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SUMMARY

Approximately 40% of all deaths in Switzerland are due to cardiovascular diseases.1 An

important part of these deaths happen because of life-threatening cardiac arrhythmias.
Ventricular fibrillation (VF) is the most dangerous cardiac arrhythmia usually caused by

ischemic heart disease and infarction. It also happens in apparently healthy individuals

representing the most common cause of sudden death. The problem of high mortality
associated with sudden cardiac death due to VF is relevant to all industrialized countries.

In the United States, VF accounts for approximately 300,000 deaths per year.2 Currently
the most important therapy is the implantable cardioverter-defibrillator (ICD). Recent

clinical trials3 have expanded the indications for device therapy to over 4 million patients

in the US alone at a cost exceeding $50 billion if fully implemented.2 This consideration
provides a strong motive to develop alternative new therapies that are comparably

effective but less expensive and invasive.2 This requires a better understanding of VF

pathogenesis at the molecular and cellular level. Therefore, our study was focused on
elucidation of mechanisms of VF.

It has been proposed that detrimental effects of VF are partially due to rapidly developing

overload of cytosol of cardiac cells with Ca2+.4 The Ca2+ overload is responsible for

maintaining of VF as well as for reinduction of VF after defibrillation5 and for the post-
VF left ventricular (LV) disfunction.6

It is not clear, however, through which pathways Ca2+ enters cells during VF. Here we
studied the role of different ion transport systems, particularly, of L-type Ca2+ channels

and sodium-calcium (Na+/Ca2+) –exchange, in initiation and maintenance of Ca2+

overload during VF. We applied drugs specifically blocking each of these Ca2+ transport
systems in an isolated perfused rat heart model. We used nifedipine, a blocker of L-type

Ca2+ channels and KB-R7943, a specific blocker of the reverse mode of Na+/Ca2+-
exchange. We induced VF in the hearts by rapid pacing and registered changes of

intracellular Ca2+ concentration ([Ca2+]i) using surface fluorescence of the Ca2+ indicator

indo-1. In order to get a better understanding of extend of Ca2+ overload during VF we
calibrated fluorescence signal of indo-1 to [Ca2+]i. During the first two minutes of VF
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[Ca2+]i reached about double of the normal systolic concentration achieving ≈ 2000 -

2500 nM. With further VF duration [Ca2+]i elevated less rapidly and achieved ≈ 3000 nM.
We found that both L-type Ca2+ channels and Na+/Ca2+-exchange contribute to Ca2+

overload during VF. Specifically, when each of the drugs was perfused before VF
induction, nifedipine reduced the extend and especially the rate while KB-R7943 mostly

reduced the extend of Ca2+ accumulation in cardiomyocytes. Additionally, Na+/Ca2+-

exchange also contributes to maintenance of Ca2+ overload during VF because perfusion
of the hearts with KB-R7943 after VF has been induced also reduced [Ca2+]i. Finally, in

all groups of hearts perfused with the drugs, spontaneous terminations of VF
(defibrillations) were frequently observed. The spontaneous defibrillations did not happen

in untreated control hearts. These results enabled us to conclude that both L-type Ca2+

channels and Na+/Ca2+-exchange are important ways of Ca2+ entry into the
cardiomyocytes during VF. The L-type Ca2+ channels are more important for Ca2+ entry

into cardiomyocytes at the initial stage of VF. The Na+/Ca2+-exchange is also important at

the initial stage of VF but its contribution increases rapidly with progression of VF.
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ABBREVIATIONS

AM acetoxymethyl (esterified form of fluorescent dye indo-1)

AV atrio-ventricular

[Ca2+]i intracellular concentration of Ca2+

[Ca2+]m mitochondrial concentration of Ca2+

CICR Calcium-induced calcium release

ECG electrocardiogram

iCaL inward calcium current through L-type Ca2+ channels

iNa+ inward sodium current

LV left ventricular

LVDP left ventricular developed pressure

[Na+]i intracellular concentration of Na+

Na+/Ca2+-exchange sodium-calcium exchange

RyR ryanodine sensitive Ca2+ channels (ryanodine receptors)

SA sino-atrial

SERCA sarcoendoplasmic reticulum calcium ATP-ase

SR sarcoplasmic reticulum

T-tubules Transverse tubules

VF ventricular fibrillation
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1. INTRODUCTION

Cardiovascular diseases are the major cause of mortality in Switzerland today. They

account for approximately 40% of all deaths.1 An important part of these deaths happen
because of cardiac arrhythmias. Among the cardiac arrhythmias, VF is most dangerous

and usually is a direct cause of sudden cardiac death because of fast ischemic brain

damage due to interrupted blood flow. VF is associated with ischemic heart disease and
infarction. The underlying pathology, however, may be unknown and sudden death due

to VF may be a first manifestation of disease in an apparently healthy individual.7

Research of the last decades has provided a better understanding of the pathophysiology

of VF.

There are several theories explaining mechanisms of initiation and maintenance of VF,

such as the depressed conduction and unidirectional block generating reentry,8 the

wavebreack mechanism,8 electrical cell-to-cell uncoupling induced by ischemia,9

heterogeneous repolarization and prolonged refractoriness in hypertrophied and failing

hearts,10-12 delayed afterdepolarizations followed by triggered activity.13-15 These events
can lead to initiation of VF. On the other hand, initiation of potentially lethal ventricular

tachyarrhythmias including VF in many pathological conditions such as digitalis toxicity,

myocardial ischemia or heart failure has generally been accepted to be due to Ca2+

overload.8,16-19

Still, some important mechanisms of Ca2+ overload, like the ways of Ca2+ entry, are not
clear. The present thesis is aimed at investigation of the ways of Ca2+ entry into the

cardiomyocytes at different stages of VF.
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1.1 Excitation-contraction coupling

1.1.1 Electromechanical activity of the heart

The heart is a muscular pump that propels blood throughout the circulation, delivering
nutrients to and removing wastes from each of the organs and transporting hormones and

other messengers between various regions of the body.8 Cardiac muscle is very complex,
highly regulated tissue. An elaborate and heterogeneous electrical system allows the heart

to be excited in an orderly manner and to beat synchronously.8 Electrical impulse

generated in sinoatrial (SA) node causes atria to contract (Fig.1A). The signal then passes
through the atrioventricular (AV) node to the AV bundle. Further division of the AV

bundle into smaller and smaller branches of the Purkinje fibers system brings the signal
to the working ventricular myocardium (Fig.1B) which finally leads to excitation of

single cardiomyocytes (Fig.1C), eventually followed by their coordinated, nearly

synchronous contraction and, therefore, by contraction of the whole ventricles. The
process of coupling excitation to contraction at cellular level is very important and will be

considered in detail.

1.1.2 Excitation-contraction coupling in cardiomyocytes

The cardiac cell membrane has specific foldings called Transverse tubules  (T-tubules).

The system of T-tubules in cardiac myocytes provides close spatial position between the

sarcolemmal L-type Ca2+ channels and the ryanodine sensitive Ca2+ channels (ryanodin
receptors or RyR) in the sarcoplasmic reticulum (SR)8 (Fig. 2).

Electrical excitation of the surface membrane of the working cells of the atria and
ventricles begins when opening of sodium channels. The resulting inward depolarizing

sodium current (iNa+) generates the initial upstroke of the cardiac action potential.8 The

action potential propagates as a wave of depolarization along the surface and along the T-
tubules. Depolarization of the T-tubule opens L-type Ca2+ channels in the sarcolemma.

Due to the close positioning of L-type Ca2+ channels and RyR the Ca2+ flux through L-

type Ca2+ channels leads first of all to an increase of [Ca2+]i locally in the close proximity
of RyR.
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A

  B

C

Figure 1. System of electrical conduction in the heart. Abbreviations: SA sino-atrial, AV
atrio-ventricular, T-tubule transverse tubule. (A) from R.F. Schmidt, 2000, (B) and (C)
from C. Thomas et al., 1989; modified by C.E. Zaugg.

This triggers opening of RyR channels and release of Ca2+ ions from the SR, the process

known as calcium-induced calcium release (CICR).20-22 In addition to the entry through L-
type Ca2+ channels, Ca2+ enters from outside via reverse mode of Na+/Ca2+-exchange,

which also contributes to CICR although to a smaller extent.23 The operation of Na+/Ca2+-

exchange in a reverse mode, favoring Ca2+ entry, is provided by membrane depolarization
and increase of intracellular sodium concentration ([Na+]i). CICR and Ca2+ influx from

outside lead to a quick rise of [Ca2+]i from ≈100 nM during diastole to ≈1 µM during

systole24 followed by a quick decline, a process called Ca2+ transient. High systolic [Ca2+]i

promotes binding of Ca2+ ions to myofilament protein troponin C that triggers interaction

between actin and myosin resulting in contraction.8

nucleus
myocyte

capillary

sarcoplasmic
reticulummitochondria

T-tubule

myofilaments
sarcolemma

SA node

AV
node

AV bundle

Purkinje fibers



14

Figure 2. Excitation-contraction coupling in cardiomyocyte. Abbreviations: L L-type
Ca2+ channels, RyR ryanodine receptor, T-tubule transverse tubule, NCX Na+/Ca2+-
exchange, SERCA sarcoendoplasmic reticulum Ca2+ ATP-ase, ATP adenosintriphosphate.
From Bers D., Cardiac excitation-contraction coupling, 2002;25 modified by C. E. Zaugg.

So, Ca2+ is an agent that eventually passes the electric signal generated in the SA node to

the contractile machinery of the heart. After contraction the heart has to relax in order to
refill its chambers with blood. Relaxation, which is loosely synchronized with

repolarization,26 is provided by decline of Ca2+, resulting from the following processes.

First, further entry of Ca2+ into the cytosol is terminated. CICR inactivates Ca2+ current
through L-type Ca2+ channels (iCaL), the very process, which has triggered CICR itself.27,28

RyRs also get inactivated, although the mechanism of this inactivation is unresolved.26

There are theories explaining its inactivation to be Ca2+ -independent and due only to the
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previous activation29 or to be dependent on increase of [Ca2+]i during CICR.30 Second,

there are mechanisms of Ca2+ removal from cytosol. Most of Ca2+ is pumped back into SR
by the sarcoplasmic reticulum calcium ATP-ase (SERCA). Activation of SERCA takes

place first of all due to the high level of its substrate, the cytosolic Ca2+, during action
potential.8,26 Some amount is extruded out of the cell by the working in a forward mode

Na+/Ca2+-exchange. The forward mode of Na+/Ca2+-exchange, favoring Ca2+ extrusion, is

switched on by repolarization of sarcolemma. Least amount is removed by the
sarcolemmal Ca2+ pump, which also extrudes the Ca2+ ions out into the extracellular

space. Eventually [Ca2+]i declines, which leads to dissociation of Ca2+ ions from troponin
C and relaxation.8

It should be noted that excitation by fast depolarizing iNa+ takes place in all the heart

except for the SA and AV nodes. The cells of the nodal tissue lack functional Na+

channels. Excitation in the nodal tissue is provided by slow depolarizing Ca2+ currents,

which are responsible for pacemaker activity of SA and for impulse propagation in AV.8

Additionally, it should be noted, that although the SA node is the main, it is not the only
source of excitation (pacemaker) in the heart. The SA node in the human heart normally

fires 60 to 100 times per minute. There are also lower pacemakers. The most rapid is in
AV node; it has an intrinsic rate of 40 to 55 beats/min. Cells of AV bundle and of His-

Purkinje system also possess pacemaker activity. They can fire at rates of 25 to 40

beats/min. In pathological conditions, when the SA node is slowed or when conduction is
impaired, the activity of the lower pacemakers becomes apparent.8
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1.2 Arrhythmias - a brief classification
(Based on Physiology of the Heart, A. Katz, 2001 8)

There are two general types of arrhythmia: bradycardia, when the heart rate is too slow,
and tachycardia, when the heart rate is too high. Each includes many specific

arrhythmias that are generally described in terms of the structure where the arrhythmia

originates and the type of abnormality responsible for the arrhythmia. Bradycardias
(bradyarrhythmias) are readily diagnosed by palpation of the peripheral pulse.

Tachycardias (tachyarrhythmias) are more complex because not all premature
depolarizations alter the pulse. Supraventricular tachycardias arise above the ventricles,

and tachyarrythmias originating in the His-Purkinje system and ventricles are called

ventricular tachycardias.

Mechanisms responsible for bradyarrhythmias

The most common causes for an abnormally slow pulse are slowed pacemaker activity

(chronotropy) and depressed conduction (dromotropy). The former is caused by changes
in the ionic currents responsible for pacemaker activity in the SA node, and the latter,

often called block, occurs when conduction of this impulse to the ventricles is impaired.

Slowed pacemaker activity

Slowing of the sinus pacemaker (sinus bradycardia) is commonly caused by excessive
parasympathetic (vagal) tone. Sinus bradycardia is commonly seen in normal individuals

in whom vagal tone is increased by training. Severe sinus bradycardia can cause
vasovagal syncope (the “swoon”). Sinus pacemaker activity can be slowed by

hypothyroidism as well as by many prescribed drugs, including b-adrenergic blockers and

some L-type Ca2+ channels blockers. Slowing of lower pacemakers in the AV node or
His-Purkinje system cannot cause bradycardia as long as ventricular beating is controlled

by a normally functioning sinus pacemaker.
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Depressed conduction (block)

The other cause of bradycardia is called block. It occurs when impulse conduction into

the ventricles is impaired. It can produce “dropped” (absent) beats or depress conduction

that can cause abnormal delay in impulse propagation. The later does not affect the pulse
but causes abnormalities that are seen on the electrocardiogram (ECG). Three areas in the

heart are especially vulnerable to the block. The first two, the SA and AV nodes, are
regions where conduction is normally slow and the safety factor low. The third, the AV

bundle, is anatomically precarious because this is the only strand of conducting tissue

between atria and ventricles. SA and AV blocks are often caused by functional
abnormalities produced by excessive parasympathetic tone or by drugs inhibiting Ca2+

channels. Block of AV bundle usually occurs when it is damaged or destroyed by disease.

