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Summary

Cerebral amyloid angiopathy (CAA) is characterized by the deposition of congophilic material

within the walls of small to medium-sized blood vessels of the brain and leptomeninges. The

incidence of CAA increases with aging, and in its most severe stages, the vascular amyloid

causes a breakdown of the blood vessel wall which results in spontaneous, often recurrent, lobar

intracerebral hemorrhage. CAA is estimated to account for four to twenty percent of all

nontraumatic intracerebral hemorrhages. Besides this major complication, extensive CAA has

been associated with ischemic white matter damage with progressive dementia, perivascular

inflammation, and secondary vasculitis. CAA occurs as a sporadic disorder in the elderly and in

association with Alzheimer's disease (AD) with virtually all AD patients showing some degree of

vascular amyloid in addition to parenchymal plaques. There are also familial forms of CAA such

as hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). The vascular

amyloid in these disorders mainly consists of β-amyloid peptide (Aβ) that is produced by

proteolytic cleavage from its precursor, which is the β-amyloid precursor protein (APP). The

major Aβ species that is deposited in the vasculature is Aβ40, while parenchymal amyloid is

mainly composed of Aβ42. One major difficulty in studying CAA is that it can be definitely

diagnosed only postmortem. Moreover, spontaneous CAA occurs only in old primates and dogs,

both of which are not practical models to study the pathogenesis and therapy of CAA. Rodents

do not spontaneously develop CAA.

The purpose of this thesis was to provide useful model systems to study the pathomechanism of

vascular amyloid formation and associated pathology. To this end we generated and used mice

that are transgenic for human genes bearing mutations that are well known to cause either

hereditary Aβ-CAA or classical familial AD. In a first study we analyzed CAA and CAA-associated

pathological changes in APP23 transgenic mice. These mice overexpress human APP bearing the

Swedish K670N/M671L double mutation, a typical early-onset AD-causing mutation, under the

control of the neuron-specific Thy-1 promoter. In addition to parenchymal amyloid plaques,

APP23 mice show consistent amyloid within leptomeningeal, neocortical, hippocampal, and

thalamic vessel walls. Both CAA frequency and severity significantly increase with aging,

demonstrating that not only more vessels are affected, but also that the amyloid burden of

individual vessels increases with the progression of amyloid deposition. Cerebrovascular amyloid

causes degeneration of vascular smooth muscle cells (SMCs). In severely affected vessels, SMCs

are completely replaced by the amyloid. Similar to humans, amyloid depositing APP23 mice

develop spontaneous hemorrhages, some of them being recurrent. The bleedings are associated

with amyloid-laden vessels and therefore, their anatomical distribution appears very similar to
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that of CAA. In aged mice, a quantitative analysis revealed a positive correlation between

hemorrhages and CAA. Interestingly, no significant relationship between hemorrhages and total

amyloid load was observed. Occasionally, CAA-associated vasculitis is seen in animals with

extensive vascular amyloid.

In a second study, we generated transgenic mice that express human APP E693Q under the

control of the same neuron-specific Thy-1 promoter (APPDutch mice) that has been used in

APP23 mice. In HCHWA-D patients, the APP E693Q Dutch mutation causes severe CAA with

recurrent cerebral hemorrhagic strokes often leading to death early in their fifties, or to

dementia in patients that survive the strokes. In contrast to AD patients that show parenchymal

amyloid plaques, HCHWA-D patients exhibit few parenchymal amyloid deposits. Similar to

HCHWA-D, aged APPDutch mice show extensive Aβ  deposits mainly within the walls of

leptomeningeal vessels followed by cortical vessels. Parenchymal Aβ deposits are mostly absent.

In severely affected vessels, the SMCs are completely displaced by the amyloid. In regions with

CAA, fresh and old hemorrhages are observed, and activated perivascular microglia and reactive

astrocytes are found. To examine the mechanism that leads to the almost exclusive vascular

amyloid formation in APPDutch mice, we compared the mice with transgenic mice

overexpressing wild-type (wt) human APP using the same neuronal promoter (APPwt mice). As

they age, APPwt mice develop parenchymal plaques with limited vascular amyloid deposits. A

biochemical analysis of Aβ40 and Aβ42 levels revealed significant higher Aβ40:42 ratios in

amyloid depositing and pre-depositing APPDutch mice compared to APPwt mice. To

demonstrate that the high Aβ40:42 ratio in APPDutch mice is linked to the almost exclusive

vascular amyloid deposition, we crossed APPDutch mice with mice that overexpress human

presenilin-1 bearing the G384A mutation (PS45 mice) that is known to dramatically increase the

production of Aβ42. Strikingly, young APPDutch/PS45 double-transgenic mice develop massive

diffuse and compact parenchymal amyloid with only very little CAA. Thus, shifting the Aβ40:42

ratio towards Aβ42 is sufficient to redistribute the amyloid pathology from the vasculature to the

parenchyma.

A third series of experiments using neurografting techniques was performed to investigate the

mechanisms involved in the initiation of cerebral amyloidosis in vivo. Cell suspensions of

transgenic APP23 and wild-type B6 embryonic brain tissue were injected into the neocortex and

hippocampus of both APP23 and B6 mice, respectively. In wild-type hosts, APP23 grafts did not

show amyloid deposits up to 20 months after grafting. Interestingly, transgenic and wild-type

grafts in young APP23 hosts develop amyloid plaques as early as three months after grafting.

Although the majority of the amyloid is of the diffuse type, some compact and congophilic

amyloid plaques are observed in the wild-type grafts. These congophilic amyloid lesions are
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surrounded by neuritic changes and gliosis, comparable to the amyloid-associated pathology

that has previously been described in APP23 mice. These results support the importance of

neuronally secreted Aβ  for the development of cerebral amyloidosis which can be initiated

distant from the site of Aβ production, a finding that supports the observation of the above

mentioned APPDutch mouse model.

In summary, we demonstrate that APP23 and APPDutch mice recapitulate CAA and CAA-

associated pathology observed in humans and thus are valuable models for studying the human

disease. Our results stress the importance of neuronally secreted Aβ for the development of CAA

and emphasize the Aβ40:42 ratio as an important factor in determining parenchymal versus

vascular amyloid deposition. The understanding that different Aβ species can drive amyloid

pathology in different cerebral compartments not only provides insights into the

pathomechanism of sporadic and familial CAA but also has implications for current anti-amyloid

therapeutic strategies.
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Introduction
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1. Cerebral Aβ-Amyloidosis

1.1.  Alzheimer's Disease - The Most Common Form of Cerebral Aβ-Amyloidosis

Traditionally, amyloidoses have been defined as diseases in which normally soluble proteins

accumulate in the extracellular space of various tissues as insoluble deposits of 10 nm fibrils that

are rich in β-sheet structure and have characteristic dye-binding properties such as birefringent

labeling by Congo red 41,42. Many secreted, circulating and highly soluble proteins are known

that can be transformed to highly stable extracellular fibrils under abnormal conditions 99,133.

One of these proteins is a small soluble protein of unknown function, the β-amyloid peptide

(Aβ). In Alzheimer's disease (AD) patients, by definition, Aβ is deposited extracellularly in the

brain as diffuse or compact neuritic plaques (Fig. 1A). In addition and at least to some degree,

almost all AD brains show cerebrovascular Aβ deposits termed as cerebral amyloid angiopathy

(CAA) (Fig. 1B). The other pathological hallmark defining AD is the intracellular accumulation of

hyperphosphorylated microtubule-associated protein tau in neurons called neurofibrillary

tangles (NFTs) (Fig 1C). There has been a great deal of discussion which of these proteins takes

priority over the other in the pathogenic mechanism of AD. The fact that in hereditary forms of

early-onset AD the production of Aβ, and therewith amyloid deposition, is increased points out

the importance of the amyloid. Further, mutations within the tau protein do not cause AD but

produce frontotemporal dementia with parkinsonism, a less common but equally severe disease

in which tau-containing neurofibrillary tangles accumulate in the absence of extracellular

amyloid 61.

Figure 1.  The pathological hallmarks of AD. Amyloid plaque (A) and neurofibrillary tangles (surrounding a

neuritic plaque) (C) in an AD brain. These two lesions are the hallmarks for a definite diagnosis of AD.

Additionally, virtually all AD patients show some degree of cerebrovascular amyloid (B).



- 11 -

1.2.  The Role of Secretases in APP Processing and Aβ Formation

1.2.1.  Aβ is Produced by β- and γ-Secretase Cleavage

Aβ is a small hydrophobic peptide that mainly occurs in two lengths, Aβ1-40 (Aβ40) and Aβ1-42

(Aβ42) (Fig. 2), the latter being highly amyloidogenic 44,65,91. Besides these two major forms,

truncated Aβ peptides with N- and C-terminal heterogeneity exist. Aβ is proteolytically cleaved

form the β-amyloid precursor protein (APP) 71, a large type 1 membrane glycoprotein the

function of which has not been identified yet (Fig. 2). In a first step APP is cleaved by β-secretase

(BACE-1, β-site APP-cleaving enzyme) producing APPsβ and C99 (Fig. 3, lower part) 141,160,161. In

a second step C99 undergoes γ-secretase-mediated cleavage yielding Aβ40 or Aβ42 132. The Aβ

monomers either aggregate to form amyloid fibrils or they are degraded or cleared. γ-secretase

has been shown to be a multiprotein high molecular weight complex composed of presenilin-1

and presenilin-2 (PS1 and PS2), Nct (nicastrin), APH-2 (anterior pharynx-defective phenotype)

and PEN-2 (PS-enhancer) all of which are essential for its proper function 20,29,45,136,193. Aβ was

originally thought to be produced only under pathological conditions. However, this concept

was disproved when mammalian cells have been shown to constitutively release and secrete Aβ

throughout lifetime and when Aβ was found in plasma and cerebrospinal fluid (CSF) 56,135,140.

Based on these findings, many detailed studies focusing on the effect of AD-causing genetic

mutations on Aβ production have been performed, not only in cell culture experiments but also

in transgenic animals.

Figure 2.  Structure of APP, the secretase cleavage sites, and the location of APP mutations causing familial AD

and/or CAA. APP is shown in blue, the amino acid sequences of Aβ42 (boxed) and Aβ40 (dashed line) are shown

in red, and the predicted transmembrane domain of APP is underscored. The major cleavage sites for α-, β-, and

γ-secretases are indicated by the scissors. The location of all known APP mutations causing either familial AD

and/or CAA are marked by asterisks and the most important amino acid substitutions are indicated.
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Figure 3.  APP processing by α-, β -, and γ-secretase. In a non-amyloidogenic pathway (upper part) APP

undergoes cleavage by α-secretase which results in release of APPsα and retention of the 83-residue C-terminal

fragment (C83) in the membrane. The subsequent cleavage of C83 by γ-secretase liberates the non-

amyloidogenic p3 which begins at position 17 of Aβ. In an alternative amyloidogenic pathway (lower part), APP

is cleaved by β-secretase resulting in release of APPsβ and retention of the 99-residue C-terminal fragment (C99).

γ-secretase cleaves C99 and produces either Aβ40 or Aβ42, respectively. Aβ aggregates and elongates to form

oligomers, protofibrils, and fibrils that are deposited as insoluble amyloid. Alternatively, Aβ can be degraded or

cleared.

1.2.3.  α -Secretase Cleavage Prevents Aβ Generation

The above mentioned amyloidogenic pathway of APP cleavage results in Aβ production. The

main pathway that occurs, however, does not lead to Aβ generation (Fig. 3, upper part). In this

non-amyloidogenic pathway, APP is processed by α-secretase (ADAM: a disintegrin and

metalloproteinase, TACE: tumor necrosis factor-α convertase) which cleaves near the middle of

the Aβ region to produce a large soluble ectodomain (APPsα) which is released from the cell and

a 83-residue C-terminal fragment (C83) that remains membrane-bound 25,116,142. Then γ-
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secretase cleaves C83 yielding the small p3 peptide. Most activity of the α-secretase on APP

takes place at the cell surface, but some processing also occurs intracellularly in secretory

compartments. Within the cell β- and γ-secretase seem to be localized in the early, recycling

endosomes 76,112. Like the function of APP itself remains unclear the role of the proteolytically

produced fragments are not known. APP intracellular domain (AICD) which is released to the

nucleus from APP after α- and γ-secretase cleavage may be involved in transcriptional signaling
74,76,130.

2. Cerebral Amyloid Angiopathies

2.1.  General Features

Cerebral amyloid angiopathy (CAA) is the term used to define the deposition of amyloid within

the vessel walls of small- and medium-sized leptomeningeal and cortical arteries, arterioles, and

less often, of capillaries and veins 37,85,124. The amyloid is visualized by the positive staining with

the Congo red dye with an apple-green color in polarized light and with the fluorescence of

thioflavin S or T since both methods are dependent on the presence of β-pleated secondary

structure characteristic of amyloid. CAA has first been described as “drusige Entartung der

Hirnarterien und -capillaren” in 1938 131. It occurs as sporadic or familial forms with many

different amyloid proteins being involved (Table 1, Fig. 4) 120,123,124. Usually, amyloid proteins are

cleaved from a larger precursor protein before they are deposited. In hereditary conditions,

mutations lead to amino acid substitutions or elongation of the precursor proteins. These

changes in amino acids can be located either within the sequence of the amyloid protein,

resulting in a mutated amyloid protein with different aggregation properties, or they can affect

flanking regions, increasing proteolytic cleavage of the amyloid protein from its precursor.

Actually, the secretases that are involved in this cleavage are known to contain a lot of different

mutations too, all increasing amyloid production.
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Sporadic CAAs Hereditary CAAs

Disease SCAA SAD HCHWA-D FAD HCHWA-I FBD FDD PrP-CAA FAP/MVA FAF

Gene APP APP APP
APP, PS1,

PS2
CYST C BRI2 BRI2 PRNP TTR GEL

Precursor
Protein

Amyloid
Precursor
Protein
(APP)

Amyloid
Precursor
Protein
(APP)

Amyloid
Precursor
Protein
(APP)

Amyloid
Precursor
Protein
(APP)

Cystatin C
(Cyst C)

ABri
Precursor
Protein
(ABriPP)

ABri
Precursor
Protein
(ABriPP)

Prion
Protein
(PrP)

Transthyretin
(TTR)

Gelsolin
(GEL)

Amyloid
Protein

Aβ Aβ Aβ Aβ ACys ABri ADan APrP ATTR AGel

Table 1.  Sporadic and hereditary cerebral amyloid angiopathies (CAAs). SCAA = Sporadic cerebral amyloid

angiopathy; SAD = Sporadic Alzheimer’s disease; HCHWA-D = Hereditary cerebral hemorrhage with amyloidosis-

Dutch type; FAD = familial Alzheimer’s disease; HCHWA-I = Hereditary cerebral hemorrhage with amyloidosis-

Icelandic type; FBD = Familial British dementia; FDD = Familial Danish dementia; PrP-CAA = Prion disease with

cerebral amyloid angiopathy; FAP/MVA = Familial amyloid polyneuropathy/meningo-vascular amyloidoses; FAF =

Familial amyloidoses Finnish type; APP = Amyloid precursor protein gene; PS1 = presenilin-1 gene; PS2 =

presenilin-2 gene; CYST C = Cystatin C gene; BRI2 = BRI2 gene; PRNP= Prion protein gene; TTR = Transthyretin

gene; GEL = Gelsolin gene; Aβ  = Amyloid-β  protein; ACys = Amyloid-cystatin C; ABri = Amyloid-Bri; ADan =

Amyloid-Dan; APrP = Amyloid-Prion protein; ATTR = Amyloid-transthyretin; AGel = Amyloid-gelsolin.

Figure 4.  Familial forms of CAAs. Deposition of Aβ in parenchymal vessels and diffuse plaques in HCHWA-D (A)

(Aβ immunohistochemistry). Severe CAA due to deposition ACys (inset) in HCHWA-I (B) (hematoxylin and eosin,

inset ACys immunohistochemistry). Deposition of variant ATTR in blood vessel wall and leptomeninges in the

Hungarian (D18G) form of meningovascular amyloidosis (C ) (Hematoxylin and eosin; inset: TTR

immunohistochemistry). Gelsolin deposition in skin blood vessels in familial amyloidosis-Finnish type (D)

(Gelsolin immunohistochemistry). Extensive deposition of ABri in cerebellar blood vessels and parenchyma in

familial British dementia (E) (ABri immunohistochemistry). In familial Danish dementia deposition of ADan takes

place mainly in blood vessels in the cerebellum (F) (ADan immunohistochemistry). Scale bar in panel A

represents 70 µm in A, C, D, E, F and inset of B; 200 µm in panel B and inset in C. (modified from Revesz et al.,

2003).
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The most common type of CAA is caused by Aβ and thus termed as CAA of the Aβ type (Aβ-

CAA). Aβ-CAA is particularly associated with sporadic and familial AD, or occurs as hereditary

cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) and similar familial disorders, or

with normal aging in the elderly (Table 1). Biochemical and immunohistochemical analyses of

vascular amyloid deposits of patients showing severe Aβ-CAA revealed Aβ40 as the predominant

form of Aβ peptides deposited in CAA 1,12,69,87,95,117.

2.2.  Morphological Aspects

The cortex, in particular the occipital lobe, is the brain region that is most frequently and

severely affected by Aβ-CAA 151,153,168,190. Hippocampus, cerebellum and basal ganglia are less

affected while deep central grey matter, subcortical white matter and brain stem usually show

no vascular amyloid. Leptomeningeal and cortical small to medium-sized arteries and arterioles

are most frequently affected, veins and capillaries tend to be less frequently affected by vascular

Aβ deposits 180. Light microscopically, amyloid-laden blood vessels show an acellular thickening

of the wall (Fig. 5A, B) and they are stained with both Congo red (Fig. 5C) and thioflavin S or T,

respectively 123,124.

Figure 5.  Cerebral blood vessels with mural amyloid deposition (A) and double barreling (B, C) in a case of

sporadic CAA with multiple cerebral hemorrhages (Fig. 6A, B) (A: Hematoxylin and eosin; B, C: Congo red). In

the same case, increasing amyloid deposition is demonstrated to be associated with progressive smooth muscle

cell loss (D–F) (arrow pointing to a preserved smooth muscle cell on F) (D–F: smooth muscle actin

immunohistochemistry, SMA). Scale bar in panel A represents 20 µm in A, D–F; and 70 µm in B and C. (from

Revesz et al., 2003).
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To quantify CAA, a simple neuropathological three-tiered grading system has been proposed

that distinguishes between "mild", "moderate", and "severe" involvement 170,172. In "mild" CAA,

vascular amyloid is restricted to a congophilic rim in the media around smooth muscle cells

(SMCs) of otherwise normal vessels. Initially, amyloid deposition occurs in the outer portion of

the media and its accumulation correlates with the loss of SMC nuclei (Fig. 5D-F). In "moderate"

CAA, the SMCs are mainly lost since the media is replaced by amyloid. No evidence of recent or

old blood leakage is found. In "severe" CAA, the vascular architecture is severely disrupted by

amyloid showing focal fragmentation of vessel walls. CAA-associated perivascular leakage of

blood, fibrinoid necrosis, aneurysm formation, or microangiopathies may be seen 85,123.

