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SUMMARY 

Cell proliferation is an essential component of brain formation and homoeostasis, 

tightly regulated by cell cycle proteins. The members of the cyclin D family are 

responsible for the initiation of the cell cycle and thus key regulators of the cell 

cycle. Mammals posess three isoforms of Cyclin D (D1, D2 and D3). It has been 

shown, that injury to the adult brain leads to a substantial increase of local Cyclin 

D1 expression. This upregulation has been associated with the apoptosis of 

neurons, but also with the proliferation of glial cells, which contribute to the glial 

scar formation and to the inflammatory reaction. Subsequent treatment with 

pharmacological inhibitors of the Cyclin D1-dependent pathway have shown to 

decrease injury-induced lesion volume and glial scar formation, suggesting that 

modulation of cell cycle might be beneficial for the injury outcome. 

In this study, I took advantage of mice genetically deficient in the Cyclin D1 

gene to study its function in proliferating cells of the intact and injured cortex. I 

could show that the postnatal proliferation of microglia is completely impaired 

by the absence of Cyclin D1. In contrast, the proliferation of oligodendrocyte 

progenitor cells (OPCs) was independent of Cyclin D1 at early postnatal stages 

and only reduced during adult stages. This finding suggests a switch in the 

requirement for distinct cell cycle proteins driving proliferation of OPCs during 

development and in the adult. Using an injury model leading to local 

neurodegeneration, I could show that the deficiency for Cyclin D1 reduces the 

size of the lesion three days following insult to the adult brain cortex. In parallel, 

the injury-induced Proliferation was significantly reduced within the lesion site. 

A closer examination of the glial cell types within the neurodegenerative area 

revealed that the proliferation of microglia and OPCs was impaired in the Cyclin 

D1 knockout animals. Finally, I provided evidence that Cdk4 but not Cdk2 or 

Cdk6 are required for injury-induced proliferation of OPCs thus indicating Cdk4 

most likely to be the interaction partner of Cyclin D1. 
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ZUSAMMENFASSUNG 

Die Zellproliferation ist ein essentieller Bestandteil der Entwicklung und der 

Homeostase des Gehirns, welche durch Zellzyklusproteine reguliert werden. Die 

Mitglieder der Cyclin D-Familie sind für die Initiierung des Zellzyklus 

verantwortlich und somit Schlüsselregulatoren des Zellzyklus. Säugetiere 

besitzen drei Isoformen von Cyclin D (D1, D2, D3). Es konnte gezeigt werden, 

dass eine Hirnverletzung zu einer erheblichen Zunahme an Cyclin D1-Expression 

führt. Diese Aufregulierung wurde nicht nur mit dem Absterben von 

Nervenzellen assoziiert, sondern auch mit der Einleitung der Vermehrung 

(Proliferation) glialer Zellen, welche zur Vernarbung des Gewebes und zur 

Freisetzung von Entzündungsfaktoren beitragen. Anschliessende Behandlungen 

mit pharmakologischen Inhibitoren des Cyclin D1-abhängigen Signalwegs haben 

gezeigt, dass sie zur Reduktion des Läsionsvolumens und der Vernarbung führen, 

was nahelegt, dass die Modulation des Zellzyklus sich positiv auf den Ausgang 

einer Verletzung auswirkt. 

In dieser Studie habe ich eine Mauslinie verwendet deren cyclin D1-Gen 

entfernt wurde, um die Notwendigkeit von Cyclin D1 in proliferierenden Zellen 

des intakten und verletzten Kortex zu untersuchen. Dabei konnte ich zeigen, dass 

der Verlust von Cyclin D1 die postnatale Proliferation der Mikroglia stark 

beeinträchtigt. Im Gegensatz dazu war die Proliferation von Oligodendrozyten-

Vorläuferzellen (OPCs) während der frühen postnatalen Phase Cyclin D1-

unabhängig und nur während der adulten Phase reduziert. Dieses Resultat 

suggeriert einen Wechsel des Bedarfs  an spezifischen Zellzyklusproteinen 

zwischen der Entwicklung und der Erwachsenenphase. Mittels eines 

Verletzungsmodells, welches zu lokaler Neurodegeneration im Kortex führt, 

konnte ich am dritten Tag nach der Initiierung der Verletzung zeigen, dass die 

Grösse der Läsion in der Cyclin D1-Mutante kleiner ist. Parallel dazu war die 

verletzungsbedingte Proliferation innerhalb der Läsion stark reduziert. Eine 
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genauere Untersuchung der glialen Zelltypen innerhalb der neurodegenerativen 

Läsion offenbarte, dass die Proliferation der Mikroglia und OPCs in der Cyclin 

D1-Mutante beeinträchtigt war. Zudem konnte ich zeigen, dass die 

verletzungsbedingte Proliferation der OPCs von Cdk4, aber nicht von Cdk2 oder 

Cdk6, abhängig ist, was darauf hindeutet, dass Cdk4 der Interaktionspartner von 

Cyclin D1 ist. 
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INTRODUCTION 

1. INTRODUCTION 

1.1 General introduction 

The brain is the center of the nervous system in mammalian animals and one of 

the most complex organs. Especially the neocortex with its six-layered 

architecture and compartmentalization into specialized areas which in turn are 

characterized by a particular connectivity and cellular composition, represents 

this complexity. Understanding the development and the function of the 

neocortex remains a major challenge in neuroscience. The developmental 

processes of the brain are controlled by complex regulatory mechanisms that 

coordinate proliferation, fate specification and differentiation during 

neurogenesis and gliogenesis (Dehay and Kennedy, 2007; Rowitch and 

Kriegstein, 2010). 

The development of the central nervous system (CNS) starts with the 

processes of primary neurulation during embryogenesis. At the end of 

neurulation, the neural plate and neural tube are composed of a single layer of 

cells, neuroepithelial cells, which form the neuroepithelium. Neuroepithelial 

cells, which can be considered stem cells, first undergo symmetric, proliferative 

divisions, thereby increasing their number (Rakic, 1995). These divisions are 

followed by asymmetric divisions, each of which generates another 

neuroepithelial cell and either a neuron or, alternatively, a progenitor cell that 

will undergo mitosis at a significant distance from the ventricular surface (basal 

progenitor) and which will generate neurons via a symmetric division 

(Haubensak et al., 2004). With the generation of neurons, the neuroepithelium 

transforms into a tissue with numerous cell layers, and the layer that lines the 

ventricle is referred to as the ventricular zone. Subsequently, the neuroepithelial 

cells are transformed into radial glial cells which undergo active proliferation and 

serve as primary multipotent progenitors leading to the initiation of lineages 
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forming both neurons and glial cells (Anthony et al., 2004; Pinto and Gotz, 2007) 

(Fig. 1-1). Radial glial cells have the ability to self-renew and to generate 

intermediate progenitors and terminally differentiated cells until they transform 

into parenchymal astrocytes, ependymal cells, or continue their stem cell activity 

(Kriegstein and Alvarez-Buylla, 2009). Lineage tracing experiments showed that 

radial glia give rise to adult neural stem cells (NSC, also referred to as type B 

cell) in the subventricular zone (SVZ) (Merkle et al., 2004) (Fig. 1-1). 

The mature mammalian brain is characterized by a relatively constant number 

of glia and neurons. Nevertheless, there is a low rate of constitutive gliogenesis 

and a more restricted neurogenesis in the adult brain (Rakic, 2002). This 

constitutive proliferation reflects glial and neuronal turnover, rather than actual 

brain growth. Neurogenesis in the adult CNS occurs primarily in two germinal 

 

 

Fig. 1-1 Neurogenesis and gliogenesis in the mammalian CNS 
Progression from the embryo to the adult is shown from left to right. During early development, 
neuroepithelial cells in the VZ generate neurons and become transformed into radial glial cells. 
These produce intermediate progenitor cells that become neurons, oligodendrocyte progenitor 
cells (OPCs) or astrocytes. The OPCs differentiate into mature oligodendrocytes but they also 
maintain a self-renewal capacity to produce further oligodendrocytes during adulthood. In 
addition, radial glia cells also produce ependymal cells. In the adult, radial glial cells persist as 
neural stem cells which generate transit-amplifying progenitors. These in turn, are able to 
produce OPCs or migrating neuroblasts which differentiate into new neurons (adapted from 
Rowitch and Kriegstein., 2010). 
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zones: the SVZ and the subgranular zone (SGZ) of the dentate gyrus (Taupin and 

Gage, 2002). NSCs of the SVZ and SGZ give birth to progenitor cells which 

migrate to their target region where they differentiate into neurons and integrate 

into the neuronal network (Fig. 1-1). Outside these “typical” germinal niches no 

constitutive neurogenesis takes place under normal conditions in the 

parenchyma. In contrast, glial cells are generated in the germinal zones as well as 

in non-germinal sites, such as in the grey matter where oligodendrocyte 

progenitor cells (OPCs) exhibit a significant proliferative activity (Dawson et al., 

2003; Buffo et al., 2005) (Fig. 1-1). 

Injury to the CNS has shown to alter the rate of cell proliferation in the mature 

brain. NPCs proliferate and their progeny may be recruited to sites of brain injury 

(Ramaswamy et al., 2005). This injury-proliferation is not exclusive to neuronal 

progenitor populations, as gliogenesis has also been shown to increase following 

injury. Activated astrocytes and proliferating microglia undertake active 

responses directed at isolating and clearing the injured area, while OPCs are 

induced to proliferate in order to produce new oligodendrocytes (Franklin and 

Ffrench-Constant, 2008). 

It is well known that proliferation is tightly regulated by cell-cycle proteins. 

Following injury to the CNS, cell cycle proteins are upregulated in neurons, 

astrocytes and microglia (Di Giovanni et al., 2005; Byrnes and Faden, 2007; 

Byrnes et al., 2007). Cyclin D is a key cell cycle protein which links extracellular 

mitogenic signals to the core cell cycle machinery and drives the progression of 

the cell cycle through the G1 cell cycle checkpoint (Sherr, 1995). Much is known 

about the involvement of Cyclin D1 in neurogenesis but not for gliogenesis. For 

example it is known that Cyclin D1 promotes neurogenesis in the developing 

spinal cord and proliferation of neuronal stem cells in the SVZ and SGZ (Ma et 

al., 2010; Lukaszewicz and Anderson, 2011). In addition, nonoverlapping 

expression of Cyclin D1 and D2 has been reported in the developing mouse 
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forebrain neuroepithelium, suggesting that these isoforms may differentially 

regulate proliferation and differentiation (Kowalczyk et al., 2004; Glickstein et 

al., 2007a; Glickstein et al., 2007b). 

The overall goal of my thesis was to determine the glial cell types expressing 

Cyclin D1 and to further investigate its function in proliferating glial cells in the 

intact and injured cortex of postnatal mice. 

 

1.2 G1-phase molecules of the cell cycle machinery 

The cell cycle is controlled by complex molecular mechanisms and progression 

through the cell cycle requires sequential activation of cyclin-dependent kinases 

(CDKs) and their regulators, the cyclins. The D-type cyclins are part of the cell 

cycle machinery but in contrast to other cyclins, which are induced periodically 

during cell cycle progression, the expression of D cyclins is controlled largely by 

mitogenic or anti-mitogenic signals during G1 phase (Fig. 1-2A). Thus, D-

cyclins are regarded as links between the extracellular environment and the core 

cell cycle machinery (Murray, 2004). When quiescent G0 cells are stimulated by 

mitogens, D cyclins are expressed and assemble with their catalytic partners 

CDK4 or CDK6 such that complexes progressively accumulate (Fig 1-2B). 

These complexes then initiate the phosphorylation and subsequent inactivation of 

the retinoblastoma tumor suppressor (RB) at mid G1 phase (Sherr, 1993; Sherr 

and Roberts, 2004). In its unphosphorylatedstate RB blocks the G1/S-phase 

transition by binding to the transcription factor E2F (E2 promoter binding factor) 

and repressing it. Phosphorylation of RB releases it from E2F, thus enabling E2F 

to activate genes whose products are involved in DNA synthesis. E2F also 

transactivates cyclin E which then enters into a complex with CDK2 further 

accelerating complete phosphorylation of RB at late G1 phase. In addition, D-

type cyclins indirectly affect CDK2 activity by titration of endogenous CDK 
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inhibitors from cyclin E-CDK2 complexes (Sherr and Roberts, 1999). This shift 

from cyclin D-CDK4/6 to cyclin E-CDK2 accounts for the loss of dependency on 

mitogenic factors. Taken together, a wave of transcriptional activity is generated 

to proceed through the restriction point at G1/S transition and cells that went 

through the restriction point no longer require mitogenic stimuli to undergo cell 

division. 

Following the G1/S phase transition, RB protein is maintained in the 

phosphorylated state throughout the S, G2, and M phases by CDK2- and CDK1-

cyclin complexes. After cells complete mitosis and enter early G1 or G0, the 

decline in CDK-cyclin levels and the action of phosphatases lead to 

dephosphorylation of the RB protein which inhibits E2F activity during early G1 

of the next cycle (Sherr, 1993; Sherr and Roberts, 1999; Malumbres and 

Barbacid, 2005). 

 

 

Figure 1-2: Cyclin D1 is a key protein of the cell cycle  
A Schematic representation of the cell cycle. G0, M, G1, S, and G2 refer to the quiescent, 
mitosis, first gap, DNA synthesis, and second gap phases of the cell cycle, respectively. The 
decision to replicate is made at the restriction point (R) during the transition from G1 to S phase. 
The mitogen-dependent phase lasts through G1 until it reaches R. B Schematic representation 
of the processes during mitogen-dependent phase. Mitogenic signals push the cell into a 
proliferative mode by initiating transcription of D cyclins which associates with CDK4/6. This 
complex phosphorylates RB which releases E2F leading to synthesis of cell cycle genes. 

 

 

 

 

 

 

 

 

 

—  5  — 



INTRODUCTION 

1.3 Expression of G1-phase cell cycle proteins within 
the CNS 

In the mammalian CNS there are three different cyclin D isoforms which drive 

the progression of the cell cycle through the G1 cell cycle checkpoint (cyclins 

D1, D2, and D3). Most expression data in the CNS report on Cyclin D1 and 

Cyclin D2. Mapping of expression of these two proteins from E12.5 up to P60 

indicates that these cyclins define separate progenitor pools in embryonic brain 

(Glickstein et al., 2007a). Analysis in the embryo revealed that Cyclin D1 and 

Cyclin D2 are expressed in different subsets of radial glial cells (Glickstein et al., 

2009). In the adult brain Cyclin D1 is expressed in scattered cells throughout the 

cortex, the striatum and the hippocampus. Surprisingly cyclin D1 was also found 

in mature, postmitotic neurons such as postmitotic pyramidal neurons of the CA1 

region of the hippocampus and pyramidal neurons in layer III and V of the 

neocortex (Glickstein et al., 2007b). The authors believe that it is unlikely that 

the cyclin supports a cell cycle function in these postmitotic cells. Upregulation 

of cyclin D1 has been associated with neuronal apoptosis in other mature 

systems. However, because the CA1 labelling seen here was extensive and was 

found in normal, early adult brain, they propose that cyclin D1 expression there 

would be less likely to be proapoptotic.  

In a subsequent publication Koeller et al. (Koeller et al., 2008) characterized 

the regions and cell types exhibiting basal Cyclin D1 expression within the adult 

brain and spinal cord. They detected neuronal Cyclin D1 primarily in large 

neurons. In the neocortex immunolabelling predominantly marked neurons of the 

layers II-III and V-VI. Based on the morphology and location of the neurons, the 

authors proposed that a significant proportion of the neurons were excitatory 

neurons. This could be clearly shown in the hippocampus: where glutamatergic 

CA1 field neurons were labeled for Cyclin D1. This was further supported by the 
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fact that Cyclin D1 was not detected in inhibitory neurons as no double-labeling 

could be observed with the inhibitory neuron markers GABA, parvalbumin or 

somatostatin. The authors also suggested that Cyclin D1 is expressed in 

microglia as they detected immunopositive cells with small dense nuclei within 

the neocortex.. Additional examinations in the rat showed Cyclin D1 

immunopositive neuronal nuclei in the rat cortex and in other brain regions. 

Interestingely, examinations of human brain tissue revealed that in in comparison 

to both mouse and rat, no Cyclin D1 labeling was observed in the human 

neocortex (Koeller et al., 2008). 

 

1.4 Function of Cyclin D and its interaction partners 
within the CNS 

Each of the D cyclins may perform unique, cell type-specific functions. To 

address the functions of Cyclin D1 in development, mice lacking Cyclin D1 were 

generated and phenotyped (Fantl et al., 1995; Sicinski et al., 1995). The mice 

were viable and displayed narrow, tissue-specific abnormalities such as reduced 

body size, retinal hypoplasia and underdeveloped mammary glands (Fantl et al., 

1995; Sicinski et al., 1995). In addition to the physical defects, Sicinski et al. 

reported a neurological abnormality in knockout mice indicated by a leg-clasping 

reflex. Thereby the mice retract their hind limbs toward the trunk when they are 

lifted by their tails, in contrast with wild-type and heterozygous littermates, 

which invariably respond by extending their legs. Although the mice are 

neurologically impaired, no distinct neuroanatomical abnormality has been 

identified. Nevertheless, they could not exclude that minor neuroanatomical 

defects, sufficient to cause these neurological symptoms, could have escaped 

their attention. 
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Cyclin D2-deficient mice show abnormalities in the cerebellum (Huard et al., 

1999). In addition the female knockouts are sterile due to abnormal gonadal 

development while male mice have underdeveloped testes (Sicinski et al., 1996). 

Lastly, cyclin D3-deficient mice showed impaired development of immature T 

cells (Sicinska et al., 2003). 

