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1 Introduction and Basics 

 

1.1 Structure and Function of Deoxyribonucleic Acid (DNA) 

 

1.1.1 The Molecular Structure of DNA 

 

Carrying the hereditary information of all living cells, DNA came into the researchers’ focus 

in the early 1950s, when its molecular structure was elucidated.[1] In 1953, Watson and Crick 

succeeded in interpretating an X-ray scattering pattern of native DNA, and, together with 

previous results, proposed its structure to be a right-handed, double-stranded helix.[2] DNA is 

built up of monomeric units called nucleotides. A nucleotide consists of three molecular 

fragments: sugar, heterocycle, and phosphate. The sugar, or deoxyribose, is in a cyclic, 

furanoside form and is connected by a β-glycosyl linkage with one of four heterocyclic bases 

to produce the four normal nucleosides: adenosine, guanosine, cydidine, and thymidine. In 

DNA, the nucleosides are linked by 3',5'-phosphodiester bonds to form a linear polymer. 

Specific, hydrogen-bonded base-pairs of adenine with thymine (A−T) and guanine with 

cytosine (G−C) (Figure 1.1) are stacked like rolled coins at 3.4 Å distance (pitch). Right-

handed rotation of approximately 36° between adjacent base-pairs produces a double helix of 

two antiparallel strands with 10.5 base-pairs per turn and 20 Å diameter. The arrangement of 

the two strands generates two grooves of similar depth but different width along the double 

helix, denominated as the minor and major grooves. (Figure 1.2).[3] 
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Figure 1.1. Hydrogen-bonded base-pairs after Watson and Crick 
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Figure 1.2. Three-dimensional structure of B-DNA 

 

 

There are numerous secondary structures of DNA, which depend upon of the environment 

and base sequence. They differ in density, diameter and helical structure. The most common 

DNA secondary structures are the A-, B-, or Z-types (Figure 1.3), of which the B-type is the 

most commonly found in living cells. For example, a poly(G)−poly(C) sequence preferably 

forms an A-type helix in a low-water environment. For a defined sequence, A-DNA is shorter 

and has a wider diameter than the corresponding B-DNA.[4,5] In high-salt environment, 

poly(G−C) sequences preferably form Z-DNA, which is also features two antiparallel strands, 

but in opposite direction, which leads to a left-handed helix.[6] There has been considerable 

discussion about the conformation of poly(A)−poly(T) sequences, which form a different 

helix type called B'-DNA. This will be discussed in Chapter 8.[7] 
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Figure 1.3. Space-filling structures of A-, B-, and Z-DNA 

 

 

1.1.2 Stability of the DNA Double Helix 

 

There are several independent stabilizing effects, which occur depending on the environment 

and the sequence of the DNA strand. Its three-dimensional structure shows a much wider 

variety than initially proposed by Watson and Crick. The rotation angle between adjacent 

bases, the position of the helical axis, or the “propeller twist” (the twist angle between the π-

system planes of two hydrogen-bonded bases) provide additional stability to the double 

helix.[3] The propeller twist enables a more compact base stacking which contributes to the 

stability of the double helix.[8] The hydrogen bonds contribute 15−25 kJ mol−1 and 25−40 kJ 

mol−1 per base-pair to the stabilization for A−T and G−C pairs, respectively.[9] The stacking of 

the aromatic bases yields another contribution to the helical stability, by means of the partial 

overlap of the π-systems of two neighbouring bases. For two π-stacked bases, gas-phase  
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quantum-chemical calculations by Šponer and co-workers yielded a stabilization energy of 

10−30 kJ mol−1 per base-pair, for an idealized B-DNA structure.[10] In a neutral aqueous 

solution, a stabilization energy of 2−8 kJ mol−1 was calculated.[11] In addition, the negatively-

charged phosphate backbone is strongly solvated in water.[12] 

 

 

1.1.3 DNA as Carrier of Hereditary Information 

 

The genetic code of all living organisms is stored in the DNA, long chain molecules of 

numerous stacked building blocks, which in eucaryotic cells are located in the nucleus of the 

cell. The hereditary information is generated through the sequence of the four nucleobases, 

like a text which contains a distinctive sequence of four different letters. A gene is a section of 

a DNA chain, which delivers the information about the amino acid sequence of one protein. 

At the translation process, the genetic information is translated from the “language” of nucleic 

acids, whose alphabet contains only four letters, into the “language” of proteins, which 

comprises 20 different letters (amino acid building blocks). This translation is achieved by the 

genetic code, whose decoding has caused a decisive breakthrough in the understanding of 

living processes.[13] As they are self-complementary, the two antiparallel DNA strands can 

both serve separately as templates for the replication of the genetic code, achieved by 

template-directed synthesis of a new complementary strand. The universality of the genetic 

code (“language of life”) from prokaryotes up to humans, points towards the relationship of 

all known livings and their joint origin in an intelligent creation.[14] 

 

 

1.2 Damaging Processes to DNA  

 

1.2.1 Physical and Chemical Mutagenesis  

 

X-rays and nuclear radiation (α-, β-, γ-rays, n) are ionizing, and hence can generate reactive 

radicals in biological systems. Generally, the increase of recessive lethal mutations in DNA is  
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directly proportional to the radiation dose, and shows that a mutation usually results from one 

single hit of ionizing radiation. [15] 

Short-wave ultraviolet light (UV−A) is mutagenic, especially for bacteria. In higher 

organisms, its effect is limited to the skin, due to its poor penetration through tissue. At 260 

nm, the absorption maximum of DNA, its mutagenic effect is maximal. The main mutagenic 

effect of UV radiation is the formation of dimers of two neighbouring thymines, which inhibit 

DNA synthesis.[13] “Photoreactivation” is one known repair process for thymine dimers. 

Interestingly, this enzymatic reaction depends upon UV light of 310−400 nm wavelength.[16] 

Enzymatic excision of thymine dimers, followed by insertion of new monomers, or long-

range charge transfer through DNA is another possible pathway of thymine dimer repair, as 

shown by the groups of Barton[17] and Giese.[18] 

High temperature and especially low pH values, lead to depurination of DNA. The purine 

bases are hydrolytically cleaved off the deoxyribose backbone. With the next DNA 

replication, the missing bases are replaced by random bases, or the strand is cleaved by 

phosphate elimination.[19] 

Numerous chemicals show direct or indirect mutagenity (via metabolically generated 

derivatives). Three main classes of direct chemical mutagens are common: modifying/ 

alkylating, base analogs, and intercalating substances.[13] 

 

 

1.2.2 Oxidative Stress  

 

Mainly through the mitochondrial process of oxidative phosphorylation, involving  enzymes 

NADPH oxidase and cytochrome P450 oxidase, reactive oxygen species (ROS) are 

permanently generated within the cell. ROS include the hydroxyl radical (HO•), the 

superoxide radical (O2
− •), as well as hydrogen peroxide (H2O2) and singulet oxygen (1O2). 

Their concentration is regulated by several proteins such as superoxide dismutase (SOD), 

catalase (CAT), and the glutathione reductase (GPx). For example, SOD converts O2
− • to 

H2O2, which is then reduced to H2O and O2 by CAT. There are also several antioxidizing 

cofactors like glutathione, or the vitamins A, C, and E.[20] If there is an excess of ROS in the  
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cell, for example by underregulation, the cell suffers from “oxidative stress”, which poses a 

chemical threat for lipids, proteins and DNA.[13,21] 

One of the main targets of these oxidants is the nucleobase guanine, because it has the lowest 

oxidation potential (+1.49−1.58 V vs. NHE) of the four DNA bases.[22] In the first step of this 

process, the guanine radical cation 2 is generated, and subsequently either reacts with water to 

form 8-hydroxyguanine 4 or 8-oxoguanine 5, or deprotonates to form a neutral radical, which 

reacts with oxygen to the products 2-amino-imidazolone 8, as well as 2,2-diamino-oxazolone 

9 (Scheme 1.1).[23] There are several other pathways of formation of 8-oxoguanine 5, e.g. via 

direct addition of a hydroxyl radical at position 8, or by a [2+4]-cycloaddition of singulet 

oxygen to the imidazole moiety of guanine, followed by ring opening and reduction ot the 

intermediary endoperoxide 1.[24] Under anerobic conditions, it was found that 8-oxoguanine 5 

is preferably formed, whereas under atmospheric conditions, mainly the imidazolone 8 and 

oxazolone 9 are formed.[25] 
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In the replication process, 8-oxoguanine 5 is no longer recognized as guanine, which leads to 

the insertion of adenine instead of cytosine into the newly synthesized complementary strand. 

Following another replication, a G−C → A−T transversion mutation results (Figure 1.4).[26] 
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Figure 1.4. Transversion of a base-pair, caused by oxidative damage of a guanine base 

 

 

Studies over the past decade have shown that DNA is capable of long-range charge 

transfer.[27-30] The thermodynamic driving force for this process is the dependence of the 

guanine oxidation potential upon the DNA sequence. The oxidation potential of guanine is 

lowered by a maximum of 0.7 V within the series G > GG > GGG.[31] Hence, more damage is 

to be expected in guanine-rich regions of DNA. Many GG units have been found within the 

p53 tumor suppressor gene and the H-ras proto-oncogene, thus suggesting that these genes 

should show a higher susceptibility for mutations, and thus play a crucial role in the 

development of cancer for an affected organism.[32] However, in the case of the GG and GGG 

units being preferably located outside the encoding regions of the DNA, such sequences may 

offer the possibility of a guanine radical cation repair by long-range electron transfer (ET) 

(Figure 1.5).[33] Non-encoding, guanine-rich sequences are found at the ends of eucaryotic 

chromosomes, and such sequences are called telomers.  For example, in human telomeric 

DNA, the sequence 5'-TTAGGG-3' is repeated dozens or thousands of times and several 

genes possess guanine-rich sequences outside the encoding area.[34,35] These poly(G−C)  
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domains are sinks for the positive charge and may serve as a cathodic corrosion protection for 

essential gene sequences.[36] 

 

 

 

Figure 1.5. Oxidation of a G in the encoding area and the transport of the 

positive charge into a G-rich sequence in the non-encoding area. 

 

 

1.2.3 DNA Strand Cleavage 

 

Single- or double-strand cleavage caused via deoxyribose radicals is another critical hazard to 

DNA. In eucaryotic cells, it takes about 40 to 50 strand breaks for a lethal incident, in case the 

enzymatic repair mechanism (DNA-Ligase) is defective or missing.[37] Reactive oxygen 

species (ROS) are capable of abstracting any of the seven hydrogen atoms from the 

deoxyribose moiety. The five possible deoxyribose radicals generate reactive intermediates 

which normally lead to strand cleavage. However, the C-4' radical is the only known 

furanosyl radical which leads to strand cleavage under anaerobic conditions.[38] Abstraction of 

a hydrogen atom at the 4'-position of deoxyribose in DNA 10 by a ROS leads to radical 11,  
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which undergoes a heterolytic β-elimination to form the 5'-phosphate 12 and the reactive 

deoxyribose radical cation 13 (Scheme 1.2). 

 

Scheme 1.2 
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Due to having a phosphate substituent as a leaving group, and due to the formation of a more 

stable secondary carbocation, initial 3'-cleavage is favoured and proceeds at a 15 times faster 

rate than 5'-cleavage.[38] Water addition to C-3' of 13, followed by a second β-elimination, 

leads to formation of 3'-phosphate 15 and deoxyribose radical cation 16. As enol ether radical 

cations are known to be strong oxidants,[39] radical cation 13 is a suitable electron acceptor for 

studying electron transfer reactions in DNA.[40] 
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1.3 Electrical Conductivity or Long-Distance Redox Chemistry in DNA? 

 

1.3.1 A Controversy 

 

In 1962, Eley and Spivey suggested that DNA may provide an efficient one-dimensional π-

way charge transport.[41] However, it took years until methods for synthesis and probing of  

custom DNA sequences were developped. Both extremes, DNA as an insulator or as a 

molecular wire, were initially supported by theoretical assays.[42] In 1993, an experiment by 

attention of Turro, Barton and co-workers brought the question of the conductivity of DNA 

back to the researchers.[43] They reported a photoinduced electron transfer in DNA between 

two metal complexes, where the electrons moved over a distance of approximately 40 Å at a 

rate of 109 s−1, from which they concluded that DNA acts as a molecular wire. Intercalating 

metal complexes were attached at both ends of a 15mer double-stranded DNA. A 

ruthenium(II) and a rhodium(III)-complex served as electron donor and acceptor, 

respectively. The intercalating rhodium complex quenched the fluorescence of the ruthenium 

complex, which was interpretated to be due to electron transfer, because the fluorescence 

persisted in the absence of intercalating agents. Their quantitative results were queried[44] due 

to the limitations of the experimental setup. The reported shallow distance dependence (β < 

0.2 Å−1; see Chapter 1.3.2) was in contrast to other reports of DNA-mediated ET, which did 

not observe a similarly shallow distance dependence, thus demonstrating that long-range ET 

in DNA or proteins and saturated hydrocarbons is not a general phenomenon.[45,46] The results 

from different assays remained contradictory[47] and the conclusions ranged from seeing DNA 

as an insulator[48] to either considering DNA as a conducting material behaving in accordance 

to Ohm’s law[49] or as a large-bandgap semiconducting material with nonlinear current-

voltage behaviour.[50] However, all these electrical measurement setups lacked an essential 

experimental feature: in order to avoid two large-bandgap barriers due to non-covalent 

attachment of both ends of the DNA strand, its covalent bonding to the electrodes by a 

conjugated π-system is mandatory. If this is not performed the experiment will mainly or 

exclusively show the electric behaviour of these barriers.[51] 
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Barton and co-workers finally provided a proof for long-range ET through DNA by an 

experiment in which they observed the repair of a thymine dimer by long-range hole transfer, 

triggered by photoreduction of an intercalating rhodium(III) complex.[17] 

The nature of electric conductivity of DNA is still to be elucidated, as the reports remain 

contradictory and no experiments have yet been achieved, which do not contain limitations in 

their the experimental setups. So far DNA has been proven to at least enable long-range redox 

chemistry. Furthermore, all these reports have shown that the data obtained is crucially 

depending on the experimental setup and that the results obtained are strongly dependent on 

the nature of the charge injection assay.[52] In conclusion, for building models of charge 

transfer in DNA, the necessity of systematic investigation of geometrically well-defined 

systems, including precise charge injection systems, remains compelling. 

 

 

1.3.2 Charge Transfer in DNA 

 

The Marcus Theory 

 

Electron transfer (ET) is the most elementary and ubiquitous of all chemical reactions, 

playing a key role in many essential biological processes. Theoretical efforts initiated by 

Marcus in the late 1950s and continuing to the present day have provided a remarkably 

detailed description of ET reactions.[53] Marcus was honoured with the Nobel prize in 

Chemistry in 1992 “for his contributions to the theory of electron transfer reactions in 

chemical systems”. Marcus’ model is based on the activated complex theory.[54] Accordingly, 

the rate constant of a single-step electron transfer reaction, ket , depends on the energy barrier 

to pass the transition state ( = free enthalpy of activation, ∆‡Get) in the following way (Eq. 1-

1): 

 

     ∆‡Get 
                 − -           - 

 ket  =  A  ·   e         RT      (1-1) 
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In Eq. 1-1, R is the gas constant, and T is the temperature of the reaction. The term A depends 

on the nature of the charge transfer reaction (e.g. intramolecular, bimolecular, etc.). In 

conventional chemical reactions bonds are broken and/or formed and the transition state 

corresponds to a particle with intermediate bonds. In charge transfer reactions however, no 

chemical bonds are broken or formed and so a somewhat different model for the reaction is 

needed. 

If we consider the exothermic hole transfer from a radical cation D•+ (hole donor) to a neutral 

molecule A (hole acceptor), according to Marcus’ theory[53] the theoretical framework for 

most ET reactions is based on a simple two-state model (Figure 1.6). 

 

 

D + A+• A+D +•

D + A+• A+D +•
thermal

photoinduced*

 

 

Figure 1.6. Electron transfer process according to Marcus’ two-state model, 

depicted as a charge shift. The chromophore bearing an asterisk (*D) indicates 

that it is in an electronically excited state, generated by absorption of light 

 

 

The energy surface for an ET process, conveniently represented by a one-dimensional 

reaction coordinate which is supposed to describe changes in both geometry of the D−A 

system and solvent orientation, may be regarded in terms of two diabatic surfaces. One 

represents the electronic configuration of the reactant, D•+ and the other represents the 

electronic configuration of the product, A•+. In the region where the diabatic surfaces 

intersect, the two configurations mix (symmetry permitting) and this results in an avoided 

crossing (or tunneling). The magnitude of the avoided crossing is given by approximately 

HAB, where HAB is the electronic coupling matrix element and may be regarded as a rough 

measure of the strength of orbital interactions between D and A. In Figure 1.7, ∆Get is the free 

enthalpy change associated with the ET process and λ is the reorganization energy. The 

reorganization energy is approximately given by the sum of vibrational contributions from the  
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donor and acceptor chromophores (internal reorganization energy, λi) and low-frequency 

contributions from the solvent (solvent reorganization energy, λs).
[53,55] 

 

 
 

Figure 1.7. Energy diagram for charge transfer resolved into reactant-

like and product-like surfaces. The two diabatic curves do not intersect, 

but interact to give an avoided crossing, whose energy gap is about the 

electronic coupling (HAB) for the interaction. 

 

 

In case of long-range ET, where the donor and acceptor chromophores are separated by 

distances which exceed the sum of their Van der Waals radii, HAB is generally very small ( < 

300 cm−1). ET then occurs nonadiabatically and theoretical calculations by Levich,[56] Jortner 

and co-workers[57] as well as Marcus and Sliders[58,59] have shown, that for a charge transfer 

reaction with frozen distance between donor and acceptor, the term A may be expressed 

according to Eq. 1-2, where h is the Planck constant: 

 

    4π2             HAB 
2 

     A  = -         -  ·  -   _______  --     (1-2) 
      h        √  4πλRT 



14   1. Introduction and Basics 

_______________________________________________________________________________________________________________________________________________________ 

 

The energy of the intersection point of the diabatic curves, corresponding to the free enthalpy 

of activation, ∆‡Get in Eq. 1-1, can be easily calculated using Eq. 1-3:[53] 

 

  (∆G + λ)2 
         ∆‡Get  = -                   -      (1-3) 

       4λ 
 

The combination of Marcus’ classical electron transfer theory with the results of the quantum 

mechanical treatments leads to the semi-classical Marcus-Levich-Jortner equation 1-4:[53,60] 

 
        (∆Get + λ)2 

     4π2              HAB 
2      − -                   - 

    ket  = -         -   ·  -  _______  -  ·   e            4λRT    (1-4) 
      h        √  4πλRT 

 

As a consequence of Eq. 1-3, electron transfer reactions for which −∆Get < λ are said to take 

place in the Marcus normal region and their rates increase with increasing exergonicity, 

becoming optimal (barrierless) when −∆Get = λ. When the reaction becomes even more 

exergonic, then −∆Get > λ and an activation barrier reappears; the reaction is now in the 

Marcus inverted region, and the ET rate is predicted to decrease with increasing exergonicity. 