Ultrastructurally, vascular amyloid consists of randomly orientated 8 to 10 nm filaments that are

short and arranged in a disorderly way 123. At an early stage, amyloid fibrils are found in the

outermost portion of the basement membrane at the media-adventitia border in arteries and in

smaller vessels mostly in the outer part of the basement membrane around intact SMCs. At later

stages, amyloid deposits are seen at the abluminal part of the basement membrane and

neighboring SMCs may show signs of degeneration 191. The wall of severely affected vessels is

completely occupied by amyloid that causes loss of SMCs 72,183. In affected capillaries or small

arteries, amyloid fibrils have a tendency to radiate in the surrounding neuropil (dyshoric

amyloid) 104. Even at highly advanced stages of CAA, however, the endothelial cells seem not to

be affected by the amyloid.

2.3.  Hereditary Aβ-CAA Caused by APP and Presenilin Mutations

2.3.1.  HCHWA-D Occurs Due to a Mutation within the Aβ Sequence of APP

In 1990, the first mutation occurring in APP was discovered in two families originating from the

Dutch villages Katwijk and Scheveningen 79. In both pedigrees, a familial occurrence of cerebral

hemorrhage has been described already in 1964 82 and in the early eighties, severe CAA has

been found to be the pathological cause of this disease (Fig. 4A) 176. The point mutation causing

this autosomal dominant disorder, meanwhile termed hereditary cerebral hemorrhage with

amyloidosis-Dutch type (HCHWA-D), is located at codon 693 of the APP gene that corresponds

to amino acid 22 of Aβ (Fig. 2) 79. The first nucleotide of this triplet is mutated, cytosine (C)

instead of guanine (G), changing the original codon     G    AA to     C    AA, and resulting in an amino acid

substitution, glutamine for glutamic acid, in APP. Patients are heterozygous for this so called APP

E693Q Dutch mutation since the non-mutated wild-type APP allele is also present. The mutated

AβDutch peptide shows an altered fibrillogenesis 31,100,143 and toxicity towards vascular cells
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17,22,98,100,162,175 in various experimental in vitro systems. Besides the occurrence of large lobar

intracerebral hemorrhage, HCHWA-D patients may show cognitive deterioration, often

associated with white matter abnormalities on MRI scan and small ischemic infarctions and

hemorrhages on pathologic examination 7,177. In spite of the extensive vascular amyloid

observed, congophilic parenchymal amyloid plaques, however, are nearly absent in HCHWA-D

patients.

2.3.2.  Other Aβ Mutations Leading to CAA

In addition to the APP E693Q Dutch mutation, four other mutations occurring within Aβ have

been described. They are located at amino acids 21 to 23 of Aβ (Fig. 2). Typically, all these

mutations cause severe CAA and additionally, some of them produce AD. The APP A692G

Flemish mutation located at residue 21 of Aβ 57 is not only associated with severe CAA and, in

most cases, cerebral hemorrhage, but also with AD showing large core plaques that are

associated with, or enclose vessels. The dementia in patients is compatible with AD both,

clinically and neuropathologically 14,77,127. HCHWA-Italian type is caused by the APP E693K Italian

mutation, a substitution of glutamic acid by lysine at residue 22 of Aβ 8,149. In HCHWA-I, Aβ

deposits are found in cerebral parenchyma and, extensively, in meningocortical vessels where

the Aβ seems to be rather amorphous than fibrillar. Patients suffer from stroke, cognitive decline,

and some of them develop seizures. At the same location, another mutation has been

discovered in a family from northern Sweden. In the so called the APP E693G Arctic mutation,

glutamic acid is substituted for glycine 108. Affected subjects have clinical features of early-onset

AD, however, no signs of strokes or vascular lesions were found on brain imaging. The APP

D694N Iowa mutation at position 23 of Aβ 46 causes severe amyloid angiopathy, dementia,

occipital calcifications, and small ischemic infarctions in an Iowa family. Only microscopic foci of

hemorrhage but no major hemorrhagic stroke is observed. Aβ  plaques are sparse and of a

diffuse type 138. The same mutation has recently been found in a Spanish pedigree 52.

Interestingly, these patients show similar pathological features but in addition, develop

symptomatic intracerebral hemorrhagic stroke.

2.3.3.  Presenilin Mutations Involved in CAA Formation

Severe CAA is not only the result of APP mutations but can also be associated with AD that is

caused by mutations in the presenilin-1 (PS1) and presenilin-2 (PS2) genes. The PS1 mutations

L282V 21, Q184D 192, and the PS1 deletion ΔI83/ΔM84 144 cause extensive and widespread CAA,

however, in affected patients, amyloid plaques are abundant as well. A study in which 25 PS1

mutations were investigated has suggested that CAA pathology is more severe in cases in which
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the mutation is located beyond codon 200 of the PS1 gene 88. Further, CAA is also a consistent

feature in a Volga-German family that develops familial AD due to the N141I mutation in the

PS2 gene. In this family, cerebral hemorrhage has been reported in one mutation carrier 109.

2.4.  Familial CAAs Caused by Proteins Different from Aβ

Besides Aβ-CAA other forms of familial CAAs, in which amyloid proteins different from Aβ are

deposited, are known (Table 1, Fig. 4). The most common diseases caused by these amyloid

proteins are described below.

2.4.1.  HCHWA-I

HCHWA-Icelandic type (HCHWA-I) is an autosomal dominant disorder of early onset. Fatal

cerebral hemorrhage occurs in about half of the mutation carriers in their twenties or thirties.

Cognitive decline and dementia may occur in patients that survive the hemorrhages. HCHWA-I

brains show severe amyloid deposits within small arteries and arterioles of leptomeninges,

cerebral cortex, basal ganglia, brainstem, and cerebellum. Asymptomatically, amyloid

deposition can occur in peripheral tissues, including skin, lymphoid tissues, salivary glands, and

testes 30. The amyloid protein deposited in HCHWA-I (ACys, Fig. 4B) is an N-terminal truncated

form of cystatin C bearing a single glutamine for leucine amino acid substitution due to an A for

T point mutation at codon 68 of the cystatin C gene 38,80. Cystatin C belongs to the type II

family of cysteine protease inhibitors and is produced by different cell types, including cortical

neurons and is present in biological fluids 38, such as the CSF. Cystatin C levels in CSF of

HCHWA-I patients have been found to be half of those measured in control patients 5. Wild-type

and variant cystatin C form concentration dependent inactive dimers; however, variant cystatin

C dimerizes at lower concentrations and forms fibrils in conditions in which the wild-type

protein forms amorphous aggregates 10. Cystatin C may also play a role in the pathogenesis of

other amyloidoses since it is present in parenchymal and vascular Aβ deposits in AD 81 and in the

cerebral amyloid lesions in familial British dementia 39. A polymorphism in the cystatin C gene

might be a risk factor for AD 15.

2.4.2.  CAA in Familial British and Familial Danish Dementia

Familial British dementia (FBD) and familial Danish dementia (FDD) belong to a novel group of

hereditary dementias in which severe CAA is one of the defining pathological hallmarks 123. In

both diseases, the 266 amino-acid-long precursor protein (BriPP) is elongated due to genetic

abnormalities. In FBD, a T to A point mutation in the BRI2 stop codon results in the production
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of a mutated longer precursor protein, 277 amino acids in length (ABriPP). FDD is caused by a

10-nucleotide duplication occurring between codons 265 and 266 of the same gene. The

resulting frame-shift abolishes the normal stop codon which as well leads to the production of a

277 amino acid long precursor protein (ADanPP) 164,166. C-terminal cleavage of both wild-type

and mutated precursor proteins by furin results in the secretion of 23 amino acid long wild-type

and 34 amino acid long mutated (ABri, ADan, Fig. 4E, F) peptides 73.

FBD is clinically characterized by progressive memory loss, spastic tetraparesis, and cerebellar

ataxia with a disease onset in the sixth decade 97. In spite of severe CAA, significant cerebral

hemorrhage is relatively rare 97,114. Histologically, the major pathological changes are similar to

AD including severe and widespread CAA, amyloid plaques, as well as neurofibrillary

degeneration. Vascular amyloid is found in small arteries and arterioles in the leptomeninges and

both gray and white matter throughout the CNS with some exceptions, such as the striatum 58.

Some veins and capillaries are affected as well. Double barreling or complete luminal

obstruction of vessels is seen. In the retina, blood vessels are heavily affected by CAA 58, and

moreover, vascular amyloid is also found in systemic organs 40. All vascular amyloid is stained

with antibodies recognizing ABri. Argyrophilic, ABri-positive amyloid plaques are mainly found in

limbic areas. ABri-positive but Silver and Congo red-negative diffuse deposits occur in several

regions, including the entorhinal cortex and fusiform gyrus, where they represent the main

parenchymal lesion type 58. Topographically, both fibrillar and non-fibrillar ABri deposits are

closely associated with neurofibrillary degeneration.

The major histological features of FDD are similar to those seen in FBD. They include widespread

CAA, that can be labeled with antibodies to ADan, and neurofibrillary degeneration. However,

there are also differences. In FDD the predominant hippocampal parenchymal ADan deposits

are Congo red and thioflavin S-negative, suggesting that they are non-fibrillar rather than

fibrillar, which is different from the ABri containing amyloid plaques in FBD. Abnormal neurites

primarily cluster around vascular amyloid and are absent around non-fibrillar diffuse ADan

parenchymal deposits. The retinal changes, with marked ADan amyloid angiopathy and

parenchymal damage, are more severe in FDD than in FBD 59. A feature of the FDD cases is the

deposition of Aβ, either isolated or in combination with ADan, in vessels and brain parenchyma.

In both disorders and similar to AD and sporadic CAA, amyloid lesions contain amyloid-

associated proteins, including heparan sulfate proteoglycans, ApoE, ApoJ, vitronectin, and

components of the classical and alternative complement pathways, suggesting in situ

complement activation 124,128.



- 20 -

2.4.3.  CAA Related to Prion Protein Amyloidosis

In the human prion diseases, which include Creutzfeldt-Jakob disease (CJD), the Gerstmann-

Sträussler-Scheinker syndrome (GSS), fatal familial insomnia, kuru and variant CJD, deposition of

pathogenic prion protein (PrPSC) isoform is documented only in one pedigree with GSS 123. This

GSS variant is caused by a T to G mutation occurring at codon 145 of the PRNP gene which

leads to a newly formed stop codon (Y145STOP) and the production of an N- and C-terminally

truncated PrP consisting of 70 amino acids. The main neuropathological findings include PrP-

immunoreactive CAA, mainly affecting small- and medium-sized vessels of the cerebral and

cerebellar grey matter, together with prominent perivascular PrP deposition and neurofibrillary

tangle pathology. Leptomeningeal vessels are less severely affected 36.

2.4.4.  CAA in Transthyretin and Gelsolin-Related Amyloidoses

Gelsolin-related amyloidosis or familial amyloidosis-Finnish type (FAF) is a rare disorder, reported

worldwide in kindreds carrying a G654A or G654T gelsolin gene mutation. Affected patients

show widespread deposition of gelsolin-related amyloid (AGel, Fig. 4D) in spinal, cerebral, and

meningeal amyloid angiopathy, with marked extravascular deposits in the dura, spinal nerve

roots, and sensory ganglia. The amyloid deposits are also variably immunoreactive for ApoE,

alpha1-antichymotrypsin, and cystatin C 75.

Amyloidoses due to mutations of the transthyretin (TTR) gene are late-onset autosomal

dominant systemic diseases characterized by deposition of transthyretin protein (ATTR) in the

extracellular space of several organs 3. In the Hungarian (D18G) (Fig. 4C) and the Ohio

pedigrees (V30G), involvement of the meninges and the brain parenchyma is prominent. In

patients of the Hungarian family the peripheral nerves, organs, and eye are not affected 35,113,165.

2.5.  Sporadic Forms of CAA

The majority of CAA, however, is sporadic and is a common neuropathological finding in elderly

individuals with or without evidence of AD. Not only its incidence that, depending on the study,

is varying from about 10 to 60%, but also both its extent and severity steadily increase with age
53,68,92,153,168,172. A close association between CAA and AD has been shown by several reports

demonstrating that CAA is present in 80 up to 100% of AD cases and moderate to severe CAA is

seen in a quarter to three quarters of all AD brains 4,23,26,43,68,151,152,190.
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2.6.  The Risk Factor ApoE

Apolipoprotein E (ApoE) is a genetic risk factor for both sporadic and familial late-onset AD 89.

The ApoE gene is located on chromosome 19 and exists as three alleles termed as ApoE ε2, ε3

and ε4 that differ from each other in only one amino acid. The ApoE ε4 allele, a known a risk

factor for AD, is linked to CAA and CAA-associated hemorrhages which result possibly from

increased Aβ deposition in the cerebral vasculature 50,51,118,194. ApoE ε2, however, might promote

CAA-associated hemorrhage by causing amyloid-laden vessels to undergo vasculopathic

changes that lead to rupture. 54,93-95,105. Different from the ApoE ε4 allele, ApoE ε2 is believed to

be a risk factor for CAA-related hemorrhage independent of AD.

2.7.  Clinical Consequences of CAA

Intracerebral hemorrhage (Fig. 6A, B) is the most severe clinical consequence of CAA,

particularly in patients over the age of 75 years 48,96,171. CAA-related intracerebral hemorrhage is

seen in four to a twenty percent of all spontaneous (nontraumatic) cerebral hemorrhages in the

elderly 23,63,67,68,78,172. It is typically observed in the cortical or cortico-subcortical brain regions

which are most heavily affected by CAA. Brains with intracerebral hemorrhage caused by CAA

show extensive amyloid in blood vessel walls as well as evidence of breakdown of amyloid-

containing vessels such as concentric cracking, microaneurysms and fibrinoid necrosis 85,169,172.

There is accumulating evidence supporting an additional role for CAA in producing vessel

dysfunction, reduced cerebral blood flow and ischemia 49. Ischemic lesions are characteristic of

sporadic CAA 9,110 and several hereditary CAA syndromes, including HCHWA-D and the familial

disorder caused by APP D694N Iowa mutation that is associated with dementia, but not with

hemorrhagic stroke 49. Pathological evidence suggest that occlusion of vessel lumens is an

important mechanism for the ischemic lesions in these patients 46,47,55,85. Even though occurring

to minor degree, other lesions have been linked to CAA. A subset of CAA patients with clinically

distinct symptoms show CAA-related perivascular inflammation that can cause vascular

dysfunction 24, and CAA has also been shown to be associated with giant cell arteritis 2. In

addition, the effects CAA has upon the blood supply of the brain and on interstitial fluid (ISF)

drainage have been emphasized particularly in relation to white matter abnormalities (Fig. 6C,

D) 126,167.

It has been proposed that cerebral hemorrhage related to severe CAA consists of at least three

distinct phases 1: 1. initial seeding of Aβ42, occurring in a subset of vessels or their segments; 2.

expansion of the vascular amyloid deposits through the incorporation of Aβ40 to replace the
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vessel wall, a process that is enhanced by the possession of ApoE ε4; and 3. rupture of the vessel

wall with hemorrhage, for which ApoE ε2 is a risk factor.

Figure 6.  Multiple cerebral hemorrhages of varying ages in a case with severe sporadic CAA (A , B). White

matter atrophy and degeneration (C) and severe CAA (D) in a case of familial AD with PS1 E280G mutation (D:

Aβ immunohistochemistry, scale bar represents 70 µm). (from Revesz et al., 2003).

3. Mechanisms of CAA Formation

The origin of the different amyloid proteins deposited in the cerebral vasculature is still poorly

understood. As most cell types are able to express APP and potentially could release Aβ, several

hypothesis for mechanisms leading to CAA have been suggested. The three major hypotheses

are termed systemic, vascular, and drainage hypothesis (Fig. 7). These mechanisms are not

necessarily thought to be mutually exclusive and might even occur at the same time.
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Figure 7.  Possible mechanisms that could lead to cerebrovascular Aβ deposition. (A) The systemic hypothesis

proposes that vascular Aβ originates from blood. (B) The vascular hypothesis suggests that cerebrovascular cells

produce Aβ themselves. (C) The drainage hypothesis assumes that neuronally produced Aβ drains and

accumulates along perivascular spaces.

3.1.  Systemic Hypothesis

The systemic hypothesis proposes that Aβ  is transferred from blood to the vasculature. In

support of this hypothesis is the observation that APP is found in almost all cell types of the body

and that Aβ is present in the circulation 84,196. In vivo studies have shown a receptor-mediated

bidirectional transport of Aβ across the blood brain barrier (BBB) including RAGE (receptor for

advanced glycation end-products), LRP-1 (low-density lipoprotein receptor related protein-1),

SR (scavenger receptor), and megalin receptors 83,137,196,197. ApoE, a LRP-1 ligand and risk factor

for AD and CAA, modulates the rate of Aβ transport 195. The exchange of Aβ between central

nervous system (CNS), cerebrospinal fluid (CSF), and blood is an important process determining

concentration of Aβ in the brain. After intravenous injection of Aβ in rodents and primates, the

peptide has been detected within cerebral vessel walls and the brain parenchyma 84,86,90,115,129.

Alternatively, blood-borne Aβ may enter the brain if the BBB integrity is compromised which

indeed has been shown to be the case in AD and in the brains of Tg2576 transgenic mice 145,156.

Leakage of the BBB can also be mediated by Aβ  itself by impairing endothelial regulatory

function and endothelial cell death 6,66,150. Theoretically, vascular Aβ could originate as well from

CSF, where it is found in both AD patients and non-demented individuals 62,135,140.
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There are several arguments against a hematogenous origin of Aβ. Initial vascular Aβ deposits

are seen in the abluminal basement membrane of the vessels which is in favor of the idea that

Aβ has its origin within the CNS itself 179,191. An argument against a CSF origin of Aβ is the

observation that arteries are affected more frequently by vascular amyloid than veins in the

subarachnoid space. Additionally, smaller arteries are more affected by CAA than larger ones in

the same locations 179. Furthermore, transgenic mice that constitutively overproduce C99 in

multiple tissues show exceptionally high levels of Aβ peptides in the plasma (approximately 17

times or more compared with the human plasma level). Although amyloidosis was observed in

the intestine, no cerebral Aβ deposits were found in transgenic mice up to the age 29 months 33.

3.2.  Vascular Hypothesis

The vascular hypothesis proposes local production of Aβ  from cerebrovascular cells. Several

observations support this view. APP has been detected in extracts from vessels of AD and

HCHWA-D brains and in vessels walls, APP coexisted with amyloid fibrils 28,148. It has been

suggested that Aβ in CAA is derived from smooth muscle cells (SMCs) in the media of cerebral

arteries 183. They are closely associated with vascular amyloid, and have been shown to express

APP and to produce Aβ 70,72,182,184. Cultured degenerating SMCs and human brain pericytes

(HBPs) have been demonstrated to overexpress APP and moreover, SMCs to overproduce Aβ
18,162. In addition to myocytes and pericytes, endothelial, adventitial, and perivascular cells have

been shown to express APP 103.

Arguments against the vascular hypothesis are that large arteries, although having several layers

of SMCs, are less severely affected by CAA than smaller ones and that capillaries exhibit Aβ

deposits 189. In addition, neither CAA nor Aβ is detected in extra-cranial blood vessels 139. This

indicates that neural factors may be important in initiating vascular Aβ deposition.

