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Summary 

The need for specific targeting strategies towards hepatocytes stems from the lack of efficient 

therapeutic options to treat numerous serious liver diseases. Moreover, various genetic disorders, 

such as α1-antitrypsin deficiency and hemophilia A and B, are depending on an efficient gene 

delivery to defined cells, such as hepatocytes, preferentially avoiding viral vectors. Since the 

asialoglycoprotein receptor is primarily expressed by liver parenchymal cells, it offers a potential 

target for a cell specific delivery system. 

 

First, the binding of various vectors was analyzed, using the human hepatocellular carcinoma cell 

line HepG2 as an in vitro model. While the uptake of D-galactose as a monomer was non-specific, 

the glycoprotein asialofetuin was analyzed as an alternative vector, which represents the desialated 

derivative of fetuin, containing multi-antennary galactose-terminating glycan residues. Next to a 

pronounced cellular accumulation, the uptake was markedly inhibited in the presence of an excess 

of free asialofetuin, indicating specific endocytosis through the asialoglycoprotein receptor. 

Therefore, asialofetuin was selected as an ideal vector for the further development of a drug 

delivery system targeting liver parenchymal cells. 

 

Asialofetuin was covalently attached to pegylated liposomes, yielding a highly monodisperse 

preparation with a particle size below 100 nm. A subsequently incubation with HepG2 cells resulted 

in a specific endocytosis of the vesicles, providing an experimental proof of concept for targeting 

hepatocytes in vitro. The delivery and intracellular accumulation in HepG2 cells were investigated 

by incorporating various organic dyes and fluorescent semiconductor nanocrystals, also known as 

quantum dots, into liposomes. The cellular uptake of asialofetuin-conjugated liposomes, loaded with 

quantum dots, resulted in a bright fluorescent signal, which was impaired by the need for a specific 

photoactivation prior to fluorescence analysis. Despite their challenging optical properties, quantum 

dots are valuable fluorochromes for further optimization of drug targeting strategies. 
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Finally, a proof of principle for a hepatocyte specific delivery was provided in vivo, by intravenously 

injecting rats with asialofetuin-conjugated and pegylated liposomes, which were taken up by the 

liver parenchymal cells. In contrast, accumulation in hepatocytes was reduced by co-injecting free 

asialofetuin and conventional liposomes were uniquely engulfed by Kupffer cells. 

 

Summarized, asialofetuin-conjugated pegylated liposomes represent a novel approach, combining 

desialated glycoproteins, which exhibit a high affinity towards the asialoglycoprotein receptor, with 

long circulating vesicles, for a specific targeting of liver parenchymal cells. This concept represents 

a most promising strategy for a hepatocyte specific drug delivery system and gives the opportunity 

for further studies, such as the isolated utilization of glycans only, to avoid immunogenic reactions. 

 

These targeting strategies can be used to deliver drugs to diseased tissues or organs within our 

body. This reflects our interests to modulate the pharmacokinetics of drugs using specific 

formulation strategies. Two additional pharmacokinetic investigations of pharmaceutical relevant 

substances were published in peer-reviewed journals. One study addresses the risk of physical 

drug interactions of ceftriaxone with calcium in human plasma, and the second one discusses the 

interaction potential of high doses of resveratrol with various cytochrome P450 isoenzymes. These 

studies are presented in the section “Appendix”, to separate them from the drug targeting approach 

of hepatocytes using liposomal formulations. 
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1. Introduction 

This section will provide arguments why drug targeting strategies are needed to deliver drugs to 

the liver and in particular to the hepatocyte. Technical possibilities, such as the use of liposomal 

carriers, are discussed. Additionally, the use of quantum dots, as a new tracer for in vitro and also 

for a potential optimization tool in vivo, is outlined. 

 

1.1. Targeting of the liver 

The liver is a central organ, responsible among others for metabolism, detoxification, bile 

production, protein synthesis, storage, hormone synthesis, and hosting parts of the mononuclear 

phagocyte system. The functional units are built up as liver lobules, which transport the blood from 

the portal vein and the hepatic artery through the sinusoids to the central vein (Figure 1, panel A). 

Hepatocytes, making up about 80% of the cells in the liver, are separated from the blood stream by 

the space of Disse and hepatic sinusoidal endothelial cells (Figure 1, panel B), which build up an 

endothelium with fenestrae of approximately 100 to 150 nm (Thews et al. 1999; Pathak et al. 2008; 

M. Tanaka et al. 2011). 

 

Figure 1: Schematic representation of a liver lobuli and the architecture of sinusoids. The 

blood from the portal vein and the hepatic artery flows through the sinusoids to the central vein. 

Sinusoidal endothelial cells form a fenestrated layer, which allows only small particles 

(< 150 nm) to pass from the blood flow into the space of Disse and to reach hepatocytes. In 

contrast, Kupffer cells are located in the sinusoids and have directly access to the blood flow. 

Adapted from Thews et al. 1999; Tanaka et al. 2011 
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Hepatocytes are taking over many of the above-mentioned functions of the liver and with their 

variety of metabolizing enzymes, they are primarily responsible for clearing many drugs (Testa & 

Krämer 2006). Intestinal absorbed substances are transported via the portal vein to the liver and in 

many cases are extensively metabolized at this site, which belongs to the so-called first-pass effect. 

Therefore, hepatocytes are often exposed to high amounts of drugs, due to their natural function 

without any targeting system. Developing strategies to deliver drugs to the liver, and especially to 

hepatocytes, raises the question about the therapeutic need, when these cells metabolize most of 

the xenobiotics anyway. Hence, it can appear to be superfluous to evaluate specific drug-delivering 

systems to hepatocytes. 

This view stands in contrast to the inadequate treatment options for many liver diseases. While the 

incidence rates for hepatic diseases are constantly increasing over the past decades, the 

pharmacotherapies, which are available today, are often insufficient (Poelstra et al. 2012). 

In general, the maximum amount of pharmaceutical substances that can be administered is limited 

by adverse side effects, caused by the drug at non-diseased tissue. Delivery of compounds to 

specific cells (in our case to hepatocytes) would increase the local drug concentration, while 

decreasing systemic toxic effects. Especially in cancer, an increased local concentration of 

chemotherapeutical drugs does not only minimize side effects, but can also result in an improved 

survival rate (Pérez-López et al. 2007). For example, exclusively delivering anti-tumor drugs and 

cytokines, like doxorubicin for hepatocellular carcinoma (HCC) to diseased cells would open new 

therapeutic possibilities. 

 

In addition to conventional drugs, targeting systems are explored as well for gene therapy for 

various medical indications like genetic disorders, metabolic deficiencies, cancer, and viral 

infections. In particular genetic diseases affecting hepatocytes could be cured, if specific delivery 

and stable integration of exogenous DNA in hepatocytes was possible. Although various viral 

vectors, like adenovirus and retrovirus, demonstrate sufficient transfection efficiency, their clinical 

use is hampered by safety concerns (Hacein-Bey-Abina et al. 2003). Additionally, these and other 

viral vectors result in a non-specificity to hepatocytes and therefore causing side effects like 
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immunogenic responses. Although some promising strategies based on viral vectors are 

investigated in the clinics for gene delivery, alternative strategies for safer vectors with a high 

efficiency are needed (Campos & Barry 2007; Petrus et al. 2010; Haisma & Bellu 2011). 