The function of Cyclin D1 and Cyclin D2 during neurogenesis has been 

extensively examined. As it is known that the size of the brain is reduced in 

Cyclin D1-/- mice (Fantl et al., 1995; Sicinski et al., 1995) and that Cyclin D1 is 

expressed in post-mitotic neurons in the forebrain of adult mice (Tamaru et al., 

1994; Glickstein et al., 2007a) the cortex thickness was analysed in Cyclin D1-

knockout mice (Glickstein et al., 2007b). The authors could observe an overall 

thinning of the cortex in knockout animals while the distribution pattern and 

densities of interneuron subtypes showed no differerence (Glickstein et al., 

2007b). In contrast, mice deficient for cyclin D2 displayed not only cortical 

thinning but also a selective reduction of the parvalbumin interneuron subtype. 

Subsequent investigations revealed that the loss of cyclin D2, but not of cyclin 

D1, could be associated with reduced proliferation of neural progenitors: while 

the duration of G1-phase was lengthened, the S-phase was shortened in neural 

progenitors, leading to a loss of intermediate progenitor cells (Glickstein et al., 

2009). Thus Cyclin D2 is important for appropriate expansion of the intermediate 

progenitor pool (Glickstein et al., 2009). Another study which addressed the 

function of Cyclin D1 and Cyclin D2 during adult neurogenesis, showed that 

neuronal proliferation in the hippocampus, was completely inhibited in cyclin D2 

mutants, but was unaffected in cyclin D1 mutants (Kowalczyk et al., 2004). 

Taken altogether, one can state that Cyclin D2 (but not Cyclin D1) plays an 

important role during neurogenesis. 

Compared with Cyclin D1 and Cyclin D2, little is known about the function of 

Cyclin D3 within the CNS. The fact that double knockout of Cyclin D2 and 
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Cyclin D1 is not compensated by Cyclin D3 expression in brain (Ciemerych et 

al., 2002) and that cortical neuroepithelial cells still proliferate in the absence of 

all D-cyclins (Kozar et al., 2004) suggest that cyclin D3 does not play a 

significant role in embryonic cortex. 

To further dissect the specific functions of the D cyclins, mice lacking two of 

the three cyclin Ds were analyzed. In the tissues of these double-knockout mice, 

the remaining intact D cyclin became ubiquitously expressed and afforded nearly 

normal development of organs (Ciemerych et al., 2002). These observations 

strongly supported the notion that the functions of the D Cyclins are largely 

exchangeable. However, in some tissues the remaining Cyclin D could not fully 

rescue the defect or was not even upregulated. A further study, in which a knock-

in strain of mice expressed Cyclin D2 in place of Cyclin D1 showed that the 

ectopically expressed Cyclin D2 was able to nearly completely substitute for 

cyclin D1 (Carthon et al., 2005). But also in this case the rescue of cyclin D1-null 

phenotype was incomplete, indicating non-redundant functions of these proteins. 

One interpretation of these findings is that while the two cyclins can perform 

similar functions in most Cyclin D1-dependent compartments, Cyclin D2 is less 

efficient than Cyclin D1 in some of them. 

It is proposed that the acquisition of multiple D cyclins during evolution may 

have allowed mammalian cells to drive optimal proliferation of the diverse array 

of cell types. Thus, how a progenitor divides is likely to be directed by the 

cooperation of external and intrinsic regulators to integrate cell divisions with 

differentiation. 

Concerning the interaction partners of Cyclin D1, generation of mice deficient 

for Cdk2 (Berthet et al., 2003; Ortega et al., 2003), Cdk4 (Rane et al., 1999; 

Tsutsui et al., 1999) and Cdk6 (Malumbres et al., 2004) hav been previously 

reported. Phenotyping of these mouse lines showed tissue-specific abnormalities 

such as reduced postnatal proliferation of pancreatic β-cells (Rane et al., 1999; 
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Tsutsui et al., 1999; Martin et al., 2005) or impaired hematopoiesis (Malumbres 

et al., 2004). 

Most of the studies in the intact CNS that investigate on the function of Cdk2, 

Cdk4 or Cdk6 are related to neurogenesis but not to gliogenesis. As an exception 

to it, Caillava et al showed that during CNS development loss of Cdk2 does not 

affect OPC cell cycle, oligodendrocyte cell numbers, or myelination (Caillava et 

al., 2011). On the “neurogenesis side”, Jablonska et al. could show that knockout 

of Cdk2 significantly affects proliferation of NPCs in the SVZ (Jablonska et al., 

2007). Other studies on Cdk4 and Cdk6 showed that Cdk6 but not Cdk4 is 

essential for NPC proliferation within the neurogenic niches. Specifically, Cdk6 

deficiency prevents the expansion of NPCs by lengthening their G1 phase 

duration and thereby reducing proliferation. The authors suggest that Cdk6 is one 

intrinsic key molecular regulator of this neurogenesis in the adult. Taken 

together, it has been shown that the cyclin-dependent kinases Cdk2 and Cdk6 

play important roles in neurogenesis. 

 

1.5 Glial cell lineages in the adult cortex 

Brain tissue is composed of cells that derive from two major cell lineages: 

neuronal cells and glial cells. In the mammalian brain, glial cells are estimated to 

occupy half of the brain space and outnumber neurons by about ten to one 

(Alberts, 1989; Kettenmann and Ransom, 1995), reflecting the importance of 

these cells. The name glia, which is Greek for glue, is based on the perceived 

function of these cells as structural cohesive elements within the brain. 

Gliogenesis, the development and maturation of glia, occurs during the later 

stages of cortical development that follow neurogenesis. 

Glial progenitors, which are generated from radial glial cells and SVZ 

glioblasts, migrate through the brain parenchyma where they eventually 
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differentiate into different types of macroglial cells including astrocytes and 

oligodendrocytes. Microglia, the resident macrophages of the brain, arise in the 

bone marrow from hematopoietic stem cells which first differentiate into 

monocytes before travelling to the brain, where they settle and fully differentiate. 

 

1.5.1 Astrocytes 

Astrocytes perform different tasks such as structural support for neurons, 

formation of the blood brain barrier, provision of nutrients to the nervous tissue 

and maintenance of extracellular ion balance (Barres, 2008). They are stellate-

shaped cells with a highly ramified cytoskeleton and small cell body. During 

development radial glia and perinatal SVZ glioblasts both give birth to cortical 

astrocytes (Jessen and Richardson, 2001), which themselves quickly exhaust 

their proliferation capacity in the postnatal brain (Burns et al., 2009). The 

astrocytes within the grey matter are termed “protoplasmic astrocytes”. They 

possess many fine processes that contact blood vessels, forming so called 

“perivascular” endfeet, and also multiple contacts with neurons. Protoplasmic 

astrocytes are organized in non-overlapping spatial domains, with overlap of only 

the most peripheral processes of neighbouring astrocytes (Bushong et al., 2002). 

The cytoskeleton and process morphology of immature astrocytes are primarily 

made up of the intermediate filaments vimentin and nestin (Eliasson et al., 1999). 

As astrocytes mature, vimentin and nestin are gradually replaced by another 

intermediate filament, glial fibrillary acidic protein (GFAP) (Eliasson et al., 

1999). Therefore, GFAP is a characteristic protein in mature astrocytes of the 

adult brain. Although astrocytes have been shown to express GFAP, they do not 

always label positive for GFAP. Several explanations for this phenomenon have 

been put forth. One hypothesis is that GFAP expression may be so low within a 

subset of cells that it is virtually undetectable (Walz, 2000). Support for this 
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argument comes from models of brain trauma and injury. Trauma-induced brain 

injury that leads to reactive gliosis is characterized by an increase in GFAP 

immunoreactivity without increasing cell proliferation, suggesting that existing 

cells that did not previously appear to express GFAP may, under these 

circumstances, do so (Walz, 2000). Another explanation for GFAP negative 

astrocyte-like cells is that immunohistological detection methods may only 

recognize GFAP that is incorporated into the astrocyte cytoskeleton and fail to 

stain the soluble subunits, thereby providing a false negative for the presence of 

GFAP (Stichel et al., 1991). Some studies have used the calcium binding protein 

S100b, which is expressed in mature astrocytes (Raponi et al., 2007). However, 

S100b only labels the cell body, and, therefore, is not optimal for identifying 

complete cellular morphology. 

 

1.5.2 Oligodendrocytes 

Oligodendrocytes are specialized cells important for myelination which leads to 

insulation of axons and thereby to fast axonal signalling. The morphology of 

oligodendrocytes reveals an elaborate array of branched projections and a small 

cell body (Pfeiffer et al., 1993). An individual oligodendrocyte can myelinate 

numerous axons. The myelin sheath itself is not continuous down a single axon 

as there are gaps between the myelin sheaths. These gaps, termed Nodes of 

Ranvier, are dense in sodium voltage-gated ion channels which allow 

regeneration of action potentials in a saltatory manner (Waxman and Ritchie, 

1993; Rosenbluth, 2009). 

The heterogeneity of oligodendrocytes is well known. Classical morphological 

studies done with Golgi technique suggested that the oligodendrocyte population 

includes four morphological subtypes in the white matter (del Rio-Hortega, 

1928). Thus, oligodendrocytes derive from OPCs that have experienced a series 
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of developmental changes before acquiring a mature phenotype (Pfeiffer et al., 

1993). Specific markers characterize the successive stages of oligodendrocyte 

maturation. First, expression of Olig2 (a basic helix–loop–helix transcription 

factor required for oligodendrocyte lineage specification) within adult 

multipotent progenitor cells promotes development into an OPC (Ligon et al., 

2006).  

Typically, adult OPCs express the proteoglycan nerve/glial antigen 2 (NG2) 

and the alpha subtype of the platelet-derived growth factor receptor (PDGFRα). 

Adult OPCs are capable to further develop into postmitotic, premyelinating 

APC+ oligodendrocytes which in turn differentiate into mature myelinating 

oligodendrocytes expressing both APC and the myelin basic protein MBP (Bhat 

et al., 1996; McTigue et al., 2001) (Fig. 1-3). Most of the markers mentioned 

above are expressed consecutively, but Olig2 is expressed throughout the entire - 

oligodendroglial lineage (Ligon et al., 2004; Ligon et al., 2006). While 99% of 

the adult NG2 cells express Olig2, about 17% of the Olig2 cell population 

expresses NG2 (Ligon et al., 2006). Moreover, analysis of mice lacking Olig2 

function demonstrate a failure of NG2 cell development at embryonic and 

perinatal stages (Ligon et al., 2006). Taken together, Olig2 is required for proper 

NG2 cell development. 

Oligodendrocyte development occurs in three distinct waves. In the first wave, 

oligodendrocyte precursor cells (OPCs) appear in the medial ganglionic 

eminence (MGE) and anterior entopeduncular area (AEP) at around E12.5 

(Kessaris et al., 2006). They arrive in the cortex at around E16, and mature into 

myelinating oligodendrocytes postnatally (Richardson et al., 2006). A second 

wave of OPCs originates from the lateral ganglionic eminence (LGE) and caudal 

ganglionic eminences at around E14.5 (Kessaris et al., 2006). Finally, a third 

wave of OPCs has been observed to emerge in the dorsal telencephalon during 

postnatal stages (Kessaris et al., 2006).  
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Figure 1-3: Olig2 and NG2 function in adult development  
Olig2 is expressed in adult multipotent progenitor cells promoting development into 
oligodendrocyte lineage and thus differentiation to NG2+ oligodendrocyte progenitor cell (OPC), 
the most prevalent cycling cell in the adult brain. These in turn will further differentiate into 
premyelinating APC+ oligodendrocytes capable to develop into mature myelinating 
oligodendrocytes which express MBP (adapted from Ligon et al., 2006a). 
 

 

The study of adult oligodendrocyte progenitor cells (OPCs) started to rise with 

the development of antibodies against NG2 and so they came to be known as 

“NG2 cells”. They were first identified in the rat optic nerve and later in other 

parts of the adult mammalian CNS (Ffrench-Constant and Raff, 1986). Adult 

OPCs are more or less uniformly distributed in the CNS, comprising ~5% of all 

cells in the adult rodent CNS (Pringle et al., 1992; Nishiyama et al., 1996; 

Nishiyama et al., 2009). It is hypothesized that they are glial precursors fulfilling 

a homeostatic role in the adult CNS, replacing oligodendrocytes and possibly 
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astrocytes that might die as a result of injury or disease or through normal wear 

and tear of the tissue. 

Adult OPCs represent the main proliferating cell population in the adult brain 

and continue to generate new oligodendrocytes during adulthood for an extended 

period, though at a steadily decreasing rate (Levison et al., 1999; Nishiyama et 

al., 2002; Dawson et al., 2003). By following the fate of dividing NG2 cells 

using “Cre-lox” technology in adult transgenic mice it could be shown that at 8 

months after birth new myelinating oligodendrocytes are still being formed 

(Dimou et al., 2008; Rivers et al., 2008; Psachoulia et al., 2009). Moreover, 

cumulative BrdU labelling experiments in adult animals revealed that within the 

corpus callosum (white matter) and the cerebral cortex (grey matter) 

approximately 50% of all NG2cells are actively engaged in the cell cycle 

(Psachoulia et al., 2009). The authors suggested that there are distinct subsets of 

adult OPCs, a mitotically active population and a separate quiescent population 

(Fig. 1-4). 
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Figure 1-4: The birth and behaviour of NG2 glia 
Adult forebrain NG2 cells (OPCs) are derived from multipotent neural progenitor cells. 
Approximately half of all NG2 cells represent a quiescent NG2 cell population which appears at 
early postnatal phase and persists throughout life. The function of these cells is unknown. The 
other half of the NG2 cell population remains in cycle throughout life. One major function of the 
proliferating OPCs is to generate new oligodendrocytes throughout life (adapted from 
Psachoulia et al., 2009). 
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1.5.3 Microglia 

Microglia were first described by del Rio-Hortega in the early 20th century (del 

Rio-Hortega, 1932). They belong to the mononuclear phagocyte lineage and are 

cell body and active processes but become quiescent (Cuadros and Navascues, 

1998; Prinz and Mildner, 2011). In this resting state, adult microglia 

continuously sense the environment and are involved in the local immune 

surveillance (Nimmerjahn et al., 2005). 

 

1.6 Injury to the adult brain 

1.6.1 Primary and secondary injury mechanisms 

CNS injuries cause cell death and neurological dysfunction through both direct 

physical disruption of tissue termed primary injury, as well as through delayed 

cellular mechanisms that cause progressive white and grey matter damage which 

is termed secondary injury (Loane and Faden, 2010). 

Primary injury events encompass the immediate and irreversible tissue 

damage localized in areas that absorb mechanical energy following the initial 

the primary immune defence cells residing in the CNS, representing 5-20% of the 

adult CNS cells (Gehrmann et al., 1995; Aloisi, 2001). 

It is commonly believed that microglia, which derive from bone marrow cells, 

migrate as microglial precursors from the blood circulation into the CNS during 

early development and that they may continue to invade the CNS over the course 

of life, particularly after injury (Aloisi, 2001; Graeber and Streit, 2010). It has 

been shown that the steady-state turnover of microglia in the intact adult CNS 

relies on slowly proliferating resident microglia but also on precursor cells 

recruited from the circulating monocyte pool (Lawson et al., 1992). Once 

residing within the CNS, microglia develop a ramified morphology with a small 
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traumatic insult to the brain (Loane and Faden, 2010). It affects neurons, glia and 

blood vessels as a result of shearing, focal contusions and hematomas (Saatman 

et al., 2008). 

Secondary injury develops latently including reversible cellular mechanisms 

that evolve and expand over a period of hours, days and weeks following the 

primary injury evoked by the initial trauma (Graham et al., 2000; Loane and 

Faden, 2010). The secondary injury cascades are responsible for a significant 

component of the neurodegeneration and thus are thought to account for the 

development of many of the neurological impairments observed after brain injury 

(McIntosh et al., 1996; Loane and Faden, 2010). Some of the more important 

secondary injury mechanisms involve release of neurotransmitters (such as 

excitatory amino acids), intrinsic neuronal cell death pathways, initiation of 

inflammatory and immune processes (microglial activation), and secondary 

neurotoxicity (Graham et al., 2000; Loane and Faden, 2010). Another principal 

secondary injury mechanism is the activation of the cell cycle (Byrnes and 

Faden, 2007; Byrnes et al., 2007). 

 

1.6.2 Astrocytic response following injury 

Following brain injury astrocytes become activated thereby extending their 

processes and becoming hypertrophic. They also upregulate synthesis of the glial 

fibrillary acidic protein (GFAP) (Fitch and Silver, 2008) and begin to proliferate, 

leading to hyperplasia of astrocytes (Amat et al., 1996; Norton, 1999). These 

reactive astrocytes, migrate to the lesion border where they form a dense web 

with their plasma membrane extensions (a process called astrogliosis), 

culminating in the formation of a glial scar (Fawcett and Asher, 1999; Fitch and 

Silver, 2008) (Fig. 1-5). The glial scar surrounds the lesion and seals the injury 

site to prevent cytotoxic spread. At the same time it inhibits the regeneration of 
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axons from uninjured parts of the brain into or through the lesion (Davies et al., 

1999). Classically, reactive glial cells have been identified as the main inhibitor 

to regeneration, such as axon re-growth or cell replacement, following brain 

injury (Buffo et al., 2010). In regard to the regeneration and functional recovery 

of injured brain regions this inhibitory effect is seen as detrimental. But on the 

other hand, such an inhibitory action would help to confine the extension of the 

damage from the lesion to healthy parts of the brain. Indeed, mature functional 

networks depend on the specificity of their connection and architecture, a 

specificity that can only be acquired after a long and complex developmental 

process. Thus, astrocytes and other cells forming the glial scar limit further 

destabilization of the remaining neural networks by preventing random growth of 

axons and the formation of aberrant connections with the damaged area seal the 

injury site to prevent cytotoxic spread at the same time inhibiting neuronal 

regeneration (Harel and Strittmatter, 2006; Sofroniew and Vinters, 2010). 

