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Chapter 1

Introduction

This thesis is organized as follows. In the �rst part we start with an introduction to
the problem of inferring transcription regulatory interactions (Chapter 2). Then we
describe detailed methods of promoterome construction in human and mouse genomes
(Chapter 3), and show how promoters together with gene expression data can be used
to infer transcription regulatory interactions (Chapter 4). Finally, we show an appli-
cation of this methodology to a human macrophage lineage undergoing di�erentiation
accompanied by detailed experimental validation of the predicted network structure
(Chapter 5). Work presented in Chapter 5 comes from the FANTOM4 project.

In the second part we focus on the function of two small nucleolar RNAs (snoR-
NAs). In Chapter 8 we describe an atypical function of snoRNAs � regulation of the
mRNA alternative splicing process by a particular class of mouse snoRNAs (MBII-52
variants). These are of great interest, as the locus encoding MBII-52 is linked to
Prader-Willi Syndrome. Methods include in silico RNA hybridization screens and
experimental con�rmation of the predictions. In Chapter 9, we report a discovery of
the �rst virus-encoded snoRNA in Epstein-Barr Virus (EBV). Again, we show that
function of this snoRNA (v-snoRNA1) is atypical: it is processed into small, 24 nt
long fragments that can function as microRNAs.
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Part I

Transcriptional regulatory
interactions
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Chapter 2

Introduction

The process of gene expression and details of its regulation are two of the most studied
and still most challenging topics in the molecular biology. All living cells are result
of complex gene expression programs. Control takes place at the transcriptional and
post-transcriptional level and integrates environmental and developmental signals.
The regulators responsible for conveying this action need to distinguish a subset of
their targets from a pool of genes. Usually this is achieved by recognition of short DNA
or RNA motifs within a regulatory region of DNA or mRNA respectively. Regulators
change expression of a target gene by many mechanisms, including changing of the
rate RNA polymerase binds to the DNA locus, rate of transcription initiation, mRNA
export, translation rate and degradation of mRNA templates. Here, we will focus
on the �rst steps of the process of gene expression: regulation by proteins called
transcription factors (TFs) which tune the transcription rate of their target genes.

There is a substantial amount of TFs present in eukaryotic genomes; even the yeast
genome contains several hundreds of them. They need to control, in a concerted
fashion, expression of most of the genes and implement a program necessary in a
given environmental condition. Thus it is convenient to talk about transcriptional
regulatory networks that govern speci�c processes (cellular di�erentiation, response
to perturbation, disease, tissue identity maintenance). Such a network consists of a
set of transcription factors and a set of target genes which they regulate. Structure of
the connections and dynamics of the regulatory interactions is key to understanding
the process.

Most of the approaches of inference of regulatory interactions start by identifying
the regulatory proteins and their putative binding sites. The fact that regulatory
factors recognize speci�c DNA stretches should, in principle, enable an extensive
computational screen for the regulatory sites. In practice, however, there are several
major di�culties. The motifs are often short and degenerate, which makes accurate
binding sites predictions a hard task. Improvements include: speci�c and sensitive
models of regulatory motifs, reduction of the length of the search regions to experi-
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mentally validated regions (promoters and/or enhancers), or usage of additional data
such as comparative genomics or nucleosome occupancy data.

By far the most popular model of regulatory motifs are position speci�c weight
matrices (WMs). These are tables of size 4×n (where n is the length of the sites) �lled
with {A,C,G, T} nucleotide frequencies occurring at given positions within binding
sites. As such, this model explicitly neglects all the information about nucleotide
co-occurrences at di�erent positions, and does not allow for changing the lengths of
binding sites. However, due to its simplicity, it requires a relatively low number of
known binding sites for parameter estimation and is straightforward to use. It is
also important that the most comprehensive regulatory motif data bases contain only
WMs. In the course of this work, we will use this model exclusively.

Apart from the primary nucleotide sequence, there are other sources of information
to exploit in binding site predictions. One of them are orthologous sequences from
related species. Alignments of these sequences provide a source of information about
the evolutionary history of a sequence and help estimating the selective pressure
(or lack thereof) acting on a locus. On the other hand, it has been shown that
promoter sequences of genes belonging to di�erent functional categories evolve with
diverse speeds and show substantial turnover of binding sites, often faster than coding
regions. Hence, a robust inference requires multiple genomes of species at di�erent
evolutionary proximity to the genome under study, and it should incorporate the
knowledge of the evolutionary tree topology and branch lengths.

In mammals, many high-scoring sequences are e�ectively inaccessible to transcrip-
tion factors due to coverage by nucleosomes. It is often the case that nucleosome-free
regions coincide with clusters of TF binding sites (whether or not there is a direct
causal dependency in either direction). Thus, computational predictions or experi-
mental assessments of nucleosome occupancy is another indication of TF binding.

However, the most useful piece of information is the knowledge where to search
for binding sites. Unlike prokaryotes, metazoans contain large fractions of non-coding
sequences in their genomes, creating a lot of �exibility for positioning of regulatory
regions. The canonical view for the placement of regulatory regions around transcrip-
tion start sites is that: 1) a single transcription start site is positioned within a core
promoter � the locus in a physical contact with the RNA polymerase and general
transcription factors; 2) the proximal promoter spanning several hundred nucleotides
around the core promoter, containing speci�c TF binding sites, mostly upstream of
the transcription start site; and 3) a distal promoter which might span a couple of
kilobases with a much lower density of TF binding sites. Alternative promoters in this
view do not share proximal promoters, and usually lead to transcription of a di�erent
isoform of a gene (e.g. with a di�erent exon structure). This paradigm is followed
by common gene annotation routines � the annotators usually provide a short list of
(and often just one) mRNA transcript per gene, which is a �representative� one.

Fortunately, due to development of new protocols and advances in sequencing, we

16



are now able to observe transcription start usage at single base pair resolution. This
is achieved by deep Cap Analysis of Gene Expression (CAGE) (1), which extracts
20bp long sequences from the 5' ends of mRNAs, followed by deep sequencing (see
Fig. 2.1). Using this data in Chapter 3, we extend the classical view of promoter
architecture by de�ning of a three-level structure (�promoterome�) which clusters the
neighboring transcription start sites. As a result of this procedure, we create a list of
overlapping proximal promoters which are the input to the motif search algorithm.

Especially in mammals, distal elements such as enhancers and silencers are known
to interact with transcriptional machinery located at the promoter. These regions
contain binding sites recognized by the same repertoire of TFs as in promoters. There
have been numerous attempts to discover such regions genome-wide. They include
computational predictions of groups (�modules�) of binding sites for TFs known to
function together, speci�c nucleosome modi�cation combinations know to occur at
regulatory elements (�chromatin signatures�), and physical contact (or proximity)
between promoter and distal elements measured by 3C and 4C technologies. None
of these, in our opinion, provides quality of annotation close to the one we derive for
promoters. Another source of di�culty when working with distal elements is their
association with particular genes/transcripts; there are known cases where regulatory
regions lie several mega base-pairs away from the regulated TSS or within an intron
of another gene.

Neither a presence of a high-scoring DNA sequence implies binding in vivo, nor
does binding itself imply a function. To cope with this fact, most modern methods
for reconstruction of transcriptional regulatory networks utilize expression data mas-
sively whenever such data is available for a given organism. The massive amount of
expression data allows for machine learning approaches which try to predict expres-
sion of a new gene based on its promoter features and expression of many genes in
multiple conditions. The observation which lead to this approach is the existence of
sets (unfortunately called again �modules�) of co-expressed genes. A classic example
of this type of method is that of Beer and Tavazoie (2). This approach constructs
modules in Saccharomyces cerevisiae based solely on expression data using a modi�ed
k-means algorithm which does not allow to construct clusters which are either too
small (< 10 elements) or too wide (Pearson correlation coe�cient > 0.65 of expres-
sion between centroid and elements). It then performs de novo motif discovery in
prede�ned promoter regions of each module. The model is de�ned as a Bayesian net-
work where features of promoters are at the inputs nodes and OR, AND and NOT
logic gates are used to assign probabilities to 49 clusters. Additional constraints are
imposed to ensure sparsity of the resulting network.

The strongest points of this method are its ability to model complex regulatory
behavior, and little limitation on available promoter features. These include locations,
spacings and orientations of the sequence occurrences. The weak points include the
lack of association between discovered motifs and regulatory proteins. There is a
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limit on a number of possible predictions for a given gene: namely it can be assigned
to one cluster (out of 49 in the original publication) with a representative averaged
expression level. This method requires a large collection of conditions (255 in the
publication) to distinguish modules robustly, and does it not allow for explaining
expression of genes not assigned to any module.

Methods mentioned above aim to build complex classi�ers that will explain ex-
pression levels as accurate as possible. However, in a typical experimental setup
a researcher is interested in particular regulatory interactions (i.e. TF binding to
promoter sequences) that in�uence gene expression changes in a limited number of
conditions. Usually these are development stages of some tissues, stress conditions,
gene knock-outs or over-expressions, disease conditions, etc. Often only two expres-
sion level measurements are performed: the perturbation and the background.

Methods of the second main branch take a form of a large regression scheme. The
methodology presented in Chapter 4 belongs to this class. The �rst and most in�uen-
tial work of this kind was REDUCE by Bussemaker, Li and Siggia (3). Over time, the
method was updated but the core idea stayed constant. In its most basic shape, the
expression changes are modeled as a linear combination of oligonucleotide (presumed
to be binding sites) counts in the promoters. The transcription factor activities are
the unknown coe�cients which need to be inferred from the data. REDUCE pos-
sessed a further capability, a motif �nder. The motifs did not come prede�ned, but
were found in such a way as to maximize the amount of explained variance in the
expression changes. This was done in a �greedy� manner: one motif at a time was
selected to maximize the explained fraction of variance and its contribution was then
subtracted.

It is worth mentioning that this class of methods aims to explain how TF/motif
activities are changing across di�erent samples � usually this provides a better clue
about the system than the absolute activity values. If the activity changes are small,
the linear model is applicable: the expression changes are linear combinations of
activity changes.

Ep,s = Emean
p + ∆Ep,s = Emean

p +
∑
m

Rp,m ·∆Am,s +O
(
∆A2

)
(2.1)

Unfortunately, expression values for many genes change by orders of magnitude,
making the linear approximation not applicable. However, similarly to many gene
expression studies, we have found that a simple log(·) transformation of the microar-
ray intensity values or RNA-seq counts greatly improves the approximation. Another
reason for such a transformation comes from the fact that in current protocols, cDNA
needs to be processed in multiple steps, including PCR ampli�cation, before it can
be measured. This multiplicative noise phenomenon is well known in microarray
�eld and we show in Chapter 3 that it also exists in other sequencing approaches
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(deepCAGE and RNA-seq; it has been reported before for ChIP-seq too).
The Rp,m values are of great interest as they actually de�ne connectivity of the

gene regulatory network. A non-zero value for Rp,m denotes a regulatory edge between
TF m and promoter p. Ultimately we would like to infer these numbers genome-wide,
but currently, in order to solve for activities Am,s, we need an approximation of these
numbers.

Nguyen and D'Haeseleer (4) aimed to decompose the (log-)expression matrix ∆E
(of size promoters × samples) as in equation 2 into two matrices R and ∆A, using the
condition R ·∆A = ∆E. In the �rst step they let the R values be the site-counts of
particular motifs, and found a least squares estimate for the matrix A. Subsequently,
they let all the entries of R vary while keeping A �xed and again solved for best values.
They iterated this procedure until convergence was attained. It is worth noting that
the equations involving calculation of ∆A are very often overdetermined (number
of motifs < number of genes) and yield a unique solution. The calculations of R
might become underdetermined if the number TFs binding to a promoter becomes
bigger than the number of experimental conditions. Nguyen and D'Haeseleer improve
this step by adding a regularization term, ensuring the smallest L2-norm solution is
chosen. They also show that when such a term is added, the global decomposition
of expression matrix E into a response matrix R and motif activities matrix ∆A is
unique. In Chapter 5 we show that, in order to obtain biologically meaningful results
and prevent massive over�tting, regularization is necessary, even in calculation of ∆A.

Bussemaker and Das provide lists of di�erent methods published on the topic
of prediction of gene expression. They can be found in (5) and under the address:
http://vision.lbl.gov/People/ddas/RegressionPrimer/

We developed the Motif Activity Response Analysis (MARA) method as a core
of the analysis presented in the FANTOM4 project (Chapter 5). It was subsequently
improved, largely extended and automated for online use. We made it freely available
to an any researcher in the world. The resulting platform, Integrated System for Motif
Activity Response Analysis (ISMARA), can handle microarray, RNA-seq and ChIP-
seq data. However, in our opinion for the clarity of the presented work it is important
to �rst understand the (IS)MARA method (presented in Chapter 4) and afterwards
see how it was applied in the FANTOM4 project (Chapter 5). We therefore present
our research non-chronologically, but a reader is of course free to decide upon the
order of reading the chapters.
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Introduction

Figure 2.1: The CAGE protocol

Every mature mRNA contains a m7G cap at its 5' end which, among other functions,
protects it from degradation by exonucleases. CAGE protocol uses cap-trapping to se-
lect for full-length cDNAs. These are synthesized using random primers to ensure that
any yet unknown transcripts can be selected. A ligated linker contains a recognition
site for Mmel endonuclease, which cleaves double-stranded DNA 20 bp downstream
from the linker. The 3' end linker is added and the tags are PCR-ampli�ed. Subse-
quent steps depend on the sequencing technology in use. Data analyzed in this work
comes primarily from 454 Life Sciences sequencing, which requires cleavage of the
linkers, concatenation into longer sequences and addition of new linkers.
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Chapter 3

Methods for analyzing deep
sequencing expression data:
Constructing the human and mouse
promoterome with deepCAGE data

Piotr J Balwierz, Piero Carninci, Carsten Daub, Jun Kawai, Werner van Belle,
Christian Beisel, and Erik van Nimwegen

Genome Biology, 10(7):R79k 2009, PMID:19624849

With the advent of ultra high-throughput sequencing technologies, in-
creasingly researchers are turning to deep sequencing for gene expression
studies and it seems likely that this technology will eventually replace
micro-arrays for expression analysis. Here we present a set of rigorous
methods for data normalization, quanti�cation of noise, and co-expression
analysis. Using these methods on 122 deepCAGE samples of transcrip-
tion start sites we construct genome-wide `promoteromes' in human and
mouse consisting of a three-tiered hierarchy of transcription start sites,
transcription start clusters, and transcription start regions.

3.1 Background

In recent years a number of technologies, e.g. 454 and Solexa, have become avail-
able that allow DNA sequencing at very high throughput. Although originally these
technologies have been used for genomic sequencing, most recently researchers have
turned to using these `deep sequencing' or `(ultra-)high throughput' technologies for
a number of other applications. For example, recently several researchers have used
deep sequencing to map histone modi�cations genome-wide, or to map the locations
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at which transcription factors bind the DNA (ChIP-seq). Another application that is
rapidly gaining attention is the use of of deep sequencing for transcriptome analysis
through the mapping of RNA fragments, e.g. (6; 7; 8; 9).

An alternative new high-throughput approach to gene expression analysis is deep
CAGE sequencing (10). Cap analysis of gene expression (CAGE) is a relatively new
technology introduced by Carninci et al. (1; 11) in which the �rst 20-21 nucleotides
at the 5' ends of capped mRNAs are extracted by a combination of cap trapping
and cleavage by restriction enzyme MmeI. The `CAGE tags' thus obtained can then
be sequenced and mapped to the genome. In this way a genome-wide picture of
transcription start sites (TSSs) at single base pair resolution can be obtained. In
the FANTOM3 project (12) this approach was taken to comprehensively map TSSs
in the mouse genome. With the advent of deep sequencing technologies it has now
become practical to sequence CAGE tag libraries to much greater depth providing
millions of tags from each biological sample. At such sequencing depths signi�cantly
expressed TSSs are typically sequenced a large number of times. It thus becomes
possible to not only map the locations of TSSs but also quantify the expression level
of each individual TSS (10).

There are several advantages that deep-sequencing approaches to gene expression
analysis o�er over standard micro-array approaches. First, large-scale full length
cDNA sequencing e�orts have made it clear that most if not all genes are transcribed
in di�erent isoforms owing both to splice variation, alternative termination, and alter-
native transcription start sites (13). One of the drawbacks of micro-array expression
measurements has been that the expression measured by hybridization at individual
probes is often a combination of expression of di�erent transcript isoforms that may
be associated with di�erent promoters and may be regulated in di�erent ways (14). In
contrast, because deep sequencing allows measurement of expression along the entire
transcript the expression of individual transcript isoforms can in principle be inferred.
CAGE-tag based expression measurements directly link the expression to individual
transcription start sites, thereby providing a much better guidance for analysis of the
regulation of transcription. Other advantages of deep sequencing approaches are that
they avoid the cross-hybridization problem that micro-arrays have (15), and that they
provide a larger dynamic range.

However, whereas for micro-arrays there has been a large amount of work devoted
to the analysis of the data including issues of normalization, noise analysis, sequence-
composition biases, background corrections, and so on, deep sequencing based expres-
sion analysis is still in its infancy and no standardized analysis protocols have been
developed so far. Here we present new mathematical and computational procedures
for the analysis of deep sequencing expression data. In particular, we have developed
rigorous procedures for normalizing the data, we have developed a quantitative noise
model, and we have developed a Bayesian procedure that uses this noise model to
join sequence reads into clusters that follow a common expression pro�le across sam-
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ples. The main application that we focus on in this paper is deepCAGE data. We
apply our methodology to data from 66 mouse and 56 human CAGE-tag libraries.
In particular, we identify transcription start sites (TSSs) genome-wide in mouse and
human across a variety of tissues and conditions. In the �rst part of the results we
present the new methods for analysis of deep sequencing expression data, and in the
second part we present a statistical analysis of the human and mouse `promoteromes'
that we constructed.

3.2 Results and Discussion

3.2.1 Genome Mapping

The �rst step in the analysis of deep-sequencing expression data is the mapping of
the (short) reads to the genome from which they derive. This particular step of the
analysis is not the topic of this paper and we only brie�y discuss the mapping method
that was used for the application to deepCAGE data. CAGE tags were mapped to the
human (hg18 assembly) and mouse (mm8 assembly) genomes using a novel alignment
algorithm called nexalign(16) that maps tags in multiple passes. In the �rst pass
exactly mapping tags are recorded. Tags that did not match in the �rst pass were
mapped allowing a single base substitution. In the third pass the remaining tags are
mapped allowing indels. For the majority of tags there is a unique genome position to
which the tag maps with least errors. However, if a tag matched multiple locations at
a best match level, a multi-mapping CAGE tag rescue strategy developed by Faulkner
et al. (17) was employed. For each tag that maps to multiple positions, a posterior
probability is calculated for each of the possible mapping positions which combines
the likelihood of the observed error for each mapping with a prior probability for the
mapped position. The prior probability for any position is proportional to the total
number of tags that map to that position. As shown in (17) this mapping procedure
leads to a signi�cant increase in mapping accuracy compared to previous methods.

3.2.2 Normalization

Once the sequence reads or CAGE tags have been mapped to the genome we will
have a (typically large) collection of positions from which at least one read/tag was
observed. When we have multiple samples we will have, for each position, a read-
count or tag-count pro�le which counts the number of reads/tags from each sample,
mapping to that position. These tag-count pro�les quantify the `expression' of each
position across samples and the simplest assumption would be to assume that the
true expression is simply proportional to the tag-count in each sample. Indeed, recent
papers dealing with RNA-seq data simply count the number of reads/tags per kilobase
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per million mapped reads/tags (RPKM)(6). This is, the tags are mapped to the
annotated exonic sequences and their density is determined directly from the raw
data. Similarly, previous e�orts in quantifying expression from CAGE data (12)
simply de�ned the tags per million of a TSS as the number of CAGE tags observed at
the TSS divided by the total number of tags, multiplied by one million. However, such
simple approaches assume that there are no systematic variations between samples
(which are not controlled by the experimenter) which may cause the absolute tag-
counts to vary across experiments. To investigate this issue we considered, for each
sample, the distribution of tags per position.

For our CAGE data the mapped tags correspond to TSS positions. Figure 3.1
shows reverse-cumulative distributions of the number of tags per TSS for 6 human
CAGE samples. On the horizontal axis is the total number of tags t and on the
vertical axis the number of TSS positions to which at least t tags map. As the �gure
shows, the distributions of tags per TSS are power-laws to a very good approximation,
spanning 4 orders of magnitude, and the slopes of the power-laws are also very similar.
These samples are all from THP-1 cells both untreated and after 24 hours of PMA
treatment. Very similar distributions are observed for essentially all CAGE samples
currently available (data not shown).
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Figure 3.1: Reverse cumulative distributions for the number of di�erent TSS positions
that have at least a given number of tags mapping to them. Both axes are shown
on a logarithmic scale. The 3 reddish curves correspond to the distributions of the 3
THP-1 cells control samples and the 3 blueish curves to the 3 THP-1 samples after
24 hours of PMA treatment. All other samples show very similar distributions (data
not shown).

The large majority of observed TSSs have only a very small number of tags. These
TSSs are often observed in only a single sample, and seem to correspond to very low
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expression `background transcription'. On the other end of the scale there are TSSs
that have as many as 104 tags. Manual inspection con�rms that these correspond to
TSSs of genes that are likely to be highly expressed, e.g. cytoskeletal or ribosomal pro-
teins. It is quite remarkable in the opinion of these authors that both low expression
background transcription, whose occurrence is presumably mostly stochastic, and the
expression of the highest expressed TSSs, which is presumably highly regulated, occur
at the extremes of a common underlying distribution. That this power-law expression
distribution is not an artifact of the measurement technology is suggested by the fact
that previous data from high-throughput SAGE studies have also found power-law
distributions (18). For ChIP-seq experiments, the number of tags observed per re-
gion also appears to follow an approximate power-law distribution (19). In addition,
our analysis of RNA-seq dataset from Drosophila shows that the number of reads
per position follows an approximate power-law distribution as well (supplementary
Fig. 3.16). These observations strongly suggest that RNA expression data generally
obey power-law distributions. The normalization that we present here should thus
generally apply to deep sequencing expression data.

For each sample we �tted (see Methods) the reverse-cumulative distribution of
tags per TSS to a power-law of the form

n(t) = n0t
−α, (3.1)

with n0 the inferred number of positions with at least t = 1 tag and α the slope of
the power-law. Figure 3.2 shows the �tted values of n0 and α on the horizontal and
vertical axis for all 56 human CAGE samples. We see that, as expected, the inferred
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Figure 3.2: Fitted o�-sets n0 (horizontal axis) and �tted exponents α (vertical axis)
for the 56 CAGE samples that have at least 100, 000 tags.

number of positions n0 varies signi�cantly with the depth of sequencing, i.e. the dots
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on the right are from the more recent samples that were sequenced in much greater
depth. In contrast, the �tted exponents vary relatively little around an average of
about −1.25, especially for the samples with large numbers of tags.

In the analysis of micro-array data it has become accepted that it is bene�cial
to use so-called quantile normalization, in which the expression values from di�erent
samples are transformed to match a common reference distribution (20). We follow
a similar approach here. We make the assumption that the �true� distribution of
expression per TSS is really the same in all samples, and that the small di�erences
in the observed reverse-cumulative distributions are the results of experimental bi-
ases that are varying across samples. This includes �uctuations in the fraction of
tags that maps successfully, variations in sequence-speci�c linker e�ciency, the noise
in PCR ampli�cation, etcetera. To normalize our tag count we map all tags to a
reference distribution. We chose as reference distribution a power-law with an expo-
nent of α = −1.25 and we chose the o�set n0 such that the total number of tags is
precisely one million. We then used the �ts for all samples to transform (see Meth-
ods) the tag-counts into normalized tags per million (TPM) counts. Figure 3.3 shows
the same 6 distributions as above but now after the normalization. Although the
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Figure 3.3: Normalized reverse cumulative distributions for the number of di�erent
TSS positions that have at least a given number of tags mapping to them. Both axes
are shown on a logarithmic scale. The 3 reddish curves correspond to the distributions
of the 3 THP-1 control samples and the 3 blueish curves to the 3 THP-1 samples after
24 hours of PMA treatment.

changes that this normalization introduces are generally modest, the nice collaps of
the distributions shown in Fig. 3.3 strongly suggests that the normalization improves
quantitative comparability of the expression pro�les. Indeed, as described below, for
a replicate data-set in which two deepCAGE libraries were constructed from a com-
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mon mRNA sample, the normalization signi�cantly reduces the apparent variation
between the replicates' expression pro�les. Finally, we note that normalization to a
common power-law distribution has also been proposed for normalizing micro-arrays
(21).

In the remainder we will use the normalized tag counts to compare the expression
at individual positions in the genome across samples. We also retain the raw tag-
counts because, as we will see below, the noise on the observed tag count depends on
these raw counts.

3.2.3 Noise model

In order to analyze expression pro�les it is necessary to analyze the distribution of
the noise on deepCAGE and other deep-sequencing expression measurements and, to
our knowledge, such an analysis has not yet been performed. Instead of determining
noise on expression measurements, existing work has focused on de�ning models of
the background distribution of tags/reads which can be used to identify regions that
have signi�cantly more mapped tags/reads than expected from the background model.
These background models assume either a simple Poisson distribution, or a Poisson
distribution with Gamma-distributed rate (22).

To quantitatively investigate the noise in the expression measurements we com-
pared tag-counts across replicate data-sets. Among the currently available CAGE
data-sets there is one pair in which two libraries were prepared from a common
mRNA sample and �gure 3.4 shows a scatter plot of the normalized tag counts (tags
per million, TPM) from the replicate measurements. The �gure shows that at high
TPM (i.e. for tags with TPMs larger than e4 ≈ 55) the scatter has an approximately
constant width whereas at low TPM the width of the scatter increases dramatically.
This kind of funnel shape is familiar from micro-array expression where the increase
in noise at low expression is caused by the contribution of non-speci�c background
hybridization. However, for the deep CAGE data this noise is of an entirely di�erent
origin.

In deep sequencing experiments the noise comes from essentially two separate
processes. First there is the noise that is introduced in going from the biological input
sample to the �nal library that goes into the sequencer. Second, there is the noise
introduced by the sequencing itself. For the CAGE experiments the former includes
cap-trapping, linker ligation, cutting by the restriction enzyme, PCR ampli�cation,
and concatenation of the tags. In other deep-sequencing experiments, e.g. RNA-seq
or ChIP-seq with Solexa sequencing, there will similarly be processes such as the
shearing or sonication of the DNA, adding of the linkers, and growing clusters on the
surface of the �ow cell.

With respect to the noise introduced by the sequencing itself, it seems reasonable
to assume that the N tags that are eventually sequenced can be considered a random
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Figure 3.4: CAGE replicate from THP-1 cells after 8 hours of LPS treatment. For
each position with mapped tags, the logarithm of the number of tags per million
(TPM) in the �rst replicate is shown on the horizontal axis, and the logarithm of the
number of tags per million in the second replicate on the vertical axis. Logarithms
are natural logarithms.

sample of size N of the material that went into the sequencer. This will lead to
relatively large `sampling' noise for tags that form only a small fraction of the pool.
For example, assume that a particular tag has fraction f in the tag pool that went
into the sequencer. This tag is expected to be sequenced n = Nf times among the N
sequenced tags, and the actual number of times n that it is sequenced will be Poisson
distributed according to

P (n|f,N) =
(fN)n

n!
e−Nf . (3.2)

Indeed, recent work (23) shows that the noise in Solexa sequencing itself (i.e. com-
paring di�erent lanes of the same run) is Poisson distributed. It is clear, however,
that the Poisson sampling is not the only source of noise. In Fig. 3.4 there is an
approximately �xed width of the scatter even at very high tag-counts, where the
sampling noise would cause almost no di�erence in log-TPM between replicates. We
thus conclude that, besides the Poisson sampling, there is an additional noise in the
log-TPM whose size is approximately independent of the total log-TPM. Note that
noise of a �xed size on the log-TPM corresponds to multiplicative noise on the level
of the number of tags. It is most plausible that this multiplicative noise is introduced
by the processes that take the original biological samples into the �nal samples that
are sequenced, e.g. linker ligation and PCR ampli�cation may vary from tag to tag
and from sample to sample. The simplest, least biased, noise distribution assuming
only a �xed size of the noise is a Gaussian distribution (24).
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We thus model the noise as a convolution of multiplicative noise, speci�cally a
Gaussian distribution of log-TPM with variance σ2, and Poisson sampling. As shown
in the methods, if f is the original frequency of the TSS in the mRNA pool, and
a total of N tags are sequenced, then the probability to obtain the TSS n times is
approximately:

P (n|σ, f,N) =
exp

(
− (log(n/N)−log(f))2

2σ2(n)

)
n
√

2πσ(n)
, (3.3)

where the variance σ2(n) is given by

σ2(n) = σ2 +
1

n
. (3.4)

That is, the measured log-TPM is a Gaussian whose mean matches the log-TPM in
the input sample, with a variance equal to the variance of the multiplicative noise
(σ2) plus one over the raw number of measured tags. The approximation (3.3) breaks
down for n = 0. The probability to obtain n = 0 tags is approximately given by
(Methods):

P (0|σ, f,N) = e−fN . (3.5)

We used the CAGE technical replicate (Fig. 3.4) to estimate the variance σ2 of
the multiplicative noise (Methods) and �nd σ2 = 0.085. To illustrate the impact of
the normalization, determining σ2 on the same unnormalized data-set, we obtained
σ2 = 0.11, i.e. a 29% increase in the apparent noise between the replicates. In
addition to this replicate, among the human CAGE data-sets there is a time course
of THP-1 cells after PMA treatment, measured in triplicate, which includes samples
before PMA treatment and after only 1 hour of PMA treatment. Manual inspection
shows that the correlation of tags per TSS for these two samples is as large as for
the technical replicate. This makes sense because on the time scale of one hour the
expression of most transcripts can probably not change their expression appreciably
(25) . Using a procedure (Methods) that takes into account that a small fraction
of TSSs may change expression signi�cantly between the two samples, we estimated
σ2 as well for the three zero/one hour sample pairs. The values we estimate are,
respectively, σ2 = 0.048, σ2 = 0.116, and σ2 = 0.058.

In summary, using 4 pairs of samples that are (almost) replicates we �nd estimates
of σ2 ranging from 0.048 to 0.116. Although this analysis provides some evidence that
the size of multiplicative noise varies between samples, the range of inferred values
is small and we will make the assumption that σ2 is the same for all samples. As
estimate of σ2 we took an intermediate value of σ2 = 0.06 for the rest of our CAGE
analysis.

We next validated this noise model as follows. According to our noise model, for
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TSSs that have nonzero expression in both samples, the z-statistic

z =
log(n′)− log(m′)√

2σ2 + 1
n

+ 1
m

, (3.6)

with m′ the normalized expression at one hour and n′ at zero hours, should be Gaus-
sian distributed with standard deviation 1 (Methods). We tested this for the 3 biolog-
ical replicates at zero/one hour and for the technical replicate. Figure 3.5 shows this
theoretical distribution (in black) together with the observed histogram of z-values
for the 4 replicates.
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Figure 3.5: Observed histograms of z-statistics for the three zero/one hour (in red,
dark blue, and light blue) samples and for the technical replicate (in yellow), compared
with the standard unit Gaussian (in black). The vertical axis is shown on a logarithmic
scale.

Although the data is noisy it is clear that all three curves obey a roughly Gaussian
distribution. Note the deviation from the theoretical curve at very low z, i.e. less than
z < −4 which appears only for the zero/one hour comparisons. These correspond to
the the small fraction of positions that are signi�cantly up-regulated at one hour. In
summary, Fig. 3.5 clearly shows that the data from the replicate experiments are well
described by our noise model.

To verify the applicability of our noise model to RNA-seq data we used two repli-
cate data sets of Drosophila mRNA samples that were sequenced using Solexa se-
quencing and estimated a value of σ2 = 0.073 for these replicate samples (Supple-
mentary �gure 3.17). This �tted value of σ2 is similar to those obtained for the CAGE
samples.

Finally, the σ2 values that we infer for the deep sequencing data are somewhat
larger than what one typically �nds for replicate expression pro�les as measured by
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micro-arrays. However, it is important to stress that CAGE measures expression of
individual TSSs, i.e. single positions on the genome, whereas micro-arrays measure
the expression of an entire gene, typically by combining measurements from multiple
probes along the gene. Therefore, the size of the `noise' in CAGE and micro-array
expression measurements cannot be directly compared. For example, when CAGE
measurements from multiple TSSs associated with the same gene are combined, ex-
pression pro�les become signi�cantly less noisy between replicates (σ2 = 0.068 versus
σ2 = 0.085, see supplementary �gures 3.19 and 3.20). This applies also to RNA-seq
data (σ2 = 0.02 versus σ2 = 0.074, see supplementary �gure 3.18).

3.2.4 Promoterome construction

Using the methods outlined above on CAGE data we can comprehensively identify
TSSs genome-wide, normalize their expression and quantitatively characterize the
noise distribution in the expression measurements. This provides the most detailed
information on transcription starts and, from the point of view of characterizing the
transcriptome, there is in principle no reason to introduce additional analysis.

However, depending on the problem of interest, it may be useful to introduce
additional �ltering and/or clustering of the TSSs. For example, whereas traditionally
it has been assumed that each `gene' has a unique promoter and transcription start
site, large-scale sequence analysis, such as performed in the FANTOM3 project (12),
have made it clear that most genes are transcribed in di�erent isoforms that use
di�erent TSSs. Alternative TSSs not only involve initiation from di�erent areas in
the gene locus, e.g. from di�erent starting exons, but TSSs typically come in local
clusters spanning regions ranging from a few to over one hundred base pairs wide.

These observations raise the question as to what an appropriate de�nition of a
`basal promoter' is. Should we think of each individual TSS as being driven by an
individual `promoter', even for TSSs only a few base pairs apart on the genome?
The answer to this question is a matter of choice and depends on the application in
question. For example, for the FANTOM3 study the main focus was to characterize
all distinct regions containing a signi�cant amount of transcription initiation. To this
end the authors simply clustered CAGE tags whose genomic mappings overlapped
by at least one base pair (12). Since CAGE-tags are 20-21 bp long, this procedure
corresponds to single-linkage clustering of TSSs within 20-21 bp of each other. A
more recent publication (26) creates a hierarchical set of promoters by identifying all
regions in which the density of CAGE tags is over a given cut-o�. This procedure
thus allows one to identify all distinct regions with a given total amount of expression
for di�erent expression levels and this is clearly an improvement over the ad hoc
clustering method employed in the FANTOM3 analysis.

Both clustering methods just mentioned cluster CAGE tags based only on the
overall density of mapped tags along the genome, i.e. they ignore the expression pro-
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�les of the TSSs across the di�erent samples. However, a key question that one often
aims to address with transcriptome data is how gene expression is regulated. That
is, whereas these methods can successfully identify the distinct regions from which
transcription initiation is observed, they cannot detect whether the TSSs within a lo-
cal cluster are similarly expressed across samples or that di�erent TSSs in the cluster
have di�erent expression pro�les. Manual inspection shows that, whereas there are
often several nearby TSSs with essentially identical expression pro�les across sam-
ples/tissues, one also �nds cases in which TSSs that are only a few base pairs apart
show clearly distinct expression pro�les. We hypothesize that in the case of nearby
co-expressed TSSs the regulatory mechanisms recruit the RNA polymerase to the
particular area on the DNA but that the �nal TSS that is used is determined essen-
tially by an essentially stochastic (thermodynamic) process. One could for example
imagine that the polymerase locally slides back and forth on the DNA and chooses a
TSS based on the a�nity of the polymerase for the local sequence, such that di�erent
TSSs in the area are used in �xed relative proportions. In contrast, when nearby TSSs
show di�erent expression pro�les we imagine that there are particular regulatory sites
that control inititiation at individual TSSs.

Whatever the detailed regulatory mechanisms are, it is clear that for the study
of transcription regulation it is important to properly separate local clusters of TSSs
that are co-regulated from those that show distinct expression pro�les. Below we
present a Bayesian methodology that clusters nearby TSSs into transcription start
clusters (TSCs) that are co-expressed in the sense that their expression pro�les are
statistically indistinguishable.

A second issue is that, as shown by the power-law distribution of tags per TSS
(Fig. 3.1), we �nd a very large number of di�erent TSSs used in each sample and
the large majority of these have very low expression. Many TSSs have only one
or a few tags and are often observed in one sample only. From the point of view of
studying the regulation of transcription it is clear that one cannot meaningfully speak
of `expression pro�les' of TSSs that were observed only once or twice and only in one
sample. That is, there appears to be a large amount of `background transcription'
and it is useful to separate these TSSs that are used very rarely, and presumably
largely stochastically, from TSSs that are driven by true `promoters' and that are
signi�cantly expressed in at least one sample. Below we also provide a simple method
for �ltering such `background transcription'.

Finally, for each of signi�cantly expressed TSCs there will be a proximal promoter
region that contains regulatory sites that control the rate of transcription initiation
from the TSSs within the TSC. Since TSCs can occur close to each other on the
genome, individual regulatory sites may sometimes be controlling multiple nearby
TSCs. Therefore, in addition to clustering nearby TSSs that are co-expressed we
introduce an additional clustering layer, in which TSCs with overlapping proximal
promoter are clustered into transcription start regions (TSRs). Thus, whereas di�er-
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ent TSSs may share regulatory sites, the regulatory sites around a TSR only control
the TSSs within the TSR.

Using the normalization method and noise model described above we have con-
structed comprehensive `promoteromes' of the human and mouse genomes from 122
CAGE samples across di�erent human and mouse tissues and conditions (Materials
and Methods) by 1. clustering nearby co-regulated TSSs, 2. �ltering out background
transcription, 3. extracting proximal promoter regions around each TSS cluster, and
4. merging TSS clusters with overlapping proximal promoters into promoter regions.
We now describe each of these steps in the promoterome construction.

3.2.4.1 Clustering adjacent co-regulated TSSs

We de�ne transcription start clusters (TSCs) as sets of contiguous TSSs on the
genome, such that each TSS is relatively close to the next TSS in the cluster, and the
expression pro�les of all TSSs in the cluster are indistinguishable up to measurement
noise. To construct TSCs �tting this de�nition we will use a Bayesian hierarchical
clustering procedure that has the following ingredients

1. We start by letting each TSS form a separate, 1 bp wide, TSC.

2. For each pair of neighboring TSCs there is prior probability π(d) that these
TSCs should be fused, which depends on the the distance d along the genome
between the two TSCs.

3. For each pair of TSCs we calculate the likelihoods of two models for the expres-
sion pro�les of the two TSCs. The �rst model assumes that the two TSCs have
a constant relative expression in all samples (up to noise). The second model
assumes that the two expression pro�les are independent.

4. Combining prior and likelihoods of the two models we calculate, for each con-
tiguous pair of TSCs, a posterior probability that the two TSCs should be fused.

5. We identify the pair with highest posterior probability and if this posterior is at
least 1/2 we fuse this pair and return to step 2. Otherwise the clustering stops.

The details of the clustering procedure are described in the Methods. Here we
will brie�y outline the key ingredients. The key quantity for the clustering is the
likelihood-ratio of the expression pro�les of two neighboring TSCs under the assump-
tions that their expression pro�les are the same and independent, respectively. That
is if we denote by xs the logarithm of the TPM in sample s of one TSC, and by ys the
log-TPM in sample s of a neighboring TSC, then we want to calculate the probability
P ({xs}, {ys}) of the two expression pro�les assuming the two TSCs are expressed
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Constructing the human and mouse promoterome with deepCAGE data

in the same way, and the probability P ({xs})P ({ys}) of the two expression pro�les
assuming they are independent.

For a single TSS we write xs as the sum of a mean expression µ, the sample-
dependent deviation δs from this mean, and a noise term

xs = noise + µ+ δs. (3.7)

The probability P (xs|µ + δs) is given by the noise-distribution (3.3). To calculate
the probability P ({xs}) of the expression pro�le we assume that the prior probability
P (µ) of µ is uniformly distributed and that the prior probabilities of the δs are drawn
from a Gaussian with variance α, i.e

P (δs|α) =

√
α

2π
exp

[
−α

2
(δs)

2
]
. (3.8)

The probability of the expression pro�le of a TSC is then given by integrating out
the unknown `nuisance' variables {δs} and µ:

P ({xs}) =

∫
dµP (µ)

∏
s

[∫
dδsP (xs|µ+ δs)P (δs|α)

]
. (3.9)

The parameter α, which quanti�es the a priori expected amount of expression vari-
ance across samples, is determined by maximizing the joint likelihood of all TSS
expression pro�les (Methods).

To calculate the probability P ({xs}, {ys}) we assume that, even though the two
TSCs may have di�erent mean expressions, their deviations δs are the same across
all samples. That is, we write

xs = noise + µ+ δs, (3.10)

and
ys = noise + µ̃+ δs (3.11)

The probability P ({xs}, {ys}) is then given by integrating out the nuisance parameters

P ({xs}, {ys}) =

∫
dµdµ̃P (µ)P (µ̃)

∏
s

[∫
dδsP (xs|µ+ δs)P (ys|µ̃+ δs)P (δs|α)

]
.

(3.12)
As shown in the Methods section, the integrals (3.9) and (3.12) can be done ana-
lytically. For each neighboring pair of TSCs we can thus analytically determine the
log-ratio

L = log

[
P ({xs}, {ys})
P ({xs})P ({ys})

]
. (3.13)
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3.3.2 Results and Discussion

To perform the clustering we also need a prior probability that two neighboring
TSCs should be fused and we will assume that this prior probability depends only
on the distance between the two TSCs along the genome. That is, for closely-spaced
TSC pairs we assume it is a priori more likely that they are driven by a common
promoter than for distant pairs of TSCs. To test this we calculated the log-ratio
L of equation (3.13) for each consecutive pair of TSSs in the human CAGE data.
Figure 3.6 shows the average of L as a function of the distance of the neighboring
TSSs. Figure 3.6 shows that, the closer the TSSs the more likely they are to be co-
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Figure 3.6: Average log-ratio L (equation 3.13) for consecutive pairs of individual
TSSs as a function of the distance between the TSSs. The horizontal axis is shown
on a logarithmic scale.

expressed. Once TSSs are more than 20 bps or so apart, they are not more likely to be
co-expressed than TSSs that are very far apart. To re�ect these observations, we will
assume that the prior probability π(d) that two neighboring TSCs are co-expressed
falls exponentially with their distance d, i.e.

π(d) = e−d/l, (3.14)

where l is a length-scale that we set to l = 10.
For each consecutive pair of TSCs we calculate L and we calculate a prior log-ratio

R = log

(
π(d)

1− π(d)

)
, (3.15)

where the distance d between two TSCs is de�ned as the distance between the most
highly expressed TSSs in the two TSCs. We iteratively fuse the pair of promoters for
which L + R is largest. After each fusion we of course need to update R and L for
the neighbors of the fused pair. We keep fusing pairs until there is no longer any pair
for which L+R > 0 (corresponding to a posterior probability of 0.5 for the fusion).
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3.2.4.2 Filtering background transcription

If one were principally interested in identifying all transcription inititiation sites in the
genome, one would of course not �lter the set of TSCs obtained using the clustering
procedure just described. However, when one is interested in studying regulation of
expression then one would want to consider only those TSCs that show a substantial
amount of expression in at least 1 sample and remove `background transcription'. To
this end we have to determine a cut-o� on expression level to separate background
from signi�cantly expressed TSCs. As the distribution of expression per TSS does not
naturally separate into a high expressed and low expressed part, i.e. it is power-law
distributed, this �ltering is to some extent arbitrary.

According to current estimates there are a few hundred thousand mRNAs per cell
in mammals. In our analysis we have made the choice to retain all TSCs such that,
in at least 1 sample, at least 10 TPM derive from this TSC, i.e. at least 1 in 100, 000
transcripts. With this conservative cut-o� we ensure that there is at least 1 mRNA
per cell in at least 1 sample. Since for some samples the total number of tags is close
to 100, 000, a TSC may spuriously pass this threshold by having only 2 tags in a
sample with low total tag count. To avoid these we also demand that the TSC has 1
tag in at least 2 di�erent samples. Note that if one were principally interested in ide

3.2.4.3 Proximal promoter extraction and transcription start region con-
struction

Finally, for each of the TSCs we want to extract a proximal promoter region that
contains regulatory sites that control the expression of the TSC, and in addition
we want to cluster TSCs with overlapping proximal promoters. To estimate the
typical size of the proximal promoters we investigated conservation statistics in the
immediate neighborhood of TSCs. For each human TSC we extracted phastCons
(27) scores 2.5 kilobases upstream and downstream of the highest expressed TSS in
the TSC and calculated average PhastCons scores as a function of position relative
to TSS (Fig. 3.7). We observe a sharp peak in conservation around TSS suggesting
that the functional regulatory sites are highly concentrated immediately around the
TSS. Upstream of TSS the conservation signal decays within a few hundred base pairs,
whereas downstream of TSS the conservation �rst drops sharply and then more slowly.
The longer tail of conservation downstream of TSS is most likely due to selection on
the transcript rather than on transcription regulatory sites.

Based on these conservation statistics we conservatively chose the region from
−300 to +100 with respect to TSS as the proximal promoter region. Although the
precise boundaries are to some extent arbitrary it is clear that the conserved region
peaks in a narrow region of only a few hundred base pairs wide around TSS. As a
�nal step in the construction of the promoteromes we clustered together all TSCs
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Figure 3.7: Average phastCons (conservation) score relative to TSS of genomic regions
upstream and downstream of all human TSCs.

whose proximal promoters regions (i.e. from 300 bps upstream of the �rst TSS in the
TSC to 100 bps downstream of the last TSS in the TSC) overlap into transcription
start regions (TSRs).

3.2.5 Promoterome Statistics

To characterize the promoteromes that we obtained we compared them with known
annotation and we determined a number of key statistics.

3.2.5.1 Comparison with known transcription starts

Using the collection of all human mRNAs from the UCSC database (28) we compared
the location of our TSCs with known transcription starts. For each TSC we identi�ed
the position of the nearest known transcript start and Fig. 3.8 shows the distribution
of the number of TSCs as a function of the relative position of the nearest known
start.

By far most common is that there is a known start within a few base pairs of the
TSC. We also observe a reasonable fraction of cases where a known start is somewhere
between 10 and 100 base pairs either upstream or downstream of the TSC. Known
starts more than 100 base pairs from TSC are relatively rare and the frequency drops
further with distance, with only a few cases of known starts 1000 base pairs away
from the TSC. For 37.7% of all TSCs there is no known start within 1000 base pairs
of the TSC and for 27% there is no known start within 5 kilobases. We consider
these latter 27% of TSCs novel TSCs. To verify that the observed conservation
around TSS shown in Fig. 3.7 is not restricted to known starts we also constructed
a pro�le of average PhastCons scores around novel TSCs (Fig. 3.9). We observe
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Figure 3.8: Number of TSCs as a function of their position relative to the nearest
known transcript start. Negative numbers mean the nearest known start is upstream
of the TSC. The vertical axis is shown on a logarithmic scale. The �gure shows only
the 46, 293 TSCs (62.3%) with a known start within 1000 base pairs.
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Figure 3.9: Average phastCons (conservation) score relative to TSS of genomic regions
upstream and downstream of human TSCs that are more than 5 kilobases away from
any known transcript.
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3.3.2 Results and Discussion

a similar peak as the one for all TSCs, although its height is a bit lower and the
peak appears a bit more symmetrical, showing only marginally more conservation
downstream than upstream of TSS. Although we can only speculate, one possible
explanation for the more symmetric conservation pro�le of novel TSCs is that this
class of TSCs might contain transcriptional enhancers that show some transcription
activity themselves. In the supplementary material we present analogous �gures for
the mouse promoterome (�gures 3.26 3.25).

3.2.5.2 Hierarchical structure of the proteome

Table 3.1 shows the total numbers of CAGE tags, TSCs, TSRs, and TSSs within TSCs
that we �nd for the human and mouse CAGE data sets. The 56 human CAGE samples

Statistic Human Mouse

Number of samples 56 66
Number of mapped CAGE tags 25'469'648 8'104'796

Number of TSSs 6'395'686 1'515'273
Number of TSSs in TSCs 860'823 608'474

Number of TSCs 74'273 77'286
Number of TSRs 43'164 50'915

Table 3.1: Global statistics of the human and mouse `promoteromes' that we con-
structed from the human and mouse CAGE data. Shown are the number of di�erent
samples, the total number of CAGE tags that were mapped to the genome, the total
number of di�erent TSSs that were observed at least once, the number of TSSs in
transcription start clusters (TSCs), the number of TSCs, and the number of tran-
scription start regions (TSRs).

identify about 74, 000 TSCs and the 66 mouse samples identify about 77, 000 TSCs.
Within these TSCs are about 860, 000 and 608, 000 individual TSSs, corresponding to
about 12 TSSs per TSC in human and about 8 TSSs per TSC in mouse. Note that,
while large, this number of TSSs is still much lower than the total numbers of unique
TSSs that were observed. This again underscores the fact that the large majority of
TSSs are expressed at very low levels.

Next we investigated the hierarchical structure of the human promoter regions
(similar results are obtained in mouse, supplementary materials 3.5.8). Figure 3.10
shows the distributions of the number of TSSs per TSC, the number of TSSs per
TSR, and the number of TSCs per TSR.