 

Non-parenchymal cells in the liver are therapeutic targets in several other hepatic diseases, such 

as acute liver inflammation, liver fibrosis, liver cirrhosis, and primary biliary cirrhosis. Drug 

delivering strategies and current approaches for these cells are reviewed elsewhere (Popov & 

Schuppan 2009; Poelstra et al. 2012). 

 

1.1.1. Hepatocytes 

Hepatocytes, which build up the parenchyma of the liver, exhibit a highly polarized structure with a 

basolateral (sinusoidal) membrane towards the sinusoids, an apical side constituting the bile 

canaliculi, next to a lateral surface connecting adjacent cells. Beside their major role in metabolism, 

they produce a large number of serum proteins, and in case of injury their production of 

inflammatory mediators contribute to the pathologic cascade of liver fibrosis (J. Wu & Zern 2000). 

Additionally, the liver parenchymal cells are affected in various liver diseases. Hepatitides can be 

caused by infectious diseases (such as viral, bacterial, protozoal, parasitic, fungal, and algal) or 

non-infectious diseases (alcohol-, toxin-, and drug-induced, autoimmune, ischemic, inherited). The 

two viral pathogens HBV and HCV are able to cause a chronic hepatitis, which leads to fibrosis 

and after some point to cirrhosis (Herzer et al. 2007). Conclusively, hepatocytes are important 

targets, especially in chronic viral hepatitis caused by HBV and HCV (L. C. Casey & W. M. Lee 

2012; Lampertico & Liaw 2012), nonalcoholic steatohepatitis (Siebler & Galle 2006), and HCC 

(Aravalli et al. 2012), where treatment options are limited and often insufficient. 

 

Moreover, genetic disorders like Wilson’s disease, α1-antitrypsin deficiency, and hereditary 

hemochromatosis are examples of diseases where specific delivery of genes would open new 

therapeutic possibilities in healing these defects. Furthermore, hepatocytes could potentially be 
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used as a surrogate “host” to express and segregate proteins in additional genetic disorders like 

hemophilia A and B, where clotting factors VIII and IX are missing. High expectations are set that 

hemophilia will be curable in the near future by gene therapy, as the disease is caused by the lack 

of only one protein. In addition, already minor amounts of secreted protein ameliorate symptoms in 

severe cases (Mannucci & Tuddenham 2001). Hepatocytes are selected in most studies as target 

cells for gene expression, due to their central role in protein synthesis and easy access to the 

blood circulation. Despite substantial progress using viral and non-viral vectors, major challenges 

are remaining (Petrus et al. 2010). For example, the use of viral vectors and unspecific 

transduction of various cell types can cause immunologic reactions, which prevents a successful 

treatment (Herzog & Dobrzynski 2004; Nathwani et al. 2011). Hence, it is a requirement to evade 

transfection of cells of the immune system, and especially the antigen-presenting cells, to avoid 

unwanted immunological responses towards the transgenic expressed proteins (Petrus et al. 2010). 

Therefore, specific targeting of suitable cells, like hepatocytes, with non-viral vectors is a promising 

step in successfully transferring this new treatment options to the clinics. 

 

Next to viral vectors, such as adenovirus, lentivirus, and HBV, which are commonly used for gene 

delivery (Poelstra et al. 2012), various other strategies are investigated to target hepatocytes. 

Another approach is taking advantage of the natural presence of apolipoprotein E (ApoE) in the 

plasma, which can adsorb on to injected liposomes and lipid nanoparticles and triggers an uptake 

by the low-density lipoprotein (LDL) receptor (Yan et al. 2005; Akinc et al. 2010). A similar strategy, 

using ApoE-fragments on liposomes, is utilized to cross the blood-brain barrier for targeting the 

central nervous system (Hülsermann et al. 2009), which raises questions about the specificity of 

this method. The most prominent strategy to target hepatocytes is through the asialoglycoprotein 

receptor (ASGPR), which is particularly expressed on liver parenchymal cells and exhibits a high 

affinity to terminal D-galactose (Gal) and N-acetyl-D-galactosamine (GalNAc) residues of glycans 

from glycoproteins. Recently, monoclonal antibodies were raised against the receptor and coupled 

to toxins to target hepatocytes (Trahtenherts & Benhar 2009; X. Zhao et al. 2011). This approach 

has its weak point to be species specific, and therefore animal studies can only be transferred with 
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limitations to the situation in humans. Since the affinity of the antigen binding property, also known 

as complementarity determining region (CDR), of the antibody can easily suffer from various 

causes, such as protein denaturation and non-specific conjugation, coupling to nanoparticles and 

storage of these components are challenging. As an alternative to antibody targeting, different 

vectors are synthesized, mimicking endogenous ligands of the ASGPR, to target liver parenchymal 

cells by using terminal Gal, GalNAc, or various desialated glycoproteins. 

 

1.1.2. Structure of the asialoglycoprotein receptor and targeting strategies  

The human ASGPR receptor is built up of two different subunits, each with an apparent molecular 

mass of approximately 41 kDa (J. Wu et al. 2002) and a sequence identity of 54%. These subunits 

are composed of 291 and 311 amino acids, with an unglycosylated molecular weight of 33 and 35 

kDa, respectively (Uniprot.org 2012a; Uniprot.org 2012b). While both subunits contain 

carbohydrate recognition domains, the first subtype is responsible for endocytosis and the second 

one is in charge of an exclusively transport to the basolateral membrane. The functional receptor 

preferentially forms a 2:2 heterotetramer on the cell membrane (Fuhrer et al. 1994; Bider et al. 

1996). 

 

The ASGPR belongs to the group of C-type lectins (Ca2+-dependent), binding to terminal Gal or 

GalNAc of glycoproteins, after sialic acid has been removed. Terminal sialic acids on glycan 

residues of proteins serve as an “expiry date”, and removal of this terminal sugar marks the protein 

for recycling. An example is the endogenous glycoprotein plasma fibronectin, which is produced 

and secreted by hepatocytes, and finally gets recycled after the sialic acid is cleaved from the 

glycan residue (Morell et al. 1971; Rotundo et al. 1998). The receptor is highly expressed on 

mammalian hepatocytes and presented on the sinusoidal membrane. Therefore, the receptor is 

regarded as an ideal structure for liver-specific targeting (Stockert 1995; J. Wu et al. 2002). 

However, small amounts of ASGPR have been detected in a subpopulation of activated primary 

T cells (J.-H. Park et al. 2006), in renal proximal tubular epithelial cells (Seow et al. 2002), on 
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human sperms (Harvey et al. 2000), and on thyrocytes (Marinò & McCluskey 2000). While primary 

rat hepatocytes have approximately 550 000 ASGPR per cell, HepG2, a cell line derived from a 

human liver parenchymal carcinoma, presents a reduced amount of about 225 000 receptors per 

cell (Popielarski et al. 2005). 

 

The receptor is associated with some infectious diseases in humans. For example, the uptake of 

Marburg viruses is triggered by this receptor (Becker et al. 1995), while its role for HBV uptake is 

discussed controversially (Stockert 1995; De Meyer et al. 1997). In rats, hyperphosphorylation of 

ASGPR was detected after chronic ethanol exposure, leading to an impaired receptor mediated 

endocytosis of hepatocytes (McVicker et al. 2000). 

 

The binding affinity of the ASGPR is around 30 times higher for GalNAc compared to Gal and 

binding of bi-antennary, and tri-antennary glycan residues are two and four orders of magnitude 

stronger compared to mono-antennary glycans, respectively (Connolly et al. 1982; Schwartz 1984). 

