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Summary 
Lysosomes are membrane-bound organelles that serve in the degradation of 

many extracellular and intracellular macromolecules. Lysosomal biogenesis depends 

on the delivery of newly synthesized lysosomal hydrolases. This process requires the 

acquisition of the lysosomal targeting signal, the mannose 6-phosphate tag that is 

specifically recognized by mannose 6-phosphate receptors (MPRs) in the TGN. The 

receptor-ligand complex is subsequently packaged into clathrin-coated vesicles and 

transported to early endosomes. The lower pH in the endosomal compartment causes 

the dissociation of the MPR and the ligand. The lysosomal enzymes are transferred to 

the lysosome, where they are activated, whereas the MPRs are transported from 

endosomes back to the TGN where they mediate another round of transport. Two 

distinct MPRs were identified and characterized - the 46 kDa cation-dependent (CD) 

MPR and the ~300 kDa cation-independent (CI) MPR. This study concentrates on the 

CD-MPR. 

The intracellular trafficking of the CD-MPR is mediated by sorting signals 

located in its cytoplasmic tail of 67 amino acids. The sorting motifs are recognized by 

specific adaptor proteins that mediate the vesicular transport of the receptor. Although 

several motifs and their interacting partners were identified in the CD-MPR, the 

various trafficking steps are not yet fully understood. In this study we focused on the 

characterization of two motifs of the receptor - the cysteine C30 and C34 which 

undergo reversible palmitoylation and the acidic cluster of the casein kinase 2 (CK2) 

phosphorylation site (E55-E56-S57-E58-E59). 

The CD-MPR is transported efficiently from late endosomes back to the TGN 

since only a very small percent of receptors are missorted to lysosomes where they 

are rapidly degraded. This transport step depends on the palmitoylation of C34, and 

additionally on the diaromatic motif F18W19. The membrane anchoring mediated by 

the palmitate, 34 amino acids away from the trans-membrane domain, implies a 

drastic conformational change on the cytoplasmic tail of the CD-MPR. The 

diaromatic motif is likely to be better exposed to the interacting protein in the 

palmitoylated than in the non-palmitoylated CD-MPR. Our hypothesis suggests that 

the reversible palmitoylation regulates the sorting signals in the cytoplasmic tail of 

the receptor. This would require that the palmitoylation occur enzymatically. In 
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Part I, we show that indeed the palmitoylation depends on a membrane-bound 

enzyme. This palmitoyltransferase cycles between the plasma membrane and 

endosomes. Close proximity of the palmitoyltransferase to the site where the 

palmitoylation of the CD-MPR is required is optimal to ensure the presence of the 

palmitoylated C34 in late endosomes. Thus, the localization of the 

palmitoyltransferase supports our hypothesis of palmitoylation as a regulatory 

mechanism for the sorting signals in the cytoplasmic tail of the receptor. 

Correct sorting of the CD-MPR from the TGN to endosomes depends on the 

D61-X-X-L64-L65 sequence, which interacts with GGA (Golgi-localizing, γ-ear-

containing, ARF-binding protein), a monomeric adaptor protein that mediates the 

formation of clathrin-coated vesicles at the TGN. Several substrates of GGA have a 

CK2 site upstream of the DXXLL motif and in two cases, phosphorylation by CK2 

was shown to increase the affinity of GGA1 to cargo. The CD-MPR also contains a 

CK2 site upstream of the DXXLL motif, but its involvement in GGA1 binding has 

not been investigated so far. The CK2 site of the CD-MPR was shown to interact with 

the adaptor protein 1 (AP-1), another protein involved in the sorting of cargo in the 

TGN, possibly in cooperation with GGA. Previous reports on the requirement of 

phosphorylation of the CD-MPR for binding to AP-1 were controversial. In Part II, 

we analyzed the influence of the CK2 phosphorylation site of the CD-MPR in binding 

to GGA1 and AP-1 and thus, in sorting in the TGN. A mutational analysis revealed 

that high affinity binding between CD-MPR and GGA1 was dependent on the acidic 

amino acid E59 and to a lesser extent on E58, while the phosphorylation of the S57 had 

no influence, indicating that the GGA1 binding site in the CD-MPR extends to 

E58-E59-X-D61-X-X-L64- L65. In contrast, AP-1 depended on all glutamates 

surrounding the serine E55, E56, E58, E59 in the CD-MPR for binding, but was also 

independent of the phosphorylation of S57. Therefore, we revealed that the 

phosphorylation of S57 is not required for sorting in the TGN. Interestingly, the 

binding affinity of GGA1 to the CD-MPR was 2.4-fold higher than that of AP-1 to 

the partially overlapping binding site in the CD-MPR. Thus, we present a modified 

model for the sorting process in the TGN, involving both GGA1 and AP-1, where the 

different binding affinities, determine the order of binding to the partially overlapping 

binding sites in the CD-MPR. First, GGA1 binds to the CD-MPR due to its higher 

affinity and is subsequently released from the CD-MPR as a result of its 
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autoinhibition caused by phosphorylation. This allows the AP-1 to bind and recruit 

the remaining components for correct sorting of the CD-MPR in the TGN. 

With our work we contributed to the understanding of specific transports steps 

of the CD-MPR and thereby we are advancing towards the goal of fully elucidating 

the trafficking of the receptor. 
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Abbreviations 
AP-1, -2, -3, -4 adaptor protein 1, 2, 3, 4 
APT1 acylprotein thioesterase 1 
ARF1 ADP-ribosylation factor 1 
BFA brefeldin A 
CALM clathrin assembly lymphoid myeloid leukaemia protein 
CCV clathrin-coated vesicle 
CD-MPR cation-dependent mannose 6-phosphate receptor 
CHC clathrin heavy chain 
CI-MPR cation-independent mannose 6-phosphate receptor 
CK2 casein kinase 2 
CLC clathrin light chain 
CRD cysteine-rich domain 
Dab2 disabled 2 
EE early endosome 
EEA1 early-endosomal autoantigen 1 
EGFR epidermal growth factor receptor 
EH Eps15 homology 
ENTH epsin N-terminal homology 
Eps15 EGFR-pathway substrate 15 
Eps15R Eps15 related 
epsin1 Eps15 interacting protein 1 
epsinR epsin-related 
ER endoplasmic reticulum 
ERGIC ER-Golgi intermediate compartment 
ESCRT-I, -II, -III endosomal complexes required for transport-I, -II, -III 
FT farnesyltransferase 
FYVE domain conserved in Fab1p/YOTB/Vac1p/EEA1 
GAE γ-adaptin ear 
GAK G-cyclin-associated kinase 
GAP GTPase activating protein 
GAT GGA and TOM1 
GDF GDI-displacement factor 
GDI GDP-dissociation inhibitor protein 
GED GTPase effector domain 
GEF guanine nucleotide exchange factor 
GFP green fluorescence protein 
GGA1, 2, 3 Golgi-localizing, γ-ear-containing, ARF-binding protein 1, 2, 3 
GGT-1, -2 geranylgeranyltransferase 1, 2 
GlcNAc N-acetylglucosamine  
GPCR G-protein coupled receptor 
G-protein guanine-nucleotide-binding protein 
HA influenza virus hemagglutinin A  
HIP1 huntingtin interacting protein 1 
HIP1R HIP1 related 
Hrs hepatocyte growth factor-regulated tyrosine kinase substrate 
ICD I-cell disease  
IGF-II insulin-like growth factor II  
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ISG immature secretory granules  
ITAM immunoreceptor tyrosine-based activation motif 
LAMP-1, -2 lysosomal-associated membrane protein 1, 2 
LAT linker for activation of T cells 
LBPA lyso-bisphosphatidic acid 
LE late endosome (also called MVB) 
LIF leukemia inhibitory factor 
LIMPII lysosomal integral membrane protein II 
LPA lyso-bisphosphatidic acid 
M6P mannose 6-phosphate  
MARCKS myristoylated alanine-rich C kinase substrate 
MPR mannose 6-phosphate receptor 
MSG mature secretory granules 
MVB multi-vesicular body 
NMT N-myristoyl transferase 
NSF N-ethylmaleimide-sensitive factor 
PACS-1 phosphofurin acidic cluster sorting protein 1 
PC6B proprotein convertase 6B 
PH pleckstrin homology 
phosphotransferase UDP-GlcNAc:lysosomal enzyme GlcNAc-1-

phosphotransferase 
PI(3)K PtdIns(3)-kinase  
PKC protein kinase C 
PNS post-nuclear supernatant 
PPT1, 2 palmitoylthioesterase 1, 2 
PRD proline-rich domain 
PTB phosphotyrosine-binding 
PtdIns(3)P phosphatidylinositol-3-phosphate 
PtdIns(4,5)P2 phosphatidylinositol-4,5-bisphosphate 
PX phox homology 
Rab Ras-like in rat brain 
RGS regulator of G-protein signaling 
Sac1 suppressor of actin 1 (phosphatase activity) 
SH3 Src-homology 3 
SNARE soluble NSF attachment protein receptor 
SNX sorting nexin 
STAM1, 2 signal-transducing adaptor molecule 1, 2 
TGF-β transforming growth factor-β  
TGN trans-Golgi network 
TIP47 MPR tail interacting protein of 47 kDa 
TMD trans-membrane domain 
Tsg101 tumor-susceptibility gene product 101 
UCE “uncovering” enzyme (GlcNAc-1-phosphodiester α-N-

acetylglucosaminidase) 
UIM ubiquitin-interacting motif 
VHS conserved in Vps27, Hrs, STAM 
VSV-G vesicular stomatitis virus G 
α-SNAP α-soluble NSF attachment protein 
β2AR β2-adrenergic receptor 
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1 Protein trafficking 
The biogenesis of the different organelles in the cell depends on the proper 

delivery of the proteins exhibiting an essential function required by the specific 

organelle. The proteins are synthesized and inserted into the ER membrane and are 

transported through many organelles via vesicular transport steps to the final 

destination. In addition to the biosynthetic pathway, the endocytic pathway takes up 

proteins from the extracellular space and the plasma membrane through endocytosis 

(see Figure 1). Ligand-binding receptors at the plasma membrane internalize and 

deliver the ligands for lysosomal degradation, whereas the receptors either recycle or 

are down-regulated by lysosomal degradation. The proper operation of these transport 

routes requires several important decisions to be made along the way. At the plasma 

membrane, proteins either remain at the cell surface or are rapidly internalized into 

endosomes. At the TGN, the choice is between going to the plasma membrane and 

being transported to endosomes. In endosomes, proteins can either recycle to the 

plasma membrane or the TGN or go to lysosomes. These decisions are mediated by a 

complex system of sorting signals in the proteins and a molecular machinery that 

recognizes those signals and delivers the proteins to their intended destinations.  

1.1 Proteins involved in trafficking 

For a specific transport step many components are required. A certain sorting 

signal in a protein destined for transport to a specific organelle is only recognized in 

the correct environment produced by the lipid composition of the membrane of the 

organelle and by accessory proteins recruited to the membrane. A soluble cytoplasmic 

protein, upon recognizing the signal in cargo, recruits other proteins to the budding 

site. These proteins might in turn recruit even more proteins, resulting in a complex 

system that is required for a vesicle to bud on a certain donor organelle. A general 

mechanism for all transport steps was elucidated, involving “adaptor proteins”, which 

recognize the signal and recruit “coat proteins” which coat the vesicle (Schekman and 

Orci, 1996). The process requires many “accessory proteins” with a function in 

facilitating vesicle formation, coat assembly or separating the vesicle from the 

membrane. Further specificity is endowed by the SNARE and Rab proteins, which 

direct the vesicles to the correct donor organelle and facilitate the fusion. One 
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component of the vesicles that is not specific for one organelle and is present on 

numerous vesicles budding from different organelles is the coat protein clathrin.  

 

 

 

 

 

 
Figure 1: Intracellular Trafficking. A eukaryotic cell is illustrated including the various organelles. The 
organelles are not drawn to scale. The numerous possibilities of the protein trafficking are depicted for a 
newly synthesized protein, targeted into the lumen of the ER. The individual transport steps are marked with 
black arrows. The ribosomes localized on the rough ER membrane are in green, the lumenal proteins are blue. 
MTOC, microtubule organizing center. 
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1.1.1 Clathrin  

Clathrin is composed of three 192 kDa heavy chains (CHC), each bound to 

either of the two ~30 kDa light chains (CLCa or CLCb). This complex is called a 

triskelion for its three-legged appearance. Triskelions are the assembly units of the 

polygonal lattice composed of hexagons and pentagons formed at the bud site and 

eventually pinched off from the membrane thus enclosing a vesicle (see Figure 2) 

(Pearse, 1976). It is suggested that the clathrin coat initially forms a flat network of 

hexagons, some of which are then converted into pentagons, thus driving the 

curvature of the membrane (Heuser, 1980). Whether it is the clathrin or the 

membrane curvature that induces the conversion of some hexagons into pentagons is 

not known. 
 

 
Figure 2: Clathrin-coated pits. A, Thin-section EM illustrating the coat associated with clathrin-coated pits and coated vesicles. 
Scale bar, 50 nm. B, Deep-etch image (done by J.E. Heuser) of the cytosolic side of a plasma membrane showing the polygonal 
lattices of a coated pit. Scale bar, 33 nm. Figure from (Marsh and McMahon, 1999). 

 

Clathrin itself does not interact with the membrane directly. It is recruited to the 

membranes through binding to an adaptor protein (Vigers et al., 1986). Several 

clathrin binding motifs were identified in adaptor proteins, the LΦXΦ[D,E] motif 

(where Φ is a bulky hydrophobic amino acid), also referred to as the clathrin box, the 

PWDLW sequence, the LLDLL sequence and the short DLL repeats. All of these 

motifs bind to the N-terminal domain of the CHC (Dell'Angelica et al., 1998; 

Ramjaun and McPherson, 1998; Kirchhausen, 2000; Morgan et al., 2000; Doray and 

Kornfeld, 2001). The specificity of clathrin-coated vesicles originating from the 

TGN, the plasma membrane and endosomes, is mediated by the adaptor proteins. The 

adaptor proteins in turn are recruited to the membranes by interaction either with a 

small GTPase or with lipids, which are specific for a certain organelle. There are 

several kinds of clathrin-coat adaptor proteins, adaptor protein-1 (AP-1), AP-2, GGA 
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(Golgi-localizing, γ-ear-containing, ARF-binding protein) and Hrs (hepatocyte 

growth factor-regulated tyrosine kinase substrate) which mediate formation of 

clathrin-coated vesicles at different organelles (Bonifacino and Lippincott-Schwartz, 

2003). AP-1 and GGA both are recruited to the TGN through interaction with ARF1 

and might be part of the same clathrin coat involved in sorting from the TGN to 

endosomes (Stamnes and Rothman, 1993; Puertollano et al., 2001b). AP-2 is 

recruited to the plasma membrane by binding to phosphatidylinositol 

4,5-bisphosphate (PtdIns(4,5)P2) and mediates clathrin-dependent endocytosis 

(Collins et al., 2002). Hrs is recruited to early endosomes by binding to 

phosphatidylinositol 3-phosphate (PtdIns(3)P) through its FYVE domain (conserved 

in Fab1p/YOTB/Vac1p/EEA1) and is involved in intralumenal invagination to form 

intralumenal vesicles in multi-vesicular bodies (Raiborg et al., 2001b; Raiborg et al., 

2002). 

There are also non-clathrin coats involved in certain intracellular trafficking 

steps such as the coatamer protein I (COPI), COPII, AP-3 and AP-4. COPI mediates 

retrograde transport from the Golgi and pre-Golgi compartments to the ER 

(Ostermann et al., 1993). COPII is involved in anterograde transport from the ER to 

Golgi (Barlowe et al., 1994). AP-3 targets lysosomal membrane proteins to 

lysosomes and lysosome-related organelles (Le Borgne et al., 1998). Although the 

AP-3 binds to clathrin in vitro, it is not required for the function of AP-3, which is 

therefore suggested to operate without clathrin (Simpson et al., 1997). AP-4 is 

probably involved in sorting from the TGN to the basolateral plasma membrane 

(Dell'Angelica et al., 1999a). 

1.1.2 Adaptor proteins 

The adaptor proteins provide the link between the coat and the cargo and are 

responsible for recruiting accessory proteins. There are two groups of adaptor 

proteins, the heterotetrameric complexes, named adaptor proteins 1 to 4 (AP-1, AP-2, 

AP-3 and AP-4) and the monomeric adaptors, GGAs and Hrs. 

The adaptor protein (AP) complexes are a family of heterotetrameric complexes 

consisting of four adaptins. Each complex is composed of two large adaptins (one 

each of γ/α/δ/ε and β1-4, respectively, of 90-130 kDa), one medium adaptin (µ1-4, of 

~50 kDa), and one small adaptin (σ1-4, of ~20 kDa) (Robinson and Bonifacino, 

2001). The hinge domains of the β adaptins of AP-1 and AP-2 interact with clathrin 
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through their clathrin boxes. AP-2 contains an additional clathrin binding site in the 

β2 ear domain (Kirchhausen, 2000; Owen et al., 2000). The µ and β adaptins are 

implicated in cargo selection, whereby the µ subunit binds to YXXΦ motifs and the 

µ or β subunit binds to dileucine motifs (Ohno et al., 1995; Owen and Evans, 1998; 

Rapoport et al., 1998). This binding to YXXΦ motifs is a feature of the µ subunits of 

all four AP complexes with each µ adaptin recognizing a distinct but overlapping set 

of YXXΦ signals (Ohno et al., 1998; Aguilar et al., 2001). The ears of the α, β and 

γ subunits recruit accessory proteins that participate in events such as vesicle scission 

and vesicle uncoating (Slepnev and DeCamilli, 2000). The individual APs and their 

accessory proteins are described in more detail in the chapters: Clathrin-mediated 

endocytosis and Transport from the TGN to endosomes. 

The other adaptor proteins involved in vesicle formation at the TGN (GGA1, 

GGA2, GGA3) and in endosomes (Hrs) are monomeric proteins. They are composed 

of several domains and motifs, including a domain that targets them to the specific 

membranes, a clathrin box, and a domain that interacts with cargo. A detailed 

description of these adaptor proteins and their accessory proteins is found in the 

chapters: Transport from the TGN to endosomes and Formation of multi-vesicular 

bodies. 

1.1.3 SNAREs and Rabs 

Additional proteins are required to generate specificity in targeting and fusion 

of the vesicles with the appropriate acceptor membranes. Two classes of proteins 

have emerged as essential players in many vesicle transport processes. The SNARE 

(soluble N-ethylmaleimide sensitive factor adaptor protein receptor) family is 

necessary for docking and fusion and the Rab (Ras-like in rat brain) family is required 

for several steps in the vesicle transport, including the tethering of the vesicle prior to 

the function of the SNAREs (see Figure 3). 

SNAREs are membrane proteins that are localized to various intracellular 

organelles. SNAREs contain a characteristic heptad repeat sequence known as the 

SNARE motif. The synaptic SNARE complex, composed of VAMP, syntaxin and 

SNAP-25, was the first complex identified and most current ideas of SNARE function 

are based on this model (Sollner et al., 1993). Based on the localization of the 

SNARE they are termed v-SNARE for vesicle localized and t-SNARE for target 

membrane localized. The specificity of vesicle docking and fusion is determined by 
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proper v-SNARE:t-SNARE interactions. A newer classification system has been 

proposed based on whether a conserved glutamine (Q) or arginine (R) is present in the 

SNARE motif, although Q-SNAREs are almost always t-SNAREs and R-SNAREs 

are almost always v-SNAREs (Fasshauer et al., 1998). Characterized SNARE 

complexes always contain three Q-helices (collectively, the t-SNARE) and one 

R-helix (the v-SNARE), although these may be contributed from three or four 

proteins (SNAP-25 homologs typically contribute 2 helices). Syntaxins (t-SNAREs) 

interact with Sec1-like proteins that act as chaperones preventing SNARE complex 

assembly until signaled to release syntaxin (Jahn, 2000). After dissociation from the 

Sec1-like protein, syntaxin interacts with VAMP (v-SNARE) and SNAP-25 

(t-SNARE) forming a coiled-coil bundle (Poirier et al., 1998). This formation brings 

the vesicle and target membrane together, resulting in fusion (Weber et al., 1998). 

Two soluble proteins, NSF (N-ethylmaleimide sensitive factor) and α-SNAP 

(α-soluble NSF attachment protein) act to disassemble SNARE complexes. α-SNAP 

targets the ATPase NSF to the SNARE complex by interacting with the SNAREs and 

Figure 3: The function of SNAREs and Rabs in vesicle docking and fusion. 1, Budding: The coat proteins recruit receptors 
into the coated pit and mediate the formation of a coated vesicle. 2, Transport: Vesicles are transported from their budding site 
to the acceptor compartment through association with cytoskeletal elements and transport motors (not shown). 3, Docking: The 
targeting of a vesicle to sites of fusion involves a GTP-bound Rab protein, elongated coiled-coil tethering proteins (Rab 
effectors). After the docking step, an R-SNARE (VAMP) assembles with a Qa-SNARE (syntaxin), a Qb-SNARE (SNAP N) 
and a Qc-SNARE (SNAP C) to form a parallel, four-helical bundle. Interactions of Sec1-like proteins with Qa-SNAREs are 
critical in the formation of the SNARE complex. 4, Fusion: The SNARE complex brings the vesicle and target membrane close 
together, resulting in fusion. 5, Disassembly: After fusion, Rab-GDP is released from the membrane by GDI and recruited back 
to the donor membrane. The SNARE complex is disassembled by NSF and α-SNAP, so that SNAREs can be recycled for 
further rounds of transport. The figure is from (Bock et al., 2001). 
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stimulates the ATPase which is essential for the SNARE complex disassembly 

(Morgan et al., 1994). 

Rab proteins comprise the largest family within the Ras superfamily of small 

GTPases. Rabs are involved in the regulation of intracellular transport steps and are 

implicated in the control of vesicle docking and fusion (Gonzalez and Scheller, 1999). 

In humans, more than 60 distinct Rab proteins have been identified and each is 

believed to be associated with a particular organelle or pathway (Bock et al., 2001). 

The Rabs are prenylated by geranylgeranyltransferase (GGT2), which helps them to 

anchor to the membrane (Desnoyers et al., 1996). However, only the GTP-bound 

form of Rabs is membrane bound. Rabs cycle between an inactive GDP-bound and an 

active GTP-bound conformation (Rybin et al., 1996). The GDP/GTP exchange 

reaction is catalyzed by guanine nucleotide exchange factors (GEFs), such as Rabex-5 

for Rab5 (Horiuchi et al., 1997). In the GDP-bound form, Rabs bind to GDP-

dissociation inhibitor (GDI) proteins, which are released by a GDI-displacement 

factor (GDF) upon GDP/GTP exchange (Dirac-Svejstrup et al., 1997). A GTPase 

activating protein (GAP) then stimulates the GTP hydrolysis.  

Rabs have a role in multiple aspects of vesicular transport. Involvement of Rabs 

in the formation of vesicles was suggested by in vitro studies in mammalian cell lines 

(Gorvel et al., 1991; McLauchlan et al., 1998). Secondly, a role for Rabs in vesicle 

motility has been suggested by the finding that Rab5 stimulates both endosome 

association with, and movement along microtubules (Nielsen et al., 1999). Thirdly, 

through the interaction of Rab5 with PI(3)-kinase (PI(3)K), which generates 

PtdIns(3)P, a role for Rabs in membrane remodeling has been proposed 

(Christoforidis et al., 1999). The role of Rabs in vesicle docking is suggested to 

involve tethering of adjacent membranes prior to their fusion (Waters and Pfeffer, 

1999). Finally, Rabs might play a role in membrane fusion itself via regulation of 

SNARE complex formation. Rabenosyn-5, a Rab5 effector, interacts with a Sec1-like 

protein involved in SNARE complex formation (Nielsen et al., 2000). 
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1.2 Clathrin-mediated endocytosis 

Clathrin-mediated endocytosis is involved in the internalization of receptors 

and extracellular ligands, for the recycling of plasma membrane components and for 

the retrieval of surface proteins destined for degradation. At the plasma membrane, 

selected cargo is recruited to a coat, assembled through the involvement of adaptor 

protein AP-2 and polymerization of clathrin, a process assisted by accessory proteins. 

The proteins involved form a complex endocytosis machinery (see Figure 4). 

 

 

 
Figure 4: AP-2 and clathrin with accessory proteins. The domain structure of the proteins is not drawn to scale. The proteins 
are shown in different colours according to their function in vesicle formation and budding. The alternative adaptor proteins are 
in red, the ENTH-containing proteins are in purple, EH-containing proteins are in green, proteins involved in the fission process 
from the membrane are in orange and proteins involved in the dissociation of clathrin after budding are in brown. The 
interactions are depicted by dotted lines. The names of the domains and the proteins are found in the text. 
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1.2.1 Proteins involved in clathrin-mediated endocytosis 

1.2.1.1 Adaptor and “adaptor-like” proteins 

Adaptor protein-2 (AP-2) 

AP-2 is composed of the subunits α1 or α2, β2, µ2 and σ2 (Robinson and 

Bonifacino, 2001). AP-2 is recruited to the plasma membrane by interacting with 

PtdIns(4,5)P2, a phospholipid enriched at the plasma membrane, through binding sites 

in the µ2-subunit and in the trunk region of α-subunit (Stauffer et al., 1998; Collins et 

al., 2002). AP-2 interacts with clathrin not only through the β2 hinge domain, but also 

the β2 ear domain (Kirchhausen, 2000; Owen et al., 2000). The µ2 subunit of AP-2 

interacts with the FXNPXY motif or the YXXΦ motif in cargo, such as LDL 

receptor, transferrin receptor, epidermal growth factor receptor (EGFR), and TGN38 

(Ohno et al., 1995; Boll et al., 1996; Boll et al., 2002). In addition, [D,E]XXXL[L,I] 

motifs (e.g. in the invariant chain) are recognized by AP-2 either through the µ2 or 

the β2 subunit (Bremnes et al., 1998; Rapoport et al., 1998). However, 

overexpression of a protein containing an YXXΦ motif leads to mislocalization of 

other proteins containing an YXXΦ motif, but not of proteins containing a 

[D,E]XXXL[L,I] motif and vice versa, indicating separate but saturable binding 

pockets in AP-2 (Marks et al., 1996). Phosphorylation of the tyrosine 156 of µ2 by 

the adaptor-associated kinase (AAK1) is required for efficient cargo binding (Ricotta 

et al., 2002). AP-2 sorts the cargo into clathrin-coated pits and binds to many 

accessory proteins that either facilitate vesicle formation or are involved in the release 

of the vesicle from the membrane. Most accessory proteins interact with the α adaptin 

ear of AP-2, such as Eps15 (EGFR-pathway substrate 15), epsin1 (Eps15 interacting 

protein 1), Dab2 (disabled-2), numb, AP-180/CALM (clathrin assembly lymphoid 

myeloid leukaemia protein), synaptojanin1, amphiphysin2, HIP1 (huntingtin 

interacting protein 1) and GAK (G-cyclin-associated kinase) (Benmerah et al., 1996; 

David et al., 1996; Owen et al., 1999; Slepnev and DeCamilli, 2000; Brett et al., 

2002). The motifs in the accessory proteins that interact with the α adaptin ear were 

identified to be the DP[F/W] motif or the FXDXF motif. Some DP[F/W] motif 

containing accessory factors such as Eps15, epsin1 and AP-180/CALM, were also 

shown to interact with the β2 adaptin ear (Owen et al., 2000). However, this binding 

site overlaps with the clathrin binding site in the β2 adaptin ear. Thus, the 



General Introduction Protein Trafficking 

21 

polymerization of clathrin, which is promoted by interacting with β2 hinge and ear, 

would cause the controlled release of accessory proteins at sites of vesicle formation. 

“Adaptor-like” proteins 

Some of the accessory proteins that interact with AP-2 and clathrin bind to 

cargo as well. These proteins include arrestin3 (also called β-arrestin2) and two 

phosphotyrosine-binding domain (PTB) containing proteins, disabled-2 and numb. 

Arrestin3 is involved in G-protein-coupled receptor (GPCR) internalization and 

degradation (Miller and Lefkowitz, 2001). Arrestin3 interacts with the β2-adrenergic 

receptor (β2AR) upon phosphorylation of the receptor cytoplasmic domain caused by 

agonist stimulation of the β2AR. Arrestin3 also interacts with AP-2, clathrin and the 

E3 ubiquitin ligase Mdm2 (Shenoy et al., 2001). Upon binding to the β2AR, both the 

arrestin3 and the β2AR are mono-ubiquitinated by Mdm2. Mono-ubiquitination of 

arrestin3 is essential for internalization of the receptor-arrestin3 complex. In contrast, 

mono-ubiquitination of the receptor is not essential for internalization but for 

subsequent sorting in endosomes for degradation (see also chapter: Formation of 

multi-vesicular bodies) (Shenoy et al., 2001). Following ubiquitination, the β2AR is 

internalized in complex with arrestin3, AP-2 and clathrin. Since two accessory 

proteins which interact with AP-2, contain an ubiquitin-interacting motif (UIM), they 

might be possible binding partners of the ubiquitinated arrestin3, thereby facilitating 

endocytosis. Arrestin3 represents a monomeric adaptor, which might target GPCR for 

internalization, by interacting with the AP-2/clathrin endocytosis machinery. 

The phosphotyrosine binding domain (PTB) in disabled-2 (Dab2) and numb 

bind to FXNPXY sequences, however, the name of the domain is misleading since 

both have a preference for non-phosphorylated tyrosine-motifs (Morris and Cooper, 

2001; Mishra et al., 2002). Dab2 mediates low density lipoprotein receptor (LDLR) 

endocytosis and numb downregulates Notch1 by ubiquitination through itch, an 

E3 ubiquitin ligase binding to numb (Mishra et al., 2002; McGill and McGlade, 

2003). Both numb and Dab2, are linked to the endocytosis machinery by interacting 

with AP-2 and Eps15. Dab2, in addition, binds to clathrin and is targeted to the 

plasma membrane through interaction with the phospholipid PtdIns(4,5)P2 (Santolini 

et al., 2000; Mishra et al., 2002). These PTB containing proteins interact with both 

cargo and the endocytic machinery of AP-2 and clathrin, suggesting that they might 

mediate endocytosis for certain cargo and act as adaptor proteins. 
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1.2.1.2 Accessory proteins 

Many accessory proteins interact with AP-2 and/or clathrin, which in turn 

interact with other accessory proteins, all of them involved in endocytosis (Slepnev 

and DeCamilli, 2000). All of the proteins involved in endocytosis, as well as their 

interactions are displayed in Figure 4. They are grouped by color-code according to 

their function in endocytosis. Other accessory proteins include EH (Eps15 homology) 

domain-containing proteins, ENTH (epsin N-terminal homology) domain-containing 

proteins, proteins involved in the release of the vesicle from the membrane and finally 

proteins required for clathrin dissociation after vesicle. The proteins containing EH 

domains as well as the ENTH domain-containing proteins are all involved in the 

formation of clathrin-coated vesicles at the plasma membrane budding (Santolini et 

al., 1999; De Camilli et al., 2002). All of them interact with at least one other binding 

partner also involved in vesicle formation. The importance of some of these proteins 

is shown by their depletion or overexpression that causes an inhibition of 

internalization of cargo.  

There are a number of domains and motifs that are found in many of these 

accessory proteins for interaction among each other. These domains and motifs 

include the EH domain that interacts with the NPF sequence, both the ENTH domain 

and the PH (pleckstrin homology) domain which bind to PtdIns(4,5)P2 and the SH3 

(Src homology 3) domain which interacts with a proline-rich domain (PRD) (Grabs et 

al., 1997; Salcini et al., 1997; Ford et al., 2001). The accessory proteins mostly 

contain more than one of these domains or motifs, forming numerous interactions 

(see Figure 4). 

EH domain-containing proteins  

Eps15 and the highly related Eps15R (Eps15 Related) contain three EH 

domains, several UIM, a PRD and fifteen DPF sequences which interact with the 

α adaptin ear of AP-2 (Benmerah et al., 1996; de Beer et al., 1998; Torrisi et al., 

1999). A number of proteins involved in endocytosis such as Dab2, numb, epsin1 and 

synaptojanin1, contain an NPF sequence which interacts with Eps15. In addition, the 

coiled-coil domain of Eps15 is required for homo-dimerization as well as for hetero-

dimerization with Eps15R and intersectin (Sengar et al., 1999). Overexpression of a 

dominant-negative form of Eps15 inhibited internalization of transferrin receptor and 



General Introduction Protein Trafficking 

23 

EGFR indicating that Eps15 is required for efficient receptor-mediated endocytosis 

(Benmerah et al., 1998).  

Furthermore, Eps15 also binds to the γ adaptin ear of AP-1 and to Hrs 

indicating that Eps15 could also be involved in vesicle budding from the TGN and 

formation of multi-vesicular bodies in endosomes in addition to its function in 

endocytosis (Bean et al., 2000; Kent et al., 2002).  

Intersectin forms a heterodimer with Eps15 through the coiled-coil domain and 

interacts with epsin1 through the EH domain. In addition, intersectin interacts with 

dynamin and synaptojanin, both required in the later stages of vesicle formation 

(Yamabhai et al., 1998; Sengar et al., 1999). Intersectin is suggested to function as a 

scaffolding protein in the organization of other endocytic regulatory components. 

ENTH domain-containing proteins 

The ENTH domain-containing proteins include epsin1, AP180/CALM, HIP1 

and HIP1R (HIP1 related). The ENTH domain recruits these proteins to the plasma 

membrane. 

Epsin 1 contains UIMs interacts with the α ear and the β2 ear of AP-2. The NPF 

motif of epsin1 was shown to interact with Eps15 and intersectin (Chen et al., 1998; 

Rosenthal et al., 1999). It has been shown that epsin1 promotes assembly of clathrin 

in vitro (Kalthoff et al., 2002). 

AP-180 is a brain-specific protein and CALM is the ubiquitously expressed 

functional homologue of AP-180 in non-neuronal cells (Tebar et al., 1999). 

AP-180/CALM contains binding sites for clathrin and for the α ear as well as for the 

β2 ear of AP-2. In vitro experiments revealed that it can also promote assembly of 

clathrin (Hao et al., 1999). 

HIP1 interacts with AP-2 and clathrin and forms heterodimers with HIP1R, 

which in addition has an actin binding site (Metzler et al., 2001; Waelter et al., 2001; 

Legendre-Guillemin et al., 2002). The HIP1/HIP1R heterodimer was shown in vitro 

to link clathrin-coated vesicle formation to the actin cytoskeleton (Engqvist-Goldstein 

et al., 2001). 
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1.2.1.3 Proteins involved in vesicle ‘pinching off’   

Synaptojanin 1 

The long isoform of synaptojanin1 is ubiquitously expressed and harbors AP-2 

binding domains which the short, neuronal isoform lacks. Synaptojanin1 contains two 

DP[F,W] sequences, a FXDXF sequence and the recently discovered WXX[FW] 

motif, all of which interact with the α adaptin ear of AP-2 (Jha et al., 2003). 

Synaptojanin1 further consists of two catalytic phosphatase domains, the Sac1 

(suppressor of actin 1) and the inositol-5’ phosphatase homology domains, followed 

by a proline-rich domain (PRD) and an NPF sequence. Synaptojanin1 interacts with 

the EH domain of Eps15 and binds to SH3 domains of intersectin and amphiphysin2 

(McPherson et al., 1996). The inositol-5’ phosphatase dephosphorylates PtdIns(4,5)P2 

to PtdIns(4)P, which subsequently gets further dephosphorylated by Sac1 to 

phosphatidylinositol. Thus, synaptojanin1 is a phosphoinositol polyphosphatase that 

can generate phosphatidylinositol from PtdIns(4,5)P2. PtdIns(4,5)P2 is primarily 

found at the plasma membrane and recruits proteins containing a PH or an ENTH 

domain to the plasma membrane (Stauffer et al., 1998; Guo et al., 1999). The 

hydrolysis of PtdIns(4,5)P2 is required for the release of the PtdIns(4,5)P2 binding 

factors, such as AP-180/CALM, espsin1, HIP1/HIP1R and dynamin from the budded 

vesicle. Neurons derived from synaptojanin1-deficient mice show a delay in vesicle 

release and an accumulation of deeply invaginated clathrin-coated buds. These mice 

die shortly after birth due to neurological defects(Cremona et al., 1999). Thus, 

synaptojanin1 is thought to play a role in the separation of the vesicle from the 

membrane. 

