-suppressive phase of TGFb
treatment.

Dlx2 inhibits canonical TGFb signalling
An attenuation of the canonical pro-apoptotic TGFb signal-
ling pathway is frequently found responsible for TGFb-resis-
tant growth (Massague, 2008). Hence, we determined
the expression levels and activities of different molecules
known to play critical roles in canonical TGFb signalling.
Notably, the protein levels of TGFbRII were found decreased
in Dlx2-expressing NMuMG cells, whereas Smad4 protein

levels were unchanged (Figure 3A). Reduced TGFbRII mRNA
levels pointed to a Dlx2-mediated transcriptional repression
of TGFbRII expression in NMuMG cells (Figure 3B). That
Dlx2 is indeed a transcriptional repressor of the TGFbRII gene
was further underlined by the observation that ablation
of Dlx2 function counteracted the TGFb-induced repression
of the TGFbRII gene (Supplementary Figure S2A).
Furthermore, forced expression of Dlx2 in HEK293 and
NMuMG cells resulted in reduced TGFbRII promoter activity
(Supplementary Figure S2B and C). Chromatin immunopre-
cipitation (ChIP) experiments with NMuMG cells either sta-
bly expressing HA-tagged Dlx2 or treated with TGFb for 6
days demonstrated that Dlx2 directly bound to the TGFbRII
gene promoter (Figure 3C). The specific binding of endogen-
ous Dlx2 to the TGFbRII promoter was also observed in B16
melanoma cells (Supplementary Figure S2D) and in Py2T
murine breast cancer cells (data not shown). Changes in the
expression of inhibitory Smads, such as Smad7, or of the
Smad-specific E3 ubiquitin protein ligase 1 (Smurf1) were not
detected (data not shown), both of which have been shown
to inhibit TGFb receptor signalling (Di Guglielmo et al, 2003;
Zhang et al, 2007).

As a consequence of the Dlx2-mediated decrease in
TGFbRII protein levels, canonical TGFb signal transduction
was found attenuated. The levels of phosphorylated Smad2
were reduced in clones and pools of Dlx2-expressing NMuMG
cells (Figure 3D). Concomitantly, the transcriptional activity
of the common mediator Smad4 was diminished in Dlx2-
expressing cells, as revealed by Smad4-specific luciferase-
reporter (CAGA box reporter) analysis (Dennler et al, 1998;
Figure 3E). This decrease in TGFb signalling lead to changes
in the expression of bona fide TGFb target genes, exemplified
by the reduced expression of p21CIP1 and the increased
expression of c-Myc (Figures 3F and 4A).

In summary, expression of Dlx2 attenuates apoptotic TGFb
signalling via direct transcriptional repression of the TGFbRII
gene, resulting in reduced TGFb signalling and Smad4
transcriptional activity and, thus, diminished expression
of the cell-cycle inhibitor p21CIP1 and increased expression
of mitogenic c-Myc.

Dlx2 engages EGFR to promote cell survival
and proliferation
Inhibition of apoptotic, canonical TGFb signalling explains
why Dlx2 confers resistance towards TGFb-mediated growth
inhibition. However, it does not explain why Dlx2 expression
increases cell proliferation and survival in the presence
and in the absence of TGFb. Recently, several reports have
demonstrated that the MAPK and PI3K pathways are inter-
actively engaged to ensure cell survival and proliferation in
the presence of tumour-suppressive TGFb (Janda et al, 2002;
Lee et al, 2007b). Hence, we investigated whether these
pathways were activated in TGFb-resistant Dlx2-expressing
NMuMG cells.

To investigate whether the MAPK and PI3K pathways were
involved in TGFb-resistant growth, we treated control and
Dlx2-expressing NMuMG cells with chemical inhibitors for
the MAPK kinase MEK1/2 (PD98059) or for PI3K (ZSTK474).
Treatment with either inhibitor significantly reduced cell
growth of Dlx2-expressing NMuMG cells as compared with
control cells, and these effects were markedly increased upon
combined treatment with TGFb (Figure 4A and B). Thus,

Figure 2 Dlx2 protects from TGFb-induced cell-cycle arrest and
apoptosis. (A) Confocal laser scanning microscopy of NMuMG
cells stably expressing N-terminal HA-tagged Dlx2. Dlx2 was
detected by anti-HA immunofluorescence staining (green). Blue
DAPI staining visualizes nuclei. Scale bar¼ 100mm. (B) Dlx2-ex-
pressing (Dlx2) and control (CTR) NMuMG cells were treated with
or without TGFb for the days indicated and counted by trypan blue
exclusion using a Neubauer cell counting chamber. The time
point day 6 was used to determine statistical significance between
Dlx2-expressing and control cells. (C) Dlx2-expressing and control
NMuMG cells were treated with TGFb for the days indicated.
Apoptosis was measured by Annexin V staining and flow cytometry.
(D) Dlx2-expressing and control NMuMG cells were treated with
TGFb for the days indicated, and proliferation rates were deter-
mined by BrdU incorporation and flow cytometry. Data are shown
as mean values±s.d. and are representative of three independent
experiments. Statistical values are calculated by using an unpaired,
two-tailed t-test. *Pp0.05; **Pp0.01.
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Dlx2-mediated proliferation as well as TGFb-resistant growth
substantially relies on the activity of the MAPK and PI3K
signalling pathways. Immunoblotting analysis revealed that
the levels of the activated (phosphorylated) forms of the
MAPK Erk1/2 but not of the PI3K effector protein kinase B
(PKB) were higher in Dlx2-expressing NMuMG cells as
compared with control cells, in the absence as well as
in the presence of TGFb (Figure 4C and D). Yet, depletion
of Dlx2 in NMuMG cells did not affect the overall activation
of PKB or Erk1/2 (Supplementary Figure S3).

Various growth factor receptors are known to induce
MAPK and PI3K activities upon TGFb treatment to promote
survival and proliferation, including platelet-derived growth
factor receptor (PDGFR), vascular endothelial growth factor
receptor (VEGFR), and EGFR/ErbB family members (Fabregat
et al, 1996, 2000; Murillo et al, 2005; Del Castillo et al, 2006).
Hence, we utilized chemical inhibitors against these growth
factor receptors to identify a potential upstream activator
of MAPK and PI3K signalling. Among the inhibitors
tested (VEGFR, PDGFR, IGFR, EGFR), exclusively inhibition
of EGFR by the chemical inhibitor Tyrphostin AG1478
significantly repressed Dlx2-mediated, TGFb-resistant
proliferation of NMuMG cells (Figure 4E, data not shown).
Dlx2-dependent, elevated activity of EGFR was confirmed
by immunoblotting analysis using an antibody against phos-
phorylated EGFR (tyrosine 1173; Figure 4F).