This prediction was elegantly verified by Miller  and co-workers for thermal charge shift 

reactions in the radical anions of the rigid D−steroid−A dyads (shown in Figure 1.8) which 

were generated by pulse radiolysis.[61] The driving force (−∆Get) for the reaction was adjusted 

by changing the acceptor. It was found that, in qualitative agreement with classical Marcus 

theory, the ET rate increased with increasing exergonicity, peaked and then dropped. 
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Figure 1.8. Schematic of the plot of the rate of ET from a biphenyl radical anion to an 

acceptor, A, as a function of driving force.[61] 

 

 

Thus, within the context of Marcus theory, the three important variables that determine the ET 

rate constant are HAB, λ, and ∆Get. If the charge transfer occurs through vacuum (through-

space) HAB solely depends on the relative energies of the molecular orbitals of the donor and 

acceptor and the subsequent overlap of these orbitals. The strength of orbital overlap shows 

an exponential distance dependence and therefore the electronic coupling element decays 

exponentially upon increase of the charge transfer distance d:[53,62] 

 

          − β (d−do) 
HAB 

2  =  HAB,o 
2  ·  e       (1-5) 
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In Eq. 1-5, HAB,o is the electronic coupling matrix element for the reference distance do. The 

exponential decay parameter β characterizes the extent of the distance dependence. For 

vacuum, β−values of 3.4 Å−1 [63] and of about 5 Å−1 [64] have been estimated. Thus, the 

increase of the separation distance by 1 Å reduces ket by a factor of 30−150. The combination 

of Eq. 1-4 and Eq. 1-5 results in the general distance dependence of the charge transfer rate: 

 

− β (d−do) 
ket  =  ket,o  ·  e        (1-6) 

 
 

        (∆Get + λ)2 
with          4π2              HAB,o 

2      − -                    - 

    ket,o  =          -   ·   -  _______  -  ·   e           4λRT 
       h          √  4πλRT 

 

 

The Superexchange Mechanism 

 

If a charge transfer does not occur through-space, but inside a molecule, where charge donor 

and acceptor are separated by molecular material (e.g. protein, nucleobases, solvent molecules 

etc.) according to Meggers and co-workers,[27] and Jortner, Bixon and co-workers,[65] two 

mechanisms must be distinguished: a) single-step superexchange-induced charge transfer, or 

b) multi-step charge hopping involving the bridge as charge carrier. The first case is 

illustrated in Figure 1.9 for the intramolecular charge transfer between a radical cation as 

charge donor (D•+) and a neutral moiety as charge acceptor (A) that are separated by a bridge 

medium containing physical subunits B1, B2,…Bn (e.g. protein side-chains or intervening 

DNA base pairs). It is important to note that in the superexchange mechanism, the ionic 

bridge configurations should be considered as one large, delocalized molecular orbital; they 

are not intermediates in the charge shift process since their energies are much higher than 

those of the reactant and product states. The energy gap (∆) is very large (at least 2 eV) and so 

the charge cannot be thermally injected into the bridge. Instead, the electron moves  
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coherently in one sudden “jump” from donor to acceptor and it never becomes localized 

within the bridge. 

 

 
 

Figure 1.9. Single-step superexchange mechanism. The charge transfer occurs via a 

tunneling process between donor, D, and acceptor, A. 

 

 

The distance dependence of the charge transfer rate for this mechanism is exponential decay 

(Eq. 1-6).[55] However, in contrast to the through-space charge transfer, the intervening bridge 

medium enhances the electronic coupling between D•+ and A via virtual states. The oxidized 

brigde subunits B1, B2,…Bn interact with the reactant state and product state. It was found that 

β−values in materials are considerably smaller than in vacuo, e.g. protein media feature 

β−values in the range of 0.8 to 1.4 Å−1.[62,66] For charge transfer reactions in DNA following 

the superexchange mechanism, Lewis and Wasielewski,[67] Harriman,[45a] Tanaka[48] and 

Giese[68] found reasonably similar β−values in the range of 0.64 to 1.42 Å−1. In the 

superexchange mechanism case, the β−value can be regarded as a material constant of the 

bridging medium and it reflects the extent of electronic coupling within the bridge. The 

superexchange mechanism reflects the strong distance dependence found in experiments by 

Meggers[40] and Wessely.[69] A distant GGG unit is oxidized by a guanine radical cation (G•+),  
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separated by a bridge of up to 3 A−T pairs, before the radical cation is irreversibly trapped by 

water (Figure 1.10).[70] Further theoretical treatment of the superexchange mechanism was 

undertaken by Beratan, Ratner and co-workers and was in accordance with the previously 

observed experimental results.[71] 

 

 

 

Figure 1.10. Strong distance dependence for charge transfer following the superexchange mechanism, 

shown as PAGE lane histograms. PGGG/PG gives the ratio of yields between damage at the GGG unit 

(PGGG), and damage at the G unit (PG , peak shown in red) respectively, obtained by integration of the 

peak areas. The damage is due to nucleophilic trapping of the guanine radical cations by water. 

Piperidine treatment leads to strand cleavage and the fragments can be separated and quantified by 

PAGE and radioactivity measurement. Each peak arises at the nucleotide position (X) shown in the 

strand depicted at the top of each panel. The nucleotides in red indicate the beginning and the end of the 

charge transfer process. 

 

 

The Hopping Mechanism 

 

In DNA sequences where the water trapping of a guanine radical cation (G•+) is slower than 

the hole transfer between the guanine bases, the charge shift is not expected to not stop after 

the first step. The fact that single guanines may act as carriers of the positive charge, was 

demonstrated in experiments by Giese (Figure 1.11)[69,72] and by Nakatani and Saito.[73] 
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Figure 1.11. Histogram showing the products PG and PGGG formed after 

charge injection into G1, water trapping of the guanine radical cations 

and subsequent strand cleavage. All single guanines lead to water 

trapping products. 

 

 

The experiment can be described by a reversible diffusion of the charge between the guanine 

charge carriers so that the overall charge transport over long distances occurs in a multistep 

hopping process from donor to acceptor. Ratner and co-workers,[71,74] Jortner,[75] as well as 

Renger and Marcus[76] have theoretically described this mechanism in accordance to the 

experimental findings. In contrast to the single-step superexchange process, the ionized 

guanines between the A−T bridges are of similar energy as the hole donor (G•+); they are 

physical intermediates in the charge shift process (Figure 1.12) and this explains the damage 

observed at all gunanines shown in Figure 1.11. A multistep-hopping mechanism cannot be 

described by the Marcus-Levich-Jortner equation (Eq. 1-4), since the β-value is defined for a 

single-step process. The overall charge shift process can be described as a sequence of 

reversible, single charge hops between neighbouring guanines, each hopping step following a 

superexchange mechanism, until the charge is irreversibly trapped at a GGG unit. 
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Figure 1.12. Multistep hopping mechanism. The charge transfer occurs via a sequence of 

reversible tunneling steps between donor (D) and acceptor (A). The intervening guanines act 

as charge carriers. 

 

 

Despite the strong distance dependence of superexchange-mediated single hops, efficient 

long-distance charge transfer is possible, as long as the guanines are separated by only short 

(A−T)n bridges. Hence, the longest hopping step will determine the overall charge transfer 

rate. This multistep hopping process can be physically described as a one-dimensional 

random-walk movement of the charge through the DNA strand. For the simplest case of 

equidistant hopping steps, the rate can be determined as follows (Eq. 1-7): 

 

kCT  ∝  khop · N −η      (1-7) 

 

The overall rate constant (kCT) is determined by the rate constant (khop) for a single step, the 

proportionality factor (η, approximately 2 in the simplest case) and the number of hopping 

steps (N).[27,65,77] 

Further experiments by Schuster[78] and Barton[79] have demonstrated that efficient charge 

transport also occurs over long, guanine-free sequences. These controversial results were 

examined in the Giese group by Wessely[69] and Spormann[80] using a comparable charge 

injection assay also used in former experiments by the Giese group. In a similar system, as  
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shown in Figure 1.10, experiments with longer (A−T)n bridges between G and GGG were 

performed, and for bridge lengths with n ≥ 4, a nearly distance-independent charge transfer 

efficiency resulted (Figure 1.13). 

 

 

 

Figure 1.13. Plot of the yield ratios log(PGGG/PG) against the number (n) of A−T base pairs. 

Between n = 3 and n = 4, the mechanism changes from superexchange to A-hopping. 

 

 

This experiment established an extended hopping model, that also involves adenines as 

charge carriers, a behaviour which confirmed theoretical predictions[81−85] and which was 

validated by experiments where the positive charge was directly injected into an adenine.[86] 

Tunneling of the charge over 4 A−T pairs is not observed. Conversely, if the lifetime of the 

guanine radical cation is long enough to oxidize an adjacent adenine, as this is the nucleobase 

with the second lowest oxidation potential (+1.96−2.03 V vs. NHE),[22] then a thermally  
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induced multistep hopping process involving adenines as charge carriers takes place.[70] The 

latest experimental data for this “A-hopping” points towards hole transfer rate constants in the 

range of 108−1010 s−1.[87] 

 

 

Summary: Superexchange versus Molecular Wire Behaviour 

 

The rather astonishing revelation that electron transfer can take place rapidly (> 109 s−1) over 

inter-chromophore separations exceeding 10 Å through saturated hydrocarbon bridges has led 

to the oft-asked question: If hydrocarbon bridges are able to strongly mediate ET, may they be 

considered to possess molecular wire (or electrically conducting) behaviour? The answer is an 

unequivocal no, they may not be regarded as wires. Electrical conduction through a bridge 

requires that the electron from the donor becomes thermally injected into the conduction band 

of the bridge. The electron actually becomes localized within and is transported through the 

bridge, from donor to acceptor, by an incoherent scattering mechanism, such as a polaron. 

The distance dependence of the electron transport rate in such a molecular wire is determined 

by Ohmic scattering and therefore varies inversely with bridge length.[81,82,88] The molecular 

wire mechanism is summarized in Figure 1.14.[55] Molecular wire behaviour is only expected 

when the energy gap (∆) between the donor level and the bridge conduction band is very 

small, of the order of kBT. This condition is satisfied for long, conjugated bridges such as 

graphite and doped polyacetylenes, which may be considered as giant chromophores whose 

MOs are essentially delocalized over the whole bridge (Figure 1.14; right-hand inset). The 

hopping mechanism can be regarded as a variant of wire behaviour, as there is a series of 

weakly coupling units B1, B2,…Bn, each of which is able to capture the migrating charge for a 

short period of time before passing it on to one of its neighbouring units (Figure 1.12). 

Assuming that all of the bridge units are energetically nearly degenerate, the migrating charge 

randomly hops, from bridge unit to bridge unit, up and down the chain, until it is eventually 

irreversibly trapped by the acceptor which acts as a thermodynamic sink. This mechanism 

avoids the exponential decay of charge transfer with distance, following a more gentle curve 

instead (Eq. 1-7). 
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Figure 1.14. A schematic illustrating the difference between the superexchange mechanism and molecular 

wire behaviour in a D−−−−B−−−−A dyad. Superexchange: the virtual bridge states lie well above the donor level 

(∆ is large) and consequently, the charge is never localized within the bridge; instead, the charge is 

transferred from donor to acceptor in one coherent jump. The distance dependence behaviour is 

exponential decay. Molecular wire behaviour: The bridge states are energetically comparable to the donor 

level (∆ is very small). In this case, the charge may be thermally injected into the bridge and becomes 

localized within the bridge, whereupon it moves from the donor to the acceptor incoherently as a defect, 

such as a polaron. The distance dependence is Ohmic (varies inversely with distance). 

 

The following work will demonstrate how long (A−T)n sequences constitute a new situation 

where more sophisticated models must be applied in order to approach an understanding of 

the nature of A-hopping, the concept of which will be discussed in Chapters 6−8. 
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1.3.3 Site-Selective Charge Injection into DNA 

 

In order to investigate radical-induced DNA strand cleavage, the Giese group developped 4'-

acyl modified thymine derivatives, which allowed the generation of radicals selectively at the 

4'-position of the carbohydrate moiety by photolysis.[89] The Norrish type I photoreaction of a 

ketone was applied to generate radicals by the photochemical n → π* excitation of an electron 

from a non-binding orbital of the ketone oxygen to the antibinding orbital of the carbonyl 

bond. One of the α-C,C-bonds is thus cleaved and an alkyl and an acyl radical are formed. 

this radical can subsequently fragment into a second alkyl radical and carbon monoxide 

through decarbonylation. The more stabilized the generated radicals are, the easier the α-

cleavage occurs. Therefore, tert-butylketones are especially suitable for the Norrish type I 

photoreaction.[90] By photolysis of a DNA sequence containing a 4'-pivaloylated thymidine, a 

radical at the 4'-position may be selectively generated (Scheme 1.3).[89] The semi-occupied 

atom orbital in radical 18 destabilizes the neighbouring 3'-C,O-bond, which in turn induces 

heterolysis because the charges generated in the fragments can be stabilized.[91] Cleavage of 

the 5'-phosphate 20 leads to ribose radical cation 19, which was characterized by photocurrent 

measurements and chemically induced dynamic nuclear polarization (CIDNP).[92,93] 

 

Scheme 1.3 
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There are several possible reactions for radical cation 19. Nucleophilic trapping by water 

leads to 3'-phosphate 22 and ketoaldehyde 25, or the π-radical cation can act as an oxidant,[39] 

which leads to enol ether 26 upon reaction with a suitable electron donor (Scheme 1.4). 
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In experiments with DNA strands, Meggers found that only enol ether 26 was formed if there 

was a guanine base close to the radical cation 19. This observation is explained by the 

relatively low oxidation potential of guanine (+1.49−1.58 V vs. NHE) with respect to the 

other DNA bases.[22] The yields of enol ether 26 were strongly dependent on the distance to 

the next guanine base.[94] 
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Through this superexchange mechanism (see Chapter 1.3.2) an electron is transferred from a 

guanine base to the carbohydrate radical cation 19, which leads to formation of a guanine 

radical cation and hence to the generation of a positive charge within the DNA base stack. 

This charge injection assay is suitable for the investigation of charge transport through 

DNA.[27,72,77] Firstly, the charge is transferred onto a guanine base in the radiolabelled 

complementary strand. From there the charge migrates over a bridge to a GGG unit, where it 

is trapped by water (Figure 1.15). Piperidine treatment leads to strand cleavage and the 

fragments can be separated and quantified by PAGE and radioactivity measurement. 
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Figure 1.15. Photolytic generation of a radical cation, charge injection (CI) into DNA by reduction 

of the ribose radical cation by a guanine base, followed by charge transfer (CT) through the base 

stack. 

 

This method of charge injection differs from other methods in several points. Firstly, the 4'-

pivaloyl modified thymine derivative can be incorporated at any distinctive position into the 

DNA strand and shows minimal interference with the local DNA structure.[40] Secondly, the 

charge injection takes place from the ground state. This assay ensures that only one charge per 

molecule is generated, as the charge injector cannot be regenerated after its photolysis. Other 

assays use stilbene derivatives,[67] Rh(III)-complexes,[17,95] anthraquinone derivatives,[29,78b,96] 

acridine derivatives,[48] which all are either intercalating modifications or are attached to the 

ends of the DNA strands. Another assay which also enables site-specific charge injection uses  
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p-cyanobenzophenone substituted uridine derivatives.[73,97] The last assay to be mentioned is 

pulse radiolysis, which allows the injection of an electron hole into a DNA sequence 

containing both donor and acceptor moieties.[98,99] 

The unique advantage of the 4'-pivaloylated nucleoside assay used by the Giese group is that 

back electron transfer is impossible, because the radical is irreversibly generated by the 

Norrish type I cleavage of the pivaloyl ketone. Spormann improved the charge injection 

efficiency by replacing the thymidine in precursor 17 by a guanine (precursor 27, Scheme 

1.5), to reduce the distance between the ribose radical cation and guanine. This modification 

accelerated the charge injection step by at least 60-fold, compared to the water trapping 

reaction, which resulted in literally quantitative charge injection via ribose radical cation 28 

into guanine, detected as enol ether 29.[80] 
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When several experiments pointed towards the contribution of adenines as charge carriers in 

long (A−T)n bridges,[79,70] an assay providing direct charge injection into adenine was 

required, to demonstrate the presence of oxidized adenines within the (A−T)n bridge during 

the hole transfer process. Kendrick succeeded in synthesizing a 4'-pivaloylated adenosine 

derivative 30 and thus established the first possibility of a direct charge injection into an 

adenine (Scheme 1.6).[86,100] However, due to the higher oxidation potential of adenine, water 

trapping of the radical 31 occurs at about the same rate as the hole injection into adenine.  
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This explains the moderate yield of 40% of enol ether 32. Addition of KI as a fast hole 

quencher raised the yield of enol ether 32 to nearly quantitative, showing that the diffusion-

controlled reaction with KI efficiently competes with the water trapping reaction. 

 

Scheme 1.6 
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This assay provides the direct hole injection into an adenosine molecule and charge transfer 

starting at a higher oxidation potential and is the basis for the research presented in this thesis. 

The following chapters establish the study of the distance-independent hole transfer in DNA. 
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2 Research Background 

 

2.1 Kendrick’s Charge Transfer Experiments 

 

Two important prelimiary experiments with DNA strands modified by the 4'-pivaloylated 

adenosine were performed by Kendrick.[86] The 4'-pivaloylated building block 33 was 

introduced into DNA double strands 34a,b and the intermediate adenine radical cation in 

35a,b was generated by photolysis. The positive charge in 35a,b migrated towards the 3'- and 

the 5'-end until it was trapped by the GGG sequences. The amount of the charge reaching the 

guanines was detected by reaction of the guanine radical cations with water, thus affording 

products P3' and P5' after subsequent strand cleavage (Scheme 2.1). 
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Prelimiary experiments were performed to check whether the efficiency of the charge transfer 

towards the 5'-end is different from that towards the 3'-end. It emerged that photolysis of 34a,  
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where both sequences between A•+ and the GGG units contain two A−T base pairs, gave 

about the same amount of products P3' (55%) and P5' (45%). In strand 34b one of the A−T 

sequences was extended from two to eight A−T base pairs. Nevertheless, nearly the same 

ratio of products P3'/P5' was observed (Figure 2.1). In these experiments, the efficiency of the 

charge migration through the A−T sequences altered very little depending on the number of 

the A−T base pairs. 

 

 

 

Figure 2.1. Histogram of denaturing polyacrylamide gels, obtained by 

subtraction of control experiments (irradiation of unmodified strands) 

from irradiation experiments with the modified strand 34a (n=1), and 

relative yields of the strand cleavage products at the 5'- and 3'-GGG units 

for strands 34a (n=1) and 34b (n=4). 
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2.2 A First Synthesis of 4'-Pivaloyl Modified Adenosine 

 

Kendrick’s synthesis of the 4'-pivaloylated adenosine building block starts by building up a 

suitably functionalized 4'-pivaloyl glycoside 37, analogously to a method developped by 

Crich.[101] The glycoside was further modified to suit the desired purpose of subsequent 

monomer experiments (Scheme 2.2) or introduction into DNA (Scheme 2.3).[86,100] 

 

Scheme 2.2 
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The pivaloyl group was introduced by reaction of methylester 36 with t-BuLi to give the 

photolabile pivaloyl ketone 37. Reaction with benzoyl-protected adenine (ABz) and stannic 

chloride yielded nucleoside 38. Removal of the benzoyl and silyl groups, followed by 

selective introduction of the phosphate group afforded compound 30, which was used for 

monomer photocleavage experiments. Crich’s synthesis assay for the 4'-acetyl glycoside 36 

was incompatible with the requirements on a precursor for the automated DNA synthesis, and 

numerous further steps were needed in order to change the protecting groups into DNA 

synthesizer-compatible ones (Scheme 2.3). The benzyl group was removed via 

photobromination and replaced by a benzoyl group in compound 41. Reaction with protected 

adenine (ABz) and stannic chloride yielded the nucleoside 42. The 5'-benzoyl group was then  
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replaced by a trityl group, and the compound was desilylated and phosphorylated to afford the 

DNA synthesizer compound 33. 