Decremental conduction

Decremental conduction is seen when an action potential enters a region with

progressively slowing conduction velocity. It is abnormal in all regions of the heart

except for the nodal tissue. Conduction is slowed in energy-starving cells because of
inhibition of sodium pump and increased extracellular potassium. Abnormal

refractoriness also slows conduction by inactivating sodium and calcium channels, which
decreases action potential amplitude and slows depolarization. If the ability to generate a

propagated action potential in a region of decremental conduction is severely depressed,

it can completely block impulse transmission.
Decremental conduction is a normal property of SA and AV nodes providing a normal

conduction delay in these structures. Once the impulse reaches the AV bundle,
conduction velocity again becomes rapid.

Block in the AV bundle, like block in the AV node, can cause AV conduction to fail.

However, unlike block in the AV node, which is often functional and readily reversed,
block in the AV bundle is usually dangerous. Block in AV bundle reflects anatomical

damage and is frequently irreversible.

Conduction can also be blocked in the bundle branches and fascicles of the left bundle
branch (bundle branch blocks and fascicular blocks). These localized blocks do not
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themselves cause “dropped beats”, but like block in the AV bundle, they imply anatomic

disease of the His-Purkinje system. Block in the distal His-Purkinje system called
arborization block is evidence for diffuse myocardial disease, which occurs in end-stage

heart failure.

Unidirectional block

Unidirectional block is a selective block of conduction in one direction. It is observed in

the normal heart, like in the AV node, where antegrade (forward) conduction from atria

to ventricles is more rapid than retrograde (backward). In diseased hearts it occurs in the
areas that are inhomogeneously ischemic or scarred. Unidirectional block often leads to

arrhythmias. Nonuniform abnormalities in diseased hearts may lead to an asymmetric
reduction of action potential amplitude or rate of depolarization. Asymmetrically

distributed resting potential or refractoriness, asymmetric fibrosis, which slows

conduction by increasing longitudinal resistance, an uneven reduction of the number of
open gap junction channels, asymmetric increase of depolarization threshold, these are

conditions that often produce unidirectional block. Unidirectional block is a common
cause of premature systoles and tachyarrhythmias because, in addition to causing

conduction to fail, it can disorganize impulse propagation and cause reentry.

Mechanisms responsible for premature systoles and tachyarrhythmias

Most of tachyarrhythmias are described in terms of their clinical features because
defining pathophysiology of a given arrhythmia is difficult and often impossible. A single

early beat is called a premature systole (premature beat) and a series of premature beats a
tachycardia. Very rapid regular depolarization of the atria or ventricles is called flutter,

and complete disorganization of depolarization, where there is no effective beating, is

called fibrillation. There are three mechanisms accounting for most of tachyarrhythmias.
These are accelerated pacemaker activity, triggered depolarizations and reentry. All can

be manifestations of more than one underlying mechanism, all can appear in many

regions of the heart, and most can occur either as a single event (a premature systole) or
as a sustained tachycardia.
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Accelerated pacemaker activity

This mechanism represents an accelerated firing of pacemaker cells. When it occurs in

the SA node, it causes sinus tachycardia. In lower pacemakers it can cause junctional and

accelerated idioventricular rhythm.

Afterdepolarizations and triggered responses

Afterdepolarizations appear spontaneously during and after repolarization after an action

potential. They are both seen in Ca2+ -overloaded hearts.8 Large afterdepolarizations can
generate propagated action potentials called triggered responses, which are important

causes of lethal arrhythmias. There are two general types of aferdepolarization: early and

delayed. The former appear before the end of the action potential, when the membrane
potential is in the range between –10 and –30 mV; the latter appear after the membrane

potential has returned to its resting level.

Early afterdepolarizations

Early afterdepolarizations appear at the end of the plateau of the cardiac action potential

(Fig. 3 A), they are caused by inward currents, mostly by iCaL. Early afterdepolarizations

are provoked by diseases, by drugs that prolong the action potential, by b-adrenergic

agonists and by phosphodiesterase inhibitors.
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A

B

Figure 3. Afterdepolarizations: A early, B delayed. (from A.Katz, 20018).

Delayed afterdepolarizations

Delayed afterdepolarizations occur after the cell has repolarized (Fig. 3 B). Like early

afterdepolarizations, they are commonly seen in Ca2+ overloaded hearts and are provoked

by inotropic drugs administered to patients with heart failure. Ca2+ overload induces
delayed afterdepolarizations through interplay between oscillatory calcium release from

SR and Na+/Ca2+-exchange. High systolic Ca2+ levels cause Ca2+ release from SR by
reversing the SERCA reaction.31 Transport of this Ca2+ out of the cell by Na+/Ca2+-

exchange generates an inward current that can initiate triggered responses.8
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Reentry

Disorganization of the spread of a wave of depolarization as it passes over the heart,

especially the ventricles, not only reduces mechanical efficiency but is an important

cause of arrhythmias. Premature systoles and tachycardias caused by decremental
conduction can emerge as two or more impulses. This can occur at the junction between

Purkinje fiber and the ventricular myocardium or within a bundle of myocardium (Fig.
4). In both, reentry is caused by an impulse entering an area of slow conduction and

unidirectional block.8

A premature systole can arise in an area of slow conduction and unidirectional block
when an approaching wave of depolarization reaches the end at which antegrade

conduction is blocked (Fig. 4). Although the impulse cannot cross this region,
propagation through other, normally conducting tissue can bring it to a point distant to

the depressed area, which it can enter in a retrograde direction (Fig. 4). If the

unidirectional block is only in the antegrade direction, the impulse can propagate through
the area of decremental conduction, returning to the proximal end of the depressed area

(A) after a delay. If the delay is sufficient to allow the proximal tissues to recover their
excitability, the retrograde impulse can depolarize (reenter) the normal tissue proximal to

the depressed area, generating a second impulse. The latter represents a premature

systole. This process can become repetitive if, when the second impulse approaches point
B in Fig. 4, the same mechanism initiates one or more additional reentrant beats

generating in such way a run of premature systoles or a sustained tachycardia. In most

cases, however, passage of the retrograde impulse increases the refractoriness of the
depressed area, which causes conduction to be blocked in both directions. When this

occurs, the unidirectional block becomes complete, retrograde conduction no longer
occurs and the reentrant arrhythmia is terminated.8 Unfortunately, in some cases reentry

may initiate VF. Impaired Ca2+ handling by cardiomyocytes leading to abnormally

increased concentration of Ca2+ in cytosole favors VF initiation.16-19
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Figure 4. Reentry at the point of impingement of a Purkinje fiber on the ventricular
myocardium. A region of decremental conduction and unidirectional block (from A to B)
prevents antegrade conduction (1). If the impulse travels around the depressed area, it can
be conducted slowly through the depressed region in the retrograde direction (dotted line
from B to A). After a delay a retrograde impulse can reenter the myocardium proximal to
the region of decremental conduction. If this occurs after the tissue proximal to the
depressed area has recovered from the first impulse, the retrograde impulse can initiate a
premature systole (2).8



23

Ventricular fibrillation (VF)

Ventricular fibrillation is a lethal arrhythmia disorganizing contraction of ventricles to

such extend that the heart cannot sustain either blood pressure or cardiac output.8 Chaotic

oscillations replace QRS complexes of the ECG. Premature systole may provoke VF
formation (Fig. 5).

Figure 5. A progression leading to development of VF. A premature ventricular
extrasystole initiates reentrant ventricular tachyarrhythmia (VT), which degenerates
to VF. 2

However, not only premature ectopic beats, such as the one shown at Fig. 5, are capable

to initiate reentry. Localized wavebreak of the cardiac electrical wave can initiate and

maintain reentry developing into VF.32,33 Wavefront of depolarization moving through the
heart begins to slow at its edges, which causes the front to become curved (Fig. 6). This

slows conduction at the edges of the front because the electrical vectors in a curved
region are not parallel to the direction of propagation. As a result, the curvature of the

wavefront tends to increase and eventually causes spirals to appear at the edges. These

spirals slow conduction further and bring the edges of the wavefront behind tissue that
has already been depolarized. The result is a growing area of decremental conduction and

block that causes the edges of the spiral to break down into multiple disordered wavelets.
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Figure 6. Wavebreak mechanism of VF formation.8

The ongoing wavebreaks in VF have been attributed to preexisting anatomical and

electrophysiological heterogeneities (e.g. dispersion of refractoriness). Theories based on

computer simulations, however, say about dynamic factors, which may combine with
preexisting tissue heterogeneities, amplify instability synergetically and promote both

initiation and maintenance of VF.2 Abnormal [Ca2+]i cycling is among these factors.2

There is, however, enough of experimentally obtained evidence of the important, even

crucial role of [Ca2+]i in VF.4
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1.3 Role of Ca2+ in VF
Based on the vicious circle theory originally developed by C. E. Zaugg.4

1.3.1 Myocyte Ca2+ overload initiates ventricular fibrillation

Elevated myocyte [Ca2+]i (Ca2+ overload) is known to be responsible for the initiation of

potentially lethal ventricular tachyarrhythmias including VF in various pathological
conditions such as digitalis toxicity, myocardial ischemia, or heart failure.16-19

Specifically, the accumulation of Ca2+ in cardiomyocytes has long been suggested to

cause delayed afterdepolarizations, triggered activity, and consequently life-threatening
ventricular tachyarrhythmias.19 Accordingly, myocyte Ca2+ overload has been shown to

be related to the initiation of tachyarrhythmic activity in isolated hearts or in
cardiomyocytes of rats or ferrets using bioluminescence or fluorescence of intracellular

Ca2+ indicators (e.g. aequorin or indo-1).16,34 Further evidence of the importance of

myocyte Ca2+ for the vulnerability to VF arises from a close correlation between myocyte
Ca2+ levels and VF thresholds.17

In general, when Ca2+ loading of cardiomyocytes becomes sufficiently high, the
sarcoplasmic reticulum can generate spontaneous Ca2+ oscillations that are not triggered

by sarcolemmal depolarizations.16,18,34 If sufficiently synchronized, these Ca2+ oscillations

may cause delayed afterdepolarizations and initiate VF or modulate the initiation of VF.18

Additionally, myocyte Ca2+ overload may facilitate the initiation of VF by Ca2+-induced

cell-to-cell uncoupling,19 thereby slowing conduction and amplifying the tendency for

reentrant arrhythmias. This tendency is particularly amplified in the hypertrophied heart
where repolarization is heterogeneous and refractoriness prolonged.10 Similarly,

mutations in Ca2+ handling proteins have been suggested to contribute to hereditary
arrhythmias. For example, defective ryanodine type 2 receptors or reduced levels of

calsequestrin (a high-capacity Ca2+ binding protein expressed inside the sarcoplasmic

reticulum), may cause increased Ca2+ discharge from the sarcoplasmic reticulum, and
consequently ventricular tachyarrhythmias and sudden cardiac death induced by exercise,

stress, or heart failure.35-37



26

1.3.2 VF causes myocyte Ca2+ overload

Furthermore, myocyte Ca2+ and VF are mutually related. Myocyte Ca2+ overload can

induce VF and conversely, VF itself causes myocyte Ca2+ overload.5,17,38-40 Studies using

the Ca2+ sensitive fluorescent dye indo-1 in isolated rat hearts suggest that myocyte Ca2+

rises biphasically during VF (Fig. 7). In the first 2 min of VF, mean myocyte Ca2+

(expressed as fluorescence ratio) rises steeply and rapidly reaches about double of normal
levels. Thereafter, myocyte Ca2+ continues to rise but at a slower rate.38-41 Additionally,

successful defibrillation (electrical or pharmacological) led to a sudden reduction of VF-

induced myocyte Ca2+ overload (Fig. 7).5 In contrast, failed defibrillation shocks did not
alter Ca2+ 5.  This demonstrates that VF directly and (dependent on VF duration)

reversibly causes myocyte Ca2+ overload. The Ca2+ channel blocker diltiazem (1 µM)
largely prevented VF-induced myocyte Ca2+ overload in the initial phase of VF 6;

therefore, most of the Ca2+ contributing to myocyte Ca2+ overload presumably enters the

cells through L-type Ca2+ channels. This is likely due to the rapid activation rate in VF as
the pacing cycle length was inversely related to both the rate and the degree of myocyte

Ca2+ overload induced by rapid pacing.17 As VF persists, the contribution of Ca2+ entry
through L-type Ca2+ channels to myocyte Ca2+ overload appears to decrease because

diltiazem perfusion after 5 min of VF could not prevent myocyte Ca2+ to increase further

in perfused rat hearts.5 At this stage, further myocyte Ca2+ overload may arise from SR
Ca2+ release, from reverse Na+/Ca2+-exchange and/or from other sources whereas

individual contributions may vary species-dependently.

1.3.3 VF-induced myocyte Ca2+ overload maintains VF

As proposed by C. E. Zaugg,4 independent of the Ca2+ source, VF-induced myocyte Ca2+

overload contributes to VF maintaining, leading to a self-maintaining vicious circle in

which termination of VF becomes increasingly difficult (Fig. 8). Consequently, myocyte
Ca2+ overload can cause electrical defibrillation to fail and postshock re-induction of VF.5

It was shown that energy levels for successful electrical defibrillation (defibrillation

thresholds) increase as both VF and Ca2+ overload progress.5
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Fluorescence ratio
(F385/F510)

Fig. 7: Original tracings of indo-1 fluorescence ratio transients (F385/F510), an index of
myocyte Ca2+, in intact perfused rat hearts after the initiation of sustained VF (induced by
1-min rapid pacing at 20 Hz) and after defibrillation by lidocaine infusion. Note that
myocyte Ca2+ rises rapidly and steeply upon VF to decrease again upon defibrillation.

