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Background. Long-term use of both zidovudine (AZT) and stavudine (d4T) is associated with lipoatrophy,
but it occurs possibly through different mechanisms.

Methods. Surgical biopsy specimens of subcutaneous adipose tissue were obtained from 18 human immu-
nodeficiency virus type 1 (HIV-1)–infected lipoatrophic patients (the LA+ group) who were treated with either
zidovudine (the AZT+LA+ group; ) or stavudine (the d4T+LA+ group; ) and from 10 nonlipoatrophicn p 10 n p 8
HIV-1–infected patients (the LA� group) who received antiretroviral therapy. Mitochondrial DNA (mtDNA) copy
numbers, gene expression, and immunohistochemistry data were analyzed.

Results. mtDNA copy numbers were significantly reduced in the LA+ group, compared with the LA� group,
and in the d4T+LA+ group, compared with the AZT+LA+ group. The ratio of mtDNA-encoded cytochrome
COX3 to nuclear DNA–encoded COX4 expression was significantly lower in the LA+ group than in the LA�
group. Compared with the LA� group, the LA+ group had significantly lower expression of genes involved in
adipogenesis (SREBP1c and CEBPB), lipid (fatty acid synthase), and glucose (GLUT4) metabolism. Expression of
genes involved in mitochondrial biogenesis (PGC1B), apoptosis (FAS), inflammation (IL1B), oxidative stress (
PCNA and SOD1), and lamin B was significantly higher in the LA+ group than in the LA� group. The d4T+LA+
group had significantly lower expression of genes involved in mitochondrial biogenesis (POLG1), energy metabolism
(the COX3/COX4 ratio), adipogenesis (SREBP1c and CEBPA), perilipin, and hexokinase than did the AZT+LA+
group. There were 7-fold more macrophages in adipose tissue specimens obtained from patients in the LA+ group,
compared with the LA� group.

Conclusions. Lipoatrophy is characterized by mtDNA depletion, inflammation, and signs of apoptosis. Changes
were more profound in the d4T+LA+ group than in the AZT+LA+ group.

Abnormalities in body fat distribution (lipodystrophy)

are highly prevalent in human immunodeficiency virus

type 1 (HIV-1)–infected patients who are receiving

long-term treatment with antiretroviral drugs. Lipo-

atrophy (LA; i.e., loss of subcutaneous fat) is a clinical
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feature of the lipodystrophy syndrome and is associated

with metabolic complications [1, 2].

It has been suggested that nucleoside analogue re-

verse-transcriptase inhibitor (NRTI)–induced mito-

chondrial toxicity is the main pathophysiological

mechanism responsible for LA via inhibition of the

mitochondrial DNA (mtDNA) polymerase g (POLG)

[3]. Consistent with this hypothesis, mtDNA depletion
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Table 1. Primer sequences of the studied genes.

This table is available in its entirety in the online edition
of the Journal of Infectious Diseases

has been described in adipocyte cultures treated with antiret-

roviral drugs and in tissue samples obtained from lipoatrophic

patients, along with a decrease of mitochondrial respiratory

chain subunits and increased production of reactive oxygen

species [4]. Clinical trials have linked LA with long-term use

of the thymidine nucleoside analogues zidovudine (AZT) and

stavudine (d4T) [5].

In vitro studies show a hierarchy of different NRTIs that

interact with POLG [6, 7]. Although the active form of d4T is

efficiently incorporated in the nascent mtDNA by POLG and

causes chain termination, AZT has virtually no effect on

mtDNA chain elongation [8]. Nevertheless, AZT has been as-

sociated with mtDNA depletion [4], adipocyte apoptosis [4, 9],

and clinical LA [10]. This implies that AZT induces its mito-

chondrial toxicity via a POLG-independent mechanism.

Treatment with d4T results in more-severe LA than does

treatment with AZT [5]. We hypothesized that there may be

differences between AZT- and d4T-treated lipoatrophic patients

with regard to mtDNA copy numbers and expression of mi-

tochondria-encoded genes, as well as in nuclear transcripts in-

volved in mitochondrial biogenesis, adipogenesis, and meta-

bolic and endocrine function. Currently, there are little human

data comparing these 2 NRTIs in this regard [11]. In the present

study, we compared mtDNA content and gene expression in

highly active antiretroviral therapy (HAART)–treated patients

with and without LA. Moreover, we conducted a comparison

between AZT- and d4T-associated LA. Finally, an immunohis-

tochemical analysis was performed to compare the inflam-

matory state and vitality of lipoatrophic adipose tissue in AZT-

and d4T-associated LA.

MATERIALS AND METHODS

Patients. After approval by the ethics review committee and

provision of written and informed from the patients, clinically

stable HIV-1–infected adult patients were recruited from the

HIV outpatient clinic of the Helsinki University Central Hos-

pital (Helsinki, Finland). Lipoatrophic patients had to be

treated with HAART for at least 18 months, with no changes

in the regimen for the 12 weeks before the study, and had to

be taking either d4T or AZT. LA was defined as self-reported

and investigator-confirmed loss of subcutaneous fat, with or

without increased abdominal girth or breast size or develop-

ment of a buffalo hump. Patients with LA were participants in

a study examining the effects of uridine on LA, but all present

examinations were performed before the uridine and/or pla-

cebo intervention [12]. Nonlipoatrophic patients had to have

been taking HAART for a minimum of 18 months, with no

changes in the regimen for the 12 weeks prior to the study,

and to have not developed symptoms of LA (self-reported

and clinician-confirmed) while receiving antiretroviral therapy.