 

Scheme 2.3 
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Kendrick’s synthesis of the 4'-pivaloylated adenosine building block turned out not to be of 

further practical use due to its bad reproducibility, the use of very toxic reagents and the 

insufficient overall yield (approximately 0.05%) of the DNA synthesizer monomer 33. 

 

 



3. Proposal  33 

_______________________________________________________________________________________________________________________________________________________ 

 

3 Proposal 

 

The first part of our proposal was to develop a new, reliable synthetic route to 4'-pivaloylated 

adenosine building block 46, analogous to compound 33 (Scheme 3.1a). 

 

Scheme 3.1 
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The second part of the proposal comprised: 

• the determination of the pH dependence of the charge injection efficiency in single- 

and double-stranded DNA, 

• the investigation of the distance-independent hole transfer through long (A−T)n 

sequences, in terms of sequence-dependence, influence of base mismatches and the 

dependence on the secondary structure of the DNA double helix (Scheme 3.1b). 
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4 Synthesis of 4'-Pivaloyl Modified Adenosine 

 

4.1 Synthetic Strategy 

 

Apart from the assay described in Chapter 2.2, there are two more principal assays, which 

lead to 4'-acylated nucleosides.[102,103] The shorter pathway a (Scheme 4.1) includes first the 

introduction of the pivaloyl group via organometallic addition of t-butyllithium to aldehyde 

47, followed by oxidation of the secondary alcohol. The 4'-C,C-coupling takes place at the 

end of the synthesis via an aldol addition of formaldehyde and barium hydroxide, to yield two 

diastereomeric nucleosides 49 and 50. Pathway b also starts with aldehyde 47 and proceeds 

via an aldol reaction and subsequent reduction to diol 51, which is converted to alcohol 52 by 

means of suitable protection and deprotection steps. Oxidation to aldehyde 53, followed by 

introduction of the pivaloyl group, analogous to pathway a, leads to the target nucleoside 50. 

  

Scheme 4.1 
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In contrast to thymine, adenine possesses a free primary amino group which must be 

protected during the key steps of the synthesis. This protective group should ideally be easy to 

introduce and should withstand the basic conditions of the aldol reaction and the conditions of 

the Pfitzner-Moffatt and Dess-Martin oxidation steps. Even more important is the fact that the 

cleavage of any protective group must not lead to acid-catalysed depurination. Depurination 

already occurs under slightly acidic conditions and therefore constitutes a severe limitation in 

purine nucleoside, particularly adenosine chemistry.[104] Kendrick attempted to use the 

benzoyl (Bz) group for adenine protection but observed very poor yields for the aldol 

reaction.[100] The i-butyryl group applied by Spormann to the synthesis of the 4'-pivaloyl 

modified guanosine[103] is not suitable for adenine.[104] Although it is slightly more stable 

towards basic conditions than the benzoyl group, amides generally are not stable towards 

coupling reagents like DCC or CMC, which are used in the Pfitzner-Moffatt oxidation.[105] 

 

The t-butyl carbamate (Boc) protecting group, which shows a significantly higher stability 

towards basic, nucleophilic and Pfitzner-Moffatt conditions, combined with a much higher 

reactivity towards (Lewis) acids and heating,[105,106] was selected for the new synthetic 

approach. However, it was necessary to change the base protecting group before using the 

building block for DNA synthesis (Scheme 4.2). 

 

Scheme 4.2 
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4.2 Synthesis of the 4'-Pivaloyl Modified Adenosine DNA Building Block 

 

A precursor suitable for both synthetic strategies was obtained in three steps. In a first step, 

the 3'- and 5'-hydroxy groups of 2'-deoxyadenosine 64 were protected with TBDMSCl 

according to a method by Ogilvie.[106] The free amino group of the base was subsequently 

protected with di-t-butyl-dicarboxylate (Boc),[107] and the primary TBDMS group was 

selectively cleaved using a mixture of TBAF and glacial AcOH in THF.[108] This afforded 

nucleoside 63 in 48% yield over three steps. 

 

O

OTBDMS

HO

54

A(N6Boc2)
O

OH

HO

55

A

1) TBDMSCl, imidazole, DMF
2) (Boc)2O, DMAP, DMF
3) TBAF, AcOH, THF

48%

 

 

 

Starting from the protected nucleoside 54, diol 56 was obtained via a modified Pfitzner-

Moffatt oxidation,[109] followed by aldol reaction and sodium borohydride reduction. The 

aldol reaction is the first key step in the synthesis as it provides the C,C-coupling at the 4'-

position of the deoxyribose. In contrast to the previous syntheses,[102,103] the use of DCC 

proved to be not useful due to separation problems during the workup. Replacement of DCC 

by CMC resulted in an excellent yield of 48% over three steps, the best result yet reported for 

this aldol reaction. Remarkably, one of the two Boc groups was cleaved during the aldol 

reaction, and the resulting diol 56 readily crystallized out of the crude reaction mixture in 

analytical purity. The loss of one Boc group did not affect any of the subsequent synthetic 

steps. 



4. Synthesis of 4'-Pivaloyl Modified Adenosine 37 

_______________________________________________________________________________________________________________________________________________________ 

 

O

OTBDMS

HO

54

A(N6Boc2)

1) CMC, PyTFA, DMSO, (CO2H)2
2) CH2O, Ba(OH)2, dioxane/H2O
3) NaBH4, EtOH, 0 °C

48%

O

OTBDMS

HO

56

A(N6Boc)

HO

 

 

 

Subsequently, the diol 56 was reacted with trimethyl orthoacetate according to a method by 

Müller,[110] and the intermediary cyclic orthoester was hydrolyzed under acidic conditions. 

The remaining free hydroxy groups were protected with TBDMSCl, and the acetyl groups 

selectively cleaved with sodium methoxide, which afforded the silylated nucleosides 57a and 

57b in 49% and 36% yield over four steps, respectively. The absolute stereochemistry of the 

two compounds was assigned by comparison of the glycosidic 1H NMR chemical shifts with 

the corresponding thymine[102] and guanine[103] derivatives at this stage. Definitive verification 

of the stereochemistry was achieved using a 1H-NOESY experiment of protected pivaloyl 

compound 59. Dess-Martin oxidation[111] of the alcohol 57a gave aldehyde 58 in 81% yield. 
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Introduction of the pivaloyl group was achieved by addidion of t-butyllithium to aldehyde 58. 

The resulting alcohol was directly converted into ketone 59 via Dess-Martin oxidation in 25% 

yield over two steps. 
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The absolute stereochemistry of compound 59 was verified by NOE measurements. 

Differential NOE effects between H−C(1') and the t-butyl group (4%) and between Ha−C(2') 

and the t-butyl group (2%) were detected (Figure 4.1). 
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Figure 4.1. Verification of the absolute stereochemistry of compound 59 by NOESY 

 

 

The two TBDMS groups were cleaved by reaction with TBAF, and the subsequent cleavage 

of the Boc group turned out to be the second key step of the synthesis. The common methods 

using acidic conditions or Lewis acids were unsuccessful,[112] as they all resulted in rapid 

depurination of the nucleoside. The priority was to screening reactions that make use of ion-

exchange resins and solid-phase Lewis acids, as these were promising alternatives to the use  
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of protic systems. Finally, the selective cleavage of the Boc group was achieved by reacting 

ketone 59 with silica gel in vacuo at 80 °C for one week, according to a method by 

Wensbo,[113] to yield the desired 4'-modified nucleoside 60 in 37% yield over two steps. 
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Three more modifications were needed to convert the 4'-pivaloylated nucleoside 60 into a 

DNA synthesizer-compatible building block. The free amino group of the base was 

selectively protected with a dmf group,[104,114] and the 5'-hydroxy group was selectively 

protected with DMTCl in collidine / DMF,[115] to give the tritylated product 61 in 55% yield 

over two steps. Phosphitylation was performed according to a standard procedure[116] using 2-

cyanoethyl-N,N-(diisopropyl)-chlorophosphoramidite and Hünig’s base and lead to the 

desired monomer 46 in 78% yield. Monomer 46 is suitable for introduction into synthetic 

oligonucleotides via automated solid-phase synthesis.[117] 
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4.3 Summary 

 

Synthesis of adenine radical precursor 46 (Scheme 4.3) was achieved in a similar way to the 

synthesis of the corresponding thymidine or guanidine compounds. Several steps had to be 

modified due to the higher reactivity of 2'-deoxyadenosine towards depurination. This work 

presents the first example where the Boc protecting group was successfully introduced to 

protect the primary amino function of adenine in a deoxyribonucleoside and cleaved under 

ultramild conditions. The shorter synthesis pathway a via addition of t-butyllithium to 

aldehyde 47 (Scheme 4.1) followed by aldol addition of formaldehyde was not pursued. The 

synthesis of the guanosine derivative on this pathway failed, probably due to the steric 

hinderance of the purine base, which is considerably larger than a pyrimidine base like 

thymine.[80] The 4'-position of aldehyde 47 was hydroxymethylated, which led to the 

important intermediary diol 56 after reduction. By means of a suitable protection group 

strategy, diol 56 was converted into alcohol 57 with a fairly good regioselectivity of 1.4:1 in 

favour of the preferred diastereomer. After subsequent oxidation, addition of t-butyllithium 

and Dess-Martin oxidation, the pivaloylated adenosine 59 was obtained. The protective 

groups were cleaved, and DNA synthesizer-compatible dmf and trityl protective groups were 

introduced. Upon conversion with 2-cyanoethyl-N,N-(diisopropyl)-chlorophosphoramidite, 

the 4'-pivaloylated precursor 46 (which is suitable for the introduction into synthetic 

oligonucleotides via automated solid-phase synthesis) was obtained in 0.5% overall yield over 

10 characterized steps starting at 2'-deoxyadenosine 55. 
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Scheme 4.3 
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5 Investigation of the Charge Injection Efficiency within an 

Oligonucletide 

 

5.1 Rate of Charge Injection into Adenine 

 

The photocleavage experiments with monomer 30 undertaken by Kendrick (Chapter 1.3.3) 

demonstrated that the electron transfer from adenine (leading to the formation of enol ether) 

and water addition to the deoxyribose moiety (leading to several decomposition products) 

compete with each other at about similar rates. This was verified by addition of the rapid 

electron donor potassium iodide[118] to the photolysis mixtures, which raised the yield of the 

enol ether formed from 40% to 98%.[86] These experiments have demonstrated that a 4'-

pivaloylated 2'-deoxyadenosine is indeed able of a) charge transfer to the base, and b) the 

results for the different bases qualitatively reflect the oxidation potentials determined by 

Steenken[22b] and others.[22a] 

 

Scheme 5.1 

 

5'-GCTTAATATACCCAAA*AACCCATATTATGCGC-3'

62

hν, 320 nm

pH 5.0

5'-GCTTAATATACCCAA- P

63

+

P -AACCCATATTATGCGC-3'5'-

64

H2O

ET

5'-GCTTAATATACCCAA- P -3'

65

+ +

66

5'-GCTTAATATACCCAA- P

67

O

OH

A

•

+
O

O A

•

O
O A

A* = 4'-pivaloyl modified adenosine  



5. Investigation of the Charge Injection Efficiency within an Oligonucletide 43 

_______________________________________________________________________________________________________________________________________________________ 

 

A further experiment to determine the charge injection rate within an oligonucleotide was also 

performed by Kendrick[100] using HPLC analysis (Scheme 5.1). The single-stranded DNA 62 

was irradiated at 320 nm at pH 5.0, which led to the formation of radical cation 63 and of 5'-

phosphate 64. The radical cation 63 either undergoes water addition to form radical cation 66 

and 3'-phosphate 65, or electron transfer occurs from adenine which leads to enol ether 67. 

Although no quantitative results were obtained, because the DNA fragments to be separated 

were all of nearly identical size, the experiment provided some qualitative information about 

the rate of charge injection into adenine. The ratio between enol ether 67 and 3'-phosphate 65 

varied upon the concentration of KI as was the case for thymidine, whereas in similar 

experiments using a 4'-pivaloylated guanosine as charge injecting system, no influence of KI 

concentration on the ratio between enol ether and 3'-phosphate was observed.[80] 

In comparing the water trapping rate (ktrap) with the rate of electron transfer (kET) between KI 

and the thymine derivative 19 (5 × 109 s−1),[118] assuming a diffusion-controlled reaction of 

KI, a ktrap of about 1.1 × 108 s−1 was estimated.[94] 

Meggers has shown that both electron transfer and water addition proceed irreversibly, and 

assuming that the concentration of electron donor does not change during the reaction, the 

ratio of the water addition products 64−67 against the electron transfer product 67 is given by 

Eq. 5-1:[40] 

 

  kET                 67 
       kET,rel  = -            - = -             -        (5-1) 

  ktrap           64−67 
 

For the guanine derivative 28, Spormann determined a kET ≥ 5 × 109 s−1 and a 60-fold higher 

kET,rel than in the case of thymine. The discrepancy can be explained by the low oxidation 

potential of guanine and the short distance between donor and acceptor.[103] Assuming that 

ktrap is identical for all nucleosides, Kendrick estimated that the electron transfer from adenine 

in radical cation 63 is about 1.5 times faster than the water trapping reaction (as calculated 

from the yields of 67 (30%) and 64 (50%)) resulting in an absolute electron transfer rate kET 

of about 1.6 × 108 s−1.[100] This means that the electron transfer from adenine in radical cation 

70 is slightly more efficient than the electron transfer from a single guanine to an adjacent  
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radical cation in 71 (Scheme 5.2), but more than at least one order of magnitude less efficient 

than the electron transfer from guanine in radical cation 28. However, these values are 

strongly dependent on the neighbouring bases and thus may vary by several orders of 

magnitude from case to case. 
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O
NP

+

O

•

N

N

N

NH2

5'

70

O
O

+
•

NH

N

O

O

P

O

OO−

NH

N

N

O

NH2
N

O
OP

5'

71

kET ~ 1.6 × 108 s−1

kET kET

kET ~ 6.5 × 107 s−1

O
NP

+

O

•

NH

N

N

O

5'

28

kET ≥ 5 × 109 s−1

kET
NH2

 

 

 

5.2 Charge Injection Efficiency in Single-Stranded DNA 

 

For the investigation of charge injection efficiency of the 4'-pivaloylated 2'-deoxyadenosine, a 

new assay using 32P radiolabelling and PAGE was developped. The incorporation of radical 

precursor 46 into DNA strands is described in detail in Chapter 14. Several experiments were 

performed with single-stranded sequences 102 and 103 in order to determine the overall 

charge injection efficiency and the influence of the pH value on this step. The results of these 

experiments should allow us to find a pH value offering maximum clevage yield, as the enol 

ether DNA fragment 76 (23mer) resulting from charge transfer to adenine is easily separable 

from the 3'-phosphate 74 (22mer) by PAGE analysis (Scheme 5.3). In contrast to the electron 

transfer experiments, the DNA strands containing the radical precursor and not the GGG units 

were radiolabelled in the following charge injection experiments. 
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Scheme 5.3 
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The autoradiogram of single strand 103 photolyses (left lanes) clearly shows the two 

radioactive products 74 and 76, which differ in one nucleotide size (Figure 5.1). The yield of 

3'-phosphate 74 was always higher than the yield of enol ether 76 for all examined pH values. 

No cleavage at all was seen in blind experiments using the unmodified strand 102 (right 

lanes). 

 

 
 

Figure 5.1. Autoradiogram of single-strand photolyses at different pH values 
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The best results were obtained at pH 5.0, which yielded enol ether 76 and 3'-phosphate 74 in 

20% and 32% yield, respectively (Figure 5.2). 
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Figure 5.2. Results of single-strand photolyses at different pH values 

 

 

5.3 Charge Injection Efficiency in Double-Stranded DNA 

 

The charge injection efficiency experiments were repeated with double-stranded sequences 

102/101 and 103/101, because double-stranded DNA is much less flexible than single-

stranded DNA, and the results may differ from single strand experiments. The autoradiogram 

again shows photocleavage products 74 and 76 for double-strand 103/101 photolyses, and no 

photocleavage products for double-strand 102/101 blind experiments (Figure 5.3). 
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Figure 5.3. Autoradiogram of double-strand photolyses at different pH values 

 

The best results were again obtained at pH 5.0, which yielded enol ether 76 and 3'-phosphate 

74 in 19% and 30% yield, respectively. These yields are approximately identical to those in 

the single strand experiment. Considerable random cleavage at a range of  positions was 

observed at lower pH (4.0 and 4.5) in the double strand experiments, which resulted in very 

low yields of both remainig 29mer educts 102/103 and potential photocleavage products enol 

ether 76 and 3'-phosphate 74 (Figure 5.4, left section). 
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Figure 5.4. Results of double-strand photolyses at different pH values 
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5.4 Summary 

 

These experiments have demonstrated that the 4'-pivaloylated adenine 46 when incorporated 

into an oligomer is indeed capable of promoting an electron hole into an adjacent adenine, as 

the formation of enol ether 76 is observed for both single- and double-stranded DNA. 

Photolyses at pH 5.0 afforded the best absolute yields of enol ether 76, which means that the 

charge injection into DNA is maximum under these conditions. This result is comparable to 

experiments by Meggers[40] who also found the most efficient charge injection at pH 5.0 for 

4'-pivaloylated thymidine. This can be explained by the decreasing nucleophilicity of water 

with decreasing pH, so that electron transfer is more favourable than water addition. 