3.3.  Drainage Hypothesis

The drainage hypothesis suggests that neuronally produced Aβ drains with the interstitial fluid

(ISF) along perivascular spaces of parenchymal and leptomeningeal vessels to cervical lymph

nodes (Fig. 8A). CAA occurs due to deposition of Aβ along these drainage pathways 179. In favor

of the drainage hypothesis is the presence of CAA in transgenic mice which express human APP

in the brain, in most instances under the control of neuron-specific promoters 11,32,157.
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Based on the drainage hypothesis, a detailed mechanism for the formation of CAA and its

relevance for AD has been proposed by Nicoll and co-workers 107: “Aβ produced by neurons

passes from the extracellular spaces in the brain parenchyma into the capillary basement

membrane. Aβ and interstitial fluid would normal pass along the capillary basement membrane

into the basement membranes on the outer aspect of the artery wall. Joined by Aβ from SMCs,

Aβ and interstitial fluid would flow freely out of the brain along periarterial pathways driven by

the pulsations of the arteries. With the onset of arteriosclerosis, the artery walls become more

rigid, the amplitude of pulsations is reduced and the passage of Aβ along the vessel walls is

slowed. Such slowing allows the soluble Aβ in the vessel walls to precipitate as insoluble or β-

pleated sheet amyloid resulting in CAA. The amyloid then blocks the elimination of Aβ leading

to increased concentration of soluble Aβ in the brain. The increase in soluble Aβ, which may by

itself be associated with dementia, also leads to precipitation of Aβ in the form of plaques, the

development of tau pathology and neuronal and synaptic loss.”

Figure 8.  There is evidence for several routes of elimination of Aβ from the brain. (A) Drainage with the

interstitial fluid along the perivascular pathway. (B) LRP-1-mediatet clearance across the blood brain barrier into

the blood. (C) Clearance by microglia/astrocytes and/or neprilysin/IDE. (modified from Nicoll et al., 2004).

In addition to the clearance of soluble Aβ by perivascular interstitial drainage pathways, other

mechanisms for the elimination of Aβ from the brain exist 106. Aβ can be absorbed into the

blood via the low-density-lipoprotein receptor-related protein-1 (LRP-1) 137. Further, Aβ has been

shown to be degraded in the extracellular space of the brain by neprilysin 64 and insulin-

degrading enzyme (IDE) 27. Moreover, it has been proposed that Aβ can be cleared by microglia
180 and astrocytes 187.
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4. Animal and Experimental Models of CAA

4.1.  Naturally Occurring CAA in Aged Dogs and Non-Human Primates

Aged dogs develop CAA and amyloid plaques, however, few canine plaques attain the classical

form with congophilic amyloid and abnormal neurites. Vascular amyloid is located in

parenchymal and meningeal arterioles and in capillaries 102,173. Amyloid accumulation starts in

large vessels, particularly in the basal lamina of the tunica media of large arteries, and SMCs in

the area of A β  accumulation degenerate and die 178. Aβ  induces a segmental loss of

leptomeningeal vessel wall viability 119. The increase in the numerical density of amyloid-positive

cortical and leptomeningeal vessels correlates with age 178 and CAA is often accompanied by

cerebral hemorrhage 16,155.

CAA also occurs in non-human primates, ranging from lemurs to chimpanzees. Intriguingly,

whether amyloid is deposited mainly in the parenchyma of the brain or in the vascular wall is

species-specific to a certain degree 173. The best-characterized primate models of CAA are

squirrel and rhesus monkeys. In aged squirrel monkeys, amyloid is associated primarily with

intracerebral and meningeal capillaries and arterioles and occurs to a lesser degree as small

and/or diffuse deposits in the neural parenchyma and in the dense cores of senile plaques. The

pattern of CAA localization is comparable to that in humans. In contrast to squirrel monkeys,

aged rhesus monkeys develop mostly parenchymal amyloid deposits and have relatively less

vascular amyloid. This species difference in the histological distribution of amyloid suggests that

separate mechanisms may influence the accumulation of amyloid in cerebral blood vessels and

in the neural parenchyma 174. In addition to non-human primates and dogs, CAA has also been

found in aged polar bears and wolverines 125,134.

The major disadvantage of studying CAA in animal models with naturally occurring CAA is the

variability of the extent of vascular amyloid. Studies have to be performed with relatively large

groups of old animals. Therefore, several transgenic mice showing AD-like pathology have been

developed, some off which also develop CAA.

4.2.  CAA in Transgenic Mice

A lot of different transgenic mouse model of AD have been developed. All of them overexpress

human APP (hAPP) containing familial AD-causing mutations in their brains. In the majority of
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cases the transgenes are expressed by neuron-specific promoters, and as a result thereof, Aβ

deposits are observed in form of amyloid plaques in the brain parenchyma. CAA, however, is

often not a prominent feature in these mice.

The first mouse model that has been reported to develop significant CAA, in addition to

parenchymal plaques, is the APP23 mouse model that overexpresses hAPP bearing the Swedish

K670N/M671L double mutation from the neuron-specific Thy-1 promoter 11,146. As observed in

humans, severe CAA in APP23 mice causes loss of SMCs and hemorrhages 181. A detailed analysis

of CAA and associated pathology in APP23 is described in the experimental section of this thesis.

A second mouse model overexpresses hAPP with the V717I London mutation under control of

the Thy-1 promoter (APP/Ld mice) 157. Besides amyloid plaques, aging APP/Ld mice also develop

CAA that is predominantly seen in arterioles and ranges in extent from small focal to

circumferential Aβ deposits. Like APP23 mice, loss of SMCs is seen in cerebral blood vessels of

APP/Ld mice, however, no hemorrhages are observed. The major Aβ species that is deposited in

the vessel wall is Aβ40. APP/Ld x PS1 A246E double-transgenic mice show higher Aβ42 levels

that cause an increase in CAA and senile plaque formation.

The PDAPP 34 and the Tg2576 mouse model 60 were the first transgenic mice reported to

develop significant AD-like pathology. PDAPP mice overexpress hAPP V717F from the platelet-

derived growth factor (PDGF)-β promoter, while in Tg2576 mice hAPP K670N/M671L is

overexpressed by hamster prion protein (PrP) promoter. In addition to amyloid plaques, both

models develop an age-dependent increase in CAA with associated microhemorrhage, with the

Tg2576 model having an earlier and more severe phenotype 32 and showing SMC degeneration
13. Interestingly, when Tg2576 and PDAPP mice are bred onto an ApoE -/- background, no CAA

is detected through 24 months of age, and there is little to no evidence of microhemorrhage.

Biochemical analysis of isolated cerebral vessels from both PDAPP and Tg2576 mice with CAA

revealed that, as in human CAA, the ratio of Aβ40:42 was elevated relative to brain parenchyma.

In contrast, the ratio of Aβ40:42 from cerebral vessels isolated from old PDAPP/ApoE -/- mice

was extremely low. These findings demonstrate that murine ApoE markedly promotes the

formation of CAA and associated vessel damage and that the effect of ApoE combined with the

level of Aβ40 or the ratio of Aβ40:42 facilitates this process 32.

Another approach reports that astroglial overproduction of the transforming growth factor

(TGF)-β1 induces Aβ deposition in cerebral blood vessels and meninges of aged transgenic mice.

Co-expression of TGF-β1 in transgenic mice overexpressing hAPP accelerates the deposition of

Aβ 188. Interestingly, aged double-transgenic hAPP/TGF-β1 mice show a three-fold reduction in
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the number of parenchymal amyloid plaques and a 50% reduction in the overall Aβ load in the

hippocampus and neocortex. In these mice, Aβ  accumulates substantially in cerebral blood

vessels. The reduction of parenchymal plaques is associated with a strong activation of microglia

and an increase in inflammatory mediators 186. In cerebral microvessels from young amyloid pre-

depositing TGF-β1-transgenic mice, which display a prominent perivascular astrocytosis, an

accumulation of basement membrane proteins and thickening of capillary basement

membranes is observed. In amyloid depositing mice, various degenerative changes in

microvascular cells of the brain can be observed 185.

All the mouse models described above develop both parenchymal amyloid and to a varying

degree, cerebrovascular amyloid. Herein we describe now for the first time the generation of

transgenic mice that develop significant CAA in the absence of compact parenchymal amyloid.

These mice overexpress hAPP containing the APP E693Q Dutch mutation in neurons of the brain

(APPDutch mice). A detailed characterization of APPDutch mice is given in the experimental

section of this thesis.

To a certain degree, CAA can also be studied with the help of different in vitro systems as

described below.

4.3.  In Vitro Models of CAA

4.3.1.  Smooth Muscle Cells and Human Brain Pericytes

Primary cultures of human cerebrovascular SMCs and HBPs are used as a model to investigate

cellular pathologic processes associated with CAA. SMCs can be isolated from human

parenchymal arterioles or leptomeningeal vessels and HBPs, which are phenotypically related to

SMCs, from brain capillaries. Soluble Aβ42, but not Aβ40, causes rapid degeneration of cultured

SMCs 18,158 and HBPs 162. Interestingly, pre-aggregation of Aβ  abolished its toxic effects 19.

Compared to Aβwt42, AβDutch40 even shows enhanced pathologic properties towards SMCs
17,175 and HBPs 163. At low concentrations, only AβDutch40, but not Aβwt40 selectively binds

and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular SMCs.

However, in a cell-free assay and at the same dilution, Aβ  does not aggregate into fibrils.

Addition of the dye Congo red prevents the cell surface fibril assembly of AβDutch40 and

moreover, blocks the key pathologic responses induced by AβDutch40 in these cells 159.

Similarly, catalase and insulin are able to inhibit both, fibril formation and the toxic effect of

AβDutch40 on HBPs 121,122. Surprisingly, AβDutch42, like Aβwt40, shows no pathologic effect on
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SMCs and HBPs 162. In contrast to neurons, oxidative stress seems not to be important in Aβ-

induced degeneration of SMCs and HBPs, since antioxidants could not inhibit Aβ-induced

toxicity 122. In summary, the pathogenic Aβ-fibril formation at the surface of cerebrovascular

SMCs and HBPs seems to be essential for its toxicity to these cells.

4.3.2.  Endothelial Cells

Aggregates of Aβwt40, Aβwt42, and AβDutch40 have been shown to be toxic to cultured

human cerebrovascular endothelial cells (ECs), even at doses lower than those that are toxic to

CNS neurons or leptomeningeal SMCs. Soluble AβDutch40 is equally toxic to ECs, whereas

soluble Aβwt40 is toxic only at higher doses. This toxicity of AβDutch40 is seen at the lowest

dose of 20 nM. Other than Aβwt40, soluble AβDutch40 aggregates on the surface of cultured

ECs, and its toxicity can be blocked by Congo red, which inhibits amyloid fibril formation 22,100.

Unfortunately, no experiments have been performed with AβDutch42. In contrast to SMCs and

HBPs, some antioxidants that inhibit free radical formation, such as vitamin E 101, n-propyl

gallate and phenylbutyl tert-nitrone 6,22, and superoxid dismutase 147 can inhibit Aβ-induced

toxicity in vitro, indicating that Aβ causes oxidative stress in ECs.

4.3.3.  Whole Vessel Cultures

The effect of Aβ on the vasculature has also been studied in whole vessel cultures of rat aorta or

on isolated human cerebral arteries collected following rapid autopsies. These studies

demonstrate that freshly solubilized Aβ has vasoactive properties eliciting vasoconstriction, and

they suggest that Aβ vasoactivity is mediated via the stimulation of a proinflammatory pathway.

In addition, a similar proinflammatory response appears to be mediated by Aβ in isolated human

brain microvessels 111,150,154.
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Abstract

A high risk factor for spontaneous and often fatal lobar hemorrhage is cerebral amyloid

angiopathy (CAA). We now report that CAA in an amyloid precursor protein transgenic mouse

model (APP23 mice) leads to a loss of vascular smooth muscle cells, aneurysmal vasodilatation,

and in rare cases, vessel obliteration and severe vasculitis. This weakening of the vessel wall is

followed by rupture and bleedings that range from multiple, recurrent microhemorrhages to

large hematomas. Our results demonstrate that, in APP transgenic mice, the extracellular

deposition of neuron-derived β-amyloid in the vessel wall is the cause of vessel wall disruption,

which eventually leads to parenchymal hemorrhage. This first mouse model of CAA-associated

hemorrhagic stroke will now allow development of diagnostic and therapeutic strategies.

Key words: cerebral amyloid angiopathy; hemorrhage; stroke; bleeding; Alzheimer's disease; amyloid;

amyloid precursor protein; smooth muscle cells; mouse; brain; CNS
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Introduction

In the rapidly growing segment of elderly people in industrialized countries, hemorrhagic stroke

is an increasing threat. Nontraumatic etiologies for cerebral hemorrhage include hypertension

and cerebral amyloid angiopathy (CAA). In contrast to hypertensive small-vessel disease, in

which bleeding is predominantly found in the basal ganglia, cerebellum, or pons, CAA leads to

spontaneous and often fatal lobar hemorrhage 1-4. CAA as a major cause of hemorrhagic stroke

has not been fully appreciated in the past, with previous estimates in the range of 10% as a

cause of all nontraumatic intracerebral hemorrhages 1,3,5.

The most common form of CAA is of the β-amyloid (Aβ) type 6,7. Aβ is a 40�to 42�amino acid

peptide derived from the longer amyloid precursor protein (APP) 8,9. CAA occurs sporadically

and can be detected to various degrees in approximately half of all individuals beyond 70�years
5,10. In addition, CAA can be detected in up to 90% of Alzheimer's disease (AD) patients 1,10. In

normal aging and AD, CAA occurs in conjunction with parenchymal amyloid plaques. However,

CAA can also occur in the absence of compact plaques, as evidenced by patients with hereditary

cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) caused by a point mutation

within Aβ at codon 693�of APP (E693Q) 11. These patients develop a severe form of CAA and

suffer recurrent intracerebral hemorrhages, leading to death between the ages of 45�and 55� 12.

Progress in CAA and CAA-related spontaneous hemorrhage has been slow because of the lack of

useful animal models 13. We have reported recently cerebral deposition of amyloid in plaques

and vessels in an APP transgenic mouse model (APP23 mice) 14. In the present study, we report

that CAA in these mice consistently leads to multiple and recurrent spontaneous cerebral

hemorrhages. This first mouse model of CAA-associated hemorrhagic stroke provides clues to

the mechanism of CAA-related hemorrhage, as well as a needed model for testing diagnostic

and therapeutic interventions.

Results

Age-related increase in CAA frequency and severity in APP23�mice

In 8-month-old APP23 mice, cerebrovascular amyloid was generally absent with the exception

of rare focal deposits in leptomeningeal vessels. In contrast, in the 19-�and 27-month-old

groups, cerebrovascular amyloid was found consistently throughout the neocortex,

hippocampus, and thalamus (Fig. 1), and to a lesser degree in other regions such as septum,

striatum, brainstem, and white matter. Leptomeningeal vessels were always heavily affected
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(Fig. 2). Cerebrovascular amyloid was almost exclusively Congo red-positive, suggesting that

amyloid is of a compact -pleated nature. Robust staining of vascular amyloid was found with

both Aβ40- and Aβ42-specific antibodies. Aβ40 exceeded Aβ42 staining intensity, suggesting a

predominance of Aβ40 over Aβ42 in vascular amyloid similar to that reported in humans 27.

Antibodies to cystatin C revealed appreciable staining of cerebrovascular amyloid, suggesting

that mouse cystatin C is part of the amyloid. However, the cystatin C immunoreactivity was

restricted to a subpopulation of amyloid-laden vessels predominantly in the thalamus and was

clearly less intense than Aβ staining. Antibodies to SAP did not reveal any appreciable amyloid

staining.

Figure 1. � Cerebral amyloid angiopathy in APP23 mice. Aβ staining reveals significant CAA (arrowheads) in

neocortex (a) and thalamus (b) in aged 27-month-old APP23 mice. Within these regions, CAA showed a great

variability (c-e), ranging from vessels with a thin rim of amyloid in the vessel wall (c; severity grade, 1), to

vascular amyloid with amyloid infiltrating the surrounding neuropil (d; severity grade, 2), and to dyshoric

amyloid with amyloid deposition within the vessel wall and with a thick and complete amyloid coat around the

vessel wall (e; severity grade, 3). Scale bars: a, b, 100�µm; c-e, 10�µm.
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Figure 2. � Cerebrovascular amyloid in leptomeningeal vessels. Leptomeningeal vessels are the most consistent

and the first to exhibit cerebrovascular amyloid in APP23 mice. Shown in a are leptomeningeal vessels at the

surface of the cingulate cortex of a 19-month-old APP23 mouse. Note that the amyloid is mostly confined to the

outer vessel wall (arrowhead), consistent with CAA in humans in which initial deposits are found in the outer

basement membrane 28. b, 3D reconstruction of an Aβ-stained (orange pseudocolored) heavily affected

leptomeningeal vessel in an aged APP23 mouse. Note that nearly the entire surface is covered by a thick amyloid

coat. The reconstruction consists of 198�optical slices (< 0.7 µm), with a sampling interval of 0.35�µm. Scale

bars, 25�µm.

Quantification of CAA frequency in systematically sampled sections revealed a striking age-

related increase in neocortex (Fig. 3a), hippocampus, and thalamus (data not shown). CAA

severity also increased with aging (Fig. 3b), indicating that not only are more vessels affected

with aging but also that the amyloid burden of individual vessels increased with aging.

Interestingly, thalamic vessels revealed a greater CAA severity compared with neocortical vessels

in both the 19-�and 27-month-old mice (p �<�0.001; CAA severity for thalamus, 1.59�±�0.08�and

1.82�±�0.05, �respectively). This observation was all the more interesting because the thalamus

does not express the APP transgene (see Discussion). No difference in CAA frequency and

severity was found between males and females (p �>�0.05), consistent with no significant sex

predilection of CAA in humans 1,10.
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Figure 3. � Age-related increase in CAA frequency and severity in APP23 mice. a, Number of amyloid affected

vessels (CAA frequency) was quantified in systematically sampled sections through the neocortex of young

(8�months), adult (19�months), and aged (27�months) APP23 mice. ANOVA revealed a significant affect of age

(F(2,38) �=�41.6; p �<�0.001). b, A grading score was then used to assess severity of affected vessels (for details,

see Fig. 1c-e and Materials and Methods). The mean CAA severity is indicated for the 19-�and 27-month-old

groups and revealed a significant age-related increase (t(29) �=�2.95; p �<�0.01).

Similar to the striking increase in CAA with aging, a robust age-related increase in total amyloid

load has been reported in these mice 15. However, we did not find a significant correlation

between CAA frequency or severity and amyloid load within age groups (data not shown),

confirming previous age-corrected linear regression analysis 14.

CAA leads to smooth muscle cell degeneration and aneurysm-like�vasodilatation

Confocal microscopy using double-labeling for Aβ and smooth muscle cell actin revealed an

extensive loss of smooth muscle cells in the tunica media of amyloid-laden vessels (Fig. 4).