HIV-1–infected patients with LA who were taking HAART

(hereafter referred to as “the LA+ group”) were compared with

those who had not developed LA while receiving HAART (here-

after referred to as “the LA� group”). We subdivided the LA+

group into a subgroup of patients who were taking d4T (here-

after referred to as “the d4T+LA+ group”) or AZT (hereafter

referred to as “the AZT+LA+ group”).

Measures of body composition. Limb, truncal, and total

body fat were measured using dual-energy x-ray absorptiometry

(Lunar Prodigy). Intra-abdominal and abdominal subcutane-

ous fat were quantified by analyzing 16 T1-weighted trans-axial

magnetic resonance images, as described elsewhere [13].

Subcutaneous fat biopsies. After administration of local an-

aesthesia with lidocaine, subcutaneous fat biopsy specimens were

surgically taken from the midpoint between the iliac crest and

the umbilicus. Part of the biopsy specimen was immediately

snap-frozen in liquid nitrogen, and 100 mg of tissue from each

patient was subsequently processed with trizol for RNA extrac-

tion. Another part of the biopsy was formalin fixed and paraffin

embedded for subsequent immunohistochemical analyses.

RNA extraction. One hundred mg of adipose tissue per

patient was homogenized using the Geneclean isolation kit

(Bio101 systems, Obiogene). RNA was extracted with the

RNeasy Lipid Tissue Kit (Qiagen) in accordance with the man-

ufacturer’s instructions. The quantity and integrity of RNA were

verified using RNA 6000 nanochips (Agilent2100 Bioanalyser).

For each sample 1.5 mg of RNA was used for reverse transcrip-

tion, employing 400 U of Superscript II (Invitrogen) and 100

mM of oligo(dT)12–18 (Invitrogen) as primer.

Real-time quantification of gene expression. Primer pairs

were designed in an intron-spanning fashion to avoid unspecific

amplification of contaminating genomic DNA, using the uni-

versal probe library from Roche (http://www.universalprobe

library.com). The complete list of primer sequences is available

in table 1, which appears only in the electronic version of the

Journal. Gene expression was quantified using the LightCycler

480 (Roche) on a 384-well plate. Ten-mL reactions contained

5 mL of SYBR Green I Master mix (Roche), 50 ng of cDNA

template, and 0.5 mM of each primer. Target genes were run

in duplicate on 1 plate, which included all patient samples plus

standard dilution curve of a glyceraldehyde-3-phosphate de-

hydrogenase plasmid (6 dilutions from a factor of 102 to 107)

plus a no-template control. Cycling conditions were as follows:

activation, 95�C for 10 s; and 40 amplification cycles at 95�C

for 10 s, 52�C for 5 s, and 72�C for 12 s. Polymerase chain

reaction conditions were optimized for linearity of amplifica-

tion for all primers in a dilution series. Melting curve analysis



254 • JID 2009:200 (15 July) • Sievers et al.

Table 2. Full and abbreviated names of genes included in the study and the function of the genes.

Abbreviation Gene Function

16SRNA 16S ribosomal RNA Mitochondrial transcription
36B4 Acidic ribosomal phosphoprotein P0 Housekeeping gene
ACTB Actin b Housekeeping gene
B2M b2 Microglobulin Housekeeping gene
CEBPA CCAAT/enhancer binding protein–a Early adipocyte differentiation
CEBPB CCAAT/enhancer binding protein–b Adipocyte differentiation
COX3 Cytochrome c oxidase subunit III Respiratory chain subunit
COX4 Cytochrome c oxidase subunit IV Respiratory chain subunit
FAS Factor of apoptotic stimulus Regulation of apoptosis
FASN Fatty acid synthase Lipid metabolism
GLUT4 Glucose transporter 4 Glucose metabolism
GPX1 Glutathione peroxidase transcript variant 1 Scavenging of reactive oxygen species
HEXOK1 Hexokinase 1 Glucose metabolism
IL1B Interleukin-1b Proinflammatory cytokine
IL6 Interleukin-6 Proinflammatory cytokine
LMNA Lamin A/C Nuclear DNA maturation, chromatin

organization
LMNB Lamin B Marker of cell proliferation
p53 Tumor protein p53 Regulation of apoptosis
PCNA Proliferating cell nuclear antigen Marker of cell proliferation
PGC1B Peroxisome proliferator–activated gamma coactivator 1b Mitochondrial transcription
PLIN Perilipin Lipid metabolism
POLG1 Polymerase g (catalytic subunit) Mitochondrial biogenesis
POLG2 Polymerase g (accessory subunit) Mitochondrial biogenesis
PPARG Peroxisome proliferator–activated receptor g Lipogenesis
PPARG2 Peroxisome proliferator–activated receptor g subunit 2 Lipogenesis
SOD1 Superoxide dismutase 1 (cytosolic) Scavenging of reactive oxygen species
SREBP1c Sterol regulatory element–binding protein 1c Lipogenesis
TFAM Mitochondrial transcription factor A Mitochondrial transcription
TNFA Tumor necrosis factor–a Proinflammatory cytokine

was performed to ensure that all investigated genes were rep-

resented by a single peak, indicating specificity. Gene expression

was calculated from the real-time polymerase chain reaction

efficiency [14] in relation to the mean of 3 housekeeping genes

(ACTB, 36B4, and B2M) that are commonly used [15]. Non-

regulation of the housekeeping genes was validated using

geNorm, version 3.4 (PrimerDesign) [16].

