edoc-vmtest

Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue

Veyrat-Durebex, Christelle and Deblon, Nicolas and Caillon, Aurélie and Andrew, Ruth and Altirriba, Jordi and Odermatt, Alex and Rohner-Jeanrenaud, Françoise. (2012) Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS one, Vol. 7, H. 3 , e34002.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6070438

Downloads: Statistics Overview

Abstract

Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.
Faculties and Departments:05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Molecular and Systems Toxicology (Odermatt)
UniBasel Contributors:Odermatt, Alex
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Public Library of Science
ISSN:1932-6203
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:01 Mar 2013 11:14
Deposited On:01 Mar 2013 11:12

Repository Staff Only: item control page