Since total EGFR protein levels were not changed in Dlx2-
expressing NMuMG cells (Figure 4E), we assessed whether
the expression of members of the EGF family was upregu-
lated by the expression of Dlx2. Gene expression analysis
revealed that the EGFR-ligand betacellulin was significantly
upregulated in Dlx2-expressing NMuMG cells as compared
with control cells. Quantitative RT–PCR and ELISA analysis
confirmed the Dlx2-dependent increased expression of
betacellulin at the mRNA and protein levels, respectively
(Figure 5A and B). To assess whether betacellulin was
responsible for the stimulation of EGFR and increased cell
survival and proliferation, control and Dlx2-expressing
NMuMG cells were transfected with siRNAs against betacel-
lulin and concomitantly treated with TGFb. The extent of the
ablation of betacellulin expression was determined by ELISA
and by quantitative RT–PCR (Figure 5B; Supplementary
Figure S4A). Reduced betacellulin levels significantly reduced
cell numbers of Dlx2-expressing NMuMG cells but not
in control cells and thus abrogated a major part of
Dlx2-mediated cell proliferation during TGFb treatment
(Figure 5C). Notably, siRNA-mediated ablation of EGFR
expression comparably repressed Dlx2-mediated cell prolif-
eration, suggesting that betacellulin was the only inducer of
EGFR in Dlx2-expressing cells (Figure 5C; Supplementary
Figure S4B). Indeed, addition of recombinant betacellulin
to Dlx2-expressing NMuMG cells that had been ablated for

Figure 3 Dlx2 expression attenuates Smad-dependent, canonical TGFb signalling. (A) Immunoblotting analysis of TGFbRII and Smad4 protein
levels in Dlx2-expressing and control NMuMG cells is shown. Immunoblotting against vinculin was used as loading control. (B) TGFbRII
mRNA levels in Dlx2-expressing and control NMuMG cells were determined by quantitative RT–PCR at different days of TGFb treatment as
indicated. Values were normalized to endogenous RPL19 levels. (C) Dlx2 binds directly the TGFbRII promoter. ChIP of Dlx2 was performed
either on Dlx2-expressing NMuMG cells or on NMuMG cells treated for 6 days with TGFb. Immunoprecipitated DNA fragments were quantified
by quantitative PCR using primers covering basepairs !386 to !204 of the TGFbRII promoter region and primers covering an intergenic region
as negative control. (D) Lysates of Dlx2-expressing cell pools or cell clones and control (CTR) NMuMG cells were analysed by immunoblotting
analysis with antibodies against p-Smad2, total Smad2, HA to determine Dlx2 expression, and GAPDH as a loading control. (E) Dlx2-expressing
and control NMuMG cells were transfected with a reporter plasmid where repetitive Smad4-binding motifs control the expression of firefly
luciferase and then treated with or without TGFb for 3 days. Luciferase activity values were normalized to co-transfected Renilla luciferase
activities. (F) Immunoblotting analysis of Dlx2-expressing and control NMuMG cells in the absence or presence of TGFb for 6 days with
antibodies against p21CIP1 and against actin as loading control. Data are shown as mean±s.d. and are representative of three independent
experiments. Statistical values are calculated by using an unpaired, two-tailed t-test. *Pp0.05; **Pp0.01; ***Pp0.001.
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betacellulin expression by siRNA transfection restored
cell proliferation in the presence of TGFb (Figure 5D). As
expected by their expression of EGFR (Figure 4F), recombi-
nant betacellulin also exerted a proliferative effect on control
cells, yet failed to promote cell proliferation to numbers
comparable to Dlx2-expressing cells (Figure 5D), indicating
that betacellulin by itself was not sufficient to overcome
TGFb-induced growth arrest and apoptosis. Conversely,
siRNA-mediated ablation of betacellulin expression in Dlx2-
expressing NMuMG cells significantly increased apoptosis
upon TGFb treatment, underscoring its importance for
Dlx2-mediated TGFb resistance (Figure 5E). Finally, ChIP
experiments revealed that Dlx2 directly bound to the beta-
cellulin gene promoter in NMuMG cells (Figure 5F), in B16
melanoma cells (Supplementary Figure S4C) and Py2T mur-
ine breast cancer cells (not shown), suggesting that it directly
induced its expression.

In conclusion, Dlx2-mediated TGFb resistance appears to
rely on two mechanisms, the inhibition of apoptotic, canoni-
cal TGFb signalling via direct transcriptional repression of the
TGFbRII gene and the activation of mitogenic and pro-survi-
val EGFR signalling via the direct transcriptional induction of
betacellulin gene expression.

Dlx2 promotes tumour growth and metastasis
Next, we investigated whether increased expression of Dlx2
correlated with human cancer progression and metastasis by
surveying gene expression profiles of human cancer

biopsies for Dlx2 expression using the NextBio database
(nextbio.com). Significant correlations of increased Dlx2
expression with the potential of melanoma and lung cancers
to metastasize and with advanced tumour stages in prostate
and lung cancers were detected (Table I). Moreover, treat-
ment of human glioma cells with a specific inhibitor for
TGFbRI has reduced Dlx2 expression, indicating that Dlx2 is
also a target of TGFb signalling in glioma cells (Table I).
Finally, Dlx2 has been found highly expressed in human
breast cancer and in breast cancer-initiating cells (Zhang
et al, 2008; Rhodes et al, 2009). These results support the
hypothesis that Dlx2 also plays a critical role for cell survival
and proliferation during tumour progression and metastasis
formation in patients.