The sudden drop in electron transfer product 76 at pH lower than 5.0 cannot be explained by 

protonation of bases because the adenine radical cation has a pKa ≤ 1. Even at pH 4.0 all 

adenines remain uncharged except the intermediary A•+.[119] However, it is known from 

experiments by Erdmann[120] that the adenosine enol ether 77 is unstable in protic aqueous 

solutions and decomposes to yield adenine 78 and ketoaldehyde 79 (Scheme 5.4). 
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As only the radioactive products could be detected and quantified, the low yield of  enol ether 

76 may be explained by decomposition of the enol ether 76 at lower pH values in favour of 

increase of yield of the water addition product 3'-phosphate 74. The strong, unselective 

decomposition of double strands at pH 4.0 and 4.5 is presumably due to acid-catalysed 

depurination of the A-rich strand during the annealing process at elevated temperature. 
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6 Adenine as Charge Carrier in the Hole Transfer Process  

 

6.1 Köhler’s Experiments 

 

Incorporating a sequence of four or more alternating A−T pairs into the radiolabelled strand 

should identify any oxidative damage at adenines, if they were indeed charge carriers during 

the hole transfer process and thus underwent water addition. Köhler[121] synthesized DNA 

duplex 80 containing seven alternating A−T pairs between the hole donor G and hole acceptor 

GGG. The PAGE histogram shows strong oxidative damage at all adenines, thus 

demonstrating their contribution in a multistep charge transfer process (Figure 6.1). Although 

the charge transfer between adenines is supposed to be fast, water addition products were 

detected. An effective charge transfer over about 27 Å was observed, resulting in a yield ratio 

PGGG/PG of 3.7.[121] 

 

 
 

Figure 6.1. PAGE histogram for interstrand A-hopping (n=7) 
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6.2 Further Evidence 

 

Thus far, the postulated adenosine radical cation has not been detected directly. Dohno and 

Saito[122] have developped a rapid hole trapping method which allows the visualization of 

transient oxidation within a poly-A sequence. The kinetic hole trapping moiety is a N6-

cyclopropyl-deoxyadenosine (dCPA, 81), which undergoes cyclopropane ring opening upon 

one-electron oxidation and forms two products 82 and 83 (Scheme 6.1). Incorporation of 81 

into oligonucleotides resulted in a decay of the cyclopropane moiety as well as oxidative 

cleavage at the modified position upon photolysis, showing that the electron hole was 

effectively trapped by the dCPA moiety. 
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Within the scope of this research, we were able to reproduce and amplify Köhler’s 

experimental results showing oxidative damage at adenines (see Chapter 6.1) in a comparable 

case. DNA duplex 111/109, containing a TTATT bridge, featured little oxidative damage at 

adenine (≤ 10%), which a) also points towards an intermediate oxidized adenine, and b) again 

demonstrates that the charge is not tunneling but involves two slower interstrand hopping 

steps (Figure 6.2). 
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Figure 6.2. (left) PAGE histogram obtained after subtraction of the blind experiments for 

interstrand A-hopping (n=5). (right) Autoradiogram of the gel electrophoresis, obtained after 

photolysis of duplex DNA at pH 5.0 and subsequent piperidine cleavage. Lane A, experiment 

111/109, lane B, blind experiment 111/113. 

 

 

Compared to Köhler’s experiment,[121] the damage at the central A is significantly weaker and 

this can be explained by a) the different charge injection assays used, b) inefficient water 

trapping reaction at adenines due to the rapid charge transfer, or c) inefficient strand cleavage 

through piperidine treatment of water-trapped adenines. Whereas Köhler used the 4'-

pivaloylated guanosine precursor, all experiments done for this research use the 4'-

pivaloylated adenosine precursor, which is assumed to inject the hole at a higher potential, 

thus leading to a slower water reaction from A•+ than from G•+, according to the Curtin-

Hammett principle (Figure 6.3).[85a] This view should be extended to the charge injection 

system, as a higher-potential charge injection assay apparently leads to a slower water 

reaction at adenines. 
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Figure 6.3. Curtin-Hammett plot for charge transfer processes in a long (A−T)n sequence 

involving guanines and adenines as charge carriers. The activation barrier ∆ is about the same 

for G•+(green) as for A•+ (orange). 

 

 

6.3 Summary 

 

The experiments done so far have provided some information about the principle of charge 

transfer involving long (A−T)n sequences. The evidence includes the fact that: 

 

a) the hole transfer over long (A−T)n sequences involves adenines as charge carriers, 

b) very efficient and nearly distance-independent charge transfer is observed, 

c) the adenines undergo oxidative damage in this process; trapping of a hole within a 

poly-A sequence is possible by means of a modified adenine. 
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In the literature, there are speculations that the positive charge is delocalized over more than 

one A−T base pair so that  a phonon-assisted polaron-hopping process,[96] an ion trapped in a 

self-generated local structural distortion,[123] might make the hole transfer in oxidized (A−T)n 

sequences very efficient (Figure 6.4). The radical cation then hops adiabatically from 

minimum to minimum by a thermally activated process as a result of the motions of the DNA 

and its solvent and counterion environment. 
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Figure 6.4. A schematic representation of a polaron-like species in DNA. The 

base pairs are represented by the vertical lines; the sugar phosphate backbone is 

represented by the horizontal lines. The polaronic distortion is enclosed in the 

yellow box and extends over some number of base pairs. This is shown 

schematically by drawing the base-pair lines closer together. Its movement is 

thermally activated and proceeds as a whole from one base pair to another. 

 

 

The transition from a localized multistep A-hopping process to a polaron-mediated, 

delocalized charge transport is smooth. No experimental evidence of such delocalized states is 

available so far, although theoretical calculations by Schuster,[124] Conwell,[125] Ratner[126] and 

others[29,127] describe such processes. Three conceivable assays for probing the polaron-

hopping hypothesis are: 

 

a) measurement of the temperature dependence of the product ratio in an oligonucleotide 

containing a temperature-independent charge injector and a GGG−(A−T)n−GGG 

sequence, 
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b) investigation of the charge transfer process in solid phase or surfactant complexes, 

thus avoiding ion-gating at the DNA backbone, 

c) modification of the bridge by insertion of a series of kinetic traps at the adenines, 

which may reproduce the charge delocalization pattern. 

 

The discussion on this topic is to be continued as soon as new experimental data is available, 

particularly concerning the question concerning postulated charge delocalization (or polaron), 

or how far this distance-independent charge transfer over long (A−T)n sequences may reach. 
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7 Influence of Mismatches on the Hole Transfer 

 

7.1 Introduction 

 

Mismatched base pairs constitute a major threat to the genetic information, as they lead to 

mutations when not enzymatically repaired prior to the next replication. Depending on the 

nature of the mismatched base pair, the geometry and hydration pattern of the DNA duplex is 

directly affected. This is generally reflected by a decrease of the DNA melting temperature 

Tm.[3] Base stacking is accompanied by reduction in UV absorption (hypochromicity), so the 

UV spectrum is a convenient monitor of the formation and breakdown of duplexes. If the 

temperature of a solution containing double-helical DNA is slowly raised, UV absorption 

increases suddenly at a certain temperature because ordered duplexes dissociate. The 

midpoint of transition is called the “melting temperature” or Tm. Figure 7.1 shows Tm of 

several DNA duplexes containing no or one mismatched base pair. 
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Figure 7.1. Tm of double-stranded 101/102 containing no or one mismatched central 

base pair. TA represents the unmodified sequence, H represents a reduced abasic site 
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All mismatches show a destabilizing effect on the DNA duplex, which is maximum for the 

A−[abasic site] mismatch. Since adenines play a central role in the charge transfer mechanism 

over long (A−T)n sequences, mismatches of the adenine−thymine (A−T) base pair should 

dramatically influence the efficiency of charge transport, as the adenine radical cation is a 

rather strong acid, but still much too weak to protonate thymine.[119] Thus, proton shifts are 

not expected to occur within long (A−T)n sequences, as long as the sequence does not contain 

any modifications. In G-hopping experiments, Giese[72] observed a drastic drop in charge 

transfer when a thymine or an abasic site was introduced opposite a guanine. In contrast, the 

presence of an A−A mismatch within an invervening (A−T)2 bridge between guanines hardly 

affected the charge transfer. Barton[128] observed a complete suppression of long-range 

methylindole radical formation when an A−A mismatch was inserted into an (A−T)6 

sequence. The systematic investigation of mismatches within a (A−T)n sequence was 

performed using the following modified DNA sequences (Scheme 7.1), none of which contain 

any guanine within the (A−T)n bridge in order to exclude the G-hopping mechanism. 

 

Scheme 7.1 
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The reduced abasic site 84 was introduced using standard methods, and it shows the same 

properties as an abasic site generated by depurination (still containing its anomeric hydroxy 

residue) except that it is not cleaved under acidic or basic conditions.[129] This effect is visible  
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on PAGE histograms, as no cleavage occurs at the 3'-position of the abasic site, resulting in a 

slightly wider gap between the two neighbouring peaks on PAGE histograms and no peak for 

the abasic site itself (Figure 7.3, bottom right). 

 

 

7.2 Partial Thermodynamic Charge Equilibration 

 

In the faultless DNA duplex 101/103, a yield ratio P5'/P3' of 1.8 was obtained (Figure 7.2). 

This means that the water trapping of the GGG radical cation is approximately as fast as both 

the oxidation of adenine and subsequent charge transport over the (A−T)n sequence. 

 

 

  
 

Figure 7.2. (left) PAGE histogram obtained after subtraction of the blind experiments for 

intrastrand A-hopping (n=5). (right) Autoradiogram of the gel electrophoresis, obtained after 

photolysis of duplex DNA at pH 5.0 and subsequent piperidine cleavage. Lane A, experiment 

101/103, lane B, blind experiment 101/102. 
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Thus, the almost distance-independent efficiency of the hole transport between guanines, 

separated from each other by long (A−T)n sequences (as first shown in Figure 2.1) is not 

caused by a complete equilibration of the charge before the water trapping occurs. We 

conclude that the charge must be already partially equilibrated before being trapped by water. 

The weak distance effect is caused not only by the rate of the hole transport, but also by a 

partial, thermodynamic charge equilibration over the (A−T)n sequence. 

 

 

7.3 Mismatches and DNA Structure 

 

The results from the mismatch experiments are summarized in Figures 7.3 − 7.4. Introduction 

of an A−A mismatch in duplex 111/103 resulted in a literally unchanged yield ratio P5'/P3' of 

1.9, whereas introduction of a T−T (101/109) or an A−C (106/103) mismatch raised the yield 

ratio P5'/P3' to 2.3 and 4.1, respectively. Introduction of an abasic site (104/103) and leaving 

the central adenine unpaired, resulted in the strongest effect observed of no detectable charge 

transfer to the distant GGG unit (P5'/P3' ≥ 25). 
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Figure 7.3. (left) PAGE histograms obtained after subtraction of the blind experiments for A−A 

(top) and T−T (bottom) mismatches. (right) Autoradiograms of the gel electrophoreses, obtained 

after photolyses of duplex DNA at pH 5.0 and subsequent piperidine cleavage. Lanes A, 

experiments 111/103 (top) and 101/109 (bottom), lanes B, blind experiments 111/102 (top) and 

101/113 (bottom). 
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Figure 7.4. (left) PAGE histograms obtained after subtraction of the blind experiments for A−C 

(top) and abasic site (bottom) mismatches. (right) Autoradiograms of the gel electrophoreses, 

obtained after photolyses of duplex DNA at pH 5.0 and subsequent piperidine cleavage. Lanes A, 

experiments 106/103 (top) and 104/103 (bottom), lanes B, blind experiments 106/102 (top) and 

104/102 (bottom). Note that the reduced abasic site is not cleaved by piperidine and thus does not 

produce any signal in the PAGE separation. 
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Considering the A−A mismatch, where no effect on the yield ratio is observed, we can assume 

that the deprotonation of A•+ towards the mismatched A constitutes a rapid equilibrium and 

does not lead to charge loss. Similar observations for A−A mismatches were also made by 

Giese[130] and Schuster.[131] NMR studies by Gervais[132] demonstrated that an A−A mismatch 

as well as a T−T mismatch impose little structural change in the duplex. Both mispairs are 

well integrated in a B-DNA helix, and no change in conformation was observed between pH 

4.7 and 9. The exchange with solvent is reported not to be enhanced by the presence of an 

A−A mismatch, but the bases around a T−T mismatch are reported to show enhanced 

exchange with bulk solvent. The A−A wobble-type base pair is postulated to adopt positions 

similar to those in A−T base pairs and is able to establish only one hydrogen bond, with two 

pseudo-symmetrical possibilities (Figure 7.5a). 

The imino protons of the T−T wobble base pair are postulated to lie in an approximately 

symmetrical position about the helix axis, switching between two pseudo-symmetrical 

wobble-type structures with one hydrogen bond in a fairly rapid equilibrium (Figure 7.5b). 

 

 
 

Figure 7.5. Possible wobble structures for a) the A−A mismatch, and b) the  T−T mismatch[132] 

 

 

Thus, the lower charge transfer efficiency through the T−T mismatch may be explained by the 

destabilization of adjacent bases, which is also reflected in the lower melting temperature of  
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the duplex containing the T−T mismatch. Compared to the situation with A−A, which is 

furthermore favourable to charge transfer by a mainly unaffected purine base stack,[132] the 

charge must tunnel through the T−T bridge in order to reach the second GGG unit.[131] 

A somewhat different situation is implied by the A−C mismatch, which may be explained by 

the structural changes caused by this modification. Brown[133] determined the X-ray structure 

of an oligomer containing two isolated A−C mismatches (Figure 7.6). 

 

 

 

Figure 7.6. Excerpt from the X-ray structure of an A-C mismatch within an 

oligonucleotide duplex. The mismatch is the third base pair from top (arrow).[133] 

 

 

Although essentially neither the B-DNA structure nor the base stacking is affected by this 

mispair, Brown located well-defined water molecules bridging the A−C pair in the major 

groove. Such pre-organized water molecules may constitute a pathway for a rapid 

hydrolytical loss of a positive charge from the A−C mispair. The N1-position of adenine is 

likely to be protonated under physiological conditions with the consequent formation of a 

second hydrogen bond of the A-C base pair (Figure 7.7).[133,134] 



7. Influence of Mismatches on the Hole Transfer 63 

_______________________________________________________________________________________________________________________________________________________ 

 

 
 

Figure 7.7. a) and b) X-ray structure and model for the A−C mismatch in duplex 

DNA, c) and d) alternative hydrogen-bonding schemes for the A−C base pair 

involving rare tautomeric forms (marked by a prime) of the bases, although their 

significance is rather unlikely due to high energy of tautomerization.[133] 

 

 

The low charge transfer efficiency through the A−C mismatch is in accordance with 

experiments by Barton,[135] which provided equally low charge transfer efficiencies for any 

cytosine-containing mismatches. Such closed hydrogen bonds are known to confer additional 

stabilization.[3] Steenken[119] determined an equilibrium constant Ka of 103.3 for the proton 

shift reaction A•+ + C → A(−H)• + C(H)+, but an electron transfer from a protonated adenine 

to an adjacent adenine radical cation is not likely in this case. In conclusion, the drop in 

charge transfer efficiency caused by the A−C mismatch results from the combination of minor 

structural changes in the DNA duplex and major changes in the hydrogen-bonding properties. 
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7.4 Proton Transfer from the Adenine Radical Cation 

 

Introduction of an abasic site, leaving the central adenine unpaired, efficiently suppresses any 

charge transport to the distant GGG unit (Figure 7.4, bottom) in DNA duplex 104/103. We 

have already seen that adenine radical cation 85 is a rather strong acid (pKa ≤ 1) which can 

readily deprotonate and form neutral radical 86 if the base itself is either accessible for water 

molecules or forming a mismatch enabling proton transfer (Scheme 7.2).[136] 
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In G-hopping experiments, Giese[130] observed a decrease in charge transfer efficiency when 

an abasic site was located opposite a guanine. This decrease was avoided when the unpaired 

guanine was methylated and thus not able to deprotonate any more. Bolton[137] determined the 

NMR structure of a DNA duplex containing an abasic site within an (A−T)n domain. The 

unpaired adenine opposite the abasic site remained stacked,[138] but the curvature of the 

undamaged DNA (see Chapter 8) originating in the poly(A) domain was lost due to the 

presence of the abasic site. The structural continuity is disrupted giving rise to bending in the 

parent, undamaged DNA. The accessible surfaces of this DNA duplex were calculated with a 

probe radius of 1.4 Å and revealed (essentially for the β-structure) increased accessibility up 

to two base pairs away from the damaged site. The view from the minor groove shows that 

the β form contains both the abasic site and the opposing adenine residue in considerably 

more accessible positions than in the α form (Figure 7.8).[137] 
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Figure 7.8. The accessible surfaces of the α (left) and β (right) forms of the DNA duplex are viewed from the 

major groove (top) and the minor groove (bottom). The accessible surface is the surface calculated with a probe 

radius of 1.4 Å. The abasic deoxyribose hemiacetal is shown in blue, and the adenine opposite the abasic site in 

red. Further adenines are shown in orange and thymines are shown in green.[137] 

 

 

Other studies mention a water molecule that is postulated to occupy the gap in front of the 

unpaired adenine, forming hydrogen bonds between adenine and the anomeric hydroxy group 

of the abasic site.[139] However, the presence of this well-orientated water molecule cannot be 

assumed in case of a reduced abasic site. In the case of the reduced abasic site within a (A−T)5 

domain and leaving one adenine unpaired, we can conclude that: 

 

a) the solvent accessibility of several base pairs neighbouring the damaged site and 

essentially including the gap in front of the unpaired adenine, is increased, 
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b) the curvature of the poly(A) domain is disrupted, 

c) the adenine radical cation opposite the abasic site can readily deprotonate and thus 

lose its charge. 

 

 

7.5 Summary 

 

The results with long (A−T)n sequences have shown that the charge must be already partially 

equilibrated over the DNA sequence before being trapped by water. Thus, the weak distance 

effect is caused not only by the rate of the hole transport but also by the partial 

thermodynamic charge equilibration over the (A−T)n sequence. In order to rationalize this 

distance-independent efficiency, one has to assume that the rate of the charge hopping over 

the (A−T)n sequence depends only weakly on n. To determine the influence of the (A−T)n 

sequence on the hole transfer rate alone, a new assay must be found in which the trapping of 

the radical cation is faster than the hole transfer between guanines. 

The introduction of several structural damages, including a reduced abasic site, into DNA 

duplexes revealed that the charge transport over long (A−T)n sequences, which is hardly 

distance-dependent in case for undamaged DNA, is sensitively dependent on an undisturbed 

structure of the DNA duplex. 

Whereas a reversible proton shift from guanine radical cation to cytidine is energetically 

favoured and stabilizing the base pair,[140] a proton shift from the adenine radical cation to 

thymine is not feasible.[119b] Contrary to this, protonation of adenine increases the oxidation 

potential of the base, and deprotonation of the adenine radical cation leads to charge loss, 

resulting in a decrease or suppression of charge transfer in both cases. 
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8 Abnormal Distance Effects in Long (A−−−−T)n Sequences 

 

8.1 Introduction 

 

The structure of a DNA duplex containing poly(A)−poly(T) homopolymers (“A-tracts”) 

implies a close relationship to a canonical B-DNA structure but contains some intrinsic 

structural differences. Other DNAs of natural origin or the analogous poly(A−T) with 

alternating sequence, all show around 10.5 ± 0.1 base pairs per turn in aqueous solution but 

the A-tract duplex displays 10.1 ± 0.1 base pairs per turn. Due to the differences in its 

helicicity, the B-DNA-like structure of poly(A)−poly(T) was called B'-DNA (Figure 8.1).[7] 

Its difference from DNAs with alternating or random 

distributions of bases is also evident from its resistance to 

transform into other helical forms, its peculiar CD spectra, 

and its inability to form reconstituted nucleosomes when 

combined with histone octamers.[3] 

 

 

 

 

 

Figure 8.1. A space-filling structure of B'-DNA, calculated from a x-ray 

structure.[141] The B'-DNA features a deep, narrow minor groove, and a 

slightly narrowed, shallow major groove. The pitch (distance between two 

base pairs) is 3.2 Å for B'-DNA, in contrast to normal B-DNA, which has 

a pitch of 3.4 Å. 

