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1. Summary 

 

Dendritic spines are the postsynaptic contact sites for the majority of excitatory 

synapses in the brain. Synaptic activity influences the number, shape and 

motility of dendritic spines and these effects are likely mediated by dynamic 

actin filaments, which are highly concentrated in spine heads. Drugs that inhibit 

actin dynamics block spine motility and interfere with the development of long-

term potentiation (LTP), a long-lasting increase in synaptic strength considered 

to be closely related to learning and memory. This suggests that actin may 

serve as a link between activity-induced modulation of synaptic transmission 

and long-term changes in synaptic morphology. Despite this evidence for the 

importance of actin dynamics in synaptic plasticity, very little is known about its 

regulation at the synapse. In particular the mechanisms linking synaptic activity 

to the actin cytoskeleton in dendritic spines are not well understood. 

 

The experiments described in this thesis were focused on gelsolin as a 

promising candidate for mediating synaptic activity to actin cytoskeleton in 

dendritic spines. It is shown here that exposure of cultured hippocampal 

neurons to glutamate results in the accumulation of gelsolin in dendritic spines. 

This effect is the consequence of activation of NMDA receptors and influx of 

Ca2+. It is also shown that the F-actin binding domain of gelsolin is necessary 

for its enrichment at postsynaptic sites. Further experiments showed that actin 

filaments are more vulnerable to disruption by glutamate stimulation in gelsolin 

over-expressing neurons. The disruption of actin filaments in these neurons is 

also dependent on NMDA receptor activation and Ca2+ influx. LTD-related 

electric field stimulation likewise increased the loss of filamentous actin in 

gelsolin expressing cells compared with untransfected cells. The disruption of 

actin filaments required the severing function of gelsolin, which is associated 

with the specific filament-severing domain (domain 1) of the gelsolin molecule. 
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Severing of F-actin by active gelsolin reduces the amount of AMPA receptors 

(GluR1) associated with dendritic spines.  

 

These results indicate that gelsolin plays an important role in linking synaptic 

activity to the postsynaptic actin cytoskeleton. Our results are also consistent 

with evidence that activation of NMDA receptors and influx of calcium ions play 

a crucial role in regulating the actin cytoskeleton in dendritic spines and hence 

are involved in the regulation of postsynaptic glutamate receptor plasticity at 

excitatory synapses via a feedback mechanism. This could occur in both the 

developing and mature brain under both normal and pathologic conditions. 

Taken together, our data support a model in which activity-dependent targeting 

of proteins into dendritic spines is a major mechanism for regulating synaptic 

plasticity at excitatory synapses.     
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2. Introduction 

 

2.1. The actin cytoskeleton in dendritic spines 

 

During development neurons grow in size, move, send out branches, transport 

substances and organelles within those branches, and make synapses with 

other cells. All of these processes rely on the neuronal cytoskeleton to provide 

the required structural flexibility and movement. The neuronal cytoskeleton is 

crucially important for normal neuronal function, since the development and 

maintenance of neuronal morphology is determined by the organization of the 

cytoskeleton in developing and adult brain and its regulation by extracellular 

and intracellular signals (Matus et al., 1982a; Burgoyne, 1991). The neuronal 

cytoskeleton also has dynamic roles in the transport of materials in both 

directions along axons and dendrites, in cell division in developing neurons 

and in mediating morphologically and functionally plastic changes in the adult 

brain that may underlie the long term modifications required for learning and 

memory (Fifkova and Delay, 1982; Smart and Halpain, 2000). The neuronal 

cytoskeleton is formed by three types of filamentous proteins: microtubules, 

neurofilaments and microfilaments (actin filaments). In dendritic spines the 

actin filaments are the major form of neuronal cytoskeleton (Fifkova and Delay, 

1982; Matus et al., 1982a; Fischer et al., 1998; Matus, 2000; Matus and 

Shepherd, 2000).   

 
 

2.2. Pyramidal cell in hippocampus is a good model to study 

synaptic plasticity  

 

Generally synaptic plasticity has been accepted as a major mechanism for 

memory formation. In studying the synaptic plasticity one cell type has been 
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studied extensively as a good model for a long time --- the pyramidal cell of the 

hippocampus. The reason for this is because of the special characterization of 

this cell type. This highly specialized cell type owes its name to its pyramid 

shaped cell body, and is most abundant in the cerebral cortex and the 

hippocampus. Their typical dendritic organization consists of apical and basal 

dendrites, which give these cells their "pyramidal" shape. Pyramidal cells are 

glutamatergic, excitatory neurons which have most of excitatory synapses on 

their dendritic spines whereas inhibitory inputs are mainly mediated through 

GABA-receptors on the dendritic shafts. The extensive dendritic tree facilitates 

the integration of  different kinds of inputs. In the hippocampus there are 

different subtypes of pyramidal neurons in regions, such as CA1 or CA3. Each 

pyramidal neuron can receive up to ten thousand of excitatory and inhibitory 

synaptic inputs onto their dendrites.  
 

2.3. Plasticity in dendritic spines 

 

In the adult brain dendritic spines are microspecializations of the postsynaptic 

membrane present on many types of neurons. These specialized structures 

function as integrative units in synaptic circuitry. Spines behave as individual 

postsynaptic compartments by preventing diffusion of protein complexes and 

small molecules between neighboring synapses (Svoboda et al., 1996). The 

emergence of dendritic spines occurs during postnatal development (Harris et 

al., 1992; Harris and Kater, 1994; Dailey and Smith, 1996), but the precise 

sequence of events leading to spine formation remains obscure.  

 

Many reports have documented changes in the numbers and shapes of 

dendritic spines in both vertebrate and invertebrate organisms (Frotscher et al., 

1975; Coss and Globus, 1978; Horner, 1993; Harris and Kater, 1994; Engert 

and Bonhoeffer, 1999; Toni et al., 1999; Fischer et al., 2000a; Lendvai et al., 

2000; Korkotian and Segal, 2001). Changes in spine shape and density occur 

under both physiological and pathological conditions, and it seems likely that 

such changes alter the function of neural circuits in still undefined ways 

(Matus, 2000; Matus and Shepherd, 2000; Smart and Halpain, 2000). 



Introduction 

 - 7 - 

 

Live cell imaging has shown that the morphology of dendritic spines is highly 

dynamic  (Fischer et al., 1998; Dunaevsky et al., 1999). With the use of actin 

coupled to green fluorescent protein (GFP-actin), dynamic activity of the actin 

cytoskeleton in spines has been directly visualized, confirming its capacity for 

driving changes in synaptic morphology (Fischer et al., 1998). This motility is 

blocked by cytochalasin D and latrunculin, drugs that inhibit actin dynamics. It 

is also blocked by volatile anesthetics, suggesting a possible relationship to 

global brain function (Kaech et al., 1999), and by stimulation of AMPA 

glutamate receptors (Fischer et al., 2000a), suggesting a possible mechanism 

coupling synaptic transmission to the regulation of dendritic spine motility. 

 

Brief titanic stimulation produces a long lasting form of synaptic plasticity, long-

term potentiation (LTP) that can last for hours or days in the mammalian 

hippocampus. The involvement of the hippocampal formation in memory has 

been established for a long time (Scoville and Milner, 2000). Although the 

relation of LTP to learning is not universally accepted, LTP is a widely used 

paradigm for long-term synaptic plasticity in central synapses. Over the past 

two decades many studies have demonstrated changes in the morphology of 

spines after LTP, such as enlargement of the spine head and shortening of the 

spine neck. In addition, studies using time-lapse imaging have reported 

increased spinogenesis (Engert and Bonhoeffer, 1999; Toni et al., 1999). A link 

between this phenomenon and actin based spine motility is suggested by 

studies showing that drugs that inhibit actin dynamics suppress LTP (Kim and 

Lisman, 1999; Krucker et al., 2000). 

 

Dendritic spines have different shapes, and their density and morphology are 

influenced by age, hormones, neurotrophins, learning and synaptic activity. 

Jacobs et al (1997) reported a decrease in the order of 50% in spine number 

on basal dendrites of layer III pyramidal cells in human cortex when comparing 

older (>50years) and younger age groups (≤50 years) (Jacobs et al., 1997).  

Similar findings have been reported in aged monkeys. In quantitative EM 

studies two groups reported a reduction of synaptic density with aging in 
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monkeys (Uemura, 1980; Peters et al., 1998). Counts of synapses in layer 1 in 

these monkeys revealed that compared to young monkeys, there is a 30-60% 

reduction in the density of synapses per unit volume in old monkeys. Such a 

decrease of dendritic spines of neocortical pyramidal cells in aged individual 

may represent loss of synapses leading to disruption of neuronal circuits 

during normal aging. 

 

Morphological changes in dendritic spines have also been associated with 

learning and memory in vivo. In honeybees spines are modified during 

learning. Spine stem becomes shorter following the honeybees' first orientation 

flight (Brandon and Coss, 1982). As with the honeybee, spine changes are 

also associated with learning and memory in vertebrate species. After operant 

conditioning period the averages of spine densities of CA3 pyramidal neurons 

of the hippocampus showed an overall increase in the learning group over the 

control groups of Wistar rat pups (Mahajan and Desiraju, 1988). In the chicks, 

after one-trial passive avoidance training there was an increase in the density 

of synapses and dendritic spines in the forebrain (Stewart and Rusakov, 1995). 

A transient increase in spine density has also been reported to occur in rat 

dentate gyrus granule cells 3-6 hours after training in a passive avoidance 

paradigm (O'Malley et al., 1998). 

 

In addition to physiological conditions that alter spine shape and number, some 

neurological and neuropsychiatric diseases are associated with changes in 

dendritic spines as well. In many types of mental retardation disease the 

density and morphology of spines is abnormal. Dendritic spines have been 

described as long and tortuous in fragile X syndrome (Marin-Padilla, 1972; 

Rudelli et al., 1985; Hinton et al., 1991; Comery et al., 1997). Spine shape and 

density have also been reported to be altered in Huntington's disease 

(Graveland et al., 1985). These observations suggest a close link between 

dendritic spines and normal brain function. Of course, it still remains to be 

investigated whether such spine changes are causal in impaired brain function, 

or secondary to it. 
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Excitotoxic neuronal damage is thought to be the main cause of dendritic spine 

loss in epilepsy, ischemia, and trauma to the brain (Pokorny and Trojan, 1983; 

Choi and Rothman, 1990; Park et al., 1996; Brown et al., 1998). Spine loss has 

been documented in both human epilepsy and in animal models, where there 

is usually a partial or complete loss of spines on surviving neurons within the 

hippocampus after a seizure (Scheibel et al., 1974; Paul and Scheibel, 1986; 

Geinisman et al., 1990; Isokawa and Levesque, 1991). 

 

 

2.4. Regulation of actin assembly in dendritic spines 

 

The mechanisms accounting for the differential stability of dendritic spines are 

still not clear yet. At present, filamentous actin appears to be the most 

important cytoskeletal component of spines to support their growth and 

maintain their structure. It has been proposed that there is a stable pool of 

actin filaments in the spine's core and a more dynamic pool of actin filaments 

in the surrounding periphery (Smart and Halpain, 2000). The dynamic 

filaments may enable the spine to change shape rapidly in response to stimuli. 

Stable actin filaments are possibly more long-lived and resistant to 

depolymerization by the presence of capping proteins. 

 

Dynamic actin filaments can be regulated by some actin binding proteins that 

interact directly with actin. These proteins have specific and sometimes 

multiple effects on actin dynamics. Generally actin-binding proteins possess 

functions such as filament capping, severing, crosslinking, actin monomer 

sequestering and influencing the actomyosin contractile machinery. Many 

these proteins have multiple activities in vitro, and it is often unclear what their 

precise roles are in vivo (Smart and Halpain, 2000). 

 

The major function of proteins of the ADF/cofilin family, including ADF, cofilin, 

actophorin, depactin and destrin, is to mediate actin filament disassembly 

(Maciver, 1998). The disassembly of actin filament by ADF/cofilin occurs in two 

ways: by severing, thereby creating more filaments ends that disassembly; and 
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by increasing the rate of actin monomer loss from filament ends (Theriot, 

1997).  

 

Capping protein (CapZ) was originally considered as capping barbed ends of 

actin filaments, where actin monomers can be added thus prolong the 

filaments, to stop filament growth. Whereas the discovery that capping protein 

is necessary for actin polymerization and motility of Listeria (Loisel et al., 1999) 

supports a hypothesis for localized actin assembly, proposed by Carlier and 

Pantaloni (Carlier and Pantaloni, 1997). In this model, actin polymerization is 

confined or 'funneled' to the free barbed ends of filaments since nearly all 

barbed ends are capped by capping protein. 

 

Arp2/3 complex binds pointed ends and nucleates the formation of actin 

filaments with free barbed ends (Mullins et al., 1998). The presence of Arp2/3 

was  necessary for Listeria motility (May et al., 1999). The entire Arp2/3 

complex has been observed in electron microscopic images of branching actin 

filaments (Volkmann et al., 2001). Assembly of monomers at the barbed ends 

of these branching filaments generates the force needed to push the ruffling 

membrane forward. 

 

Profilin is a high-affinity actin monomer-binding protein, and best known for its 

ability to promote the exchange of nucleotide in actin monomers (Goldschmidt-

Clermont et al., 1991). Profilin can promote polymerization by transporting 

actin monomers to the barbed ends of filaments. 

 

Ena/VASP proteins seem to function by binding to the barbed ends of 

filaments and competing with capping protein, allowing for longer filament 

extension (Bear et al., 2002), whereas capping protein binds tightly to the 

barbed ends of actin filaments, causing branches to be short. Ena/VASP 

proteins could function to inhibit capping and allow longer filaments to form. 

 

Gelsolin is a calcium dependent actin severing and capping protein. The 

detailed function and regulation of gelsolin are discussed in chapter 2.5 
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(Regulation of actin assembly by gelsolin) and chapter 2.6 (Gelsolin 
function in vivo). 