The findings that various cancer types, including melano-
ma, develop resistance against TGFb-mediated growth inhibi-
tion during malignant progression (reviewed in Teicher, 2001)
and that Dlx2 expression correlates with melanoma malig-
nancy (Table I) motivated us to investigate whether Dlx2
expression played a significant role in melanoma growth and
metastasis formation. Cultured B16 melanoma cells, when
treated with TGFb for 4 days, exhibited increased Dlx2 mRNA
levels, revealing that Dlx2 expression is upregulated by TGFb
signalling also in these cells (Figure 6A). Next, we investi-
gated whether ablation of Dlx2 expression impaired the
ability of B16 melanoma cells to form tumours and to
metastasize to the lungs upon subcutaneous implantation
into syngeneic C57Bl/6 mice. Three cell pools of B16

Figure 4 Dlx2 promotes resistance against TGFb-mediated growth inhibition via activation of EGFR signalling. (A) Dlx2-expressing and
control NMuMG cells were treated with TGFb for 4 days in combination with the PI3K inhibitor ZSTK474 (0.239mM) or DMSO (solvent control)
and counted using a Neubauer chamber. (B) Dlx2-expressing and control NMuMG cells were treated with TGFb for 4 days in combination with
the MEK1/2 inhibitor PD98059 (9.35mM) or DMSO (solvent control), and cell numbers were determined using a Neubauer cell counting
chamber. (C) Dlx2 expression increases phosphorylation of the MAPK Erk1/2 as well as c-Myc total protein levels. Immunoblotting analysis of
cell lysates from Dlx2-expressing and control NMuMG cells treated with or without TGFb for 4 days. Immunoblotting against total Erk1/2 and
GAPDH was used as loading control. (D) Dlx2 expression has no effect on the phosphorylation of PKB at Ser473, as determined by
immunoblotting with an antibody specific for PKB phosphorylated at serine 473. Immunoblotting against total PKB and total-Erk1/2 was used
as loading control. (E) Dlx2-expressing and control NMuMG cells were treated with TGFb for 4 days in combination with the EGFR inhibitor
AG1478 (3mM) or DMSO (solvent control) and cell numbers were determined using a Neubauer chamber. (F) Dlx2 expression leads to
increased phosphorylation of the EGFR at its activating tyrosine 1173. Immunoblotting analysis of cell lysates from Dlx2-expressing and control
NMuMG cells with antibodies against pY1173-EGFR and total EGFR. Immunoblotting against vinculin was used as a loading control. Data are
shown as mean±s.d. and are representative of at least three independent experiments. Statistical values are calculated by using an unpaired,
two-tailed t-test **Pp0.01; ***Pp0.001.
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melanoma cells stably transfected with independent shRNA
constructs against Dlx2 (shDlx2-B16 I–III) and one control
shRNA (shCTR) cell pool (Supplementary Figure S5A)

were implanted into the flanks of mice (five mice per cell
pool). Primary tumour volumes and the incidence of lung
metastasis were quantified 2 weeks after implantation.
shRNA-mediated knockdown of Dlx2 resulted in a significant
reduction in primary tumour growth (Figure 6B) and
in micrometastatic lesions in the lungs (Figure 6C and D) in
comparison to shCTR cells. Dlx2 was found expressed at high
levels in the nuclei of control B16 cells and at reduced
levels in Dlx2-depleted cells (Supplementary Figure S5B).
Moreover, the rate of tumour cell apoptosis, as determined
by immunohistochemical staining for cleaved caspase 3, was
markedly, yet not significantly increased in Dlx2-depleted
B16 tumours as compared with control tumours
(Figure 6E), while the proliferation rate, as determined by
staining for Ki67, was unaffected (Supplementary Figure
S5C). Consistent with our findings that Dlx2 promotes cell
survival and proliferation, these results demonstrate that
Dlx2 expression is also required for primary tumour growth
and metastatic outgrowth of B16 melanoma cells.

Discussion

The TGFb signalling pathway exerts a dual function during
tumour development and progression. At early stages of
tumourigenesis, TGFb functions as a tumour suppressor
by inducing cell-cycle arrest and apoptosis. During late
stage tumourigenesis, TGFb promotes tumour cell invasion
and metastasis by inducing an EMT, immunosuppression,
and angiogenesis (Thiery and Sleeman, 2006; Massague,
2008; Yang and Weinberg, 2008). Hence, the breakdown of
TGFb-mediated growth restrains plays an important role
during tumour formation and progression. Cancer cells
evade this TGFb-mediated tumour-suppressive barrier via
downregulation of the TGFb receptors by a yet poorly under-
stood mechanism (Kang et al, 1999; Kim et al, 2000; Lee et al,
2007a). Hence, the delineation of the molecular pathways
enabling cancer cells to overcome TGFb-mediated growth
inhibition and to convert it into a tumour-promoting factor
is a critical milestone for the design and development
of adequate therapeutic interventions.

Here, we have identified the transcription factor Dlx2 to
enable non-transformed, non-tumourigenic NMuMG cells
and B16 melanoma cells to overcome TGFb-mediated
growth inhibition in vitro and in vivo, respectively. This
Dlx2-mediated TGFb-resistant growth is achieved by two
major regulatory modifications (i) the inhibition of the pro-
apoptotic TGFb signalling pathway and (ii) the simultaneous
activation of the pro-survival and mitogenic EGF receptor
signalling pathway by the direct transcriptional induction of
betacellulin expression (Figure 7).

The molecular and cellular analysis presented in this
study reveals that Dlx2-mediated attenuation of the canonical
TGFb signalling pathway is a consequence of a direct
transcriptional repression of the TGFbRII gene and leads to
changes in the expression of TGFb target genes, such as
decreased expression of the cell-cycle inhibitor p21CIP1 and
increased expression of the mitogenic transcription factor
c-Myc. Furthermore, we show that Dlx2 itself is a target of
canonical TGFb signalling and, thus, is exerting its function in
a negative feedback loop. In summary, we identify Dlx2 as a
novel TGFb-inducible transcriptional repressor that attenu-