Whereas in 19-month-old mice a focal discontinuity of the smooth muscle cell layer was

typically observed (Fig. 4b), in 27-month-old mice, we often observed a dramatic loss of smooth

muscle cells, with only patchy staining for smooth muscle cell actin remaining (Fig. 4c). Such a

loss of smooth muscle cells concomitant with an increasing amyloid burden in the vessel wall

was evident in leptomeningeal vessels and in vessels throughout neocortex, hippocampus, and

thalamus, very similar to CAA in humans 29,30. Interestingly, even in the heavily affected mice,

there were often individual smooth muscle cell containing vessels that were not affected by CAA

(Fig. 4d, e).
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Figure 4. � Cerebrovascular amyloid leads to smooth muscle cell loss. Confocal microscopy of double-

immunolabeled vessels (green, smooth muscle actin; red, amyloid) in APP23 mice. a, Leptomeningeal vessel in

an 8-month-old mouse shows no amyloid deposition and a complete layer of smooth muscle cells. b,

Leptomeningeal vessel in a 19-month-old mouse shows focal disappearance of smooth muscle cells at the site of

cerebrovascular amyloid (arrowheads). c, In 27-month-old mice, smooth muscle cells have greatly disappeared,

and a thick sheet of amyloid covers the wall of a leptomeningeal vessel. d, e, Parenchyma in the neocortex of a

19-month-old mouse showing an unaffected (d) and an amyloid-laden vessel (e) in close anatomical proximity.

Shown are superpositions of 0.9-�to 5-µm-thick optical sections. Scale bars: a, 10�µm; b-e, 20�µm.

We have shown previously a dystroglycan-mediated linkage between perivascular astrocytes and

the vascular basement membrane 21. Such a tight linkage between the vessel wall and astrocytic

end feet is clearly important for vessel stabilization and nutrient trafficking. To study a potential

disruption of this glia-vascular interface by cerebrovascular amyloid, we have used double-

labeling for GFAP, β-dystroglycan, and Aβ . In cases in which the amyloid was confined to the

vessel wall, no apparent changes in perivascular glia staining was apparent. However, when the

vascular amyloid infiltrated the parenchyma, GFAP-positive glial processes were no longer tightly

associated with the vessel parenchymal basement membrane, and there was a focal loss of β-

dystroglycan (data not shown).

Loss of smooth muscle cells and disruption of the glia-vascular interface leads to vessel wall

weakening. In the 27-month-old mice, a significant number of vessels with aneurysm-like

enlargements were most often found in the thalamus and also neocortex (Fig. 5c). In such

dilated vessels, the smooth muscle layer was in most cases absent, and vasodilatation often

reached dramatic sizes of up to 200�µm (Fig. 5c). No loss of smooth muscle cells or aneurysm

type of vasodilatation was found in nontransgenic mice of any age.
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Figure 5. � CAA-related hemorrhage in APP23 mice. a, Hemosiderin staining (blue) in the frontal cortex of a 27-

month-old mouse indicative of an old hemorrhage. The section is counterstained with nuclear fast red. b,

Perivascular hemosiderin-positive microglia (arrowhead) in close vicinity of a small vessel in a 27-month-old

mouse. c, Hemosiderin-positive microglia surrounding an enlarged neocortical vessel of aneurysm-like

appearance. d, e, Double-labeling for amyloid (brown) and hemosiderin (blue) localized bleedings to amyloid-

laden vessels. f, Evidence for acute hematoma was assessed in H&E-stained sections. A significant hemorrhage

(asterisk) in the frontal cortex of a 27-month-old APP23 mouse is shown. g, An adjacent section to f was stained

with Berlin blue and revealed an old hemorrhage in the same region. Scale bars: a, 100�µm; b, c, f, g, 50�µm; d,

e, 5�µm.

CAA-related cerebral hemorrhage in APP23�mice

The high incidence of cerebrovascular amyloid and the loss of smooth muscle cells led us to

examine whether CAA in aged APP23 mice also causes hemorrhage similar to that described in

humans 1,3,5,31. Old cerebral hemorrhages were studied using Perls's iron staining, which

identifies residual hemosiderin. Acute bleeding was assessed in H&E-stained sections. No

evidence for both old and acute hemorrhages were found in 8-month-old mice. In contrast, 19-

month-old APP23 mice revealed several focal hemosiderin deposits in neocortex and thalamus,

most of which were localized to the cytoplasm of perivascular microglial cells. Strikingly, when

we looked at 27-month-old mice, we found a dramatic increase in the frequency but also size of

such hemosiderin clusters (Figs. 5, 6a). Hemosiderin-positive microglia were often in close

contact to vessels that had formed aneurysm-like enlargements (Fig. 5c). In several aged mice,

we also found evidence for acute bleeding (Fig. 5f). Mice with acute hematomas also revealed

numerous hemosiderin deposits throughout the neocortex, suggesting multiple recurrent

bleedings over time. Acute and old bleedings were sometimes colocalized, suggesting recurrent

bleeding in the same region (Fig. 5f, g). No such bleedings were observed in nontransgenic

control mice of any age.
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Figure 6. � Age-related increase in hemorrhage in neocortex of APP23 mice. a, Frequency of perivascular

hemosiderin-positive staining was assessed in systematically sampled sections through the neocortex. No

evidence of old bleedings (hemosiderin) was found in the 8-month-old mice. From 19�to 27�months of age,

there appears a striking increase in frequency of intracerebral hemorrhages (ANOVA; F(2,38)= 26.1; p �<�0.001).

Because the sampling was done in the right hemisphere only and in every 10th section, total incidence of

hemorrhages in the neocortex of 27-month-old mice can be estimated to be > 100. b, Significant positive

relationship between CAA score (frequency�x�severity) and hemorrhage number in neocortex of the 27-month-

old mice (p �<�0.01). Similar positive correlations were found between CAA frequency and hemorrhage and

between CAA severity and hemorrhage (for both R2�=�0.44). c, In contrast, no relationship between neocortical

amyloid plaque load and hemorrhages was found (p �>�0.05).

The anatomical distribution of the hemorrhages (primarily neocortex and thalamus, and to a

lesser degree pia, hippocampus, and striatum) appeared very similar to the distribution of CAA.

Correlative analysis between hemorrhage number and CAA score (frequency�x�severity) in

neocortex of the 27-month-old group of mice revealed a significant positive correlation (Fig.

6b). A similar significant positive relationship was found in the thalamus (data not shown). These

observations are in line with the morphological analysis, in which in most cases hemosiderin

could clearly be assigned to amyloid-laden vessels (Fig. 5d, e). Interestingly, and consistent with

the independence of amyloid plaque and CAA development, no significant relationship was

observed between total amyloid load and hemorrhages (Fig. 6c).

It is difficult to establish whether an acute hemorrhagic stroke was the cause of spontaneous

death in some of the aged APP23 mice. Most of the hematomas were small, reaching only a

"subclinical" state. However, a large neocortical hematoma may have been the cause of the

spontaneous death of at least one mouse.

CAA-associated�vasculitis

A granulomatous giant cell vasculitis has been reported in some cases of human CAA. This

observation has been attributed to a coexistence of vasculitis and CAA or to an immunological
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reaction and complication of CAA 32-34. In 3�of the 25�aged APP23 mice, all of them with a high

CAA score, we have found evidence of CAA-associated vasculitis. In particular, one mouse,

examined after its spontaneous death, exhibited a severe lymphocytic vasculitis throughout

subcortical, cortical, and leptomeningeal vessels (Fig. 7). In this case, lymphocytes were found in

the vessel wall, indicative of endovasculitis. Affected vessels appeared thickened, partially

necrotic, and sometimes obliterated (Fig. 7). There were no multinucleated giant cells or

neutrophils. Because vasculitis was not observed in nontransgenic mice and only in transgenic

mice with significant CAA, it does not appear to be the cause but an occasional consequence of

CAA in our mouse model.

Figure 7. � Vasculitis in aged APP23 mice with severe CAA. a, H&E staining of two vessels affected by a chronic

lymphocytic vasculitis. Lymphocytic infiltrates are seen throughout the entire vessel walls. The vessel wall on the

left appears thickened and the lumen is obliterated. There is severe amyloid deposition in the right vessel wall

(arrowhead). b, Double-staining for H&E and for Congo red (green-yellow birefringence) reveals amyloid deposits

in a vessel heavily affected by a lymphocytic vasculitis. Scale bars, 50�µm.

BBB�leakage

Breakdown of the BBB with transition of blood protein into the vessel wall and brain

parenchyma has been implicated as a key step in the pathogenesis leading to cerebral

hemorrhage 35. However, the present results using two different methods of BBB testing did not

reveal any obvious leakage of the BBB unless an acute bleeding was present. We noticed that

trypan blue labeled more vessels in the aged APP23 mice compared with age-matched controls

and that the labeling was preferentially associated with amyloid-laden vessels. However, neither

the dye nor HRP significantly infiltrated the neuropil, and the punctate staining for HRP in the
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vessel wall was consistent with the reported normal incorporation of blood-derived HRP by

endocytic vesicles of the vascular endothelia 25.

Discussion

Progression of CAA in APP23 mice is similar to CAA in�humans

CAA in APP23 mice shows striking similarities to human CAA 1,27,36. It is mostly congophilic and

consists mainly of Aβ40. Initial deposition occurs in the abluminal part of smooth muscle cell-

containing vessels, and leptomeningeal vessels are the first to be affected. Later, many smaller

vessels and capillaries become affected. CAA in mice and humans occurs in the neocortex and to

a lesser degree in hippocampus, striatum, basal forebrain, brainstem, and white matter. There

are, however, also differences in the anatomical distribution of CAA between mouse and human.

For example, CAA in thalamus is much more prominent in mouse than human. Vice versa, there

is almost no CAA in mouse cerebellum, whereas CAA occurs in human cerebellum. These

differences might be explained by the anatomically restricted transgene expression 37 but also

by species-differences in Aβ transport and drainage along perivascular spaces 14,38,39.

In both APP23 mouse and human, there is a striking age-related increase in frequency and

severity of CAA 1,10. Such an increase may reflect a stochastic seeding process in the vessel wall

and subsequent Aβ  accumulation 40. In addition, an age-related decrease in perivascular

drainage of Aβ by a thickening of the vessel basement membrane and/or by an impaired vessel

motility in the aging brain may significantly contribute to the increase in CAA with aging 38,41.

Interestingly, in both mouse and human, development of CAA and amyloid plaques appear to

be independent processes, both naturally depending on Aβ levels and on age as common risk

factors 14,42. Consistently, it has been demonstrated that overexpression of TGF-β1 increases CAA

but decreases amyloid plaque formation in APP/TGF-β1 double-transgenic mice 14,42-44. The

different pathogeneses of vascular amyloid and parenchymal amyloid have important

consequences for therapeutic intervention in CAA-associated hemorrhagic stroke (see below).

CAA is the cause of hemorrhagic stroke in APP23�mice

The strongest causal link between CAA and cerebral hemorrhage in humans comes from the

observation that HCHWA-D patients with a point mutation at position 22�of Aβ (position 693�of

APP) develop severe CAA and suffer fatal lobar hemorrhagic strokes early in their fifties 12,45.
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Cerebral hemorrhage is also a frequent finding in sporadic CAA and AD. However in these

patients, CAA appears to be a prerequisite but not sufficient for vessel rupture, with additional

factors such as hypertension, vascular abnormalities, fibrinoid necrosis, infarcts, trauma,

vasculitis, and apolipoprotein E (ApoE) genotype playing an important role 5,31,36,46. Whether

these factors contribute to vessel rupture independently of CAA or secondary to CAA is not

clear.

In APP23 mice, CAA is the only factor to which the hemorrhage could be attributed.

Hemorrhage was only found in aged transgenic mice with CAA and was not observed in aged

control mice. Both hemorrhage and CAA increase very similarly and almost exponentially with

aging. Hemorrhage was predominantly found in brain regions in which CAA is most severe, i.e.,

in the neocortex and thalamus. In areas with no CAA (such as the cerebellum), no hemorrhages

were detected. There was a significant correlation between CAA and hemorrhage in the

neocortex and thalamus, and in most cases, bleeding could be clearly allocated to individual

amyloid-laden vessels. It may be argued that APP overexpression (albeit restricted to neurons in

APP23 mice) or amyloid deposition in the brain parenchyma predispose vessels to rupture.

However, the findings of severe CAA and hemorrhages in the thalamus, which lacks transgene

expression 14, and lack of a correlation between amyloid plaques and hemorrhage argues

against this possibility. In summary, these observations demonstrate that CAA is the driving

force of vessel rupture and hemorrhage in the APP23 mouse.

Pathogenesis of CAA-induced�hemorrhage

The present results indicate that the loss of smooth muscle cells is an early and severe

consequence of cerebrovascular amyloid deposition, as described in CAA in humans 29,30. In

human CAA, it has been suggested that increased Aβ production of smooth muscle cells leads to

smooth muscle degeneration 29,30,47. However, this cannot be the case in APP23 mice because

transgenic Aβ in the mice is of neuronal origin and is not produced by smooth muscle cells 14.

Alternatively, it has been suggested that smooth muscle cells internalize neuron-derived Aβ and

that release of Aβ may trigger smooth muscle cell degeneration 48. Again, this is unlikely to be

the mechanism in the mice, because we did not find any evidence for Aβ within smooth muscle

cells. In contrast, our results suggest that extracellular Aβ is toxic to smooth muscle cells. This

toxicity may either be mediated by soluble Aβ, which drains along perivascular spaces 14,38,47, or

by Aβ fibril assembly at the surface of smooth muscle cells 49. It is also conceivable that smooth

muscle cells degenerate by purely mechanical constriction by the surrounding amyloid coat or

by focal ischemia. Regardless of the exact mechanism, our results suggest that smooth muscle

cell degeneration can be driven by extracellular amyloid of neuronal origin.
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The disruption of the tight link between perivascular astrocytic end feet and the vessel wall

appears somewhat later in the pathogenesis of CAA-induced hemorrhage and occurs to a

significant degree only when the vascular amyloid infiltrates the neuropil. Such dyshoric amyloid

also leads to perivascular microglial activation 14. Disruption of the tight glial-vascular interface,

together with the replacement of the media by amyloid, leads to a weakening of the vessel wall,

which occasionally leads to aneurysmal dilatations in aged APP23 mice. In addition, the present

results show that a severe endovasculitis with vessel obliteration develops in ~10% of the aged

mice with CAA. Both the frequency and morphology of such CAA-associated endovasculitis

appears to be very similar to sporadic human CAA 32-34 and also greatly contributes to vessel

weakening and rupture.

In humans, it has been suggested that cerebrovascular amyloid leads to "cracks" in the vessel

wall, with plasma enzymes leaking into and digesting the wall 35,36. In APP23 mice, significant

BBB leakage and fibrinoid necrosis were absent. Consistent with no gross BBB leakage, we did

not find SAP to be a component of cerebrovascular amyloid in the APP23 mice. In contrast, SAP

is a component of human CAA and has been implicated in the protection of the amyloid fibrils

from degradation 50-52.

It has been suggested that fatal hemorrhage in sporadic CAA and HCHWA-D is associated with

the presence of cystatin C as a component of the vessel amyloid 5,53-55. The present results

indicate that cystatin C is also a component of CAA in APP23 transgenic mice, but a clear

relationship between cystatin C and hemorrhage was not obvious. In future studies, it will be

instrumental to develop mouse model of CAA other than of the Aβ type, which will help to

illuminate the mechanisms of CAA and CAA-induced hemorrhages 6. For example, it is not clear

why HCHWA-Iceland type patients, who develop CAA composed of mutated cystatin C, suffer

fatal hemorrhages much earlier than HCHWA-D patients 56. In contrast, patients with dementia

of the British and Danish types, who develop severe CAA composed of ABri and ADan,

respectively, do not develop significant hemorrhage 57,58. Thus, the risk of hemorrhage may be

predicted by the type of amyloid, the amount of amyloid, the participation of cofactors such as

pathological chaperones, or the anatomical distribution of the amyloid within the vessel or

certain brain regions.

Diagnostic and therapeutic potential of mouse models of�CAA

CAA does not naturally occur in rodents but has been reported in aged dogs and nonhuman

primates 13. CAA-related spontaneous hemorrhage has only consistently been reported in aged



- 57 -

dogs beyond 13�years of age 59,60. The present findings of robust CAA with multiple and

recurrent hemorrhages in aged APP23 transgenic mice make this the first useful and genetically

defined animal model to study diagnostic and therapeutic strategies of CAA-associated

hemorrhage 3,4.

In terms of diagnostic potential, the APP23 mouse model should be well suited for the

development of in vivo detection of cerebrovascular amyloid 61 and noninvasive markers for the

progression of CAA-induced hemorrhages. There is a great need for diagnostic tools because, for

example, it has been reported that recurrent bleedings are more severe than initial bleedings

and more often fatal 62,63. Recently, progress in noninvasive detection of hemosiderin has been

reported using gradient-echo magnetic resonance imaging 63.

Potential treatments for CAA-related hemorrhage can be divided into strategies of inhibiting the

deposition of amyloid in the vessel wall and in blocking subsequent pathogenesis leading to

vessel wall rupture 3. It has been reported recently that vaccination of PDAPP transgenic mice

leads to a significant reduction of amyloid plaques presumably by phagocytotic microglia 64,65.

Unfortunately, PDAPP transgenic mice do not develop significant CAA, and the outcome of

vaccination on CAA is uncertain. If vaccination indeed has the potential to "clear" even vascular

amyloid, great caution has to be devoted to potential induction of bleeding attributable to

removal of the amyloid coat, which presumably give the amyloid-laden vessel some stability.

Regarding therapies aimed at reducing the risk of vessel rupture, the genetically defined APP23

mice offers a great potential to identify molecular factors involved in vessel rupture. For

example, it has been suggested recently that the ApoE 2 genotype predisposes an amyloid-

laden vessel to rupture 46.

Finally, mouse models of CAA and CAA-related hemorrhagic stroke will now allow to study the

functional consequences of CAA and related hemorrhage in more detail. We have shown

previously that CAA in adult APP23 mice (in the absence of bleeding) leads to perivascular

neurodegeneration, including neuron loss, dystrophic terminals, and microglial activation 14,66.

In the present study, we have demonstrated multiple and recurrent bleeding in APP23 mice as

they age, which in turn induces additional neurodegeneration. These observations suggest that

a significant portion of the cognitive impairment in APP23 mice 67,68 may be caused by a chronic

toxic effect of CAA on the parenchyma and by CAA-induced multiple hemorrhages. It is also

striking that several forms of dementia have been described recently, all of which exhibit severe

amyloid angiopathy but lack significant neuritic plaque pathology 57,58,69. All of these

observations point to the need to reevaluate the role of CAA in AD dementia.
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Materials and Methods

Animals. Generation of B6,D2-TgN(Thy1-APP Swe)23 transgenic mice (APP23 mice) has been

described previously 15. APP23 mice overexpress APP751 with the Swedish double-mutation

under the control of a neuron-specific Thy-1 promoter element 14,15. The mice have been

backcrossed with C57BL/6J mice. A total of 101�heterozygous male and female APP23 mice and

nontransgenic control mice ranging from 8�to 28�months of age from generation F6-F12 have

been used in this study. Nontransgenic control mice were either littermate control mice or

control mice from another litter of the same generation of backcrossing.

Histology and immunohistochemistry. Mice were overdosed with pentobarbital. Brains were

removed, immersion fixed for 2�d in 4% paraformaldehyde, and embedded in paraffin 16.

Coronal serial sections of 25�µm thickness were cut with a microtome throughout the brain. For

three-dimensional (3D) confocal reconstruction (see below), some brains were post-fixed,

cryoprotected, frozen, and sectioned at 100�µm with a freezing-sliding microtome 17.