 
 

DNA molecules which contain an A-tract, or multiple A-tracts phased with respect to the 

helical twist of DNA, contain a significant bend in their helical axis.[142] The relationship 

between A-tract crystal structures and solution state studies of DNA curvature has remained 

controversial,[143] although several structural properties of A-tracts have been resolved, e.g.  
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high propeller twist of base pairs, a narrow minor groove and a helix pitch reduced by 0.2 

Å.[144-146] There is a clear consensus about the two probable origins of helix bending by A-

tracts by a) selective binding of monovalent cations to the A-tracts in the minor groove of the 

DNA duplex in solution, and b) the aprupt change in propeller twist at the ends of the A-tract, 

which forces the helix axis to bend.[147,148] 

The high propeller twist of the base pairs inside the A-tract enables an enhanced base 

stacking. The adenine and thymine bases tend to stack in an partially eclipsed conformation 

(six-membered ring over six-membered ring, Figure 8.2) whereas the guanines in poly(G)-

poly(C) tend to stack in a staggered fashion (six-membered ring over five-membered ring) 

and the cytosines show no overlap.[149]  

 

 

 

Figure 8.2. Stereo views of a  typical AA−TT base step. The two base pairs, the 

upper in black and the lower in white, are viewed down the helix axis (illustrated 

by a black circle).[144] 

 

 

In the context of the structural peculiarity of A-tracts and in particular its improved base 

stack, the effect of these structural effects on long-distance charge transfer over A-tracts was 

studied. 

 

 

8.2 Adenine Stacking Enhances Charge Transfer 

 

Charge transfer experiments by Barton[79] with long (A−T)n sequences showed that yields of 

damage at a distant GG unit increased with the length of the intervening (A−T)n bridge and  
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was interpreted to be due to the conformational dynamics and extensive purine stacking 

associated with these sequences. Unfortunately, these experiments lacked appropriate blind 

experiments under identical experimental conditions. We have synthesized DNA duplex 

115/114 (Scheme 8.1), containing an (A−T)12 bridge, which was subjected to photolysis and 

piperidine treatment with subsequent PAGE analysis. 

 

Scheme 8.1 

 

A A +•

CT

AAGAA AA CCC AAAA CCC A AAGA A AAA3' 5'

T T TT T T T T T T T GGGGGG T TT TT CT T T32P5'- 3'

115/114

AAA A

T T T T

AAAA

T T T T

 
 

 

Surprisingly, a yield ratio (P5'/P3' = 1.49 ± 0.09) nearly equal to the result for the (A−T)5 

system (P5'/P3' = 1.80 ± 0.36) was obtained, taking the experimental error limits into account 

(Figure 8.3). 

 

  
 

Figure 8.3. (left) PAGE histogram obtained after subtraction of the blind experiments for intrastrand A-

hopping (n=12). (right) Autoradiogram of the gel electrophoresis, obtained after photolysis of duplex 

DNA at pH 5.0 and subsequent piperidine cleavage. Lane A, experiment 115/114, lane B, blind 

experiment 115/116. 
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This experiment has impressively shown that (A−T)n sequences are capable of a nearly 

distance-independent charge transfer over long distances especially when the nucleating core 

contains at least four to five adenines. [144] They are only capable of charge transfer if the A-

tract is not disrupted by alternating A−T pairs, structural damages or intervening G−C pairs[79] 

that decrease the charge transfer efficiency. Introduction of adenine analogs with increased 

stacking area and lowered oxidation potentials were found to enhance the long-distance 

charge transfer efficiency up to complete charge equilibration.[150] 

 

 

8.3 Summary 

 

The synthesis and study of the long-range charge transfer in a DNA duplex containing an 

(A−T)12 domain was performed. The resulting charge transport over the A-tract proceeded 

with an efficiency nearly equal to the result obtained for a shorter (A−T)5 sequence. 

The result was explained by the intrinsic structural abnormailties of poly(A)−poly(T) 

homopolymers, which imply a significantly better stacking of both the purine and pyrimidine 

bases inside the A-tract. The distance between base pairs (pitch) is reduced by 0.2 Å, 

compared to canonical B-DNA, and the A−T pairs stack in a partially eclipsed fashion, 

whereas G−C pairs and base pairs inside random sequences tend to stack in a staggered 

manner. 

These results underscore the complex role of sequence dependent structure and dynamics in 

DNA-mediated charge transfer. Certainly the observations cannot be rationalized by models 

in which holes hop along guanines via superexchange through short A−T bridges.[27,151] Nor 

are the results consistent with a “zig-zag” mechanism involving indiscriminate intra- and 

interstrand migration that is not influenced by the A−T base orientation.[27,65] The 

unexpectedly high charge transfer efficiency is attributed to the formation of transient, well-

coupled conformations, distinct from canonical B-DNA. 
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9 Summary of the Work and Outlook 

 

9.1 Summary 

 

For the purposes of site-selective charge injection into guanine-free DNA, a new synthetic 

route towards a 4'-pivaloylated adenosine derivative was developped, enabling the study of 

long-range charge transfer in DNA. The synthesis of 4'-pivaloylated adenosine 46 succeeded 

in 0.5% yield over 10 steps, providing a DNA-synthesizer compatible building block. 

Photolysis of single- or double-stranded 29mer 103 demonstrated that the generated ribose 

radical cation is most efficiently reduced by electron transfer from adenine at pH 5.0 in 20 % 

absolute yield. This process yields an adenine radical cation and thus promotes a positive 

charge into the DNA base stack. 

Experiments with DNAs containing long guanine-free sequences have shown that, once the 

positive charge is injected into an (A−T)n sequence, a rapid and distance-independent charge 

transfer mechanism involving adenines as charge carriers is established. A guanine-hopping 

mechanism[27,151] was excluded due to lack of guanines in these DNAs. Instead, a partial 

thermodynamic charge distribution was observed. 

The apparently highly-efficient charge transport over long  (A−T)n sequences was shown to 

be easily disrupted by structural changes in the base-pairing. This was studied by introduction 

of a series of base mismatches and an abasic site opposite an adenine. Higher solvent 

accessibility of the damaged sites accounted for deprotonation and thus charge loss from the 

acidic adenine radical cation. Protonation of adenine inside an A−C wobble base pair also 

decreased the charge transfer efficiency. 

The abnormal structural changes found in A-tracts of duplex DNA were shown to increase the 

charge transfer efficiency over long (A−T)n sequences as they imply an improved DNA 

duplex structure providing a higher stacking area and shorter base-base distances. 

This work has shown that, although the field of charge transfer over long (A−T)n sequences is 

new and little understood, the charge transport mechanism is thought to be a rapid, multistep 

process involving adenines as charge carrier where the charge may hop from adenine to 

adenine or may be delocalized in polaron-like species. 
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9.2 Outlook 

 

Some decades ago, no scientist would have expected radical reactions to proceed in the 

watery, buffered environment of biological systems in a rapid and highly selective manner. 

The unique ability to establish precise redox equilibria depending on the pH and to perform 

chemical conversions at non-activated sites are the reasons why nature applies radical 

chemistry. 

Essentially, charge transfer chains in biological systems are not optimized for maximum 

speed but for maximum robustness, as they proceed much faster than the enzymatic turnover 

rate.[55] For example, the enzyme ribonucleotide reductase (RNR) catalyses the reduction of 

the 2'-hydroxy group of ribonucleotides to provide the essential DNA building blocks, the 

deoxyribonucleotides (Scheme 9.1).[152,153] 

 

Scheme 9.1 

 

O

OHOH

(P)PPO
B ribonucleotide

reductase

O

OHOH

(P)PPO
B

•
O

OH

(P)PPO
B

scission

Ribonucleotide Deoxyribonucleotide  

 

 

In biological systems, charge transfer processes are essentially coupled to proton transfer 

(“proton-coupled electron transfer”, PCET), thus providing a way to modulate the redox 

properties of the charge transfer system.[55] 

Inside RNRs, the electron is “stored” as a stable tyrosyl radical and for the catalytic reaction it 

is transferred over 35 Å from one subunit to another, involving a redox cascade of tunneling 

and thermally activated charge transfer steps (Figure 9.1). 
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Figure 9.1. (left) The charge transfer pathway in a Class I RNR, involving several intermediary tyrosyl and 

cysteyl radicals in subunits R1 and R2.[153] (right) A calculated energy diagram for the redox cascade.[154] 

 

 

Studying the molecular charge transfer mechanisms in DNA and proteins is the direct 

pathway to a deeper understanding of molecular recognition, catalysis and energy conversion. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Part 
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10 Devices and Materials used for this Work 

 

10.1 Reaction Instruments 

 

Photolysis Setup 

 

Device: Oriel 68810 photolysis stand equipped with an Osram HBO 500 W/2 L2 high-

pressure mercury arc lamp and 320 nm lowpass filter (2 mm thick) by Schott (WG-320). The 

device used was further equipped with an Oriel 6123 IR cutoff filter and a thermostatically 

cooled sample holder. At given wavelength light transmittance is about 50%. The UV light 

was focused to the centre of the sample holder using an additional Schott UG-1 UV bandpass 

filter and a test cuvette containing a) a solution of umbelliferone in 0.1 M sodium citrate 

buffer at pH 3.0, or b) a sample of bright-white paper, which both show visible fluorescence 

when excited at 325 nm. Figure 10.1 shows the photolysis device, and Figure 10.2 shows the 

un-filtered spectrum of the mercury arc lamp. 

 

 
 

Figure 10.1. Photolysis Device 
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Figure 10.2. Lamp spectrum 

 

 

Figure 10.3 shows the efficiency of the thermostated sample holder, measured under 

experimental conditions. This device ensures that annealed complementary DNA strands will 

never denature under the photolysis conditions. 
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Figure 10.3. Course of temperature inside the cuvette during irradiation 

 

 

Nucleic Acid Synthesizer 

 

Device: PerSeptive Biosystems Expedite 8909 nucleic acid synthesis system. The DNA 

synthesis related chemicals were supplied by Glen Research. 

 

 

10.2 Physical Data 

 
1H NMR spectroscopy 

 

Devices: Varian Gemini 300 (300 MHz), Bruker dpx400 (400 MHz). Chemical shifts (δ) are 

indicated in ppm, relative to SiMe4 (δ = 0.00) or based on the solvent signals of the partially 

deuterated nuclei of chloroform-d1 (δ = 7.26) or dimethyl sulfoxide-d6 (δ = 2.50). All spectra 

are interpreted by first order, and the coupling constants (J) are given in Hertz (Hz). Split 

signals featuring defined multiplicity were characterized by the arithmetic mean of the signal 

lines. Free hydroxy groups are assigned by proton-deuterium exchange due to addition of  



78   10. Devices and Materials 

_______________________________________________________________________________________________________________________________________________________ 

 

D2O. The signals were abbreviated as follows: s = singlet, br. s = broad singlet, d = doublet, t 

= triplet, q = quartet, quint. = quintet, m = multiplet. NOE mesaurements were designated as 

follows (irradiated H → affected H): ++ = strong, + = medium, (+) = weak. 

 

 
13C NMR spectroscopy 

 

Devices: Varian Gemini 300 (75.5 MHz), Bruker dpx400 (101.0 MHz). Chemical shifts (δ) 

are indicated in ppm and are relative to the following solvent signals: chloroform-d1 (δ = 

77.0) or dimethyl sulfoxide-d6 (δ = 39.5). The spectra are broad-band proton decoupled, the 

classification of the signals was achieved by APT or DEPT. 
 

 

31P NMR spectroscopy 

 

Devices: Varian Gemini 300 (121.0 MHz), Bruker dpx400 (162.0 MHz). Chemical shifts (δ) 

are indicated in ppm and are relative to the spectra reference of an external standard of 58% 

triphenylphosphate in chloroform (δ = −18). The spectra are broad-band proton decoupled. 

 

 

Numbering of the nuclei 

 

The protons in the 1H NMR spectra are numbered with the same numbers as the related 

carbon atoms. Atoms within the sugar backbone are marked by an additional prime. If 

geminal hydrogen atoms show two distinguished signals, the high-field and the low-field 

shifted nuclei are told apart by an additional “a” or “b”, respectively. Scheme 10.1 

demonstrates the numbering of the atoms in 2'-deoxyadenosine. 
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Scheme 10.1 

 

 

 

 

 

 

 

 

 

Infrared Spectroscopy (IR) 

 

Device: Perkin-Elmer 1600 FT-IR. The bands are given in wavenumbers (ν~  / cm−1). The 

spectra were acquired by addition of four single spectra, followed by subtraction of the 

background spectrum. Liquids and oils were measured as thin film between two sodium 

chloride plates, solids as potassium bromide pressings. 

 

 

UV-VIS Spectroscopy 

 

Device: Perkin-Elmer Bio-Lambda II spectrophotometer, featuring a PTP-6 peltier unit. 

Micromolar extinction coefficients (εmM) of oligonucleotides are referred to a cell path of 1 

cm at 260 nm. 

 

Mass Spectrometry (FAB-MS) 

 

Devices: VG70-250 and Finnigan MAT 312 mass spectrometers. Measurements were carried 

out by Dr. H. Nadig at the institute for organic Chemistry at the University of Basel. The ion 

generation resulted via fast-atom bombardment (FAB) using xenon atoms and 3-nitrobenzyl  
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alcohol as matrix and sodium chloride as additive. The data are given in mass units per charge 

(m/z). The spectra were recorded each with and without addition of potassium chloride. 

 

 

Electrospray Mass Spectrometry (ESI-MS) 

 

Device: Finnigan MAT LCQ, octapole mass spectrometer. The samples were directy injected 

as 0.1 mg/ml solutions in methanol. The ion source worked via electron ionization. The data 

are given in mass units per charge (m/z). 

 

 

MALDI-TOF Mass Spectrometry (matrix-assisted laser desorption ionization    time-of-

flight) 

 

Devices: Vestec Voyager Elite and PerSeptive Biosystems Voyager-DE PRO. The 

spectrometers were run in linear mode at 25 kV acceleration voltage for negative ions. 2,4-

Dihydroxyacetophenone was used as a matrix. Probe desorption and ionization was induced 

by a N2-LASER (337 nm, 3 ns pulses, 0.2 mJ per pulse, acquisition of 10 to 100 pulses). The 

signals are referred to the unfragmented, single negatively charged molecule ions [M−H]−. 

The data are given in mass units per charge (m/z). 

 

 

Elementary Analysis 

 

Devices: Leco CHN-900 (C, H, N detection), Leco RO-478 (O detection). The elementary 

analyses were carried out by W. Kirsch at the institute for organic Chemistry at the University 

of Basel. The data are indicated in mass percents. 
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Melting Points 

 

Devices: Büchi 530 and Hund Wetzlar V200. The melting points are given in degrees 

centigrade [°C] and are uncorrected. 

 

 

10.3 Separation and Purification Methods 

 

Thin Layer Chromatography (TLC) 

 

Merck silica gel 60 F254 aluminium sheets (0.2 mm layer). The compounds were detected by 

two subsequent precedures: 

1. fluorescence quenching detection at 254 nm, 

2. dipping into a solution consisting of a) cerium(IV)sulfate tetrahydrate (10 g), b) 

ammonium heptamolybdate tetrahydrate (25 g), c) H2O (900 ml), and d) conc. H2SO4 

(100ml), followed by heating. 

TLC retention factors (Rf) are indicated together with the appropriate solvent mixture in 

brackets. 

 

 

Flash Column Chromatography (FC) 

 

Flash column chromatography was performed under low pressure (~1.5 bar, membrane pump) 

on silica gel Uetikon C560D (40-63 µm, 230-400 mesh), or on silica gel Merck 60 (40-63 µm, 

230-400 mesh). The solvents were of technical grade and were re-distilled prior to use. The 

mixture ratios of solvents are referred to the parts of the volume. 
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High Performance Liquid Chromatography (HPLC) 

 

Device: Hewlett-Packard 1050 chromatograph with UV detection at 260 nm. Columns for 

reversed-phase HPLC: Merck LiChroSpher 100 (RP-18e, 5 µm, 125 × 4 mm, Flow: 1.0 ml 

min−1). As solvents were used acetonitrile 190 (Romil) and 0.1 M aqueous TEAA solution, 

puchased as 1.0 M stock solution (Fluka), diluted by 9 parts of nanopure water prior to use. 

 

 

Ion Exchange Purification of Oligonucleotides 

 

Mini-QuickSpin (Sephadex G-25, F. Hoffmann−La Roche) centrifuge columns for 

oligonucleotide purification were used following the enclosed procedure. 

 

 

Polyacrylamide Gel Electrophoresis (PAGE) 

 

Device: Life Technologies Model 2 apparatus, equipped with a Pharmacia Biotech EPS 3500 

potentiostatic power unit. PAGE was performed in TBE buffer (0.1 M Tris-borate, pH 8.3; 2 

mM EDTA) at 1500 V. Acrylamide/ bisacrylamide solution (AccuGel, 19:1, 40%) for gel 

preparation was provided by National Diagnostics. 

 

 

10.4 Further Instruments 

 

Centrifuge, Thermomixer and Vortexer 

 

Devices: Eppendorf 5415C and 5415D centrifuges. Eppendorf 5436 thermomixer. Bender & 

Hobein Vortex Genie 2 
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Drying of DNA Containing Probes 

 

Devices: Savant Speed Vac Plus, and Eppendorf 5301 

 

 

Phosphorimager, Storage Phosphor Screens and Software 

 

Device: Molecular Dynamics Storm 840. Storage phosphor screens of 35 × 43 cm size were 

provided by Molecular Dynamics. For quantification and visualization of the results, 

Molecular Dynamics ImageQuant v5.2 and Microsoft Excel 2000 software was used. 

 

 

Scintillation Counter 

 

Device: Packard Tri-Carb 460 C liquid scintillation counter. Solvent: IrgaSafe Plus, provided 

by Zinsser Analytic. 

 

 

10.5 Solvents, Chemicals, Enzymes and Miscellaneous 

 

Solvents 

 

Technical grade solvents for extraction and flash column chromatography were distilled prior 

to use. HPLC grade solvents, provided by Fluka, Romil, Mächler and J.T.Baker, were used 

for flash column chromatography (acetone, ethyl acetate) and for water-containing reactions. 

For all other reactions in water-free environment, or for analytic purposes, absolute solvents 

from Fluka were used without further purification. The absolute THF, 1,4-dioxane and diethyl 

ether used for reactions still contained their chemical stabilizers. 
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Chemicals 

 

2'-deoxyadenosine was purchased from Pharma Waldhof. Chemicals for DNA synthesis were 

provided by Glen Research. Sodium citrate and sodium phosphate buffer solutions (HPCE 

grade), and TEAA (1 M) stock solutions were obtained from Fluka. All other chemicals were 

provided by Fluka, Aldrich and Acros and were of the highest grade available. 

  

Enzymes 

 

T4 polynucleotide kinase (10 000 units ml−1) was provided by New England Biolabs. 

 

 

Miscellaneous 

 

DNA containing probes were handled using disposable 1.5 ml PE snap-cap tubes from Treff-

Lab and screw-cap tubes from Brand. Mini-QuickSpin (Sephadex G-25) columns for 

oligonucleotide purification were provided from F. Hoffmann−La Roche. Disposable PMMA 

cuvettes for photolyses and optical-density measurements were purchased from Semadeni; 

their optical properties are shown below (Figure 10.4). 
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Figure 10.4. Optical properties of a disposable PMMA cuvette. At 320 nm, the PMMA cuvette 

features about 50% of the transmittance of a fused silica cuvette. 
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11 General Synthetic Procedures 

 

11.1 Syntheses 

 

All reactions were carried out in standard laboratory glassware of appropriate dimension, 

which was vacuum-dried at 300 °C and flushed with argon prior to use. All reactions at 

ambient pressure were performed under argon atmosphere. 