Figure 5 Betacellulin expression is induced by Dlx2 and provides
cell survival and proliferation by stimulating EGFR. (A) Betacellulin
mRNA levels were determined by quantitative RT–PCR in NMuMG
cells stably expressing either GFP (Control) or Dlx2. (B) The protein
levels of betacellulin are increased in Dlx2-expressing NMuMG
cells, as determined in cell lysates of GFP and Dlx2-expressing
NMuMG cells by ELISA. The high levels of betacellulin induced
by Dlx2 expression in NMuMG cells are efficiently reduced by
siRNA-mediated knockdown of betacellulin expression (siBTC), as
determined by ELISA. (C) Betacellulin (BTC) and its receptor EGFR
are required for TGFb-resistant growth of Dlx2-expressing NMuMG
cells. siRNA-mediated ablation of either betacellulin or EGFR
expression reduces TGFb-resistant growth of Dlx2-expressing
NMuMG cells with comparable efficacies. Viable cells were counted
by trypan blue exclusion using a Neubauer cell counting chamber.
(D) siRNA-mediated ablation of betacellulin expression (mixture of
the three siRNAs used in (B, C)) in Dlx2-expressing cells results in
TGFb-mediated growth arrest and apoptosis, which can be rescued
by addition of recombinant betacellulin (rBTC; 10 ng/ml). Viable
cells were counted by trypan blue exclusion using a Neubauer cell
counting chamber. (E) TGFb-resistant growth of Dlx2-expressing
NMuMG cells requires betacellulin. The rates of apoptosis in siCTR,
siBTC, and siEGFR transfected control or Dlx2-expressing cells
were measured by Annexin V staining and flow cytometry.
(F) Betacellulin is a direct transcriptional target of Dlx2. ChIP of
Dlx2 was performed on either Dlx2-expressing cells or NMuMG
cells treated for 6 days with TGFb. Immunoprecipitated DNA frag-
ments were quantified by quantitative RT–PCR using primers
amplifying the promoter region of the betacellulin gene and primers
covering an intergenic region as negative control. Data are shown as
mean±s.d. and are representative of at least three independent
experiments. Statistical values are calculated by using an unpaired,
two-tailed t-test. *Pp0.05; **Pp0.01; ***Pp0.001.
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ates Smad-dependent TGFb signalling and thereby promotes
cell-cycle arrest and apoptosis (Figure 7).

This mechanistic model of Dlx2-mediated TGFbRII gene
repression is consistent with previous reports on autocrine
negative feedback loops of TGFb signalling downregulating
TGFbRII expression (Gazit et al, 1993; Woodward et al, 1995;
Nishikawa et al, 1998; Truty et al, 2009). The model also
resembles the recently described function of KLF14 in
human pancreatic epithelial cancer (PANC1) cells, in which
KLF14 has been shown to be a TGFb-inducible repressor of
the TGFbRII gene (Truty et al, 2009). Notably, in a recent
comprehensive genome analysis of cancer cell lines, the
TGFbRII gene was found to be one of the prominent recessive
cancer genes suffering from homozygous deletion during
carcinogenesis (Bignell et al, 2010).

The capability of Dlx-family transcription factors to inter-
fere with TGFb signalling is further supported by observa-
tions showing that Dlx1 inhibits activin-mediated signalling
by blocking Smad4 activity in haematopoietic cells
(Chiba et al, 2003), and that Dlx2 expression correlates
with decreased TGFbRI and Smad4 levels in a thoracic aortic
aneurysm model (Jones et al, 2008). Interestingly, a recent
report shows that Dlx4 blocks the growth-suppressive effects
of TGFb by binding to Smad4 and thus preventing canonical
TGFb signalling and the expression of the cell-cycle inhibitors
p15INK4B and p21CIP1 (Trinh et al, 2011). Moreover, Dlx4 can
activate the expression of c-Myc in a Smad-independent
manner. Finally, Dlx2 has also been shown to interact with
Smad proteins to control the expression of various target
genes (Maira et al, 2010), indicating that Dlx-family members

are not only an autonomous transcriptional regulators but
also Smad interaction partners.

Besides directly repressing transcription of the TGFbRII
gene and inhibiting the canonical TGFb signalling pathway,
we here demonstrate that Dlx2 binds the promoter region and
induces transcription of the betacellulin gene, an EGF-family
member and specific ligand of EGFR and ErbB4. Betacellulin
is well known for its roles in cell differentiation and cancer
(Shing et al, 1993; Dunbar and Goddard, 2000). Increased
expression and synthesis of betacellulin leads to the stimula-
tion of EGFR and to the activation of its effector signalling
pathways, which are essential for Dlx2-mediated TGFb-resis-
tant growth, notably the MAPK and PI3K pathways. However,
it should be noted that the pharmacological inhibition
of the MAPK and the PI3K pathways not only represses
Dlx2-mediated signalling but also signalling mediated by
other inducers activated during TGFb treatment of NMuMG
cells and thus, their effects are much stronger than the
ablation of Dlx2. In fact, depletion of Dlx2 does not have a
major effect on the overall activation of PKB or Erk1/2
(Supplementary Figure S3). Other pathways may include
FGF receptor signalling, and with it MAPK signalling, induced
by neuronal cell adhesion molecule in TGFb-treated NMuMG
cells (and other cells undergoing EMT) (Lehembre et al,
2008). From these insights, we conclude that other pathways
are also stimulating MAPK and PI3K signalling and that the
loss of Dlx2 cannot replicate the complete repression of PI3K
or MEK signalling by pharmacological inhibitors. Along these
lines, while inhibition of EGFR signalling clearly induces
apoptosis and growth arrest of the cells, it does not comple-

Table I Dlx2 expression in human cancers

Cancer type Bioset name P-value Fold
upregulation

NCBI-GEO
accession
number

Melanoma
tumours

Intermediate metastatic potential melanoma versus foreskin
melanocyte normal

0.0451 4.19 GSE4845

High metastatic potential melanoma versus foreskin melanocyte
normal

0.0361 4.93 GSE4845

Intermediate metastatic potential melanoma versus low metastatic
potential melanoma

0.0196 2.52 GSE4845

High metastatic potential melanoma versus low metastatic potential
melanoma

0.0028 3.03 GSE4845

High metastatic potential melanoma versus low metastatic potential
melanoma

0.0067 2.96 GSE4845

Metastatic melanoma versus normal melanocytes 0.0021 18.8 GSE4570
Lung cancer Stage 4 versus stage 1 0.0123 3.847 GSE2109

Distant metastasis versus no metastasis 0.0064 3.045 GSE2109
Stage 4 versus stage 1 0.012 3.087 GSE2109
Stage 2A versus stage 1b 0.0351 3.29 GSE3141

Breast cancer T2 versus T1 0.0227 2.32 GSE10810_19
T2 versus normal tissue 0.0269 2.6 GSE10810_3
ER-positive versus normal 0.0102 2.34 GSE10810_15
Breast tumour versus normal 0.007 1.91 GSE10810_1
Lobular versus ductal 0.021 3.39 GSE5460_7
ER-3 versus ER-0 0.0001 2.8 GSE3143_1
Mouse mammary tumour initiating cells 0.0095 3.63 GSE8863_11
Metastasis versus primary breast cancer 0.0086 3.9 GSE8863_7

0.0242 1.62 GSE3521_GPL885_7
Lobular versus normal 2.5E!5 1.73 GSE3971_2

2.5E!5 1.63 GSE3971_1
Prostate cancer Stage 4 versus stage 2 0.0039 3.27 GSE6919
Glioma TGFb inhibition leads to Dlx2 downregulation 0.0037 !21.9 Bruna et al (2007)

Expression of Dlx2 correlates significantly with advanced tumour progression and the metastatic potential of melanoma, glioma, lung, and
prostate cancers. Microarray data are accessible at the NCBI Gene Expression Omnibus (GEO) database.

