Meyer, Arne and Strajhar, Petra and Murer, Céline and Da Cunha, Thierry and Odermatt, Alex. (2012) Species-specific differences in the inhibition of human and zebrafish 11β-hydroxysteroid dehydrogenase 2 by thiram and organotins. Toxicology, Vol. 301, H. 1-3. pp. 72-78.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A6070437
Downloads: Statistics Overview
Abstract
Dithiocarbamates and organotins can inhibit enzymes by interacting with functionally essential sulfhydryl groups. Both classes of chemicals were shown to inhibit human 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which converts active cortisol into inactive cortisone and has a role in renal and intestinal electrolyte regulation and in the feto-placental barrier to maternal glucocorticoids. In fish, 11β-HSD2 has a dual role by inactivating glucocorticoids and generating the major androgen 11-ketotestosterone. Inhibition of this enzyme may enhance glucocorticoid and diminish androgen effects in fish. Here, we characterized 11β-HSD2 activity of the model species zebrafish. A comparison with human and mouse 11β-HSD2 revealed species-specific substrate preference. Unexpectedly, assessment of the effects of thiram and several organotins on the activity of zebrafish 11β-HSD2 showed weak inhibition by thiram and no inhibition by any of the organotins tested. Sequence comparison revealed the presence of an alanine at position 253 on zebrafish 11β-HSD2, corresponding to cysteine-264 in the substrate-binding pocket of the human enzyme. Substitution of alanine-253 by cysteine resulted in a more than 10-fold increased sensitivity of zebrafish 11β-HSD2 to thiram. Mutating cysteine-264 on human 11β-HSD2 to serine resulted in 100-fold lower inhibitory activity. Our results demonstrate significant species differences in the sensitivity of human and zebrafish 11β-HSD2 to inhibition by thiram and organotins. Site-directed mutagenesis revealed a key role of cysteine-264 in the substrate-binding pocket of human 11β-HSD2 for sensitivity to sulfhydryl modifying agents.
Faculties and Departments: | 05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Molecular and Systems Toxicology (Odermatt) |
---|---|
UniBasel Contributors: | Odermatt, Alex and Meyer, Arne and Da Cunha, Thierry |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Elsevier |
ISSN: | 0300-483X |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 01 Mar 2013 11:14 |
Deposited On: | 01 Mar 2013 11:12 |
Repository Staff Only: item control page