Figure 8: Myocyte Ca2+ overload and VF form a vicious circle in which elevated
Ca2+ can induce VF and conversely, VF promotes Ca2+ overload maintaining the
arrhythmia. As both VF and Ca2+ overload progress, energy levels for successful
electrical defibrillation increase (symbolized by spiral). If defibrillation succeeds,
VF-induced Ca2+ overload may cause postfibrillatory myocardial dysfunction
(postresuscitation stunning). From C. E. Zaugg. 4
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So, by manipulating myocyte [Ca2+]i before defibrillation (increasing extracellular Ca2+

during VF in perfused rat hearts) in the above mentioned study a following causal
relationship was demonstrated: the longer VF lasts, the higher both myocyte Ca2+

concentration and defibrillation threshold rise. This relationship was not due to prolonged
myocardial ischemia because the hearts were continuously perfused during VF (normal

levels of coronary flow, of coronary effluent pH, and of myocardial O2 consumption).6

Moreover, with increasing duration of VF, modulation of intracellular Ca2+ gets more
difficult. Neither the Ca2+ channel blocker diltiazem (in a negative inotropic concentration

of 1 µM)42 nor low extracellular Ca2+ (reduction from 3.0 mM to 0.6 mM) could
significantly decrease myocyte Ca2+ in fibrillating rat hearts.5 Accordingly, diltiazem or

low extracellular Ca2+ could not decrease defibrillation thresholds.5 as previously had

been found for verapamil, another Ca2+ channel blocker, in pigs.43 or human beings in
vivo.44 The mechanism by which VF-induced myocyte Ca2+ overload increases

defibrillation thresholds is probably related to a Ca2+-induced increase in the likelihood of

defibrillation shocks to re-induce VF. It has been shown that Ca2+ modulates the
induction of VF by an electrical stimulus applied during the vulnerable period of

repolarization. 17,45 As some portion of the fibrillating myocardium is always
repolarizing,46 myocyte Ca2+ overload could increase the likelihood of a shock to reinduce

VF. Thus, a shock applied to Ca2+ overloaded myocardium may terminate VF but

simultaneously re-induce it by stimulating myocardium that is in the vulnerable period of
repolarization. Furthermore, the chances for re-induction of VF increase as VF persists

because normalization of myocyte Ca2+ becomes increasingly difficult. Incomplete
reduction of myocyte Ca2+ overload after initially successful defibrillation can be

followed by synchronized spontaneous Ca2+ oscillations from the sarcoplasmic reticulum

and subsequent reinduction of VF.5 Because VF inevitably causes myocyte Ca2+ overload,
this vicious circle between myocyte Ca2+ and VF might be a critical mechanism of failed

defibrillation and postshock reinduction of VF. Moreover, this vicious circle concept
suggests that the probability of these events is best reduced by early detection and rapid

termination of VF to prevent or limit Ca2+ overload, and of course to prevent cerebral

ischemia.
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1.3.4 Myocyte Ca2+ overload causes myocardial stunning after defibrillation

Even if the self-maintaining vicious circle of Ca2+ and VF is interrupted and defibrillation

succeeds, myocyte Ca2+ overload continues to cause problems because transitory Ca2+

overload that occurs during VF can lead to reduced myofilament Ca2+ responsiveness6

and consequently to postfibrillatory myocardial dysfunction,6,38 a condition termed

postresuscitation stunning.6 It has been found that the degree of Ca2+ overload during VF
was inversely associated with the reduction of myofilament Ca2+ responsiveness after

pacing-induced VF in experiments in isolated rat hearts.6,38 Accordingly, as Ca2+ overload

progressed during VF, longer episodes of VF led to a more pronounced myocardial
dysfunction than short episodes of VF. Moreover, increasing or decreasing Ca2+ overload

during VF led to parallel changes in myofilament Ca2+ responsiveness (estimated as ratio
of left ventricular developed pressure over myocyte Ca2+ transient amplitudes). The

molecular mechanisms whereby transitory Ca2+ overload undermines contractile protein

function seem to be related to proteolysis that is mediated at least partly by Ca2+-activated
proteases (calpains).47 The substrates of calpains with respect to cardiac myofibrillar

proteins include troponin I, troponin T, and others.47
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1.4 Sodium-Calcium exchange and its physiological function

Na+/Ca2+-exchange promotes electrogenic exchange of Na+ and Ca2+ across the plasma

membrane in either the Ca2+-efflux or Ca2+-influx mode, depending on the

electrochemical gradients of the substrate ions. Thus, Na+/Ca2+-exchange is modulated by
electrical activity of cardiac myocytes.  The electrogenic properties of Na+/Ca2+-exchange

are due to stochiometry of exchange: 3 Na+ for 1 Ca2+;48-50 therefore, net positive charge
moves in the direction of Na+. The Na+/Ca2+-exchange operation mode when Na+ is

moved inside and Ca2+ outside the cell is called forward while the opposite mode is called

reverse.51 The primary function of Na+/Ca2+-exchange in the heart is extrusion of Ca2+

from myocytes during relaxation and diastole, which balances Ca2+ entry via L-type Ca2+

channels during cardiac excitation.52 Na+/Ca2+-exchange extrudes ≈30% of the Ca2+

required to activate the myofilaments in rabbit, guinea pig, and human ventricles but a

much smaller portion (≈7%) in rat and mouse ventricles.25 SERCA removes most of the

remaining Ca2+. In failing rabbit or human heart, Na+/Ca2+-exchange and SERCA
contribute nearly equally to Ca2+ removal from the cytoplasm.24 The SR Ca2+ load, a

predominant determinant of cardiac contractility, is determined by the competition
between SERCA and Na+/Ca2+-exchange for the cytosolic Ca2+.24 Therefore, modulation

of Na+/Ca2+-exchange activity by physiological regulatory factors as well as by alterations

in cytosolic ion concentrations and the action potential duration exerts profound influence
on the overall contractile function of the heart.53 Thermodynamic basis for direction of

the ion transport by Na+/Ca2+-exchange is the following. For electrochemical gradient

favoring extrusion of one Ca2+ ion in exchange for 3 Na+ ions is, it can be written:

n(ENa+ - Em) > 2(ECa2+ - Em);

here n is the coupling ratio, Em is the membrane potential and ENa+ and ECa2+ are the

equilibrium potentials for Ca2+ and Na+.54 For n=3 the potential at which the gradients are
equal (ENa+/Ca2+) is the Em at which the total current (I Na+/Ca2+) is zero. Therefore,

ENa+/Ca2+ = 3E Na+ - 2E Ca2+
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Thus, whenever Em is more positive than ENa+/Ca2+ Ca2+ entry via the Na+/Ca2+-exchange is
favored and vise versa, when Em is more negative Ca2+ extrusion is favored. For typical

diastolic values of [Na+]o = 140, [Na+]i = 8.9 mM and [Ca2+]i = 150 nM, [Ca2+]o = 2 mM
estimated ENa+/Ca2+ would be –32.6 mV. Fig. 9 illustrates the changes happening during

cardiac action potential in rabbit ventricle. A very brief period when Ca2+ influx via

Na+/Ca2+-exchange is favored (Em > ENa+/Ca2+) is shaded (Fig 9 A). The length of this
period is sensitive to changes of peak [Ca2+]i, the time course of the Ca2+ transient, [Na+]i,

and the shape of the action potential.26 Increasing intracellular [Na+]i from 8.9 to 12.7 mM
(Fig. 9 B) prolongs the time when Ca2+ influx is favored, even though peak [Ca2+]i is

much higher. The lower panels show changes of the thermodynamic driving force. (Em –

ENa+/Ca2+).26

Figure 9. Changes of direction of ion transport by Na+/Ca2+-exchange caused by changes
of electrochemical gradients during an action potential in rabbit ventricle.26

Abbreviations: Em membrane potential ENa/Ca elquilibrium potential for Na+/Ca2+-
exchange, INa/Ca current through Na+/Ca2+-exchange. From D. Bers, 2002.26

Na+/Ca2+-exchange is capable to trigger the release of Ca2+ from the SR during membrane

depolarization, although much less efficient than the L-type Ca2+ channels.23,48,55

Eventually, Na+/Ca2+-exchange acts synergistically providing additional Ca2+ entry and

Em (mV) [Ca2+]i (nM)

Driving
Force

(Em - ENa/Ca)
INa/Ca
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amplifying the triggering effect of L-type Ca2+ channels on SR Ca2+ release.56 In heart

failure enhanced Ca2+ entry due to increased Na+/Ca2+-exchange expression may provide
inotropic support for failing myocytes, in which the SR function is often defective.51,57

Under other pathological conditions, such as cardiac ischemia/reperfusion58 or digitalis
intoxication,59 the Na+/Ca2+-exchange -mediated increase in Ca2+ entry or decrease in Ca2+

exit due to a rise in [Na+]i results in Ca2+ overload of the SR, leading to mechanical and

electrical dysfunction of myocytes. As was mentioned in the previous section, Na+/Ca2+-
exchange may be an important source of Ca2+ in persisting VF, supervening L-type Ca2+

channels, which are considered to be important for VF initiation.  Therefore, the goals of
the present study were the following.
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2. GOALS OF THE STUDY

1. To determine, to what extend [Ca2+]i can rise during VF. To do this, we calibrated

fluorescence of the intracellular Ca2+ indicator indo-1 to [Ca2+]i in
cardiomyocytes.

2. To determine the ways of Ca2+ entry into cardiac myocytes during VF. A former
study has shown that at the initial stage of VF Ca2+ enters cardiomyocytes to a

large extend via L-type Ca2+ channels.6 We decided to check whether Na+/Ca2+-
exchange also contributes to Ca overload during initial phase of VF and to

compare its role with the role of L-type Ca2+ channels.

3. Additionally, we decided to check whether Na+/Ca2+-exchange is important as a

Ca2+-source for maintaining VF.

To this end, we performed experiments measuring intracellular Ca2+ concentration by

surface fluorometry of dye indo-1 in isolated perfused rat hearts. The role of L-type
Ca2+ channels in VF was tested using nifedipine, a specific blocker of these channels.

The role of Na+/Ca2+-exchange was tested using KB-R7943, a specific blocker of the

reverse mode of Na+/Ca2+-exchange.
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3. METHODS

3.1 The Langendorff perfusion system according to Schuler

In our experiments we used the Langendorff perfusion system according to
Schuler (Hugo Sachs Elektronik–Harvard Apparatus, March-Hugstetten, Germany). This

system allows perfusion of the heart under stable and reproducible conditions at constant
perfusion pressure or constant flow and has been proved by more than 100 years of use in

various types of experiments on isolated heart. The general idea of this method is, that an

isolated heart can be kept alive outside the body if it receives oxygen and nutrients
through the coronary circulation. The aorta of the heart is tied to the canula filled with

blood at a hydrostatic pressure corresponding to a diastolic pressure of the mammalian
circulation system (≈ 80 mm Hg). Perfusion is done retrogradely. After passing the aorta,

the blood through the orifices of the coronary arteries gets into the coronary circulation

and supplies the heart with the necessary nutrients and oxygen. After flowing through the
coronary vascular system, the blood passes the coronary sinus and flows into the right

atrium. Then the blood leaves the heart via the openings of caval veins or the pulmonary
artery. Initially isolated hearts have been perfused with blood but very soon it was found

that it can be substituted with an oxygenated glucose-containing saline medium.

 The Langendorff system according to Schuler is shown at Fig. 10. The perfusate is
transferred from a stock bottle by a peristaltic pump into a temperated (37.0°C)

oxygenator. A sling disk spreading the perfusate out over the entire inner surface of the

oxygenator provides efficient oxygenation and heating. Additionally we bubbled the
perfusate with a gas mixture containing 95% O2 and 5% CO2, which resulted in a partial

oxygen pressure 600-650 mm Hg. The surplus of the gas goes into a water filled column
(Gottlieb valve) where by adjusting the immersing depth a constant perfusion pressure of

the Schuler system is provided. The in vivo perfusion pressure of warm-blooded rat hearts

corresponds to a large extent to their diastolic aortic pressure, normally between 70 and
90 mm Hg. Thus, the recommended perfusion pressure for the isolated rat heart is around

80 mm Hg.60 A constant perfusate level is maintained with the help of two contact
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electrodes placed inside the temperated oxygenator controlling a connected circulating

pump.

Figure 10. A Langendorff perfusion system according to Schuler.61

Figures indicate: 1. Oxygenator; 2. Sling disc; 3. Non-return valve; 4. Gear pump for
perfusion solution (perfusate); 5. Supply vessel for perfusate; 6. Contact electrode for
perfusate level control; 7. Electronic control for measurement of flow; 8. Inlet and
outlet for gas; 9. Gotlieb valve for perfusion pressure adjustment; 10. Thermostat; 11.
Heart recipient; 12. Tube catheter for drug addition by way of injection syringe; 13.
Stopcock; 14. Water manometer or mechanoelectric pressure transducer for perfusion
pressure; 15. Three-way cock; 16. Aortic canula with side nozzle; 17. Balloon catheter
with pressure transducer for isovolumetric measurement of ventricular pressure; 18.
Heart; 19. Collective funnel for perfusate dripping off the heart; 20. Flowprobe.
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3.2 Measurement of physiological variables

Coronary flow was measured within the aortic canula using an inline flowprobe

(Transonic 2N) connected to a transit time flowmeter (Transonic TTFM-SA type 700,

Hugo Sachs Elektronik-Harvard Apparatus, March-Hugstetten, Germany).
Left ventricular (LV) pressure was measured by a fluid-filled polyethylene catheter

inserted into the LV cavity through the left atrial appendage. The catheter was connected
to a pressure transducer (MLT1050 Pressure transducer, AD Instruments, Castle Hill,

Australia). Left ventricular (LV) developed pressure (LVDP) was defined as the

difference between systolic and diastolic values of LV pressure. Simultaneously, a
bipolar electrocardiogram (ECG) was recorded using electrodes implanted superficially

in the outflow tract of the right ventricle and in the apex of the heart. Ventricular pacing
was carried out using a pair of platinum wire electrodes connected to a pulse generator

(Grass S9, Grass Instruments, Quincy, MA, USA). The pacing electrodes were implanted

in the right ventricular free wall below the circular cut for [Ca2+]i measurement (see
5.4.4.5). A digitized readout of the LV pressure and the ECG was recorded at 200 Hz

sampling rate throughout the experiment using PowerLab 8e (AD Instruments, Castle
Hill, Australia) connected to a Macintosh computer (Apple, Cupertino, CA, USA)

running Chart software (AD Instruments, Castle Hill, Australia). Cardiac rate was

computed from the digitized ECG using Chart software.