Dlx2 and TGFb resistance
M Yilmaz et al

&2011 European Molecular Biology Organization The EMBO Journal 7



RESULTS Transcription factor Dlx2 protects from TGFβ-induced cell-cycle arrest and apoptosis 

112 

tely abrogate their growth, again arguing for additional
signalling pathways being active.

A comparable functional interaction between Dlx2 and
EGF signalling has been previously shown in neuronal transit
amplifying cells, where loss of Dlx2 function dramatically
reduces their responsiveness towards EGF (Doetsch et al,
2002; Suh et al, 2009). Consistent with the regulation of Dlx2
expression and its activation of EGFR signalling, EGFR and
TGFb signalling pathways have been previously reported to
influence each other’s activities in both positive and negative
ways; however, the molecular details of such interactions
have not been delineated (Assoian et al, 1984; Kizaka-
Kondoh et al, 2000; Song et al, 2006; Semlali et al, 2008).

Together the data presented here identify Dlx2 as a novel
TGFb-inducible transcription factor, which plays a critical
role in balancing cell survival over cell death during TGFb
treatment of NMuMG cells. We demonstrate that Dlx2, by
repressing TGFbRII expression and by inducing betacellulin
expression, attenuates canonical TGFb signalling, and acti-
vates the EGFR signalling pathway, thus shifting TGFb’s
tumour-suppressive functions to tumour progressive func-
tions and favouring cell survival and proliferation. The find-
ing that the loss of Dlx2 function in mouse retina cells results
in increased apoptosis is consistent with its anti-apoptotic
activity in another cellular context (de Melo et al, 2005).
The protective function of Dlx2 is also utilized by cancer
cells, since we show that ablation of Dlx2 expression in B16
melanoma cells significantly decreases their growth as
primary tumours and as metastasis upon transplantation
into syngeneic C57/Bl6 mice. The fact that Dlx2 expression
shows a significant and positive correlation with increased
invasiveness of human melanomas and several other cancer
types underscores its relevance in human disease (Table I;
Javelaud et al, 2008; Boone et al, 2009). The finding that Dlx2
exerts a critical switch function during TGFb treatment and
tumour progression makes it an attractive subject matter for
further investigations.

Materials and methods

Reagents and antibodies
Human TGFb and mouse betacellulin include R&D Systems
(Abingdon, UK, R&D, #240-B and #1025-CE-025, respectively).

Figure 6 Dlx2 is required for B16 melanoma primary tumour
growth and lung metastasis. (A) Dlx2 expression is induced by
TGFb in melanoma cells. B16 melanoma cells were treated with
TGFb for 6 days and Dlx2 mRNA levels were determined by
quantitative RT–PCR. Values were normalized to endogenous
RPL19 mRNA levels. (B) Reduced primary tumour growth in B16
melanoma cells transfected to stably express shRNA against Dlx2.
Three independent Dlx2-specific shRNA sequences (shDlx2 1–3)
and one control shRNA sequence (shCTR) were used to establish
stable cell pools. Cells were injected into both flanks of 9–10 C57Bl/
6 mice per cell pool and tumour weights were measured 2 weeks
after implantation. (C) Reduced metastatic outgrowth of B16 mel-
anoma cells depleted for Dlx2 expression. Micrometastatic lesions
were counted on histological sections (shown in D) of the lungs of
the mice described in (B) (five lungs per cell pool were analysed).
(D) Serial histological sections of lungs from C57/Bl6 injected
subcutaneously with shDlx2-1 and shCTR B16 melanomas
cells were stained with haematoxylin/eosin. Scale bar¼ 100 mm.
(E) Tumour sections were stained against cleaved caspase 3 to
quantify the rate of apoptosis. The moderate increase in apoptosis
observed in Dlx2-depleted tumours was not statistically significant.
Data are shown as mean±s.d. Statistical values are calculated by
using an unpaired, two-tailed t-test. *Pp0.05; **Pp0.01;
***Pp0.001.

Figure 7 A working model of the molecular mechanisms under-
lying Dlx2-mediated resistance to TGFb-induced cell-cycle arrest
and apoptosis. Binding of TGFb to TGFb receptors induces phos-
phorylation and activation of the receptor-associated signal trans-
ducers Smad2/3. Activated Smad2/3 form a trimeric complex with
Smad4 and enter the nucleus to induce expression of TGFb target
genes, such as Dlx2 and the cell-cycle inhibitor p21CIP1.
Subsequently, Dlx2 directly binds and represses transcription of
the TGFbRII gene (red line) and directly binds and activates expres-
sion of the gene for the EGFR-ligand betacellulin (blue line).
Reduced TGFbRII expression results into diminished Smad2/3
activation, reduced Smad4 transcriptional activity and, finally,
into an attenuation of cytostatic TGFb signalling. On the other
hand, increased expression of betacellulin leads to the activation
of EGFR-mediated signal transduction and to cell proliferation and
survival.
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Antibodies include Vinculin (#V9131, Sigma-Aldrich), GAPDH
(#ab9485, Abcam), TGFbRII (#sc-220, Santa Cruz), Smad4 (#sc-
7154, Santa Cruz), Smad2 (#3103, Cell Signaling), pSmad2 (#3101,
Cell Signaling), p21CIP1(#556430, Pharmingen), c-myc (#06-340,
Upstate Biotechnology), total-PKB (gift from E Hirsch, Torino),
p-PKB Serine (#9271, Cell Signaling), p-Erk (#M-8159, Sigma-
Aldrich), total-Erk (#M7927, Sigma-Aldrich), EGFR (#2232 Cell
Signaling), p-Tyr1173EGFR (#sc-12351, Santa Cruz), HA (ab9110,
Abcam), BrdU-FITC (#347583, Becton&Dickinson), Dlx2 (AB5726,
Millipore for immunostainings, sc-18140x, Santa Cruz for immuno-
blotting), Ki-67 (clone Tec3, DAKO), cleaved Caspase 3 Asp175
(5A1, Cell Signaling) . Inhibitors include MEK1/2 Inhibitor PD98059
(#ALX-385-023, Alexis Biochemicals), TGFbRI inhibitor SB431542
hydrate (#S4317, Sigma-Aldrich), PI3K inhibitor ZSTK474 (#ALX-
270-454, Alexis Biochemicals), EGFR Inhibitor AG1478 (#ALX-270-
036, Alexis Biochemicals), PDGFR inhibitor Tyrphostin AG1296
(#ALX-270-037, Alexis Biochemicals), VEGFR inhibitor PTK787
(provided by Novartis Pharma), IGF1R inhibitor AEW541 (provided
by Novartis Pharma).