 

The actin cytoskeleton of dendritic spines is influenced by a number of 

regulatory pathways activated by transmembrane signals. The Rho family of 

GTPases, of which there are three main family members (Rac, Rho, and 

Cdc42), has been implicated in the regulation of cytoskeletal dynamics and 

spine morphology and density (Luo et al., 1996; Ridley, 1996). Rho, Rac and 

Cdc42 all activate LIM-kinases, thereby inducing the phosphorylation and 

inhibition of cofilin (Arber et al., 1998; Lawler et al., 1999). Rac and Cdc42 

have also been shown to activate WAVE and N-WASP, respectively, thereby 

inducing actin polymerization via the Arp2/3 complex (Miki et al., 1998). Rac 

induces polyphosphoinositide 4,5-bisphosphate {PI(4,5)P2} synthesis (Hartwig 

et al., 1995), and influences profilin and gelsolin function. PI(4,5)P2 synthesis 

leads directly to the removal of gelsolin and capping protein from actin 

filaments, thus increasing the probability of actin polymerization on these 

filaments (Schafer et al., 1996; Lin et al., 1997). 

 

In neurons actin cytoskeleton is regulated by activation of ion-channel-linked 

glutamate receptors which are closely associated with it. The actin bundling 

protein, α-actinin-2, has the ability to bind simultaneously to actin and the NR1 

subunit of NMDA-receptors (Wyszynski et al., 1997). The latter interaction is 

competed by calcium/calmodulin. There is evidence that Ca2+-influx through 

the NMDA-receptor associated channel leads to depolymerization of 

postsynaptic actin (Shorte, 1997b; Halpain et al., 1998b) and produces a 

negative feedback effect on the receptor itself, causing a gradual slowdown of 

its associated Ca2+-activity (Rosenmund and Westbrook, 1993b) which is 

largely a result of breaking the α-actinin-2 link between actin filaments and the 

NMDA-receptor. Furthermore, NMDA-receptors were shown to be influenced 

by two other Ca2+-dependent actin binding proteins, namely by the actin-

bundling protein spectrin (Wechsler and Teichberg, 1998) and the actin 

severing protein gelsolin (Furukawa et al., 1997b). 
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AMPA-receptors are attached to the actin cytoskeleton via the PDZ domain 

containing actin interacting proteins such as SAP97 (Sans et al., 2001) and 

neurabin I (Satoh et al., 1998). AMPA-receptors, like NMDA receptors, are 

displaced from synaptic sites when actin filaments are depolymerized (Allison 

et al., 1998b). However a functional link between AMPA-receptor activation 

and the regulation of the actin cytoskeleton has yet to be determined. 

 
 

2.5. Regulation of actin assembly by gelsolin 

 

Gelsolin is best known for its involvement in dynamic changes in the actin 

cytoskeleton during a variety of forms of cell motility. Gelsolin is the most 

potent actin filament severing protein identified to date (Figure 1.). Severing is 

the weakening of enough non-covalent bonds between actin molecules within 

a filament to break the filament in two. These interactions are regulated by 

Ca2+ ion (at micromolar levels), which activate gelsolin's binding to actin. 

Severing is initiated after gelsolin binds to the side of an actin filament which 

occurs rapidly and with high affinity (Kd 50nM). However, severing slowly 

(Kinosian et al., 1998) and the delay may reflect the time required for structural 

rearrangement within gelsolin and in the filament (McGough et al., 1998) prior 

to severing. This involves gelsolin changing the conformation of actin filament 

thereby inducing kinks the actin filament (McGough et al., 1998), suggesting a 

mechanical basis for severing. 

 

After severing, gelsolin remains attached to the barbed end of the filament as a 

cap. As a result, short actin filaments that cannot re-anneal with each other or 

elongate at their barbed ends that are generated. In this way, the actin 

filaments are cut short and prevent from prolongation. The importance of Ca2+-

mediated actin severing has been clearly documented during platelet activation 

(Hartwig, 1992). 
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Figure 1. A model for gelsolin regulation of actin assembly. Actin monomers can 

be released from pointed ends (-), and then recruited to the barbed ends (+) of actin 

filaments. This is so called "tread-milling". Inactive gelsolin is in a tightly closed 

conformation where its actin binding domains are not accessible. When calcium levels 

reach micromolar concentration, gelsolin is activated by the opening of its functional 

domains. If the active gelsolin does not bind actin monomer, then this form of active 

gelsolin can bind to the side of an actin filament. Subsequently gelsolin severs the 

actin filament, it remains bound to the barbed end, functioning as a 'cap'. If the active 

gelsolin is already bound to an actin monomer, then this gelsolin/actin complex can 

only cap the barbed end of an actin filament.  Capping actin filaments by gelsolin thus 

results in a net loss of actin monomers from actin filaments by inhibiting the adding of 

actin monomers to filaments' barbed ends.   

 

 

  

 

The shortening of actin filaments by gelsolin occurs in the presence of 

micromolar calcium ion concentrations and is partially reversed following 

removal of calcium ions. One actin monomer remains bound to gelsolin 

following removal of calcium. The gelsolin-actin complexes (1:1) differ from 
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free gelsolin in that they have a higher affinity for actin filament barbed ends 

and they cannot sever filaments in the presence of calcium (Bryan and 

Coluccio, 1985; Janmey et al., 1985). That is why gelsolin does not dissociate 

readily from barbed ends when calcium is removed. Microinjection of these 

gelsolin-actin complexes had not effect on the cells (Cooper et al., 1987),  

possibly because there is a consituent of cytoplasma that can dissociate 

gelsolin/actin complexes (Chaponnier et al., 1987). 

 

Gelsolin severing can also have a constructive effect because it increases the 

number of filaments. Membrane associated polyphosphoinositide 4,5-

bisphosphate {PI(4,5)P2} releases gelsolin from actin filament ends, providing 

free sites for actin assembly. PI(4,5)P2 removes gelsolin from the barbed ends 

of actin filaments possibly through direct competition for gelsolin's F-actin 

binding site or through induction of structural changes of gelsolin (Xian and 

Janmey, 2002). Lysophosphatidic acid (LPA) can reduce the threshold 

concentration at which PI(4,5)P2 is active (Meerschaert et al., 1998). As a 

result, LPA significantly promoted the release of gelsolin from barbed actin 

filaments in permeabilized human platelets. Uncapping of gelsolin from these 

filaments generates many polymerization-competent ends from which actin can 

grow to rebuild the cytoskeleton to new specifications. Therefore, gelsolin can 

promote actin polymerization by severing followed by uncapping (Yin and Stull, 

1999). 

 

2.6. Gelsolin function in vivo 

 

In living fibroblasts gelsolin has a diffuse cytoplasmic distribution, suggesting 

that it is not tightly bound to actin filaments, most likely because gelsolin is 

associated with actin filaments in short-lived complexes (Cooper et al., 1988). 

Gelsolin incorporates preferentially into the submembranous actin arcs at the 

leading edge of the lamellipodia when fibroblast motility is induced by 

epidermal growth factor (EGF) (Chou et al., 2002). During EGF-induced 
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motility, the leading edge's submembranous region constitutes a distinct 

subcellular locale. Gelsolin preferentially concentrated near the leading edge in 

a punctuate fashion incorporating with actin cytoskeleton (Chou et al., 2002), 

suggesting gelsolin associates with dynamic actin cytoskeleton to push the 

ruffling membrane during EGF-induced motility. During the course of this thesis 

work I reexamined the distribution of gelsolin in living fibroblasts using gelsolin-

GFP and confirmed this result (see Results: 3.1. Gelsolin is enriched in the 
leading edges of Swiss 3T3 cells)   

 

Gelsolin appears to play an important role in situations where actin assembly is 

induced. In most cells at rest, gelsolin is not bound to actin filaments, but 

stimulation with increased calcium or H+ , which activate gelsolin, can cause 

gelsolin to sever and cap actin filaments (Kwiatkowski, 1999). Gelsolin does 

not only have a destructive role on actin filaments. If gelsolin-capped filaments 

can be uncapped to create free barbed ends, polymerization may be induced. 

Activation of Rac dissociated gelsolin from barbed ends (Hartwig et al., 1995; 

Arcaro, 1998), thus promoted actin assembly. This gelsolin role was further 

proven in gelsolin knockout cells. Fibroblasts from gelsolin knockout mice were 

defective for formation of lamellipodia in response to Rac signaling (Azuma et 

al., 1998), which depends on actin polymerization. 

 

The gelsolin null mouse, produced by genetic inactivation of the gelsolin gene, 

has established the importance of gelsolin for multiple cell functions. Cells from 

gelsolin null mice exhibit a variety of motility and actin defects. Most strikingly 

gelsolin null fibroblasts have abnormally pronounced actin stress fibers (Witke 

et al., 1995), and this phenotype is consistent with lacking the ability to sever 

and remodel actin filaments. Probably as a consequence, gelsolin null 

fibroblasts do not ruffle in response to growth factor (Azuma et al., 1998), and 

they exhibit defective chemotaxis and wound healing. In addition to fibroblasts, 

neutrophil migration is also compromised (Witke et al., 1995). The rate of 

clotting is reduced (Witke et al., 1995), consistent with the absence of gelsolin 

and its requirement of actin severing for platelet activation (Hartwig, 1992). In 

gelsolin null developing neurons it showed delayed retraction of filopodia along 
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neurites (Lu et al., 1997). Histories of individual filopodia in gelsolin knockout 

mice revealed that elongation rates did not differ from controls but the 

retraction was slowed down (Lu et al., 1997). These findings establish the 

importance of gelsolin in maintaining motility and actin dynamics. 

 

Membrane ruffling is a functional readout for a coordinated series of 

membrane and cytoskeletal events, and it is activated by the small GTPase, 

Rac. Gelsolin null fibroblasts have increased Rac expression (Azuma et al., 

1998), and Rac·GTP dissociates gelsolin/actin complexes (equivalent to 

uncapping) in cell extracts but not purified gelsolin-actin complexes (Arcaro, 

1998). These results suggest that gelsolin is a downstream effector of Rac, but 

there are additional steps between Rac and gelsolin activation/inactivation. A 

number of studies suggest that linkage through the type I phosphatidylinositol 

5-kinases (PIP5KIs), the major enzymes that synthesize PI(4,5)P2 (Fruman et 

al., 1998; Anderson et al., 1999), is an attractive possibility. 

 

PI(4,5)P2 has a pivotal role in the phosphoinositide cycle that drives signaling, 

cytoskeletal organization, and membrane trafficking (Toker, 1998). Numerous 

cytoskeletal proteins are affected by PI(4,5)P2 in vitro. They include gelsolin 

family proteins (Janmey and Stossel, 1987), profilin (Lassing and Lindberg, 

1985), capping protein (Lassing and Lindberg, 1985), ADF/cofilin (Yonezawa 

et al., 1990), α-actinin (Fukami et al., 1992), vinculin (Gilmore and Burridge, 

1996), ezrin/radixin/moesin (Hirao et al., 1996), and WASP family proteins 

(Miki et al., 1996; Higgs and Pollard, 1999). The first four are inactivated by 

PI(4,5)P2, whereas the latter four proteins are activated by PI(4,5)P2.  

 

Gelsolin over-expression increases membrane ruffling and chemotaxis 

(Cunningham et al., 1991; Sun et al., 1997), consistent with the role of gelsolin 

in dynamic actin remodeling. However, the concentration of total intracellular 

gelsolin does not appear to be a central determinant of cell migration, because 

non-migrating fibroblasts have higher levels of gelsolin compared with 

migrating cells (Arora and McCulloch, 1996). Actually compared with non-

migrating cells, migrating cells contain more free gelsolin and exhibit gelsolin-
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dependent F-actin severing activity, which required calcium.  Surprisingly, 

CapG, a gelsolin relative that caps but does not sever actin, and the 

completely unrelated capping protein also increase cell motility when 

overexpressed (Hug et al., 1995; Sun et al., 1995). Originally pure capping 

proteins are expected to be less effective in promoting actin dynamics than 

severing/capping proteins, because they do not increase the number of actin 

filaments per se. These results indicate that capping/uncapping may be 

sufficient to increase actin dynamics. More detailed study will be required to 

distinguish between the contributions of severing and capping. 

 

Overexpression studies reveal that gelsolin may have other roles in addition to 

direct cytoskeletal regulation. Overexpressed gelsolin (Sun et al., 1997) and 

CapG (Sun et al., 1995) modulate phospholipase Cγ and phospholipase Cβ 

activity in a biphasic manner both in vivo and in vitro. These effects depend on 

PI(4,5)P2 binding (Sun et al., 1997), suggesting that gelsolin enhances or 

competes with other PI(4,5)P2-binding proteins for their common substrate. 

This potent effect may be achieved by altering the packing of PI(4,5)P2 

molecules within the membrane bilayer (Flanagan et al., 1997). 

 

These results suggest that as PI(4,5)P2 content and availability change during 

signaling, cross talk between PI(4,5)P2-regulated proteins provides a selective 

mechanism for positive as well as negative regulation of phosphoinositide 

signaling. This is particularly relevant as more PI(4,5)P2-regulated proteins are 

identified. Gelsolin coimmunoprecipitates with several PIP2-interacting proteins, 

and it alters the activity of phosphatidylinositol 3-kinase and phospholipase D 

as well (Liu and Yin, 1998; Kwiatkowski, 1999). Gelsolin is phosphorylated by 

c-Src in vitro, and phosphorylation is enhanced by PI(4,5)P2 (De Corte et al., 

1997). The physiological significance of these associations and 

phosphorylation has not been determined. 

 

Beyond that, gelsolin is also an activator of DNase I (Davoodian et al., 1997). 

Gelsolin enhances permeabilized mast cell secretion (Borovikov et al., 1995), it 

has been correlated with cancer and cellular transformation in various 
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instances (Fujita et al., 1995; Tanaka et al., 1995; Asch et al., 1996), and it 

participate in caspase-3-mediated apoptosis (Kothakota et al., 1997). Also, 

gelsolin may function as an anti-amyloidogenic protein in the plasma and 

cerebrospinal fluid (CSF), where it prevents Abeta from fibrillization, and helps 

to maintain it in the soluble form (Chauhan et al., 1999; Ray et al., 2000). 