3.3 Animals and perfused heart preparation

3.3.1 Choice of the animal model

We carried out experiments on isolated perfused rat hearts. In these hearts changes of

[Ca2+]i can be measured accurately using indo-1 at high time resolution even during

VF.17,39,42 Because isolated rat hearts easily return to sinus rhythm after electrically
induced VF, repeated estimation of Ca2+ accumulation during VF in the same heart

preparation is possible.[Lubbe WF, 1975 #1] The central role of Ca2+ in excitation-
contraction coupling in cardiac muscle25 suggests that VF leads to Ca2+ overload in most
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mammalians including human beings.4 However, relative contribution of the

sarcoplasmic reticulum, of L-type Ca2+ channels and of Na+/Ca2+-exchange to [Ca2+]i

varies depending on species.25 Nevertheless, although different sources of Ca2+ overload

during VF may contribute not to the same extend, the fundamental difference between
adult human and rat ventricles is not expected.4 Based on these considerations we have

chosen isolated rat heart as the model for our experiments.

3.3.2 Preparation of isolated hearts

Treatment of animals conformed to the rules of the Swiss Federal Act on Animal
Protection (1998), and was approved by the veterinary department of Basel

(Switzerland). Male Sprague-Dawley rats (Charles River Laboratories, France) weighing
390-510 g were anesthetized by intraperitoneal injection of 30 mg/kg pentobarbital

(Nembutal, Abbot Laboratories, Chicago, IL, USA). After midline sternotomy, the

ascending aorta was clamped at the aortic arch and the heart was cut out together with the
lungs within a few seconds and immersed immediately into an ice-cold modified Krebs-

Henseleit buffer solution (composition is given in Table 1) in order to provide
cardioplegia. The aorta was quickly prepared and fixed with a clamp to the canula of the

Langendorff perfusion system with a partly open inline cock. After cannulation the inline

cock was immediately open completely and the aorta was tied around the canula with a
string. The whole procedure lasted in general less than 60 sec. Thereafter the right

ventricular outflow tract was cut open, the pulmonary vessels were ligated at the hilus

and the lung tissue was removed. A small incision was made in the left atrium and a
pressure catheter was inserted through the mitral valve into the left ventricle and tied with

the surgery string at the appendix (Zaugg et al., 1996b). Perfusion was performed
retrograde via the aorta at a constant pressure of 80 mm Hg using the same

nonrecirculating solution at 37oC, pH 7.4, saturated with gas mixture of 95% O2 and 5%

CO2.
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Compound Concentration

NaCl 117.0 mmol/L

KCl 4.3 mmol/L

MgCl2 1.2 mmol/L

CaCl2 2.0 mmol/L

NaHCO3 25.0 mmol/L

EDTA 0.5 mmol/L

Glucose 15.0 mmol/L

Albumin 10.0 mg/L

Table 1.  Composition of the modified Krebs-Henseleit perfusion solution.
At a certain stage of experiments 4.5 mM instead of 2 mM CaCl2, was used
providing 4 mM instead of 1.5 mM effective concentration of Ca2+ in the perfusate
(see experimental protocols).

3.4 Measuring intracellular Ca2+

3.4.1 General information

The importance of measuring concentrations of intracellular Ca2+ ([Ca2+]i) is determined
by the key role played by this ion in nearly all types of cells extending far beyond

coupling of excitation to contraction in cardiac and skeletal muscles.62 Therefore, especial
tools such as fluorescent dyes have been developed over decades of research. Chemical

substances of such type are also used for assessment of intracellular concentrations of

other important ions (e.g. Na+, K+, Mg2+). When loaded into the cytosol of investigated
cells they change fluorescence parameters upon changing of the ion concentration. For

example, a rise of [Ca2+]i leads to binding of Ca2+ ions to the molecules of fluorescent dye

fluo-3 resulting in prominent (≈100 times) increase of its fluorescence intensity. Dyes of



39

another type shift the wavelengths of fluorescence excitation or emission upon binding of

an ion. For example, fluorescent indicator fura-2 shifts the wavelength of maximally
efficient excitation when it binds Ca2+ while the wavelength of emission stays nearly the

same. In our study we used fluorescent indicator indo-1. This dye shifts the wavelength
of maximal emission upon binding of Ca2+ while shift of the excitation wavelength is

negligible (Fig. 11); changes of [Ca2+]i are evaluated by comparing ratio of fluorescence

intensities at the two wavelengths, so the indicators of such type are called ratiometric.
Fura-2 and indo-1 were synthesized by Grynkiewicz G. et al., 1985 63 in the

University of California. Since then indo-1 became the tool of choice for quantitative
measurement of fast [Ca2+]i transients in contractile cells and tissues such as heart and

skeletal muscles while fura-2 is mostly used for imaging slow changes of [Ca2+]i. Shift of

wavelength upon binding Ca2+ ions is the main advantage of ratiometric dyes because the
ratio of fluorescence intensities F1 and F2 at two wavelengths l1 and l2 is in principle

sufficient to calculate [Ca2+]i (Fig. 12); this ratio is independent of total dye

concentration, optical path length, or absolute sensitivity of the instrument.63

Figure 11. Interaction of fluorescent indicator indo-1 with Ca2+ leads to the shift of
the emission wavelength (ratiometric indicator).

Maximum of emission
is at wavelength l2

Maximum of emission
is at wavelength l1

Indo-1 Indo-1Ca2+ Ca2++
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Figure 12. Emission spectra of indo-1 in solutions with different concentrations of
free Ca2+ (0 - 39.8 µM); l1 and l2 designate maximal emission wavelengths of Ca2+

-bound and Ca2+ -free indo-1, respectively; li is a so called isofluorescent point, a
wavelength at which emission does not depend on [Ca2+]i.64

3.4.2 Principles of [Ca2+]i calculation using fluorescence ratio

The group, which has synthesized the ratiometric dyes,63 has also developed the theory
for calculating [Ca2+]i using fluorescence ratio. Fluorescence intensity F at a given

wavelength can be expressed as:

F = S*c (1)

Here c is a concentration of a fluorescent dye in a solution and S is a proportionality

coefficient of fluorescence specific for this fluorescent dye at this wavelength. All
molecules of indo-1 in cytosol can be considered as two chemical species: Ca2+ - bound

and Ca2+ - free (Fig. 11) with concentrations cb and cf and fluorescence proportionality

coefficients, Sb and Sf, correspondingly. So, indo-1 fluorescence at any wavelength l can

be expressed as:

l2
li

l1
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Fl = Sbl*cb + Sfl*cf (2)

Designating wavelengths of peak fluorescence intensity for Ca2+ -bound and Ca2+ -free

indo-1 as l1 and l2, (Fig. 12), four S coefficients can be written:

Sf1  and  Sf2 - for Ca2+ -free dye measured at wavelengths l1 and l2;

Sb1  and Sb2 - for Ca2+ -bound dye at l1 and l2, correspondingly.

Therefore, the fluorescence intensities F1 and F2 at the wavelengths l1 and l2 can be

expressed as:

F1 = Sf1*cf + Sb1*cb (3a);

F2 = Sf2*cf + Sb2*cb (3b).

Correspondingly, the ratio of fluorescence at two wavelengths can be expressed as:

F1        Sf1*cf + Sb1*cb
R  =         =                                   (4).

F2        Sf2*cf + Sb2*cb

Indo-1 forms complex with Ca2+ 1:1 (Fig. 11). Therefore, cf and cb are related to [Ca2+]i

according to equation:

        cf * [Ca2+]i
cb =                (5)

  Kd

Where Kd is the effective dissociation constant. We can substitute cb in the equation (4)

for the expression at the right side of the equation (5), cancel cf out and transform the
resulting equation in order to express [Ca2+]i:

                                     F1        Sf1*cf + Sb1*cf * [Ca2+]i / Kd
                          R  =          =                                  
                                    F2        Sf2*cf + Sb2*cf * [Ca2+]i / Kd
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               Sf1 + Sb1 * [Ca2+]i / Kd
                                    R  =                                                  (7)

               Sf2 + Sb2* [Ca2+]i / Kd

R*Sf2 + R*Sb2*[Ca2+]i / Kd = Sf1 + Sb1*[Ca2+]i / Kd

R*Sb2*[Ca2+]i / Kd - Sb1*[Ca2+]i / Kd = Sf1 - R*Sf2

[Ca2+]i * (R*Sb2 - Sb1) = Kd * (Sf1 - R*Sf2)

                                                                       Sf1 - R*Sf2
     [Ca2+]i = Kd  *                                                  (8)

                                                                      R*Sb2  - Sb1

The expression (8) for [Ca2+]i is modified further by introducing further constants
representing combinations of the already known fluorescence constants S from equations

(3):

      F1
min      Sf1 F1

max  Sb1   
                        =         =   Rmin  (9);              =           =  Rmax  (10);    
    F2

min      Sf2 F2
max  Sb2

  F1
min      Sf1 F2

min   Sf2
                     =          =  S1   (11);                           =           =  S2    (12);

  F1
max      Sb1 F2

max     Sb2

Here Rmin and Rmax correspond to the limiting values of R at zero and saturating [Ca2+]i,
respectively; S2 is a ratio of the longer and S1 of the shorter wavelength fluorescence

intensities at zero and saturating [Ca2+]i, respectively. The equation (8) can be modified

now in the following way:
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                                                 (Sf1 – R * Sf2 ) / Sf2      Sf2
[Ca2+]i = Kd  *                                  *                              .

                                            (R*Sb2  - Sb1) / Sb2     Sb2

            Rmin  -  R
[Ca2+]i = Kd * (                       ) * S2 ;                       .

           R  -  Rmax

rewritten in another way:

                   R  -  Rmin

[Ca2+]i = Kd * S2* (                       ) (12)
                  Rmax  -  R

This basic equation for measuring [Ca2+]i using a ratiometric dye resembles an expression

for a fluorescent dye with a peak fluorescence at a single wavelength:63

F  -  Fmin

[Ca2+]i = Kd  (                     )           (13)
       Fmax  -  F

Equation (13) in contrast to (12) requires that F, Fmin, and Fmax all be determined at the

same effective total concentration of fluorescent dye.63 This is not satisfied in an isolated
perfused heart model because of constant dye leaking from the cytosol of cardiomyocytes

followed by removal with a nonrecirculating perfusate.

3.4.3 Measuring [Ca2+]i using fluorescence ratio in isolated rat heart

3.4.3.1 Difficulties of fluorescence measurement in isolated heart

Estimating [Ca2+]i in isolated hearts using fluorescent indicators is difficult. Experiments
of such type performed in isolated cells/tissue or in cell/tissue culture are known as a

routine established over the decades the fluorescent indicators have been in use.

Application of the same technique to an isolated heart, however, is far less practicable. A
simple test shows the following. Entering a combination of words “indo-1, isolated
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cardiac myocytes” in sum with “indo-1, cultured cardiac myocytes” in a Medline

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) gives 97 search results (this search does
not include another combinations, like “isolated cardiomyocytes” or “cultured

cardiomyocytes”; it also does not take into account isolated/cultured heart tissue).
Entering a combination “indo-1, isolated perfused heart” gives 33 search results. This is

considering numerous reviews citing both types of the technique application and in spite

of the fact that many important questions to intracellular [Ca2+]i handling could be only
answered if tested in isolated heart or are more correct to be tested in isolated heart. The

reason for such disparity is the difficulty of fluorescence measurement experiments in
isolated heart. It is more difficult to provide proper and sufficient loading of fluorescent

dye into the cells of the whole heart compare to isolated cells/tissue. Accordingly, it is

more difficult to provide stable conditions from one experiment to another in order to
obtain comparable results. Finally, it is more difficult to obtain a reliable fluorescence

signal from the contracting hearts.

3.4.3.2 Importance of calibrating fluorescence signal to [Ca2+]i

Many authors perform fluorescence measurements and present their data without relating

them to any [Ca2+]i. They show only raw fluorescence ratio and its relative changes.

Although acceptable, it is still not the best way for the following reasons.
Accumulation of Ca2+ in cytosol of cardiomyocytes during VF is a crucial destructive

factor. Progressively increasing [Ca2+]i contributes to maintain VF, leading to a self-

maintaining vicious circle4 and reducing chances for resuscitation5. Ca2+-activated
proteases (calpain)47 can damage contractile elements, such as tropoinin I, tropoinin T

and others47 that results in stunning during reperfusion after defibrillation.6,38 Therefore, it
is important to know [Ca2+]i in order to be able to judge about extend of Ca2+

accumulation.

According to equation (12) relation between fluorescence ratio R and [Ca2+]i is not linear.
Fig. 13 shows graphic dependence of [Ca2+]i on R with Rmax obtained in our calibration

experiments, Rmin and S2 calculated and Kd obtained by 65 in a protein mixture solution
simulating intracellular conditions of rat cardiomyocytes. With bigger R [Ca2+]i increases
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faster (Fig. 13); at high fluorescence ratio (R>2), with any given increment of R, [Ca2+]i

increases ≈ 10 and more times more rapidly, compared to increase with the same
increments of R at smaller R  (≈1). In order to estimate how much [Ca2+]i exceeds

physiological range during VF, one should determine, which part of this curve is covered
by [Ca2+]i changes at physiological and pathological conditions. Therefore, calibration of

[Ca2+]i to fluorescence ratio R is important.