Primers
For quantitative RT–PCR, the following primers were used: murine
Dlx2 fwd: 50-GGCCTCACCCAAACTCAGGT-30, rev: 50-GTATCTCGCC
GCTTTTCCAC-30; murine TGFbRII fwd: 50-GGCTCTGGTACTCTGGG
AAA-30, rev: 50-AATGGGGGCTCGTAATCCT-30; murine betacellulin:
fwd: 50-ACC AATGGCTCTCTTTGTGG-30, rev: 50-CCGAGAGAAGTGG
GTTTTCA-30; murine EGFR fwd: 50- GCCACGCCAACTGTACCTAT-30,
rev: 50-GCCACACTTCACATC CTTGA-30; murine RPL19 fwd: 50-ATCC
GCAAGCCTGTGACTGT-30, rev: 50-TCGGGCCAGGGTGTTTTT-30. For
ChIP, ChIP-quantitative PCR was performed by using the following
primers: murine TGFbR2 promoter fwd: 50-GCCCCTGGGAGTAATG
CC-30, rev: 50-CTTTTAGCTGCCCACTCC-30; murine betacellulin pro-
moter fwd: 50-CTGCGTCAACTGTCAAATGC-30, rev: 50-AAGAGGACC
TGGTCATGTGG-30; murine intergenic region: fwd: 50-GCTCCGGGTC
CTATTCTTGT-30, rev: 50-TCTTGGTTTCCAGGAGATGC-30.

Cells and cell lines
A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG and
B16-F1 melanoma cells have been previously described (Fidler,
1975; Maeda et al, 2005; Lehembre et al, 2008). Cells were cultured
in DMEM supplemented with glutamine, penicillin, streptomycin,
and 10% FCS (Sigma). NMuMG-shSmad4 and NMuMG-shControl
were obtained from P ten Dijke (Leiden University Medical Center,
The Netherlands) (Deckers et al, 2006). NMuMG cells were treated
with TGFb in normal growth medium every 2 days (2 ng/ml).
Murine Dlx2 siRNA was purchased from Dharmacon (ON-TARGET
plus, SmartPool, L-043273-01-005), murine EGFR siRNA was from
Sigma (SASI_Mm02_01_00101666 and SASI_Mm02_01_00101666_AS),
and murine betacellulin siRNA was from Sigma (SASI_Mm02_
00311942, 44, 45, and SASI_Mm02_00311942_AS, 44_AS, 45_AS).
Transfections with LipofectAMINE RNAiMAX (Invitrogen) were
performed according to the manufacturer’s instructions.

To determine growth curves, 1!104 cells were seeded in each
well of 24-well plate and cell numbers were assessed every second
day by using a Neubauer counting chamber.

Stable, tetracyclin-inducible HEK293 cells expressing either
GFP or N-terminal HA-tagged murine Dlx2 were generated via
site-directed recombination into the Flp-In T-Rex HEK293 cell
system (Invitrogen, #K6500-01, #R750-07). Subsequently, cells were
selected using hygromycin and individual clones were used
for further experiments. Protein expression was induced upon
treatment with 1mg/ml doxycycline.

Total cell lysates, immunoblots, and immunofluorescence
experiments were performed as previously described (Lehembre
et al, 2008). Proteins of interest were either visualized by
chemoluminescence sequentially or on multiple membranes, and
Adobe Photoshop was used to crop the relevant portions of
the original scans of X-ray films, as indicated by black frames.

Generation of lentivirus
Murine Dlx2 shRNAs (shDlx2 #1–3, TRCN0000070598-600) and
control shRNA (shCTR, SHC002, Mission Non-Target shRNA
Control Vector) were purchased from Sigma-Aldrich. A cDNA
encoding Dlx2 (kindly provided by P Farlie, University of
Melbourne) was tagged N-terminally with HA-tag and cloned into
the lentiviral expression vector pWPXL. Lentiviral particles
were produced by transfecting HEK293T cells with the lentiviral

expression vectors in combination with the packing vector pR8.91
and the envelope encoding vector pVSV using Fugene HD. After 2
days of virus production, lentivirus-containing supernatants were
harvested, filtered (0.45mm), and added to target cells in the
presence of polybrene (8 ng/ml). Infections were performed twice a
day for 2 consecutive days.

Quantitative RT–PCR
Total RNA was prepared using Trizol (Invitrogen), reverse
transcribed with M-MLV reverse transcriptase RNAse (H-) (Prome-
ga, Wallisellen, Switzerland), and transcripts were quantified by
PCR using SYBR-green PCR MasterMix (Applied Biosystems,
Rotkreuz, Switzerland). Human or mouse riboprotein L19 primers
were used for normalization (see Supplementary data for primer
sequences). PCR assays were performed in triplicates, and fold
induction was calculated against control-treated cell lines using the
comparative Ct method (DDCt).

Reporter assays
NMuMG and HEK293 FlpIN-Dlx2 and FlpIN-GFP cells were
transfected with 200ng reporter and 5ng Renilla encoding plasmids
using Lipofectamine 2000. After 2 days of transfection, cells were
analysed using the Dual-Luciferase Reporter Assay System (#E1960,
Promega) and a Berthold Luminometer LB960. HEK cells were
induced for 1 day with 1 mg/ml doxycycline to express Dlx2 or GFP
and then assayed for reporter activity. Measured luciferase values
were normalized to internal Renilla control. Smad4 promoter-
reporter, TGFbRII promoter-reporter, and E-cadherin promoter-
reporter constructs were kindly provided by P ten Dijke (Leiden
University) (Dennler et al, 1998), SJ Kim (National Cancer Institute,
Bethesda) (Hahm et al, 1999), and K Verschueren (VIB and
University of Leuven; van Grunsven et al, 2003).