Endophilin 

Endophilin contains an SH3 domain, through which it interacts with dynamin, 

amphiphysin2 and synaptojanin1 (Ringstad et al., 1997). The N-terminal domain of 

endophilin contains lysophosphatidic acid acyl transferase activity and binds to lipids 

(Schmidt et al., 1999). Depletion of endophilin resulted in an arrest of the 

invagination reaction at the stage of shallow coated pits, indicating that endophilin 

functions in the formation of membrane curvature. This effect may be mediated either 

by its binding to lipids or by the induction of an asymmetry in bilayer geometry due 

to conversion of lysophosphatidic acid to phosphatidic acid (Schmidt et al., 1999).  
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Amphiphysin 2 

The N-terminal domain of amphiphysin2 mediates the formation of dimers and 

harbors a lipid-binding site that mediates plasma membrane targeting (Ramjaun et al., 

1999). Amphiphysin2 contains a clathrin box and DP[F/W] and FXDXF motifs to 

interact with the α subunit of AP-2 (McMahon et al., 1997). In addition, 

amphiphysin2 comprises a SH3 and a PRD domain that bind to dynamin, 

synaptojanin1 and endophilin (Wigge and McMahon, 1998). These characteristics 

suggest that amphiphysin2 may act as a multifunctional adaptor that cooperates in the 

recruitment of coat proteins to the membrane and in targeting of synaptojanin1, 

endophilin and dynamin to the coat. 

Dynamin  

Dynamin comprises a GTPase activity, a PH domain that binds to 

PtdIns(4,5)P2, a GTPase effector domain (GED) and a PRD domain that interacts 

with amphiphysin2, endophilin and intersectin (Salim et al., 1996). The GED is 

involved in dynamin oligomerization and self-assembly. Dynamin has a key function 

in the fission of clathrin-coated vesicles where its GTPase activity is essential.  

1.2.2 Acting together for vesicle formation 

The characterization of AP-180/CALM, epsin1 and Eps15 revealed their 

involvement in the early stages of the formation of clathrin-coated vesicle (CCV) 

formation. However, only AP-180 is enriched in CCVs, whereas epsin1 and Eps15 

are not. Eps15 was restricted to the rim of the budding coated pit (Tebar et al., 1996; 

Chen et al., 1998). From studies on these proteins, a model evolved for coated pit 

formation. Epsin1 is recruited to the plasma membrane by binding to PtdIns(4,5)P2 

where it induces membrane budding (Ford et al., 2002). Epsin1 and the recruited 

AP-180/CALM facilitate the additional recruitment of clathrin. Epsin1 and Eps15 are 

then involved in recruiting and clustering AP-2 and become subsequently displaced 

while AP-2 triggers the polymerization of clathrin (Cupers et al., 1998). Epsin1 

further modulates the curvature at the edge of the forming pit and the vesicle grows 

upon further recruitment of AP-2 (with cargo) and clathrin. AP-180/CALM and AP-2 

were shown to play important roles in the regulation of vesicle size (Tebar et al., 

1999; Ford et al., 2001). Additional accessory proteins, such as HIP1-HIP1R are 

involved in early stages of clathrin-coated pit formation, probably by recruiting 



General Introduction Protein Trafficking  

26 

clathrin and AP-2 to the clathrin-coated pit zones, defined by the actin cytoskeleton 

(Engqvist-Goldstein et al., 2001). 

Amphiphysin2 links the coat proteins with the proteins required for the 

detachment of a coated vesicle from the plasma membrane. It also recruits dynamin, 

endophilin and synaptojanin1 to the clathrin-coated pit. Dynamin self-assembles into 

rings and tubules in vitro and was shown to form rings around the neck of a budding 

clathrin-coated vesicle in vivo (Takei et al., 1996; Muhlberg et al., 1997). The GTPase 

effector domain of dynamin acts as a GTPase activating protein and therefore, self-

assembly of dynamin stimulates its GTPase activity (Sever et al., 1999). A model for 

the function of dynamin suggests that dynamin is recruited to the coated pit and forms 

stacks of rings around the stalks of coated pits (Takei et al., 1996). Whether dynamin 

can trigger the separation of the vesicle from the membrane by its GTPase activity or 

whether interacting proteins play a role is not yet known. One possibility is that 

coordinated GTP hydrolysis triggers a concerted conformational change in dynamin 

that tightens the rings around the neck of invaginated pits to such an extent that 

fission can occur (Hinshaw and Schmid, 1995). Another possibility is that the 

GTPase activity of dynamin is used to regulate effectors that mediate the fission 

reaction. Both endophilin and synaptojanin1 are recruited to the budding vesicle 

through dynamin and/or amphiphysin2 and contain lipid modifying activities which 

makes them candidates for the actual fission reaction. Endophilin might modify the 

lipid composition of the neck by converting an inverted-cone-shaped lipid (LPA) to a 

cone-shaped lipid (PA) and thereby inducing a negative curvature to the cytoplasmic 

leaflet of the membrane (Schmidt et al., 1999). The stretching and tightening of the 

dynamin collar in combination with the negative curvature of the plasma membrane 

may cause the neck to collapse and may drive the fission reaction (Kozlov, 2001). It 

is therefore suggested that dynamin and endophilin act jointly to induce fission. 

Synaptojanin1, an inositol polyphosphatase, would then facilitate the release of 

dynamin and other PtdIns(4,5)P2-binding proteins by dephosphorylation of 

PtdIns(4,5)P2 (Guo et al., 1999). 

After the vesicle is budded off, it is uncoated and the components of the coat 

are recycled. Two proteins were identified to be responsible for clathrin dissociation, 

the G-cyclin-associated kinase (GAK), also called auxlin2, and Hsc-70, a 

constitutively expressed chaperone of the heat shock protein family (Morgan et al., 

2001). GAK interacts with clathrin and the α ear of AP-2, and in addition with Hsc-70 
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through the J-domain, thereby recruiting Hsc-70 to the CCV (Umeda et al., 2000). 

Furthermore, the interaction of GAK with Hsc-70 stimulates the ATPase activity of 

Hsc-70, which then enhances the release of clathrin from clathrin-coated vesicles 

(Ungewickell et al., 1995). 

 

1.3 Sorting in the TGN  

The TGN is a tubulovesicular compartment and a central protein sorting station 

where the decision whether a protein is destined for secretion by the constitutive 

pathway or the regulated pathway or alternatively transported to the endosomal 

compartment by a selective pathway is made.  

1.3.1 Transport from the TGN to endosomes 

Proteins destined for endosomes or lysosomes are sorted away from the 

trafficking pathways followed by secreted proteins at the TGN and are instead 

targeted to the endocytic pathway compartments. Classical examples of proteins that 

follow this route are newly synthesized lysosomal hydrolases. These proteins obtain a 

mannose 6-phosphate tag on their N-linked oligosaccharides in the Golgi, 

representing the lysosomal targeting signal that is recognized by the MPR in the TGN 

(Kornfeld, 1992). The sorting in the TGN includes cargo such as the recycling 

membrane proteins (MPR, TGN38, sortilin and furin) as well as the lysosomal 

membrane proteins (LAMP1, LIMPII and CD63). All these proteins are destined for 

targeting to endosomes and onwards either to late endosomes and/or lysosomes, or 

alternatively to the plasma membrane. 

Several adaptor proteins are recruited to the TGN membrane by ARF1, namely 

AP-1, AP-3, AP-4 and the GGAs, which are all involved in recruiting cargo for 

delivery to endosomes. AP-1 and GGAs require the clathrin coat, whereas AP-3 and 

AP-4 were suggested to function without clathrin. 
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Figure 5: AP-1 and GGA with clathrin and accessory proteins. The domain structure of the proteins is not drawn to scale. 
The proteins are shown in different colours according to their function in vesicle formation and budding. The ENTH-containing 
proteins are in purple, EH-containing proteins are in green, proteins involved in the fission process from the membrane are in 
orange and proteins involved in the dissociation of clathrin after budding are in brown. The interactions are depicted by dotted 
lines. The names of the domains and the proteins are found in the text. 
 
 

1.3.1.1 Proteins involved in sorting in the TGN 

ARF1 

ADP-ribosylation factor 1 (ARF1) belongs to the group of small GTPases. The 

GDP-bound form of ARF1 is inactive and soluble, whereas the GTP-bound form 

binds tightly to the membrane (Goldberg, 1998). The membrane binding of ARF1 is 

regulated by a “myristoyl-ligand switch”, where the myristoyl moiety is only exposed 

in the GTP-bound form of ARF1 (see also chapter: N-Myristoylation). The exchange 

of GDP with GTP of ARF1 is catalyzed by the guanine nucleotide exchange factor 

(GEF) of ARF1. ARF1 is recruited to the TGN and activated by a ARF GEF (Chardin 

et al., 1996). Activated, membrane-bound ARF1 recruits effectors such as AP-1, 

AP-3 and GGAs to the TGN (Stamnes and Rothman, 1993; Ooi et al., 1998a; 

Puertollano et al., 2001b). GTP hydrolysis of ARF1 is activated by a GTPase-

activating protein (GAP), resulting in the release of ARF1 from the membrane 
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(Donaldson, 2000). Brefeldin A (BFA), a fungal metabolite, inhibits the majority of 

the ARF GEFs, which subsequently blocks the activation cycle of ARF, leading to the 

disassembly of the Golgi and the block of secretion (Mansour et al., 1999). Thus, the 

BFA-sensitive targeting of a protein to a membrane indicates that an ARF is involved 

in the membrane recruitment of that protein. 

Adaptor protein-1 (AP-1) 

AP-1 is composed of the subunits γ1 or γ2, β1, µ1A or µ1B and σ1A or σ1B or 

σ1C (Robinson and Bonifacino, 2001). The AP-1 adaptins are ubiquitously expressed 

except for µ1B which is only expressed in polarized epithelial cells (Ohno et al., 

1999). AP-1 is recruited to the TGN by binding of the trunk regions of γ adaptin and 

β1 adaptin to ARF1 (Stamnes and Rothman, 1993; Traub et al., 1993; Traub et al., 

1995). In addition to the clathrin box in the β1 subunit hinge domain, there is a 

clathrin binding motif in the γ subunit hinge domain (Doray and Kornfeld, 2001). The 

AP-1 µ1 subunit binds to YXXΦ motifs in cargo proteins such as LAMP-1 and 

TGN38 and the µ1 and/or β1 subunit interacts with [D,E]XXXL[L,I] motifs in cargo 

proteins, such as the invariant chain (Ii) (Ohno et al., 1995; Höning et al., 1996; Ohno 

et al., 1996; Rapoport et al., 1998; Rodionov and Bakke, 1998). In addition, AP-1 

interacts with phosphorylated casein kinase 2 sites in both, CD-MPR and CI-MPR 

(Le Borgne et al., 1993; Mauxion et al., 1996). The interaction of AP-1 with cargo is 

enhanced on phosphorylation of the µ1 subunit by the cyclin G-associated kinase 

(GAK), which binds to the γ ear of AP-1 (Umeda et al., 2000; Ghosh and Kornfeld, 

2003a). The phosphorylation causes a conformational change that renders the cargo 

binding site in µ1 accessible. The γ ear of AP-1 interacts with the DFXXΦ motif in 

accessory proteins such as γ-synergin, Eps15 (both containing EH-domains) and 

epsinR (epsin-related, containing an ENTH-domain), which are thought to facilitate 

the formation of clathrin-coated vesicles (see Figure 5) (Page et al., 1999; Kent et al., 

2002; Hirst et al., 2003). In addition, the AP-1 ear domain interacts with GGA, 

another adaptor protein described below (Doray et al., 2002b). The AP-1 complex is 

essential for viability since disruptions of the genes encoding γ1 or µ1A cause 

embryonic lethality in mice (Zizioli et al., 1999; Meyer et al., 2000). 

For a long time AP-1 was thought to mediate the transport from TGN to 

endosomes (Ahle et al., 1988; Klumperman et al., 1993; Höning et al., 1997). But 

recent data about the function of AP-1 in sorting in the TGN are controversial. 
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Fibroblasts deficient in µ1A shift the steady-state distribution of CD-MPR and 

CI-MPR to early endosomes and CD-MPR fails to recycle back from the endosomes 

to the TGN (Meyer et al., 2000). In addition, in vitro transport from endosomes to the 

TGN is impaired with membranes from µ1A-deficient fibroblasts and cannot be 

restored by adding cytosol containing AP-1 (Medigeshi and Schu, 2003). 

Furthermore, PACS-1 (phosphofurin acidic cluster sorting protein 1), a protein 

involved in transport from endosomes to the TGN, was shown to bind to AP-1 

(Crump et al., 2001). Altogether, these results indicate that AP-1 or AP-1A (AP-1 

complex containing the µ1A adaptin) is required for the endosomes to TGN transport 

of cargo. However, other models for the function of AP-1 involve AP-1 interaction 

with GGA in the TGN for proper sorting of cargo in the TGN (Doray et al., 2002b). 

One possibility could be the involvement of AP-1 in both anterograde and retrograde 

transport from the TGN to endosomes, wherein the specificity of transport would be 

provided by accessory proteins, such as PACS-1 and GGA. In contrast to the 

ubiquitously expressed AP-1 (AP-1A), AP-1B appears to be involved in basolateral 

sorting. The lack of µ1B expression in the polarized epithelial cell line LLC-PK1 

caused impaired sorting of cargo to the basolateral plasma membrane surface (Folsch 

et al., 1999). AP-1A and AP-1B are localized to distinct subdomains in the TGN, 

suggesting that the differential sorting occurs in the TGN (Folsch et al., 2001). 

γ-synergin 

γ-synergin contains an EH (Eps15 homology) domain and binds to the ear 

domain of γ adaptin of AP-1 through DFXXΦ motifs (Page et al., 1999). γ-synergin is 

recruited to the TGN by binding to AP-1. It is enriched in CCVs and was therefore 

thought to be involved in the formation of AP-1 containing clathrin-coated vesicles at 

the TGN (Page et al., 1999). But its role in vesicle budding is not known. 

EpsinR  

EpsinR (epsin-related protein) contains an ENTH domain that interacts with 

PtdIns(4)P on the TGN membrane (Hirst et al., 2003; Mills et al., 2003). Membrane 

recruitment of epsinR is BFA-sensitive, indicating that ARF1 is required, possibly by 

stimulating the synthesis of PdtIns(4)P (Godi et al., 1999). EpsinR binds to the 

γ adaptin ear of AP-1 with the DFXXΦ motif and colocalizes with AP-1 at the TGN 

but membrane targeting of epsinR is AP-1 independent. Overexpression of epsinR 
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disrupts lysosomal targeting of cathepsin D and incorporation of MPR into CCVs 

(Mills et al., 2003). However, depletion of epsinR by siRNA had no effect on 

cathepsin D trafficking (Hirst et al., 2003). It is suggested that epsinR is functionally 

equivalent to epsin1, but in CCV budding from the TGN/endosomes rather than from 

the plasma membrane (Mills et al., 2003). Recent studies revealed that the ENTH 

domain of EpsinR interacts with the v-SNARE vti1b (Chidambaram et al., 2003). 

This suggests that EpsinR might recruit the proper SNAREs to the clathrin-coated 

vesicle at the TGN. The yeast homologue, Vti1p, is involved in transport from TGN 

to endosomes (Fischer von Mollard and Stevens, 1999). 

GGAs 

In mammals, three GGAs were identified, GGA1, GGA2 and GGA3 (Boman et 

al., 2000; Dell'Angelica et al., 2000; Hirst et al., 2000). GGAs are monomeric 

cytosolic adaptor proteins, composed of four domains - an N-terminal VHS 

(Vps27p/Hrs/STAM) domain, a GAT (GGA and TOM1) domain, a connecting hinge 

segment and a C-terminal GAE (γ-adaptin ear) domain. Recruitment of GGA to the 

TGN is mediated by an interaction of the GAT domain with ARF1 (Collins et al., 

2003), while the VHS domain binds to the DXXLL motif in cytosolic tails of cargo 

(Puertollano et al., 2001a; Takatsu et al., 2001; Misra et al., 2002). GGA interacts 

with clathrin through the clathrin box in the hinge domain of GGA, which binds in 

addition to the ear domain of the γ subunit of AP-1 (Puertollano et al., 2001a; Doray 

et al., 2002b). Furthermore, the GGA-GAE domain interacts with p56, a protein of 

unknown function. These interactions result in the formation of clathrin-coated 

vesicles emerging from the TGN (see Figure 5). GGA was shown to colocalize with 

clathrin and AP-1 in vesicles originating from the TGN and in some cases, GGA still 

localized to these vesicles when they fused with endosomes (Puertollano et al., 2003). 

The cargo of GGAs includes CI-MPR, CD-MPR, sortilin, memapsin 2 and LRP3 

(LDL receptor related protein 3), albeit with different affinities to the three GGAs 

(Puertollano et al., 2001a; Takatsu et al., 2001; He et al., 2002). GGA is required for 

the sorting of cargo in the TGN and a dominant-negative form of GGA1 inhibits 

TGN exit of cargo such as CI-MPR and CD-MPR (Puertollano et al., 2001a). GGA1 

and GGA3 binding to cargo is regulated by phosphorylation of an autoinhibitory site 

in the hinge domain of GGA1 and GGA3 (Doray et al., 2002a). This site is an internal 

DXXLL site that requires phosphorylation of a serine three residues upstream in order 
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to bind to its own VHS domain, thereby inhibiting the interaction with cargo (Ghosh 

and Kornfeld, 2003b).  

p56 

p56, a protein of unknown function, was found to interact with the GGA-GAE 

domain (Lui et al., 2003). The N-terminal domain of p56 contains a DFXXΦ motif, 

known to interact with the γ ear domain of AP-1, which interacts with the GGA-GAE 

domain. Further domains of the p56 include a coiled-coil domain, involved in homo-

dimerization and a short C-terminal domain of unknown function (Lui et al., 2003). 

p56 colocalizes with GGA at the TGN and is targeted to the membranes through 

binding to GGA and therefore membrane targeting of p56 is sensitive to BFA. 

Adaptor protein-3 (AP-3) 

AP-3 is composed of the following subunits, δ (homologues to γ and α), β3A or 

β3B, µ3A or µ3B and σ3A or σ3B. The two subunits, β3B and µ3B, are specifically 

expressed in neurons and endocrine cells, whereas all the others are ubiquitously 

expressed (Robinson and Bonifacino, 2001). AP-3 is localized to the TGN and 

endosomes and recruited to the membranes by interaction with ARF1 (Ooi et al., 

1998b). AP-3 is required for targeting membrane proteins to lysosomes and 

lysosome-related organelles (Dell'Angelica et al., 1997; Dell'Angelica et al., 1999b). 

Although β3 adaptin can bind to clathrin, it is not required for the function of AP-3, 

which is therefore suggested to operate without clathrin (Simpson et al., 1997; 

Dell'Angelica et al., 1998; Peden et al., 2002). AP-3 binds to YXXΦ motifs in the 

cytosolic tails of membrane proteins with preferences for acidic residues surrounding 

the tyrosine, such as the lysosomal proteins CD63 and LAMP-1 (Ohno et al., 1996; 

Le Borgne et al., 1998; Rous et al., 2002). AP-3 also targets [D,E]XXXL[L,I] motif 

containing proteins to lysosomes and lysosome-related organelles, such as LIMPII 

and tyrosinase, a melanosomal protein (Höning et al., 1998; Le Borgne et al., 1998). 

Thus, AP-3 is suggested to transport lysosomal membrane proteins to lysosomes or 

lysosome-related organelles. Whether the transport occurs directly to lysosomes or 

via early or late endosomes is not known. 

Recent data showed binding of AP-3 to PACS-1, a protein involved in transport 

from endosomes to the TGN and the requirement of cytosolic AP-3 in the in vitro 

transport from endosomes to the TGN (Crump et al., 2001; Medigeshi and Schu, 
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2003). These results indicate that AP-3 is also involved in the retrograde transport 

from endosomes to the TGN, in addition to the anterograde transport step. 

The YXXΦ motif for lysosomal targeting is located 6 to 9 residues downstream 

of the trans-membrane domain (TMD) at the C-terminus of the lysosomal proteins. 

Changing the spacing of the GYQTI signal of LAMP-1 impairs targeting to 

lysosomes indicating that the placement of YXXΦ signals allows their recognition as 

lysosomal targeting signals at the TGN and/or endosomes (Rohrer et al., 1996). 

Whether this specificity is mediated by the AP-3 has not been investigated so far. 

Adaptor protein-4 (AP-4) 

AP-4 is composed of the subunits ε, β4, µ4 and σ4 (Dell'Angelica et al., 1999a; 

Hirst et al., 1999). AP-4 is localized to the TGN and its membrane association is 

BFA-sensitive, suggesting an interaction with an ARF protein for membrane 

targeting. AP-4 lacks a clathrin binding motif and is found in non-clathrin-coated 

vesicles, suggesting that AP-4 is part of a non-clathrin coat. In vitro, µ4 binds to 

YXXΦ motifs of TGN38 and the lysosomal proteins LAMP1, LAMP2 and CD63, 

albeit with a low affinity (Stephens and Banting, 1998; Aguilar et al., 2001). 

Depletion of µ4 caused a missorting of basolateral proteins to the apical surface, such 

as LDL receptor, CD-MPR and a Furin tail chimaera, indicating that AP-4 might be 

involved in basolateral sorting (Simmen et al., 2002). However, further investigations 

are required to determine the precise function of AP-4. 

1.3.1.2 Which cargo is selected by which adaptor protein 

All the proteins described above are suggested to be involved in the transport 

step from the TGN to endosomes. Some models evolved from the characterization of 

these proteins that suggest a subset of cargo and possibly distinct target organelles for 

the different adaptor proteins. Some of these adaptors proteins, AP-1 and AP-3 are 

suggested in addition to be involved in retrograde transport from endosomes to the 

TGN, possibly involving PACS-1. 

Since the discovery of the GGAs, the function of AP-1 in the sorting of cargo in 

the TGN has become debatable. However, recent data suggests that the GGA and 

AP-1 cooperate in sorting in the TGN (see Figure 5) (Doray et al., 2002b; Puertollano 

et al., 2003). A model suggests that GGA, while recruiting cargo to the TGN, also 

binds to clathrin and AP-1 (see Figure 5). AP-1 in turn is associated with the CK2 and 
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also interacts with clathrin. Once recruited to the complex CK2 then phosphorylates 

GGA and cargo, leading to the release of cargo from GGA due to autoinhibition and 

to an increase in affinity of AP-1 to cargo due to the phosphorylation. In this model 

GGA hands over cargo to AP-1 for further transport. However, GGAs were found to 

colocalize with clathrin, AP-1 and CD-MPR in vesicles leaving the TGN (Puertollano 

et al., 2003). This confirms on one hand the cooperation of the two adaptors, but on 

the other hand leaves the question, why GGA still remains associated with the 

vesicle, if it no longer binds to cargo. Thus, the mechanism of the cooperation 

between GGA and AP-1 requires further investigations. Nevertheless, the data 

indicate that GGA and AP-1 are both required for efficient sorting in the TGN. and 

might cooperate on a subset of cargo, the DXXLL-containing proteins. In addition to 

GGA, the accessory protein Eps15, might also be involved in recruiting and 

clustering AP-1 to prepared membrane buds, similar to its function at the plasma 

membrane (Tebar et al., 1996). Furthermore, EpsinR might be responsible for loading 

the budding clathrin-coated pit with the required v-SNARE (Chidambaram et al., 

2003). The function of γ-synergin and p56 for this process remains to be investigated. 

AP-1 was also shown to interact with both proteins containing a YXXΦ or a 

[D,E]XXXL[L,I] motif, suggesting that AP-1 might be responsible for the sorting of 

another set of cargo such as TGN38 and invariant chain (Ii), into CCVs in the absence 

of GGA. Whether AP-1 sorts this cargo into the same vesicles that contain the 

DXXLL motif containing cargo or whether AP-1 forms distinct vesicles, which are 

devoid of GGA, is not known. 

The lysosomal proteins, LAMP-1, LIMPII and CD63 are probably selected as 

cargo by AP-3, although LAMP-1 was shown to bind to AP-1 in vitro. AP-3 is 

required for the exit out of the TGN and ultimately for lysosomal delivery of these 

lysosomal membrane proteins. Whether the pathway of the vesicles mediated by 

AP-3 includes a passage through endosomes or whether it is directly targeted from 

the TGN to lysosomes remains to be investigated. 

Another subset of cargo is recruited by AP-1B, and probably AP-4, which are 

responsible in polarized cells for the sorting of proteins in the TGN destined for the 

basolateral plasma membrane. 

Altogether, the TGN present a major sorting station, where cargo is sorted into 

different vesicles, clathrin-coated vesicles (AP-1 and GGA) and vesicles that are 

devoid of clathrin (AP-3 and AP-4). The different cargo is recruited to subdomains in 
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the TGN through the interaction with adaptor proteins. However, the mechanism of 

the vesicle formation and precise information about the involvement of accessory 

proteins require further investigation. 

1.3.1.3 ‘Pinching off’ and clathrin dissociation  

Dynamin was shown to be involved in the release of the CCVs from the TGN, 

in addition to its function at the plasma membrane (Jones et al., 1998; Kreitzer et al., 

2000). However, the regulation of dynamin recruitment to the TGN and the 

identification of binding partners of dynamin require further investigation. 

The GAK involved in uncoating CCVs derived from the plasma membrane (see 

above) also interacts with AP-1, in addition to AP-2 (Umeda et al., 2000). GAK and 

Hsc-70 are responsible for the uncoating of the CCVs similar to vesicles originating 

from the plasma membrane. 

 

1.3.2 Sorting into secretory granules 

The regulated secretory pathway, found in the more differentiated secretory 

cells is mediated by specialized secretory granules. Hormones and neuropeptides are 

secreted in this manner. The granin family (secretogranins/chromogranins) plays an 

important role in the sorting and aggregation of secretory products in the TGN as well 

as in the subsequent formation of secretory granules. Chromogranin B, also called 

secretogranin I, is a regulated secretory protein and member of the granin family and 

contains a disulfide-bonded loop at the N-terminus that acts as a signal for 

recruitment to the membrane of the TGN and delivery to secretory granules (Glombik 

et al., 1999). Proteins, destined for regulated secretion, but lacking the loop, can be 

sorted via coaggregation with proteins containing the specific sorting signal (Gerdes 

and Glombik, 1999). Secretory granule formation apparently does not require a coat-

driven budding process. Instead, it is thought that membrane deformation may result 

from the aggregation of secretory proteins in the TGN (Kim et al., 2001). Secretory 

granules bud from the TGN as immature secretory granules (ISG), containing 

proteins such as MPR and furin (an endoprotease), which are not destined for 

regulated secretion. Maturation of ISG includes removal of these proteins as well as 

homotypic fusion of ISGs. The homotypic fusions involve cytosolic components – 

NSF and α-SNAP. NSF and α-SNAP promote membrane fusion by priming 
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SNAREs. The SNARE protein syntaxin 6 and possibly VAMP4 are involved in 

homotypic fusion of ISGs and are subsequently removed from the ISGs, since they 

are not detected on mature secretory granules (MSG) (Klumperman et al., 1998; 

Steegmaier et al., 1999; Wendler et al., 2001). Removal of furin, MPR with bound 

lysosomal enzymes, unprocessed secretory proteins, VAMP4 and syntaxin 6 from 

ISGs during maturation occurs in clathrin-coated vesicles (Dittie et al., 1997; 

Klumperman et al., 1998). Furin, VAMP4 and MPR recruit AP-1 to ISGs, wherein 

furin and VAMP4 require casein kinase 2 (CK2) dependent phosphorylation for AP-1 

recruitment. The phosphorylated CK2 site in both furin and VAMP2, interact with 

PACS-1 which in turn binds to AP-1, and hence acts as a connector between the two 

proteins and AP-1. A dominant-negative PACS-1 mislocalizes furin and VAMP4 to 

mature secretory granules, confirming the requirement of PACS-1 in this trafficking 

step (for PACS-1 see also chapter: Transport from endosomes to the TGN) (Dittie et 

al., 1997; Hinners et al., 2003). AP-1 in turn recruits clathrin to the ISG and mediates 

clathrin-coated vesicle formation and budding. The vesicle is transported to and fuses 

with endosomes, where lysosomal proteins are delivered to the lysosome while 

unprocessed secretory proteins may be exported to the extracellular space, detected as 

constitutive-like secretion (Arvan and Castle, 1998). The contents of mature secretory 

granules (MSG) are released upon stimulation. The MSG fuses with the plasma 

membrane involving NSF and α-SNAP, which interact with a SNARE complex 

comprising VAMP/synaptobrevin (a v-SNARE), syntaxin1 and SNAP-25 

(t-SNAREs) (Davis et al., 1999). Other proteins involved in regulated secretory 

granule exocytosis include Rab3A and its effectors, RIM and rabphilin 3A, as well as 

synaptotagmin, a Ca2+-binding protein, which interacts with the SNAREs (Burgoyne 

and Morgan, 2003). 
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1.4 Sorting in endosomes 

Cargo in the early endosomes is either recycled to the plasma membrane or 

transported to the TGN or alternatively delivered to multi-vesicular bodies 

(MVB)/late endosomes for lysosomal degradation. The lysosomal delivery is 

mediated by formation of vesicles, budded into the endosomes and forming MVB. 

For the transport of proteins from endosomes to the Golgi/TGN, several proteins were 

suggested to be involved, including the retromer complex, sorting nexins, PACS-1 

and TIP47.  

1.4.1 Formation of multi-vesicular bodies / late endosomes  

A MVB was described by electron microscopy as an organelle consisting of a 

limiting membrane enclosing many internal vesicles (Marsh et al., 1986). MVBs are 

formed from early endosomes (EE) containing molecules that have been internalized 

and biosynthetic cargo from the TGN, including precursors of lysosomal enzymes. 

For the formation of MVBs two models have evolved. One model – the vesicular 

transport model – involves budding of large endocytic carrier vesicles from the EE, 

which subsequently form MVBs, followed by fusion with stable MVBs (Aniento et 

al., 1993). Alternatively, the MVB may represent an endpoint of a maturation process 

during which recycling components of EE are removed, a process which is called 

‘maturation model’ (Futter et al., 1996). However, both models involve inward 

invagination occurring in EE or in a vesicle derived from EE, forming internal 

vesicles and resulting in MVBs. MVBs are also called late endosomes (LE) and 

ultimately fuse partially with lysosomes (Storrie and Desjardins, 1996). 

The sorting of transmembrane proteins into topologically distinct limiting and 

intralumenal membranes has been proposed to serve several important functions 

(Raiborg et al., 2003): Firstly, transmembrane proteins in the intralumenal 

membranes are susceptible to degradation by lysosomal hydrolases, whereas proteins 

in the limiting membrane are resistant because only their lumenal region (which is 

usually protease-resistant due to extensive glycosylation) is exposed. Secondly, 

intralumenal vesicles might represent storage vesicles for transmembrane proteins 

that are destined to be released from the cell in a regulated manner as in secretory 

lysosomes (melanosomes, MHC II compartments and lytic granules). Thirdly, 
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receptor signaling occurs from the limiting membrane of MVBs but not from the 

membranes of intralumenal vesicles. 

Transmembrane proteins targeted for invagination into MVB are mono-

ubiquitinated (Hicke, 2001). The mono-ubiquitination occurs at the plasma membrane 

and is carried out by E3 ubiquitin ligases that interact with cargo, such as EGFR, 

β2AR, growth hormone receptor (GHR) and epithelial sodium channel (ENaC) (see 

Figure 6, upper section) (Raiborg et al., 2003). Many signaling receptors are mono-

ubiquitinated in response to ligand binding. Although mono-ubiquitination takes 

place at the plasma membrane, ubiquitination has no effect on internalization of 

proteins but is required for cargo sorting in endosomes for delivery to lysosomes.  

The following are two examples of receptors which undergo mono-

ubiquitination, thereby obtaining the signal for lysosomal delivery. The β2AR is 

phosphorylated in its cytoplasmic portion upon stimulation by the agonist 

isoproterenol, which enables interaction with arrestin3, leading to desensitization of 

the β2AR. Arrestin3 interacts with Mdm2 and components of the endocytosis 

machinery (see Figure 6, upper section)(Shenoy et al., 2001; Laporte et al., 2002). 

Mdm2, the E3 ubiquitin ligase for p53, contains a catalytic RING finger that forms a 

thioester intermediate with ubiquitin through a conserved cysteine and transfers 

ubiquitin onto the substrate (Fang et al., 2000). Mdm2 mono-ubiquitinates arrestin3 

and β2AR which are subsequently internalized into endosomes. The E3 ubiquitin 

ligase for the EGFR is Cbl which also contains the characteristic RING finger and 

interacts directly with the phosphorylated tyrosine of the EGFR upon epidermal 

growth factor (EGF) stimulation (Waterman et al., 1999). The sorting for lysosomal 

degradation in the early endosomes is mediated by Hrs (hepatocyte growth factor-

regulated tyrosine kinase substrate) (Raiborg et al., 2003). Depletion of Hrs inhibits 

the formation of MVB and leads to enlarged early endosomes and lysosomes, 

indicating that Hrs is a crucial component in the formation of MVB (Bache et al., 

2003a). 

Hrs was identified as a tyrosine-phosphorylated protein upon stimulation of 

cells with growth factor or cytokine (Komada and Kitamura, 1995). Hrs is composed 

of a VHS domain, a FYVE domain, an UIM, a coiled-coil domain and a clathrin box 

(Komada and Kitamura, 1995). The FYVE domain interacts with PtdIns(3)P, a lipid 

highly enriched on early endosomes and in the internal vesicles of MVBs and thereby 

targets Hrs to the membranes of early endosomes (Gaullier et al., 1998; Gillooly et 
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al., 2000). Hrs, in turn, recruits clathrin which forms atypical flat lattices on the 

membranes of early endosomes (Raiborg et al., 2001a; Raiborg et al., 2002). Eps15, 

STAM1 (signal-transducing adaptor molecule) and STAM2 interact with Hrs forming 

a ternary complex (see Figure 6) (Bache et al., 2003b). STAM1 and STAM2 like Hrs 

become tyrosine-phosphorylated upon growth factor or cytokine stimulation of cells 

(Takeshita et al., 1996; Endo et al., 2000). Hrs, Eps15, STAM1 and STAM2, each 

contain an UIM and bind to ubiquitin and ubiquitinated cargo, albeit with a low 

affinity in vitro. Thus, the formation of the multi-UIM-containing complex might 

increase the affinity to ubiquitinated cargo (Raiborg et al., 2002; Mizuno et al., 2003). 

In addition, the UIMs act as a recognition signal for mono-ubiquitination, hence the 

four proteins undergo mono-ubiquitination upon stimulation by growth factor, with a 

possible function in stabilizing the formation of large complexes through multiple 

UIM-ubiquitin interactions (Polo et al., 2002). Mono-ubiquitinated cargo, destined for 

lysosomal degradation, colocalizes in subdomains on early endosomes with Hrs and 

the flat clathrin lattice, suggesting that the Hrs-Eps15-STAM1-STAM2 complex sorts 

mono-ubiquitinated cargo into subdomains on early endosomes, which are 

subsequently invaginated to form intralumenal vesicles leading to MVBs (Raiborg et 

al., 2003). The role of the flat clathrin lattice, which is not detected inside 

intralumenal vesicles, is not known. However, it was suggested to play a role in the 

endosomal retention of ubiquitinated membrane proteins before their inclusion into 

intralumenal vesicles (Sachse et al., 2002). For the actual inward invagination step, 

further protein complexes are involved – the ESCRT-I (endosomal complexes 

required for transport), ESCRT-II and ESCRT-III complexes (Babst et al., 2002). 

ESCRT-I is recruited to the early endosomes by Hrs through interaction of the PSAP 

motif in Hrs through its Tsg101 (tumor-susceptibility gene product 101) subunit 

(Bache et al., 2003a). ESCRT-I and ESCRT-II contain ubiquitin-binding subunits and 

act downstream of the Hrs-STAM1-STAM2-Eps15 complex. It is suggested that the 

ubiquitinated cargo can be relayed between these complexes. The subunits of 

ESCRT-III are small coiled-coil proteins that structurally resemble the SNARE 

proteins which mediate membrane docking and fusion. A possible scenario could be 

that ESCRT-III complexes, through stable coiled-coil interactions, function in 

inwards vesicle scission (Katzmann et al., 2002). Furthermore, the formation of MVB 

is also dependent on specific lipids. In addition to PtdIns(3)P located on limiting and 

intralumenal endosomal membranes which recruits Hrs and other FYVE domain 
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Figure 6 :Sorting in Endosomes. The upper section illustrates the mono-ubiquitination occurring at the plasma membrane 
by E3 ubiquitin ligases (purple). The sorting in endosomes is displayed in the lower section. The domain structure of the 
proteins is not drawn to scale. The proteins are shown in different colours according to their function in vesicle formation and 
budding. The adaptor and ‘adaptor-like’ proteins are in red, EH-containing proteins are in green, the PX-containing protein is 
in orange and other proteins are in blue. The interactions are depicted by dotted lines. The names of the domains and the 
proteins are found in the text. Abbreviation, which are not in the text: Ub, ubiquitin; UEV, ubiquitin conjugating enzyme E2 
variant (an ubiquitin binding domain). 
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containing proteins to endosomes, Lyso-bisphosphatidic acid (LBPA), a phospholipid 

with an inverted-cone shape, is a candidate for mediating inwards invagination of 

endosomal membranes. This lipid is required for MVB formation and found on 

intralumenal membranes (Kobayashi et al., 1998; Raiborg et al., 2001b). Fusion of 

the limiting (outer) membrane of the MVB with the lysosomal membrane results in 

the delivery of the lumenal MVB vesicles and their contents to the hydrolytic interior 

of the lysosome, where they are degraded (Futter et al., 1996). 