 

 

2.7. Structure of gelsolin and gelsolin/F-actin 

 

Gelsolin is an 80-kDa protein consisting of two tandem homologous halves, 

each of which contains a 3-fold segmental repeat (segments S1-S3 and S4-S6, 

respectively) (Kwiatkowski et al., 1986; Burtnick et al., 1997) (Figure 2 ). The 

N- and C-halves are connected by a long linker, which is cleaved by caspase-3 

(Kothakota et al., 1997; Kamada et al., 1998) in vivo and in vitro. Fragments of 

gelsolin that contain from one to five of its domains can be generated by 

limited proteolytic digestion (Kwiatkowski et al., 1985) or by expression in 

bacterial cell lines (Way et al., 1989). Investigations of the activities of these 

products have led to the assignment of discrete functions to individual 

domains. The S1 domain binds actin monomers in the absence of calcium. 

The C-terminal half of gelsolin, S4-S6, contains a second, calcium-dependent, 

actin monomer-binding fragment that is located in S4. S2 contains a calcium-

independent F-actin-binding site. The tail at the C-terminus of S6 latches the 

second half of the protein to the first until released by calcium (Burtnick et al., 

1997). 

 

The structural basis for gelsolin regulation by Ca2+ is now beginning to be 

understood. The isolated C-half binds a single actin molecule only when Ca2+ 

is above 10-6 M (Kwiatkowski, 1999). The isolated N-half binds two actin 

molecules to sever and cap, even in the absence of Ca2+. Because severing by 

full-length gelsolin requires 10-6 M Ca2+, the C-half must act as a regulatory 

domain to inhibit severing by the N-half. In addition, the C-half potentiates 

severing by the N-half, possibly through cooperative binding to the filament 

(Kinosian et al., 1998).  
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Figure 2.   Gelsolin structure-function domains.  Gelsolin consists of six tandem 

copies of a core domain. Domain 1 and 4 each have an actin monomer-binding site. 

An actin filament binding site resides from domain 2 to the beginning of domain 3. 

Domain 1 is needed for gelsolin's severing function. The capping function of gelsolin 

requires almost the same area as the actin filament-binding site. The key calcium 

regulation site for gelsolin is located at the C-terminal tail of gelsolin.   

 

 

Gelsolin was first identified as a calcium-regulated protein that binds two 

calcium ions with a Kd of 10-6 M (Yin et al., 1980). Subsequent studies have 

shown that gelsolin interacts with calcium in a more complex way, and that 

isolated gelsolin domains have at least three distinct calcium binding sites, with 

submicromolar and micromolar Kd values (Pope et al., 1997). The 

conformation of gelsolin changes in response to calcium. Nanomolar 

concentrations of calcium initiate the unlatching of structural constraints that 

maintain the inaccessibility of the actin binding sites, but actin binding occurs 

only after additional micromolar calcium sites in both the N-terminal and C-

terminal halves of the molecule are occupied. Once binding to actin, 

intermolecular and intramolecular calcium binding sites are created 

(McLaughlin et al., 1993; Weeds et al., 1995), so that gelsolin can potentially 

bind more calcium ions. By using synchrotron foot printing method  S1 (49-72), 

S1 (121-135), S2 (162-166), and S6(722-748) of gelsolin  showed a three-state 
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activation process with a calcium concentration of 1-5 µM that is competent for 

gelsolin's capping and severing activity (Kiselar et al., 2003). 

 

Other studies have documented the high resolution structure of gelsolin. The 

S1-actin-Ca2+ structure shows how a single gelsolin segment binds actin 

(McLaughlin et al., 1993). Because of the similarities between all the segments 

of gelsolin (Kwiatkowski et al., 1986; Burtnick et al., 1997), S1 can be used as 

a template for modeling how the other segments bind to actin. The full-length 

gelsolin crystal formed in the absence of Ca2+ (gelsolin/EGTA) shows that 

inactive gelsolin has a compact structure in the absence of Ca2+ (Burtnick et 

al., 1997), with its two halves held together by the C-terminal S6 tail, which 

latches onto S2. Within each half, the first and third segments (S1 and S3, S4 

and S6, respectively, for the N- and C-halves) are joined into a 10-strand β-

sheet that is incompatible with actin binding. This explains why neither S1 nor 

S4 binds actin in the absence of Ca2+. It also predicts that Ca2+ must induce 

major conformational changes in each half and in the relation between the 

halves to accommodate actin binding. 

 

A cryoelectron microscopic study of a gelsolin construct missing S1 attached to 

an actin filament hints at the extent of the conformation change that is required 

for gelsolin activation (McGough et al., 1998). The reconstructed image shows 

that gelsolin S2-S6 binds to actin molecules in neighboring filament strands 

(via S2 and S4). The distances between the S2 and S4 and the S1 and S2 

actin-binding sites on the filament indicate that there must be large scale 

conformational changes before S1, S2, and S4 can simultaneously bind actin. 

The convoluted linker probably unwinds, and parts of the S1 or S2 core domain 

may have to unravel to extend the linker between S1 and S2 (Burtnick et al., 

1997; McGough et al., 1998). On the basis of crystallographic data, Robinson 

et al. (Robinson et al., 1999) concluded that calcium binding induces a 

conformational rearrangement in which segment 6 is flipped over. The 

structural reorganization moves apart the continuous β-sheet core of segments 

4 and 6. This exposes the actin-binding site on segment 4, enabling severing 

and capping of actin filaments to proceed. 
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2.8. Gelsolin family members and expression 

 

Three natural forms of gelsolin are known and produced by alternative 

transcription initiation and splicing of the mRNA (Kwiatkowski et al., 1986). 

Two of these are cytoplasmic, the basic form of cytoplasmic gelsolin is 

predominating while a low abundant form differs from it by an additional 11 

amino acid residue with unknown function at the N-terminus (Vouyiouklis and 

Brophy, 1997). The third form, plasma gelsolin, is secreted into the blood 

supply where it caps and severs actin filaments released from dying cells to 

prevent the formation of long actin filaments that might otherwise block 

microcirculatory vessels (Haddad et al., 1990; Vasconcellos and Lind, 1993). 

Plasma gelsolin differs from the cytoplasmic forms by an N-terminal extension 

of 25 amino acids (Kwiatkowski et al., 1988a; Koepf et al., 1998). 

 

Members of the gelsolin family that have three or six gelsolin repeats have 

been identified (Kwiatkowski, 1999). They have distinct as well as overlapping 

patterns of tissue expression, which may implicate for specialized function 

(Arai and Kwiatkowski, 1999). Except for gelsolin, calcium regulation and actin 

binding sites are not separated into the two halves of the molecule in other 

gelsolin family proteins. For example, villin, a six-domain protein, has a 

calcium-dependent N-half (Matsudaira et al., 1985). CapG, a three-domain 

protein, has a built-in calcium regulation site in its actin-binding segment (Yu et 

al., 1990). 

 

Adseverin (scinderin), the closest homologue to gelsolin, was originally 

discovered in bovine adrenal gland. However, in human and murine adult 

tissues, adseverin is expressed abundant in kidney and gut, with lower levels 

in adrenal gland, and very low to no expression in other organs (Lueck et al., 

1998). Interestingly, the expression pattern of capG, adseverin and gelsolin is 

highly complementary in the mouse (Lueck et al., 1998), suggesting that these 

proteins may have distinct functional characteristics. There is evidence that 



Introduction 

 - 22 - 

adseverin is involved in exocytosis (Zhang et al., 1996); however this protein 

could take part into other processes, because it has activity and tissue 

distribution in other mammalian cell types (Tchakarov et al., 1990). 

 

Villin shares the six domain structure with gelsolin and adseverin (Arpin et al., 

1988). In addition to the severing and capping activities of the gelsolin-related 

the protein, the C-terminal domain confers actin filament bundling activity to 

villin. Despite there is a large amount of villin in microvilli of wild type cells, villin 

knockout produces very little changes in the structure of microvilli, suggesting 

other redundant proteins may exist (Pinson et al., 1998). On the other hand, 

the severing activity of villin may have a more essential role in vivo. Brush 

borders from intestinal epithelial cells of a villin knockout mouse did not 

disassemble their actin bundles in response to high calcium concentration 

(Ferrary et al., 1999). In addition to that, in vivo, in an experimental model for 

intestinal epithelial injury that includes loss of filamentous actin from the brush 

border, a villin-knockout mouse showed decreased loss of actin, increased 

severity of epithelia injury and higher probability of death (Ferrary et al., 1999). 

 

Advillin is a gelsolin family member that is most closely related to villin (59% 

amino-acid identity) (Marks et al., 1998). However the precise function of this 

protein has not been known yet. 

 

Supervillin (205 kDa) is another gelsolin family member that participates in 

interactions between actin filaments and membrane (Pestonjamasp et al., 

1997). It contains a N-terminal half which has nuclear targeting signals, and a 

C-terminal half which has weak similarity to villin. It also contains relatively 

more conserved regions corresponding to F-actin binding regions. 

 

 

2.9. Gelsolin function in neuronal cells 

 

Gelsolin is expressed ubiquitously in mammalian tissues including the nervous 

system (Kwiatkowski et al., 1988b; Kwiatkowski et al., 1988a; Paunio et al., 
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1997), Where it has been detected in oligodendrocytes, Schwann cells, and in 

myelin sheath (Tanaka and Sobue, 1994). In developing rat brain gelsolin level 

begins to increase at 8-10 day after birth and reaches a maximum 20-30 days 

after birth (Tanaka and Sobue, 1994). During neuronal development gelsolin is 

particularly concentrated in neuronal growth cones (Tanaka et al., 1993; Lu et 

al., 1997). PC12 cells showed a two-fold up regulation of gelsolin upon 

differentiation with nerve growth factor and over-expression of gelsolin 

enhances neurite length and increases neurite motility rate compared to 

controls (Furnish et al., 2001). On the other hand, neurons from gelsolin null 

mice show delayed retraction of filopodia along developing neurites. Histories 

of individual filopodia in gelsolin knockout mice revealed that elongation rates 

did not differ from controls but that retraction was slowed down (Lu et al., 

1997). Gelsolin knockout neurons have enhanced cell death and rapid, 

sustained elevation of calcium levels following glucose/oxygen deprivation. 

Moreover, major increase in infarct size are seen in gelsolin-null mice after 

reversible middle cerebral artery occlusion, compared with controls (Endres et 

al., 1999). During this postnatal period the emergence of dendritic spines 

occurs and dendritic spines undergo a huge plasticity (Harris et al., 1992; 

Harris and Kater, 1994). In neurons from mice lacking gelsolin, activity-

dependent stabilization of actin was impaired, which is depended on the 

activation of N-methyl-D-aspartate (NMDA) receptors and the influx of calcium 

(Star et al., 2002). The above evidence suggests that gelsolin may be a key 

regulator linking the synaptic activity to actin cytoskeleton in dendritic spines. 

 

 

2.10. Live imaging by using green fluorescent protein (GFP) 

 

Before the finding of GFP as a valuable tag to image protein locations in cells, 

researchers relied primarily on immunofluorescence microscopy techniques for 

visualizing the localization of molecules in cells. This classic 

immunofluorescence technique requires the fixation and hence the killing of 

the specimen before analysis. During that time the sole method for visualizing 

molecular dynamics in living cells was through the microinjection of purified 
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and fluorescently labeled proteins, but technical difficulties precluded its 

widespread use. Since its first application as an ectopically expressed reporter 

gene in 1994 (Chalfie et al., 1994) and its subsequent use as a fluorescent 

protein tag (Wang and Hazelrigg, 1994), the green fluorescent protein (GFP) 

from the jellyfish Aequorea Victoria has enabled visualization of proteins 

dynamics with minimal perturbation of living cells. The tagged protein can be 

imaged in the living cells, offering the option of dynamic translocation studies 

using time lapse recording of video microscopy. Because DNA-sequence 

manipulations are integral to the production of cDNA for GFP fusion proteins, 

site-directed mutagenesis can be readily incorporated into such experiments 

(Ludin and Matus, 1998).  

 

As for neuronal studies, GFP tagged proteins have been widely used for 

investigating synaptic plasticity during neuronal development. GFP-actin 

showed large actin-dependent changes in dendritic spines shape of mature 

neurons (Fischer et al., 1998). AMPA receptor subunit GluR1 tagged with GFP 

to monitor changes in AMPA receptor distribution in living neurons was used to 

shown that activation of NMDA receptor induced rapid delivery of tagged 

receptors into dendritic spines as well as clusters in dendrites (Shi et al., 

1999). Okabe et al showed that PSD-95 tagged with GFP (PSD95-GFP) 

expressed in hippocampal neurons is an effective marker of the PSD structure 

(Okabe et al., 2001a), and PSD-95-GFP was also used to follow the events of 

synapse formation in developing neurons (Marrs et al., 2001). Altogether, 

dynamic imaging of living neurons using GFP tagged genes has revolutionized 

the study of anatomical plasticity at synapses, thus makes it possible to 

observe directly the events underlying activity-dependent changes in dendritic 

spines that previously could only be inferred from examining fixed tissue. 