Tetra-antennary glycoproteins, like the human asialoorosomucoid, bind with an additional 10-fold 

higher affinity to the isolated human ASGPR compared to the tri-antennary protein asialofetuin 

(AF) (Baenziger & Maynard 1980). This additional increase in binding affinity results in vivo only in 

slightly faster uptake behavior (Clarenburg 1983). After clathrin-mediated endocytosis, the receptor 

releases its cargo in the acidic endosome and is transported back to the membrane, while the 

endosome fuses with the lysosome, where the ligand is degraded (Schwartz 1984). Similar sugar 

binding affinities between various mammalian species make this receptor an ideal target to 

develop drug delivery strategies specifically for hepatocytes. 

 

Alternatives to natural occurring monosaccharides were developed, with a twofold increase in 

affinity compared to GalNAc (Stokmaier et al. 2009). Another approach using chemical synthesis 

to optimize ASGPR binding is to use β-linked GalNAc coupled to a tri-antennary backbone (Khorev 

et al. 2008). A possible combination of these strategies may result in a promising synthetic and 

specific vector towards ASGPR, although the chemical synthesis can be challenging. 
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The ASGPR is present on the plasma membrane in the majority of differentiated HCC, which 

makes it a potential target for antitumor drugs (Trerè et al. 1999). Although this approach could 

optimize current antineoplastic treatments, which lack any specificity, it cannot distinguish between 

healthy and malign liver parenchymal cells. Nevertheless, specific drug delivery to liver 

parenchymal cells through the ASGPR is viewed as an opportunity for an improved treatment of 

HCC (X. Zhao et al. 2011). 

 

1.1.3. Kupffer cells 

Targeting of hepatocytes is often equalized with an accumulation in the liver (Poelstra et al. 2012). 

But many nanoparticles are taken up unspecifically in the liver by Kupffer cells, and therefore it is 

crucial to distinguish which cell type is reached. Although Kupffer cells are making up less than 

10% of the cells in the liver, they represent 80 to 90% of macrophages of the body (Bertrand & 

Leroux 2012). Next to their essential role in protecting the body from pathogens like viral particles, 

Kupffer cells are also responsible for engulfing various drug delivery vesicles, especially after they 

have been opsonized by antibodies or components of the complement system. Therefore, 

vesicular drug targeting strategies to hepatocytes need to circumvent an uptake by Kupffer cells. 

To prevent an uptake of drug carriers by the reticulo-endothelial system (RES), which also includes 

Kupffer cells, the surface of the particles are sterically stabilized with polyethylenglycol (PEG) 

polymers (pegylated). The reduced clearance results in an increased circulation half-life (Malam et 

al. 2009), which is a prerequisite for an active drug targeting strategy. The use of pegylated 

liposomes will further be discussed in section 1.2.2. 

 

Next to an unspecific opsonization, negatively charged particles can be taken up through the 

scavenger receptor by Kupffer cells. Especially the classes A, B (CD36), and D (CD68) are 

regarded to play a prominent role in clearing anionic particles (Moghimi & Hunter 2001). In 

particular, liposomes with a high amount of the anionic phospholipid phosphatidylserine, which 
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mimics apoptotic or damaged cells, are recognized by the scavenger receptors of macrophages 

(Sambrano & Steinberg 1995). Therefore, strong anionic lipid mixtures have to be avoided. 

 

Kupffer cells in the rat carry another relevant receptor, the so-called Kupffer cell receptor (KCR), 

which is not functionally expressed in humans. Like the ASGPR on hepatocytes, it exhibits a 

preference for glycoproteins with terminal Gal and GalNAc. But in contrast to the ASGPR, multiple 

separate glycan residues, rather than multi-antennary oligosaccharides on glycoproteins, result in 

a higher affinity (Fadden et al. 2003). 

 

Another strategy to evade an uptake of phagocytic activity of Kupffer cells is the inhibition with 

methyl palmitate at non toxic concentrations (P. Cai et al. 2005). Although this concept might work 

in vitro, it is questionable if co-administration of liposomes with methyl palmitate results in a 

reduced uptake of particles by macrophages in vivo. A different approach is taken by depleting 

macrophages, including Kupffer cells, by delivering clodronate encapsulated in liposomes (Van 

Rooijen & Sanders 1996). This method significantly reduces the unwanted phagocytic effect of 

Kupffer cells and opens up a timeframe of about one week, until new macrophages start to 

repopulate the liver and the spleen (Van Rooijen et al. 1990). Although liposomal clodronate is well 

tolerated in clinical trials in patients with rheumathoid arthritis (Barrera et al. 2000), other non-toxic 

strategies circumventing Kupffer cells are favored, which do not bear the risk of impairing the host-

defense. 
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1.2. Drug delivery 

Many pharmacotherapies are limited by an insufficient delivery of therapeutic concentrations at the 

diseased tissue due to limited aqueous solubility, poor pharmacokinetic properties, or by side-

reactions caused by toxic effects on healthy organs and tissues. Therefore, various approaches, 

such as liposomal delivery, have been explored to optimize pharmaceutical formulations to 

overcome these limitations. 

 

1.2.1. Liposomes 

Liposomes are vesicles composed of a mixture of lipids forming a lipid bilayer surrounding an inner 

aqueous phase. They usually are made up from phospholipids, from natural or artificial sources, 

and cholesterol forming multilamellar vesicles (MLV), large unilamellar vesicles (LUV), and small 

unilamellar vesicles (SUV) depending on their size and structure, after hydrating in an aqueous 

media (Figure 2). 

 

Figure 2: Schematic illustration of different types of liposomal formulations. Membranes 

are built up of bilayers containing different phospholipids and cholesterol. Mulitlamellar vesicles 

(MLV) consist of several layers of phospholipids, while larger unilamellar vesicles (LUV) and 

small unilamellar vesicles (SUV) are composed of only one layer. The particle size of SUVs are 

considerably smaller (< 100 nm) compared to LUVs. Adopted from Sharma et. al. 1997 
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In the last three decades, liposomal formulations were explored to achieve higher drug 

concentrations specifically at diseased locations. Generally, the concept is to load drugs in the lipid 

bilayer or in the inner aqueous phase, depending on their lipophilicity, and by passive or active 

accumulation of the vesicles at the desired tissue. It is commonly agreed that SUV bear the 

highest potential for drug targeting strategies. Intravenously applied MLV and LUV are 

substantially larger in particle size, which hinders them to extravasate and accumulate into tissue 

or tumors, resulting in a preferentially uptake by the RES (A. Sharma & U. S. Sharma 1997). 

Formulations of SUV can be prepared by extrusion, sonication, microfluidization of MLV or LUV 

(Mozafari 2010). The membrane is composed of phospholipids and cholesterol, which makes 

liposomes biocompatible, non-toxic, non-immunogenic, and biodegradable, while protecting the 

loaded drug from quick degradation in the blood plasma. The lipid composition and cholesterol 

content are responsible for in vitro and in vivo stability in terms of retention of the loaded cargo. 

Elevated cholesterol content, up to 50%, result in a higher liposome stability after intravenous or 

intraperitoneal administration in mice (Kirby et al. 1980). Loading of the drug in the inner liposomal 

compartment is either accomplished at the beginning of the preparation by passive entrapment 

through hydrating the dried lipid mixture with the drug of choice dissolved in an aqueous phase, or 

by active loading after vesicle preparation through a pH or ion gradient. An excellent example for 

an active loading is the antitumor drug doxorubicin, which can be incorporated inside of the 

liposomes with an efficiency as high as 98%, which exceeds its normal aqueous solubility by far. 