1.4.2 Transport from endosomes to the TGN 

1.4.2.1 The retromer complex 

The retromer complex was identified to be essential for the transport of cargo, 

such as the Vps10p, the yeast functional equivalent of the MPR, from endosomes to 

the Golgi in yeast (Seaman et al., 1998). The retromer complex is composed of two 

subcomplexes, one is composed of Vps35p, Vps29p and Vps26p, which selects cargo 

for retrieval, and the second subcomplex contains Vps5p and Vps17p, which 

promotes vesicle formation. This complex has been conserved during evolution as 

human homologues of four out of the five components of the retromer complex were 

identified. The human proteins, hVps35, hVps26, hVps29 and sorting nexin 1 

(SNX1), the human homologue of Vps5p, form a complex in mammalian cells, that 

associates with membranes (Haft et al., 2000). Both, hVps26 and hVps29 bind to 

different sites in hVps35, the core protein of the complex, which, in addition, 

interacts directly with SNX1. The human homologue of Vps17p has not been 

identified so far. One component of the human retromer complex was shown to 

interact with other proteins; SNX1 binds to the EGFR and was suggested to be 

involved in the lysosomal degradation of the receptor (Kurten et al., 1996). However, 

SNX1 also interacts with Hrs through the same binding site as with EGFR (Chin et 

al., 2001). A possible scenario could be that SNX1 and Hrs compete for the substrate 

in early endosomes and Hrs regulates cargo recruitment by SNX1 by binding to the 

cargo binding site in SNX1 and therefore blocking its ability to recruit cargo (Chin et 

al., 2001). However, it is not obvious which transport step is mediated by SNX1, the 

transport to lysosomes, or possibly the transport from endosomes to the TGN, 

analogous to the retromer function in yeast.  
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1.4.2.2 Sorting nexins 

SNX1 is part of a family of sorting nexins (SNX) that consists of a diverse 

group of cytoplasmic and membrane-associated proteins that are involved in various 

aspects of endocytosis and protein trafficking (Worby and Dixon, 2002). The 

common feature of the sorting nexins is a phox homology domain (PX), a sequence 

of 100-130 amino acids that binds to various phosphatidylinositol phosphates 

(PtdInsPs). The PX domains have a wide range of PtdInsP-binding specificities 

leading to the targeting of the SNX to distinct organelles that are enriched in some of 

the phospholipids (Ponting, 1996; Kanai et al., 2001). So far, 25 human SNX have 

been found which are divided into three subgroups. One subgroup (SNX1, SNX2, 

SNX4, SNX5, SNX6, SNX7, SNX8, SNX15, SNX16) consists of SNX that contain 

one to three coiled-coil domains in addition to the PX domain, possibly involved in 

homo- and/or hetero-oligomerization with other SNXs, as well as other protein-

protein interactions. The second subgroup (SNX3, SNX10, SNX11, SNX12, SNX22, 

SNX23, SNX24) of SNX only contains the PX domain. The remaining SNX contain 

various protein-protein interaction sequences, such as a SH3 domain (SNX9, 

SNX18), a RGS (regulator of G-protein signaling) domain (SNX13, SNX14, SNX25) 

or other domains (SNX17, SNX19, SNX21, SNX27). Although for some SNXs the 

preference of lipids would direct them to the plasma membrane, a lot of these SNXs 

are localized to endosomes, indicating that isolated measurements of in vitro lipid 

binding affinities do not reflect the complex multiple interactions in vivo. Some 

sorting nexins were found to be involved in sorting steps in the endosomes, such as 

SNX1 (described above), SNX3, SNX13 and SNX15. 

SNX3 

SNX3 is recruited to early and recycling endosomes and colocalizes with EEA1 

(early-endosomal autoantigen 1, a marker for early endosomes) and transferrin 

receptor (a marker for recycling endosomes) (Prekeris et al., 1998; Xu et al., 2001). 

Overexpression of SNX3 leads to an expansion of the tubulovesicular structure of the 

endosomes and a delay in EGFR degradation. Inhibition of SNX3 prevents transport 

of transferrin receptor from the early to the recycling endosomes. These results 

indicate that SNX3 has a function in membrane trafficking form early endosomes to 

recycling endosomes. 
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SNX13 

SNX13 contains an RGS domain and functions as a GTP-activating protein 

(GAP) for the Gαs-subunit of the heterotrimeric G-protein (Zheng et al., 2001). The 

PX domain localizes the SNX13 to early endosomes through interaction with 

PtdIns(3)P and colocalizes with EEA1. Overexpression of SNX13 inhibits 

degradation of the EGFR, suggesting a link between heterotrimeric G-protein 

signaling and protein sorting in the endosomes (Zheng et al., 2001). 

SNX15 

SNX15 localizes to early and late endosomes (Barr et al., 2000). 

Overexpression of SNX15 affects the morphology of endosomes, mislocalizes furin 

to endosomes and inhibits post-translational processing of insulin receptor (IR) and 

hepatocyte growth factor receptor (HGFR) precursors during their biosynthetic 

pathway (Phillips et al., 2001). Both IR and HGFR precursors are substrates of the 

endoprotease furin which is predominantly localized to the TGN, but cycles 

continuously from the TGN to the plasma membrane and endosomes, from where it is 

retrieved to the TGN through binding to PACS-1 (Komada et al., 1993; Wan et al., 

1998). Thus, overexpression of SNX15 leads to a delayed processing of several furin 

substrates by mislocalizing furin, indicating that SNX15 is involved in the retrieval 

step of furin from the endosomes to the TGN (Phillips et al., 2001). Whether SNX15 

and PACS-1 directly interact with each other is not known. 

1.4.2.3 PACS-1 

PACS-1 (phosphofurin acidic cluster sorting protein 1) binds to acidic clusters 

which contain a serine that is phosphorylated by casein kinase 2 (CK2). CK2 sites are 

composed of a serine surrounded by acidic residues between positions -4 and +7 with 

respect to the serine at position 0, the crucial residues being the acidic amino acids at 

position +1 and +3 from the serine (Meggio and Pinna, 2003). PACS-1 interacts with 

the acidic clusters of furin (a TGN-localized endoprotease) and VAMP4 (a SNARE 

protein on immature secretory granules) in a CK2 phosphorylation-dependent manner 

(Wan et al., 1998; Hinners et al., 2003). PACS-1 binds, in addition, to the acidic 

clusters of CI-MPR, however, independently of phosphorylation. Depletion of 

PACS-1 disrupts TGN localization of the proteins that interact with PACS-1 and 

leads to their subsequent mislocalization to mature secretory granules and/or 
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endosomes, indicating that PACS-1 is essential for retrograde transport from 

endosomes and immature secretory granules back to the TGN (Wan et al., 1998; 

Hinners et al., 2003). Furthermore, PACS-1 binds to AP-1 and AP-3 and mediates the 

formation of a ternary complex between itself, AP-1 and membrane protein cargo, 

which suggests that PACS-1 functions as a connector by linking cargo to adaptor 

complexes (Crump et al., 2001; Hinners et al., 2003). 

1.4.2.4 TIP47 

TIP47 (MPR tail interacting protein of 47 kDa) interacts with CD-MPR and 

CI-MPR, albeit with different motifs in the two proteins (Diaz and Pfeffer, 1998). In 

the CD-MPR, TIP47 specifically recognizes the F18W19 motif, which has been 

identified to be essential for endosomal sorting of the receptor (Schweizer et al., 

1997). The recognition of the CI-MPR by TIP47 is dependent on the three-

dimensional structure and, in addition, requires the sequence PPAPRPG (residues 49-

55) as well as the region from residues 55 to 75 in the cytoplasmic tail of the receptor 

(Orsel et al., 2000). Using membranes from CHO cells and cytosol from K562 cells 

(human), it was shown that depletion of TIP47 inhibits the in vitro transport of MPRs 

from late endosomes to the TGN, indicating that TIP47 is required for the retrograde 

transport of the receptors from late endosomes to the TGN (Diaz and Pfeffer, 1998). 

This transport step requires, in addition, Rab9 and is BFA-insensitive (Carroll et al., 

2001). In mouse fibroblasts, however, the in vitro transport of CD-MPR from early 

endosomes to the TGN is TIP47-independent (Medigeshi and Schu, 2003). No other 

cargo was identified to bind to TIP47 so far and its physiological role has to be 

investigated further. 
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2 Mannose 6-phosphate receptor 
Mannose 6-phosphate receptors (MPRs) recognize phosphorylated mannose 

residues, thus deriving their name. They are essential for the generation of functional 

lysosomes by directing newly synthesized soluble lysosomal enzymes bearing the 

mannose 6-phosphate signal to lysosomes. Two MPRs have been identified, the 

46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa 

cation-independent mannose 6-phosphate receptor (CI-MPR) (see  

Figure 10). Since the CI-MPR binds to insulin-like growth factor II (IGF-II) in 

addition to mannose 6-phosphate-containing ligands, it is also referred to as CI-

MPR/IGF-II-receptor. 

 

2.1 Structure and biosynthesis of MPRs 

The two MPRs are type-I integral membrane proteins, containing an N-terminal 

signal sequence which is cleaved by the signal peptidase in the endoplasmic reticulum 

(ER). The mature protein comprises an extracytoplasmic ligand-binding domain, a 

transmembrane domain and a C-terminal cytoplasmic domain containing the signals 

for intracellular sorting. The amino acids of the extracytoplasmic regions are 

numbered starting from the N-terminus. However, to simplify the discussion of 

signals in the cytosolic domain these residues are numbered starting from the trans-

membrane domain once again with residue number one. 

2.1.1 The CD-MPR 

The CD-MPR of 46 kDa is the smaller of the two MPRs. It consists of a 

28-residue N-terminal signal sequence, a 159-residue lumenal domain, a 25-residue 

membrane span and a 67-amino acid cytoplasmic domain. The CD-MPR is a highly 

conserved protein with 93% overall homology among mammals, with a completely 

identical amino acid sequence within the cytoplasmic domain of human, mouse, pig 

and cow. CD-MPR homologues, have been identified in different species (for some 

species only partial sequences) - five mammals, one bird, two amphibians, and three 

bony fishes. The alignment of the complete sequences is shown in Figure 7. 
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2.1.1.1 Lumenal domain of the CD-MPR 

After biosynthesis and insertion into the ER, newly synthesized CD-MPR 

undergoes signal peptide cleavage and N-linked glycosylation. Four out of five 

potential sites in the extracytoplasmic domain obtain N-linked oligosaccharides, two 

of them carry high mannose-type and the other two complex-type oligosaccharides 

(Wendland et al., 1991b). This glycosylation contributes a major part to the total mass 

of the CD-MPR (about 30%). However, glycosylation is neither involved in 

Figure 7: Alignment of CD-MPR from different species. The sequences are depicted in amino acid 
single letter code. The numbering starts from the N-terminus after signal peptide cleavage. The Asn 
acquiring complex type (C) or high mannose type (HM) oligosaccharides are marked in lila. The disulfide 
bonds are marked in blue. The residues involved in ligand binding (LB) are highlighted in yellow, wherein 
the cation-interacting Asp 103 is marked red. The TMD is indicated with a green box. The residues of the 
cytoplasmic tail are numbered starting from the TMD once again with residue number one (number below 
sequences). 

 

1 22
CD-MPR cow   mmsplhsswr tgllllllfs vavreswqte ektcdlvgek gkesekelal
CD-MPR human  ~mfpfyscwr tgllllll.a vavreswqte ektcdlvgek gkesekelal
CD-MPR mouse ~mfpfsgcwr tellllllla vavreswqie ekscdlvgek dkeskneval
CD-MPR rat mnfliyg.w. te

1 22
CD-MPR cow   mmsplhsswr tgllllllfs vavreswqte ektcdlvgek gkesekelal
CD-MPR human  ~mfpfyscwr tgllllll.a vavreswqte ektcdlvgek gkesekelal
CD-MPR mouse ~mfpfsgcwr tellllllla vavreswqie ekscdlvgek dkeskneval
CD-MPR rat mnfliyg.w. tellllllla vavreswqie ekscdlvgek dkeskneval
CD-MPR frog ~~~~~mgapl ccvciaalla fasaddnlid d..cqlvg.g dkkssteqav

cleaved signal peptide lumenal part
23 70

CD-MPR cow lkrltplfnk sfestvgqsp dmysyvfrvc reagnhssga ..glvqinks
CD-MPR human  vkrlkplfnk sfestvgqgs dtyi

llllllla vavreswqie ekscdlvgek dkeskneval
CD-MPR frog ~~~~~mgapl ccvciaalla fasaddnlid d..cqlvg.g dkkssteqav

cleaved signal peptide lumenal part
23 70

CD-MPR cow lkrltplfnk sfestvgqsp dmysyvfrvc reagnhssga ..glvqinks
CD-MPR human  vkrlkplfnk sfestvgqgs dtyiyifrvc reagnhtsga ..glvqinks
CD-MPR mouse lerlrplfnk sfestvgqgs dtysyifrvc reasnhssga ..glvqinks
CD-MPR rat lerlrplfnk sfestvgqgs dtysyifrvc reagnhssga ..glfqinks
CD-MPR frog laklaplkgk rfeattkegs dtykysfvvc grvgnstktt

yifrvc reagnhtsga ..glvqinks
CD-MPR mouse lerlrplfnk sfestvgqgs dtysyifrvc reasnhssga ..glvqinks
CD-MPR rat lerlrplfnk sfestvgqgs dtysyifrvc reagnhssga ..glfqinks
CD-MPR frog laklaplkgk rfeattkegs dtykysfvvc grvgnstktt yeglvqskeg

N-glyco (HM) LB N-glyco (C) LB
71 120

CD-MPR cow   ngketvvgrf netqifngsn wimliykggd eydnhcgreq rravvmiscn
CD-MPR human  ngketvvgrl nethifngsn wimliykggd eydnhcgkeq rravvmiscn
CD-MPR mouse ndketvvgri nethifngsn wimliykggd

yeglvqskeg
N-glyco (HM) LB N-glyco (C) LB

71 120
CD-MPR cow   ngketvvgrf netqifngsn wimliykggd eydnhcgreq rravvmiscn
CD-MPR human  ngketvvgrl nethifngsn wimliykggd eydnhcgkeq rravvmiscn
CD-MPR mouse ndketvvgri nethifngsn wimliykggd eydnhcgkeq rravvmiscn
CD-MPR rat neketvvgri nethifngsn wimliykggd eydnhcgkeq rravvmifcn
CD-MPR frog stdtsvigri ndthimsgtd williygsgd kydshcnnea rkamvmiscn

N-glyco (C) N-glyco (HM) cation LB disulfide bonds
121                         170

CD-MPR cow   rhtladnfnp vseergkvqd c

eydnhcgkeq rravvmiscn
CD-MPR rat neketvvgri nethifngsn wimliykggd eydnhcgkeq rravvmifcn
CD-MPR frog stdtsvigri ndthimsgtd williygsgd kydshcnnea rkamvmiscn

N-glyco (C) N-glyco (HM) cation LB disulfide bonds
121                         170

CD-MPR cow   rhtladnfnp vseergkvqd cfylfemdss lacspeishl svgsillvtl
CD-MPR human  rhtladnfnp vseergkvqd cfylfemdss lacspeishl svgsillvtf
CD-MPR mouse rhtlaanfnp vseergkvqd cfylfemdss lacspevshl svgsillvif
CD-MPR rat rhtlagnfnp vseergkiqd cfylfemdss lacspev

fylfemdss lacspeishl svgsillvtl
CD-MPR human  rhtladnfnp vseergkvqd cfylfemdss lacspeishl svgsillvtf
CD-MPR mouse rhtlaanfnp vseergkvqd cfylfemdss lacspevshl svgsillvif
CD-MPR rat rhtlagnfnp vseergkiqd cfylfemdss lacspevshl svgsillvif
CD-MPR frog kkmlgdhfav iqeernksre cfylfemdss lacppeeshl gvgsillivf

ligand binding (LB) TMD
171 220

CD-MPR cow   aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR human  aslvavyvvg gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-

shl svgsillvif
CD-MPR frog kkmlgdhfav iqeernksre cfylfemdss lacppeeshl gvgsillivf

ligand binding (LB) TMD
171 220

CD-MPR cow   aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR human  aslvavyvvg gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR mouse aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR rat aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR frog avlvavyiig gflyqrfvvg akgmeqfpni tfwqelgnlm adgcdfvcrs

TMD 1    cytoplasmic tail
221 251

CD-MPR bovine kprnvpaayr gvgdd

MPR mouse aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR rat aslvavyiig gflyqrlvvg akgmeqfphl afwqdlgnlv adgcdfvcrs
CD-MPR frog avlvavyiig gflyqrfvvg akgmeqfpni tfwqelgnlm adgcdfvcrs

TMD 1    cytoplasmic tail
221 251

CD-MPR bovine kprnvpaayr gvgddqlgee seerddhllp m
CD-MPR human  kprnvpaayr gvgddqlgee seerddhllp m
CD-MPR mouse kprnvpaayr gvgddqlgee seerddhllp m
CD-MPR rat kpcsvpaayr gvgndqlgee seerddhllp m
CD-MPR frog rprtsetayr gvgddqlgee peerddhllp m

67
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dimerization nor ligand-binding, intracellular stability or subcellular distribution of 

the CD-MPR (Wendland et al., 1991b; Marron-Terada et al., 1998a; Roberts et al., 

1998). Instead, glycosylation promotes the proper folding of the receptor, although 

only one N-linked oligosaccharide is sufficient (Marron-Terada et al., 1998a). 

Another, even more important requirement for proper folding of the CD-MPR is the 

generation of three intramolecular disulfide bonds of six cysteine residues in its 

lumenal domain (Roberts et al., 1998). Mutation of a single cysteine disrupts the 

ligand-binding ability and impairs stability of the CD-MPR (Wendland et al., 1991a). 

Thus the conformational change caused by the formation of the disulfide bonds is 

required for ligand-binding ability. This is confirmed by the fact that the receptor 

acquires ligand-binding ability before entering the Golgi (Hille et al., 1990). 

Crystallization revealed that the extracytoplasmic domain alone is sufficient for 

dimerization and ligand-binding (Roberts et al., 1998). The CD-MPR is 

predominantly present as a dimer (67%) and also exists as a trimer or a tetramer and 

only a small portion is present in a monomeric state in the cell. The non-covalent 

dimerization is mediated primarily through hydrophobic interactions, comprising 

about 20% of the surface area of each CD-MPR monomer (Roberts et al., 1998). 

Dimerization and tetramerization increase the affinity of the receptor to the ligand. 

However, the oligomeric state is not altered for dissociation of the ligand from the 

receptor (Li et al., 1990). Furthermore, the oligomeric state is independent of pH and 

intracellular trafficking of the receptor (Punnonen et al., 1996; Olson et al., 2002).  

Ligand binding of the CD-MPR depends on a divalent cation which specifically 

interacts with the aspartate 103 of the CD-MPR (Hoflack and Kornfeld, 1985; Tong 

and Kornfeld, 1989; Roberts et al., 1998; Olson et al., 1999). The relatively deep 

mannose 6-phophate binding pocket of the CD-MPR comprises the following 

residues: Tyr45, Gln66, Asp103, Asn104, His105, Arg111, Glu133, Arg135 and Tyr143, 

burying the terminal mannose and the phosphate group of the ligands (see Figure 8c). 

Three-dimensional structures of ligand-free and ligand-bound receptor revealed that 

binding and dissociation from ligands is induced by a conformational change within 

the extracytoplasmic domain of the CD-MPR upon changes in pH (see Figure 8a-b) 

(Olson et al., 2002). The CD-MPR binds ligands optimally at pH 6.3-6.5 (TGN), with 

a rapid decline as the pH approaches 5.5 (late endosomes) or 7.4 (plasma membrane) 

(Yamashiro and Maxfield, 1984; Tong et al., 1989; Machen et al., 2003). Upon pH 

change the release of the ligand is induced as well as the relocation of a loop (Glu134-
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Cys141) in the extracytoplasmic domain of the CD-MPR. The pKα of Glu133 of the 

CD-MPR appears to be responsible for ligand release below pH5.5, whereas the pKα 

of the sugar phosphate and His105 are accountable for the inability of the CD-MPR to 

bind ligand at the cell surface where the pH is about 7.4 (Stein et al., 1987; Olson et 

al., 2002). It is interesting to note that residues 102-105 are missing in the sequences 

of the two M6P recognition sites of the CI-MPR, which in contrast to the CD-MPR is 

cation independent and binds the M6P-ligand at the cell surface (see also chapter CI-

MPR) (Hoflack et al., 1987). 
 
 
 

 
Figure 8: The crystal structure of the extracytoplasmic region of the bovine CD-MPR. a, The non-ligand-bound form of the 
CD-MPR shows several significant conformational changes as compared to b, the ligand-bound form. In the ligand-free form, 
loop D (residues Glu134–Cys141) bends into the unoccupied M6P-binding cleft. The phosphate group and the three terminal 
mannose rings of the pentamannosyl phosphate are depicted in yellow 'ball-and-stick model' form. c, A schematic view of the 
potential hydrogen bond and ionic interactions between the binding-pocket residues of the CD-MPR and the phosphate group 
and the terminal mannose ring of the pentamannosyl phosphate. Directly beneath the CD-MPR residue designations (underlined) 
are listed the corresponding carbohydrate-binding-site residues of domain 3 and domain 9 of the extracytoplasmic region of the 
CI-MPR. Those residues that are essential for high-affinity M6P binding by the MPRs are shaded purple. The residues which are 
exclusively present in the CD-MPR are marked blue, wherein the Asp103 is shown to coordinate the cation (Mn). The figure is 
from (Ghosh et al., 2003). 
 
 
 
 

2.1.1.2 Cytosolic tail of the CD-MPR 

The CD-MPR cycles between the TGN, endosomes and the plasma membrane. 

The transport steps are mediated by sorting signals in the cytoplasmic tail of the 

CD-MPR, comprising 67 amino acids (see Figure 9). Given the absolutely identical 

sequences of the cytoplasmic tail in human, cow, mouse, and pig, every single residue 

and the three-dimensional structure of the cytoplasmic tail might play an important 

role in its trafficking.  
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Figure 9: Model of the cytoplasmic tail of the CD-MPR. The sequence is displayed in the amino acid single letter code. The 
lumenal domain and the TMD are represented by boxes. The motifs involved in trafficking are shaded according to the legend. 
The residues involved in two trafficking steps are shaded in two colors. 
 
 

Three internalization motifs  

Three internalization sequences were identified in the cytoplasmic tail of the 

CD-MPR (Johnson et al., 1990; Denzer et al., 1997). The most potent of these motifs 

comprises the atypical Phe13-X-X-X-X-Phe18  sequence with Phe18 being the key 

residue. The second signal involves Tyr45 as part of the typical tyrosine 

internalization motif, YXXΦ (where Φ is a bulky hydrophobic amino acid). The third 

sequence involves the dileucine motif at the C-terminus, L64-L65. For a maximal rate 

of receptor internalization all three motifs are required. Endocytosis is mediated by 

AP-2 that targets cargo to clathrin-coated pits. Interaction of AP-2 with the 

internalization motifs of the CD-MPR is controversial. While Höning (Höning et al., 

1997) showed an interaction of AP-2 with the FXXXXF motif, but not with the 

tyrosine motif with surface plasmon resonance experiments, Storch (Storch and 

Braulke, 2001) demonstrated binding of AP-2 to the tyrosine motif, but not to the 

FXXXXF motif using yeast two-hybrid analysis. However, both reports show binding 

of AP-2 to the C-terminal region of the CD-MPR, dependent on the acidic cluster of 

the casein kinase 2 site, but independent of the di-leucine motif. The precise binding 

region(s) of the AP-2 to the CD-MPR in vivo and whether the CD-MPR requires 

additional interaction partners for internalization are not yet understood. 
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Basolateral sorting: Glu11 and Ala17  

In polarized cells, the portion of the CD-MPR that is localized to the cell 

surface is predominantly at the basolateral plasma membrane. The residues of the 

CD-MPR responsible for basolateral sorting were revealed to be Glu11 and Ala17 

(Bresciani et al., 1997). Single replacements of these amino acids resulted in 

missorting to the apical plasma membrane.  

The diaromatic motif: Phe18-Trp19 

The diaromatic motif Phe18-Trp19 in the cytoplasmic tail of the CD-MPR is 

essential for the endosomal sorting of the receptor (Schweizer et al., 1997). When 

Phe18 and Trp19 are replaced by alanines the receptor is missorted to lysosomes. 

Changing the Phe18 and Trp19 to other aromatic amino acids was as efficient in 

CD-MPR sorting in endosomes as the wild-type receptor, while the replacement of 

Trp19 with hydrophobic residues, such as valine, isoleucine and leucine resulted in 

CD-MPR misrouting to lysosomes (Nair et al., 2003). Not only the aromatic residues 

but also their spacing from the TMD is crucial. Changing the spacing of the 

diaromatic motif from the TMD by adding five or deleting four amino acids led to an 

accumulation of the receptor in lysosomes (Schweizer et al., 1997). TIP47, a cytosolic 

protein, specifically binds to the diaromatic motif of the CD-MPR and is essential in 

vitro for the transport of the receptor from endosomes to the TGN, this transport step 

requiring the small GTPase Rab9 (Diaz and Pfeffer, 1998; Carroll et al., 2001). 

However, there are controversial reports on the requirement of TIP47 in the transport 

of the receptor from endosomes to the TGN (see also chapter: TIP47, page 44) 

(Medigeshi and Schu, 2003). 

Palmitoylation of C30 and/or C34 

The CD-MPR is post-translationally modified by the reversible addition of 

palmitates to its cytoplasmic cysteines via a thioester bond (Schweizer et al., 1996). 

The palmitate rapidly turns over with a half-life of ~2 h, compared to a half-life of 

more than 40 h for the receptor. Mutation of either of the two cysteines still results in 

palmitoylation, which is abolished only when both cysteines, Cys30 and Cys34, are 

replaced by alanines. The basic residues from position 35 to 39 (Arg35, Lys37, Arg39) 

contribute to efficient palmitoylation. However, only the mutation of Cys34 leads to 

an accumulation of the receptor in lysosomes after incubation of the cells with 
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lysosomal protease inhibitors (Pepstatin A and Leupeptin) for 24 h besides a total loss 

of CD-MPR mediated cathepsin D (a lysosomal enzyme) sorting in the TGN. Hence, 

the palmitoylation of Cys34 is essential for the proper trafficking of the CD-MPR 

from late endosomes back to the TGN (Schweizer et al., 1996). Palmitoylation of a 

cysteine residue 34 amino acids distal to the transmembrane domain (TMD) is rare 

among palmitoylated membrane proteins. Usually, palmitoylation of integral 

membrane proteins occurs within the TMD or in the range of 10 amino acids distal to 

the TMD. The palmitate residue is anchored to the membrane bilayer thereby 

inducing most likely, a drastic conformational change in the cytoplasmic tail of the 

CD-MPR. The fact that two prerequisites, the palmitoylation of Cys34 and the 

diaromatic motif exist for lysosomal avoidance of the receptor, suggested that the 

conformational change upon palmitoylation of the receptor might expose the 

diaromatic signal to TIP47.  

The phosphorylation of Ser57 and the CK2 site 

CD-MPR is phosphorylated at Ser57 by casein kinase 2 (CK2) (Hemer et al., 

1993; Körner et al., 1994). Stoichiometric analysis revealed that 3% of CD-MPR is 

phosphorylated at steady-state (Breuer et al., 1997). The half-life of the receptor-

associated phosphate is 1.4 h in contrast to the long half-life of the CD-MPR. The 

functional importance of the CK2 phosphorylation site is under dispute. It was 

reported that neither the glutamates (Glu55, Glu56, Glu58, Glu59) surrounding the Ser57 

nor the Ser57 itself inhibit sorting of cathepsin D (Johnson and Kornfeld, 1992b; 

Breuer et al., 1997). However, Mauxion (Mauxion et al., 1996) reported that mutating 

the glutamates impaired sorting of cathepsin D, whereas mutating Ser57 showed 

normal sorting of lysosomal enzymes. The phosphorylation of Ser57 of the CD-MPR, 

however, was required for delivery of the CD-MPR to the plasma membrane, 

suggesting that phosphorylation controls a sorting step within the endosomal system 

(Breuer et al., 1997). Furthermore, CD-MPR phosphorylation by CK2 was shown to 

be required for AP-1 binding (Mauxion et al., 1996; Ghosh and Kornfeld, 2003a). 

However, Höning (Höning et al., 1997) showed high affinity binding of AP-1 to non-

phosphorylated CD-MPR peptides spanning the residues 49-67. Altogether, the 

physiological function of the phosphorylation of Ser57 is yet to be elucidated. 
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GGA binding: the Asp61-X-X-Leu64-Leu65 motif  

GGAs are soluble monomeric adaptors essential for sorting of the receptor at 

the TGN into clathrin-coated vesicles which are destined for endosomes. GGA1, and 

to a lesser extent GGA3, were shown to interact with the DXXLL motif of the 

CD-MPR (Puertollano et al., 2001a; Misra et al., 2002). A dominant-negative form of 

GGA1 blocks the exit of the CD-MPR from the TGN. The importance of the DXXLL 

motif in trafficking from the TGN was confirmed by previous studies that found 

impaired cathepsin D sorting upon replacement or deletion of the dileucine motif, 

which forms a part of the DXXLL motif (Johnson and Kornfeld, 1992b; Mauxion et 

al., 1996). These studies showed that both the recycling rate of the mutant receptor 

from endosomes to the TGN as well as AP-1 binding to the mutant receptor were 

normal, indicating that the defect was in the sorting in the TGN, but independent of 

AP-1. 

However, a different study revealed that the dileucine motif of the CD-MPR is 

required for sorting in the endosomes. The CD-MPR-L64,65-A mutant accumulated in 

early endosomes and its transport to the TGN was impaired (Tikkanen et al., 2000). 

Thus, the dileucine motif seems to be required for retrograde transport from early 

endosomes to the TGN in addition to its function in sorting in the TGN. 

AP-1 binding to residues 27 – 43 and 49 – 67 

AP-1 was shown to bind to two distinct sites in the cytoplasmic tail of the 

CD-MPR (Höning et al., 1997). One site comprises the residues 27 to 43 including 

the cysteines (Cys30, Cys34) that are palmitoylated in vivo and the basic residues from 

35 to 39 (Arg35, Lys37, Arg39) that contribute to efficient palmitoylation (Schweizer et 

al., 1996). However, the CD-MPR peptides used in the AP-1 binding assay were 

synthetically produced and lacked palmitoylation. Thus, the effect of palmitoylation 

of the CD-MPR on binding to AP-1 was not analyzed. The second AP-1 binding site 

in the CD-MPR comprised the amino acids 49 to 67 of the cytoplasmic tail, including 

the acidic cluster of the casein kinase 2 site and the DXXLL that interacts with GGA 

(Höning et al., 1997). The specific binding site of AP-1 within the residues 49-67 was 

not identified. However, the dileucine motif (Leu64, Leu65) and the phosphorylation of 

Ser57 were excluded, since the binding affinity of AP-1 to the CD-MPR peptide was 

unaltered when the leucines were replaced by alanines and the peptides were not 
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phosphorylated. In contrast, other studies revealed an increased AP-1 binding to the 

CD-MPR, when the Ser57 was phosphorylated by CK2 (Mauxion et al., 1996; Ghosh 

and Kornfeld, 2003a). Thus, the AP-1 binding site in the CD-MPR has to be further 

investigated. 
 

 
Figure 10: The CD-MPR and the CI-MPR. The CD-MPR contains one extracytoplasmic domain, whereas the CI-MPR 
comprises 15 extracytoplasmic domains. The M6P and IGF-II binding domains are indicated. The post-translational 
modifications, palmitoylation and phosphorylation are displayed in the cytoplasmic tails of the MPRs. The modified figure is 
from (Ghosh et al., 2003). 
 

2.1.2 The CI-MPR 

The ~300 kDa CI-MPR is composed of a 44-residue N-terminal signal 

sequence, a large 2269-residue extracytoplasmic region, a single 23-residue 

transmembrane region, and a 163-residue C-terminal cytoplasmic domain.  

2.1.2.1 Lumenal domain of the CI-MPR 

The much larger extracytoplasmic region of the CI-MPR is composed of 

15 domains that are similar to each other and to the extracytoplasmic domain of the 

CD-MPR (see Figure 10). They are similar in size with an average of 147 residues per 

domain, share 14-38% amino acid sequence identity and display a comparable 
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cysteine distribution, indicating that they exhibit similar cysteine bond formations and 

three-dimensional structures (Lobel et al., 1988). The lumenal region of the CI-MPR 

comprises two distinct carbohydrate recognition sites and a single IGF-II binding site 

(Tong et al., 1988). 

The CI-MPR contains 19 potential N-linked glycosylation sites distributed 

throughout its extracytoplasmic region. Although it is not known how many of these 

sites are indeed glycosylated, it has been demonstrated that the CI-MPR acquires 

predominantly complex-type oligosaccharides (Sahagian and Neufeld, 1983). 

Comparable to the CD-MPR, N-linked glycosylation is not required for the 

acquisition of M6P or IGF-II binding ability by the CI-MPR (Sahagian and Neufeld, 

1983; Kiess et al., 1991). The disulfide bonding pattern of the CI-MPR was predicted 

based on similarities in distribution to the CD-MPR. A similar requirement of 

disulfide bond formation for the proper folding of the CD-MPR is expected for the 

CI-MPR as well. The CI-MPR is mainly present as a monomer, but also exists as a 

weak dimer, which is stabilized by the binding of multivalent ligands. Furthermore, 

dimerization of the CI-MPR increases its rate of internalization at the cell surface 

(York et al., 1999). 

The domains 3 and 9 of the extracytoplasmic region of the CI-MPR are the 

M6P-binding domains which have different binding affinities towards ligands and pH 

optima in ligand binding (Dahms et al., 1993; Marron-Terada et al., 1998b). The pH 

optimum for M6P binding of the domain 3 is pH 6.9, whereas the domain 9 binds 

M6P optimally at pH 6.4-6.5 (Marron-Terada et al., 2000). This reflects the broad pH 

range of the ligand binding exhibited by the CI-MPR including the binding of 

lysosomal enzymes at the cell surface at pH 7.4, a feature that is absent in the 

CD-MPR. The essential residues for M6P binding were revealed to be Gln392, Ser431, 

Arg435, Glu460 and Tyr465 in the domain 3 and Gln1292, His1329, Arg1334, Glu1354 and 

Tyr1360 in the domain 9 (Hancock et al., 2002). These results indicate that the two 

M6P binding sites in the CI-MPR and the binding site in the CD-MPR contain similar 

essential residues, forming the M6P binding pocket (Olson et al., 2002). However, the 

Asp103 and the His105 of the CD-MPR, involved in cooperation of the cation and in 

failure to bind ligands at the cell surface, respectively, are not found in the M6P 

binding domains of the CI-MPR. This reflects the cation-independent binding 
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behavior of the CI-MPR as well as its ability to bind and internalize lysosomal 

enzymes at the cell surface (Hoflack et al., 1987). 

The CI-MPR of viviparous mammals binds also the non-glycosylated 

polypeptide hormone, IGF-II (insulin-like growth factor II), at a binding site localized 

to the amino-terminal portion of the 11th extracytoplasmic domain (see Figure 10). 

CI-MPR from marsupials, such as kangaroo and opossum, exhibit low affinities to 

IGF-II, whereas platypus, chicken and frog were unable to interact with IGF-II 

(Dahms and Hancock, 2002). In species that bind IGF-II, the I1572 of the domain 11 

was determined as the key residue with a fibronectin type II domain within the 

domain 13 contributing to the IGF-II binding (Garmroudi et al., 1996; Devi et al., 

1998).  