Figure 13. Graphical dependence of [Ca2+]i on fluorescence ratio R based on
equation (12) with constants Rmax obtained in our calibration experiments, Rmin

and S2 calculated (see below) and Kd obtained by Baker et al., 1994.65
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3.4.3.3 Problems of calibration

The authors presenting their data as raw fluorescence ratio do so because calibration of

fluorescence to [Ca2+]i is complicated by some specific problems. Calibration in a

solution it straightforward: by measuring parameters of fluorescence of a solution
containing known fixed concentrations of Ca2+ the corresponding values of fluorescence

ratio, including Rmax and Rmin, are obtained and S1 , S 2 and Kd are calculated. However,
parameters of fluorescence in vitro and in vivo are not the same and differ as much as an

intracellular environment differs from any buffered solution. So, in order to get proper

quantitation of  [Ca2+]i, calibration has to be done in vivo. It is difficult, however, to fix an
intermediate [Ca2+]i in living cells/tissues and impossible to do it in an isolated heart. So,

usually in cells Kd and S2 are not determined and calibration is only performed with
limiting concentrations of [Ca2+]i. High [Ca2+]i concentration for saturating the fluorescent

indicator in order to determine Rmax, which is relatively easy. “Zero” [Ca2+]i in order to

determine Rmin, which is difficult because fluorescence signal at such conditions is
unstable: some amount of [Ca2+]i has tendency to remain in cytosol 66,67. Determination of

S2 and K d in contractile cells requires control over many conditions and has been
performed not often.68 Calibration with determination of only Rmax and Rmin is done by

many research groups on a regular base; usually the absolute values of [Ca2+]i  obtained in

such experiments are to a large extend arbitrary and only relative changes of [Ca2+]i are
important.62

Possibilities to determine fluorescence constants and calibrate [Ca2+]i in isolated heart are

even more limited. First calibration of [Ca2+]i in isolated rat heart with Rmax measured in
the whole heart was performed by Brandes R. et al., 1993 69,70. Based on obtained Rmax

and using S1 and S2 obtained in a protein solution they calculated Rmin; Kd = 250 nM
obtained in a buffered saline solution was chosen arbitrary. Later on this group calibrated

Kd in a protein solution mimicking intracellular environment of rat cardiomyocytes.65

Interestingly, the results of this calibration were rarely applied afterwards to an isolated
heart even by the authors who made it. In one of the later experiments performed on

isolated perfused rat heart 71 co-authors of this group (not including R. Brandes who made
the practical part of the calibration experiment) normalized [Ca2+]i and expressed changes
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as % of baseline. In further experiments,72-74 they abandoned the isolated perfused rat

heart model in favor of isolated rat heart trabeculae. However, this group has found an
important relation between fluorescence intensities at two detection wavelengths, which

they applied for the calibration of [Ca2+]i using indo-1 fluorescence in isolated rat hearts.70

3.4.3.4 Theory of calibration of fluorescence ratio to [Ca2+]i in isolated heart

We used mathematical formulas developed by Brandes R. et al., 1993 70 for [Ca2+]i

calibration in isolated perfused rat heart. Their calculation was based on the following
considerations. According to equation (13) [Ca2+]i can be estimated, in principle, by

measuring fluorescence at each of wavelengths used for ratiometric measurements. So,

from measurement at l1 [Ca2+]i equals:

F1
min  -  F1

[Ca2+]i = Kd  (                     )       (14);
       F1  -  F1

max

Correspondingly, from measurement at l2 :

F2
min  -  F2

[Ca2+]i = Kd  (                     )                   (15).
       F2  -  F2

max

Since [Ca2+]i is independent on the wavelength of fluorescence measurement:

          F1
min  -  F1                  F2

min  -  F2
 Kd  (                   ) =  Kd   (              )

                 F1  -  F1
max                 F2  -  F2

max

(F1 - F1
min)*(F2

max - F2) = (F2 - F2
min)*(F1

max - F1)
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F2
maxF1 - F1F2 - F1

minF2
max + F1

minF2  = F1
maxF2 - F1F2 - F2

min F1
max

 + F2
minF1

F1
minF2  - F1

maxF2 = F2
minF1  - F2

maxF1 + F1
minF2

max - F2
min F1

max

F2 (F1
min

 - F1
max) = F1 (F2

min- F2
max) + F1

minF2
max - F2

min F1
max

                    (F2
min - F2

max)         F1
minF2

max - F2
min F1

max

F2  = F1 *        +                                                (16)
                  (F1

min  - F1
max)              (F1

min  - F1
max)

           (F2
min - F2

max)          F1
minF2

max - F2
min F1

max

After denoting                                 = b  (17a) and                                              = a  (17b)
                           (F1

min  - F1
max)               (F1

min  - F1
max)

equation (16) can be rewritten as: F2  = F1* b + a     (18).

So, the fluorescence intensities F1 and F 2 are related linearly. Since they change

constantly with each heart cycle due to change of [Ca2+]i, by plotting them against each

other parameters b and a can be calculated. Multiplying (17a) by (10) we obtain:

       F2
min - F2

max         F1
max

b*Rmax  =                           *                            .
      F1

min  - F1
max         F2

max

S2 - 1
 b*Rmax  =    = SR  (19)

S1 - 1

So, the multiplication of b  and Rmax results in an important parameter SR. Being a

combination of intrinsic parameters of indo-1 fluorescence at given conditions, in our
case an isolated rat heart, it does not depend on measurement setup and stays constant.
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By measuring b in each experiment and knowing constants SR and S1 or S2 (another is

calculated from (19)) Rmax can be obtained from (19) and Rmin is calculated from ratio
obtained by combination of (9), (10), (11) and (12):

Rmin            S1
=         (20).

Rmax           S2

Calibration of [Ca2+]i  was done in the following steps. By plotting the changes of
fluorescence at l1 and l2 corresponding to the [Ca2+]i transients against each other (x-y

plot) we measured b; Rmax was calibrated at the end of experiments and eventually SR  was

calculated. Knowing S1 for l1 = 386 nm obtained in a protein solution65 we calculated S2

for l2 = 510 nm in our experiments.

3.4.4    Practical aspects of measuring fluorescence in isolated rat heart

3.4.4.1 Background correction

Calculation of [Ca2+]i  using fluorescence ratio requires subtraction of tissue

autofluorescence (arising from NADH and NADPH) before estimating constants and R.

The background fluorescence intensities at each wavelength were determined prior to
indo-1 loading and subsequently subtracted from the fluorescence intensities after loading

in order to obtain corrected Indo-1 fluorescence intensities and ratio.

3.4.4.2. Loading intracellular indicator indo-1 into the heart

After preparation of the heart and equilibration by perfusion with standard perfusate

background fluorescence was measured; thereafter the heart was loaded with the
acetoxymethyl (AM) ester form of indo-1 (Calbiochem, Calbiochem-Novabiochem

Corporation, La Jolla, CA 92039). The AM ester of indo-1 can passively diffuse across

cell membranes (Fig. 14); once inside the cell, it is cleaved by intracellular esterases to
yield cell-impermeant fluorescent indicator.75 4 mg (≈ 4 µM) of indo-1 AM ester was

initially dissolved in 1 ml of DMS containing, 5% calf serum (Kojima et al, 1993);
afterwards it was added to 150 ml of modified Krebs-Henseleit perfusate
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adjusted to pH 7.4 (Table 1) containing 4 mM CaCl2 and 10 mM pyruvate instead of

glucose and loaded for 20-30 min in a recirculating mode (in order to conserve indo-1).
Thereafter extracellular indo-1 was washed out by perfusion with standard perfusate for

another 20 min before fluorescence measurements. After pilot experiments resulting in an
unacceptably low fluorescence signal and, therefore, high noise (Fig. 15), the loading

solution was complemented by 20% w/v Pluronic F-127 initially dissolved in DMS and

by 0.1 mM probenecid added to the loading solution.70 Pluronic F-127 was necessary in
order to facilitate solubilization of indo-1 AM. Probenecid is an inhibitor of outward

transport of anions; its presence in a loading solution helps obtaining sufficiently high
concentrations of Indo-1 in cardiomyocytes.

Indo-1 - acetoxymethyl,
- nonpolar, Ca2+-insensitive,
lipid-soluble, cell-permeant

Sarcolemma

          Esterase

Indo-1 - free acid, - polar,
Ca2+ -sensitive, water soluble
- cell-impermeant.

Figure 14.  Loading indo-1 AM into the cardiomyocyte (from Molecular Probes
Handbook75) modified.
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Figure 15. Original recordings of indo-1 fluorescence at wavelengths 385 and 510 nm
and fluorescence ratio in a pilot experiment. Due to poor loading of indo-1 into cardiac
myocytes the fluorescence signal-to noise ratio is low (left). The high noise in
fluorescence channels, especially at 510 nm (middle curve), results in high noise in the
fluorescence ratio channel (lower curve). Addition of Pluronic F-127 and probenecid
to the loading solution has improved loading of indo-1, which enabled to get
much higher fluorescence signal and signal-to noise ratio (right).

3.4.4.3 Determination of slope b and Rmax in the whole heart

We determined slope b by plotting fluorescence intensities at two wavelengths against

each other (Fig. 16 A and B) and finding the corresponding correlation coefficient by
linear regression. Because of motion artifacts the correlation of the fluorescence

intensities deviates from linearity. In order to overcome this problem we cropped only the

initial part of the curve cycle (Fig. 16 A and C) when fluorescence at l1 = 385 nm starts

increasing and at l2 = 510 starts decreasing. At this period motion artifacts are close to

zero due to the lag between Ca2+ transient and contraction.70

F385

F510

Fluorescence
ratio

(F385/F510)
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Figure 16. Determination of slope b by plotting fluorescence at two wavelengths.
Two fluorescence curves followed by pressure curve (upper) corresponding to 3 cardiac
cycles recorded with Chart software and cropped for plotting fluorescence intensities at
F=385 and F=510 against each other (B). Deviation from linearity due to motion artifacts
can be observed. (C) A narrow extract shown at (A) with a rectangle was cropped for
determination of slope b. Relation between F=385 and F=510 is linear.
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Rmax was determined by perfusing the heart with solution providing saturation of loaded

into the cytosol of cariomyocytes indo-1 with Ca2+ (Table 2).

Table 2

Rmax determination solution,70

pH adjusted to 7.4.
Compound/component Concentration

HEPES 5 mM

CaCl2 80 mM

KCl 6 mM

MgCl2 1.2 mM

Na2EDTA 0.5 mM

Fetal calf serum 6%

3.4.4.4 Fluorescence setup

Fluorescence excitation of hearts loaded with intracellular indo-1 was provided by

ultraviolet light at 365±10 nm generated by a 100 W mercury vapor lamp and directed

through a custom-made tripod silica fiberoptic cable (Volpi AG, CH-8952 Schlieren,
Switzerland), designed to provide excitation and assess emission simultaneously (Fig.

17). The emitted fluorescence was filtered at 385±6 and 510±12.5 nm before reaching the
photomultiplier tubes. Photomultiplier output at 385 nm (indo-1 bound to Ca2+) and at

510 nm (free indo-1) were recorded at a compensated fluorometer (University of

Pennsylvania, Johnson Foundation). The fluorescence ratio F385/F510, an index of
[Ca2+]i, was recorded simultaneously with the left ventricular pressure and the ECG at a

sampling rate of 200 Hz on MacLab 8e (AD-Instruments, Milford, MA, USA). Various
authors use slightly different wavelengths for registering fluorescence of indo-1. Our

choice was based on previous studies performed on isolated rat hearts69,70 and in protein
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extract from rat heart.65 We used constant SR obtained according to 70 in our experiments

in isolated rat heart and Kd, S1 and S2 65 obtained in a protein extract from rat heart. The
constants S1 and S2 were obtained by measuring fluorescence at wavelengths 385 and 456

nm.65  It has been also found that at 385, 456 and 510 nm fluorescence intensity does not
depend on tissue oxygenation.76 Additionally, in our pilot experiments we have found that

setting l2 at 510 nm is preferable over 456 nm because of brighter fluorescence and

therefore better signal-to-noise ratio.

Figure 17. Setup for measuring fluorescence in isolated heart. (Artwork by C. E. Zaugg)
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3.4.4.5 Fluorescence measuring procedure

Measurement of [Ca2+]i was performed by surface fluorometry at the interventricular

septum containing the fluorescent dye indo-1 according to 17,39,40,42,77,78 The tip of the

fiberoptic cable was inserted through a circular cut in the inferior apical portion of the
right ventricular free wall and fixed firmly on the right ventricular side of the

interventricular septum (Fig. 18). The interventricular septum, functionally part of the left
ventricle, was preferred to epicardial sites in order to avoid motion artifacts and

contribution of endothelial cells or vasculature. The approach of the fiberoptic through a

hole in the right ventricular wall does not interfere with left ventricular or septal
perfusion because the right ventricular coronary artery does not supply the left ventricular

wall or the interventricular septum in rat hearts.79 Firm contact between the fiberoptic and
cardiac surface was required in order to obtain a reliable signal.42 Because forceful

compression by the fiberoptic could cause changes in the shape of the left ventricle and

alterations in myocardial perfusion, the placement of the fiberoptic was confirmed not to
change developed pressure more than 5% of the control value. During the measurements

the perfused heart and the optical system were covered completely by a light-proof black
curtain in order to avoid contamination by external light. Reliability of the protection

from the external light was checked by registering signal from photomultipliers at bright

versus dark conditions in the laboratory.
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Figure 18. Measuring fluorescence in the rat heart by surface fluorometry at
interventricular septum. (Artwork by C. E. Zaugg, modified)
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3.4.4.6 Limitations of the method

The following known limitations of the indo-l surface fluorometry technique should be

considered.42,80 Sequestration of indo-l in mitochondria potentially leads to interferences

of mitochondrial fluorescence with cytosolic. It was demonstrated, however, that
mitochondrial Ca2+ shows no transient.81 So, the fluorescence ratio changes are

considered to reflect cytosolic phenomena. Yet, sequestration of indo-l in mitochondria
potentially provokes a spatial heterogeneity of fluorescence81,82 and therefore makes

estimation of the cytosolic Ca2+ levels from fluorescence ratio less accurate. Another

possible limitation is reduction of fluorescence by time-dependent ultraviolet bleaching
and indo-l leakage during the experiment. However, reduced fluorescence does not

influence the fluorescence ratio and, therefore, the estimation of [Ca2+]i.83 Yet, reduced
fluorescence could be of importance because of variation of autofluorescence between

hearts or because of changes of autofluorescence over the experimental period. Such

changes could possibly alter the ratio of indo-l fluorescence to autofluorescence.84 The
ultraviolet bleaching can be neglected in many types of experiments in which only short

exposure of the heart to the excitation ultraviolet light (several seconds) is sufficient for
fluorescence measurements or when instead of calibration to [Ca2+]i the fluorescence ratio

is normalized (diastolic value is considered to be zero and systolic 100%) or the data are

analyzed simply as a raw fluorescence ratio.42 In our experiments involving calibration of
the fluorescence ratio to [Ca2+]i the ultraviolet bleaching represents a problem which has

to be considered; it is discussed further in the “Results” section. Another limitation could

be caused by fluorescence from the endothelium or the vasculature. However, the
contribution of the endothelium and vasculature to indo-l fluorescence was shown to be

almost negligible in such type of preparation, as evaluated by bradykinin
administration.69,85
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3.5 Experimental protocols

3.5.1 Choice of drugs and concentrations

Contribution of L-type Ca2+ channels and Na+/Ca2+-exchange to Ca2+ overload during VF
was tested in the following way. VF was induced in hearts treated with drugs specifically

blocking L-type Ca2+ channels and Na+/Ca2+-exchange and the obtained results were

compared with control.