The middle panel shows that the number of TSCs per TSR is essentially expo-
nentially distributed. That is, it is most common to �nd only a single TSC per TSR,
TSRs with a handful of TSCs are not uncommon, and TSRs with more than 10 TSCs

39



Constructing the human and mouse promoterome with deepCAGE data

1 5 10 50 100 500
1

10

100

1000

10 000

Number of TSSs

N
um

be
r

of
T

SC
s

Distribution of TSSs per TSC

10 20 30 40 50
1

10

100

1000

10 000

Number of TSCs
N

um
be

r
of

T
SR

s

Distribution of TSCs per TSR

1 5 10 50 100 500
1

10

100

1000

10 000

Number of TSSs

N
um

be
r

of
T

SR
s

Distribution of TSSs per TSR

Figure 3.10: Hierarchical structure of the human promoterome. Left: Distribution
of the number of transcription start sites (TSSs) per per co-expressed transcription
start cluster (TSC). Middle: Distribution of the number of TSCs per transcription
start region (TSR). Right: Distribution of the number of TSSs per TSR. The vertical
axis is shown on a logarithmic scale in all panels. The horizontal axis is shown on a
logarithmic scale in the left and right panels.

are very rare. The number of TSSs per TSC is more widely distributed (left panel).
It is most common to �nd 1 or 2 TSSs in a TSC, and the distribution drops quickly
with TSS number. However, there is a signi�cant tail of TSCs with between 10 and
50 or so TSSs. The observation that the distribution of the number of TSSs per TSC
has two regimes is even more clear from the right panel of Fig. 3.10 which shows
the distribution of the number of TSSs per TSR. Here again we see that it is most
common to �nd 1 or 2 TSSs per TSR, and that TSRs with between 5 and 10 TSSs
are relatively rare. There is, however, a fairly wide shoulder in the distribution cor-
responding to TSRs that have between 10 and 50 TSSs. These distributions suggest
that there are two types of promoters: `speci�c' promoters with at most a handful of
TSSs in them, and more `fuzzy' promoters with more than 10 TSSs.

This observation is further supported by the distribution of the lengths of TSCs
and TSRs (Fig. 3.11). In particular, the distribution of the length of TSRs (right
panel) also shows a clear shoulder involving lengths between 25 and 250 base pairs
or so.

3.2.5.3 Comparison with simple single-linkage clustering

In the supplementary materials (3.5.6) we compare the promoteromes obtained with
our clustering procedure with those that are obtained with the simple single-linkage
clustering procedures used in FANTOM3. The key di�erence between our cluster-
ing and single-linkage clustering employed in FANTOM3 is that in our procedure
neigboring TSS with signi�cantly di�erent expression pro�les are not clustered. Al-
though TSSs within a few base pairs of each other the genome often show correlated
expression pro�les, it is also quite common to �nd nearby TSSs with signi�cantly
di�ering expression pro�les. Figure 3.12 shows two examples of regions that contain
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Figure 3.11: Length (base pairs along the genome) distribution of transcription start
clusters (left panel) and transcription start regions (right panel). Both axes are shown
on logarithmic scales in both panels.

multiple TSSs close to each other on the genome, where some TSSs clearly correlate
in expression whereas others do not.
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3.3.2 Results and Discussion

Within a region less than 90 base pairs wide our clustering identi�es 5 di�erent
TSCs that each (except for the downstream most TSC) contain multiple TSSs with
similar expression pro�les. Any clustering algorithm that ignores expression pro�les
across samples would cluster all these TSSs into one large TSC. However, as shown in
panel Fig. 3.12C for the red and blue colored TSCs, their expression across samples
are not correlated at all. A scatter plot of the expression in TPM of the red and
blue TSC is shown in the supplementary material (Fig. 3.23), where an additional
example analogous to Fig. 3.12 is shown as well.

Since clustering procedures that ignore expression pro�les, such as the single-
linkage clustering employed in FANTOM3, cluster nearby TSSs with quite dissimilar
expression pro�les, one would expect that this clustering would tend to `average out'
expression di�erences across samples. To test this we calculated for each TSC the
standard deviation in expression (log-tpm) for both our TSCs and those obtained with
the FANTOM3 clustering. Figure 3.13 shows the reverse cumulative distributions
of the standard deviations for the two sets of TSCs. The �gure shows that there

0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Standard deviation log-tpm (SD)

F
ra

c
T

S
C

s
w

it
h

a
t

le
a
s
t

S
D

Figure 3.13: Reverse cumulative distributions of the standard deviation in expression
across the 56 CAGE samples for the TSCs obtained with our clustering procedure
(red) and the FANTOM3 single-linkage clustering procedure.

is a substantial decrease in the expression variation of the TSCs obtained with the
FANTOM3 clustering than in the TSCs obtained with our clustering. This illustrates
that, as expected, clustering without regard for the expression pro�les of neighboring
TSSs leads one to averaging out of expression variations. As a consequence, for TSCs
obtained with our clustering procedure one is able to detect signi�cant variations in
gene expression, and thus potential important regulatory e�ects, that are undetectable
when one uses a clustering procedure that ignores expression pro�les.
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3.2.6 High and low CpG promoters

Our promoterome statistics above suggest that there are two classes of promoters.
That there are two types of promoters in mammals was already suggested in previous
CAGE analysis (12) where the wide and fuzzy promoters were suggested to be asso-
ciated with CpG islands, whereas promoters with a TATA-box tended to be narrow.
To investigate this we calculated the CG- and CpG-content of all human promoters.
That is, for each transcription start region (TSR) we determined the fraction of all
nucleotides that are either C or G (CG-content), and the fraction of all dinucleotides
that are CpG (CpG-content). Figure 3.14 shows the two-dimensional histogram of
CG-content and CpG-content of all human TSRs. Figure 3.14 clearly shows that

Figure 3.14: Two dimensional histogram (shown as a heatmap) of the CG base content
(horizontal axis) and CpG dinucleotide content (vertical axis) of all human transcrip-
tion start regions (TSRs). Both axes are shown on a logarithmic scales

there are two classes of TSRs with respect to CG- and CpG-content. Although it
has been demonstrated previously that CpG-content of promoters shows a bimodal
distribution (29) the simultaneous analysis of both CG- and CpG-content allows for a
more e�cient separation of the two classes, and demonstrates more clearly that there
are really only two classes of promoters. We devised a Bayesian procedure to clas-
sify each TSR as high-CpG or low-CpG (Methods) that allows us to unambiguously
classify the promoters based on their CG- and CpG-content. In particular, for more
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3.3.2 Results and Discussion

than 91% of the promoters the posterior probability of the high-CpG class was either
larger than 0.95 or less than 0.05.

To study the association between promoter class and its length distribution we
selected all TSRs that with posterior probability 0.95 or higher belong to the high-
CpG class, and all TSRs that with probability 0.95 or higher belong to the low CpG
class, and separately calculated the length distributions of the two classes of TSRs.
Figure 3.15 shows that the length distributions of high-CpG and low-CpG TSRs are
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Figure 3.15: Reverse cumulative distribution of the lengths (base pairs along the
genome) of transcription start regions for high-CpG (red curve) and low-CpG (green
curve) promoters. The horizontal axis is shown on a logarithmic scale.

dramatically di�erent, supporting observations made with previous CAGE data (12).
For example, for the high-CpG TSRs only 22% have a width of 10 bps or less. In
contrast, for the low-CpG TSRs approximately 80% of the TSRs have a width of 10
bps or less. In summary, our analysis supports that there are two promoter classes
in human: one class associated with low CpG-content, low CG-content, and narrow
TSRs, and one class associated with high CpG-content, high CG-content, and wide
promoters. Similar results were obtained for mouse TSRs (data not shown).

Finally, we compared the promoter classi�cation of known and novel TSRs. Of the
43, 164, TSRs 37.7% are novel, i.e. there is no known transcript whose start is within
5 Kb of the TSR. For both known and novel TSRs the classi�cation into high-CpG
and low-CpG is ambiguous for about 8% of the TSRs. However, whereas for known
TSRs 56% are associated with the high-CpG class, for novel TSRs 76% is associated
with the low-CpG class. This is not surprising given that high-CpG promoters tend
to be higher and more widely expressed than low-CpG promoters, i.e. they are much
less likely to not have been observed previously.
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3.3 Conclusions

It is widely accepted that gene expression is regulated to a large extent at the rate
of transcription initiation. Currently regulation of gene expression is studied mostly
with oligonucleotide micro-array chips. However, most genes initiate transcription
from multiple promoters, and while di�erent promoters may be di�erently regulated,
the micro-array will typically only measure the sum of the isoforms transcribed from
the di�erent promoters. In order to study gene regulation it is therefore highly ben-
e�cial to monitor the expression from individual TSSs genome-wide and the deep
CAGE technology now allows to do precisely that. The related RNA-seq technology
similarly provides signi�cant bene�ts over micro-arrays. We therefore expect that, as
the costs of deep sequencing continues to come down, deep sequencing technologies
will gradually replace micro-arrays for gene expression studies.

Application of deep sequencing technologies for quantifying gene expression is
still in its infancy and, not surprisingly, there are a number of technical issues that
complicate the interpretation of the data. For example, di�erent platforms exhibit
di�erent sequencing errors at di�erent rates and currently these inherent biases are
only partly understood. Similarly, it is also clear that the processing of the input
samples to prepare the �nal samples that are sequenced introduces biases that are
currently poorly understood. It is likely that many technical improvements will be
made over the coming years to reduce these biases.

Apart from the measurement technology as such, an important factor in the qual-
ity of the �nal results is the way in which the raw data are analyzed. The development
of analysis methods for micro-array data are very illustrative in this respect. Several
years of in-depth study passed before a consensus started to form in the community
regarding the appropriate normalization, background subtraction, correction for se-
quence biases, and noise model. We expect that gene expression analysis using deep
sequencing data will undergo a similar development in the coming years. Here we
have presented an initial set of procedures for analyzing deep sequencing expression
data, with speci�c application to deep CAGE data.

Our available data suggest that, across all tissues and conditions, the expression
distribution of individual TSSs is a universal power-law. Interestingly, this implies
that there is no natural expression scale that distinguishes the large number of TSSs
which are expressed at very low rates, i.e. so-called background transcription, from
the highly regulated expression of the TSSs of highly expressed genes. That is, back-
ground transcription and the TSSs of the most highly expressed genes are just the
extrema of a scale-free distribution. As we have shown, by assuming that a common
universal power-law applies to all samples we can normalize the expression data from
di�erent deep sequencing data-sets. The fact that expression pro�les from SAGE and
from RNA-seq using the Solexa platform also show power-law distributions strongly
suggests that this normalization scheme is applicable to deep sequencing expression
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data in general. It should be noted that, although all observed distributions are
power-laws, there is no a priori reason that mammalian cells should have a common
power-law expression distribution across all tissues and conditions. It is conceivable
that, as more extensive data becomes available in the future, we may �nd signi�cant
di�erences between the expression distributions in di�erent tissues.

The noise in the expression measured across di�erent deep CAGE samples can be
accurately modeled by a convolution of multiplicative noise and Poisson sampling and
we derived a practical analytical approximation to the resulting noise distribution.
Using replicate data-sets we inferred the size of the multiplicative noise for di�erent
samples and found it to vary in a small range. In addition, analysis of Solexa RNA-
seq data from Drosophila showed multiplicative noise of similar size. However, we
expect that it is a simpli�cation to assume tha the multiplicative really is identical in
all experiments, and in the future we will want to apply a more re�ned analysis that
takes into account the di�erences in the size of the multiplicative noise for di�erent
samples. To this end it will be important to design experiments such that at least 1
replicate is available to estimate the size of the multiplicative noise associated with a
given experimental procedure.

The noise model allows us to rigorously assess the statistical signi�cance of mea-
sured expression di�erences across di�erent samples. In particular, we developed a
Bayesian procedure that calculates the probability that two TSSs have identical ex-
pression pro�les. Interestingly, we found that TSSs that are less than 10 bps apart
on the genome are much more likely to be co-expressed than more distal neighbor-
ing TSSs. Using these results we clustered sets of nearby co-expressed TSSs into
transcription start clusters (TSCs) that we propose are each regulated by a common
`promoter'. Of course, our ability to detect signi�cant expression di�erences is limited
by the number of available samples and we expect that, as the number of available
deep CAGE samples increases, the number of TSCs will increase as well.

Comparative genomic analysis shows a strong peak in sequence conservation re-
stricted to a few hundred base pairs around TSSs. This suggests that the proximal
promoter associated with each TSC extends a few hundred bps around the TSSs in the
TSC. Besides clustering nearby co-expressed TSSs into TSCs we also clustered TSCs
whose proximal promoters overlap into transcription start regions (TSRs). Compar-
ing the sequence composition and widths of TSRs we �nd that there are two classes
of promoters in the human and mouse genomes. The �rst class corresponds to TSRs
that are narrow, almost always less than 10 bps wide, and that have low CG-content
as well as low CpG-content. The second class corresponds to TSRs that are wide,
i.e. anywhere from 25 to 250 bps wide, and that are associated with CpG islands,
i.e. having both a high CG-content as well as a high CpG-content. It seems plausible
that di�erent mechanisms may be involved in the regulation of the these two classes
of promoters.
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3.4 Materials and Methods

3.4.1 CAGE and RNA-seq expression data

All the samples used in this study were provided by Riken Genomic Sciences Center
and come from the FANTOM3, the FANTOM4, and several smaller projects. Each
human sample has at least 100,000 mapped tags, and each mouse sample at least
50,000. The lists of all 56 human and 66 mouse samples, with tissue/cell line name,
treatment and accession numbers are available from the Genome Biology web page
http://genomebiology.com/2009/10/7/R79/additional Whenever assigned, accession
numbers of the DNA Data Bank of Japan are listed. Raw CAGE data of the FAN-
TOM4 project are available at http://fantom.gsc.riken.jp/4/.

The CAGE protocol that was used has been described in (30). The 143 C6
mouse hippocampus and h93, i02, i03 human THP-1 libraries are produced using
more recent protocol adapted to 454 Life Sciences (Roche) sequencer as described in
methods section of (31). The lengths of the CAGE tags was 20-21bp in all cases.

For the RNA-seq data total RNA was isolated from Drosophila Kc cells using
Trizol reagent. Puri�cation of mRNA and the generation of cDNA library was per-
formed following the Illumina protocol for mRNA sequencing. Primary sequencing
data analysis was done following the Illumina Genome Analyzer software pipeline.
ELAND was used for the alignment of short reads to the Drosophila genome (Release
5).

3.4.2 Normalization by �tting to a reference distribution

For each CAGE sample we �t the reverse-cumulative distribution n(t) of the number
of TSSs with at least t tags to a power-law. To robustly �t these power-laws across
di�erent samples with di�erent total numbers of tags we remove the data from the �rst
and last order of magnitude along the vertical axis and apply simple linear regression
to the remaining data. As a result, for each sample s there will be a �tted exponent
α(s) and a �tted o�set n0(s)

For a reference distribution of the form nr(t) = r0t
−α the total number of tags is

given by

T =
∞∑
t=1

r0t
−α = r0ζ(α), (3.16)

where ζ(x) is the Riemann-zeta function. That is, the total number of tags is de-
termined by both r0 and α. For the reference distribution we chose α = 1.25 and
T =

∑
t nr(t) = 106. Setting α = 1.25 in equation (3.16) and solving for r0 we �nd

r0 = 217, 623. (3.17)
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To map tag-counts from di�erent samples to this common reference we transform
the tag-count t in each sample into a tag-count t′ according to

t→ t′ = λtβ (3.18)

such that the distribution n(t) for this sample will match the reference distribution,
i.e. n(t) = nr(t

′). If the observed distribution has tag-count distribution

n(t) = n0t
−α, (3.19)

then in terms of t′ this becomes:

n(t) = n0

(
t′

λ

)−α/β
. (3.20)

Demanding that n(t) = nr(t
′) gives:

r0(t′)−1.25 = n0

(
t′

λ

)−α/β
. (3.21)

This equation is satis�ed when α/β = 1.25, that is:

β =
α

1.25
. (3.22)

Using this and and solving for λ we �nd:

λ =

(
r0

n0

)1.25

. (3.23)

3.4.3 Noise model

We model the noise as a convolution of multiplicative Gaussian noise and Poisson
sampling noise. Assume that tags from a given TSS position correspond to a fraction
f of the tags in the input pool. Let x = log(f) and let y be the log-frequency of
the tag in the �nal prepared sample that will be sequenced, i.e. for CAGE after cap-
trapping, linking, PCR-ampli�cation, and concatenation. We assume that all these
steps introduce a Gaussian noise with variance σ2 so that the probability P (y|x, σ)
is given by

P (y|x, σ)dy =
e−(y−x)2/(2σ2)

√
2πσ

dy. (3.24)

We assume that the only additional noise introduced by the sequencing is simply
Poisson sampling noise. That is, the probability to obtain n tags for this position,
given y and given that we sequence N tags in total is given by

P (n|N, y) =
(eyN)n

n!
e−Ne

y

. (3.25)
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Combining these two distributions we �nd that the probability to obtain n tags
given that the log-frequency in the input pool was x is given by

P (n|σ, x,N) =

∫ 0

−∞

(eyN)n

n!
e−Ne

y e−(y−x)2/(2σ2)

√
2πσ

dy (3.26)

This integral can unfortunately not be solved analytically. However, if the log-
frequency x is high enough such that the expected number of tags 〈n〉 = Nex is
substantially bigger than 1, then the Poisson distribution over y takes on a roughly
Gaussian form over the area where (y−x)2 is small enough to contribute substantially
to the integral. We thus decided to approximate the Poisson by a Gaussian, i.e. we
use

(eyN)n

n!
e−Ne

y ≈
exp

(
−n

2
(y − log(n/N))2)
√

2πn
(3.27)

Then the integral over y can be performed analytically. Since the integrand is already
close to zero at y = 0 (no individual TSS accounts for the entire sample) we can extend
the region of integration to y =∞ without loss of accuracy. We then obtain

P (n|σ, x,N) =
exp

(
− (log(n/N)−x)2

2σ2(n)

)
n
√

2πσ(n)
, (3.28)

where the variance is given by

σ2(n) = σ2 +
1

n
. (3.29)

In summary, the expected tag-count is such that the expected log-frequency log(n/N)
matches the input log-frequency x, and has a noise variation of the size σ2 plus one
over the tag-count n.

Although this approximation is strictly only good for large n we �nd that in
practice it is already quite good from n = 3 or so onwards and we decided to use
this approximation for all tag-counts n. However, it is clear that for n = 0 the
approximation cannot be used. For the case n = 0 we thus have to make an alternative
approximation. The probability P (0|σ, x) is given by the integral

P (0|σ, x) =

∫ 0

−∞

exp
(
−Ney − (x−y)2

2σ2

)
√

2πσ
dy. (3.30)

We can again extend the integration range to y = ∞ without appreciable error. In
addition we introduce a change of variables to

z =
y − x
σ

(3.31)
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and we introduce the variable m which represents the expected number of tags, i.e.

m = Nex. (3.32)

With these de�nitions the integral becomes

P (0|σ, x) =

∫ ∞
−∞

e−me
σz−z2/2 dz√

2π
. (3.33)

The Gaussian second term in the exponent ensures that the main contribution to the
integral comes from the region around z = 0. We therefore expand eσz to second
order, i.e.

eσz ≈ 1 + σz +
σ2z2

2
. (3.34)

The integral then becomes a Gaussian integral and we obtain the result

P (0|σ, x) ≈
exp

(
−m(2+mσ2)

2(1+mσ2)

)
√

1 +mσ2
. (3.35)

For small σ this is in fact very close to

P (0|0, x) = e−m. (3.36)

Both expressions (3.35) and (3.36) are reasonable approximations to the probability
of obtaining zero tags given an original log-frequency x.

3.4.4 Estimating the multiplicative noise component from the
replicate

Assume a particular TSS position was sequenced n times in the �rst replicate sample
and m times in the second replicate sample. Assume also that both n and m are
larger than zero. A little calculation shows that the probability P (n,m|σ) is given by

P (n,m|σ) ∝ 1√
2σ2 + 1

n
+ 1

m

exp

(
−(log(n/N)− log(m/M))2

2(2σ2 + 1
n

+ 1
m

)

)
. (3.37)

Note that we have not yet speci�ed if by n and m we mean the raw tag-counts or
the normalized version. For the comparison of expression levels, i.e. the di�erence
log(n/N) − log(m/M) it is clear we want to use the normalized values n′ and m′.
However, since the normalized values assume a total of one million tags, the normal-
ized values cannot be used in the expression for the variance. Therefore, we use the
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raw tag-counts n and m in the expression for the variance. That is, the probability
takes the form

P (n,m|σ) ∝ 1√
2σ2 + 1

n
+ 1

m

exp

(
− log2(n′/m′)

2(2σ2 + 1
n

+ 1
m

)

)
. (3.38)

We estimate the variance σ2 by maximizing the probability of the data over all
positions for which both n and m are larger than zero. Writing

σ2(n,m) = 2σ2 +
1

n
+

1

m
, (3.39)

the log-probability L of the data can be written as

L = −1

2

∑
i

[
log(σ2(ni,mi)) +

log2(n′i/m
′
i)

2σ2(ni,mi)

]
. (3.40)

We can now �nd the maximum of L with respect to σ2. Doing this on the replicate
CAGE data set we �nd

σ = 0.085. (3.41)

3.4.5 Estimating the multiplicative noise component by com-
paring zero and one hour expression in the THP-1 cells
PMA time course

Using the assumption that few TSSs change their expression within 1 hour of treat-
ment with PMA, we can also estimate σ2 by comparing expression across TSSs in the
CAGE samples of THP-1 cells before and after 1 hour of PMA treatment. We assume
that a large fraction of the TSS positions should be expressed equally in the two ex-
periments but allow for a small fraction of TSS positions to be expressed di�erently
across the two time points.

Let ∆ denote the size of the range in log-expression, i.e. the di�erence between
highest and lowest log tag-count, which is about 20, 000 in our experiments. We
assume a uniform prior distribution P (x) = 1/∆ over log-frequency x. Assume a
TSS position has expression m at zero hours and n at one hour. The probability of
this expression given that both are expressed the same is P (n,m|σ) that we calculated
above. In contrast, if the expression is di�erent between the two time points then the
probability is just the prior 1/∆. Let π denote the (unknown) fraction of all positions
that is expressed di�erently between the two time points. Under these assumptions
the likelihood of the data is

L(D|σ) =
∏
i

[
P (ni,mi|σ)(1− π) +

π

∆

]
(3.42)
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We now maximize this likelihood with respect to both π and σ2. Doing this on zero
and one time points of the three replicates gives us estimated σ2's of σ2 = 0.048,
σ2 = 0.116, and σ2 = 0.058. Note that two of these are a less than the σ2's inferred
from the replicate.

3.4.6 Likelihood of the expression pro�le of a single promoter

We want to calculate the likelihoods of two neighboring promoters under the as-
sumption that they have �xed relative expression, and assuming the two pro�les are
independent. As discussed above, the probability of the observed tag-count n is to a
good approximation Gaussian in the log-expression log(n) with a variance (σ2 +1/n),
where σ2 is the variance due to replicate noise and 1/n is the variance due to the Pois-
son sampling. However, this Gaussian form breaks down when n = 0 and this makes
analytic derivations impossible when data-points with zero counts are included. To
circumvent this we make two approximations when considering the expression pro�les
of neighboring promoters. First, we discard all samples s in which both TSSs have
zero tag-count ns = 0, i.e. we assume in e�ect that samples for which both promoters
have count zero are equally likely under both models. In addition, for samples s where
one of the two TSSs has a zero count we replace the count zero with a pseudo-count
of one half of a tag (being intermediate between no tags at all and 1 tag).

We focus �rst on the probability of the expression pro�le of a single promoter
(considering only the samples in which at least one of the promoters has non-zero tag
count). Let s denote a sample, ts the normalized tag-per-million of a promoter in the
sample, and ns the unnormalized CAGE tag count in the sample. The log-expression
values are given by

xs = log

(
ts + δns0

106

2Ns

)
, (3.43)

where the Kronecker delta function is 1 if and only if the tag-count ns is zero and Ns

is the total number of tags in sample s (over all TSSs). We now assume a model of
the following form

xs = noise + µ+ δs, (3.44)

where µ is the true average log-expression of this promoter and δs is the true deviation
from this mean in sample s. Given our noise model we have

P (xs|µ, δs) =

√
ws
2π

exp
[
−ws

2
(xs − µ− δs)2

]
, (3.45)

where

ws =
1

σ2 + 1/ns
, (3.46)
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σ2 is the variance of the multiplicative noise, and we set ns = 1/2 whenever ns = 0.
We need a prior probability distribution for the true expression variation δs and we
will assume this prior to be Gaussian with mean zero, i.e. we assume

P (δs|α) =

√
α

2π
exp

[
−α

2
(δs)

2
]
, (3.47)

where α sets the scale of the variation that promoters show. As discussed below, we
choose α so as to maximize the likelihood of the all the expression pro�les from all
TSSs (assuming each TSS is independent).

To obtain the marginal probability of xs given µ and α we perform the integral:

P (xs|µ, α) =

∫ ∞
−∞

P (xs|µ, δs)P (δs|α)dδs. (3.48)

This is a Gaussian integral that can be easily performed and we obtain

P (xs|µ, α) =

√
βs
2π

exp

[
−βs

2
(xs − µ)2

]
, (3.49)

where

βs =
wsα

ws + α
. (3.50)

Next, to obtain the marginal probability of xs given only α we integrate over the
mean log-expression µ and to to do this we need a prior P (µ). For simplicity we use
a uniform prior over some �xed range, i.e.

P (µ) =
1

∆µ

. (3.51)

when −∆µ/2 ≤ µ ≤ ∆µ/2 and zero outside of this range. We then obtain

P (x|α) =

∫ ∆µ/2

−∆µ/2

∏
s

P (xs|µ, α)
1

∆µ

dµ. (3.52)

We will assume that ∆µ is large compared to the region over which the probability
takes on its maximum so that we can let the integral run from minus in�nity to
in�nity without a�ecting the result. The precise value of ∆µ is not important since
it will eventually cancel out of the calculation. The result of the integral over µ is

P (x|α) =
1

∆µ

√
2π

S〈β〉
∏
s

βs
2π

exp

[
−S

2

(
〈βx2〉 − 〈βx〉

2

〈β〉

)]
, (3.53)
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where S is the number of samples (for which at least one of the two neighboring
promoters has non-zero tag count) and the averages are de�ned as follows

〈β〉 =
1

S

∑
s

βs, (3.54)

〈βx〉 =
1

S

∑
s

βsxs, (3.55)

and

〈βx2〉 =
1

S

∑
s

βs(xs)
2. (3.56)

To estimate α we extract, for each promoter p, all samples s for which the promoter
has non-zero tag count ns and we calculate P (x|α) for each of the expression pro�les
of these promoters. The total likelihood of α is then simply the product of P (x|α)
over all promoters

L =
∏
p

P (xp|α). (3.57)

and we maximize this expression with respect to α.

3.4.7 Likelihood for a consecutive pair of promoters

The key quantity that we want to calculate is the probability that the expression
pro�les of two neighboring promoters are proportional. That is, that the `true' ex-
pression of the one promoter is a constant times the expression of the other promoter.
Mathematically, we assume that the means of the log-expressions may be di�erent
for the two promoters, but the deviations δs are the same. That is, we assume

xs = noise + µ+ δs (3.58)

and

ys = noise + µ̃+ δs, (3.59)

where xs and ys are the log-expression values of the neighboring pair of promoters.
Again, as described above, we restrict ourselves to those samples for which at least
one of the neighbors has non-zero expression, and add a pseudo-count of half a tag
whenever ns = 0.
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For a single sample we have

P (xs, ys, δs|µ, µ̃, α) =

=

√
wsw̃sα

(2π)3
·

· exp

[
−ws

2
(xs − µ− δs)2 − w̃s

2
(ys − µ̃− δs)2 − α

2
(δs)

2

]
,

(3.60)

where

w̃s =
1

σ2 + 1/ms

, (3.61)

and ms is the raw count of tags for the promoter with log-expression ys. The integral
over δs is still a Gaussian integral but the algebra is quite a bit more tedious in this
case. To simplify the expression we write

δxs = xs − µ (3.62)

and

δys = ys − µ̃ (3.63)

Then we can write

P (xs, ys|µ, µ̃, α) =

=

√
wsw̃sα

(2π)2(ws + w̃s + α)
·

· exp

[
−ws

2
(δxs)

2 − w̃s
2

(δys)
2 +

(wsδxs + w̃sδys)
2

2(ws + w̃s + α)

]
.

(3.64)

Next we want to integrate over µ and µ̃. That is, we want to calculate the integrals∫ ∏
s

P (xs, ys|µ, µ̃, α)P (µ)P (µ̃)dµdµ̃, (3.65)

where we again use uniform priors

P (µ) =
1

∆µ

. (3.66)

Although these integrals are still just Gaussian integrals, the algebra is much more
involved. To do the integrals we change variables from µ and µ̃ to r = (µ+ µ̃)/2 and
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q = µ− µ̃ (the Jacobian determinant of this transformation is 1). We integrate r out
of the problem �rst. Furthermore we introduce notation

σs =
xs + ys

2
, (3.67)

zs = xs − ys, (3.68)

ρs =
ws − w̃s

2(ws + w̃s)
, (3.69)

us = σs + ρs(zs − q), (3.70)

γs =
α(ws + w̃s)

α + ws + w̃s
, (3.71)

and �nally

Ws =
wsw̃s

ws + w̃s + α

(
1 +

α

ws + w̃s

)
. (3.72)

Using all this notation we can write the integral over r as

P (x, y|q, α) =
1

(∆µ)2

√
2π

S〈γ〉
∏
s

αwsw̃s
(2π)2(ws + w̃s + α)

exp

[
−1

2

(∑
s

Ws(zs − q)2 + S〈γu2〉 − S 〈γu〉
2

〈γ〉

)]
, (3.73)

where the averages are again de�ned as

〈γ〉 =
1

S

∑
s

γs, (3.74)

〈γu〉 =
1

S

∑
s

γsus, (3.75)

and

〈γu2〉 =
1

S

∑
s

γs(us)
2. (3.76)

Finally, we integrate over q. The result can be written as

P (x, y|α) =
2π

S(∆µ)2

1√
〈γ〉〈W 〉+ 〈γ〉〈γρ2〉 − 〈γρ〉2

e−SQ/2
∏
s

√
αwsw̃s

(2π)2(ws + w̃s + α)
, (3.77)
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with

Q = 〈Wz2〉+ 〈γ(σ + ρz)2〉 − 〈γ(σ + ρz)〉2

〈γ〉
−

[
〈Wz〉+ 〈γρ(σ + ρz)〉 − 〈γρ〉〈γ(σ+ρz)〉

〈γ〉

]2

〈W 〉+ 〈γρ2〉 − 〈γρ〉2〈γ〉

,

(3.78)
and all the averages are de�ned as above. For example, we have

〈γρ(σ + ρz)〉 =
1

S

∑
s

γsρs(σs + ρszs), (3.79)

and analogously for all the other averages.

3.4.8 Classifying high- and low-CpG promoters

We �rst log-transformed the CG- and CpG-contents of all promoters. To do this we
added a pseudo-count of 0.05 to the fraction of CpG dinucleotides of all TSRs. We
�tted (using expectation-maximization) the joint distribution of log-CG and log-CpG
contents of all TSRs to a mixture of two two-dimensional Gaussians of the form

P (~x) =
ρ

2πσ2
AT

exp

[
− 1

2σ2
AT

|~x− ~µAT|2
]

+
1− ρ
2πσ2

CG

exp

[
− 1

2σ2
CG

|~x− ~µCG|2
]
, (3.80)

where the components of ~x are the logarithms of the fraction of CGs and CpGs
respectively. The �tted solution has

ρ = 0.55. (3.81)

The center of the low-CpG Gaussian is given by

~µAT = (−0.78,−2.74) (3.82)

and the center of the high-CpG Gaussian by

~µCG = (−0.39,−1.95). (3.83)

The �tted variance of the low-CpG Gaussian is given by

σ2
AT = 0.036, (3.84)

and the �tted variance of the high-CpG Gaussian is given by

σ2
CG = 0.026. (3.85)
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Using the �tted mixture of Gaussians we can calculate, for each TSR at position ~x
the posterior probability that it belongs to the low-CpG class as

P (low|~x) =
GAT(~x)ρ

GAT(~x)ρ+GCG(~x)(1− ρ)
, (3.86)

where GAT(~x) and GCG(~x) are the �tted low-CpG and high-CpG Gaussians, respec-
tively.

3.4.9 Data availability

The complete human and mouse promoteromes, including the locations of all tran-
scription start sites (TSSs), transcription start clusters (TSCs), transcription start
regions (TSRs), and their raw and normalized expression pro�les across all CAGE
samples are available for download from the SwissRegulon web page http://www.
swissregulon.unibas.ch/cage_clustering_supplementary/.
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3.5 Supplementary Data

3.5.1 Distributions of reads per position for Solexa RNA-seq
data

Figure 3.16: Reverse cumulative distributions for the number of reads per position
in two RNA-Seq technical replicates of Drosophila Kc cells. Both axes are shown on
logarithmic scales.

Using Solexa sequencing we obtained two replicate data-sets of RNA-seq data.
After mapping the reads to the genome we determined the distribution of the num-
ber of reads per position for each replicate. Figure 3.16 shows the reverse cumulative
distributions of reads per position that we obtained for these data sets. The �gure il-
lustrates that approximately power-law distributions are observed for RNA-seq data
as well. This further supports that the roughly power-law distribution of expres-
sion levels across individual TSSs is not an artefact of measurement technology but
represents the actual distribution of transcript levels in the cells.

3.5.2 Replicate scatter for Solexa RNA-seq data

For the same two RNA-seq samples �gure 3.17 shows a scatter-plot of the number of
reads per position in the two samples.

3.5.3 Per `exon' replicate scatter for Solexa RNA-seq data

For the same data-set shown in �gure 3.17 we used single-linkage clustering to cluster
overlapping reads into `exons'. Figure 3.18 shows a scatter plot analogous to �gure
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Figure 3.17: Scatter-plot of numbers of reads in the two RNA-seq replicates of
Drosophila Kc cells obtained with Solexa sequencing. Each data point corresponds to
a unique position on the chromosome with the number of reads in the �rst replicate
on the horizontal axis and the number of reads in the second replicate on the vertical
axis. Both axes are shown on a logarithmic scale. The size of the multiplicative noise
σ2 estimated from this scatter is σ2 = 0.073

3.17 but now for the expression of these `exons' across the two replicates.

3.5.4 CAGE per TSS replicate scatter

Two independent CAGE samples where obtained from a common RNA sample from
THP-1 cells after 8 hours of treatment with LPS. Figure 3.19 shows a scatter-plot of
the normalized tags-per-million of each TSS for these two replicate samples.

3.5.5 CAGE per gene replicate scatter

For the same two replicate samples shown in �gure 3.19 we summed, for each gene, the
expression from all TSSs associated with the gene, to obtain a normalized expression
per gene. Figure 3.20 shows a scatter-plot of the per gene expression of the CAGE
replicates.

3.5.6 Comparison with FANTOM3 clustering

For human our data contained a total of 25, 469, 648 CAGE tags representing 6, 395, 686
unique TSS locations in the human genome. Table 3.2 compares the number of TSSs
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Figure 3.18: Scatter-plot of reads per million in two RNA-Seq replicates of Drosophila
Kc cells. Each data point corresponds to a cluster of overlapping reads on the chro-
mosome, with horizontal and vertical coordinates given by the number of reads per
million for each replicate. The size of the multiplicative noise σ2 estimated from this
data is σ2 = 0.02.

Figure 3.19: Scatter-plot of CAGE expression for two replicate measurements of THP-
1 cells after 8 hours of LPS treatment. Each data point corresponds to a individual
TSS. Values on the horizontal and vertical axes correspond to normalized tags per
million for each TSS. Both axes are shown on a logarithmic scale. The size of the
multiplicative noise σ2 estimated from this data is σ = 0.085
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Figure 3.20: Scatter-plot of the normalized tags per million per gene for the same two
CAGE replicates as shown in Fig. 3.19. Each data point corresponds to a gene. Axes
are shown on logarithmic scales. The size of the multiplicative noise σ2 estimated
from this data is σ = 0.068

Statistic Our clustering FANTOM3 clustering
Number of TSSs in TSCs 860'823 1'043'768

Number of TSCs 74'273 64'908
Number of TSRs 43'164 49'461

Table 3.2: Comparison of the number of TSSs, TSCs, and TSRs obtained with our
clustering and the FANTOM3 clustering (in which CAGE tags that are 21 bp or less
apart are clustered through single-linkage clustering).

63



Constructing the human and mouse promoterome with deepCAGE data

in TSCs, the number of TSCs, and the number of TSRs between our clustering of
CAGE tags and the simple single-linkage clustering employed in the FANTOM3 pa-
per. First of all we see that a signi�cantly larger number of unique TSSs are included
in the FANTOM3 clustering. This is a result of the fact that TSSs with expression
pro�les signi�cantly di�erent from those in the TSC (which may often be low ex-
presssed TSSs) are clustered with the TSC in the FANTOM3 clustering, whereas in
our clustering these form separate TSCs who are then �ltered out owing to their low
expression. The total number of TSCs in the FANTOM3 clustering is lower because
neighboring TSCs with di�erent expression pro�les are all clustered together in the
FANTOM3 clustering. Even though the number of TSCs is smaller in the FANTOM3
clustering, the �nal number of TSRs is a little larger because, owing to the tendency of
the FANTOM3 clustering to cluster all nearby TSSs, irrespective of their expression
pro�le, a large number of low expressed TSRs pass the cut-o� on minimal expression
in the �ltering stage.

Figure 3.21 shows a comparison of the distributions of the number of TSSs per
TSC, the number of TSCs per TSR, and the number of TSSs per TSR, for our
clustering and for the single-linkage clustering that was employed in FANTOM3.
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Figure 3.21: Comparison of the hierarchical structure of the human promoterome
for our clustering and the FANTOM3 clustering. Left: Distribution of the number of
transcription start sites (TSSs) per per co-expressed transcription start cluster (TSC).
Middle: Distribution of the number of TSCs per transcription start region (TSR).
Right: Distribution of the number of TSSs per TSR. The vertical axis is shown on
a logarithmic scale in all panels. The horizontal axis is shown on a logarithmic scale
in the left and right panels. The red lines show the distributions obtained using
our clustering procedure and the green lines show the distribution obtained using
single-linkage clustering employed in FANTOM3.

As illustrated by the left and right panels of �gure 3.21, there are in general more
TSSs per TSC and more TSSs per TSR for the FANTOM3 clustering. In contrast,
there tend to be more TSCs per TSR for our clustering. Both these observations are
a result of the fact that in our clustering TSSs with di�erent expression pro�les are
not clustered together, even if they are near each other, whereas the single-linkage
clustering fuses all these TSSs into a single TSC.
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Figure 3.22 shows the distributions of the lengths TSCs and TSRs for both our
clustering and the FANTOM3 clustering. Although on the logarithmic scales the
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Figure 3.22: Comparison of the length distributions of TSCs and TSRs for the pro-
moteromes obtained using our clustering and using the FANTOM3 clustering. Left:
Length distribution of the TSCs. Right: Length distribution of the TSRs. Both axes
are shown on logarithmic scales. The red lines show the distributions obtained using
our clustering procedure and the green lines show the distribution obtained using
single-linkage clustering employed in FANTOM3.

length distributions appear quite similar for the two clustering procedures, the TSCs
obtained by the FANTOM3 clustering tend to be signi�cantly wider. More strikingly,
for the FANTOM3 clustering there is a pronounced shoulder in the distributions at
a width of 21 base pairs, which is almost certainly an artifact of the fact that this
distance is exactly the cut-o� on the single-linkage clustering.

3.5.7 Nearby uncorrelated TSSs

In �gure 12 of the main article we showed an example of neighboring TSCs that have
signi�cantly di�erent expression pro�les, which were shown in panel C. To further
illustrate that these expression pro�les are indeed not correlated �gure 3.23 shows a
scatter plot of the expression of the two TSCs across the 56 CAGE samples. The plot
con�rms that there is no discernible correlation between the expression pro�les of the
two TSCs, and they are certainly not tightly co-regulated, which supports that these
two TSCs are driven by distinct regulatory sites.

In �gure 3.24 below we show another example of a set of nearby TSCs with
clearly distinct expression pro�les. The interesting feature of this example is that
there are two broad TSCs, containing a substantial number of TSSs that all show
correlated expresion, which are interspersed by a single TSS that shows a very di�erent
expression pro�le (the red TSS). The structure of this promoter region suggests that,
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Figure 3.23: Scatter of the expression levels (in TPM) of two nearby TSCs, located on
human chromosome 3. Each dot corresponds to one of the 56 human CAGE samples.
Both axes are shown on a logarithmic scale.

on the one hand, there is a broad region to which the polymerase is recruited by one
set of regulatory mechanisms, while on the other hand there is a single TSS within the
same region to which the polymerase is recruited by a distinct regulatory mechanism.
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3.5.8 Mouse Promoterome Statistics

For the mouse promoterome, as for the human promoterome, we �rst calculated the
distribution of phastCons conservation scores as a function of position relative to
the most expressed TSS in each TSC. Figure 3.25 shows the phastCons conservation
pro�les that we obtained for both all TSCs (left panel) and the novel TSCs (right
panel).
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Figure 3.25: Average phastCons (conservation) score relative to TSS of genomic re-
gions upstream and downstream of all mouse TSCs (left panel) and for all mouse
TSCs that are more than 5 kilobases away from any known start (right panel).

The conservation pro�les for mouse are very similar to the ones that we observed
for human. We again see a sharp peak of conservation covering a few hundred base
pairs around TSS. The novel promoters show a conservation peak of similar width
but with lower height. Interestingly, whereas for human the conservation peak of the
novel promoters was close to symmetric, for mouse the novel promoter peak is also
clearly asymmetric, although still not as asymmetric as the peak for the known TSSs.

Next we determined the position of the closest start of a known transcript for
each mouse TSC. Figure 3.26 shows the distribution of the relative positions of the
closests known starts for all mouse TSCs that have a known start within 1000 base
pairs of the TSC.

The distribution in �gure 3.26 is also very similar to what we observed for the
human promoterome. The main di�erence is that whereas for human 62.2% of all
TSCs have a known start within 1000 base pairs, for mouse this is only 59%, which
is likely due to the larger amount of data available for human.

Figure 3.27 shows the hierarchical structure of the mouse promoterome that we
constructed. In particular, we show the distribution of the number of TSSs per TSC,
the number of TSCs per TSR, and the number of TSSs per TSR, as we also showed
for the human promoterome in the main article.
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Figure 3.26: Number of TSCs as a function of their position relative to the nearest
known transcript start. Negative numbers mean the nearest known start is upstream
of the TSC. The vertical axis is shown on a logarithmic scale. The �gure shows only
the 45, 603 TSCs (59%) with a known start within 1000 base pairs.
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Figure 3.27: Hierarchical structure of the mouse promoterome. Left: Distribution
of the number of transcription start sites (TSSs) per per co-expressed transcription
start cluster (TSC). Middle: Distribution of the number of TSCs per transcription
start region (TSR). Right: Distribution of the number of TSSs per TSR. The vertical
axis is shown on a logarithmic scale in all panels. The horizontal axis is shown on a
logarithmic scale in the left and right panels.
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The distributions in Fig. 3.27 are generally very similar to those observed for the
human promoterome. The distributions are all a little less wide than for human, which
is likely the result of the larger amount of data available for human. Importantly, as
in the human data, the distribution of the number of TSSs per TSR also shows the
clear `shoulder' corresponding to TSRs with between roughly 10 and 50 TSSs.

Finally, we also calculated the length distributions of mouse TSCs and TSRs, both
using our clustering procedure, and using the single-linkage clustering employed in
FANTOM3 (�gure 3.28). Here too the distributions are very similar to the results
that we obtained for the human data. In particular, we cleary see the shoulder in the
distribution of TSR lengths for lengths roughly between 25 and 150 base pairs long.
We also again see that the single-linkage clustering leads to wider clusters, and leads
to an arti�cial shoulder at 21 base pairs (i.e. the length of the CAGE tags that was
chosen as a distance cut-o�).
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Figure 3.28: Comparison of the length distributions of TSCs and TSRs for the mouse
promoteromes obtained using our clustering and using the FANTOM3 clustering.
Left: Length distribution of the TSCs. Right: Length distribution of the TSRs.
Both axes are shown on logarithmic scales. The red lines show the distributions
obtained using our clustering procedure and the green lines show the distribution
obtained using single-linkage clustering employed in FANTOM3.
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Chapter 4

ISMARA: Modeling genomic signals
as a democracy of regulatory motifs

Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela
Zavolan & Erik van Nimwegen

submitted

Accurate reconstruction of the regulatory networks that control gene ex-
pression is one of the key current challenges in molecular biology. Al-
though gene expression and chromatin state dynamics are ultimately en-
coded by constellations of binding sites recognized by regulators such as
transcriptions factors (TFs) and microRNAs (miRNAs), our understand-
ing of this regulatory code and its context-dependent read-out remains
very limited. Given that there are thousands of potential regulators in
mammals, it is not practical to use direct experimentation to identify
which of these play a key role for a particular system of interest.

We developed a methodology that uses genome-wide predictions of TF
binding sites and miRNA target sites to model gene expression or chro-
matin modi�cations in terms of these sites, and completely automated
it into a web-based tool called ISMARA (Integrated System for Motif
Activity Response Analysis), located at http://ismara.unibas.ch. Given
as input only gene expression or chromatin state data across a set of
samples, ISMARA identi�es the key TFs and miRNAs driving expres-
sion/chromatin changes and makes detailed predictions regarding their
regulatory roles. These include predicted activities of the regulators across
the samples, their genome-wide targets, enriched gene categories among
the targets, and direct interactions between the regulators.
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Applying ISMARA to data sets from well-studied systems, we show that
it consistently identi�es known key regulators ab initio. We also present
a number of novel predictions including regulatory interactions in innate
immunity, a master regulator of mucociliary di�erentiation, TFs consis-
tently upregulated in cancer, and TFs that mediate speci�c chromatin
modi�cations.

4.1 Introduction

Since the seminal work of Jacob and Monod (32), much has been learned about
the molecular mechanisms by which gene expression is regulated, and the molecular
components involved. Historically, most work has focused on transcription factors
(TFs), arguably the most important regulators of gene expression, which bind to
cognate sites in the DNA, frequently in the neighborhood of transcription start sites
(TSSs), and regulate the rate of transcription initiation. However, more recently it
has become clear that the state of the chromatin, which can be modulated through
modi�cations of the DNA nucleobases and of the histone tails of nucleosomes, also
plays a crucial role. For example, the local chromatin state a�ects the ability of TFs
to access their binding sites, and the chromatin state can in turn be modi�ed through
TF-guided recruitment of chromatin modifying enzymes. Furthermore, an entirely
new layer of post-transcriptional regulation has been uncovered in recent years in the
form of microRNAs (miRNAs) (33). These guide RNA-induced silencing complexes
to target mRNAs, inhibiting their translation and accelerating their decay (34).

In spite of these many insights, our current understanding of the function of
genome-wide gene regulatory networks in mammals is still rudimentary. For example,
we only know the sequence speci�city of less than 500 (35; 36; 37) of the approxi-
mately 1500 (38) TFs in mammalian genomes. Our knowledge of how TF binding
is a�ected by chromatin state, of the combinatorial interactions between TFs and
their co-factors, and the impact of post-translational modi�cations on TF activity,
is even more fragmentary. Our understanding of the transcriptome-wide e�ects of
miRNAs on their targets is similarly limited. It is thus clear that we are still far
from being able to develop realistic quantitative models of gene regulatory networks
in mammals. Consequently, rather than aiming to develop comprehensive computa-
tional models of gene regulatory dynamics, the most constructive contribution that
computational approaches can currently provide is to develop models that help guide
experimental e�orts.

Given a particular mammalian subsystem or process, e.g. a particular develop-
mental or cellular di�erentiation process, or the response of a tissue to a particular
perturbation, the initial steps in unraveling its gene regulatory circuitry are to iden-
tify the key regulators in the process, and to characterize the rough functional roles
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these regulators play. However, for the vast majority of mammalian systems these
initial steps have yet to be taken. Given the large number of potential regulators, a
direct experimental approach, e.g. through large-scale screening, is typically not fea-
sible. There is thus a strong need for computational methods that, given a system of
interest, can predict key regulatory players and make concrete, directly testable, hy-
potheses about their regulatory roles. We here present an integrated and completely
automated computational methodology that accomplishes exactly this task.

Our approach, ISMARA (Integrated System for Motif Activity Response Analy-
sis), capitalizes on a number of recent computational and experimental technological
developments. First, whereas large-scale screening of the functions of individual reg-
ulators in a particular system is often impractical, it is relatively straight forward to
measure gene expression (i.e. with microarray or RNA-seq) or chromatin state (with
ChIP-seq) in high-throughput across a set of samples of interest. Second, over the
last years sophisticated comparative genomic methods have been developed that allow
relatively accurate computational prediction of regulatory sites for hundreds of TFs
and miRNAs on a genome-wide scale (39; 40; 41). Third, through extensive experi-
mental e�orts, genome-wide annotations of transcript structures (13) and promoters
(Chapter 3) have also become available.

Given as input a set of genome-wide gene expression or chromatin state measure-
ments across a number of samples, ISMARA models the gene expression or chromatin
state dynamics in terms of a comprehensive set of computationally predicted regu-
latory sites, using a simple linear modeling approach called Motif Activity Response
Analysis (MARA) that we originally proposed in (25). As a result, ISMARA iden-
ti�es the key regulators (i.e. TFs and miRNAs) driving gene expression/chromatin
state changes across the samples, the activity pro�les of these regulators, their tar-
get genes, and the sites on the genome through which these regulators act. The
analysis is carried out within a completely automated system, which combines pre-
calculated annotations of regulatory sites for hundreds of regulators across promoters
in mammalian genomes with processing of input data, automated tuning of param-
eters, and post-processing to provide a large collection of auxiliary analysis results.
To use ISMARA, all that users need to do is upload their data to the web-server
http://ismara.unibas.ch/ and submit it to the system, after which all results are pre-
sented through a user-friendly graphical web-interface. Importantly, in ISMARA the
motif activity response analysis has been extended to model not only gene expression
data from various platforms (microarray, RNA-seq), but essentially any sequencing
data re�ecting a genomic mark (ChIP-seq) including chromatin modi�cations or TF
binding. In addition, ISMARA models not only the e�ect of TFs on mammalian gene
expression, but also the e�ect of miRNAs. Below we will �rst describe the methodol-
ogy used by ISMARA and the results that it provides, and then we will demonstrate
its power through a number of applications.
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4.2 Results

4.2.1 An Integrated System for Motif Activity Response Anal-
ysis

The integrated system for motif activity response analysis (ISMARA) that we devel-
oped is schematically depicted in Fig. 4.1. Detailed descriptions of all procedures are
provided in the supplementary methods. The system capitalizes on two key resources
developed in our group (Fig. 4.1A-C). The �rst is the genome-wide annotation of
promoters in human and mouse, i.e. so-called "promoteromes", that we constructed
(Chapter 3) from genome-wide transcription start site data (deepCAGE data (42)).
We supplement these promoter sets with 5' ends of known RNA transcripts from hu-
man and mouse, and associate transcripts with promoters. The second key resource
that we employ is a genome-wide annotation of functional transcription factor binding
sites (TFBSs) that we obtained with Bayesian probabilistic methods for quantifying
evolutionary selection pressure, which we developed previously (39; 41). Brie�y, we
constructed multiple alignments of orthologous proximal promoter regions across 7
mammalian genomes and curated a collection of approximately 200 non-redundant
mammalian regulatory motifs (positional weight matrices) that represent the DNA
binding speci�cities of close to 350 TFs in both human and mouse. We then used
our MotEvo algorithm (41) to predict functional TFBSs for all TF regulatory mo-
tifs across all promoters in human and mouse (Fig. 4.1A,C). MotEvo is a Bayesian
algorithm which explicitly models the evolution of TFBSs across the mammalian
phylogeny (Suppl. Fig. 1).