 

1.6.3 Proliferation of OPCs following injury 

Norton had postulated that it is likely that a population of quiescent 

oligodendrocyte progenitors cells exists throughout the parenchyma ready to 

provide new cells for repair when needed (Norton, 1999). He based his 

conclusion on studies that show that cells that remyelinate lesions in adult brain 

are endogenous progenitors (Gensert and Goldman, 1997) and that they are not 

recruited over great distances (Franklin et al., 1997). Later on, it could be shown 

that NG2 cells undergo proliferation in response to different insult to the CNS, 

such as stab injury (Watanabe et al., 2002; Hampton et al., 2004; Lytle et al., 

2009) (Fig. 1-5). Moreover, studies by Buffo et al. demonstrated that Olig2+ glial 

progenitor cells constituted the largest pool of dividing cells around stab wound 
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lesions, and that the majority of the proliferating NG2-positive glia were Olig2-

positive (Buffo et al., 2005). 

 

1.6.4 Activation and proliferation of microglia following injury 

Quiescent in the healthy CNS, microglia are highly sensitive to pathologic 

changes and are the first cell type to react after injury to the adult cerebral cortex 

(Kim and de Vellis, 2005; Nimmerjahn et al., 2005; Hanisch and Kettenmann, 

2007). Thereby, microglia switch their phenotype from resting microglia which 

 

Figure 1-5: Model of injury mechanism following demyelination to the white matter 
a Normal adult white matter contains astrocytes, microglia and oligodendrocyte precursor cells 
(OPCs), in addition to myelinating oligodendrocytes. b Following demyelination (in which 
oligodendrocytes and myelin are lost) the microglia and astrocytes become activated, which in 
turn leads to the activation of any OPCs in the vicinity. c The activated OPCs respond to 
mitogens and pro-migratory factors that are generated predominantly by reactive astrocytes and 
inflammatory cells. The proliferation and migration of the OPCs results in the demyelinated area 
becoming populated by an abundance of OPCs. Macrophages also start to remove the myelin 
debris. (adapted from Franklin and ffrench-Constant, 2008). 
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display ramified cellular morphologies to more activated forms displaying 

hypertrophic or bushy morphologies (Soltys et al., 2001). Activated microglia 

migrate to the lesion site, proliferate and become able to prime naïve T cells 

(Aloisi et al., 2000; Vilhardt, 2005) (Fig. 1-5). In parallel, they secrete pro-

inflammatory cytokines, chemokines, neurotrophic and cytotoxic factors and 

modulate the local immune response (Hanisch, 2002; Ambrosini and Aloisi, 

2004; Di Giovanni et al., 2005; Byrnes et al., 2007; Hanisch and Kettenmann, 

2007). Moreover, activated microglia transform into phagocytosing macrophages 

and along with macrophages derived from the circulatory system act to clear cell 

debris from the lesion site (Amor et al., 2010). Following a stab wound injury the 

number of proliferating microglia reaches a maximum at 4 days postinjury (Amat 

et al., 1996). 

 

1.7 Commonly used lesion models 

A number of animal models have been developed over the last few decades that 

mimic different aspects of traumatic brain injury in the human with varying 

degrees of accuracy (Gennarelli, 1994; Morales et al., 2005; Wang and Ma, 

2010). As the immediate cell death resulting from the initial impact on the brain 

tissue is irreversible, treatments focus on interruption or inhibition of the 

secondary injury cascades expanding this primary injury. The use of animal 

models is essential for better understanding of the secondary injury processes and 

for the development of novel therapies. Some of the most widely employed 

lesion models are fluid percussion injury (FPI), controlled cortical impact (CCI), 

cryogenic injury, stab wound injury and injection injury. The first and the second 

models mentioned mimic a traumatic brain injury: while FPI models produce 

brain injury by rapidly injecting fluid volumes onto the intact dural surface 

through a craniotomy, the CCI models utilize a pneumatic pistol to deform 
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laterally the exposed dura and provide controlled impact. The advantage of the 

fluid percussion model resides primarily in its simplicity and its ability to 

produce significant disturbances in the brain, but it allows little control over 

injury parameters often causing collateral injury and death (Lighthall et al., 

1989). The controlled cortical impact model has been shown to produce a more 

precise injury (Dixon et al., 1991). But for both models, conclusions regarding 

axonal pathology must take account of the superimposed effects of contusion and 

haemorrhage that are usually present. The method of cryogenic injury is 

generally produced by applying a cold rod to the exposed dura or skull (Siren et 

al., 2000) leading to a focal brain lesion. The major advantages of this method 

are the clearly circumscribed lesion which is highly reproducible in size, location 

and pathophysiological processes of the secondary lesion expansion at the 

cortical impact site. But it leads to profound brain edema and blood brain barrier 

leakage. The stab wound injury represents a penetrating trauma model designed 

to generate focal cortical injury by application of a microdissecting knife. The 

advantage of this model is the high reproducibility. The disadvantages are the 

large mechanical damage to the tissue and the rather small affected area. 

 

1.8 The ibotenic acid (IBO) model 

To study the injury-induced proliferation of cells in vivo we decided to choose an 

injury-model with a limited, localized neuronal injury. We performed stereotactic 

injections of ibotenic acid (IBO) into the brain tissue of WT and knockout mice. 

Injection of IBO leads to a compact, well-demarcated lesion affecting only 

neurons (Inglis and Semba, 1997). The excitotoxin IBO is an agonist of 

glutamate (Zorumski et al., 1989) which efficiently binds to NMDA receptors. 

Thereby it is overstimulating them (Marret et al., 1996) leading to excessive 

Ca2+ influx into the neuron. Moreover, it activates metabotropic glutamate 
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receptors mediating the release of Ca2+ from intracellular stores. Together, this 

results in elevated intracellular Ca2+ concentrations which acutely induces 

apoptosis (and necrosis). 

The advantages of this method are (1) the well-defined target area without the 

potential influence of continued neuronal apoptosis, (2) the larger affected area 

compared to a stab injury and (3) the less disrupted tissue compared to a 

mechanically-induced wound. 

In this well-established animal model (Maetzler et al., 2004; Maetzler et al., 

2010), neurodegeneration immediately starts after toxin injection, and a 

proliferative cellular reaction is observed in the lesion during the first week after 

IBO injection. 
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2. AIM OF THESIS 
The determination of cell extrinsic and intrinsic factors controlling proliferation 

and differentiation of progenitor cells in the postnatal brain is crucial to elucidate 

fundamental mechanisms of postnatal neurogenesis and gliogenesis. The 

proliferation of cells is tightly regulated by cell-cycle proteins, most notably the 

D-type cyclins play an important role in driving the progression of the cell cycle 

through the G1 phase (Sherr, 1995). Much is known about the involvement of 

Cyclin D1 in neurogenesis but not for gliogenesis. Gliogenesis is generally 

delayed compared with neurogenesis with a wave of gliogenesis in early 

postnatal stages and a widespread proliferative activity of some glial progenitors 

that persists in the adult CNS parenchyma. Furthermore, the existence of fast and 

slowly proliferating subpopulations of glial cells was demonstrated before in the 

adult brain (Dimou et al., 2008; Psachoulia et al., 2009). In addition, it is well 

known that following injury to the CNS, cell cycle proteins are upregulated in 

neurons, astrocytes and microglia (Di Giovanni et al., 2005; Byrnes and Faden, 

2007; Byrnes et al., 2007). 

 

To answer the question whether the cell cycle protein cyclin D1 is crucial for 

driving proliferation in glial cell types of the postnatal cortex in vivo I used 

different proliferation paradigms: I examined fast-proliferating glial cells during 

early postnatal development and slow-proliferating glial cells during adult stages 

by determining their proliferation rate and cell density. In addition, I used an 

injury paradigm to induce acute proliferation in the adult cortex which enabled 

me to analyze fast-proliferating cells in the adult cortex. Functional requirement 

of Cyclin D1 was assessed by analyzing proliferation rates and cell density of 

glial cells, as well as lesion size in mice deficient for Cyclin D1. As Cyclin D is 

only the regulatory subunit of an active holoenzyme formed with Cdk4 and 

Cdk6, one could assume that knockout of the binding partner of Cyclin D1 might 
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have similar effects as seen in the Cyclin D1-/- mice, allowing me to determine 

the potential interaction partner of Cyclin D1. Therefore I also applied the injury 

model in mice deficient for Cdk4 and Cdk6 and assessed the cell proliferation to 

compare it with Cyclin D1 knockout animals. 
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3. MATERIALS AND METHODS 

3.1. Mice 

Animal experiments were approved by the veterinary office of the Canton of 

Basel-Stadt. The Cyclin D1-/- mice used in this study originate from the lab of 

Clive Dickson. They were generated by replacing most of the first exon of the 

Cyclin D1 gene with sequences encoding neomycin resistance (Fantl et al., 

1995). Cdk2- (Ortega et al., 2003), cdk4- (Rane et al., 1999) and cdk6-deficient 

mice (Malumbres et al., 2004) have been previously described. Adult WT and 

knockout mice were bred and maintained in the animal facility of the Zentrum 

für Lehre und Forschung (ZLF), Kantonsspital Basel on a 12/12-hour light dark 

schedule. The animals had free access to food and drinking water. In accordance 

with the Swiss Law of Animal Protection, the breeding colony as well as the 

operative procedures detailed below were approved by and were under the 

constant control of the official veterinarian of the City of Basel (license No. 

2171) 

For the injury paradigm 4-5 month-old mice of either sex were used. 

Furthermore uninjured animals were examined at 8 months of age. To obtain 

mice from postnatal day 3 (P3) male and female mice heterozygous for cyclin D1 

were time-mated. 

 

3.2 Primary antibodies 

The primary antibodies used in this study were as follows: anti-Cyclin D1 

(NeoMarkers, RM-9104, rabbit, 1:300), anti-NeuN (Millipore, MAB377, mouse, 

1:500); anti-Olig2 (Chemicon, AB9610, rabbit, 1:500), anti-S100 (Sigma, S-

2532, mouse, 1:300), anti-GFAP (Cell Signaling Tech., 3670, mouse  1:500), 

anti-NG2 (Millipore, AB5320, rabbit, 1:100), anti-APC (CC1, Calbiochem, clone 
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OP80, mouse, 1:300), anti-MBP (Chemicon, MAB386, rat, 1:300), anti-Iba1 

(Abcam, ab5076, goat, 1:300), anti-Ki-67 (NeoMarkers, RM-9106, 1:300), anti-

BrdU (Novus Biologicals, NB500-169, rat, 1:100). 

 

Neuronal nuclei (NeuN) is an antigen used widely in research to identify 

postmitotic neurons throughout the central and peripheral nervous system 

(Mullen et al., 1992). The monoclonal antibody proved to bind an antigen 

expressed only in neuronal nuclei and to a lesser extent the cytoplasm of 

neuronal cells. In the adult cortex Olig2 is a robust and specific lineage marker of 

oligodendroglial cells in the mouse CNS, expressed in OPCs, premyelinating and 

myelinating oligodendrocytes (Ligon et al., 2004). S100β is a late marker of 

astrocyte development characterizing a mature stage of the astrocyte (Raponi et 

al., 2007). GFAP (glial fibrillary acidic protein) is upregulated in activated 

astrocytes following cortical injury (Fitch and Silver, 2008). NG2 is a 

chondroitin sulfate proteoglycan and transmembrane protein which is expressed 

by a range of cell types within and outside the nervous system. Within the the 

developing and adult CNS expression of NG2 is used as a marker for 

oligodendrocyte progenitor cells (OPCs) (Nishiyama et al., 2009). APC 

(adenomatous polyposis coli) is a tumor suppressor protein that is enriched in the 

somata of mature oligodendrocytes (Bhat et al., 1996). Thus anti-APC labels 

mature oligodendrocyte cell bodies but not myelin sheaths. Iba1 (ionized calcium 

binding adaptor molecule 1) is a protein that is expressed in 

macrophages/microglia. Within brain tissue, the Iba1 gene is specifically 

expressed in microglia (Ito et al., 1998). The Ki-67 protein is a marker for 

measuring cell proliferation, being present during all active phases of the cell 

cycle (G1, S, G2, and mitosis), but absent in G0 (Scholzen and Gerdes, 2000). 

Myelin basic protein (MBP) is a protein expressed in the myelin membrane and 

therefore a marker for mature myelinating oligodendrocytes. 
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3.3  Secondary antibodies 

Secondary antibodies used were Alexa488- (Molecular Probes), Cy2-, Cy3- or 

Cy5-conjugated antibodies (all Jackson ImmunoResearch; 1:500). 

 

3.4 Determination of genotype 

DNA was extracted from mouse tail or toe by the alkalinelysis (HotSHOT) 

method (Truett et al., 2000) and analyzed by PCR to distinguish cyclin D1 wild-

type and mutant alleles. Following primers were used for the PCR: MD1 1535 

5’-ACC AGC TCC TGT GCT GCG AA-3’ and MD1 1848 5’-ACC GAG TCC 

TAG CAA CGC AC-3’ for WT animals (amplicon size 313 bp), neo forward 5’-

GGA GAG GCT ATT CGG CTA TGA C-3’ and neo reverse 5’-CGC ATT GCA 

TCA GCC ATG ATG G-3’ for Cyclin D1-/- animals (amplicon size 457 bp). In 

addition, immunohistochemistry was carried out to confirm the results obtained 

by PCR. 

 

3.5 Surgical procedure 

Animals were anesthetized with a combined treatment of ketamine (Ketasol-100, 

80 mg/kg sc), climazolam (Climasol, 5 mg/kg ip), and atropine (Atropinum sulf, 

0.05 mg/kg ip), while buprenorphin (Temgesic, 0.1 mg/kg sc) was administered 

preoperatively for analgesia. After the fur on the skull had been shaved, the skin 

was cleaned with 70% ethanol and the animal placed into a stereotaxic head 

frame (David Kopf Instruments, Model 500) (Fig. 3-1a). 

To place the animal in the apparatus, one ear bar was fixed in the apparatus 

and the animal's head gently position to lead its ear canal onto the ear bar (Fig. 3-
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1c). The animal’s head was kept in place and the second ear bar slowly 

positioned to complete the fixation. The animal’s tongue was pulled out (this 

helps to prevent breathing problems) and hold aside while the incisor adapter 

(Fig. 3-1d) was slowly moved into the mouth until the animal's incisors 'fit' in the 

opening of the adapter. The adaptor was slightly pulled back and fixed in place. 

The last point of fixation, the nose clamp, was used with very low pressure on the 

animal's nose. Lubricant eye ointment (Vitamin A, Blausch & Lomb Swiss AG) 

was applied to prevent corneal drying during the surgery. The skull was exposed 

and the coordinates of bregma were measured. Surgery was done under the use of 

a dissecting microscope (Leica M651) (Fig. 3-1e). Unilateral lesions of the 

prefrontal cortex were performed by injecting ibotenic acid (Sigma-Aldrich, 0.5 

μg in 0.2 ul 0.9% NaCl) in the left hemisphere using a microsyringe (Hamilton, 

model 7001 SN, 26s gauge) (Fig. 3-1b). Lesion coordinates were determined 

from the mouse brain atlas of Franklin and Paxinos (1997) and were as follows: 

anteroposterior (AP) +2.4 mm from bregma; mediolateral (ML) +1.5 mm from 

midsagittal vein and dorsoventral (DV) -2.3 mm from cranial bone. The skull 

overlying the target coordinates was drilled using a hand-held drill (KaVo, model 

EWL 10A) (Fig. 3-1f).This was carefully done by applying a slight pressure 

downward and stopping as soon the blood vessels in the dura became clearly 

visible. Using a hook a small incision was cut in the dura. Before infusions were 

made, the syringe was lowered 0.3 mm past the injection site and kept at lower 

depth for 20 seconds to increase spread of drug diffusion. The syringe was then 

raised to the injection site, and the ibotenic acid was infused over 3 min. The 

needle was left in place for another 20 min before being slowly withdrawn and 

the wound closed with a non-absorbable polypropylene suture (Ethicon, suture 

needle Prolene #8648G). For postoperative care the mice were kept under a hood 

in a cage equipped with a heat blanket (Fig. 3-1g) which was connected to a 

temperature control unit (Letica, model HB 121/2) (Fig. 3-1h) set at 37°C. All 
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animals were monitored carefully for at least 4 hours after surgery and then daily. 

Furthermore the analgesic meloxicam (Metacam, 0.001 mg/kg ip) was 

administered once 2 hours following the surgical intervention. Animals were also 

provided with soft food. Sham animals underwent the same procedure as injured 

mice but were injected with saline solution instead of the neurotoxin ibotenic 

acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1: Setup and procedure for stereotaxic injections 
The setup for the surgical procedure included a stereotaxic instrument (a) into which a 
microsyringe was placed (b). To keep the mouse within the stereotaxic apparatus the head was 
hold in place by ear bars (c) and an incisor adapter (d). Surgery was done under the use of a 
dissecting microscope (e). A hand-held drill was used to perforate the skull (f) and the 
microsyringe lowered to perform the injection. After the surgery the mice were kept in a cage 
equipped with a heat blanket (g) which was connected to a temperature control unit. 
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3.6 Tissue preparation 

3.6.1 Transcardial perfusion 

After a recovery period of 1, 3 or 30 days adult injured animals were perfused for 

fixation and the brains extracted. Perfusion of the animals was performed by 

transcardial perfusion using a gravity system. Therefore, 4% paraformaldehyde 

(PFA; in 0.1 M phosphate buffer pH 7.4) was freshly prepared, filtered and 

poured into a bottle with rubber cap (Ecotainer, B. Braun Medical) which 

permitted connection to a tube. Together with a bottle containing physiological 

saline (Ecotainer NaCl 0.9%, B. Braun Medical) both were set 1.6 m above work 

area and connected to a tubing system (Braun Medical, V4508) which allowed to 

join both tubes of the bottles to one end at which a 23 gauge needle (Terumo, 

Luer Nr. 14, 23G) was connected. In addition work was performed on a bench 

with air suction to avoid inhalation of toxic formaldehyde gases (Fig. 3-2A). 

Mice were deeply anesthetized with the pentobarbital Vetanarcol (Veterinaria 

AG; diluted 1:4 in NaCl 0.9%, used 0.04 g/kg ip) and placed in the supine 

position (lying on the back with face upward) onto a supportive element that 

could collect excess fluids during the perfusion. To ensure a stable positioning of 

the mouse its extremities were fixed with tape onto the supportive element (Fig. 