To block the reverse mode of Na+/Ca2+-exchange we used KB-R7943 at concentrations
10 and 5 µM; KB-R7943 specifically blocks the reverse mode of Na+/Ca2+-exchange with

little or no effect on the forward mode or on another ion transport systems. I n

concentrations up to 30 µM KB-R7943 is known to have little effect on Na+-Ca2+-K+

exchanger,86 the Na+ -H+ exchanger, sarcolemmal Ca2+-ATPase, SR Ca2+-ATPase, or Na+-

K+-ATP-ase.87 However, using voltage-clamp technique and ramp pulse protocol, it has
been shown that KB-R7943 inhibits voltage-sensitive Na+ currents, L-type Ca2+ currents

and inward rectifier K+ currents with IC50 14, 8 and 7 µM, respectively.88 This study has

been reasonably criticized for overestimating the effects of KB-R7943 because the ramp
pulse protocol is too severe and has little relevance to physiological conditions.53 Other

studies showed that in rat ventricular myocytes KB-R7943 at 5 µM did not alter steady-
state twitches, Ca2+ transients, Ca2+ load in the SR, or rest potentiation.89 In guinea pig

papillary muscle, however, KB-R7943 at up to 10 µM did not significantly affect the

resting membrane potential or various action potential parameters.87,90 Similarly, 10 or 30
µM KB-R7943 did not alter spontaneous beating rate and developed tension in isolated

guinea pig atria.91 Based on these data, we have chosen 5 and 10 µM KB-R7943 for our
experiments, the concentrations known to inhibit the reverse mode of Na+/Ca2+-exchange

by 9089 and by 100%,92 correspondingly.

To block L-type Ca2+ channels we used nifedipine at concentrations 0.2 and 0.05 µM.

Nifedipine belongs to the group of dihydropyridine calcium antagonists. In contrast to

nondihydropyridines, it only slightly slows SA node pacemaker activity and inhibits
conduction in the AV node.8 Due to this difference, we preferred nifedipine over
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nondihydropyridines in our experiments, including the rapid pacing protocol. The choice

of the concentrations was based on the following reasoning. First, the steady-state IC50
for nifedipine was found to be 0.3"µM at a holding potential of -80 mV and 50"nM at a

holding potential of -40 mV;93,94 depolarization is known to promote iCaL blocking by
nifedipine because affinity of dihydropyridines for receptor is greatest as L-type channels

shift toward the inactivated state.95 Second, recordings of membrane potentials during VF

showed oscillations about –60 mV.96 Therefore, we have chosen concentrations
presumably close to IC50 at this voltage (-60 mV), one presumably higher (0.2 µM) and

one known to be lower (0.05 µM). Administration of both 0.2 µM and 0.05 µM of
nifedipine in the first experiments produced no effect on cardiac rhythm; however, an

effect on Ca2+ transient amplitude was present.

3.5.2 Experimental protocols and groups

Effects of the drugs were compared to vehicle in the following way. After equilibration,
loading of indo-1 and washing the heart from the loading solution VF was induced twice

in the same heart, the first time without drug and the second time with a drug (or second
vehicle in case of control). The experimental protocol is shown in Fig. 19. Perfusion of a

drug started 5 min before induction of VF. One min before VF induction pacing at 4 Hz

was started in order to provide reproducible baseline conditions. VF was induced by 1
min rapid pacing at 20 Hz with 5 V rectangle pulses and duration 1 ms. After the rapid

pacing was stopped, VF terminated spontaneously in some hearts; when it was sustained

for 1 min, termination was performed by infusion of a 0.25 mg bolus of lidocaine
hydrochloride (Sintetica, Switzerland) followed by a 10 min washout. Lidocaine has been

shown to effectively terminate VF and reduce [Ca2+]i during VF in this model;97 already 5
min after administration of a lidocaine bolus reproducibility of VF in experiments

studying VF thresholds was not affected.17
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Figure 19. Experimental protocol for testing the roles of L-type Ca2+ channels and
Na+/Ca2+-exchange in VF.

A slightly different protocol was used for testing the role of Na+/Ca2+-exchange in
maintaining VF. After induction of VF the hearts were allowed to fibrillate for 5 min,

then infusion of 10 µM KB-R7943 was started. In a control group the hearts were
allowed to fibrillate further without any drug being infused (Fig. 19).
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Figure 20. Experimental protocol for testing the role of Na+/Ca2+-exchange in VF
maintaining.

All together we had 7 experimental groups. Below is the summary of experimental
protocols in different groups with regard to the number of hearts in each group:

Group 1. 1st VF Ÿ 0.05 µM nifedipine Ÿ 2nd VF 4 hearts

Group 2. 1st VF Ÿ 0.2 µM nifedipine Ÿ 2nd VF 5 hearts

Group 3. 1st VF Ÿ 5 µM KB-R7943 Ÿ 2nd VF 6 hearts

Group 4. 1st VF Ÿ 10 µM KB-R7943 Ÿ 2nd VF 6 hearts

Group 5. 1st VF Ÿ vehicle Ÿ 2nd VF 8 hearts

Group 6. VF sustained for 5 min Ÿ 10 µM KB-R7943 7 hearts

Group 7. VF sustained for 5 min Ÿ vehicle 7 hearts

In Fig. 21 on the next page the representative recordings of LV pressure, ECG and

fluorescence ratio during VF induction in our experiments are shown.
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Figure 21. Original tracings of LV pressure, ECG and fluorescence ratio curves at the
time around induction of VF.
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.3.6 Chemicals

KB-R7943 mesylate

Chemical structure:

Molecular weight:  427.49
Chemical formula: C16H17N3O3S.CH3SO3H
Solubility: DMSO to 100 mM

Water to 100 mM
Stability: Solid is stable at room temperature
Manufacturer: Tocris Cookson Inc., USA
Application: blocker of reverse mode of sodium-calcium exchange

Nifedipine

Chemical structure:

Molecular weight: 346.3
Chemical formula: C17H18N2O6
Solubility: Ethanol to 17 g/L
Stability: Solid is stable at 4oC in dark.

Aqueous solution is extremely light-sensitive and unstable,
at 25oC concentration degrades to ≈90% of the initial value
within 6 hours of preparation.

Manufacturer: Sigma
Application: blocker of L-type Ca2+ channels
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Lidocaine

Chemical structure:

Molecular weight: 234
Chemical formula: C14H22N20
Solubility: soluble in water
Stability: stable under normal conditions
Manufacturer: Sintetica, Switzerland (Rapidocain® 1%)
Application: Sodium channel blocker

Pluronic F-127

Nonionic surfactant polyol
Chemical structure:

Molecular weight: approximately 12,500 daltons 

Chemical formula: see chemical structure
Manufacturer: Sigma
Application: Facilitates solubilization of indo-1

Probenecid

Chemical structure:

Molecular weight: 285.4
Chemical formula: C13H19NO4S

Manufacturer: Sigma
Application: inhibits outward transport of anions from cytoplasm of

cardiomyocytes improving loading of indo-1
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Indo-1 acetoxymethyl ester

Chemical structure:

Molecular weight: 1009.93
Chemical formula: C47H51N3O22
Solubility: DMSO, 4 mg/ml, Pluronic F-127 facilitates solubilization
Stability: aqueous solution is unstable, light-sensitive. Storage of

solid: desiccated and protected from light at room
temperature, 2-6°C or ≤-20°C without compromising
stability.

Manufacturer: Calbiochem-Novabiochem Corporation, La Jolla, CA
92039

Application: Ratiometric fluorescent indicator of [Ca2+]i changes in
cytosole of cardiomyocytes.
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3.7 Evaluation of results and statistical analysis

The rats used in the experiment were characterized by body weight and by wet and dry

heart weight. The data on coronary flow and LVDP together with the ECG, cardiac rate
and indo-1 fluorescence were recorded using Chart software (version 4.2 for Macintosh).

The variables were compared among groups by t-test, unpaired or paired, if appropriate,

using Prism software (version 3.0, Ocx, June 2002) and expressed as mean±SD. The null
hypothesis was rejected at the 95% level, considering p < 0.05 significant. The incidence

of spontaneous defibrillation was evaluated on digitized ECG and pressure readouts,
listed in a table and analyzed using Chi-square statistics for hearts treated with the drugs

prior to VF and using Fisher exact test for hearts treated with KB-R7943 after VF

induction.
[Ca2+]i was calculated from the fluorescence ratio R according to the results obtained at

calibration; thereafter in all analyses absolute values of [Ca2+]i have been used.

[Ca2+]i was evaluated as an increase over baseline and measured at three time points.
1) 10 seconds after beginning of VF induction by rapid pacing; 2) at the end of the 1

minute-long VF induction by rapid pacing; 3) at the end of the following 1 min if VF was
sustained. The [Ca2+]i data obtained with a drug perfused were compared with

corresponding data obtained at previous VF induction in the same heart without a drug

(or with the previous vehicle in a control group) using paired t-test. Additionally, we
analyzed difference of the effects of the drugs on Ca2+ overload 10 seconds after rapid

pacing and at the end of rapid pacing, also using paired t-test. Finally, in the hearts
perfused with drugs before VF, we analyzed the rate of [Ca2+]i accumulation during the

initial phase of VF by monoexponential curve fitting (time constant t) using paired t-test.

At an intermediate stage after experiments on 3 hearts in 2 groups we used preliminary

data on variability of VF-induced [Ca2+]i elevation for a sample size determination. It has
shown that groups of 6 hearts have 90% power to detect a 20% difference in [Ca2+]i.

In hearts perfused with KB-R7943 after VF has been induced we estimated the difference
(delta) between the mean [Ca2+]i of a 1 min period measured 15 min after start of KB-

R7943 perfusion and the mean [Ca2+]i of the last 1 min before start of KB-R7943

perfusion. The mean delta±SD of the whole group was compared using unpaired t-test
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with the mean delta±SD of the control group in which measurements of [Ca2+]i were

performed at corresponding periods after VF induction.
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4 RESULTS

4.1 Results of calibration

SR was found to be -1.027±0.358 (mean±SD, n=32 hearts). The value of S1 = 0.174 for l1

= 385 as well as Kd = 594 nM were taken from the literature 65 as obtained in a solution
of soluble proteins from rat cardiomyocytes. Based on known S1 and SR and on equation

(19) we calculated S2 = 1.848 for l2 = 510. Thereafter Rmax for each heart was calculated

using equation (19), b measured in this heart and mean SR calculated previously; Rmin was
calculated from equation (20). These obtained constants were used for calculating [Ca2+]i

using Chart software and recordings of R obtained in experiments. Calculated in such

way mean diastolic and mean systolic [Ca2+]i were found to be 389±169 and 791±191,
correspondingly. While the diastolic value corresponds, the systolic is smaller than the

one obtained using the same constants by 70,69,65, 391 and 1015 nM, correspondingly. The

difference can be explained by the fact that we did not account for mitochondrial [Ca2+]
([Ca2+]m) and for the fraction of indo-1 loaded into mitochondria.69,81,98 In order to do it,

we should have applied quenching of fluorescence of the cytosolic fraction of indo-1 by
manganese. 81,98-100 Estimated in such way mitochondrial fluorescence is subtracted from

the total fluorescence (at each of the wavelengths of measurement) for obtaining

corrected [Ca2+]i. Increase of [Ca2+]i during VF, however, is also expected to lead to an
increase of [Ca2+]m.39 Therefore, in order to be consistent, we should have applied the

quenching by manganese during VF induction and the following sustained VF, too. Our
experiments include two consecutive VF inductions in the same heart with measuring
[Ca2+]i both at baseline and during VF each time and with 10 min recovery between the
VFs. Therefore, the Mn2+ ions (100 µM  MnCl2,81,98-100) should have been present in
cytosol for relatively long time (≈20-30 min), the entire period of measurements, or

loaded and washed out twice. This condition is far from physiological. Therefore, we
have chosen not to measure [Ca2+]m. So, the estimated [Ca2+]i in our experiments can be
considered to reflect an average of [Ca2+] in mitochondria and in cytosol. The
mitochondrial [Ca2+]i is considered to show no transient.81,101,102 Although some  authors
have demonstrated the opposite,103,104 the mitochondrial [Ca2+]i transients in rat
cardiomyocytes in their studies are still 4-5 times smaller compared to cytosol. Therefore,
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the estimate of the [Ca2+]i transient amplitude without accounting for mitochondrial indo-
1 fluorescence is smaller in principle. Another bias could arise from photobleaching of
indo-1 by ultraviolet light. Control experiments with repeated vehicle, however, have
shown that it is not high at least in this type of experimental protocol (see results below).
Still, in experiments with KB-R7943 infused after VF induction photobleaching of indo-1
should have been more prominent due to longer exposure to ultraviolet light both in the
control and in the KB-R7943 –treated hearts. Eventually, calibration of Rmax at the end of
experiments should have also been biased by photobleaching during previous
fluorescence measurements. This also could have influenced the estimation of [Ca2+]i.
During the first two minutes of VF [Ca2+]i increased to ≈2 – 2.5 µM. Thereafter it was

increasing slowly, approaching ≈3 µM. It should be noted, however, that at
concentrations as high as 1 µM and more sensitivity of fluorescence ratio to [Ca2+]i is

decreased (Fig. 13).