2.1.2.2 Cytoplasmic tail of the CI-MPR 

The cytoplasmic tail of 163 amino acids of the CI-MPR is longer than that of 

the CD-MPR of 67 residues. Like the CD-MPR, the cytoplasmic tail of the CI-MPR 

contains the sorting signals mediating the intracellular trafficking between organelles. 

The sequence is neither highly conserved among different species nor is it similar to 

the CD-MPR, however, corresponding sorting signals are found in the CI-MPR. 

Palmitoylation of Cys15 and/or Cys16 

The CI-MPR is post-translationally modified by the attachment of palmitate 

residues to Cys15 and/or Cys16 of the cytoplasmic tail (Westcott and Rome, 1988). 

Palmitoylation of CI-MPR occurs via a thioester linkage (Schweizer et al., 1996). 

However, no function of the CI-MPR palmitoylation has been found so far. 

Compared to the CD-MPR the palmitoylated cysteines are located much closer to the 

TMD. 

Internalization motif: Tyr24-X-Tyr26-X-X-Val29 

CI-MPR contains one tyrosine-based internalization motif, 24-YKYSKV-29, 

which interacts with AP-2 (Glickman et al., 1989; Canfield et al., 1991). The Tyr26 

and Val29 are the key determinants for internalization whereas Tyr24 and Lys28 exhibit 

a contributing effect.  

TIP47 binding to Pro49-Pro-Ala-Pro-Arg-Pro-Gly55 
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TIP47 binding to the CI-MPR is conformation dependent and requires the 

sequence 49-PPAPRPG-55 as well as the region from residues 55 to 75 in the 

cytoplasmic tail of the receptor (Orsel et al., 2000). Binding of TIP47 to the CI-MPR 

competes with binding of AP-1 and AP-2 to the tyrosine-motif at residues 24-29. In 

contrast to the extended binding region in the CI-MPR, the TIP47 binding motif in 

the CD-MPR comprises a short diaromatic motif, indicating that requirement for 

TIP47 binding differs a lot in the two cargo proteins known so far, CI-MPR and 

CD-MPR (Diaz and Pfeffer, 1998). TIP47 depletion leads to a decrease in CI-MPR 

half-life from τ ≥ 35 h to τ ~ 14 h, indicating that TIP47 is essential for the proper 

sorting of the CI-MPR from endosomes to the TGN (Diaz and Pfeffer, 1998). 

Phosphorylation of Ser85 and Ser156 

Both serines residues are part of a casein kinase 2 (CK2) site and are 

phosphorylated by CK2 in vitro and in vivo (Meresse et al., 1990). Phosphorylation 

was suggested to take place at the Golgi/TGN or in clathrin-coated vesicles leaving 

the Golgi/TGN (Meresse and Hoflack, 1993). Some studies revealed altered 

subcellular distribution of the CI-MPR upon phosphorylation or dephosphorylation, 

however, mutation of the serine residues had no detectable effect upon the steady-

state sorting of lysosomal enzymes by the CI-MPR, indicating that phosphorylation 

might modulate the kinetics of the movement of the receptor rather than the 

regulation of the transport steps (Braulke and Mieskes, 1992; Johnson and Kornfeld, 

1992a).  

Further characterization of the CK2 sites revealed that the aspartate 157 

adjacent to serine 156 within the C-terminal CK2 site is part of the recognition motif 

(DXXLL) for the GGAs, mediating sorting in the TGN (Puertollano et al., 2001a). 

The phosphorylation of the serine 156 had a contributing effect by increasing the 

affinity of GGA1 and GGA3 to the CI-MPR peptide (residues 154-163) (Kato et al., 

2002). The acidic cluster of the CK2 sites is also involved in the interaction of the 

CI-MPR with PACS-1, independent of phosphorylation. PACS-1 mediates the 

transport of the CI-MPR from endosomes to the TGN (Wan et al., 1998). Thus, the 

acidic clusters of the CK2 sites have an important role in CI-MPR trafficking. 

However, to elucidate the precise function of the phosphorylation of the serines, 

further investigation would be required. 
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GGA binding: the Asp157-X-X-Leu160-Leu161 motif  

GGA1, GGA2 and GGA3 bind to the C-terminal DXXLL motif in the 

cytoplasmic tail of the CI-MPR at the TGN (Puertollano et al., 2001a). The 

phosphorylated Ser156 had a contributing effect on GGA binding by increasing the 

binding affinity of the VHS domains of GGA1 and GGA3 to the CI-MPR peptide 

(residues 154-163) in vitro (Kato et al., 2002). The interaction with GGA at the TGN 

is required for the sorting of the receptor in the TGN and the transport to endosomes 

(Puertollano et al., 2001a; Puertollano et al., 2001b). The importance of the DXXLL 

motif is further confirmed by reports that revealed missorting of lysosomal enzymes, 

when the CI-MPR was truncated, thus lacking the dileucines or alternatively when the 

CI-MPR was analyzed by alanine cluster mutagenesis (Johnson and Kornfeld, 1992a; 

Chen et al., 1997). 

AP-1 Binding to residues 26 - 29, 39 - 44, 84 - 88 and 154 - 160 

Four distinct binding sites for AP-1 were identified in the CI-MPR. One 

binding site contains the tyrosine-based signal, 26-YSKV-29, which in addition acts 

as internalization motif and interacts with AP-2 (Ghosh et al., 2003). The second 

AP-1 binding site consists of a “dileucine”-like motif, 39-ETEWLM-44, which is a 

motif that AP-1 was shown to bind in cargo (Rodionov and Bakke, 1998). The 

remaining two AP-1 binding sites include the two CK2 phosphorylation sites, 

84-DSEDE-88 and 154-DDSDED-160. The binding affinity of AP-1 to the CK2 sites 

is enhanced on phosphorylation (Le Borgne et al., 1993). 

2.1.3 Comparison between the CD-MPR and the CI-MPR 

Although both receptors are ubiquitously expressed in adult cells and tissues, 

there are cell-type and tissue-specific differences in the steady-state concentration of 

the two receptors. During mouse embryogenesis up to day 15.5, a non-overlapping 

distribution of the mRNA transcripts was observed for the two receptors, suggesting a 

distinct role for each of the MPRs during fetal development in the mouse (Matzner et 

al., 1992). Furthermore, quantitative studies demonstrated that there is upto 8-fold 

difference in the concentration of the CD-MPR and CI-MPR among several adult 
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human cell lines and tissues, indicating that the expression of each receptor is 

independently regulated (Wenk et al., 1991). 

The subcellular distribution of the CD-MPR and the CI-MPR was similar, being 

localized to the same organelles, the TGN, endosomes, cytoplasmic vesicles and the 

plasma membrane. However, the relative distribution of the two receptors among 

those organelles differs and in addition varies between different cell types 

(Klumperman et al., 1993). Interestingly the receptors colocalize with each other and 

AP-1 in the same vesicles leaving the TGN in HepG2 and BHK cells. In early and 

late endosomes, however, the CI-MPR localized to the central part of the endosomes, 

whereas the CD-MPR rather localized to associated tubules and vesicles, destined for 

recycling to the TGN. This explains the enrichment of CI-MPR over CD-MPR in the 

endosomal compartment (Klumperman et al., 1993). 

In contrast to the CD-MPR, the CI-MPR binds to ligands at the cell surface, 

including M6P-tagged lysosomal enzymes, as well as other proteins (Hoflack et al., 

1987). This allows the CI-MPR to recapture missorted lysosomal enzymes delivering 

them to the lysosomes and additionally to target non-lysosomal enzymes for 

degradation.  

2.2 Function and relevance of MPRs 

2.2.1 Lysosomal biogenesis 

Lysosomes are acidic organelles containing numerous hydrolytic enzymes and 

playing an essential role in the degradation of internalized and endogenous 

macromolecules (Kornfeld and Mellman, 1989). Lysosomal membranes comprise a 

set of highly glycosylated, lysosomal-associated membrane proteins (LAMPs), such 

as LAMP1, LAMP2, CD63/LAMP3 and LIMPII (lysosomal integral membrane 

protein II). The lysosomal lumen contains upto 50 different lysosomal enzymes (e.g. 

proteases, lipases, glycosidases) digesting and degrading macromolecules delivered to 

the lysosomes.  

The lysosomal membrane proteins are targeted to lysosomes through dileucine-

based or tyrosine-based signals in their cytoplasmic tails. LAMP1, CD63 and LIMPII 

interact with AP-3 in the TGN, mediating the lysosomal delivery of these proteins. 

The strong glycosylation extent stabilizes these proteins, preventing their degradation 

in the lysosomes (Kundra and Kornfeld, 1999). The function of these membrane 
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proteins in lysosomal biogenesis is not known, but it is suggested that the highly 

glycosylated lumenal domains of these lysosomal membrane proteins might prevent 

self-digestion of lysosomes. 

Lysosomal function depends on the proper delivery of newly synthesized 

soluble acid hydrolases to the lysosomes. The initial steps in the biosynthesis of 

soluble lysosomal enzymes are shared by secretory proteins. The signal peptide of the 

protein is recognized by the signal recognition particle, which targets the protein to 

the translocon on the rough endoplasmic reticulum (rER). The nascent protein is 

inserted into the lumen of the ER, the signal peptide is cleaved by the signal peptidase 

and the asparagine residues are glycosylated obtaining an oligosaccharide composed 

of two N-acetylglucosamine (GlcNAc) residues, nine mannose (Man) residues and 

three glucose residues. The oligosaccharide undergoes trimming in the ER, while the 

protein is folded, resulting in the removal of the three glucose residues and one 

mannose residue. The specific signal for the targeting of lysosomal enzymes is the 

mannose 6-phosphate (M6P) tag on the N-linked oligosaccharides, which is obtained 

by the sequential action of two enzymes. The first enzyme transfers an 

N-acetylglucosamine (GlcNAc) 1-phosphate to a mannose residue, whereas the 

second enzyme later exposes the M6P marker by removing the covering GlcNAc. 

The enzyme responsible for the first reaction is the UDP-GlcNAc:lysosomal enzyme 

GlcNAc-1-phosphotransferase (phosphotransferase), a hexameric 540 kDa complex 

consisting of two disulfide-linked homodimers of 166 and 51 kDa subunits and two 

non-covalently associated 56 kDa subunits (Bao et al., 1996a). The 

phosphotransferase is localized to the ERGIC and cis-Golgi and recognizes the 

lysosomal enzymes by one or more lysine residues on the surface of their three-

dimensional structure (Tikkanen et al., 1997). The phosphotransferase exhibits a 

specificity for transferring GlcNAc-P to C-6-hydroxylgroups of Man α1,2 Man 

sequences on the N-linked oligosaccharides of the lysosomal enzymes forming a 

phosphodiester bond. The second enzyme, GlcNAc-1-phosphodiester 

α-N-acetylglucosaminidase, a 272 kDa complex of four identical 68 kDa glycoprotein 

subunits, is also known as “uncovering” enzyme (UCE), removes the covering 

GlcNAc from the mannose 6-phosphate recognition marker on lysosomal enzymes 

(Kornfeld et al., 1998). UCE is synthesized as an inactive proenzyme which is 

activated only when it reaches the destination organelle, the TGN, by the 

endoprotease furin (Do et al., 2002). This might prevent UCE acting on other 
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substrates, such as the UDP-GlcNAc, which is a sugar donor for Golgi GlcNAc-

transferases, during its trafficking itinerary through the Golgi. UCE is primarily 

localized to the TGN, where it uncovers the M6P tags of lysosomal enzymes, 

however, it cycles between the TGN and the plasma membrane (Rohrer and Kornfeld, 

2001). The function of this trafficking pathway of the UCE is not known, but it is 

suggested that UCE might ensure the proper transport of lysosomal enzymes by 

continuing its function of uncovering M6P-tags in vesicles leaving the TGN. 

However, this would require the presence of the mannose 6-phosphate receptors in 

the same vesicles; this is not known and requires further investigation. The uncovered 

M6P tag of lysosomal enzymes acts as the recognition marker for the mannose 

6-phophate receptors (MPRs), which bind the ligands in the TGN.  

The lysosomal enzymes are recruited by the MPR to a specific subdomain in 

the TGN and the MPRs in turn recruit cytosolic adaptors, which mediate the 

formation of the clathrin-coated vesicles. The MPR cytoplasmic tails bind to AP-1 

and to GGAs, both of which mediate clathrin-coated vesicle formation (see also 

chapter: Transport from the TGN to endosomes, page 27). Since the discovery of the 

GGAs the precise role of AP-1 in sorting cargo in the TGN is unclear. One model 

involves GGA, AP-1 and clathrin for the formation of clathrin-coated vesicles, 

wherein GGA recruits the MPR as well as clathrin to the TGN (Doray et al., 2002b). 

In addition, GGA recruits AP-1 and the associated CK2 to the clathrin-coated pits. 

CK2 then phosphorylates GGA and the MPR, thereby causing the autoinhibition of 

GGA and release of the MPR, as well as an increase in the binding affinity of MPR to 

AP-1 (Doray et al., 2002a; Ghosh and Kornfeld, 2003a). Thus, in this model GGA 

hands over the MPR to AP-1. Subsequently a clathrin-coated vesicle is formed, 

possibly involving accessory proteins, and budded. GGAs, AP-1 and clathrin were 

shown to colocalize on clathrin-coated vesicles leaving the TGN and in some cases, 

the coats were still covering the vesicle when it fused with early endosomes 

(Puertollano et al., 2003). Upon fusion with early endosomes, the MPRs and the 

lysosomal enzymes are further transported to the late endosomes. Currently there are 

two models for this transport step, the vesicular model and the maturation model 

(Mullins and Bonifacino, 2001; Piper and Luzio, 2001). The vesicular model suggests 

that an endosomal carrier vesicle, also described as the multi-vesicular body, 

transports materials from early to late endosomes. Whereas the maturation model 
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predicts that early endosomes are formed by the homotypic fusion of vesicles derived 

from the plasma membrane, which eventually mature into late endosomes. Both 

models provide for an intermediate between early and late endosomes, however the 

difference lies in whether the intermediate is a specific transport vesicle budded from 

early endosomes or it is what remains after removal of recycling components from an 

early endosome (Mullins and Bonifacino, 2001).  

In early and late endosomes, the lower pH induces a conformational change in 

the ligand binding domain of the MPR, resulting in the dissociation of the ligand from 

the receptor. The lysosomal enzymes are further transported to lysosomes, whereas 

the MPR is transported back to the TGN to mediate another round of transport or 

alternatively the receptor is delivered to the plasma membrane, where it is rapidly 

internalized. For the delivery of material from late endosomes to lysosomes several 

models including maturation, vesicular transport, “kiss and run”, and a fusion model 

have been suggested. However, recent results favor either the fusion model or the 

“kiss and run”. The fusion between a late endosome and a lysosome creates a hybrid 

organelle, in which digestion would take place and subsequently lysosomes would be 

re-formed from it (Luzio et al., 2000). In this fusion model the lysosomal enzymes 

would automatically be delivered to the lysosomes, where many of them are 

proteolytically activated. Alternatively, the “kiss and run” model suggests transient 

fusion and fission processes, where materials destined for lysosomal degradation, as 

well as lysosomal proteins are delivered to lysosomes (Storrie and Desjardins, 1996). 

In contrast, the MPR is transported from late endosomes back to the TGN. The long 

half-life of the MPRs and the low accumulation of 4% of CD-MPR in the lysosomes 

within 24 h indicate that the sorting of the MPRs in endosomes into vesicles for 

transport to the TGN is very efficient (Schweizer et al., 1996). Of the proteins and 

complexes mediating transport from endosomes to the TGN (see also chapter Sorting 

in endosomes, page 37), several were suggested to be involved in retrograde transport 

of the MPRs to the TGN, including PACS-1, AP-1, AP-3 and TIP47. TIP47 binds to 

both MPRs and is required for their transport from late endosomes to the TGN in 

K562 cells, but not in mouse fibroblasts (Diaz and Pfeffer, 1998; Medigeshi and 

Schu, 2003). PACS-1 binds to the CI-MPR and PACS-1 depletion causes the 

redistribution of the CI-MPR to endosomes, indicating that PACS-1 is essential for 

the transport of the CI-MPR from endosomes to the TGN, which in addition requires 

AP-1 and/or AP-3 (Wan et al., 1998; Crump et al., 2001). Consistent with this, both 
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MPRs are redistributed to endosomes in AP-1 deficient mice, indicating that AP-1 is 

essential for MPR retrieval to the TGN (Meyer et al., 2000). Furthermore, an in vitro 

transport assay in mouse fibroblasts requires membrane associated AP-1, as well as 

cytosolic AP-3 for the transport of the CD-MPR from endosomes to the TGN 

(Medigeshi and Schu, 2003). The data on PACS-1, AP-1 and AP-3 fit into a single 

model. A possible scenario is the involvement of PACS-1 and TIP47 at different sites 

in endosomes, with PACS-1 transporting MPRs from early endosomes and TIP47 

from late endosomes to the TGN. Whether other proteins such as the retromer or 

sorting nexins, interact with the MPRs as well is not known. 

2.2.2 Role of CI-MPR at the cell surface 

In contrast to the CD-MPR, the CI-MPR can bind and internalize ligands at the 

cell surface. This enables the CI-MPR to recapture M6P-modified lysosomal enzymes 

that are not properly sorted form the secretory pathway at the TGN and deliver them 

to the lysosomes (Hille-Rehfeld, 1995). 

In addition to lysosomal enzymes, the CI-MPR interacts with and internalizes 

M6P- and non M6P-containing non-lysosomal proteins. Thereby, the CI-MPR is 

involved in facilitating activation of the growth inhibitor transforming growth 

factor-β (TGF-β), modulating circulating levels of the potent cytokine leukemia 

inhibitory factor (LIF) and targeting IGF-II for degradation (O'Dell and Day, 1998; 

Blanchard et al., 1999; Godar et al., 1999). This suggests that the CI-MPR might play 

an important role in tumor suppression, in addition to the lysosomal biogenesis.  

2.2.3 Ligands of the MPRs 

Both MPRs bind M6P-containing lysosomal enzymes to target them to the 

lysosomes. Fibroblasts lacking both MPRs exhibit a massive missorting of multiple 

lysosomal enzymes leading to a decreased level of intracellular lysosomal enzymes of 

less than 20% compared to fibroblasts expressing both MPRs (Ludwig et al., 1993; 

Ludwig et al., 1994; Pohlmann et al., 1995). This results in an accumulation of 

undigested material in the lysosomes, a phenotype, which is similar to the I-cell 

fibroblasts. Fibroblasts, lacking either of the two MPRs, are only partially impaired in 

sorting lysosomal enzymes. Thus, neither of the two MPRs can substitute completely 

for the other MPR with respect to the targeting of lysosomal enzymes not even if 

overexpressed (Kasper et al., 1996). Analysis of the missorted lysosomal enzymes 



General Introduction Mannose 6-Phosphate Receptor 

63 

revealed that both MPRs have distinct but overlapping affinities for lysosomal 

proteins, indicating that the two receptors may interact in vivo with different 

subgroups of hydrolases (Ludwig et al., 1994; Pohlmann et al., 1995). 

In addition to lysosomal enzymes, the CI-MPR binds to M6P-containing 

proteins, such as TGF-β precursor and LIF. Furthermore it interacts with non M6P-

containing proteins, such as IGF-II through the IGF-II binding domain (Dahms and 

Hancock, 2002). 

2.2.4 MPR-independent lysosomal targeting 

I-cell disease (ICD) is caused by elimination or severe reduction of the activity 

of the phosphotransferase, one of the enzymes required to generate the M6P-tag, 

resulting in missorting of lysosomal enzymes. However, certain tissues and cell types 

isolated from ICD patients, such as liver, spleen, kidney, brain, and B-lymphocytes 

exhibit normal cellular lysosomal enzyme levels, suggesting that a cell-type specific, 

MPR-independent mechanism of lysosomal enzyme targeting exists (Kornfeld and 

Mellman, 1989; Glickman and Kornfeld, 1993). 

2.2.5 Lysosomal storage disorders 

The majority of lysosomal storage disorders includes diseases that are caused 

due to a defective lysosomal hydrolase. In fact, there is a known disease for almost 

every lysosomal enzyme. Another category of lysosomal storage disorders includes 

diseases that are caused due to defective lysosomal biogenesis. The defective protein 

might either be responsible for the acquisition of the recognition tag of the lysosomal 

hydrolases or for the trafficking of the lysosomal proteins. Some lysosomal storage 

diseases are described below. 

Inclusion-cell (I-cell) disease / mucolipidosis II 

I-cell disease is caused by a deficiency of phosphotransferase, the first enzyme 

of two involved in the generation of the M6P tag on lysosomal enzymes (Kornfeld 

and Mellman, 1989). This leads to a failure in the recognition of the enzymes by the 

MPRs and subsequently, the secretion of the enzymes. Consequently, the affected 

cells accumulate functionally inefficient lysosomes loaded with undegraded material, 

resulting in dense inclusion, hence the name inclusion-cell disease. The clinical 
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consequences include disproportionate dwarfism, coarse facial features, and retarded 

psychomotor development (Olkkonen and Ikonen, 2000).  

In I-cell disease, MPRs are unable to transport lysosomal enzymes to 

lysosomes, due to the lack of the recognition tag. Thus, fibroblasts lacking both 

MPRs mimic the conditions of I-cell disease (Ludwig et al., 1994). 

A related defect with milder symptoms, pseudo-Hurler polydystrophy, is caused 

by a less drastic impairment of the phosphotransferase (Olkkonen and Ikonen, 2000). 

Hermansky-Pudlak syndrome type 2 

Two mouse models for the human genetic disorder Hermansky-Pudlak 

syndrome (HPS) have mutations in the AP-3 δ and β3A subunits, respectively 

(Kantheti et al., 1998; Feng et al., 1999). Subsequently, two human HPS patients with 

mutations in the β3A gene were identified (Dell'Angelica et al., 1999b). Both the 

mice and the humans have defects in lysosomes and lysosome-related organelles, in 

particular the melanosomes and platelet dense bodies resulting in hypopigmentation 

and prolonged bleeding (Hermansky and Pudlak, 1959). AP-3 is responsible for the 

targeting of membrane proteins to the lysosomes and lysosome-related organelles and 

is therefore required for the biogenesis of lysosome-related organelles (Höning et al., 

1998).  

Chediak-Higashi syndrome 

The symptoms of Chediak-Higashi syndrome include hypopigmentation of the 

skin, eyes and hair, prolonged bleeding times, recurrent infections and abnormal 

NK-cell function (Ward et al., 2002). The enzyme responsible was identified to be a 

soluble 429 kDa protein called lysosomal trafficking regulator (LYST), defects of 

which lead to disrupted function of lysosomes and lysosome-related organelles. 

However, the mechanism how LYST regulates the function of lysosomes is unknown 

(Ward et al., 2002).  

Griscelli disease 

There are two defective enzymes in Griscelli disease, Rab27a and myosin Va 

(Menasche et al., 2000). It is suggested that Rab27a is required to recruit myosin Va 

to melanosomes (Hume et al., 2002). Rab27a, in addition, is required for regulated 

secretion in cytotoxic T lymphocytes (Stinchcombe et al., 2001). The lack of Rab27a 



General Introduction Mannose 6-Phosphate Receptor 

65 

and myosin Va leads to an accumulation of melanosomes in the perinuclear area 

(instead of the periphery) in melanocytes and uncontrolled T-lymphocyte and 

macrophage activation in Griscelli disease patients. 

Fabry disease 

This lysosomal storage disease results from mutations in α-D-galactosidase, a 

lysosomal hydrolase, leading to a labile protein that is degraded (Ohshima et al., 

1997). Accumulation of neutral glycosphingolipids that have terminal α-linked 

galactosyl moieties in vascular endothelial cells causes renal failure along with 

infarctions and strokes in patients with Fabry disease (Ohshima et al., 1997).  

Infantile neuronal ceroid lipofuscinosis (INCL) 

Defects in protein palmitoylthioesterase 1 (PPT1), a lysosomal enzyme, causes 

severe neurodegenerative disorder (see also chapter: Palmitoylthioesterases) (Vesa et 

al., 1995). Lipidated thioesters derived from acylated proteins accumulate in cells 

from patients with INCL. Recombinant PPT1 reverses the accumulation of lipid 

thioesters in INCL lymphoblasts when delivered to cells through uptake by the MPR 

(Lu et al., 1996). 
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3 Palmitoylation 

3.1 Lipid modifications 

The covalent attachment of lipid moieties is an essential modification found on 

many proteins. Lipid modification increases the hydrophobicity of proteins and 

contributes to their membrane association. Three major forms of lipid modifications 

have been recognized so far in eukaryotic systems (also used by viral proteins): the 

co-translational N-terminal myristoylation of cytosolic proteins, the post-translational 

C-terminal prenylation of cytoplasmic proteins, and the most common modification – 

the post-translational addition of palmitate to many integral and peripheral membrane 

proteins (see Figure 11) (Resh, 1999; Farazi et al., 2001). Whereas myristoylation and 

prenylation are stable, permanent lipid modifications, the thioester bond that links 

palmitate to protein is labile and reversible. 

 
 
Figure 11: Lipid modifications. The structural formulas of the three different kinds of lipid modifications are displayed. The 
yellow box marks the amino acid to which the lipid modification is linked to. The number of carbon atoms of the lipid moiety is 
given in brackets. 
 

3.1.1 N-Myristoylation 

N-myristoylation refers to the covalent attachment of myristate, a 14-carbon 

saturated fatty acid, to the N-terminal glycine of eukaryotic and viral proteins (Resh, 
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1999; Farazi et al., 2001). It is an irreversible protein modification that occurs 

cotranslationally and is catalyzed by N-myristoyl transferase (NMT) (Towler et al., 

1987). The consensus sequence for NMT protein substrates is: 

Met1-Gly2-X-X-X-Ser/Thr6- and preferentially a basic amino acid at position 7 

and/or 8. The initiating methionine is removed cotranslationally by methionine 

amino-peptidase and Gly2 becomes the N-terminal amino acid. NMT catalyzes the 

transfer of myristate from myristoyl-CoA to the N-terminal Gly2 linking it via an 

amide bond. 

 N-myristoylation promotes a weak and reversible protein-membrane 

interaction. For efficient membrane binding a second signal within the 

N-myristoylated protein is required. Some proteins, like several members of the src 

family of tyrosine kinases (Fyn, Lck, Yes) and certain α-subunits of heterotrimeric 

G proteins (Gαi1, Gαo) are dually fatty acylated with S-palmitoylation following 

N-myristoylation for efficient membrane anchoring (Milligan et al., 1995; Chen and 

Manning, 2001). They contain the consensus sequence Met1-Gly2-Cys3- at the 

N-terminus with N-myristoylation of Gly2 facilitating palmitoylation of Cys3.  

For other proteins like Src and MARCKS (myristoylated alanine-rich C kinase 

substrate), this second signal is a cluster basic of amino acids that binds to acidic 

headgroups of phospholipids in membranes (Sigal et al., 1994; McLaughlin and 

Aderem, 1995). Hence hydrophobic and electrostatic interactions act together to 

anchor the protein to the membrane.  

The reversible membrane binding of some N-myristoylated proteins is 

regulated by throwing “myristoyl switches” between two conformations (Resh, 

1999). In one conformation, the myristate moiety is hidden in a hydrophobic pocket 

within the protein. In the alternate conformation, myristate is flipped out and becomes 

available for membrane anchoring. The triggers for the myristoyl switch can be 

classified into three categories: electrostatics, ligand binding, and proteolysis. An 

example of the “myristoyl-electrostatic switch” is the MARCKS protein which is a 

protein kinase C (PKC) substrate that binds to membranes by its myristate and the 

basic motif as described above. Phosphorylation of MARCKS by PKC within the 

basic motif reduces the electrostatic interaction and results in the release of the 

protein from the membrane (McLaughlin and Aderem, 1995). The ARF proteins 

undergo “myristoyl-ligand switches” in which guanine nucleotide binding regulates 
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the exposure of the myristate moiety. In the GDP-bound form, the myristoylated 

N-terminal helix is hidden in a hydrophobic groove within ARF1 (Haun et al., 1993; 

Amor et al., 1994). HIV-1 Gag is an example of a protein whose membrane binding is 

regulated by a “myristoyl-proteolytic switch”. The HIV-1 Gag precursor, Pr55gag, 

binds to the plasma membrane via a myristate and a basic motif. Cleavage of Pr55gag 

by HIV-1 protease triggers a myristoyl-switch that results in the formation of the 

p17MA product, sequestration of myristate, and release of p17MA from the 

membrane (Hermida-Matsumoto and Resh, 1999). 

3.1.2 Prenylation 

Protein prenylation is the posttranslational attachment of either a farnesyl group 

or a geranylgeranyl group via a thioether linkage (-C-S-C-) to a cysteine at or near the 

carboxyl terminus of the protein (Maurer-Stroh et al., 2003; Roskoski, 2003). 

Farnesyl and geranylgeranyl groups consist of three and four isoprenes, respectively. 

There are three different protein prenyltransferases in humans: farnesyltransferase 

(FT) and geranylgeranyltransferase 1 and 2 (GGT1, GGT2), the substrate either being 

farnesyl-pyrophosphate or geranylgeranyl-pyrophosphate. Each protein consists of 

two subunits, α and β. The α-subunits of FT and GGT1 are the same, and the 

β-subunits differ, although all subunits are homologous to each other. All three 

prenyltransferases require Zn2+, and FT and GGT2 additionally require Mg2+ for the 

transfer of the prenyl moiety from prenyl-pyrophosphate to substrates. FT and GGT1 

catalyze the prenylation of substrates with a carboxy-terminal tetrapeptide sequence 

called a CaaX box, where “C” refers to a cysteine, “a” refers to an aliphatic residue, 

and “X” typically refers to methionine, serine, alanine, or glutamine for FT or to 

leucine for GGT1. FT and GGT1 are thus called CaaX prenyltransferases. Following 

prenylation of substrates, the terminal three residues (aaX) are subsequently removed 

by a CaaX endoprotease and the carboxyl group of the terminal cysteine is methyl 

esterified (Zhang and Casey, 1996). In contrast to FT and GGT1, GGT2 does not 

require a highly specific motif but recognizes the structural feature of the Rab-REP 

(Rab escort protein) heterodimer as substrate and is thus also called Rab 

geranylgeranyltransferase. The Rab proteins are geranylgeranylated at cysteines close 

to the carboxyl terminus that are often arranged as follows: -CC, -CXC, -CCX, 

-CCXX, -CCXXX or -CXXX. If the motif consists of two cysteines in close 
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proximity, two geranylgeranyl moieties are usually added. Rab proteins ending with 

CXC residues are additionally methyl esterified while those ending with CC are not.  

Many of the substrates of the prenyltransferases participate in signal 

transduction pathways related to cell growth, differentiation, cytoskeletal function, 

and vesicle trafficking. Typical substrates that are farnesylated by FT include many 

members of the Ras superfamily of small GTPases (H-Ras, K-Ras, N-Ras, RhoE). 

Some other small GTPases (Rac1, Rac2, RhoA) get geranylgeranylated by GGT1, as 

well as some γ-subunit variants of G proteins. The main substrates for prenylation by 

GGT2 are the Rab family of proteins, the largest group of small GTPases in the Ras 

superfamily. Some proteins (H-Ras, N-Ras) are additionally modified by palmitate 

following prenylation. 

3.1.3 Palmitoylation 

Palmitoylation is a covalent attachment of a palmitate moiety to proteins. There 

are two kinds of palmitoylation: S-palmitoylation and N-palmitoylation.  

3.1.3.1 N-Palmitoylation 

N-palmitoylation, the rarer of the two kinds, occurs via an unusual amide-

linkage of a palmitate to the amino group of the N-terminal amino acid. 

N-palmitoylation was first described for sonic hedgehog, a secreted signaling protein 

(Pepinsky et al., 1998). The N-terminal cysteine residue of hedgehog is modified by 

amide-linked palmitate. Skinny hedgehog (ski), which is also known as sightless, is 

required for palmitoylation of sonic hedgehog and shows a short but significant 

sequence homology to a diverse superfamily of membrane-associated acyltransferases 

(Chamoun et al., 2001). The fact that this family of enzymes catalyzes O-linked 

acylation transfers, strongly argues for a mechanism in which a thioester intermediate 

is formed with the side chain of the N-terminal cysteine, followed by a rearrangement 

through a five-membered cyclic intermediate to form the amide. Recently, 

N-palmitoylation has also been reported for Gαs, the α-subunit of the heterotrimeric 

G-protein that activates adenyl cyclase (Kleuss and Krause, 2003). Gαs is modified at 

the N-terminal glycine (Gly2 after removal of the starter methionine) by amide-linked 

palmitate and at the Cys3 by thioester-linked palmitate. Cys3-palmitoylation is 

reversible while Gly2-palmitoylation is permanent and stable.  
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3.1.3.2 S-Palmitoylation 

S-palmitoylation is the more common addition of a palmitate to proteins at 

cysteine residues via a thioester linkage. One of the specificities of the 

S-palmitoylation (which is simply called palmitoylation in this thesis) is its 

reversibility, which plays an important role in the signaling and trafficking of 

palmitoylated proteins (see also chapter: Role of palmitoylation, page 76).  

3.1.4 Dual fatty acylation 

N-myristoylation and prenylation are insufficient by themselves to stably 

anchor proteins to membranes. Typically, myristoylation and prenylation signals are 

linked to a second signal that assists in membrane anchoring. One secondary signal is 

a series of positively charged amino acids (e.g. in Src, K-Ras), another is 

palmitoylation. Among those proteins are members of the src family of tyrosine 

kinases (Fyn, Lck, Yes) and certain α-subunits of heterotrimeric G proteins (Gαi1, 

Gαo) which are first N-myristoylated, and GTPases (H-Ras, N-Ras) undergoing 

prenylation before palmitoylation. For all these proteins, myristoylation or 

prenylation is a prerequisite for subsequent palmitoylation (Hancock et al., 1989; 

Koegl et al., 1994). GAP-43 is an example of a cytosolic protein that is dually 

palmitoylated. Analysis of N-terminal sequences of dual fatty acylated proteins (Fyn, 

Yes, Lck, Gαo), fused to GFP, revealed that the myristate alone targeted the GFP to 

the ER and endosomes but not to the plasma membrane, while the myristoylation in 

combination with palmitoylation targeted the GFP to the plasma membrane and 

endosomes (McCabe and Berthiaume, 1999). Localization at the plasma membrane 

was also obtained when the N-terminal sequence of Src, containing a polybasic 

domain linked to the myristoylated sequence, was fused to GFP. Thus, myristoylation 

requires a second signal for localizing to the plasma membrane. The di-palmitoylated 

N-terminal sequence of GAP-43 targeted the GFP to the Golgi and the plasma 

membrane. Thus, di-palmitoylation confers a different specificity for membrane 

targeting from palmitoylation in combination with myristoylation. Altogether, the 

short dual fatty acylated sequence is sufficient for membrane targeting. 
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3.2 Palmitoylation motif of proteins  

The types of proteins that undergo palmitoylation are diverse and include 

integral as well as peripheral membrane proteins. The palmitoylated proteins can be 

divided into four categories, group I comprises integral membrane proteins, group II 

includes proteins that are prenylated at the C-terminus, group III consists of proteins 

that are myristoylated at the N-terminus and group IV is made up of proteins that are 

only palmitoylated (see Table 1). 

Most of the proteins of the group I are palmitoylated on cysteines within ten 

residues on either side of the trans-membrane domain (TMD) / cytoplasmic domain 

boundary. The composition of the TMD can influence the palmitoylation of the 

cysteines in the cytoplasmic domain. Replacing non-hydrophobic residues of the 

TMD of influenza virus hemagglutinin A (HA) with hydrophobic residues leads to a 

Table 1: Palmitoylation Motifs 
 
Group I: integral membrane proteins 
p63 ...SSSASCSRRLGR-TMD 
LAT TMD-CVRCRELPVSYDSTSTESLYPR 
CD-MPR TMD-QRLVVGAKGMEQFPHLAFWQDLGNLVADGCDFVCRSKPR... 
CI-MPR TMD-KKERREMVMSRLTNCCRRSANV... 
Viral proteins:  
 Influenza HA  TMD-CVKNGNMRCTICI 
 VSV G-protein  TMD-RVGIHLCIKLK... 
GPCR:  
 CCR5 TMD-EKFRNYLLVFFQKHIAKRFCKCCSIFQQ... 
 β2-adrenergic receptor TMD-SPDFRIAFQELLCLRRSSLK... 
 Endothelin B receptor TMD-SKRFKNCFKSCLCCWCQSFEEK... 
  