Thereby, doxorubicin, which is an amphipathic weak base, is entrapped inside the liposome either 

after being protonated, resulting from a lower pH inside the vesicle (pH gradient), or by 

precipitation with sulfate ions after creating an ammonium sulfate gradient, where in exchange the 

ammonium ion can diffuse across the liposomal membrane (Mayer et al. 1986; Haran et al. 1993). 

An example for a drug incorporated into the lipid membrane is the substance amphotericin B, 

which is used against systemic fungal infections. Liposomal formulation of the drug increases its 

therapeutic efficacy while reducing systemic toxicity, such as cardio- and nephrotoxicity (Szoka et 

al. 1987; Tiphine et al. 1999; Adler-Moore & Proffitt 2002). Because liposomal formulations are 

only to some extent chemically and physically stable due to oxidation of phospholipids, leakage of 
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the encapsulated solute, and liposome aggregation, they can be stabilized by various techniques, 

whereas lyophilization is the usual choice to ensure long-term stability (C. Chen et al. 2010). 

Examples of FDA and EMA approved drug formulations using conventional liposomes are 

amphotericin B (sold as AmBisome® from Gilead) as a representative for a drug associated within 

the lipid bilayer of the liposome, doxorubicin (sold as Myocet® by Elan Pharmaceuticals), 

daunorubicin (sold as DauoXome® from Galen), and cytarabine (sold as DepoCyt® from Skye, 

Enzon, and Mundipharm) as typical substances entrapped in the aqueous phase inside the 

vesicles. 

 

Liposomal formulations are not only used as a drug delivery vehicle, but are also utilized as 

vaccine adjuvants to increase immunogenicity. The influenza vaccines Inflexal V® or the vaccine 

against HAV Epaxal® are representatives which are available on the market. These systems can 

be superior compared to inactivated or attenuated vaccines, because they can lead to a strong 

humoral and cell-mediated immune response without the risk of reverting to a virulent form. 

Henriksen-Lacey et al. have reviewed the recent advantages and prospects of these liposomal 

vaccine delivery systems (Henriksen-Lacey et al. 2011). 

 

1.2.2. Reduced reticulo-endothelial system clearance and passive targeting 

Intravenously applied particles are in general subjected to a fast clearance, caused by the RES. 

First trials in humans with non-coated liposomal doxorubicin resulted in a preferential uptake by 

macrophages in the liver and the spleen, which questioned a further clinical development of these 

types of formulations (reviewed in (Barenholz 2012)). Therefore, strategies have been developed 

to reduce the uptake by the phagocytic system and to prolong the plasma half-life of these vesicles. 

The most prominent approach is the use of linear or branched polyethylene glycol (PEG) chains 

attached to the surface of nanoparticles. The discovery of these sterically stabilized liposomes was 

initiated after the observation that PEG coupled to proteins are non-immunogenic and avoided by 

the RES (Abuchowski et al. 1977). This effect led to the development and approval of several 
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pegylated proteins, where the modified surface enabled their therapeutic utilization by reducing the 

clearance in the kidney through an increased hydrodynamic volume, preventing immunogenicity, 

reduction of protein aggregation, and increasing thermal stability of the folded protein (reviewed in 

(Pasut & Veronese 2012)). In addition, several other strategies were investigated to modify the 

liposomal surface, like the use of monosialo-tetrahexosylganglioside (GM1) or hydrogenated 

phosphatidylinositol (HPI), but comparative studies resulted in a superior effect of PEG-liposomes 

(Allen & Hansen 1991; Gabizon et al. 1993). Pegylation and further optimization of liposomal 

doxorubicin leads to a 5 to 10 times longer half-life of the drug, resulting in an approximately 300-

fold higher area under the concentration-time curve (AUC) and a potential increased accumulation 

in the tumor tissue, compared to the free compound (Gabizon et al. 2003). A higher drug 

concentration in tumors can be achieved if the cancerous tissue is penetrated with porous blood 

vessels where the nanoparticle can extravasate and accumulate. This observation was termed as 

enhanced permeability and retention (EPR) effect and first described for larger proteins 

(Matsumura & H. Maeda 1986). The use of PEG-liposomes was advanced significantly by the 

development and regulatory approval of doxorubicin loaded pegylated liposomes (sold as Doxil® 

from Johnson & Johnson (US market) and as Caelyx® from Janssen-Cilag (outside the US)). A 

second PEG-liposomal formulation with loaded cisplatin is in evaluation by the authorities 

(Lipoplatin® from Regulon). 

 

Repeated injection of pegylated liposomes can decrease the circulation time of the drug 

dramatically (Ishida et al. 2003), an effect named accelerated blood clearance (ABC). This 

observation is attributed to the occurrence of PEG specific IgM antibodies, leading to a 

complement activation and therefore to a faster clearance from the blood stream (Ishida et al. 

2006). Additionally, the loaded cargo is of importance, since doxorubicin does not show this 

behavior in a relevant manner, in contrast to other cytotoxic substances like topotecan (Ma et al. 

2012). Although these effects are not completely understood, this observation hints to the fact that 

even pegylated liposomes interact with the immune system. It is still unknown if these effects can 
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be prevented by attaching specific targeting vectors to the liposomal surface, which trigger a fast 

uptake into specific cells and reduce the blood circulation time. 

 

While passively targeting tumors with pegylated liposomes, alone or in combination with a second 

cytostatic, has become a first-line therapy in various oncological indications, some tumors cannot 

be treated effectively with this approach. For example, pegylated liposomes with doxorubicin are 

not effective against HCC (Halm et al. 2000). Therefore, additional strategies are warranted to 

target these tumors. 

 

1.2.3. Active targeting and combination with nanocarriers 

An increasing number of various therapeutic antibodies, which bind to diseases specific cells or 

proteins, have been approved in the past years by the regulatory authorities (reviewed by (Imai & 

Takaoka 2006)). These new biologicals have revolutionized treatments in several cancerous and 

non-cancerous indications through their specific binding. Examples are the anti-CD20 monoclonal 

antibody rituximab against lymphoma (sold as Mabthera® from Roche) and the anti-TNFα 

monoclonal antibody infliximab against rheumatoid arthritis (sold as Remicade® from MSD). An 

additional step is to conjugate monoclonal antibodies with a pharmaceutical active substance, such 

as a drug, a toxin, or a radioactive compound, either for treatment or imaging purposes (Schnell et 

al. 2002; Pasquetto et al. 2011). For example, a recent clinical study indicates a beneficial effect of 

monoclonal anti-CD22 antibodies coupled to exotoxin A from Pseudomonas aeruginosa in patients 

with hairy cell leukemia (Kreitman et al. 2012). Although these new therapeutical constructs are 

still in clinical trials, it is expected that they amplify the efficacy of several treatments through a 

specific binding of cellular targets combined with a high pharmacological potency. 