4.2 Exclusions and the data on body and heart weight of rats

Fifty rats were used for the experiments of this thesis. In four hearts it was not possible to

induce VF, so they were excluded from analysis. One heart was excluded because of no

LVDP recovery after the first VF induction, another heart because of low coronary flow
(< 15 ml/min at baseline) and one more heart because it showed spontaneous VF already

before any pacing protocol has been applied. The data on these rats are summarized in
Table 3.

Table 3. Body weight, wet heart weight and dry heart weight of the
43 rats used in the experiments expressed as mean ± SD.

Body weight, g Wet heart weight, g Dry heart weight, g

421.39 ± 23.25 1.37 ± 0.15 0.26 ± 0.02

4.3 Hemodynamic variables

In all hearts in which VF was induced twice, including control, there was a small but

significant reduction of coronary flow (Fig. 22 A) obviously due to a gradual

deterioration of the isolated heart preparation. In addition, both drugs at both
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concentrations produced a significant, albeit small reduction of LVDP (Fig. 22 B).

Extend of the reduction of LVDP in the control group (7.9%), although it did not reach
statistical significance (p = 0.13), was comparable to other groups (Fig. 22 B). So, some

part of the LVDP reduction was due to a deterioration of the preparation, while another
part was presumably due to reduced Ca2+ entry into the cardiomyocytes during systole.

Figure 22. Mean coronary flow (A) and left ventricular developed pressure (LVDP)
(B). Each pair of bars represents: open bars vehicle, filled bars drug treatments (see
subscripts). The data are paired, i.e. measured consecutively in the same heart, exept
for the last two bars (10 µM KB-R7943 after VF induction). To distinguish with
paired data, the bar standing for vehicle in this pair is hatched. **p<0.01, *p<0.05.
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4.4 Diastolic [Ca2+]i at baseline

None of the drug treatments significantly changed diastolic level of [Ca2+]i at baseline
(Fig. 23). Except for the group treated with 0.05 µM nifedipine, in all groups including

control diastolic [Ca2+]i before second VF was slightly reduced. Treatment with 10 µM

KB-R7943 showed a trend towards reduction of diastolic [Ca2+]i (p=0.095). Large
increase of diastolic [Ca2+]i in the 0.05 µM nifedipine treated group (288 nM or 68%) was
not significant (p=0.163, Fig. 23) due to high scatter of data. Other treatments produced

following mean reduction of diastolic [Ca2+]i: 5 µM KB-R7943 34 nM or 8%, 10 µM KB-
R7943 64 nM or 21%, 0.2 µM nifedipine 27 nM or 7%, repeated vehicle  25 nM or 6%.

Comparison of diastolic [Ca2+]i before the first VF among the all groups showed no

significant difference (p=0.534, ANOVA).

4.5 Systolic [Ca2+]i at baseline

Both 5 and 10 µM KB-R7943 infused before VF significantly (p<0.01) reduced systolic

[Ca2+]i at baseline (Fig. 23) by 147 and 164 nM (18 and 24%), respectively. Nifedipine at
0.05 µM elevated baseline systolic [Ca2+]i by 168 nM (19%), which was statistically not

significant (p=0.458, Fig. 23) due to high scatter of data. Nifedipine at 0.2 µM reduced

baseline [Ca2+]i by 273 nM (35%), which was not significant (p=0.111, Fig. 23), but on
average larger than in the groups treated with KB-R7943. Repeated vehicle slightly

reduced baseline systolic [Ca2+]i by 58 nM (7%), which was not significant (p=0.475, Fig.
23). Comparison of systolic [Ca2+]i before the first VF among the all groups showed no

significant difference (p=0.539, ANOVA).

Elevation of both diastolic and systolic [Ca2+]i produced by 0.05 µM nifedipine can be

attributed to measurement artifact. This consideration is based on extensive knowledge of
Ca2+ -antagonism of this drug, on the reducing effect on baseline systolic and diastolic

[Ca2+]i produced by nifedipine at 0.02 µM and on the consistent effects of both

concentrations of nifedipine on Ca2+ overload during VF presented below. Elevation of
the mean systolic [Ca2+]i in the 0.05 µM nifedipine group  (168 nm) is not as high as
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elevation of the mean diastolic [Ca2+]i (288 nM), which means overall reduction of [Ca2+]i

transient amplitude, an effect, also observed in the other drug-treated groups.

Figure 23. Upper end of bars shows mean diastolic [Ca2+]i before VF induction; lover
end of bars shows mean systolic [Ca2+]i before VF induction.  Open bars stand for
vehicle, closed for drug treatment (see subscripts). The data are paired, i.e. measured
sequentially in the same heart except for the last two bars (10 µM KB-R7943 after VF
induction). To distinguish with paired data, the bar standing for vehicle in the last pair is
hatched. **p<0.01, paired t-test. Additionally, baseline systolic and diastolic values of
[Ca2+]i with vehicle (1st VF induction) were compared among all groups using ANOVA
and showed now significant difference.
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4.6 Effects of KB-R7943 and nifedipine infusion before VF

4.6.1 Effects of KB-R7943

Both 5 and 10 µM KB-R7943 infused before VF significantly reduced [Ca2+]i

accumulation during entire period of VF (p<0.01) (Fig. 24 A and B, Fig 25 A and B, Fig.

30 A , B and C). On average, 5 µM KB-R7943 reduced [Ca2+]i accumulation by 559 nM
(51%) after 10 sec of VF induction and by 494 nM (40%) at the end of rapid pacing (Fig.

30 A and B). 10 µM KB-R7943 reduced [Ca2+]i by 709 nM (59%) after 10 sec of VF

induction and by 1148 nM (70%) at the end of rapid pacing (Fig. 30 A and B).
Additionally, in both these groups spontaneous defibrillations occurred several seconds

after the rapid pacing was stopped. Of six hearts treated with 5 µM KB-R7943 two
defibrillated spontaneously. Therefore, [Ca2+]i accumulation after 1 min sustained VF was

analyzed only in the four hearts in which VF was sustained; 5 µM KB-R7943 reduced

[Ca2+]i by 643 nM (43%) after 1 min sustained VF (Fig. 30 C). Of six hearts treated with
10 µM KB-R7943 five defibrillated spontaneously. Therefore, [Ca2+]i accumulation after

1 min sustained VF was not analyzed in this group. The incidence of spontaneous
defibrillations in the group treated with 10 µM KB-R7943 was significantly (p<0.05,

Chi-square test, Table 5) different from control. Both 5 and 10 µM KB-R7943, did not

significantly change the [Ca2+]i accumulation rate (p=0.19 and 0.26, correspondingly,
paired t-test,) although on average in the both groups t was increased (Fig. 31).

4.7.1 Effects of nifedipine

Both 0.05 and 0.2 µM nifedipine infused before VF significantly (p<0.05) reduced [Ca2+]i

elevation during VF (Fig. 26 A and B, Fig. 27 A and B, Fig. 30 A and B). On average,

nifedipine at 0.05 µM reduced [Ca2+]i accumulation by 535 nM (50%) after 10 sec of VF
induction and by 496 nM (40%) at the end of rapid pacing (Fig. 30 A and B). Nifedipine

at 0.2 µM reduced [Ca2+]i accumulation by 886 nM (82%) after 10 sec of VF induction
and by 656 nM (58%) at the end of rapid pacing (Fig. 30 A and B). The effect of 0.2 µM

nifedipine on [Ca2+]i overload at the end of rapid pacing was significantly (p<0.02)

smaller than after 10 s of rapid pacing, on average it was smaller by 230 nM (26%) (Fig.
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30 A and B). There was no significant difference of [Ca2+]i overload reduction measured

after 10 s and at the end of rapid pacing within other groups (Fig. 30 A and B).
Additionally, in both groups spontaneous defibrillation occurred after the rapid pacing

was stopped. Out of the four hearts treated with 0.05 µM nifedipine two defibrillated
spontaneously. Out of the five hearts treated with 0.2 µM nifedipine three defibrillated

spontaneously. Therefore [Ca2+]i accumulation was not analyzed after 1 min sustained VF

in both groups. The incidence of spontaneous defibrillation in both groups was not
significantly different from control (Table 5). Both 0.05 and 0.2 µM nifedipine, however,

increased t and, therefore, reduced [Ca2+]i accumulation rate (p<0.01 and p<0.05,

correspondingly; Fig. 31).

In the control group (repeated vehicle) there was no statistically significant difference of

extend of [Ca2+]i overload between the first and the second VF (Fig. 28, 29, 30). The
difference of [Ca2+]i between two sequential VFs at baseline (diastolic: decreased by 25

nM or 6%, systolic: decreased by 58 nM or 7%, after 10 sec of VF (increased by 59 nM

or 5%) and at the end of rapid pacing (decreased by 81 nM or 5%) was negligible; the
maximal difference observed after 1 min sustained VF (decreased by 448 nM or 20%)

was not statistically significant (p=0.196). Together with the results of no effect of
repeated VF induction on Ca2+ transient amplitude at baseline this indicates that

photobleacing and deterioration are not important in our experiments and that effects of

the drugs on [Ca2+]i during VF are valid. Additionally, no spontaneous defibrillations
occurred in this group. Finally, there was no change of [Ca2+]i accumulation rate between

the first and the second VF with vehicle (p=0.95, Fig. 31).

4.8 Effects of KB-R7943 infusion during VF

Perfusion with KB-R7943 starting 5 min after VF induction significantly (p<0.01)

reduced [Ca2+]i accumulation (Fig. 32, 33, 34). On average, [Ca2+]i during VF was

reduced by 1288 nM (Fig. 34). Additionally, of seven hearts treated with KB-R7943 six
defibrillated spontaneously after VF induction was stopped. The incidence of
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spontaneous defibrillations was significantly different from the control group (p<0.01) in

which no spontaneous defibrillations have been observed (Table 4).

Table 4. Occurrence of spontaneous defibrillations with regard to treatment groups.
Incidence of spontaneous defibrillations in the groups treated with KB-R7943 or
nifedipine before VF and in the group treated with 10 µM KB-R7943 after VF induction
was analyzed by Chi-square and Fisher exact test, correspondingly. *p<0.05; **p<0.01.

Treatment groups No of hearts No of spontaneous defibrillations
5 µM KB-R7943 before VF 6 2
10 µM KB-R7943 before VF 6   5*
0.05 µM nifedipine before VF 5 2
0.2 µM nifedipine before VF 5 3
Repeated vehicle 8 0
10 µM KBR 5 min after VF induction 7     6**
Vehicle after VF induction 7 0
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Figure 24. Original recordings of fluorescence ratio and LV pressure of hearts treated
with KB-R7943: (A) 5 µM, (B) 10 µM. The tracings of two sequential VF inductions
in the same heart with the vehicle and the drug perfusion are overlayed.
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Figure 25. Mean±SD [Ca2+]i accumulation during VF in hearts treated with KB-
R7943: (A), 5 µM and (B), 10 µM. Sampling intervals were 10 s beginning 30 s
before VF induction and 20 s after VF was induced.
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Figure 26. Original recordings of fluorescence ratio and LV pressure of hearts
treated with nifedipine: (A) 0.05 µM, (B) 0.2 µM. The tracings of two sequential
VF inductions in the same heart, the vehicle and the drug perfusion, are overlayed.
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Figure 27. Mean±SD [Ca2+]i accumulation during VF in hearts treated with
nifedipine: (A) 0.05 µM, (B) 0.2 µM. Sampling intervals were 10 s before VF
induction and 20 s after VF was induced.
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Figure 28. Original recordings of fluorescence ratio and LV pressure of a control heart (repeated
vehicle). The tracings of two sequential VF inductions in the same heart are overlayed.

Figure 29. Mean±SD [Ca2+]i accumulation during VF in hearts of the control group (repeated
vehicle). Sampling intervals were 10 s before VF induction and 20 s after VF was induced.
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Figure 30. [Ca2+]i accumulation extend (mean±SD) during VF in hearts treated with KB-
R7943 and nifedipine before VF induction. Measurements performed (A) 10 sec after VF
induction, (B) at the end of rapid pacing, (C) after 1 min sustained VF. Open bars stand
for vehicle, closed for drug treatment (see subscripts). Statistical comparison was made
using paired t-test. **p<0.01 vs. vehicle; *p<0.05 vs. vehicle; †p<0.02 at the end of rapid
pacing vs. 10 s of after VF.
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Figure 31. [Ca2+]i accumulation rate (expressed as time constant t) during VF in
hearts treated with KB-R7943 and nifedipine before VF induction. Open bars stand
for vehicle, closed for drug treatment (see subscripts). Statistical comparison was
performed using paired t-test. *p < 0.05.
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Figure 32. Original recordings of fluorescence ratio and LV pressure of a heart perfused with
KB-R7943 beginning 5 min after VF induction overlayed with corresponding recordings of a
control heart. Arrow indicates beginning of KB-R7943 infusion.

Figure 33. Mean±SD [Ca2+]i accumulation during VF in hearts treated with 10 µM KB-R7943
after VF induction compared to the control group. Sampling interval was 10 s before VF induction
and 2 min after VF has been induced. Arrow indicates beginning of KB-R7943 infusion.

Fluorescence
ratio

2

1

1.5

LV pressure
(mm Hg)

0

80

Vehicle

KB-R7943 (10 µM)

5 min
Baseline

KB-R7943 (10 µM)

Vehicle

1000

2000

3000

4000

5000

6000

[Ca2+]i
(nM)

vehicle

0 5 10 15 20 25

Time (min)

KB-R7943 (10 µM )



84

Figure 34. The reduction of [Ca2+]i produced by perfusion of 10 µM KB-R7943
after induction of VF. ** p < 0.01, unpaired t-test.
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5. DISCUSSION

Our study in isolated rat hearts shows that [Ca2+]i rises biphasically during VF. During the

first two minutes of VF [Ca2+]i increases rapidly to double of systolic [Ca2+]i, that is ≈2 –
2.5 µM. Thereafter [Ca2+]i increases more slowly, approaching ≈3 µM after 5 min of VF.