Group II: prenylated and palmitoylated proteins 
H-Ras ...SGPGCMSCKCVLS 
N-Ras ...GTQGCMGLPCVVM 
  
Group III: myristoylated and palmitoylated proteins 
Src family tyrosine kinases:  
 Yes MGCIKSKEDKGPAMKY 
 Fyn MGCVQCKDKEATKLTE 
 Lck MGCVCSSNPEDDWMEN 
Gα subunits:  
 αi1 MGCTLSAEDKAAVERS 
 αo MGCTLSAEERAALERS 
 αz MGCRQSSEEKEAARRS 
  
Group IV: proteins modified exclusively by palmitoylation 
GAP-43 MLCCMRRTKQVEKNDDDQKIEQKGI... 
PSD-95 MDCLCIVTTKKYRYQDEDTP... 
RGS4 MCKGLAGLPASCLRSAKDMK... 
Gα subunits:  
 αs MGCLGNSKTEDQRNE... 
 αq MTLESIMACCLSEEAKEA 
Trans-membrane domains (TMD) are in italic letters followed by a hyphen. Palmitoylated cysteines are marked with bold 
letters. Prenylated cysteines or myristoylated glycines are underlined. A bold and italic letter marks the N-palmitoylated 
glycine. 
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reduction in palmitoylation (Ponimaskin and Schmidt, 1998). Thus, the non-

hydrophobic residues in a TMD can favor palmitoylation of membrane proteins. In 

some proteins, such as the G-protein-coupled β2-adrenergic receptor (β2AR), clusters 

of hydrophobic and positively charged amino acids around the palmitoylation site are 

required for palmitoylation or contribute to the reaction, as is the case for the 

CD-MPR (Schweizer et al., 1996; Belanger et al., 2001). In p63, the residues 

surrounding the palmitoylation site do not affect palmitoylation, however, the exact 

distance of seven amino acids from the TMD is crucial for palmitoylation of the 

cysteine (Schweizer et al., 1995). In contrast, some proteins are palmitoylated on 

cysteines that are further away from the TMD, such as the cysteine located 

34 residues downstream of the TMD in the CD-MPR or 59 and 132 residues 

downstream of the TMD in the human immunodeficiency virus envelope 

glycoprotein 41 (Yang et al., 1995; Schweizer et al., 1996).  

The proteins of group II, such as H-Ras and N-Ras, are farnesylated at their 

C-terminal CaaX sequence followed by palmitoylation of a cysteine in the C-terminal 

region. Prenylation is required for subsequent palmitoylation of the cysteines close to 

the prenylated cysteine (Hancock et al., 1989).  

Group III consists of proteins that are cotranslationally N-myristoylated and 

undergo subsequent palmitoylation, such as Fyn, Lck, Yes,Gαi1, Gαo. In contrast to 

other palmitoylated proteins, these proteins contain a consensus sequence, 

Met1-Gly2-Cys3-, at the N-terminus. Myristoylation of Gly2 facilitates palmitoylation 

of Cys3 and in some cases of another cysteine further downstream (Koegl et al., 

1994).  

The proteins of group IV are only palmitoylated, such as GAP-43 (growth 

associated protein 43), PSD95 (postsynaptic density protein 95), Gαs, Gαq, RGS4 

(regulator of G-protein signaling 4) and SNAP-25b. For GAP-43 and PSD95, 

hydrophobic residues around the palmitoylation site are essential. Gαs is 

N-palmitoylated at the N-terminal glycine and S-palmitoylated at the adjacent 

cysteine. GAP-43, PSD95, Gsα, Gαq and RGS4 are palmitoylated at the N-terminus, 

whereas SNAP-25b is palmitoylated at the C-terminus. 

The diversity of palmitoylation sites and requirements for palmitoylation makes it 

difficult to predict whether specific proteins serve as substrates for palmitoylation. 

The lack of a clear consensus sequence and the diverse nature of the amino acids 
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found to influence palmitoylation suggest that common structural features rather than 

strict sequence requirements are likely to be key factors specifying palmitoylation. 

Alternatively, several palmitoyltransferases might exist to account for the diverse 

requirements in structure and sequence of the various substrates. Some might 

recognize a specific amino acid environment of a cysteine (e.g. β2AR) and others 

could be specific for a cysteine with a specific distance from the TMD, regardless of 

the neighboring amino acids (e.g. p63).  

3.3 Palmitoyltransferases 

Enzymatic as well as non-enzymatic palmitoylation has been described 

although the latter might only occur in vitro.  

Non-enzymatic palmitoylation was reported for Gα subunits, rhodopsin and 

peptides of Yes (O'Brien et al., 1987; Duncan and Gilman, 1996; Bano et al., 1998). 

However, the non-enzymatic palmitoylation appear to be too slow to account for 

rapid palmitoylation of signaling proteins. In addition it would be difficult to achieve 

a tight regulation of the signal transduction pathways if the activation of key 

components would occur through a non-enzymatic process. Furthermore, the 

Acyl-CoA binding protein (ACBP) was found to inhibit specifically non-enzymatic 

palmitoylation, with almost no effect on enzymatic palmitoylation of Gα subunits 

(Leventis et al., 1997; Dunphy et al., 2000). Most of the cytosolic acyl-CoA in the 

cell is bound to acyl-CoA binding proteins (ACBPs). This indicates that under 

physiological condition there is probably only enzymatic palmitoylation. 

The mechanisms involved in enzymatic palmitoylation are poorly understood. 

Some candidate enzymes have been found, although the characterization of the 

majority did raise doubts about their physiological relevance in palmitoylating their 

substrate or other proteins. A palmitoyltransferase activity was purified using 

mammalian H-Ras as a substrate but identified in the end as thiolase A. Its 

localization in peroxisomes makes it a very unlikely candidate for H-Ras 

palmitoylation (Liu et al., 1996; Liu et al., 1999). A 70 kDa palmitoyltransferase that 

adds palmitate to the cortical cytoskeletal protein spectrin has been isolated from 

erythrocytes, but no further characterization of this activity was reported (Das et al., 

1997). A dimer of 260 and 270 kDa proteins which enhances palmitoylation of 

Drosophila Ras in vitro has been cloned from the silkworm Bombyx mori (Ueno and 
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Suzuki, 1997). This protein complex is expressed only during embryogenesis and is 

probably not involved in palmitoylating Ras. In Drosophila skinny 

hedgehog/sightless was found to be required for palmitoylation of sonic hedgehog 

(Chamoun et al., 2001). Sonic hedgehog is modified by cholesterol at the C-terminus 

and palmitoylated through an atypical cysteine amide linkage at the N-terminus 

(Porter et al., 1996; Pepinsky et al., 1998). However, skinny hedgehog activity is on 

the luminal side of organelles of the secretory pathway and is therefore unlikely to 

directly palmitoylate cytosolic or transmembrane proteins on the cytosolic side. In 

yeast two palmitoyltransferases have been found, Akr1p that palmitoylates casein 

kinase Yck2p and the Erf2p/Erf4p complex that adds palmitate to Ras2p (Lobo et al., 

2002; Roth et al., 2002). Erf2p and Akr1p are integral membrane proteins that both 

contain a conserved Asp-His-His-Cys cysteine-rich domain (DHHC-CRD), but share 

no other homology. Erf2p is localized to the ER and Akr1p, to the Golgi (Lobo et al., 

2002; Roth et al., 2002).  

Of all the described palmitoyltransferases, the two DHHC-CRD-containing 

proteins in yeast seem to be the most promising candidates. The DHHC-CRD is a 

zinc-finger binding motif and is also known as the NEW1 domain. Twelve human 

proteins, containing a NEW1 domain, were identified, but none of them have been 

cloned and tested for palmitoyltransferase activity so far.  

3.4 Intracellular sites of palmitoylation 

In addition to the above described palmitoyltransferases, many 

palmitoyltransferase activities have been reported mostly along the exocytic pathway. 

Some proteins (vesicular stomatitis virus G, influenza HA, CCR5) are palmitoylated 

in the ER-Golgi intermediate compartment (ERGIC) or cis-Golgi (Bonatti et al., 

1989; Veit and Schmidt, 1993; Blanpain et al., 2001). p63, an ER-resident protein, is 

palmitoylated upon redistribution of the Golgi to the ER during mitosis or induced by 

a treatment with BFA (Mundy and Warren, 1992; Schweizer et al., 1993b). This 

indicates that p63 is palmitoylated by a palmitoyltransferase localized to the ERGIC 

or Golgi. Further in the secretory pathway, a palmitoyltransferase activity localized to 

the Golgi palmitoylates N-Ras (Gutierrez and Magee, 1991). For many cytosolic and 

membrane proteins (Fyn, Gα-subunits, transferrin receptor) palmitoylation seems to 

occur at the plasma membrane (Adam et al., 1984; Dunphy et al., 1996; van't Hof and 
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Resh, 1997; Fishburn et al., 1999). Moreover, there is a palmitoyltransferase activity 

in mitochondria (Corvi et al., 2001; Veit et al., 2001) and in yeast on the vacuole 

(Veit et al., 2001). The various subcellular sites and the diversity of substrates for 

palmitoylation suggest that numerous palmitoyltransferases with different subcellular 

locations and specificities might exist. 

3.5 Palmitoylthioesterases 

The finding that the rate of palmitate turnover exceeds that of the protein itself 

for many palmitoylated substrates indicates that not only palmitoyltransferases but 

also protein palmitoylthioesterases are present in eukaryotic cells. Three such 

enzymes have been identified and characterized, the lysosomal hydrolases, protein 

palmitoylthioesterase 1 and 2 (PPT1, PPT2), and the cytoplasmic enzyme acylprotein 

thioesterase 1 (APT1) (Camp and Hofmann, 1993; Camp et al., 1994; Verkruyse and 

Hofmann, 1996; Soyombo and Hofmann, 1997b; Duncan and Gilman, 1998). They 

all share the conserved residues, a serine, an aspartate and a histidine, which are 

distant in the primary structure, but get arranged in proximity upon acquisition of the 

three-dimensional structure to form the active site (Devedjiev et al., 2000; Calero et 

al., 2003). 

PPT1 and PPT2 are lysosomal hydrolases which are targeted to that organelle 

by modification of its oligosaccharides with mannose 6-phosphate (Verkruyse and 

Hofmann, 1996; Soyombo and Hofmann, 1997b). PPT1 deacylates cysteine thioesters 

in a variety of contexts, including intact proteins (palmitoylated H-Ras, Gα, and 

albumin), palmitoylated peptides, and palmitoyl-cysteine. PPT2, whose amino acid 

sequence is 28% identical to that of PPT1, hydrolyzes acyl-CoA (Soyombo and 

Hofmann, 1997b). But PPT2 is inactive with the other substrates of PPT1, suggesting 

that it has a role in degrading other types of lipid thioesters. APT1, initially purified 

as a lysophospholipase, cleaves thioesters in acyl-CoAs and acylproteins, as well as 

oxyesters in lysolipids (Duncan and Gilman, 1998). APT1 has been shown to 

depalmitoylate Giα1, RGS4 (regulator of G protein signaling 4), and H-Ras in vitro 

with higher catalytic efficiencies than lysophosphocholine or palmitoyl-CoA (Yeh et 

al., 1999; Duncan and Gilman, 2002). The pronounced substrate preference for 

acylproteins, over lipid substrates, is consistent with a role for APT1 as a regulator of 

protein thioacylation and not as a regulator of lipid metabolism. More substrates have 
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been reported to get deacylated by APT1 in vitro like many viral glycoproteins and 

endothelial nitric-oxide synthase (Yeh et al., 1999; Veit and Schmidt, 2001). 

Although viral glycoproteins do not undergo palmitate turnover in cells, this finding 

indicates that APT1 can also act on typical membrane proteins. 

3.6 Role of palmitoylation 

Many cytosolic proteins require palmitoylation for membrane association and 

in particular, for targeting to the plasma membrane and the Golgi. Furthermore, 

characterization of many palmitoylated proteins revealed an involvement of the 

palmitoylation in signal transduction, lipid rafts localization and in protein 

trafficking. 

3.6.1 Palmitoylation in signal transduction 

The signal transduction pathway through G-protein coupled receptors (GPCR) 

involves heterotetrameric G-proteins and additional proteins such as GPCR kinases 

(GRK) and regulators of G-protein signaling (RGS). Many members of these families 

of proteins undergo palmitoylation. Some proteins were characterized in more detail 

and a function of the palmitoylation was revealed. 

3.6.1.1 Palmitoylation of the G-protein  

G-protein coupled receptors (GPCR) contain seven trans-membrane domains 

and transduce extracellular stimuli into intracellular signals via heterotrimeric GTP-

binding proteins (G-proteins) (Qanbar and Bouvier, 2003). Each heterotrimer is 

composed of an α-subunit (Gα) and a βγ-subunit (Gβγ). There are many isoforms of 

these subunits in the cell and each receptor interacts with heterotrimers made up of 

distinct combinations of G-protein subunits. The Gα-subunit is palmitoylated, whereas 

the Gγ is prenylated. Palmitoylation of the Gα-subunit increases the association to 

Gβγ-subunits (Iiri et al., 1996). Consistent with this, Gβγ protects the GDP-bound form 

of Gα, but not the GTPγS-bound form from depalmitoylation. The first step in GPCR 

activation is the binding of ligand to the receptor, which induces a conformational 

change in the receptor. This change, in turn, results in the engagement of the 

G-proteins. This interaction catalyzes the replacement of the GDP bound to the 

Gα-subunit with a GTP molecule. The heterotrimer then dissociates into Gα- and 

Gβγ-subunits which allows the depalmitoylation of the Gα-subunit. The simultaneous 
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depalmitoylation of the receptor leads to the dissociation of the receptor-Gα 

interaction resulting in desensitization. The activated, depalmitoylated Gα then 

interacts with palmitoylated RGS proteins that inhibit G-protein signaling by 

promoting the intrinsic GTPase activity of Gα (Tu et al., 1997; Tu et al., 1999). GDP-

bound Gα can then be repalmitoylated, which is a rapid process, since roughly the 

same proportion of all Gα is palmitoylated at any given time (Jones et al., 1997). 

Repalmitoylation facilitates coupling to Gβγ forming the heterotrimer that is readily 

available for another round of activation. 

3.6.1.2 Palmitoylation of the G-protein-coupled receptor 

Many GPCRs, such as rhodopsin, β2-adrenergic receptor, vasopressin 2 

receptor, bradykinin B2 receptor and CCR5 chemokine receptor, are palmitoylated on 

a cysteine residue proximal to the cytoplasmic end of the seventh trans-membrane 

domain, (Qanbar and Bouvier, 2003). For some GPCRs, such as the CCR5, 

palmitoylation occurs in the biosynthetic pathway and is required for targeting to the 

plasma membrane (Blanpain et al., 2001). For other GPCRs the lack of 

palmitoylation appears to have differential effects on the various signaling pathways 

engaged by a given receptor. For example, the unpalmitoylated human endothelin 

(ET)A receptor was less effective in stimulating Gαi and Gαq, but as effective as wild-

type in stimulating Gα0 (Doi et al., 1999).  

β2-adrenergic receptor (β2AR), a hormone-binding G-protein coupled receptor 

(GPCR) is palmitoylated on a cysteine residue proximal to the cytosolic end of the 

seventh trans-membrane domain. Stimulation by the agonist isoproterenol induces 

depalmitoylation of the β2AR, which is followed by a cascade of events (Moffett et 

al., 2001). Depalmitoylation of the receptor promotes phosphorylation by the cAMP-

dependent protein kinase (PKA) of four serines, two of which are very close to the 

palmitoylation site and not accessible, when β2AR is palmitoylated. Phosphorylation 

by PKA in turn facilitates phosphorylation of downstream sites in the C-terminal 

portion of the receptor by GPCR kinase 2 (GRK2) (Moffett et al., 2001). The 

phosphorylated β2AR binds to arrestin 3 which in turn uncouples the receptor from 

the G-protein Gαs thereby leading to desensitization of the β2AR. Arrestin 3 has many 

binding partners itself, such as clathrin, AP-2 and Mdm2 (a E3 ubiquitin ligase), that 

are all involved in directing the β2AR to clathrin-coated pits and subsequent 

internalization (Shenoy et al., 2001; Laporte et al., 2002). In early endosomes, β2AR 
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is either targeted for degradation and sorted into internal vesicles by mono-

ubiquitination or it is recycled to the plasma membrane and dephosphorylated. For 

recycling, dephosphorylation of the β2AR is required prior to the transport from 

endosomes to the plasma membrane (Pippig et al., 1995; Cong et al., 2001). Since the 

receptor has to be palmitoylated to prevent phosphorylation in the non-activated state, 

palmitoylation is necessary for recycling. However, it has not been investigated 

whether this occurs in endosomes or at the plasma membrane. 

Thus, the desensitization of β2AR suggests a model for concerted regulation of 

the two post-translational modifications, with palmitoylation regulating the 

accessibility of phosphorylation sites involved in the desensitization of the receptor 

(Moffett et al., 1996). Additional GPCR have been found to be better substrates for 

kinases when depalmitoylated, like bradykinin B2 receptor (Soskic et al., 1999) and 

rhodopsin (Karnik et al., 1993).  

3.6.2 Palmitoyation for localization to lipid rafts 

Many of the critical components involved in T-cell receptor-mediated signaling 

are localized to lipid rafts. Lipid rafts are subdomains in membranes, characterized by 

a resistance to extraction with cold, nonionic detergents, enriched in sphingolipids 

and cholesterol, and containing GPI-anchored proteins. Lipid rafts are also referred to 

as detergent-resistant membranes. Disruption of raft structures also disrupts early 

steps of T-cell receptor activation. Likewise, the mutations in the palmitoylation site 

of LAT (linker for activation of T cells), Fyn and Lck impair T-cell receptor-mediated 

signaling (Kabouridis et al., 1997; Zhang et al., 1998; van't Hof and Resh, 1999). 

Upon T-cell receptor activation, the T-cell receptor is phosphorylated by Fyn and 

Lck, which mediate a cascade of events, including phosphorylation of LAT which 

subsequently binds to Grb2, Gads, and phospholipase C (PLC)-γ1 via their Src 

homology-2 domains. Palmitoylation of Fyn, Lck and the integral membrane protein 

LAT, is required for their localization in lipid rafts and thereby for the T-cell 

receptor-mediated signaling.  

Even though palmitoylation is essential for localization to lipid rafts, it is not 

sufficient (McCabe and Berthiaume, 2001). The GFP fused acylation sequence of the 

tyrosine kinase Yes colocalizes with cholesterol and sphingolipid-rich membranes, 

but not with caveolin-1, a marker for lipid rafts, while the full-length protein Yes is 
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targeted to lipid rafts. This indicates that protein-protein interactions are required to 

localize proteins to lipid rafts in addition to lipid modifications. 

For some viral envelope proteins, palmitoylation has also been suggested to 

facilitate raft-association (Nguyen and Hildreth, 2000). Rafts can provide a membrane 

platform on which viral structural proteins can concentrate to enhance virus assembly. 

3.6.3 Palmitoylation in protein trafficking 

Palmitoylation influences the trafficking of some membrane proteins. The 

palmitoylation deficient transferrin receptor was shown to be internalized more 

rapidly, but its recycling to the plasma membrane was found to be impaired, 

indicating that palmitoylation inhibited internalization but was required for the 

recycling of the receptor (Alvarez et al., 1990). In contrast, the asialoglycoprotein 

receptor required palmitoylation for efficient clathrin-mediated endocytosis, proper 

dissociation and delivery of ligand to lysosomes (Yik et al., 2002). For some 

membrane proteins, such as CCR5, palmitoylation is required for targeting to the 

plasma membrane (Blanpain et al., 2001). Palmitoylation of the CD-MPR is essential 

for the proper transport from endosomes to the TGN (Schweizer et al., 1996). 

 

 

4 Aim of the thesis 
The trafficking of the CD-MPR between the TGN and endosomes is essential 

for its function in the biogenesis of lysosomes. Although many sorting motifs and 

interacting proteins have been identified in the cytoplasmic tail of the CD-MPR, the 

precise mechanisms involved in the specific transport steps of the CD-MPR are not 

yet fully understood. 

For the transport of the CD-MPR from late endosomes to the TGN, it was 

shown that the palmitoylation of C34 and the diaromatic motif F18W19 are required. 

The dependence of the diaromatic motif on the palmitoylation indicates that the 

palmitoylation induces a conformational change to better expose the motif. Our 

hypothesis suggests, that palmitoylation regulates the sorting signals in the 

cytoplasmic tail of the CD-MPR. 
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The aim of one project of this thesis was to answer the following questions: 

 Is the palmitoylation involved in the regulation of the sorting signals of the CD-

MPR? 

This question was addressed: 

a) by establishing an in vitro palmitoylation assay with purified full-length CD-

MPR and [3H]palmitoyl-CoA. 

b) by identifying the localization of the palmitoyltransferase, by testing fractions 

from subcellular fractionation on gradients in the in vitro palmitoylation assay 

and by in vivo labeling of the cells expressing wild-type or mutant CD-MPR 

with [3H]palmitate. 

c) with attempts to clone the palmitoyltransferase. 

 

The sorting of the CD-MPR in the TGN is mediated by GGA through binding 

to the DXXLL motif. AP-1 was also suggested to be involved in sorting in the TGN, 

by taking over the cargo from GGA by a process involving phosphorylation of GGA 

and CD-MPR to switch binding affinities. It was shown that the binding affinity of 

AP-1 to the CD-MPR was increased when the CD-MPR was phosphorylated by CK2. 

However, other reports claimed a phosphorylation-independent binding of CD-MPR 

to AP-1. Another binding analysis revealed increased affinity of phosphorylated 

CI-MPR peptides to GGA compared to non-phosphorylated peptides, indicating a 

role for phosphorylation in binding to GGA. Altogether, the reports on the 

requirement of phosphorylation were controversial. 

 

The aim of the second project of this thesis was to answer the following questions: 

 Is the phosphorylation of the CD-MPR involved in its sorting in the TGN? 

This question was addressed with: 

a) in vitro binding of GGA1 and AP-1 to wild-type CD-MPR and the various 

phosphorylation mutants of the CD-MPR. 

b) in vivo interaction of a dominant-negative GGA1 with the phosphorylation 

mutants of the CD-MPR and wild-type CD-MPR. 
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1. Summary 
The cation-dependent mannose 6-phosphate receptor (CD-MPR) mediates the 

transport of lysosomal enzymes from the trans-Golgi network to the endosomes. 

Evasion of lysosomal degradation of the CD-MPR requires reversible palmitoylation 

of a cysteine residue in its cytoplasmic tail, 34 amino acids distal from its 

transmembrane domain. Such a distant palmitoylation of a cytoplasmic domain is rare 

among membrane proteins and implies drastic conformational differences between 

the palmitoylated and non-palmitoylated form of the receptor. Since palmitoylation is 

reversible and essential for correct trafficking it presents a potential regulatory 

mechanism for the sorting signals within the cytoplasmic domain of the CD-MPR. To 

characterize the palmitoyltransferase activity we established an in vitro 

palmitoylation assay using purified full length CD-MPR. We could demonstrate that 

palmitoylation of the CD-MPR occurs enzymatically by a membrane-bound 

palmitoyltransferase. In addition, analysis of the localization revealed that the 

palmitoyltransferase cycles between endosomes and the plasma membrane. This was 

identified by testing fractions from HeLa cell homogenate separated on a Percoll 

density gradient in the in vitro palmitoylation assay and further confirmed by in vivo 

labeling experiments using different treatments to block protein trafficking steps at 

specific sites within the cell. We identified a novel palmitoyltransferase activity in the 

endocytic pathway, responsible for palmitoylation of the CD-MPR. The localization 

of the palmitoyltransferase not only fulfills the requirement of our hypothesis to be a 

regulator of the intracellular trafficking of the CD-MPR but may also affect the 

sorting/activity of other receptors cycling through endosomes. 
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2. Introduction 
Lysosomes are intracellular organelles containing numerous acid hydrolases 

and serve as a major degradative compartment in eukaryotic cells (Kornfeld, 1992; 

Hille-Rehfeld, 1995). Delivery of newly synthesized soluble lysosomal enzymes to 

lysosomes is dependent on their acquisition of mannose 6-phosphate (M6P) residues 

in the Golgi and the trans-Golgi network (TGN). This tag acts as a recognition signal 

for high-affinity binding to the M6P receptors (MPRs) in the TGN. The receptor 

ligand complexes then leave the TGN in clathrin-coated vesicles which fuse with 

acidified endosomes (Le Borgne and Hoflack, 1997). Following the pH-induced 

dissociation of the complexes, the lysosomal enzymes are further delivered to 

lysosomes whereas the receptors recycle back to the TGN to repeat this process. 

The 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) is a 

type I integral membrane protein. The intracellular trafficking of the CD-MPR is 

directed by sorting signals located in its 67-amino acid cytoplasmic tail. 

Internalization is mediated by three separate internalization sequences through 

clathrin-coated pits: a pair of phenylalanine residues (Phe13-X-X-X-X-Phe18), a 

classical tyrosine motif (Tyr45-X-X-Val48) and probably a C-terminal di-leucine motif 

(Leu64-Leu65) (Johnson et al., 1990; Denzer et al., 1997). Overlapping with one of the 

internalization motifs is a di-aromatic motif (Phe18-Trp19) that binds to the MPR-tail 

interacting protein of 47 kDa (TIP47) and is required for the sorting of the receptor 

from late endosomes back to the TGN thereby preventing degradation of the 

CD-MPR in the lysosomes (Schweizer et al., 1997; Diaz and Pfeffer, 1998; Nair et 

al., 2003). In addition to the di-aromatic motif, palmitoylation of the Cys34 is required 

to avoid lysosomal degradation (Schweizer et al., 1996). Palmitoylation of Cys34 will 

anchor this portion of the cytoplasmic tail of CD-MPR to the lipid bilayer, 

influencing the conformation of the entire cytoplasmic tail and thereby modulating 

the accessibility of the sorting signals. Palmitoylation of the CD-MPR is reversible 

with a rapid turn-over of palmitate (τ½ ≤ 2h) (Schweizer et al., 1996). These findings 

led to the suggestion that palmitoylation functions to regulate the presentation of 

overlapping sorting signals in the cytoplasmic tail of the CD-MPR. Such a tight 

regulation of the signals would require that palmitoylation of the CD-MPR occur 

enzymatically. 
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Enzymatic as well as non-enzymatic palmitoylation has been described 

(O'Brien et al., 1987; Duncan and Gilman, 1996) although the latter might only occur 

in vitro. The two most promising candidates for such an enzymatic palmitoylation 

were identified in yeast, Akr1p and the Erf2p/Erf4p complex that palmitoylate the 

casein kinase Yck2p and Ras2p, respectively (Lobo et al., 2002; Roth et al., 2002). In 

addition to these two palmitoyltransferases, many palmitoyltransferase activities have 

been reported mostly along the exocytic pathway. Some proteins (vesicular stomatitis 

virus G, influenza hemagglutinin and CC chemokine receptor 5) are palmitoylated in 

the ER-Golgi intermediate compartment (ERGIC) or cis-Golgi (Bonatti et al., 1989; 

Veit and Schmidt, 1993; Blanpain et al., 2001). Further in the secretory pathway a 

palmitoyltransferase activity localized to the Golgi palmitoylates p21N-ras (Gutierrez 

and Magee, 1991). For many cytosolic and membrane proteins (Fyn, edGα-subunits 

of G-protein, transferrin receptor) palmitoylation seems to occur at the plasma 

membrane (Adam et al., 1984; Dunphy et al., 1996; van't Hof and Resh, 1997; 

Fishburn et al., 1999). Furthermore, there is a palmitoyltransferase activity in 

mitochondria (Corvi et al., 2001) and in yeast on the vacuole (Veit et al., 2001). The 

various subcellular sites and the diversity of the substrates for palmitoylation suggest 

that numerous palmitoyltransferases with different subcellular locations and 

specificities may exist. 

Three thioesterases which remove the palmitate residue form proteins were 

identified so far in mammals (Camp and Hofmann, 1993; Soyombo and Hofmann, 

1997a; Duncan and Gilman, 1998). Two of these thioesterases are soluble lysosomal 

enzymes, palmitoyl-protein thioesterase 1 and 2 (PPT1, PPT2), required for 

degradation of palmitoylated substrates (Verkruyse and Hofmann, 1996; Soyombo 

and Hofmann, 1997a). The third thioesterase, acyl protein thioesterase 1 (APT1) is a 

cytoplasmic protein and was shown to depalmitoylate substrates, such as G protein  

subunits, p21ras and endothelial nitric-oxide synthase (Duncan and Gilman, 1998; 

Yeh et al., 1999). Whether the CD-MPR gets enzymatically palmitoylated and/or 

depalmitoylated has not been investigated so far.  

In order to confirm or overthrow our hypothesis that reversible palmitoylation 

of the CD-MPR is regulating its sorting a detailed characterization of its 

palmitoylation is required. 
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3. Materials and Methods 
Materials 

Enzymes used in molecular cloning were obtained from Roche Diagnostics 

(Mannheim, Germany), New England Biolabs (Beverly, MA, USA), or Promega 

(Madison, WI, USA); general chemicals from Fluka (Buchs, Switzerland); protease 

inhibitors, coenzyme A and wortmannin from Sigma (St. Louis, MO, USA); 

Dulbecco's Modified Eagle Medium (DMEM), fetal calf serum (FCS), G418 and 

Lipofectamine Plus were from Invitrogen (Carlsbad, CA, USA); cell culture dishes 

from Falcon (Franklin Lakes, NJ, USA); nitrocellulose from Schleicher & Schuell 

(Dassel, Germany); enhanced chemiluminescence Western blotting reagents from 

PerkinElmer Life Sciences (Boston, MA, USA); protein A-Sepharose beads from 

Repligen Corp. (Cambridge, MA, USA); Percoll, activated CH Sepharose 4B and low 

molecular weight protein markers from Amersham Pharmacia Biotech (Piscataway, 

NJ, USA); Centricon Plus-20 from Millipore Corporation (Bedford, MA, USA); 

[3H]palmitate from ARC (St. Louis, MO, USA) or from ANAWA Trading SA 

(Zürich, Switzerland); Acyl-CoA synthetase from Fluka (Buchs, Switzerland). 

Oligonucleotides were synthesized either by the DNA synthesis facility of the 

Friedrich Miescher Institute (Basel, Switzerland) or Microsynth GmBH (Balgach, 

Switzerland).  

 

Antibodies 
Rabbit anti-mouse IgG was purchased from Zymed Laboratories, Inc. (San 

Francisco, CA, USA). Horseradish peroxidase conjugated antibodies against mouse 

and rabbit were from Amersham Pharmacia Biotech (Piscataway, NJ, USA). Alexa 

488 conjugated goat anti-mouse antibody was from Molecular Probes (Eugene, OR, 

USA). The monoclonal antibody 22D4 specific for the bovine CD-MPR was 

generously provided by D. Messner (Messner, 1993). This monoclonal antibody is 

specific for the bovine CD-MPR and does not cross-react with the endogenous mouse 

CD-MPR. The monoclonal antibodies for NaKATPase (N1/123/33) and p63 

(G1/296/22) were a gift from H.P. Hauri (Marxer et al., 1989; Schweizer et al., 

1993a). The monoclonal antibody for Rab5 was generously provided by J. Gruenberg 

(Gorvel et al., 1991) and the polyclonal antibody for Rab7 (no 14-1) was kindly 
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supplied by P. Chavrier (Chavrier et al., 1990). The monoclonal antibody for 

β1-4-galactosyltransferase-1 was a gift from E. Berger (Berger et al., 1986). 

 

Recombinant DNA 
All basic DNA procedures were as described (Sambrook et al., 1998). The PCR 

procedure of Ho and colleagues (Ho et al., 1989) was used to generate the MPR-

FFWYLL-A construct with pSFFV-MPR (Rohrer et al., 1995) serving as a template 

together with MPR-BglII.down (5’-CCGAGATCTCCCACTTAAGCGTGG-3’) and 

pSFFVneo.up2 (5’-CTGCCATTCATCCGCTTATTATC-3’) as the down- and 

upstream primers, respectively. Appropriate partial complementary pairs of 

oligonucleotides in which the desired amino acid replacement had been incorporated 

were chosen as internal primers. The final PCR product was subcloned into 

pSFFVneo as described (Rohrer et al., 1995) and confirmed by sequencing. 

 

Cell Culture and Transfection 
A mannose-6-P/insulin-like growth factor-II receptor-deficient mouse L cell 

line designated D9 (LRec–) was maintained in DMEM containing 10% FCS. The 

cells were transfected with XbaI-linearized DNA with Lipofectamine Plus according 

to the manufacturer's directions. Selection for resistance to neomycin (G418) was 

carried out using 500 µg/ml G418 as the final concentration. Resistant colonies were 

picked individually and screened for the expression of bovine CD-MPR by 

immunoblotting. Clones expressing similar amounts of receptor compared to ML4 

cells, the reference cell line expressing wt bovine CD-MPR (Johnson et al., 1990), 

were expanded for further study and maintained in selective medium.  

 

Internalization Assay 
Cells grown in 6-well plates were chilled on ice, rinsed four times with ice-cold 

PBS and then incubated with 1.5 ml of 3 mg/ml sulfo-NHS-SS-biotin in PBS for 

15 min to biotinylate surface proteins. Biotinylation was stopped by washing once 

with 50 mM glycine in PBS and twice with PBS. Some of the cells were then 

incubated at 37 °C with prewarmed growth medium containing 10% fetal calf serum 

and 20 mM Hepes, pH 7.4, for different periods of time (1, 5, and 15 min). The cells 

were returned to 4 °C to stop internalization, washed once with ice-cold PBS and then 
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incubated on ice twice for 20 min in a freshly prepared glutathione solution (50 mM 

L-glutathione reduced, 75 mM sodium chloride, 1 mM EDTA, pH 8, 0.075 N NaOH, 

1% BSA) to remove the biotin from proteins that were present on the cell surface. In 

addition, two samples that were not incubated at 37 °C were treated either with 

(0% control) or without (100% control) the glutathione solution on ice. After 

reduction, the cells were washed with PBS and the excess glutathione was quenched 

with a 5 min incubation on ice in PBS containing 5 mg/ml iodoacetamide. The cells 

were then washed twice with PBS, lysed in 1 ml buffer 2 (100 mM sodium phosphate 

(pH 8.0), containing 1% Triton X-100 and a 1:500 dilution of a protease inhibitor 

cocktail (5 mg/ml benzamidine, and 1 mg/ml each of pepstatin A, leupeptin, antipain, 

and chymostatin in 40% dimethyl sulfoxide-60% ethanol) (PIC) and 

phenylmethylsulfonyl fluoride (PMSF) (40 µg/ml) and passed five times through a 

25-gauge needle connected to a 1-ml syringe. After solubilizing for 30 min on ice, the 

cell lysates were centrifuged for 30 min at 40’000 rpm in a Ti 50 rotor (Beckman 

Instruments Inc.). The resulting supernatants were subjected to immunoprecipitation 

and Western blotting as described below. The biotinylated fraction of the proteins 

was then detected by enhanced chemiluminescence using streptavidin-horseradish 

peroxidase. 

 

Steady State Surface Distribution of CD-MPR 
Confluent cells in 12-well plates were washed with PBS and incubated for 

15 min on ice with either 0.5 ml 10 mg/ml BSA in PBS (cell surface) or with 0.5 ml 

PBS containing 10 mg/ml BSA and 0.1% saponin (total). The cells were incubated 

with 5 × 105 cpm of 125I-labeled 22D4 mAb against the CD-MPR in either 300 µl 

10 mg/ml BSA in PBS (cell surface) or 300 µl PBS containing 10 mg/ml BSA and 

0.1% saponin (total) on ice. After 2h, the cells were washed five times with 1 ml 

10 mg/ml BSA in PBS or 10 mg/ml BSA/0.1% saponin in PBS and solubilized in 

0.5 ml of 0.1 M NaOH. Cell-associated radioactivity was determined with a 

γ-counter. The iodination of the antibody was performed by ANAWA Trading SA 

(Zürich, Switzerland) according to their standard protocol. 
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Metabolic Labeling with [3H]Palmitate 
Cells were grown in 6-well plates. For the treatment at 19°C the cells were 

washed twice with PBS and pretreated at 19°C or 37°C for 30 min in 1 ml DMEM 

containing 20 mM Hepes (pH 7.4) and 5% low-lipid calf serum. For the treatment 

with wortmannin the cells were washed twice with PBS and preincubated with 

DMEM containing 20 mM Hepes (pH 7.4), 5% low-lipid calf serum and 1 µM 

wortmannin or 0.1% DMSO for control cells for 45 min at 37°C. After preincubation 

all cells were incubated with 150 µCi [3H]palmitate in 1 ml preincubation medium for 

90 min at 37°C. For the wortmannin treatment 1 µM wortmannin was added again to 

the labeling media after 45 min. After labeling, cells were chilled on ice, washed once 

with ice-cold PBS, scraped in 1 ml ice-cold PBS and centrifuged for 5’ at 260 x g at 

4°C. The pellets were lysed in 1 ml buffer-2 (100 mM sodium phosphate (pH 8.0), 

containing 1% Triton X-100 and a 1:500 dilution of a protease inhibitor cocktail 

(5 mg/ml benzamidine, and 1 mg/ml each of pepstatin A, leupeptin, antipain, and 

chymostatin in 40% dimethyl sulfoxide-60% ethanol) (PIC) and 

phenylmethylsulfonyl fluoride (PMSF) (40 µg/ml) and passed five times through a 

25-gauge needle connected to a 1-ml syringe. After solubilizing for 30 min on ice, the 

cell lysates were centrifuged for 30 min at 40’000 rpm in a Ti50 rotor (Beckman 

Instruments Inc.). The resulting supernatants were subjected to immunoprecipitation 

and subsequently analyzed by SDS-PAGE and fluorography as described below. 
 