3-2B). Tail and toe pinch reflex were used to assess depth of anesthesia before 

proceeding with the next step. The thoracal and ventral skin surface of the animal 

was wetted with 70% ethanol and superficially removed to expose the thoracic 

membrane. This was done using surgical scissors (Fig. 3-2C) with which an 

incision was made into the skin over the xiphoid process. While slightly pulling 

the skin at the incision with blunt foreceps (Fig. 3-2C) the skin covering the 

thorax was cut away with the scissors. Next, a small hole was cut into the 

peritoneal membrane just below the zyphoid process. Now, one could grasp the 

cartilage of the zyphoid process with blunt foreceps and cut the diaphragm from 
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ity. Carefully, the ribs were 

The ventral part of the rib cage was 

p the thorax open  

Figure 3-2: Setup and 
instruments for trans-
cardial perfusion and 
tissue preparation 
A, B The setup for the 
trans-cardial perfusions 
in-cluded a gravity 
system which was 
composed of two 
bottles (a) each 
connected by a tubing 
system (b) which 
allowed to join both 
tubes of the bottles to 
one end at which a 23 
gaugle needle (c) was 
attached. The perfusion 
was performed on an 
air suction bench (d). 
During the perfusion 
the mouse was fixed 
with tape onto 
supportive element that 
could collect excess 
fluids (e). C Following 
surgical instruments 
were used to prepare 
the mouse for the 
perfusion: blunt 
foreceps (f), surgical 
scissors (g), small 
scissors (h), clamp (i) 
and bulldog clamp (j). D 
For the extraction of the 
brain following instru- 

instruments were used: scalpel (k), small scissors (l) rongeur (m) and spatula (n). 

on lateral aspect to the other to open the thoracic cav

cut longitudinally through both sides of the rib cage up to the level of the 

clavicles while avoiding lung and heart. 

folded back and a clamp attached to the zyphoid process to kee
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exposing the heart. The beating heart was gently hold with blunt foreceps and 

using the small, pointed scissors a small incision was made at the apex of the left 

atrium. Quickly the 23 gauge needle was inserted in the atrium and clamped to 

apex of the heart using a small bulldog clamp (Fig. 3-2C). The right atrium was 

immediately cut with pointed scissors to allow exit of blood. In addition, a clamp 

(Fig. 3-2C) was applied onto the whole abdomen thereby shutting the descending 

aorta, such that only the upper part of the body would be perfused and thus the 

fixative not distributed within the whole circulatory system. Now the transcardial 

perfusion was performed first with physiological saline to wash out blood from 

the circulatory system. This was done until the fluid exciting the right atrium was 

entirely clear (~1 min). Perfusion was then switched from the saline to the PFA  

and perfusion continued for 20 min at a flow rate of 3-4 ml/min. One could 

observe movements of the head resulting from the aldehyde–crosslinking of 

nerves and muscles. 

For brain tissue preparation of non-injured animals the same procedure was 

applied as for injured mice, except for P3 mice. For these neonatal mice, the 

transcardial perfusion was not done by using the gravity system but by manual 

injection using 20ml-syringes. Thereby, P3 mice were injected 4 ml 0.9% NaCl 

and 20 ml 4% PFA at a flow rate of 3-4 ml/min. 

 

3.6.2 Brain extraction and sectioning 

At the completion of the paraformaldehyde perfusion the surgical instruments 

were removed and the mice decapitated with scalpel blade (Fig. 3-2D). Using the 

scalpel the scalp was incised in the mid-sagittal line starting near the nasal bone 

and running caudally to the occipital bone to expose the skull. Using a small, 

pointed scissors the posterior part of the skull was cut starting from the posterior 

portion into the occipital plate of the skull. While holding the head of the mice 
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firmly on a cutting board the skull plates were then removed by using a rongeur 

(Fig. 3-2D). This was done by sliding the bottom jaw of the rongeurs under the 

skull plates, squeezing the jaws of the rongeurs together and rolling the wrist to 

oneself to remove the skull plates from the brain. While doing this it was 

important to maintain pressure with the lower jaw of the rongeurs against the 

inside surface of the skull and away from the brain not to damage it. Once all the 

skull plates were displaced, a spatula (Fig. 3-2D) could be slid between the 

ventral surface of the brain and the bottom skull plates. By moving the spatula 

laterally from side-to-side cranial nerves were separated from the brain such that 

the brain could be removed. It was immediately weighed and subsequently the 

brain hemispheres were separated with a scalpel blade. The hemispheres of adult 

mice were now immersed in the PFA for another 1 h. In the case of P3 mice, the 

post-fixation was done overnight. 

Using a vibratome (Microm GmbH, model HM 650V) the brain tissue was cut 

sagittaly in 30-µm sections which were collected in ice cold 0.1 M PBS in a 24-

well cell culture plate (#353047, BD Falcon). Culture plates containing the brain 

sections were kept at 4°C until they were used for immunohistochemistry. 

 

3.7 Proliferation analysis 

For in vivo labelling of fast proliferating cells in injured adult mice and non-

injured P3 mice, the synthetic nucleoside 5-bromo-2'-deoxyuridine (BrdU, Roche 

Diagnostics) was injected (100 mg/kg ip) 2 h before perfusion. To label fast and 

slow proliferating cells in non-injured adult animals BrdU was provided for 15 

days in the drinking water (1 mg/ml) before perfusion. Therefore fresh BrdU was 

prepared every 3 days and used to replace the the drinking water in the bottles. In 

addition, the bottles were wrapped in aluminium foil to protect the BrdU from 

light.
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3.8 Immunohistochemistry 
For immunohistochemistry free-floating sections were selected and transferred to 

a 12-well cell culture plate (#3513, Corning Inc.) containing PBS before 

subsequent processing. First, the sections were solubilised and blocked 1h in 0.1 

M PBS containing 0.2% Triton X-100 and 10% normal serum (horse or goat 

serum). Next, the sections were incubated with primary antibodies at 4°C 

overnight. Then, the sections were subjected to three washing steps in PBS for 5 

min at RT and before being incubated for 1 h at RT with secondary antibody. 

After another three washing steps in PBS sections were immersed in DAPI (0.2 

ug / ml PBS) to label nuclei. Finally, the sections were mounted on glass slides, 

briefly dried and coverslipped with permanent mounting medium (Vectamount, 

Vector Laboratories). 

For detection of BrdU incorporation, free-floating sections were first subjected 

to the method of “heat induced epitope retrieval” (HIER). Therefore the sections 

were immersed in 10 mM citrate buffer pH 6.0 and the multiwell plate was 

placed in a steamer (Pascal, DAKO Cytomation) where it was kept for 5 min at 

95°C. After cooling down to room temperature DNA was denatured by 

incubating the sections in 2N HCl for 20 min at 37°C in a hybridization oven 

(Shel Lab, model 1012). Subsequently, the sections were processed with the 

standard protocol above-mentioned. 

 

3.9 Detection of apoptosis by TUNEL staining 

Extensive DNA degradation is a characteristic event which occurs in the late 

stages of apoptosis. Cleavage of the DNA may yield double-stranded DNA 

fragments which can be detected by enzymatic labelling of the free 3’-OH 

termini. The terminal deoxynucleotidyl transferase (TdT) is able to label blunt 

—  35  — 



MATERIALS AND METHODS 

ends of doublestranded DNA breaks with modified nucleotides. This end-

labelling method to detect end-stage of programmed cell death has been termed 

TdT-mediated X-dUTP nick end labelling (TUNEL) and the protocol for in situ 

detection on histological sections has been previously described (Gavrieli et al., 

1992). 

Sections were blocked and solubilised for 1 h at RT in TUNEL blocking 

buffer (0.1 M PBS containing 0.01% Triton X-100, 0.1% BSA and 1% normal 

goat serum). After 10 min of equilibration at RT in TdT-buffer (30 mM Tris-HCl 

pH 7.2, 140mM sodium cacodylate, 1mM cobalt chloride) the sections were 

incubated for 1 h at 37°C with 200ul TUNEL-mix consisting of the following: 

1.6 ul TdT enzyme (Roche Diagnostics, #11767305001), 1.2 ul 50 nmol biotin-

dUTP (Roche Diagnostics, # 11093070910), 1.2 ul 1mM ATP, 200ul TdT-buffer. 

The reaction was terminated by immersing the sections in 2x SSC buffer (300 

mM NaCl, 30 mM sodium citrate, pH 8.0). Next, the sections were washed 3x for 

5min in PBS before being incubated for 1 h at RT with the secondary antibody 

(streptavidin-Alexa Fluor® 488 conjugate 1:300, Molecular Probes). Further 

processing was done as mentioned in the immunohistochemistry protocol above 

following the incubation with secondary antibodies. 

Cells only positively stained by TUNEL and containing clear chromatin 

condensation were referred as apoptotic cells. Necrotic cells may also become 

TUNEL positive but their staining is diffuse without chromatin condensation. 

 

3.10 Nissl staining 

Nissl staining is a classic nucleic acid-staining method traditionally used on 

nervous tissue sections. The method refers to staining of the cell body, and in 

particular endoplasmic reticulum. This is done by using a basic dye (aniline, 

thionine, or cresyl violet) to stain the negatively charged RNA blue which in turn 
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highlights the soma and dendrites of neurons. Therefore, sections were mounted 

onto glass slides in 1xPBS and dried overnight. Slides were first immersed for 10 

min in 0.4% acetic acid, stained for 4 min in cresyl violet solution (0.2% cresyl 

violet acetate, 0.02% sodium acetate-3-hydrate, 0.2% acetic acid, pH 3.5), 

washed for 1 min in 0.4% acetic acid and shortly rinsed with ddH2O. Sections 

were dehydrated in ascending ethanol (50% ethanol, 70% ethanol), decoloured 

for 15 min in 4% acetic acid in 96% ethanol, followed by 1 min in 100% ethanol 

and finally cleared in xylene before cover-slipped with Eukitt (Kindler, 

Germany). 

 

3.11 Microscopy 

Sections stained with cresyl violet were evaluated using a light microscope 

(Nikon, Eclipse E800) equipped with a ProgRes C14plus camera (Jenoptik) and 

pictures taken using the image capture software ProgRes Capture Pro 2.5. 

All other images were collected on a fluorescence microscope with a motorized 

stage (Imager Z1, Carl Zeiss) equipped with a Axiocam MRm (monochrome 

CCD) camera and with an X-Cite 120 illuminator (EXFO). Images were 

collected and analyzed with Axio Vision Image Analysis Software (Improvision, 

4.8.1). Images were optimized for size, color, and contrast using Photoshop CS4 

(Adobe) for Windows. 

 

3.12 Statistical analysis 

All statistical analysis were performed in at least three animals of each genotype. 

For quantitative analysis from intact prefrontal cortex, cell counting was 

performed on the whole prefrontal cortex (2.2 – 2.9 mm2 area) and three sections 
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per animal quantified. The average was calculated for each animal before 

statistical testing was performed. For quantitative analysis within cortical lesions, 

cell counting was performed within the neurodegenerative area leaving out 

necrotic zones. Depending on the size of the lesion quantifications were done in 

1 – 3 sections per animal. The average was calculated for each animal before 

statistical testing was performed. All quantitative data are presented as mean ± 

standard error of mean (SEM) and have been analyzed by two-tailed Student’s t 

test. Statistical tests were performed using Microsoft Excel 2003 for Windows. 
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4. RESULTS 

4.1 Expression of Cyclin D1 

4-1D). 

 

Immunoreactivity to Cyclin D1 was predominantly nuclear and could be detected 

in all cortical regions. As previously reported by Glickstein et al. (Glickstein et 

al., 2007a; Glickstein et al., 2007b), the signal was more robust in rostral than in 

caudal neocortex (Fig. 4-1A). I could also confirm the predominant expression of 

Cyclin D1 in neurons of the layers II-III and V-VI of the neocortex (Fig. 4-1B) 

and the elevated expression level in CA1 field neurons of the hippocampal 

formation (Fig. 4-1A) which was described by Koeller et al. (Koeller et al., 

2008). The prefrontal cortex showed scattered cells positive for Cyclin D1 with 

different levels of expression (Fig. 4-1C) while the negative control which was 

done on sections of Cyclin D1-/- mice was devoid of labelling for Cyclin D1 (Fig. 
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Figure 4-1: Cyclin D1 expression in the brain of adult mice 
A Whole sagittal section of the brain labelled for Cyclin D1. Cells expressing Cyclin D1 are 
scattered throughout the brain. Elevated expression is found in CA1 field neurons (arrow 
heads). Scale bar 1000 µm. B Magnification of the dashed box in (A) depicting Cyclin D1 
expression in the layers II-III and V-VI of the cortex. C Magnification of the boxed region in (A) 
showing Cyclin D1 expression in the prefrontal cortex. D No Cyclin D1 expression was detected 
in the brain of knockout animals. Scale bars (A, C, D) 250 µm.  
 

 

 

4.2 Characterization of the cortical lesion 

Pilot studies had to be performed in order to establish the injury model: the 

appropriate coordinates as well as the volume and the concentration of the 

ibotenic acid needed to be determined. The prefrontal cortex proved to be the 

best region of the cortex to generate reproducible cortical injuries. Furthermore, a 

stepwise approach by reducing both, volume and concentration, was performed 

to reach the desired size of the lesion. It proved that best results were obtained by 

injecting 0.2 µl of 0.25 % ibotenic acid (in physiological saline). 

In a first step, I evaluated the extent of damage to the brain following the 

injection of IBO into the prefrontal cortex. Therefore, I performed histological 

analysis by using Nissl staining and light microscopy (Fig 4-2A). I could detect 
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the lesion as a characteristic morphologic abnormality composed of disrupted 

tissue along the needle track and a pale area displaying the loss of neurons. This 

neurodegenerative area resulted in a spherical neuron-depleted zone of 1 – 1.5 

mm diameter which could be observed 3 days postinjection (dpi) (Fig 4-2B-D).  

showed that at 3 dpi, the lesion area was defined by the absence of NeuN 

labelling identical to the one observed with cresyl violet (Figure 4-2F). This 

validated NeuN as a “lesion marker” for immunohistochemical analysis.  

 

Furthermore, a zone of necrosis in the center of the lesion site where the 

needle tip had been positioned, as well as a thin rim of necrotic neurons and focal 

haemorrhage adjacent to the needle tract were visible. This might be accountable 

by the mechanical damage produced by the needle injury alone as previously 

reported (Petito et al., 1982). For most of the lesions the border between neuron-

depleted area and healthy tissue was well definished and the morphology of the 

lesions comparable to previous studies (Maetzler et al., 2004; Maetzler et al., 

2010) (Fig 4-2E). 

In a second step I performed immunohistochemical staining with NeuN and 
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Figure 4-2: Characterization of the lesion induced by the injection of ibotenic acid 
A, B, C, D, E Ibotenate-induced lesions in the adult wild-type mouse visualized with cresyl violet 
staining on sagittal sections 3 days post injection. The injury results in a large loss of neurons in 
the cortex at the injection site. A Whole sagittal section of the brain at the central level of the 
lesion. B, C, D Magnifications of the lesion site on serial sections (from lateral to medial). The 
lesion is circumscribed by a dotted line, while the needle tract is denoted by dashed lines. E En-
larged view of the boxed region in panel D identifies the border of the lesion. An intact neuron is 
indicated with an arrow outside of the lesion, while two of the small, dark stained microglial cells 
which are present in and around the lesion, are pointed out with arrowheads. The necrotic 
centre where tissue elements are destroyed by compression or even loss is circumscribed. F, 
G, H, I, J Visualization of the lesions with anti-NeuN staining F Whole sagittal section of the 
brain at the central lateral level of the lesion. G, H, I Magnifications of the lesion site at 
successive levels from lateral to medial of the hemisphere. The lesion is circumscribed by a 
dotted line, while the needle tract is denoted by dashed lines. I corresponds to the boxed region 
in (F). J Enlarged view of the boxed region in panel I. The dotted line demarcates the border of 
the lesion with NeuN+ neurons above the line and the NeuN- neurodegenerative area below the 
line. Residual staining within the neurodegenerative area is due to non-specific binding of 
secondary antibodies. Scale bars 1 mm (A, F); 250 µm (B, C, D, G, H, I), 50 µm (E, J). 
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4.3 Expression of Cyclin D1 following injury 

Next, I examined the expression of Cyclin D1 following injury to the prefrontal 

cortex. To determine expression of Cyclin D1 early after injury I examined the 

injury one day postinjury (1 dpi). Then I analyzed the lesion at 3 dpi allowing the 

full development of the neurotoxic effect of the ibotenic acid. For the third time 

point, I chose to wait for 30 days, in order for Cyclin D1 expression and 

inflammation reaction to reach normal levels. 

Analysis of the injury site at 1 dpi showed clear neurodegeneration as 

observed at 3 dpi (Fig 4-3A). As for Cyclin D1 expression one could not observe 

any increase (Fig. 4-3B). At 3 dpi the area depleted of neurons was slightly 

enlarged as compared to the lesion observed at 1 dpi (Fig. 4-3C). The level of 

Cyclin D1 expression was markedly increased inside of the neurodegenerative 

area. Nevertheless, there was a focal decrease of Cyclin D1 expression within the 

very center of the neurodegenerative lesion. This effect was due to the necrosis 

and the mechanical damage to the tissue by the insertion of the needle. At high 

magnification, one can clearly observe an increase in the number of cells 

expressing Cyclin D1 within the lesion, while outside of the neurodegenerative 

area, this number is notably low (Fig 4-3D’-D’’’). At 30 dpi the 

neurodegenerative area was still clearly recognisable (Fig 4-3E) while the Cyclin 

D1 level dropped back to original level. 