 

A limitation of this approach is that only one or very few molecules can be coupled to a single 

antibody. Therefore, attaching antibodies to nanoparticles, like liposomes (immunoliposomes), 

opens up the possibility to increase delivery of therapeutic active substances at specific targets, 
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and hence increase efficacy. The specific binding affinity of an antibody ensures targeting of 

selective cellular structures, while the coupled liposome can transport high amounts of drugs or 

genes, which are in addition protected inside the vesicle from premature degradation. In 

combination with long circulating liposomes, an even higher accumulation of drugs at the target 

cell population or organ might be achievable. 

 

Active liposomal targeting can even be used to cross cellular membranes, like the blood-brain 

barrier (BBB), to deliver daunomycin to the rat brain. Most intravenous applied drugs are unable to 

traverse the BBB, which makes treating diseases in the brain with pharmaceutical substances 

challenging. For example, the monoclonal antibody against the rat anti-transferrin receptor (OX26) 

was coupled to liposomes, which enabled these vesicles to undergo transcytosis across the BBB 

and to deliver their cargo to the brain (Huwyler et al. 1996). Endocytotic uptake of OX26-

immunoliposomes has also demonstrated to be able to circumvent efflux transporters of the ATP-

binding cassette B (ABCB) family, such as the P-glycoprotein (P-gp or ABCB1) receptor, which is 

also known as multi-drug resistant protein 1 (MDR1), due to its ability to permit cancer cells to 

become resistant to various antineoplastic drugs. This effect was demonstrated in vitro on P-gp 

expressing RBE4 cells using OX26-immunoliposomes loaded with digoxin or daunomycin, which 

are P-gp substrates (Huwyler et al. 2002; Schnyder et al. 2005). Therefore, specific endosomal 

uptake of liposomes can be a strategy to overcome multidrug resistances of tumors, which have 

shown in the past a poor response rate to various chemotherapeutic drugs (Gottesman 2002). 

 

While for some therapeutic substances an endosomal uptake is sufficient to achieve a cellular 

effect, others need to circumvent lysosomal degradation and specific intracellular delivery. 

Especially acid labile drugs need to circumvent endosomal and lysosomal inactivation, and DNA 

for gene targeting requires additional access to the nucleus or mitochondrial compartment for an 

efficient transfection. In the endosome, the pH decreases to approximately 6.0, which can be 

utilized in different liposomal formulations to escape into the intracellular compartment. One 

approach uses pH sensitive lipids, such as N-palmitoyl homocysteine, oleic acid, 
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cholesterylhemisuccinate, dioleoylsuccinylglycerol, or dipalmitoylsuccinylglycerol, which stabilize 

the liposomal bilayer at neutral pH, but fuse with other adjacent membranes in a mildly acidic 

environment, like it is present in endosomes (Connor & Huang 1986; Drummond et al. 2000). The 

fusion of the liposomal bilayer with the endosomal membrane results in a release of the cargo into 

the cytoplasm. A second approach takes advantage of a conformation change of membrane 

permeabilizing peptide, which takes place below a pH of 6.4 and that can be attached to the 

liposomal surface (Midoux et al. 1998). In contrast to the previous method, the latter approach 

preserves intact vesicles and can be used for subsequent intracellular delivery. For nuclear 

targeting, specific peptides, such as the simian virus 40 (SV40) or the M9 domain from the 

heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), can be attached to the liposomal surface 

(Aronsohn & Hughes 1998; Subramanian et al. 1999). An example for a successful cell targeting, 

combined with an endosomal escape and nucleus delivery, was recently achieved with lipid coated 

porous silica beats in vitro in a HCC model (Ashley et al. 2011). For intracellular targeting of 

hydrophobic molecules towards mitochondria, stearyl-triphenyl-phosphonium bromide (STPP) is 

incorporated into the lipid mixture of liposomes. STPP interacts with the mitochondrial membrane 

and can increase the ability to induce apoptosis of cytostatic substances, such as the retinoic acid 

receptor (RAR) γ activator CD437, by acting directly on mitochondria (Weissig 2012). 

 

Despite intensive research with conjugated liposomal formulations, only very few clinical studies 

were conducted up to today. Compared to a plethora of various clinical trials in different stages 

with immunoconjugates, where antibodies are attached to pharmaceutical drugs, toxins, or 

radioactive substances (reviewed in (Pasquetto et al. 2011)), hardly any clinical studies are 

reported for immunoliposomes. To date, only two clinical phase I trials are known in the scientific 

community. The first study was conducted in patients with metastatic stomach cancer with F(ab′)2 

fragments of a human monoclonal antibody GAH, which is derived from a screening of hybridomas 

against solid tumors of various types, coupled to pegylated liposomes and loaded with doxorubicin 

(S. Hosokawa et al. 2004; Matsumura et al. 2004). In this small study, the maximum tolerated dose 

of doxorubicin was lower compared to the pegylated but non-targeted liposomal formulation, and 
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no tumor response was visible. A second trial was recently presented, where monoclonal 

antibodies against the epidermal growth factor receptor (EGFR) were attached to doxorubicin 

containing pegylated liposomes (Mamot et al. 2012) and applied in patients with various solid 

tumors ((University Hospital Basel, Switzerland 2012) Toyama Meeting Basel 2012). Although the 

presented data are promising, further details about the tolerability and efficacy are awaited to be 

published. 

 

The small number of performed clinical trials is also an expression of the technical hurdles that 

have to be overcome to prepare clinical applicable immunoliposomes. These challenges include 

difficulties in formulating stable liposomal constructs and immunogenicity of not humanized 

antibodies (Pasquetto et al. 2011). Further, coupling antibodies to liposomes in a reproducible 

manner and subsequent characterization can be challenging in a lab environment, but transferring 

these techniques to industrial scale is another hindrance. Although the two conducted clinical trials 

demonstrated that these obstacles can be overcome at least in a small-scale setup, alternative 

strategies, leading to more robust and better characterizable constructs, are warranted. 

 

1.2.4. Liposomal targeting of the asialoglycoprotein receptor 

In regard of the limitations of antibody-conjugated liposomes, monosaccharides, or residues from 

glycans may represent valuable alternatives to target oligosaccharide binding receptors on cell 

membranes. For drug delivery to hepatocytes, the ASGPR is the receptor of choice, which binds 

terminal Gal or GalNAc of residues from glycoproteins.  

 

Using Gal coupled directly to cholesterol, in combination with pegylated phospholipids of various 

lengths, results in a preferred uptake by hepatocytes in contrast to non-parenchymal cells in mice. 

A pegylated chain length of 350 Da produces a higher uptake ratio of liver parenchymal cells to 

non-parenchymal cells (PC/non-PC) compared to PEG2000, due to steric hindrance of the longer 

PEG-chain (Managit et al. 2003). Using the shorter PEG length is a trade of, between the easier 
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accessibility of the Gal moiety and a length depending protecting effect of the PEG chain from the 

RES. A further development of this approach is the use of cleavable PEG2000 lipids, which 

enhances the circulation time while giving subsequent access to the underlying Gal residues (S. 

Wang et al. 2010). Although the published results of these two approaches cannot be directly 

compared, due to different experimental setups, a higher PC/non-PC ratio resulted in the former 

approach. Replacing surface bound Gal with GalNAc produces only a relatively weak uptake in 

HepG2 cells (Bernardes et al. 2010). The lack of pegylated surfaces of the former formulation 

raises additional doubts about a successful usability in vivo. A different approach is taken by 

coupling lactose to DSPE-PEG2000 residues through a reductive amination of the glucose moiety 

and subsequently binding to the PEG chain, which provides a terminal galactose (Morille et al. 