When modeling expression data, ISMARA also integrates the e�ects of miRNAs
that increase decay of transcripts by binding to sites that are generally located in the
3' untranslated regions (UTRs) of transcripts. We used miRNA target site predictions
from TargetScan using preferential conservation scoring (PCT ) (40), and calculated
an overall score for the targeting of a promoter by a particular miRNA by averaging
over all transcripts associated with the promoter (Suppl. Methods).

The result of the regulatory site annotation was, for both human and mouse, a
large matrix N, where Npm is the predicted total number of functional binding sites
in promoter p for motif m, where m runs over the 190 TF binding motifs as well as
the 86 miRNA `seed' motifs.

The next step in ISMARA consists of the construction of a data matrix E, where
Eps denotes the `signal' associated with promoter p for sample s. When provided
gene expression data in the form of microarrays, ISMARA applies standard normal-
ization procedures and maps the probes on the microarray to the set of known RNA
transcripts, which are each in turn associated with promoters. Microarray platforms
currently supported by ISMARA are listed in Suppl. Table 1. For a promoter p, the
expression Eps is given by the average log-intensity in sample s of the probes asso-
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Figure 4.1: Outline of the Integrated System for Motif Activity Response Analysis
(ISMARA) (continued on the next page)
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Figure 4.1: Outline of the Integrated System for Motif Activity Response Analysis
(ISMARA). A: ISMARA starts from a curated genome-wide collection of promoters
and their associated transcripts. Using a comparative genomic Bayesian methodology
(41), transcription factor binding sites (TFBSs) for ≈ 200 regulatory motifs are pre-
dicted in proximal promoters. Similarly, miRNA target sites for ≈ 100 seed families
are annotated in the 3' UTRs of transcripts associated with each promoter. B: Users
provide measurements of gene expression (microarray, RNA-seq) or chromatin state
(ChIP-seq). The raw data are processed automatically and, for each promoter and
each sample, a signal is calculated. For ChIP-seq data, the signal is calculated from
the read density in a region around the transcription start. For gene expression data,
the expression signal is calculated from read densities across the associated transcripts
(RNA-seq) or intensities of associated probes (microarray). C: The site predictions
and measured signals are summarized in two large matrices. The components Npm of
matrix N contain the total number of sites for motif m (TF or miRNA) associated
with promoter p. The components Eps of matrix E contain the signal associated with
promoter p in sample s. D: The linear MARA model is used to explain the signal
levels Eps in terms of bindings sites Npm and unknown motif activities Ams, which
are inferred by the model. The constants cp and c̃s correspond to basal levels for each
promoter and sample, respectively. E: As output, ISMARA provides the inferred mo-
tif activity pro�les Ams of all motifs across the samples s, sorted by the signi�cance of
the motifs. A sorted list of all predicted target promoters is provided for each motif,
together with the network of known interactions between these targets (provided by
the String database, http://string-db.org/), and a list of Gene Ontology categories
that are enriched among the predicted targets. Finally, for each motif, a local network
of predicted direct regulatory interactions with other motifs is provided.
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ciated with promoter p. Similarly, for RNA-seq data the reads are mapped to the
known RNA transcripts and Eps is calculated as the average of the logarithm of the
fraction of all reads in the sample that map to transcripts associated with promoter p.
When processing ChIP-seq data, the signal Eps is calculated as the logarithm of the
fraction of reads in sample s that map to a 2 kilobase region centered on promoter p.
Details of the normalization steps involved are again provided in the supplementary
methods.

At the core of ISMARA is the MARA model (25) which, similar to previous linear
modeling approaches (4; 43), assumes that the `signal' at each promoter p is a linear
function of its binding sites Npm:

Eps = c̃s + cp +
∑
m

NpmAms + noise, (4.1)

where cp is a term re�ecting the basal activity of promoter p, c̃s re�ects the total
expression in sample s, and Ams is the (unknown) activity of motif m in sample s.
That is, using the predicted site counts Npm and the experimentally measured Eps, we
use the model (4.1) to infer the activities Ams of all motifs across all samples. To infer
the activities, ISMARA uses a Bayesian procedure with a Gaussian likelihood model
for the di�erence between the measured signal Eps and the predicted signal, and a
Gaussian prior distribution for the activities (Methods). The latter is used to avoid
over�tting and ISMARA uses a cross-validation procedure to set the parameters of
the prior (see Suppl. methods). The entire posterior distribution of motif activities
is a multi-variate Gaussian which is determined using singular value decomposition
(see Suppl. methods).

It is important to note that we do not expect the simple model (4.1) to provide
an accurate �t to the signal Eps at individual promoters. As mentioned in the in-
troduction, many factors that in�uence expression and local chromatin state are not
included in our model. Moreover, instead of each binding site contributing linearly
to Eps, in reality the expression Eps will likely be a complex combinatorial function
of the constellation of binding sites in promoter p. Indeed, we typically �nd that
the simple model (4.1) captures only a small fraction of the variance of Eps across
the samples (Suppl. Fig. 2). However, the aim of the model (4.1) is not to �t the
signals Eps, but rather to identify which of the motifs m play an important role, and
how these motifs contribute to Eps across the samples. Since each motif m targets
hundreds to thousands of promoters p, the inferred motif activities Ams are statistical
averages of the behaviors of a large number of promoters. This averaging causes the
complexities at individual promoters to e�ectively cancel out and ensures that the
overall in�uence of a motif can still be reliably inferred. To put it di�erently, if a clear
average contribution of a given motifm is detected using the simple linear model (4.1)
in spite of it being a poor model at individual promoters, we can be con�dent that
the motif indeed contributes to the signal Eps.
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Apart from inferring motif activities, ISMARA also predicts which individual
promoters are regulated by each motif m. As detailed in the Suppl. methods, for
each promoter with predicted TFBSs for the motif (i.e. Npm > 0) ISMARA estimates
the log-likelihood ratio Spm of the entire model with the TFBSs for m in p present,
and the model in which the entry Npm has been set to zero. That is, Spm rigorously
quanti�es how much removal of the sites for m in p decreases the �t of the model to
the data.

4.2.2 Overview of the results presented by ISMARA

We have made ISMARA available through a web interface http://www.ismara.unibas.
ch as part of our SwissRegulon resources (37). Users can directly upload unprocessed
microarray (CEL �les), RNA-seq, or ChIP-seq data (bed �les) which are then analyzed
automatically without the need for any additional input from the user (Fig. 4.1B).
The results are made available through a web interface and can also be downloaded
in �at-�le format. To give an overview of the results ISMARA provides, we applied
it to the GNF Gene Atlas (44) of mRNA expression pro�les across 91 tissues and cell
lines in mouse. The results are available at http://ismara.unibas.ch/supp/dataset1/
ismara_report/.

The �rst output of ISMARA is a list of all regulatory motifs sorted by a z-score
which summarizes the importance of the motif for explaining the expression varia-
tion across the samples. This score roughly corresponds to the average number of
standard-deviations the motif activity is away from zero (see Methods and Suppl.
Methods). Besides the z-score of each motif, the list also displays the set of associ-
ated TFs, a thumbnail of its activity across the input samples, and a sequence logo for
each motif (Suppl. Fig. 3). In the Gene Atlas data, the second most signi�cant motif
is E2F1..5, corresponding to the E2F1 through E2F5 transcription factors that are
known to regulate the cell cycle (45; 46). Following the link from the motif name links
leads to a page with additional details regarding the E2F1..5 motif (Suppl. Figs. 4-6),
including its inferred activity pro�le across the samples, once ordered according to
the user's input (Suppl. Fig. 4), and once ordered according to the sample-dependent
activity z-values (Suppl. Fig. 5). The samples in which the E2F activity is highest
are known to be composed of fast dividing cells (bone marrow, hematopoietic stem
cells and arti�cial cell lines), while neural tissues, containing largely non-dividing cells
have the lowest E2F activity (Fig. 4.2A). The page also provides a list of predicted
target promoters of the motif, sorted by their score Spm (Suppl. Fig. 6). Besides
the score, this list includes for each target a link to a genome browser view of the
promoter which shows the predicted TFBSs (Suppl. Fig. 7), associated gene and
transcripts, and a short description of each target gene. The user can interactively
change how many of the top targets are shown, or search for a gene or transcript of
interest in the list of all targets. To provide the user with a more intuitive picture
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of the predicted list of targets of the motif, a link is provided to a network view
of the target genes as provided by the STRING database (47), where network links
indicate known functional associations between the genes. For E2F1..5, the STRING
network reveals a large, highly connected cluster of predicted targets that are known
to be involved in cell cycle, and particularly in DNA replication (Suppl. Fig. 8).
The role of the E2F1..5 motif in the cell cycle is further con�rmed by Gene Ontology
analysis (48) which shows that DNA replication, S phase, and regulation of DNA
replication are categories whose genes are most highly enriched among the targets
of E2F (Suppl. Fig. 9). Thus, based only on expression data, MARA predicts E2F
to be a key regulator of cell proliferation, with E2F activity acting e�ectively as a
marker for proliferation.

For many of the regulatory motifs there are multiple TFs that can bind to the sites
of the motif and it is not a priori clear which of the TFs is most responsible for the
motif activity in a given system. Note that the motif activity is inferred from the be-
havior of the predicted targets of the motif. That is, roughly speaking, an increasing
activity is inferred when its targets show on average an increase in expression, that
cannot be explained by the presence of other motifs in their promoters. The mRNA
expression pro�les of the TFs associated with a motif thus provide independent in-
formation about the link between the TFs and the motif activities, and ISMARA
provides an analysis of the correlation between motif activities and the expression
pro�les of the associated TFs for each motif. For example, for the case of E2F1..5,
the expression of all associated TFs except E2F5 show a very signi�cant positive cor-
relation with the motif activities (Suppl. Figs. 10 and 11). This also shows that
these TFs act as activators. That is, whenever a negative correlation between motif
activity and TF expression is observed, the TF most likely acts as a repressor, e.g.
as observed for the known repressor REST (Suppl. Fig. 12). However, it should be
noted that motif activity does not need to be a direct function of TF expression, i.e.
the e�ect of a TF on its targets will not only depend on its expression, but possibly
on post-translational modi�cations, on cellular localization, and on the presence of
speci�c co-factors. Therefore, although a strong correlation between TF expression
and motif activity is a good indication that the TF is responsible for the motif activ-
ity, the absence of such a correlation does not imply that the TF is not involved in
the motif's activity.

To gain insight in the transcription regulatory networks that control expression
pro�les, it is of particular interest to identify direct regulatory connections between the
TFs themselves. In ISMARA, a predicted transcription regulatory interaction from
motifm tom′ occurs when motifm is predicted to target a promoter of one of the TFs
associated with m′. To visualize predicted motif-motif regulatory networks ISMARA
provides, for each motifm, a local network picture that shows all predicted regulatory
connections betweenm and other regulatory motifs. The user can interactively change
the cut-o� on the target score Spm to draw this picture. For E2F1..5 we �nd that
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A)

D)C)

B)

E2F1..5 HNF1A

HIF1A hsa-miR-205

Figure 4.2: Motif activities in the GNF Gene Atlas. A: Tissues showing the high-
est and lowest activities of the E2F motif (shown as inset). B: Activity of the
HNF4A/NR2F1,2 motif (shown as inset) across all tissues for the two biological repli-
cates (red and black lines). Names of the tissues with highest activity are indicated.
C: Activity of the HIF1A motif (shown as inset) across the human GNF and NCI-60
samples. Subsets of samples corresponding to NCI-60 cancer cell lines (red), leukemia
and lymphomas (green), peripheral immune cells (blue), bone marrow immune cells
(pink), and all other tissues (black) are shown in di�erent colors. D: As for panel C,
but now for the miRNA hsa-miR-205 (seed sequence shown as inset).
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the strongest predicted targets are the promoters of Myb, of TFDP1, and of the
E2F2 gene (Suppl. Fig. 13). Indeed, the c-Myb promoter is known to be regulated
by an E2F site (49) and the E2F2 promoter has indeed been shown to be bound
directly by E2F4 (50). The transcription factor TFDP1 forms hetero-dimers with
various members of the E2F family and ISMARA predicts that this co-factor of the
E2F family is itself regulated through an E2F site. To our knowledge, this is novel
prediction.

An example of a motif with highly condition-speci�c activity is HNF1A (Fig.
4.2B). The associated transcription factor hepatocyte nuclear factor 1 homeobox A
is relatively well-studied and known to be mainly expressed in liver, kidney, stomach
and intestine (51; 52), where it is essential for organ function (53). Indeed, ISMARA
infers that the HNF1A activity is by far the highest in liver and kidney, followed by
intestinal tissues and stomach. In addition to its role in these tissues, HNF1A has
also been shown to be important for the function of pancreatic islets, and HNF1A
mutations causes monogenic diabetes (52). Indeed, ISMARA predicts high activity
for HNF1A in pancreas as well, where its activity ranks 6th and 7th among all motifs
in the two replicate samples (Suppl. Fig. 14). Figure 4.2B also illustrates that the
inferred motif activities are highly reproducible, in fact more reproducible than the
expression pro�les from which the motif activities were inferred (Suppl. Fig. 15).
The reason for this high reproducibility is that motif activity is inferred from the
statistics of all (typically hundreds) of its target promoters.

Experiments are often performed in multiple replicates and one would typically
be speci�cally interested in those motifs that behave reproducibly across the repli-
cates. To this end the ISMARA results page links to a section where users can pro-
vide replicate annotation for their samples, which than enables ISMARA to calculate
motif activity pro�les that are averaged over replicates using a rigorous Bayesian
procedure (see Suppl. Methods). As an example, the replicate-averaged results
for the mouse GNF atlas are available at http://ismara.unibas.ch/supp/dataset1/
averaged_report/.

Apart from averaging over replicates, this procedure can also be used to calculate
contrasts between subsets of samples. To illustrate this, we jointly analyzed the
human GNF atlas of 79 tissues and cell lines (54) and the NCI-60 reference cancer cell
lines (55) (full results at http://ismara.unibas.ch/supp/dataset2/ismara_report/).
By treating all non-tumor samples as one condition and all tumor samples as another
condition in the averaging, we can identify motifs that are consistently dis-regulated
in cancer. Supplementary tables 2 and 3 show the motifs that are most consistently
up-regulated or down-regulated in tumors. Among the top up-regulated motifs are
several key transcriptional regulators that are well known in cancer biology such as
Hif1a (56) (Fig. 4.2C), Myc (57), and E2F (58). ISMARA also identi�es a number of
miRNAs whose targets are either consistently upregulated, e.g. miR-205 (Fig. 4.2D)
and miR-26, or consistently down-regulated, e.g. miR-24 and the miR-17/93/106

81

http://ismara.unibas.ch/supp/dataset1/averaged_report/
http://ismara.unibas.ch/supp/dataset1/averaged_report/
http://ismara.unibas.ch/supp/dataset2/ismara_report/


ISMARA: Modeling genomic signals as a democracy of regulatory motifs

seed family, in tumors. Indeed, multiple studies have found miR-205 to be down-
regulated in a number of di�erent cancers, and miR-205 has been shown to have
tumor suppressor function (59; 60; 61; 62; 63). It has also been shown that miR-26a
delivery suppresses hepatic tumors in mouse (64), supporting the downregulation of
this miRNA in cancer. Similarly, miR-17 is a known oncogene (65), supporting that
its targets are down in cancer. The literature on miR-24 function in cancer is more
ambiguous (66). Some evidence has been provided that miR-24 acts as repressor of
apoptosis and is upregulated in certain cancers (67). On the other hand, another study
found that miR-24 can inhibit proliferation (68). Notably, the latter study suggested
that miR-24 acts through seedless target sites, which by construction are not detected
by TargetScan. In summary, in this system ISMARA successfully identi�ed oncogenes
and tumor suppressors ab initio.

4.2.3 Inferring motif activity dynamics: in�ammatory response

To illustrate ISMARA's analysis of time series data, we applied it to a time series
of expression data obtained after activation of human umbilical vein endothelial cells
(HUVECs) with tumor necrosis factor (TNF, previously also known as TNFα). Mes-
senger RNA expression was measured every 15 minutes for the �rst 4 hours after
treatment, and every 30 minutes for the next 4 hours (69). Whereas the original
study focused solely on nascent transcription, standard application of ISMARA to
this data set (http://ismara.unibas.ch/supp/dataset3/ismara_report/) uncovers the
transcription regulatory network involved in this in�ammatory response in remarkable
detail.

The response of endothelial cells to TNF is known to be mediated by the NFκB,
GATA2, IRF1, and AP-1 (70) TFs. NFκB in particular is crucial for the resulting
in�ammatory response (71). Indeed, ISMARA infers that the two most signi�cant
motifs are IRF1,2,7 and NFκB. The activity of NFκB increases sharply in the �rst 45
minutes and slower afterwards, until it reaches a steady activity after 3 hours. The
activity of the IRF1,2,7 motif increases steadily starting at 30 to 45 minutes after
treatment until the end of the time course (Fig. 4.3A). As shown by NFκB's local
network �gure (Fig. 4.3B and on the ISMARA results website), ISMARA infers that
IRF1 is activated directly at the level of transcription by NFκB, which is indeed known
from previous studies (72). Other predicted targets of NFκB that are also found to
be signi�cantly upregulated in this process are TNF receptor genes, components of
the JAK-STAT pathway (note that STAT2,4,6 is the 11th most signi�cant motif,
indicating that STAT activity changes, a�ecting the level of its targets) and MHC
class I genes. The latter are also predicted to be regulated by IRF1,2,7, which is
con�rmed by experimental data (73). ISMARA also predicts that both NFκB and
IRF1,2,7 activate the 5th most signi�cant motif, PRDM1 (BLIMP-1), which is an
important developmental regulator in the B-cell and T-cell lineages and is required
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Figure 4.3: Analysis of an in�ammatory response time series of human umbilical vein
endothelial cells responding to TNF. A: Time-dependent activities of the 3 most sig-
ni�cant motifs, i.e. NFκB (red), IRF1/2 (black), and XBP1 (blue). Error-bars denote
uncertainties in the inferred activities. B: Summary of the inferred core regulatory
network. Selected top motifs are shown together with interactions between them and
pathways/functional categories that are enriched among the targets of these motifs.
The intensity of the color corresponds to the z-score of the motif, its time-dependent
activity is indicated inside the node, and the thickness of each edge corresponds to
its target score Spm.

for the secretory pathway in B-cells (74). PRDM1 activity increases, like that of
IRF, across the entire time course, and these two TFs appear to share many of their
predicted targets, including type 1 interferon pathway genes, the immuno-proteasome
(75), ubiquitin conjugating enzymes, antigen peptide transporters, and MHC class I
genes. All of these targets are consistent with the activation of the antigen presenting
pathway by these TFs. Finally, the 3rd most signi�cant motif is XBP1, which is
activated only after 2.5 hours. Its predicted targets are highly over-represented for
endoplasmic reticulum (ER) genes and genes involved in vesicle-mediated and Golgi
transport, consistent with the fact that XBP1 is a major regulator of ER stress and
the unfolded protein response (UPR) (76). Moreover, several studies support that
the UPR is a general characteristic resulting from in�ammation or TNF activation
in endothelial cells (77; 78). Interestingly, the induction of XBP1's activity occurs
at the same time as the NFκB activity stops increasing which is in line with studies
showing that the UPR can attenuate NFκB induction of in�ammation (79; 80; 81).
All these predictions of ISMARA, which were made ab initio using only the time
course expression data, are summarized in the network picture Fig. 4.3B.
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Finally, the induction of XBP1's activity is not re�ected in the expression of
XPB1 itself, which is almost constant across the time course (Suppl. Fig. 16).
This underscores that ISMARA infers a motif's activity from the expression of its
predicted targets and does not use the regulator's own expression. Indeed, it has been
established that XBP1 activity is regulated post-transcriptionally through alternative
splicing (82; 83).

4.2.4 Identifying novel master regulators: Mucociliary di�er-
entiation of bronchial epithelial cells

Next, we turned to an example system for which much less is known, namely the mu-
cociliary di�erentiation of bronchial epithelial cells on an air-liquid interface. Aiming
to elucidate the regulation of bronchial development, Ross et al. (84) performed dif-
ferentiation experiments in triplicate over a period of 28 days with cells from three
separate donors. This data was then analyzed with commonly used bioinformatic pro-
cedures, i.e. genes were clustered into co-expression clusters, and the clusters were
analyzed for over-represented gene ontology categories and pathways. This analy-
sis uncovered clusters associated with TGFβ pathway genes, extra-cellular adhesion
genes, and genes associated with the microtubule cytoskeleton, but no key regulators
or regulatory interactions that drive these expression changes were identi�ed.

In contrast, applying ISMARA to this gene expression data set, we obtain the
prediction that by far the most important regulatory motif in this system is RFX,
whose activity is strongly increasing over the period from roughly day 4 to day 10
in all 3 donors (Fig. 4.4A, http://ismara.unibas.ch/supp/dataset4/ismara_report/).
The predicted targets of RFX are highly enriched in genes known to be associated
with cilium assembly, axoneme, and the microtubule cytoskeleton genes (Fig. 4.4B)
suggesting that RFX directs ciliogenesis in bronchial epithelial cells.

The RFX family of TFs contains 7 members and it is not a priori clear which of
these are driving the bronchial di�erentiation. Comparison of the mRNA expression
pro�les with activity pro�les shows that two of the family members, RFX2 and RFX3
exhibit a striking correlation in their expression with the motif activity (Fig. 4.4A
and C). Together these results strongly suggest that the TFs RFX2/3 are master
regulators of ciliogenesis in this system. This prediction is consistent with previous
studies that have shown that RFX3 is necessary for the ciliogenesis of nodal cilia in
mouse embryonic development (85) and during ciliogenesis of motile cilia in a mouse
cell-culture system (86). More speci�cally, in the latter study it was found that RFX3
activates the FOXJ1 TF during this process. Interestingly, ISMARA also predicts
that RFX directly upregulates FOXJ1 in this system. An interesting novel prediction
is that RFX2 is directly regulated by the TF MYB (Fig. 4.4B). This prediction is
supported by the observation that the RFX2 promoter is known to contain Myb sites
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Figure 4.4: Mucociliary di�erentiation A: Inferred RFX motif activity pro�le in mu-
cociliary di�erentiation in bronchial epithelial cells from three independent donors
(black, red, and blue lines). B: Key predicted regulators and their targets in the
mucociliary di�erentiation. Selected top motifs are shown together with predicted in-
teractions between them and pathways/functional categories that are enriched among
predicted targets of these motifs. The intensity of the color corresponds to the z-score
of the motif, its time-dependent activity for each donor is indicated inside the node,
and thickness of the edges corresponds to the target score Spm. C: mRNA expres-
sion pro�les of the RFX2 (solid) and RFX3 (dashed) genes across the di�erentiation
(colors of the donors as in panel A).
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and is directly regulated by A-myb in spermatogenesis (87).

As indicated in Fig. 4.4B, ISMARA additionally predicts that, in this system,
IRF1,2,7 upregulates innate immune response genes, and that a short spike of E2F
activity up-regulates cell-cycle genes at day 1. Finally, there is a group of mo-
tifs (TBP, FOS_FOS{B,L1}_JUN{B,D}, RXR{A,B,G}, HOX{A6,A7,B6,B7}, and
GLI1..3) whose targets are progressively down-regulated across the di�erentiation
time course. The targets of these motifs are generally enriched for extracellular
proteins involved in cell adhesion, cell-cell junctions, and signaling. More specif-
ically, targets of GLI1..3 involve genes from the TGFβ pathway, targets of TBP
involve nucleosomal and intermediate �lament cytoskeletal genes, and targets of the
homeodomain motif (HOX{A6,A7,B6,B7}) are enriched for developmental genes and
transcription factors. The genes in these pathways are most likely involved in the
transition of the tissue from squamous to columnar epithelial that occurs during this
di�erentiation. Thus, in contrast to the methods used in the original study (84), IS-
MARA predicts which regulators are directing various aspects of this di�erentiation
including ciliogenesis, the innate immune response, and the transition from squamous
to strati�ed epithelial.

4.2.5 Epithelial-Mesenchymal Transition: including microR-
NAs in core regulatory networks

To illustrate ISMARA's ability to integrate the role of both TFs and miRNAs in the
gene regulatory network, we took advantage of data from a system in which miR-
NAs are known to play important regulatory roles: the epithelial-to-mesenchymal
transition (EMT). Recently, mRNA expression measurements were performed in du-
plicate on epithelial and 3 independently-isolated mesenchymal subpopulations within
immortalized mammary epithelial cells (88). After running ISMARA on this data (re-
sults at http://ismara.unibas.ch/supp/dataset5/ismara_report/), we used replicate-
averaging to identify regulators that most consistently and signi�cantly explain the
mRNA expression di�erences between epithelial and mesenchymal cells (results at
http://ismara.unibas.ch/supp/dataset5/averaged_report/).

Interestingly, much of what is known about EMT (reviewed by Polyak and Wein-
berg (89)) is again captured by ISMARA's results. Among the top regulators that
ISMARA infers in this system are SNAI1..3, ZEB1, and a family of miRNAs consist-
ing of hsa-miR-141 and hsa-miR-200a (sharing the same seed sequence), that have
been shown to form a regulatory network essential for EMT. The predicted activity
changes of these regulators are consistent with the extant literature. Namely, the
decrease in SNAI1..3 and ZEB1 activity (which indicates a reduced level of their
predicted targets) in mesenchymal subpopulations is consistent with the fact that
both of them are mainly acting as repressors and are transcriptionally up-regulated
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Figure 4.5: Core TF and miRNA regulatory interactions in the epithelial-to-
mesenchymal transition, as predicted by ISMARA. Each rectangular node corre-
sponds to a regulatory motif with its color indicating the signi�cance of the change
in activity when going from the epithelial to mesenchymal state (z-value de�ned as

z = (Am,mes−Am,epi)/
√
δA2

m,mes + δA2
m,epi). Green/Red indicates targets of the motif

are down/up-regulated in the mesenchymal state. Both Zeb1 and Snail are predicted
to target the E-cadherin (CDH1) promoter. Note that all interactions shown are
repressive.

in the mesenchymal state. The miR-141 and miR-200a miRNAs are known to be
down-regulated in the mesenchymal state, causing the mRNA levels of their targets
to increase, which is consistent with the positive change in activity predicted by IS-
MARA. Known regulatory interactions between these factors are also uncovered by
ISMARA. For instance, ZEB1 is the top predicted target of the miR-141/200a miR-
NAs and existing literature con�rms that the direct regulation of ZEB1 by miR-200
is critical in EMT (90; 91; 92). Similarly, E-cadherin (or CDH1) is the 3rd and 4th
top target gene of the ZEB1 and SNAI1..3 motifs, respectively, and indeed this gene
is an epithelial marker known to be targeted by both SNAIL transcription factors
(93) and by ZEB1 (94). These key predictions by ISMARA are summarized in Fig.
4.5.

The activity of the family containing the hsa-miR-125a/b and hsa-miR-4319 miR-
NAs is the most signi�cantly reduced miRNA family in EMT. This suggests that
these miRNAs play a role in mesenchymal cells, consistent with observations that
miR-125b promotes invasive tumor characteristics (95).
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4.2.6 TF activities e�ecting chromatin state: analysis of ChIP-
seq data

Beyond analyzing gene expression data, motif activity response analysis can be ap-
plied to modeling any signal along the genome in terms of the local occurrence of
TFBSs. Indeed, in a recent work (96) we applied the MARA approach to ChIP-seq
data mapping the dynamics of tri-methylation at lysine 27 of histone 3 (H3K27me3)
and identi�ed TFs involved in recruiting this epigenetic mark set by the Polycomb
system. In ISMARA the analysis of ChIP-seq data has now been completely auto-
mated. In particular, given a ChIP-seq data set, ISMARA quanti�es the signal at all
promoters across all samples and models this in terms of the TFBSs at each promoter.
For the details of ISMARA's processing and normalization of the ChIP-seq data we
refer to the Supplementary Methods.

To illustrate ISMARA's results on ChIP-seq data, we make use of data from the
ENCODE project in which, besides gene expression, 9 di�erent chromatin modi�ca-
tions were measured across 8 di�erent cell types (97) (all modi�cations and cell types
are listed in Suppl. Tables 4 and 5). We �rst ran ISMARA separately on each of the
10 data sets, i.e. expression and 9 chromatin modi�cations (see Suppl. Table 6 for the
URLs of the results on all data sets). Exploring these results we observed that motifs
that are highly signi�cant for explaining di�erences in levels of a particular chromatin
mark across tissues, were often also highly signi�cant for explaining mRNA expres-
sion di�erences. This was particularly the case for methylation of lysine 4 on histone
H3 (H3K4me2, H3K4me3), for acetylation of histone H3 (H3K9ac, H3K27ac), and
for tri-methylation of lysine 36 on histone H3 (H3K36me3). For example, Fig. 4.6A
shows the activity pro�les for these marks for the SNAI motif, which is recognized by
the Snail TFs. Other examples of activity pro�les of motifs with high signi�cance for
these marks are shown in Suppl. Fig. 17. As these �gures show, for each motif, the
activity pro�le for expression is highly similar to those of all of these histone marks.
Indeed, it has been well recognized that these chromatin marks are associated with
promoter activity (98), and several recent studies have shown that the levels of these
marks can be used to predict gene expression levels (99; 100; 101).

To investigate the correlations between the levels of the di�erent chromatin marks
more quantitatively, we performed principal component analysis (PCA) of the dis-
tribution of the 10 di�erent marks across all promoters, separately for each sample
(Suppl. Methods). Strikingly, we �nd that in each sample, the �rst PCA component
explains the majority of the variance across promoters, typically explaining around
60% of the total variance (Suppl. Fig. 18). Moreover, we �nd that the �rst PCA
component looks virtual identical for each sample (Suppl. �g. 18) and Fig. 4.6B
shows the �rst principal component obtained using PCA on the pooled data from
all cell types. These �ndings strongly suggest that there is a single variable which
corresponds roughly to `promoter activity', which captures a large fraction of the
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Figure 4.6: ISMARA predicts TFs involved in recruiting speci�c chromatin marks.
(continued on the next page)
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Figure 4.6: ISMARA predicts TFs involved in recruiting speci�c chromatin marks.
A: Activity across cell types of the Snail motif for explaining expression (black),
and levels of the chromatin marks H3K4me3 (dark green), H3K4me2 (light green),
H3K9ac (dark blue), H3K27ac (light blue), and H3K36me3 (brown). B: First princi-
pal component explaining the majority of variation in chromatin mark levels across
all cell types. The bars indicate the relative contributions to the principal component
of each mark. C: Motif activities of the Snail motif, as in panel A, but after removal
of the �rst principal component. D: Z-values and speci�cities (see text) of motifs
for explaining H3K27me3 levels. The REST motif, with both highest z-value and
highest speci�city, is indicate in red. E: As in panel D, for H3K9ac levels. The two
most signi�cant motifs are shown in red. F: As in panels D and E, for H3K27ac
levels. G: Activity, after removal of the �rst principal component, of the RFX motif
for explaining H3K9ac (dark blue) and H3K27ac (light blue) levels. H: As in panel
G, for the ATF5_CREB motif.

variation in all chromatin mark levels at the promoter. In addition, the fact that
this �rst principal vector is identical in all tissues suggests that the relative levels of
the di�erent marks in this �rst principal vectors result not from tissue-speci�c but
from general factors, e.g. conceivably they may result from the general transcription
machinery recruiting chromatin modifying enzymes.

The �rst principal vector has its highest positive component along the expression
axis showing that, as expected, the expression level of the gene is most strongly aligned
with its `promoter activity'. The known activation-associated marks H3K4me3, H3K4me2,
H3K9ac, H3K27ac, and H3K36me3, also all have a strong positive component in the
`promoter activity' vector. The H3K4me1 mark, which has recently been identi�ed
as a mark associated with enhancers when not accompanied by H3K4me3 (102), has
a weaker positive component in the `promoter activity' vector, as does the level of
binding of the CTCF transcription factor, which is generally associated with open
chromatin (103). The known repressive mark H3K27me3, which is set by the devel-
opmentally important Polycomb system (104), indeed has a negative component in
the promoter activity vector. Finally, the H4K20me1 mark shows little contribution
to the �rst PCA component.

In summary, the PCA analysis has shown that there is a single vector in the
10-dimensional space of expression and chromatin marks that represents the general
activity of a promoter and captures almost two-thirds of the variation in the levels
of all marks across promoters. As a consequence, whenever a given motif contributes
signi�cantly to explaining mRNA expression in a sample, it will also contribute sig-
ni�cantly to general promoter activity, and thereby to many of the chromatin marks.
This also explains why the activity pro�les of motifs that signi�cantly explains ex-
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pression are all highly correlated (Fig. 4.6A and Suppl. Fig. 17). Thus, the e�ect of
general promoter activity on all chromatin marks confounds identi�cation of TFs that
are involved in a�ecting speci�c marks, and it would thus be bene�cial to remove it.
To this end we separated the activity of each motif into a part along the �rst PCA
component, i.e. the one associated with general promoter activity, and the remaining
parts along all other components. We then discarded the part of the activity along
the �rst PCA component. As illustrated in Fig. 4.6C and Suppl. Fig. 17, after re-
moval of the �rst principal component, there are no longer any obvious correlations
in the remaining motif activity pro�les for di�erent activating marks. We then ana-
lyzed the remaining motif activities to identify motifs that contribute to the levels of
a particular chromatin mark, independent of the motif's e�ect on general promoter
activity.

For each motif and each mark, we calculated z-values for the remaining activity
with respect to each chromatin mark. In addition, we quanti�ed, for each motif and
each chromatin mark, a `speci�city' which measures the fraction of its overall signif-
icance that is associated with the mark (Suppl. Methods). Strikingly, we �nd that
for many of the marks, the motifs that most signi�cantly a�ect the mark are also
among the most speci�c for that mark. For example, REST is the motif with the
highest z-value for H3K27me3 levels, and is also by far most speci�c for H3K27me3
(Fig.4.6D). Indeed, in recent work (96) we showed that REST is involved in recruiting
this mark during the di�erentiation of murine embryonic stem cells into pyramidal
neurons, speci�cally at the neural progenitor state. With respect to the two acetyla-
tion marks, i.e. H3K9ac and H3K27a, we �nd that the same two motifs, i.e. RFX and
ATF/CREB, are most signi�cant for both these marks (Fig. 4.6E and F). It is well
known that ATF/CREB TFs can recruit histone acetylases (HATs) such as CREB
binding protein (CBP) and p300 (105), and for RFX TFs it has also been established
that they can recruit HATs at particular promoters (106). Our results thus suggest
that recruitment of HATs by TFs bound to ATF/CREB and RFX motifs make an
important contribution to genome-wide histone acetylation. Moreover, the activity
pro�les of these motifs for H3K9ac and H3K27ac are highly similar, suggesting that
these two marks may be recruited through a common or highly overlapping pathways.
Supplementary Fig. 19 shows the most signi�cant motifs for each of the other marks.
Among the additional predictions made by ISMARA is that the PITX motif is asso-
ciated with both mono- and di-methylation of lysine 4 of histone 3. This prediction is
supported by recent biochemical evidence that PITX2 can recruit methyltransferases
that methylate H3K4 (107). As expected, CTCF is the most signi�cant motif ex-
plaining CTCF binding. ISMARA also makes several predictions that are completely
novel, as far as we have been able to determine: It predicts that the hepatocyte nu-
clear factors HNF1A and HNF4A have the most signi�cant e�ect on the levels of the
H3K36me3 mark, which is known to be set by elongating RNA polymerase (108; 109),
and that YY1 and NF-Y most signi�cantly explain variations in H4K20me1 levels.

91



ISMARA: Modeling genomic signals as a democracy of regulatory motifs

4.3 Discussion

Just how crucial gene regulatory circuits are in animals is evident when we remind
ourselves that every cell in a multi-cellular organism has essentially the same genome,
and that the phenotypic di�erences between cell types largely re�ect di�erences in
gene expression. The eventual goal of computational modeling of gene regulatory
networks is to have realistic models of the physico-chemical interactions involved on a
genome-wide scale, that accurately predict observed expression dynamics. For some
very well-characterized systems of moderate size, such explicit biophysical models now
appear within reach. For example, for the early anterio-posterior body patterning in
Drosophila relatively realistic models are able to roughly capture the spatial expression
patterns of dozens of cis-regulatory modules in terms of the concentration pro�les of
5− 10 TFs (110; 111).

However, for the vast majority of systems our knowledge is far too rudimentary to
make such detailed modeling viable. For example, an exciting recent development is
the ability to reprogram cells from one di�erentiated state into either a stem cell state
(112) or another di�erentiated state (113), by over-expressing or silencing speci�c
regulatory factors. Although factors that can trigger the reprogramming cascade
are known and increasing amounts of high-throughput data are available for these
systems, very little is known about the regulatory networks that ultimately control
these di�erentiation processes. The question faced by a computational biologist when
analyzing such systems is how to make progress in identifying the key gene regulatory
interactions given little speci�c knowledge of the system, and the enormous number
of components potentially contributing to the system.

The advent of high-throughput technologies now allows the routine measurement
of genome-wide mRNA expression across conditions, and such data in principle pro-
vide the opportunity to systematically investigate gene regulation on a genome-wide
scale. Such investigations require sophisticated computational approaches and, not
surprisingly, a vast literature of methods has emerged for analyzing such genome-
wide expression data, ranging from explicit regulatory network models to `black box'
machine learning methods that mainly aim to capture abstract patterns in the data.
Within the computational systems biology community it is sometimes implicitly as-
sumed that the purpose of computational models of gene regulatory networks is to
accurately predict gene expression patterns (114). However, for most systems our
current knowledge is far too rudimentary to expect that explicit regulatory network
models can successfully model genome-wide expression patterns. Moreover, in pre-
dicting gene expression, realistic regulatory network models are often outcompeted by
ad hoc machine learning approaches (115). However, such approaches provide little
or no insight into the underlying regulatory networks. In our opinion, the challenge is
not so much to develop models that �t gene expression patterns most accurately, but
to develop methods that can exploit high-throughput data to gain new insights into
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the underlying regulatory processes. To achieve this, the computational methods
should help guide subsequent experimental e�orts by prioritizing which regulatory
factors are likely key players in the system, and making concrete predictions of the
regulatory interactions they engage in, i.e. predictions that are directly amenable to
experimental follow-up.

The Integrated System for Motif Activity Response Analysis (ISMARA), that we
have presented here provides such a computational approach. Using only gene expres-
sion or chromatin state (ChIP-seq) data as input, ISMARA makes concrete predic-
tions regarding key regulators and their regulatory interactions. Moreover, in contrast
to many computational methods which require dedicated computational experts to
apply, ISMARA is completely automated and provides its results in a user-friendly
web-interface. In this way, ISMARA empowers experimentalists to infer concrete
hypotheses about the genome-wide regulatory interactions acting in their system of
interest, and use these to help guide more detailed experimental investigations.

That motif activity response analysis is a powerful method for reconstructing reg-
ulatory interactions from high-throughput information was already demonstrated in
its original application, i.e. the reconstruction of the core regulatory network of a
di�erentiating human cell line (25). More recently the same approach was applied in
several collaborations (116; 117; 118; 119; 120), showing that, in every case, ISMARA
successfully inferred key regulators and their regulatory interactions ab initio. The
applications in this work not only further con�rm that, in systems where key reg-
ulatory interactions are already known, ISMARA successfully infers them, but also
provide a large collection of novel regulatory predictions across di�erent systems in
human and mouse, e.g. novel regulators that are disregulated in cancers, novel regu-
latory interactions in the in�ammatory response, master regulators of the mucociliary
di�erentiation, etcetera. Moreover, the applications highlight several of the advan-
tages of ISMARA. First, the fact that ISMARA infers a regulator's activity from
the behavior of its targets means that non-transcriptional activity changes, i.e due
to post-translational modi�cations, changes in cellular localization, or interactions
with co-factors, can also be readily detected. Second, when a regulator's activity is
transcriptionally regulated, this can help identify the relevant TF, e.g. as we did in
the mucociliary di�erentiation by identifying RFX2 and RFX3 from the family of
RFX TFs, and it can also indicate whether a regulator is acting as a repressor or an
activator.

Beyond providing sorted lists of targets of each motif, the Gene Ontology analysis
and the automatic visualization of the STRING network of target genes is typically
very helpful in identifying the biological functions and pathways that are targeted by
a particular regulator in a particular system. The links, for each predicted target,
to the individual binding sites on the genome (37) provide precise predictions of the
DNA segments through which the regulatory interactions are implemented, allowing
for targeted validation experiments. Similarly, ISMARA's predictions of direct reg-
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ulatory interactions between the key regulatory motifs provide concrete hypotheses
regarding the regulatory circuitry that is acting in a given system, e.g. the predicted
regulatory feedbacks between NFκB, IRF, and PRDM1, or the prediction that MYB
is an upstream activator of RFX in the mucociliary di�erentiation.

Apart from the fact that miRNAs form an important separate regulatory layer in
gene expression regulation, there are many indications that the actions of miRNAs
and TFs are tightly integrated and interlinked (121; 122; 123). By integrating both
TF and miRNA regulation within an automated computational inference procedure,
this allows researchers to generate hypotheses regarding the interplay of miRNAs and
TFs for their system of interest. ISMARA's successful inference of the key regulatory
interactions between miRNAs and TFs in EMT demonstrate its capability in this
regard.

Finally, it has become clear that, especially in higher eukaryotes, regulation of
gene expression involves a tight interplay and feed-back between the actions of TFs
and chromatin state, with chromatin state a�ecting accessibility of the TFs to their
sites, and TF binding being an important mechanism for recruiting chromatin mod-
i�ers that locally alter the chromatin state. In a recent work (96) we demonstrated
that motif activity response analysis, applied to ChIP-seq data measuring histone
modi�cations, can successfully identify key TFs that are involved in dynamic regu-
lation of chromatin state. Here we have applied ISMARA to chromatin state data
from the ENCODE project and provided novel predictions for, among other things,
regulatory factors involved in recruiting histone acetylations.

There are of course several limitations to our approach. First, we follow Busse-
maker and others (4; 43) in using a simple linear model to relate predicted TFBSs
to expression patterns. The main advantage of this approach is that the model is
very robust, e.g. not sensitive to wrongly predicted TFBSs or to the noise in the
microarray and sequencing data. In addition, in contrast to most non-linear models,
the linear model can be exactly solved, even for very large numbers of promoters and
samples, so that we are guaranteed to have identi�ed the optimal solutions. However,
it is clear that it would be desirable to include saturation of the gene expression re-
sponse to changes in TF activity. A second limitation is that MARA assumes that
a given TF acts either mainly as an activator or mainly as a repressor whereas it
is clear that some TFs can act as an activator on some targets and as a repressor
on other. Indeed, it has been recently shown (124) that allowing such dual function
of TFs can signi�cantly increase correlation coe�cients between model predictions
and measurement. Explicitly considering higher order constellations of TFBSs, e.g
the occurrence of pairs or triplets of TFBSs for particular combinations of TFs, is
another obvious extension that we are currently evaluating.

In mammals, sequence-speci�cities are available for only about 350 of the about
1500 TFs. Thus, it is clear that an important direction for improvement would be
to obtain more comprehensive data on the sequence speci�city of TFs. Recent de-
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velopments in protein array technology (125), and the dramatic decrease in cost of
ChIP-seq experiments make it highly likely that signi�cant amounts of such data will
become available over the coming years and we plan to use these to expand the set
of regulatory motifs in ISMARA on a regular basis. In addition, whenever ChIP-seq
data are available for a particular TF in a particular system, these can be used to in
place of the TFBS predictions to identify target promoters directly. Indeed, we suc-
cessfully used this approach in our analysis of REST's role in Polycomb recruitment
(96).

ISMARA currently focuses solely on predicted TFBSs in proximal promoters, ig-
noring the e�ects of distal enhancers. The main reason for this that, in contrast to
promoters, accurate genome-wide maps of distal enhancers have not been available.
However, the recent realization that active enhancers exhibit characteristic chromatin
modi�cation patterns (126), DNA methylation patterns (127), and more generally
DNA accessibility patterns (128), has paved the way for accurate, genome-wide iden-
ti�cation of distal enhancers. Once a set of relevant enhancers has been identi�ed,
it is straight forward to predict TFBSs within these enhancers and incorporate these
into the model.

One of the ultimate goals is to understand how regulatory interactions determine
the dynamics of gene expression, and how stable `attractors' corresponding to indi-
vidual cell types are established. The direct regulatory interactions between motifs
that ISMARA predicts provide a �rst indication of interactions that may be crucial
for the observed regulatory dynamics. A key challenge in the coming years is to go
beyond analysis at individual time points and develop causal models of the regulatory
networks controlling the dynamics of gene expression.

4.4 Methods

Although most of the individual steps in the computational analysis employed in
ISMARA are conceptually straight forward, the quality of the �nal results depends
on many details in the computational `protocols', and we have invested large e�orts
into optimizing these. For space considerations, we provide all detailed methods in
the Supplementary methods and here only summarize the key steps.

ISMARA relies on our annotation of promoteromes in human and mouse, which
we obtained using a combination of deepCAGE data (Chapter 3) and known tran-
scripts. For each promoter, we extracted 500 bps upstream and downstream of the
TSS, and orthologous segments in 6 other mammals. The 7 orthologous sequences
were then multiply aligned using T-Co�ee (129). We curated a collection of ≈ 200
WMs representing ≈ 350 mammalian TFs using data from the JASPAR (35) and
TRANSFAC (36) databases, additional motifs from the literature, and our own anal-
ysis of ChIP-chip and ChIP-seq data. Binding sites were predicted using the MotEvo
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algorithm (39) and were performed separately for CpG and non-CpG promoters. In
addition, we estimated a prior probability pro�le as a function of position relative to
TSS for each motif. For miRNA targeting, we used the predictions of TargetScan (40)
of target sites in the 3' UTR sequences of transcripts. Using the association between
transcripts and promoters the miRNA target sites were associated with promoters.
The miRNA predictions encompassed ≈ 100 conserved miRNA seed families. The
end result of these regulator-target predictions was a site-count matrix N, with ele-
ments Npm corresponding to the estimated total number of functional binding sites
for motif m in promoter p (where motifs include both TF WMs and miRNA seed
families). Raw microarray and RNA-seq data were processed using standard normal-
ization procedures. To estimate an expression pro�le Eps for each promoter p, we use
collections of known transcripts from human and mouse. We associate each promoter
with all known transcripts starting at or very near the promoter, and intersect RNA-
seq reads and microarray probes with the transcripts. ChIP-seq reads are directly
intersected with promoter regions, extended to the length of 1000 bp both upstream
and downstream of the TSS.

To �t motif activities Ams using equation (4.1) we assume that the deviations be-
tween the model and the measurements Eps are Gaussian distributed with unknown
variance σ2 in each sample. To avoid over-�tting we use a Gaussian prior over mo-
tif activities Ams and set the variance of this prior so as to maximize generalization
accuracy in a cross-validation test. Using SVD to obtain the multi-variate Gaussian
posterior of motif activities, we obtain both estimated motif activities A∗ms and asso-
ciated (marginal) error bars δAms. The signi�cance of each motif m is summarized
by a z-like statistic:

zm =

√√√√ 1

S

S∑
s=1

(
A∗ms
δAms

)2

, (4.2)

where S is the number of samples. To average motif activities over subsets of samples
(for example replicates) we use a Bayesian procedure that estimates both the mean
activity across a subset of samples, as well as its variation. Using these estimates new
error bars δAms and motif z-scores zm are calculated.

To predict the targets of a motifm we measure, for each promoter p with predicted
binding sites for m, the decrease of the quality of the �t upon removal of motif m
from the model, and quantify this by a log-likelihood ratio Spm. Finally, enrichment
of targets within particular Gene Ontology categories is done by selecting all targets
where inclusion of motif m substantially helps predicting the expression levels (Spm >
1) and performing a standard hypergeometric test. Target networks between motifs
are constructed by drawing a link from motif m to m′ whenever m is predicted to
target one of the promoters associated with a TF that is associated with motif m′.
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4.4.1 Materials

The publicly available data sets of gene expression pro�ling were obtained from Gene
Expression Omnibus: time course of HUVEC after TNF treatment (GSE9055), mu-
cociliary di�erentiation of airway epithelial cells (GSE5264), Novartis (GNF) SymAt-
las (GSE10246, GSE1133), epithelial and mesenchymal subpopulations within immor-
talized human mammary epithelial cells (GSE28681), ENCODE ChIP-seq (GSE26386)
and expression pro�ling (GSE26312) in human cell lines. Microarray �les from the
NCI-60 were downloaded from the project web page (http://genome-www.stanford.
edu/nci60/).
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4.5 Supplementary Methods

4.5.1 Human and mouse promoteromes

The central entities whose regulation is modeled by ISMARA are promoters. When
analyzing expression data, be they micro-array or RNA-seq, ISMARA estimates and
models the expression pro�les of individual promoters, and when analyzing ChIP-seq
data ISMARA models the chromatin state of genomic regions centered on promoters.
Thus, the �rst step in the analysis consists of the construction of reference sets of
promoters in human and mouse. To make a comprehensive list of promoters we used
two sources of data: deepCAGE data, i.e. next-generation sequencing data of 5' ends
of mRNAs (12; 30), and the 5' ends of all known mRNAs listed in GenBank.