 

 

11.2 Reversed-Phase HPLC 

 

Generally, reversed-phase columns provided by Merck (LiChroSpher 100-5, RP-18e, 250 × 4 

mm, Flow 1.0 ml min−1) were used. Solvent A: 0.1 M triethylammonium acetate buffer 

(TEAA) at pH 7; Solvent B: acetonitrile 190. 

For separation of oligonucleotides an acetonitrile gradient was applied, whereas detection was 

achieved by UV absorption at 260 nm. Most of the tritylated oligonucleotides elute at an 

acetonitrile fraction range between about 25% and 30%. Oligonucleotides without trityl 

protection group generally elute at less than 15% acetonitrile fraction. In order to avoid 

aggregation effects, the column temperature was always set to 55 °C. 

 

 

11.3 Formation of Double-Stranded DNA 

 

Equal amounts (0.2 nmol) of the complementary single strands were dissolved in 1.0 ml of 

buffer solution (pH 5.0, 20 mM sodium citrate, 100 mM NaCl), heated to 75 °C for 5 min, and 

then cooled to r.t. over 2 h to provide a clean annealing. 
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11.4 Quantification of Oligonucleotides via UV Absorption 

 

Firstly, the micromolar extinction coefficients at 254 nm (εµM, 254) of the oligonucleotides 

were calculated according to a standard incremental method, which applies the following 

empirical equation (Eq. 11-1): [116,155] 

 

εµM,  254 = { (8.8 × nT) + (7.3 × nC) + (11.7 × nG) + (15.4 × nA) } × 0.9     (11-1) 

 

Secondly, the absorption at 254 nm of the corresponding aqueous oligonucleotide solutions 

was determined using an UV-transparent PMMA cuvette (d = 1.0 cm), and the amount 

calculated applying the Beer-Lambert law. 

 

 

11.5 Photolyses 

 

Irradiations of single- or double-stranded DNA were performed in disposable 1.5 ml PMMA 

cuvettes provided by Semadeni. As long as not otherwise indicated, irradiations were 

performed in citrate buffer (pH 5.0, 20 mM sodium citrate, 100 mM NaCl). Prior to irradiation, 

the solutions were degassed with argon 57 for 6 min. During irradiation, the argon flow 

through the cuvettes was sustained. 

The cuvettes were thermostated to 20 °C, which limited the warming of the solution to below 

30 °C during irradiation. 

 

 

11.6 Mass Determination of Oligonucleotides 

 

Probes which contained salts were de-salted by RP-HPLC prior to mass determination. A 

solution of the analyte (1.0 µl) was mixed on the sample plate together with matrix solution 

(1.0 µl, 0.5 M 2,4-dihydroxyacetophenone and 0.3 M ammonium tartrate in 3:1  
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water/acetonitrile) and crystallized. Synthetic and natural oligonucleotides with known mass 

within the same range as the probes were used as internal or external calibration of the 

spectrometer devices. 
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12 Synthesis of the 4'-Pivaloyl Modified Adenosine for 

Introduction into Oligonucleotides 

 

12.1 3'-O-, 5'-O-Bis[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (68) 

 

O

OH

HO A
O

OTBDMS

TBDMSO ATBDMSCl, Imidazole, DMF

55 68  

 

 

A solution of 2'-deoxyadenosine (55) (10.0 g, 39.8 mmol), 1H-imidazole (17.9 g, 263 mmol, 

6.6 equiv.) and t-butyl-dimethylchlorosilane (19.1 g, 127 mmol, 3.2 equiv.) in anhydrous 

DMF (80 ml) was stirred overnight at r.t. The reaction was quenched by addition of MeOH 

(20 ml), and the solvent was removed in vacuo. The residue was dissolved in a mixture of 

CH2Cl2 (400 ml) and 0.3 M aqueous tartaric-acid solution (600 ml), and extracted with 

CH2Cl2 (2 × 300 ml). The combined organic phases were dried (MgSO4), filtered, and 

concentrated under reduced pressure. The residue (colourless oil that tends to crystallize) was 

co-evaporated with toluene (2 × 15 ml) to yield crude 68 (18.9 g, 99%) as an off-white solid. 

This crude product was of sufficient purity for the subsequent synthetic steps. Further 

purification for analytical purposes was achieved by recrystallization from hexane which 

yielded pure 68 (14.0 g, 74%) as a white solid. 

 

TLC: 

Rf = 0.42 (AcOEt). 

 

M.p.: 

135° 
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1H-NMR (300 MHz, CDCl3): 

8.35 (s, H−C(2)); 8.15 (s, H−C(8)); 6.45 (t-like, J = 6.4, H−C(1')); 5.81 (br. s, NH2); 

4.63−4.59 (m, H−C(3')); 4.01 (q-like, J = 3.4, H−C(4')); 3.87 (dd, J = 4.1, 11.2 Hz, Ha−C(5')); 

3.77 (dd, J = 3.2, 11.3, Hb−C(5')); 2.66−2.59 (m, Ha−C(2')); 2.47−2.40 (m, Hb−C(2')); 0.91 (s, 

t-BuSi); 0.10, 0.09 (2s, 2 Me2Si). 

 
13C-NMR (75.5 MHz, CDCl3): 

155.3 (C(6)); 152.8 (C(2)); 149.6 (C(4)); 139.1 (C(8)); 87.9 (C(1')); 84.3 (C(4')); 71.9 (C(3')); 

62.6 (C(5')); 41.3 (C(2')); 26.0, 25.8 (2 Me3CSi); 18.4, 18.0 (2 CSi); –4.6, –4.8, –5.3, –5.5 (4 

MeSi). 

 

MS (FAB): 

480 ([M + H]+). 

 

IR (KBr): 

3316, 3151, 2930, 2857, 1666, 1601, 1254, 1111, 837, 777. 

 

EA: 

C22H41N5O3Si2 (479.77)  calculated: C 55.08, H 8.61, N 14.60. 

found:  C 55.20, H 8.58, N 14.60. 

 

 

 

12.2 6-N,6-N-Bis[(tert-butoxy)carbonyl]-3'-O,5'-O-bis[(tert-

butyl)dimethylsilyl]-2'-deoxyadenosine (69) 

 

O

OTBDMS

TBDMSO A

68

O

OTBDMS

TBDMSO A(N6Boc2)

69

Boc2O, DMAP, DMF
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A solution of 68 (38.1 g, 79.5 mmol), Boc2O (52.1 g, 239 mmol, 3.0 equiv.) and DMAP (29.2 

g, 239 mmol, 3.0 equiv.) in anh. DMF (100 ml) was stirred overnight at r.t. The the solvent 

was removed in vacuo, the residue was dissolved in CH2Cl2 (700 ml), extracted with 0.3 M 

aqueous tartaric-acid solution (2 × 700 ml), and the organic phase was re-extracted with 

CH2Cl2 (700 ml). The combined organic phases were dried (MgSO4), filtered, and 

concentrated under reduced pressure. Flash column chromatography (FC) of the crude 

material (hexane/AcOEt 3:1→ 2:1) afforded pure 69 (49.1 g, 91%) as a colourless oil. 

 

TLC: Rf = 0.40 (hexane/AcOEt 2:1). 

 
1H-NMR (300 MHz, CDCl3): 

8.87 (s, H−C(2)); 8.45 (s, H−C(8)); 6.56 (t-like, J = 6.3, H−C(1')); 4.65 (dd-like, J = 1.9, 3.6, 

H−C(3')); 4.09−4.04 (m, H−C(4')); 3.92 (dd, J = 4.6, 11.3, Ha−C(5')); 3.81 (dd, J = 3.2, 11.2, 

Hb−C(5')); 2.72−2.62 (m, Ha−C(2')); 2.54−2.46 (m, Hb−C(2')); 1.48 (s, t-BuO); 0.95 (s, t-

BuSi); 0.14, 0.12 (2s, 2 Me2Si). 

 
13C-NMR (75.5 MHz, CDCl3): 

151.9 (C(6)); 150.4 (C(2)); 143.2 (C(8)); 88.0 (CO); 84.5 (C(1')); 83.7 (C(4')); 71.7 (C(3')); 

62.7 (C(5')); 41.4 (C(2')); 27.8 (MeC); 26.0, 25.7 (2 Me3CSi); 18.4, 18.0 (2 CSi); –4.6, –4.8, 

−5.4, –5.5 (4 MeSi). 

 

MS (FAB): 

680 ([M + H]+). 

 

IR (CHCl3): 

3019, 2956, 2951, 1791, 1758, 1601, 1370, 1255, 1215, 1110, 838. 

 

EA: 

C32H57N5O7Si2 (680.01)  calculated: C 56.52, H 8.45, N 10.30. 

found:  C 56.60, H 8.49, N 10.26. 
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12.3 6-N,6-N-Bis[(tert-butoxy)carbonyl]-3'-O-[(tert-butyl)dimethylsilyl]-2'-

deoxyadenosine (54) 

 

O

OTBDMS

HO A(N6Boc2)

54

TBAF/AcOH, THF, 0 °CO

OTBDMS

TBDMSO A(N6Boc2)

69  

 

 

To a stirred solution of 69 (37.9 g, 55.7 mmol) in THF (108 ml), a mixture of TBAF (1 M in 

THF, 55.7 ml, 55.7 mmol, 1.0 equiv.) and glacial AcOH (12 ml) was slowly added over 15 

min at 0°. Stirring was continued for 40 min at 0°, before the soln. was warmed up to r.t. After 

3 h, another 0.1 equiv. TBAF/AcOH was added, and the reaction was allowed to go to 

completion (5 h). Silica gel (25 g) was added, and the solvent was removed under reduced 

pressure. FC (hexane/AcOEt 2:1) yielded pure 54 (17.0 g, 54%) as a white solid. 

 

TLC: 

Rf = 0.24 (hexane/AcOEt 2:1). 

 

M.p.: 

156−158°.  

 
1H-NMR (300 MHz, (D6)DMSO): 

8.86 (s, H−C(2)); 8.85 (s, H−C(8)); 6.48 (t-like, J = 6.8, H−C(1')); 5.02 (t-like, J = 5.6, OH); 

4.64 (quint.-like, J = 2.8, H−C(3')); 3.92−3.86 (m, H−C(4')); 3.66−3.57 (m, Ha−C(5')); 

3.56−3.47 (m, Hb−C(5')); 2.91 (ddd, J = 6.0, 7.2, 13.3, Ha−C(2')); 2.38 (ddd, J = 3.5, 6.2, 13.3, 

Hb−C(2')); 1.39 (s, t-BuO); 0.91 (s, t-BuSi); 0.12 (s, Me2Si). 
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13C-NMR (75.5 MHz, (D6)DMSO): 

151.4 (C(6)); 150.4 (C(2)); 144.3 (C(8)); 90.3 (CO); 87.9 (C(1')); 84.0 (C(4')); 73.8 (C(3')); 

63.2 (C(5')); 41.3 (C(2')); 27.8 (MeC); 25.8 (Me3CSi); 18.0 (CSi); –4.7, –4.8 (2 MeSi). 

 

MS (FAB): 

604 ([M + K]+); 566 ([M + H]+). 

 

IR (KBr): 3308, 2933, 2858, 1745, 1708, 1607, 1464, 1355, 1270, 1163, 1121, 1025, 930, 

836, 788. 

 

EA: 

C26H43N5O7Si (565.75)  calculated: C 55.20, H 7.66, N 12.38. 

found:  C 55.49, H 7.73, N 12.05. 

 

 

 

12.4 6-N-[(tert-Butoxy)carbonyl]-3'-O-[(tert-butyl)dimethylsilyl]-4'-

(hydroxymethyl)-2'-deoxyadenosine (56) 

 

56

O

OTBDMS

HO A(N6Boc2)

54

1) CMC, DMSO, py · TFA
2) aq. CH2O, Ba(OH)2, dioxane, H2O

3) NaBH4, EtOH

O

OTBDMS

HO A(N6Boc)

HO

 

 

 

Compound 54 (18.6 g, 32.9 mmol) and CMC (48.7 g, 115 mmol, 3.5 equiv.) were co-

evaporated with toluene (2 ×), added to a solution of pyridinium trifluoroacetate (3.50 g, 18.1 

mmol, 0.55 equiv.) in anhydrous DMSO (210 ml) and stirred for 18 h at r.t. The yellow 

mixture was cooled in an ice-bath, a solution of oxalic acid (1.63 g, 18.1 mmol, 0.55 equiv.) 

in MeOH (30 ml) was added, and the solution was stirred for another 75 min. The colourless  
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precipitate was filtered off and washed with cold CH2Cl2 (250 ml). The organic phase was 

washed with saturated aqueous NaHCO3 solution (500 ml), and the aqueous phase was re-

extracted with CH2Cl2 (4 × 300 ml). The combined organic phases were dried (MgSO4), 

filtered, and concentrated under reduced pressure to yield a yellow oil, which was dissolved in 

a mixture of 1,4-dioxane (237 ml), H2O (107 ml) and 36% aqueous formaldehyde (27.1 ml). 

Then, Ba(OH)2 ⋅ 8 H2O (14.8 g, 47.0 mmol, 1.43 equiv.) was added, and the mixture was 

sonicated for 5 min under vigorous shaking, stirred for 19 h at r.t., and poured into saturated 

aqueous NH4Cl solution (500 ml). The aqueous phase was extracted with CH2Cl2 (4 × 400 

ml), the combined organic phase was dried (MgSO4), filtered, concentrated under reduced 

pressure, and co-evaporated with toluene. The residue was dissolved in anh. EtOH (120 ml), 

cooled to 0°, and NaBH4 (1.87 g, 49.4 mmol, 1.50 equiv.) was slowly added. After stirring for 

75 min at r.t., the mixture was cooled to 0°, AcOH (6 ml) was added, and the solution was 

concentrated. The green residue was dissolved in CH2Cl2 (500 ml), and the organic layer was 

washed with brine (400 ml). After re-extracting the aqueous phase with CH2Cl2 (4 × 300 ml), 

the combined organic phases were dried (MgSO4), filtered, and concentrated in vacuo for 10 

min. The residue was dissolved in AcOEt (23 ml) and kept at r.t. until no more precipitate was 

obtained (48 − 72 h). The off-white precipitate was filtered off, washed with cold AcOEt (10 

ml) and hexane (20 ml), and dried under high vacuum to yield pure 56 (7.82 g, 48%) as a 

white solid. 

 

TLC: 

Rf = 0.39 (AcOEt). 

 

M.p.: 

208−210°. 

 
1H-NMR (300 MHz, (D6)DMSO): 

8.65 (s, NH, H−C(2)); 8.59 (s, H−C(8)); 6.45 (t-like, J = 6.6, H−C(1')); 4.99 (t-like, J = 5.5, 

OH); 4.70 (quint.-like, J = 3.8, H−C(3')); 4.46 (t-like, J = 5.5, OH); 3.65−3.49 (m, CH2(5'),  
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CH2OH); 2.99−2.89 (m, Ha−C(2')); 2.48−2.38 (m, Hb−C(2')); 1.48 (s, t-BuO); 0.91 (s, t-BuSi); 

0.11 (s, Me2Si). 

 
13C-NMR (75.5 MHz, (D6)DMSO): 

151.3 (C(6)); 151.0 (C(2)); 150.0 (C(4)); 142.5 (C(8)); 123.8 (C(5)); 89.6 (CO); 83.0 (C(1')); 

80.1 (C(4')); 72.7 (C(3')); 61.9, 61.0 (CH2OH, C(5')); 40.4 (C(2')); 28.7 (MeC); 25.7 

(Me3CSi); 17.7 (CSi); –4.9, –5.2 (2 MeSi). 

 

MS (ESI): 

518 ([M + Na]+); 494 ([M – H] –). 

 

IR (KBr): 

3414, 3354, 2933, 2857, 1754, 1619, 1585, 1470, 1403, 1369, 1331, 1232, 1146, 1116, 1057, 

1017, 950, 873, 838. 

 

EA: 

C22H37N5O6Si (495.66)  calculated: C 53.31, H 7.52, N 14.13. 

found:  C 53.13, H 7.54, N 14.13. 
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12.5 6-N-[(tert-Butoxy)carbonyl]-3'-O,5'-O-bis[(tert-butyl)dimethylsilyl]-4'-

(hydroxymethyl)-2'-deoxyadenosine (57) 

 

56

O

OTBDMS

HO A(N6Boc)

HO

57a

O

OTBDMS

TBDMSO A(N6Boc)

HO

1) CH3C(OCH3)3, CSA, CH2Cl2, -78 °C
2) 20% aq. AcOH, -20 °C
3) TBDMSCl, imidazole, DMF
4) MeONa, MeOH, 0 °C

57b

O

OTBDMS

HO A(N6Boc)

TBDMSO

+

( 1.4 : 1 )  

 

 

After co-evaporation with toluene (2 × 10 ml), diol 56 (6.18 g, 12.5 mmol) was dissolved in 

anhydrous CH2Cl2 (60 ml) and cooled to –78°. Trimethyl orthoacetate (7.85 ml, 62.5 mmol, 

5.0 equiv.) and racemic CSA (232 mg, 1.00 mmol, 0.080 equiv.) were added. After 10 min, 

the cooling bath was removed, and the solution was stirred for 3 h at r.t. The solution was 

cooled to –20°, 20% aqueous AcOH (83 ml) was added, and the biphasic mixture was stirred 

at –20 to 0° for 17 h. Then, CH2Cl2 (500 ml) and 1% aqueous NaOH solution (500 ml) were 

added, followed by saturated aqueous NaHCO3 solution (about 600 ml) to adjust the pH to 

8−9 (caution: evolution of CO2 requires slow addition). The resulting mixture was extracted 

with CH2Cl2 (3 × 400 ml). The combined organic phase was dried (MgSO4), filtered, and the 

solvent removed under reduced pressure. After co-evaporation with toluene (2 × 10 ml), the 

colourless residue was dissolved in anhydrous DMF (75 ml), 1H-imidazole (2.55 g, 37.5  
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mmol, 3.0 equiv.) and TBDMSCl (2.83 g, 18.8 mmol, 1.5 equiv.) were added, and the 

solution was stirred at. r.t. for 15 h. The reaction was quenched by addition of MeOH (30 ml), 

and the solvent was removed in vacuo. The residue was dissolved in CH2Cl2 (500 ml) and 0.3 

M aqueous tartaric-acid solution (1000 ml), and extracted with CH2Cl2 (3 × 300 ml). The 

combined organic phase was dried (MgSO4), filtered, and concentrated under reduced 

pressure. The residue was dissolved in MeOH (60 ml), chilled to 0°, and MeONa (10.3 g) was 

added. After stirring the white suspension for 30 min at 0°, CH2Cl2 (500 ml) and saturated 

aqueous NH4Cl soln. (850 ml) were added. Then, the solution was adjusted to pH ≈ 5 by 

addition of glacial AcOH. The mixture was extracted with CH2Cl2 (4 × 300 ml), the combined 

organic phase was dried (MgSO4), filtered, and the solvent was removed under reduced 

pressure. FC (hexane/AcOEt 2:1 → AcOEt) yielded pure diastereoisomers 57a (3.74 g, 49%) 

and 57b (2.77 g, 36%) as white foams, in a ratio of 57a/57b 14 : 10. 

 

Data for 57a: 

 

TLC: 

Rf = 0.10 (hexane/AcOEt 1:1). 

 

M.p.: 

61−62°. 