Synthesis of [3H]Palmitoyl-CoA 
[3H]palmitoyl-coenzyme A ([3H]palmitoyl-CoA) was prepared from 750 µCi 

[3H]palmitate (60Ci/mmol, 10mCi/ml) by incubation with 0.05 U acyl-CoA 

synthetase in 1 ml of 0.05% Triton X-100, 0.5 mM coenzyme A, 1 mM ATP, 1 mM 

MgCl2, 40 mM KH2PO4, pH 7.5 for 1 hour at 37°C. The sample was dried in a 

Speed-Vac centrifugal evaporator (Savant Instr. Inc., Hicksville, NY, USA) and 

resuspended in 75 µl 50 mM Tris, pH 8.0. The purity was determined by thin-layer 

chromatography on Merck Silica Gel 60 plate using propanol-water-5% ammonia 

(70:10:20) as the developing solvent, resulting in an Rf of 0.43 for palmitoyl-CoA and 

0.61 for palmitate. The analysis showed ≥90% radiochemical purity. 
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CD-MPR purification 
Mouse L cells stably expressing bovine CD-MPR wt were grown in suspension. 

1.5x109 cells were centrifuged for 5 min at 260 x g at 4°C, washed with PBS, lysed in 

8 ml buffer-2 containing 1:500 dilution of a protease inhibitor cocktail and sonicated. 

After solubilizing for 30 min on ice, the cell lysates were centrifuged for 30 min at 

40’000 rpm at 4°C in a Ti 50 rotor (Beckman Instruments Inc.). The supernatant was 

loaded onto a 22D4 antibody column. This column was prepared by coupling 5 mg 

purified 22D4 monoclonal antibody to 5 ml activated CH-Sepharose 4B according to 

the manufacturer’s protocol. The column was washed with 150 ml buffer-2 

containing protease inhibitors at a flow rate of 1 ml/min. Bound CD-MPR was eluted 

with elution buffer (0.1 M glycine pH 3.0, 0.05% Triton X-100) in 1 ml fractions 

containing 100 µl 1 M Tris, pH 8.2 to neutralize. 10 µl of each fraction were 

subjected to SDS-PAGE and immunoblotting with 22D4 antibody. The fractions 

containing CD-MPR were pooled and concentrated with Centricon Plus-20 to obtain 

a concentration of 1 mg/ml. The Triton X-100 content was measured in a 

spectrophotometer at 277 nm wavelength and the protein concentration was 

determined using a Bio-Rad protein assay. The sample was aliquoted and frozen at 

-20°C. 

 

Percoll Density Gradient 
HeLa cells were grown on 15 cm culture dishes. Cells from twelve dishes were 

washed with PBS and scraped in 5 ml homogenization buffer (10 mM Tris, pH 7.4, 

0.25 M sucrose). The cells were centrifuged at 260 x g for 5 min at 4°C, resuspended 

in 5 ml homogenization buffer containing protease inhibitors and homogenized in a 

ball-bearing homogenizer (HMG, Heidelberg, Germany) with 12 strokes. The 

homogenate was centrifuged at 700 x g for 10 min at 4°C and 5 mg of the resulting 

post-nuclear supernatant (PNS) were diluted in 2.3 ml homogenization buffer and 

mixed with 9.2 ml 15% Percoll. The resulting 12% Percoll sample was loaded on top 

of a 0.5 ml 2.5 M sucrose pillow into a thin-walled open-top centrifugation tube and 

centrifuged at 20’000 rpm (28’000 x g) in a Ti70.1 rotor for 45 min at 4°C. 1 ml 

fractions were collected from the bottom of the gradient and the membranes of each 

fraction were pelleted by centrifugation at 80’000 rpm in a TLA 120.2 rotor for 

30 min at 4°C and resuspended in equal volumes. The fractions were assayed for 
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β-hexosaminidase activity (lysosomal enzyme) and subjected to SDS-PAGE and 

immunoblotting with antibodies against NaK-ATPase, galactosyltransferase, p63, 

Rab5 and Rab7 to determine the expression levels of these marker enzymes. 

 

In vitro Palmitoyltransferase Assay 
10 µg purified CD-MPR and 200 µCi [3H]palmitoyl-CoA were incubated with 

150 µg protein from HeLa cell PNS or membrane fraction in a total volume of 500 µl 

assay buffer (45 mM Tris, pH 8.0, 40.5 mM glycine, 2 mM ATP, 130 mM KCl, 

10 mM NaCl, 1 mM DTT, 0.02% Triton X-100). The sample was incubated at 37°C 

for 30 min. 500 µl 2x buffer-2 containing PIC and PMSF was added to the sample 

and solubilized on ice for 30 min followed by a centrifugation at 100’000 x g in a 

Ti50 rotor for 30 min at 4°C. The resulting supernatants were subjected to 

immunoprecipitation and subsequently analyzed by SDS-PAGE and fluorography as 

described below. 

 

Immunoprecipitation, SDS-PAGE, Fluorography and Immunoblotting 

For immunoprecipitation with anti-CD-MPR mAb 22D4, 30 µl of protein 

A-Sepharose was washed once with 1 ml buffer-1 (100 mM sodium phosphate 

(pH 8.0), 0.2% BSA) and then incubated with 1.5 µl rabbit anti-mouse antibody 

(1 mg/ml) in 500 µl buffer-1 for 2h at 4°C. After two washes with buffer-1, the beads 

were incubated with 10 µl of mAb 22D4 in 500 µl buffer-1 for 2h at 4°C. The beads 

were then washed with 1 ml buffer-1 and with 1 ml buffer-2. The washed beads and 

the radiolabeled cell lysates were combined and incubated overnight at 4°C with 

constant mixing. The protein A-Sepharose beads were pelleted, washed three times 

with buffer-2, and then once with 100 mM sodium phosphate (pH 8.0), followed by a 

final wash step with 10 mM sodium phosphate (pH 8.0). The immunocomplexes were 

released from the beads by boiling for 3 min in non-reducing SDS-PAGE sample 

buffer (94 mM Tris-HCl (pH 6.8), 3% SDS, 15% glycerol, 0.001% bromophenol 

blue). The proteins were separated on a 10% SDS-polyacrylamide minigel by using 

the Laemmli system (Laemmli, 1970). For fluorography the gel was stained with 

0.25 g Coomassie brilliant blue R-250 in 100 ml destaining solution (25% methanol, 

7% acetic acid in H2O) for 20 min, destained for 1h in destaining solution, incubated 

in H2O for 5 min, treated with 1 M sodium salicylate for 20 min, dried and exposed to 
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XOmat AR film (Kodak, Eastman Kodak Company, Rochester, NY, USA) for 3 to 

10 days. For Western blotting the gel was transferred onto a nitrocellulose membrane  

according to the method of Towbin (Towbin et al., 1979). The membrane was 

blocked with 3% nonfat dry milk powder (Sano Lait, Coop, Switzerland) in PBS. The 

blot was subsequently incubated with mAb 22D4 (diluted 1:500 in PBS-3% 

powdered milk) followed by a horseradish peroxidase conjugated anti-mouse 

secondary antibody (diluted 1:2000 in PBS-3% powdered milk). Immunoreactive 

proteins were visualized using the enhanced chemiluminescence detection system 

according to the manufacturer’s directions. The autoradiographs were quantitated 

using a personal densitometer (Amersham Pharmacia Biotech). 

 

Confocal Immunofluorescence Microscopy 
Cells were grown on coverslips, washed with PBS and fixed in 

3% paraformaldehyde pH 8.3 for 20 min followed by four washes with 20 mM 

glycine in PBS. The cells were permeablized in saponin buffer (0.1% saponin, 

20 mM glycine in PBS) for 20 min. All following steps were performed in saponin 

buffer. Cells were incubated with 22D4 antibody (1:500) for 30 min and washed four 

times followed by incubation with goat anti-mouse Alexa 488 antibody. The 

coverslips were washed four times and mounted on glass slides with ProLong 

Antifade (Molecular Probes, Eugene, OR, USA) for viewing with a Leica SP2 AOBS 

UV confocal laser-scanning microscope. Serial sections in the z axis through the 

entire cells were taken, and the resulting stacks of images were analyzed with the use 

of the Imaris program (Bitplane AG, Zürich, Switzerland). 

 

Assays and Miscellaneous Methods 
β-Hexosaminidase activity was determined by dilution of the samples in 300 µl 

1.67 mM p-nitrophenyl N-acetyl-β-glucosaminide, 50 mM citrate, pH 4.0, 

0.1% Triton X-100. The samples were incubated for 30-60 min at 37°C. The reaction 

was stopped with 1 ml 0.2 M sodium carbonate, and the absorbance read at 400 nm. 

Protein concentration was determined with the Bio-Rad (Hercules, CA, USA) protein 

assay kit using protein standard I according to the manufacturer’s protocol. 
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4. Results 
CD-MPR is enzymatically palmitoylated 

CD-MPR is reversibly palmitoylated at Cys30 and Cys34, wherein 

palmitoylation of the Cys34 is essential for the trafficking of the CD-MPR from 

endosomes to the TGN (Schweizer et al., 1996). To explore the nature of this 

reversible palmitoylation of the CD-MPR, an in vitro palmitoylation assay was 

developed. 10 µg of CD-MPR, purified as a full length membrane protein, was 

incubated with 200 µCi [3H]palmitoyl-CoA for 30 min at 37°C with HeLa cell 

homogenate. To maintain the CD-MPR in solubilized form, 0.02% Triton X-100 was 
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Figure 12: CD-MPR palmitoylation occurs enzymatically. A, 10 µg purified CD-MPR was incubated with [3H]palmitoyl-
CoA and 150 µg HeLa cell homogenate for 30 min at 37°C (lane 1) or at 4°C (lane 2). In lane 3, 150 µg HeLa cell homogenate 
was boiled for 15 min prior to incubation with CD-MPR and [3H]palmitoyl-CoA for 30 min at 37°C. Lane 4 shows the sample 
of an assay without HeLa cell homogenate. CD-MPR was immunoprecipitated and subjected to SDS-PAGE (10% gel). 
[3H]palmitate incorporation into CD-MPR was visualized by autoradiography. B, 10 µg purified CD-MPR was incubated with 
[3H]palmitoyl-CoA and 150 µg HeLa cell homogenate for 30 min at 37°C (lane 1). 10 µg purified CD-MPR was incubated 
with 50 mM DTT for 2 h at 50°C prior to incubation with [3H]palmitoyl-CoA and either without (lane 2) or with 150 µg HeLa 
cell homogenate (lane 3) for 30 min at 37°C. CD-MPR was immunoprecipitated. The sample in lane 4 corresponds to the 
sample in lane 1 that was subsequently incubated with 50 mM DTT for 2h at 50°C. The samples were separated on SDS-PAGE 
(10% gel). [3H]palmitate incorporation into CD-MPR was visualized by autoradiography. C, post-nuclear supernatant (PNS) of 
mouse L cells stably transfected with CD-MPR wild-type (wt) or CD-MPR C30,34A were incubated with [3H]palmitoyl-CoA 
for 30 min at 37°C. CD-MPR wild-type and mutant were subsequently immunoprecipitated and subjected to SDS-PAGE (10% 
gel). [3H]palmitate incorporation into CD-MPR was visualized by autoradiography (upper panel). Expression levels of the CD-
MPR wild-type and C30,34A in the PNS were determined by Western blotting (WB) with the anti-CD-MPR monoclonal 
antibody 22D4 (lower panel). 
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used. In a first step the assay was validated by demonstrating that palmitoylation of 

the CD-MPR occurs enzymatically. Incubation of purified CD-MPR with 

[3H]palmitoyl-CoA alone did not result in palmitoylated CD-MPR in contrast to the 

incubation of the receptor with [3H]palmitoyl-CoA and HeLa cell extract (Figure 

12A, lane 1 versus lane 4). Next, a potential palmitoyltransferase was either 

denatured by boiling the HeLa cell homogenate for 15 min prior to the incubation at 

37°C, or alternatively the entire reaction was carried out at 4°C (Figure 12A, lanes 2, 

3). In both cases no palmitoylated CD-MPR was detected. Furthermore, experiments 

with varying time and temperature of the incubation revealed that the assay is 

dependent on those parameters (data not shown). Altogether, these findings 

demonstrate that palmitoylation of the CD-MPR in this assay requires an active 

enzyme. Moreover, no autocatalytic palmitoylation was obtained when purified CD-

MPR was treated with 50 mM dithiothreitol (DTT) for 2h at 50°C to hydrolyze 

already attached palmitate moieties prior to the incubation with [3H]palmitoyl-CoA 

(Figure 12B, lane 2). However, DTT-treated CD-MPR was readily palmitoylated 

when HeLa cell homogenate was added to the assay (Figure 12B, lane 3). This 

showed that the enzymatic requirement was specific for palmitoylation and not the 

hydrolysis of the palmitate. The palmitic acid was attached via a thioester linkage 

which was demonstrated by treating the [3H]palmitoylated CD-MPR following the in 

vitro palmitoylation assay with 50 mM DTT for 2h at 50°C. The [3H]palmitate was 

released by DTT that hydrolyses thioesters (Fig. 1B, lanes 1 and 4), confirming 

previous results in vivo (Schweizer et al., 1996). In order to show, that the 

palmitoyltransferase in the in vitro assay specifically palmitoylated the cytoplasmic 

cysteines and not the lumenal ones, we used post-nuclear supernatant (PNS) from 

mouse L cells stably transfected with wt CD-MPR and with a mutant CD-MPR, with 

both cytoplasmic cysteines replaced by alanines (C30,34A). In this experiment the 

PNS comprised the palmitoyltransferase activity, as well as the appropriate substrate, 

which was immunoprecipitated after incubation with [3H]palmitoyl-CoA. We could 

show that the lumenal cysteines of the CD-MPR in the C30,34A were not substrate 

for the palmitoyltransferase, since this mutant did not show incorporation of 

[3H]palmitate (Figure 12C). 
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Palmitoyltransferase is a membrane protein 
The localization of the palmitoyltransferase was investigated by fractionating 

the cell homogenate. The 700 x g supernatant (post nuclear supernatant (PNS)) was 

subjected to a 100’000 x g spin. The pellet containing the membranes and the 

supernatant containing the cytosol were both tested for palmitoyltransferase activity 

in the in vitro assay. The vast majority of the activity was found in the pellet, thus in 

the membrane fraction (Figure 13). To differentiate between peripheral and integral 

membrane proteins, the pellet of the 100’000 x g spin was incubated with 0.5 M NaCl 

for 30 min at 4°C and then centrifuged once more at 100’000 x g for 30 min at 4°C. 

The resulting supernatant contained peripheral membrane proteins that were detached 

from the membrane, whereas the pellet consisted of integral membrane proteins. The 

CD-MPR palmitoyltransferase activity determined in the in vitro assay was recovered 

in the pellet, although reduced, which might reflect the exposure of the 

palmitoyltransferase to high salt concentration (Figure 13). Furthermore, a carbonate 

wash was applied to the membrane fraction. This harsher treatment more accurately 

separates peripheral from integral membrane proteins. The sample was incubated 

with 0.1 M sodium carbonate pH 11 for 30 min at 4°C, neutralized with HCl and 

subsequently centrifuged at 100’000 x g for 30 min at 4°C. When tested in the in vitro 

assay, no palmitoylated CD-MPR was detected in the pellet or in the supernatant 

(data not shown), indicating that the exposure to high pH irreversibly destroyed the 

palmitoyltransferase activity. 

 

Figure 13: Palmitoyltransferase is membrane-bound. The post-nuclear 
supernatant of HeLa cells was centrifuged at 100’000 x g for 30 min at 4°C. The 
pellet contained the membrane fraction (MF) and the supernatant consisted of the 
cytosol (Cyto). For the salt wash the membrane fraction was subsequently 
incubated with 0.5 M NaCl for 30 min at 4°C and centrifuged again. The resulting 
pellet (P) and the supernatant (S) as well as the membrane fraction (MF) and the 
cytosol (Cyto) were assayed for palmitoyltransferase activity in vitro. The 
samples were incubated with [3H]palmitoyl-CoA and purified CD-MPR at 37°C 
for 30 min. CD-MPR was immunoprecipitated und subjected to SDS-PAGE. 
[3H]palmitate incorporation into CD-MPR was visualized by autoradiography. 
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Cell fractionation to localize the palmitoyltransferase activity 
To determine the localization of the palmitoyltransferase, HeLa cell 

homogenate was separated on a self forming Percoll density gradient and 

12 individual fractions were harvested from the bottom. The fractions were then 

centrifuged at 100’000 x g to pellet the membranes and subsequently resuspended in 

equal volumes. With this step we isolated the membranes and organelles free 

fromcytosol, and therefore they didn’t contain the thioesterase APT1 which might act 

on the CD-MPR and thus influence the experimental data. The same percent of the 
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Figure 14: HeLa cell fractionation assayed for palmitoyltransferase (PT) activity in vitro. A, The post-
nuclear supernatant of HeLa cells was separated on a 15% percoll density gradient. Fractions were 
collected from bottom (fraction 1) to top (fraction 12) of the gradient. Membranes of fractions were 
centrifuged and pellets were resuspended in equal volumes. Equal volumes of fractions were tested for 
expression of marker enzymes of the different organelles by immunoblotting with the respective antibodies: 
galactosyltransferase (GalT) for Golgi, NaK-ATPase for plasma membrane (PM), p63 for rough 
endoplasmic recticulum (rER), Rab7 for late endosomes (LE) and Rab5 for early endosomes (EE). B, 150 
µg of each fraction was assayed for palmitoyltransferase activity in vitro. The samples were incubated with 
[3H]palmitoyl-CoA and purified CD-MPR at 37°C for 30 min. CD-MPR was immunoprecipitated und 
subjected to SDS-PAGE. [3H]palmitate incorporation into CD-MPR was visualized by autoradiography. 
The percentage of specific activity in each fraction was quantitated by densitometric scanning. The total 
activity per fraction was calculated using the protein concentration of each fraction. C, Graph combining 
percentages of marker enzyme expression per fraction and total palmitoyltransferase activity per fraction. 
Immunoblot shown in A was quantitated by densitometric scanning. Levels of β-hexosaminidase, a 
lysosomal marker enzyme, were measured with an activity assay with equal volumes of fractions. 
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fractions of the gradient was tested for expression of marker enzymes of the different 

organelles. A typical result is shown in Figure 14. The gradient clearly separated 

peaks of β-hexosaminidase (lysosomes), p63 (rough endoplasmic reticulum), 

galactosyltransferase (Golgi) and NaK-ATPase (plasma membrane) (Figure 14A and 

C). The distribution of marker proteins for the early (Rab5) and late endosomes 

(Rab7) was not as clearly separated as the other marker proteins. Rab5 had two major 

peaks, one very dense peak close to the lysosomal β-hexosaminidase (fraction 2), 

reflecting a heavy, probably coated early endosomal structure and a broad peak 

partially coinciding with the marker of the plasma membrane, representing a light 

early endosomal structure. The majority of Rab7 was found on a dense fraction 

(fraction 3) trailing off into lighter fractions (fractions 4-8), reflecting the 

heterogeneous nature of late endosomes. For each fraction 150 µg of protein was 

tested in the in vitro assay, to determine the specific palmitoyltransferase activity 

(Figure 14B). The specific activity of the palmitoyltransferase was quantified, 

subsequently the total activity per fraction was calculated and plotted in a graph 

together with the marker proteins for comparison (Figure 14C). The CD-MPR 

palmitoyltransferase activity showed a distribution with several small peaks that 

coincided with the distribution of the early endosomes, possibly reflecting an 

association of the palmitoyltransferase with this organelle. Alternatively, the 

palmitoyltransferase could be localized to several organelles including the Golgi, the 

plasma membrane and heavy early endosomal structures (Figure 14C). 

 

In vivo labeling with [3H]palmitate to localize palmitoyltransferase 

activity 
Further investigation to localize the palmitoyltransferase was performed with in 

vivo labeling experiments by adding [3H]palmitate to the cells which was 

incorporated by the CD-MPR. These experiments were carried out with two 

CD-MPR constructs, the wt and a mutant construct (FFWYLL-A, Figure 15A), stably 

transfected into mouse L cells. In the mutant CD-MPR the important amino acids of 

all three internalization signals (Denzer et al., 1997) were mutated to alanines. 

Therefore the mutant CD-MPR was not internalized, whereas the wt CD-MPR was 

rapidly internalized (Figure 15B). This led to an accumulation of the mutant 

CD-MPR at the plasma membrane of 88%, while wt CD-MPR was expressed at the 
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plasma membrane only to 19% (Figure 15C). The cells were subjected to two 

treatments to block certain transport steps within the cell, in order to accumulate the 

proteins in a specific organelle. The levels of palmitoylated CD-MPR in control cells 

and treated cells were compared to determine whether the palmitoyltransferase and 

CD-MPR accumulated in the same organelle. One block was evoked by wortmannin, 

a fungal metabolite which inhibits the phosphatidylinositol 3-OH kinase (PI3K). It 

has been shown that the addition of wortmannin to cells at micromolar concentration 

for one hour causes an accumulation of the cation-independent mannose 6-phosphate 

receptor (CI-MPR) and furin in enlarged endosomes (Brown et al., 1995; Kundra and 

Kornfeld, 1998; Mallet and Maxfield, 1999). In order to accumulate proteins in 

endosomes, cells were pretreated with 1 µM wortmannin or as a control with 

0.1% dimethyl sulfoxide (DMSO) for 45 min and labeled with [3H]palmitate for 

90 min at 37°C in the presence of  0.1% DMSO or  wortmannin which was repeatedly  
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Figure 15: Increased surface levels and decreased internalization rate of MPR-FFWYLL-A. A, Schematic illustration of 
the cytoplasmic tails of the CD-MPR constructs. The amino acids are shown in single letter code. The internalization signals 
which are mutated to alanines in the mutant construct and the palmitoylated cysteines are indicated by bold letters. B, Cell 
surface proteins of mouse L cells stably expressing MPR wt ( ) and MPR-FFWYLL-A ( ) were derivatized at 4°C using 
sulfo-NHS-SS-biotin. The cells were then incubated at 37 °C for the indicated time and subsequently chilled on ice. The biotin 
groups remaining at the cell surface were removed by incubation in a reducing glutathione solution. The cells were lysed, and 
the wild type and mutant form of MPR were immunoprecipitated. Immunoprecipitates were resolved by SDS-PAGE and 
subjected to immunoblotting using a streptavidin-horseradish peroxidase conjugate. The immunoblots of two experiments were 
quantitated for each construct, and the values were expressed as their percentage of the sample that was kept at 4 °C and not 
treated with glutathione. The values were shown from two separate experiments. C, Mouse L cells stably expressing MPR wt 
and MPR-FFWYLL-A were incubated with iodinated antibodies against CD-MPR for 2 hours on ice either without saponin for 
the surface levels or with 0.1% saponin to determine the total CD-MPR levels. The cells were lysed and the cell-associated 
radioactivity was determined with a γ-counter. The bars represent the percentage of wt and mutant CD-MPR that were present 
at the cell surface at steady state. The values are expressed as mean ± S.E.M. from four separate experiments. 
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Figure 16: Effect of wortmannin and 19°C temperature block on the localization of 
CD-MPR wt and FFWYLL-A. Mouse L cells stably expressing MPR wt (A-C) and MPR-
FFWYLL-A (D-F) were fixed, permeabilized and incubated with the monoclonal antibody 22D4 
against CD-MPR followed by goat anti-mouse Alexa 488. Prior to fixation B and E were treated 
with 1 µM wortmannin for 90 min, whereas C and F were incubated at 19°C for 90 min. Scale 
bars are 10 µm. Arrows in B indicate enlarged endosomes. 

 

added every 45 min due to the short half-life of wortmannin. Upon treatment with 

wortmannin, wt CD-MPR accumulated in enlarged endosomes (Figure 16A, B 

arrows), while the mutant CD-MPR at the plasma membrane had no altered 

distribution (Figure 16D versus E). Wt CD-MPR had an increased level of 

palmitoylation upon addition of wortmannin compared to control cells, whereas the 

mutant CD-MPR was less palmitoylated than in control cells (Figure 17). This result 

demonstrated that the palmitoyltransferase is not only present at the plasma 

Figure 17: CD-MPR palmitoylation upon 
wortmannin treatment in vivo. A, Mouse L cells 
stably expressing MPR wt and MPR-FFWYLL-A 
were pretreated with 1 µM wortmannin or 0.1% 
DMSO for 45 min and then labeled with [3H]palmitate 
for 90 min in the presence of 1 µM wortmannin 
(repeatedly added after every 45 min) or 0.1% DMSO. 
The cells were then chilled on ice and lysed. CD-MPR 
was immunoprecipitated and subjected to SDS-PAGE. 
[3H]palmitate incorporation into CD-MPR was 
visualized by autoradiography. B, Level of CD-MPR 
expression. 10% of the immunoprecipitated sample 
was subjected to SDS-PAGE and Western blotting 
(WB) with 22D4 mAb against CD-MPR. C, 
Quantitation of [3H]palmitate incorporation into CD-
MPR wt and FFWYLL-A. The fluorography and the 
Western blot shown in A and B, respectively, and 
those from additional experiments were quantitated by 
densitometric scanning. In each experiment the values 
obtained for the [3H]palmitate incorporation were 
corrected for the CD-MPR expression levels. The 
value obtained with the DMSO treated CD-MPR wt 
was set to 1. The values are expressed as mean ± 
S.E.M. from three separate experiments. 
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membrane (high level of palmitoylation of the mutant CD-MPR) but also in the 

endosomes. Upon treatment with wortmannin, the palmitoyltransferase accumulated 

in the endosomes, where also wt CD-MPR accumulated and hence the level of 

palmitoylation of wt CD-MPR was highly elevated. Furthermore, palmitoylation of 

the mutant CD-MPR decreased upon treatment with wortmannin, indicating that the 

palmitoyltransferase was depleted from the plasma membrane. Altogether, these data 

show that the palmitoyltransferase cycles between the plasma membrane and 

endosomes and that the addition of wortmannin trapped the enzyme in endosomes. To 

further investigate the internal trafficking pathway of the palmitoyltransferase, a 

different block of intracellular transport was applied. Incubation of cells at 19°C 

blocks the exit out of the TGN, therefore accumulating proteins that cycle through the 

TGN (Matlin and Simons, 1983; Griffiths et al., 1985). Cells were preincubated either 

at 19°C or 37°C for 30 min and subsequently labeled with [3H]palmitate for 90 min at 

19°C or 37°C. As expected, the temperature block accumulated wt CD-MPR in the 

TGN, whereas the localization of the mutant CD-MPR at the plasma membrane was 

not affected (Figure 16A,C,D,F). The level of palmitoylation of the mutant CD-MPR 

was not changed by the temperature block, whereas the extent of palmitoylation of 

the wt CD-MPR was strongly reduced at 19°C (Figure 18). This data indicates that 

the palmitoyltransferase does not cycle through the Golgi or the TGN, and therefore 

its trafficking is not affected by this temperature block.  

Figure 18: CD-MPR palmitoylation upon 
19°C temperature block in vivo. A, Mouse 
L cells stably expressing MPR wt and MPR-
FFWYLL-A were preincubated at 19°C or 
37°C for 30 min and then labeled with 
[3H]palmitate for 90 min at 19°C or 37°C, 
respectively. The cells were then chilled on 
ice and lysed. CD-MPR was 
immunoprecipitated and subjected to SDS-
PAGE. [3H]palmitate incorporation into 
CD-MPR was visualized by autoradiography. 
B, Level of CD-MPR expression. 10% of the 
immunoprecipitated sample was subjected to 
SDS-PAGE and Western blotting (WB) with 
22D4 mAb against CD-MPR. C, Quantitation 
of [3H]palmitate incorporation into CD-MPR 
wt and FFWYLL-A. The fluorography and 
the Western blot shown in A and B, 
respectively, and those from additional 
experiments were quantitated by 
densitometric scanning. In each experiment 
the values obtained for the [3H]palmitate 
incorporation were corrected for the 
CD-MPR expression levels. The value 
obtained with the CD-MPR wt incubated at 
37°C was set to 1. The values are expressed 
as mean ± S.E.M. from three separate 
experiments. 
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5. Discussion 
The results presented in this study demonstrate that a membrane-bound enzyme 

is responsible for palmitoylation of the CD-MPR. Further characterization revealed 

that the palmitoyltransferase shuttles between the plasma membrane and endosomes. 

Palmitoylation of a cysteine residue 34 amino acids distal from the trans-

membrane domain is quite rare and the resulting membrane anchoring by the 

palmitate implies a drastic change in conformation of the entire cytoplasmic tail. The 

altered three-dimensional structure might have an effect on the exposure and 

accessibility of the sorting signals within the cytoplasmic tail of the receptor. To 

confirm the hypothesis that reversible palmitoylation of the CD-MPR regulates the 

sorting signals of the receptor, one prerequisite was to prove that an enzyme is 

involved in palmitoylation. Therefore we established an in vitro palmitoylation assay 

with purified CD-MPR and [3H]palmitoyl-CoA as substrates and HeLa cell 

homogenate, containing the palmitoyltransferase activity. The in vitro assay uses the 

final substrates also required in vivo for palmitoylation. Hence the assay is very 

specific for the palmitoyltransferase activity and not dependent on additional enzymes 

such as the acyl-CoA synthase to synthesize [3H]palmitoyl-CoA from [3H]palmitate 

and coenzyme A. The CD-MPR, purified as a full length membrane protein from 

tissue culture cells is used in the assay, therefore containing the intact three-

dimensional structure that might be essential for recognition by the 

palmitoyltransferase. The in vitro palmitoylation is abolished by boiling the HeLa cell 

homogenate to denature the palmitoyltransferase or by performing the assay on ice 

thereby inactivating the palmitoyltransferase. Furthermore, CD-MPR is not 

autocatalytically palmitoylated when incubated with [3H]palmitoyl-CoA, thus 

demonstrating the requirement of an enzyme for palmitoylation. Palmitoylation is 

time- and temperature dependent, which are characteristics of an enzymatic reaction. 

All these results demonstrate that palmitoylation occurs enzymatically and further 

characterization revealed that the palmitoyltransferase is membrane-bound. The 

specificity of the palmitoyltransferase activity in the in vitro assay was further 

confirmed due to the fact that the lumenal cysteine residues were not palmitoylated in 

a mutant CD-MPR lacking the cytoplasmic cysteine residues (MPR-C30,34A). 

To identify the intracellular localization of the palmitoyltransferase the cell 

homogenate was separated on a Percoll density gradient. A good separation of 
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intracellular organelles was achieved for lysosomes, rough endoplasmic reticulum, 

the Golgi and the plasma membrane. The early and late endosomal compartments 

were dispersed over several fractions of the gradient, most likely due to the 

heterogeneous nature of these organelles. One peak of the marker for early 

endosomes was recovered in a very dense fraction (fraction 3) which might represent 

a coated/heavy subpopulation of an otherwise light organelle. A similar distribution 

was found for the late endosomes with a peak in a very dense fraction trailing into 

lighter fractions, also representing the heterogeneous nature of this organelle. The 

fractions were tested in the in vitro palmitoylation assay revealing that most of the 

total palmitoyltransferase activity was recovered in two peaks, one peak in a dense 

fraction and a second broad peak in light fractions. The same distribution was found 

for early endosomes. This could imply that the palmitoyltransferase is localized in 

early endosomes and therefore cofractionates with this organelle. Alternatively, it is 

also possible that the palmitoyltransferase is localized in more than one organelle and 

part of it fractionates with the corresponding organelle like early endosomes and the 

plasma membrane. To verify the localization of the palmitoyltransferase by additional 

methods, CD-MPR in vivo labeling experiments with [3H]palmitate were performed, 

applying blocks to intracellular traffic to accumulate the receptor and possibly the 

palmitoyltransferase in a particular compartment. These experiments showed that the 

palmitoyltransferase cycles between the plasma membrane and endosomes. 

Wortmannin caused an accumulation of wt CD-MPR in the endosomes (Figure 16A, 

B) (Brown et al., 1995; Kundra and Kornfeld, 1998). The increased level of 

palmitoylation of the wt CD-MPR upon addition of wortmannin demonstrated that 

the palmitoyltransferase is accumulated in endosomes as well. This accumulation was 

confirmed by the decreased extent of palmitoylation of the mutant CD-MPR at the 

plasma membrane upon treatment with wortmannin, showing that the 

palmitoyltransferase is depleted from the plasma membrane under this condition. 

Wortmannin does not affect the palmitoyltransferase reaction in general, which is 

demonstrated by both effects, a decrease and an increase, in the same experiment with 

different mutants. Thus wortmannin influences palmitoylation by changing the 

localization of the enzyme and the substrate indicating that the palmitoyltransferase 

cycles between the plasma membrane and endosomes. To determine whether the 

palmitoyltransferase cycles through the TGN as well, an incubation at low 
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temperature (19°C) was used to specifically block vesicular transport out of the TGN 

(Matlin and Simons, 1983; Griffiths et al., 1985). Thus, proteins like the wild-type 

CD-MPR, that cycle through the TGN as part of their normal trafficking route, are 

still delivered to the TGN, but fail to leave this organelle and therefore accumulate in 

the TGN upon reducing the temperature to 19°C. The mutant receptor is not affected 

by the temperature block since it is stuck at the plasma membrane and does not cycle 

at all. The decrease in palmitoylation of the wild-type CD-MPR upon the temperature 

block demonstrated that the palmitoyltransferase was not accumulated in the TGN 

together with wild-type receptor. In contrast to the wild-type receptor, both the 

mutant CD-MPR and the palmitoyltransferase were not affected by the temperature 

block and hence the level of palmitoylation of the mutant CD-MPR stayed 

unchanged. Furthermore, the normal level of palmitoylation of the mutant CD-MPR 

at 19°C was evidence to show that the incubation time and the kinetics of 

palmitoylation were sufficient to yield maximal extent of palmitoylation despite the 

lower temperature. The elevated level of palmitoylation of mutant receptors 

compared to wild-type receptors in non-treated cells reflects the different 

localizations of the receptors in relation to the palmitoyltransferase. At steady state 

wild-type receptors are mainly localized to the TGN, an organelle lacking the 

palmitoyltransferase activity, in contrast to mutant receptors that remain at the plasma 

membrane, which contains the palmitoyltransferase activity. 

Altogether, we suggest a model where the palmitoyltransferase cycles between 

the plasma membrane and endosomes without passing through the TGN. This 

confirms the data from the Percoll gradient, where the palmitoyltransferase activity 

mostly colocalized with early endosomes and the plasma membrane.  

Although we can not completely rule out a more complicated model involving 

two cytosolic thioesterases, one recruited to the TGN and one recruited to endosomes 

and the plasma membrane to explain our data, we consider this less likely. The 

increased and decreased levels of palmitoylation of the CD-MPR upon treatment with 

wortmannin (Fig. 6) could be explained by a depletion of a thioesterase on endosomes 

(due to an effect of PI3K inhibition), which in turn has to induce an accumulation of 

this enzyme at the plasma membrane. The decrease in palmitoylation of the wild-type 

CD-MPR upon incubation at 19°C (Figure 18) would involve an accumulation of a 

thioesterase in the TGN, thus recruitment of a thioesterase to the TGN is required, in 
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addition to endosomes and the plasma membrane. Upon accumulation at the TGN, 

this thioesterase should consequently be depleted from the other localizations, as it 

was the case upon treatment with wortmannin. However, the lack of a coinciding 

depletion of the thioesterase from the plasma membrane upon incubation at 19°C 

would indicate that two thioesterases are involved. Nevertheless, this model also 

requires palmitoyltransferase activity in both, endosomes and at the plasma 

membrane to account for the increased level of palmitoylation upon incubation with 

wortmannin (Figure 17) and the palmitoylation of the mutant CD-MPR, stuck at the 

plasma membrane (Figure 17 and Figure 18).  