 

 

2.11. Aim of dissertation 

 

It has been known for a long time that actin is strongly enriched in dendritic 

spines (Matus et al., 1982b), and GFP tagged actin now enables us to directly 
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record the motility of the actin cytoskeletal structure in living cells.  Fischer et al 

(Fischer et al., 1998) tagged γ-cytoplasmic actin with GFP, to create GFP-γ-

cyto-actin. If the cytoplasmic actins are tagged at the N-terminal site they were 

shown to retain their function (Brault et al., 1999). Expression of GFP-actin in 

dispersed cultured hippocampal neurons showed strong actin labeling of 

dendritic spines and live time-lapse recordings revealed rapid changes in spine 

shapes that occur within the time frame of seconds (Fischer et al., 1998; 

Dunaevsky et al., 1999). These rapid actin-driven changes in spine shape, 

termed spine motility, have also been documented in slice cultures (Fischer et 

al., 1998), acute slices (Dunaevsky et al., 1999) and in the living mouse 

(Lendvai et al., 2000). It has been shown that actin-driven spine motility is 

sensitive to blockers of actin dynamics, such as cytochalasin D (Fischer et al., 

1998; Dunaevsky et al., 1999). If these events have a meaningful role in 

synaptic plasticity, they should be regulated by synaptic transmission and in a 

previous publication it was shown that activation of glutamate receptors 

regulates synaptic plasticity by suppressing actin dynamics in dendritic spines 

(Fischer et al., 2000a). Actin motility was suppressed when AMPA-type 

glutamate receptors were stimulated, implying that spine morphology is 

stabilized by signal transmission at glutamatergic synapses. It was further 

shown that this effect depends on depolarization of the neuronal membrane 

via Na+-influx through the AMPA-receptor associated channel and a 

subsequent Ca2+-influx through voltage-dependent Ca2+-channels (VDCCs) 

(Fischer et al., 2000b). 

 

The main goal of my thesis was to investigate how the activity-dependent influx 

of calcium into the dendritic spine cytoplasm leads to changes in actin 

dynamics. For this purpose I selected gelsolin, which is the most prominent 

calcium-dependent actin regulatory protein and whose absence in gelsolin 

knockout mice has been shown to lead to functional defect in the neuronal 

actin cytoskeleton (see above). Based on this prior knowledge I asked whether 

gelsolin in present in dendritic spines and how its presence there influences 

synaptic structure and function. GFP tagged gelsolin or gelsolin mutant genes 

were created to clarify the function of gelsolin in dendritic spines. First the 
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activity-dependent accumulation of gelsolin in dendritic spines was found using 

both immunostaining and living cell recording method. Then I investigate the 

function domains of gelsolin that are responsible for targeting to dendritic 

spines. Actin cytoskeleton in dendritic spines was disrupted by gelsolin under 

certain synaptic activities and hence influences the AMPA receptor expression 

at synaptic sites, which accounts for a certain form of synaptic transmission 

plasticity. 
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3. Results 

 

 

3.1. Gelsolin is enriched in the leading edges of Swiss 3T3 

cells. 

 

The distribution of gelsolin in Swiss 3T3 fibroblasts was examined to check the 

localization of gelsolin compared to actin filament staining. 3T3 cells were 

cultured in Dulbecco's Modified Eagle's Medium (DMEM) plus 10% Fetal Calf 

Serum (FCS) to promote growth of the typical motile leading edge structures 

and stress fibers. We used gelsolin monoclonal antibody to stain cells and co-

stained with rhodamine phalloidin to show the actin filaments. There was a 

strong gelsolin immuno-flurescence intensity in the leading edges of 3T3 cells 

colocalized with F-actin staining (Figure 3). Whereas gelsolin did not show 

apparent colocalization with stress fibers.  

 

 
 
Figure 3. Distribution of gelsolin in Swiss 3T3 cells. 
3T3 cells were fixed, permeabilized and stained for gelsolin and actin filaments. 

Gelsolin antibody showed a strong colocalization with actin filaments in lamellipodia of 

the leading edges (arrow). But no apparent enrichment of gelsolin in stress fibers was 

detected. Phase contrast image showed the ruffling membrane located in the leading 

edge. 
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From the above, the endogenous gelsolin in 3T3 cells showed that it is 

localized in the lamellipodia of the leading edges. But it did not show 

colocalization with stress fibers. This result is consistent with previous findings 

by other groups (Carron et al., 1986; Cooper et al., 1988), implicating a role of 

gelsolin in regulating the lamellipodium motility. 

 

 

3.2. Gelsolin is co-localized with F-actin in dendritic spines of 

hippocampal neurons 

 

At the beginning of this study it was not know whether gelsolin is localized in 

synapse, so we began by addressing this issue. The distribution of 

endogenous gelsolin was studied in hippocampal neurons (DIV21-24) by 

immunohistochemical staining. Primary cultures develop excitatory synapses 

on dendritic spines similar to those seen in vivo (Bartlett and Banker, 1984; 

Papa et al., 1995). Our result (Figure 4) showed gelsolin immunoreactivity 

(green) present in spiny neurons, concentrated in spine-like structures along 

the dendrites (Figure 4 A, B, C). These gelsolin clusters along the dendrites 

were co-localized with actin filament (F-actin) clusters (red) stained by 

phalloidin-rhodamine (Figure 4 A, B, D). Since it is well known that F-actin is 

highly enriched in spines compared with adjacent dendritic shafts or 

presynaptic terminals (Matus et al., 1982a; Cohen et al., 1985; Kaech et al., 

1997; Wyszynski et al., 1997). The colocalization of gelsolin immunostaining 

with filamentous actin suggests that gelsolin is, like actin, concentrated within 

the spine cytoplasm. 
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Figure 4: Gelsolin is localized in dendritic spines.  
(A-D) Double stained for gelsolin (green) and actin filaments (red) in 3-week-old 

hippocampal neuron. In (B-D), a close-up view of the boxed region in (A) is depicted. 

Both gelsolin and F-actin are enriched in dendritic spines. (E-H) Double stained for 

gelsolin (green) and synapsin I (red) in 3-week-old hippocampal neuron. In (F-H), 

Higher magnification micrographs of the boxed regions are shown. Almost all the 

gelsolin clusters were contacted with synapsin I cluster which represent the 

presynaptic boutons. Abbreviations: gsn, gelsolin; act, actin filaments; syn, synapsin I. 

Scale bars, 10µm.  

 

 

Next, neurons were stained with gelsolin and presynaptic vesicle protein 

synapsin I to show the presynaptic terminals. Gelsolin clusters were located 

opposite to, rather than precisely overlapping with, the presynaptic boutons 

revealed by synapsin I clusters (Figure 4 F). Taken together, the above results 

indicate that gelsolin is specifically concentrated postsynaptically in dendritic 

spines of hippocampal neurons in culture.  



Results 

 - 30 - 

 

 

3.3. Glutamate induces accumulation of endogenous gelsolin 

in dendritic spines. 

 

Glutamate activates postsynaptic glutamate receptors and subsequently 

triggers biochemical and electrical signal transduction events at excitatory 

postsynaptic sites. To test whether gelsolin is involved in glutamate induced 

postsynaptic changes, we studied putative changes in the gelsolin distribution 

along dendrites and in dendritic spines. Under control conditions neurons were 

incubated in Tyrode's solution for 5 minutes, then fixed and stained for gelsolin 

and F-actin (Figure 5 A). Gelsolin was located in dendritic spines, colocalized 

with F-actin clusters (Figure 5 A). After 5 minutes 2.5µM glutamate application, 

gelsolin immunostaining intensity in dendritic spines was much stronger than in 

control cells. Quantification data was shown in figure 5B.  

 

Figure 5B shows fluorescence signal quantification of gelsolin levels. Based on 

analysis of 420 spines on 21 dendrites for each group, the ratio of gelsolin 

antibody signal intensity (spine/dendrite) increased 61±7.5 % upon 2.5 µM 

glutamate application for 5 minutes (Fig. 5 B). At the same time the ratio of F-

actin signal intensity (spine/dendrite) decreased 38±4.5 %. Prolonged 

glutamate application time (30 minutes) gave a similar result to that of 5-minute 

application, so that after 30 minute exposure to glutamate gelsolin 

immunoreactivity increased by 59±7.1 %, while at the same time F-actin 

staining signal decreased by 40±5.2 %. 

 

The above result indicates that glutamate stimulation of hippocampal neurons 

induces accumulation of endogenous gelsolin in dendritic spines and is 

associated with disruption of actin filaments in the spine cytoplasm. This is 

consistent with the known role of gelsolin in severing actin filaments in 

response to calcium influx into platelets (Hartwig, 1992). 
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Figure 5: Glutamate induces accumulation of endogenous gelsolin in dendritic 
spines.  
(A) Control neurons: 3-week old hippocampal neurons were incubated in tyrode's for 5 

minutes then fixed and stained for gelsolin and actin filaments. Glutamate treated 

neurons: Cells were incubated in 2.5µM glutamate for 5 minutes then fixed and 

stained for gelsolin and actin filaments. (B) Glutamate induced accumulation of 

gelsolin in dendritic spines. Background fluorescence was subtracted using 

Metamorph software. A circle to encompass the spine was made by thresholding the 

image, then the circle was moved on its neighboring dendritic shaft.  The ratio (Fs/Fd) 

of total fluorescent intensity in spine (Fs) and in the adjacent dendrite (Fd) was 

calculated. The mean values of control cells were normalized to 100%. There was a 

61±7.5% increase of the ratio (Fs/Fd) for gelsolin in 2.5µM glutamate condition (± 

s.e.m.), while prolonged incubation time (30 minutes) did not make a difference from 5 

minutes incubation. Control cells (n=21); Treated cells (glutamate for 5 minutes, n=21; 
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glutamate for 30 minutes n=21). 20 dendritic spines and adjacent dendrites were 

randomly selected for each group to be quantified for fluorescent intensity. 

 

 

 

3.4. Gelsolin-GFP demonstrates glutamate induced 

accumulation of gelsolin in dendritic spines in living neurons 

 

Immunostaining showed that endogenous gelsolin became accumulated in 

dendritic spines after glutamate application, but  immunohistochemical method 

can simply answer the question "yes" or "no". To learn more about gelsolin 

accumulation in dendritic spines, for example the timing of gelsolin 

accumulation in dendritic spines or the distribution of gelsolin in the same cell 

before and after glutamate application, we used live cell imaging with GFP-

tagged gelsolin. 

 

In these experiments we expressed GFP tagged gelsolin in hippocampal 

neurons, and imaged dendrites at DIV 21 - 24 when dendritic spines with 

mature appearance had been formed. Under resting conditions gelsolin-GFP 

expressing neurons showed fluorescence signals localized in both dendritic 

spines as well as dendritic shafts (Figure 6). By contrast GFP-actin expressing 

cells showed strong accumulation of GFP-actin in dendritic spines with much 

lower intensity in the neighboring dendritic shafts, consistent with the previous 

reports (Kaech et al., 1997; Fischer et al., 1998). Contrary to GFP-actin's 

strong localization in dendritic spines, Cells expressing GFP alone showed 

strong signals in dendritic shafts with much lower signals in dendritic spines. 

Comparing the distribution of these three constructs in hippocampal neurons, 

gelsolin-GFP showed a tendency towards being concentrated in dendritic 

spines, but was not so enriched in spines as GFP-actin. Whereas GFP showed 

no tendency towards accumulating in spines.  
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Figure 6: Distribution of gelsolin-GFP in living neurons. 
Hippocampal neurons were transfected with the constructs using DOTAP method, 

and maintained in culture for 3 ~ 4 weeks. Gelsolin-GFP expressing neurons show 

fluorescence signals in both dendritic spines and dendrite shafts. GFP-actin show 

strong accumulations of actin-GFP in dendritic spines with much lower signal intensity 

in the neighboring dendrite shaft. Cells expressing soluble GFP show a strong signal 

in dendritic shafts with much lower intensity in dendritic spines. 
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Figure 7: Activity-dependent enrichment of gelsolin-GFP in dendritic spines.  

(A) Gelsolin-GFP expressing neurons treated with 2.5 µM glutamate for 30 minutes 

showed increased fluorescence in dendritic spines. (A1) Fluorescent intensity was 

plotted along the line indicated by the red arrow. The blue and red lines in A1 show 

the signal intensities before and after treatment respectively. After treatment the 

fluorescence in the peaks corresponding the dendritic spines were increased 

compared with the signals before treatment. (B): Control GFP transfected neurons 

showed no increase of GFP fluorescence in dendritic spines following treatment. (B1) 

Intensity plots of fluorescence intensity along the lines indicated by the red arrow in B. 

(C):  Gelsolin-GFP accumulation in dendritic spines after 2.5 µM glutamate treatment 

measured as the ratio of fluorescence in the spine (Fs) compared to the dendrite shaft 

(Fd) (Before treatment: Fs/Fd=0.97±0.1; after treatment: Fs/Fd=1.4±0.13). Control 

GFP expressing cells showed no accumulation of GFP in dendritic spines after 

glutamate treatment (before treatment: Fs/Fd=0.65±0.06; after treatment: 

Fs/Fd=0.64±0.06) (± s.e.m.). (D): Both glutamate and NMDA trigger gelsolin-GFP 

enrichment in spines. APV and calcium free tyrode's blocked this process while the 
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MCPG and NBQX did not block this process. DHPG and AMPA did not trigger this 

process.   

 

 

In the time-lapse recording method images of transfected neurons were taken 

at 15 second intervals to record changes of the gelsolin-GFP signal in dendritic 

spines and the neighboring dendritic shafts. The results of these experiments 

showed that application of 2.5 µM glutamate to gelsolin-GFP expressing 

neurons induced gelsolin-GFP accumulation in dendritic spines (Fig 7A, 7C), 

confirming our previous gelsolin accumulation data using fixation and antibody 

staining method. The increase of gelsolin-GFP in dendritic spines began after 

5 minutes of 2.5 µM glutamate treatment. 30 minutes after application this 

effect still could be seen.  

 

Control GFP transfected neurons showed no increasing of fluorescent intensity 

in spines after glutamate treatment (Fig. 7B, 7B', 7C), and the intensity of GFP 

signal was not changed in dendritic spines before and after application of 

glutamate. This control experiment excludes the possibility that accumulation 

of gelsolin-GFP was due to the accumulation of GFP molecules.  