Chromatin immunoprecipitation
ChIP experiments were performed as previously described (Weber
et al, 2007). In brief, crosslinked chromatin was sonicated to
achieve an average fragment size of 500 bp. Starting with 100 mg of
chromatin and 5 mg of anti-Dlx2 antibody (Abcam-ab18188), 1ml of
ChIP material and 1 ml of input material were used for quantitative
real-time PCR using specific primers covering the TGFbRII
gene promoter region from basepair "386 to "204, covering the
betacellulin gene promoter region from basepair "450 to "253, and
primers covering an intergenic region as control. The efficiencies of
PCR amplification were normalized for between the primer pairs.

Proliferation assay
Cells were incubated with BrdU (10mM) for 2 h at 371C. Fixed in
70% ice-cold ethanol, permeabilized in 2N HCL/0.5% Triton X-100
solution for 30min at RT, resuspended in 0.1M Na2B4O7 pH 8.5 for
2min at RT, washed twice with 0.5% Tween-20/1% BSA/PBS, and
then incubated with FITC labelled anti-BrdU antibody (#347583,
BD) for 30min at RT. After washing twice with 0.5% Tween-20/1%
BSA/PBS and resuspending in PBS with 5 mg/ml PI for at least 1 h at
RT, the stained cells were analysed on a FACSCanto II using DIVA
software (BD).

Apoptosis assay
Cells were washed twice with cold PBS and resuspended in 1!
binding buffer at a concentration of 1!105 cells/ml. In all, 5ml of
Cy5 Annexin V was added to the cells and incubated for 15min at
RT (251C) in the dark. After incubation, cells were analysed on a
FACSCanto II using DIVA software.

ELISA
Cell lysates were prepared using RIPA buffer complemented with a
protease inhibitor cocktail. The amount of betacellulin in 100ml of
undiluted lysate was analysed in triplicates with the mouse
Betacellulin DuoSet ELISA Kit from R&D (DY1025) as suggested
by the manufacturer’s instructions. Total protein concentrations
were determined by Pierce BCA Protein Assay Kit from Thermo
Scientific (23225).

B16 melanoma syngeneic transplantation
In all, 6week-old female C57/Bl6 mice were injected subcuta-
neously with 4!105 B16-F1 melanomas cells in PBS into both
flanks (9–10 mice per individual cell pool). After 2 weeks
incubation, mice were sacrificed and tumour and lungs were
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isolated and weighed. Metastatic nodules in lungs were counted by
histological sectioning of the entire lungs (five lungs per individual
cell pool). Immunohistochemical and immunofluorescence analysis
was performed as described previously (Lehembre et al, 2008).
Paraffin sections were deparaffinized and antigen retrieval was
performed by autoclaving the samples in 10mM citrate buffer
pH 6.0. Sections were stained with 10mg/ml anti-Dlx2 antibody
(Ab 5726, Millipore) using the Perkin-Elmer TSA amplification
system according to the manufacturer’s instructions. Stainings were
evaluated on an AxioVert microscope and on a LSM 510 META
confocal microscope (Zeiss, Oberkochen, Germany).

Statistical analysis
Statistical analysis and graphs were generated using the GraphPad
Prism software (GraphPad Software Inc., San Diego, CA). All
statistical analysis was performed by unpaired, two-sided t-test.
Normality testing was performed using the Kolmogorov–Smirnov
test with Dallal–Wilkinson–Lillie for P-values.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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SUPPLEMENTAL INFORMATION 

 
Supplemental Figure Legends 

 

Supplemental Figure S1. TGF� induces Dlx2 expression in several cellular systems. 

(A) NMuMG, Py2T and B16 cells were treated for 6 days with TGF�. Dlx2 protein 

levels compared to untreated and Dlx2-overexpressing cells were determined by 

immunoblotting analysis. 

(B) Transient transfection of NMuMG cells with siRNA against Dlx2 (siDlx2) or 

control siRNA (siCTR) during TGF� treatment for the days indicated. Expression of 

Dlx2 mRNA was determined by quantitative RT-PCR and presented as fold changes 

compared to control (siCTR). 

(C) Stable lentiviral expression of three independent shRNAs against Dlx2 (shDLx2-

I, II and III) and one control shRNA (shCTR) in NMUMG cells. Expression of Dlx2 

mRNA was determined by quantitative RT-PCR and presented as fold changes 

compared to control (shCTR). 

 

Supplemental Figure S2. Dlx2 regulates TGF�RII gene expression. 

(A) Quantitative RT-PCR analysis of TGF�RII mRNA expression in shDlx2 cells and 

shCTR cells treated with TGF� for 0 or 6 days. TGF� treatment provokes an increase 

in TGF�RII mRNA expression in Dlx2-depleted cells as compared to shCTR cells. 

(B) Doxycyclin-inducible expression of Dlx2 in HEK293 cells represses TGF�RII 

promoter activity. Doxycycline-inducible Flp-In T-Rex HEK293 cells expressing 

either GFP or N-terminal HA-tagged murine Dlx2 were transfected with a firefly 

luciferase-reporter plasmid containing 255 bp of the TGF�RII promoter sequence and 

treated for 1 day with doxycycline. Luciferase activity values were normalized to co-

transfected Renilla luciferase activities.  

(C) Dlx2-expressing NMuMG cells show a reduced TGF�RII promoter-reporter 

activity compared to control cells when treated for 3 days with TGF�. Luciferase 

activities were quantified as described in panel B. 

(D) Dlx2 binds directly to the TGF�RII gene promoter in B16 melanoma cells. 

Chromatin immunoprecipitation of Dlx2 was performed on B16 melanoma cells 

treated with TGF� for 6 days. Immunoprecipitated DNA fragments were quantified 
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by quantitative PCR using primers covering basepairs -386 to -204 of the TGF�RII 

promoter region and primers covering an intergenic region as negative control.  

Data are shown as mean ± SD and are representative of at least two independent 

experiments. Statistical values are calculated by using an unpaired, two-tailed t-test. *, 

p � 0.05; **, p � 0.01; ***, p � 0.001. 

 

Supplemental Figure S3. Knockdown of Dlx2 expression does not inhibit Erk1/2 

and PKB phosphorylation. Immunoblotting analysis of phosphorylated Erk1/2 and 

PKB comparing shControl and shDlx2 cells. Immunoblotting for actin was used as a 

loading control. 