This leads us to the conclusion that a palmitoylation activity exists both at the 

plasma membrane and endosomes independent of which model holds true.  

Palmitoyltransferase activities were reported in the early secretory pathway 

(Veit and Schmidt, 1993), in the Golgi (Gutierrez and Magee, 1991) and at the 

plasma membrane (Dunphy et al., 1996). Our findings expand the knowledge about 

the localization of palmitoyltransferase activities with a transferase that cycles 

between endosomes and the plasma membrane. The variety of palmitoylated 

substrates and the lack of a clear consensus sequence suggest that several 

palmitoyltransferases with different specificities might exist. In mammals no 

candidate is known that could be the putative palmitoyltransferase of the CD-MPR. 

Two DHHC-CRD containing palmitoyltransferases identified in yeast, Akr1p and the 

Erf2p/Erf4p complex (Lobo et al., 2002; Roth et al., 2002), have different 

intracellular localizations and exhibit high substrate specificities, thereby validating 

the assumption of various palmitoyltransferases. Database searches revealed that 

there are 12 DHHC-CRD containing proteins in Homo sapiens, but none of them 

have been cloned so far. Further investigation will be required to determine if there is 

a cycling palmitoyltransferase among them, which cycles between the plasma 

membrane and endosomes with a specificity for the CD-MPR.  

Furthermore, a palmitoyltransferase which cycles between the plasma 

membrane and endosomes could play a role in signal transduction. The G-protein-

coupled receptor, β2-adrenergic receptor (β2AR), for example, is palmitoylated and 

this prevents phosphorylation of a nearby phosphorylation site. Upon activation by an 

agonist the β2AR is depalmitoylated, followed by phosphorylation, desensitization 

and internalization. In endosomes β2AR either gets targeted for degradation or 
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dephosphorylated and subsequently recycled back to the plasma membrane with 

restoration of its native state by palmitoylation, possibly in the endosomes or at the 

plasma membrane (Pippig et al., 1995; Loisel et al., 1996; Moffett et al., 1996).  

Moreover, endosomes are dynamic compartments displaying a highly complex 

and pleiomorphic organization (Gruenberg, 2001). No membrane protein has been 

reported so far that is restricted to endosomes, suggesting that a protein which is 

active in endosomes has to recycle, possibly via the plasma membrane. 

Since the half-life of palmitoylation of the CD-MPR (less than 2 hours) is much 

less than the half-life of the CD-MPR (more than 40 hours) (Schweizer et al., 1996), 

it gets repeatedly palmitoylated during its life time. As a consequence, the 

palmitoyltransferase should be localized in a compartment that is part of the 

trafficking itinerary of the CD-MPR. The intracellular distribution of the CD-MPR 

comprises the TGN, the plasma membrane, early and late endosomes (Klumperman 

et al., 1993) and hence includes the organelles containing the palmitoyltransferase 

thereby enabling repeated palmitoylation of the CD-MPR. Moreover palmitoylation 

is essential for the CD-MPR in the late endosomes to avoid trafficking to the 

lysosomes (Schweizer et al., 1996). The localization of the palmitoyltransferase at the 

plasma membrane and endosomes is ideal to ensure that the CD-MPR is 

palmitoylated in the late endosomes thereby enabling its proper trafficking. The 

localization of the palmitoyltransferase to the site of its required function not only 

validates our results but also supports the hypothesis that palmitoylation might 

regulate the sorting of the CD-MPR by modulating the presentation of the sorting 

signals in the cytosolic tail. 
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1. Summary 
Lysosomal biogenesis depends on proper transport of lysosomal enzymes by 

the cation-dependent mannose 6-phosphate receptor (CD-MPR) from the trans-Golgi 

network (TGN) to endosomes. Trafficking of the CD-MPR is mediated by sorting 

signals in its cytoplasmic tail. GGA1 (Golgi-localizing, γ-ear-containing, ARF-

binding protein-1) binds to CD-MPR in the TGN, and targets the receptor to clathrin-

coated pits for transport from the TGN to endosomes. The motif of the CD-MPR 

which interacts with GGA1 was shown to be D61-X-X-L64-L65. Reports on increased 

affinity of cargo, when phosphorylated by casein kinase 2 (CK2), to GGAs, focused 

our interest on the effect of the CD-MPR CK2 site on binding to GGA1. Here we 

demonstrate that E58 and E59 of the CK2 site are essential for high affinity GGA1 

binding in vitro, while the phosphorylation of S57 of the CD-MPR has no influence on 

receptor binding to GGA1. Furthermore, the in vivo interaction between GGA1 and 

CD-MPR was abolished only when all residues involved in GGA1 binding were 

mutated, namely, E58, E59, D61, L64 and L65. In contrast, binding of adaptor protein-1 

(AP-1) to CD-MPR required all the glutamates surrounding the phosphorylation site, 

namely, E55, E56, E58 and E59, but like GGA1 binding, was independent of the 

phosphorylation of S57. The binding affinity of GGA1 to the CD-MPR was found to 

be 2.4-fold higher than that of AP-1. This could regulate binding of the two proteins 

to the partly overlapping sorting signals, allowing AP-1 binding to the CD-MPR only 

when GGA1 is released upon autoinhibition by phosphorylation. 
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2. Introduction 
The cation-dependent mannose 6-phophate receptor (CD-MPR) is a type I 

integral membrane protein which is involved in the transport of lysosomal hydrolases 

to the lysosomes (Kornfeld, 1992; Hille-Rehfeld, 1995). Newly synthesized 

lysosomal enzymes acquire a mannose 6-phosphate (M6P) tag on their N-linked 

oligosaccharides by sequential action of two enzymes in the Golgi and the trans-Golgi 

network (TGN). (Bao et al., 1996b; Kornfeld et al., 1998). The M6P tag acts as 

lysosomal targeting signal and is recognized by the CD-MPR in the TGN. Upon 

binding lysosomal enzymes, CD-MPR is packaged into clathrin-coated vesicles and 

transported to the acidified endosomes, where the receptor dissociates from the ligand 

which is subsequently packaged into lysosomes. However, the receptor is transported 

either to the plasma membrane, where it is rapidly internalized, or recycled back to 

the TGN to mediate another round of sorting. The trafficking of the CD-MPR is 

directed by signals located in its 67 amino acid cytoplasmic tail.  

Binding of the CD-MPR cytoplasmic tail to GGA1 (Golgi-localizing, γ-ear-

containing, ARF-binding protein-1) mediates its transport out of the TGN 

(Puertollano et al., 2001a). GGA1 is a monomeric, soluble adaptor with four domains 

– an N-terminal VHS (Vps27p/Hrs/STAM) domain, a GAT (GGA and TOM1) 

domain, a connecting hinge segment and a C-terminal GAE (γ-adaptin ear) domain 

(Boman et al., 2000; Dell'Angelica et al., 2000; Hirst et al., 2000). Recruitment of 

GGA1 to the TGN is mediated by an interaction of the GAT domain with ADP 

ribosylation factor (ARF) (Collins et al., 2003). The VHS domain of GGA1 binds 

cargo which is subsequently targeted to clathrin-coated pits, mediated through an 

interaction between the GGA1 hinge domain with clathrin and adaptor protein-1 

(AP-1) (Puertollano et al., 2001a; Doray et al., 2002b). The key residues in cargo, 

such as CD-MPR, cation-independent MPR (CI-MPR), sortilin, memapsin 2 and low 

density lipoprotein receptor-related protein 3 (LRP3), for binding to the VHS domain 

of GGA1 were shown to be DXXLL (Puertollano et al., 2001a; Takatsu et al., 2001; 

He et al., 2002; Misra et al., 2002). For the CI-MPR, it was shown that the 

phosphorylation by casein kinase 2 (CK2) of the serine preceding the aspartate 

increases its affinity to GGA1 (Misra et al., 2002). Furthermore, the acidic cluster-

dileucine motif in the hinge domain of GGA1 requires phosphorylation by CK2 of the 

serine three residues upstream of the aspartate to facilitate autoinhibition of the VHS 
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domain, by intramolecular or intermolecular binding (Doray et al., 2002a). The 

CD-MPR also contains a serine upstream of the D61-X-X-L64-L65, which is 

phosphorylated by CK2, but its involvement in GGA1 binding has not been 

investigated so far (Hemer et al., 1993; Körner et al., 1994).  

Reports on the functional importance of the CK2 phosphorylation site are 

controversial. Normal as well as impaired lysosomal enzyme delivery was reported 

for CD-MPR with mutant CK2 phosphorylation sites (Johnson and Kornfeld, 1992b; 

Mauxion et al., 1996; Breuer et al., 1997). Furthermore, the phosphorylation of S57 

was suggested to be required for surface delivery of the CD-MPR either directly from 

TGN or by inhibiting transport from endosomes to TGN (Breuer et al., 1997). On the 

other hand, phosphorylation of S57 was shown to be essential for AP-1 binding at the 

TGN for proper sorting to endosomes (Mauxion et al., 1996; Ghosh and Kornfeld, 

2003a). However, Höning and colleagues (Höning et al., 1997) showed high affinity 

binding of AP-1 to non-phosphorylated CD-MPR peptides (residues 1-67 and 49-67). 

Altogether it is uncertain whether the phosphorylated serine or the non-

phosphorylated serine leads to plasma membrane delivery of the CD-MPR, resulting 

in missorting of lysosomal enzymes, or whether it has an effect on lysosomal enzyme 

sorting at all. 

Before the GGAs and their function of sorting in the TGN were identified, 

AP-1 was thought to mediate TGN sorting of cargo, such as CD-MPR (Ahle et al., 

1988; Klumperman et al., 1993; Höning et al., 1997). Since the discovery of the 

GGAs the function of AP-1 became less clear and thereafter, some models accounting 

for the function of AP-1 were suggested. Fibroblasts deficient in µ1-subunit of AP-1 

accumulated CD-MPR in endosomes and showed reduced retrograde transport in 

vitro, which led to the conclusion that AP-1 could be involved in retrograde transport 

from endosomes to the TGN (Meyer et al., 2000; Medigeshi and Schu, 2003). 

However, the localization of AP-1 to the TGN and in clathrin-coated vesicles 

originating from the TGN, as well as its increased binding to CD-MPR upon 

phosphorylation of the receptor led to a model where GGA1 recruits cargo, and by 

phosphorylation of both, GGA1 and cargo, GGA1 hands over the cargo to AP-1, 

which mediates vesicle budding from TGN (Klumperman et al., 1993; Doray et al., 

2002b; Ghosh and Kornfeld, 2003a; Ghosh and Kornfeld, 2003b). 
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Our aim was to explore the involvement of the CK2 phosphorylation site in 

GGA1 and AP-1 binding in order to determine the importance of the CK2 

phosphorylation of CD-MPR in TGN sorting. In this paper we show that two 

glutamates, E58 and E59 are involved in GGA1 binding in vitro in addition to the 

known DXXLL motif and that phosphorylation of S57 of the CD-MPR had no effect 

on GGA1 binding. The importance of E58 and E59 of the CD-MPR for high affinity 

binding of GGA1 was further confirmed by kinetic studies. Analysis of the 

interaction of GGA1 with the CD-MPR in vivo demonstrates that the binding was 

abolished, only when residues E58, E59, D61, L64 and L65 were mutated simultaneously. 

A comparison of the binding properties of AP-1 and GGA1 to the CD-MPR revealed 

subtle but essential differences. Most importantly the CD-MPR has a lower binding 

affinity to AP-1 than to GGA1. Furthermore, all four glutamates, E55, E56, E58 and 

E59, but not the phosphorylation of S57, were involved in AP-1 binding.  
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3. Materials and Methods 
Materials 

Enzymes used in molecular cloning were obtained from Roche Diagnostics 

(Mannheim, Germany), New England Biolabs (Beverly, MA, USA), or Promega 

(Madison, WI, USA); general chemicals from Fluka (Buchs, Switzerland); protease 

inhibitors from Sigma (St. Louis, MO, USA); Dulbecco's Modified Eagle Medium 

(DMEM), fetal calf serum (FCS), G418 and Lipofectamine Plus were from Invitrogen 

(Carlsbad, CA, USA); polyethylenimine, 25 kDa (CAT# 23966) from Polysciences, 

Inc. (Warrington, PA, USA); cell culture dishes from Falcon (Franklin Lakes, NJ, 

USA); nitrocellulose from Schleicher & Schuell (Dassel, Germany); enhanced 

chemiluminescence Western blotting reagents from PerkinElmer Life Sciences 

(Boston, MA, USA); Glutathione Sepharose 4B and low molecular weight protein 

markers from Amersham Pharmacia Biotech (Piscataway, NJ, USA); Prolong 

Antifade from Molecular Probes (Eugene, OR, USA). Oligonucleotides were 

synthesized either by the DNA synthesis facility of the Friedrich Miescher Institute 

(Basel, Switzerland) or Microsynth GmBH (Balgach, Switzerland). 

 

Antibodies 
Horseradish peroxidase conjugated antibodies against mouse and rabbit were 

from Amersham Pharmacia Biotech (Piscataway, NJ, USA). Alexa 568 conjugated 

goat anti-mouse antibody was from Molecular Probes (Eugene, OR, USA). The 

monoclonal antibody 22D4 specific for the bovine CD-MPR was generously 

provided by D. Messner (Messner, 1993). This monoclonal antibody is specific for 

the bovine CD-MPR and does not cross-react with the endogenous mouse CD-MPR 

(Rohrer and Kornfeld, 2001). 

 

Recombinant DNA 
All basic DNA procedures were as described (Sambrook et al., 1998). The PCR 

procedure of Ho and colleagues (Ho et al., 1989) was used to generate the MPR-

FFWYLL-A, MPR-C30,34A, MPR-S57A, MPR-S57D, MPR-Clus-S, MPR-Clus-A, 

MPR-Clus-D, MPR-E55Q, MPR-E56Q, MPR-E55,56Q, MPR-E58Q, MPR-E59Q, MPR-

E58,59Q, MPR-D61N, MPR-D61N,L64,65A, MPR-E58,59Q,D61N,L64,65A constructs with 
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pSFFV-MPR (Rohrer et al., 1995) serving as a template together with MPR-

BglII.down (5’-CCGAGATCTCCCACTTAAGCGTGG-3’) and pSFFVneo.up2 

(5’-CTGCCATTCATCCGCTTATTATC-3’) as the down- and upstream primers 

respectively. Appropriate partial complementary pairs of oligonucleotides in which 

the desired amino acid replacement had been incorporated were chosen as internal 

primers. The final PCR products were subcloned into pSFFVneo as described (Rohrer 

et al., 1995) and confirmed by sequencing. 

The GST-GGA1-A240stop construct was generated by PCR-amplification, 

using myc-GGA1pFB1 (a generous gift from Stuart Kornfeld, Washington University 

School of Medicine, St. Louis, MO, USA) as a template and subsequent cloning into 

the BamHI-NotI sites of pGEX-6p3 (Amersham Pharmacia Biotech, Piscataway, NJ, 

USA). The GFP-GGA1-A240stop construct was generated in two steps as follows. 

The GGA1-A240stop insert was subcloned into the BamHI-NotI sites of pcDNA3.1+ 

which was then digested with XhoI, the overhanging 5’ end was filled up with the 

Klenow fragment of DNA polymerase I and subsequently digested with KpnI. The 

fragment was ligated with KpnI-SmaI-digested pEGFP-C1 vector (BD Biosciences 

Clonetech, Palo Alto, CA, USA). The construct was confirmed by sequencing. 

 

Cell Culture and Transfection 
A mannose-6-P/insulin-like growth factor-II receptor-deficient mouse L cell line 

designated D9 (LRec–) was maintained in DMEM containing 10% FCS. The cells 

were transfected with XbaI-linearized DNA with Lipofectamine Plus according to the 

manufacturer's directions. Selection for resistance to neomycin (G418) was carried out 

using 500 µg/ml G418 as the final concentration. Resistant colonies were picked 

individually and screened for the expression of bovine CD-MPR by immunoblotting. 

Clones expressing similar amounts of receptor compared to ML4 cells, the reference 

cell line expressing wt bovine CD-MPR (Johnson et al., 1990), were expanded for 

further study and maintained in selective medium.  

Mouse L cells stably expressing wild-type or mutant CD-MPR were grown on 

coverslips in 6-well plates in DMEM to 50% confluency before transient transfection 

with pEGFP-GGA1-A240stop using polyethylenimine (25 kDa). 2.2 µg DNA in 75 µl 

DMEM was mixed with 8 µl 1 mg/ml polyethylenimine in 75 µl DMEM, vortexed 

and incubated for 15 min at room temperature following addition of 1.05 ml DMEM. 
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The mix was added to the cells in the 6-well plate and after 24 h the cells were fixed 

and prepared for immunofluorescence. 
 

In Vitro GST Pulldown Experiment 
GST-GGA1-A240stop or GST alone was expressed in Escherichia coli strain 

DH5α. A saturated overnight culture was diluted 1:10 in 25 ml of growth medium and 

incubated at 37°C until OD600 was 0.6-0.8 before induction with 1 mM isopropyl-1-

thio-β-D-galactopyranoside (IPTG) for 3 h. The cells were harvested by 

centrifugation, washed with ice-cold phosphate-buffered saline (PBS), and lysed by 

sonication in 2 ml pulldown buffer (50 mM Hepes, pH 7.4, 150 mM KCl, 1 mM 

MgCl2) containing a 1:500 dilution of a protease inhibitor cocktail (5 mg/ml 

benzamidine, and 1 mg/ml each of pepstatin A, leupeptin, antipain, and chymostatin 

in 40% dimethyl sulfoxide, 60% ethanol) (PIC) and phenylmethylsulfonyl fluoride 

(PMSF) (40 µg/ml in ethanol). Insoluble material was removed by centrifugation at 

12’000 rpm for 10 min at 4°C in a Sorvall GSA centrifuge. The supernatant was 

incubated for 30 min at room temperature on a rotating shaker with 400 µl 

Glutathione Sepharose 4B beads which were prewashed three times with pulldown 

buffer containing 0.1% bovine serum albumin in a silanized Eppendorf tube. The 

beads with GST or GST-GGA1-A240stop were washed three times and then 

resuspended in 1 ml pulldown buffer containing PIC and PMSF, being the amount for 

ten assays.  

Extracts from mouse L cells expressing wild-type or mutant CD-MPR 

constructs were prepared from cells grown on 15-cm Falcon tissue culture dishes in 

the following way. Confluent 15-cm dishes of cells were put on ice and washed once 

with 10 ml of ice-cold PBS and scraped in 5 ml of pulldown buffer containing PIC 

and PMSF. The cells were pelleted at 1000 rpm for 5 min at 4°C in a Heraeus 

centrifuge and resuspended in 1 ml of pulldown buffer containing PIC and PMSF. 

The cells were homogenized in a ball-bearing homogenizer of 16 µm clearance using 

12 strokes on ice and centrifuged at 700xg for 10 min at 4°C. The protein 

concentration of the resulting post-nuclear supernatant (PNS) was measured using a 

protein assay (Bio-Rad, Hercules, CA, USA). The appropriate amounts of PNS from 

each of the mutant cell lines and wild-type cell line yielding the same amount of 

CD-MPR were determined by Western blotting with anti-CD-MPR monoclonal 
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antibody 22D4 followed by densitometric scanning and quantification using 

ImageQuant 5.0 software (Amersham Pharmacia Biotech, Piscataway, NJ, USA). 

These PNS samples adjusted for expression levels were used for the assay.  

100 µl of the resuspended beads bound with either GST or GST-GGA1-

A240stop were incubated with 100 µg of PNS from the wild-type cell line or an 

equivalent amount of PNS from mutant cell lines adjusted for the expression level as 

described above in 300 µl pulldown buffer containing PIC and PMSF and 

0.1% Triton X-100 in a silanized Eppendorf tube for 2 h at 4°C on a rotating shaker. 

Beads were spun at 2500 rpm for 2 min at room temperature in an Eppendorf tabletop 

centrifuge. The supernatant was collected and stored. The beads were washed three 

times with pulldown buffer containing 0.1% Triton X-100. 40 µl non-reducing SDS-

PAGE sample buffer (94 mM Tris-HCl (pH 6.8), 3% SDS, 15% glycerol, 

0.001% bromophenol blue) was added to the beads, boiled and analyzed by SDS-

PAGE and Western blotting using anti-CD-MPR monoclonal antibody 22D4. An 

aliquot of each of the supernatants was also analyzed similarly to determine the 

amount of unbound receptor.  

 

Purification of GST-GGA1-A240stop 
GST-GGA1-A240stop was bound to Glutathione Sepharose 4B beads as 

described above. The procedure was scaled up to 400 ml bacterial overnight culture, 

which were diluted to 4 L. The volumes of the following steps were adjusted as 

follows; the bacteria were sonicated in 90 ml pulldown buffer and the amount of 

Glutathione Sepharose 4B was 1 ml. After washing the beads three times with 

pulldown buffer, the GST fusion protein was eluted by incubating the beads with 1 ml 

elution buffer (50 mM Tris pH 8.0, 10 mM glutathione reduced, 2 mM DTT) 

containing PIC and PMSF for 30 min at room temperature. The beads were spun 

down at 700 x g for 2 min and the supernatant containing the GST-GGA1-A240 

protein was dialysed against buffer A (50 mM Tris pH 8.7, 250 mM NaCl, 1 mM 

DTT) and GST-GGA1-A240 was recovered and the concentration was measured 

using a protein assay. 
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Analysis of Protein-Protein Interaction by SPR 
To monitor binding of AP-1 and GGA1 to the CD-MPR carboxy-terminal 

domain, a synthetic peptide corresponding to the tail residues 49-67 and mutants 

within this peptide were immobilized on a CM5 surface of a BIAcore 3000 biosensor. 

AP-1 was purified form pig brain using published methods (Höning et al., 1997), 

GGA1 was purified as a GST-fusion protein. Both proteins were used at 

concentrations ranging from 25 – 500 nM in buffer A (50 mM Tris pH 8.7, 250 mM 

NaCl, 1 mM DTT) at a flow-rate of 20 µl/min. Binding and dissociation were 

recorded for 2 min. A short pulse injection (5 sec) of 50 mM NaOH was then used to 

remove bound material from the sensor surface. The rate-constants were determined 

using the software supplied by the manufacturer assuming a single binding site for 

AP-1 and GGA1.   

 

SDS-PAGE and Immunoblotting 
The proteins were separated on a 10% SDS-polyacrylamide minigel by using 

the Laemmli system (Laemmli, 1970). After electrophoresis, gels were transferred 

onto nitrocellulose membranes according to the method of Towbin (Towbin et al., 

1979). The membrane was blocked with 3% nonfat dry milk powder (Sano Lait, 

Coop, Switzerland) in PBS. The blot was subsequently incubated with mAb 22D4 

(diluted 1:500 in PBS-3% powdered milk) followed by a horseradish peroxidase 

conjugated anti-mouse secondary antibody (diluted 1:2000 in PBS-3% powdered 

milk). Immunoreactive proteins were visualized using the enhanced 

chemiluminescence detection system according to the manufacturer’s directions. 

 

Confocal Immunofluorescence Microscopy 
Cells were grown on coverslips and transiently transfected with pEGFP-GGA1-

A240stop. After 24 h, cells were washed with PBS and fixed in 3% paraformaldehyde 

pH 8.3 for 20 min, followed by four washes with 20 mM glycine in PBS. The cells 

were permeablized in saponin buffer (0.1% saponin, 20 mM glycine in PBS) for 

20 min. All following steps were performed in saponin buffer. Cells were incubated 

with anti-CD-MPR monoclonal antibody 22D4 (1:500) for 30 min and washed four 

times followed by the incubation with goat anti-mouse Alexa 568 antibody. The 

coverslips were washed four times and mounted on glass slides with ProLong 
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Antifade for viewing with a Leica SP2 AOBS UV confocal laser-scanning 

microscope. Serial sections in the z axis through the entire cells were taken, and the 

resulting stacks of images were analyzed using the Imaris program (Bitplane AG, 

Zürich, Switzerland). 
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4. Results 
Acidic cluster of the CK2 site of CD-MPR but not phosphorylation is 

essential for GGA1 binding 
In order to analyze the involvement of the CK2 phosphorylation site of the 

CD-MPR in GGA1 binding, several mutants of the bovine CD-MPR were 

constructed and stably transfected into mouse L cells. We used full length CD-MPR, 

expressed in mammalian cells to allow the formation of the correct post-translational 

modification and the three-dimensional structure, which provided physiological 

conditions for protein-protein interactions. To differentiate between the 
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Figure 19: Interaction in vitro between wild-type and mutant CD-MPR constructs with GGA1. A, Schematic illustration 
of the cytoplasmic tails of CD-MPR wildtype and mutants. The 67 amino acids of the cytoplasmic tail are shown in single 
letter code. In the mutant constructs the mutated amino acids are indicated by bold letters. B, GST-GGA1-A240stop pulldown 
with CD-MPR wild-type and mutants. GST-GGA1-A240stop was purified from bacterial culture and bound to Glutathione 
Sepharose 4B beads, which was subsequently incubated with post-nuclear supernatant (PNS) from mouse L cells, stably 
transfected with CD-MPR wild-type or mutants. Following incubation at 4°C for 2 h the Sepharose was washed three times, 
boiled in sample buffer und subjected to SDS-PAGE. Bound receptor was detected by immunoblotting with anti-CD-MPR 
antibody. C, To detect CD-MPR expression levels, 10% of the PNS used for the GST-GGA1-A240stop pulldown were 
subjected to SDS-PAGE and immunoblotting with anti-CD-MPR antibody. D, Pulldown of GST and GST-GGA1-A240stop 
with PNS from mouse L cells stably transfected with wild-type CD-MPR. Protein standard shows molecular mass in kDa. 
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phosphorylation and the acidic CK2 site, several point mutations of the CD-MPR 

sequence were created (Figure 19A). The S57 was either replaced by an alanine to 

disable phosphorylation or by an aspartate to disable phosphorylation, but mimicking 

the negative charge of phosphorylation. In addition to the three variants at position 

57, the cluster of four glutamates (E55,56,58,59) of the CK2 site were mutated to 

glutamines, generating the cluster-minus mutants (MPR-Clus-S, MPR-Clus-A and 

MPR-Clus-D). Apart from the CK2 site mutants, two additional mutants were tested 

for GGA1 binding, the palmitoylation-deficient (MPR-C30,34A) mutant and the 

internalization-deficient (MPR-FFWYLL-A) mutant, lacking the dileucine motif, 

which is part of the known GGA1 binding motif (D61-X-X-L64-L65) (Puertollano et 

al., 2001a; Takatsu et al., 2001; Misra et al., 2002). The GGA1 binding assay was 

performed with wild-type or mutant CD-MPR, in post-nuclear supernatant (PNS) 

from stably transfected cells and a truncated form of GGA1 fused to GST (GST-

GGA1-A240stop), since the full-length GGA1 has been shown to be autoinhibitory 

for binding to the receptor (Doray et al., 2002a). GST-GGA1-A240stop comprises the 

VHS domain for cargo binding and a larger part of the GAT domain for the 

interaction with ARF. In the GST pulldown assay we could detect strong binding of 

the wild-type MPR to the GGA1 fragment and no binding of the FFWYLL-A mutant, 

as expected (Figure 19B), with the PNS containing an equal amount of the CD-MPR 

protein (Figure 19C). The specificity of the assay was confirmed by the fact that the 

CD-MPR did bind to the GST-GGA1-A240stop and not to GST alone (Figure 19D). 

The palmitoylation-deficient CD-MPR mutant (MPR-C30,34A) bound to GGA1 

comparable to wild-type (Figure 19B,C). This mutant is known to accumulate in 

lysosomes due to the lack of palmitoylation (Schweizer et al., 1996), however the 

deficiency in palmitoylation didn’t influence the recognition of GGA1, suggesting 

that this posttranslational modification is not essential for TGN sorting. Interestingly, 

the binding of the S57 mutants (MPR-S57A, MPR-S57D) to GGA1 was not impaired, 

indicating that phosphorylation doesn’t play a role in GGA1 binding (Figure 19B,C). 

However, the cluster-minus mutants, in which the negatively charged glutamates 

were changed to non-charged glutamines, did not bind to GGA1. This result was 

again independent of the amino acid substitution at position 57. 
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Figure 20: Binding analysis of casein kinase 2 site of the CD-MPR with GGA1. A, Schematic illustration of the cytoplasmic 
tails of CD-MPR wildtype and mutants. The amino acids of the cytoplasmic tail are shown in single letter code. In the mutant 
constructs the mutated amino acids are indicated by bold letters. B, GST-GGA1-A240stop pulldown with CD-MPR wild-type 
and mutants. GST-GGA1-A240stop was purified from bacterial culture and bound to Glutathione Sepharose 4B, which was 
subsequently incubated with post-nuclear supernatant (PNS) from mouse L cells, stably transfected with CD-MPR wild-type or 
mutants. Following incubation at 4°C for 2 h the Sepharose was washed three times, boiled in sample buffer und subjected to 
SDS-PAGE. Bound receptor was detected by immunoblotting with anti-CD-MPR antibody. C, To detect CD-MPR expression 
levels, 10% of the PNS used for the GST-GGA1-A240stop pulldown was subjected to SDS-PAGE and immunoblotting with 
anti-CD-MPR antibody. Protein standard shows molecular mass in kDa. 
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mutant CD-MPR constructs were stably transfected into mouse L cells and the PNS 

of these cells was used in the GGA1 binding assay. Changing the charged residues 

E55 and E56 of the cytoplasmic tail to glutamines did not have an effect on GGA1 

binding, neither as single mutants (MPR-E55Q, MPR-E56Q) nor combined as a double 

mutant (MPR-E55,56Q) (Figure 20B,C). However, binding of MPR-E58Q to GGA1was 

reduced and binding of MPR-E59Q was affected even more. The binding of MPR-

E58,59Q to GGA1 was not detectable, like the CD-MPR mutants known for impaired 

GGA1 binding, such as MPR-D61N and MPR-D61N,L64,65A (Figure 20B,C). Thus, the 

complete GGA1 binding motif of the CD-MPR includes E59 and to some extend E58: 

E58-E59-X-D61-X-X-L64-L65.  

 

Mutation of E58 and E59 to alanines increased rate-constants for GGA1 

binding 
To analyze the kinetics of the GGA1 - CD-MPR interaction and to verify the 

results obtained in the GST-GGA1-A240 pulldown experiments, surface plasmon 

resonance (SPR) technology was used. For this purpose CD-MPR tail peptides from 

residue 49 to 67, with certain residues replaced by alanines (Figure 21A) and either 

containing a normal serine or a phospho-serine, were coupled to the surface of a 

biosensor. GGA1 was purified as GST-GGA1-A240stop fusion protein and used at 

concentrations ranging from 25-500 nM. Binding and dissociation were recorded for 

2 min and the rate-constant was calculated. The CD-MPR wild-type peptide and the 

MPR-E55,56A peptide both bound to GGA1 with a comparable rate-constant (KD). For 

both peptides phosphorylation had only a minor effect, decreasing the KD by 

0.17-fold (Figure 21B). All the other mutations in the peptides caused an increased 

KD, indicating their requirement for GGA1 binding. The affinity of the binding of 

GGA1 to the D61,62A peptide was too low to be detected. The L64,65A peptide showed 

a 6-fold increase in KD compared to the CD-MPR wild-type peptide and its 

phosphorylation increased binding of GGA1 only by 0.18-fold. The new residues 

found to be essential for GGA1 – CD-MPR interaction in the GST pulldown 

experiment (E58,59) were also required for binding in the SPR experiment. Compared 

to MPR-wt peptide the MPR-E58,59A peptide showed a 3.2-fold increased rate-

constant for GGA1 binding. Furthermore, this peptide displayed a major difference 

between the non-phosphorylated and the phosphorylated form. The GGA1 had almost 
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a normal binding affinity to the phosphorylated MPR-E58,59A peptide, but not to the 

non-phosphorylated form, thus a 2.6-fold difference in rate-constant was measured. 

Hence, the binding of GGA1 to the MPR-E58,59A peptide could be restored by the 

phosphorylation of S57, whereas the phosphorylation in the other mutants displayed 

only a minor increase in binding of GGA1. The inhibition of GGA1 binding was 

tested by incubating GGA1 with short inhibitory peptides prior to the binding assay. 

GGA1 was incubated with a 10-fold molar excess of soluble peptide A (49-58) or 

B (58-67) (Figure 21A) for 15 min, followed by recording of the binding to the 

immobilized MPR wild-type peptide on the biosensor. Only peptide B was able to 
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Figure 21: Binding of GGA1 and AP-1 to 
CD-MPR wild-type and mutant peptides. 
A, Schematic illustration of the peptides, 
corresponding to the amino acids 49 to 67 of 
the cytoplasmic tail of the CD-MPR. The 
amino acids are shown in single letter code 
and the mutated amino acids are indicated by 
bold letters. The five upper peptides were 
coupled to the sensor chip surface, the 
bottom two peptides, A and B, were used to 
test inhibition of binding. B and C, Binding 
assays with surface plasmon resonance 
technology. Binding of GST-GGA1-
A240stop (B) and AP-1 (C) to the peptides 
either containing a phospho-serine (gray 
columns) or a non-phosphorylated serine 
(white columns) was subsequently recorded 
and the rate-constants were calculated (left 
axis). The relative values were calculated 
compared to the non-phosphorylated wild-
type peptide (right axis). B, “not detected” 
indicates that GST-GGA1-A240stop did not 
bind to the D61,62A peptide. 
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block binding to the MPR wild-type peptide, while peptide A had no effect (data not 

shown), confirming the data from the mutational analysis. 

 

Acidic cluster of the CK2 site of CD-MPR but not phosphorylation is 

essential for AP-1 binding 
In order to explore the involvement of the CK2 phosphorylation site of the 

CD-MPR in AP-1 binding and its kinetics, SPR experiments were performed. The 

same peptides as for the GGA1 binding were used (Figure 21A). Purified AP-1 was 

used at concentrations ranging from 25-500 nM. Binding and dissociation were 

recorded for 2 min and the rate-constant was calculated. The affinity of AP-1 to the 

wild-type CD-MPR peptide was 2.4-fold lower than that of the GGA1 to the same 

peptide (Figure 21B,C). This result explained the difficulties in detecting AP-1 in a 

co-immunoprecipitation of CD-MPR or GST-pulldown experiments (data not 

shown). For binding of AP-1 to the peptides MPR-D61,62A and MPR-L64,65A the rate-

constants were in a similar range as for CD-MPR wild-type peptide (Figure 21C). 

However, the mutation of both pairs of glutamates to alanines, MPR-E55,56A and 

MPR-E58,59A, increased the rate-constant by a factor of 2.7 and 3.0, respectively 

(Figure 21C). In all peptides, phosphorylation of the serine only showed a minor 

increase in binding to AP-1, 0.1-fold. Thus, the glutamates of the CK2 

phosphorylation site, but not the phosphorylation itself are essential for AP-1 binding. 

 

TGN redistribution of CD-MPR in vivo by dominant-negative GGA1 is 

impaired in the mutant containing E58,59Q,D61N,L64,65A mutations 
In order to determine whether the in vitro results reflect the situation in living 

cells, interaction between GGA1 and CD-MPR was investigated in vivo. It was 

previously shown that a dominant-negative GGA1 containing the VHS domain for 

cargo binding and the GAT domain to be recruited to the TGN could redistribute and 

accumulate CI-MPR and CD-MPR in the TGN (Puertollano et al., 2001a; Puertollano 

et al., 2001b). GFP-GGA1-A240stop, although not containing the complete GAT 

domain, comprised the essential domains for interaction with ARF to be recruited to 

the TGN, but lacked the hinge and GAE domains and is therefore unable to recruit 

clathrin and accessory proteins required for budding (Collins et al., 2003). Thus, 

GFP-GGA1-A240stop was acting as a dominant-negative GGA1 (Puertollano et al., 
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2001a), when transiently transfected into mouse L cells, stably transfected with 

CD-MPR wild-type (Figure 22A-C). The transfected cells showed a redistribution of 

the CD-MPR to the TGN and consequently a depletion from the periphery. As 

expected, the CD-MPR mutants, which did interact with GGA1 in vitro, were 

redistributed to the TGN as well, when dominant-negative GGA1 was expressed (Fig. 