Using CAGE data from a considerable set of human and mouse tissues, we recently
constructed genome-wide human and mouse `promoteromes' (Chapter 3) consisting of
a hierarchy of individual transcription start sites (TSSs), transcription start clusters
(TSCs) of nearby co-regulated TSSs, and transcription start regions (TSRs), which
correspond to clusters of TSCs with overlapping proximal promoter regions. As the
basis of our promoter sets we started with the sets of TSCs, i.e. local clusters of TSSs
whose expression pro�les are proportional to each other to within experimental noise,
as identi�ed by deep-CAGE.

As the currently available CAGE data do not yet cover all cell types in human
and mouse, a substantial number of cell type-speci�c promoters are not represented
within this set of TSCs. We thus supplemented the TSCs with all 5' ends of mRNAs,
using the BLAT (130) mappings from UCSC genome browser web site (131). To
avoid transcripts whose 5' ends are badly mapped, we �ltered out those for which
more than 25 bases at the 5' end of the transcript were unaligned. We then produced
reference promoter sets by iteratively clustering the TSCs with the 5' ends of mRNAs
as follows: Initially each TSC and each 5' end of an mRNA forms a separate cluster.
At each iteration the pair of nearest clusters are clustered, with the constraint that
there can be at most one TSC per cluster. That is, we never cluster two TSCs
together as our previous analysis in (Chapter 3) has already established that each TSC
is independently regulated. This iteration is repeated until the distance between the
closest pair of clusters is larger than 150 base pairs. Note that we thus chose the length
of sequence wrapped by a single nucleosome, i.e. roughly 150 base pairs, as an ad hoc
cut-o� length for two TSSs to belong to a common promoter. The reasoning behind
this choice of cut-o�, is that, on the one hand, we have empirically observed that
co-expressed TSSs can spread over roughly this length-scale and, on the other hand,
that it is not implausible that the ejection of a single nucleosome near the TSS may be
responsible for setting this length scale. In any case, the resulting promoters are not
sensitive to the precise setting of this cut-o� (data not shown). Finally, inspection of
the results showed, especially in ubiquitously expressed genes, many apparent TSSs
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from Genbank that appear downstream of both the TSSs identi�ed by deep-CAGE
and the annotated RefSeq transcripts. It is highly likely that many of these apparent
TSSs are due to cDNA sequences that were not full length. Indeed, only a small
fraction of the transcripts in the database of mRNAs underwent expert curation, and
truncated transcripts are likely common. To avoid such spurious apparent TSSs we
removed all clusters which did not contain at least one curated transcript (RefSeq)
or a TSC. Finally, since a sequence of at least one associated transcript is necessary
to estimate a promoter's expression level from either RNA-seq or micro-array data,
we also discarded all promoters that consisted solely of a TSC.

For human, the resulting reference promoter set had 36′383 promoters, of which
13′265 contained both a TSC and at least one RefSeq transcript, 14′538 contained
only a TSC together with non-RefSeq transcripts, and 8′580 had at least one Ref-
Seq transcript and potentially non-RefSeq transcripts, but no TSC. For the mouse
genome, the corresponding numbers are: 34′050 promoters in total, 8′578 RefSeq-only,
12′303 TSC-only, and 13′169 with both a TSC and at least one RefSeq transcript.
These reference promoters sets cover almost all known protein-coding genes in human
and mouse.

Finally, as we discussed in Chapter 3, mammalian promoters clearly fall into two
classes associated with high and low content of CpG dinucleotides, and these promoter
classes have clearly distinct architectures, i.e. di�erent lengths, di�erent numbers
of TSSs per promoters, and di�erent distributions of transcript factor binding sites
(TFBSs). We classi�ed all promoters into a high-CpG and low-CpG class based on
both the CG content and the CpG content in the proximal promoter, as described
in Chapter 3. In the TFBS prediction below we perform separate predictions for
high-CpG and low-CpG promoters.

4.5.2 A curated set of regulatory motifs

We use standard position dependent weight matrices (WMs) to represent regulatory
motifs, i.e. the sequence speci�cities of TFs. Each WM is named for the TFs that are
annotated to bind its site. For some motifs the names correspond to multiple TFs
which are all assumed to bind to the same sites. We used a partly manual curation
procedure whose details were �rst described in (25). For completeness, we here also
give a description of this curation procedure.

For a number of reasons regarding data quality and annotation ambiguities, the
construction of a set of position-speci�c weight matrices (WMs) for mammalian tran-
scription factors is rife with problems that, in our opinion, do not currently have
a clean solution. Therefore, our procedures necessarily involve several subjective
choices, judgments, and hand-curation, which are certainly far from satisfactory.

Our main objectives were
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1. To remove redundancy, we aim to have no more than 1 WM representing any
given TF. Whenever multiple TFs have WMs that are statistically indistinguish-
able or when their DNA binding domains are virtually identical, then we use
only one WM for that set of TFs.

2. To associate WMs with TFs based on the sequences of their DNA binding
domains. That is, we obtain lists of TFs that can plausibly bind to the sites of
a given WM by comparison of DNA binding domain sequences of TFs known
to bind to the sites with those of all other TFs.

3. Re-estimation of WMs using genome-wide predictions of regulatory sites in the
proximal promoters of CAGE TSSs.

The input data for our WM construction consisted of

1. The collection of JASPAR vertebrate WMs plus, for each WM, the amino acid
sequence of the TF that JASPAR associates with the WM (132).

2. The collection of TRANSFAC vertebrate WMs (version 9.4) and the amino acid
sequences of all vertebrate TFs in TRANSFAC that are associated with those
WMs (35).

3. A list of 1322 human TFs (Entrez gene IDs) and their amino acid sequences
(from RefSeq).

4. A list of 483 Pfam IDs corresponding to DNA binding domains and their Pfam
pro�les (133).

We decided not to include 6 TRANSFACmotifs, which were constructed out of less
than 8 sites: M00326 (PAX1, PAX9), M00619 (ALX4), M00632 (GATA4), M00634
(GCM1, GCM2), M00630 (FOXM1), M00672 (TEF). TRANSFAC often associates
multiple WMs with a single human TF. Although there undoubtedly are cases where
a single TF can have multiple distinct modes of binding DNA, and could therefore be
realistically represented by multiple WMs, we believe that for the very large majority
of TFs it is more realistic to describe the DNA binding speci�city of the TF with
a single WM. Indeed, a manual inspection of cases in which TRANSFAC associated
multiple WMs with a single TF shows that these WMs are typically highly similar
and appear redundant. Therefore, we decided to remove this redundancy and for each
TF with multiple WMs in TRANSFAC we choose only a single `best' WM based on
TRANSFAC's own matrix quality annotation, or WM information score when there
were multiple WMs with the same quality score. The information score of a WM is
given by 2 times the length of the WM minus its entropy in bits.

We next aimed to obtain, for each human TF, a list of WMs from JASPAR /
TRANSFAC, that can potentially be associated to this TF. To do this we aim to
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�nd, for each TF, which motifs from JASPAR/TRANSFAC are associated with a
TF that has a highly similar DNA binding domain. To this end we we ran Hmmer
(134) with the DNA binding domain (DBD) pro�les from Pfam to extract the DBDs
from all TFs (E-value cut-o� 10−9) associated with either JASPAR or TRANSFAC
matrices. We then represented each such TF with the union of its DNA binding
domain sequences. Next we used BLAT to map the DBDs of all TFs associated with
JASPAR/TRANSFACmatrices against the entire protein sequences of all human TFs.
For each human TF we then extracted a list of all JASPAR/TRANSFAC matrices
for which the DBDs of at least one associated TF has a signi�cant BLAT hit (default
parameters) against the TF sequence. For each human TF the associated WMs were
ordered by the percent identity of the hit, i.e. the fraction of all amino acids in the
DBDs that map to matching amino acids in the TF.

From this data we created a list of `necessary WMs' as follows. For each human
TF we obtain the JASPAR WM with the highest percent identity in the DBDs of an
associated TF. If there is a TRANSFAC WM with a higher percent identity than any
JASPAR TF we record this WM as well. Thus, the necessary WMs are those that are
the best match for at least one human TF. This list yielded 381 WMs representing
980 human TFs (often the same WM is the best match for multiple TFs). Manual
inspection indicated that a lot of redundancy (essentially identical looking WMs)
remained in this list. First we often have both a TRANSFAC and a JASPAR WM
for the same TF and moreover often there are multiple TFs, each with its own WM,
that look essentially identical. We thus want to fuse WMs in the following situations

1. Di�erent WMs for TFs with identical or near identical DBDs.

2. WMs that are statistically indistinguishable, predict highly overlapping sets of
sites, and are associated with TFs that have similar DBDs.

For each pair of WMs we obtained three similarity measurements

1. The percent identity of the DBDs of the TFs associated with the WMs. If there
are multiple TFs associated with a WM we take the maximum over all TF pairs.

2. The overlap of the binding sites predicted by each WM. We use MotEvo to
predict TFBSs in all proximal promoters and we calculate what fraction of
predicted TFBS positions are shared between the two WMs.

3. A statistical measure of the similarity of the two WMs. Here we take the two
sets of sites that de�ne the two WMs and calculate the likelihood-ratio of these
sites assuming they either derive from a single underlying WM or assuming that
the set of sites for each WM derives from an independent WM.
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For each of these three criteria we set a cut-o�: 95% identity of the DBDs, 60%
overlap of predicted TFBSs, and a likelihood-ratio of e40. Using single-linkage clus-
tering, we cluster all WMs whose similarity is over the cut-o� for at least 1 of these
three criteria. The resulting clusters were then all checked manually and whenever
the linkage was dubious we split the cluster. That is, we took a conservative attitude
towards removing redundancy and only kept clusters when we were convinced the
WMs were essentially identical. For each cluster we then constructed a new WM
by aligning the WMs in the cluster so as to optimize the information content of the
resulting fused WM, which is obtained by simply summing the counts across each
column in the alignment.

Finally, we used MotEvo (41) to predict TFBSs for all WMs in the multiple-
species alignments of all human proximal promoters. We then constructed new WMs
from the list of predicted TFBSs for each WM, weighing each predicted site with
its posterior probability (which incorporates position-speci�c prior probabilities, as
described below). The number of top-scoring sites was chosen manually for each motif
and was between 100 and 4000 sites, in most cases being 200 or 500 sites.

At this point we excluded one TRANSFAC motif M00395 (HOXA3, HOXB3,
HOXD3) which had very low information content and predicted predicted only very
low-probability sites. We additionally excluded the motifs M00480 (TOPORS) and
M00987 (FOXP1), which were unrealistically speci�c and (in case of M00987) pre-
dicted stretches of poly(T).

For a few TFs we obtained more recent WMs from the literature (SP1, OCT4,
NANOG, SOX2, XBP1, PRDM1, and the RXRG dimer) and we used these to replace
the corresponding WM in the list.

We improved several motifs by running MotEvo on TF ChIP-seq data: SRF,
STAT1/3, REST and ELK1/4/GABPA/GABPB1. Some other motifs were obtained
by predicting de novo using the Phylogibbs algorithm (135) on ChIP-seq data: SPI1,
CTCF, OCT4, SOX2 and NANOG.

For a few motifs JASPAR has recently updated or introduce new motifs which
were based on high-throughput data and we included these motifs.This is the case for
FOXA2, KLF4, EWSR1-FLI1, FEV, NR4A2. We also removed MA0118, as it had
been discarded in JASPAR data base.

Our �nal list contains 189 WMs. For each �nal WM there is an ordered list of
associated human TFs, ordered by percent identity of the DBDs of TFs known to bind
sites of the WM and the DBDs of the TF. We then checked this list of associations
by hand and for each WM cut-o� the list of associated human TFs manually. In
total 340 human TFs are associated with our 189 WMs. The corresponding mouse
orthologous TFs were selected using the MGI data base (136). The entire set of
WMs and mapping to associated TFs is available from the SwissRegulon website
(http://www.swissregulon.unibas.ch).
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4.5.3 Transcription factor binding site predictions

After creating reference promoter sets and curating a set of mammalian regulatory
motifs we next predicted TFBSs in the proximal promoter regions of each promoter.
Analysis of sequence conservation in the neighborhood of TSSs (Chapter 3) and ex-
perimentation with TFBS prediction in regions of di�erent lengths around TSSs in-
dicated that a reasonable balance between sensitivity (i.e. including relevant binding
sites) and speci�city (avoiding too many false positive predictions) can be obtained
by predicting TFBSs in a 1 kilobase region around the TSSs of each promoter.

For each promoter, we thus extended the promoter sequence spanned by its cluster
of TSSs by 500 bp upstream and 500 bp downstream. We denote this as the proximal
promoter region of a promoter. We then extracted the sequence of the reference
species, i.e. human or mouse and orthologous regions from 6 other mammals (human
or mouse, rhesus macaque, cow, dog, horse, and opossum) using pairwise BLASTZ
(137) alignments. For each promoter, we multiply aligned the orthologous regions
using T-Co�ee (129).

To obtain a phylogenetic tree for these mammalian species, with branch lengths
corresponding to the expected number of substitutions per neutrally evolving site,
we used methods described previously (138). Brie�y, we �rst obtained the topology
of the tree from the UCSC genome browser (139). Then, for each pair of species we
made pairwise alignments of the coding regions of orthologous genes and extracted
all third positions in fourfold-degenerate codons of amino acids that are conserved
between the two species. Using these fourfold-degenerate positions we estimated
a pairwise distance for each pair of species. Finally, we estimated the lengths of
the branches in the phylogenetic tree as those that minimize the square-deviations
between the implied pairwise distances and the pairwise distances estimated from the
fourfold-degenerate positions. The resulting tree structure is shown in Suppl. Fig.
4.7.

The multiple sequence alignments were then used together with the phylogenetic
tree and the collection of WMs as an input for TFBSs predictions using the MotEvo
algorithm (41). Given a multiple alignment, MotEvo considers all ways in which the
sequence of the reference species can be segmented into `background' positions, `bind-
ing sites' for one of the supplied WMs, and `unknown functional elements' (UFEs).
The likelihood of alignment columns assigned to background are calculated under
a model of neutral evolution along the speci�ed phylogenetic tree. The likelihood
of alignment segments assigned to be a site for a given WM are calculated by �rst
estimating which of the species have retained a site for the WM (based on the WM
scores of the individual sequences) and then applying an evolutionary model in which
substitution rates are set so as to match the sequence preferences of the WM. Finally,
segments assigned to be UFEs are assumed to evolve under unknown purifying se-
lection constraints on the sequence, which is implemented by treating them as sites
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Figure 4.7: The phylogenetic tree used by MotEvo for the transcription factor binding
site predictions that are used by ISMARA.

for an unknown WM, which is treated as a nuisance parameter that is integrated out
of the likelihood. Finally, MotEvo assigns, at each position of the alignment and for
each WM, a posterior probability that a site for the corresponding WM occurs at this
position.

Since most motifs show clear positional preferences relative to TSS, we imple-
mented a position-dependent binding prior probability distribution for each motif
which we �tted by maximum likelihood using expectation-maximization. Since high-
CpG and low-CpG promoters have highly distinct con�gurations of TFBSs, we esti-
mated the position-dependent prior probability distributions separately for high-CpG
and low-CpG promoters.

The �nal result of this analysis is a matrix N, with Npm the total number of
predicted sites for motif m in promoter p, i.e. the sum of the posterior probabilities
of the individual sites. To reduce the probability of spurious predictions, we set
Npm = 0 whenever the sum of the posteriors of all sites was less than 0.1.

4.5.4 Associating miRNA target sites with each promoter

Apart from incorporating the e�ects of TFBSs in promoters, ISMARA also integrates
the e�ects of miRNAs in its modeling of expression levels. To this end, we needed
to obtain a set of predicted miRNA target sites for each promoter. We base our
predictions on the miRNA target predictions of TargetScan using preferential conser-
vation scoring (aggregate PCT ) (40) which has shown consistently high performance
in various benchmark tests. As opposed to focusing on individual miRNAs, Tar-
getScan groups miRNAs that have identical subsequences at positions 2 through 8 of
the miRNA, i.e. the 2-7 seed region plus the 8th nucleotide, and provides predictions
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for each such seed motif. We will treat these seed motifs exactly like the regulatory
motifs (WMs) for TFs, i.e. a miRNA seed motif can be associated with multiple
miRNAs. TargetScan provides predictions for 86 mammalian miRNA seed motifs in
total.

TargetScan PCT provides a score for each seed motif and each RefSeq transcript.
To obtain a `site count' Npm for the number of sites of miRNA seed motifm associated
with promoter p we average the TargetScan PCT scores of all RefSeq transcripts
associated with the promoter p. Finally, the miRNA seed motif site counts Npm are
simply added as columns to the site count matrix N with site counts of TFBSs.

4.5.5 Expression data processing

When using expression data from oligonucleotide microarrays, the raw probe inten-
sities are corrected for background and unspeci�c binding using the Bioconductor
packages a�y (140), oligo (141), and gcrma (142), depending on the type of the par-
ticular microarray used. The micro-arrays that are currently supported by ISMARA
are listed in supplementary table 4.1.

For its further analysis, ISMARA uses the logarithms of the probe intensities.
For a given sample, the histogram of log-intensities is generally bimodal, with the
modes corresponding to probes of non-expressed and expressed genes. The probes
are classi�ed as expressed or non-expressed in each sample separately by �tting a
two-component Gaussian mixture model to the log-intensity data using the Mclust R
package (143; 144). Probes that are consistently non-expressed are �ltered out from
further processing; a probe is considered not to be expressed if in all the samples
the probability of it belonging to the expressed class is below 0.4. Subsequently, the
intensity values are quantile normalized across all input samples.

Micro-array probes can hybridize to multiple transcripts, belonging to di�erent
genes, or di�erent isoforms of one gene, and we decided not to rely on transcript
annotations of a micro-array producer. Instead, we comprehensively mapped the
probe sequences to the set of all transcripts that are associated with our reference
set of promoters. Note that we thus also ignore the annotation of probes into probe
sets. To calculate the expression of a promoter we average the log-expression levels of
all probes that map to one (or more) of the transcripts associated with the promoter
(i.e. the start of the transcript is a member of the cluster of starts that de�nes the
promoter). The expression level of the promoter is then a weighted average of the
expression levels of these probes, where a probe that maps to n di�erent transcripts
obtains a weight 1/n. That is, in general, a probe can map to multiple transcripts.

When ISMARA uses RNA-seq for input expression data, it expects the RNA-seq
data to be provided as genome alignments of the reads to the hg19 or mm9 genome
assembles in BED format. The loci of the mapped reads are then intersected with the
genome alignments of all transcripts that are associated with reference promoters. A
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Microarray Organism Producer
HG-U133A Homo sapiens A�ymetrix
HG-U133B Homo sapiens A�ymetrix

HG-U133_Plus_2 Homo sapiens A�ymetrix
HG-U133A_2 Homo sapiens A�ymetrix

HuGene-1_0-st-v1 Homo sapiens A�ymetrix
HuGene-1_1-st-v1 Homo sapiens A�ymetrix
HT_HG-U133A Homo sapiens A�ymetrix
HT_HG-U133B Homo sapiens A�ymetrix

HT_HG-U133_Plus_PM Homo sapiens A�ymetrix
Mouse430_2 Mus musculus A�ymetrix
Mouse430A_2 Mus musculus A�ymetrix
MOE430A Mus musculus A�ymetrix
MOE430B Mus musculus A�ymetrix

MoGene-1_0-st-v1 Mus musculus A�ymetrix
MoGene-1_1-st-v1 Mus musculus A�ymetrix
HT_MG-430A Mus musculus A�ymetrix
HT_MG-430B Mus musculus A�ymetrix
MG_U74Av2 Mus musculus A�ymetrix
MG_U74Bv2 Mus musculus A�ymetrix
MG_U74Cv2 Mus musculus A�ymetrix

Table 4.1: Microarrays currently supported by ISMARA
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read is associated with a particular transcript if it falls entirely into any of its exons.
We thus unfortunately discard a fraction of reads which originated from exon-exon
junctions. However, the alternative of using read mappings to transcripts would
require the user to map to the exact same set of transcripts as used by ISMARA and
this is impractical. In the future ISMARA may be extended to include mapping of
raw reads.

To obtain an expression level for each promoter ISMARA calculates a weighted
average over all reads mapping to the transcripts associated with the promoter. The
weighting results from multiple mappings at two levels. Firstly, a single read can
map to multiple genomic loci and, secondly, a single locus may intersect multiple
transcripts that are associated with multiple promoters. When a read maps to n ge-
nomic loci, we assign a weight of 1/n to each locus. If that locus intersects transcripts
of m di�erent promoters, then this reads contributes a �nal weight of 1/(nm) to the
expression of each promoter. For a given promoter p and sample s, the total weight
wps is the sum of the weights of all the reads that intersect one of the transcripts
associated with promoter p. The expression Eps of promoter p in sample s is then
given by

Eps = log

[
wps
Ns

]
, (4.3)

where Ns is the total number of reads in sample s, which map to any of the transcripts
associated with a reference promoter. Note that this weighting procedure is robust
to redundancy in the transcript sets. For example, when a promoter is associated
with k highly overlapping transcripts, then a read mapping within the exons of these
transcripts will get assigned to all these transcripts, with a weight 1/k for each. When
the total weight wps of the promoter is calculated, these k are then summed back and
will in the end contribute precisely 1 read. Note also that because ISMARA models
promoter expression changes across conditions rather than absolute levels, there is
no need to account for di�erences in transcript lengths (i.e. these just cause a shift
in log-space which cancels out when considering expression changes).

4.5.6 ChIP-seq data processing

Apart from modeling expression dynamics, ISMARA can also process ChIP-seq data
to automatically model chromatin state (or TF binding) changes at promoters genome-
wide. Examples of such chromatin state data include histone occupancy, histone
modi�cations, TF binding and DNAse1 hypersensitivity in promoter regions. After
several experiments, we found that integrating the chromatin signal from a region of
2000 bps centered on the TSS of each promoter gives the most robust results. To
obtain a chromatin state level Eps of promoter p in sample s, we calculate the sum rps
of the reads that map entirely within this region around promoter p and transform
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to the log-space after adding a pseudocount:

Eps = log2

(
rps +

Nsl

L

)
, (4.4)

where the second term is a pseudo-count, Ns is the total number of reads mapped
to the genome in sample s (the number of lines in the BED �le), l = 2000 is the
length of the regions, and L is the total length of the genome. Note that this pseudo-
count is precisely the number of reads that would be expected if all Ns reads where
distributed uniformly over the genome. We set to pseudo-count to this value to make
the pseudo-count roughly of the same size as the read-count from background reads
in regions where the chromatin mark in question does not appear. The rational is
that, in regions where there are only background reads, statistical �uctuations may
cause the read-counts rps to change signi�cantly from sample to sample. By adding
a constant pseudo-count of roughly the same size these �uctuations are e�ectively
dampened. More formally, this pseudo-count results within a Bayesian context if we
use a Dirichlet prior with an expected density l/L for each region.

4.5.7 Motif activity �tting.

We model log-expression (or ChIP-seq signal) value Eps of a promoter p in sample s as
a linear function of the site-counts Npm for all motifs m associated with the promoter,
i.e. either TFBSs in the proximal promoter region or miRNA binding sites in the 3'
UTRs of associated transcripts. In each sample s, the contribution of the sites Npm

to Eps is given by the (unknown) motif activity Ams. That is, we �t a model of the
form:

Eps = c̃s + cp +
∑
m

NpmAms + noise, (4.5)

where c̃s and cp are sample and promoter-dependent constants, and we assume that
the noise is Gaussian distributed with an unknown variance σ2 that is the same for all
promoters and in all samples. Under these assumptions we �nd the following expres-
sion for the likelihood of the expression data given the site-counts, motif activities
and sample and promoter-dependent constants:

P (E | A, c, c̃, N, σ) ∝
∏
p,s

1

σ
exp

[
−(Eps − c̃s − cp −

∑
mNpmAms)

2

2σ2

]
(4.6)

We �rst maximize this expression with respect to all the constants cp and c̃s, and
substitute these with their maximum likelihood estimates. After doing this we obtain:

P
(
E
∣∣∣ A′ , N, σ) ∝ σ−PS exp

[
−
∑

ps

(
E
′
ps −

∑
mN

′
pmA

′
ms

)2

2σ2

]
, (4.7)
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where P is the number of promoters, S is the number of samples, the N
′
pm are a motif-

normalized site-counts N
′
pm = Npm − 〈Nm〉, with 〈Nm〉 the average site-count per

promoter for motif m, the A′ms are sample-normalized activities A
′
ms = Ams − 〈Am〉,

i.e. with 〈Am〉 the average activity of motif m across the samples, and the E
′
ps are

sample- and promoter-normalized expression values E
′
ps = Eps−〈Ep〉− 〈Es〉+ 〈〈E〉〉.

That is the log-expression matrix E
′
ps is normalized such that all its rows and columns

sum to zero, the activities A
′
ms are normalized such that the average activity over all

samples is zero, i.e.
∑

sA
′
ms = 0, and the site-counts N

′
pm are normalized such that

the average count over all promoters is zero, i.e.
∑

pN
′
pm = 0.

To avoid over-�tting we assign a symmetric Gaussian prior to each motif activity,
i.e. the joint prior for all activities is given by:

P
(
A
′
∣∣∣ λ, σ) ∝∏

ps

exp

[
− λ2

2σ2

∑
m

A
′2
ms

]
, (4.8)

where the constant λ2 sets the width of prior distribution relative to the width of the
likelihood function. Using this prior with the likelihood derived above, the posterior
distribution of motif activities takes the form:

P
(
A
′
∣∣∣ E,N, σ, τ) ∝ σ−PS exp

−∑p,s

((
E
′
ps −

∑
mN

′
pmA

′
ms

)2
+ λ2

∑
mA

′2
ms

)
2σ2

 .
(4.9)

Since equation (4.9) factorizes into independent expressions for the di�erent samples,
it is enough to consider one sample at a time. The posterior distribution for the motif
activities in a particular sample takes the general form of a multi-variate Gaussian
centered around A

′∗
ms:

P
(
A
′

s

∣∣∣ E,N, σ) ∝ σ−P exp

[
−
∑

mm̃

(
A
′
ms − A

′∗
ms

)
Wmm̃

(
A
′
m̃s − A

′∗
m̃s

)
+ χ2

s

2σ2

]
,

(4.10)
where the χ2

s is the unexplained part of variance in sample s

χ2
s =

∑
p

(
E
′

ps −
∑
m

N
′

pmA
′∗
ms

)2

, (4.11)

and the matrix W is given by

Wmm̃ =
∑
p

(
N
′

pmN
′

pm̃ + λ2δmm̃

)
. (4.12)
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Finally, the maximum a posteriori (MAP) estimates A
′∗
ms can be found by mini-

mizing the expression in the numerator of equation (4.9) using standard numerical
procedures for ridge regression. ISMARA performs this calculation by singular value
decomposition of the N

′
matrix.

4.5.7.1 Setting λ through cross-validation

Both the MAP estimates A
′∗
ms, and the matrix Wmm̃ are functions of λ. The constant

λ2 represents the ratio between the a priori expected variance of activities, to the
average squared-deviation of the model from the expression data (which results from
both error in the model, noise in the expression measurements, and biological noise).
In general λ will depend on the measurement platform used, i.e. microarray, RNA-seq,
or ChIP-seq, and also on the samples used, because the true variance in motif activities
will depend on the variance in the Eps across the samples. Thus, the appropriate value
of λ will generally not be known in advance and ISMARA therefore includes a method
for automatically setting λ from the data. To determine the optimal λ ISMARA uses
a 80/20 cross-validation scheme. The set of promoters is divided randomly into two
sets, with one containing 80% of all promoters (the `training set') and the other the
remaining 20% (the `test set'). The training set of promoters is used for �tting the
motif activities while the quality of the �t is evaluated on the test set. ISMARA then
�nds the value of λ that minimizes the average squared-deviation of the expression
levels in the test set from those predicted by the model. We denote this optimal value
of λ by λ∗.

4.5.7.2 Error bars on motif activities

Apart from the MAP estimates A
′∗
ms ISMARA also determines the uncertainties as-

sociated with these estimates. Since σ in Eq. 4.10 is not known, we integrate it out
with a suitable scale-invariant prior P (σ) ∝ 1

σ
.

P
(
A
′

s

∣∣∣ E,N, λ) =

∫ ∞
σ=0

P
(
A
′

s

∣∣∣ E,N, σ, λ)P (σ)dσ

∝
Γ
(
P
2

)[∑
mm̃ (A′ms − A

′∗
ms)Wmm̃

(
A
′
m̃s − A

′∗
m̃s

)
+ χ2

s

]P
2

(4.13)

∝ exp

[
−
P
∑

mm̃

(
A
′
ms − A

′∗
ms

)
Wmm̃

(
A
′
m̃s − A

′∗
m̃s

)
2χ2

s

]
,

where the last proportionality is a very good approximation when the number of
promoters is large. Note that this is again a multi-variate Gaussian distribution. The
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covariance matrix of this Gaussian posterior distribution is given by:

Cmm̃;s =
(W−1)mm̃ χ

2
s

P
(4.14)

As is well known, given this multi-variation Gaussian form, the marginal distribution
for a single motif activity A

′
ms will be Gaussian distributed with standard-deviations

δA
′
ms given by the square root of the corresponding diagonal term of the covariance

matrix, i.e.
δA
′

ms =
√
Cmm;s (4.15)

We de�ne the overall signi�cance of a motif m as the average squared ratio between
�tted activities and their standard deviations (z-values)

zm =

√√√√ 1

S

∑
s

(
A′∗ms
δA′ms

)2

. (4.16)

4.5.8 Processing of replicates

Careful studies typically involve experimental replicates to account for the part of
variability in the readout which is not under direct experimental control. ISMARA
allows users to indicate which samples correspond to replicates and will automati-
cally calculate averaged motif activities and error bars across these replicates. To
perform this analysis the user should �rst upload all samples and perform the stan-
dard analysis. On the results page ISMARA provides a link to a page where users
can interactively annotate which samples are replicates. In addition, if the replicates
came in clearly de�ned batches, for example, when a time-course was performed mul-
tiple times, then the user can also indicate this. Once all samples are annotated
ISMARA can then perform motif activity averaging across the replicates. Note that
this approach can easily be extended beyond replicates, i.e. the user can arbitrarily
divide the samples into groups and ISMARA will automatically calculate average
motif activities and associated standard-deviations for each group of samples.

Here we describe how activities within a group are averaged. For a given group G
of samples and a particular motif, we assume that its activities As in samples s ∈ G
are given by a mean activity Āg plus some deviation δs, i.e

As = Āg + δs, (4.17)

where we assume that the prior probability of δs is Gaussian distributed with (un-
known) standard-deviation σg, i.e

P (δs|σg) =
1√

2πσg
exp

[
−1

2

δ2
s

σ2
g

]
. (4.18)

111



ISMARA: Modeling genomic signals as a democracy of regulatory motifs

Thus, given the mean activity Āg in the group, the probability to have activity As in
a particular sample s from the group is

P (As|Āg, σg) =
1√

2πσg
exp

[
−1

2

(
As − Āg

)2

σ2
g

]
. (4.19)

Using the input data, ISMARA has inferred the motif activity As to have expected
value A∗s with standard-error δAs for each sample s. That is, once the dependence
on all other activities is integrated out, the probability of the expression data D
conditioned on the motif activity As is a Gaussian with standard-deviation δAs, i.e.

P (D|As) =
1√

2πδAs
exp

[
−1

2

(As − A∗s)
2

(δAs)2

]
. (4.20)

Using the expressions for P (D|As) and P (As|Āg, σg) we can calculate the probability
of the data D given the mean activity Āg and standard-deviation σt by integrating
over all unknown As:

P (D|Āg, σg) =
∏
s∈G

[∫ ∞
−∞

P (D|As)P (As|Āg, σg)dAs
]
. (4.21)

These integrals can be performed analytically and we obtain

P (D|Āg, σg) =
∏
s∈G

1√
2π(σ2

g + σ2
s)

exp

[
−(A∗s − Āg)2

2(σ2
g + σ2

s)

]
. (4.22)

Although, formally, we should integrate this expression over the unknown standard-
deviation σg as well, this integral unfortunately cannot be performed analytically.
Therefore, we estimate the integral simply by �nding the value σ∗g that maximizes
P (D|Āg, σg). Assuming a uniform prior for the mean activity Āg of the samples in
the group, we then �nally obtain an expression for the posterior probability P (Āg|D)
which we characterize by its mean 〈Āg〉 and standard-deviation δĀg. That is, 〈Āg〉
is the inferred average motif activity for the samples within the group, and δĀg is
the error-bar on this average activity. This mean and error-bar of the activity for the
`group' of samples are given by

〈Āg〉 =

∑
s∈G

A∗s
(σ∗g)2+σ2

s∑
s∈G

1
(σ∗g)2+σ2

s

, (4.23)

and

δĀg =

√
1∑

s∈G
1

(σ∗g)2+σ2
s

. (4.24)
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Finally, we assign signi�cances zm to each motif completely analogously as before,
but now averaging over all groups, i.e.

zm =

√√√√ 1

|G|
∑
g

(
〈Āg〉
δĀg

)2

, (4.25)

where |G| is the number of groups. A motif will have a high signi�cance zm when its
motif activities in each group vary little relative to their mean in the group, and are
large relative to the original error-bars.

4.5.9 Target predictions

In order to infer motif activities Ams, ISMARA assumes that all promoters with
predicted target sites for a motif m will respond to changes in motif activity, i.e. in
proportion to the predicted number of sites Npm. This is a reasonable assumption
when inferring motif activities, as the activities Ams depend on the statistics of all
promoters with sites for motif m. However, in a given condition or system, it is likely
that only a subset of the promoters with sites for a motif m are in fact regulated by
this regulator. This might be due to a limited accessibility, dependence of particular
co-factors, weaker a�nity of a site, etcetera. Thus, when we aim to predict individual
target promoters of a given motifm, we not only use the binding site predictions Npm,
but also evaluate at which promoters the activities Ams contribute to explaining the
pro�les Eps.

To quantify if a given promoter p is targeted by a motif of interest m we �rst
demand that there exists a TFBS prediction, i.e Npm > 0. Second, we quantify the
contribution of m to the �t of the expression/chromatin state pro�le Eps. The most
rigorous approach to quantifying the e�ect of motif m on promoter p is to calculate
both the probability of the entire data set, i.e. the pro�les Eps across all promoters

and samples, with the original site-count matrix N, and a site-count matrix Ñ where
only the sites for motif m in promoter p are set to zero. To calculate this probability
we treat all the unknown motif activities Ams as well as the standard-deviation σ as
nuisance parameters that are integrated out of the likelihood. That is, we formally
want to calculate the ratio of probabilities

Rpm =

∫∞
−∞ dA

∫∞
0

dσP (E|N,A, σ)∫∞
−∞ dA

∫∞
0

dσP (E|Ñ , A, σ)
, (4.26)

where the integrals are over all motif activities Ams, and over the standard-deviations
σ. Note that, when we set Npm = 0 for promoter p and motif m, we make a very
small change to the site-count matrix. That is, as there are tens of thousands of
promoters and close to 200 motifs, we are changing only one of the millions of entries
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in the matrix. As a consequence, the inferred motif activities A
′∗
ms that result from the

mutated matrix Ñ are likely very close to those that result from the original matrix N .
Similarly, the inverse covariance matrix W of the mutated matrix is likely also very
close to that of the original matrix and, �nally, the optimal values of the constants cp,
c̃s, and the prior constant λ∗ will also change very little under mutation of the matrix.
To make the calculation more tractable we will make the approximation that all these
quantities are unchanged upon mutation of the matrix. Under that approximation
we have

P (E|A,N, σ, λ∗) ∝ σ−PS exp

[
−
∑

s,m,m̃

(
A
′
ms − A

′∗
ms

)
Wmm̃

(
A
′
m̃s − A

′∗
m̃s

)
+
∑

p,s χ
2
ps

2σ2

]
,

(4.27)
where χ2

ps is the squared-deviation between the observed value E ′ps and the predicted
value, i.e.

χ2
ps =

(
E
′

ps −
∑
m

N
′

pmA
′∗
ms

)2

(4.28)

And for the probability of the data with the mutated site-count matrix we have

P (E|A, Ñ, σ, λ∗) = P (E|A,N, σ, λ∗) exp

[
−
∑

s(χ
2
psm − χ2

ps)

2σ2

]
, (4.29)

where χ2
psm is the squared-deviation for promoter p and sample s when motif m is

removed, i.e.

χ2
psm =

(
E
′

ps −
∑
m′

Ñ
′

pm′A
′∗
m′s

)2

(4.30)

In this form the integrals over the motif activities and σ can be easily performed
and we �nd for the ratio of the probabilities

Rpm =

( ∑
p′,s χ

2
p′s∑

p′,s χ
2
p′s −

∑
s(χ

2
psm − χ2

ps)

)S(P−M)

, (4.31)

where M is the total number of motifs. Since P � M we approximate P −M ≈ P
and we �nd approximately

Rpm = exp

[∑
s(χ

2
psm − χ2

ps)

〈χ2〉

]
, (4.32)

where we have de�ned the average squared-deviation per sample/promoter combina-
tion

〈χ2〉 =
1

PS

∑
p,s

χ2
ps, (4.33)
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and made use of the fact that [1− x/(SP )]−SP ≈ ex for large SP .
In the results shown in the web-server we show, for each predicted target, the

logarithm of the likelihood ratio, i.e. the score Spm for motif m targeting promoter p
is

Spm =

∑
s χ

2
psm − χ2

ps

〈χ2〉
. (4.34)

All targets for which this score is positive, i.e. where removing the motif from the
promoter reduces the quality of the �t, are reported.

4.5.9.1 Enriched Gene Ontology categories

To analyze whether there are any Gene Ontology categories whose genes are over-
represented among the targets of a motif, we use the �GO::TermFinder� Perl module
(145). The ontology �les and associations between genes and categories were taken
from Gene Ontology (GO) Consortium web-site (48). As a set of target genes for
motif m we include all genes associated with promoters that have a target score
Spm > 0. For microarray chips we create a background set from all the genes which
are have complementary probes present on the microarray, i.e. have associated probes
of the microarray according to our mappings (see Expression data processing). For
RNA-seq data we take all genes associated with promoters which have mapped reads.
In the web results we display all GO categories with a p-value of 0.01 or less. These
p-values are corrected for multiple testing using a simple Bonferroni correction, i.e.
multiplied by the number of tests performed.

4.5.10 Principal component analysis of the activities explain-
ing chromatin mark levels

We �rst performed standard ISMARA analysis on the n = 10 data sets measuring
expression and 9 di�erent chromatin marks (ChIP-seq), across S = 8 cell types (97).
For each motif m, and each mark i, we thus obtained estimated activities Aims.

We performed principal component analysis (PCA) of the expression and chro-
matin mark levels across all promoters, separately for each cell type. For a given
sample s, let Epi denote the level of mark i at promoter p (suppressing the label s for
notational simplicity). We have here already column normalized these levels, i.e.∑

p

Epi = 0, (4.35)

for all marks i.
Using singular value decomposition, the matrix E = U · D · V T can be uniquely

decomposed into an orthonormal matrix U (of size P × n), a diagonal positive-
semide�nite matrix D (of size n × n), and an orthonormal matrix V (of size n × n)
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as:

Epi =
n∑
k=1

UpkDkkVik, (4.36)

where k denotes the index of each component, the column vectors ~Vk with components
Vik contain the principal components, and D2

kk is the fraction of the variance in the
Epi values, i.e.

var(E) =
1

nP

∑
p,i

(Epi)
2 , (4.37)

that is explained by component k.

The �rst principal component ~V1, shown in Suppl. Fig. 4.24 top panels, is virtually
identical in all cell types and captures approximately 60% of the collective behavior
of the expression and 9 chromatin marks (8 histone modi�cation and CTCF binding)
across promoters in each sample. As discussed in the main text, this �rst principal
component appears to capture the combination of chromatin mark levels associated
with the general `activity' of a promoter. As a consequence, the e�ect of a given TF
on a speci�c chromatin mark is confounded by its e�ect on general promoter activity
and we therefore decided to subtract it from the activity pro�les of all TFs.

For the purpose of removing the �rst principal component from the motif activities,
we will treat each motif m separately and ignore the covariances in the inferred motif
activities, i.e. as we assumed previously when calculating the error bars on the motif
activities in (4.15). We perform the removal one sample (cell line) at a time. A careful
probabilistic analysis must be performed in order to calculate the error bars.

Let's focus on a given motif m in sample s and denote by A the vector of activities
across the marks, i.e. Ai is the activity associated with mark i. In addition, let δAi
denote the standard-deviation (error-bar) of this activity. The posterior distribution
P (A|D) of this activity vector given the data is given by a Gaussian, i.e. as in (4.14),
of the form

P (A|D) ∝ exp

[
−1

2

∑
i

(Ai − A∗i )2

δA2
i

]
, (4.38)

where A∗i is the MAP estimate of the motif activity of mark i. If we introduce a
diagonal matrix containing the inverse of the standard-deviation, we can write this
expression in matrix-vector form:

P (A|D) ∝ exp

[
−1

2
(A− A∗)T · diag

(
1

δA2

)
· (A− A∗)

]
, (4.39)

where A∗ is a n× 1 vector of the MAP estimates and diag
(

1
δA2

)
is a 10× 10 diagonal

precision matrix which elements are set to the inverses of motif activity variances.
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Using principal components V of E (4.36) and their orthonormality V · V T = 1

this distribution can be rewritten as

P (A|D) ∝ exp

[
−1

2
(A− A∗)T · V · V T · diag

(
1

δA2

)
· V · V T · (A− A∗)

]
. (4.40)

We can rewrite the activities in the basis of the principal vectors as B ≡ V T · (A−
A∗) and the precision matrix in the same basis as M ≡ V T · diag

(
1
δA2

)
· V . In this

basis the probability distribution takes the form:

P (B|D) ∝ exp

[
−1

2
BT ·M ·B

]
. (4.41)

Note that in this basis, the inverse covariance matrix M contains o�-diagonal terms.

We want to integrate out the activities along the �rst principal component, there-
fore we separate elements of B and M in the following way

B =


b1b2
...
bn


 ≡

(
b1

By

)
(4.42)

M =


m11

(
m12 · · · m1n

)m21
...

mn1


m22 · · · m2n

...
. . .

...
mn2 · · · mnn


 ≡

(
m11 MT

y

My Mw

)
, (4.43)

and the last equivalency holds because the matrix M is symmetric.

Using these de�nitions, eq. (4.41) can be expanded and rewritten to obtain:

P (B|D) ∝ exp

[
−1

2

(
b2

1m11 + 2b1B
T
y ·My +BT

y ·Mw ·By

)]
(4.44)

= exp

−1

2

m11

(
b1 +

BT
y ·My

m11

)2

+BT
y ·Mw ·By −

BT
y ·My ·MT

y ·By

m11


Where we reordered terms and completed the square to bring out that this posterior
is proportional to a Gaussian with respect to b1. It is now straightforward to integrate

117



ISMARA: Modeling genomic signals as a democracy of regulatory motifs

this probability distribution along the �rst principal direction:

P (By|D) =

∫ ∞
b1=−∞

P (B|D)db1 ∝ exp

[
−1

2

(
BT
y ·Mw ·By −

BT
y ·My ·MT

y ·By

m11

)]
·

·
∫ ∞
b1=−∞

exp

−1

2
m11

(
b1 +

BT
y ·My

m11

)2
db1

∝ exp

[
−1

2
BT
y ·

(
Mw −

My ·MT
y

m11

)
·By

]
, (4.45)

The last proportionality holds because the Gaussian integral yields a constant (with
respect to By). Since the covariance matrix is the inverse of the precision matrix, the
covariance matrix W in the reduced (n− 1)-dimensional space (i.e. without the �rst
principal direction) has the form:

W =

(
Mw −

My ·MT
y

m11

)−1

(4.46)

Finally, this covariance matrixW needs to be transformed back from the principal
component basis to the original basis. To this end we use the principal components
contained in columns 2 through n of the V matrix. We obtain for the �nal covariance
matrix K in the original basis

Kij =
n∑

k,l=2

VikWklVjl. (4.47)

The standard deviation of activities of the ith mark is given by square root of the
corresponding diagonal element of this matrix

δÃi =
√
Kii. (4.48)

The corrected MAP activities are obtained by �rst de�ning

B∗ = V T · A∗, (4.49)

and then transforming back to the original basis using only the components along
principal vectors 2 through n:

Ã =
n∑
k=2

VikB
∗
k. (4.50)
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The reported z-value of the ith mark (we introduce back the indices for motif m and
sample s omitted previously) is given by

zims =
Ãi

δÃi
(4.51)

After removing the contribution of the �rst principal component to the motif
activities, we re-calculated signi�cance z-values zim for each motif m and each mark i
(x-axis in the Suppl. Fig. 4.25)

zim =

√∑
s′ (z

i
ms′)

2

S
. (4.52)

In addition, we calculated a speci�city sim which measures the fraction of the
overall that is associated with mark i (y-axis in the Suppl. Fig. 4.25)

sim =
z2
mk∑
k′ z

2
mk′

. (4.53)

That is, a motif m will be highly speci�c for mark i if it has a high z-value zim, and
low z-values for all other marks.

4.6 Fraction of variance explained by the �t

The total variance V in a data set is given by the sum of the squared normalized
expression values

V =
1

PS

∑
p,s

(E
′

ps)
2. (4.54)

After �tting the model, the average squared deviation left unexplained is given by the
average of χ2

ps across all promoters and samples, i.e. as de�ned by equations (4.28)
and (4.33). The fraction of the variance f explained by the �t is thus

f = 1− 〈χ
2〉
V

. (4.55)

We �nd that the fraction of variance explained by the �t typically ranges between
4% and 14%. As an illustration, Suppl. Fig. 4.8 shows a histogram of the fraction of
variance explained by the model across all samples in the GNF data set.

The fraction of variance explained in the samples of the second data set (human
GNF atlas plus NCI-60 cell lines) is a bit larger than the fraction of variance explained
in the samples of data set one (the mouse GNF atlas). It appears that this increase
results from the fact that there is a relatively large (and explainable) di�erence in the
expression pro�les of the cancer cell lines and the normal cell lines.
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Figure 4.8: Histogram of the fraction of variance explained by the model. Left panel:
Histogram of the fraction of variance explained for the samples in the mouse GNF
atlas (data set 1). Right panel: Histogram of the fraction of variance explained for
the samples from the human GNF atlas and the NCI-60 cancer cell lines (data set 2).

4.7 Overview of results presented in the web-interface

To illustrate the results that ISMARA provides, we here present a number of �gures,
that show examples of results on the mouse GNF atlas. Note that almost all of these
�gures are screen shots from the actual web-interface. All the full results for the mouse
GNF data are available at http://ismara.unibas.ch/supp/dataset1/ismara_report.

The main page of results that ISMARA provides for a given data set centers around
a list of motifs, sorted by their signi�cance, showing for each motif its signi�cance, the
associated TFs, a sequence logo of the motif, and a thumbnail image of its inferred
activity across the samples. Supplementary Fig. 4.9 shows an excerpt from this list
of motifs.

Each motif name in this list is in fact a link to a separate page with much more
extensive results for the motif. Among these more extensive results is, �rst of all, a
�gure showing the inferred motif activity (and error bars) across all samples, where
the samples are ordered according from left to right, according to the user's input.
Supplementary Fig. 4.10 shows the activity pro�le of the E2F1..5 motif across the
mouse GNF samples. Note that such an ordering motif activity across samples is
especially helpful when the samples come from a time course, in which case the graph
shows the motif activity across time.

However, in many cases, including the GNF atlas analyzed here, there is no pre-
ferred natural ordering of the samples. In those cases it is more natural to present
the motif activities with samples sorted from those in which the motif is most signif-
icantly upregulated, to those where it is most signi�cantly downregulated. ISMARA
provides such a list of motif z-values, with sample sorted from largest to smallest z-
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Figure 4.9: Fragment of the list of regulatory motifs sorted by their signi�cance (z-
score). The motifs are sorted from top to bottom. Shown for each motif are, from
left to right, the name of the motif (which is a link to a separate page with results for
the motif), its z-score, a list of associated TFs (links to NCBI pages for these genes),
a thumbnail of the inferred motif activity pro�le, and the sequence logo of the motif.
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Figure 4.10: Inferred activities of the E2F1..5 motif on the mouse GNF atlas. The
samples are ordered, from left to right, in lexicographic order, according to sample
names input by the user. The red circles show the estimated activities A∗ms and the
error-bars δAms are shown as red vertical bars. Samples names are indicated on the
bottom.

value, as shown in Suppl. Fig. 4.11 for the E2F1..5 motif. In this case, inspection of
this sorted list of samples makes clear that E2F is highly upregulated in fast dividing
cells, and downregulated in post-mitotic cells. The close association of E2F activity
with cell proliferation is something that we have observed across many di�erent data
sets (data not shown).

The next important information provided for each motif, is a predicted list of
target promoters. ISMARA provides the target promoters p for a motif m sorted by
their target score Spm (see section 4.5.9). As an example, the list of targets for the
E2F1..5 motif is shown in Suppl. Fig. 4.12. Each row in the table corresponds to
one target promoter and information shown includes the promoter ID, its score Spm,
associated transcripts and Entrez gene, and a description of the gene. Note that all
these pieces of information are links that take the user to additional information on
the promoter, the associated transcripts and gene. Note that, to keep the page easily
viewable, by default only the top 20 targets are shown. But the user can interactively
change the number of targets shown in the list. In addition, a search box allows the
user to search whether a particular promoter, transcript, or gene of interest occurs
within the full list of targets.