Cresyl violet, hematoxylin and eosin (H&E), and Congo red staining were done according to

standard protocols 18. The Berlin Blue method of Perls's was used to visualize ferric iron in

hemosiderin 18,19. Immunohistochemistry on paraffin and fixed-frozen sections was done

according to previously published protocols 16,17 by using the avidin-biotin-peroxidase complex

method (Vector Laboratories, Burlingame, CA) with diaminobenzidine as chromogen. The

following antibodies were used: polyclonal antibodies to Aβ (NT-11/12) 15, polyclonal antibody

AS42/14 specifically to Aβ 42 15; polyclonal antibody FCA3340 and FCA3542 specifically to Aβ40

and to Aβ42, respectively 20 [generous gift from F.�Checlair]; mouse monoclonal antibody to α-

smooth muscle actin (clone 1A4; Sigma, St. Louis, MO), mouse monoclonal antibody to β-

dystroglycan (Novocastra, Newcastle upon Tyne, UK) 21; polyclonal antibody to glial fibrillary

acidic protein (GFAP) (Dako, Glostrup, Denmark); polyclonal antibodies to cystatin C (Accurate

Chemicals, Westbury, NY and Dako); and polyclonal antibody to mouse serum amyloid P

component (SAP) (Calbiochem, La Jolla, CA).

Confocal microscopy. Double-labeling for A β  and smooth muscle cells was achieved by

incubating paraffin sections simultaneously with polyclonal antibody to Aβ (NT12) and mouse

monoclonal antibody to -smooth muscle actin. The secondary antibodies were Alexa 568�goat

anti-rabbit IgG and Alexa 488�goat anti-mouse IgG (1:500; Molecular Probes, Eugene, OR).

Sections were mounted with Vectashield (Vector Laboratories) and analyzed with a Confocal

Laser Scanning Microscope LSM 510,�inverted Axiovert 100�M (Zeiss, Oberkochen, Germany).

For 3D reconstruction of amyloid-laden vessels, thick, fixed frozen sections were incubated with
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NT12 antibody, followed by Alexa 488�goat anti-rabbit IgG. The 3D reconstruction was done by

using the Full3D function of the Imaris 3.0�software (Bitplane AG, Zürich, Switzerland).

Quantitative analysis of CAA and total amyloid burden. Groups of young (8.0�months; n �=�10),

adult (19.2�±�0.2�months; n �= �15), and aged (27.1�±�0.2�months; n �=�16) APP23 mice were

used, with males and females balanced in all groups. Age-matched nontransgenic young

(8.0�months; n �=�10), adult (19.8�±�0.4�months; n �=�8), and aged (26.9�±�0.4�months; n �=�10)

mice were used. Frequency and severity of CAA were quantified on systematically sampled serial

Aβ-immunostained sections (NT12 antibody) throughout the region of interest (every 20th

section through the neocortex; every 10 th section through the hippocampus; every 10th

section through the thalamus; yielding 7-10 sections per region). A rating scale was used that

was similar to that described previously 14,22. "CAA frequency" was calculated by counting the

total number of Aβ-positive vessels in the entire set of systematically sampled sections. To

calculate "CAA severity," A-positive vessels were divided in one of three severity grades: 1,�A β

immunoreactivity confined to the vessel wall; 2,�granular Aβ immunoreactivity in and around

vessel wall with focal infiltration of the amyloid into the neuropil; and 3,�extensive infiltration of

amyloid into the neuropil with a complete amyloid coat around the vessel (see Fig. 1c-e). The

mean for all vessels was taken as CAA severity. Finally, "CAA score" was calculated by multiplying

CAA frequency with CAA severity. All of the quantification was done on the right hemisphere

only. This grading system was used by two independent raters and yielded similar results. Total

amyloid burden (percentage) was quantified on the same set of systematically sampled Aβ-

immunostained sections using a point grid as described previously 23.

Quantitation of cerebral hemorrhage. Cerebral hemorrhage is accompanied by a delayed

appearance of hemosiderin-positive microglia 24. Perls's Berlin blue-stained clusters of

hemosiderin staining were quantified on sets of systematically sampled sections (every 10th

section throughout the neocortex, hippocampus, and thalamus). All numbers are again for the

right hemisphere only. An additional set of every 10th section was stained for H&E and screened

for acute intraparenchymal bleedings (presence of large accumulation of erythrocytes in brain

parenchyma). In addition to the groups of 8-,�19-,�and 27-month-old APP23 and control mice,

we also assessed hemorrhage number in aged APP23 mice and age-matched controls that were

collected after their spontaneous death (APP23, n �=�9; mean age, 24.6�±�0.7�months; controls,

n �=�4; 24.0�±�1.5�months). Brains of these mice were immersion-fixed in 4% paraformaldehyde

for several weeks, paraffin-embedded, and serially cut.

Assessment of the blood-brain barrier. Three 24-month-old female APP23 mice and three

littermate controls were used. Mice received an intravenous injection of horseradish peroxidase
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(HRP) (type IV-A; Sigma) in the tail vein (0.4�mg/gm body weight). Thirty minutes later, mice

were overdosed with pentobarbital and perfused with PBS, followed by 2% paraformaldehyde

plus 2% glutaraldehyde. Brains were post-fixed, cryoprotected, frozen, and cut with a freezing-

sliding microtome. Blood-brain barrier (BBB) leakage was studied by incubating sections in PBS

with 0.05% DAB and 0.03% hydrogen peroxide 25. One transgenic and one aged control mouse

were perfused with 10�ml of 0.4% trypan blue (Fluka, Buchs, Switzerland) in PBS, followed by

2% paraformaldehyde plus 2% glutaraldehyde 26. Brains were post-fixed, cut with a vibratome,

and examined for BBB leakage of the dye.

Statistical analysis. All statistical analysis was done with STATVIEW 5.01.�Significance levels were

set at p�<�0.05.�Indicated is the mean�± SEM.
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Abstract

The E693Q mutation within the amyloid precursor protein (APP) leads to cerebral amyloid

angiopathy (CAA) with recurrent cerebral hemorrhagic strokes and dementia in affected

patients. In contrast to Alzheimer’s disease (AD) patients, these Hereditary Cerebral Hemorrhage

with Amyloidosis-Dutch type (HCHWA-D) patients exhibit few parenchymal amyloid plaques

and show minimal neurofibrillary pathology. Here we report that neuron-restricted

overexpression of human E693Q APP in transgenic mice (APPDutch mice) leads to severe CAA,

smooth muscle cell degeneration, cerebral hemorrhages, and neuroinflammation. In contrast,

neuronal overexpression of wild-type human APP (APPwt mice) results in predominantly

parenchymal amyloidosis. In HCHWA-D and APPDutch mice the Aβ40:42 ratio is significantly
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higher than in AD and APPwt mice, and significant wild-type human or murine Aβ40,

respectively, is co-deposited with the AβDutch. Genetically shifting the ratio of AβDutch40:42

towards AβDutch42 by crossing APPDutch mice with mutated presenilin 1 transgenic mice

redistributes the amyloid pathology from the vasculature to the parenchyma. The

understanding that different Aβ  species can drive amyloid pathology in different cerebral

compartments has implications for current anti-amyloid therapeutic strategies. This HCHWA-D

mouse model is the first to develop robust CAA in the absence of parenchymal amyloid,

highlights the key role of neuronally produced A β  to vascular amyloid pathology, and

emphasizes the differing roles of Aβ40 and Aβ42 in vascular and parenchymal amyloid

pathology.

Introduction

Mutations in the amyloid precursor protein (APP) at the β- and γ-secretase sites have been

shown to cause familial forms of early onset Alzheimer’s disease (AD). These mutations increase

the production of either total amyloid-β peptides (Aβ) or of the more amyloidogenic Aβ1-42

species. In contrast, most mutations within the Aβ domain do not result in a full range of AD

pathology but characteristically result in cerebrovascular pathology 1-3. For example, the E693Q

point mutation in APP (residue 22 of Aβ) results in Hereditary Cerebral Hemorrhage with

Amyloidosis-Dutch type (HCHWA-D), an autosomal dominant form of cerebral amyloid

angiopathy (CAA) 4,5. HCHWA-D patients suffer from recurrent lobar cerebral hemorrhages with

an onset in the fifth decade of life 6. At autopsy patients show extensive CAA in leptomeningeal

arteries and cortical arterioles and to a lesser extent in meningocortical veins. In contrast to AD,

parenchymal amyloid plaques are not prominent in HCHWA-D pathology, although diffuse

parenchymal Aβ is found 7. Because of these features of the disease, HCHWA-D has become the

human genetic archetype of the Aβ congophilic angiopathy seen sporadically in many of the

elderly and in the majority of AD patients 8,9.

Previous in vitro findings have shown that Aβ harboring the Dutch E693Q mutation (AβDutch)

has been associated with enhanced aggregation properties, reduced clearance from brain, and

greater toxicity towards smooth muscle cells compared to Aβ wild-type (Aβwt) 10-14; however,

the reasons for the predominant cerebral vascular amyloid deposition in HCHWA-D patients is

unclear. In the present study we have generated human APP E693Q transgenic mice (APPDutch

mice) to study the mechanisms underlying vascular amyloidosis and the consequences of CAA

using an in vivo model system.
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Results

Cerebrovascular amyloid in HCHWA-D consists of both AβDutch and Aβwt with a

predominance of Aβ1-40

Cerebrovascular amyloid in HCHWA-D brain was found predominantly in leptomeningeal and

cortical vessel wall, often with limited labeling of diffuse parenchymal Aβ deposits (Fig. 1a).

Immunohistochemical staining with carboxy-terminal specific antibodies to Aβ  suggest that

Aβ40 predominates over Aβ42 in the cerebrovascular amyloid (Fig. 1b,c). To confirm this and to

determine whether AβDutch is the predominant Aβ species deposited in the vessel wall, we used

Bicine/Tris/urea SDS-PAGE 15 to separate various A β  species. Analysis revealed that both

HCHWA-D cortical tissue and isolated leptomeningeal vessels contained abundant AβDutch1-40

as well as significant amounts of Aβwt1-40 (Fig. 1d). In contrast, in sporadic AD patients both

Aβ1-40 and Aβ1-42 were clearly present (Fig. 1d). These observations were confirmed by ELISA

which showed only half as much Aβ40 compared to Aβ42 in AD while in HCHWA-D brain tissue

Aβ40 exceeded Aβ42 levels by more than 18-fold (Table 1).

Fig 1. Vascular amyloid in HCHWA-D brain consists of both AβDutch and Aβwt with Aβ1-40 being the predominant

peptide. a, Frontal cortex of HCHWA-D brain (50 year-old patient) immunostained with antibody NT12 to Aβ.

Massive amyloid deposition within leptomeningeal and cortical vessel walls is observed. Only few and diffuse

parenchymal Aβ deposits are observed (arrowhead) although pretreatment may increase parenchymal staining

in the patients 50. b, c, Immunolabeling of vascular amyloid with antibodies specific to Aβx-40 (R208 in b) and

Aβx-42 (R306 in c) reveals that the majority of vascular amyloid ends at amino acid 40. d, Western blotting of

brain homogenates. Synthetic Aβ (lane 1-3). Homogenates of frontal cortex (lane 4, 5) and pia (lane 6, 7) of
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HCHWA-D patients contain both Aβwt1-40 and AβDutch1-40, but no detectable Aβwt1-42 and AβDutch1-42.

This observation suggests that cerebrovascular amyloid in HCHWA-D patients consists of both Aβwt and

AβDutch and is predominantly of the Aβ1-40 isoform. Control patients show no detectable Aβ (lane 8) while

both Aβwt1-40 and 1-42 are found in a sporadic AD patient (lane 9). Bars are 100µm (a) and 50µm (b, c).

Neuron-specific overexpression of human E693Q APP leads to CAA

To understand the pathogenesis of HCHWA-D and the mechanisms leading to cerebrovascular

amyloid, we generated transgenic (tg) mice overexpressing E693Q mutated human APP (hAPP)

under the control of the neuron-specific Thy-1 promoter element (APPDutch mice). High levels

of hAPP mRNA were detected in neocortex, hippocampus, and brain stem by in situ

hybridization (Fig. 2a). Consistently, immunohistochemistry revealed robust hAPP expression in

the same brain regions exclusively within neurons and neuronal processes. No expression of

hAPP mRNA or protein was detected in vessel walls (Fig. 2b). Two tg lines were selected with

high hAPP expression levels that remained constant with aging (Fig. 2c). By direct Western blot

analysis, AβDutch could not be detected in young APPDutch mice. AβDutch1-40, however, was

readily detectable in a 23 month-old mouse, consistent with amyloid deposition at this age (Fig.

2c). Morphological analysis of APPDutch mice between 22 to 30 months of age (n=30) showed

an onset of vascular amyloid deposition at approximately 22-25 months for both lines. Amyloid

deposition in the brain was largely confined to the cerebral vasculature (Fig. 2d), appearing first

in leptomeningeal vessels followed by cortical vessel. Female mice appeared to have an earlier

onset than males. Congo red (Fig. 2g) and Thioflavin S staining (not shown) demonstrated that

much of the cerebrovascular amyloid was in a compact β-pleated sheet conformation. Similar to

HCHWA-D brain and consistent with the Western blot analysis, immunoreactivity for Aβ40 was

much more intense than for Aβ42 (Fig. 2e,f). Some amyloid-laden vessels showed a “vessel-

within-vessel” configuration (Fig. 2h). At the electron microscopic level, an irregular thickening

of the basement membrane with amorphous material was observed in some vessels while others

contained amyloid fibrils within the basement membrane, predominantly on the adventitial

side, while the endothelial cell layer appeared to be intact. At a more advanced stage amyloid

fibrils were observed in a radial pattern in between the smooth muscle cells with some fibrils

invading the parenchyma (Fig. 2i). In spite of a significant vascular amyloid burden, APPDutch

mice did not develop compact parenchymal amyloid plaques and only rarely diffuse

parenchymal Aβ deposits were observed.
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Fig 2. APPDutch mice develop cerebral amyloid angiopathy. a, In situ hybridization reveals high transgene-derived

mRNA levels in neocortex (ctx) and hippocampus (hi) and brain stem. b, Immunostaining for human (h) APP in

neocortex shows punctate labeling of neuronal perikarya (arrowhead) and weaker labeling of axonal processes.

Consistent with the neuron-specific promoter, there was no hAPP expression in the vessel wall (the lumen of the

vessel is indicated by an asterisk). c, Western blot analysis of hAPP and hAβ in mouse brain using an antibody

specific to human APP/Aβ. Upper panel: APPDutch expression in APPDutch mouse line 23 (lane 4) and 33 (lane

5, 7) and a non-transgenic control littermate (lane 6). Bands demonstrate immature and mature forms of hAPP.

Lower panel: Synthetic human Aβwt1-40 mixed with human Aβwt1-42, AβDutch1-40, and AβDutch1-42

peptides were used as markers (lanes 1-3). Aβ levels did not reach detection levels in pre-depositing APPDutch

mice without immunoprecipitation (shown are 13 month-old mice). In contrast, in a 23 month-old amyloid

depositing APPDutch mouse AβDutch1-40, but not AβDutch1-42, was readily detected (lane 7). d,

Immunohistochemical analysis of a 29 month-old APPDutch mouse shows Aβ deposition largely confined to



- 71 -

leptomeningeal and neocortical vessels (NT12 antibody). No compact parenchymal deposits are seen. e, f,

Immunolabeling of vascular amyloid with antibodies specific to Aβ40 (R208 in e) and Aβ42 (R306 in f) reveals

that the majority of vascular amyloid ends at amino acid 40. g, Congo red staining of an amyloid-laden vessels

demonstrates that the vast majority of the amyloid is of compact nature and congophilic. h, High magnification

of amyloid-containing cortical vessel that shows a vessel-within-vessel configuration. i, Electron micrograph

demonstrating abundant amyloid fibrils (asterisk) between the smooth muscle cells (SMC) in a 30 month-old

APPDutch mouse. Bars are 1mm (a), 10µm (b, e, f, g, h), 200µm (d), 1µm (i).

CAA induces hemorrhages and neuroinflammation

Amyloid-laden vessels in APPDutch mice show a severe loss of smooth muscle cells (Fig. 3a,b).

Consistent with the loss of smooth muscle cells and a concomitant weakening of the vessel wall,

fresh hemorrhages (Fig. 3c,d), as well as indications of previous hemorrhages (Fig. 3e,f) were

found in three of the oldest APPDutch mice. No bleedings were found in age-matched, non-

transgenic mice (not shown).

In APPDutch mice with CAA, a strong, perivascular microglial inflammatory reaction was observed

(Fig. 3g). This microgliosis was confined to the immediate vicinity of amyloid-laden vessels and was

absent adjacent to non-affected vessels (Fig. 3h). In addition, an activation of astrocytes was

observed throughout all neocortical areas affected by CAA (Fig. 3i) but was absent in brain areas

devoid of vascular amyloid and in non-tg control mice (Fig. 3k). The widespread astrocytosis in areas

affected with CAA may be the result of partial ischemia and a perfusion-deficit associated with

amyloid-laden vessels.

Table 1. Aβ40:42 ratios in brains of pre-depositing and depositing transgenic mice, HCHWA-D and AD patients.
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Fig 3. Hemorrhages and neuroinflammation in APPDutch mice. a, Double labeling for smooth muscle cell actin

(green) and Aβ (red) in a leptomeningeal vessel of a 29 month-old APPDutch mouse reveals displacement of

smooth muscle cells by vascular amyloid (arrowheads). b, Vessels that are not affected by Aβ show a continuous

rim of smooth muscle cells. c, A fresh hemorrhage is shown that occurred at the surface of the brain of an 29

month-old APPDutch mouse. d, H&E staining on a cross-section through the bleeding shown in c. e ,

Microhemorrhage associated with amyloid-laden vessels visualized by Perls' Prussian blue staining for ferric iron.

f, High magnification of such microbleeds reveal hemosiderin-positive microglia. g, Activated perivascular

microglia (blue) in the immediate vicinity of amyloid-laden vessels (Congo red) in the neocortex of a 29 month-

old APPDutch mouse. h, Such microgliosis was absent in the same mouse around non-affected vessels

(arrowheads). i, Reactive astrocytes (blue) in neocortical areas with CAA (Congo red). k, In neocortical regions

with no vascular amyloid no reactive astrocytes were observed. Bars are 20µm (a, b, e), 100µm (c, g, h, I, k),

50µm (d), 5µm (f).

Increased Aβ40:42 ratio in APPDutch compared to APPwt mice

To examine the determinants that lead to vascular vs. parenchymal amyloid deposition, we

compared the pattern of amyloid deposition in APPDutch mice with that of tg mice

overexpressing wild-type hAPP, at levels similar to the APPDutch mice, under the same Thy-1

promoter element, and in the same C57BL/6J genetic background (APPwt mice). Aged APPwt

mice developed parenchymal plaques with limited vascular deposits (Fig. 4a). Western blot
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analysis of APPwt mice with amyloid deposits revealed both Aβwt1-40 and Aβwt1-42 while in

APPDutch mice AβDutch1-40 was seen but AβDutch1-42 was below detection level (Fig. 4b).

This was confirmed by ELISA, which revealed a more than 4-fold higher human Aβ40:42 ratio in

APPDutch mice than in APPwt mice (Table 1; for absolute values see Table 1S, supplementary

material). We also analyzed steady-state levels of Aβ40 and Aβ42 in APPDutch and APPwt mice

at 7 mo of age, prior to detectable amyloid deposition, to determine whether this difference in

the Aβ40:42 ratio is an early event or only seen after the accumulation of significant amyloid. An

almost 2-fold greater ratio of Aβ40:42 was seen in young APPDutch when compared to APPwt

mice of a similar age (Table 1, 1S).