4D-F and data not shown). Interestingly, the CD-MPR mutants MPR-D61N,L64,65A 

and MPR-E58,59Q presented the same effect indicating that their binding to GGA1 

Figure 22: Interaction of dominant-negative GGA1 with CD-MPR wild-type and mutants. A-O, 
Mouse L cells stably transfected with CD-MPR wild-type (A-C) and mutants (D-O) were grown on 
coverslips. Cells were transiently transfected with dominant-negative GFP-GGA1 (green), fixed and 
permeabilized after 24 h. Cells were incubated with anti-CD-MPR monoclonal antibody 22D4, followed 
by incubation with goat anti-mouse Alexa 568 antibody (red). Serial sections in the z axis through the 
entire cells were taken with a confocal laser-scanning microscope. Scale bars are 10 µm. 
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was not completely impaired, although they were not detectable in the GST-GGA1 

pulldown and the corresponding peptides had a very high KD for the interaction with 

GGA1 (Figure 22G-L). Therefore another mutant construct was created, where all 

residues involved in GGA1 binding were changed simultaneously, the MPR-

E58,59Q,D61N,L64,65A. The transient transfection of dominant-negative GGA1 did not 

redistribute the MPR-E58,59Q,D61N,L64,65A to the TGN, indicating that GGA1 is not 

interacting with this mutant CD-MPR (Figure 22M-O). 
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5. Discussion 
The results presented in this study demonstrate that the acidic cluster of the 

CK2 site upstream of the DXXLL motif of the CD-MPR but not its phosphorylation 

is required for GGA1 and AP-1 binding. Furthermore we show that only the 

CD-MPR mutant with all residues of the GGA1 binding site changed (MPR-

E58,59Q,D61N,L64,65A) is unable to interact with GGA1 in vivo. The different affinities 

of CD-MPR to AP-1 and GGA1 might present a regulatory mechanism of the binding 

of these adaptors to the overlapping sorting signals in the cytoplasmic tail of the 

CD-MPR. 

GGAs have been shown to be essential for transport of CD-MPR and other 

cargo from the TGN to endosomes. The consensus binding motif of the VHS domains 

of GGAs and their cargo was revealed to be DXXLL (Puertollano et al., 2001a; 

Takatsu et al., 2001; Zhu et al., 2001). Given that the CK2 phosphorylation of a 

serine upstream of the DXXLL motif increased binding affinity of the CI-MPR 

peptide to the VHS domains of GGA1 and GGA3, additional residues might be 

involved in GGA binding (Kato et al., 2002). Furthermore, the autoinhibitory 

function of the acidic cluster-dileucine motif in the hinge domain of GGA1 and 

GGA3 by intramolecular or intermolecular binding of the VHS domain depends on 

the CK2 phosphorylation of the serine three residues upstream (Doray et al., 2002a). 

The existence of a CK2 phosphorylation site upstream of the DXXLL motif in the 

CD-MPR suggested a similar influence on GGA1 binding. However, our results 

revealed that the phosphorylation of S57 had no effect on GGA1 binding. Mutants 

with the serine replaced by an alanine or an aspartate to mimic phosphorylation 

bound GGA1 similar to wild-type receptor. Conversely, the mutations of the 

glutamates surrounding the serine in the receptor led to an inhibition of GGA1 

binding. Further characterization of the glutamates revealed the E58 and E59 residues 

to be essential for GGA1 binding. The kinetic studies of the interaction between 

GGA1 and CD-MPR confirmed that indeed the MPR-E58,59A peptide showed a 3-fold 

increased rate-constant compared to wild-type. The rate-constants for the residues of 

the DXXLL motif were even higher, the KD of the MPR-L64,65A peptide being 6-fold 

increased, and the KD of the MPR-D61,62A peptide being not measurable, reflecting 

the very low affinity of GGA1 to these residues. The in vivo interaction of CD-MPR 

with dominant-negative GGA1 demonstrated that mutating the residues D61N,L64,65A 
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and the E58,59Q, individually, did not inhibit GGA1 binding. Both mutant constructs 

redistributed and accumulated in the TGN upon expression of the dominant-negative 

GGA1, showing a clearly different pattern compared to non-transfected cells. 

Therefore the CD-MPR containing all amino acids mutated, namely the new residues 

from this study, E58,59Q, combined with the already known residues, D61N,L64,65A, 

was generated. Upon expression of dominant-negative GGA1, no redistribution and 

accumulation of the MPR-E58,59Q,D61N,L64,65A was observed. This indicates that the 

interaction of MPR-E58,59Q,D61N,L64,65A with GGA1 is inhibited. Altogether, these 

results led to the extension of the GGA1 interaction motif of the CD-MPR to 

E58-E59-X-D61-X-X-L64-L65. 

The alignment of the GGA1 binding sites of cargo revealed that all the proteins 

have in the positions upstream from the D61 up to the E58 in the CD-MPR (position -3 

to -1 from the crucial aspartate 0, Figure 23) at least one acidic residue or a serine 

phosphorylation site (Figure 23, gray box, italic letters). This indicates that a negative 

charge, not specifically a glutamate, within this range of the position -1 to -3 might be 

crucial for GGA1 binding. This is confirmed by the requirement of the 

phosphorylation of the serine at position -3 in the GGA1 hinge domain for its 

autoinhibitory function and the increased affinity to GGA when the serine at position 

-1 in the CI-MPR is phosphorylated (Figure 23) (Doray et al., 2002a; Kato et al., 

2002). Furthermore, the rescue of high affinity GGA1 binding in the E58,59A peptide, 

when the serine was phosphorylated (Figure 21B), led to the assumption, that the 

required negative charges for GGA1 binding could be compensated by enough 

negative charges in the vicinity, which might range maximally between position -4 to 

-1 (Figure 23). The data from the structural analysis with VHS domains of GGA and 

CI-MPR or CD-MPR peptides revealed that the residues -6 to -3 were disordered and 

the residues from -2 to 0 were well ordered with the aspartate 0 forming the most 

extensive interaction with the VHS domain (Misra et al., 2002; Shiba et al., 2002). 

Three positively charged amino acids in the GGA1 and GGA3 VHS domains interact 

Figure 23: GGA binding domain in cargo proteins. C-terminal 
sequences of  CD-MPR, CI-MPR, sortilin and LDL receptor 
related protein 3 (LRP3) and the internal autoinhibitory motif in 
the GGA1 hinge domain are shown in the amino acid single 
letter code. The amino acids involved in binding to the VHS 
domain of GGA are indicated by bold letters. Residues are 
numbered relative to Asp 0. The gray box specifies the region 
where negative charges were shown to be essential for GGA 
binding. Negatively charged residues or phosphorylation sites, 
which are located in the gray box and could be involved in 
GGA1 binding, are indicated with italic letters. 

-4   0   4 
CD-MPR: -GEESEERDDHLLPM-COOH
CI-MPR: -VSFHDDSDEDLLHI-COOH
Sortilin: -SGYHDDSDEDLLE-COOH
LRP3: -PMLEASDDWALLVC-COOH
Memapsin2: -QHDDFADDISLLK-COOH
GGA1-hinge: -SASVSLLDDELMSLGL-
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with the cargo peptide. K131 of GGA1 (GGA3 amino acid numbers are decreased by 

one) mainly interacts with D at position 0, whereas K87 and R89 interact with 

phospho-serine at position -1 of the CI-MPR (Kato et al., 2002; Shiba et al., 2002). It 

might be possible that the latter two basic residues of the VHS domain of GGA1 

could interact with the glutamates at position -3 and -2 (E58,59) of the CD-MPR. The 

absence of positional restriction and irrelevance of the type of negative charge, which 

we suggested to range between -4 or -3 to -1, might explain the less ordered nature of 

the interaction upstream of the aspartate 0, which was found in the structural analysis. 

However, it should be considered, that only short peptides were used for the structural 

analysis, not enabling the formation of a three-dimensional structure, which might 

result in a different kind of interaction of residues upstream of the aspartate 0. 

The kinetic analysis of the interaction between AP-1 and CD-MPR revealed the 

involvement of the four glutamates, E55,56,58,59 of the CK2 site of the CD-MPR. 

Mutation of each pair of glutamates to alanines led to a 3-fold increase of the rate-

constant of AP-1 binding. Comparable to the GGA1 binding, phosphorylation of the 

serine only had a negligible effect on CD-MPR binding to AP-1. Thus, AP-1 and 

GGA1 had overlapping binding sites, both comprising the E58,59 and both independent 

of the S57 phosphorylation. Interestingly the binding affinity of wild-type CD-MPR 

peptide to AP-1 was 2.4-fold lower than the affinity to GGA1. The overlapping 

binding sites combined with the different binding affinities for CD-MPR led to the 

conclusion that AP-1 is unable to bind to CD-MPR in the presence of GGA1, unless 

GGA1 is inactivated by phosphorylation. Thus, our results confirm the suggested 

model, where GGA1 relays CD-MPR to AP-1, with slight modifications concerning 

the regulation (Ghosh and Kornfeld, 2003b). Our model suggests that GGA1 binds to 

CD-MPR with high affinity, thereby blocking the overlapping binding sites and 

disabling AP-1 binding. Subsequent phosphorylation of GGA1 by CK2, which is 

associated with AP-1, causes autoinhibition of GGA1, followed by the release of 

CD-MPR, rendering the overlapping binding site accessible for the weaker binding to 

AP-1. The localization of both adaptors, GGA1 and AP-1, to the TGN supports our 

model (Klumperman et al., 1993; Boman et al., 2000; Dell'Angelica et al., 2000; Hirst 

et al., 2000). Thus, we suggest that both adaptors are involved in sorting in the TGN 

independent of cargo phosphorylation, regulated by different KDs for the overlapping 

sorting signals. 
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General Discussion 
The CD-MPR cycles between the TGN, endosomes and the plasma membrane. 

In our study we tried to shed light on the characterization of two specific features of 

the CD-MPR - the palmitoylation and the phosphorylation of its cytoplasmic tail.  

1. Results 

1.1 Why are we interested in the Palmitoylation and Phosphorylation? 

Once a membrane protein acquires its three-dimensional structure with its 

oligosaccharides correctly processed and leaves the TGN, some options remain to 

reversibly change the characteristics of the protein. Such reversible modifications of 

proteins present a potential regulatory mechanism. There are several types of 

modifications that can alter the feature of proteins, which include oligomerization, 

conformational changes upon protein-protein interaction or a change in pH and 

reversible post-translational modifications. Both palmitoylation and phosphorylation 

are reversible post-translational modifications, which are known to be used to 

regulate functions of proteins. Since the CD-MPR undergoes both palmitoylation and 

phosphorylation, it is of interest to analyze whether they perform a regulatory 

function in the CD-MPR. 

1.2 Our hypothesis: Palmitoylation as a regulator of the sorting signals  

The trafficking itinerary of the CD-MPR begins at the TGN, where the receptor 

binds the lysosomal enzymes through the M6P tags and continues through early 

endosomes and late endosomes. In late endosomes the CD-MPR dissociates from the 

lysosomal enzyme. The lysosomal hydrolases get transferred to the lysosomes, 

probably by partial fusions between late endosomes and lysosomes. In contrast, the 

CD-MPR must avoid delivery to lysosomes, since missorting to lysosomes would 

result in its rapid degradation. Being only one transport step away from degradation, 

one would expect that the CD-MPR has a rapid turnover. Instead, the half-life is more 

than 40 h, indicating that the receptor is efficiently transported out of late endosomes. 

Two motifs were found to be crucial to avoid delivery to lysosomes – the diaromatic 

motif F18W19 and the palmitoylated C34 (Schweizer et al., 1996; Schweizer et al., 



General Discussion 

 

129 

1997). Avoidance of lysosomal degradation depends on the presence of both the 

palmitoylation and the diaromatic signal. The membrane anchoring of the 

palmitoylation presumably influences the diaromatic motif, which is probably better 

exposed to interacting proteins in the palmitoylated form comparable to the non-

palmitoylated form of the CD-MPR. Our hypothesis suggests that the reversible 

palmitoylation presents a regulatory mechanism for sorting signals in the cytoplasmic 

tail of the CD-MPR. This hypothesis would require that, palmitoylation occurs 

enzymatically and secondly, that palmitoylation takes place in an organelle that 

precedes the late endosomes in the trafficking itinerary of the CD-MPR. Our findings 

of a palmitoyltransferase that palmitoylates the CD-MPR and which cycles between 

endosomes and the plasma membrane fulfills both requirements (see Part I). 

Furthermore, the localization of the palmitoyltransferase is optimal to ensure the 

presence of the palmitoylated C34 in late endosomes. Altogether, our findings on the 

palmitoyltransferase support our hypothesis. 

1.3 The cytoplasmic tail of the CD-MPR for its sorting in the TGN 

The reports about the involvement of the CK2 site of the CD-MPR in the 

sorting of cathepsin D are controversial. The suggested functions of the 

phosphorylation of S57 included surface delivery, possibly through a sorting step in 

the endosomes and binding to AP-1 (see also chapter: The phosphorylation of Ser57 

and the CK2 site, page 51) (Mauxion et al., 1996; Breuer et al., 1997; Ghosh and 

Kornfeld, 2003a).  

We wanted to analyze whether the phosphorylation and the CK2 site influences 

the interaction of the CD-MPR with GGA1 and with AP-1. We could show that for 

both GGA1 and AP-1 the binding to the CD-MPR is independent of phosphorylation 

of the S57 (see Part II). However, the glutamates surrounding the serine (E55, E56, E58, 

E59) play a crucial role in the interaction of the CD-MPR with GGA1 and AP-1. The 

GGA1 requires the E58 and E59 in addition to the known D61-X-X-L64-L65, whereas 

the AP-1 requires all glutamates (E55, E56, E58, E59) for interaction with the CD-MPR. 

This results in partially overlapping binding sites in the CD-MPR for GGA1 and 

AP-1. Interestingly the binding affinity of the interaction between GGA1 and the 

CD-MPR is significantly higher than that of AP-1 with the CD-MPR. Therefore we 

suggest a modification of Kornfeld’s model for sorting in the TGN, where GGA1 

interacts with the CD-MPR and recruits it to clathrin-coated pits, AP-1 is recruited to 
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the coated pits by interaction with GGA1. The AP-1-associated CK2 phosphorylates 

GGA1, causing the autoinhibition of GGA1 and the release of the CD-MPR. AP-1 

then interacts with the glutamates of the CD-MPR and mediates the formation of the 

clathrin-coated vesicle. Thus, both GGA1 and AP-1 are suggested to be involved in 

the transport of the CD-MPR from the TGN to endosomes and their interaction with 

the CD-MPR is regulated by different affinities towards the partially overlapping 

binding site. Altogether these results indicate that the acidic cluster of the CK2 site, 

but not the phosphorylation of the S57 is required for the sorting in the TGN. 

2. Problems encountered 

2.1 Cloning of the palmitoyltransferase 

Our approaches to purify the palmitoyltransferase were not successful. 

Although we managed to obtain a soluble form of activity by sonicating membranes 

in the absence of protease inhibitors, we failed to enrich the activity by subjecting the 

soluble activity to various chromatography purification steps. 

A second approach evolved after the publication of two potential yeast 

palmitoyltransferases, the Erf2p/Erf4p complex and Akr1p (Lobo et al., 2002; Roth et 

al., 2002). The sequence comparison revealed that both, Erf2p (the catalytic subunit 

of the complex) and Akr1p, contain a conserved domain, which includes the active 

site – the DHHC-cysteine-rich domain (CRD). It is part of a zinc-finger domain 

which is also referred to as the NEW1 domain. Through database searches we 

obtained twelve human homologues with the conserved NEW1 domain (see Figure 

24). Of these twelve homologues, eight proteins contain a putative internalization 

motif, indicating that these proteins might be internalized from the plasma membrane 

to the endosomes and therefore might cycle between the plasma membrane and 

endosomes. Given that the palmitoyltransferase of the CD-MPR cycles between the 

plasma membrane and endosomes, these eight NEW1 homologues are candidates that 

ought to be tested for palmitoyltransferase activity on the CD-MPR. 

Upon the first report about Erf2p, we cloned the human homologue hErf2, 

expressed it in HeLa cells and tested the extract of these cells in the in vitro 

palmitoylation assay. Unfortunately no enhanced palmitoylation of the CD-MPR was 

observed. This negative result was not entirely unexpected as in yeast the 

palmitoyltransferase activity of Erf2p depends on Erf4p for which we could not find a 
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human homologue to co-express in the cells. In any case, hErf2 is not the most 

promising candidate for palmitoylating the CD-MPR because in yeast Erf2p is 

supposed to be localized in the ER and the potential internalization motif of hErf2 is 

only weak (dileucine motif).  

Our goal for the future is to clone all eight NEW1 homologues, containing a 

putative internalization signal (see Figure 24) and test them for palmitoyltransferase 

activity on the CD-MPR. 
 

TMD Internalization Name
1 50 Motif

gi29791459 rycekcqlikpdrahhcsacdscilkmdhhcpwvnncvgfsnykffllfllysl FxxxxF,YxxΦ
gi28202111 rycdrcqlikpdrchhcsvcdkcilkmdhhcpwvnncvgfsnykffllflaysl FxxxxF,YxxΦ
gi21450653 rfcdrchlikpdrc

TMD Internalization Name
1 50 Motif

gi29791459 rycekcqlikpdrahhcsacdscilkmdhhcpwvnncvgfsnykffllfllysl FxxxxF,YxxΦ
gi28202111 rycdrcqlikpdrchhcsvcdkcilkmdhhcpwvnncvgfsnykffllflaysl FxxxxF,YxxΦ
gi21450653 rfcdrchlikpdrchhcsvcamcvlkmdhhcpwvnncigfsnykfflqflaysv FxxxxF
gi28202103 kwcatcrfyrpprcshcsvcdncveefdhhcpwvnncigrrnyryfflfll.sl 4x YxxΦ, LL
gi32698692 kwcatchfyrpprcshcsvcdncvedfdhhcpwvnncigrrnyryfflfll.sl 2x YxxΦ
gi24371241 kycftckifrpprashcslcdncverfdhhcpwvgncvgkrnyrffymfil.sl 2x YxxΦ
gi24371272 kycf

hhcsvcamcvlkmdhhcpwvnncigfsnykfflqflaysv FxxxxF
gi28202103 kwcatcrfyrpprcshcsvcdncveefdhhcpwvnncigrrnyryfflfll.sl 4x YxxΦ, LL
gi32698692 kwcatchfyrpprcshcsvcdncvedfdhhcpwvnncigrrnyryfflfll.sl 2x YxxΦ
gi24371241 kycftckifrpprashcslcdncverfdhhcpwvgncvgkrnyrffymfil.sl 2x YxxΦ
gi24371272 kycftckifrpprashcslcdncverfdhhcpwvgncvgkrnyrffymfil.sl 2x LL
gi28202113 kycytckifrpprashcsicdncverfdhhcpwvgncvgkrnyryfylfil.sl LL hErf2
gi22041784 kycftckmfrpprtshcsvcdncverfdhhcpwvgncvgrrnyrffyafil.sl -
gi29244581 ifcstclirkpvrskhcgvcnrciakfdhhcpwvgncvgagnhryfmgylffll 3x Yxx

tckifrpprashcslcdncverfdhhcpwvgncvgkrnyrffymfil.sl 2x LL
gi28202113 kycytckifrpprashcsicdncverfdhhcpwvgncvgkrnyryfylfil.sl LL hErf2
gi22041784 kycftckmfrpprtshcsvcdncverfdhhcpwvgncvgrrnyrffyafil.sl -
gi29244581 ifcstclirkpvrskhcgvcnrciakfdhhcpwvgncvgagnhryfmgylffll 3x YxxΦ hAkr1,Hip14
gi10834672 sickkciypkparthhcsicnrcvlkmdhhcpwlnncvghynhryffsfcffmt -
gi14165541 sickkciypkparthhcsicnrcvlkmdhhcpwlnncvghynhryffsfcffmt YxYxxΦ
consensus kyc-tc-ΦΦkp-r--hcsΦcd-cv-+fdhhcpwv-ncvg--nyryfΦ-fΦl-sl

 
 
Figure 24: Sequence alignment of human NEW1-domain homologues. The amino acids are depicted in single code letters 
and the consensus sequence is shown in the two bottom lines. The alignment is restricted to the NEW1 domain. The conserved 
dhhc sequence is marked by the yellow box and arrow, the conserved cysteines are marked with a purple arrow. The TMD is 
marked with a green box. The internalization sequences found in the complete sequence and the names, if existent, are indicated 
next to the sequence. The promising candidates with good internalization sequences are highlighted in green.  
 

3. Open questions 

3.1 The function of the non-palmitoylated form of the CD-MPR 

One open question is: if the CD-MPR is reversibly palmitoylated to regulate the 

sorting signals in its cytoplasmic tail, is there a sorting step that favors the non-

palmitoylated form of the CD-MPR? The answer is: we do not know. 

The CD-MPR itinerary includes the TGN, the plasma membrane and 

endosomes. In late endosomes palmitoylation is required, but what about the plasma 

membrane and the TGN? We showed that the mutant CD-MPR, which is almost 

exclusively localized at the plasma membrane, is palmitoylated, indicating that the 

palmitoyltransferase is active at the plasma membrane and might also palmitoylate 

the portion of wild-type CD-MPR, which at steady-state resides at the plasma 

membrane (see Part I). Thus, a possible preference of the non-palmitoylated form for 

efficient internalization would be unreasonable. However, the main internalization 
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motif of the CD-MPR (F13-X-X-X-X-F18) overlaps with the diaromatic motif 

(F18W19) and according to our hypothesis, the exposure of the internalization motif, 

like the diaromatic motif should be affected by the conformational change upon 

palmitoylation. Thus, one would expect that the palmitoylation might also be required 

for internalization. But the requirements for the structural environment of a sorting 

signal might also vary depending on the interacting protein(s). To address this 

question, we should compare the internalization rates of the wild-type CD-MPR and 

the palmitoylation-deficient CD-MPR-C30,34A.  

In the TGN, the CD-MPR requires GGA and most likely AP-1 for efficient 

transport to endosomes. We could show that the interaction between the CD-MPR 

and GGA1 is independent of palmitoylation, since GGA1 bound equally well to the 

wild-type CD-MPR and C30,34A (see Part II). Furthermore we demonstrated that AP-1 

requires the acidic cluster around the CK2 phosphorylation site (E55, E56, E58, E59) for 

interaction (see Part II). However, the analysis was done using a peptide, which does 

not include the cysteines. Höning and colleagues published that AP-1 interacts with 

two distinct sites in the CD-MPR, one comprising the amino acids 49 to 67, which is 

the same region we tested together with Stefan Höning (see Part II). The other 

binding site for AP-1 spans the amino acids 27 to 43 including the cysteines (C30, 

C34) that are palmitoylated in vivo and the basic residues from 35 to 39 (R35, K37, R39) 

that contribute to efficient palmitoylation (Schweizer et al., 1996; Höning et al., 

1997). In the binding assay, the peptide was not palmitoylated, indicating that there 

might be a preference of AP-1 for the non-palmitoylated region between residues 

27 to 34. This hypothesis should be tested by comparing the binding affinity of AP-1 

to palmitoylated and non-palmitoylated peptides. Another question would be: if there 

are two AP-1 binding sites in vitro, are both equally involved in AP-1 binding in 

vivo?  

Concluding the discussion about the function of the non-palmitoylated form of 

CD-MPR, it would be interesting to test the internalization rate of the CD-MPR-

C30,34A and to analyze the binding affinity of AP-1 to palmitoylated versus non-

palmitoylated forms of CD-MPR peptides, or better yet, to the full-length receptor. 

3.2 Palmitoylation and the diaromatic motif: TIP47? 

The palmitoylation of C34 and the diaromatic motif F18W19 are both required for 

efficient transport from endosomes to the TGN (Schweizer et al., 1996; Schweizer et 
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al., 1997). TIP47 was found to interact specifically with the diaromatic motif of the 

CD-MPR and was required for the transport from late endosomes to the TGN (see 

also chapter: TIP47, page 44) (Diaz and Pfeffer, 1998). Interestingly, the bait that was 

used to identify TIP47 in a yeast two-hybrid screen comprised the cytoplasmic tail of 

the CD-MPR fused to the GAL4 DNA binding domain. Thus, the CD-MPR did not 

contain the TMD and the palmitoylation state of this soluble fusion construct was not 

known. It is surprising that TIP47 bound to this fusion protein, considering that the 

structural requirements for the functional diaromatic motif are quite strict: the 

palmitoylation of C34 and the specific distance of F18W19 from the TMD. Mutant 

CD-MPRs with insertion or deletion of 5 amino acids between the diaromatic motif 

and the TMD resulted in missorting of the receptor to the lysosomes (Schweizer et al., 

1997). Whether the binding of TIP47 to the CD-MPR depends on the same structural 

requirements of the diaromatic motif is not known. It would be interesting to test the 

binding of TIP47 to the following mutant CD-MPRs in an in vitro assay: CD-MPR-

C30,34A and CD-MPR with deletion or insertion of 5 amino acids between TMD and 

F18W19 (Nair et al., 2003). This experiment would tell us whether TIP47 is the only 

enzyme responsible for avoidance of lysosomal degradation of the receptor, or 

whether there might be additional proteins involved, that would together account for 

the requirements of the CD-MPR to be efficiently sorted out of the late endosomes, 

these being the palmitoylation and the diaromatic motif at the correct distance from 

the TMD. 

3.3 Other candidate adaptor proteins for the transport from endosomes 

to the TGN? 

Data suggesting that other proteins are involved in the transport of the CD-MPR 

from endosomes to the TGN exists in the literature. In mouse fibroblasts, deficient in 

AP-1, the CD-MPR is redistributed to early endosomes and fails to recycle back from 

endosomes to the TGN (Meyer et al., 2000). Furthermore, the in vitro transport step 

from endosomes to the TGN is dependent on membrane-bound AP-1 and on cytosolic 

AP-3, but not on TIP47 in mouse fibroblasts (Medigeshi and Schu, 2003). Multiple 

binding sites for the µ3 subunit of AP-3 were identified in the CD-MPR in vitro, 

including the tyrosine motif (Y45-X-X-V48), the acidic cluster of the CK2 site (E55, 

E56, E58, E59) and the dileucine motif (L64-L65) (Storch and Braulke, 2001). These 
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results indicate that AP-1 and AP-3 are required for the retrograde transport of the 

receptor from endosomes to the TGN.  

In addition to TIP47 more proteins might be involved in the transport of the 

CD-MPR from endosomes to the TGN, such as AP-1 and AP-3. One possibility is 

that different proteins or adaptors mediate the transport originating on distinct sites 

within the endosomal system. It is suggested that the CD-MPR is transported back to 

the TGN from early endosomes, as well as from late endosomes, possibly requiring a 

different subset of proteins for the two transport steps. This would also explain the 

controversial reports about the requirement for TIP47 in the transport of the CD-MPR 

from endosomes to the TGN in two different cell lines (Diaz and Pfeffer, 1998; 

Medigeshi and Schu, 2003). The steady-state distribution of the CD-MPR varies 

among cell lines and it is possible that one cell line predominantly uses the EE to 

TGN transport, whereas the other cell line prefers the LE to TGN transport. 

Another candidate for the transport from endosomes to the TGN of the 

CD-MPR is PACS-1 (see also chapter: PACS-1, page 43). It binds to acidic clusters 

of CK2 sites in cargo and is required for the transport of furin and CI-MPR to the 

TGN (Wan et al., 1998). The interaction of PACS-1 with furin is dependent on the 

phosphorylation by CK2, which is not the case with the CI-MPR. PACS-1 requires 

AP-1 and/or AP-3 for the transport of cargo from endosomes to the TGN (Crump et 

al., 2001). Whether PACS-1 interacts with the CD-MPR is not known. The 

dependence of PACS-1 on AP-1 and/or AP-3 would match the requirement of the 

CD-MPR for AP-1 and AP-3 in the transport from endosomes to the TGN (see 

above). Thus, it might be interesting to analyze whether the CD-MPR and PACS-1 

interact with each other and if this is indeed the case, whether the interaction is 

dependent on phosphorylation of the CK2 site. 

3.4 Where does the missorting of the CD-MPR occur? 

There are two ways how a membrane protein can end up in the lysosome: on 

the limiting membrane of the lysosome or on internal vesicles that derive from 

MVB/LE and are transferred to the lysosome either by partial or by complete fusion 

(Storrie and Desjardins, 1996; Luzio et al., 2000). Is the missorted CD-MPR (lacking 

the cysteines or the diaromatic motif) localized on internal membranes or in the outer 

membrane of the lysosome? Co-immunofluorescence of missorted CD-MPR with 

LAMP-1, which is on the outer membrane, revealed that both colocalize in 
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lysosomal, doughnut-shaped structures, however they partially segregate into 

subdomains on lysosomes (Nair et al., 2003). It was suggested that lysosomes contain 

subdomains, which are involved in degradation and other subdomains for export, as it 

was shown for LAMP-1 (Lippincott-Schwartz and Fambrough, 1987; Furuno et al., 

1989; Akasaki et al., 1993). However, these different subdomains might also 

represent the internal vesicles and the outer membrane. Thus, missorting of the 

receptor could already start in early endosomes. This implies that the palmitoylation 

and the diaromatic motif could also be involved in the retention of the CD-MPR to 

the outer membrane on EE and in the avoidance of the invagination of the receptor 

into intralumenal vesicles. Hence, it might be an idea to test this alternative 

missorting to lysosomes and look for interaction partners of the CD-MPR in EE, 

which are involved in the sorting of cargo.  

3.5 CD-MPR at the plasma membrane, why? 

10-20% of the CD-MPR is localized to the cell surface. The function of the 

CD-MPR at the plasma membrane is unclear or rather inexplicable, since the 

CD-MPR is not able to bind ligands at the cell surface. Furthermore, it is not known 

how the CD-MPR is delivered to the plasma membrane. It should not get there 

directly from the TGN or else the receptor would lose the ligand and thereby missort 

lysosomal enzymes. Thus, the CD-MPR is presumably transported to the plasma 

membrane from endosomes. However, it is not known whether every receptor 

molecule travels to the plasma membrane through a directed transport step from 

endosomes, or whether only part of the CD-MPRs are missorted to the plasma 

membrane. The major question remains, why is the CD-MPR at the plasma 

membrane at all? Is it misrouting or does it happen on purpose?  

3.6 Effect of palmitoylation on phosphorylation and vice versa  

The three-dimensional structure of the cytoplasmic tail of the CD-MPR is not 

known. Hence we do not know the effect of the membrane anchoring through the 

palmitate. In addition to the probable exposure of the diaromatic motif, there might be 

other signals that are affected by the putative conformational change. One interesting 

aspect is the influence of the palmitoylation on phosphorylation and vice versa. 

Preliminary data indicated that the lack of palmitoylation induced a reduction in 

phosphorylation, but palmitoylation seems to be unaffected by phosphorylation. This 
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result has to be reconfirmed and the effect has to be further investigated. These data 

suggest that the palmitoylation might not only regulate the diaromatic motif, but also 

other signals within the cytoplasmic tail. This raises the question again, which 

adaptor protein accounts for the requirements of palmitoylation. In addition to 

proteins that interact with the diaromatic motif, such as TIP47, there might be 

proteins involved in binding to the phosphorylated serine. This hypothesis again 

demands for the analysis of the interaction between PACS-1 and the CD-MPR. 
 

Figure 25: Alignment of CD-MPR cytoplasmic tails of different species. In the upper part, amino acid sequence is depicted 
in single letter code. Signals, which are important for trafficking, are marked with a yellow arrow. The proline or serine at 
position 57 is marked with the red arrow. Common names, latin names and the species of the sequences are shown in the 
lower part. 

3.7 What about the phosphorylation of the S57? 

Phosphorylation is not involved in sorting in the TGN, but whether 

phosphorylation is required at the plasma membrane or in the endosomes is not 

known. If indeed the palmitoylation has an effect on phosphorylation, then 

phosphorylation might also be required for the transport of the CD-MPR from 

endosomes to the TGN. Thus, future experiments would include the confirmation of 

the effect of palmitoylation on phosphorylation and an analysis whether the 

phosphorylation mutants are missorted to lysosomes.  

Missorting to lysosomes of mutant CD-MPRs and subsequent degradation 

would lead to a drastic reduction of their steady-state levels, and thus would cause 

Alignment of CD-MPR cytoplasmic tails of different species
1 6713 18 30 34 45 57 61

CD-MPR: latin name: common name: species:
human Homo sapiens human mammals
pig Sus scrofa pig mammals
cow Bos taurus cow mammals
mouse Mus musculus house mouse mammals
rat Rattus norvegicus Norway rat mammals
chicken Gallus gallus chicken birds
A. frog Xenopus laevis African clawed frog amphibians
w. frog Silurana tropicalis western clawed frog amphibians
medaka Oryzias latipes Japanese medaka bony fishes
zebrafish Danio rerio zebrafish bony fishes
trout Oncorhynchus mykiss rainbow trout bony fishes

CD-MPR human qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR pig qrlvvgakgieqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR cow qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR mouse qrlvvgakgme

CD-MPR human qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR pig qrlvvgakgieqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR cow qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR mouse qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR rat qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.pcsvpaayrgvgndqlgeeseerddhllpm
CD-MPR chicken qrlivgakgmeqfphfafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgdeseerddhllpm
CD-MPR A. frog qrfvvgakgmeqfpnitfwqel

qfphlafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgeeseerddhllpm
CD-MPR rat qrlvvgakgmeqfphlafwqdlgnlvadgcdfvcrsk.pcsvpaayrgvgndqlgeeseerddhllpm
CD-MPR chicken qrlivgakgmeqfphfafwqdlgnlvadgcdfvcrsk.prnvpaayrgvgddqlgdeseerddhllpm
CD-MPR A. frog qrfvvgakgmeqfpnitfwqelgnlmadgcdfvcrsr.prtsetayrgvgddqlgeepeerddhllpm
CD-MPR w. frog qrfvvgakgmeqfpnitlwqelgnlsadgcdfvcrsr.prtsetayrgvgedqlgeepeerddhllpm
CD-MPR medaka qrlivgakgmeqfpnyafwvevgnlaadgcdfvcrsq.nreqapayrgvttepleeepderddhllpm
CD-MPR zebrafish qrlvvgakgveqfpnfafwseignlsadgcdfvc

gnlmadgcdfvcrsr.prtsetayrgvgddqlgeepeerddhllpm
CD-MPR w. frog qrfvvgakgmeqfpnitlwqelgnlsadgcdfvcrsr.prtsetayrgvgedqlgeepeerddhllpm
CD-MPR medaka qrlivgakgmeqfpnyafwvevgnlaadgcdfvcrsq.nreqapayrgvttepleeepderddhllpm
CD-MPR zebrafish qrlvvgakgveqfpnfafwseignlsadgcdfvcrsrgnreepptyrgvgteplgeepeerddhllpm
CD-MPR trout qrlivgakglqqfpnyvfwtqvgnlaadgcnfvcrtqgpeeepptyrgvstep.eeqpeerddhllpm
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missorting of cathepsin D, as it has been shown for the CD-MPR-C30,34A (Schweizer 

et al., 1996). Although studies about the CK2 phosphorylation sites revealed 

controversial results on the sorting of cathepsin D concerning the glutamates, none of 

the investigators observed missorting of cathepsin D when only the serine was 

replaced. This indicates that the serine might not be essential for sorting of the 

receptor (Johnson and Kornfeld, 1992b; Mauxion et al., 1996; Breuer et al., 1997). 

A striking fact emerges from the sequence comparison of the cytoplasmic tail of 

the CD-MPR between different species (see Figure 25). The cytoplasmic tail of the 

CD-MPR is extremely conserved among species, showing even 100% identity 

between human, mouse, pig and cow. When comparing the CK2 sites between the 

species, it is interesting that all bony fishes and amphibians lack the serine and 

instead, have a proline at position 57. This fact raises doubts about the functional 

relevance of the phosphorylation of the serine.  

4. Concluding remarks 
The trafficking and the function of the CD-MPR have been extensively 

investigated. The receptor cycles between TGN, plasma membrane and endosomes. 

Various sorting signals are identified in the cytoplasmic tail that mediate the distinct 

sorting steps.  

We contributed to the understanding of certain trafficking steps and sorting 

signals in the CD-MPR, including the characterization of the palmitoylation and the 

influence of the phosphorylation and the acidic cluster of the CK2 site in sorting in 

the TGN.  

However, many open questions remain: What is the function of the non-

palmitoylated CD-MPR? Does the palmitoylation have an influence on more than one 

signal of the cytoplasmic tail? Is TIP47 the only protein that prevents missorting of 

the CD-MPR? Alternatively, are many enzymes involved? Are there different routes 

from endosomes back to the TGN? What is the function of phosphorylation? Is there 

a function for phosphorylation at all? Why is part the CD-MPR at the cell surface? 

How and from where is it delivered to the plasma membrane? 

The established methods and all the mutant CD-MPR constructs that we made 

would allow us to address some of these questions using some of the described 

approaches. Therefore we could get closer to the ultimate goal – the complete 

understanding of the trafficking of the CD-MPR.  
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