2009). Although a significant transfection efficiency is obtained in vitro, specific in vivo targeting of 

hepatocytes is questionable, due to the relatively large particle size of 130 to 180 nm and the 

cationic zeta potential between + 5 to 26 mV. Next to the limitation of the diameter of fenestrations 

in the sinusoidal membrane of the liver, which is approximately 100 to 150 nm (Pathak et al. 2008), 

the uptake of galactosylated liposomes by the ASGPR is size-dependent and lies in the range of 

70 and 90 nm (Rensen et al. 2001). Liposomal size is even more important for cellular uptake into 

hepatocytes than the presence of coupled Gal to the surface of the vesicles. Studies by Popielarski 

et al. in freshly isolated hepatocytes revealed that 50 nm methoxy-terminated nanoparticles are 

taken up to a greater extent compared to 140 nm Gal-terminated vesicles. Despite their Gal-

coating, the latter nanoparticles primarily accumulate in Kupffer cells (Popielarski et al. 2005). In 

addition to the size of vesicles, the lipid mixture is of major importance. Murao et al. explored the 

in vivo uptake behavior in hepatocytes of 90 nm vesicles in regard of various ratios of 1,2-

distearoyl-sn-glycero-3-phosphocholine (DSPC) to cholesterol (Chol) mixtures, while using a fixed 

amount of 5% (mol) galactosylated cholesterol. A combination of lipids of DSPC:Chol of 60:35 

results in a PC/non-PC uptake ratio of 15 versus 0.78 for a mixture of 90:5, respectively (Murao et 

al. 2002). Exaggerating the density of attached Gal residues, such as 20% (mol) of the lipid 

mixture, leads again to a predominantly uptake by Kupffer cells (K. Shimada et al. 1997). The most 

favorable ratio in terms of liver PC/non-PC uptake results with an inclusion of 5% (mol) 
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galactosylated lipidis in a liposomal formulation (Managit et al. 2005a). Therefore, it can be stated 

that not only particle size, but also an increased cholesterol content of the lipid composition, as 

well as an optimal surface density of Gal residues, are critical for a hepatocyte specific targeting 

approach (Pathak et al. 2008). 

 

Alternative approaches use naturally occurring glycoproteins as vectors, such as AF, which carry 

multiple Gal terminated bi- and tri-antennary glycans (Neue et al. 2011). The first utilization of AF 

associated liposomes was already reported in 1975 from Gregoriadis et al., when they described 

an increased liver uptake in the rat with fetuin-liposomes, compared to conventional liposomes or 

in the presence of an excess of free AF (Gregoriadis & Neerunjun 1975). Interestingly, they also 

described a first preparation of immunoliposomes by just mixing polyclonal and unpurified 

Immunoglobulin G (IgG) with sonicated vesicles, which resulted in vitro to a weak but significant 

specific uptake of the target cells. Despite the increased liver uptake of AF-liposomes, the majority 

of the controls accumulated also in the liver, indicating a prominent unspecific uptake by Kupffer 

cells. The major unspecific binding in the liver was confirmed by the group of Tsuchiya, while they 

used vesicles with an approximative size of 500 nm and incorporated AF covalently bound to 

palmitic acid into the lipid mixture (Tsuchiya et al. 1986). Subsequent studies using smaller 

liposomes in the range of 130 nm resulted in a preferential uptake by hepatocytes (Hara et al. 

1987). Further in vitro investigations by the group revealed a greater accumulation in PC compared 

to non-PC with an increased amount of Chol content in the AF-liposomes (Hara et al. 1988), and 

delivery of γ-interferon resulted in a pharmacological effect in a HBV model (Ishihara et al. 1991). 

Wu et al. conformed in mice the preferential liver accumulation of AF-liposomes and demonstrated 

an augmented protective effect of vitamin E loaded AF-liposomes on hepatocytes after CCl4-

induced acute liver injury (J. Wu et al. 1998). 

 

For a gene targeting strategy, transfection of hepatocytes is achieved with cationic AF-liposomes 

in vitro (Hara et al. 1995a) or in vivo after injection into the portal vein in mice (Hara et al. 1995b). 

Including the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) in the lipid mixture 
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enhances the transfection efficiency of hepatocytes in vitro (Hara et al. 1996). A combination of 

cationic liposomes with protamine or γ-cyclodextrin results in an increased transfection efficacy in 

mice (Arangoa et al. 2003; Motoyama et al. 2011). At least in vitro, mixing liposomes loaded with 

DNA (ie. lipoplex) and unbound AF results in a transfection of HepG2 cells (Tros de Ilarduya 2010). 

It should be noted that most of these reports published in vitro data only, since pharmacokinetic of 

these cationic particles is not favorable for a hepatocyte specific targeting. In vivo studies, using 

AF-liposomes, were unable to produce a constant protein expression for a clinical benefit in an α1-

antitrypsin deficient mouse model (Dasí et al. 2001). While the binding and uptake behavior of AF-

liposomes on hepatocytes is promising, transfection efficiency is still poor, due to a suboptimal 

liposomal formulation strategy of DNA with lipids, resulting mostly in large cationic structures with a 

disappointing pharmacokinetic behavior in vivo. 

 

The use of bovine AF as a vector for drug delivery includes the limitation of utilizing an 

immunogenic compound. To avoid this effect, two possibilities are obvious. Substituting the bovine 

AF with the human analogue alpha-2-HS-glycoprotein, or cleaving the required tri-antennary 

glycans from the peptide backbone and using only these small non-immunogenic oligosaccharide 

residues as a vector. Fragmentation of the AF protein backbone, isolation of the correct glycan-

peptide fragments, and incorporation into liposomes was first described with the intention to study 

carbohydrate-based recognition systems and membrane tagging in plant cells (Warren & Fowler 

1982). First experiments in rats with AF glycan-petides incorporated into liposomes led to a fast 

liver accumulation, although it was only slightly increased compared to control vesicles (Banno et 

al. 1983). Many years later, this approach was picked up again and peptide fragments of AF 

bearing tri-antennary glycans were coupled to various fatty acids. Incorporation into liposomes 

indicated a specific uptake in vitro. Preliminary in vivo results pointed to an increased liver uptake 

without further intrahepatic localization (Kallinteri, Papadimitriou, et al. 2001; Kallinteri, Liao, et al. 

2001). 
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In comparison, other glycoproteins were used with variable success for targeting hepatocytes 

through the ASGPR. For example, various soybean-derived sterylglucosides (Shimizu et al. 1996), 

arabinogalactan from the plant Larix occidentalis (T. Tanaka et al. 2004), human asial-

orosomucoid (A. Singh et al. 2010), and the hydrophobic polysaccharide pullulan from the fungus 

Aureobasidium pullulans (Guhagarkar et al. 2010). 