Fig 4. Parenchymal and vascular amyloid deposition in APPwt mice. a, Aβ-immunostaining of an 18 month-old

APPwt mouse reveals parenchymal amyloid deposits with only scattered CAA. b, Western blot analysis of human

Aβ in APPwt brain in comparison to APPDutch brain. Lanes 1-3, synthetic human Aβ. In amyloid-depositing

APPwt (18 months) mice a substantial Aβwt1-40 and somewhat less Aβwt1-42 band was observed (lane 5) while

in amyloid-depositing APPDutch mice (23 months) only AβDutch1-40 was detected (lane 4). Scale bar is

100µm.
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Increased AβDutch1-42 levels in APPDutch/PS45 double tg mice provoke early and massive

parenchymal amyloid

Examining our hypothesis that a high ratio of AβDutch1-40 over AβDutch1-42 is linked to and

potentially necessary for the predominant vascular amyloid deposition in APPDutch mice, we

crossed APPDutch mice with mice that overexpress human presenilin-1 bearing the G384A

mutation (PS45 mice), which is known to increase Aβ1-42 production 16,17. Strikingly, starting at

12 weeks of age APPDutch/PS45 double tg mice developed parenchymal amyloid in the

neocortex and hippocampus. At 10 months of age massive parenchymal diffuse and compact

amyloid was found in virtually all brain regions. Unlike the APPDutch single tg mice, vascular

amyloid, although present, was a much less prominent feature in the APPDutch/PS45 double tg

mice (Fig. 5a).

Fig 5. Predominant parenchymal amyloid deposition in APPDutch/PS45 double tg mice. a, Aβ-immunostaining of a

10 month-old APPDutch/PS45 mouse shows extensive, predominantly diffuse, but also some congophilic,

parenchymal amyloid deposits with only scattered CAA. b, Western blot analysis of human Aβ in mouse brain

immunoprecipitates. Lanes 1-3, synthetic human Aβ. Pre-depositing (4 month-old) APPDutch mouse reveals

only AβDutch1-40 (lane 4). In contrast, both AβDutch1-40 and 1-42 are detectable in a pre-depositing 2,5

month-old (lane 5) and depositing 10 month-old (lane 6) APPDutch/PS45 double tg mice. In order to show

AβDutch1-40 and 1-42 as distinct bands, the sample shown in lane 6 was highly diluted. Scale bar is 100µm.
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Western blot analysis of APPDutch/PS45 brain homogenates revealed abundant AβDutch1-42 in

addition to AβDutch1-40 (Fig. 5b). ELISA measurements confirmed this observation, with

AβDutch42 at least twice as abundant as AβDutch40 in pre-depositing and depositing double tg

mice (Table 1, 1S). These results demonstrate that AβDutch is capable of forming parenchymal

amyloid deposits and that such deposits can be induced in APPDutch mice by increasing the

production of AβDutch42 via the expression of mutant presenilin.

Endogenous murine Aβ is co-deposited with human Aβ

To determine whether endogenous murine Aβ, the counterpart of Aβwt derived from the wild-

type allele in HCHWA-D patients, is co-deposited with transgene-derived human Aβ in APPDutch

mice, we performed ELISAs specific for murine Aβ40 and Aβ42. The amount of murine Aβ was

4.4±0.1% of the human Aβ  detected in APPwt mice and 8.0±1.0% in APPDutch mice.

Interestingly, depositing APPDutch mice showed a roughly 3-fold increase in the ratio of murine

Aβ40:42 when compared to APPwt mice (Table 1, 1S).

Discussion

In spite of the identification of the HCHWA-D causing APP mutation more than a decade ago 4,

progress toward understanding the pathogenesis of HCHWA-D has been hampered by the lack

of an animal model. Here we describe a transgenic mouse model that develops extensive

cerebrovascular amyloid deposits in leptomeningeal and cortical vessels, similar to that found in

affected patients 5,7. Parenchymal amyloid is nearly absent, and the few parenchymal plaques

found are diffuse 7. The observation that neuronal expression of APPDutch is sufficient for

cerebrovascular amyloidosis, smooth muscle cell degeneration and hemorrhage in a mouse

model strongly suggests that neurons are the source of the cerebrovascular amyloid in HCHWA-

D. Moreover, these results demonstrate that smooth muscle cell degeneration does not require

intracellular Aβ  production but can be initiated by extracellular, neuron-derived Aβ  that is

transported to and accumulates at the vasculature.

Expanding upon previous research 18,19, we find that amyloid deposits in HCHWA-D brains

contain not only AβDutch40 but also abundant Aβwt40, with only little Aβ42. Like the human

disease, in the APPDutch mouse the vast majority of the deposited Aβ is Aβ40 with AβDutch40

12-fold more abundant than AβDutch42. This is in contrast to sporadic AD and APPwt mice or

other transgenic mice expressing Swedish APP, where significantly more Aβ42 relative to Aβ40 is

deposited 20-23. In both HCHWA-D and APPDutch mice Aβwt, derived from the wild-type allele in
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HCHWA-D and from the endogenous murine APP in the APPDutch mice, follows the deposition

pattern of the mutated AβDutch species.

The two other mouse models we have examined in this study further highlight the important

role of the Aβ40:42 ratio in determining vascular vs. parenchymal amyloid deposition. The

APPwt mouse overexpresses APP at levels comparable to the APPDutch mouse but develops

abundant parenchymal plaques and only sparse vascular amyloidosis suggesting that the single

E693Q amino acid substitution is sufficient to target neuron-derived Aβ  to the vessel wall.

Strikingly, the Aβ40:42 ratio in APPwt mice was significantly lower compared to APPDutch mice.

Thus, a straightforward explanation for why the Dutch mutation leads to CAA would be that it

favors the production of Aβ40, which in turn is vasculotropic. To examine this hypothesis we

determined the Aβ40:42 ratio in young transgenic mice before the onset of amyloid deposition,

where a two-fold higher ratio of Aβ40:42 was seen in APPDutch mice when compared to APPwt

mice. In conditioned media of E693Q transfected cells a similar, albeit somewhat smaller

increase in the Aβ40:42 ratio has been reported 11,24 suggesting that the Dutch mutation affects

Aβ40:42 ratios at the level of Aβ production or clearance. Recent results show that AβDutch40 is

more resistant to proteolysis by both neprilysin and insulin-degrading enzyme 25,26 and is less

efficiently cleared into the blood 13 than Aβwt40, however, similar studies with AβDutch42 have

not been reported.

Familial AD-causing PS1 mutations shift the generation of Aβ to favor Aβ42, which results in

early and robust parenchymal amyloid deposition in human wild-type Aβ producing tg mice
16,27,28. Crossing the APPDutch mouse with the PS45 line resulted in, at a young age, abundant

parenchymal plaque formation with limited CAA pathology. Thus, although AβDutch

preferentially accumulates around cerebral vessels, genetically shifting the ratio of

AβDutch40:42 to favor AβDutch42 is sufficient to alter the distribution of the resulting amyloid

pathology from the vasculature to the parenchyma. Moreover, this demonstrates that AβDutch

can form dense and congophilic plaques within the parenchyma and that parenchymal amyloid

formation in the APPDutch mouse and HCHWA-D patients is therefore likely to be limited by the

absence of Aβ42-driven parenchymal amyloid seeding. The present data do not exclude a role

for Aβ42 as seed for vascular amyloid.

We have previously shown that cerebral amyloidosis is not a local process and that Aβ can be

transported extracellularly and accumulate distant to its site of production 29, as must also occur

in the APPDutch mouse. This observation, together with the finding of similar intraneuronal Aβ

accumulation in APPDutch and APPwt tg mice (Fig. 1S, supplementary material), argues that

different A β  species interact differently with the extracellular environment, making Aβ´s

movement through the different local environments in the CNS an important determinant of

amyloid pathology. For instance, when Aβ42 concentration is insufficient to form and maintain

parenchymal amyloid seeds, soluble Aβ is transported from neurons to the vasculature where it
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is cleared into the blood or drained along perivascular spaces 30,31. Coupled with the observation

that AβDutch40 is less efficiently cleared than Aβwt40 13, this may in part explain why

AβDutch40 accumulates at the vessel wall in the APPDutch mouse but can then accumulates

within the parenchyma when this mouse is crossed with the PS45 mouse.

The knowledge that both Aβ40 and Aβ42 species have the potential to drive amyloid pathology,

albeit within different compartments, will undoubtedly have further implications as anti-Aβ

therapies are developed. For example, anti-Aβ immunotherapy has been shown to preferentially

clear Aβ42 from mice with pre-existing amyloid pathology 32,33. While selective clearance of

Aβ42 would beneficially reduce parenchymal amyloid burden, this might potentiate vascular

amyloid pathology as has been alluded to in Aβ-immunotherapy studies done in mice and may

have been the case for the two Aβ42-immunized patient who have gone to autopsy 32,34-36.

Given this complexity, further studies of anti-Aβ therapies will need to follow alterations in the

Aβ40 to Aβ42 ratio while addressing the resulting balance of vascular and parenchymal amyloid

pathology.

Most HCHWA-D patients die early due to recurrent strokes 6. A few patients with relatively

restricted stroke pathology, however, reach a considerable age. Nevertheless, these individuals

show a continuous cognitive decline similar to that seen in AD patients 37. This supports recent

studies suggesting that CAA is not only a significant cause of intracerebral hemorrhage in the

elderly, but also an important contributing factor to cognitive impairment and AD dementia 38.

CAA has been suggested to interfere with the anatomical integrity of the vessel wall, the

physiological response to vasodilation, and can occlude affected vessels and thus induce

perivascular ischemia 8,39,40. However, these studies have been limited by their reliance on end-

stage human autopsy cases and transgenic models that have severe parenchymal amyloidosis in

addition to CAA 41,42. Our APPDutch model, which recapitulates well human HCHWA-D, is likely

to be an invaluable tool with which to further study the pathogenic mechanism by which CAA

affects cognition and neurodegeneration and in the development of therapeutic strategies.

Methods

Patients.   HCHWA-D tissue of frontal cortex and pial vessels were obtained at autopsy from five

patients (50 to 76 years old; post-mortem delay from 5 to <48 hrs). For comparison cortical

tissue from nine autopsy confirmed AD cases (61-93 years, post-mortem delay 4-26 hrs) and

two control patients (78 and 87 years, post mortem delay 4-11 hrs) were used.

Generation of transgenic mice. To generate Dutch-mutant APP transgenic mice, human

APP751 cDNA with the E693Q mutation was inserted into the blunt-ended XhoI site of the
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vector pTSCα1 containing the murine Thy-1.2 minigene 43. After removal of vector sequences

by NotI/PvuI digestion, linear Thy-1-APP constructs were injected into C57BL/6J oocytes. Five

positive transgenic founder mice (C57BL/6-TgN(Thy1-APPE693Q)) were identified and expression

of human APP was assessed by Western blot and immunohistochemistry. The two lines (#23,

#33) with the highest transgene expression were used in this study (APPDutch mice). Expression

levels in these lines are about 5-fold over endogenous APP levels (data not shown). The

generation of the wild-type human APP751 transgenic mice (C57BL/6-TgN(Thy1-APP)51) has

been described previously 44. Line #16  (the APPwt mouse), which has a similar or slightly higher

APP expression level than the APPDutch mice, was used in this study. APPDutch/PS45 double tg

mice were obtained by crossing APPDutch mice with mice overexpressing human G384A

mutated presenilin-1 under the control of the murine Thy-1 promoter (B6,D2-TgN(Thy1-

presenilin-1G384A)45). These PS45 mice were backcrossed to C57BL/6J for more than 7

generations prior to use. All mice analyzed were hemizygous for the transgene(s) of interest.

Histology and immunohistochemistry. Tissue was immersion fixed in 4% paraformaldehyde.

Histology and immunohistochemistry was performed on either 4µm thick paraffin-embedded or

25µm free-floating frozen sections. Aβ  was immunostained with rabbit polyclonal antibody

NT12 (NT11) 43, using standard immunoperoxidase procedures with Elite ABC kits (Vector

Laboratories, Burlingame, CA), and 3,3’-diaminobenzidine (Sigma, St. Louis, MO) or Vector SG

(Vector Laboratories) as substrates. For specific staining of Aβx-40 or Aβx-42, rabbit antisera

R208 (R163) or R306 (R165), respectively, were used 45 (gift of P. Mehta, New York, NY). All Aβ

antibodies recognized both Aβwt and AβDutch. Human APP (hAPP) was visualized with

polyclonal antibody A4CT (specific to the C-terminal 100 amino acids of APP) (courtesy of K.

Beyreuther, Heidelberg, Germany). Microglia and astroglia were stained with rabbit polyclonal

antibody to Iba1 46 (courtesy of Y. Imai, Tokyo, Japan) and with rabbit polyclonal antibody to

glial fibrillary acidic protein (GFAP) (Dako, Glostrup, Denmark), respectively. Double

immunofluorescence labeling of Aβ  and smooth muscle cells was performed for confocal

microscopy. NT12 and mouse monoclonal antibody to α-smooth muscle actin (A-2547, Sigma)

followed by goat anti rabbit Alexa 568 and goat anti mouse Alexa 488 (Molecular Probes,

Eugene, OR) were used. Shown are superpositions of optical sections. Congo red, Thioflavin S,

and Perls' Prussian blue reaction for ferric iron were performed according to standard protocols
40.

Electron microscopy. Mice were perfused with ice-cold PBS for 5 min. Neocortical tissue pieces

were removed and immersion fixed in 4% paraformaldehyde/0.5% glutaraldehyde at 4°C. The

tissue was then postfixed in 1% osmium tetroxide in 0.1 M cacodylate buffer, dehydrated, and

processed for Spurr embedding. Ultrathin sections were cut from selected areas, stained with
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uranyl acetate and lead citrate and examined and photographed with a Jeol JEM1011 electron

microscope.

In situ hybridization. In situ hybridization for human APP was performed as previously

described 43,47. In brief, a 33P-labeled oligonucleotide probe, 5‘-AGCCTCTTCCTCTACCTCATC-

ACCATCCTCATCGTCCTCG-3‘, complementary to the coding sequence of hAPP between

nucleotides 859 and 898 was used at a final concentration of 2pmol/ml.

Western blot analysis.   APP expression levels in transgenic mice were analyzed using standard

8% SDS-polyacrylamide minigels followed by blotting and antibody binding as described below.

For analysis of Aβ, Western blots were performed according to previously described protocols 15.

Briefly, samples of homogenized brain hemispheres were subjected to SDS-PAGE using

10%T/5%C Bicine/Tris minigels containing 8M urea in the separation gel. To detect Aβ in brains

of pre-depositing mice, immunoprecipitation with antibody 6E10 was performed. Proteins were

transferred to a PVDF Immobilon-P membrane (Millipore, Bedford, MA) by semi-dry blotting,

incubated with antibody 6E10 (Signet, Dedham, MA) and visualized by chemiluminescence

(ECL, Amersham). Antibody 6E10 recognizes residue 1-17 of Aβ, and the Dutch mutation at

position 22 does not interfere with its binding. Synthetic Aβwt1-40 and Aβw1-42 peptides were

purchased from Bachem (Bubendorf, Switzerland). Synthetic AβDutch1-40 and AβDutch1-42

were gifts of J. Ghiso (New York, NY) and W. E. Van Nostrand (Stony Brook, NY).

ELISA. Cerebral Aβ levels of patients and Aβ depositing mice were assayed by sandwich ELISA

from formic-acid-extracted, sucrose homogenates prepared from cortical tissue or mouse hemi-

brains lacking the cerebellum as previously described 48. Aβ  was captured with Aβ carboxy-

terminal monoclonal antibodies that recognize exclusively either Aβx-40 (JRF/cAβ40/10) or Aβx-

42 (JRF/cAβ42/26) and detected with horseradish peroxidase-conjugated JRF/Aβtot/17, which

was raised against the amino-terminal 16 residues of human Aβ 48. Aβ levels in mice prior to

amyloid deposition were determined by preparing a sucrose homogenate from each hemibrain

(without cerebellum) and then extracting this in diethylamine (DEA), as previously described 49.

Endogenous murine Aβ  was similarly detected using DEA extraction and a murine-specific

monoclonal antibody for detection (JRF/rAβ1-15/2) 49. ELISA results are reported as the mean ±

SEM in fmol Aβ per g wet brain, based on standard curves using synthetic Aβ1-40 and Aβ1-42

peptide standards (American Peptide Co. Sunnyvale, CA). The values were compared by non-

parametric Mann-Whitney U analysis. All capture and detection antibodies were a gift from M.

Mercken, Johnson and Johnson Pharmaceutical Research and Development/Janssen

Pharmaceutica.
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Supplemental Material

Supplemental Figure 1S.

Fig 1S. Intraneuronal Aβ in APPDutch and APPwt transgenic mice. NT12-immunostaining for Aβ (brown) in

hippocampal CA1 neurons reveals intracellular human Aβ in a 29 month-old APPDutch (a) and a 24 month-old

APPwt mouse (b), while no Aβ is detected in a 24 month-old non-transgenic control littermate (c). Bars are 20

µm (a, b, c).
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Supplemental Table 1S.

Note that the Aβ40:42 ratios in Table 1 are the mean +/- SEM calculated from the individual Aβ40:42 ratios

determined for each animal, not from the mean Aβ40 and Aβ42 measurements for each genotype given here.
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Abstract

Amyloid precursor protein (APP) processing and the generation of β-amyloid peptide (Aβ) are

important in the pathogenesis of Alzheimer's disease. Although this has been studied extensively

at the molecular and cellular levels, much less is known about the mechanisms of amyloid

accumulation in vivo. We transplanted transgenic APP23 and wild-type B6 embryonic neural

cells into the neocortex and hippocampus of both B6 and APP23 mice. APP23 grafts into wild-

type hosts did not develop amyloid deposits up to 20 months after grafting. In contrast, both

transgenic and wild-type grafts into young transgenic hosts developed amyloid plaques as early

as 3 months after grafting. Although largely diffuse in nature, some of the amyloid deposits in

wild-type grafts were congophilic and were surrounded by neuritic changes and gliosis, similar

to the amyloid-associated pathology previously described in APP23 mice. Our results indicate

that diffusion of soluble Aβ in the extracellular space is involved in the spread of Aβ pathology,

and that extracellular amyloid formation can lead to neurodegeneration.
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Introduction

Alzheimer's disease (AD) is a late-onset progressive neurodegenerative disorder that is

characterized by aggregation of Aβ into senile plaques and cerebrovascular amyloid. Genetic

studies and results from transgenic (Tg) mice support the view that the production and/or

deposition of Aβ is an early and critical process in AD pathogenesis that triggers a cascade of

pathological events leading to the formation of neurofibrillary tangles, synapse and neuron loss,

neuroinflammation and dementia 1,2. A matter of controversy, however, is whether this cascade

is initiated by the accumulation of Aβ  in the extracellular space or by intraneuronal Aβ

generation 2-11.