 

 

3.5. NMDA receptors and calcium ions are necessary for 

gelsolin accumulation 

 

Glutamate receptors occur in a variety of subtypes including ionotropic 

receptors preferring either  a-amino-3-hydroxy-5-methyl-4-

isoxazoleproprionate (AMPA) receptor or N-methyl-D-aspartic acid (NMDA) 

receptor and metabotropic glutamate receptor (mGluR). To investigate which 

receptor subtype is responsible for glutamate-induced gelsolin targeting to 

dendritic spines, the contribution of each receptor subtype to gelsolin 

accumulation was examined using bath application of glutamate together with 

selective receptor subtype antagonists. Application of glutamate (2.5 µM) 
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together with the NMDA receptor blocker D(-)-2-amino-5-phosphonopentanoic 

acid (APV) (200 µM) totally inhibited the glutamate-induced accumulation of 

gelsolin in spines (Figure 7 D). By contrast, blocking AMPA receptors with 

20µM NBQX did not block glutamate-induced accumulation of gelsolin. 

Blocking mGluRs with 200 µM MCPG also did not inhibit the accumulation of 

gelsolin induced by glutamate (Figure 7 D). These results indicate that it is 

mainly NMDA receptors which mediate the activation-induced accumulation of 

gelsolin in dendritic spines.   

 

Because NMDA receptor activation leads to Ca2+ influx into dendritic spines 

(Segal, 1995; Yuste et al., 1999), we tested whether Ca2+ influx is required for 

gelsolin accumulation. To exclude the Ca2+ influx when glutamate was applied 

on the cells, we repeated the experiment using calcium free solutions. We first 

incubated cells in calcium free Tyrode's solution for 10 minutes to equilibrate 

them to calcium free condition. Glutamate (2.5 µM) was then applied in 

calcium free Tyrode's solution exclude calcium influx. Under these conditions, 

activation of postsynaptic glutamate receptor neurons did not induce 

accumulation of gelsolin in dendritic spines, even when the incubation time 

was prolonged to 30 minutes (Figure 7D). Therefore, calcium influx is needed 

in the process of the accumulation of gelsolin in spines. 

 

 

3.6. The F-actin binding domain of gelsolin is necessary for its 

accumulation in dendritic spines 

 

Gelsolin has six functional distinct domains whose combined operation 

accounts for its calcium regulation, actin binding, severing and capping 

properties (Figure 8). To investigate which of these domains is responsible for 

its targeting to dendritic spines, we created vectors expressing various gelsolin 

deletion mutants tagged with GFP (Figure 8). 
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Figure 8. Domain analysis of gelsolin and gelsolin mutants. 
G2-6-GFP (in red box) has an F-actin binding site, an actin monomer binding site and 

a calcium regulation site; G2-5-GFP (in blue box) has an F-actin binding site, an actin 

monomer binding site and is calcium independent; G1-3-GFP (in blue box) has an F-

actin binding site, an actin monomer binding site and is calcium independent; G4-6-

GFP has a monomer actin binding site; G1-GFP has an actin monomer binding site; 

G3-GFP does not contain any functional binding site. 

 

 

G2-6-GFP contains domains 2 to 6 comprising an F-actin binding site (2), an 

actin monomer binding site (4) and a calcium regulation site (C-terminus). 

Because of the calcium regulatory site, the activity of G2-6 depends on 

cytoplasmic calcium concentration. When activated by calcium, G2-6 can cap 

or bind to the sides of actin filaments, dependent on domains 2 and 4 

respectively. However, G2-6 does not have the ability to sever actin filaments, 

because this function is associated with domain 1, which it lacks. G2-5-GFP 

contains same functional domains as G2-6-GFP but lacks the calcium 

regulatory domain (C-terminus). So that it is constitutively active, binding to the 

sides of actin filaments or capping their barbed ends thus preventing further 

actin monomer addition. G1-3-GFP contains the F-actin severing domain (1), 

the actin filament binding site and is calcium independent, so that it can 

constitutively bind, sever and cap actin filaments. The only actin-binding site in 

G4-6-GFP is domain 4 so that it can only bind actin monomers. This function is 
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believed to be calcium independent because, although it has a fragment of the 

C-terminal calcium regulatory site, calcium regulation needs the co-operation 

of domain 2 which it lacks. G1-GFP also has an actin monomer binding site 

with much weak severing ability. Whereas the sequence present in G3-GFP 

does not contain any known functional actin binding site. 

 

We transfected these gelsolin mutants separately into hippocampal neurons. 

Under control conditions without NMDA receptor activation, both G2-5-GFP 

and G1-3-GFP showed a strong targeting in dendritic spines (Figure 9, Figure 

10). In these transfected cells GFP signals from both constructs were strong in 

dendritic spines, with much weaker signal intensities in the neighboring 

dendritic shafts. The targeting of these mutant forms to dendritic spines under 

control conditions is most likely because both mutants lack the calcium 

regulatory domain and contain F-actin binding domain which can therefore 

operated independently of receptor-induced calcium influx (Figure 8). G2-6-

GFP, which also has a F-actin binding site, did not show enrichment in 

dendritic spines under resting conditions, presumably because it contains 

domain 6 and is therefore calcium regulated. To test this idea we exposed G2-

6-GFP expressing cells with 2.5 µM glutamate for 5 minutes. Following this 

treatment G2-6-GFP showed strong accumulation in dendritic spines (Figure 

10, Figure 11). G2-5-GFP and G1-3-GFP, which were already enriched in 

dendritic spines before glutamate application, showed no further increase 

accumulation or other variation in their relation to dendritic spines. Finally, G1-

GFP, G3-GFP, and G4-6-GFP did not show targeting to dendritic spines under 

either control or glutamate treated conditions (Figure 10). Thus, all those 

constructs which lack the F-actin binding domain (G1, G3, G4-6) did not show 

accumulation in dendritic spines either before or after glutamate application. 

These results confirm that the F-actin binding domain of gelsolin is necessary 

for gelsolin accumulation in dendritic spines and that before gelsolin can 

accumulate in dendritic spines, the gelsolin needs to be activated by calcium 

influx. 

 

 



Results 

 - 39 - 

  
 
Figure 9. Expression of gelsolin mutants that has an F-actin binding domain. 
Typical images of cells transfected with G1-3-GFP, G2-5-GFP and G2-6-GFP 

respectively. Each of these three gelsolin mutants has an F-actin binding site. Of 

them, G1-3-GFP and G2-5-GFP showed strong accumulation in dendritic spines in 

resting state. Whereas G2-6-GFP, which also has an F-actin binding site, showed a 

similar distribution pattern as that of gelsolin-GFP (figure 6, figure 7). G2-6-GFP was 

localized in dendritic spines, but not so strong as G1-3-GFP and G2-5-GFP. 
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Figure 10.  Targeting domain of gelsolin and calcium regulation. 
A. Gelsolin mutants were transfected into hippocampal neurons. In the untreated 

condition, only G2-5-GFP (cell n=9) and G1-3-GFP (n=9) showed strong enrichment 

in dendritic spines (green color). F-actin staining (red color) shows the location of 

dendritic spines. The merged images (bottom row) show the enrichment of G2-5-GFP 

and G1-3-GFP (yellow) in dendritic spines. Whereas G1-GFP (n=11), G3-GFP (n=10), 

G4-6-GFP (n=8) and G2-6-GFP (n=41) did not show enrichment in dendritic spines. 

B. Quantification data showed the ratio of the intensity of GFP tagged gelsolin 

mutants in dendritic spines vs. in dendritic shafts. Open bar showed the untreated 

cells; shadow bar showed the cell treated with 2.5 µM glutamate for 5 minutes. After 5 

minutes glutamate (2.5 µM) application G2-6-GFP was accumulated in dendritic 

spines. Other mutants did not show change in distribution of GFP signal in dendritic 

spines vs. dendritic shafts. 
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Figure 11. Glutamate induced targeting of G2-6-GFP to dendritic spines. 
Before treatment G2-6-GFP did not show specific localization in dendritic spines. It 

showed a strong G2-6-GFP signal intensity in dendritic shafts. Application of 2.5 µM 

glutamate for 5 minutes clearly induced accumulation of G2-6-GFP to dendritic 

spines. It showed a strong G2-6-GFP signal in dendritic spines and a weak signal in 

the neighboring dendritic shafts. (Cells, n = 21). 

 

 

 

3.7. Gelsolin severs actin filaments in dendritic spines upon 

glutamate application 

 

Upon glutamate application, gelsolin is activated and translocated to dendritic 

spines. The next obvious question is what gelsolin would do in dendritic spines 

after it accumulates there? Post studies have shown that neurons treated with 

NMDA or glutamate show calcium dependent loss of F-actin in dendritic spines 

(Halpain et al., 1998a). Gelsolin is known to sever actin filaments in a calcium-

dependent manner (Yin and Stossel, 1979; Yin et al., 1981b; Kinosian et al., 
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1998). Consequently we tested whether gelsolin couples synaptic activity to 

the regulation of actin filaments in dendritic spines. Rhodamine-phalloidin was  

used to stain actin filaments in hippocampal neurons and its fluorescence 

intensity in dendritic spines was quantified to compare the relative ratio of F-

actin (spine/dendrite) in gelsolin-GFP expressing cells and in untransfected 

wild type cells. First, hippocampal neurons transfected with gelsolin-GFP were 

allow to develop in culture for 21 days. In the experiment they were treated for 

5 minutes with 7.5 µM glutamate before fixation. This resulted in a significantly 

weaker rhodamine-phalloidin staining of F-actin in dendritic spines of gelsolin-

GFP expressing cells compared with untransfected cells (Figure 12 A), 

indicating glutamate-induced loss of F-actin in dendritic spines was 

significantly enhanced by gelsolin overexpression. In control experiments, 

cultures were treated with regular Tyrode's solution, which did not induce a 

significant difference in F-actin staining in spines between transfected and 

untransfected cells (Figure 12 C). 

 

Because the loss of F-actin could be attributed to the severing or the capping 

function of gelsolin, we next examined whether the loss of F-actin staining in 

dendritic spines was due to the severing. To do this we transfected neurons 

with the gelsolin deletion mutant G2-6-GFP, which lacks the severing function. 

Application of 7.5 µM glutamate for 5 minutes on G2-6 transfected neurons did 

not significantly change F-actin staining in dendritic spines compared with 

untransfected neurons (Figure 12 C), and prolonging the incubation time to 30 

min did not change the F-actin staining compared to control neurons either 

(data not shown). These results indicate that the actin filament loss in dendritic 

spines after glutamate treatment depend on the F-actin severing function of 

gelsolin. 
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Figure 12. Gelsolin severed actin filaments in dendritic spines upon glutamate 
application.  

(A) Neurons were treated with 7.5 µM glutamate, then fixed and stained for F-actin 

with rhodamine-phalloidin. The F-actin cluster intensity in Gsn-GFP expressing 

dendritic spines (A2) (filled arrow) was decreased compared with the control 

untransfected neighboring neuron (A1) (open arrow). (B) Neurons expressing G2-6-

GFP (B2), a gelsolin mutant that does not sever F-actin, did not show the decreased 

F-actin staining in dendritic spines (filled arrow) compared with the control neuron (B1) 

(open arrow). (C) Quantification of F-actin cluster intensity in dendritic spines. In 



Results 

 - 44 - 

untreated neurons expressing Gsn-GFP (34 cells) or G2-6-GFP (25 cells) did not 

change the F-actin staining significantly. Treatment with 7.5 µM glutamate for 5 

minutes Gsn-GFP transfected neuron (cell n=37) showed a much lower level of F-

actin in dendritic spines than control untransfected cells (n=42) and G2-6-GFP 

transfected cells (n=39). 

 

 

 

3.8. Low frequency electrical stimulation activates F-actin 

severing by gelsolin 

 

Electrical stimulation is often used to change the synaptic transmission 

efficiency of synapses and evidence indicates that long-term depression 

stimulation can inhibit F-actin dynamics in dendritic spines (Star et al., 2002). 

We tested whether gelsolin mediates LTD pattern stimulation effect on actin 

filaments in dendritic spines. A low frequency electrical stimulation protocol 

known to induce long-term depression (LTD) in dissociated hippocampal 

neurons was applied to cultures. This consisted of pulses delivered at 1 Hz for 

15 minutes. After a further 15 minutes the cultures were fixed, and then stained 

for actin filaments using rhodamine-phalloidin. The relative ratio 

(spine/dendrite) of F-actin in gelsolin-GFP expressing neurons measured 15 

min after LTD related electric field stimulation was significantly lower in 

gelsolin-GFP expressing cells (45±5.1%) than in untransfected cells (74±7.2%) 

(Figure 13B, 13C). Therefore, the loss of F-actin in dendritic spines caused by 

low frequency stimulation was enhanced in cells expressing gelsolin-GFP. 
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Figure 13. Gelsolin decreased F-actin staining in dendritic spines after LTD 
pattern stimulation.  
(A): Gelsolin-GFP transfected cell. (B): F-actin staining in a gelsolin-GFP transfected 

cell (right) compared to an untransfected cell (left). F-actin staining in dendritic spines 

was weaker in the gelsolin-GFP expressing neurons (B2) than in the control neuron 

(B1) 15 minutes after stimulation. (C): 15 minutes after LTD pattern stimulation F-actin 

staining had decreased in both cells, but the decrease was more in gelsolin-GFP 

expressing cells (n=12). Control cells (n=19). 
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3.9. Activation of gelsolin requires activation of NMDA 

receptor and influx of calcium 

 

Glutamate application and LTD pattern stimulation of glutamatergic neurons 

activates various receptor subtypes, including AMPA, NMDA and mGlu 

receptors. Next, we examined the contribution of each of these receptor 

subtypes to the glutamate induced actin loss using selective agonists and 

antagonists for AMPA, NMDA and mGlu receptors. Previous data have 

implicated calcium influx via NMDA receptor channels in the glutamate-induces 

disruption of actin filaments in dendritic spines. When we applied the glutamate 

in calcium free Tyrode's solution to exclude the calcium influx presumed to 

happen after NMDA receptor activation, there was no decrease in F-actin 

staining between gelsolin-GFP transfected and control untransfected cells 

(Figure 14B), confirming that the extracellular calcium is necessary for the 

gelsolin. Application of AMPA did not lead to a greater decrease of actin 

filaments in transfected cells than untransfected cells, and the mGluR agonist 

DHPG similarly showed no difference in actin staining between transfected and 

untransfected cells (Figure 14 C). By contrast application of NMDA produced 

same effects as that of glutamate (Figure 14C).  