Of particular interest is the additional information provided about each promoter,
through the links with the promoter IDs. Following this link takes the user to the
genome browser of our SwissRegulon database (146), showing the section containing
the proximal promoter regions (500 base pairs up-stream and down-stream of the
major TSS of the promoter). In this browser the user is shown all the predicted
TFBSs that are used by ISMARA in its modeling of expression or ChIP-seq data.
This thus allows the user to determine the precise locations of the TFBSs on the
genome, through which a particular TF is predicted to target a given promoter.
Supplementary Fig. 4.13 shows, as an example, the promoter of the Rrm2 gene,
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4.4.7 Overview of results presented in the web-interface

Figure 4.11: Sorted list of z-values for the E2F motif across all samples of the mouse
GNF atlas. For readability, only the top 20 and bottom 20 samples are shown.
Note that the samples with the highest z-values correspond to fast proliferating cells
whereas the samples with the lowest z-values correspond to non-proliferating cells.
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Figure 4.12: Top target promoters of the E2F1..5 motif for the mouse GNF atlas.
Targets are sorted by the log-likelihood score Spm. Shown for each target promoter
are the promoter ID (a link to the SwissRegulon web-browser page showing the pro-
moter on the genome), the target score Spm, associated RefSeq transcripts, associated
gene symbols (links to NCBI pages), and gene names (which often provide a short
description of the gene's function). By default the top 20 targets are shown but this
number can be changed using the drop-down menu at the top of the table. A search
box allows users to search for genes or transcripts within the entire target list.
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Figure 4.13: Example of a promoter region as display in the SwissRegulon genome
browser. The region shown corresponds to the proximal promoter of the Rrm2 gene
(the top target of the E2F1..5 motif) and this is the region that will be displayed
when following the link to the promoter as displayed in Suppl. Fig. 4.12. The
genome browser shows the RefSeq transcript, the promoter, the associated annotated
transcript start cluster (TSC) based on the CAGE data, and all the predicted TFBSs.
Here the intensity of the color indicates the posterior probability assigned to each site,
and the name of the cognate motif is written above each side. The arrows inside the
TFBSs indicate on which strand the motif occurs.

which is the top predicted target of the E2F1..5 motif.
Beyond a list of individual targets, a user would typically like to gain some intu-

ition of the pathways and particular biological processes that are targeted by a partic-
ular motif. One way of visualizing the functional structure of the predicted targets of
a motif, is to represent these as a network, with links between pairs of genes that are
known to be functionally related. The STRING database (47) maintains a curated
collection of functional links between proteins, where `functional link' can range from
direct physical interaction, to over-representation of the protein pair within abstracts
of scienti�c articles. For any set of proteins, STRING provides visualizations of the
network of known functional interactions between these proteins, which intuitively
brings out groups of proteins known to be functionally related. ISMARA provides,
for each motif, such STRING network pictures of the set of predicted targets of the
motif (for visibility at most the top 200 targets are shown). Supplementary Fig. 4.14
shows the STRING network for the predicted targets of E2F1..5. Note that the pic-
ture is itself a link to the STRING database, where the �gure is interactive and allows
the user more detailed information on each of the proteins in the network and each

125



ISMARA: Modeling genomic signals as a democracy of regulatory motifs

functional link between the proteins.
Apart from the STRING network, ISMARA also provides list of Gene Ontology

categories that are enriched among the predicted targets of a motif. Lists are provided
for the `biological process', `cellular component', and `molecular function' hierarchies.
A p-value for enrichment is calculated using a simple hypergeometric test and only
categories with a p-value below 0.05 are shown. The categories are sorted by the fold-
enrichment of targets relative to what would be expected by chance. As an example,
Suppl. Fig. 4.15 shows the top categories of the biological process hierarchy for the
E2F1..5 motif.

For many of the motifs incorporated into the ISMARA analysis, there is more
than one TF that can potentially bind to sites for the motif. As a consequence, it is
not always clear which individual TFs are responsible for the observed motif activity
in a particular system. To help determine which TFs are most likely involved in
the activity of a given motif, ISMARA provides some simple correlation analysis. In
particular, a table is provided showing the Pearson correlation between the motif's
activity pro�le and the mRNA expression pro�les of each of the TFs that can bind to
the sites of the motif. The TFs in the list are sorted by their p-value. Supplementary
Fig. 4.16 shows the list of correlations for the E2F TFs.

For each of the correlations a link is also provided to a simple scatter plot showing
the mRNA expression levels and motif activities across the samples. Supplementary
Fig. 4.17 shows example scatter plots for the TFs E2F1 and E2F2, which are both
signi�cantly correlated with motif activity. The fact that both motifs correlate pos-
itively with motif activity strongly suggests that these TFs act as activators, i.e. as
their mRNA levels go up, the expression of target genes is a�ected positively. To show
an example of opposite behavior, Suppl. Fig. 4.18 shows the mRNA expression levels
of the TF REST against its inferred motif activity, across the mouse GNF samples.
The clear negative correlation strongly suggests that REST acts as a repressor of its
targets, and this is indeed well-known to be the case.

Finally, one of our our aims is to understand the causal structure of the transcrip-
tion regulatory network, and a �rst step in that direction are predictions of direct
regulatory interactions between the motifs. For each motif, we check its list of pre-
dicted targets for promoters of TFs that are associated with other motifs. Using this
we build a regulatory network where nodes correspond to motifs and a directed edge
from motif m to motif m′ occurs whenever a promoter of at least one of the TFs
associated with motif m′ is a predicted target of motif m. On the page with results of
a given motif, a part of this regulatory network centered around the motif in question
is shown, i.e. all edges from or to the motif in question as well as edges between the
direct neighbors of the motif. Supplementary Fig. 4.19 shows this network for the
E2F1..5 motif. Note that a slider on the left-hand side of the network allows the user
to vary a cut-o� on the target score Spm, i.e. showing only nodes and edges over the
cut-o�. In addition, placing the mouse pointer over a node brings up a pop-up with
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Figure 4.14: Network of target genes of the E2F motif as displayed by the STRING
database (47). Each node corresponds to a predicted target gene of the E2F1..5 motif
(in the mouse GNF atlas, i.e. data set 1). Links are drawn by STRING whenever
there is any evidence that the two genes may interact or be functionally linked, where
evidence may range from measured direct protein-protein interaction to signi�cant
co-occurrence of the gene names within abstracts of articles.
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Figure 4.15: Top over-represented categories from the Gene Ontology hierarchy of
biological processes among the predicted targets of the E2F1..5 motif. The categories
are sorted by their enrichment, i.e. how much more frequent targets from this category
are than expected by chance (�rst column) and only categories that are signi�cantly
enriched at a p-value of 0.05 (second column) are shown. The third and fourth
columns in the table show the GO identi�er and a description of the categories and
these are again links to pages with more extensive information on the GO category.
Finally, the user can interactively change the number of top categories shown using
the drop-down menu or search for keywords.
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Figure 4.16: Correlations between the E2F1..5 motif activity and mRNA expression
pro�les of TFs that kind bind to sites of the motif. The table shows the names of the
associated TF genes, the IDs of the associated promoters of these genes, the Pearson
correlation coe�cient, the p-value for the correlation, and a link to a �gure showing a
scatter of the motif activity and mRNA expression levels across the samples (Suppl.
Fig. 4.17) below.

Figure 4.17: Example scatter plots showing the correlations between E2F1..5 motif
activity and the mRNA expression of the E2F1 (left panel) and E2F2 (right panel)
TFs, across the samples of the mouse GNF atlas. Each dot corresponds to one sample.
The expression levels are shown on a logarithmic scale. At the top of the panel the
Pearson correlation coe�cient ρ and the ID of the promoter are shown.
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Figure 4.18: Scatter plots showing the correlation between REST motif activity and
the mRNA expression of the REST TF, across the samples of the mouse GNF atlas.
Each dot corresponds to one sample. The expression levels are shown on a logarithmic
scale. At the top of the panel the Pearson correlation coe�cient ρ and the ID of the
promoter are shown.

the z-value of the motif, and placing the mouse pointer on an edge will bring up a
pop-up with the target score of the link.
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Figure 4.19: Predicted direct regulatory interactions between E2F and other motifs.
Edges are drawn from motif m to m′ whenever a promoter p, associated with motif
m′, is a predicted target of motif m, with a target score Spm larger than a given
cut-o� c. In the web browser, the user can interactively change the cut-o� c using
the slider on the left of the �gure. In this example the cut-o� was set at 12.92. When
the cursor is placed on an edge the target score Spm is shown, and in this �gure the
target scores of the 4 most signi�cant targets are shown. The intensity of the color
of each motif corresponds to its z-score. Finally, for each motif (in this case E2F1..5)
only the direct neighborhood in the network is shown, i.e. edges that are directly
linked to E2F1..5, or that link between motifs that directly link to E2F1..5.
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4.8 HNF1a activity in pancreas

Besides its well-known role in liver and kidney, ISMARA also predicts that HNF1a is
one of the most active motifs in pancreas. Supplementary Fig. 4.20 shows the motifs
with the most positive and most negative z-values in the two pancreas samples of the
mouse GNF atlas.

Figure 4.20: Motifs with the most positive and most negative z-values in two replicate
pancreas samples from the mouse GNF atlas. Note that the HNF1a is the 7th and
6th most upregulated motif, respectively, in these samples.

4.9 Reproducibility of motif activities

The inferred motif activities depend both on our binding site predictions, and on the
assumed simple linear relationship between predicted numbers of sites and mRNA ex-
pression. As explained in the main text, there are many reasons why such a `cartoon'
model is very unlikely to produce an accurate quantitative model of genome-wide
expression pro�les. As a consequence, one may wonder how robust the inferred motif
activities are. However, as shown in Suppl. Figure 4.21, the motif activities inferred
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Figure 4.21: Reproducibility of the inferred motif activities and the expression pro-
�les of promoters. For each motif, and each promoter, we calculated the Pearson
correlation coe�cient of the activity/expression pro�les for the two replicates of the
samples in the mouse GNF atlas. The �gure shows the distribution of observed cor-
relation coe�cients for the motif activities (red) and promoter expression pro�les
(blue). The motif activities are generally considerably more reproducible than the
expression pro�les of the promoters from which they are inferred.

from the two replicates of the mouse GNF atlas are typically more reproducible across
these replicates than the expression levels of individual promoters which are used to
infer the motif activities. The reason for this is that the motif activity is inferred from
the behavior of the hundreds to thousands of predicted targets of the motif. Thus,
although at each individual promoter the expression is likely a complex function of
the regulatory sites and the linear model is likely a poor approximation, these com-
plications are e�ectively averaged out when inferring motif activities from the joint
behavior of all targets.
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4.10 Motifs dis-regulated in tumor cells

To identify motifs whose motif activities are consistently dis-regulated in tumors, we
�rst separate all samples s from the GNF and NCI-60 data sets into the set of tumor
samples T and non-tumor samples N . Next, we use the replicate averaging described
in section 4.5.8 to calculate, for each motif, an average activity 〈ĀT 〉 in tumor samples,
an associated error-bar δĀT , an average activity in non-tumor samples 〈ĀN〉, and an
error-bar δĀN associated with the average activity in non-tumor samples. From
these, we calculate a z-value zm for each motif m that quanti�es the signi�cance of
the di�erence in the average activities in tumor and non-tumor samples. Tables 4.2
and 4.3 show the motifs with highest and lowest z-values, respectively. That is, these
are the motifs most signi�cantly dis-regulated in tumor cells.

Motif z-values

bHLH_family.p2 2.398858
HIF1A.p2 2.230493
E2F1..5.p2 2.140652

ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 2.071274
BPTF.p2 1.977484

NFY{A,B,C}.p2 1.920594
FOXD3.p2 1.915846
TFDP1.p2 1.901083
ELF1,2,4.p2 1.874818
ZNF143.p2 1.802732
ATF4.p2 1.786143
YY1.p2 1.735238
EHF.p2 1.718308
NRF1.p2 1.674024

ELK1,4_GABP{A,B1}.p3 1.667680
CCUUCAU (hsa-miR-205) 1.525379

PAX5.p2 1.500615
UCAAGUA (hsa-miR-26a, hsa-miR-26b, hsa-miR-1297, hsa-miR-4465) 1.404557

BACH2.p2 1.371868
GUAACAG (hsa-miR-194) 1.349047

HES1.p2 1.317505

Table 4.2: Motifs that are most consistently upregulated in tumor samples of the
NCI-60 and GNF data sets, relative to healthy (non-tumor) tissues in the GNF data
set. The motifs are sorted by their z-value (shown in the second column).
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Motif z-values
SMAD1..7,9.p2 -2.194113
HAND1,2.p2 -2.185943
TGIF1.p2 -2.117814
MAZ.p2 -2.076224
TFCP2.p2 -2.071225
KLF12.p2 -1.958392

GGCUCAG (hsa-miR-24) -1.918863
FOX{D1,D2}.p2 -1.839199

TBX4,5.p2 -1.805228
FOXP3.p2 -1.740035
EVI1.p2 -1.701934

HBP1_HMGB_SSRP1_UBTF.p2 -1.688854
AAAGUGC (hsa-miR-17, hsa-miR-20a, hsa-miR-20b, hsa-miR-
93, hsa-miR-106a, hsa-miR-106b, hsa-miR-519d)

-1.628037

GAGAUGA (hsa-miR-143, hsa-miR-4770) -1.619611
HIC1.p2 -1.607936

NANOG{mouse}.p2 -1.576193
FEV.p2 -1.574951

MYOD1.p2 -1.565920
NR1H4.p2 -1.562673
POU1F1.p2 -1.556216

TCF4_dimer.p2 -1.536692
MYFfamily.p2 -1.514719

TAL1_TCF{3,4,12}.p2 -1.499900
POU5F1.p2 -1.480033
NR3C1.p2 -1.473553

HOX{A5,B5}.p2 -1.440485
STAT1,3.p3 -1.417964
GTF2A1,2.p2 -1.416557
RORA.p2 -1.391819

CAGCAGG (hsa-miR-214, hsa-miR-761, hsa-miR-3619-5p) -1.356781
ETS1,2.p2 -1.337667
EN1,2.p2 -1.337051
AR.p2 -1.330996

RREB1.p2 -1.330444
CUCCCAA (hsa-miR-150) -1.318296
CACAGUG (hsa-miR-128) -1.318135

JUN.p2 -1.313498

Table 4.3: Motifs that are most consistently down-regulated in tumor samples of the
NCI-60 and GNF data sets, relative to healthy (non-tumor) tissues in the GNF data
set. The motifs are sorted by their z-value (shown in the second column).
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4.11 XBP1 motif activity and mRNA expression

The XPB1 motif is the third most signi�cant motif in the innate immune response
time course in which HUVEC cells were treated with TNFα. The motif is upregulated
during the time course. However, as shown in Suppl. Fig. 4.22, the mRNA expression
of the XPB1 gene is almost constant across the time course, and not signi�cantly
correlated with the motif's activity. In fact, it has been established that XBP1's
activity is regulated post-transcriptionally, i.e. through alternative splicing (82; 83).

Figure 4.22: Scatter plot showing the correlation between the inferred activity of the
XBP1 motif and the mRNA expression of the XBP1 gene for the innate immune
response time course. The mRNA expression is shown on a logarithmic scale (base
2) along the vertical axis. Note the small range in expression variation.

4.12 Analysis of the ENCODE ChIP-seq data

To illustrate ISMARA's performance on ChIP-seq data we used data from the EN-
CODE project in which expression and 9 di�erent chromatin modi�cations were mea-
sured across 8 di�erent cell types (97). Supplementary table 4.4 shows the list of cell
types used together with their description and Suppl. table 4.5 shows a list of all
the signals that were measured. For simplicity, we will refer to all 10 signals (which
include expression and the binding of the CTCF transcription factor) as `marks' in
our description below.

We �rst ran ISMARA separately on the data sets for each of the 10 signals. For all
the ChIP-seq data we thus modeled the occurrence of each of the marks at promoters
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4.4.12 Analysis of the ENCODE ChIP-seq data

Cell Description

GM12878 B-lymphocyte, lymphoblastoid
HepG2 hepatocellular carcinoma
HMEC mammary epithelial cells
HSMM skeletal muscle myoblasts
Huvec umbilical vein endothelial cells
K562 chronic myelogenous leukemia
NHEK epidermal keratinocytes
NHLF lung �broblasts

Table 4.4: Human tissues and cell lines used as the source of experimental material
in the ENCODE data sets for which we analyzed ChIP-seq data of chromatin marks.
We used all available samples for which a consistent measurement platform was used.

Pro�ling Platform

expression A�ymetrix HT Human Genome U133A Array
H3K4me3 Illumina Genome Analyzer II
H3K27me3 Illumina Genome Analyzer II
H3K27ac Illumina Genome Analyzer II
H3K9ac Illumina Genome Analyzer II

H3K36me3 Illumina Genome Analyzer II
H3K4me1 Illumina Genome Analyzer II
CTCF Illumina Genome Analyzer II

H3K4me2 Illumina Genome Analyzer II
H4K20me1 Illumina Genome Analyzer II

Table 4.5: List of the signals (i.e. expression, histone modi�cations, and the binding
of one TF) and corresponding measurement platforms from ENCODE data sets, that
we used to demonstrate ISMARA's performance on ChIP-seq data sets. We used
available BED and CEL �les from the GSE26386 and GSE26312 GEO series.
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in terms of the predicted TFBSs at the promoters. Supplementary table 4.6 lists all
the data sets that were analyzed in this paper and shows, including references to the
original publications, and lists for each data set the URL at which ISMARA's results
for the corresponding data set can be found. Note that, for data sets 1, 2, and 5,
there are also replicate averaged results available. These can be found by replacing
`ismara_report' at the end of the URL with `averaged_report'.

138



4.4.12 Analysis of the ENCODE ChIP-seq data

D
a
ta

S
e
t

IS
M
A
R
A
U
R
L
h
tt
p
:/
/i
sm

ar
a.
u
n
ib
as
.c
h
/s
u
p
p
/

G
N
F
S
y
m
A
tl
as
,
m
ou
se

(4
4)

d
at
as
et
1/
is
m
ar
a_

re
p
or
t

G
N
F
S
y
m
A
tl
as

+
N
C
I-
60

ca
n
ce
r
ce
ll
li
n
es
,
h
u
m
an

(5
4;

55
)

d
at
as
et
2/
is
m
ar
a_

re
p
or
t

In
�
am

m
at
or
y
re
sp
on
se

ti
m
e
co
u
rs
e,
H
U
V
E
C
(6
9)

d
at
as
et
3/
is
m
ar
a_

re
p
or
t

M
u
co
ci
li
ar
y

d
i�
er
en
ti
at
io
n
,

b
ro
n
ch
ia
l
ep
it
h
el
ia
l

ce
ll
s,
h
u
m
an

(8
4)

d
at
as
et
4/
is
m
ar
a_

re
p
or
t

E
p
it
h
el
ia
l-
M
es
en
ch
y
m
al

T
ra
n
si
ti
on
,
h
u
m
an

(8
8)

d
at
as
et
5/
is
m
ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
ex
p
re
ss
io
n
(9
7)

d
at
as
et
6.
1_

E
N
C
O
D
E
_
ex
p
re
ss
io
n
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

4m
e3

(9
7)

d
at
as
et
6.
2_

E
N
C
O
D
E
_
H
3K

4m
e3
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

27
m
e3

(9
7)

d
at
as
et
6.
3_

E
N
C
O
D
E
_
H
3K

27
m
e3
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

27
ac

(9
7)

d
at
as
et
6.
4_

E
N
C
O
D
E
_
H
3K

27
ac
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

9a
c
(9
7)

d
at
as
et
6.
5_

E
N
C
O
D
E
_
H
3K

9a
c/
is
m
ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

36
m
e3

(9
7)

d
at
as
et
6.
6_

E
N
C
O
D
E
_
H
3K

36
m
e3
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

4m
e1

(9
7)

d
at
as
et
6.
7_

E
N
C
O
D
E
_
H
3K

4m
e1
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
C
T
C
F
(9
7)

d
at
as
et
6.
8_

E
N
C
O
D
E
_
C
T
C
F
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
3K

4m
e2

(9
7)

d
at
as
et
6.
9_

E
N
C
O
D
E
_
H
3K

4m
e2
/i
sm

ar
a_

re
p
or
t

E
N
C
O
D
E
ce
ll
li
n
es
,
H
4K

20
m
e1

(9
7)

d
at
as
et
6.
10
_
E
N
C
O
D
E
_
H
4K

20
m
e1
/i
sm

ar
a_

re
p
or
t

T
ab
le
4.
6:

U
R
L
s
w
it
h
th
e
re
su
lt
s
of

IS
M
A
R
A
's
an
al
y
se
s
of

th
e
d
at
a
se
ts

d
is
cu
ss
ed

in
th
is
p
ap
er
.

139



ISMARA: Modeling genomic signals as a democracy of regulatory motifs

4.12.1 PCA analysis

We �rst performed principal component analysis of the 10 marks across all promoters
genome-wide, separately for each of the 8 cell types, as described in section 4.5.10.
As shown in Suppl. Fig. 4.24, we �nd that the �rst principal component explains
approximately 60% of the variation in each of the 8 cell types. In addition, the �rst
principal component is almost identical in each of the cell types. This strongly sug-
gests that this �rst principal component is a general feature of the distribution of
chromatin marks. Moreover, the fact that this component aligns positively with ex-
pression and activity-associated chromatin marks, suggests that this �rst component
re�ects general promoter activity. We then pooled the data from all samples and
performed principal component analysis on this complete data set, i.e. treating each
promoter sample combination (p, s) as if it were a separate promoter. The resulting
�rst principal component is shown in Fig. 6B of the main article.

Next, as described in section 4.5.10, we took the inferred motif activities for all
marks and removed the component along the �rst principal component. That is, we
removed the contribution to the motif activities that comes from the general `promoter
activity'. As an illustration, Suppl. Fig. 4.23 shows the inferred motif activities for 5
motifs (SNAI, IRF, HNF4a_NR2F1, TEAD1, and GATA6) both before (left panels)
and after (right panels) the contribution from general promoter activity has been
removed, for expression and the activation associated marks H3K4me3, H3K4me2,
H3K9ac, H3K27ac, and H3K36me3. As the �gure shows, before removal of the �rst
PCA component, the activities for all marks are highly correlated, but this correlation
disappears when the �rst PCA component is removed. This con�rms that the highly
correlated motif activities and the activation-associated chromatin marks is accounted
for by the �rst PCA component that captures the relative chromatin mark levels
associated with the general activity of a promoter. The remaining activities (right
panels) thus provide a clearer insight in the speci�c role of a motif for speci�c marks
across the cell-types. For example, for the SNAI motif the two acetylation marks
are highly positive in HepG2 cells, whereas expression and H3K36me3 are clearly
negative. Thus, promoters carrying SNAI sites tend to have higher histone acetylation
levels than expected based on their general activity, and lower gene expression and
H3K36me3 levels than expected based on the general activity.

As described in section 4.5.10, after removing the contribution of the �rst principal
component to the motif activities, we re-calculated signi�cance z-values zim for each
motif m and each mark i. In addition, we calculated a speci�city sim which measures
the fraction of the overall that is associated with mark i. That is, a motif m will
be highly speci�c for mark i if it has a high z-value zim, and low z-values for all
other marks. To identify motifs that are either most signi�cant or highly speci�c
for particular marks, we plotted scatter plots showing the signi�cance and speci�city
for each motif (Suppl. Fig. 4.25). In each of the scatters we have indicated in red
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A)

B)

C)

D)

E)

Figure 4.23: Inferred motif activities for 5 example motifs on the ENCODE ChIP-seq
data sets measuring chromatin (97) (continued on the next page)
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Figure 4.23: Inferred motif activities for 5 example motifs on the ENCODE ChIP-
seq data sets measuring chromatin (97). Each row (labeled A through E) shows the
activities for explaining expression (black), H3K4me3 (dark green), H3K4me2 (light
green), H3K9ac (dark blue), H3K27ac (light blue), and H3K36me3 (brown) levels,
for one motif. The left panels show the motif activities as inferred from the original
data the right panel the motif activities after the contribution along the �rst principal
component has been subtracted. The names of the motifs are indicated above each
panel and sequence logos are shown as insets. Note that the motif activities for
the di�erent marks go from highly correlated to essentially uncorrelated as the �rst
principal component is removed.

those motifs that had either very high signi�cance or high speci�city for the motif.
Interestingly, we often �nd that the motifs with highest signi�cance for a particular
mark also have high speci�city. For example, HNF1a is both most signi�cant and
most speci�c for H3K4me2 levels in promoters. Not surprisingly, the occurrence of
CTCF motifs is the most signi�cant determinant of the observed levels of bound
CTCF.
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4.4.12 Analysis of the ENCODE ChIP-seq data

Figure 4.24: First principal component explaining the largest amount of chromatin
mark and expression levels associated with each promoter, separately for each of the
8 cell types (top 8 panels). The bars indicate the relative contributions of expression
and each of the chromatin marks to the �rst principal component. Note that the �rst
principal component is virtually identical in each cell type. The bottom 8 panels show
the fraction of the total variance explained by each subsequent principal component
(bars) and the cumulative fraction of variance explained by consecutive components.
Note that, for each cell type, close to 60% of the variance in expression and the 9
chromatin marks is explained by the �rst component.
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Figure 4.25: (continued on the next page)
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Figure 4.25: Signi�cances and speci�cities of the motifs for explaining variations in
di�erent chromatin marks. Each panel corresponds to one mark (as indicated on
the axes) and each dot corresponds to one motif. The signi�cance of each motif is
quanti�ed by a z-value of the motif's activity for a given mark, after motif activities
along the �rst principal component have been removed (see section 4.5.10). The
speci�city of a motif for a given mark is the fraction of all signi�cance associated
with a given mark (its z-value squared relative to the sum of all z-values squared, see
section 4.5.10). the most signi�cant and/or speci�c motifs for each mark are indicated
in red.
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Chapter 5

The transcriptional network that
controls growth arrest and
di�erentiation in a human myeloid
leukemia cell line.

Harukazu Suzuki, Alistair R R Forrest, Erik van Nimwegen, Carsten O Daub, Piotr
J Balwierz, Katharine M Irvine, Timo Lassmann, Timothy Ravasi, Yuki Hasegawa

et alli
Nature Genetics, 41(5):553-62 2009, PMID:19377474

doi:10.1038/ng.375

Using deep sequencing (deepCAGE), the FANTOM4 study measured the
genome-wide dynamics of transcription-start-site usage in the human mo-
nocytic cell line THP-1 throughout a time course of growth arrest and
di�erentiation. Modeling the expression dynamics in terms of predicted
cis-regulatory sites, we identi�ed the key transcription regulators, their
time-dependent activities and target genes. Systematic siRNA knock-
down of 52 transcription factors con�rmed the roles of individual factors
in the regulatory network. Our results indicate that cellular states are
constrained by complex networks involving both positive and negative
regulatory interactions among substantial numbers of transcription fac-
tors and that no single transcription factor is both necessary and su�cient
to drive the di�erentiation process.

147



The transcriptional network. . .

5.1 Introduction

Development, organogenesis and homeostasis in multicellular systems involve the pro-
liferation of precursor cells, followed by growth arrest and the acquisition of a di�eren-
tiated cellular phenotype . Upon stimulation with phorbol myristate acetate (PMA),
human THP-1 myelomonocytic leukemia cells cease proliferation, become adherent
and di�erentiate into a mature monocyte- and macrophage-like phenotype(147; 148).
This study aimed to understand the transcriptional network underlying growth arrest
and di�erentiation in mammalian cells using THP-1 cells as a model system.

Most existing methods for regulatory network reconstruction collect genes into
coexpressed clusters and associate these clusters with regulatory motifs or pathways
(for example, see refs. (2; 149; 150)). Alternatively, one can model the expression
patterns of all genes explicitly in terms of predicted regulatory sites in promoters and
the post-translational activities of their cognate transcription factors (TFs)(4; 43;
151). Although this approach is challenging in complex eukaryotic genomes owing to
large noncoding regions, ChIP-chip data(152) indicates that the highest density of
regulatory sites is found near transcription start sites (TSSs) and regulatory regions
originally thought to be distal may often be alternative promoters(12; 13). Precise
identi�cation of TSS locations is thus likely to be a crucial factor for accurate modeling
of transcription regulatory dynamics in mammals.

In this study, we extend our previous observations of genome-wide TSS usage by
Cap Analysis of Gene Expression (CAGE)(1) and using deep sequencing to identify
promoters active during a time course of di�erentiation and quantify their expression
dynamics. DeepCAGE data are used in combination with cDNA microarrays, other
genome-scale approaches, novel computational methods and large-scale siRNA vali-
dation to provide a comprehensive analysis of growth arrest and di�erentiation in the
THP-1 cell model.

5.2 Results

5.2.1 Outline of the analysis strategy

In most cell line models, only a subset of cells undergoes growth arrest and di�erentia-
tion. To maximize the sensitivity in this study, we identi�ed a subclone of THP-1 cells
in which the large majority of cells became adherent in response to PMA. Our strategy
began with deepCAGE, which identi�ed active TSSs at single-base-pair resolution,
and simultaneously measured their time-dependent expression (using normalized tag
frequency) as cells di�erentiated in response to PMA. The same RNA was subjected
to cDNA microarray analysis on an Illumina platform. The di�erentiation of the cells
was evident from the large increase in expression of macrophage-speci�c genes such
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as CD14 and CSF1R detected by both deepCAGE and microarray in all replicates.
Figure 5.1 summarizes our Motif Activity Response Analysis (MARA) strategy.

Promoters were de�ned as local clusters of coexpressed TSSs and promoter regions
as their immediate �anking sequences (Fig. 5.1 a,b). To reconstruct transcription
regulatory dynamics we re�ned earlier computational methods(4; 43; 151) by in-
corporating comparative genomic information and each TF's positional preferences
relative to the TSS in the prediction of regulatory sites. Binding sites for a com-
prehensive and unbiased collection of mammalian regulatory motifs were predicted
in all proximal promoter regions (Fig 5.1c) and the observed promoter expression
pro�les (Fig. 5.1d) were combined with the predicted site-counts (Fig. 5.1e) to infer
time-dependent activity pro�les of regulatory motifs (Fig. 5.1f). We inferred individ-
ual regulatory interactions (edges) between motifs and promoters by comparing the
promoter expression and motif activity pro�les (Fig. 5.1g). Rigorous Bayesian prob-
abilistic methods were developed for all steps of the computational analysis. Finally,
a core network was constructed by selecting the motifs that explained the greatest
proportion of the expression variance, obtaining all predicted regulatory edges be-
tween TFs corresponding to these motifs and selecting those regulatory edges that
had independent experimental support. Using this approach, we reconstructed the
transcriptional regulatory dynamics associated with cellular di�erentiation in human
THP-1 cells, and validated a subset of predicted regulatory interactions.
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5.5.2 Results

Figure 5.1: (a) CAGE tags are mapped to the human genome and their expression
is normalized; vertical lines represent TSS positions, and their height is proportional
to the normalized expression. (b) Mapped tags are clustered into promoters on the
basis of their relative expression, and neighboring promoters are joined into promoter
regions. (c) A window of -300 to +100 �anking each promoter region is extracted,
multiply aligned and the MotEvo algorithm is used to predict binding sites for known
motifs. (d�f) Observed expression of all promoters (d) and predicted site-counts (e)
are used to infer motif activities (f). (g) The statistical signi�cance of the regula-
tory edge from motif to promoter is calculated based on correlation of the promoter
expression and motif activity pro�les.

5.2.2 DeepCAGE quanti�cation of dynamic TSS usage

CAGE tags generated from mRNA harvested at each time point were mapped to the
human genome. Promoters were de�ned as clusters of nearby TSSs that showed iden-
tical expression pro�les (within measurement noise) and were substantially expressed
in at least one time point (Fig. 5.1a,b). Using these criteria we identi�ed 29,857
promoters expressed in THP-1 cells containing 381,145 unique TSS positions (which
is a subset of the nearly 2 million TSSs detected at least once in THP-1). These
promoters were contained within 14,607 promoter regions (separated by at least 400
bp; Methods ). The deepCAGE data was validated using genome tiling-array ChIP
for markers of active transcription. Of the promoters identi�ed, 79% and 78% were
associated with H3K9Ac and RNA polymerase II, respectively (both markers of active
transcription(153; 154)), compared to 18% and 27% for inactive promoters.

Among the identi�ed promoters 84% (24,984) were within 1 kb of the starts of
known transcripts and 81% (24,327) could be associated with 9,452 Entrez genes.
Approximately half of the remaining promoters were more than 1 kb away from the
loci of known genes (Supplementary Fig. 5.7). These newly identi�ed promoters are
conserved across mammals, suggesting that they are true transcription starts of cur-
rently unknown transcripts. The association of 24,327 promoters with 9,452 Entrez
genes extends previous evidence of alternative promoter usage(12) � in this case even
within a single cell type (Supplementary Table 5.1) � and demonstrates that pro-
moter regions frequently contain multiple promoters with distinguishable expression
pro�les. In addition, for genes with known multiple promoters deepCAGE frequently
identi�ed only one promoter to be active in the THP-1 samples (Supplementary Fig.
5.8). Hence, deepCAGE samples a distinct aspect of transcriptional activity that can
and does vary independently of mRNA abundances as measured by hybridization to
representative microarray probes.
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5.2.3 Promoter expression

Using the normalized tags per million (tpm) counts assigned to the promoters, we
tested reproducibility among the three biological replicates and compared the outcome
to the Illumina array from the same samples (Supplementary Fig. 5.9). DeepCAGE
expression measurements were comparatively noisy (Supplementary Fig. 5.9a). Nev-
ertheless, the median Pearson correlation between the replicate-averaged expression
pro�les of CAGE and microarray was around 0.72 (Supplementary Fig. 5.9b), which is
comparable to that observed with other deep transcriptome sequencing datasets(155).
As predicted, the correlation is lower for genes with multiple promoter regions (Sup-
plementary Fig. 5.9b ).

5.2.4 Comprehensive regulatory site prediction

Known binding sites from the JASPAR and TRANSFAC databases(156; 157) were
used to construct a set of 201 regulatory motifs (position-speci�c weight matrices,
WMs), which represent the DNA binding speci�cities of 342 human TFs. We pre-
dicted transcription factor binding sites (TFBSs) for all motifs within the proximal
promoter regions (-300 to +100 bps) of all CAGE-de�ned promoters. Extending the
proximal promoter regions beyond the -300 to +100 window decreased the quality of
the �tted model described below (data not shown). In contrast to previous approaches
that used simple WM scanning(151), we incorporated information from orthologous
sequences in six other mammals and used a Bayesian regulatory-site prediction algo-
rithm that uses explicit models for the evolution of regulatory sites(39; 158) (Fig. 5.1c
and Methods). Notably, di�erent motifs had distinct and highly speci�c positional
preferences with respect to TSS (Supplementary Fig. 5.10), extending a previous
genome-scale analysis20. Positional preferences were incorporated in the TFBS pre-
diction by assigning each site a probability that it is under selection and correctly
positioned. This analysis generated approximately 245,000 predicted TFBSs for the
201 motifs genome-wide. For each promoter�motif combination, the TFBS predic-
tion was summarized by a count Npm, which represents the estimated total number
of functional TFBSs for motif m in promoter p. The TFBS predictions were com-
pared with published high-throughput protein�DNA interaction datasets (ChIP-chip)
and predicted target genes were signi�cantly (P values ranged from 0.02 for ETS1 to
6.60E�263 for GABPA) enriched among genes for which binding was observed.

5.2.5 Inferring key TFs and their time-dependent activities

The details of our Motif Activity Response Analysis (MARA) are described in Meth-
ods. Brie�y, for each motif m and each time point t, there is an (unknown) motif
activity Amt, which represents the time-dependent nuclear activity of positive and
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Figure 5.2: Statistical signi�cance and consistency across replicates of the inferred
motif activity pro�les. Each dot corresponds to a motif. The signi�cance of each
motif in explaining the observed expression variation is quanti�ed by the z value of
its activity pro�le (horizontal axis, see Methods). The consistency of the inferred
activity pro�le of each motif is quanti�ed by the fraction of the variance (FOV) in
the activity pro�le across all six replicates (three biological replicates for both CAGE
and Illumina), which is reproduced in each replicate (vertical axis, see Methods)

negative regulatory factors that bind to the sites of the motif (for example, the E2F
activity will depend on nuclear E2F1-8, and DP1-2 levels, as well as RB1 phospho-
rylation status). As in previous work(4; 5; 43; 151), motif activities were inferred
by assuming that the expression ept of promoter p at time t is a linear function of
the activities Amt of those motifs that have predicted sites in p. Additionally, the
e�ect of motif m on the expression of promoter p is assumed to be proportional to the
predicted number of functional sites Npm. Assuming that the deviations of the pre-
dicted expression levels etheopt = constant +

∑
mNpmAmt from the observed levels ept

are Gaussian distributed, and using a Gaussian prior on the activities, we determine
�tted activities A∗mt that have maximal posterior probability (Methods).

The inferred motif activities were validated using a number of internal tests. First,
our Bayesian procedure quanti�es both the signi�cance of each motif in explaining
the observed expression variation as well as the reproducibility of its activity across
replicates (Fig. 5.2 and Supplementary Table 4 online). The activity pro�les of the
top motifs are extremely reproducible across replicates and di�erent measurement
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technologies (Figs. 5.25.3a and Supplementary Fig. 5.11). It should be stressed that,
although motif activities are inferred by �tting the expression pro�les of all promot-
ers, the model cannot be expected to predict expression pro�les of individual genes
from the predicted TFBS in proximal promoters alone. The e�ects of chromatin
structure, distal regulatory sites, nonlinear interactions between regulatory sites, and
the contribution of the large numbers of human TFs for which no motif is known,
are not considered. Furthermore, especially for genes that are dynamically regulated,
mature mRNA abundance can be dynamically regulated independently of transcrip-
tion initiation and promoter activity through selective mRNA elongation, processing
and degradation. Our aim is not to predict expression pro�les of individual genes
but rather to predict the key regulators and their time-dependent activities, which
can be inferred from integration of global expression information in a system under-
going dynamic change. We validated the signi�cance of the inferred activity pro�les
by comparing the fraction of the 'expression signal' (expression variance minus repli-
cate noise) that is explained by the model, compared to randomized versions, and
under a tenfold cross-validation test (Supplementary Fig. 5.12). The explained ex-
pression signal is highly signi�cant and this signi�cance is maintained under tenfold
cross-validation (Methods). In addition, the highly peaked positional pro�les of TF-
BSs (Supplementary Fig. 5.10) suggest that knowing the exact TSS is important
for accurate TFBS prediction. Indeed, the predicted TFBSs from CAGE promoters
explain substantially more of the expression signal in microarrays than predicted TF-
BSs of the associated RefSeq promoters (Supplementary Fig. 5.12). We observe that
the model better predicts the expression pro�les of those promoters that are more
strongly expressed, more reproducible across replicates, and have higher expression
variance (Supplementary Fig. 5.13). Similarly, samples at the start and end of the
di�erentiation time course are better predicted than those at intermediate time points
(Supplementary Fig. 5.14), possibly because individual cells di�erentiate at di�erent
rates and leave the cell populations less homogeneous at intermediate time points.

Motif activities that were independently inferred from all 11,995 expressed mi-
croarray probes were combined with the inferred motif activities from all CAGE and
microarray replicates into a �nal set of time-dependent motif activities (Methods).
From these, we selected 30 'core' motifs that contribute most to explaining the expres-
sion variation (red dots in 5.2) and segregated their activity pro�les using a Bayesian
procedure into nine clusters (Fig. 5.3b and Methods), including three clusters of up-
regulated motifs, three clusters of downregulated motifs and three clusters containing
single motifs with pro�les involving di�erent transient dynamics. The genome-wide
set of target promoters for each of the motifs was determined as described in Meth-
ods. The signi�cance of each regulatory 'edge' from a motif to a putative target
promoter (containing a predicted TFBS) was quanti�ed by the z value of the corre-
lation between the motif's activity pro�le and the promoter's expression pro�le (Fig.
5.1e).
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5.5.2 Results

Figure 5.3: Inferred time-dependent activities of the key regulatory motifs. (a) The
time-dependent activity pro�le of the E2F1-5 regulatory motif as inferred from CAGE
(left) and microarray (right) data. The three biological replicates are shown in red,
blue and green. (b) The 30 most signi�cant motifs with consistent activity pro�les
across all replicates (CAGE and microarray) were clustered into nine sets of motifs
with similar dynamics. Each panel shows the activity of the members of the cluster
(colored curves), the names of motifs contributing and the cluster average activity
pro�le (black).
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5.2.6 Core transcriptional regulatory network

The �nal aim in reconstructing transcriptional regulatory networks is to infer not only
the key regulators and their target gene sets, but also the way in which the actions of
these key regulators are coordinated. For this purpose, we collected all 199 predicted
regulatory edges (z value greater than or equal to1.5) between the 30 core motifs.
Recognizing that the prediction of individual regulatory edges is still prone to error,
we constructed a core regulatory network (Fig. 5.4) of 55 highly trusted edges by
�ltering the predicted edges according to experimental validation, either within our
data or in existing literature. In addition, for each core motif we extracted the set of
predicted target genes (z value >= 1.5) and checked for enrichment of gene ontology
terms. A selection of signi�cantly enriched terms is shown as oval nodes in Figure
5.4.

Whereas our method infers the key regulators ab initio, the majority of factors
within this core network are known to be important in the monocyte-macrophage
lineage, thereby validating the method. In addition the predicted targets of these
motifs are enriched for biological processes known to be involved in di�erentiation of
the monocytic lineage.

The gene ontology enrichments can broadly be divided into four groups. Down-
regulated motifs E2F1-5, NFYA,B,C and MYB are associated with cell cycle�related
terms, consistent with the growth arrest observed during PMA-induced di�erentia-
tion and the speci�c downregulation of numerous genes required for DNA synthesis
and cell cycle progression within 24 h of PMA addition. Notably, MYB targets are
also enriched speci�cally for microtubule-cytoskeleton�associated genes. Conversely,
targets of upregulated motifs are associated with the terms immune response, cell
adhesion, plasma membrane, vacuole and lysosome, all of which are consistent with
di�erentiation into an adherent monocyte-like cell. The targeting of lysosomal genes
by cholesterol-regulated SREBFs (sterol regulatory element-binding transcription fac-
tors) is of note, as lipid homeostasis is important in the macrophage in atherosclerosis
and lysosomal storage diseases(159). We also saw enrichment of signal transduction
genes among targets of the early induced motifs EGR1-3 and TBP. Finally, there is
a set of motifs whose targets are enriched in TFs. These motifs correspond to the
transiently induced/repressed motifs, ATF5_CREB3, FOXO1,3,4 and SRF, and the
repressed pair of OCT4 and FOXI1,J2 motifs.
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Figure 5.4: (continued from the previous page) An edge X→ Y is drawn whenever the
promoter of at least one of the TFs associated with motif Y has a predicted regulatory
edge for motif X (z value greater >= 1.5) and the edge has independent experimental
support. The color of each node re�ects its cluster membership and the size of the
node re�ects the signi�cance of the motif. Edges con�rmed in the literature, by ChIP
or by siRNA are shown in red, blue and green, respectively. In cases where there are
multiple lines of support only one evidence type is shown. GO terms signi�cantly
enriched among target genes are shown as white nodes with black edges. FOS/JUN
(FOS,B,L1_JUNB,D), CREB (ATF5_CREB3), GABPA (ELK1,4_GABPA,B2).

5.2.7 Validation of edge predictions

THP-1 cells, even in an 'undi�erentiated' state, are clearly a myeloid cell line. In
seeking to validate the transcriptional network, we noted that there was a large set of
TF genes expressed constitutively in the cells that were rapidly downregulated in re-
sponse to PMA, of which MYB is an example, and another set that was expressed but
further upregulated during di�erentiation. It is technically di�cult to apply siRNA
knockdown to genes that are only expressed later in the di�erentiation. To validate
predicted edges empirically, we therefore chose to carry out siRNA knockdowns in
undi�erentiated THP-1 cells for genes encoding 28 TFs that are expressed in the
undi�erentiated state and for which we have associated motifs. To assess whether
siRNA knockdown carried out in the undi�erentiated state is appropriate to address
factors that increase expression during the time course, we carried out the techni-
cally more di�cult experiment of siRNA knockdown combined with PMA treatment
for SPI1 (more commonly known in the literature as PU.1). All knockdowns were
carried out in biological triplicate and qRT-PCR was used to con�rm RNA-level
knockdown, which in most cases was greater than 80%. Changes in gene expression
caused by TF knockdown were measured by Illumina microarrays. For each knocked-
down TF gene, we obtained the list of predicted regulatory targets for the associated
motif and divided the microarray probes into predicted targets and nontargets for a
range of z-value thresholds. Higher-con�dence targets in general show greater expres-
sion changes upon knockdown (Fig. 5.5a shows the example TF genes MYB, SNAI3,
EGR1 and RUNX1; additional examples are shown in Supplementary Fig. 14 online).
For SPI1, even in the absence of PMA treatment siRNA knockdown caused signi�cant
downregulation of predicted SPI1 targets, but the e�ects were much stronger when
knockdown was combined with 1 h or 24 h of PMA treatment (Fig. 5.5b), con�rming
that PMA causes upregulation of SPI1 activity. A good correlation between target
con�dence (z-value cut-o�) and average log expression ratio was observed for the large
majority of experiments (Fig. 5.5c). For an intermediate cut-o� of z = 1.5 we quan-
ti�ed the di�erence in log expression ratio of predicted targets and nontargets (Fig.
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5.5d) and found signi�cant changes (z-value larger than 2) for 23 of 33 cases with
SPI1 knockdown combined with 24 h of PMA treatment and MYB knockdown being
the most signi�cant Notably, for the TF genes LMO2, MXI1 and SP1, the knockdown
led to a signi�cant upregulation of their targets, suggesting that the three encoded
TFs act primarily as repressors in undi�erentiated THP-1 cells (Fig. 5.5d, also see
Supplementary Fig. 5.15a). Together these results provide compelling experimental
validation of our predicted regulatory edges.

5.2.8 Single TF knockdowns a�ect multiple motif activities

Besides validating predicted targets, the siRNA knockdowns can also be used to assess
the e�ects of the knockdown of one TF gene on the motif activities of other TFs. In
addition to the 28 TFs perturbed above, we included a further 24 TFs that lacked
motifs but were naturally repressed during PMA di�erentiation, or had been reported
to have a role in myeloid di�erentiation or leukemia.

The motif activity inference method was used to determine the changes in activi-
ties of all motifs upon knockdown of each TF gene. To assess the role of each TF in
di�erentiation, we de�ned the di�erentiative overlap between a TF gene knockdown
and the PMA time course as the fraction of all motifs that signi�cantly changed their
activity in the same direction upon TF gene knockdown as in the PMA di�erentia-
tion (Methods). By far the largest di�erentiative overlap (69%) was observed for the
MYB knockdown, which not only a�ected MYB motif activity, but also the activity
of most motifs in the core network, with the most signi�cant activity changes all in
the same direction as in the PMA time course (Fig. 5.6a). Knockdown of 13 other TF
genes generated an overlap greater than the negative control (Supplementary Table 9
online), and Figure 5.6 shows three further examples (E2F1, HOXA9 and CEBPG).

As for MYB, E2F1 knockdown reproduced some of the downregulation of MYB
and E2F activity observed upon PMA stimulation, but it failed to reproduce the
upregulation of SREBF1,2, PU.1, NFATC1-3 and FOS,B,L1_JUNB,D activity (Fig.
5.6b). Similarly, the activity changes that HOXA9 knockdown induced were mostly in
the same direction as in the PMA di�erentiation; however, the SNAI1-3 and IRF1,2
motif activities failed to be induced and the GATA4 and TBX4,5 motif activities
failed to be downregulated (Fig. 5.6c). Notably, knockdown of CEBPG, encoding
one of the PMA-downregulated factors, for which we do not have a motif, also gen-
erated activity changes that signi�cantly overlapped those observed in response to
PMA (Fig. 5.6d). Finally, instead of comparing the motif activity changes that dif-
ferent knockdowns induced, we can also directly compare the expression changes of all
genes with the expression changes observed in the PMA time course. We found that
MYB, HOXA9, CEBPG, GFI1, CEBPA, FLI1 and MLLT3 knockdowns all generated
changes in gene expression that reiterated some of those observed with PMA treat-
ment. MYB knockdown was exceptional, as it induced 35% (340/967) and repressed
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Figure 5.5: Validation of predicted target promoter sets using siRNA knockdowns.
(a) Di�erence in the average log expression ratio upon knockdown between predicted
target promoters and predicted nontargets (vertical axis) as a function of the z-value
cut-o� on target prediction (horizontal axis, more stringent cut-o�s are on the right)
for knockdown of the TF genes MYB (red), SNAI3 (orange), RUNX1 (green) and
EGR1 (light blue). (b) As in (a) but now for knockdown of SPI1 followed by 1 h
without treatment (light blue), 24 h without treatment (dark blue), 1 h of PMA
treatment (orange) and 24 h of PMA treatment (red). All straight lines are linear
regression �ts. (c) Pearson correlation coe�cients between the average log expression
ratio di�erence of targets and nontargets and the cut-o� on target predictions (hor-
izontal axis). Red bars indicate correlation coe�cients larger than 0.75 in absolute
value; green bars, absolute values between 0.5 and 0.75; and blue bars, less than 0.5.
(d) Signi�cance (z value) of the di�erence in log expression ratio between predicted
targets and nontargets (cut-o� z = 1.5) for all 28 TFs associated with a motif, mea-
sured as a z value (number of standard errors). Red bars correspond to signi�cant
changes, that is, greater than two standard errors; green bars, changes between 1
and 2 standard errors; and blue bars, changes less than 1 standard error. siRNA
knockdowns were carried out in biological triplicate and knockdown was assessed by
qRT-PCR.
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Figure 5.6: Most signi�cant motif activity changes (as measured by z value, red
bars) for four TF gene knockdowns that induce motif activity changes that have a
di�erentiative overlap with the PMA time course of more than 50%.
The corresponding motif activity changes observed in the PMA time course are shown
as gray bars.
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19% (172/916) of the genes upregulated and downregulated with PMA, respectively.
In addition the cells became adherent and began to express the monocytic markers
CD11B (ITGAM), CD54 (ICAM1), CD14, APOE and CSF1R, three of which we
con�rmed by �ow cytometry. This development of adherence could be linked to the
GO enrichment for cytoskeleton-associated genes among MYB targets noted above.
Given these observations one might wonder whether MYB is a master regulator of
the di�erentiation process and whether stronger and longer knockdown would have
reproduced the complete di�erentiation observed under PMA treatment. Several
observations argue strongly against this. First, the gene sets perturbed by MYB
and by the other pro-di�erentiative TFs overlap only partially. Second, of the six
other pro-di�erentiative TF genes only two (CEBPG and GFI1) are a�ected by MYB
knockdown. Both these facts indicate that the other pro-di�erentiative TF genes are
not simply downstream of MYB. Third, MYB downregulation does not occur until
after the second hour of the PMA time course (Fig. 5.3b), which is at odds with the
idea of MYB sitting at the top of the regulatory hierarchy. It is also worth noting
that THP-1 cells harbor a leukemogenic fusion(160) between MLL (mixed-lineage
leukemia) and MLLT3 (MLL translocation partner 3) and that the MLLT3 siRNA
targets this leukemogenic fusion (note that full-length MLLT3 does not seem to be
expressed in THP-1 as there is no CAGE 5' signal for this gene). Our data indicate
that this fusion interferes with di�erentiation and that neither PMA treatment nor
MYB knockdown a�ects MLL-MLLT3 levels, suggesting these stimuli can bypass the
di�erentiative block. Conversely, MLLT3 knockdown had no e�ect on MYB levels.
These results agree with previous RNAi studies that conclude that downregulation of
MLL leukemogenic fusion proteins can promote growth arrest but is not required for
terminal di�erentiation(161; 162). Thus, individual TF gene knockdowns a�ect the
activities of multiple motifs and elicit di�erent, but overlapping, subsets of the regu-
latory changes observed in the PMA time course. Taken together, the data indicate
that the independent perturbation of expression of multiple TFs in response to PMA
is both necessary and su�cient to initiate partial di�erentiation.