In addition, I performed control experiments with sham-operated mice that 

were injected with physiological saline to mimic the mechanical injury caused by 

the needle and the intracortical injection of fluid. Within the neurodegenerative 

area caused by the sham-operation I could observe a slight increase in cells 

expressing Cyclin D1. This non-significant upregulation of Cyclin D1 could be 

attributed to the mechanical damage by the needle injury alone. 
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Figure 4-3: Cyclin D1 is upregulated at the 
injury site 3 days following injury  
Sagittal section of the prefrontal cortex of 
injured mice at 1 dpi (A, B), 3 dpi (C, D), 30 
dpi (E, F) and a sham-operated animal 3 days 
post-operation labelled for NeuN (green) and 
Cyclin D1 (red). Dotted lines delineate the 
border of the lesion. A, B At 1 dpi no 
upregulation of Cyclin D1 could be observed 
at the lesion site. C, D Cyclin D1 is highly 
upregulated at the lesion site 3 dpi. D’-D’’’ 
Magnifications of the boxed region in (D) 
showing that Cyclin D1 is upregulated within 

the lesion site. The border of the injury is well demarcated such that one can clearly see that the 
number of Cyclin D1 expressing cells increases within the lesion. E, F At 30 dpi Cyclin D1 
expression has decreased. G, H Sham-operated animal showing a slight upregulation of Cyclin 
D1 3 dpi within the needle track. I Histogram representing the absolute number of cells 
expressing Cyclin D1 per analyzed field within the contralateral prefrontal cortex and within the 
lesion site 1 dpi, 3 dpi and 30 dpi. Results are expressed as means ± SEM (error bars). 
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Quantitative analysis of immunohistochemical data revealed a three-fold 

increase in the number of Cyclin D1 expressing cells in lesions 3 dpi, as 

compared to the uninjured, contralateral hemisphere (3 dpi: 750 cells/mm2 ± 27 

cells/mm2; contralateral: 258 cells/mm2 ± 11 cells/mm2; p=1.4x10-7)(Fig. 4-3I). 

Lesions of 1 dpi show no significant change in numbers (1 dpi: 219 cells/mm2 ± 

22 cells/mm2), whereas lesions 30 dpi show even a reduction of Cyclin D1 

expressing cells (186 cells/mm2 ± 17 cells/mm2). 

Taken together, Cyclin D1 expression was highly upregulated three days after 

injection of ibotenic acid and thus demonstrating this point in time to be most 

interesting for further investigations. 

 

 

4.4 Proliferation following injury 

Next, I determined the presence of fast proliferating cells following neurotoxic 

injury. In parallel to the analysis of Cyclin D1 proliferation was measured at 1, 3 

and 30 dpi. 

For in vivo labeling of proliferating cells, the synthetic nucleoside 5-bromo-2'-

deoxyuridine (BrdU) was intraperitoneally injected 2 h prior to sacrifice. Within 

these two hours the BrdU incorporated in all cells that underwent S phase. As the 

cells are exposed only for a short period of time to the BrdU this ensured that 

only fast proliferating cells incorporate the nucleoside. I reasoned that I would 

detect fast proliferating cells at 1 and 3 dpi, while at 30 dpi the number of such 

cells reacting to the injury would have dropped to zero. 

Qualitative analysis of BrdU immunohistochemistry at 1 dpi revealed only 

single cells positive for BrdU (Fig. 4-4A) whereas at 3 dpi a large number of 

proliferating cells could be detected within the neurodegenerative area and the 

surrounding tissue (Fig. 4-4B). As expected, at 30 dpi only very few proliferating  
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Figure 4-4: Proliferating cells in the 
injured prefrontal cortex at 3dpi are 
positive for Cyclin D1 
A-C Sagittal section of the prefrontal 
cortex labelled for BrdU following cortical 
injury at 1 dpi (A), 3 dpi (B) and 30 dpi 
(C). Dotted lines delineate the border of 
the lesion. D Double
immunohistochemistry for Cyclin D1 
(green) and BrdU (red) at 3 dpi reveals 
proliferating Cyclin D1+ cells within the 
lesion. D’-D’’’ Magnification of the boxed 

 

region in (D) showing coexpression of BrdU (red) and Cyclin D1 (green). A-D scale bars 250 
µm; D’-D’’’ scale bars 20 µm. E Histogram representing the absolute number of BrdU+ cells per 
area within the lesion and the surrounding tissue, including an area within 150 µm distance to 
the border of the lesion and a second area within 150 – 300 µm distance to the border of the 
lesion. Results are expressed as means ± SEM (error bars) F Histogram representing the 
fraction of Cyclin D1-expressing cells within the population of BrdU+ cells.  
 

 

cells could be detected within the lesion (Fig. 4-4C). To ensure that the 

immunohistochemistry for BrdU worked out properly, the BrdU signal was 

controlled in the subventricular zone and in the rostral migratory stream. In both 
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regions endogenous proliferation typically takes place and thus BrdU+ cells can 

always be detected there. 

Quantification of BrdU+ cells at 3 dpi revealed a high number of fast 

proliferating cells within the lesion (234 cells/mm2 ± 23 cells/mm2). Outside of 

the lesion, the number rapidly declined with increasing distance to the injury 

border (within 150 μm distance to the injury border: 154 cells/mm2 ± 16 

cells/mm2; within 150 – 300 μm distance to the injury border: 114 cells/mm2 ± 

20 cells/mm2) (Fig. 4-4E). 

Given that the number of Cyclin D1-positive cells is strongly increased within 

the lesion at 3 dpi I examined whether they belong to the observed fast 

proliferating cell population. Indeed, double-immunohistochemistry of BrdU 

with Cyclin D1 revealed that approximately a third of the fast-proliferating cells 

within the lesion area are positive for Cyclin D1 (31%) (Fig 4-4D, D’-D’’’). 

Reciprocally, a 10% of the Cyclin D1+ cells were also positive for BrdU. 

 

 

4.5 Cyclin D1 is not expressed in apoptotic cells 
following cortical injury 

I investigated on the potential contribution of Cyclin D1 to apoptosis following 

cortical injury at 3 dpi. TUNEL labelling of injured cortex at this time point 

revealed markedly increased numbers of intense TUNEL-labelled cells within the 

lesion (Fig. 4-6A). TUNEL-positive cells showed round and shrunken 

morphology with a condensed nucleus typical of apoptosis (Fig. 4-5A’). Double-

labelling experiments combining TUNEL and Cyclin D1 immunohistochemistry 

revealed no Cyclin D1 expression within apoptotic cells (Fig. 4-5B, B’). Thus, at 

3 dpi Cyclin D1 is not involved in apoptosis within the neurotoxic lesion. 
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Figure 4-5: Apoptosis following injury to the prefrontal cortex 
A Apoptotic cells positive for TUNEL staining are detected 3 days following cortical injury. A’ 
Eight-fold magnifications of the boxed area in (A) showing TUNEL positive cells with rounded 
and shrunken morphology typical for apoptotic cells. B Double-immunohistochemistry for 
TUNEL (green) and Cyclin D1 (red) reveals no double staining within the lesion. B’ 
Magnifications reveals that none of the Cyclin D1 cells are apoptotic. Dotted lines delineate the 
border of the lesion. Scale bars A, B 250 µm, A’, B’ 20 µm. 
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4.6 Reaction of glial cell types following cortical 
injury 

Injury to the brain induces cell cycle activation in glial cells, which can result 

either in the apoptosis of post-mitotic glial cells, or in the proliferation and 

activation of glial cells such as astroglia and microglia. Thus I analysed and 

quantified the population of microglia, astrocytes and oligodendroglial cells 

within the intact cortex and following neurotoxic injury. 

 
4.6.1 Microglia 
As microglia are the first glial cell type to react to brain injury, I examined the 

microglia marker Iba1 3 days following cortical injury. I performed 

immunostainings with anti-Iba1. In the intact prefrontal cortex of adult mice I 

could observe a regular distribution of ramified microglia (Fig 4-6A). These 

resting microglia are composed of a small cellular body and long branching 

processes (Fig 4-6A’). Analysis of the cortical injury at 3 dpi revealed a 

significant and sustained increase of microglia within the lesion (Fig 4-6B), 

which show a hypertrophic phenotype (Fig. 4-6B’). Only microglial cells in the 

immediate vicinity of the lesion were activated, whereas cells farther away did 

not respond (Fig 4-6B). Quantification of microglial cells showed almost a 3-fold 

increase in number of activated microglia within the lesion at 3 dpi, as compared 

to the number of ramified microglia in the intact cortex (intact cortex: 268 

cells/mm2 ± 1 cells/mm2; lesioned cortex: 757 cells/mm2 ± 91 cells/mm2; 

p=0.0016) (Fig. 4-6G). 

 
4.6.2 Mature Astrocytes 

Staining for astrocytes using anti-S100β antibody in the intact cortex revealed an 

even distribution pattern, similar to the one observed for microglia (Fig. 4-6A). 
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On the morphological level S100β+ astrocytes showed a strongly stained cell 

body and star shaped processes (Fig. 4-6A’). Cortical injury did not lead to a 

increase in cellular density of S100β+ astrocytes but rather to a reduction of cell 

number which was statistically non-significant (intact cortex: 352 cells/mm2 ± 

67 cells/mm2; lesioned cortex: 292 cells/mm2 ± 9 cells/mm2; p=0.47) (Fig. 4-

6H). In addition, the astrocytes within the lesion showed a decrease in S100β-

signal intensity. 

 

4.6.3 Oligodendroglial cells 

In the intact cortex of adult mice an important number of cells expressed Olig2 

(Fig. 4-6E). Compared to the other glial cell types, Olig2+ cells are clearly more 

abundant in the intact cortex. At 3 dpi, I observed almost a two-fold increase in 

the number of Olig2-immunoreactive cells within the neurodegenerative area as 

compared to the intact contralateral cortex (Fig. 4-6F). (intact cortex: 732 

cells/mm2 ± 59 cells/mm2; lesioned cortex: 1381 cells/mm2 ± 68 cells/mm2; 

p=0.00001) (Fig. 4-6I). This increase of Olig2 is in line with observations after 

stab wound injuries (Buffo et al., 2005). In addition to the increase in density, 

Olig2-cells were spread out across the injury border, up to 400 μm from the 

lesion (Fig. 4-6F). 

Taken together, the results of the three glial cell types within the lesion at 3 

dpi could be summarized as follows: mature astrocytes did not change in number 

while microglia and oligodendroglial cells displayed an important increase. 
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Figure 4-6: Microglia, astrocytes and oligodendroglial cells in intact prefrontal cortex and 
following cortical injury at 3 dpi 
Sagittal sections of intact and injured cortex labelled for microglia with Iba1 (A, B), for mature 
astrocytes S100β (C, D) and for oligodendroglial cells with Olig2 (E, F). Dotted lines delineate 
the border of the lesion. Cells in the boxed areas are represented with six-fold magnification (A’, 
B’, C’, D’, E’, F’). A, B Compared to the intact cortex (A) one can clearly recognize the 
inflammatory response of microglia within the at the lesion (B). While the in the microglia in the 
intact cortex are of ramified phenotype with thin protrusions (A’) the ones within the 
neurodegenerative area show activated and hypertrophic character. C, D There is no obvious 
difference, when examining mature astrocytes within the intact (C) and injured (D) cortex. In 
both condition the astrocytes show stellate morphology (C’ D’). E, F Cells of the oligodendroglial 
lineage show a clear increase in number within and around the lesion site (F) as compared to 
the intact cortex (E). The increase can be clearly seen at higher magnification (E’, F’). G, H, I 
Histograms comparing the absolute number of microglia (G), S100β cells (H) and 
oligodendroglial cells (I) within the intact cortex and the within the neurodegenerative are of the 
injured cortex. There is a clear increase in microglia and oligodendroglial cells following injury to 
the cortex. Results are expressed as means ± SEM (error bars) and were analyzed by a t test. 
Scale bars 250 µm (A, B, C, D, E, F), 25 µm (A’, B’, C’, D’, E’, F’). 
 

 

4.7 Quantitative analysis of glial cell types in the adult 
intact cortex 

Next, I determined the presence of Cyclin D1 in glial cell types. Therefore, I 

performed double immunohistochemistry for Cyclin D1 with the three glial 

markers mentioned above. 

In the intact cortex, Iba1-stained microglia showed weak nuclear Cyclin D1 

expression (Fig. 4-7A), while S100β+ astrocytes (Fig. 4-7B) and Olig2+ 

oligodendroglial cells displayed clear expression of nuclear Cyclin D1. I further 

assessed the proportions of the glial cell types within the Cyclin D1-cell 
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population. Microglia composed about one fourth (Iba1+: 24% ± 1%) and 

astrocytes one third (S100β+: 33% ± 2%) of the Cyclin D1 population. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Partial population of Iba1-positive microglia (green) show 
coexpression of Cyclin D1. Magnification (A’- A’’’’) reveals that 
Cyclin D1 is expressed within the nucleus, stained for DAPI. B 
Some of the astrocytes labelled with S100β show 
coexpression of Cyclin D1. Magnification (B’-B’’’’) reveals that 
Cyclin D1 is expressed within the nucleus. C Olig2+ 
oligodendroglial cells show coexpression of Cyclin D1. 
Magnification (C’-C’’’’) reveals that Cyclin D1 is coexpressed 
within Olig2 in the nucleus. Scale bars A, B, C 20 µm; magnifi- 

cations 5 µm. D Histogram representing the relative expression glial cell type markers within the 
Cyclin D1 population in the contralateral cortex showing that Olig2 is mainly coexpressed within 
the Cyclin D1 cell population. Results are expressed as means ± SEM (error bars). 

 
 
 
 
 
 
 
Figure 4-7: Expression of glial markers within the Cyclin 
D1 cell population in the intact cortex 
Co-immunohistochemistry for Iba1, S100 β, Olig2 (all green) 
and Cyclin D1 (red), while nuclei are stained with DAPI (blue). 
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In contrast, the oligodendroglial cells made up the largest proportion (74% ± 

2%) (Fig. 4-7D). Thus in the intact brain most of the Cyclin D1-cells belong to 

the oligodendroglial lineage. 

 

 

4.8 Quantitative analysis of glial cell types following 
cortical injury in the adult 

To figure out whether cortical injury modulates Cyclin D1 expression within 

glial cells I performed double immunohistochemistry on injured brain section 

analogous to the one in intact cortical tissue and analyzed the cell population 

within the neurodegenerative area. 

Three days following injury the nuclear expression of Cyclin D1 was 

markedly increased within activated, hypertrophic microglia (Fig. 4-8A, C’’’’). 

Oligodendroglial cells too showed intense expression of Cyclin D1 within the 

nuclei (Fig. 4-8C, C’’’’). In contrast, activated astrocytes showed not only 

increased nuclear Cyclin D1 expression but also weak cytoplasmic expression, 

observable in the processes (Fig. 4-8B, B’, B’’’’). As in the intact cortex, 

oligodendroglial cells composed the largest proportion of Cyclin D1-cells (Iba1+: 

16% ± 1%; S100β+: 18% ± 3%; Olig2+: 73% ± 3%) (Fig. 4-8D). 

 

 

4.9 Reactive astrocytes surrounding the lesion express 
Cyclin D1 

To highlight reactive astrocytes in the injured cortex at 3 dpi I labelled sections 

for GFAP. The antibody used did not highlight astroglia in the intact cortex but 

only reactive astrocytes. I could show that at 3 dpi most of the reactive astrocytes 

surround the lesion site (Fig. 4-9A), with a few cells located within the neurode- 
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generative area (Fig. 4-9A). Reactive astrocytes could be detected up to 600 µm 

distance from the border of the lesion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-8: Identification of Cyclin D1-immuno-reactive 
cells after cortical injury. 
Co-immunohistochemistry for Iba1, S100 β, Olig2 (all green) 
and Cyclin D1 (red), while nuclei are stained with DAPI (blue). 
A Activated Iba1-positive microglia with hypertrophic 
morphology show in part coexpression of Cyclin D1. 
Magnification (A’-A’’’’) shows that Cyclin D1 is prominently 
expressed within the nucleus. B Activated astrocytes labelled 
with S100β show coexpression of Cyclin D1. Cyclin D1 is 
strongly expressed within the nucleus (B’-B’’’’). C 
Oligodendroglial cells positive for Olig2 show coexpression of 
Cyclin D1. Magnification (C’-C’’’’) reveals that Cyclin D1 is 
coexpressed within Olig2 in the nucleus. Scale bars A, B, C 

20 µm; magnifications 5 µm. D Histogram representing the relative expression of glial cell type 
markers within the Cyclin D1 population within the cortical lesion at 3 dpi showing that Olig2 is 
the most expressed marker in Cyclin D1 cells following injury. Results are expressed as means 
± SEM (error bars). 
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Preliminary quantification of GFAP+ reactive astrocytes within 300 µm 

distance to the border of the lesion revealed that they were found in a comparable 

density to the one of mature astrocytes (461 cells/mm2 ± 24 cells/mm2; n=1). In 

addition, I could show that reactive astrocytes coexpressed Cyclin D1 (Fig. 4-9B, 

B’-B’’’’). The relative fraction of GFAP+ reactive astrocytes expressing Cyclin 

D1 was comparable to the one of S100β+ mature astrocytes of the intact 

prefrontal cortex (GFAP+: 19%; S100β+: 23%). 

Thus, following neurotoxic insult to the prefrontal cortex astrocytes form a 

glial scar with a fraction expressing Cyclin D1. 