 

While the published results of AF-liposomes vary in view of hepatocyte uptake, specificity, and 

selectivity, due to different particle sizes and charges of the liposomal formulations, no approach is 

reported to date to attach AF on to the distal end of pegylated vesicles. Therefore, using AF 

attached to pegylated liposomes is a new and promising approach, since avoiding an uptake by 

the RES, including Kupffer cells, is a key issue in achieving a specific drug delivery system to liver 

parenchymal cells. 
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1.3. Quantum dots 

To be able to follow and detect liposomal formulations in in vitro and in vivo experiments, 

fluorescent substances can be incorporated. Usually, organic dyes, like carboxyfluorescein or 

rhodamine B, are used, but their application is limited to a low photobleaching threshold and a 

broad emission spectra. Alternatives to these conventional dyes are quantum dots, which are 

composed of semiconductor nanocrystals. Compared to rhodamine, they are 100 times more 

resistant to photobleaching and 20 times as bright (Chan & Nie 1998). By tailoring their size, 

defined emission spectra from the blue to the red and even near infrared are possible, while the 

emission peak is very narrow and generally below 40 nm full-width at half-maximum 

(Figure 3)(Dabbousi et al. 1997). These properties permit tracking, uptake, and intracellular 

distribution of drug carriers in living cells, without the limitations of photobleaching after a 

prolonged time of observation. Further, the narrow emission spectra allows the simultaneous use 

of different fluorochromes, because the fluorescent signals can easily be distinguished from each 

other (Kosaka et al. 2009). 

 

 

 

 

 

Figure 3: Picture and emission spectra of quantum dots. The colors of the quantum dots 

are depending on their nanocrystal size (panel A). All quantum dots can be excited at a single 

wavelength in the ultraviolet spectra (e.g. 400 nm) and fluoresce at their corresponding 

wavelength with a narrow emission peak (panel B). Note, Stokes shifts are much wider, 

compared to most organic fluorochromes (150 to 250 nm). Adopted from Medintz et al. 2005 

A B 



1 - Introduction 

 24 

The usage of quantum dots in combination with pharmacological active substances in liposomes 

would permit additional applications in treating various diseases. These theranostics, combining 

therapeutic and diagnostic capabilities, could be used for example to treat cancer cells with anti-

neoplastic compounds in combination with imaging of an accumulation of the vesicles in the tumor 

tissue by following the fluorescent signal of incorporated quantum dots (W. T. Al-Jamal & 

Kostarelos 2011). At least in small animals like mice, tissue distribution and accumulation of 

quantum dots could be followed over time (Ballou et al. 2004). Therefore, quantum dots are 

promising alternatives to conventional dyes, and their bright and photostable properties might open 

new potential applications in biological systems. 
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2. Aim of Thesis 

It was the aim of the present thesis to explore a drug delivery system that can ultimately be used 

in vivo to transport various therapeutic or diagnostic compounds specifically to liver parenchymal 

cells. This strategy was implemented by targeting the asialoglycoprotein receptor (ASGPR). 

Therefore, a vector-conjugated liposomal formulation was developed, which included the following 

objectives: 

1. Evaluation of different targeting vectors, which are binding specifically to the ASGPR, by using 

the in vitro cell culture model HepG2 and technologies such as confocal laser scanning microscopy 

and flow cytometry. 

2. Coupling of the vector to the distal end of maleimide-functionalized pegylated phospholipids. 

Characterization of the resulting liposomal formulations. 

3. In vitro proof of principle by incubating vector-conjugated liposomes with HepG2 cells. The 

uptake was mediated by the ASGPR and was suppressed by adding a competitive inhibitor. 

4. Evaluation of liposomal tracking and delivery of quantum dots (QD). Characterization of 

vector-conjugated liposomes loaded with QDs, and subsequently analysis of cellular uptake. 

Comparison of optical properties of QDs with organic dyes and evaluation of their usage to 

optimize drug targeting strategies. 

5. In vivo proof of principle studies by injecting rats with vector-conjugated liposomes and the 

characterization of liver uptake. Special attention was paid to the difference between accumulation 

in liver parenchyma and phagocytosis by Kupffer cells. 

6. Two additional projects in the section “Appendix” illustrate our interest in pharmacokinetics. 

They cover the formation of ceftriaxone precipitates in human plasma and the interaction potential 

of resveratrol with different cytochrome P450 isoenzymes. 
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3. Material and Methods 

3.1. Materials 

4-aminophenyl β-D-galactopyranoside, asiaolofetuin (AF, Lot. 069K7425V), 

5(6)-carboxyfluorescein (CF), 5(6)-carboxyfluorescein N-hydroxysuccinimide ester (CF-NHS), 

Cholesterol, 2-iminothiolane (Traut’s reagent), 5,5 -Dithiobis(2-nitrobenzoic acid) (Ellman’s 

reagent), poly-D-lysine hydrobromide (mol wt 70 000-150 000), paraformaldehyde (PFA), Hoechst 

33342, 7-Amino-actinomycin D (7-AAD), Mowiol 4-88 and all other reagents were of analytical 

grade and obtained from Sigma-Aldrich (Buchs, Switzerland). The following lipids: 1,2-distearoyl-

sn-glycero-3-phospho-choline (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine (DSPE), 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(carboxy-fluorescein) (ammonium salt) (DSPE-

CF), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

(ammonium salt) (DSPE-PEG(2000)), 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine-N-

[maleimide(poly-ethylene glycol)-2000] (ammonium salt) (DSPE-PEG(2000)-Mal), and 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (DSPE-

Rho) were purchased form Avanti Polar-Lipids (Alabaster, AL). QDot® 625 ITK were obtained from 

Invitrogen, Life Technologies (Zug, Switzerland). The monoclonal antibody against ASGPR subunit 

1 and 2 (mouse anti-human ASGPR-1/2 IgG) was obtained from Santa Cruz Biotechnology (sc-

166633, Santa Cruz, CA). R-phycoerythrin (RPE)-conjugated polyclonal goat anti-mouse F(ab’)2 

fragmented immunoglobulins (goat anti-mouse-RPE) were purchased from Dako (Baar, 

Switzerland). The modified Lowry protein assay kit and the CBQCA protein quantification kit were 

obtained from Pierce (Rockford, IL) and Molecular Probes (Eugene, OR), respectively, and used 

with bovine serum albumin or AF as a standard. 
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3.2. Fluorescent labeling of D-galactose 

Fluorescent-labeled Gal was prepared by coupling N-hydroxysuccinimide ester from CF-NHS to 

galactose containing a primary amine (Hermanson 2008). Therefore, 4-aminophenyl β-D-

galactopyranoside was incubated together with a 10-fold excess of CF-NHS in a NaHCO3 buffer 

(50 mM, pH 8.0) for 60 min at room temperature. The reaction progress was monitored and the 

final product was purified by a binary Agilent HP 1050 series high-performance liquid 

chromatography system (HPLC, Agilent Technologies, Santa Clara, California). Analytes were 

detected by ultraviolet (UV) absorbance at 220 nm and 490 nm, using an Agilent diode array 

UV/Vis detector (Agilent Technologies). The injection volume was 30 µl and as a stationary phase 

a Nucleosil 100-5 C8 reversed-phase column (particle size 5 µm, 125 mm x 2 mm I.D., Macherey-

Nagel, Düren, Germany) was used. HPLC solvents were 70% MeOH (A) and 2% MeOH (B) in H2O, 

and separation was achieved at a flow rate of 0.3 ml/min, using a linear gradient from 40% to 

100% over 20 min, with respect to eluent A. Fractions containing Gal-CF were concentrated to 

dryness using a N2 flow at room temperature to remove any organic solvent. 