Gene expression analysis. All studied genes, with their full

and abbreviated names and brief function descriptions, are pro-

vided in table 2.

mtDNA copy numbers. Genomic DNA was extracted from

adipose tissue using the QIAamp DNA isolation kit (Qiagen).

mtDNA and nuclear DNA (nDNA) copy numbers were de-

termined by quantitative polymerase chain reaction using the

ABI 7700 sequence detection system (Applied Biosystems). We

amplified the mtDNA-encoded ATP synthase 6 gene between

nucleotide positions 8981 and 9061. mtDNA was quantified

with a FAM fluorophore–labelled probe (5′–6FAM-CCTAACC-

GCTAACATTACTGCAGGCC ACC-TAMRA-3′). For the de-

tection of nDNA, we selected exon number 8 of the glyceral-

dehyde-3-phosphate dehydrogenase gene between nucleotide

positions 4280 and 4342 and used a VIC fluorophore–labelled

probe (5′–VIC-CCCTGCCTCTACTGGCGCTGCC-TAMRA-

3′). Each 25-mL reaction contained 25 ng of genomic DNA, 100

nM of probe, 200 nM of primers, and TaqMan Universal Master

Mix (Applied Biosystems). Amplifications of mitochondrial

and nuclear products were separately performed in optical 96-

well plates (Applied Biosystems). An initial incubation at 50�C

for 2 min was followed by 10 min at 95�C and 40 denaturing

steps at 95�C for 15 s, alternating with combined annealing

and/or extension at 60�C for 1 min. All samples were run in

triplicate. Absolute mtDNA and nDNA copy numbers were

calculated using serial dilutions of plasmids with known copy

numbers.

Immunohistochemistry. Adipose tissue biopsy specimens

were used for immunohistochemical analysis. CD68 served as

a marker for macrophages and perilipin (PLIN) as a marker

for viable adipocytes [17]. Sectioning was performed using a
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standard protocol for formalin-fixed paraffin-embedded tissue

blocks. Consecutive serial sections were treated with xylene,

descending ethanol dilution series, and distilled water to dewax

the tissue samples. Thereafter, sections were microwave-treated

in 10 mM of citrate buffer (pH, 6.0) and washed alternately

with distilled water, hydrogen peroxide, and phosphate-buf-

fered saline with 0.25% Triton X-100 (pH, 7.2) to inactivate

endogenous staining. Nonspecific staining was reduced by ap-

plying normal goat serum (ratio, 1:5; Dako) to the sections for

30 min. Samples were then incubated for 1 h at room tem-

perature with mouse monoclonal anti-CD68 (ratio, 1:200;

Novocastra Laboratories) or guinea pig polyclonal anti-PLIN

(ratio, 1:1000; Acris Antibodies GmbH). For negative controls

of CD68 staining, mouse monoclonal isotypic control (ratio,

1:200; Abcam) was used as a primary antibody. For PLIN-

negative control, the primary antibody was omitted. After rins-

ing in phosphate-buffered saline–Triton X-100 buffer, sections

were incubated with biotinylated anti-mouse (ratio, 1:1500;

Vector Laboratories) or anti-guinea pig (ratio, 1:1500; Abcam)

secondary antibodies. Avidin-biotin peroxidase complexes

(Vector Laboratories) were added followed by visualization with

3,3-diaminobenzidine tetrachloride (Vector Laboratories). Af-

ter washes with distilled water, ascending ethanol series, and

xylene, sections were counterstained with Harris hematoxylin

(Histolab). For each sample, the number of macrophages,

crown-like structures and PLIN-free cells in the entire section

were counted using light microscopy and normalized for the

total section area. Macrophages were identified as CD68-pos-

itive cells, and crown-like structures were defined as 1 PLIN-

free adipocyte surrounded by �3 macrophages [17]. Mea-

surement of total section area using arbitrary units was

performed using Adobe Photoshop Elements, version 1.0.1

(Adobe Systems).

Statistical analysis. Demographic and clinical parameters

among the study groups were compared using Fisher’s exact

test for categorical variables and unpaired t test or the Wil-

coxon-Mann-Whitney test for continuous variables, as appro-

priate. Correlations were calculated using the Pearson’s prod-

uct-moment coefficient. P values were not adjusted for multiple

comparisons. For statistical analyses, we used Sigma Stat for

Windows software, version 3.0 (Jandel Corporation); GraphPad

Prism, version 3.02 (GraphPad Software); and Lotus 1–2-3 of

Lotus SmartSuite Release 9.5 (Lotus Development Corporation,

IBM Corporation). Data are presented as mean� standard de-

viation. Two-tailed P values !.05 were considered to be statis-

tically significant.

RESULTS

Demographic and HIV-1 characteristics of the patients. The

LA+ and LA� groups (table 3) were comparable with respect

to age, sex, duration of HIV-1 infection, CD4+ T cell count,

and HIV-1 RNA load. The LA+ group had significantly less

total limb fat and a longer history of antiretroviral therapy than

did the LA� group.