 

Figure 4-9: Reactive astrocytes surround the neurodegenerative area at 3pi and show 
partial expression of Cyclin D1 at 3dpi 
A Sagittal section of injured cortex labelled for reactive astrocytes with GFAP. Dotted line 
delineates the border of the lesion. Very few GFAP+ astrocytes could be detected within the 
neurodegenerative area (arrows). B Magnification of the boxed region in (A) showing reactive 
astrocytes expressing Cyclin D1 (arrowheads). Cyclin D1 is weakly expressed within the 
nucleus (B’-B’’’’).Scale bars 250 µm (A), 25 µm (B), 5 µm (B’-B’’’’). 
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4.10 Absence of Cyclin D1 reduces the lesion area 
following cortical injury 

To determine whether knockout of cyclin D1 gene can decrease the area of the 

lesion induced by neurotoxic insult to the brain, NeuN staining was done at 3 dpi 

and the lesion compared between wild-type and Cyclin D1-/- mice. As I was only 

interested in the area affected by the action of the ibotenic acid but not by the 

mechanical damage, I measured the size of the neuron-depleted area and 

subtracted the zone showing necrosis and / or mechanical damage due to needle  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10: Reduction of the neurodegenerative area in 
Cyclin D1-/- mice 
A, B Ibotenate-induced lesions in the adult WT (A) and 
Cyclin D1-/- (B) mouse visualized with anti-NeuN staining on 
sagittal sections 3 days post injection. The lesion area is 
circumscribed by a dotted line, while the area showing 
necrosis and/or mechanical damage is denoted by dashed 
lines. Scale bars 250 µm. C Histogram representing the 
neurodegenerative area in response to the injection of 
ibotenic acid. Results are expressed as means ± SEM (error 
bars) and were analyzed by a t test. 
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insertion (Fig. 4-10A, B). The mean size of this neurodegenerative area revealed 

tracted the zone showing necrosis and / or mechanical damage due to needle 

insertion (Fig. 4-10A, B). The mean size of this neurodegenerative area revealed 

to be reduced by 33% in Cyclin D1-/- animals (WT 0.785 mm2 ± 0.205 mm2 of 

neurodegenerative area, n = 9; Cyclin D1-/- 0.525 mm2 ± 0.068 mm2, n = 9; P = 

0.007) (Fig. 4-10C). 

 

 

4.11 Deficiency for Cyclin D1 does not affect reactive 
astrocytes 

To assess whether the absence of Cyclin D1 has an impact on glial scar 

formation 3 days following neurotoxic injury I compared the glial scar of WT 

and Cyclin D1-/- mice. I could not observe any obvious difference (Fig. 4-11A, 

A’, B, B’). To certify this qualitative result I determined the density of reactive 

astrocytes surrounding the lesion. I first had to define the area of interest. As 

shown before, reactive astrocytes were located within 300 – 600 µm distance to 

the border of the lesion. Thus I decided to consider GFAP+ cells within 300 µm 

distance to the border of the neurodegenerative area and to discard cells within 

the needle tract. I could not detect any difference in the density of reactive 

astrocytes between wild-type and knockout animals (Cyclin D1-/-: 470 cells / 

mm2 ± 32 cells/mm2; WT 483 cells/mm2 ± 14 cells/mm2) (Fig. 4-11C). 
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Figure 4-11: Equal number of reactive astrocytes within the glial scar of WT and Cyclin 
D1-/- mice 3 days following cortical injury 
A, B Reactive astrocytes labelled for GFAP following cortical injury at 3pi surrounding the lesion 
in adult WT (A) and Cyclin D1-/- (B) mice. A’, B’ Magnification of the boxed region in (A) and (B) 
showing GFAP+ cells within the glial scar. A, B scale bars 250 µm; A’, B’ scale bars 25 µm. C 
Histogram representing the number of GFAP+ cells per analyzed area within 300µm distance to 
the border of the lesion. Results are expressed as means ± SEM (error bars). 
 

 

4.12 Loss of Cyclin D1 impairs injury-induced 
proliferation in the adult brain 

As shown in WT animals, Cyclin D1 is expressed in an important proportion of 

fast-proliferating cells within the cortical lesion. Thus I investigated the function 

of Cyclin D1 in cell proliferation by comparing proliferation in adult WT and 
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Cyclin D1-/- mice in response to the neurotoxic injury. Therefore, I first 

quantified fast-proliferating cells (BrdU+) within the lesion area. In a second 

step, I assessed the impact on general proliferation by quantifying cells positive 

for the cell cycle marker Ki-67. 

Qualitative analysis of BrdU (Fig 4-12A, B) and Ki-67 (Fig 4-12D, E) three 

days following injury shows a reduced number of proliferating cells within the 

lesion of Cyclin D1-/- mice, as compared to WT mice. This observation was 

confirmed by quantification; revealing a significant decrease in the total number 

of proliferating cells following injury of the prefrontal cortex. The number of 

 

Figure 4-12: Injury-induced proliferation is reduced in the adult brain of Cyclin D1  mice. 
Immunohistochemistry was done for quantitative assessment of cell proliferation at 3 dpi. A, B 
D, E Proliferating cells were labelled with anti-BrdU or Ki-67 at the lesion site at 3 dpi of adult 
WT (A, D) and Cyclin D1-/- mice (B, E), which show a reduced number of proliferating cells. 
Dotted lines delineate the border of the lesion. Scale bars 250 µm. C, F Histograms 
representing the number of BrdU respectively Ki-67 labelled cells per analyzed area. Results 
are expressed as means ± SEM (error bars; ***, P < 0.001) and were analyzed by a t test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-/-
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that incorporated BrdU within the lesion of Cyclin D1-/- mutants, was decreased 

by 49% (Cyclin D1-/-: 114 cells/mm2 ± 9 cells/mm2; WT 224 cells/mm2 ± 11 

cells/mm2; p=0.005) while the number of cells positive for Ki-67 was decreased 

by 55% (Cyclin D1-/-: 437 cells/mm2 ± 51 cells/mm2; WT 961 cells/mm2 ± 62 

cells/mm2; p=0.0002) (Fig. 4-13C). Thus, knockout of Cyclin D1 diminished 

injury-induced cell proliferation following insult to the cortex. 

 

 

4.13 Glia shows differential requirement for Cyclin D1 

As Cyclin D1 is expressed in microglia, astrocytes and oligodendroglial cells, I 

tried to figure out whether the knockout of Cyclin D1 has an impact on the 

respective glial cell type within the intact and injured cortex of Cyclin D1-/- mice. 

Hence, I first compared the total cell number for the different glial cell types 

within the intact cortex of adult WT and Cyclin D1-/- mice. The distribution 

pattern and the morphology of all three cell types were not altered in Cyclin D1 

knockout mice. For the S100β I could not detect any obvious difference when 

comparing the staining of WT and knockout mice (Fig. 4-14C, D), while Iba1+ 

(Fig. 4-14A, B) and Olig2+ cells (Fig. 4-14E, F) seemed to be slightly reduced. 

However, quantitation showed that the number of ramified microglia decreased 

by 38% (Cyclin D1-/-: 167 cells/mm2 ± 5 cells/mm2; WT 268 cells/mm2 ± 1 

cells/mm2; p=0.002) and the one of oligodendroglial cells by 39% (Cyclin D1-/-: 

443 cells/mm2 ± 26 cells/mm2; WT 732 cells/mm2 ± 59 cells/mm2; p=0.003) 

(Fig. 4-14G). 

In a second step I examined the three cell types at 3 dpi. Knockout of Cyclin 

D1 significantly reduced hypertrophic microglia (Cyclin D1-/-: 470 cells/mm2 ± 

64 cells/mm2; WT 757 cells/mm2 ± 1 cells/mm2; p=0.002), oligodendroglial 

cells (Cyclin D1-/-: 1031 cells/mm2 ±54 cells/mm2; WT 1381 cells/mm2 ± 68 
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cells/mm2; p=0.0013) and also activated astrocytes (Cyclin D1-/-: 156 cells/mm2 

±5 cells/mm2; WT 292 cells/mm2 ± 9 cells/mm2; p=0.0013) (Fig. 4-14H). 

 

 

 

Figure 4-13: Cyclin D1 
loss affects number of 
specific cell types in the 
non-injured and injured 
prefrontal cortex 
A, B, C, D, E Images 
depicting cells labelled for 
Iba1 (A, B), S100β (C, D) 
and Olig2 (E, F) in the non-
injured cortex of wild-type 
and Cyclin D1-/- mice. Scale 
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bars 25 µm. G, F 
Histograms representing the 
number of Iba1-, S100β- 
and Olig2-cells per analyzed 
area within the intact cortex 
(G) and within the 
neurodegenerative area of 
the injured cortex (H). 
Results are expressed as 
means ± SEM (error bars; 
n.s. = not significant; **, P < 
0.01; ***, P < 0.001) and 
were analyzed by a t test. 

 

 

4.14 Microglia but not oligodendroglial cells are 
reduced in newborn Cyclin D1-/- mice 

Next I enquired whether the reduction of microglia and oligodendroglial cells 

observed in the intact cortex of adult Cyclin D1-/- mice was due to the loss of the 

cell cycle protein during adulthood, or whether it already had an effect during 

early development, which could be observed at early postnatal stages. While 

microglia enter the CNS from the blood circulation early in development (Aloisi, 

2001), proliferation and maturation of the third wave of oligodendrocytes 

predominantly occurs in the first week after birth (Kessaris et al., 2006). Thus we 

decided to examine the expression of Iba1 and Olig2 during this period and 

choose the postnatal day 3 (P3) as point in time. 

At this early stage, the number of Iba1+ cells observed in the cortex of WT 

was much less abundant than in the adult and their distribution within the cortex 

was uneven (Fig 4-15A). Compared to this, Olig2+ cells were densely packed 

and showed an equal distribution (Fig 4-15D). Quantitation showed that in the 

knockout the number of microglia was reduced by 30% (Cyclin D1-/-: 35 

cells/mm2 ± 2 cells/mm2; WT 25 cells/mm2 ± 2 cells/mm2; p=0.0025) (Fig 4-

15C), whereas the Olig2+ cells were about the same number (Cyclin D1-/-: 1296 

cells/mm2 ± 69 cells/mm2; WT 1226 cells/mm2 ± 30 cells/mm2) (Fig 4-15F). 
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Figure 4-14: Cyclin D1 loss affects number of Iba1+ but not Olig2+ cells at P3 
A, B Iba1+ cells in the cortex of P3 WT (A) and Cyclin D1-/- (B) mice. D, E Olig2+ cells in the 
cortex of P3 WT (D) and Cyclin D1-/- (E) mice. mice. Scale bars 25 µm. C, F Histograms 
representing the number of Iba1+ (C) respectively Olig2+ (F) cells per analyzed area. Results 
are expressed as means ± SEM (error bars; **, P < 0.01) and were analyzed by a t test. 
 

 

4.15 Adult Cyclin D1-/- mice possess less mature oligo-
dendrocytes 

Given that the number of oligodendroglial cells is equal in WT and Cyclin D1-/- 

mice at early perinatal stage, but reduced in adult stages, we further asked 

whether this effect is increasing with age of the animal. The adult animals we 
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used before they were four to five month old. Thus we decided to determine the 

number of oligodendroglial cells at later stages, in eight-month-old animals. 

The number of Olig2+ cells in the cortex of 8 month old knockout mice was 

reduced by 38% as compared to WT animals (Cyclin D1-/-: 393 cells/mm2 ± 33 

cells/mm2; WT 636 cells/mm2 ± 21 cells/mm2; p=0.006) (Fig 4-16A,B, C). This 

decline was consistent to the one observed in 4-5 month aged animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-15: Cyclin D1 loss affects number of Olig2+ and APC+ cells at 8 month 
A, B Olig2+ cells in the cortex of 8 month aged WT (A) and Cyclin D1-/- (B) mice. D, E APC+ 
cells in the cortex of 8 month aged WT (D) and Cyclin D1-/- (E) mice. mice. Scale bars 25 µm. C, 
F Histograms representing the number of Olig2+ (C) respectively APC+ (F) cells per analyzed 
area. Results are expressed as means ± SEM (error bars; ***, P < 0.001) and were analyzed by 
a t test. 
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As the number of oligodendroglial cells was reduced in the Cyclin D1-

deficient animals we decided to investigate whether it resulted in a decline of 

mature oligodendrocytes. Therefore, I used an antibody against APC with which 

mature oligodendrocytes could be labelled. As expected, the number of APC+ 

cells was reduced by 39% (Cyclin D1-/-: 255 cells/mm2 ± 16 cells/mm2; WT 421 

cells/mm2 ± 33 cells/mm2; p=0.04) (Fig 4-16D, E, F). Thus, I concluded that the 

absence of Cyclin D1 leads to a reduction of mature oligodendrocytes. 

A logic consequence of the reduction in oligodendroglial cells – as seen for 

the markers Olig2, NG2 and APC – would be a reduction in the end-product of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16: Myelin staining in the WT and Cyclin D1-/- mice. 
A, B MBP staining within the intact adult cortex of WT (A) and Cyclin D1-/- (C) mice did not show 
any obvious difference. Further magnifications of the upper cortical layers (A’, B’) and of the 
prefrontal cortex (A’’, B’’) could not reveal any discrepancy. Scale bars 250 µm (A, B) and 50 
µm (A’, A’’, B’, B’’). 
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the oligodendroglial lineage, namely myelinating oligodendrocytes. Therefore, I 

stained brain sections for myelin basic protein (MBP) which labels myelin 

membranes of differentiated oligodendrocytes. As the effect might increase over 

time, I analysed the staining in 8-month-aged WT and Cyclin D1-knockout mice. 

Qualitative analysis of the prefrontal cortex of WT and knockout animals did 

not show any difference in staining pattern (Fig. 4-16A, B). The density of the 

myelin within the prefrontal cortex was so high that it was not possible to 

discriminate single myelinated nerve fibers (Fig. 4-16A’’, B’’). Hence it was also 

not possible to perform any quantitative analysis of the immunohistochemistry. 

 

 

4.16 Absence of Cyclin D1 does not affect density of 
mature neurons 

To know whether Cyclin D1 also has an impact on neurons in the adult cortex, I 

analysed the NeuN staining in the intact cortex of 8-month-old WT and Cyclin 

D1-deficent animals (Fig. 4-17A, B). Comparison of the cortex between WT and 

KO animals showed a reduction of the cortical thickness (Fig. 4-17A’, B’) which 

amounted to 11% (Cyclin D1-/-: 1.11 mm ± 0.02 mm; WT 1.24 mm ± 0.03 mm; 

p=0.0003) (Fig. 4-17C). In contrast, quantitative analysis of NeuN+ cells in the 

knockout animal revealed an increased neuron density (11%) as compared to the 

WT (Cyclin D1-/-: 2845 cells/mm2 ± 104 cells/mm2; WT 2572 cells/mm2 ± 59 

cells/mm2; p=0.003) (Fig. 4-17D). Thus, the absolute numbers of neurons within 

the measured was the same in WT and knockout animals. 
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Figure 4-17: 
The number of 
mature neurons is 
not affected by the 
absence of Cyclin 
D1 at 8 month age. 
A, B Mature 
neurons were 
labelled with anti-
NeuN in 8 month 
aged animals WT 
(A) and Cyclin D1-/- 
(B) mice. A’, B’ 
Magnifications of the 
boxed regions in (A) 
and (B). The 
knockout mice show 
reduced thickness of 
cortex but higher 
cell density in 
deeper cortex 
layers. C, D 
Histograms 
representing the 
cortex thickness (C) 
and density of 
mature NeuN+ 
neurons in WT and 
Cyclin D1-/- mice. 
While the cortex 
thickness is reduced 
in the knockout 
animals, the density 
of NeuN+ cells is 
increased by the  

same percentage. Results are expressed as means ± SEM (error bars; ***, P < 0.001) and were 
analyzed by a t test. 
 

—  70  — 



RESULTS 

—  71  — 

4.17 Reduced proliferation of microglia in adult Cyclin 
D1-/- mice 

Unlike the Olig2+ cells, the number of Iba1+ microglia was already diminished 

at P3, implicating a defect during embryonic development. I performed 

experiments to analyse slow and fast proliferating microglia in the adult cortex. 

In the intact cortex of WT mice slow proliferating BrdU-labelled microglia 

often appeared as doublets (Fig. 4-18A), while in the Cyclin D1-/- mice they 

 

 

 

 

 

 

 

 

 

 

mostly appeared as single cells (Fig. 4-18B). Quantitation showed that the total 

number of Iba1+ cells was reduced by 36% in the knockout animals (Cyclin D1-/-

: 220 cells/mm2 ± 3 cells/mm2; WT 343 cells/mm2 ± 9 cells/mm2; p=0.002), 

while the proliferative fraction was even reduced by 89% (Cyclin D1-/-: 0.4 

cells/mm2 ± 0.08 cells/mm2; WT 5 cells/mm2 ± 1 cells/mm2; p=0.002) (Fig. 4-

18E). Within the lesion of the injured cortex the effect seemed to be less 

pronounced. While the number of hypertrophic Iba1+ cells was decreased 27% 

by (Cyclin D1-/-: 702 cells/mm2 ± 34 cells/mm2; WT 968 cells/mm2 ± 45 

cells/mm2; p=0.041) (Fig. 4-18E) the proliferative fraction was reduced by 57% 

(p=0.046) (Fig. 4-18F). 
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Figure 4-18: Deficiency for Cyclin D1 strongly reduceds slow-proliferating microglia of 
the intact and fast-proliferating microglia of the injured cortex. 
A, B, BrdU staining (red) highlighting slow-proliferating Iba1+ cells (green) in adult intact cortex 
of WT (A) and Cyclin D1-knockout mice. C, D BrdU highlights fast-proliferating Iba1+ cells within 
the lesion of WT (C) and Cyclin D1-/- mice (D). Arrowheads indicated double-positive cells. 
Proliferating cells often appeared as doublets (insets). Scale bars 25 µm. E, F Histograms 
representing the number of slow- (E) and fast-proliferating (F) Iba1+ cells per analyzed area and 
the corresponding proliferative fraction of Iba1+ cells. Results are expressed as means ± SEM 
(error bars; *, P < 0.05; **, P < 0.01) and were analyzed by a t test. 
 

 

4.18 Cyclin D1 regulates the proliferation of oligoden-
droglial cells during postnatal development and 
following injury 

The previous results showed that the number of Olig2+ cells decreased during 

adulthood and following injury in mice deficient for Cyclin D1. Therefore, I 

assumed that the proliferation of the oligodendroglial cells might be diminished 

after injury. To test this hypothesis I assessed the impact of Cyclin D1 on the 

proliferation of Olig2+ cells in three different paradigms. First, I analysed fast 

proliferating Olig2+ cells at early postnatal stages, (P3). Therefore, I injected 

BrdU into P3-pups 2h prior to perfusion and processing for 

immunohistochemical analysis. In a second step I examined the slow 

proliferating Olig2+ cells in the non-injured adult. For this purpose mice were 
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fed with BrdU in their drinking water during 15 days. Finally, in a third step I 

analysed the fast proliferating Olig2+ cells following injury to the adult cortex. 