 
1H-NMR (300 MHz, (D6)DMSO): 

8.59, 8.58 (2s, NH, H−C(2), H−C(8)); 6.44 (t-like, J = 6.5, H−C(1')); 4.75 (t-like, J = 5.3, 

OH); 4.50 (t-like, J = 5.2, H−C(3')); 3.69 (s-like, CH2(5')); 3.66 (dd, J = 4.3, 11.5, 

CHa−C(4')); 3.51 (dd, J = 6.2, 11.5, CHb−C(4')); 3.07−2.98 (m, Ha−C(2')); 2.51−2.40 (m, 

Hb−C(2')); 1.47 (s, t-BuO); 0.90, 0.84 (2s, 2 t-BuSi); 0.11, 0.10 (2s, 2 MeSi); 0.01, –0.01 (2s, 

2 MeSi). 

 
13C-NMR (75.5 MHz, (D6)DMSO): 

151.5 (C(6)); 151.3 (C(2)); 150.0 (C(4)); 142.5 (C(8)); 123.8 (C(5)); 88.9 (CO); 82.7 (C(1'));  
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80.1 (C(4')); 72.3 (C(3')); 62.6, 60.5 (CH2OH, C(5')); 39.0 (C(2')); 27.8 (MeC); 25.7, 25.6 (2 

Me3CSi); 18.0, 17.7 (2 CSi); –4.8, –5.3, –5.5, –5.6 (4 MeSi). 

 

MS (FAB): 

610 ([M + H]+). 

 

IR (KBr): 

3420, 3256, 2955, 2931, 2858, 1753, 1613, 1584, 1525, 1470, 1392, 1368, 1329, 1255, 1231, 

1147, 1083, 951, 837. 

 

EA: 

C28H51N5O6Si2 (609.92)  calculated: C 55.14, H 8.43, N 11.48. 

found:  C 55.17, H 8.36, N 11.31. 

 

 

Data for 57b: 

 

TLC: 

Rf = 0.27 (hexane/AcOEt 1:1). 

 

M.p.: 

109−111° (liquid crystal). 

 
1H-NMR (300 MHz, (D6)DMSO): 

8.65 (s, NH, H−C(2)); 8.58 (s, H−C(8)); 6.43 (t-like, J = 6.6, H−C(1')); 5.02 (t-like, J = 5.5, 

OH); 4.75 (t-like, J = 5.8, H−C(3')); 3.75 (d, J = 10.7, Ha−C(5')); 3.69 (d, J = 10.7, Hb−C(5')); 

3.57−3.46 (m, CH2OH); 2.90−2.81 (m, Ha−C(2')); 2.52−2.43 (m, Hb−C(2')); 1.47 (s, t-BuO); 

0.89, 0.88 (2s, 2 t-BuSi); 0.09, 0.08 (2s, 2 MeSi); 0.05, 0.04 (2s, 2 MeSi). 
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13C-NMR (75.5 MHz, (D6)DMSO): 

151.6 (C(6)); 151.4 (C(2)); 150.0 (C(4)); 142.6 (C(8)); 123.8 (C(5)); 89.1 (CO); 83.1 (C(1')); 

80.1 (C(4')); 72.2 (C(3')); 63.1, 61.8 (CH2-OH, C(5')); 40.4 (C(2')); 27.8 (MeC); 25.8, 25.6 (2 

Me3CSi); 18.1, 17.7 (2 CSi); –4.8, –5.3, –5.5, –5.6 (4 MeSi). 

 

MS (FAB): 

610 ([M + H]+). 

 

IR (KBr): 

3419, 2955, 2930, 2857, 1753, 1612, 1524, 1467, 1393, 1367, 1330, 1255, 1147, 1082, 953, 

837. 

 

EA: 

C28H51N5O6Si2 (609.92)  calculated: C 55.14, H 8.43, N 11.48. 

found:  C 55.17, H 8.29, N 11.41. 

 

 

 

 

 

 

12.6 6-N-[(tert-Butoxy)carbonyl]-3'-O,5'-O-bis[(tert-butyl)dimethylsilyl]-4'-

formyl-2'-deoxyadenosine (58) 

 

57a

O

OTBDMS

TBDMSO A(N6Boc)

HO

58

O

OTBDMS

TBDMSO A(N6Boc)

O

Dess-Martin periodinane, CH2Cl2
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A solution of 57a (9.70 g, 15.9 mmol) and 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-

3(1H)-one (Dess − Martin reagent; 16.9 g, 39.8 mmol, 2.5 equiv.) in anhydrous CH2Cl2 (200 

ml) was stirred at r.t. for 6 h. t-BuOMe (500 ml) was added, and the mixture was extracted 

with 0.3 M NaOH (3 × 300 ml) containing Na2S2O3 (15 g each). The organic phase was 

washed with brine (300 ml). The aqueous phase was re-extracted with t-BuOMe (300 ml), the 

combined organic phase was dried (MgSO4), filtered, and concentrated under reduced 

pressure. FC (hexane/AcOEt 3:1 → 1:1) yielded pure 58 (7.84 g, 81%) as a white foam. 

 

TLC: 

Rf = 0.32 (hexane/AcOEt 1:1). 

 

M.p.: 

64°. 

 
1H-NMR (300 MHz, CDCl3): 

9.68 (s, CHO); 8.76 (s, H−C(2)); 8.29 (s, H−C(8)); 8.01 (br. s, NH); 6.78 (t-like, J = 6.9, 

H−C(1')); 4.88 (t-like, J = 4.2, H−C(3')); 4.06 (d, J = 11.3, Ha−C(5')); 3.93 (d, J = 11.3, 

Hb−C(5')); 2.90−2.83 (m, Ha−C(2')); 2.57−2.52 (m, Hb−C(2')); 1.57 (s, t-BuO); 0.90, 0.89 (2s, 

2 t-BuSi); 0.11, 0.10 (2s, 2 MeSi); 0.08, 0.07 (2s, 2 MeSi). 
 

13C-NMR (75.5 MHz, CDCl3): 

200.9 (CHO); 153.0 (C(6)); 149.9 (C(2)); 149.6 (C(4)); 141.0 (C(8)); 121.8 (C(5)); 93.3 (CO); 

85.5 (C(4')); 82.3 (C(1')); 75.9 (C(3')); 63.9 (C(5')); 41.6 (C(2')); 28.1 (MeC); 25.9, 25.6 (2 

Me3CSi); 18.3, 17.9 (2 CSi); –4.7, –5.3, –5.5, –5.6 (4 MeSi). 

 

MS (FAB): 

646 ([M + K]+); 608 ([M + H]+). 

 

 IR (KBr): 

3421, 3178, 2955, 2858, 1742, 1610, 1465, 1329, 1257, 1229, 1145, 1096, 945, 838. 
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EA: 

C28H49N5O6Si2 (607.90)  calculated: C 55.32, H 8.12, N 11.52. 

found:  C 55.33, H 8.07, N 11.36. 

 

 

 

12.7 6-N-[(tert-Butoxy)carbonyl]-3'-O,5'-O-bis[(tert-butyl)dimethylsilyl]-4'-

(2,2-dimethylpropanoyl)-2'-deoxyadenosine (59) 

 

59

O

OTBDMS

TBDMSO A(N6Boc)

58

O

OTBDMS

TBDMSO A(N6Boc)

O

1) tBuLi, THF, −78°C

2) Dess-Martin periodinane, CH2Cl2 O

 

 

 

Compound 58 (9.56 g, 15.7 mmol) was co-evaporated with toluene (2 × 10 ml), dissolved in 

anhydrous Et2O (200 ml) and cooled to –78°. Cold t-BuLi solution (1.5 M in pentane, 52.4 ml, 

78.6 mmol, 5.0 equiv.) was added within 3 min, and the brown mixture was stirred for 

another 10 min. Then the reaction was quenched by addition of saturated aqueous NH4Cl 

solution (95 ml), the pale yellow mixture was warmed to r.t., treated with H2O (400 ml), and 

extracted with CH2Cl2 (5 × 300 ml). The combined organic phase was dried (MgSO4), 

filtered, concentrated under reduced pressure, and co-evaporated with toluene (2 × 10 ml). 

The resulting yellow foam was dissolved in anhydrous CH2Cl2 (150 ml), treated with 1,1,1-

triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (Dess − Martin reagent; 16.6 g, 39.3 

mmol, 2.5 equiv.), and stirred at r.t. for 25 h. Then t-BuOMe (500 ml) was added, and the 

mixture was extracted with 0.3 M aqueous NaOH solution (3 × 300 ml) containing Na2S2O3 

(15 g each). The organic phase was washed with brine (300 ml), and the aqueous phase was 

re-extracted with t-BuOMe (300 ml). The combined organic phase was dried (MgSO4),  
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filtered, concentrated under reduced pressure, and co-evaporated with toluene. FC 

(hexane/AcOEt 7:2 → 2:1) yielded pure 59 (2.62 g, 25%) as a white foam. 

 

TLC: 

Rf = 0.27 (hexane/AcOEt 2:1). 

 

M.p.: 

70−72°. 

 
1H-NMR (300 MHz, CDCl3): 

8.76 (s, H−C(2)); 8.42 (s, H−C(8)); 8.11 (br. s, NH); 6.76 (dd, J = 5.4, 9.5, H−C(1')); 4.56 (d-

like, J = 4.6, H−C(3')); 3.99 (d, J = 10.5, Ha−C(5')); 3.87 (d, J = 10.5, Hb−C(5')); 2.70 (ddd, J 

= 4.7, 9.4, 13.0, Ha−C(2')); 2.48 (dd-like, J = 5.5, 12.9 Hz, Hb−C(2')); 1.54 (s, t-BuO); 1.22 (s, 

t-Bu−CO); 0.88, 0.87 (2s, 2 t-BuSi); 0.11, 0.08, 0.07, 0.06 (4s, 4 MeSi); NOE [t-BuC=O → 

H−C(8): (+); H−C(1'): ++ ; H−C(3'): (+); Hb−C(5'): ++ ; Ha−C(2'): (+). 

 
13C-NMR (75.5 MHz, CDCl3): 

213.5 (t-BuCO); 153.1 (C(6)); 149.7 (C(2)); 149.6 (C(4)); 140.9 (C(8)); 121.7 (C(5)); 100.4 

(NCO); 85.5 (C(4')); 82.2 (C(1')); 75.6 (C(3')); 69.2 (C(5')); 45.1 (Me3C−CO); 42.9 (C(2')); 

28.3, 28.2, 28.1 (Me3C−O); 26.3, 25.9, 25.8, 25.7, 25.5 (2 Me3CSi, Me3C−CO); 18.4, 18.0 (2 

CSi); –4.9, –5.2, –5.4, –5.5 (4 MeSi). 

 

MS (FAB): 

702 ([M + K]+); 664 ([M + H]+). 

 

IR (KBr): 

3422, 3246, 3181, 2957, 2931, 2859, 1758, 1721, 1703, 1610, 1463, 1366, 1329, 1257, 1225, 

1144, 941, 836. 
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EA: 

C32H57N5O6Si2 (664.01)  calculated: C 57.88, H 8.65, N 10.55. 

found:  C 58.01, H 8.67, N 10.18.  

 

 

 

12.8 4'-(2,2-Dimethylpropanoyl)-2'-deoxyadenosine (60) 

 

59

O

OTBDMS

TBDMSO A(N6Boc)
1) Bu4NF, THF

2) SiO2, high vacuum, 80 °C

60

O

OH

HO A

OO

 

 

 

A mixture of 59 (2.27 g, 3.42 mmol) and TBAF (1 M in THF, 34.2 ml, 34.2 mmol, 10 equiv.) 

was stirred for 1 h at 0° and for 80 min at r.t. Silica gel (11 g) was added, and the solvent was 

removed under reduced pressure. The reagent was removed by passing the mixture through a 

short column of silica gel (AcOEt). Toluene (10 ml) and silica gel (4.0 g, activated at 80° in 

vacuo for 24 h) were added, and the mixture concentrated under reduced pressure (26 mbar). 

The mixture was heated to 70° in vacuo (about 4 × 10-2 mbar) for 65 h, then, the temperature 

was raised to 80° for another 72 h. The mixture was cooled to r.t., extracted with DMF (30ml) 

and MeOH (30 ml), filtered, and concentrated in vacuo. Purification by FC (AcOEt → 

acetone) yielded pure 60 (75.0 mg, 37%) as clear, light amber crystals. 

 

TLC: 

Rf = 0.21 (AcOEt/MeOH 9:1). 

 

M.p.: 

87−90° (liquid crystal). 
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1H-NMR (300 MHz, CDCl3): 

8.30 (s, H−C(2)); 7.94 (s, H−C(8)); 7.18−7.13 (m, NH2); 6.42 (dd, J = 5.1, 10.3, H−C(1')); 

5.96 (br. s, 2 OH); 4.88 (d-like, J = 4.9, H−C(3')); 3.97 (d, J = 11.4, Ha−C(5')); 3.89 (d, J = 

11.4, Hb−C(5')); 3.22 (ddd, J = 4.9, 10.3, 13.0, Ha−C(2')); 2.36 (dd-like, J = 5.2, 12.9, 

Hb−C(2')); 1.21 (s, t-BuC). 

 
13C-NMR (75.5 MHz, CDCl3): 

217.5 (t-BuCO); 156.3 (C(6)); 152.3 (C(2)); 148.4 (C(4)); 140.3 (C(8)); 121.2 (C(5)); 102.5 

(C(4')); 88.4 (C(1')); 75.7 (C(3')); 68.2 (C(5')); 45.5 (Me3C−CO); 39.6 (C(2')); 25.7 

(Me3C−CO). 

 

MS (FAB): 

374 ([M + K]+); 336 ([M + H]+). 

 

IR (KBr): 

3342, 3189, 2962, 2869, 1691, 1647, 1601, 1481, 1371, 1256, 1212, 1103, 944, 907. 

 

EA: 

C15H21N5O4 (335.37)   calculated: C 53.72, H 6.31, N 20.88. 

found:  C 53.45, H 6.50, N 20.75. 
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12.9 5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-6-N-

[(dimethylamino)methylidene]-4'-(2,2-dimethylpropanoyl)-2'-

deoxyadenosine (61) 

 

1) DMF dimethyl acetal, MeOH

2) DMTCl, collidine, DMF, 30 °C

60

O

OH

HO A

O

61

O

OH

DMTO A(N6-dmf)

O

 

 

 

After co-evaporation with toluene (2 × 2 ml), compound 60 (20 mg, 59.6 µmol) was 

suspended in anhydrous MeOH (5 ml), N-(dimethoxymethyl)-N,N-dimethylamine ( =  

dimethyl acetal of DMF; 39.7 µl, 298 µmol, 5.0 equiv.) was added, and the mixture was 

stirred at r.t for 16 h. The clear solution was concentrated under reduced pressure, then co-

evaporated with MeOH/toluene 1:1 (3 × 3 ml), and dried in vacuo. DMF (3 ml), DMTCl (30.3 

mg, 89.4 µmol, 1.5 equiv.) and collidine (79.0 µl, 596 µmol, 10 equiv.) were added, and the 

mixture was stirred at 30° for 17 h. MeOH (2 ml) was added, and the solution concentrated 

under reduced pressure. The residue was co-evaporated with toluene (2 × 2 ml) and subjected 

to FC (silica gel Merck 60, AcOEt/Et3N 99:1 → acetone/Et3N 99:1) to yield 61 (12.8 mg, 

55%) as an off-white foam. 

 

TLC: 

Rf = 0.36 (acetone/Et3N 99:1). 

 

M.p.: 

125−127°. 
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1H-NMR (300 MHz, CDCl3): 

8.92 (s, H−C(2)); 8.46 (s, H−C(8)); 7.96 (s, H−CNMe2); 7.36−7.19, 6.80−6.77 (2m, arom. H); 

6.72 (dd, J = 5.3, 9.7, H−C(1')); 4.71 (d-like, J = 4.6, H−C(3')); 3.77 (s, MeO); 3.55 (d, J = 

9.8, Ha−C(5')); 3.42 (d, J = 9.6, Hb−C(5')); 3.26, 3.21 (2s, Me2N); 2.92 (ddd, J = 5.1, 9.6, 

13.5, Ha−C(2')); 2.53 (dd-like, J = 5.3, 13.2, Hb−C(2')); 1.21 (s, t-BuC). 

 
13C-NMR (75.5 MHz, CDCl3): 

217.0 (t-BuCO); 158.6 (CNMe2); 158.0, 152.7, 151.6, 143.9, 140.1, 135.1, 130.1, 128.3, 

128.2, 127.9, 127.0, 113.1 (arom. C); 98.6 (C(4')); 87.2 (Ar3C); 85.2 (C(1')); 76.0 (C(3')); 67.8 

(C(5')); 55.2 (MeO); 45.7 (Me3C-CO); 41.2 (C(2')); 38.7, 35.2  (2 MeN); 26.1 (Me3C-CO). 

 

MS (ESI): 

715 ([M + Na]+); 693 (M+). 

 

IR (KBr): 

3424, 2959, 2925, 2854, 1702, 1637, 1561, 1509, 1459, 1420, 1352, 1250, 1177, 1112, 1033, 

937, 829. 

 

EA: 

An accurate combustion analysis could not be obtained. 
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12.10 5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-6-N-

[(dimethylamino)methylidene]-4'-(2,2-dimethylpropanoyl)-2'-

deoxyadenosine-3'-O-[(2-cyanoethyl)-N,N-

diisopropylphosphoramidite] (46) 

 

46

O

O

DMTO A(N6-dmf)

O

61

O

OH

DMTO A(N6-dmf)

O iPr2NEt, CH2Cl2

P
N(iPr)2

O(CH2)2CNCl

P
O

CN
N

 

 

 

Well-dried 61 (56.7 mg, 81.7 µmol) was dissolved in anhydrous CH2Cl2 (2.0 ml), i-Pr2NEt 

(Hünig base; 75.5 µl, 441 µmol, 5.4 equiv.) and 2-cyanoethyl-N,N-(diisopropyl)-

chlorophosphoramidite (54.7 µl, 245 µmol, 3.0 equiv.) were added, and the solution was 

stirred at r.t. for 3.5 h. The mixture was poured into saturated aqueous NaHCO3 solution (20 

ml), which was extracted with CH2Cl2 (3 × 20 ml). The combined organic phase was dried 

(Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by FC 

(silica gel Merck 60, hexane/acetone/Et3N 49.5 :49.5 :1) to afford 46 (57.1 mg, 78%) as a 

colourless solid, which was used without further purification for oligonucleotide synthesis. 

 

Mixture of two diastereoisomers: 

 
1H-NMR (400 MHz, CDCl3): 

8.91, 8.90 (s, H−C(2)); 8.48, 8.44 (s, H−C(8)); 7.92, 7.91 (s, HC−NMe2); 7.32−7.19, 

6.76−6.73 (2m, arom. H); 6.71−6.65 (m, H−C(1')); 4.23−4.07 (m, H−C(3'), CH2OP); 3.75 (s,  
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MeO); 3.55−3.44 (m, Ha−C(5'), Hb−C(5'), Me2CH); 3.24, 3.19 (2s, Me2N); 2.76−2.72 (m, 

Ha−C(2'), CH2CN); 2.60−2.57 (m, Hb-C(2')); 1.27−1.14 (m, Me2CH, Me3C−CO). 