With regard to the AZT+ and d4T+LA+ subgroups (table

3), the treatment-related characteristics were similar. The

d4T+LA+ group had a significantly lower body mass index and

less limb, truncal, and total fat, compared with the AZT+LA+

group. The amount of intra-abdominal fat was similar between

the LA subgroups.

Of the 18 patients with lipoatrophy, 10 received zidovudine

(AZT+LA+) and 8 received stavudine (d4T+LA+). In the

AZT+LA+ group, all patients received lamivudine, and 2 pa-

tients also received abacavir. All patients in the AZT+LA+ group

also received a protease inhibitor (PI); 2 patients received a

double-boosted PI regimen, and 2 received a PI plus a non-

NRTI (NNRTI). The following PIs and NNRTIs were pre-

scribed: ritonavir-boosted lopinavir ( ), amprenavirn p 8

( ), indinavir ( ), efavirenz ( ), and nevirapinen p 2 n p 2 n p 1

( ). In the d4T+LA+ group, 7 patients received lamivudinen p 1

and 1 patient received tenofovir plus abacavir. All 8 patients

received a PI (1 patient received a PI and an NNRTI). The

following PIs and NNRTIs were prescribed: ritonavir-boosted

lopinavir ( ), nelfinavir ( ), ritonavir-boosted indi-n p 3 n p 3

navir ( ), ritonavir-boosted saquinavir ( ), and efa-n p 1 n p 1

virenz ( ). In the LA� group, all patients received lami-n p 1

vudine, and 9 patients received zidovudine. In this group, 2

patients received a PI (1 received ritonavir-boosted lopinavir,

and 1 received nelfinavir), and 8 patients received an NNRTI

(4 received efavirenz, and 4 received nevirapine).

Fat histology. In adipose tissue specimens obtained from

patients in the LA+ group, there were 7-fold more macrophages

than specimens from the LA� group ( vs.14.1 � 13.1 2.3 �

macrophages per 100,000 arbitrary area units; ) (fig-1.9 P p .01

ure 1). The number of macrophages did not differ between the

LA subgroups. The number of crown-like structures and PLIN-

free cells did not differ between the LA+ and LA� groups or

between the LA subgroups (figure 2).

mtDNA copy numbers. The mean amount of mtDNA was

significantly lower in the LA+ group than in the LA� group

( vs. copies/cell; ). Further-238 � 129 585 � 558 P p .009

more, the d4T+LA+ group had a significantly lower mean

mtDNA copy number, compared with did the AZT+LA+ group

( vs. copies/cell; ).139 � 59 317 � 115 P p .001

Gene transcripts related to mitochondrial function.

Expression of several genes involved in the supply of respiratory

chain subunits—namely, the mtDNA-encoded cytochrome c

oxidase subunit 3 (COX3) and 16SRNA and the nDNA-en-

coded COX4. COX3 transcripts were slightly, but not signifi-

cantly, lower in the LA+ group than in the LA� group, whereas

COX4 transcripts were significantly higher in the LA+ group

(table 4). These changes resulted in a significantly lower COX3/
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Table 3. Human immunodeficiency virus type 1 (HIV-1)–related and body composition characteristics of the study groups.

Characteristic
LA+ group
(n p 18)

LA� group
(n p 10) P a

d4T+LA+ group
(n p 8)

AZT+LA+ group
(n p 10) P b

Demographic and HIV-1–related characteristics
Patient age, years 46.7 � 10.0 43.3 � 11.0 .42 49.3 � 11.9 44.6 � 8.2 .34
No. of female patients 3 1 1.99 1 2 1.99
Duration of HIV-1 infection, years 9.9 � 4.6 6.9 � 3.6 .09 8.2 � 3.4 11.2 � 4.9 .18
Duration of HAART, years 5.9 � 1.8 4.2 � 1.8 .02 6.0 � 1.5 5.8 � 2.1 .86
No. of patients with an HIV-1 RNA level

!50 copies/mL 15 10 .53 7 8 1.99
CD4+ T cell count, cells/mL 548 � 270 543 � 187 .96 592 � 248 513 � 294 .56
Receipt of zidovudine 10 9 .10 0 10 !.001
Receipt of stavudine 8 0 .03 8 0 !.001
Receipt of PI(s) 18 2 !.001 8 10 NA
Receipt of NNRTI(s) 3 8 !.001 1 2 1.99

Body composition
Weight, kg 73.6 � 13.3 75.0 � 10.8 .79 66.6 � 10.0 79.2 � 13.3 .04
BMI 23.5 � 3.4 23.5 � 2.8 .97 21.5 � 2.6 25.1 � 3.2 .02
Total limb fat, g 3243 � 2610 5750 � 2767 .03 1554 � 1474 4594 � 2572 .009
Total truncal fat, g 9546 � 4961 9377 � 4858 .93 6772 � 2495 11,766 � 5416 .03
Total fat, g 13,223 � 7444 15,683 � 7661 .43 8656 � 3891 16,876 � 7716 .02
Intra-abdominal fat, cm3 2171 � 1237 854 � 567 .004 1901 � 803 2388 � 1507 .42

NOTE. Data are mean � standard deviation, unless otherwise indicated. AZT+LA+ group, HIV-1–infected patients with lipoatrophy whose HAART regimen
included zidovudine; BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters); d4T+LA+ group, HIV-1–infected patients
with lipoatrophy whose HAART regimen included stavudine; HAART, highly active antiretroviral therapy; LA+ group, HIV-1–infected patients with lipoatrophy who
were taking HAART; LA� group, HIV-1–infected patients who had not developed lipoatrophy while receiving HAART; NA, not applicable; NNRTI, nonnucleoside
reverse-transcriptase inhibitor; PI, protease inhibitor.

a LA+ group vs. LA� group.
b d4T+LA+ group vs. AZT+LA+ group.