5.2.9 Many TFs are involved in the di�erentiation process

The network predictions and the siRNA results above suggest that upregulation and
downregulation of the activities of multiple cooperating TFs is required for di�erenti-
ation. Of a curated list(163) of 1,322 human TFs, 610 were detected by both CAGE
and microarray in at least one time point; however, only 155 of these are covered
by weight matrices, suggesting that other factors may well be important in these
cells. Of the 610 expressed TFs 64 were most highly expressed in the undi�erentiated
and 34 in the di�erentiated state. In addition, 101 TFs were transiently induced or
repressed during di�erentiation. To elucidate the connection of these TFs to the in-
ferred network, we compared the predicted regulatory inputs of co-regulated subsets
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of TFs with the predicted regulatory inputs of the set of all 610 expressed TFs.
Whereas no motifs are overrepresented among inputs of statically expressed TFs,

inputs of dynamically expressed TFs showed enrichment for a subset of motifs. TFs
downregulated from 0 to 96 h PMA were most enriched for three downregulated
motifs of the core network: OCT4 (3.4 times), GATA4 (3.3 times) and NFYA,B,C
(2.2 times). Similarly, TFs upregulated from 0 to 96 h were most enriched for core
network motifs that increase activity during di�erentiation: SNAI1-3 (4.6 times) and
TBP (5.2 times). Finally, transiently regulated TFs were enriched for the SRF (3.5
times) and NHLH1,2 (3 times) motifs.

Notably, TFs that are predicted targets of SRF are mostly induced in the �rst
hour of PMA-induced di�erentiation. During this �rst hour 55 of the 57 genes
whose expression was perturbed are induced and 30% encode TFs (Supplementary
Fig. 5.16a). The regulatory inputs of these early-induced TFs are enriched for the
motifs SRF, TBP and FOSL2, which all correspond to known PMA-responsive TFs
(164; 165; 166; 167). Among the early-induced TFs, �ve correspond to upregulated
core network motifs themselves (FOSB, EGR1-3 and SNAI1) and two (MAFB and
EGR1) are known to induce pro-di�erentiative changes(168; 169). It is also worth
noting that signi�cant downregulation did not occur until the second hour, and this
may require both early induction of transcriptional repressors and the RNA degra-
dation proteins BTG2 and ZFP36 (tristetraprolin)(170; 171) (Supplementary Fig.
5.16b). Together, these results suggest that induction of SRF target genes in the
�rst hour is critical to establishing the di�erentiative program and is required before
factors maintaining the undi�erentiated state are downregulated (Supplementary Fig.
5.16b,c).

5.2.10 Web interface to data and analysis results

To facilitate the use of the data and analysis of results amassed here, we provide
an online tool, EdgeExpressDB, as part of the FANTOM4 web resource, which al-
lows users to explore our annotations of the structure, expression and regulation of
promoters genome-wide. It also integrates published TF�promoter interactions, the
siRNA perturbations and genome-wide chromatin immunoprecipitation experiments.
Our complete set of regulatory-interaction predictions provides a large collection of
hypotheses that can be targeted for validation, for example, through chromatin im-
munoprecipitation, gel shift assays or reporter assays. The value of this resource is
illustrated by detailed examination of individual loci. For example, the osteopontin
gene (SPP1) is massively induced from 12 h of di�erentiation. Our predictions con�rm
RUNX and PU.1 as regulators and support a previous analysis in mouse implicating
the TGIF1 factor. In addition our analysis identi�es NFAT, STAT, NKX6.2 and LIM
domain and homeobox proteins as candidates for further testing.

Finally, our set of human promoters, TF motifs, genome-wide annotation of TF-
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binding sites and their predicted e�ects on the expression of the target promoters are
available through the SwissRegulon website. A web interface, allowing researchers
to automatically perform Motif Activity Response Analysis (MARA) of their own
expression data in terms of our genome-wide predictions of TFBSs, is also available
at SwissRegulon.

5.3 Discussion

We have devised a new integrated approach that combines genome-wide identi�cation
of TSSs and their time-dependent expression with computational modeling to recon-
struct the transcriptional regulatory dynamics of a di�erentiating human cell line.
The CAGE tag sequencing used here is tenfold deeper than in previous studies(12),
and this is the �rst study to our knowledge to quantitatively monitor dynamic expres-
sion changes of individual TSSs genome-wide. Using this data we developed a new
computational method in which promoter expression pro�les were modeled directly
in terms of the TFBSs occurring in their proximal promoter regions. This method
allowed us to infer which regulatory motifs are most predictive of expression changes
and the time-dependent activities of the corresponding TFs ab initio. We identi�ed
more than two dozen di�erent regulatory motifs that signi�cantly change their activity
during PMA-induced di�erentiation and a complex network of regulatory interactions
between them that have independent experimental support. Notably, although the
modeling considers only TFBSs in proximal promoter sequences, the core network
in Figure 5.4 contains most of the known regulators of macrophage di�erentiation.
Furthermore, siRNA perturbation of these TFs con�rmed many of their predicted tar-
gets, and by analyzing changes in motif activity we found that each knockdown led
to a distinct transcriptional state that was associated with changes in the activities
of multiple motifs.

The changes in motif activity that we observed during THP-1 macrophage di�eren-
tiation do not necessarily imply that the factor(s) that act upon a motif are themselves
transcriptionally regulated. For example, PU.1 (SPI1) activity increases signi�cantly
in response to PMA and we have con�rmed that, besides a moderate increase in
mRNA expression, the SPI1 protein is also activated by phosphorylation(172) and
nuclear translocation(173) (data not shown). For other motifs such as E2F, multiple
redundant factors can bind to the same sites(174). Motif activity analysis is con-
ducted without any assumptions about the TFs that act through these regulatory
elements. That is, because motif activity is inferred directly from expression changes
of predicted targets, the most active motifs can be identi�ed before ascertaining the
responsible TF(s) and their mode of regulation. Thus, motif activity analysis is a
powerful approach compared to analysis of TF mRNA expression alone.

What do our results teach us about the general structure of regulatory networks

164



5.5.3 Discussion

in cellular di�erentiation? An often evoked picture is that di�erentiation pathways
consist of well-de�ned cascades of regulatory events which are initiated by master
regulators that sit at the top of �xed regulatory hierarchies. A prime candidate for
such a master regulator in our system would be MYB, as its siRNA-mediated knock-
down reconstituted a signi�cant fraction of the expression and phenotypic changes
observed under PMA-induced di�erentiation. Indeed, this observation is consistent
with earlier reports that MYB antisense treatment of myeloid leukemia lines causes
di�erentiative growth arrest(175) and that MYB is a repressor of expression of ma-
ture macrophage-expressed genes such as CSF1R(176). Our data indicate that MYB
probably acts on such genes indirectly, by a transcriptional program that represses
upregulation of SPI1 activity and downregulation of proliferation.

However, several observations argue against MYB as a master regulator: MYB
downregulation is not among the �rst events in the PMA time course, MYB knock-
down far from completely mimics the PMA-induced di�erentiation and there are sev-
eral other TFs, which are not downstream of MYB, whose knockdown reconstituted
di�erent subsets of the PMA-induced expression changes. Moreover, it is known
that additional factors can also drive di�erentiation, for example, enforced expres-
sion of SPI1 and CEBPA in mouse �broblasts is su�cient to drive acquisition of a
macrophage-like phenotype(177), and overexpression of EGR1 and MAFB also drives
di�erentiation, as we noted above. Yet, evidence from mouse knockouts indicates that
the whole EGR family is dispensable for macrophage proliferation, di�erentiation and
function(178).

Rather than a �xed hierarchy with one or very few master regulators at the top,
the picture that emerges is that of a recurrent network in which multiple TFs mu-
tually coordinate their activity changes to implement the di�erentiation. In addi-
tion, whereas di�erent partial di�erentiation pathways can be initiated by multiple
independent perturbations, it appears that complete di�erentiation requires the coor-
dinated downregulation of multiple factors that maintain the undi�erentiated state.
This observation draws some similarities to the TF network that both maintains pro-
liferation and prevents di�erentiation in embryonic stem cells(179). Enforced expres-
sion of four stem cell transcription factors (MYC, OCT4, KLF4, SOX2) is su�cient
to dedi�erentiate committed adult cells into a stem cell�like state(112). Maintenance
of an undi�erentiated proliferative state is important in cancer, and it is worth noting
that 10 of the 64 downregulated TFs (16%) have Entrez gene annotations containing
the term 'myeloid leukemia' (compared to 50 of the remaining 1,258 TFs (4%) ). In
addition we have demonstrated that knockdown of the MLL-MLLT3 leukemogenic
fusion found in THP-1 also partially promotes di�erentiation.

From our time-course analysis, we see distinct phases of early, middle and late,
induction and repression. Our modeling predicts, and the literature supports, SRF as
the major e�ector of transcriptional activation of immediate early genes (IEG)(180).
However, SRF activation and IEG responses are not restricted to the PMA stimulus,
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the monocytic lineage or di�erentiation(165; 181; 182; 183), suggesting that this re-
sponse has a more general function. We speculate that a generalized immediate early
response may be used to put the cell into a transient receptive state, which permits
downregulation of the multiple TFs that maintain the undi�erentiated state. This
�ts with the concept of stable cellular states as attractors of the regulatory network
dynamics. The associated attractor basins(184; 185) of cellular states are analogous
to local minima in energy landscapes surrounded by slopes, and homeostatic interac-
tions between the TFs can be considered as providing a kind of inertia to maintain
this state. We suggest that the immediate early response may help overcome this
inertia, that is, by moving the system out of its attractor basin.
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5.4 Supplementary Figures

Figure 5.7: Distribution of distances between promoters and the start of the nearest
known transcript. Note the vertical axis is shown on a logarithmic scale. The inset
shows the fractions of promoters within 1Kb of a known start, those further than 1Kb
from a known start but within 1Kb of a gene locus, and those distal to gene loci.
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Figure 5.8: Active promoters in THP-1 di�erentiation. Red boxes show the promoter
regions detected by deepCAGE for the example genes (a) DTNA, (b) AGPAT1, (c)
LST1 and (d) GFI1. Note, the third promoter in GFI1 does not map to a full length
transcript however there is EST support (BM149905).
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Figure 5.9: Reproducibility of the expression pro�les across the three biological repli-
cate time series, and correlation between the expression pro�les based on CAGE and
microarray measurements. (a) Distributions of the �expression signal� of the promot-
ers/probes de�ned as the fraction of expression variance (FOV) that is reproduced
across the three replicates. The whiskers denote 5 and 95 percentiles, the bar the
25 and 75 percentiles and the vertical line denotes the median fraction of variance
for CAGE promoters that are associated with 1 microarray probe (red), all CAGE
promoters (light red), microarray probes associated with 1 CAGE promoter (green)
and all microarray probes (light green). (b) Distribution of Pearson correlation coe�-
cients of the expression pro�les of microarray probes and associated CAGE promoters.
Whiskers denote 5 and 95 percentiles, boxes 25 and 75 percentiles and the vertical
line the median correlation coe�cient for probes associated with 1 CAGE promoter
(light blue), probes associated with multiple CAGE promoters (blue), correlations of
the replicate-averages for microarray probes associated with 1 CAGE promoter (light
brown) and probes associated with multiple CAGE promoters (brown). (c) Repre-
sentative scatterplot of deepCAGE biological replicates for undi�erentiated THP-1
cells. (d) Representative scatterplot of median normalized log expression ratios for
Illumina and CAGE for undi�erentiated THP-1 cells.
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Figure 5.10: Positional distribution relative to TSS of predicted TFBSs for the 15
most signi�cant motifs. The horizontal axis shows the position relative to TSS and
the vertical axis shows the fraction of all promoters that have a site for the motif
centered precisely at the corresponding position.
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Figure 5.11: Inferred motif activities across replicates (CAGE and microarray) for
the top 10 most signi�cant motifs. Motifs are ordered by signi�cance from top left to
bottom right. Each pair of panels corresponds to the activities inferred from CAGE
(left) and microarray data (right). The activities inferred for the three biological
replicates are shown in red, green, and blue.
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Figure 5.12: Fraction of expression signal explained by the motif activities for di�er-
ent data sets under permutation and 10-fold cross validation tests. Di�erent combi-
nations of expression data and TFBS predictions tested were (a) expression variance
of 29,857 CAGE promoters modeled using TFBS predictions from CAGE de�ned
promoters, (b) expression variance of the 8,416 expressed array probes that are asso-
ciated with both a RefSeq and a CAGE promoter, using TFBSs from CAGE de�ned
promoters, (c) expression variance of the same 8,416 array probes using TFBSs from
Refseq de�ned promoters, and (d) expression variance of all 11,995 expressed array
probes using CAGE TFBS predictions whenever available, and Refseq TFBS pre-
diction when no CAGE promoter was associated with the transcript. For each we
determined the fraction of expression signal (expression variance minus variance in
replicate noise) that is explained by the model (dark blue), when the association be-
tween promoters and expression pro�les is randomly permuted (purple/brown), under
10-fold cross-validation (yellow), and under 10-fold cross-validation of the randomly
permuted data (light blue). (continued on the next page)
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Figure 5.12: (continuation from the previous page) The model explains 6% of the
expression signal of all 29,857 promoters, comparable with statistics obtained in re-
cent work(151) for the comparatively simpler task of explaining expression di�erences
between pairs of samples for a selected set of highly varying genes. Comparison of
the amount of expression signal explained by the model compared to a data-set in
which the assignment between promoters and expression pro�les is randomly per-
muted (1.5% of expression signal explained) demonstrates the extreme signi�cance
of the inferred activity pro�les (estimated p-value 2.85 ∗ 10−1554). A 10-fold cross-
validation test (on average 3.4% explained versus -1.2% `explained' for permuted
promoters in a 1000 iterations, which corresponds to a di�erence of 170 standard
deviations) further demonstrates the validity of the �tting. The fact that the 10-
fold cross-validation of the randomized data resulted in negative values indicates that
the residual variance after prediction is larger than the original variance. Compari-
son of the explained expression signal in (b) and (c), where we considered the 8,416
expressed microarray probes that are associated with both CAGE and RefSeq promot-
ers, demonstrates that the predicted TFBSs in CAGE promoters provide signi�cantly
better �ts than the TFBSs in the corresponding RefSeq promoters, i.e. 7.8% versus
6.3% of explained expression signal. Note that, because the set of promoters/probes
�tted in (a), (b,c), and (d) are di�erent, the fractions of expression signal explained
cannot be compared across these di�erent data-sets. Only the values in (b) and (c)
can be directly compared.
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a b

c d

Figure 5.13: Quality of the �ts as a function of various CAGE promoter statistics.
(a) Mean fraction of expression variance (FOV) explained by the �ts as a function
of the absolute expression (average log-tpm) of the promoter. (b) Mean fraction of
expression variance (FOV) explained by the �ts as a function of the reproducibility
of the promoter's expression pro�le, as estimated by the fraction of the variance in
the promoter's expression pro�le that is reproduced across the 3 replicates (FOV). (c)
Mean fraction of expression variance (FOV) explained by the �ts as a function of the
variance of the promoter's expression pro�le. (d) Blow up of the right half of panel
(c). For each statistic all CAGE promoters were divided into 10 bins and for each bin
the average FOV and its standard-error (shown as error bars) were determined. Note
that all FOVs are as determined from a single �t of activities based on the expression
of all promoters, i.e. we do not re-estimate motif activities based on di�erent promoter
subsets.
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ab

Figure 5.14: Quality of the �ts at each time point for all replicates. (a): Quality
of the �ts as measured by FOV (Fraction of Variance in the expression across all
promoters explained by the �t) for each time point in each of the CAGE replicates.
(b): Quality of the �ts as measured by FOV (Fraction of Variance in the expression
across all probes explained by the �t) for each time point in each of the Illumina
micro-array replicates.
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Figure 5.15: Log expression ratio (fold-change) di�erences of predicted targets and
non-targets for several di�erent siRNAs. (a) Di�erence in average log expression ratio
upon siRNA knockdown between predicted targets and non-targets as a function of
the z-value cut-o� on the target prediction for knockdown of SP1. (b) Di�erence in
average log expression ratio upon siRNA knockdown between predicted targets and
non-targets as a function of the z-value cut-o� on the target prediction for knockdowns
of PU.1 (SPI1) using two di�erent siRNAs (PU.1 in pink and PU.1_2 in purple). All
lines are linear regression �ts to the data.
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Figure 5.16: Early di�erentiation involves proportionally more TFs than non-TFs.
(a) Using microarrays we count the number of genes with signi�cant di�erences in
expression levels compared to the undi�erentiated state. Note: Early di�erentiation
is enriched for changes in TFs. (b) Induction and repression of all genes during PMA
di�erentiation (relative to 0h). (c) Induction and repression of TFs during PMA
di�erentiation relative to 0h.
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5.5 Supplementary Tables

Number of promoters Number of genes
1 3885
2 2176
3 1305
4 780
5 446
6 279
7 178
8 119
9 96
10 56
11 32
12 28
13 13
14 14
15 10
16 11
17 6
18 8
19 2
20 2
21 1
22 2
24 2
29 1
Total 9452

Table 5.1: Distribution of the number of promoters per gene (zero counts not shown)

We identi�ed 9452 genes with at least one CAGE-de�ned promoter. The promoters
shown in this table account for 24,327 out of the 29,857 promoters identi�ed in total.
300 promoters are associated with two genes and 8 promoters with three genes. The
remaining 5530 promoters were not assigned to any gene.
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5.6 Supplementary Methods

5.6.1 DeepCAGE

The preparation of the CAGE library from total RNA was a modi�cation of methods
described by Shiraki et al(1) and Kodzius et al(30), adapted to work with the 454
Life Sciences sequencer.

5.6.2 CAGE tag mapping

Deep sequencing of CAGE tags was done in triplicate at 0, 1, 4, 12, 24 and 96 hours of
PMA treatment for a total of 18 samples. A novel alignment method, nexalign (16),
was used to align all CAGE tags to the human genome reference sequence (hg18)
using a layered, iterative approach. Firstly, tags were matched exactly to the genome
and their positions recorded. Secondly, tags that did not match in the �rst pass were
subjected to single base pair substitutions at every position and realigned. Finally,
those tags that still did not map were subjected to mapping with indels and aligned
to the genome. After this, the match that contained the fewest errors for a given
tag was designated the �best� match. For the majority of tags the �best� match was
unique on the genome. However, if a tag matched multiple locations at a best match
level, a multi-mapping CAGE tag rescue strategy, previously described by Faulkner
et al.(17) was used to assign tags to their most probable location. Finally, a �lter was
applied to remove rRNA-derived tags.

5.6.3 CAGE expression normalization, noise analysis, and pro-
moter construction

The detailed procedures and mathematical derivations involved in our normalization,
noise-analysis, and promoter construction are described in Chapter 3. To normalize
the deepCAGE expression data we chose a reference power-law distribution with
exponent -1.25. The multiplicative noise size σ was estimated to be σ = 0.245. The
promoterome of the THP cell line was constructed based on 18 samples (i.e. the
di�erent cell lines and tissues were not included as opposed to the results described
in Chapter 3).

5.6.4 Gene assignment for CAGE promoters

We obtained the genomic mappings of all human mRNAs from the UCSC BLAT
alignments, discarded mRNAs whose 5' ends don't map, and then associated each
promoter with all mRNAs whose mapped TSS is within 1000 base pairs of the CAGE
promoter. Using the mapping from mRNAs to Entrez genes provided by NCBI we
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associated promoters with Entrez genes and constructed the gene locus (union of all
mRNA mappings) of each gene.

5.6.5 deepCAGE expression Analysis

We de�ne the normalized expression eps of promoter p in sample s as

eps = log

(
tps +

1

2

)
−
〈
log

(
tp +

1

2

)〉
where tps is the normalized number of tags per million from promoter p in sample
s, and the second term is the average of the �rst term over the 6 time points in the
replicate. For the microarray probes the expression eps is similarly given by the log-
intensity of the probe in sample s minus the average log-intensity of the probe across
the 6 time points in the replicate. Probes with detection probability less than 0.99 in
all samples were discarded.

5.6.6 Expression signal versus replicate noise

For each CAGE promoter and each microarray probe we compared the total variance
in the expression pro�le, i.e. across all time points and replicates, with the variance
across replicates for each time point to estimate the fraction fp of the total variance
(FOV) that is reproducible across replicates.

For each promoter we estimated the fraction of the variance in its expression values
that could be explained theoretically, i.e. the fraction that is not due to noise. To do
this we compared the variance of expression at the same time point across replicates
with the total variance, i.e. across all replicates and time points. For each promoter
p we started from the log-expression values

xis = log

(
tis +

1

2

)
−
〈
log

(
ti +

1

2

)〉
,

where tis is the normalize tag-per-million count of the promoter in replicate i and time
point s, ant the average in the second term is over the 6 time points in the replicate.
That is,

∑
s x

i
s = 0 for each replicate i when summed over the time points s. We

assume that xis is the sum of a �true� expression value δs (which is of course the same
for all replicates) and replicate noise. We denote by σ2 the size of the replicate noise,
and by τ 2 the size of the variance in true expression. Using this, the prior probability
of the true expression values is given by a Gaussian:

P (δs | α) =

√
α

2π
exp

(
−α

2
(δs)

2
)
,
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where α = 1
τ2 . Similarly the probability of the observed expression values given the

true expression values and size of the noise is

P
(
xis
∣∣ δs, β) =

√
β

2π
exp

(
−β

2
(xis − δs)2

)
,

where α = 1
τ2 , where β = 1

σ2 . Using these two expressions we obtain for the probability
of the data given α and β

P (xs | α, β) =

∫ ∞
−∞

P (δs|α)
r∏
i=1

P (xis|δs, β)dδs ∝

∝
√

α

α + βr
βr/2exp

(
−1

2

[
β2r2

α + βr
var(xs) +

αβr

α + βr
〈(xs)r〉

])
,

where r is the number of replicate (3 in our case),

var(xs) =
1

r

r∑
i=1

(xis − 〈xs〉)2

is the variance in expression across the replicates for time point s, and

〈(xs)2〉 =
1

r

r∑
i=1

(xis)
2

is the average squared log-expression at time point s. To get the probability over all
time points we simply take the product of the above expression over all time points,
i.e.

P (x|α, β) =
∏
s

P (xs|α, β).

We are interested in calculating the fraction f of the total expression variance (FOV)
that is reproducible across the replicate. This fraction f is given by

f =
τ 2

σ2 + τ 2
=

β

α + β
.

We write P (x|α, β) in terms of f and β and we integrate over β to obtain the prob-
ability of the data as a function of f only, i.e.

P (x | f) =

∫
P (x | f, β)

dβ

β
.

We then �nally �nd:

P (x | f) ∝
(

1− f
1 + (r − 1)f

)n/2(
rfvar(x) + (1− f)〈x2〉

1 + (r − 1)f

)−nr/2
,
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where n is the number of time points (6 for our case),

var(x) =
1

n

n∑
s=1

〈(xs)2〉

is the average squared log-expression across all replicates and time points. Finally,
we use the expression P (x|f) to calculate the expected value of f , i.e.

〈f〉 =

∫
fP (x|f)df∫
P (x|f)df

.

Since this integral can generally not be performed analytically we approximate it
numerically (for each promoter and probe) by a sum over 100 equal-sized bins of size
0.01 (given the relatively small number of samples per promoter this bin-size is always
small compared to the width of the distribution over f).

The distribution of FOV across all promoters and across all probes was summa-
rized by their 5, 25, 50, 75, and 95 percentiles (Fig. 5.9). As shown in Supplementary
�gure 5.9a the FOV we observe for CAGE promoters are clearly lower than the FOVs
observed for Illumina probes. That is, the expression pro�les of CAGE promoters typ-
ically vary more across replicates than the expression pro�les of micro-arrays probes.
One contributing factor is the limited depth of the CAGE sequencing. That is, CAGE
measures a much larger number of independent expression pro�les than the micro-
array, and many of the CAGE promoters have low overall expression. Because of
the Poisson sampling noise in CAGE sequencing, promoters with low expression will
generally show noisier expression pro�les. Since deepCAGE is a relatively new tech-
nology, we currently have only limited insight into other factors that may contribute
to noise in the expression pro�les. One possible contributing factor is the addition
of barcodes to the CAGE tags, as we have observed that replicate samples using dif-
ferent barcodes show larger variations than replicates using the same barcodes (data
not shown).

To compare deepCAGE and microarray expression measurements we associated
microarray probes with CAGE promoter regions whenever the probe intersected a
known mRNA whose mapped 5' end was within 1000 bps of the promoter region.
We selected all probe/promoter region pairs that are one-to-one associated with each
other and calculated the Pearson correlation coe�cients of their expression pro�les
across all samples and replicates. For each probe and promoter region we calculated
an average expression pro�le by averaging the 3 replicate measurements at each time
point, and also obtained the Pearson correlation coe�cients of the average expres-
sion pro�les of all probe/promoter region pairs. We collected all microarray probes
that were associated with multiple CAGE promoter regions and calculated Pearson
correlation coe�cients between the probe expression pro�les and the total expression
from the associated CAGE promoter regions (summing the tags from the di�erent
promoter regions) (Fig. 5.9b)
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5.6.7 Construction of position speci�c weight matrices

For a number of reasons regarding data quality and annotation ambiguities, the con-
struction of a set of position-speci�c weight matrices (WMs) for human transcription
factors is rife with problems that, in our opinion, do not currently have a clean
solution. Therefore, our procedures necessarily involve several subjective choices,
judgments, and hand-curation, which are certainly far from satisfactory. Our main
objectives were:

1. To remove obvious redundancy, we aim to have no more than 1 WM representing
any given TF, and where multiple TFs have WMs that are indistinguishable or
when their DNA binding domains are virtually identical, then we use only one
WM for that set of TFs.

2. Associate WMs with TFs based on the sequences of their DNA binding domains.
That is, we obtain lists of TFs that can plausibly bind to the sites of a given
WM by comparison of DNA binding domain sequences of TFs known to bind
to the sites with those of all other TFs.

3. Re-estimation of WMs using genome-wide predictions of regulatory sites in the
proximal promoters of CAGE TSSs.

The input data for our WM construction consists of:

1. The collection of JASPAR vertebrate WMs plus, for each WM, the amino acid
sequence of the TF that JASPAR associates with the WM.

2. The collection of TRANSFAC vertebrate WMs (version 9.4)

3. The amino acid sequences of all vertebrate TFs in TRANSFAC that are associ-
ated with those WMs.

4. A list of 1322 human TFs (Entrez gene IDs) and their amino acid sequences
(from RefSeq).

5. A list of 483 Pfam IDs corresponding to DNA binding domains and their Pfam
pro�les (186).

We start by removing the most basic redundancy from TRANSFAC. TRANSFAC
often associates multiple WMs with a single human TF. Although there undoubtedly
are cases where a single TF can have multiple distinct modes of binding DNA, and
should therefore be realistically represented by multiple WMs, we believe that for the
very large majority of TFs it is more realistic to describe the DNA binding speci�city
of the TF with a single WM. Indeed, a manual inspection of cases in which TRANS-
FAC associated multiple WMs with a single TF shows that these WMs are typically
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highly similar and appear redundant. Therefore, for each TF with multiple WMs in
TRANSFAC we choose only a single `best' WM based on TRANSFAC's own matrix
quality annotation, or WM information score when there were multiple WMs with
the same quality score.

Next we ran Hmmer with the DNA binding domain (DBD) pro�les from Pfam
to extract the DBDs from all transcription factors (E-value cut-o� 10−9) associated
with either JASPAR or TRANSFAC matrices. We then replaced each such TF with
the union of its DNA binding domain sequences. Next we used BLAT to map the
DBDs of all TFs associated with JASPAR or TRANSFAC matrices against the entire
protein sequences of all human TFs. For each human TF we then extracted a list of
all JASPAR/TRANSFAC matrices for which the DBDs of at least one associated TF
has a signi�cant BLAT hit (default parameters) against the TF sequence. For each
human TF the associated WMs were ordered by the percent identity of the hit, i.e.
the fraction of all amino acids in the DBDs that map to matching amino acids in the
TF. From this we create a list of `necessary WMs'. For each human TF we obtain the
JASPAR WM with the highest percent identity. If there is a TRANSFAC WM with
a higher percent identity than any JASPAR TF we record this WM as well. Thus,
the necessary WMs are those that are the best match for at least one human TF.
This list yielded 381 WMs representing 980 human TFs (often the same WM is the
best match for multiple TFs). Manual inspection indicated that a lot of redundancy
(essentially identical looking WMs) remained in this list. First we often have both
a TRANSFAC and a JASPAR WM for the same TF and moreover often there are
multiple TFs, each with its own WM, that look essentially identical. We thus want
to fuse WMs in the following situations:

1. Di�erent WMs for TFs with identical or near identical DBDs.

2. WMs that are statistically indistinguishable, predict highly overlapping sets of
sites, and are associated with TFs that have similar DBDs.

For each pair of WMs we obtain three similarity measurements

1. The percent identity of the DBDs of the TFs associated with the WMs. If there
are multiple TFs associated with a WM we take the maximum over all TF pairs.

2. The overlap of the binding sites predicted by each WM. We use MotEvo as
described in the methods to predict TFBSs in all proximal promoters and we
calculate what fraction of predicted TFBS positions are shared between the
sites predicted by the two WMs.

3. A statistical measure of the similarity of the two WMs. Here we take the two
sets of sites that de�ne the WMs and calculate the likelihood-ratio of the sets
of sites assuming they derive from a single underlying WM and assuming the
set of sites for each WM derives from an independent WM.
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For each of these three criteria we set a cut-o�: 95% identity of the DBDs, 60%
overlap of predicted TFBSs, and a likelihood-ratio of exp(40). Using single-linkage
clustering, we cluster all WMs whose similarity is over the cut-o� for at least 1 of these
three criteria. The resulting clusters were then all checked manually and whenever
the linkage was dubious we split the cluster. That is, we took a conservative attitude
towards removing redundancy and only kept clusters when we were convinced the
WMs were essentially identical. For each cluster we then constructed a new WM
by aligning the WMs in the cluster and calculating the sum of the base-counts in
each column. For a few TFs we obtained more recent WMs from the literature (SP1,
OCT4, NANOG, SOX2) and we used these to replace the corresponding WM in the
list. For PU.1 we inferred a new WM from the top 50 target regions according to our
ChIP-chip data.

Finally, we used MotEvo to predict TFBSs for all WMs in the multiple-species
alignments of all human proximal promoters. We then constructed new WMs from the
list of predicted TFBSs for each WM, weighing each predicted site with its posterior
probability (which incorporates the position-speci�c prior probabilities) and using
only sites with a posterior probability of at least 0.5. Our �nal list contains 201
WMs. For each �nal WM there is an ordered list of associated human TFs, ordered
by percent identity of the DBDs of TFs known to bind sites of the WM and the
DBDs of the human TF. We then checked this list of associations by hand and for
each WM cut-o� the list of associated human TFs manually. In total 342 human TFs
are associated with our 201 WMs. The entire set of WMs and mapping to associated
TFs is available from the SwissRegulon website (http://www.swissregulon.unibas.ch).

5.6.8 Binding Site Predictions

We extracted all position speci�c weight matrices (WMs) from the JASPAR and
TRANSFAC R© databases that are associated with TFs of multi-cellular eukaryotes.
For a few TFs (SP1(187), OCT4, NANOG(188)) we extracted WMs from the litera-
ture, and for PU.1 we inferred a new WM using the PhyloGibbs algorithm(135) (see
below). WMs were associated with human TFs by matching their DNA binding do-
main sequences. Whenever both TRANSFAC and JASPAR WMs were available for
a given TF only the JASPAR WM was used. Redundancy was removed by clustering
WMs that are either highly similar themselves, are associated with equal or highly
similar TFs, or predict highly overlapping sets of sites. All clusters were checked
manually. For each cluster a fused WM was obtained by aligning matrices within
the cluster. After a �rst round of prediction using these curated WMs, new matrices
were constructed from the predicted sites, weighing each predicted site by its posterior
probability.

For each promoter region, orthologous regions in Rhesus Macaque, Dog, Cow,
Horse, Mouse and Opossum were extracted using the pairwise genome alignments
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provided by UCSC. The sets of orthologous sequences from 300 base pairs upstream to
100 base pairs downstream of each promoter region were aligned using T-Co�ee(129).
In a completely analogous manner multiple alignments were created for the proximal
promoter regions of all RefSeq starts.

TFBSs were predicted for all 201 motifs in all multiple alignments of proximal
promoters using the MotEvo algorithm(39). Like the Monkey algorithm(158) MotEvo
incorporates comparative genomic information by using a speci�c evolutionary model
for the evolution of regulatory sites for the motif as well as for the neutral background
evolution. In contrast to Monkey, MotEvo incorporates the possibility that sites
are under selection in only a subset of the species in the alignment. In addition,
MotEvo uses a more advanced background model that distinguishes neutrally evolving
background sequences from background sequences that are under purifying selection.

To incorporate the positional preferences of di�erent motifs we adapted MotEvo
to employ position-dependent prior probabilities. For each motif m the prior πm(x)
denotes the probability that, in a randomly chosen promoter, a site for m occurs at
position x relative to the TSS of the promoter. For each motif the prior πm(x) was
�tted using expectation maximization starting from a uniform prior. Using the �tted
priors, posterior probabilities were assigned to all predicted binding sites. Finally, all
binding sites with posterior less than 0.25 were discarded and for each promoter/motif
combination the score Npm is given by the sum of the posterior probabilities of the
remaining sites for m in promoter p. Motifs that had less than 150 predicted sites
across all promoters were removed from further analysis, leaving 167 motifs.

5.6.9 Motif Activity Inference

With eps the expression level of promoter p in sample s, Npm the predicted number of
functional sites for motif m in promoter p, and Ams the activity of motif m in sample
s, we �t a model of the following form

eps = cp + c̃s +
∑
m

NpmAms + noise,

where cp is a promoter-dependent constant (i.e. the basal expression of the promoter)
and c̃s is a sample dependent-constant. We �rst �t these constants. Using the fact
that

∑
s eps = 0 for each promoter, and de�ning the site-count avereages

〈Nm〉 =
1

P

∑
p

Npm,

where P is the total number of promoters, we can rewrite the model as

eps =
∑
m

(Npm − 〈Nm〉)Ams.
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The noise is assumed to be Gaussian of unknown variance with the noise variance σ2

the same at each promoter (but possibly varying from sample to sample). Under this
assumption the likelihood for sample s is given by

Ls ∝ σ−
P
2 exp

[
−
∑

p (eps −
∑

m (Npm − 〈Nm〉)Ams)2

2σ2

]
.

To minimise over-�tting we use a prior probability over activities that is centered
around zero

P (Ams) ∝ exp

[
−1

2

(
Ams
τ

)2
]

and we set τ = 0.1. The posterior distribution for the activities in sample s takes
then the general form

P (As | e) ∝ exp

[
− P
χ2
s

∑
m,m̃

(Ams − A∗ms)C−1
m,m̃(Am̃s − A∗m̃s)

]
,

where the A∗ms are the activities with maximal posterior probability which are de-
termined by singular value decomposition, the activity covariance matrix Cm,m̃ is a
function of the site-counts Npm, and χ

2
s is the residual variance after �tting, i.e.

χ2
s =

1

P

∑
p

(
eps −

∑
m

(Npm − 〈Nm〉)A∗ms

)2

.

From this we can rigorously calculate a standard-error σms for the activity of each
motif in each sample, and calculate a z-value

zms =
A∗ms
σms

.

Note that, given the Gaussian form of the posterior for the activity of each motif, the
p-value for the signi�cance of the motif's activity can be directly determined from
the z-value. Finally, we calculate an overall signi�cance of the motif by averaging its
z-value over the samples

zm =

√
1

S

∑
s

(zms)2,

where S is the number of samples. Analogously, the posterior distribution of motif
activities is inferred from the expression pro�les of microarray probes and the site-
counts if associated promoters. Final motif activities Amt as a function of time are
inferred by combining the posterior distributions from the 3 replicates for both CAGE
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and the microarrays assuming one underlying activity for each motif at each time
point.

To quantify the quality of the �ts we �rst calculate the �expression signal�, i.e. the
total variance that could possibly be explained by the �t. The expression variance
of a promoter is given by vp = 1

S

∑
s(epx)

2 and with fp the FOV for this promoter,
the total expression signal is E =

∑
p fpvp. The fraction ρ of expression variance

explained by the �t is then

ρ =

∑
s(
∑

p(eps)
2 − χ2

s)

E
.

To select core motifs we combined the posterior distributions over motif activities
from the posterior distributions of the 3 replicates for both CAGE and the microar-
rays (5.6.10). The result is a �nal average motif activity Afmt for each motif at each
time point, plus a standard-error σfmt. Using this we calculate a �nal signi�cance
zfm for each motif. In addition we calculate the fraction of variance in motif activity
that is reproduced across the replicates of both CAGE and microarray (5.6.10). The
30 selected core motifs are all motifs with z-values at least 3.75 and FOV at least
0.75 (Fig. 5.2). We clustered the activity pro�les of the core motifs using a Bayesian
hierarchical clustering method (5.6.11). Brie�y, starting from the posterior distribu-
tions of motif activities for all motifs we can calculate, for any pair of motifs, the
probability that their activity pro�les are the same (i.e. within noise). We iteratively
clustered the two motifs with highest probability of being the same and determined
the new posterior probability of motif activities for the cluster. We stopped when
the probability for the highest scoring pair fell below a cut-o� that we determined by
hand.

5.6.10 Combining motif activities from replicates and motif
FOV

For each motif m and each sample s our inference provides a �tted activity A∗ms
and its associated standard-error σms. Therefore, if we ignore covariances between
the inferred activities of di�erent motifs, the posterior distribution for the activity of
motif m in sample s is given by

P (Ams) =
1√

2πσms
exp

(
−1

2

(
Ams − A∗ms

σms

)2
)
.

For each of the 6 time points we have 6 independent posterior distributions of motif
activity, namely 3 replicates for both CAGE and microarray data. We now infer
an overall motif activity by combining the 6 posterior distributions. Let's focus on
a single motif and let αt denote the �nal inferred activity of the motif at time t,
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let Ci
t be the inferred activity from CAGE replicate i, σit its standard-error, M

i
t the

inferred activity from microarray replicate i, and τ it its standard-error. The posterior
distribution for αt is now given by:

P (αt | C,M, σ, τ) ∝
∏
i

exp

(
−1

2

(
αt − Ci

t

σit

)2

− 1

2

(
αt −M i

t

τ it

)2
)
∝

∝ exp

(
−1

2

(
αt − α∗t
σ∗t

)2
)
,

with

α∗t =

∑r
i=1C

i
t(σ

i
t)
−2 +M i

t (τ
i
t )
−2∑r

i=1(σit)
−2 + (τ it )

−2

and

σ∗t =
1√∑r

i=1(σit)
−2 + (τ it )

−2
.

That is, the posterior distribution is again Gaussian but with updated mean and
standard-error. Finally, we calculate a z-value for the combined activity pro�le of the
motif

zm =

√√√√1

6

6∑
t=1

(
α∗t
σ∗t

)2

.

For each motif we also quantify the extent to which the di�erent replicates and mea-
surement technologies (CAGE and microarray) lead to the same inferred activity
pro�les. For this we calculate a FOV exactly as described in 5.6.12.

5.6.11 Clustering motifs on activity pro�les

We noticed the inferred activity pro�les of several motifs are highly similar suggesting
there are clusters of motifs with essentially the same activity pro�les. We thus devised
a clustering procedure that joins together motifs whose inferred activity pro�les are
statistically indistinguishable. To this end we needed to calculate, for any set C of
motifs, the probability of the data under the assumption that their inferred activity
pro�les all derive from the a common underlying activity pro�le. Let α∗mt denote
the inferred combined activity of motif m at time t, let σ∗mt denote the standard-
error associated with this activity, let C denote a cluster of motifs, and let γt be the
(unknown) common activity pro�le of the motifs in the cluster. The probability of
the inferred activities given γ and the standard-errors is then given by

P (α | γ, σ) =
∏
m∈C

[∏
t

1√
2πσ∗mt

exp

(
−1

2

(
α∗mt − γt
σ∗mt

)2
)]

.
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We now use a prior over the underlying activity pro�le γ that is the same as we used
for inferring the activity pro�les from the independent data-sets, i.e.

P (γt | τ) =
1√
2πτ

exp

(
−1

2

(γt
τ

)2
)
,

where we again use τ = 0.1. By integrating over the unknown activity pro�le γ we
then obtain the probability of the inferred activity pro�les in the cluster under the
assumption that they are all the same up to noise, i.e.

P (α | σ) =
∏
m∈C

[∫ ∏
t

P (α∗t | γt, σ∗t )P (γt | τ) dγt

]
.

These integrals are all Gausian integrals and can be performed analytically.
We use the result to hierearchically cluster the 30 core motifs base on their activity

pro�les. We start with letting each motif be a cluster by itself and calculate, for each
pair, the likelihood-ratio of the probability of the data before and after clustering. We
then iteratively cluster the pair of motifs with highest likelihood-ratio. Note that when
two motifs are clustered we recalculate their average activity pro�le and associated
standard-error of the average exactly in the same way as we do when we combine the
data from the replicates (i.e. we treat the inferred activities of the di�erent motifs
in the cluster just like we treat the inferred activities from di�erent replicates for
the same motif). At each iteration we also keep track of the total probability of the
data in the current clustering state. The cut-o� for termination of the hierarchical
clustering was chosen by hand (essentially where the �rst large drop in likelihood of
the clustering state is observed).

5.6.12 Permutation and Cross-validation tests

We tested the signi�cance of the �ts using the following permutation test: We ran-
domly permuted the association between the site-counts Npm and the expression pro-
�les eps so that each promoter is now assigned the site-counts from a randomly chose
other promoter. The model was then �tted on this randomized data set and the frac-
tion of expression signal explained by the �t was calculated exactly as for the original
data. This procedure was repeated 1'000 times. For the CAGE promoters, the av-
erage fraction of expression signal explained was 0.015 with a standard-deviation of
0.00054, corresponding to a di�erence of 84.5 standard-deviations with the �tted frac-
tion on the real data (0.061). Assuming the �tted fractions for the permuted data-sets
are Gaussian distributed this would correspond to a p-value of 2.85 · 10−1554.

For the cross-validation test we randomly divided the promoters in 10 subsets
of equal size. For each subset we use the remaining 90% of the promoters to �t
motif activities and used these to predict the expression values of the promoters in

190



5.5.6 Supplementary Methods

the set. Combining the results from all 10 subsets we again calculated the fraction
of expression signal explained by the �t. Cross-validation was also applied to the
data-set with permuted promoters.

For comparison of the �ts based on CAGE versus RefSeq promoters we selected
all microarray probes that intersect a RefSeq transcript and that are one-to-one as-
sociated with a CAGE promoter region. We �tted the expression data of all these
probes once using the site-counts Npm from the associated CAGE promoters and once
using Npm from the RefSeq promoters.

5.6.13 Motif target predictions

We predict a regulatory edge between a motif and a promoter when the promoter
has predicted binding sites for the motif (Npm ≥ 0.25) and the expression pro�le

of the promoter correlates signi�cantly with the inferred �nal activity pro�le Afmt of
the motif. In particular, the correlation between the expression pro�le and activity
pro�le is given by cpm = 1

6

∑
t eptA

f
mt, where ept is time-dependent expression pro�le

of the promoter averaged over the replicates. Using only a single motif to explain the
expression pro�le, the residual variance is

χ2
pm =

1

6

∑
t

(
ept − cpmAfmt

)2

.

Finally, the z-value that quanti�es the signi�cance of the regulatory interaction be-
tween motif and promoter is

zpm =

√
6

χ2
pm

cpm.

Note that, although cpm can be negative, we only consider regulatory interactions
with non-negative correlation. For the Gene Ontology analysis, target gene sets of
core motifs (z-value ≥ 1.5 for the association of a motif to promoters of target genes,
z-values were averaged if there was more than one promoter associated with a gene)
were tested for functional enrichment (189). All genes with CAGE de�ned promoters
were chosen as the background.

5.6.14 siRNA edge validation and core network construction

Predicted regulatory interactions were tested using siRNA knockdowns of 28 TFs
that are associated with motifs. For each TF knockdown we collected all microarray
probes that are associated with promoters and calculated, for each probe, the average
z-value of the predicted regulatory interaction from the TF's motif to the promoters
associated with the probe. At di�erent cut-o�s in z-value we then divided the probes
into �targets� of the motif, i.e. those with a z-value above the cut-o�, and �non-targets�
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of the motif, i.e. all probes with z-value below the cut-o� (this includes probes for
which there are no predicted TFBSs in the associated promoters), and calculated
the di�erence in average expression ratio (knockdown minus mock) of targets and
non-targets. For each knockdown we calculated the Pearson correlation coe�cient
between the z-value cut-o� on target prediction and the observed di�erence in average
expression ratio of targets and non-targets. To assess the signi�cance of the di�erences
in average expression ratio we set an intermediate cut-o� of z = 1.5, calculated the
distribution of expression ratio for targets and non-targets, determined their means
(µt and µnt) and variances (vt and vnt), and determined a z-value for the expression
ratio di�erence as

z =
µt − µnt√

vt/Nt + vnt/Nnt

,

where Nt and Nnt are the number of target and non-target probes, respectively.
The core network was constructed by �rst selecting all predicted regulatory inter-

actions (z-value at least 1.5) between core motifs and promoters that are associated
with a gene which is a TF that in turn is associated with a core motif. This set of
predicted regulatory interactions was then �ltered by choosing only interactions that
have independent experimental support of at least one of the following types. 1) The
regulatory interaction has been reported in the literature 2) There is a ChIP-chip
experiment in which binding of one of the TFs associated with the motif to the pro-
moter of the target gene has been reported. 3) In our siRNA experiments the target
promoter is observed to be perturbed in expression (B-statistic larger than zero) after
knockdown of a TF associated with the motif.

5.6.15 Motif Activity Analysis of TF knockdowns

We applied the motif activity analysis to the microarray expression pro�les of all
siRNA samples including negative controls. As a result we obtained �tted motif ac-
tivities A∗ms and standard-errors σms for each motif m in each of the siRNA samples
s. We combined the inferred activities from replicates and control experiments, and
calculated a z-value for the activity change between siRNA and negative control for
each TF that was knocked down:

zTFm =
〈ATFm 〉 − 〈ANCm 〉√
(σTFm )2 + (σNCm )2

,

where 〈ATFm 〉 is the average activity of motif m across the replicates in which the TF
was knocked down, σTFm the standard-error of this average activity, 〈ANCm 〉 the aver-
age activity of motif m in the negative controls, and σNCm its the standard-error. The
z-values zTFm characterize the expression changes observed upon siRNA knockdown
of the TF in terms of observed changes in motif activities. That is, if zTFm is highly
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positive it indicates that predicted targets of motif m are up-regulated in response
to knockdown of the TF. We similarly calculated z-values for motif activity changes
across the PMA time course:

zPMA
m =

〈A96
m 〉 − 〈A0

m〉√
(σ96

m )2 + (σ0
m)2

,

where 〈A96
m 〉 is the average activity of motif m after 96 hours of PMA treatment, σ96

m

its standard-error, 〈A0
m〉 is the average activity before PMA treatment, and σ0

m its
standard-error. Given the z-value for the change in motif activity the probability that
the motif is up-regulated is given by

pup(z) =
1

2
Erfc

(
z√
2

)
and the probability that the motif is down-regulated is given by

pdown(z) =
1

2
Erf

(
z√
2

)
.

Using this we calculated, for each motif m, the probability pm that the motif is chang-
ing in the same direction in both the PMA time couse and the TF knockdown:

pm = pup(z
TF
m )pup(z

PMA
m ) + pdown(zTFm )pdown(zPMA

m ).