To investigate the mechanisms and early stages of abnormal protein deposition and related

neurotoxicity, previous work used neural transplantation techniques to study prion

encephalopathy 12. In AD research, similar approaches have been pursued, but no convincing

amyloid pathology has been associated with the grafts 13-16. However, the recent generation of

APP-transgenic mice that develop robust cerebral amyloid with aging 17-19 has opened new

opportunities to study the mechanism of cerebral amyloidosis by using neurografting

techniques. To test the hypothesis that transplanted neural tissue retains its native properties

regardless of host genotype, we transplanted wild-type (WT) and APP23 Tg embryonic cortical

and hippocampal brain tissue into the brains of both Tg and WT mice. Our results suggest that

the phenotype of the transplanted tissue is strongly influenced by the properties of the host,

and that extracellular diffusion of Aβ is centrally involved in cerebral amyloidogenesis. Moreover,

we conclude that extracellular amyloid formation is closely associated with neurodegeneration.

Results

APP23 grafts into WT hosts show no amyloid for 20 month

Cell suspensions of APP23 embryonic cortical and hippocampal tissue were injected into the

neocortex and hippocampus, respectively, of 3 month-old B6 WT mice. Grafts were analyzed

3–24 months later. All grafts integrated well into the surrounding host tissue and appeared

healthy and viable by morphological analysis. Only minimal gliosis was found at the graft–host

interface. Nevertheless, grafts could easily be identified in cresyl-violet stained sections due to

differences in cytoarchitecture between graft and host tissue (Fig. 1a, d and g).

Immunohistochemistry revealed robust and exclusive expression of human APP (hAPP) in the

graft, where hAPP was restricted to neurons and their processes, consistent with the neuron-
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specificity of the Thy-1 promoter used to generate APP23 mice (Fig. 1b, e and h). Cellular hAPP

expression within the grafts looked very similar to that in adult APP23 mice.

Although amyloid deposition in neocortex and hippocampus of APP23 mice starts at the age of

6 months 19, we did not find any amyloid formation in hippocampal or cortical grafts up to 20

months after grafting (Fig. 1c and f and Table 1). Beyond 20 months, when hosts were more

than 23 months of age, we identified two out of nine mice that developed massive amyloid in

the parenchyma and vasculature within at least one graft (Fig. 1i). Interestingly, some amyloid

was found outside the grafts, particularly in vessels. To study whether it is the age of the host or

the post-grafting time that determines amyloid deposition in the grafts, we also placed APP23

grafts in adult and aged WT hosts (Table 1). Again, grafts were healthy, viable and well-

integrated into the host. However, no amyloid formation was observed in such grafts,

suggesting that it is not the age of the host, but rather the length of time that the grafts reside

in the host, that determines amyloid formation.

Figure 1. Neural grafting of APP23 tissue into B6 hosts. Embryonic APP23 hippocampal tissue was injected into

the hippocampus of 3 month-old B6 WT hosts. Mice were analyzed at various times after grafting (Table 1).

Shown are mice analyzed 3 months (a–c), 18 months (d–f) and 21 months (g–i) after grafting. Cresyl violet

staining was used to identify the grafts (asterisks in a, d, g). Immunohistochemistry revealed strong hAPP

expression restricted to neurons in the grafts (b, e, h). Nevertheless, Aβ-immunostaining did not reveal any

amyloid deposits 3 and 18 months post-grafting (c, f). At 21 months postgrafting, massive amyloid deposition

in both plaques and vessels was found that was to a great extent congophilic (i, insert). The bulk of the amyloid

was confined to the graft, but some vessels with amyloid (arrow) and some diffuse amyloid (arrowhead) were



- 88 -

found outside the graft in the host tissue. Similar results were observed when cortical Tg tissue was injected into

the cortex of WT mice (not shown). Scale bars, 250 µm (a–c) and 400 µm (d–i).

Table 1. APP23 tissue transplanted into B6 brain.

APP expression and Aβ levels in APP23 grafts

We tested several hypotheses to explain the delay/lack of amyloid formation in neocortical and

hippocampal APP23 grafts in WT hosts, as compared to the cerebral amyloidosis observed in

APP23 mice at the age of 6 months. First, we tested the hypothesis that hAPP expression may be

downregulated in grafted neurons, as compared to the expression in normal adult APP23 mice

(Fig. 2a and b). However, no obvious differences in hAPP expression were found between

micropunches taken from neocortical and hippocampal Tg grafts and those taken from

neocortex and hippocampus of normal adult APP23 mice.

Second, we tested the hypothesis that alterations in the processing of hAPP in grafted neurons

may lead to a reduction in Aβ production and/or a shift in the ratio of Aβ1-40 to Aβ1-42. To this

end, Aβ was immunoprecipitated from micro-punches taken from Tg grafts and compared to

micropunches taken from 4–6 month-old APP23 mice, at an age before these mice develop

amyloid deposits. Results showed similar Aβ levels in the grafts as compared to young APP23

mice, with a predominance of Aβ1-40 over Aβ1-42 (Fig. 2b). Differences in Aβ1-40 levels in the

grafts as compared to young APP23 mice ranged from -31% to +28% (mean, -2 ± 17%; P >

0.05). Interestingly, in the oldest transplant analyzed (20 months post-grafting), there was a

relative increase of Aβ1-42 over Aβ1-40 (Fig. 2c). This observation is consistent with the result

obtained in aged amyloid-depositing APP23 mice. Overall, these results do not support the idea

that reduced Aβ production by the grafted tissue is responsible for the slow onset of amyloid

deposition in APP23 grafts in WT hosts versus normal APP23 mice.
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Figure 2. APP and Aβ levels in APP23 grafts placed in B6 hosts. (a) Hippocampus of a 15 month-old B6 WT

mouse that received an APP23 graft at the age of 3 months. A micropunch (p) was taken from the graft

(asterisk) and subjected to western blot analysis. The remaining tissue was immersion-fixed and immunostained

for hAPP, showing that hAPP expression was exclusively confined to the graft. Scale bar, 150 µm. (b) Western

blotting of the micropunch taken from the APP23 hippocampal graft shown in (a) with hAβ/APP-specific

antibody 6E10. In addition, micro-punches from hippocampus were taken from young 4–6 month-old APP23

mice and control B6 mice for comparison. Lane 1, synthetic Aβ40/42. Lane 2, punch from the hippocampal

APP23 graft. Lane 3, punch from B6 hippocampus (CA1 area). Lane 4, punch from APP23 hippocampus (CA1

area). Note that hAPP expression and Aβ levels in the graft (lane 2) were comparable to that in APP23

hippocampus (lane 4). In both graft and young APP23 mouse, Aβ1-40 was several fold higher than Aβ1-42. (c)

Similar analysis as in (b) but for an APP23 cortical graft 20 months post-grafting. For comparison, micropunches

from neocortex were taken from a 12 month-old amyloid- depositing APP23 mouse and a control B6 mouse.

Lane 1, synthetic Aβ40/42. Lane 2, punch from the cortical APP23 graft. Lane 3, punch from B6 neocortex. Lane

4, punch from APP23 neocortex.

Third, we investigated the possibility that intracerebral grafting of Tg hAPP/Aβ producing tissue

might evoke a humoral immune response in a WT host that has never seen hAPP/Aβ before 20,

which might prevent amyloid deposition in the transplant 21. However, serum titers of anti-Aβ

antibodies in engrafted mice were not different from serum titers of normal B6 mice (both <

1:100). As a positive control, we used sera of APP23 mice passively immunized with Aβ

antibodies with titers of 1:4,000 to 1:20,000 22.

Grafts into APP23 hosts develop amyloid after 3 months

To study the influence of the host upon amyloid deposition in the graft, we intracerebrally

grafted cortical and hippocampal APP23 (Tg) and B6 (WT) control tissue into the cortex and

hippocampus, respectively, of 6 month-old APP23 mice (Fig. 3 and Table 2). Again, grafts

integrated well into the surrounding host tissue and appeared healthy and viable by

morphological analysis with no evidence of neurodegeneration. After only 3 months post-

grafting, Tg grafts developed significant amounts of amyloid (Fig. 3a–c) and so did WT cortical

and hippocampal grafts (Fig. 3d–i and Table 2). Amyloid deposition occurred throughout the

grafts, with the greatest accumulation along the border of the graft. At this age, the host tissue

has also developed amyloid plaques, but in most animals they were significantly fewer than in
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the grafts. Semiquantitative analysis of double-stained sections for Aβ and Congo red indicated

that 50% and 12% of the amyloid was compact in Tg and WT grafts, respectively (Fig. 3i insert).

Immunohistochemical analysis with antibodies specifically to Aβx-40 and Aβx-42 revealed the

presence of both Aβ species in the graft with a predominance of Aβx-40 over Aβx-42 (Fig. 4a

and b). Immuno-labeling with an antibody that recognizes mouse but not human Aβ showed

very faint labeling of the amyloid deposits, suggesting that minimal amounts of mouse Aβ may

contribute to the amyloid in WT grafts (Fig. 4c), as was also seen for the host tissue amyloid. Aβ

was also immunoprecipitated from micropunches taken from amyloid-bearing WT grafts. Results

revealed again both human Aβ1-40 and Aβ1-42 in the graft similar to that seen in aged

amyloid-depositing APP23 mice (Fig. 4d and e).

Table 2. APP23 and B6 tissue transplanted into APP23 brain.
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Figure 3. Neural grafting of APP23 and B6 tissue into APP23 hosts. Embryonic APP23 hippocampal tissue was

injected into the hippocampus of a 6 month-old APP23 mouse and analyzed 3 months later (a–c). Cresyl violet

staining shows the graft (asterisk) in the dentate gyrus (a). Immunohistochemistry with an antibody to hAPP

shows robust neuronal expression of hAPP in the graft and host (b). Immunostaining for Aβ in adjacent sections

revealed considerable amyloid deposits in the graft (c). Strikingly, amyloid deposition in the graft was also found

when B6 WT hippocampal tissue was injected into the hippocampus of a 6 month-old APP23 mouse and

analyzed 3 months later (d–f). In this case, no hAPP expression was found in the graft (e). The same was found

when embryonic B6 WT cortical tissue was grafted into the neocortex of a 6 month-old APP23 mouse and

analyzed 3 months later (g–i). Although the majority of the amyloid was of the diffuse type, some amyloid was

compact and Congo red–positive. The insert in (i) shows an adjacent section stained for Congo red and viewed

under cross-polarized light. Note that in most cases amyloid deposition in the graft was more intense than the

scattered amyloid plaques in the 9 month-old host tissue (arrows in f and i). Scale bars, 90 µm (a–f) and 50 µm

(g–i).
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Figure 4. Amyloid in B6 grafts. Immunostaining with antibody JRF/cAβ40/10 specific to Aβx-40 (a) and antibody

JRF/cAβ42/26 specific to Aβx-42 (b) of a B6 WT graft placed in neocortex of an APP23 host. Antibodies specific

to rodent (mouse) Aβ (JRF7rAβ1-15/2) revealed only very faint labeling of the amyloid (c). Shown are adjacent

sections with arrowheads indicating the same amyloid deposits. Note that the faint labeling of vessels and

microglia is due to unspecific labeling of the secondary anti-mouse IgG antibody. (d) A micropunch (p) was

taken from a cortical WT graft (asterisk) and subjected to western blot analysis. The remaining tissue was

immersion-fixed and immunostained for hAPP, showing that hAPP expression was exclusively confined to the

host. (e) Western blotting of the micropunch taken from the WT cortical graft shown in (d) with human Aβ-

specific antibody 6E10. In addition, micropunches were taken from the neocortex of a 12 month-old amyloid-

depositing APP23 mouse and a control B6 mouse. Lane 1, synthetic Aβ40/42. Lane 2, punch from the cortical

WT graft. Lane 3, punch from B6 neocortex. Lane 4, punch from APP23 neocortex. Note the presence of both

Aβ1-40 and Aβ1-42 in the WT graft. Scale bars, 20 µm (c) and 120 µm (d).

Mechanism of amyloid formation in B6 grafts

To study whether the site of the graft placement may influence Aβ formation in the grafts, we

injected hippocampal and cortical WT tissue into either the thalamus or striatum of 6 month-old

APP23 mice (n= 4 for thalamus and n= 8 for striatum). Grafts were analyzed 3 months later.

Thalamus and striatum were selected because they differ markedly in amyloid deposition in

APP23 mice. The thalamus develops significant amyloid deposition in aged APP23 mice,

whereas amyloid deposition in the striatum is low, even in aged APP23 mice 19,23. Consistent

with the idea that the properties of the surrounding host tissue influence amyloid deposition in

the graft, we found that two out of four mice (50%) developed amyloid in the 'thalamic' grafts,

and zero out of eight mice (0%) developed amyloid in the 'striatal' grafts (Fig. 5). To examine
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whether the influence of the surrounding host tissue may be explained by differences in soluble

extracellular Aβ levels among the engrafted brain regions, extracellular soluble Aβx-40 and Aβx-

42 was measured by ELISA in thalamus, striatum, neocortex and hippocampus of 6 month-old

pre-depositing APP23 mice. Results showed the highest Aβ levels in hippocampus (Aβx-40, 2.61

ng/g wet weight; Aβx-42, 0.41 ng/g) and neocortex (Aβx-40, 2.42 ng/g; Aβx-42, 0.42 ng/g),

followed by the thalamus (Aβx-40, 1.94 ng/g; Aβx-42, 0.32 ng/g). The levels in the striatum

(Aβx-40, 0.71 ng/g; Aβx-42, 0.15 ng/g) were more than 50% lower than these other regions.

Recent microdialysis analysis of Aβ  also shows significantly lower extracellular soluble Aβ

concentrations in striatum than in hippocampus (J.R. Cirrito et al ., Soc. Neurosci. Abstr. 191.15,

2002). Thus, soluble extracellular Aβ levels in the host may determine amyloid deposition in the

graft, suggesting that Aβ is transported extracellularly from the host into the graft. We also

tested the hypothesis that the grafts in thalamus and striatum differ in levels of Aβ-degrading

enzymes. However, no evidence of a difference was found using immunohistochemical analysis

of insulin-degrading enzyme 24 and neprilysin 25 expression in graft versus host (data not

shown), although expression levels do not necessarily reflect enzyme activity.

Figure 5. Neural grafting of B6 tissue into thalamus and striatum of APP23 hosts. (a, b) Embryonic B6

hippocampal tissue was injected into the thalamus of a 6 month-old APP23 mouse and analyzed 3 months later.

Cresyl violet staining shows that the grafts were nicely integrated into the host thalamus and viable without any

signs of neurodegeneration (asterisk in a). Immunostaining for Aβ in adjacent sections revealed amyloid deposits

in the graft (b). In contrast, when embryonic B6 tissue was placed into the striatum of a 6 month-old APP23

mouse, no amyloid formation was observed 3 months later (c, d). Scale bars, 250 µm.
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We also addressed several other possible mechanisms for Aβ transport from the host into the

graft. We considered that hAPP/Aβ could be anterogradely transported from host Tg neurons

into the WT graft. It has been described previously that host axons can penetrate a homotypic

transplant, although in very low numbers 26. Moreover, APP is anterogradely transported to

synaptic sites where it is released 27. Thus, we used Holmes silver staining to visualize processes

between host and graft. Overall, fiber density within the graft was much lower than in the host.

Although a few fibers were found to cross the host–graft boundary, most of the fibers were

confined to their host or graft compartments (Fig. 6a). Moreover, immunohistochemistry did

not reveal any hAPP-positive fibers that penetrated into WT grafts (Fig. 6b , but see also Fig. 3e

and h).

We also considered the possibility that microglia transport APP/Aβ from the host into the graft.

Thus, not the graft per se, but the lesion-associated gliosis or inflammation, may induce amyloid

accumulation in WT grafts. In favor of this explanation is the observation that amyloid was

predominantly observed at the border of the graft, an area of slightly higher microglia density

than the rest of the graft. To test this possibility, we made stab wounds in the neocortex and

hippocampus of 6 month-old APP23 mice and analyzed the mice 3 months later. However, in

none of lesioned mice (n= 4) was amyloid found, despite appreciable microgliosis around the

lesion site, which was more extensive than at the host–graft boundary (Fig. 6c and d).

Moreover, we injected three APP23 mice with WT grafts in which cells were killed by freezing

before transplantation. Again, no amyloid accumulation was found, although microgliosis was

clearly present (data not shown). Thus, surgical trauma alone is not sufficient to induce β-

amyloidosis in APP23 mice.

These results favor the idea that soluble and diffusible Aβ  is transported extracellularly via

interstitial fluid from the host into the graft where Aβ undergoes fibril formation and deposition.

To exclude the possibility that host-derived soluble extracellular Aβ  is internalized by WT

neurons in the graft, and that such internalized Aβ  is the nidus and a prerequisite for

extracellular amyloid plaque formation, we used immunohistochemical staining with a variety of

antibodies to Aβ, including antibodies previously suggested to recognize intracellular human Aβ
28. We did not find any evidence for intracellular human Aβ in the WT graft (Fig. 6e and f).
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Figure 6. Mechanism of amyloid formation in B6 grafts. (a) Holmes silver staining of the graft–host boundary of

a B6 WT graft (asterisk) in a 9 month-old APP23 host. There is a lower density of fibers in the graft than in the

host. Only a few fibers crossed the host–graft boundary (dotted line) and most fibers were confined to either the

host or the graft. (b) Consistent with the Holmes fiber staining, immunostaining for hAPP shows many positive

neurons and processes in the host tissue, but none in the WT graft. (c) Cortical stab wound in a 6 month-old

APP23 host shows an appreciable increase in CD11b-positive microglia around the lesion site 3 months after

surgery (arrowheads). (d) However, immunohistochemistry for Aβ in an adjacent section does not indicate any

amyloid deposition in the vicinity of the lesion. (e) Aβ immunostaining with antibody NT12 in the neocortex of a

9 month-old APP23 host reveals punctate intraneuronal staining. (f) In contrast, no evidence of intraneuronal Aβ

was found in neocortical WT grafts into APP23 hosts. An amyloid plaque in the WT graft is shown by an

arrowhead. The same results were observed with monoclonal antibody W0-2 specific to human Aβ. Scale bars,

10 µm (a, b), 100 µm (c, d) and 15 µm (e, f).

Amyloid-associated pathology in B6 grafts

The presence of amyloid in WT grafts allowed us to study the impact of host-derived

extracellular amyloid formation on neurodegeneration. Although most of the amyloid in WT

grafts was of the diffuse type and did not induce any notable neuropil changes, some compact

and congophilic amyloid plaques were observed (Figs. 3i (insert) and 7a). Only a few neuronal

cells were observed in the area proximal to compact plaques, and some of them showed signs

of degeneration (Fig. 7b). Moreover, plaques were surrounded by dystrophic synaptophysin-

positive boutons (Fig. 7c) and abnormally thick acetylcholinesterase-positive processes (Fig. 7d).

A subpopulation of these distorted neuritic structures were positive for hyperphosphorylated tau

(Fig. 7e). Gliosis and neuroinflammation were also evident from clusters of darkly stained
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complement receptor 3 (CD11b)-positive and ionized calcium binding adaptor molecule 1

(Iba1)-positive microglia cells with hypertrophic processes that cover the amyloid core (Fig. 7f

and g). Hypertrophic reactive glial fibrillary acidic protein (GFAP)-positive astrocytes were also

observed around the amyloid deposits (Fig. 7h). Overall, these changes appeared similar to the

amyloid-associated degeneration, microgliosis and reactive astrocytosis previously described in

amyloid-depositing APP23 mice 19,23,29-32.