COX4 ratio in the LA+ than the LA� group (table 4). The

d4T+LA+ group had significantly lower expression of COX3

and 16SRNA, compared with the AZT+LA+ group (table 5).

Also, the COX3/COX4 ratio was significantly lower in the

d4T+LA+ group than in the AZT+LA+ group (table 5).

mtRNA per mtDNA template. To calculate the relative

number of RNA transcripts per molecule of mtDNA template,

we normalized mtDNA-encoded genes for the amount of

mtDNA molecules. Relative to the mtDNA copies per cell,

transcription of mtDNA-encoded genes was significantly high-

er in the LA+ group than in the LA� group (table 6). This

effect was more pronounced (although the difference was sta-

tistically insignificant) in the d4T+LA+ group than in the

AZT+LA+ group (table 6).

Gene transcripts involved in mitochondrial biogenesis.

Polymerase g, an enzyme consisting of 2 subunits (POLG1 and

POLG2) and mitochondrial transcription factor A (TFAM),

which provides the replication primer, play a key role in the

regulation of mtDNA replication [18]. PPARG coactivator 1b

(PGC1B) stimulates mitochondrial gene transcription via ac-

tivation of TFAM [18] and enhances transcription of the per-

oxisome proliferator–activated receptor g (PPARG), thus rep-

resenting a link between mitochondrial biogenesis and adipose

cell function [19].

POLG1 and POLG2 transcription did not differ between the

LA+ and the LA� groups (table 4). Expression of POLG1, but

not of POLG2, was significantly lower in the d4T+LA+ group

than in the AZT+LA+ group (table 5). TFAM expression was

comparable between all groups. The PGC1B transcripts were

7-fold higher in the LA+ group than in the LA� group (table

4). There was no significant difference between the AZT+LA+

and d4T+LA+ groups with regard to PGC1B (table 5).

Adipogenesis. SREBP1c expression was lower in the LA+

group than in the LA� group (table 4). Among all patients,

there was an inverse correlation between the expression of

SREBP1c and PGC1B ( ; ) and a positiver p �0.58 P p .002

correlation between SREBP1c expression and mtDNA copy

number ( ; ). CEBPA and SREBP1c transcriptr p 0.55 P p .014

levels were lower in the d4T+LA+ group than in the AZT+LA+

group (table 5).

Lamin B (LMNB) expression was significantly increased in

the LA+ group, compared with the LA� group (table 4). Ex-

pression of lamin A/C (LMNA) and LMNB was comparable

between the LA subgroups (table 5).

Lipid and glucose metabolism. The LA+ group had fewer

fatty acid synthase (FASN) and glucose transporter 4 (GLUT4)

transcripts did than the LA� group (table 4). PLIN and

HEXOK1 transcripts were significantly lower in the d4T+LA+



Figure 1. Immunohistochemical staining with CD68. Macrophages are identified as CD68-positive cells (brown) in the adipose tissue. Original
magnification, �300. Representative images of zidovudine-associated lipoatrophy (upper left), stavudine-associated lipoatrophy (upper right), no lipo-
atrophy (lower left), and a CD68-negative control (lower right).

Figure 2. Immunohistochemical stainings with CD68 and perilipin. Macrophages are identified as CD68-positive cells (brown) in the adipose tissue.
Original magnification, �600. Images are of a representative crown-like structure (CLS) in a CD68-positive stain (upper left), the same CLS in the
CD68-negative control (upper right), the same CLS in the perilipin stain (lower left), and the perilipin-negative control of the same structure (lower
right). Note that the macrophage-encircled adipocyte, CLS, is lacking the perilipin immunoactivity in its membrane (blue instead of normal, viable
brown), a feature in literature classified as a sign of a nonviable adipocyte.
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Table 4. Relative expression of gene transcripts in comparison with the mean of 3 house-
keeping genes (actin b [ACTB]; b-2 microglobulin [B2M], and ribosomal phosphoprotein P0 [36B4])
for patients with versus patients without lipatrophy.

Gene

Mean � standard deviation

P
Direction

of changecLA+ groupa LA� groupb

Housekeeping genes ACTB, B2M, and 36B4 1.05 � 0.36 1.00 � 0.17 .62 …
Mitochondrial energy metabolism

COX4 2.53 � 0.87 1.37 � 0.42 .001 Increase
COX3/COX4-ratio 0.33 � 0.16 0.89 � 0.35 !.001 Decrease
COX3 0.87 � 0.41 1.28 � 0.73 .07 …
16SRNA 0.70 � 0.34 0.72 � 0.33 .90 …

Mitochondrial biogenesis
PGC1B 6.74 � 6.94 0.95 � 0.32 .02 Increase
POLG2 1.24 � 0.28 1.09 � 0.12 .16 …
TFAM 1.30 � 0.50 1.22 � 0.16 .65 …
POLG1 1.21 � 0.44 1.19 � 0.12 .89 …