 

These indications that severing of actin filaments depends on selective 

activation of NMDA receptor were confirmed using glutamate receptor 

subtype-specific antagonist. APV, an antagonist of NMDA receptors, blocked 

the actin loss effects induced by glutamate (Figure 14 C), whereas NBQX, an 

antagonist of AMPA receptors, and MCPG, an antagonist of mGluRs, had no 

effect (Figure 14C). 
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Figure 14. Signals for activating gelsolin in dendritic spines 
Gelsolin-GFP expressing neuron (A) and control untransfected neuron (showed in B 

left) were treated with 7.5µM glutamate in calcium free tyrode's for 5 minutes, then 

stained for F-actin (B and B1). Under these calcium-free conditions there was no 
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difference between wild type and gelsolin-GFP expressing neurons concerning the F-

actin staining in dendritic spines (B, B1). C) The F-actin decrease in dendritic spines 

of Gsn-GFP transfected neurons is treatment dependent. In normal Tyrode's solution 

glutamate (37 cells) and NMDA (41 cells) triggered loss of F-actin staining. The 

NMDA receptor antagonist APV blocked this effect (20 cells), while NBQX (27 cells) 

and MCPG (19 cells) were ineffective. The decrease of F-actin staining induced by 

glutamate was also blocked in calcium free condition (22 cells). 

  

 

 

These experiments show that, like glutamate induced targeting of gelsolin to 

dendritic spines, the loss of F-actin in the spine cytoplasm is mainly mediated 

by calcium-influx through NMDA receptors, and that AMPA and mGlu 

receptors do not contribute significantly to those effect. Considering the known 

role of NMDA receptors in activation of gelsolin, this suggested a pathway in 

which influx of calcium through NMDA receptors activates the entry of gelsolin 

into dendritic spines, and its severing effect on actin filaments of the spine 

cytoskeleton. 

 

 

 

3.10. Gelsolin activation decreases AMPA receptor expression 

in dendritic spines 

 

The actin cytoskeleton is known to play an important role in anchoring AMPA 

receptors to synapses of pyramidal neurons. These AMPA receptors disperse 

from synaptic sites when F-actin is depolymerized by latrunculin A (Allison et 

al., 1998a; Shen et al., 2000b). Since our data show that activated gelsolin 

disrupts F-actin in dendritic spines we next asked whether gelsolin regulates 

the anchoring of AMPA receptors (GluR1) to postsynaptic sites in dendritic 

spines by influencing F-actin assembly.  
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Figure 15. Gelsolin decreases GluR1 staining in dendritic spines upon 
glutamate treatment. 
(A) Immunostaining with antibodies against GluR1 show the presence of AMPA 

receptor in dendritic spines in both gelsolin-GFP transfected cells (filled arrow) and 

untransfected control cells (open arrow) under resting conditions. (B) Incubating cells 

in 7.5µM glutamate for 5 minutes decreased the level of GluR1 staining   in gelsolin-

GFP transfected cells (filled arrow) compare to untransfected cells (open arrow). (C) 

GluR1 staining intensity in dendritic spines was normalized to 100% in control cells 

(n=28) (incubated in Tyrode's solution for 5 minutes). Gelsolin-GFP transfected cells 

(n=26) show similar GluR1 staining (97±9.1%) to untransfected cells in dendritic 

spines in control condition. However, after exposure to 7.5µM glutamate for 5 minutes 

both the transfected cells (n=24) and untransfected cells (n=22) show a decrease of 

GluR1 staining in dendritic spines which was greater in gelsolin-GFP expressing cells 

(51±5.9%) than in untransfected cells (77±8.1%). Error bar ± s.e.m. 

 

 

 

Cells fixed under control conditions and stained with antibodies against GluR1 

showed similar staining in both gelsolin-GFP transfected and untransfected 
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cells. In Figure 15A the black arrows head to the gelsolin-GFP transfected cells 

and the open arrows head to untransfected cells. This lack of difference 

reflects the fact that F-actin was not disrupted in either transfected or control 

cells under resting conditions (Figure 12 C). However, incubating cells in 

7.5µM glutamate for 5 minutes caused a decrease in GluR1 staining in 

gelsolin-GFP transfected cells (Figure 15 B, black arrow heads) compared to 

untransfected cells (Figure 15 B, open arrow heads). Treating cells with 

glutamate actually induced reduction of AMPA receptor staining in both 

transfected cells and untransfected cells (Figure 15 C) showing that glutamate 

induced disruption of actin filaments in both cells (Figure 12 C), but the 

reduction of AMPA receptors was much greater in transfected cells. These 

results indicate that gelsolin, as an endogenous F-actin assembly regulator, 

further regulates the anchoring of AMPA receptors (GluR1) in dendritic spines.  
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4. Discussion 

 

The issue addressed in this thesis is concerned with the morphological 

plasticity of central nervous system circuits, which is widely believed to be 

important for learning and memory. Recent evidence suggests the dendritic 

spines play a key role in this phenomenon. Dendritic spines undergo changes 

in shape over a matter of seconds shown by neurons expressing GFP-actin 

(Fischer et al., 1998; Dunaevsky et al., 1999; Korkotian and Segal, 2001). 

Synaptic activity can change spine numbers and shape which depend on this 

dynamic actin cytoskeleton (Engert and Bonhoeffer, 1999; Maletic-Savatic et 

al., 1999; Matus, 2000; Segal, 2001). Furthermore the morphological 

heterogeneity of spine shape and number may lead to the functional diversity 

of brains (Harris, 1999). Although it has been well established that the synaptic 

activity influences the dynamic actin cytoskeleton in dendritic spines, the 

mechanisms of mediating the synaptic activity to actin cytoskeleton remain 

largely unknown. In this thesis we found that gelsolin, a calcium-regulated F-

actin severing and capping protein (Yin and Stossel, 1979; Janmey et al., 

1985), plays an important role in mediating synaptic activity to actin 

cytoskeleton, and subsequently influences the AMPA receptor plasticity in 

dendritic spines.  

 

 

4.1. Association of gelsolin with actin filament in cells 

 

In this thesis work I first reexamined the distribution of gelsolin in fibroblasts 

using gelsolin immunostaining method and confirmed that gelsolin is 

associated with dynamic actin rich structure - lamellipodia - but not with stress 

fibers, which are stable actin structure (see Chapter 2.1.)   
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Compared to the well-established model for the interaction of gelsolin with 

actin in vitro, the question how gelsolin binds to actin and influences the 

dynamics of actin filaments in living cells has been a difficult issue for 

researchers because of the technical difficulties and sometimes conflicting 

data. The earliest studies on the localization of gelsolin in cells using 

immunofluorescence methods gave conflicting results. With some experiments 

studies showing gelsolin associated with actin filament enriched structures (Yin 

et al., 1981a; Rouayrenc et al., 1984; Wang et al., 1984), whereas, others 

reported a diffuse distribution of gelsolin in the cytoplasm and little 

colocalization with actin filaments (Carron et al., 1986). A significant advance 

in solving this question was made by Cooper et al. (1988) who showed that in 

living fibroblasts gelsolin has a diffuse cytoplasmic distribution, most likely 

because it is associated with actin filaments in short-lived complexes. When 

fibroblast motility is induced by epidermal growth factor (EGF), gelsolin 

incorporates preferentially into the ruffling membranes at the leading edge of 

the lamellipodia (Chou et al., 2002), suggesting that gelsolin associates with 

the dynamic actin cytoskeleton to push the ruffling membrane during EGF-

induced motility.  

 

Experiment on platelets provide another good example for the interaction 

between gelsolin and actin. In resting platelets the barbed ends of actin 

filaments are capped by capping proteins (Barkalow et al., 1996). Exposure of 

platelets to thrombin initiates a signal transduction cascade that promotes actin 

polymerization (Carlsson et al., 1979), which is preceded by a rapid severing of 

cytoplasmic actin filaments induced by free gelsolin activated by a transient 

increase in calcium levels (Hartwig, 1992). Platelet from gelsolin knockout mice 

showed a reduced rate of clotting (Witke et al., 1995), consistent with the 

requirement of actin severing by gelsolin for platelet activation (Hartwig, 1992). 

 

Gelsolin knockout cells further establish the importance of gelsolin in 

maintaining motility and actin dynamics, since gelsolin null fibroblasts have 

abnormally pronounced actin stress fibers (Witke et al., 1995), and this 

phenotype is consistent with a lack of the ability to sever and remodel actin 
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filaments. Probably as a consequence, gelsolin null fibroblasts do not ruffle in 

response to growth factor (Azuma et al., 1998).  

 

 

4.2. Accumulation of gelsolin in dendritic spines by synaptic 

activity  

 

Whether gelsolin is located in dendritic spines was an obvious question when 

we started to investigate gelsolin function at the synapse. The immunostaining 

data clearly showed the localization of gelsolin at the postsynaptic sites. To 

exclude the possibility of artifacts that may be introduced by fixation and 

immunostaining, we also expressed the GFP tagged gelsolin in hippocampal 

neurons. Gelsolin-GFP is located in dendritic spines of resting cells, but the 

dendritic shafts also have relatively strong gelsolin-GFP signal. A possible 

explanation for this difference is that gelsolin-GFP showed the correct 

distribution pattern in living neurons, and that gelsolin antibody staining 

enhances the signal ratio between spine and shaft by permeabilizing cells 

during the fixation activating redistribution of gelsolin process. This kind of 

enhancement of gelsolin signal has been observed in fibroblasts, where 

gelsolin was found to be associated with stress fibers after immunostaining 

which is not the case in living cells (Cooper et al., 1988). 

      

Possible changes in the distribution of gelsolin in the neuronal cytoplasm when 

neurons are stimulated are very interesting because gelsolin's localization is 

closely related to its possible function in dendritic spines. My experiments 

showed that glutamate treatment triggered the accumulation of gelsolin in 

dendritic spines (Chapter 3.3. and 3.4.), and that this effect is apparently 

mediate by NMDA receptors in dendritic spines (Chapter 3.5.). Glutamate 

treatment in calcium-free Tyrode's solution did not induce accumulation of 

gelsolin in spines, indicating calcium that influx through NMDA receptors is a 

key process in triggering the movement of gelsolin from dendritic shafts to 

spines. Gelsolin is a calcium-regulated actin binding protein that is activated by 
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increase in calcium concentration to the micromolar range, therefore calcium 

influx through NMDA receptors upon glutamate application is a likely trigger for 

the translocation of gelsolin from shafts to spines where it can bind to actin 

filaments. Indeed my experiment with gelsolin deletion mutants expressed in 

neurons confirmed that the F-actin binding domain of gelsolin is required for 

translocation. Appropriate deletion constructs (G2-5-GFP and G1-3-GFP), 

which can bind F-actin independent of calcium, strongly targeted to dendritic 

spines in un-stimulated cells (Chapter 3.6.) indicating that in resting cells native 

gelsolin is inhibited from actin binding. G2-6-GFP, a deletion construct which 

contains the F-actin binding domain but is calcium regulated, did not target to 

dendritic spines in the unstimulated state, but after glutamate application it 

strongly targeted to dendritic spines (Chapter 3.6.).  

 

It is also conceivable that gelsolin binds other dendritic spine components after 

being activated, such as PI(4,5)P2, however, PI(4,5)P2 has been shown to be 

hydrolyzed in response to glutamate stimulation (Nahorski, 1988; Chuang, 

1989; Fisher et al., 1992; Furuichi and Mikoshiba, 1995), thus decreasing the 

PI(4,5)P2 level making more likely that gelsolin mainly binds to F-actin rather 

than PI(4,5)P2 in dendritic spines after glutamate application.       

 

In the recent years activity-dependent translocation has been demonstrated for 

a number of postsynaptic proteins (Inoue and Okabe, 2003), including for 

example CaMKII and PSD-Zip45. Stimulation of NMDA receptors with 

glutamate induced a dramatic translocation of the CaMKII-GFP to postsynaptic 

sites (Shen and Meyer, 1999). However after first associating with the PSD, 

CaMKII was subsequently phosphorylated and became dissociated from the 

PSD. CaMKII that had been dissociated from the PSD could re-located back 

more rapidly after subsequent stimulation (Shen et al., 2000a), implicating 

CaMKII translocation in the molecular mechanism underling neuronal plasticity 

(Fink and Meyer, 2002). Similarly the Homer family metabotropic glutamate 

receptor interacting protein PSD-Zip45 shows rapid redistribution associated 

with neuronal activity, but the direction of its translocation is opposite to that of 

CaMKII (Okabe et al., 2001b), so that the clusters of PSD-Zip45 are dispersed 
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by NMDA receptor activation. In contrast, a transient increase of intracellular 

calcium through voltage-dependent calcium channels induces PSD-Zip45 

clustering. The functional consequence of PSD-Zip45 translocation may 

influence mGluR functions and its cell surface expression (Inoue and Okabe, 

2003). 

 

 

4.3. Gelsolin regulates the actin cytoskeleton in dendritic 

spines 

 

Since gelsolin targets to dendritic spines after glutamate stimulation, it is quite 

likely gelsolin may participate into spine plasticity in some way. In this 

direction, first the actin cytoskeleton in dendritic spines was investigated, 

because gelsolin is well know for regulating actin dynamics and dynamic actin 

filaments have an essential role in supporting spine plasticity.  

 

For non-neuronal cells, it is well-known that gelsolin contributes to the 

regulation of the dynamic actin cytoskeleton which underlies the morphology 

and motility of the cells (Cooper et al., 1987; Cunningham et al., 1991; Arora 

and McCulloch, 1996). For neuronal cells, our results show that 

overexpression of gelsolin rendered the actin cytoskeleton in dendritic spines 

more vulnerable to glutamate or LTD stimulation (Chapter 3.7. and 3.8.). 

Overexpression of gelsolin disrupted more actin filaments in dendritic spines in 

response to glutamate or LTD stimulation, suggesting gelsolin is activated by 

these stimuli and indicates a clear effect on actin depolymerization. 