As for P3 mice, BrdU was intraperitoneally injected 2h prior to perfusion. 

Comparison of the obtained results for the three paradigms, would not only 

answer the question whether Cyclin D1 is generally required for 

oligodendrogenesis but also if it is specifically affecting proliferation in one of 

the three paradigms and therefore being differentially required within 

proliferating oligodendroglial cells. 

Taking into account that a reduction of the total number of Olig2+ cells itself 

could be the reason for a reduced number of proliferating Olig2-cells, I 

calculated the percentage of BrdU+ Olig2+ cells of the total Olig2-cell 

population (proliferative fraction). At P3, knockout mice showed no difference in 

proliferation of cortical Olig2+ cells (Fig. 4-19A, B, G, H), whereas in the intact 

adult cortex slow-proliferating oligodendroglial cells were significantly reduced 

(Cyclin D1-/-: 7 cells/mm2 ± 1 cells/mm2; WT 56 cells/mm2 ± 6 cells/mm2; 

p=0.00005) (Fig 4-19C, D, G). This decrease was also reflected by the reduced 

proliferative fraction which was reduced by 77% (p=0.0001) (Fig. 4-19H). In the 

injured cortex of adult knockout mice I could observe a considerable decline in 

fast-proliferating Olig2+ cells, though not as severe as observed for the slow-

proliferating cells (Cyclin D1-/-: 42 cells/mm2 ± 3 cells/mm2; WT 93 cells/mm2 

± 8 cells/mm2; p=0.0005) (Fig. 4-19E, F, G). In this case, the proliferative 

fraction was reduced by 33% (p=0.015) (Fig. 4-19H). Taken together, the 

proliferation at perinatal stage was not impaired by the deficiency for Cyclin D1, 

while during adulthood endogenous proliferation and injury-induced proliferation 

were severely diminished. 

—  73  — 



RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-19: Cell 
proliferation of Olig2+ 
cells is not affected by 
the absence of Cyclin D1 
at P3 but in adult 
uninjured cortex and in 
response to injury to 
cortex. 
A, B, C, D, E, F 
Proliferating Olig2+ cells 
were labelled with anti-
BrdU in P3 (A, B), adult 
noninjured (C, D) and adult 
injured (E, F) WT and 
Cyclin D1-/- mice. 
Arrowheads indicated 
double-positive cells. 
Scale bars 25 µm. G, H 
Histogram representing 
the number of proliferating 
Olig2+ cells per analyzed 
area (G) and the proliferat- 

ive fraction of proliferating Olig2+ cells (H) in P3, adult and adult injured (3 dpi) mice. 
Results are expressed as means ± SEM (error bars; *, P < 0.05; ***, P < 0.001) and 
were analyzed by a t test. 
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The marker Olig2 is expressed throughout the entire oligodendroglial lineage 

and it is suggested that the proliferating fraction of the Olig2-population are 

oligodendrocyte progenitors (OPCs) (Zhou et al., 2000; Ligon et al., 2004; Ligon 

et al., 2006). To further support the data obtained with Olig2 I performed stain-

ings with the NG2-antibody, which labels putative OPCs. 

Comparison of the total number of NG2-cells within the cortex of WT and 

Cyclin D1 mice showed only a decline of 17% in the knockout (Cyclin D1-/-: 122 

cells/mm2 ± 3 cells/mm2; WT 146 cells/mm2 ± 5 cells/mm2; p=0.003) (Fig. 4-

20A, B). As the decline of oligodendroglial cells labelled for Olig2 in the 

knockout was at 39%, the decrease in NG2-population would only account for a 

part of the total effect. Next I examined the proliferation of NG2-cells. 

From previous studies it is known that within the cortex of adult mice, the 

fraction of actively dividing NG2-cells is about half of the NG2-population while 

the other half of the population being long-term quiescent (Psachoulia et al., 

2009). This has been shown by cumulative BrdU labelling experiments. 

Moreover, it has been shown that with increasing time of administered BrdU the 

fraction of NG2-cells labelled for BrdU is increasing linearly, reaching its 

maximum at less than 20 days of BrdU administration. 

Thus, I attempted to reproduce the results of Psachoulia et al. in the WT mice 

and analysed the fraction of proliferating NG2+ cells within the intact cortex of 

WT mice. As I was feeding mice for 15 days with BrdU I expected the fraction 

of proliferating NG2-cells to be between 40% and 50%. Indeed, proliferating 

NG2-cells made up 43% of the total NG2-cell population (43.3% ± 1.4%) (Fig. 

4-20G). Proliferating NG2-cells could often be observed as doublets (Fig. 4-

20C). In the knockout animals, the reduction of proliferating NG2-cells was 

obvious (Fig. 4-20D). Subsequent analysis in the Cyclin D1 knockout revealed 

that the number of proliferating NG2-cells (Fig. 4-20F) and moreover the 

proliferative fraction of NG2-cells was both strongly reduced by 89 % (Cyclin 
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D1-/-: 6 cells/mm2 ± 1 cells/mm2; WT 57 cells/mm2 ± 5 cells/mm2; 

p=0.000007) (Fig. 4-20G). 

 

 

Figure 4-20: The popu-lation and proliferation rate of NG2-cells is significantly reduced 
by the absence of Cyclin D1 in the adult uninjured cortex. 
A, B, NG2+ cells within the intact adult cortex of WT (A) and Cyclin D1-/- (B) mice. C, D, 
Proliferating NG2+ cells are labelled with anti-BrdU in adult intact cortex of WT (D) and Cyclin 
D1-/- (E) mice. Arrowheads indicated double-positive cells. Scale bars 25 µm. E, F Histograms 
representing the total number (E) and the proliferating number (F) of NG2+ cells per analyzed 
area G Histogram representing the proliferative fraction of NG2+ cells. Results are expressed 
as means ± SEM (error bars; **, P < 0.01; ***, P < 0.001) and were analyzed by a t test. 
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4.19 Absence of Cdk4 impairs the injury-induced 
proliferation of OPCs 

As Cyclin D1 is the regulatory subunit of the holoenzyme formed with the 

catalytic subunits Cdk4 and Cdk6, one could assume that knockout of one of the 

catalytic subunits might have similar effects as observed in the Cyclin D1-

knockout mice. It was previously shown in the PNS, that mice lacking Cdk4 

show a drastic decrease in number of proliferating Schwann cells – the 

myelinating cells of the PNS – during development. Moreover, injury-induced 

proliferation of adult Schwann cells was abolished in Cdk4-knockout mice. 

Interestingly, ablation of Cdk2 and Cdk6 had no influence on developmental or 

injury-induced proliferation of Schwann cells, indicating the need for specific 

Cdks (Atanasoski et al., 2008). Thus, the question came up whether the same 

might be true for the CNS.  

To answer this question I investigated on the number and injury-induced 

proliferation of oligodendroglial cells in Cdk2-, Cdk4- and Cdk6-knockout mice 

and compared it to the results obtained in the Cyclin D1-knockout mice. 

Therefore, the same type of injuries and immunohistochemical analysis for BrdU 

and Olig2 were performed in the Cdk-knockout mice as for the Cyclin D1-/- mice. 

In the Cdk2-/- mice the number of Olig2+ cells within the lesion area was 

comparable to the one observed in WT and insignificantly lower in the Cdk6-/- 

mice (Cdk2-/-: 1525 cells/mm2 ± 81 cells/mm2; p=0.9; Cdk6-/-: 1346 cells/mm2 ± 

58 cells/mm2; p=0.15; WT 1496 cells/mm2 ± 118 cells/mm2) (Fig. 4-21A). In 

contrast, Cdk4-/- mice showed a reduction of 44% (Cdk4-/-: 834 cells/mm2 ± 81 

cells/mm2; p=0.0007), which was even more extensive than the one observed in 

Cyclin D1-/- mice (25%, Fig. 4-21A). For the absolute number of proliferating 

Olig2 cells (Fig. 4-21B) and the proliferative fraction of the Olig2-population I 

could observe a similar effect. While Cyclin D1-/- and Cdk4-/- animals showed a 
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significant decrease in the proliferative fraction of Olig2+ cells (Cyclin D1-/-: 

4.3% ± 0.4%; p=0.015; Cdk4-/-: 2.3% ± 0.6%, p=0.005; WT: 6.4% ± 0.6%), the 

difference was non-significant in Cdk2- and Cdk6-knockout mice (Fig. 4-21C). 

 

Figure 4-21: Following cortical 
injury to the adult brain number 
and proliferation of Olig2+ cells 
is affected by the absence of 
Cyclin D1 and Cdk4 but not by 
the absence of Cdk2 and Cdk6 
A, B C Histograms repre-senting 
the total number (A) and the 
proliferating number (B) and the 
proliferative fraction (C) of Olig2+ 
within the lesion of WT, Cyclin D1-, 
Cdk2-, Cdk4- and Cdk6-knockout 
animals at 3 dpi. The three 
measured data showed to be 
significantly reduced in Cyclin D1- 
and Cdk4-knockout animals but 
not in animals deficient for Cdk2 or 
Cdk6. Results are expressed as 
means ± SEM (error bars; *, P < 
0.05; **, P < 0.01; ***, P < 0.001) 
and were analyzed by a t test. 

 

 

 

 

In summary, I have shown that Cyclin D1 has a direct impact on the lesion size 

following neurotoxic injury to the brain cortex. Furthermore, analysis of the 

requirement for Cyclin D1 within glial lineages revealed that it is indispensable 

for the development of microglia, while OPCs are only Cyclin-dependent during 

adult stages. In addition I propose Cdk4 to be the interaction partner of Cyclin 

D1, regulating injury-induced proliferation of OPCs. 
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5. DISCUSSION 
I have studied the impact of Cyclin D1 in the intact and injured postnatal 

prefrontal cortex and observed that: (1) three days following neurotoxic injury to 

the cortex Cyclin D1 is highly upregulated within the neuron-depleted area; (2) 

absence of Cyclin D1 reduces the neurodegenerative area following injury; (3) 

Cyclin D1 is differentially required depending on the glial cell type; (4) absence 

of Cyclin D1 impairs proper generation of microglia, (5) Cyclin D1 is required 

for the oligodendrogenesis during adulthood but not during early development 

and (6) Cyclin D1 is not important for the generation of the proper number of 

neurons. In addition, I show that absence of Cdk4 but not Cdk2 and Cdk6 reduce 

injury-induced proliferation of oligodendrocyte progenitor cells. 

 

From previous studies (Kaya et al., 1999; Di Giovanni et al., 2003; Di Giovanni 

et al., 2005) it was known that cell cycle proteins are significantly upregulated 

following injury to the CNS. In addition, it has been shown that following 

traumatic brain injury (TBI) there is a marked upregulation of cyclin D1 and 

cdk4 (Di Giovanni et al., 2005). However, after global brain ischemia Cyclin D1 

and Cdk4 are not increased above normal values (Small et al., 2001). Thus, 

whether there is increased protein expression of cell cycle protein, may be 

dependent on the injury model and species. 

It was shown that the upregulation of cell cycle proteins following injury to 

the CNS can result either in the proliferation and activation of glial cells such as 

astroglia and microglia, or in the apoptosis of post-mitotic cells such as neurons 

and mature oligodendrocytes (Byrnes et al., 2007). For example resident 

microglia strongly increase their proliferation rate in response to injury (Byrnes 

and Faden, 2007) and proliferating astroglia have been shown to play a 

significant role in the formation of the glial scar (Byrnes and Faden, 2007). 

Treatment with the cell cycle-inhibitor flavopiridol decreases injury-induced 

lesion volume and improves behavioural outcomes (Cernak et al., 2005), 
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suggesting that modulation of the cell cycle after injury might provide a 

mechanism for neuroprotection. However, flavopiridol is a relatively nonspecific 

cell cycle inhibitor that also inhibits transcription, which complicates 

interpretation of its mechanism of action. Treatment with roscovitine, a more 

specific Cdk-inhibitor decreased microglial activation after TBI, and attenuated 

astrogliosis (Cernak et al., 2005; Hilton et al., 2008). Taken together, these data 

support a multifactorial neuroprotective effect of cell cycle inhibition after TBI 

and suggest that multiple Cyclins and Cdks are potentially involved in this 

process. The critical limitation of the approach using pharmacological 

compounds is that one cannot connect their effect to a specific cell cycle 

molecule as the activity of multiple CDKs may be inhibited (Bain et al., 2007). 

Thus, genetic approach using Cyclin D1-deficient mice specifically targets the 

cell cycle molecule in order to determine its effects. 

To date, most brain injury models affect not only neurons but result in various 

pathophysiological alterations which makes it difficult to dissect injury-induced 

mechanisms. An example of this is controlled cortical impact, a model for 

traumatic brain injury (TBI). Although it produces a focal injury it is also leading 

to vascular disruption, cerebral edema and elevated intracerebral pressure (Dixon 

et al., 1991; Cernak et al., 2005). To investigate the processes specifically 

occurring following neurodegeneration and to minimize side effects as 

mentioned before, I chose to perform local injections of ibotenic acid. 
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5.1 Upregulation of Cyclin D1 following injury 

Microarray analysis in previous studies showed a marked upregulation of Cyclin 

D1 and Cdk4 mRNA expression by 24h- 48h after spinal cord injury (Byrnes and 

Faden, 2007). This up-regulation persists for at least 7 days post-injury, and 

disappears by 28 days. Confirmation of these microarray findings with 

immunohistochemistry demonstrates upregulation of the cell cycle proteins 

(Kaya et al., 1999; Di Giovanni et al., 2003; Di Giovanni et al., 2005). 

My own analysis of the expression of Cyclin D1 three days following 

neurotoxic insult agree with the previous findings in other injury models, 

revealing a significant increase in the number of cells expressing Cyclin D1 

within the lesion site. In contrast, at 1 dpi I could not observe any change in 

protein expression. Apparently, the upregulation of Cyclin D1 or rather the 

activation of the cell cycle machinery in cells residing within neurodegenerative 

area requires more than 24h. This delay could be partly due to the indirect 

mechanism of cell cycle activation within cells which react upon degeneration of 

neurons. At 30 days postinjury the expression level in cells residing within the 

neurodegenerative area had returned to basic level and the density of Cyclin D1+ 

cells had even dropped below values observed in the uninjured cortex. Thus, the 

cells had lowered their Cyclin D1 expression to the one comparable in resting 

state. The decrease in number is probably due to cell death induced by mechanic 

damage of the tissue. 

 

5.2 Glial cell types within the intact and lesioned 
cortex 

I could show that three days following neurotoxic insult to the cortex neurons 

completely disappeared within the neurodegenerative area (Fig. 6-1). 
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Simultaneously, the number of oligodendroglial cells and activated microglia 

markedly increased, while the number of mature astrocytes remained unchanged. 

(Fig. 6-1). In addition, reactive astrocytes could be observed outside at the border 

of the lesion (Fig. 6-1). 

Concerning Cyclin D1 expression, I could show that within the intact prefrontal 

cortex minor fractions of the resting microglia and mature astrocytes weakly 

expressed Cyclin D1 in the nucleus. In contrast, a major fraction of the 

oligodendroglial cells expressed nuclear Cyclin D1. Although the number of 

microglial and oligodendroglial cells increased within the injured cortex, the 

percentage of microglial, astrocytic and oligodendroglial cells double positive for 

Cyclin D1 did not change significantly when compared to the intact situation. 

Apparently, the sum of the percentages of Cyclin D1 cells positive for one of 

the glial markers exceeds 100% in the intact as well as in the injured condition. 

From previous studies it is known, that astrocytes also express Olig2 (Cassiani-

Ingoni et al., 2006; Cai et al., 2007; Chen et al., 2008; Zhao et al., 2009). Thus, 

the expression of the markers S100β+ and Olig2+ might overlap within the 

Cyclin D1-cell population. 

The observed expression of Cyclin D1 within microglia and oligodendroglial 

cells is in line with studies which examined Cyclin D1 expression before and 

after traumatic brain injury (Kaya et al., 1999) or focal ischemia (Li et al., 1997). 
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Figure 6-1: Proposed model of injury-induced activation and proliferation of glial cells 
following local neurotoxic insult to the cortex 
1 Normal adult white matter contains astrocytes, microglia, myelinating oligodendrocytes, and in 
addition oligodendrocyte precursor cells (OPCs). 2 Following neurotoxic insult to the cortex 
causing neurodegeneration astrocytes, microglia and OPCs in the proximity are activated. 3 
Three days following neurotoxic insult the neurons completely disappeared within the lesion 
site. Microglia and OPCs proliferate while reactive astrocytes form a glial scar around the lesion. 
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5.3 Knockout of Cyclin D1 reduces the lesion area 

The size of a cortical lesion provides a marker for secondary injury-mediated 

tissue damage and neurodegeneration. I could show that 3 days following 

neurotoxic injury to the cortex the neurodegenerative area was significantly 

smaller within Cyclin D1-/- mice. These results were in line with previous results 

obtained in other injury models such as focal cerebral ischemia (Zhu et al., 2007), 

spinal cord injury (Di Giovanni et al., 2005; Byrnes and Faden, 2007) or 

traumatic brain injury (Kabadi et al., 2012). The latter revealed that following 

traumatic brain injury in Cyclin D1-deficient mice, expression of markers of cell 

cycle activation, microglial inflammation, as well as neurodegeneration are 

strongly reduced (Kabadi et al., 2012). The authors suggest that the 

neuroprotective effect is due to direct inhibitory effects on cell cycle activated-

dependent neuronal cell death and microglial-mediated inflammation. As I could 

observe a reduced number of oligodendroglial cells within the injury of Cyclin 

D1-/- mice I would not only account neurons and microglia to the smaller injury 

size but also oligodendroglial cells. 