Adipogenesis
LMNB 1.39 � 0.75 0.61 � 0.43 .01 Increase
SREBP1c 0.40 � 0.32 1.98 � 1.15 !.001 Decrease
CEBPB 0.96 � 0.48 1.43 � 0.65 .046 Decrease
CEBPA 1.96 � 1.16 2.74 � 1.24 .12 …
PPARG2 1.72 � 0.85 1.40 � 0.31 .29 …
PPARG 1.82 � 1.07 1.48 � 0.44 .36 …
LMNA 1.26 � 0.55 1.05 � 0.18 .40 …

Lipid and glucose metabolism
FASN 3.64 � 3.79 9.67 � 2.82 !.001 Decrease
GLUT4 1.42 � 1.15 2.87 � 1.68 .015 Decrease
HEXOK1 1.21 � 0.54 1.42 � 0.26 .27 …
PLIN 1.03 � 1.04 1.37 � 0.58 .38 …

Apoptosis, inflammation and oxidative stress
IL1B 0.39 � 0.15 0.12 � 0.07 !.001 Increase
FAS 6.01 � 3.08 2.38 � 1.16 .002 Increase
SOD1 2.03 � 0.84 1.36 � 0.17 .03 Increase
PCNA 1.81 � 0.38 1.49 � 0.38 .046 Increase
IL6 0.35 � 0.60 0.01 � 0.02 .12 …
GPX1 1.84 � 1.07 1.31 � 0.36 .16 …
TNFA 0.80 � 1.23 0.23 � 0.21 .19 …
p53 1.02 � 0.35 1.09 � 0.26 .57 …

NOTE. CEBPA and CEBPB, CCAAT/enhancer binding protein a and b; COX3 and COX4, cytochrome c oxidase
subunit 3 and 4; FAS, factor of apoptotic stimulus; FASN, fatty acid synthase; GLUT4, glucose transporter 4; GPX1,
glutathione peroxidase 1; HEXOK1, hexokinase 1; IL1B and IL6, interleukin-1b and -6; LMNA and LMNB, lamin A/
C and B; p53, tumor protein p53; PGC1B, peroxisome proliferative-activated receptor gamma coactivator 1b; PCNA,
proliferating cell nuclear antigen; PLIN, perilipin; POLG1, polymerase g (catalytic subunit); POLG2, polymerase g

(accessory subunit); PPARG and PPARG2, peroxisome proliferative-activated receptor g and g subunit 2; 16SRNA,
16S ribosomal RNA; SOD1, superoxide dismutase 1; SREBP1c, sterol element binding transcription factor 1c; TFAM,
mitochondrial transcription factor A; TNFA, tumor necrosis factor–a.

a Human immunodeficiency virus type 1 (HIV-1)–infected patients with lipoatrophy who were taking highly active
antiretroviral therapy.

b HIV-1–infected patients who had not developed lipoatrophy while receiving highly active antiretroviral therapy.
c Direction of change in gene expression is indicated as the LA+ group versus the LA� group.

group than in the AZT+LA+ group (table 5). Among all pa-

tients, GLUT4 expression correlated positively with both FASN

( ; ) and HEXOK1 ( ; ).r p 0.73 P ! .001 r p 0.64 P ! .001

Apoptosis, inflammation, and oxidative stress. The factor

of apoptotic stimulus (FAS) receptor is a key regulator of ap-

optosis due to extrinsic stress signals. Because the extrinsic stress

signals do not affect the mRNA concentrations of p53 but,

rather, regulate p53 posttranslationally [20], the gene was used

as a control for stress-related apoptotic mRNA alterations. We

also analyzed superoxide dismutase 1 (SOD1) and glutathione
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Table 5. Relative expression of gene transcripts in comparison with the mean of 3 housekeeping
genes (actin b [ACTB]; b-2 microglobulin [B2M], and ribosomal phosphoprotein P0 [36B4]) for patients
with lipoatrophy who received zidovudine versus stavudine.

Gene

Mean � standard deviation

P
Direction

of changecd4T+LA+ groupa AZT+LA+ groupb

Housekeeping genes ACTB, B2M, and 36B4 1.06 � 0.37 1.04 � 0.36 .49 …
Mitochondrial energy metabolism

COX3/COX4-ratio 0.24 � 0.09 0.43 � 0.16 .02 Decrease
COX3 0.64 � 0.24 1.06 � 0.43 .03 Decrease
16SRNA 0.50 � 0.19 0.86 � 0.36 .03 Decrease
COX4 2.77 � 0.89 2.29 � 0.86 .60 …

Mitochondrial biogenesis
POLG1 0.93 � 0.38 1.41 � 0.37 .01 Decrease
TFAM 1.38 � 0.67 1.24 � 0.32 .57 …
POLG2 1.20 � 0.16 1.26 � 0.34 .64 …
PGC1B 6.52 � 6.89 6.90 � 7.34 .96 …

Adipogenesis
CEBPA 1.29 � 0.58 2.50 � 1.25 .02 Decrease
SREBP1c 0.25 � 0.37 0.47 � 0.28 .04 Decrease
LMNA 1.09 � 0.60 1.44 � 0.45 .14 …
CEBPB 0.78 � 0.34 1.11 � 0.54 .15 …
PPARG2 1.43 � 0.74 1.95 � 0.90 .18 …
PPARG 1.58 � 1.03 2.01 � 1.11 .48 …
LMNB 1.50 � 0.79 1.33 � 0.76 .67 …