Figure 7. Amyloid pathology associated with congophilic amyloid plaques in B6 grafts. (a) Compact plaque in

B6 WT graft in a 9 month-old APP23 host reveals bi-refringence when viewed under cross-polarized light

(double staining for Aβ and Congo red). (b) Cresyl violet staining demonstrates only a few neuronal cell bodies

at the plaque periphery and some of them with a dying phenotype (arrow). (c) Plaques are surrounded and

interdigitated by synaptophysin-positive dystrophic boutons (arrows). (d) Acetylcholinesterase staining reveals

abnormally large cholinergic processes near the plaque (arrow). (e) Some of these abnormal and distorted

processes at the plaque periphery were positive for hyperphosphorylated tau (arrow). (f) CD11b-

immunostaining shows hypertrophic microglia clustered around compact amyloid plaques. (g) Amyloid-

associated microglia were also intensively positive for Iba1, similar to those observed in amyloid-depositing

APP23 mice. (h) GFAP staining reveals hypertrophic and reactive astrocytes decorating the plaque periphery.

Scale bars, 25 µm (a, b), 10 µm (c), 25 µm (d), 6 µm (e), 25 µm (f), 30 µm (g) and 25 µm (h).

Discussion

Whether cerebral amyloidosis is initiated by a gradual increase in extracellular Aβ or by the

formation of intracellular Aβ aggregates with subsequent accumulation in the extracellular space

(ECS) is controversial 2-11. Our results suggest that local intracellular Aβ is not a prerequisite for

extracellular amyloid deposition and that amyloid deposition is not necessarily confined to the
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region of Aβ production. Rather, Aβ can be transported and/or diffuses considerable distances in

ECS of the brain before it aggregates, deposits extracellularly and causes neurodegeneration.

First, we grafted APP23 tissue into WT hosts. Because cerebral amyloidosis in the neocortex and

hippocampus of APP23 mice appears at 6 months of age 19, our initial expectation was that Tg

neocortical and hippocampal grafts placed in WT hosts would also develop amyloid at about 6

months post-grafting. However, no Aβ  deposition was observed in the Tg grafts up to 20

months post-grafting, despite APP/Aβ production in the Tg graft similar to APP23 mice. Thus, a

reasonable explanation for this lack of or delay in amyloid formation is that extracellular Aβ in

the graft did not reach high enough concentrations for amyloid formation because of

movement of extracellular soluble Aβ out of the graft into the large volume of surrounding host

tissue. It has previously been shown that extracellular Aβ is transported via interstitial fluid to the

vasculature, where Aβ is cleared by drainage along the perivascular spaces into the lymph nodes

and/or by transport through the blood–brain barrier into the blood 19,33-36. That A β  is

transported from the Tg graft into the WT host is consistent with the observation of amyloid

outside the Tg graft, particularly in vessel walls.

Second, the most compelling evidence that Aβ is extracellularly transported between host and

graft comes from our observation that WT grafts in Tg hosts showed amyloidosis. The amyloid

in WT grafts was largely human Aβ and thus transgene- and host-derived. Moreover, amyloid in

WT grafts only developed when grafts were placed in brain areas such as neocortex,

hippocampus, and to some extent thalamus, which all have relative high levels of soluble

extracellular Aβ. Amyloid did not develop when grafts were placed into the striatum, which has

significant lower concentrations of extracellular soluble Aβ . Finally, axonal transport and

transport by microglia of Aβ from the host into the graft did not appear to be significant. Thus,

our results argue strongly that soluble Aβ from the Tg host is transported extracellularly via the

interstitial fluid from the host into the graft, where Aβ then undergoes deposition. Previous

findings suggest that synaptic dysfunction may precede frank neuronal degeneration in AD, and

that this dysfunction may be caused by extracellular, diffusible oligomeric assemblies of Aβ 37.

Our results would also suggest that such soluble Aβ aggregates may diffuse over considerable

distances in the ECS and therefore may have an unexpected ability to impact synapses distal to

the site of Aβ production.

It could be argued that host-derived human Aβ may be internalized by neurons within the WT

graft 38,39 and that such internalized human Aβ  may undergo fibril formation intracellularly

before being released and providing the starting point for extracellular amyloid formation 7-

11,38,39. However, we found no evidence of intracellular human Aβ in WT grafts. Additionally, we
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did not find evidence that the amyloid in WT grafts consisted of significant amounts of mouse

Aβ, which might have originated in neurons within the WT graft. Moreover, we have previously

reported no difference in amyloid deposition between APP23 mice on a WT background and

APP23 mice on an App-null background 36. Thus, intraneuronal Aβ does not appear to be a

prerequisite for extracellular amyloid formation. Nevertheless, a contributing role of

intraneuronal Aβ to extracellular amyloid deposition cannot be entirely ruled out. The relatively

lower amount of compact amyloid in the WT grafts versus Tg grafts (both in Tg hosts) may be

explained by amyloid formation initiated by an intracellular nidus, leading to predominantly

compact amyloid plaques, whereas amyloid formed in the ECS is largely of the diffuse type.

However, these differences may also simply be explained by an Aβ concentration difference

given that the Tg graft produced Aβ in addition to that provided by the surrounding host tissue.

The unexpected observation that WT grafts often had amyloid deposition before the Tg host

tissue suggests that the graft provided a particularly favorable environment for amyloidogenesis.

Increased levels of extracellular matrix proteins in the ECS of neural grafts 36,40,41 may act as

chaperones for Aβ fibril formation or promote amyloidogenesis by inhibiting interstitial fluid

transport of Aβ to the vessels and subsequent drainage 33,40-42. Using diffusion-weighted MRI, we

have recently shown that amyloidosis in APP23 mice is closely related to a decrease in brain ECS

diffusion properties (T. Mueggler et al., unpub. data). Notably, however, the induction of

extracellular matrix constituents by a stab wound or by the injection of dead cells does not

promote amyloid deposition in APP23 mice. Thus, in future studies it will be important to

characterize the factors that promote amyloidogenesis in the WT grafts. Identifying such

amyloid-promoting factors may provide additional targets for amyloid-lowering therapies.

Whether neurodegeneration is related to intracellular Aβ  generation or to its extracellular

deposition is key to understanding the pathobiology of AD 2. Oligomerization and accumulation

of intracellular Aβ1-42 in AD has been consistently reported 6-8,10,43. Based on these findings, it

has been suggested that accumulation of Aβ1-42 in intracellular compartments may lead to

neuronal death 8,10,11. However, our findings of amyloid-associated nerve cell degeneration and

dystrophic neuritic and synaptic structures (including hyperphosphorylated processes) in the

vicinity of compact amyloid deposits in WT grafts suggest that intracellular Aβ  is not a

prerequisite for neurodegeneration. In fact, amyloid pathology in WT grafts is very similar to

that previously described in APP Tg mice, including neuron death in the vicinity of amyloid

plaques 23,32,44, synaptic abnormalities 30, dystrophic cholinergic processes 31,45 and tau

hyperphosphorylated distorted neuritic structures 19. Moreover, the gliosis and the increase in

neuroinflammatory markers were also similar between WT grafts with amyloid and amyloid-

depositing APP Tg mice 19,29,46.
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In conclusion, our grafting experiments indicate that cerebral β-amyloidosis does not require

locally generated intracellular Aβ to initiate Aβ deposition. Indeed, transport or diffusion of Aβ in

the ECS of the brain is sufficient and can lead to amyloid pathology at a considerable distance

from the site of Aβ generation. Overall, our findings show that factors beyond those directly

involved in cellular A β  production and intracellular A β  metabolism are important for

amyloidogenesis in vivo. The amyloid-associated pathology in WT grafts further suggests that

neurodegeneration in AD is dependent, at least partially, upon extracellular amyloid

accumulation.

Methods

Donor embryos for grafting. Donor mice were C57BL/6 (B6) mice (RCC, Füllinsdorf,

Switzerland) and APP23 mice 19. APP23 mice overexpress mutated human APP (hAPP) with the

Swedish double mutation under a neuron-specific murine Thy-1 promoter element. All APP23

mice were from generations 9–11 of backcrossing to B6. To produce Tg grafts, homozygous

male APP23 mice were bred with hemizygous female APP23 mice. For WT grafts, B6 mice were

bred. Pregnant females were staged by vaginal plugs, and embryos at E15–17 (crown-to-rump

length, 13–15 mm) were taken for grafting.

Intracerebral grafting. Embryonic neocortices and hippocampi were dissected on ice under

semi-sterile conditions in Dulbecco's modified Eagle's Medium (DMEM; Life Technologies, Basel,

Switzerland). All neocortical tissue pieces from the entire litter were pooled. The same procedure

was performed for the hippocampal pieces. Cell suspensions were prepared mechanically

through repeated pipetting with Pasteur pipettes on ice. Total cell counts and cell viability were

determined with a hemocytometer and 0.4% trypan blue stain (0.4%; Fluka, Buchs,

Switzerland). Cell number was adjusted to 100,000 cells/ l, and cell viability was 80%.

Host mice (3–24 month-old females) were anaesthetized with a mixture of ketamine (10 mg/kg

body weight) and xylazine (20 mg/kg body weight) in saline. Bilateral stereotaxic injections of

2.5 l cortical and hippocampal cell suspensions were placed with a Hamilton syringe into the

neocortex (A/P, +1.0 mm from bregma; L, 2.0 mm; D/V, -1.5 mm) and hippocampus (A/P, -2.5

mm; L, 2.0 mm; D/V, -2.5 mm), respectively. In selected mice, cell suspensions were injected

into the striatum (A/P, +1.0 mm; L, 2.0 mm; D/V, -3 mm) and thalamus (A/P, -2.5 mm; L, 1.5

mm; D/V, -3 mm). Injection speed was 1.25 l/min, and the needle was kept in place for an

additional 2 min before it was slowly withdrawn. The surgical area was cleaned with sterile
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saline, and the incision was sutured. As a control, some mice received stab wound lesions—the

needle was lowered in the brain without injection of any cell suspension. All experiments were in

compliance with protocols approved by the local Animal Care and Use Committee

(Veterinäramt, Basel).

Histology and immunohistochemistry. At various time points after grafting, host mice were

deeply anesthetized, and either they were perfused transcardially with PBS buffer (0.1 M, pH

7.4) followed by 4% paraformaldehyde in PBS (pH 7.4), or their brains were removed and

immersion-fixed for 2 d in 4% paraformaldehyde in PBS. Brains were then dehydrated overnight

in 30% sucrose. After freezing, 20–30 m serial coronal sections were cut through the transplants

on a freeze-sliding microtome and collected in 0.1 M Tris-buffered saline (pH 7.4).

Sections were stained histologically with cresyl-violet and immunohistochemically according to

previously published protocols 29 with the following antibodies: polyclonal antibody NT12

(NT11) to Aβ (courtesy of P. Paganetti, Basel, Switzerland) 19, mouse monoclonal antibody W0-2

specific to human Aβ 28 (courtesy of K. Beyreuther, Heidelberg, Germany), mouse monoclonal

antibody 6E10 specific to hAPP/Aβ  (Signet Pathology Systems, Inc., Dedham, Massachusetts),

monolconal antibodies specific to Aβx-40 (JRF/cAβ40/10) and Aβx-42 (JRF/cAβ42/26) 47,

monoclonal antibody specific to rodent/mouse Aβ that does not cross-react with human Aβ

(JRFrAβ1-15/2) 47, polyclonal antibody A4CT to the C-terminal 100 amino acids of hAPP

(courtesy of K. Beyreuther), mouse monoclonal antibody 56C6 to neprilysin (CD10; Novocastra

Laboratories, Newcastle upon Tyne, UK), polyclonal affinity-purified antibody IDE-1 to IDE

protein (courtesy of D. Selkoe, Boston, USA), polyclonal antibody to synaptophysin (Dako,

Glostrup, Denmark), mouse monoclonal antibody AT8 which recognizes hyperphosphorylated

tau (Innogenetics, Heiden, Germany), rat monoclonal antibody to CD11b (Mac-1; Serotec,

Oxford, UK), polyclonal antibody to Iba1 48 (courtesy of Y. Imai, Tokyo, Japan) and polyclonal

antibody to GFAP (Dako). Some sections were double-stained with NT12 and Congo red.

Additional sections were stained histochemically for acetylcholinesterase 31 and Holmes silver

staining.

Assessment of APP and Aβ in graft and host by western blot. Under deep inhalation

anesthesia, engrafted mice were killed by decapitation. Brains were removed and sectioned on a

vibratome (400 m thick slices) in ice-cold PBS. Slices were transferred onto a glass slide on ice.

With the aid of a dissecting microscope and a Stoelting micropunch device (Stoelting, Wood

Dale, Illinois), micropunches were taken from the graft. For comparison, micropunches were

also taken from normal APP23 and B6 mice. Punches had a diameter of 0.74 mm and thus

consisted of 172 g wet weight tissue 49.
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To determine hAPP expression, punched samples were diluted in 30 l of homogenization buffer

(50 mM Tris, pH 8; 150 mM NaCl; 5 mM EDTA; protease inhibitor cocktail (Roche Diagnostic,

Mannheim, Germany) and 90 l sample buffer (0.48 M Bistris; 0.21 M Bicine; 1.33% w/v SDS;

20% w/v sucrose; 3.33% v/v 2-mercaptoethanol; 0.0053% w/v bromophenol blue).

Subsequently, samples were Dounce-homogenized, sonicated and subjected to 10% Bicine/Tris

8M Urea SDS–PAGE 50. Proteins were transferred onto a PVDF membrane, and hAPP was

detected using monoclonal mouse 6E10 antibody. The secondary antibody was horseradish

peroxidase-conjugated goat anti-mouse IgG (Chemicon, Temecula, California). Bands were

visualized using SuperSignal (Pierce, Rockford, Illinois) and developed onto Kodak X-OMAT AR

film (Rochester, New York).

To analyze Aβ  levels, tissues of two micropunches were combined, and human Aβ  was

immunoprecipitated with antibody 6E10 and protein G Sepharose (Sigma, St. Louis, Missouri).

Subsequent SDS–PAGE and blotting was done as described above. Synthetic Aβ1-40 and 1-42

(Bachem, Bubendorf, Switzerland) were used as controls. Different exposures of the films were

digitized, and band density measurements for Aβ40 were made using NIH Image 1.61 (NIH,

Bethesda, Maryland). Only bands within the linear range of the film were analyzed.

ELISA to measure soluble extracellular Aβ in engrafted brain regions. Neocortex,

hippocampus, striatum and thalamus of 6 month-old male pre-depositing APP23 mice ( n= 8)

were dissected on ice. Tissue from four mice was pooled and homogenized in 50 mM Tris (pH

8), 150 mM NaCl and 5 mM EDTA and protease inhibitor cocktail (Roche Diagnostic). The

homogenate was centrifuged at 107,000 gfor 1 h at 4 °C, and human Aβx-40 and Aβx-42 levels

were determined in the supernatant by previously described sandwich ELISAs 47. In brief, Aβ was

captured with carboxy-terminal monoclonal antibodies that recognize exclusively either Aβx-40

(JRF/cAβ40/10) or Aβx-42 (JRF/cAβ42/26) and detected with horseradish peroxidase-conjugated

JRF/Aβtot/17, which recognizes the amino-terminal 16 residues of human Aβ. All measurements

were done in two or more replica wells. ELISA results reported are the mean of the two pooled

tissue samples (ng Aβ per g wet weight), based on standard curves using synthetic Aβ1-40 and

Aβ1-42 peptide standards (American Peptide, Sunnyvale, California).

Serum titers of Aβ antibodies. At various time points after grafting (30–510 d), retro-orbital

blood samples were collected from selected engrafted mice by using heparin-coated capillary

tubes. Samples were centrifuged, and the sera were immediately frozen on dry ice. Antibody

titers were assessed by ELISA. Serial dilutions of sera were made onto microtiter plates coated

with Aβ1-40 (50 ng/ml, Bachem). Detection was through alkaline phosphatase–conjugated
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rabbit anti-mouse IgG (Calbiochem, San Diego, California) and 4-nitrophenol phosphate

disodium salt hexahydrate (Fluka). Titers were defined as dilution yielding 50% of the maximal

signal.
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Conclusions

The objective of this thesis has been to gain new insights into the mechanisms that are involved

in the development of CAA and CAA-associated pathology using a transgenic mouse approach.

We have shown that the APP23 and APPDutch mice presented herein develop cerebrovascular

amyloid deposits and associated pathology similar to those seen in AD and HCHWA-D. Thus,

understanding the mechanisms leading to CAA formation in these transgenic mice will as well

greatly improve our knowledge about the pathomechanisms that are involved in the

development of CAA in humans.

A major finding of our studies is that Aβ in the vasculature of transgenic APP23 and APPDutch

mice, due to the neuron-specific promoter used, is of neuronal origin. This finding strongly

supports the hypothesis that also in humans neurons are likely to be the primary source of the

vascular Aβ deposits observed. Besides neurons, other cell types have been shown to produce

Aβ, and although they may contribute as an additional source of Aβ to the vascular amyloid,

they do not seem to be necessarily involved in CAA formation. Further support of the idea that

neuron-derived Aβ is sufficient to cause CAA is provided by the finding that CAA in transgenic

mice shows striking similarities to human CAA. It mainly affects arteries and arterioles and the

anatomical distribution of the Aβ deposits is comparable between transgenic mice and humans.

A second important observation of our work is that secreted soluble Aβ can be transported

extracellularly before it accumulates as insoluble amyloid fibrils and therewith can cause

pathological changes distant to its site of production. This observation is based on the

occurrence of CAA-associated pathology such as SMC degeneration and intracerebral

hemorrhage in APP23 and APPDutch mice, and on the presence of amyloid-associated

neurodegeneration in wild-type grafts of APP23 hosts in the grafting experiments. Interestingly,

the toxicity to both SMCs and neurons seems to be caused by extracellular amyloid deposits

since we did not observe any internalization of transgene-derived A β  by these cells.

Degeneration of SMCs is likely to be driven by purely mechanical displacement by the amyloid

within the vessel wall.

The third major finding is that the ratio of Aβ40:42 is an important determinant in the formation

of parenchymal versus vascular amyloid. We show that steady-state levels of Aβ40 and Aβ42 in

amyloid pre-depositing mice may determine the deposition pattern of the amyloid in depositing

mice, with a high Aβ40:42 ratio leading preferentially to vascular amyloid deposition and a low

Aβ40:42 ratio causing mainly parenchymal amyloidosis. In fact, both amyloid pre-depositing



- 107 -

and depositing APPDutch mice show a significant higher Aβ40:42 ratio when compared to

APPwt mice that predominately develop parenchymal amyloid. The view that different levels of

Aβ40 and Aβ42 seem to be able to drive amyloid pathology in different compartments is

strengthened by the finding that parenchymal amyloid formation can be initiated in APPDutch

mice by increasing Aβ42 levels as demonstrated to occur in APPDutch/PS45 double-transgenic

mice. Like in APPDutch mice, parenchymal plaque formation in HCHWA-D is likely to be limited

by the absence of Aβ42-driven parenchymal amyloid seeding. A thinking that is all the more

imaginable as in vitro AβDutch42 has been shown to be even more fibrillogenic than Aβwt42.

The finding that different levels of Aβ40 and Aβ42 are able to drive amyloid pathology either to

the vasculature or the parenchyma has implications for the development of therapeutic

strategies. Therapeutic compounds that aim at reducing parenchymal amyloid by clearing the

more fibrillogenic Aβ42 might decrease the Aβ40:42 ratio and thus may potentiate CAA

formation.

Schematic drawing illustrating a possible mechanism for vascular versus parenchymal amyloid formation.
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