 

Activity-dependent stimulation of gelsolin requires the activation of NMDA 

receptors, since blocking NMDA receptors inhibits the loss of actin filaments 

caused by gelsolin (Figure 14 C). Further experiments suggest a close link 

between activation of NMDA receptors and gelsolin mediated by calcium ion 

influx through opened NMDA receptor channels. Based on previous 

experiments showing that calcium is required for activation of gelsolin, I 
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performed experiment in which glutamate receptor were stimulated in calcium-

free medium and found that this inhibits the activation of gelsolin. Taken 

together, these results suggest the following scenario: glutamate or LTD-

pattern stimulation activates NMDA receptors, then calcium ions enter through 

opened NMDA receptors and when calcium ion concentration reaches above 

the threshold (µM) to activate gelsolin, then activated gelsolin depolymerizes 

actin filaments in dendritic spines.   

 

Calcium in dendritic spines has a crucial role in the induction of LTP and LTD -

-- the putative cellular mechanisms of learning and memory. Calcium regulates 

postsynaptic enzymes that trigger rapid modification of synaptic strength and 

also activates transcription factors that induce the expression of other genes 

for long-term maintenance of these modifications (Bito et al., 1997). Calcium 

enters spines in response to synaptic excitation and postsynaptic electrical 

activity. In pyramidal neurons, action potentials open voltage-sensitive calcium 

channels (VSCCs) that admit calcium into dendrites and spines (Yuste and 

Denk, 1995). NMDA receptors also clearly have a major role in spine calcium 

dynamics, as several groups have shown that blocking NMDA receptors 

abolishes the increasing of calcium levels in spines (Yuste and Denk, 1995). 

Although most studies suggest that calcium influx through NMDA receptors 

accounts for most of synaptic spine calcium, other results point towards 

calcium induced calcium release (CICR) (Emptage et al., 1999) or VSCCs 

(Schiller et al., 1998). 

 

Phosphorylation of gelsolin may be another mechanism regulating its function 

following neuronal stimulation. Artificial phosphorylation of N-terminus region of 

gelsolin activates gelsolin (Takiguchi et al., 2000), so that it no longer requires 

calcium for activation; it then severs and subsequently caps actin filaments, 

and nucleates filament formation in calcium-free solution, suggesting 

phosphorylation can change the conformation of gelsolin. Gelsolin can be 

phosphorylated by c-Src in vitro and phosphorylation will be enhanced in the 

presence of PI(4,5)P2 (De Corte et al., 1997). The major phosphorylation site 

(Tyr438) was located in subdomain 4 (S4). Other phosphorylation sites were 
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identified as Tyr59, Tyr383, Tyr576, and Tyr624 (De Corte et al., 1999). In 

neuronal cells glutamate application induces c-Src kinase activation (Khanna 

et al., 2002). But in vivo phosphorylation of gelsolin by Src has not yet been 

proven. 

 

To date the significance of remodeling the actin cytoskeleton in dendritic 

spines by glutamate receptor activation is still unclear. The partial disruption of 

actin cytoskeleton in dendritic spines has been suggested to be a mechanism 

to protect neurons from excitotoxicity, because disruption of actin filaments 

helps the rundown of calcium level in neurons (Furukawa et al., 1997a). NMDA 

receptors are linked to the actin cytoskeleton by the actin-binding protein α-

actinin (Wyszynski et al., 1997), so that dynamic F-actin participates in 

membrane targeting of NMDA receptor clusters (Allison et al., 1998a). 

Compounds that inhibit actin filament assembly decrease the magnitude of 

LTP (Kim and Lisman, 1999), and impair the maintenance of LTP at the 

Schaffer-collateral-CA1 pyramidal cell synapses (Krucker et al., 2000), 

possibly because that depolymerization of actin filaments causes 

internalization of AMPA receptors (Allison et al., 1998a; Zhou et al., 2001)(also 

see Chaper 4.5). 

 

 

4.4. Severing vs. capping F-actin by gelsolin in dendritic 

spines 

 

The F-actin disassembly caused by gelsolin in dendritic spines may be either 

due to the severing or capping function of gelsolin, or both. Severing requires 

gelsolin binding to the side of the actin filaments through a site in segments 2 

and 3 (S2-3) to position another site in segment 1 (S1) which severs the 

filaments. Segment S2 and S3 also caps actin filaments (Sun et al., 1994), and 

detailed study showed that the sequence required for actin filament side 

binding and capping are located close to the N terminus of S2 (residues 161-

172). S3 contributes to stable capping of actin filaments, so that the gelsolin 
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mutant G2-6-GFP is supposed to only cap actin filaments but lack the severing 

ability. Our data showed that the severing function of gelsolin is the main 

mechanism causing disassembly of the actin cytoskeleton in dendritic spines. 

The G2-6 mutant which lacks the severing function, but still caps barbed end of 

F-actin (Sun et al., 1994; Fujita et al., 1997), accumulates in dendritic spines 

upon glutamate treatment, but unlike whole length gelsolin, this G2-6 mutant 

did not disrupt actin filament in dendritic spines upon glutamate treatment 

(Figure 12B; 12C). This makes it unlikely that the capping function of gelsolin is 

involved in the F-actin disassembly in dendritic spines.  

 

 

4.5. Relationship between activation of gelsolin and synaptic 

localization of AMPA receptors 

 

Neurotransmitter receptor movement in and out of synapses has been 

proposed as one of the main mechanisms for rapidly changing the number of 

functional receptors during synaptic plasticity. Our data show a decreasing of 

AMPA receptor amount in dendritic spines of gelsolin overexpressing neurons 

upon glutamate application (Chapter 3.10.). This decrease of AMPA receptors 

in dendritic spines could be due to the endocytosis since it has been shown 

that LTD or glutamate application increases the amount of AMPA receptors 

sequestered by endocytosis (Carroll et al., 1999; Luthi et al., 1999; Hirai et al., 

2001). Using immunofluorescence and surface biotinylation assay, a rapid 

basal AMPA receptor endocytosis rate in cultured hippocampal neurons has 

been detected and the AMPA receptor endocytosis rate is further accelerated 

in response to synaptic activity, ligand binding, and insulin (Lin et al., 2000). 

AMPA-induced AMPA receptor internalization is mediated in part by 

depolarization and calcium influx through voltage-dependent calcium channels 

and in part by a novel ligand-binding mechanism that is independent of 

receptor activation. The endocytosis of AMPA receptors depends on dynamin 

and the internalized AMPA receptors can be sorted to different destinations. 

Thus AMPA receptors internalized in response to AMPA stimulation enter a 
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recycling endosome system, whereas those internalized in response to insulin 

stimulation turn to a possibly degradative compartment (Beattie et al., 2000; 

Lin et al., 2000). 

 

AMPA receptors also are sensitive to the assembly state of actin. Disruption of 

F-actin in hippocampal neurons in culture by actin assembly blocking drugs 

decreased the number of clusters of AMPA receptors on dendritic spines, 

indicating the immobilization of AMPA receptors depends on the integrity of the 

F-actin network (Allison et al., 1998a). Electrophysiological studies (Kim and 

Lisman, 1999; Krucker et al., 2000) support this observation by showing that 

dynamic actin filaments are important for basal synaptic transmission as well 

as induction and maintenance of long term potentiation. Depolymerization of 

the actin cytoskeleton causes internalization of AMPA receptors, whereas a 

drug that stabilizes actin filaments blocks internalization (Zhou et al., 2001). 

This suggested that glutamate might induce a dissociation of AMPA receptors 

from the anchors that associate them with actin cytoskeleton. This might then 

lead to movement of AMPA receptors into the extrasynaptic domain of the 

membrane via lateral movement where extrasynaptic AMPA receptor are 

readily captured by the constitutive endocytotic pathway (Zhou et al., 2001). 

The decrease in AMPA receptor levels in gelsolin overexpressing neurons thus 

can be understood as following: upon glutamate application actin filaments are 

disrupted much more in gelsolin overexpressing neurons than in control 

untransfected cells and the subsequent increased loss of actin filaments 

accelerates the AMPA receptor internalization. 

 

In addition to increasing of endocytosis by the indirect route, disruption of 

AMPA receptor anchoring to actin cytoskeleton, actin filaments may also 

directly influence endocytosis. Actin filament assembly could generate 

mechanical forces to induce membrane invaginations, cut off deep 

invaginations to create vesicles, and move newly formed vesicles away from 

the plasma membrane. Thus interactions of components of the endocytic 

machinery with actin filaments could initiate the assembly of the endocytic 

machinery and anchor it at nascent internalization sites. Local disassembly of 
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actin filaments of the cell cortex near internalization sites could promote 

formation of nascent pits or facilitate transportation of newly formed vesicles 

into the deeper cytoplasm by clearing the way for vesicle diffusion or 

interactions with microtubules (Schafer, 2002). 

 

How are the glutamate receptors anchored at the postsynaptic sites? Given 

that AMPA receptors are localized to PSDs and do not bind F-actin directly, 

their expression must requires certain PSD proteins that link them to F-actin 

(Kasai et al., 2003). Such interactions may be mediated, for example, by 

complexes of AMPAR-SAP97-protein 4.1N-F-actin (Lisman and Zhabotinsky, 

2001) and AMPAR-stargazin-PSD95-GKAP-shank-cortactin-F-actin (Chen et 

al., 2000). SAP97 is one of a large number of synaptic junction proteins with 

PDZ domains (Craven and Bredt, 1998), which binds to the actin cytoskeleton 

through its amino terminus and to the GluR1 AMPA receptor subunit through 

its PDZ domain (Leonard et al., 1998). Protein 4.1N, a homolog of the 

erythrocyte membrane cytoskeletal protein 4.1, might act as another important 

bridge between AMPA receptors and the actin cytoskeleton in dendritic spines. 

It has been shown that disruption of the interaction of GluR1 with 4.1N 

decreased the surface expression of GluR1 in heterologous cells (Shen et al., 

2000b).  

 

For NMDA receptors, α-actinin-2, an actin-bundling protein, is the linker 

between actin filaments and NMDA receptors. It binds to actin through its 

amino terminus and to the NR1 subunit of NMDA receptors through its central 

rod domain (Wyszynski et al., 1997). The influx of calcium ions through 

activated NMDA receptors can depolymerize postsynaptic actin (Shorte, 

1997a; Halpain et al., 1998a) and produce a negative feedback effect on 

NMDA receptors themselves, causing a gradual rundown of their calcium 

conductivity (Rosenmund and Westbrook, 1993a; Furukawa et al., 1997a). 

Calcium ions disrupt this interaction by binding to α-actinin-2 both directly 

(Krupp et al., 1999) and indirectly via calmodulin, which competes for the NR1-

binding site (Wyszynski et al., 1997; Zhang et al., 1998). 
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Generally the rapid gain and loss of receptors from synaptic sites is accounted 

for by endocytosis and exocytosis, as well as by lateral diffusion of receptors in 

the plane of the membrane. These events are dependent on each other and 

are regulated by neuronal activity and interactions with scaffolding proteins 

(Choquet and Triller, 2003) 

 

 

4.6. Model of gelsolin function in dendritic spines 

 

The relatively thin neck and large head confer on dendritic spines the 

properties of diffusional and electrical compartments (Nimchinsky et al., 2002). 

As for diffusional compartment the spine neck could serve to restrict diffusional 

exchange of signaling molecules between spine head and parent dendrite 

(Nimchinsky et al., 2002); this could be important for localizing biochemical 

changes to a specific synapse. The main advantages of localizing signaling 

proteins are increased efficiency and increased specificity (Shen et al., 1998). 

By targeting gelsolin to dendritic spines, its local concentration is elevated 

increasing the efficiency of gelsolin binding to its partners including monomeric 

actin, actin filaments and phosphoinositides {PI(3,4)P2, PI(4,5)P2, and 

PI(3,4,5)P3} (Chellaiah and Hruska, 1996).  

 

Based on these considerations and the results of my studies I propose a model 

for gelsolin function in dendritic spines (Figure 16). In hippocampal neurons a 

proportion of gelsolin is inactive, distributed in dendritic shafts and spines, 

whereas the active portion of gelsolin binds to and colocalizes with F-actin in 

dendritic spines.  When neurons are stimulated by presynaptically released 

glutamate, calcium ions enter the cell through NMDA receptors, so that 

calcium levels reach the micromolar threshold for activating gelsolin. The 

binding of calcium ions changes the conformation of the gelsolin molecule, 

opening its functional domains for actin binding. Activated gelsolin then moves 

into dendritic spines, binds to F-actin, subsequently severs and caps actin 

filaments, causing disruption of the actin cytoskeleton in the spine cytoplasm. 

Depolymerization of actin filaments breaks the anchoring of AMPA receptors to 
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synaptic sites so that they diffuse away from synaptic function by lateral 

diffusion. These extrasynaptic AMPA receptors then captured in the 

endocytotic machinery and are cleared from the membrane surface of dendritic 

spines. 

 

 

 

 
Figure 16. Diagrammatic summary of gelsolin activity regulation and 
gelsolin function in dendritic spines (see text). 

 

 

 

The enrichment of gelsolin in dendritic spines may also have other 

physiological functions besides the regulation of actin cytoskeleton. It has been 

shown that gelsolin inhibits phospholipase C activity through phospholipid 

binding (Sun et al., 1997). The physical interaction between gelsolin and 

phospholipase D causes stimulation of phospholipase D (Steed et al., 1996). 

Gelsolin also plays a key role in recruitment of SH2 containing signaling 

proteins (including c-Src and PI3-kinase) to the plasma membrane through 
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phospholipid-protein interactions and regulation of their phosphorylation status 

through its association with the tyrosine phosphatase PTP-PEST (Chellaiah et 

al., 2001). However, whether these activities can really take place in dendritic 

spines and how they can influence the plasticity of synapses are still need to 

be solved in the future. 
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5. Materials and Methods 

 

5.1. Constructs  

 

GFP-tagged gelsolin and GFP-tagged gelsolin mutants were prepared using a 

eukaryotic expression plasmid carrying GFP cDNA under the control of a β-

cytoplasmic actin promoter (Figure 17). Gelsolin gene was amplified from 

mouse cDNA by PCR with created AscI restriction site on both ends. Gelsolin 

deletion mutants were created by PCR also with AscI restriction site on both 

ends. The PCR products of gelsolin gene and gelsolin mutant gene were 

purified and digested by AscI, then purified again and inserted into AscI site of 

the plasmid (Figure 17). All constructs in this work were sequenced and 

checked for correctness.  
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Figure 17. Diagram of the plasmid in which gelsolin wild type gene or mutants 
are inserted. 