Lipid and glucose metabolism
HEXOK1 0.86 � 0.51 1.48 � 0.40 .007 Decrease
PLIN 0.53 � 0.71 1.52 � 1.13 .04 Decrease
GLUT4 0.90 � 0.52 1.78 � 1.34 .11 …
FASN 3.00 � 3.59 4.22 � 4.07 .26 …

Apoptosis, inflammation and oxidative stress
GPX1 1.35 � 0.41 2.18 � 1.27 .10 …
PCNA 1.94 � 0.46 1.70 � 0.27 .10 …
SOD1 1.71 � 0.58 2.29 � 0.95 .16 …
FAS 6.65 � 2.98 5.51 � 3.22 .34 …
TNFA 0.42 � 0.61 1.09 � 1.53 .38 …
p53 0.97 � 0.45 1.05 � 0.27 .45 …
IL6 0.27 � 0.28 0.42 � 0.83 .66 …
IL1B 0.38 � 0.18 0.40 � 0.14 .85 …

NOTE. CEBPA and CEBPB, CCAAT/enhancer binding protein a and b; COX3 and COX4, cytochrome c oxidase subunit
3 and 4; FAS, factor of apoptotic stimulus; FASN, fatty acid synthase; GLUT4, glucose transporter 4; GPX1, glutathione
peroxidase 1; HEXOK1, hexokinase 1; IL1B and IL6, interleukin-1b and -6; LMNA and LMNB, lamin A/C and B; PCNA,
proliferating cell nuclear antigen; p53, tumor protein p53; PGC1B, peroxisome proliferative-activated receptor gamma coac-
tivator 1b; PLIN, perilipin; POLG1, polymerase g (catalytic subunit); POLG2, polymerase g (accessory subunit); PPARG and
PPARG2, peroxisome proliferative-activated receptor g and g subunit 2; 16SRNA, 16S ribosomal RNA; SOD1, superoxide
dismutase 1; SREBP1c, sterol element binding transcription factor 1c; TFAM, mitochondrial transcription factor A; TNFA,
tumor necrosis factor-a.

a Human immunodeficiency virus type 1 (HIV-1)–infected patients with lipoatrophy whose highly active antiretroviral
regimen included stavudine.

b HIV-1–infected patients with lipoatrophy whose highly active antiretroviral regimen included zidovudine.
c Direction of change in gene expression is indicated as the d4t+LA+ group versus the AZT+LA+ group.

peroxidase 1 (GPX1) expression as indicators of oxidative stress

[21,22]. The proliferating cell nuclear antigen (PCNA) was eval-

uated as a marker of adipocyte cycling.

The expression of FAS, but not of p53, was increased in the

LA+ group, compared with the LA� group (table 4). The level

of SOD1 and PCNA gene expression was higher in the LA+

group than in the LA� group (table 5). Of the inflammatory

cytokines, expression of IL1B was greater in the LA+ group

than in the LA� group (table 4). IL1B transcripts correlated

inversely with mtDNA copy numbers ( ; ).r p �0.42 P p .005
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Table 6. Expression of mitochondrial DNA-encoded transcripts in the patient groups.

Gene

Mean � standard deviation

P a

Mean � standard deviation

P b
LA+ group
(n p 18)

LA� group
(n p 10)

d4T+LA+ group
(n p 8)

AZT+LA+ group
(n p 10)

16SRNA RNA 0.34 � 0.18 0.15 � 0.05 .004 0.42 � 0.23 0.28 � 0.08 .07
COX3 RNA 0.42 � 0.20 0.25 � 0.08 .02 0.52 � 0.24 0.35 � 0.11 .058

NOTE. AZT+LA+ group, HIV-1–infected patients with lipoatrophy whose highly active antiretroviral therapy
(HAART) regimen included zidovudine; COX3, cytochrome c oxidase subunit 3; d4T+LA+ group, HIV-1–infected
patients with lipoatrophy whose HAART regimen included stavudine; LA+ group, HIV-1–infected patients with
lipoatrophy who were taking HAART; LA� group, HIV-1–infected patients who had not developed lipoatrophy while
receiving HAART; 16SRNA, 16S ribosomal RNA.

a For the LA+ group versus the LA� group.
b For the d4t+LA+ group versus the AZT+LA+ group.

There were no statistically significant differences in the ex-

pression of markers of apoptosis, inflammation, and oxidative

stress between the AZT+LA+ group and the d4T+LA+ group

(table 5).

DISCUSSION

We compared gene expression and immunohistochemical signs

of inflammation in subcutaneous abdominal adipose tissue bi-

opsy specimens obtained from HIV-1–infected patients with

and without HAART-associated lipoatrophy. We were partic-

ularly interested in comparing the lipoatrophic patients using

either AZT or d4T.

In keeping with previous studies, we found mtDNA to be

depleted in the LA+ group, compared with the LA� group

[23, 24]. In addition, the mtDNA-encoded COX3 expression

was decreased in patients with lipoatrophy, especially in those

with d4T-associated lipoatrophy. nDNA-encoded COX4 ex-

pression was increased in both treatment subgroups. POLG1

expression, unlike that of POLG2, was lower in the d4T+LA+

group than in the AZT+LA+ group. This may, in part, explain

the more severe mtDNA depletion in the d4T+LA+ group than

in the AZT+LA+ group.