Finally, the overlap oTF between TF and PMA time course is de�ned as the sum of
pm over all motifs divided by the total number of motifs, i.e. the estimated fraction
of motifs that change activity in the same direction in knockdown and PMA time
course. We calculated the signi�cance of the di�erentiative overlaps by a permutation
test; we randomly permuted the order of the motifs 1000 times and calculated the
di�erentiative overlap for each.

5.6.16 The data and analysis results available from the FAN-
TOM4 web resource

In addition to the data and analysis results amassed here the full set of several Sup-
plementary Tables are available from the FANTOM4 web resource. The data is also
available from �GNP Platform� (http://genomenetwork.nig.ac.jp/index_e.html).
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Chapter 6

Conclusions

The classical promoter architecture model has been challenged in the FANTOM3
project, which showed widespread transcription initiation events across chromosomes
and thus that alternative promoter usage substantially contributes to the complexity
of mammalian proteome (12). Due to the introduction of 454 Life Sciences sequenc-
ing and the depth achieved in FANTOM4 project, it has become possible to robustly
estimate expression levels of individual TSSs. We have shown in Chapter 3 that
nearby TSSs are co-regulated rather than independently expressed. Based on this
principle, we de�ned Transcription Start Clusters as genomic loci, which show coher-
ent expression patterns across di�erent experimental conditions. On average, such
co-regulation exists on the distance of about 15 nucleotides; however this average is
not representative, as we have shown that high- and low-CpG promoters are inher-
ently di�erent. The low-CpG promoters are usually short (only 22% are longer than
10 bps), whereas high-CpG are much larger (80% longer than 10 bps and 40% longer
than 100 bps). This latter fact is especially surprising as this class drives expression
of many housekeeping, highly-expressed and well-studied genes.

To our knowledge, until then, there was no rigorous model of noise in sequencing
data. We have developed such a model from the need of quantitative analysis of
deepCAGE data, and used it extensively in the promoterome construction. Similarly,
it was assumed that the sequencing data do not need elaborate normalization tech-
niques - simple �reads per kilobase per million reads� normalization was assumed to
be su�cient. Our work, among others published during the same period, showed the
need for more sophisticated normalization schemes.

We have applied the MARA algorithm for the inference of regulatory interactions,
which is able to handle large quantities of (possibly noisy) expression data to reliably
predict changes in motif activities. It bene�ts from high-quality promoter annotations
and state-of-the-art binding site predictions. The results are straightforward to in-
terpret: the activities indicate how much a motif of interest contributes to promoter
expression across conditions, and a list of important motifs is provided. Although
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the model is phenomenological, it captures the strengths and directions of activity
changes of multiple motifs - quantities that are of great interest when working with
a new system.

Currently all the samples are treated independently and in the same way. However,
it is more and more often possible to track changes of a perturbation/developmental
time course with a �ne temporal resolution. In such case the activities of the neigh-
boring time points are expected to di�er only slightly. A key extension of the model
would be to model the dynamics of these small changes as a property of the regulatory
network itself: the activities of the previous time point(s) are directly causing them.

Another future improvement of the MARA strategy is to allow motifs to work as
activators for one group of promoters and as repressors for another group. A recent
work by Bauer et al. (124) has shown that the inclusion of such a possibility in a model
of Drosophila embryo segmentation allows for a large improvement in predictions of
cis-regulatory module expression which cannot be explained by a simple increase in
number of free parameters.

Another extension could be the inclusion of distal regulatory elements. It is not
clear, however, if assigning enhancers to the closest TSC and the treating them the
same ways as proximal promoters would improve the �t. It might not be productive
due to the fact that enhancers/silencers are often tissue speci�c, turned o� and on
by chromatin modi�cations, yet they might regulate the same TSS. A model which
includes a total amount of TFBSs summed over all the enhancers might become less
e�cient than a promoter-based model.

We aimed to robustly infer transcription factor activity from expression data. As
an available estimate of transcription initiation data, we used microarray and RNA-
seq data. The mRNA levels, however, are a result of a more complex process involving
(among other factors) transcription elongation, termination and post-transcriptional
control. It is hard to reliably judge the importance of the �rst two processes on a
genome-scale level. We do, however, know that the mRNA post-transcriptional con-
trol plays a crucial role in gene expression, and that it can happen at virtually any step
of RNA metabolism (some of the steps a�ecting RNA levels, others not). There are
multiple types of RNA binding domains which speci�cally recognize oligonucleotide
motifs, and there is often more than one RNA binding domain per protein. The
post-transcriptional control is thus a combinatorial process, whereby di�erent motifs
regulate gene expression in various ways (190). An important class of RNA binding
proteins are the Argonaute family members, endonucleases recognizing speci�c RNA
motifs with the help of small RNAs. Initial results, not shown in this work, of ex-
tending MARA by including microRNA site predictions show that the explanatory
potential is very close that one of transcription factor motifs in proximal promoters.

The regression model is general enough that it can take di�erent types of data
as the input. The applications are beyond the scope of this work. MARA was re-
cently used for explaining histone modi�cation data (H3K27 trimethylation, H3K4
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dimethylation and DNA methylation) to explain histone- and DNA methyltrans-
ferases attraction by transcription factors in a developing neural cell.

To validate the predicted edges in the transcription regulatory network of a myeloid
leukemia cell line, we performed a broad range of validations including literature
search, siRNA assays against transcription factors and chromatin immunoprecipita-
tion. A typical usage of the MARA web pipeline would not include such an extensive
validation scheme. Sadly, we are still far from a scheme for robust, automated TF→
TF regulatory edge predictions without the need of validation.

The study of the myeloid leukemia cell line is one of the most complete studies of
di�erentiation and transcription regulatory network reconstruction in a mammalian
genome. The results obtained from the di�erent types of expression data (deepCAGE
and microarray) and three replicates largely overlap, showing the robustness of the
MARA approach. The most striking result of the analysis is the complexity of the
resulting regulatory network. Not only does it contain 30 motifs changing activity un-
der the stimulus, but the interconnections between them are also far from a classical
cascade structure. There is no master regulator; no knockdown reproduced di�eren-
tiation completely and there are many loops and feed-forward connections. It seems
that in order to guide the network along the di�erentiation path, downregulation of
multiple factors is needed. This is coherent with the view of cellular states as attractor
basins in a wider �landscape� (see Fig. 6.1). In order to move out from an undi�er-
entiated state, the transcriptional network requires a perturbation of multiple factors
which homeostatically maintain the undi�erentiated state. Such a destabilization in
response to PMA is accomplished by immediate early genes.
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Figure 6.1: A cartoon view of a cellular state landscape: canalization and attractor
basins
The phenotypical state corresponds to a point in multidimensional space (here: two-
dimensional) of regulatory protein activities. The wiring of the network, especially
edges between regulators, determines a direction of the movement, here depicted as
slopes of the landscape.
Left panel: the classical view of a cellular di�erentiation process. The canals rep-
resent possible phenotypic states through which a cell travels top to bottom. In the
beginning it starts as a stem cell and while traveling, dependent on stimuli and mor-
phogenes, it makes irreversible decisions as to which di�erentiation path to choose.
Intermediate points represent semi-di�erentiated cell progenitor states, and the bot-
tom states represents a phenotypic space of the terminally developed cells.
Right panel: the attractor view of cellular states. Di�erent cellular states corre-
spond to the attractors (basins). The homeostatic interactions between regulators
are the principle which cause such attractors to emerge. A perturbation is needed to
move a cell out of its current basin. Subsequently, the cell migrates to a new cellular
state depending on the strength and direction of the perturbation. Strong perturba-
tions might lead to nonviable states, as drawn in the middle of the left side of the
�gure. This view is consistent with recent reports of reprogramming di�erentiated
cells into stem cells (112) or into another di�erentiated state (113) by perturbing a
handful of TFs.
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Chapter 7

Introduction

The common function of a diverse class of non-coding RNAs (ncRNAs) is the recog-
nition of a speci�c locus in a target nucleic acid molecule for enzymatic catalysis
by a partner protein. Typically, ncRNA action is driven by base pairing and in-
volves several partner proteins. Such a complex is called non-coding ribonucleopro-
tein (ncRNP). ncRNPs regulate di�erent levels of gene expression including mRNA
splicing, histone pre-mRNA formation (U7), tRNA and rRNA point modi�cations,
pre-tRNA cleavage, mRNA editing, transcription-elongation control, translation, pro-
tein tra�cking, gene silencing (at mRNA level and chromatin modi�cation level) and
telomere synthesis.

snoRNAs are a well-studied classes of small ncRNAs. Evolutionarily, they stem
from a point earlier than the split between the Archaea and the Eukarya domains of
life. Their name comes from the nucleolar localization of the �rst members of this
family. The family is diverse and at the top level is subdivided into two branches:
the box C/D and the box H/ACA snoRNAs. Both of these act primarily as guide
molecules for modi�cation of other ncRNAs. The box C/D snoRNAs direct 3'-O-
ribose methylation, whereas the box H/ACA snoRNAs guide pseudouridylation. The
guided modi�cations of rRNA are necessary for the proper function of a ribosome.
Other targets include snRNAs (eukaryotes), tRNAs (archaea), spliced leader RNAs
(trypanosomes).

There exists a number of snoRNAs that have no known target snRNAs or rRNAs.
Recently it was shown that one of the member of these �orphans�, HBII-52, exhibits
long, perfect complementarity to a pre-mRNA region of serotonin receptor (191). It
was shown that it has an important role in choosing a �correct� exon-intron junction
in the splicing process. Importantly, deletion of a locus containing HBII-52 leads
to a quite common (1 in 12,000 newborns) genetic disease, Prader�Willi syndrome.
Encouraged by this initial �nding, we performed a computational screen for other po-
tential targets of MBII-52 (which is a mouse ortholog of HBII-52), accompanied with
experimental veri�cation. The results and methodology can be found in Chapter 8.
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A distinctive feature which gives its name to the box C/D snoRNAs is the presence
of highly conserved motifs called C and D boxes. There are one or two pairs of these,
each pair accompanied with an antisense element. The function of the antisense
elements is the recognition of target sites by formation of double stranded RNA
hybrid structures. In mature RNP 15.5K/NHPX protein (or L7Ae in archea) binds
to the C and D boxes stabilizing the structure; then, close paralogue proteins NOP56
and NOP58 join the complex and recruit enzyme �brillarin. Fibrillarin is a 2'-O-
methyltransferase which methylates precisely that ribonucleotide which is paired with
the 5th base of the antisense element. See Figure 7.1.

Constraints on the RNA:RNA duplex formation and stability are key for precise
recognition of targets by an antisense element. Fortunately, it was a subject of study
by Cavaillé and Bachellerie (193). Through extensive experiments these authors have
shown that a duplex structure can tolerate many types of irregularities. A bulged
nucleotide can be introduced at various positions without a dramatic decrease in the
extent of reaction. On the substrate strand duplex bulges are tolerated at almost
any position. On the snoRNA strand, the bulge can be positioned anywhere beyond
pase pair 7. Similarly, the particularly destabilizing G·A apposition and multiple G·U
wobbles are tolerated. Shortening of a duplex length from 16 to 12 bp can have a
severe impact on methylation status, but a change of binding free energy by increased
GC content can fully compensate for the length reduction. Interestingly, there exist
naturally occurring methylation sites which require a duplex of only 10 bp in length
and which is not particularly GC�rich, suggesting a presence of co-factors. In the
following chapters, we use the constraints for an in silico screen of putative target
sites of MBII-52 snoRNA in mRNAs (Chapter 8) and of v-snoRNA1 in the rRNA
(Chapter 9).
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Figure 7.1: Structure of box C/D snoRNAs and snoRNPs
Left panel: Secondary structure of box C/D snoRNas. The conserved box C (PuU-
GAUGA) and D (CUGA) sequence elements are tethered by the terminal stem-loop
and apical loop and form kink�turns (k�turns). A C/D pair is associated with an
antisense element (blue) located upstream of box D which forms base pairs with the
target RNA (red). Target RNA is methylated on the ribose of the nucleotide which
is base paired with the guide RNA that is 5 nucleotides upstream of box D.
Right panel: Core archeal C/D RNPs. Eukaryotic homologue of L7Ae is 15.5 kD
protein also known as NHPX and Snu13p, Nop56/58 is replaced by a pair of NOP56
and NOP58 paralogues.
Reprinted by permission from Macmillan Publishers Ltd: Matera et al. Nature Re-
views Molecular Cell Biology 8, 209�220 (March 2007) (192) | doi:10.1038/nrm2124
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Chapter 8

The snoRNA MBII-52 (SNORD 115)
is processed into smaller RNAs and
regulates alternative splicing

Shivendra Kishore, Amit Khanna, Zhaiyi Zhang, Jingyi Hui, Piotr J Balwierz,
Mihaela Stefan, Carol Beach, Robert D. Nicholls, Mihaela Zavolan and Stefan

Stamm
Human Molecular Genetics, 19(7):1153-64 2010

The loss of HBII-52 and related C/D box small nucleolar RNA (snoRNA)
expression units have been implicated as a cause for the Prader-Willi syn-
drome (PWS). We recently found that the C/D box snoRNA HBII-52
changes the alternative splicing of the serotonin receptor 2C pre-mRNA,
which is di�erent from the traditional C/D box snoRNA function in non-
mRNA methylation. Using bioinformatic predictions and experimental
veri�cation, we identi�ed �ve pre-mRNAs (DPM2, TAF1, RALGPS1,
PBRM1 and CRHR1) containing alternative exons that are regulated by
MBII-52, the mouse homolog of HBII-52. Analysis of a single member of
the MBII-52 cluster of snoRNAs by RNase protection and northern blot
analysis shows that the MBII-52 expressing unit generates shorter RNAs
that originate from the full-length MBII-52 snoRNA through additional
processing steps. These novel RNAs associate with hnRNPs and not with
proteins associated with canonical C/D box snoRNAs. Our data indicate
that not a traditional C/D box snoRNA MBII-52, but a processed version
lacking the snoRNA stem is the predominant MBII-52 RNA missing in
PWS. This processed snoRNA functions in alternative splice-site selection.
Its substitution could be a therapeutic principle for PWS.
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8.1 Introduction

It has been estimated that 95% of human multi-exon genes undergo alternative
splicing(194; 195), indicating that this pre-mRNA processing step is central for hu-
man gene expression. Unlike promoter activity that is predominantly re�ected in the
abundance of transcripts, alternative splicing in�uences the structure of the mRNAs
and their encoded proteins. As a result, it in�uences binding properties, intracellular
localization, enzymatic activity, protein stability and post-translational modi�cation
of numerous gene products (reviewed in (196)).

We recently found that usage of the alternative exon Vb of the serotonin receptor
2C (HTR2C) is regulated by expressing a C/D box snoRNA, HBII-52. SnoRNAs
are small nuclear RNAs that can be detected in the nucleolus. They reside in introns
from which they are released through nuclease action during the processing of the host
pre-mRNA. On the basis of their sequence, snoRNAs can be subdivided into C/D and
H/ACA snoRNAs. C/D box snoRNAs have C and D boxes as characteristic sequence
elements at the ends of the RNA. The 5′ and 3′ ends of the snoRNA form a short
stem that precedes the C and D boxes, which together form a kink-turn (K-turn)
structure(197).

A well-understood function attributed to C/D box snoRNAs is the guiding of
2′-O-methylation in ribosomal, transfer and small nuclear RNAs. This activity is
achieved through the formation of a speci�c RNA:RNA duplex between the snoRNA
and the target. Most snoRNAs contain two regions to interact with other RNAs,
termed the antisense boxes. Each antisense box exhibits sequence complementarity
to its target and forms a short, transient double strand with it. On the target RNA,
the nucleotide that base pairs with the �fth snoRNA nucleotide upstream of the
snoRNA D-box is methylated on the 2′-O-hydroxyl group (reviewed in (192)). Several
snoRNAs are complementary to pre-rRNA, but the rRNA is not 2′-O-methylated at
the predicted positions(198). Recently, numerous C/D box snoRNAs were discovered
that show no clear sequence complementarity to other non-mRNAs, suggesting that
C/D box snoRNAs might have functions other than 2′-O-methylation(199)). One of
these `orphan' C/D box snoRNAs is HBII-52 (SNORD 115). It is expressed from
the SNURF�SNRPN locus. Loss of expression from this locus is the most likely
cause for Prader�Willi syndrome (PWS)(200), which was supported by the recent
�nding that a microdeletion containing only snoRNAs causes PWS(201). HBII-52
exhibits sequence complementarity to an alternative exon of the human serotonin
receptor 2C mRNA and changes alternative splicing of this pre-mRNA (HTR2C) in
transfection experiments. This change has also been observed in brain tissue from
PWS patients(191) and a mouse model lacking MBII-52 snoRNAs shows di�erences in
pre-mRNA processing of the serotonin receptor(202). Finally, it was reported that an
increase of C/D box snoRNA expression from the 15q11�q13 region leads to autistic
phenotypes in mice, which further suggests that snoRNAs play an important role in
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gene regulation(203).

PWS is a congenital disease with an incidence of about 1 in 8000�20 000 live
births. PWS is the most common genetic cause of marked obesity in humans. The
excess weight makes PWS the most frequent genetic cause for type II diabetes(200).
Early PWS is characterized by a failure to thrive, feeding di�culties and hypogo-
nadism. Later, the patients are characterized by short stature and develop mild to
moderate mental retardation, behavioral problems and hyperphagia that lead to se-
vere obesity. Children with PWS show low levels of growth hormone, IGF-I and
insulin as well as elevated levels of ghrelin(204; 205; 206) and often exhibit central
adrenal insu�ciency(207). Subsequently, growth hormone substitution was approved
for the treatment of children with PWS(208).

PWS is caused by the loss of gene expression from a maternally imprinted region
on chromosome 15q11�q13 (reviewed in (200)). The SNURF�SNRPN locus in the
15q11�q13 region plays a major role in PWS, and its deletion causes PWS-like symp-
toms in mouse models(209). The SNURF�SNRPN locus spans more than 460 kb
and contains at least 148 exons(210). Ten exons in the 5′ part of the gene are tran-
scribed into a bicistronic mRNA that encodes the SNURF (SmN upstream reading
frame) and the SmN (small RNP in neurons) protein. The locus harbors a bipar-
tite imprinting center that silences most maternal genes of the PWS critical region.
Owing to this imprinting, the SNURF�SNRPN pre-mRNA is expressed only from
the paternal allele. The large 3′-UTR region of the SNURF�SNRPN locus harbors
clusters of the C/D box snoRNAs HBII-85 and HBII-52 that are present in 24 and
47 copies, respectively. In addition, the region harbors single copies of other C/D
box snoRNAs: HBII-13, HBII-436, HBII-437, HBII-438A and HBII-438B. Recent
evidence suggests that the HBII-85 and HBII-52 snoRNA clusters are expressed as
two transcriptional units(211). The highly conserved snoRNAs are �anked by poorly
conserved non-coding exons, suggesting that the functional relevant products of the
locus are snoRNAs, not the �anking exons. The expression of these snoRNAs is
tissue-speci�c. HBII-52 could be detected only in brain, whereas other snoRNAs
from the SNURF�SNRPN locus are also expressed in non-brain tissues (reviewed in
(212).

Here, we analyzed the function of the mouse ortholog of HBII-52, MBII-52. We
found that it regulates alternative pre-mRNA processing of at least �ve more genes.
The unit expressing MBII-52 expresses smaller RNAs that appear to be nuclease
processing products of the full-length MBII-52 snoRNA. We termed these shorter
RNAs psnoRNAs for processed snoRNAs. psnoRNAs associate with hnRNPs and not
with the known C/D box snoRNA binding proteins. We postulate that psnoRNAs
recognize target RNAs by sequence complementarity and in�uence splice-site selection
by interfering with splicing regulatory proteins acting on pre-mRNA.
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8.2 Results

8.2.1 New targets for MBII-52

The recent �nding that HBII-52 regulates alternative splicing of the 5-HT2C recep-
tor (191) raised the question whether there are other targets for this snoRNA. The
antisense boxes of the 47 human copies of HBII-52 show up to three sequence vari-
ations from their 18 nt consensus sequences(212). We tested HBII-52 variants with
one, two, three and �ve mutations in their antisense box for their ability to change
alternative splicing of exon Vb of the serotonin receptor. We found that a snoRNA
with three mismatches can still promote exon Vb inclusion (Fig. 8.1). There is no
statistically signi�cant change when �ve mismatches are present in the antisense box.
This argues that naturally occurring HBII-52 variants with up to three mismatches
between antisense box and target region can in�uence pre-mRNA processing of the
serotonin receptor.

In order to uncover additional targets of HBII-52, we performed a computational
screen. Because the mode of interaction between HBII-52 and its targets is not
yet known, we based our analysis on the constraints on snoRNA:rRNA interactions
leading to ribose methylation in ribosomal targets(193)). Concretely, we started by
extracting an 18-nt-long antisense element upstream of the D box of MBII-52. We
de�ned as a putative target site of MBII-52 a genomic region that can either form a
perfect stem of length at least 10 bp or form a duplex of low free energy (below −15
kcal/mol) with the MBII-52 antisense element, with the duplex satisfying additional
constraints. Minimum free energy duplexes were predicted with RNAhybrid(213)
allowing G:U wobble in addition to canonical base pairing. The constraints on the
duplexes were that (i) loops in the duplex were limited to maximum two nucleotides
in either the target sequence or in antisense element and (ii) only up to three un-
paired nucleotides in any of the sequences was allowed. Finally, similar to approaches
previously employed to predict miRNA targets, we required that the predicted tar-
get site be conserved across mammalian species. More speci�cally, we extracted the
regions in the human, rhesus macaque, cow and dog that are orthologous to the pre-
dicted HBII-52 target sites in human and we determined whether they would also
be predicted as target sites. As the antisense box of HBII-52 is highly conserved in
mammals, we compared all orthologous genes to the human antisense box sequence.
Our �nal set of predictions included only putative MBII-52 target sites that were
conserved in all of these other species. We obtained 457 such sites, 222 of which are
in close proximity (200 nt) or within known exons. The predictions are available at
http://www.mirz.unibas.ch/MBII-52/.

We next tested more than 100 computational predictions experimentally. Neuro2A
cells were transfected with either MBII-52 or MBII-52mut, an MBII-52 variant with
a scrambled antisense box(191), and the isolated RNA was analyzed by RT�PCR,
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A B
HBII-52

HBII-52 + Va   Vb                  VI 

5aF 6R

ATGCTCAATAGGATTACG
ONE MISMATCH
ATGCTCAATAGGATTATG
ATGCTCAATAGGATTATG
ATGCCCAATAGGATTACG
ATGCTCAATAGGATTACA
ATGTTCAATAGGATTACG
ATGCTCAATAGGATTACA
ATGCTCAATAGGATTACA
ATGCTCAATAGGATTACA
ATGTTCAATAGGATTA
TWO MISMATCHTWO MISMATCH
ATGCTTAGTAGGATTACG
ATGCTCAATAGAATTAAG
THREE MISMATCH
ATTCTCAAAAGGATTATG
ATTCTCAAAAGGATTATG
ATTCTCAAAAGGATTATG

1 2 3 50 # mismatches
1 2C 1 2 1 2 1 2 1 2 µg plasmid

C
µg  plasmid

Figure 8.1: MBII-52 with three mismatches can still promote exon Vb inclusion

using primers in the �anking constitutive exons. As shown in Figure 1, we observed a
change in alternative splicing patterns in the DPM2, TAF1, RALGPS1, PBRM1 and
CRHR1 pre-mRNAs. MBII-52 overexpression promoted either inclusion or skipping
of the di�erent exons. Their sequences and the complementarity to MBII-52 are
shown in Table 8.1. These data suggest that MBII-52 expression changes alternative
splicing of several endogenous pre-mRNAs.
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Figure 8.2: MBII-52 changes the alternative splicing pattern of predicted targets.
Computationally predicted MBII-52 target genes expressed in Neuro2A cells were
analyzed by RT�PCR. Cells were transfected with 1 µg pEGFP-C2, 1 µg of the
MBII-52 expressing construct pCMV/MBII-52 (MBII-52)(214) and 1 µg MBII-52
consensus box mutation, MBII-52 cm, (MBII-52 mut) expressing an antisense box
mutation of MBII-52 (191). A representative ethidium bromide-stained agarose gel is
shown. The adjacent diagram shows the part of the genes that was analyzed. Small
arrows indicate the location of the primers used. The MBII-52 complementarity
region is indicated by a dot. Numbers in boxes indicate the length of the exons and
numbers next to PCR primers indicate the length of the ampli�ed exon fragment.
The structure of the PCR products is indicated by similar shading of exons in cDNA
and genomic DNA. The statistical analysis of at least four independent experiments
is shown on the right. Stars indicate the bands that were used for quanti�cation. The
sequences of the regulated exons are shown in Table 8.1.
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8.2.2 MBII-52 changes alternative splicing of targeted pre-
mRNAs in reporter gene assays

In the next step of the analysis, we determined whether alternative exons that are
in�uenced by MBII-52 expression show this dependency also in a heterologous system,
where they are surrounded by a di�erent RNA context. We cloned the MBII-52
regulated exons into an exon-trap vector, where they were �anked by constitutively
spliced insulin exons. All constructs were cloned into pSpliceExpress, a system that
we developed previously(215).

The reporter genes were cotransfected with MBII-52 expression constructs into
Neuro2A cells and the splicing patterns were analyzed by RT�PCR. As shown in
Figure 8.3, we observed for the �ve splicing events identi�ed in endogenous genes a
similar dependency on MBII-52 expression. The expression of MBII-85 snoRNA and
C and D box mutants of MBII-52 (MBII-52cC,cD) did not show a signi�cant e�ect
on the alternative exons, suggesting that the e�ect is speci�c for MBII-52. With
the exception of PBRM1, the reporter minigenes followed the splicing pattern of the
endogenous genes. In the endogenous PBRM1 gene, MBII-52 promoted both inclusion
and skipping of two exons located in a cluster of alternatively spliced cassette exons.
In the heterologous system, we observe only the skipping event for PBRM1. This
di�erence is most likely due to the presence of strong insulin exons in pSpliceExpress
that interfere with the arrangement of regulatory sequences in this cluster of multiple
alternative cassette exons. Finally, we created a series of compensatory mutations
in the antisense box of MBII-52 and the snoRNA complementarity regions (snoCR)
of its targets. These experiments proved inconclusive, as in most cases mutating the
snoCR resulted in strong exon activation that was no longer susceptible to regulation
(data not shown). Together, these data suggest that after being transferred into a
heterologous gene context at least �ve alternative exons are in�uenced by MBII-52
expression.

8.2.3 A mouse model of PWS shows changes in the predicted
exons

To address the physiological signi�cance of our data, we asked whether MBII-52 in-
�uences alternative splicing of the identi�ed target genes in vivo and analyzed RNA
samples from the TgPWS mouse model. TgPWS mice have a paternally derived dele-
tion of the PWS critical region that contains the SNURF�SNRPN locus. They show
hormonal and metabolic defects resembling those of human newborns with PWS(209).
As a larger locus is deleted, in addition to MBII-52, the mice do not express MBII-85
and other snoRNAs from the Prader�Willi critical region.

We compared RNA from newborn TgPWS mice with RNA from littermates ex-
pressing the region. As shown in Figure 8.4, we found that the mouse knockout
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Figure 8.3: Minigene analysis of MBII-52 target genes. The exons harboring the
MBII-52 complementary region were subcloned into the exon trap vector pSplice-
Express. The structure of the resulting constructs pSE-RALGPS1, pSE-CRHR1,
pSE-DPM2, pSE-PBRM1 and pSE-TAF1 as well as the location of the primers used
for RT�PCR analysis is indicated on the left. pEGFP: only an expression construct
for GFP is transfected. All other lanes contain 1 µg of pSE-reporter. MBII-52:
cotransfection with 2 and 4 µg of MBII-52 expression construct, MBII-85: cotrans-
fection with 2 and 4 µg of an MBII-85 expression construct, MBII52cC: cotransfection
with 4 µg of a C-box mutant of MBII-52: MBII52cD: cotransfection with 4 µg of a
D-box mutant of MBII-52. The structure of the products is shown schematically on
the right, using the same shading scheme as in Figure 1. The usage of alternative
exons indicated with a triangle was statistically evaluated. The comparison between
MBII-52 and MBII-85 transfected cells showed statistically signi�cant di�erences, the
P-values of the Student's t-test were: DPM2: 0.001, TAF1: 0.023; RALGPS: 0.021;
PBRM1: 0.076 and CRHR1: 0.002; (n = 4).

213



The snoRNA MBII-52 is processed into smaller RNAs and regulates. . .

Figure 8.4: Comparison of RNA from TgPWS mice lacking MBII-52 expression and
control littermates. Total brain samples from TgPWS mice lacking expression of the
Prader�Willi critical region were compared with normal littermates expressing all
the snoRNAs from the PWS critical region (control). Primers similar to Figure 8.2
were used. The structure of the gene products is indicated similar to Figures 8.2 and
8.3. Stars indicate the bands that were used for comparison. n = 6, other statistical
evaluations: P = 0.093, <0.001, 0.0023, 0.001, 0.05 for DPM2, TAF1, RALGPS1,
PBRM1 and CRHR1, respectively.

systems recapitulates a dependency of alternative splicing on the presence of MBII-
52. However, the overall splicing patterns of the endogenous genes are di�erent in
mouse brain and Neuro2A cells. This most likely re�ects the presence of numerous
cell types in brain that show di�erent splicing patterns. Despite this limitation, the
presence of MBII-52 promotes exon inclusion in the alternative exons with a comple-
mentarity to MBII-52 of the DPM2 and PBRM1 pre-mRNAs and promotes skipping
of the RALGPS1 and TAF1 exons, similar to the e�ect seen in Neuro2A cells. The
only discrepancy between the MBII-52 e�ects in brain and Neuro2A cells was an
alternative exon of CRHR1 that showed an increase in exon usage in brain tissue,
whereas it showed a decrease in response to MBII-52 in Neuro2A cells. The regulated
alternative CRHR1 exon is in a cluster of alternative exons and the discrepancy could
be due to di�erences in splicing regulators between brain and Neuro2A cells. Col-
lectively, the data suggest that the loss of MBII-52 expression in�uences alternative
splicing of target genes in a physiological context.
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8.2.4 MBII-52 is processed into smaller RNAs

The data indicate that MBII-52 expression in�uences usage of multiple exons that
contain regions with sequence complementarity to the antisense-box of MBII-52. Four
recent studies reported that H/ACA snoRNAs give rise to smaller RNAs(216; 217;
218) and Chapter 9. We therefore tested whether the C/D box snoRNA MBII-52
also gives rise to other RNAs by RNase protection analysis.

Whereas humans have 47 HBII-52 copies, there are at least 130 copies of MBII-52
snoRNAs in mouse. We used an antisense probe against the MBII-52 copy employed
in transfection experiments described above. This isoform is 87 nt in length and its
sequence is shown in Figure 8.5D as form A. In silico analysis shows that this copy
shares only an uninterrupted stretch of 20 nt in the antisense box region with other
snoRNA isoforms of the MBII-52 cluster. All other regions show single nucleotide
di�erences that prevent longer protected fragments. For the analysis, we used an
in vitro transcribed, 32P labeled RNA-antisense probe that detects the 87 nt encom-
passing the full-length snoRNA. Together with linker and vector sequences, the probe
is 175 nt in length. After hybridization, RNase A and T1 digestion, the fragments
were separated on 15% acrylamide/TBE/8 m urea gels. As shown in Figure 8.5A,
lane 1, we observed additional fragments when total mouse brain RNA was analyzed
with this probe. In agreement with earlier studies, we do not detect expression in
liver(214)(Fig 8.5A, lane 9). We then asked whether the snoRNA expression con-
struct used in Figure 8.2 is processed in a similar way. We analyzed total RNA from
Neuro2A cells transfected with the pCMV/MBII-52 expression construct (Fig. 8.5A,
lane 2) and found a similar RNA pattern. Importantly, the most abundant RNA
species from both the expression construct and brain is shorter than 80 nt (form B,
Fig. 8.5A). SnoRNAs contain C and D boxes that stabilize the snoRNP. Mutation of
these RNA elements abolished the e�ect on splicing (Fig. 8.3). We therefore tested
expression from constructs expressing this mutants and could not detect any RNA
expression (Fig. 8.5A, lanes 6 and 7), suggesting that the smaller RNAs (form B, C,
D) derive from a precursor with intact C and D boxes.

It is possible that MBII-52 undergoes nucleotide modi�cations that would result
in mismatching of an RNase protection probe and subsequent generation of smaller
fragments. To rule out this possibility, we performed northern blot analysis, using
denaturing 15% PAGE gels. Total RNA from brain, liver and spleen was probed
with MBII-52 antisense RNA corresponding to the sequence in Figure 8.5D, form
A. Even after stringent washing, we see cross-hybridization of MBII-52 with RNAs
from liver, spleen and HEK293 cells (Fig. 8.5B). This is to be expected, as there
are numerous copies of sequence-related snoRNAs expressed in these tissues(214).
To detect the speci�c hybridization between MBII-52 form A and brain RNA, we
treated the membrane with RNase A and RNase T1. The RNase treatment reduced
the overall signal strength, as we had to use a 3-fold longer exposure time. As shown in
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Figure 8.5: MBII-52 is processed into smaller RNAs. (A) RNase protection analy-
sis using a probe detecting the MBII-52 copy used in transfection studies in Figures
8.2 and 8.3.Five microgram of the following total RNAs was hybridized to an MBII-
52 antisense probe: (1): total mouse brain, (2): Neuro2A cells transfected with
pCMV/MBII-52. Lanes (3�5) are protections from RNPs captured with oligonu-
cleotides against the antisense box (Fig. 8.6). (3): A�nity captured RNA from
Neuro2A cells expressing MBII-52 using a MBII-52 probe for pull down (pd), (4):
a�nity captured RNA from Neuro2A expressing MBII-52 using an MBII-85 probe
(negative control) and (5): a�nity captured RNA from brain using an MBII-52 probe
for pull down. Lane 6: RNA from Neuro2A cells transfected with an expression con-
struct containing a C-box mutant, (7): RNA from Neuro2A cells transfected with an
expression construct containing a D-box mutant, (8): HEK293 cells non-transfected,
(9, 10): RNA from liver and yeast. (11): Undigested probe. The marker is a 100
nt RNA base ladder. (B) Northern blot analysis of MBII-52. Fifteen microgram
total RNA from brain, liver, spleen and HEK293 cells was separated on 15% poly-
acrylamide gels and probed with a 32P labeled probe for MBII-52. After stringent
washing, cross-hybridizing bands in liver, spleen and HEK293 cells still remain. Ex-
posure was overnight. (C) The �lter from (B) was treated with RNase A/T1 and
again washed. The cross-hybridizing bands disappear, but the signals corresponding
to smaller bands remain. Exposure was for 3 days. (D) Sequences of the shorter
RNAs. The stems and functional boxes are indicated. The clones are ordered ac-
cording to their length. Form A corresponds to the published snoRNA MBII-52.
Underlined nucleotides in forms C and D indicated predicted stems.
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Figure 8.5C, this treatment abolishes the cross-hybridization with non-brain RNAs.
However, this treatment does not abolish the signal from brain RNA tissue that
corresponds in length to RNA forms B�D. Similar to the RNA protection experiment,
the major RNA species is shorter than 80 nt. This indicates that the protection
pattern observed in the protection assay is due to shorter RNAs and not the result
of nucleotide editing. Unexpectedly, we observe a distinct pattern of shorter RNAs
and not a continuous smear of bands. This �nding implies that all of the estimated
MBII-52 copies are processed in a similar way, giving rise to speci�c metabolically
stable short RNAs.

To determine the identity of the novel short RNAs, we cloned the protected frag-
ments. Total mouse brain RNA was subjected to RNase protection. Subsequently,
the RNases were removed by Proteinase K treatment and phenol extraction. The
double-stranded RNA was phosphorylated using T4 kinase, and an adenylated-linker
was ligated in the absence of ATP(219). After gel puri�cation and isolation, an
adapter linker was ligated using T4 DNA ligase. The reaction was subsequently re-
verse transcribed, ampli�ed and cloned. The positive clones are shown in Figure 8.5D.
All shorter RNAs lack the sequences forming the stem of the snoRNA, but contain
the C and C′ box. The stem conveys complementarity between the snoRNA ends and
stabilizes the snoRNP. The remaining cloned RNAs are shortened from the 5′ and
3′ ends, indicating that they are generated by 3′→5′ and 5′→3′ exonuclease activity
that stops at the C and C′ boxes.

Together, these data suggest that the expression unit consisting of MBII-52 and
its �anking intron and exons gives rise to several RNAs. These RNAs include the
previously described MBII-52 snoRNA (form A), as well as shorter RNA species. The
major RNA species (form B) expressed from the MBII-52 cluster lacks the stem box,
but still contain C and D boxes.

8.2.5 MBII-52 derived RNAs do not bind to classical snoRNA-
associated proteins

As we found that the MBII-52 locus gives rise to previously not described products, we
identi�ed the proteins that associate with these RNAs. We used the a�nity between
a biotinylated 2′-O-methylated oligonucleotide and the antisense box of MBII-52 to
isolate RNAs derived from the MBII-52 locus (Fig. 8.6A). Using streptavidin beads,
we isolated the MBII-52 snoRNA particle (snoRNP) from nuclear extracts generated
from cells transfected with the MBII-52 expression construct. Nuclear extract was
generated by a scaled-down Dignam procedure(220). After washing with 100 and 200
mm NaCl, the captured material was separated by SDS�PAGE and proteins were
identi�ed by mass spectrometry and database matching. An oligonucleotide against
the snoCR of MBII-85 was used as the control. As shown in Figure 8.6B, we found
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Figure 8.6: Analysis of proteins associated with MBII-52. (A) Experimental strategy:
a biotinylated oligonucleotide is used to capture the snoRNP complex. The oligonu-
cleotide is shown as a line, the complementarity is dashed, biotin is shown as a circle.
The RNP complex (boxes) is isolated by streptavidin (half-circle)-capture from ex-
tracts expressing MBII-52 and washed in non-denaturing bu�er. The extracts were
prepared by transfecting MBII-52 expression constructs and performing Dignam mini-
extracts. (B) Silver stain of a gel with a�nity puri�ed RNPs. MBII-52: the RNPs
were isolated with a capture-oligonucleotide against MBII-52. MBII-85: the RNP was
isolated with a capture oligonucleotide against MBII-85. Proteins were determined
by mass spectrometry and are indicated. Sizes in kDa are shown in parentheses.

that hnRNPs were associated with the expressed snoRNA. Similar results were seen
with samples obtained from mouse brain nuclear extracts (data not shown). Repeated
experiments using di�erent washing and isolation methods to �nd canonical snoRNP
proteins, such as �brillarin or NOP56, in pulled-down material from MBII-52 a�nity
material failed to identify known snoRNP-associated proteins.

We determined which RNAs are present in the pulled-down material and per-
formed RNase protection. As shown in Figure 8.5A, lane 4 and 5, we found that
the isolates contained the smaller MBII-52-related RNAs, as well as the full-length
MBII-52 snoRNA. No MBII-52 RNA was pulled-down with the probe against MBII-
85, suggesting the selectivity of the pull-down.

In summary, the �ndings indicate that the shorter RNAs assemble with hnRNPs,
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but not with proteins that have previously been described to associate with C/D box
snoRNAs. Although the major RNA isoform B contains C and D boxes, structural
hallmarks of C/D box snoRNAs, the composition of the RNP formed is di�erent from
a C/D box snoRNP.

8.3 Discussion

8.3.1 The MBII-52 expression unit generates processed snoR-
NAs (psnoRNAs)

MBII-52 snoRNAs are expressed from a cluster containing multiple copies of tandemly
arranged snoRNA expression units. Each unit contains phylogenetically poorly con-
served exons that �ank an intron which hosts the snoRNA(210). Humans contain
47 HBII-52 copies and mice at least 130 copies. Using RNase protection assays,
we analyzed the mouse MBII-52 copy that is most closely related to the copy 27 of
human HBII-52 snoRNA cluster. There is enough sequence heterogeneity between
the di�erent MBII-52 snoRNA copies that allows their discrimination in protection
assays. Unexpectedly, the RNase protection assay indicates that the snoRNA gives
rise to other smaller RNAs and that the full-length C/D box snoRNA is a minor
form. The presence of the smaller RNAs could be veri�ed by northern blot analysis,
which further rules out that signals corresponding to shorter RNAs are caused by
the protection of unrelated RNAs or are caused by RNA editing events that intro-
duce mismatches to the probe. Finally, we tested ectopical expression of MBII-52
in HEK293 cells that do not express this snoRNA. The expression construct gives a
similar pattern of shorter RNAs, indicating that they are derived from the transfected
single MBII-52 expressing unit. The cloning of the shorter RNAs indicates that the
major RNA form expressed from the MBII-52 expression unit is a 73 nt long RNA
(form B) that lacks the sequences that form the snoRNA stem. However, this RNA
contains other C/D box snoRNA elements, such as the C box, D box and antisense
box. This RNA appears to be further shortened by exonuclease trimming, giving
rise to smaller RNAs. The shorter RNAs can be detected both by northern blot and
RNase protection analyses, indicating that they are metabolically stable. It is pos-
sible that these RNAs are protected from further endonuclease action by predicted
secondary structures. The RNA form D forms a 5 bp stem on its 5′ and 3′ ends and
RNA form C contains a short stem at its 5′ end (Fig. 8.5D, underlined region). In
addition, the formation of protein complexes is likely to stabilize the RNAs.

Ectopic expression of snoRNA mutants suggests that the formation of shorter
RNAs depends on intact C and D boxes, which suggests that they derive from a C/D
box snoRNA or pre-snoRNA structure. A possible scenario is that an unknown RNase
initially removes the stem of the C/D box RNA, which gives rise to the predominant
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form B. This form is stabilized by the presence of the C and D boxes, most likely by
binding to other proteins. Form B is shortened by exonucleases, giving rise to forms
C, D and E that are most likely stabilized by another stem-loop structure and/or
associated proteins.

To obtain insight into proteins associated with these novel RNAs, we isolated
them by a�nity puri�cation of RNP complexes, using a probe that is complementary
to the antisense box of MBII-52. We used nuclear extract generated by the Dignam
procedure as starting material. In this method, most of the nucleolar material is
separated in a high-speed centrifugation step. As the MBII-52-derived snoRNAs are
present in this fraction, they are most likely present in the nucleoplasm. The major
form RNA form B derived from MBII-52 does not contain the characteristic k-turn,
which most likely prevents its association to Snu13p/15.5 kDa(197). In agreement
with this RNA structure, we could not detect C/D box snoRNA-associated proteins,
such as �brillarin, or NOP56(192) in the isolated material. In contrast, we identi�ed
hnRNPs, including hnRNP A1, A2, TDP-43 and D0 that have been reported to
be involved in splice-site selection. Unexpectedly, in the pull-downed material, we
could still detect RNA forms C and D. These RNAs lack a complete snoCR that is
complementary to the pull-down probe. Relative to the starting brain material, the
RNA forms C and D are reduced in the pulled down material (compare Fig. 8.5A,
lanes 1 and 5), but are still detectable. This suggests that the di�erent RNA forms
could be present within a complex.

We propose to name these shorter RNAs psnoRNAs for processed small nucleolar
RNAs. PsnoRNAs could represent a new class of nuclear small RNAs. The psnoRNAs
described here are the �rst to be derived from C/D box snoRNAs.

8.3.2 MBII-52-derived psnoRNAs regulate splicing of several
pre-mRNAs

We previously found that the expression of the snoRNA HBII-52 promotes inclusion
of exon Vb of the serotonin receptor 5-HT2C. To investigate whether this represents
a special, unique case or is part of a new regulatory mechanism, we developed a
computational screen that predicted more than 400 putative snoRNA targets. We
tested some of these predicted targets by RT�PCR in transfection assays and further
concentrated on �ve splicing events that showed consistent dependency on MBII-52
expression. In contrast to the 5-HT2C receptor pre-mRNA, the pre-mRNAs harboring
the MBII-52-dependent exons are expressed in Neuro2A and HEK293 cells, which
allows us to determine the in�uence of MBII-52 expression on the endogenous genes.
Also in contrast to the neuron-speci�c 5-HT2C system where a splice site had to
be optimized to detect the dependency on MBII-52(191), the new alternative exons
showed the dependency on MBII-52 expression when analyzed in their endogenous
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Table 8.2: Complementarity between MBII-52 antisense box and its experimentally
con�rmed targets.

gene context.

The alternative exons were next tested in a heterologous exon trap system and
showed the dependency of MBII-52 when �anked by insulin exons that are controlled
by a CMV promoter. These experiments suggest that MBII-52 RNAs act on de�ned
parts of the pre-mRNA, in a mechanism that is independent of the promoter usage
and genomic context. Together, these data strongly suggest that MBII-52 expression
in�uences alternative pre-mRNA splicing events.

Expression of MBII-52 causes a small, but statistically signi�cant changes in mul-
tiple targets. This modest in�uence on numerous targets has been observed for other
splicing factors, such as SMN(221) and NOVA(222). Detailed work in the NOVA
system(222) suggested that a splicing factor can control biological processes by co-
ordinating numerous small changes and it is possible that MBII-52 ful�lls a similar
function. An alignment of the antisense box of MBII-52 and its experimentally con-
�rmed targets is shown in Table 8.2. The complementarity between the MBII-52
antisense box and its targets can be interrupted in multiple positions. With the ex-
ception of the serotonin receptor 5HT2C, there are always three mismatches in the
alignment of the snoCR and the MBII-52 antisense box. It is interesting that the
serotonin pre-mRNA can be edited at three positions within the snoCR. Taking these
editing events into account, the data suggest that preferably 15 of the 18 nucleotides
of the antisense box show complementarity towards its target. It is noteworthy that
we initially concentrated on targets with only one or two mismatches, but did not
�nd a dependency of these exons on MBII-52 expression. The data indicate that
MBII-52-derived RNAs need a de�ned degree of sequence complementarity towards
their targets. This scenario is reminiscent of the action of U1 snRNP on the 5′ splice
site, where natural occurring exons rarely show 100% complementarity towards the
U1 snRNA, but usually have several mismatches, which cluster in certain position of
the 5′ splice site(223).

The existence of psnoRNAs could explain the in�uence of MBII-52 expression on
splice-site selection in a model illustrated in Figure 8.7. We postulate that the MBII-
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Figure 8.7: Model for MBII-52 action on RNA processing. (1) The PWS critical region
contains snoRNAs (thick line) located in introns between non-coding exons (grey
boxes). The snoRNA is characterized by a C box (C), D box (D) and an antisense
box (AS), as well as stem-forming sequences (arrows). (2) This unit generates several
RNAs, including the full-length snoRNA that shows its highest concentration in the
nucleolus and Cajal bodies (224) as well as several shorter psnoRNAs (for processed
snoRNAs). PsnoRNAs are present in the nucleoplasm where they associate with
hnRNPs. (3) PsnoRNAs can change splice-site selection, most likely by binding to
complementary sequences. We postulate that they either remove regulatory proteins
from their targets (triangle) or bring in associated proteins to the exon recognition
complex (diamond associated with the small RNA).

52 expressing unit consisting of two non-coding exons �anking an intron that hosts
an snoRNA gives rise to several RNAs. The major form derived from the expression
unit is form B that lacks the snoRNA stem-structure and is associated with hnRNPs,
but not C/D box snoRNA-typical proteins. Form B contains the antisense box that
targets it to other RNAs, including pre-mRNAs identi�ed in this study. Form B
RNA can in�uence splice-site selection by competing with existing splicing regulatory
factors on the pre-mRNA or by bringing the associated hnRNPs to the targets, similar
to a bifunctional oligonucletide. The longest RNA (form A) has all the hallmarks of
a traditional C/D box snoRNA, but is only a minor fraction of the RNA expressed.
It is likely that this RNA is transported into the nucleolus, where it can be detected
by in situ hybridization (224). It is not clear what function this RNA has in the
nucleolus, but it could represent a storage form for the formation of the active RNA
form B that is released from the nucleolus according to the physiological needs.
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8.3.3 Relevance for PWS

The loss of C/D box snoRNA expression has been postulated as the underlying mech-
anism for the development of PWS(225). This hypothesis was recently supported by
a patient with a 174 584 bp large microdeletion that encompassed only snoRNAs and
their �anking hosting introns and exons. The deletion led to a Prader�Willi pheno-
type (201). To date, the only published RNAs expressed from the 174 584 bp region
are snoRNAs and fragments of their surrounding non-coding exons.

The idea that the loss of snoRNA expression is central to PWS is further sup-
ported by genetic evidence that ruled out proteins encoded by MKRN3, MAGEL2
and NDN genes expressed in the Prader�Willi critical region (226). The 174 584 bp
microdeletion removes the snoRNAs HBII-438A, -85 and 23 of the 47 HBII-52 copies
from the paternally expressed allele. The only snoRNA that was totally removed by
the microdeletion was MBII-85, which let to the suggestion that MBII-85 loss is the
major reason for PWS. However, there is evidence that HBII-85 and HBII-52 are ex-
pressed by two transcriptional units (211). As the 174 584 bp micordeletion contains
the 5′ end of the HBII-52 cluster, it could harbor transcriptional elements necessary
for proper HBII-52 expression. Furthermore, in the majority of cases, the complete
SNURF�SNRPN locus is deleted (200). The contribution of HBII-85 and HBII-52
loss to PWS is therefore not clear.

Our �ndings indicate that the SNURF�SNRPN locus not only gives rise to typical
C/D box snoRNAs, but generates shorter psnoRNAs. The northern blot analysis
indicates that all of the at least 130 MBII-52 copies are processed in a similar manner.
The major RNA form from the MBII-52 cluster is not the canonical C/D box snoRNA,
but a shorter RNA form, most likely similar to psnoRNA form B. psnoRNAs are
associated with hnRNPs and could have multiple functions by targeting these proteins
to other RNAs. It is not clear whether several psnoRNAs lacking the antisense box
use other RNA parts for targeting or have non-related functions.

The loss of the regulatory psnoRNAs could be a signi�cant contribution to the
etiology of PWS and substitution of the short psnoRNAs could be a therapeutic
principle for the disease.