Such increase of [Ca2+]i over physiological levels is sufficient to activate calpains, which

are known to be activated by 1-20 µM [Ca2+]i in vitro105 and by ischemia/reperfusion.106

The substrates for calpains include important cardiac myofibrillar proteins troponin I and

troponin T.47 Therefore, postfibrillatory myocardial dysfunction is a consequence of
reduced myofilament Ca2+ responsiveness following myocyte Ca2+ overload caused by

VF.

Our study also shows that both L-type Ca2+ channels and Na+/Ca2+-exchange are

important ways of Ca2+ entry into cardiac myocytes during initial stage of VF in rat

hearts. Additionally, Na+/Ca2+-exchange is an important Ca2+ -source in persisting VF.
Specifically, both nifedipine, the blocker of L-type Ca2+ channels, and KB-R7943, the

specific blocker of the reverse mode of Na+/Ca2+-exchange, significantly reduced Ca2+

overload both after 10 and after 60 s (Fig. 30 A and B) of VF induction by rapid pacing;

KB-R7943 at 5 µM also significantly reduced Ca2+ overload after 1 min sustained VF

(Fig 30 C). Furthermore, hearts treated with 10 µM KB-R7943 before VF frequently
defibrillated after the end of rapid pacing while untreated control hearts did not (Table 4,

p<0.05). Nifedipine, both at 0.05 and at 0.2 µM, slowed Ca2+ accumulation rate

(increased time constant t, p<0.05, Fig. 31). Additionally, 10 µM KB-R7943 infused 5

min after VF had been induced also significantly reduced Ca2+ overload (Fig. 34).   

The role of Na+/Ca2+-exchange in VF

To the best of our knowledge, there has been no study on the role of Na+/Ca2+-exchange

on Ca2+ overload during VF so far. This is partly due to the lack of a proper
pharmacological tool. However, KB-R7943, the inhibitor of the reverse mode of

Na+/Ca2+-exchange, has been available since 1996.88 Therefore, to a large extend this is

due to the difficulties of the technique of measuring [Ca2+]i by surface fluorescence of



86

indo-1 in isolated perfused heart (this problem was extensively discussed in section

3.4.3). Based on some studies, however, the role of Na+/Ca2+-exchange in VF can be
suggested. For example, there is evidence obtained in isolated rat ventricular myocytes

that Na+/Ca2+-exchange is involved in the generation of Ca2+ overload and of spontaneous
Ca2+ oscillations induced by inhibition of Na+/K+ ATP-ase after strophanthidin

administration.89 Such Na+/K+ ATP-ase inhibition leads to an increase of [Na+]i, which

changes the electrochemical potential for Na+/Ca2+-exchange promoting its operation in
the reverse mode that results in excessive Ca2+ entry into the cytosol. The rapid activation

rate in VF is also the cause of increased [Na+]i, which via change of the reversal potential
of Na+/Ca2+-exchange can promote Ca2+ entry resuting in Ca2+ overload.

Our results directly show the involvement of Na+/Ca2+-exchange in myocardial Ca2+

overload during VF. Already at the early stage of VF, after 10 s of rapid pacing, KB-
R7943 significantly reduced Ca2+ overload, on average by 51% and by 59% in hearts

treated with 5 and 10 µM KB-R7943, respectively (Fig. 30 A). This reduction did not

decline afterwards and was 40 and 70% for the corresponding groups at the end of rapid
pacing (Fig. 30 B). After 1 min sustained VF Ca2+ overload was reduced by 43% in hearts

treated with 5 µM KB-R7943 (Fig. 30 C). Furthermore, in hearts treated with 10 µM KB-
R7943, the incidence of spontaneous defibrillations was significantly higher than in

control (Table 5). Moreover, KB-R7943 infusion after 5 min of persisting VF also

significantly reduced Ca2+ overload (Fig. 33, 34) and led to spontaneous defibrillations
(Table 5). These findings indicate for the first time that Na+/Ca2+-exchange plays an

important role in the generation of myocardial Ca2+ overload at all stages of VF and thus
in maintaining VF.

.56 This is also confirmed in our experiments, which show, that blocking reverse mode of
Na+/Ca2+-exchange by KB-R7943 was sufficient to lower diastolic and, especially,

systolic [Ca2+]i, reducing the [Ca2+]i transient amplitude (Fig. 23). Consequently,
Na+/Ca2+-exchange contributes to loading of cardiomyocyte with Ca2+ from the very

beginning of VF. This contribution can be expected to increase as VF continues because

1) the balance of Ca2+ flux mediated by Na+/Ca2+-exchange is shifted further into the
reverse mode favoring Ca2+ entry with the rapid increase of [Na+]i and 2) as VF persists,
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the contribution of L-type Ca2+ channels is known to decrease5 while [Ca2+]i continues to

increase.38-41 Since blocking Na+/Ca2+-exchange with KB-R7943 infused after VF
induction reduced Ca2+ overload and led to spontaneous defibrillation, it can be

concluded that Na+/Ca2+-exchange is the only source of Ca2+ maintaining VF. This
conclusion is in line with the concept of vicious circle, that is: VF supports Ca2+ overload

and Ca2+ overload supports VF.4 Our results add to this concept that the structure

supporting the vicious circle is Na+/Ca2+-exchange.

The role of L-type Ca2+ channels in VF

The involvement of L-type Ca2+ channels in Ca2+ overload during VF has been shown in

previous studies.6,107 In particular, the L-type Ca2+ channel blocker diltiazem at 1 µM
prevented VF-induced Ca2+ overload in isolated rat hearts.6 This role of L-type Ca2+

channels was prominent at the initial stages of VF but decreased as VF persisted because

diltiazem perfusion after 5 min of VF could not prevent Ca2+ overload from increasing
further in perfused rat hearts.5 These results support the idea that the contribution of L-

type Ca2+ channels in VF-induced Ca2+ overload is time-dependent. The first novel
evidence of the prominent role of L-type Ca2+ channels at the initial stage of VF is that

nifedipine both at 0.05 and at 0.2 µM significantly reduced Ca2+ accumulation rate in our

experiments (Fig. 31).  In contrast, the corresponding effect of KB-R7943 at both
concentrations did not reach statistical significance (Fig. 31) The second novel evidence

is that after 10 s of rapid pacing nifedipine significantly reduced the extend of Ca2+

accumulation (Fig. 30 A). At the end of rapid pacing this reduction was smaller but still
significant (Fig. 30 B). However, in the group treated with 0.2 µM nifedipine the

reduction of Ca2+ accumulation at the end of rapid pacing was significantly smaller than
after 10 s of rapid pacing (p<0.02). This difference was not significant in the group

treated with 0.05 µM nifedipine, probably due to insufficient blocking of L-type Ca2+

channels, and, therefore, insufficient reduction of Ca2+ overload after 10 s of rapid pacing.
Also in the groups treated with both concentrations of KB-R7943 there was no significant

difference of Ca2+ accumulation measured at corresponding time points (Fig. 30).
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Limitations

Estimation of Ca2+ overload during VF using indo-1 fluorescence is intrinsically

hampered by reduced sensitivity of this fluorescent dye at high [Ca2+]i. The sensitivity of

indo-1 is already reduced when cytosolic Ca2+ is as high as 1 µM65,70 (Fig. 13). The
sensitivity of indo-1 is reduced even further with higher [Ca2+]i observed in our

experiments during VF. This can explain the high variability of [Ca2+]i of our data (Fig.

25, 27, 29, 32). Additionally, due to the reduced sensitivity of indo-1, [Ca2+]i during VF
could be underestimated. The underestimation of [Ca2+]i during VF, however, can not

undermine our results, and, most important, our conclusions. That is, during VF [Ca2+]i

increases to levels double of systolic and higher. This level of [Ca2+]i is sufficient to

activate calpains, the proteases degrading contractile proteins and causing in such way

postfibrillatory myocardial dysfunction.

Our protocol with sequential induction of VF in the same heart, the first time with vehicle

and the second time with the drug being perfused, may invoke the following criticism.
First, there is data suggesting that Ca2+ is one of triggers of ischemic preconditioning of

myocardium.108 Therefore, transitory [Ca2+]i overload experienced by hearts during first
VF could have preconditioning effect on the hears, similar to the effect of ischemic

preconditioning. The ischemic preconditioning itself, however, results in better tolerance

to Ca2+ overload and reduced elevation of [Ca2+]i during the following episode of
ischemia.109 Therefore, the same mechanism could lead to reduced Ca2+ accumulation

during the second episode of VF. Second, due to photobleaching of indo-1 the increase of
fluorescence ratio during the second VF may be reduced. Furthermore, fluorescence ratio

could also be reduced due to the gradual deterioration of the isolated heart preparation.

To rule out these two concerns, we confirmed the validity of our results in the control
group (Fig. 28, 29, 30). Repetitive induction of VF in this group, both times with vehicle,

showed no significant difference of [Ca2+]i neither after 10 nor after 60 s of rapid pacing
nor after 1 min sustained VF. Additionally, there was no difference of Ca2+ accumulation

rate between the first and the second VF (Fig. 31). Accordingly, in the control group,

spontaneous defibrillations did not occur during second VF (Table 5). On average, there
was virtually no difference in [Ca2+]i between the first and the second VF in the control
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group at baseline and throughout the period of rapid pacing (Fig. 24, 29, 30). Only after 1

min sustained VF Ca2+ accumulation was reduced by 20% during the second VF (Fig. 29,
30); this reduction, however, was not significant (p=0.20). The similar levels of [Ca2+]i at

baseline and during rapid pacing during the first and the second VF in the control group
allow to rule out the effects of photobleaching or of deterioration in our experiments.

Another potential limitation is the specificity of KB-R7943 in concentrations, used in our
experiments. As has been mentioned in section 3.5.1, the majority of studies

demonstrates specificity of KB-R7943 in the micromolar range.86,87,89-91 However, there is

another study suggesting the opposite.88 Specifically, using ramp pulse protocol, it has
been shown that KB-R7943 inhibits Na+ currents, L-type Ca2+ currents and inward

rectifier K+ currents with IC50 14, 8 and 7 µM, respectively.88 The inhibition of Na+ and
L-type Ca2+ currents could be the cause of reduced Ca2+ accumulation in hearts treated

with KB-R7943 in our experiments. The ramp pulse protocol, however, is considered to

be too severe and has little relevance to physiological conditions.53 Other studies showed
that in rat ventricular myocytes KB-R7943 at 5 µM did not alter steady-state twitches,

Ca2+ transients, Ca2+ load in the SR, or rest potentiation.89 In guinea pig papillary muscle,
however, KB-R7943 at up to 10 µM did not significantly affect the resting membrane

potential or various action potential parameters.87,90 Similarly, 10 or 30 µM KB-R7943

did not alter spontaneous beating rate and developed tension in isolated guinea pig atria.91

Based on foregoing, we consider KB-R7943 to be specific enough at concentrations used

in our experiments.

Species considerations

Our study showing the role of Na+/Ca2+-exchange in VF was performed in isolated rat

hearts. It is important to note that the central role of Ca2+ in excitation-contraction

coupling involving Ca2+-induced Ca2+ release in cardiac muscle26 suggests that VF leads
to myocyte Ca2+ overload in most species including adult human beings. However,

important inter-species and developmental differences exist regarding Ca2+-induced Ca2+

release from the sarcoplasmic reticulum and regarding Ca2+ removal processes26.
Consequently, activator Ca2+ in cardiac muscle of various species depends on different
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contributions from the sarcoplasmic reticulum, from L-type Ca2+ channels, and from

Na+/Ca2+-exchange 26. The kinetics and the degree of VF-induced myocyte Ca2+ overload
may therefore vary among species and be part of the reason why some species are better

protected against sustained VF than others (similar to myocardial mass). Based on the
foregoing, VF in adult human beings most likely induces cardiomyocyte Ca2+ overload

and the Ca2+ sources of this overload may be to some extend but not fundamentally

different from adult rat ventricles.4 The relative contribution of Na+/Ca2+-exchange to
Ca2+ extrusion from cardiomyocytes in rat and in human differs in the following way:

Na+/Ca2+-exchange extrudes ≈30% of Ca2+ required to activate the myofilaments in
human ventricles but a much smaller portion (≈7%) in rat ventricles.25 This suggests

possibility of a similar interspecies difference in contribution of Na+/Ca2+-exchange to

Ca2+ entry during cardiac cycle. If this is the case, the role of Na+/Ca2+-exchange in Ca2+

overload during VF and in the vulnerability to VF in human beings can be more

prominent than in rat. In heart failure patients, Na+/Ca2+-exchange has been found to be

overexpressed potentially compensating for reduced SERCA function.57 Consequently,
enhanced electrogenic Na+/Ca2+-exchange-activity may not only lead to delayed

afterdepolarizations but also maintain VF providing further Ca2+ entry during prolonged
VF. Thus, blocking enhanced Na+/Ca2+-exchange in failing hearts might be beneficial in

both reducing the incidence of VF and undermining the self-maintaining nature of VF.

In summary, we have shown that during the first two minutes of VF [Ca2+]i increases to

≈2 – 2.5 µM. Thereafter it increases slowly, approaching ≈3 µM. We have also shown
that both L-type Ca2+ channels and Na+/Ca2+-exchange are important ways of Ca2+ entry

into cardiac myocytes during initial stage of VF in rat hearts. Additionally, Na+/Ca2+-

exchange is an important Ca2+ -source in persisting VF. An important clinical implication
of our results is that blocking Na+/Ca2+-exchange might help in both reducing incidence

and interrupting the vicious circle of VF.
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6. CONCLUSIONS

1. During the first two minutes of VF [Ca2+]i increases to 2 – 2.5 µM. Thereafter it is

increasing slowly, approaching 3 µM .

2. Both L-type Ca2+ channels and Na+/Ca2+-exchange are important ways of Ca2+ entry

into cardiac myocytes during VF in normal rat hearts. The role of L-type Ca2+ channels is
more important at the initial stage of VF.

3. Na+/Ca2+-exchange is an important Ca2+ -source maintaining VF.
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