Mitochondrial toxicity may induce oxidative stress in adipose

tissue, consequently contributing to impaired adipocyte differ-

entiation, increased inflammation, and activation of apoptosis

[25]. Accordingly, in the current study, we found a positive

correlation between mtDNA copy number and SREBP1c ex-

pression (an important transcription factor in adipogenesis)

and an inverse correlation between mtDNA copy number and

the expression of IL1B.

An increase in mitochondrial gene expression relative to the

number of mtDNA copies per cell in the LA+ group may reflect

an attempt to compensate for mtDNA depletion. The markedly

higher gene expression of PGC1B supports this line of reason-

ing. Expression of TFAM, however, was not altered in our LA

subgroups, although in healthy individuals, even short-term

exposure to AZT and d4T is associated with up-regulation of

PGC1B and TFAM mRNA [26].

With respect to expression of genes involved in adipogenesis,

we confirmed decreased SREBP1c expression in the LA+ group,

compared with the LA� group [27, 28]. We now extended this

finding to both LA subgroups. Expression of PPARG was un-

changed, as was reported in some [29] but not all [27, 30]

previous studies.

Expression of CEBPB was significantly lower in the LA+

group than in the LA� group. CEBPA followed the same trend.

Down-regulation of these genes was more prominent in the

d4T+LA+ group than in the AZT+LA+ group. These findings

are in accordance with previous reports of decreased expression

of CEPBA and CEBPB in patients with HAART-associated li-

poatrophy [27, 28].

We found GLUT4 gene expression to be decreased in the

LA+ group, compared with the LA� group, which is in keeping

with our own previous findings [31] and with those of others

[27]. Expression of GLUT4 did not significantly differ between

the LA subgroups, although it tended to be lower in the

d4T+LA+ group than in the AZT+LA+ group.

LMNA and LMNB expression was analyzed because it has

been postulated that PI treatment may alter LMNA maturation

and, thus, inhibit translocation of SREBP1c from the cytoplasm

to the nucleus in LA [32]. We could not confirm decreased

LMNA gene expression in LA. We found significantly higher

expression of LMNB in the LA+ group than in the LA� group.

The relationship between altered lamin maturation and stability

as well as the reduced SREBP1c translocation through nuclear

pores, which was previously observed with PI exposure [32],

has also been recently challenged [33].

Adipose tissue in lipoatrophic patients has been suggested

to be chronically inflamed [34]. An increased number of foamy

histiocytes [35] and immunohistochemically identified CD68-

positive macrophages has been reported in adipose tissue spec-

imens obtained from lipoatrophic patients [34]. However, in
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these studies, patients with LA were compared with HIV-1–

negative subjects. We have previously described increased ad-

ipose tissue inflammation in a different group of HIV-1–pos-

itive, HAART-treated, lipodystrophic patients who were com-

pared with HIV-1–positive, HAART-treated, nonlipodystrophic

patients [36]. In the current study, these findings are confirmed.

Proinflammatory cytokines impair adipocyte metabolism

and induce insulin resistance and apoptosis in adipose tissue

[37]. Apoptosis in the context of HAART-associated LA has

previously been described in vitro [4] and in vivo [38]. We

found that FAS was increased in the LA+ group, compared

with the LA� group. The expression of p53 did not differ

between the groups, which is consistent with the predominantly

posttranscriptional activation of the p53 network [20]. With

regard to TNFA—a trigger of the extrinsic pathway of apopto-

sis—there was no difference between the d4T+LA+ and the

AZT+LA+ groups, although there was a trend towards in-

creased TNFA expression in the AZT+LA+ group, as previously

observed [38]. The increase of IL1B and TNFA transcripts could

originate from either recruited macrophages or inflamed adi-

pocytes [39, 40].

Compared with the LA+ group, no significant up-regulation

of SOD1 was evident in the LA� group, and GPX1 followed

the same pattern. In comparison, for the treatment subgroups,

both of those genes tended to be more prevalent in the

AZT+LA+ group. This finding may reflect the particular pro-

pensity of AZT to induce reactive oxygen species production

[41].

The present study has several limitations. As with any cross-

sectional study, only an association, not a causal relationship,

can be demonstrated. Because of the limited group size, neg-

ative results should be interpreted with caution. It should also

be emphasized that mRNA profiles do not equal protein ex-

pression and that statistical analyses were not corrected for

multiple comparisons. It is also possible that the imbalance in

the use of PIs between the LA+ and the LA� groups may have

affected the results. Although in vitro models have shown PI-

induced inhibition of adipocyte differentiation both by PPARg-

dependent [42] and PPARg-independent [43] mechanisms,

cessation of PI therapy, as opposed to cessation of NRTI ther-

apy, does not lead to improvement of lipoatrophy [44].

In summary, the present study demonstrates alterations in

gene expression in adipose tissue of patients with HAART-

associated LA, compared to HAART-treated, nonlipoatrophic

patients. The results confirm previous findings of mtDNA de-

pletion, inflammation, and disturbances in adipogenesis in li-

poatrophic fat. Furthermore, an excessive number of macro-

phages in lipoatrophic adipose tissue was demonstrated. When

comparing the d4T- and the AZT-treated lipoatrophic patients,

more severe mtDNA depletion and decrease in gene expression

of mtDNA-encoded COX3, nuclear adipogenic transcription

factors, and PLIN was found in patients with d4T-associated

lipoatrophy.
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