 
13C-NMR (101 MHz, CDCl3): 

218.1 (t-BuCO); 158.7 (CNMe2); 157.3, 153.2, 152.0, 144.8, 140.1, 135.1, 130.2, 129.0, 

128.1, 127.7, 127.0, 116.8, 113.1 (arom. C, CN); 97.0 (C(4')); 87.1 (Ar3C); 85.9 (C(1')); 77.2 

(C(3')); 70.8 (C(5')); 58.1, 58.0 (MeO); 55.1 (CH2OP); 46.9 (Me3C−CO); 45.6 

((Me2CH)2NH); 41.3 (C(2')); 37.2, 35.1 (Me2N); 26.0 (Me3C−CO); 22.9, 22.8, 22.7, 22.6 

((Me2CH)2NH); 20.0, 19.1 (CH2CN). 

 
31P-NMR (162 MHz, CDCl3): 

149.1, 147.4. 

 

MS (ESI): 

915 ([M + Na]+); 893 ([M + H]+). 
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13 Oligonucleotide Syntheses 

 

13.1 Principle of the Automated DNA Solid-Phase Synthesis 

 

Synthetic oligonucleotides are usually built up in 3' to 5' direction and the first building block 

is covalently bound to the solid phase via a base-labile succinyl linker. The connection to the 

solid phase is via an amide bond and the 5' hydroxy group is protected by an acid-labile DMT 

ether. Generally, the solid phase has a loading density of 20 to 30 µmol of the starting 

nucleotide per gram of solid phase. Solid phase amino functionalized borosilicates (CPG – 

controlled pore glass) are widely used, which offer a range of pore widths from 500 to 2000 

Å. Solid phase material featuring a pore width larger than 1000 Å is of particular advantage 

for longer oligonucleotides (> 30mers). Pre-loaded flow-through columns for automated DNA 

syntheses span a synthesis scale range from 40 nmol up to 10 µmol. For this work, only 500 

Å pore width CPG columns in 0.2 µmol synthesis scale were used. 

The monomeric nucleotide building blocks carry temporary protection groups, which get 

cleaved before each coupling step. They also contain permanent protection groups for the 

amino functions of A, C and G, as well as for the phosphite function, which are only cleaved 

after completion of the oligonucleotide synthesis. The DMT group is used for the protection 

of all 5' hydroxy groups. The amino groups of A, C, and G are protected as amides or 

amidines, and the phosphites are protected by the 2-cyanoethyl group. 

The first step of oligonucleotide synthesis is the deprotection of the terminal DMT group by 

2% trichloroacetic acid. The following, tetrazole-activated nucleotide then couples with this 

free hydroxy group. The amidite building blocks are added in approximately 20-fold excess 

for the coupling steps. In the next step, unreacted 5' hydroxy groups are capped in a fast and 

quantitative reaction as acetates, in order to terminate any further synthesis of fault sequences. 

The subsequent oxidation of the labile P(III) compound to the phosphate is achieved by 

reaction with a iodine/water/pyridine mixture. With the cleavage of the DMT group the next 

synthesis cycle starts. The amount of cleaved trityl cation is monitored photometrically or 

conductometrically, as this serves as a scale for coupling efficiency. Upon completion of the 

synthesis, the oligonucleotide is manually cleaved off the solid phase by treatment with 30%  
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aqueous ammonia solution at 55 °C for 8 h. All permanent protection groups are also cleaved 

in this step with exception of the terminal DMT group (Scheme 13.1). 

 

Scheme 13.1 
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13.2 Introduction of the 4'-Pivaloylated Adenosine 46 

 

Freshly-prepared 4'-pivaloylated nucleoside 46 was dried in vacuo and was dissolved in 

absolute CH3CN to give a 0.1 M solution. Solid-phase syntheses were carried out at 0.2 µmol 

scale using standard columns (CPG, 500 Å pore width, Glen Research). The synthesizer was 

performing in standard mode except for the coupling of the modified nucleosides which were 

manually coupled using the following procedure: 

 

• instead of “monomer 5” install anh. AcCN at the synthesizer 

• manually stop synthesis when it starts pumping “monomer 5” 

• remove column from synthesizer, wash with anh. AcCN. Attach two 1ml syringes, 

one containing 0.2ml A* solution, one containing 0.2 ml Activator solution 

• pump these solutions through the column for 20 min. Let the synthesizer proceed 

without column until the end of the coupling procedure, stop again 

• wash column with anh. AcCN, proceed with the synthesis cycle 

• when deblocking has ended, stop again and remove column. Add one empty syringe, 

and one containing 0.5 ml of deblock mix, manually deblock for another 2-3 min, 

until the solution does not get cloudy any more when pumped through 

• thoroughly wash with anh. AcCN, re-mount and proceed with automated synthesis 

 

This procedure proved to afford coupling yields which were absolutely comparable to those 

of unmodified nucleosides (> 98%), and nearly no loss of the modified nucleoside. All 

syntheses were carried out in trityl-ON mode. Upon completion of the syntheses, the columns 

were dried in an argon flow, and were incubated by 30% aqueous ammonia solution (1 ml) 

overnight. After lyophilization, the crude oligonucleotide was extracted with TEAA buffer 

(0.9 ml, 0.1 M, pH 7) and filtered through a 0.2 µm syringe filter for subsequent HPLC 

purification. 
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13.3 Workup and Purification of the Oligonucleotides 

 

The crude trityl-ON oligonucleotide mixtures in TEAA buffer were purified by RP-18 HPLC 

(see Chapter 11.2). The following HPLC gradient was applied: 15% to 40% CH3CN in 25 

min., which led to elution of the desired oligonucleotides within 9 to 14 min. The collected 

fractions were lyophilized. For trityl deprotection, 80% aqueous acetic acid (200 µl) was 

added to the dry fractions. After 20 min at r.t., aqueous NaOAc solution (3 M, 50 µl) and i-

PrOH (300 µl) were added, and the mixture was vigorously shaken, centrifuged and 

lyophilized to dryness. 

For the trityl-OFF purification, the deprotected oligonucleotides were dissolved in water and 

filtered through a 0.2 µm syringe filter. The following HPLC gradients were applied: for 

oligonucleotides < 30mer, 6% to 13% CH3CN in 20 min., which led to elution of the desired 

oligonucleotides after about 15 to 19 min. For oligonucleotides > 30mer, 6% to 15% CH3CN 

in 27 min., which led to elution of the desired oligonucleotides after about 15 to 23 min. 

Oligonucleotides containing many T bases generally eluted later than oligonucleotides 

containing many A bases. 

 

 

13.4 Data for the Synthesized Oligonucleotides 

 

The identity of all oligonucleotides was verified by MALDI-TOF MS. Their purity was 

verified by RP-18 HPLC, as well as by MALDI-TOF MS. All oligonucleotides used in 

photolyses were of 97% purity at least. The unmodified strands were purchased from 

Microsynth and Qiagen/Operon, and were purified by PAGE and RP-18 HPLC. 
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Sequence ε260 [M−H]− [M−H]− 

 (µm−1 cm−1) calculated found 

 

101: 

5'-TTTCTTTTTGGGTTTTTGGGTTTTTCTTT-3' 242.6 8879.0 8877.6 
 

102: 

5'-AAAGAAAAACCCAAAAACCCAAAAAGAAA-3' 351.5 8905.9 8908.9 
 

103: 

5'-AAAGAAAAACCCAAAAACCCAAA *AAGAAA-3' 351.5 8990.0 8990.8 
 

104: 

5'-TTTCTTTTTGGGTT[sp-d]TTGGGTTTTTCTTT-3' 233.4 8754.7 8748.4 
 

105: 

5'-TTTCTTTTTGGG[sp-d]TTT[sp-d]GGGTTTTTCTTT-3' 225.5 8630.6 8630.2 
 

106: 

5'-TTTCTTTTTGGGTTCTTGGGTTTTTCTTT-3' 239.9 8863.8 8872.3 
 

107: 

5'-TTTCTTTTTGGGCTTTCGGGTTTTTCTTT-3' 238.6 8848.8 8856.5 
 

108: 

5'-AAAGAAAAAC 

CCAAAGAAACCCAAA *AAGAAA-3' 373.7 9634.4 9634.7 
 

109: 

5'-AAAGAAAAACCCAATAACCCAAA *AAGAAA-3' 343.5 8981.0 8987.7 
 

110: 

5'-TTTCTTTTTGGGTTTCTTTGGGTTTTTCTTT-3' 255.7 9472.2 9473.2 
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111: 

5'-TTTCTTTTTGGGTTATTGGGTTTTTCTTT-3' 247.2 8887.8 8887.8 
 

112: 

5'-AAAGAAAAACCCAAAGAAACCCAAAAAGAAA-3' 373.7 9550.3 9553.8 
 

113: 

5'-AAAGAAAAACCCAAAGAAACCCAAAAAGAAA-3' 343.5 8898.9 8907.1 
 

114: 

5'-AAGAAAACCC 

AAAAAAAAAAAACCCAAA *AAGAAA-3' 418.3 10558.1 10564.7 
 

115: 

5'-TTTCTTTTTG 

GGTTTTTTTTTTTTGGGTTTTCTT-3' 280.7 10399.8 10405.3 
 

116: 

5'-AAGAAAACCC 

AAAAAAAAAAAACCCAAAAAGAAA-3' 418.3 10474.0 10482.7 
 

117: 

5'-AAAGAAAAAC 

CCAAACAAACCCAAA *AAGAAA-3' 369.8 9594.4 9596.3 
 

118: 

5'-TTTCTTTTTGGGTTTGTTTGGGTTTTTCTTT-3' 259.6 9512.2 9522.8 
 

119: 

5'-AAAGAAAAAC 

CCAAACAAACCCAAAAAGAAA-3' 369.8 9510.3 9516.9 
 

120: 

5'-AAGAAAACCC 

AAAAAAAAACCCAAA *AAGAAA-3' 379.3 9618.4 9624.0 
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abbreviations: 

A*  4'-pivaloyl modified adenosine 

[sp-d] reduced abasic site (3-hydroxy-2-[hydroxymethyl]tetrahydrofurane) 

 

 

13.5 DNA Melting Temperatures 

 

Prior to the DNA melting temperature (Tm) measurements, the desired two complementary 

strands (0.2 nmol each) were dissolved in 1.0 ml buffer solution (pH 5.0, 20 mM sodium 

citrate, 100 mM NaCl) and annealed according to the procedure described in Chapter 11.3. 

Tm measurements were carried out at 260 nm and a temperature gradient of 1 °C min−1. The 

values given are the mean of the heating and cooling curves. 

 

 

 Duplex Tm / °C Duplex Tm / °C 

 

 101/102 63.0 103/106 55.5  

 101/103 58.4 103/107 55.4  

 101/109 51.3 103/111 53.3  

 101/113 52.7 108/110 58.8  

 102/104 51.8 109/111 57.6  

 102/105 46.2 110/112 61.3  

 102/106 56.7 111/113 59.5  

 102/107 56.6 114/115 60.0 

 102/111 54.3 115/116 61.2 

 103/104 49.9 117/118 60.5 

 103/105 45.2 118/119 61.3 
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14 Photolyses with Subsequent PAGE Analysis 

 

14.1 Radioactive Labelling of Oligonucleotides  

 

To a solution of oligonucleotide (20 pmol) in kinase buffer (4 µl, 70 mM Tris · HCl pH 7.6, 10 

mM MgCl2, 5 mM dithiothreitol) were added [γ-32P]-ATP (2 pmol), T4 polynucleotide kinase 

(10 units), and nanopure H2O (for a total volume of 40 µl). After incubation (45 min at 37 

°C), the labelled oligonucleotide was purified by centrifugation via a mini-QuickSpin column. 

All oligonucleotides were used for experiments within 14 h after labelling in order to 

minimize decomposition caused by radiation and radioactive decay. 

 

 

14.2 Photolyses and Piperidine Cleavage 

 

Double-stranded DNA was generated by mixing the 4'-modified oligonucleotide (6.7 pmol) 

with 1.5 equiv. of the corresponding 32P-labelled complementary strand in citrate buffer (980 

µl, pH 5, 20 mM citrate, 100 mM NaCl) and heating to 75° for 5 min, followed by cooling 

slowly to r.t (≥ 2 h). The identical procedure was applied to the non-modified control 

oligonucleotide. 

Argon was bubbled through the solution in the cuvette for 6 min before irradiation. Double- 

stranded DNA solution (200 µl) was irradiated at 320 nm for 5 min (the cuvettes were 

thermostated to 20°) to obtain cleavage yields at the modified position of 38% to 45%. 

A portion of the irradiated solution (40 µl) was mixed with 1.0 M aqueous piperidine solution 

(200 µl; prepared from freshly re-distilled piperidine), and was shaken at 90° for 30 min, then 

lyophilized. 
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14.3 Maxam-Gilbert Sequencing 

 

The following procedures, derived from the original procedures by Maxam and Gilbert,[156] 

were applied in order to create DNA reference ladders on the gels: 

 

• for random cleavage at all G positions: to the remains of the labelled oligonucleotide 

(about 1 pmol) were added phosphate buffer (50 µl, pH 7.0) and dimethyl sulfate (0.5 

µl). After 15 min at r.t., 1.0 M aqueous piperidine solution (200 µl; prepared from 

freshly re-distilled piperidine) was added and the mixture was shaken at 90° for 15 

min, then lyophilized. 

 

• for random cleavage at all C and T positions: to the remains of the labelled 

oligonucleotide (about 1 pmol) were added hydrazine hydrate (20 µl) and nanopure 

H2O (5.0 µl). The mixture was shaken at 40 °C for 20 min, and was evaporated to 

dryness at 60 °C for ≥ 3 h. Then, 1.0 M aqueous piperidine solution (200 µl; prepared 

from freshly re-distilled piperidine) was added and the mixture was shaken at 90° for 

30 min, and  lyophilized. 

 

 

14.4 Polyacrylamide Gel Electrophoresis (PAGE) 

 

14.4.1 Preparation of Gels 

 

The 12% denaturing polyacrylamide gels were cast according to standard procedures[157] 

using urea (50 g), nanopure H2O (20 ml), 10 × TBE buffer (10 ml), and AccuGel 19:1 (30 

ml). The gel mixture was degassed by a water-jet vacuum pump for 12 min, and filtered, then 

polymerization was initiated by addition of TMEDA and 10% ammonium persulfate (80 µl 

each) and the gel cast at a thickness of 0.4 mm. For this purpose, a custom-designed gel-

casting device was used (Figure 14.1). All gels were prepared at least 3 h before use. 



118 14. Photolyses with Subsequent PAGE Analysis 

_______________________________________________________________________________________________________________________________________________________ 

 

 
 

Figure 14.1. Gel casting device 

 

 

14.4.2 Preparation of Probes and Gel Loading 

 

The dried and piperidine-cleaved irradiation residue was dissolved in a mixture of loading 

buffer (20 µl, 90% formamide, 10% TBE buffer, some bromphenol blue) and H2O (20 µl) by 

shaking at 40 °C for 30 min, then β−radiation intensity was standardized by liquid 

scintillation of samples (5.0 µl; mixed with 8.0 ml IrgaSafe Plus) from every probe in order to 

ensure that every lane on the gel contained an identical amount of radioactivity. Generally, the 

radioactivity of the 5.0 µl samples ranged between 30 000 and 70 000 CPM. The best 

resolution was achieved by application of 75 000 CPM for the probe lanes, and 150 000 CPM 

for the Maxam-Gilbert lanes. However, the volumes applied to the gel had to range between 3 

and 18 µl due to the limited size of the gel loading pockets. 

 

 

14.4.3 Electrophoresis, Workup and Analysis 

 

Gels were processed at 1500 V for 130 to 170 min, then transferred onto chromatography 

paper (Whatman 3 MM Chr), wrapped into Saran foil and exposed to a storage phosphorus  
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screen for 14 to 17 h. After exposure, the gels were dried for storage purposes at reduced 

pressure for 3 h at 80 °C. 

Relative yields were calculated by volume integration of single spots, histograms were 

obtained by line integration along the lanes. All results and histograms are the calculated 

differences between experiments containing 4'-modified oligonucleotides and control probes 

containing unmodified strands (see Chapters 10.3−10.4). The calculated data are the mean 

values of at least three experiments each. 

 

 

14.5 Data for the Irradiated Radioactive Oligonucleotides  

 

14.5.1 Photocleavage Efficiency Tests 

 

Several experiments were done with single- or double-stranded sequences 101, 102 and 103 

in order to determine the photocleavage efficiency at different pH values. The results of these 

prelimiary experiments were used to find a pH value which offers the best yield of enol ether 

76. In contrary to the electron transfer experiments, for these cleavage experiments the A*-

containing strands were radioactively labelled. For both single- and double-strand 

experiments, pH 5.0 afforded the highest absolute yields for enol ether 76. 

 

 Sequence (single) pH P29mer / % Penol ether 76/ % P3'-phosphate 74/ % 

 

 102 4.0 61.1 0.4 0.4 

 103 4.0 7.9 10.2 22.5 

 102 4.5 47.8 0.6 0.8 

 103 4.5 6.3 12.7 19.9 

 102 5.0 66.3 0.5 0.5 

 103 5.0 7.6 19.6 32.3 

 102 7.0 71.2 0.6 0.5 

 103 7.0 8.3 19.4 33.6 
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 Sequence (double) pH P29mer / % Penol ether 76/ % P3'-phosphate 74/ % 

 

 102/101 4.0 0.8 0.4 0.7 

 103/101 4.0 0.6 0.8 1.2 

 102/101 4.5 6.6 0.5 0.8 

 103/101 4.5 1.0 1.2 1.5 

 102/101 5.0 63.7 0.8 0.7 

 103/101 5.0 7.8 19.4 30.1 

 102/101 7.0 62.8 0.5 0.4 

 103/101 7.0 14.1 15.6 25.5 

 

 

 

14.5.2 Charge Transfer Experiments 

 

Measured radioactivity of charge transfer experiments after the irradiation. The data given is 

weighted with the total radioactivity of the corresponding lane, and the control experiments 

were subtracted as well. The number of the radiolabelled strand is indicated first. 

 

 Experiment P5' P3' P5' / P3' 

 

 101/103 123.8 68.95 1.80 ± 0.36 

 101/109 133.7 57.62 2.32  ± 0.47 

 104/103 1952 79.45 25.0 ± 0.60 

 106/103 130.9 31.86 4.11 ± 0.78 

 111/103 117.3 62.71 1.87 ± 0.25 

 111/109 135.1 74.21 1.82 ± 0.25 

 115/114 91.80 61.61 1.49 ± 0.09 
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Oxidation Potentials of Nucleobases 

 

The oxidation potentials indicated are measured for nucleosides in solution.[22] Within DNA, 

the oxidation potentials alter depending on the nature of the base pairing and the neighbouring 

bases. 
 

Nucleoside Structure Oxidation Potential / (V vs. NHE) 

2'-Deoxyadenosine 
N

NN

N

NH2

O

OH

HO

 

+1.96a / +2.03b 

Thymidine 

O

OH

HO

NH

N

O

O

 

+2.11a 

2'-Deoxyguanosine 
NH

N

N

O

NH2
N

O

OH

HO

 

+1.49a / +1.58b 

2'-Deoxycytidine 

O

OH

HO

N

N

NH2

O

 

+2.14a 

 

a Data from [22a], measured in AcCN. b Data from [22b], measured in aqueous solution.
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