 

Supplemental Figure S4. Quantification of siRNA-mediated ablation of (A) 

betacellulin (BTC) and (B) EGFR expression in NMuMG cells transfected to express 

Dlx2 or transfected with a control vector (CTR). NMuMG cells were transfected with 

siRNA against betacellulin (siBTC-1 to 3), EGFR (siEGFR) or control siRNA 

(siCTR), and the mRNA levels of betacellulin and EGFR were determined by 

quantitative RT-PCR. Results are presented as fold changes compared to control 

(siCTR). 

(C) Dlx2 binds directly to the betacellulin promoter in B16 melanoma cells. 

Chromatin immunoprecipitation of Dlx2 was performed on B16 melanoma cells 

treated for 6 days with TGF�. Immunoprecipitated DNA fragments were quantified 

by quantitative RT-PCR using primers amplifying the promoter region of the 

betacellulin gene and primers covering an intergenic region as negative control.  

Data are shown as mean ± SD and are representative of at least two independent 

experiments. Statistical values are calculated by using an unpaired, two-tailed t-test. *, 

p � 0.05. 

 

Supplemental Figure S5. Dlx2 expression in B16 melanoma cells, tumors and 

metastases. 

(A) Dlx2 expression is induced by TGF� in B16 melanoma cells and reduced in 

expression by stable lentiviral expression of three independent shRNAs against Dlx2 

(shDlx2-I, II, III) but not in cells expressing a control shRNA (shRNA). Dlx2 mRNA 

levels were determined by quantitative RT-PCR and are presented as fold changes 
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compared to control (shCTR, no TGF�). 

(B) Histological sections of primary tumors and lung metastasis, formed after 

subcutaneous injection of shCTR or shDlx2 (shDlx2-I) B16 melanoma cells, were 

stained for Dlx2, and Dlx2 was visualized by immunofluorescence or 

immunohistochemical stainings as indicated. Representative microphotographs of 

shControl and shDlx2-I samples are displayed. Scale bar = 50 µm 

(C) Primary tumors formed by B16 melanoma cells either expressing shCTR or 

shDlx2 were analyzed for proliferation by counting Ki67-positive cells per mm2. 

 

 

 

Supplemental Material and Methods 

 

Cell lines 

The murine breast cancer cell line Py2T was established from a primary breast tumor 

of a MMTV-PyMT transgenic mouse. Py2T cells exhibit epithelial morphology under 

normal growth conditions. Upon treatment with TGF�, these cells undergo full EMT 

within 10 days (Waldmeier et al., unpublished results). 

�
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4 General conclusions and outlook 
The understanding of cancer progression in all its facets is essential to treat cancer 

patients effectively always with the ultimate goal in vision to not only prolong the 

lifespan of patients but to ultimately cure the disease. 

My work has focused on various stages of tumor progression. Cells, that have 

undergone EMT, establish a tumor or metastasis in an accelerated and more efficient 

way than epithelial cells. EMT cells do so, by inducing angiogenesis via increased 

VEGF-A production and secretion. Thereby, tumor-initiating cells prepare the needed 

microenvironment to grow out as a tumor or, at the end, to be able to establish 

metastases. De novo tumor formation is not only a cell autonomous event but requires 

multiple hits upon which one is the induction of angiogenesis. Cancer cells that are 

about to leave the primary site by undergoing EMT are exposed to signals that not 

only help them to progress but are also potentially harmful to them. TGFβ is such a 

signal that can induce EMT in cancer cells leading to tumor progression. On the other 

hand, TGFβ is also able to force cells into apoptosis. The transcription factor Dlx2 

prevents apoptosis in a negative feedback loop by repressing TGFβRI expression and 

by elevating survival signals via betacellulin-EGFR. In this way, cancer cells benefit 

from TGFβ’s tumor-promotive signaling. Cells that have undergone EMT also 

acquire the capacity to move efficiently, and I have described ephrinB2’s important 

role in cell motility. EphrinB2 seems to be needed to orchestrate the cellular 

movement of mesenchymal cells by regulating focal adhesion dynamics. 

The specific proteins in the described pathways could serve as therapeutic targets, 

although further validation of their effects during tumor progression has to be 

performed. As an example, an inhibitor targeting Dlx2 could restore sensitization to 

TGFβ’s apoptotic function in a cancer cell that is about to become more aggressive by 

undergoing EMT. However, Dlx2, as a transcription factor, is difficult to target. A 

prerequisite for the functionality of Dlx2 inhibition would be that the treated cancer is 

genetically able to execute TGFβ-induced apoptosis. Additionally, TGFβ signaling 

would have to be powerful enough to induce apoptosis not being overruled by strong 

survival signals. 

Another example of therapeutic targeting could involve ephrinB2. The migration 

and invasion capability of cells, that have undergone EMT, could be reduced by 
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interfering with ephrinB2 signaling. ephrinB2’s role in cancer cells is still not well 

characterized compared to its function in endothelial or neuronal cells. The 

mechanism how ephrinB2 changes focal adhesion dynamics has to be further 

investigated. Also, the reduced migration ability observed in cells with a knockdown 

for ephrinB2 has to be validated in vivo. Unfortunately, this could not be achieved yet 

due to experimental limitations within the chosen breast cancer model. However, 

since other groups have established ephrinB2’s role during tumor angiogenesis 

(106,114), targeting ephrinB2 would have dual effects: angiogenesis inhibition and 

less tumor cell migration. 

I made the most important observation, when I compared the tumorigenicity of 

EMT cells with their epithelial counterparts in mice. EMT cells initiate tumors with 

an increased efficiency and generate highly vascularized tumors. I have discovered 

that VEGF-A, the main driver of angiogenesis, plays a role already at very early 

stages of tumorigenicity and during metastasis. The reduction of VEGF-A secretion 

by cancer cells has a striking impact on how fast and efficiently cancer cells establish 

a tumor. Targeted therapy against VEGF-A is already used in the clinics and has 

proven to be effective for various cancer types, mostly in the late stages of tumor 

progression. My study suggests that treating cancer patients already at early stages 

with such a drug would help to reduce cancerous outgrowth at secondary sites. Also, 

treating patients after therapy with anti-angiogenic drugs could keep residual CSCs 

and cancer relapse in check. Inhibition of tumor angiogenesis would prevent CSCs 

from building up the microenvironment they need to reestablish a tumor. To evaluate 

the relevance of VEGF-A in patients’ CSCs, clinical trials specifically looking at 

metastasis formation and relapse are of importance. 
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