To definitely answer the question whether the reduced size of the lesions in 

the Cyclin D1-/- mice relies specifically upon one cell type, one would need to 

use mice in which cyclin D1 is knocked out in neurons, microglia or 

oligodendroglial cells. 

 

5.4 Deficiency for Cyclin D1 does not affect the 
number of reactive astrocytes 

In contrast to previous studies which used pharmacological inhibitors to block 

the Cyclin D1 pathway (Di Giovanni et al., 2005), the Cyclin D1-/- mice used in 

my study did not display a reduction in GFAP+ cells leading to reduced glial scar 
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formation at 3dpi. This might be due to the fact that at 3 dpi most reactive 

astrocytes derive from local astrocytes whose number in the intact cortex of 

Cyclin D1-deficent mice does not differ from WT mice. This could be further 

supported by the fact that at 1 dpi I could not detect GFAP+ cells surrounding the 

neurotoxic area (data not shown), suggesting that activation and thereby 

proliferation of reactive astrocytes occurs only after some temporal delay. 

Furthermore, preliminary results indicated a reduced astrogliosis around the 

lesion site (data not shown). Thus, it is well probable that the proliferation of 

reactive astrocytes is reduced in Cyclin D1-/- mice, leading in long-term to a 

reduced scar formation. To assess this, one would need to examine the density of 

reactive astrocytes within the glial scar at a point in time beyond 3 dpi so that the 

potential effect can become observable. 

 

5.5 Cyclin D1 is essential for the generation of 
microglia 

Studying the postnatal brains of Cyclin D1-/- mice I could show that the number 

of microglia within the prefrontal cortex was already prominently reduced at 

early postnatal stage. As the microglial cells observed at this stage just have 

entered into brain parenchyma and may not be proliferating, one can assume that 

the absence of Cyclin D1 has an impact on microglia during embryonic 

development. Either it is reducing the cellular traffic through the blood brain 

barrier into the brain which is unlikely as the blood brain barrier is not fully 

developed at birth, or, more probably, by hampering the proper formation of 

microglia precursors before they invade the brain. At adult stage, the reduction of 

the pool of cortical microglia in the Cyclin D1 knockout was even more 

prominent. As the turnover of microglia is very low in the intact brain (Lawson et 

al., 1992), I performed long-term proliferation studies. 
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In addition to the investigation in the intact cortex I also assessed the impact of 

the genetic loss of Cyclin D1 on the response of microglia following injury to the 

cortex. At 3 dpi, microglia within the neurodegenerative area of the knockout 

mice were reduced in number as compared to the WT. On one hand this could be 

explained by a reduced number of resident microglia before injury. But 

determination of the proliferative fraction showed that also the proliferation of 

injury-induced microglia is prominently reduced. Thus, in Cyclin D1-/- mice both 

the number of resident microglia as well as the proliferation of activated 

microglia are reduced within the neurotoxic lesion. 

Taken together, Cyclin D1 is important for the overall proliferation of 

microglia (Fig. 6-2A, B). As it was shown, that microglial activation is 

associated with the release of proinflammatory molecules that can cause 

neurotoxicity (Di Giovanni et al., 2005; Byrnes and Faden, 2007), one can 

assume that a reduction in the number of microglia leads to a reduced 

inflammatory response and thus to a reduction in secondary injury. 

This matches with a recent publication which showed that genetic ablation of 

Cyclin D1 significantly reduced numbers of activated microglia following 

traumatic brain injury (Kabadi et al., 2012). Furthermore, they observed that the 

protein level for the reactive microglial marker Iba-1 was reduced in the Cyclin 

D1-/- mice, emphasizing a role of Cyclin D1 in microglial activation. 

 

5.6 Absence of Cyclin D1 results in a reduced number 
of mature oligodendrocytes 

Analysis of Olig2+ oligodendroglial cells at adult stage in Cyclin D1-/- mice 

revealed a reduction by almost 40% as compared to wild-type animals. As Olig2 

is expressed during the complete differentiation process of oligodendroglial cells 
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I further examined its subtypes. Investigation on the number of adult OPCs 

which specifically express NG2 revealed a reduction of 17% in Cyclin D1-/- mice. 

To figure out whether the observed reduction of OPCs was due to the effect of 

the absence of Cyclin D1 during adulthood or during development, I examined 

the pool of oligodendroglial cells in newborn mice. Oligodendrocytes are 

generated in three waves during development with the third wave starting just 

after birth (Kessaris et al., 2006). Thus, impact of Cyclin D1 on the production of 

oligodendrocytes could be best monitored at perinatal stages. Analysis of the 

total number of oligodendroglial cells in the prefrontal cortex of newborn WT 

and Cyclin D1-/- mice at P3 showed that in contrast to microglia, the pool of 

oligodendroglial cells was not affected by the absence of Cyclin D1. Thus, I 

concluded that the proliferation of oligodendroglial cells is not affected during 

early development but during postnatal stages. Investigation on the proliferation 

of oligodendroglial cells at P3 revealed that the proliferation of these fast-

proliferating cells was not affected by the absence of Cyclin D1. Thus I further 

analysed the proliferation of oligodendroglial cells at adult stage and I could 

show that the population of slow-proliferating Olig2-cells is markedly reduced in 

Cyclin D1-/- mice. To further support this result I assessed the proliferation of 

adult NG2-cells. I could show that in the wild-type animals about half of the 

NG2-cell population was proliferating (which is in line with Psachoulia et al., 

2009) and that this proliferative fraction declined to 11% in Cyclin D1-/- mice. 

Thus, the absence of Cyclin D1 strongly impaired the proliferation of OPCs at 

adult stage in contrast to early postnatal stage (P3). This in turn, implies the 

existence of molecular mechanisms which are able to discriminate between the 

proliferation of OPCs during development and adulthood. 

As the OPCs observed at early postnatal stage are fast-proliferating cells and 

the OPCs at adult stage slow-proliferating cells, one would tend to claim that 

only slow-proliferating cells are affected by the absence of Cyclin D1. Thus, I 
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used my injury model to induce fast-proliferating OPCs in the cortex of adult 

mice. 

Different models inducing demyelination in the adult mouse brain provide 

indirect evidence that OPCs are the major source of remyelinating 

oligodendrocytes. First of all, BrdU tracing indicates that dividing cells in adult 

white matter give rise to remyelinating oligodendrocytes (Gensert and Goldman, 

1997). Secondly, remyelination can be achieved by transplantation of OPCs 

(Zhang et al., 1999). Thirdly, demyelinating lesions in which both 

oligodendrocytes and OPCs die are repopulated by OPCs before new 

remyelinating oligodendrocytes appear (Sim et al., 2002). Fourth, at the onset of 

remyelination cells can be identified which transitionally express molecular 

markers of both OPCs and oligodendrocytes, namely Nkx2.2, Olig1 and Olig2 

(Fancy et al., 2004). 

By performing neurotoxic injuries in the cortex of adult mice I was able to 

induce proliferation in oligodendroglial cells. Analysis of the fast-proliferating 

pool revealed that the proliferative fraction in the knockout was reduced by a 

third as compared to the wild-type. Thus, Cyclin D1-dependent proliferation is 

not restricted to slow-proliferating cells. 

Taken together, the endogenous and injury-induced proliferation of adult 

OPCs are downregulated in Cyclin D1-/- mice (Fig. 6-2A, B). The mechanisms 

which drive oligodendrogenesis during adulthood and thus regulate endogenous 

or injury-induced remyelination are Cyclin D1-dependent. In contrast, the 

mechanisms driving proliferation of oligodendrocytes during development and 

thus regulating normal myelination are independent of Cyclin D1. Thus, one can 

conclude that there is a switch in the requirement for distinct cell cycle proteins 

driving proliferation of OPCs during development and in the adult. 

This theory would match with previous investigations on the role of Cyclin D1 

in the peripheral nerve system (PNS) which indicated a differential requirement 
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for Cyclin D1 (Atanasoski et al., 2001): while developmentally regulated 

proliferation was not affected in Cyclin D1-/- mice, injury-induced proliferation 

was impaired in immature and mature Schwann cells. 

Most NG2 cells in vivo exhibit a complex stellate morphology with many fine 

processes that contact neurons at synapses and nodes of Ranvier – not the simple 

morphology one might expect of immature progenitor cells (Butt et al., 1999; 

Ong and Levine, 1999). Bergles and collaborators were the first to demonstrate 

that OPCs receive functional glutamatergic synapses from neurons in adult mice 

(Bergles et al., 2000). It was presumed that NG2 cells are ‘listening in’ to 

electrical activity, which at some threshold might trigger their myelination 

programme and thus ensure that only active circuits are myelinated (Fields, 

2008). An answer to this was the identification of two different classes of OPCs: 

one class capable to generate action potentials and to sense its environment by 

receiving excitatory/inhibitory synaptic input from axons and a second class that 

lacks action potentials and synaptic input (Karadottir et al., 2008). Interestingly, 

the two electrophysiological subtypes of NG2 cells were found in almost equal 

proportions as the dividing and non-dividing subtypes (Psachoulia et al., 2009). 

The authors suggest that newly generated NG2 cells attach to unmyelinated 

axons, some of which fire action potentials and deliver a mitogenic signal. These 

NG2 cells consequently divide, renewing themselves and producing myelinating 

oligodendrocytes. The other NG2 cells are associated with axons that never fire, 

or do not fire above a sufficient threshold, so these cells are destined to remain 

mitotically inactive (Psachoulia et al., 2009). It is also known, that when 

oligodendroglial cells cease to express the OPC-marker NG2 and become 

postmitotic they simultaneously start with the expression of APC which is 

maintained during oligodendrocyte maturation (Bhat et al., 1996; Kitada and 

Rowitch, 2006). Thus APC can be used as a marker for mature oligodendrocytes. 
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I could show that in the prefrontal cortex of Cyclin D1 knockout animals the 

total number of APC+ cells was reduced by 39%. Thus I could conclude that the 

knockout of Cyclin D1 has an impact on the number of mature oligodendrocytes 

(Fig. 6-2A). To see whether this reduction results in decreased myelination, I 

examined qualitatively the MBP staining in adult Cyclin D1-/- mice but I could 

not detect any obvious alteration. This could be explained by the fact that the loss 

of Cyclin D1 does not affect the number of oligodendroglial cells at early 

postnatal stage. Hence, myelination in the young, intact animal is not affected. In 

contrast, the reduced pool of OPCs observed at adult stage means that there are 

less premyelinating cells capable to replace dying oligodendrocytes.  

Although the number of oligodendrocytes is reduced in adult Cyclin D1 

knockout animals, the mutant mice showed – except fot the leg-clasping reflex – 

no obvious signs of neurological deficits comparable to the ones that can be 

observed in mice with hypomyelination (Readhead and Hood, 1990). Thus, I 

concluded that although the absence of Cyclin D1 results in a severe reduction of 

oligodendrogenesis during adulthood, there are apparently more than enough 

premyelinating oligodendrocytes which were generated during early postnatal 

stages and could contribute to remyelination if needed. Thus, incomplete 

remyelination in Cyclin D1 knockout animals could only occur if the pool of 

premyelinating oligodendrocytes would be depleted. To answer this question, 

one would need to analyse ageing Cyclin D1-/- mice after a very long period 

which would probably exceed the normal lifespan of mice. It is known, that 

remyelination typically produces myelin sheaths thinner and shorter than those 

produced during original development (Franklin and Ffrench-Constant, 2008). 

Thus, if Cyclin D1 has a direct impact on remyelination, this could be revealed 

by analysis of the myelin at the ultrastructural level using electron microscopy. 
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Figure 6-2: Loss of Cyclin D1 within the intact cortex and following cortical injury 
A Loss of Cyclin D1 reduces proliferation of OPC and microglia leading to reduced number of 
premyelinating oligodendrocytes and ramified microglia. In addition, it affects early microglial 
development such that the number is already reduced at perinatal stage. B Loss of Cyclin D1 
impairs injury-induced proliferation of OPCs and microglia, which leads to a lower number of 
activated microglia and furthermore to a reduced inflammation which is reflected in a reduced 
secondary injury. ↓ indicates the reduction in either cell number or proliferation rate due to 
Cyclin D1 knockout. 
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5.7 Knockout of Cdk4 but not Cdk2 or Cdk6 impairs 
the proliferation of OPCs 

As Cyclin D1 is the regulatory subunit of the holoenzyme formed with the 

catalytic subunits Cdk4 and Cdk6, one could assume that knockout of the 

catalytic subunit might have similar effects as long as the absence of Cyclin D1 

is not compensated by one of its other isoforms. 

My analysis following cortical injury in Cdk2-/-, Cdk4-/- and Cdk6-/- mice 

provide the evidence that the fast-proliferating oligodendroglial cells are 

dependent on Cdk4 but not on Cdk2 or Cdk6. Moreover, I could observe a 

stronger impact on the proliferation of OPCs in the Cdk4-knockout as compared 

to the Cyclin D1-knockout. Although the pattern of expression of D-cyclins is 

distinct in different tissues, functional redundancy exists among them 

(Ciemerych et al., 2002; Ciemerych and Sicinski, 2005). It has been shown, that 

during development animals retaining only one D-type cyclin lose the tissue-

specific expression characteristic of that gene concomitantly upregulating the 

remaining D cyclin (Ciemerych et al., 2002). Thereby absence of the regulatory 

protein Cyclin D1 could be partially compensated by another. Redundancy or 

developmental compensation could mask the functions that a deleted gene may 

ordinarily control. In contrast, absence of the catalytic binding partner Cdk4 

completely shuts down the Cdk4-pathway. 

Several publications examined the Cyclin D1 binding partner Cdk4 in injury 

paradigms. Following controlled cortical impact injury in rat brain, Kaya et al. 

observed selective expression of Cyclin D1 and Cdk4 in morphologically intact 

or injured neurons throughout the rat brain (Kaya et al., 1999). In addition, 

apoptotic cells were neither immunoreactive to Cyclin D1 nor to Cdk4. Analysis 

of the cell types revealed that reactive astrocytes did not express Cyclin D1, 

whereas some astrocytes at the boundary of the lesion showed nuclear Cdk4 
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immunoreactivity. In contrast, microglia expressed Cyclin D1, while Cdk4 could 

not be detected. Another analysis in a focal stroke model showed increased Cdk4 

and Cyclin D1 levels in neurons and that these signals are required for the death 

of neurons (Osuga et al., 2000). Taken together, it is most likely that Cyclin D1 

and Cdk4 interact following injury to the adult cortex. 

Concerning Cdk2, not much is known about its function in the CNS. A 

previous study of Caillava et al. revealed that in response to demyelination, loss 

of Cdk2 alters adult OPC renewal, cell cycle exit, and differentiation thereby 

accelerating remyelination. The authors concluded that Cdk2 is important for 

adult OPC renewal, and could be one of the underlying mechanisms that drive 

adult progenitors to differentiate and thus regenerate myelin (Caillava et al., 

2011). 

In the PNS, Atanasoski et al. (2008) have shown that Cdk4, but not Cdk2 or 

Cdk6, is essential for postnatal proliferation of Schwann cells. The Cdk4 null 

mice displayed a striking decrease in the number of mitotically active Schwann 

cells whereas no such difference was observed in mice lacking Cdk2 or Cdk6 

(Atanasoski et al., 2008). Interestingly, loss of Cdk4 had no effect on the 

myelination of sciatic nerves. Thus, it could be concluded that postnatal 

proliferation is not required for the establishment of appropriate Schwann cell 

numbers, suggesting that the number of Schwann cells produced before birth is 

sufficient to ensure subsequent myelination of axons. Atanasoski et al. (2008) 

also studied whether Cdk4 expression was required for proliferation following 

nerve injury. They showed that Schwann cells lacking Cdk4 were unable to re-

enter the cell cycle which completely abolished Schwann cell proliferation, while 

Schwann cells lacking Cdk2 or Cdk6 displayed proliferation rates comparable to 

controls (Atanasoski et al., 2008). 

Taken together, I propose Cdk4 to be the interaction partner of Cyclin D1, 

regulating injury-induced proliferation of OPCs within the lesioned cortex. 
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5.8 Cyclin D1 is not essential for the adequate 
generation of mature neurons 

From previous studies, it is known that the size of the brain is reduced in Cyclin 

D1-/- mice (Fantl et al., 1995; Sicinski et al., 1995). Analysis of the Cyclin D1 

expression revealed that it is expressed in post-mitotic neurons in the forebrain of 

adult mice (Tamaru et al., 1994; Glickstein et al., 2007a). In addition, cortical 

thinning of cortical lamina has been observed in adult knockout brain, while the 

densities of parvalbumin- and somastatin-expressing interneurons remained 

preserved (Glickstein et al., 2007b). But it remained an open question whether 

the absence of Cyclin D1 affects the number of neurons in general. 

Thus, I investigated whether the number of neurons is changed in the Cyclin 

D1 knockout mice. As previously described, I could detect a decrease in cortical 

thickness in the Cyclin D1 knockout. Surprisingly, I could measure an increased 

neuronal density in the knockout. But as this increase of density was elevated by 

the same ratio as the decrease in cortical thickness, the absolute number of 

neurons was comparable in Cyclin D1-/- and wild-type mice. As a result, one can 

conclude that Cyclin D1 is dispensable for the generation of the proper number 

of neurons. The thinning of the cortex must be due to reduced numbers of glial 

cells and / or reduced numbers of synapses. 

 

5.9 Concluding remarks 

In conclusion, the present sudy shows that absence of Cyclin D1 reduces the pool 

and the endogenous proliferation of OPCs in the adult brain but with no obvious 

effect on myelination. Furthermore, it could be shown that the proliferation of 

OPCs following neurotoxic injury to the cortex is dependent on Cyclin D1 and its 

catalytic interaction partner Cdk4. Last but not least, it could be shown that 
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Cyclin D1 is a prerequisite for migration and proliferation of microglia which in 

turn results in reduced inflammation in the case of brain injury in Cyclin D1-/- 

animals. 
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