 

 

 

5.2. Dispersed cultures of hippocampal neurons 

 

Hippocampal cultures were prepared from E19 (embryonic day 19) rat embryo 

and mouse newborns (P0). Hippocampal cultures were prepared and grown as 

described by Dr. Gary Banker, however with following changes: 

 

1) The glia was cultured (before and after freezing of glia in aliquots) in fetal 

calf serum (FCS, Gibco) instead of horse serum.  

 

2) Neurons were plated at higher density: Untransfected neurons were plated 

at a density of 350’000 neurons per 100 mm dish. 

 

3) A different culture medium was used. After plating the neurons were grown 

in 1.5 ml neurobasal medium supplemented with B27 (Gibco, #17504-044), 

glutamine (0.5mM) and glutamate (25 µM). 3 days after plating 0.5 ml 

neurobasal medium supplemented with AraC (sigma), N2 (Gibco, #17502-

048), and glutamine (0.5 mM) was added. 6 days after plating 1 ml of the 

medium was discarded and 1 ml of neurobasal, N2, glutamine was added. The 

goal is to exchange B27 medium with N2 medium. 11 days after plating, cells 

were fed with 0.8 ml neurosbasal/N2-medium. From now on cells were fed 

every 5 days with 0.7 ml neurobasal/N2-medium. Note: Neurobasal medium 

(Gibco) was optimized for neurons and therefore distinguishes from previously 

used minimal essential medium (MEM), e.g. neurobasal medium contains 

glycine, a co-activator of the NMDA-receptors, which is absent from MEM.  

 

4) DOTAP transfection (see below) 
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5.3.  Transfection of hippocampal neurons 

 

Neurons were transfected in suspension before plating using Dotap liposomal 

transfection reagent (Roche) or between DIV10-16 in culture using calcium 

phosphate. 

 

 

Dotap transfection method: 
 

Dissect hippocampi from E19 rat embryos in Ca, Mg-free Hanks' Buffered 

Saline Solution (HBSS) with 10mM Hepes pH7.2. Transfer hippocampi in a 

15ml polystyrene Falcon tube and add 5ml of 0.25% Trypsin in HBSS (Trypsin 

from 2.5% frozen stock, no EDTA). Incubate at 37 ºC for 15 minutes. Wash out 

trypsin by replacing the liquid with 5ml of HBSS for 3 times, 5 minutes each. 

Triturate hippocampi in 2 ml of HBSS with a narrow bore Pasteur pipet. Collect 

cells by gentle centrifugation (8min, 1000rpm), resuspend in HBSS and count 

in hematocytometer.  Dissected, trypsinized and triturated hippocampi from 

E19 rat embryos were put in suspension in MEM containing 0.6% glucose (1.2 

Mio cells in 3 ml). Cells were added to 3ml Ca2+- and Mg2+-free HBSS (Hanks 

balanced salt solution; Gibco), buffered with 10 mM Hepes pH 7.2, 

supplemented with 24 µl Dotap. Subsequently, cells were incubated at 37 

degrees for 10 minutes. Then DNA (3.5 µg in 100 µl MEM) was added. After 

incubation at 37 degrees for 1 hour, cells were plated on a 100 mm culture 

dish. 

 

 

Calcium phosphate transfection 

 

2ml glia-conditioned medium for each coverslip in a 12-well plate was 

equilibrated at 37 ºC at 5% CO2 for at least 30 minutes. Neurons were 

transferred from original wells to equilibrated glia-conditioned medium. DNA 

(2.5 µg per coverslip) was mixed with 60 ml CaCl2 (250 mM solution) and 

immediately added to 60 µl 2 X BBS (280 mM NaCl, 1.5 mM Na2HPO4, 50 mM 
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BES, pH 7.1) and vortexed. DNA mixture was dropped onto cells. Cells were 

incubated for about 90 minutes at 37 ºC at 2.5% CO2 (check for calcium-

phosphate precipitate). Cells were washed twice with pre-warmed HBS 

(135mM NaCl, 20mM Hepes, 4mM KCl, 1mM Na2HPO4, 2mM CaCl2, 1mM 

MgCl2, 10mM glucose, pH 7.35) and subsequently returned to original plate. 

Put back in original culture. 

 

 

5.4. Fixation and staining of neurons 

 

A 20% (w/v) stock solution of 20 g paraformaldehyde to 80 ml H20 was 

prepared and heated to 65 degrees on a stirrer/hotplate. About 10 drops of 1 N 

NaOH were added, just enough to clear the solution. 20 % PFA stock solution 

was cooled to room temperature and filter through a Whatman paper. To 

prepare the final 4% PFA fixation solution (prepared each day freshly), 10 ml 

20%-PFA stock-solution was mixed with 7.5 ml 20% (w/v) sucrose solution, 5 

ml 10x PBS (Ca2+,Mg2+-free) and 27.5 ml H20 and prewarmed at 37 ºC. Cells 

were fixed in 4%-PFA for 12 minutes and then 4 times washed with PBS. Cells 

were permeabilized with 0.2% tritonX-100 in PBS for 10 minutes and then 

blocked with 3% normal goat serum, 0.5% BSA in PBS for 30 minutes. First 

antibodies were diluted in blocking solutions (Primary antibodies used included 

mouse anti-gelsolin monoclonal antibody (Becton Dickinson) 1:1000 and rabbit 

anti-synapsin I affinity-purified antibody (RBI) 1:200 and anti-GluR1 (from 

Anawa), 1:500) and subsequently 150 µl was dropped onto a coverslip that 

was put on parafilm. Various secondary antibodies were used, including FITC-

conjugated goat anti-mouse (Jackson), TRITC-conjugated goat anti-mouse 

(Jackson) and Alexa488 labeled goat anti-rabbit (Molecular probes). F-actin 

was labeled with rhodamine phalloidin (Sigma). All antibodies were incubated 

between 1 and 2 hours at room temperature. Subsequently, coverslip was 

dipped in H20 and mounted in Moviol.  
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5.5. Microscopy 

 

Cultures of dispersed neurons were transfected with cDNA constructs and 

maintained in glia-conditioned, serum free medium for 19 to 28 days prior to 

imaging. Imaging was performed at 37°C in Tyrode's solution (119 mM NaCl, 

5mM KCl, 25mM Hepes, 33mM Glucose, 2mM MgCl2, 2mM CaCl2 and 5µM 

Glycine; pH 7.3), with GFP-optimized filters (Chroma Technologies, 

Brattleboro, Vermont) and a MicroMax cooled CCD camera (Princeton 

Instruments, Trenton, New Jersey). For experiments involving glutamate 

receptor blockade, cells were preincubated for 15 minutes with the appropriate 

antagonist prior to stimulation. For calcium free experiment, cells were 

preincubated for 15 minutes in calcium-free tyrode's prior to application of 

chemicals in calcium-free tyrode's. Electric field stimulation patterns, as 

described, were programmed using a Master-8 pulse generator (AMPI, 

Jerusalem, Israel) and delivered via platinum electrodes in purpose built 

electrically isolated observation chamber (LIS, Olten, Switzerland). A stimulus 

of 900 action potentials delivered at 1 Hz to induce long-term depression 

(LTD), which leads to a robust and consistent induction of depression of 

synaptic transmission in dissociated cultures (Goda and Stevens, 1996; Carroll 

et al., 1999). 

 

 

5.6. Image analysis and quantification 

 

Activity-induced targeting of gelsolin-GFP to dendritic spines was assessed 

after the time-lapse recording. To assess the extent of stimulation-induced 

gelsolin-GFP accumulation in dendritic spines the fluorescence intensities of 

spine heads and of a circular spot of the same area in the underlying dendrite 

shaft was measured by integrating pixel intensities using MetaMorph, prior to 

and after stimulation. For each cell, 40 spines on a dendritic segment were 

examined. Spine outlines were generated from threshold images using an 
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edge-detection function of MetaMorph imaging software (Universal Imaging 

corporation, West Chester, Pennsylvania). 

 

5.7.  Source of active compounds 

 

N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), 1,2,3,4-Tetrahydro-6-nitro-2, 3-dioxo-

benzo[f]quinoxaline-7-sulfonamide (NBQX), D(-)-2-amino-5-

phosphonopentanoic acid (APV) from Alexis, (S)-3,5-dihydroxyphenylglycine 

((S)-3,5-DHPG), (R,S)- α-methyl-4-carboxyphenylglycine (MCPG). 
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7. List of Abbreviations 

 

 

ADF  actin depolymerizing factor 

 

AMPA  a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate 

 

APV  D(-)-2-amino-5-phosphonopentanoic acid 

 

ARP 2/3 actin related protein 2/3 

 

ATP  adenosine triphosphate 

 

BDNF  brain-derived neurotrophic factor 

   

Ca²+  calcium 

 

CaMKII calcium/calmodulin-dependent kinase II  

 

cAMP  cyclic adenosine monophosophate 

 

CDC42 cell division cycle 42 (GTP-binding protein) 

 

CICR  calcium induced calcium release 

 

DHPG  (S)-3,5-dihydroxyphenylglycine 

 

DIV  days in vitro 

 

E19               embryonic day 19 

 

F-actin filamentous actin 
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GABA  gamma-aminobutyric acid 

 

G-actin globular actin 

 

GFP  green florescent protein 

 

GluR  glutamate receptor   

 

G-protein GTP-binding proteins 

 

IP3  inositol trisphosphate 

 

KCl  potassium chloride 

 

LTD  long-term depression 

 

LTP  long-term potentiation 

 

mGluR metabotrophic glutamate receptors 

 

Mg²+  magnesium 

 

MK-801 (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-

dibenzo(a,d)cyclohepten-5,10-  imine hydrogen malate 

 

Na+  sodium 

 

NMDA            N-methyl-D-aspartic acid 

 

NR1  NMDA receptor 1 

 

N-WASP neuronal Wiskott-Aldrich Syndrome protein 
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PCR  polymerase chain reaction 

 

PDZ domain PSD-95/Discs large/zO-1 domain 

 

PI3K  phosphatidyl inositol-3-kinase 

 

PIP2  phosphatidyl inositol 4,5,bisphosphate 

 

PIP5K  phosphatidylinositol-4-phosphate-5-kinase 

 

PLC  phospholipase C 

 

PP1  protein phosphotase 1 

 

PP2  protein phosphotase 2 

 

PSD  postsyaptic density 

 

SAP 97 synapse-associated protein 97 

 

SER  smooth endoplasmic reticulum 

 

STP  short-term potentiation 

 

VASP  vasodilator stimulated phosphoprotein 

 

VCA  verprolin homology, cofilin homology and acidic domain 

  

 

VDCC  voltage-dependent calcium channels 

 

 



Curriculum Vitae 

 - 100 - 

8. Curriculum Vitae 

 

Family Name:          Zhao 

First Name:              Pingwei 

Sex:                          Male 

Date of Birth:           28.06.1972 

Mail Address:           Maulbeerstrasse 93, 4058 Basel, Switzerland     

E-mail:                      zhaopw@fmi.ch,  zhaopw@mailcity.com 

Tel:                            0041-61-6976697  

Fax:                           0041-61-6973976 

 

 

Education: 

 

1999--2003          PhD thesis in Neurobiology at the Friedrich Miescher Institute for 

Biomedical Research in Basel (FMI).  

 Title of the thesis: Gelsolin - a regulator of postsynaptic actin 

assembly and AMPA receptor expression. 

                             Supervisor: Prof. Dr. Andrew Matus 

 

1994--1997         Chinese Academy of Sciences, Institute of Zoology 

                               Division of Biological Semiochemistry,  

                            Academic Degree: M. Sc. 

                            Supervisor: Prof. Deming Wu 

 

1990--1994         Henan Normal University, Department of Biology 

                            Academic Degree: B. Sc. (Biology) 

 

 

Work Experience: 

     

1997--1999            Division of Biochemical Genetics  



Curriculum Vitae 

 - 101 - 

                               Guangdong Branch of Chinese Academy of Sciences 

                               Research Fields: Molecular Genetics and Molecular 

                               Evolution of Drosophila and mice. 

 

 
Membership: 
 

Federation of European Neuroscience Societies (FENS) 

Swiss Society for Neuroscience (SSN) 

 

 

Conferences 

 

September 2000 ELSO (European Life Scientist Organization) meeting in 

Geneva 

 

September 2000 Annual meeting of the FMI 

  

March 2002 EMBO-FMI Conference: Neuronal Circuits: From Molecules to 

Organisms, Ascona, Switzerland 

 

March 2002 USGEB meeting, Lugano, Switzerland 

 

April 2003                 Neurex meeting, Basel, Switzerland 

                                 Poster: Gelsolin mediates activity-dependent regulation of the 

dendritic spine actin cytoskeleton 

 

September 2003 Annual meeting of the FMI 

                                 Presentation: Gelsolin mediates activity-dependent  
                                 regulation of actin assembly and AMPA receptor  
                                 expression in dendritic spines 
 

 



Curriculum Vitae 

 - 102 - 

 
Publications: 

 

Zhao, PW., Matus, A. Gelsolin mediates activity-dependent regulation of actin 

assembly in dendritic spines. in preparation. 

 

Wu-Deming, Zhao-Pingwei, Yan-Yunhua, Zheng-Chengrui and Dilana-Aishan, 

1998, Analysis of Sex Pheromone Gland Extracts of the Cotton Bollworm in 

Xinjiang. Journal of Huazhong Agricultural University, 17(2): 111-116 

 