8.4 Materials and methods

Transfection experiments were performed using Ca-phosphate method as described
(227).

The construction of reporter minigenes was done by using recombination between
pSpliceExpress, an exon-trap vector and BAC-derived PCR fragments that encom-
passed the alternative exons, as previously described (215).

Pull-down experiments were performed using Dignam-derived miniextracts (220).
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RNase protection analysis was performed using the Ambion RNase protection kit
using uniformly 32P -labeled probes.

Cloning of the psnoRNAs was performed as follows: 100 µg of total brain RNA,
isolated by the Trizol method was protected using 3 ·106 cpm of an MBII-52 antisense
probe. Hybridization was overnight. Single-stranded RNA was digested with RNase
A/T1 (Ambion, dilution 1:100) for 1 h at 37◦C and RNases were subsequently removed
by 100 µg/ml Proteinase K treatment for 1 h. Following phenol extraction and
precipitation, RNAs were separated on a 15% acrylamide, 8 m urea gel, exposed
overnight and the appropriate bands were excised, crushed, eluted overnight in 3 m
ammonium acetate/1% SDS and recovered by precipitation. The �rst RNA linker was
5′rAppCTGTAGGCACCATCAAT/3ddC. It was ligated for 2 h in a 20 µl reaction in
50 mm HEPES pH 8.3, 10 mm MgCl2, 3.3 mm DTT, 10 µg/ml BSA, 8.3 v/v glycerol
and 20 U RNA ligase. The reaction was again separated by a 15% acrylamide, 8 m
urea gel, bands excised, crushed and eluted overnight. The second RNA linker was 5′-
AmMC6/GCTCCAGAATTCGGACCCGArGrUrGrCrCrUrArCrArG. It was ligated
at 18◦C in 1× ligase bu�er using T4 DNA ligase overnight. The reaction was reverse
transcribed, PCR ampli�ed and subcloned. Positive clones were isolated using colony
hybridization and sequenced.

Primers for PCR detection were:
CRHR1:
MmNEWCRHR1F CCAGGATCAGCAGTGTGAGA;
MmNEWCRHR1R AGTGGCCCAGGTAGTTGATG;
TAF1:
TAF1NewF TCTGCGATGAAAAACTCAAAGA;
TAF1NewR TCCACATCAGAGTCACTTCCA;
DPM2:
F CAGACCAAGCAGTAGGATTT;
R ACAAACAGGAGCAGCAGGAG;
RALGPS1:
F AGTCCCCAGACACAGGAAGA;
R TCTCAGAGGCCCCTCCAT;
PB1:
F TGGCTACATTTTGTTCAGCAG;
R ATGGGGGCTACTCCTTGATT.
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Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a
sub-nuclear compartment, in which they guide ribosomal or spliceosomal
RNA modi�cations, respectively. Up until now, snoRNAs have only been
identi�ed in eukaryal and archaeal genomes, but are notably absent in
bacteria. By screening B lymphocytes for expression of non-coding RNAs
(ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for
the �rst time, the identi�cation of a snoRNA gene within a viral genome,
designated as v-snoRNA1. This genetic element displays all hallmark se-
quence motifs of a canonical C/D box snoRNA, namely C/C′- as well
as D/D′-boxes. The nucleolar localization of v-snoRNA1 was veri�ed by
in situ hybridisation of EBV-infected cells. We also con�rmed binding
of the three canonical snoRNA proteins, �brillarin, Nop56 and Nop58,
to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be cru-
cial for the stability of the viral snoRNA; its selective deletion in the
viral genome led to a complete down-regulation of v-snoRNA1 expres-
sion levels within EBV-infected B cells. We further provide evidence that
v-snoRNA1 might serve as a miRNA-like precursor, which is processed
into 24 nt sized RNA species, designated as v-snoRNA124pp. A potential
target site of v-snoRNA124pp was identi�ed within the 3′-UTR of BALF5
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mRNA which encodes the viral DNA polymerase. v-snoRNA1 was found
to be expressed in all investigated EBV-positive cell lines, including lym-
phoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle
markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By
a computational approach, we identi�ed a v-snoRNA1 homolog in the rhe-
sus lymphocryptovirus genome. This evolutionary conservation suggests
an important role of v-snoRNA1 during γ-herpesvirus infection.

9.1 Introduction

The Epstein-Barr virus (EBV), a member of the γ-herpesvirus subfamily, possesses
a large (170 to 180 kb) double-stranded DNA genome. EBV infection is etiologi-
cally linked with various cancers of the lymphoid and epithelial lineages that include
Burkitt's lymphoma (BL), Hodgkin's disease, nasopharyngeal carcinoma (NPC) and
post-transplant lymphoproliferate disease (PTLD)(228) (229)(230)(231) In vitro and
in vivo, EBV transforms normal B cells through establishment of a type III latency
during which a restricted set of viral genes is expressed (eight Epstein-Barr nuclear
antigens and two latent membrane proteins)(232). More restricted expression patterns
such as latency type II in NPC and latency type I in BL have also been characterized.
In fact, recent work on Burkitt's lymphoma has shown that a subset of these tumours
display a latency pattern intermediate between latency I and III showing that the
boundaries between the latency types are not always sharply established as initially
thought (233).

More then two decades ago, the group of J. Steitz discovered two highly abundant
170-nt long non-coding RNAs (ncRNAs) in the EBV genome, designated as Epstein-
Barr encoded RNAs (EBER1 and EBER2) (234). EBER RNAs have subsequently
been shown to bind to human ribosomal protein L22. However, no unequivocal bio-
logical functions could be assigned to EBER transcripts, up till now (235). The list
of non-coding RNAs encoded by EBV has since rapidly expanded with the recent
discovery of 25 microRNAs (miRNAs) (236; 237; 238; 239; 240; 241).

In addition to miRNAs, numerous other ncRNAs have been discovered in all three
domains of life, i.e. Archaea, Bacteria and Eukarya, as well as in various viruses
(242; 243). A large number of these ncRNA species were found to be involved in
multiple regulatory functions including cellular di�erentiation and development, chro-
matin architecture, transcription and translation, alternative splicing, RNA editing,
virulence and stress responses (191; 244; 245; 246).

Small nucleolar RNAs (snoRNAs) consist of more than 200 stable ncRNA species
in Eukarya of about 60 to 300 nt in size which are located in a sub-nuclear com-
partment, the nucleolus (192; 247). SnoRNAs guide nucleotide modi�cations within
ribosomal RNAs (rRNAs) or spliceosomal RNAs (snRNAs), i.e. 2′-O-ribose methy-
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lation or pseudouridylation, respectively. The snoRNA class has been identi�ed in
Archaea and Eukarya, but not in Bacteria, and is subdivided into box C/D and box
H/ACA snoRNAs. In Eukarya, the majority of snoRNAs is located within introns of
protein-coding genes and is processed by splicing followed by endo- and exonucleolytic
cleavage (246; 248; 249).

Each member of the box C/D snoRNA family possesses characteristic sequence
elements called box C (PuUGAUGA) and box D (CUGA), optional degenerate C′/D′

boxes and a short 5′-3′ terminal stem structure (193; 249). 10�21 nt long sequence-
speci�c antisense elements upstream of the boxes D/D′ guide the box C/D snoRNA
core proteins �brillarin, a RNA methyltransferase, Nop56, Nop58 and the 15.5 kD
protein to the target RNA. 2′-O-methylation of the ribose at the �fth nucleotide
upstream of the D/D′ box on the target RNA is carried out by the �brillarin core
protein (249). Box H/ACA snoRNAs possess a distinctive common ACA sequence
motif at their 3′-terminus and one to two stem-loop structures linked by a hinge
(the so-called H-box motif: ANANNA, with N being any nucleotide), and guide
the conversion of uridine to pseudouridine within the RNA target (250; 251). The
large number of conserved modi�cations in functionally conserved regions of rRNAs,
such as the peptidyl-transferase centre, has suggested an important role for rRNA
modi�cations in �ne-tuning the structure and/or function of rRNAs (252). It is
important to note that a signi�cant number of so-called �orphan� snoRNAs, lacking
rRNA or snRNA targets, have been identi�ed in Eukarya (253; 254).However, the
biological functions of orphan snoRNAs are still elusive.

In this study, we report, for the �rst time, the identi�cation of a functional C/D
box snoRNA within the EBV genome. We demonstrate that this viral snoRNA
exhibits all bona �de box C/D snoRNA features with respect to its processing and
expression, nucleolar localization as well as to canonical core protein binding partners.
We also provide evidence that v-snoRNA1 is processed into a 24 nt long miRNA-like
species which might target the 3′-UTR of the viral DNA polymerase mRNA.

9.2 Results

9.2.1 denti�cation of v-snoRNA1 by cDNA cloning and ex-
pression analysis

We have established an experimental strategy, designated as SHORT, to identify
viral-induced ncRNAs in cord blood lymphocytes (CBL) infected with the EBV strain
B95.8 (255). The SHORT method is based on subtractive hybridisation of ncRNA
populations of virus-infected cells from non-infected cells. NcRNAs, selectively ex-
pressed in the infected cell population, were subsequently converted into cDNAs.
Sequencing of a small number, i.e. about 500 cDNA clones, allowed identi�cation of
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Figure 9.1: Sequence and expression pro�le of v-snoRNA1.
(A) Sequences of the newly identi�ed 65 nt long v-snoRNA1 and the canonical box
C/D from snoRNA U80 used as a control are shown here. The position of C/D boxes
and C′/D′ boxes are indicated in red. (B) Northern blot analysis showing expression
of v-snoRNA1 in a panel of EBV-positive (BL2-B95.8, BL41-B95.8, LCL-B95.8, Raji,
Rael) and EBV-negative (BL2, BL41) cell lines. 5S rRNA served as internal loading
control.

several ncRNAs from the human as well as from the EBV genome whose expression
was up-regulated upon viral infection (256).

Deep-sequencing analysis of 40'000 cDNA clones from this subtracted cDNA li-
brary further extended the list of di�erentially expressed ncRNAs (257). Interestingly,
one of these sequences was represented by 95 cDNAs and exhibited all de�ning fea-
tures of canonical C/D box snoRNA sequence motifs, i.e. C, C′, D′ and D boxes
(193; 249). Crucially, this potentially novel snoRNA species mapped to the EBV
genome and was therefore designated as v-snoRNA1 (Fig. 9.1A, and see above Acces-
sion number FN376861). It is noteworthy that the canonical terminal stem-structure,
formed by the 5′ and 3′ ends of eukaryal snoRNAs, was absent in the viral snoRNA,
a feature shared with snoRNAs identi�ed from archaeal or fungal species (258; 259).
To assess expression of v-snoRNA1, northern blot analysis was performed employing
RNA from EBV-positive cell lines (Rael, Raji, BL2-B95.8, BL41-B95.8 and a LCL
generated in vitro with the B95.8 virus) or EBV-negative cell lines (BL2 and BL41;
9.1B). As expected, v-snoRNA1 could only be detected in infected cells but not in
the EBV-negative control cells. Comparison with an internal RNA marker showed
that the hybridized RNA species was 65 nt in size, which fully matched the size
suggested by the original sequence obtained by cDNA cloning (see above and Fig.
9.1B). Repeated attempts to identify v-snoRNA1-precursor transcripts by northern
blot analysis were unsuccessful (unpublished data), suggesting that they are subjected
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to rapid processing.
The v-snoRNA1 gene is located within the BamHI A rightward transcripts, known

as BARTs, on the sense strand of the viral genome and maps about 100 nt downstream
of the EBV mir-BART2 (Fig. 9.2A and 9.2B). The BARTs represent abundant RNA
species in EBV that are expressed in all latently infected EBV-B cell lines, in periph-
eral blood B cells of EBV-positive individuals and, at higher levels, in nasopharyngeal
carcinoma (260; 261). They do not encode for proteins but are processed into 22 dif-
ferent BART miRNAs (Fig. 9.2A) (241). Thereby, v-snoRNA1 as well as mir-BART2
arise from the same intron, which was found to be 4.9 kb in size in the AG876 strain
(Accession number AJ507799) (260).

BART transcripts were previously shown to be predominantly transcribed from
the P1 promoter (261). However, P2 promoter-initiated BARTs were also detected
in di�erent B-cell lines with the exception of the EBV-positive BL cell line Raji. As
shown in Fig 9.1B, v-snoRNA1 expression was veri�ed in all tested EBV cell lines,
including Raji cells, although expression levels varied considerably. In particular, v-
snoRNA1 was expressed in Raji cells at barely detectable levels. Therefore, we infer
that v-snoRNA1 transcription can be initiated at the P1 promoter but that the P2
promoter might be required to obtain full expression.

9.2.2 Co-Immunoprecipitation and FISH analysis of v-snoRNA1

To determine the sub-cellular location of v-snoRNA1 within EBV-infected cells, we
employed �uorescent in situ hybridization (FISH) with dye-labeled antisense oligonu-
cleotides complementary to v-snoRNA1. As a control, we also investigated the local-
ization of U3 snoRNA, which is known to be localized in the nucleolus (262; 263).
Examination of EBV-infected BL2 cells by confocal microscopy revealed that both
v-snoRNA1 and U3 snoRNA in fact co-localized to the nucleolus (Fig. 9.3A). In
contrast, a v-snoRNA1 hybridization signal was absent in non-infected B cells.

Canonical C/D box snoRNAs have previously been shown to bind to four snoRNA
core proteins: �brillarin, Nop56, Nop58, and the 15.5 K protein, respectively. These
proteins have previously been shown to be strictly required for RNA maturation, sta-
bilization and function (192; 264). The C/D box proteins assemble with snoRNAs
thus forming ribonucleo-protein complexes (snoRNPs) that localize to the nucleo-
lus. In order to assess whether v-snoRNA1 assembles into a canonical C/D box
snoRNP, binding of v-snoRNA1 to three of these canonical snoRNA-binding pro-
teins (�brillarin, Nop56 and Nop58) was assessed by co-immunoprecipitation using
speci�c antibodies. Immuno-precipitated samples were subsequently analyzed for
the presence of v-snoRNA1 by northern blot analysis. These assays demonstrated
that v-snoRNA1 and the canonical U81 snoRNA, used as a positive control, were
both co-immunoprecipitated with similar e�ciencies with antibodies against all three
snoRNA-binding protein (Fig. 9.3B). In contrast, none of the snoRNAs was pre-
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Figure 9.2: Schematic representation of the Epstein-Barr-virus genome.
The location of ncRNA genes, latent genes and the precise location of v-snoRNA1 is
indicated. (A) Location and transcription of EBV ncRNA genes (black lines with blue
lettering) and EBV latent genes (grey bars with black lettering). The v-snoRNA1
is indicated in red, the neighboring miRNA BART2 in orange and the viral DNA
polymerase BALF5 is depicted in green (for coding region) and brown (for 3′-UTR).
The promoters are shown in grey lines and lettering, the BARTs region as a grey
bar and the B95.8 deletion are also indicated. (B) Close-up of v-snoRNA1 location
within the 3′-UTR of the viral DNA polymerase gene. The v-snoRNA1 is located
on the sense strand about 60 nt downstream of the mir-BART2 precursor transcript
and complementary to the BALF5 3′UTR that is situated on the antisense strand.
v-snoRNA124pp is indicated in blue, other transcripts are indicated in the same colors
as described above. The black line illustrates the cleavage site of mir-BART2. Corre-
sponding EBV coordinates refer to the EBV B95.8 deletion strain (Accession number
V01555.2).
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Figure 9.3: Fluorescent in situ hybridization and Co-immunoprecipitation of v-
snoRNA1.
(A) The box C/D v-snoRNA1 (red) localizes in the nucleolus of EBV-positive BL2-
B95.8 cells. Box C/D snoRNA U3 (green) was used as a nucleolar marker. In EBV-
infected cells both v-snoRNA1 and U3 co-localize in the nucleoli. In EBV-negative
cells only U3 is expressed. The nucleus was stained with DAPI for visualization of
nuclei and the scale bar is 10 µm. (B) Co-immunoprecipitation of v-snoRNA1 with
�brillarin, NOP56 and NOP58 snoRNP proteins. Following immunoprecipitation
employing antibodies speci�c to �brillarin, NOP56 and NOP58, the v-snoRNA1 was
co-precipitated and detected via northern blot analysis. Box C/D snoRNA U81 and
5.8 rRNA were used as positive and negative controls, respectively.
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cipitated in controls without antibodies or employing an IgG-speci�c antibody. Hy-
bridization with an oligonucleotide speci�c for 5.8S rRNA was used to test for the
speci�city of the employed antibodies. Thereby, a faint, unspeci�c signal was detected
in all samples after antibody addition, except the control without an antibody. This
is likely caused by the high expression levels of 5.8S rRNA in our samples. From
these results we conclude that the newly identi�ed 65 nt long viral RNA transcript
displays all hallmark features of a genuine box C/D snoRNA.

9.2.3 v-snoRNA1 expression is strongly stimulated in the lytic
cycle

A common trait shared by all herpesviruses is their ability to infect their target
cells under several modes; cells can support lytic replication during which new virus
progeny is replicated or instead induce virus latency. Viral proteins used in both
modes are usually, but not always, distinct. We therefore assayed v-snoRNA1 ex-
pression in latently infected cells or in cells undergoing lytic replication. We took
advantage of LCLs established with viruses that are devoid of the lytic immediate
early gene BZLF1 (∆BZLF1) and therefore cannot initiate lytic replication (265)
and examined v-snoRNA1 expression in these cells by northern blot analysis (Fig.
9.4). Northern blot signals were clearly visible in these cells thereby demonstrating
that v-snoRNA1 is a latent transcript. We then performed the same experiment
with replication-competent 293/EBV-wt cells lytically induced by transfection of the
BZLF1 gene (Fig. 9.4). Comparison with non-induced cells showed that the v-
snoRNA1 expression levels were up-regulated up to 30-fold following induction (Fig.
9.4). v-snoRNA1 is therefore especially part of the EBV lytic expression program.

9.2.4 Phenotypic traits of a recombinant virus lacking v-snoRNA1

In an attempt to discover the function of v-snoRNA1 during the EBV life cycle,
we constructed a recombinant virus that lacks a functional v-snoRNA1. To this
aim, the C-box motif of v-snoRNA1 from the B95.8 strain was exchanged against
the sequence of the kanamycin resistance gene �anked by two FLP recombinase
recognition sites (Fig. 9.5A). Excision of this cassette left an unrelated bacterial
sequence containing a HindIII restriction site in place of the box C of v-snoRNA1
(Fig. 9.5A and 9.5B, lane 2). DNA from the recombinant virus was stably trans-
fected into 293 cells to generate a virus producer cell line, here referred to as 293/∆
v-snoRNA1. Multiple clones were screened for their ability to support virus repli-
cation. One of the replication-competent clones was chosen at random for fur-
ther experiments. Recombinant episomes puri�ed from this producer cell line and
transformed into E. coli cells were found to be intact as assessed by restriction
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Figure 9.4: Expression of v-snoRNA1 during latency and lytic replication.
Expression of v-snoRNA1 was investigated in LCLs infected with either the wild type
or the replication-defective ∆BZLF1 EBV strain. The expression of v-snoRNA1 in 293
cells that stably carry the EBV-wt genome was monitored before and after induction
with a BZLF1 expression plasmid. 5S rRNA was used as an internal loading control.

analysis (Fig. 9.5B, lane 3). Sequencing of the recombination site on these res-
cued episomes con�rmed exchange of the Box C against unrelated DNA TTTCCC-
GCGCCAAGCTTCAAAAGCGCTCTGAAGTTCCTATACTTTCTAGAGAATAG-
GAACTTCGGAATAGGAACTTCCAACC (EBV DNA around the insertion is in-
dicated in bold). A northern blot, performed on 293/∆v-snoRNA1 cells using a v-
snoRNA1-speci�c probe, yielded negative results while signals could be clearly identi-
�ed in the 293/EBV-wt positive control (Fig. 9.5E, left panel). We therefore conclude
that the ∆v-snoRNA1 virus is devoid of the viral snoRNA and that destruction of
the putative C box of v-snoRNA1 is su�cient to exert this e�ect.

We then conducted a series of experiments aiming at de�ning phenotypic traits
of the mutant strain. We �rst assessed the ability of the 293/∆∆v-snoRNA1 to
support viral replication. Viral titres were quanti�ed either as packaged viral genome-
equivalents (physical titres) or as green Raji units, i.e. as the concentration of viruses
able to infect the Raji cell line determined by exposure to a limiting dilution of the
viral supernatants (functional titres). Both assays revealed nearly identical titres for
both the mutant and the wild type control (Figure 5D). The ∆v-snoRNA1 viruses and
producer cell line were then examined in electron microscopy; both displayed normal
morphological features: encapsidation, primary and secondary egress were unchanged
in the absence of the viral snoRNA (unpublished data). We further evaluated viral
gene expression by western blot or immunostains (BZLF1, EA/D-BMRF1, gp350).
Again, we could not discern any di�erences between the mutant and its wild type
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Figure 9.5: Construction of a v-snoRNA1 null recombinant virus.
Continued on the next page . . .
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Figure 9.5: Construction of a v-snoRNA1 null recombinant virus (continued from the
previous page)
(A) Schematic map of the EBV genome segment that encompasses the v-snoRNA1 in
EBV-wt before and after homologous recombination with the targeting vector carry-
ing the kanamycin resistance gene �anked by �p recombinase recognition sites. The
kanamycin cassette was excised in a second step. The restriction sites for HindIII
(H3) and the expected fragment sizes after cleavage of EBV-wt and ∆v-snoRNA1
genomes with this enzyme are given. pA: polyadenylation site, kana: kanamycin.
(B) HindIII restriction fragment analysis of EBV-wt (lane 1) and ∆v-snoRNA1 mu-
tant genomes directly after construction in E. coli (lane 2) or after rescue from stably
transfected 293 cells (293/∆v-snoRNA1) (lane 3). The result is fully consistent with
the predicted restriction pattern (see A). (C) v-snoRNA1 is not required for virus
production. Titres in supernatants from cells induced to produce viruses were deter-
mined either by measuring the concentration of viral genomes or by infecting the Raji
B cell line in a limiting dilution assay. The concentration of viral genome equivalents
and infectious particles is given for wild type and ∆v-snoRNA1 viruses. Shown are
mean values from three independent experiments. (D) ∆v-snoRNA1 viruses show
intact transforming properties. Primary B cells from three di�erent normal donors
were exposed to wild type and ∆v-snoRNA1 viruses at various multiplicities of in-
fection in a limiting dilution assay in cluster plates. The percentage of wells showing
cell outgrowth is indicated. The presented results represent the average values from
three experiments with the corresponding standard deviations. (E) v-snoRNA1 is
expressed in cell lines infected with wild type EBV but not in cell lines infected with
the ∆v-snoRNA1 null-mutant. A northern blot analysis using a v-snoRNA1-speci�c
probe was performed on 293 and B cells infected with either wild type EBV or with
the ∆v-snoRNA1-null mutant. 5S rRNA served as a loading control.

counterpart (unpublished data).

We then exposed various established cell lines or primary cells to the ∆v-snoRNA1
mutant and monitored the e�ciency of infection by counting the percentage of GFP-
positive (293 cell line, primary epithelial cells) or EBNA2-positive (primary B cells)
lymphocytes three days post-infection. The rate of infection was nearly identical in
both wild type and mutant viruses (unpublished data). We �nally investigated the
transforming capacity of the mutant by performing infections of normal resting B
cells from three di�erent normal individuals at decreasing multiplicity of infections
(Fig. 9.5D). Wild type and mutant viruses both exhibited a transforming potential
that resulted in a very similar number of outgrowing cell clones. We con�rmed the
identity of the viruses present in the growing LCLs by northern blot analysis; only
LCLs generated by infection with wild type B95.8 virus expressed the snoRNA while
those infected with ∆v-snoRNA1 remained negative (Fig. 9.5E, right panel).
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9.2.5 Computational and functional analysis of v-snoRNA1

The majority of snoRNAs have been found to target rRNAs or snRNAs by guiding
ribose methylation or pseudouridinylation, respectively. In contrast, a number of
snoRNAs lack telltale complementarities to canonical targets and hence are designated
as �orphan� snoRNAs (246; 249; 254). We therefore examined 18S and 28S rRNAs for
putative v-snoRNA1 target sites using criteria established by Cavaille and Bachellerie
(193): the putative target sites were required to display at least a 7 nucleotides-long
perfect complementarity with a region that ended within 3 nucleotides of the end of
the snoRNA antisense boxes, and at most one nucleotide should be involved in a bulge
or loop (193). In particular we searched for putative target sites of the v-snoRNA1
box D antisense elements and for two potential alternative box D′ antisense elements
(see Fig. 9.6A). Using a program that was successfully used to predict targets of
bacterial ncRNAs (266) we identi�ed two putative ribose methylation site within the
18S rRNA and 23 sites within the 28S rRNA for box D′ (Tab. 9.1). However, none
of the predicted target sites coincided with known methylated nucleotides within 18S
and 28S rRNA. The same strategy applied to box D failed to reveal any putative ribose
methylation sites within rRNAs. Nevertheless, we experimentally tested the ribose
methylation status of the highest-scoring predictions for rRNA targets (Fig. 9.6B)
by primer extension analysis (267; 268). However, no methylation at the predicted
nucleotide positions C617 of human 18S rRNA and C3140 and C3152 of human 28S
rRNA was observed in EBV-infected LCL B95.8 cells (data not shown), suggesting
that v-snoRNA1 is a member of the still growing class of orphan snoRNAs.

9.2.6 Processing of v-snoRNA1 into v-snoRNA124pp: poten-
tial v-snoRNA124pp targets

In addition to full-length cDNA clones encoding v-snoRNA1, we also identi�ed nine
identical partial cDNA clones of 24 nt in size in our cDNA library derived from the
very 3′-end of v-snoRNA1 (Fig. 9.2B). Previously, two studies were able to demon-
strate processing of speci�c snoRNA species into functional miRNAs (216; 217). At-
tempts to verify expression of the 24 nt long v-snoRNA1-derived processing prod-
uct, designated as v-snoRNA124pp, by northern blot analysis with conventional DNA
oligonucleotide probes or by splinter ligation (217; 269) were unsuccessful (data not
shown). In contrast, by applying a locked nucleic acid (LNA) probe, complementary
to v-snoRNA124pp, we were able to verify its expression (Fig. 9.7). An additional
hybridization signal at 40 nt was also observed that might represent a processing
intermediate. All hybridization signals, except for full length v-snoRNA1, were only
detected in the 293/EBV-wt cells induced with BZLF1, likely due to the high expres-
sion level of v-snoRNA1 within this strain. Notably, v-snoRNA124pp was not detected
in the snoRNA knock-out strain (Fig. 9.7).
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Since the 3′-UTR of the BALF5 mRNA exhibits full complementarity to v-snoRNA24pp

(Fig. 9.8) we investigated whether it might serve as a potential target site for cleav-
age by applying a 5′-RACE approach, as previously described (270; 271). 5′-RACE
products from the predicted 3′-UTR cleavage site were ampli�ed by speci�c primers
and sequenced (Fig. 9.8). Indeed, we detected two clones corresponding exactly to a
predicted cleavage site by v-snoRNA124pp 11 nt from its 5′-end in 293/EBV-wt cells
induced with BZLF1 which exhibits highest expression levels of v-snoRNA1 Fig. 9.4
and 9.7). Remaining clones from this region exhibited shorter sequences likely due
to exonucleolytic degradation of the BALF5 mRNA following initial cleavage by v-
snoRNA124pp as described previously for plant miRNAs (270). Notably, not a single
sequence was observed that was longer than the expected size, which is indicative of
a speci�c cleavage event triggered by v-snoRNA124pp and followed by exonucleolytic
degradation. In contrast, no fragments cleaved within the 3′-UTR of BALF5 mRNA
were observed in the snoRNA knock-out strain.

9.2.7 Conservation of v-snoRNA1 in other viral genomes

The identi�cation of a snoRNA species in a viral genome raised two obvious questions:
is v-snoRNA1 conserved among the di�erent herpesvirus subfamilies or even among
several EBV strains and do v-snoRNA1 homologs exist in other virus families? This
prompted us to perform a BLAST alignment search using all available databases. This
search showed that the v-snoRNA1 sequence is 100% conserved among the tested EBV
strains (B95.8, AG876, M81, GD1, Raji). It further revealed that the distantly related
rhesus lymphocryptovirus (rLCV) genome (exhibiting an overall sequence identity of
65% with the EBV genome; Accession number NC_006146) contains a 65 base pair
sequence that shows 86% identity with v-snoRNA1 (Accession number FN376863).
In particular, the canonical D, D′ and C, C′ boxes were universally conserved as
well as antisense elements, preceding D or D′ boxes. This high degree of sequence
identity did not extend to the v-snoRNA1 �anking regions; these showed only 69%
sequence identity and were therefore clearly less conserved (Fig. 9.9A). Northern
blot analysis, employing an rLCV-speci�c antisense oligonucleotide, con�rmed that
the rLCV sequence homolog of v-snoRNA1 is actively transcribed and processed into
an RNA species of 65 nt in simian B cells (Fig. 9.9B). Despite the high degree of
sequence identity between human and rLCV v-snoRNA1s, hybridization with the
rLCV-speci�c probe did not detect its EBV counterpart. Altogether, these �ndings
strongly indicate that rLCV also encodes a box C/D snoRNA homolog to v-snoRNA1.
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Figure 9.6: Sequence motifs of v-snoRNA1 antisense elements (AE) for computational
target predictions.
(A) AE box D is indicated in blue and the two potential alternative AE for box D′

in green. (B) A list of the most likely potential rRNA targets of AE box D′ long on
the human genome is given (for the full list see Tab. 9.1). It includes the predicted
ribose methylated positions (red), alignment and score.
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Figure 9.7: Expression analysis of v-snoRNA124pp.
Northern blot analysis demonstrating expression of the 24 nt long processing prod-
uct v-snoRNA124pp, derived from v-snoRNA1, by employing a speci�c LNA oligonu-
cleotide probe in 293/EBV-wt or in 293/∆v-snoRNA1 knock-out strain cells without
or upon BZLF1 -induction. Expression of full length v-snoRNA1 (65 nt) and a po-
tential cleavage intermediate (40 nt) are also shown. 5S rRNA serves as an internal
loading control.
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Figure 9.8: v-snoRNA124pp-directed cleavage of BALF5 mRNA.
The sequence of the 3′-UTR target site within the BALF5 mRNA and the com-
plementary v-snoRNA124pp derived from v-snoRNA1 are shown. The predicted v-
snoRNA124pp-directed cleavage site according to cDNA sequences obtained from 5′-
RACE is indicated by an arrow. cDNA sequences from 5′-RACE are shown at the
bottom.
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9.3 Discussion

Herpes virus genomes carry numerous cellular gene homologs (272). Many of these
genes encode house keeping proteins but others serve more specialized functions e.g.
within the host immune system. This is particularly true of γ-herpesviruses whose
genomes encode homologs of cytokines (e.g. CSF-1 and IL10 for EBV, IL6 for Ka-
posi's sarcoma-associated herpesvirus (KSHV) or of anti-apoptotic mediators (e.g.
BCL2 in EBV and KHSV). These striking homologies between a virus and a cellular
genome were reinforced by the discovery that herpesviruses encode multiple miRNA
clusters. Here we report that herpesviruses and their host share yet another funda-
mental ncRNA species.

Deep-sequencing analysis of a subtracted cDNA library that was constructed to
speci�cally identify transcripts expressed in EBV-infected B cells allowed discovery
of a viral transcript that exhibited all de�ning features of a C/D box snoRNA. In-
deed, v-snoRNA1 comprises canonical C/C′ as well as D/D′ boxes. It is of note
that v-snoRNA1 is lacking the canonical terminal stem-structure usually encountered
in eukaryal snoRNAs. In this respect, v-snoRNA1 appears to be closer to snoRNA
species previously identi�ed in fungi or in the domain of Archaea (258; 273). In addi-
tion to the EBV-encoded v-snoRNA1, the genome of the Herpesvirus saimiri (HVS),
a member of the γ-herpesvirus family, was recently reported to encode seven small
nuclear RNAs (274; 275). Thereby, in latently infected HVS-transformed T cells, the
Herpesvirus saimiri U RNAs (HSURs) represent the most abundant viral transcripts.
Similar to EBERs, HSURs are not essential for viral replication or transformation,
but are involved in the activation of speci�c genes in virus-transformed T cells during
latency (274).

v-snoRNA1 was found to be expressed in all samples of a panel of EBV-positive cell
lines that included several BLs and in particular the latency I Rael cell line, LCLs
and the 293/EBV-wt producer cell line (Fig. 9.1). Detection of reduced levels of
v-snoRNA1 in LCLs, generated with the BZLF1-null virus that therefore cannot un-
dergo lytic replication, demonstrated that v-snoRNA1 is an integral part of the EBV
latent transcription program (Fig. 9.4). However, expression levels of v-snoRNA1 in-
creased signi�cantly up to 30-fold upon induction of the lytic replication cycle. This
is consistent with a model that v-snoRNA1 serves, presumably di�erent, functions in
both the latent and the lytic mode of infection.

Three �ndings demonstrated that v-snoRNA1 is likely to represent a fully func-
tional ncRNA species. v-snoRNA1 was found to co-localize with canonical snoRNA to
the nucleolus (Fig. 9.3). Furthermore, we could show that v-snoRNA1 assembles into
a canonical snoRNP that at least includes the �brillarin, Nop56 and Nop58 proteins.
Finally, selective destruction of the C box resulted in a complete down-regulation of
steady state levels of v-snoRNA1 (Fig. 9.5E). This is consistent with previous work
that ascribed an essential role in the regulation of the stability of snoRNA to this
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sequence motif (247; 276; 277).
v-snoRNA1 could be localized to the BARTs region which follows a complex splic-

ing pattern and also encodes a cluster of non-coding miRNA genes (Fig. 9.2). v-
snoRNA1 was located outside the putative BARTs open reading frame and is there-
fore, as previously observed for canonical eukaryal snoRNAs, likely processed from
an intron. The BARTs transcripts can be initiated from two promoters P1 and P2
(261). Analysis of v-snoRNA1 expression levels showed a large degree of variation
within the tested cell lines, as was also observed for EBV's miRNAs (278). In princi-
ple, this could be related to the highly variable virus copy numbers among di�erent
EBV-positive cell lines. Alternatively, it may be related to the propensity of some of
these cell lines to undergo lytic replication. The low expression levels of v-snoRNA1
in Raji are probably due to an inactive BART P2 promoter; this suggests that the
P2 promoter initiates most of the v-snoRNA1 transcripts.

The discovery of a snoRNA in a Herpesvirus genome prompted us to search for
homologs in other viral or cellular genomes. This search revealed that the v-snoRNA1
is strictly conserved across �ve distinct EBV strains. It further led to the identi�cation
of a transcript within the rLCV genome that displays a high degree of homology
to v-snoRNA1. This genetic element comprises perfectly conserved canonical C/D
and C′/D′ boxes and was expressed in a simian LCL which suggests that rLCV
also encodes a snoRNA. Discovery of a v-snoRNA1 homolog in rLCV is not entirely
unexpected; rLCV is the closest EBV relative as both genomes exhibit 65% sequence
identity and, therefore, display more than 80% sequence identity for protein-coding
genes and ncRNA genes. Indeed, seven rLCV miRNA were found to be closely related
to their EBV counterparts (238). The relatively crude approach (BLAST) we initially
took failed to reveal further v-snoRNA1 relatives; we nevertheless consider that this
question is still open and hope that our work will stimulate research in this direction.

The strict conservation of v-snoRNA1 domains within various EBV strains and
among evolution strongly suggests that this element serves an essential role in the
natural history of EBV infection. We therefore initiated a series of experiments
that aimed at de�ning potential functions of v-snoRNA1. We thereby combined
a computational with an experimental approach to determine putative ribosomal
or spliceosomal RNA targets for v-snoRNA1 using previously identi�ed criteria (see
section 9.2). However, both attempts failed to identify any obvious rRNA candidates.
Hence, v-snoRNA1 can be assigned in all probability to the class of so-called �orphan�
snoRNAs that lack rRNA or snRNA targets (see below).

Another strategy to discover the function of v-snoRNA1 consisted in constructing
a v-snoRNA1-null mutant and de�ning its phenotypic traits using well-characterized
in vitro assays. As of now, the ∆v-snoRNA1 mutant remained indistinguishable from
its wild type counterparts in terms of lytic replication, infection and B cell transforma-
tion (Fig. 9.5). However, this does not exclude that v-snoRNA1 serves an important
function during the virus life cycle; unraveling miRNAs contributions to EBV infec-
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tion has also proven a di�cult enterprise. Aside from a few notable exceptions such
as miR-BART5 and miR-BART2 that respectively target the cellular gene PUMA
(279) and the viral gene BALF5 (280) or the BART cluster 1 and BHRF1-2 that
respectively modulate LMP1 expression and BHRF1 mRNA processing (281; 282),
the essential functions served by these ncRNAs remain unclear. Indeed, the B95.8
strain that lacks a large number of miRNAs perfectly replicates and immortalizes
primary B cells with high e�ciency.

Recently, speci�c snoRNA species have been characterized as miRNA precursors,
which are processed to mature miRNAs and assemble into a functional RNA induced
silencing complex (283; 284). Indeed, by deep-sequencing we identi�ed nine iden-
tical cDNA clones of 24 nt in size, that mapped to the very 3′-end of v-snoRNA1.
The expression of v-snoRNA124pp was veri�ed by northern blot analysis employing a
speci�c LNA oligonucleotide antisense probe (Fig. 9.7). Thereby, the hybridization
signal was especially apparent in 293/EBV cells induced by BZLF1, which results in a
30-fold up-regulation of v-snoRNA1 expression; the hybridization signal was absent,
however, in non-induced wild type cells. This could be explained by lower v-snoRNA1
expression levels in non-induced 293/EBV cells, compared to BZLF1 -induced cells
(Fig. 9.7),resulting in reduced processing of v-snoRNA124pp below the northern blot
detection limit. Alternatively, this �nding could result from preferential processing
of v-snoRNA1 into v-snoRNA124pp during lytic replication.

Subsequently, by a 5′-RACE approach we also investigated a potential target for
snoRNA124pp. Since the RNA species maps in antisense orientation to the 3′-UTR
of the BALF5 mRNA, which encodes the viral DNA polymerase, BALF5 mRNA
might represent a likely target site. As has been shown previously, the 3′-UTR of
the BALF5 mRNA encodes in antisense orientation, in addition to v-snoRNA124pp, a
bona �de EBV miRNA, designated as mir-BART2. Thereby, it has been reported that
mir-BART2 down-regulates the mRNA levels by cleavage within the BALF5 3′-UTR
(280). According to the proposed model, mir-BART2 thereby inhibits the transition
from latent to lytic viral replication. By 5′-RACE analysis, we provide evidence
that v-snoRNA124pp might also target BALF5 mRNA for cleavage and subsequent
degradation. In contrast to mir-BART2, however, expression of v-snoRNA124pp was
only apparent upon induction of the viral lytic cycle by BZLF1 (Fig. 9.7). Future
experiments will focus on the function of v-snoRNA1 and v-snoRNA124pp especially
in respect to its function in the latent and lytic cycles of EBV infection.
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9.4 Parts of Materials and Methods

9.4.1 Computational prediction of target sites in rRNAs

We predicted putative rRNA target sites for the snoRNAs in this study as follows.
We �rst downloaded from Genbank the sequences of the human 18S (Accession
NR_003286) and 28S (Accession NR_003287) rRNAs. The sequences of the antisense
D-box (TGACGAAATCGGTTGAGATT) and D′-box (TGACAACCGCGGCTGT)
were used to search for subsequences with good complementarity to the rRNAs with
the program described in Mandin P et al. (266). As the study of Cavaille & Bachel-
lerie (193) indicated that snoRNA-rRNA interactions involve regions of at least 7
nucleotides complementarity that are located at most 3 nucleotides from the end of
the snoRNA antisense box, and that bulges and loops of more than 1 nucleotide are
disfavored, we implemented these constraints in our programs. That is, we �rst used
relatively large penalties for the introduction and extension of bulges and loops (a
score penalty of 8), and we restricted the maximum size of loops and bulges to 1
nucleotide. The energy parameters of nucleotide-nucleotide interactions were kept
with their default values coded in the program. We then extracted only hybrids that
contained at least 7 nucleotide-nucleotide pairs, that ended within 3 nucleotides of
the end of the antisense box, and that did not contain more than one bulge or loop.

Accession numbers

v-snoRNA1: FN376861; BZLF1: NC_007605.1; 18S rRNA: NR_003286; 28S rRNA:
NR_003287; Epstein-Barr-Virus genome, strain AG876: AJ507799; Rhesus lym-
phocryptovirus genome: NC_006146
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Table 9.1: Potential target site of 18S and 28S rRNA complementary to v-snoRNA1

18S target predictions: box-D' long TGACAACCGCGGCTGT

Homo sapiens 18S ribosomal RNA-w617; Score=227; snoRNA start=6; snoRNA end=16

target start=617 target end=627

ncRNA: TGTCGGCGCCA

hybrid: |||||||||||

target: GCAGCCGCGGT

Homo sapiens 18S ribosomal RNA-w873; Score=131; snoRNA start=5; snoRNA end=14

target start=873 target end=883

ncRNA: TC.GGCGCCAA

hybrid: || ||||||||

target: GGACCGCGGTT

28S target predictions: box-D' short TGACAACCGCGG

Homo sapiens 28S ribosomal RNA-w2688; Score=130; snoRNA start=5; snoRNA end=12

target start=2688 target end=2695

ncRNA: GGCGCCAA

hybrid: ||||||||

target: TCGCGGTT

28S target predictions: box-D' long TGACAACCGCGGCTGT

Homo sapiens 28S ribosomal RNA-w3536; Score=181; snoRNA start=5; snoRNA end=14

target start=3536 target end=3545

ncRNA: TCGGCGCCAA

hybrid: ||||||||||

target: GGCCGCGGTT

Homo sapiens 28S ribosomal RNA-w3498; Score=156; snoRNA start=7; snoRNA end=14

target start=3498 target end=3505

ncRNA: TCGGCGCC

hybrid: ||||||||

target: GGCCGCGG

Homo sapiens 28S ribosomal RNA-w3140; Score=155; snoRNA start=7; snoRNA end=16

target start=3140 target end=3150

ncRNA: TGTCGGC.GCC

hybrid: ||||||| |||

target: GCGGCCGCCGG

Homo sapiens 28S ribosomal RNA-w3152; Score=155; snoRNA start=7; snoRNA end=16

target start=3152 target end=3162

ncRNA: TGTCGG.CGCC

hybrid: |||||| ||||

target: GCGGCCGGCGG

Homo sapiens 28S ribosomal RNA-w2926; Score=149; snoRNA start=7; snoRNA end=16

target start=2926 target end=2934

ncRNA: TGTCGGCGCC

hybrid: || |||||||

target: GC.GCCGCGG
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Homo sapiens 28S ribosomal RNA-w4704; Score=149; snoRNA start=7; snoRNA end=16

target start=4704 target end=4712

ncRNA: TGTCGGCGCC

hybrid: || |||||||

target: GC.GCCGCGG

Homo sapiens 28S ribosomal RNA-w2685; Score=142; snoRNA start=5; snoRNA end=16

target start=2685 target end=2695

ncRNA: TGTCGGCGCCAA

hybrid: || |||||||||

target: GC.GTCGCGGTT

Homo sapiens 28S ribosomal RNA-w845; Score=138; snoRNA start=6; snoRNA end=16

target start=845 target end=855

ncRNA: TGTCGGCGCCA

hybrid: ||||| |||||

target: GCGGCGGCGGT

Homo sapiens 28S ribosomal RNA-w2275; Score=138; snoRNA start=6; snoRNA end=16

target start=2275 target end=2285

ncRNA: TGTCGGCGCCA

hybrid: || ||||||||

target: GCCGCTGCGGT

Homo sapiens 28S ribosomal RNA-w3273; Score=138; snoRNA start=9; snoRNA end=16

target start=3273 target end=3280

ncRNA: TGTCGGCG

hybrid: ||||||||

target: GCGGCCGC

Homo sapiens 28S ribosomal RNA-w3372; Score=138; snoRNA start=6; snoRNA end=16

target start=3372 target end=3382

ncRNA: TGTCGGCGCCA

hybrid: ||||| |||||

target: GCGGCGGCGGT

Homo sapiens 28S ribosomal RNA-w4878; Score=138; snoRNA start=9; snoRNA end=16

target start=4878 target end=4885

ncRNA: TGTCGGCG

hybrid: ||||||||

target: GCGGCCGC

Homo sapiens 28S ribosomal RNA-w3256; Score=134; snoRNA start=7; snoRNA end=15

target start=3256 target end=3264

ncRNA: GTCGGCGCC

hybrid: |||||||||

target: CAGCTGCGG
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Homo sapiens 28S ribosomal RNA-w2102; Score=123; snoRNA start=8; snoRNA end=16

target start=2102 target end=2111

ncRNA: TGTCG.GCGC

hybrid: ||||| ||||

target: GCGGCGCGCG

Homo sapiens 28S ribosomal RNA-w3131; Score=123; snoRNA start=8; snoRNA end=14

target start=3131 target end=3137

ncRNA: TCGGCGC

hybrid: |||||||

target: GGCCGCG

Homo sapiens 28S ribosomal RNA-w241; Score=122; snoRNA start=8; snoRNA end=16

target start=241 target end=250

ncRNA: TGTCGG.CGC

hybrid: |||||| |||

target: GCGGCCGGCG

Homo sapiens 28S ribosomal RNA-w857; Score=122; snoRNA start=7; snoRNA end=16

target start=857 target end=866

ncRNA: TGTCGGCGCC

hybrid: ||||| ||||

target: GCGGCGGCGG

Homo sapiens 28S ribosomal RNA-w1865; Score=122; snoRNA start=7; snoRNA end=16

target start=1865 target end=1873

ncRNA: TGTCGGCGCC

hybrid: || |||||||

target: GC.GCTGCGG

Homo sapiens 28S ribosomal RNA-w2140; Score=122; snoRNA start=7; snoRNA end=16

target start=2140 target end=2149

ncRNA: TGTCGGCGCC

hybrid: ||||| ||||

target: GCGGCGGCGG

Homo sapiens 28S ribosomal RNA-w3469; Score=122; snoRNA start=7; snoRNA end=16

target start=3469 target end=3478

ncRNA: TGTCGGCGCC

hybrid: ||||| ||||

target: GCGGCGGCGG

Homo sapiens 28S ribosomal RNA-w4013; Score=122; snoRNA start=6; snoRNA end=14

target start=4013 target end=4022

ncRNA: TCGGC.GCCA

hybrid: ||||| ||||

target: GGCCGCCGGT

Homo sapiens 28S ribosomal RNA-w488; Score=121; snoRNA start=7; snoRNA end=16

target start=488 target end=496

ncRNA: TGTCGGCGCC

hybrid: |||||| |||

target: GCGGCC.CGG
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Conclusions

By a computational and experimental approach we have extended the list of tran-
scripts regulated by MBII-52 by �ve new members. By RT-PCR in transfection
assays we have shown that the splicing events are consistently dependent of MBII-52
expression. Moreover, using a heterologous exon trap system which helps to separate
splice events from the genomic context of the gene, we have proven that MBII-52
RNAs act on de�ned parts of the pre-mRNA in a mechanism that is independent of
the promoter usage.

Interestingly, all the functional hybrid structures between MBII-52 and its targets
contain three mismatches. Prior to testing these targets, we have focused on the
predictions with one or two mismatches, but failed to observe a dependency of these
exons on the MBII-52 expression.

We could con�rm in various ways the presence of processed forms of snoRNAs
lacking sequences which form the snoRNA stem. This form appears to be further
shortened giving rise to smaller RNAs. We hypothesize that an unknown RNase
initially removes the stem of the C/D box snoRNA. This dominant form might be
stabilized by binding to other proteins. This form subsequently is shortened by ex-
onucleases, and the resulting forms are stable, either stabilized by secondary structure
formation or by other proteins.

In addition to MBII-52, we have analyzed, in a similar fashion a more diverse
cluster of snoRNAs (MBII-85) coming from a neighboring locus. Given hundreds
of putative target sites in the transcriptome, it was impossible to test a substantial
fraction of them. Yet, our e�ort targeted to manually selected subset of these did not
result in con�rmation of any signi�cant splicing form alternations. It is not unlikely
that this cluster has a di�erent function which still needs to be discovered.

By deep sequencing of a library of ncRNAs selectively expressed in EBV-infected
cells we have identi�ed sequences which exhibit the de�ning features of box C/D
snoRNA. This potentially novel snoRNA species mapped to the EBV genome and was
therefore designated as v-snoRNA1. Subsequently, we have shown that v-snoRNA1 is
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a present in the latent transcriptome, however is 30-fold upregulated upon induction
of the lytic replication cycle. The following analysis has shown nucleolar localization
of v-snoRNA1 and snoRNP formation with the canonical partner proteins: �brillarin,
Nop56 and Nop58.

The combined computational and experimental approach failed to determine any
putative ribosomal or spliceosomal RNA targets for v-snoRNA1, thus it can be classi-
�ed to a substantial group of �orphan� snoRNAs. The exact function of (unprocessed)
v-snoRNA1 remains unknown as the ∆v-snoRNA1 mutant we constructed did not
show any obvious phenotypic traits.

By deep sequencing we have shown, however, that v-snoRNA1 gives rise to a
shorter product, 24 nt in size, that maps to the very 3'-end of the v-snoRNA1. This
processing product could only be observed during lytic replication. Since this RNA
species maps in the antisense orientation to the 3'-UTR of the BALF5 transcript
(which encodes the viral DNA polymerase), we postulate that the processing product
functions as miRNA.

A common feature of v-snoRNA1 and the dominant form B of MBII-52 is the lack
of the canonical terminal stem-structure, which is usually encountered in eukaryal
snoRNAs. Given that both snoRNAs are evolutionarily conserved and functional
(MBII-52) or most likely functional (v-snoRNA1), we hypothesize an existence of
common processing steps, which might be also apply to a broader subclass of the
�orphan� box C/D snoRNAs.
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