 

3.3. Fluorescent labeling of asialofetuin 

AF was labeled with CF-NHS by crosslinking the N-terminus of the protein backbone or with 

ε-amines of lysine side chains (Hermanson 2008). Hence, AF was incubated together with a 10-

fold excess of CF-NHS in a NaHCO3 buffer (50 mM, pH 8.5) for 2 h on ice. Excess of CF-NHS was 

removed on a fast protein liquid chromatography (FPLC) system (Pharmacia 500, GE Healthcare, 

Glattbrugg, Switzerland or BioLogic DuoFlow System, Bio-Rad, Zürich, Switzerland) by size 

exclusion using a Sephadex G-50 fine column (1.6 cm x 20 cm, GE Healthcare) eluting with 

0.01 M PBS (0.01 M phosphate and 150 mM sodium chloride), pH 7.2. Eluates were detected by 

UV absorbance at 280 nm and stored at -20°C. Final protein concentration was quantified using 

the modified Lowry protein assay, and the degree of labeling was calculated according to the 

spectrophotometric method described by Thermo Scientific (2009). 
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3.4. Liposomal preparation and characterization 

Thiolation of proteins, and coupling to pegylated liposomes through maleimide functionalized lipids, 

was achieved as described previously (Huwyler et al. 1996). Thus, AF (2.7 mg, 60 nmol) was 

dissolved in a buffer containing 0.1 M phosphate and 1 mM EDTA, pH 8.0, and thiolated with a 

200 times molecular excess of Traut’s (2-iminothiolane) reagent for 1 h at room temperature. 

Thiolated AF was purified and concentrated in Amicon Ultra-4 centrifugal filter units, 10 kDa cut off 

(Millipore, Zug, Switzerland), with 0.1 M PBS containing 1 mM EDTA, pH 7.2. The amount of 

attached sulfhydryl groups was determined by Ellman’s reagent at a wavelength of 412 nm, using 

a freshly prepared cystein solution as a standard. 

 

In parallel, a mixture of lipids of DSPC (5.5 µmol), Cholesterol (4.5 µmol), DSPE-PEG(2000) 

(0.27 µmol), DSPE-PEG(2000)-Mal (0.06 µmol), and DSPE-Rho (0.04 µmol) or DSPE-CF 

(0.04 µmol) were dissolved in chloroform/methanol (2:1, v/v). For non-pegylated control liposomes, 

DSPE-PEG(2000) and DSPE-PEG(2000)-Mal were replaced by DSPE (0.33 µmol). The solution 

was evaporated by vacuum in a water bath at 60°C for 1 h to form a homogenous lipid film using a 

Rotavapor A-134 (Büchi, Switzerland). The lipid film was hydrated 10 min in 1 ml of 0.1 M PBS 

containing 1 mM EDTA, pH 7.2, using 3 g glass beats (diameter 5 mm) at 120 rpm in a water bath 

at 60°C. For passively loading carboxyfluorescein inside the liposomes, a solution of 5(6)-

carboxyfluorescein was used for hydrating. The resulting multilaminar vesicles were subjected to 

five freeze-thaw cycles. Liposomes were extruded at 60°C five times through a 100 nm-pore-size 

polycarbonate membrane (Avanti Polar-Lipids, Alabaster, AL), followed by extrusion nine times 

through a 50 nm filter. For AF conjugation, the thiolated protein was mixed with liposomes and 

incubated overnight at room temperature. Conjugated liposomes were purified by size exclusion 

chromatography using a Superose 6 prep column (1.6 cm x 20 cm, GE Healthcare) eluting with 

0.01 M PBS, pH 7.2. Average liposomal sizes and zeta potential were measured by dynamic and 

electrophoretic light scattering, respectively, using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK) or a Delsa Nano C (Beckman Coulter, Nyon, Switzerland). Preparations of 
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liposomes loaded with Quantum Dots (QDs) were performed with the following modifications. 

Lipids were hydrated in a 100 nM solution of QDots 625 ITK in 0.1 M PBS containing 1 mM EDTA, 

pH 7.2, and extrusion was performed five times through a 200 nm filter, followed by nine times 

through an 80 nm filter. The amount of AF coupled to liposomes was measured by the CBQCA 

protein quantification kit (Molecular Probes). Lipid content was either calculated by the AUC in the 

chromatogram from the size exclusion chromatography, corresponding to the liposomal fractions 

and recorded at an UV wavelength of 280 nm, or measured by a modified version from the Stewart 

assay (Stewart 1980), using DSPC as a standard. Thus, samples were incubated with chloroform 

and an aqueous 0.1 M ammonium ferrothiocyanate solution at a ratio of 1:1 (vol/vol), vortexed, and 

centrifuged at 300 g for 5 min at room temperature. Absorbance of the chloroform layer was 

measured at a wavelength of 485 nm. 

 

3.4.1. Incorporation of phospolipids by the post-insertion method 

Pegylated liposomes were prepared and purified as described above, and loaded with an aqueous 

solution of CF in either a non-self-quenching (3 mM) or a self-quenching (60 mM) concentration. 

DSPE-Rho (0.04 µmol) was dissolved in chloroform/methanol (2:1, v/v) and dried to form a 

homogenous lipid film by vacuum evaporation in a water bath at 60°C for 1 h. The lipid film was 

hydrated in 1 ml of 0.01 M PBS, pH 7.2, and thoroughly vortexed to form DSPE-Rho micelles. The 

concentration of the DSPE-Rho solution was kept above 1.5 µM, which was reported as the critical 

micelle concentration (CMC) for the more hydrophilic pegylated variants of DSPE (Ashok et al. 

2004). The liposomal preparations were split up in equal amounts and were mixed with the 

corresponding fraction of DSPE-Rho micelles. Liposomes loaded with a non-self-quenching CF 

solution were incubated at 60°C between 0 min and 60 min., and liposomes loaded with a self-

quenching CF solution were incubated for 70 min between 50°C and 80°C. Subsequent separation 

of liposomal and not incorporated DSPE-Rho lipids were achieved by size exclusion 

chromatography, using a Superose 6 prep column (1.6 cm x 20 cm, GE Healthcare) eluting with 

0.01 M PBS, pH 7.2. The fluorescent signals of CF (excitation wavelength 488 nm, emission 
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wavelength 517 nm) and rhodamine B (excitation wavelength 559 nm, emission wavelength 

583 nm) were analyzed for each preparation, using a SpectraMax M2e fluorometer (Molecular 

Devices, Sunnyvale, CA). Changes in liposomal size were measured by a dynamic light scattering 

using a Delsa Nano C (Beckman Coulter). For analyzing co-localization of fluorescence of CF and 

rhodamine B, diluted samples of liposomes were mounted in Prolong Gold antifade reagent (Gibco, 

Life Technologies, Zug, Switzerland) and sealed with nail polisher after drying. For mounting, a 

hair was added on the slide to facilitate focusing on the layer containing the liposomes. Slides were 

examined using an Olympus FV-1000 inverted confocal laser scanning microscopy (CLSM, 

Olympus, Hamburg, Germany), using a 60x PlanApo N oil-immersion objective (numerical aperture 

1.40) with an optical resolution of 180 nm in the xy-plane and 700 nm in the z-plane. 

 

3.5. Cell culture 

HepG2 cells were kindly provided by Prof. Dietrich von Schweinitz (University Hospital Basel, 

Switzerland), and cultured at 37°C under 5% CO2 and saturated humidity in DMEM low glucose 

(1 g/l) containing 10% fetal bovine serum (FBS), 0.1 mM Non-Essential Amino Acids (NEAA), 

2 mM Glutamax, and 10 mM Hepes (all obtained from Gibco). Cells were confirmed to be free of 

mycoplasma (MycoAlert, Lonza, Rockland, ME). 
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3.6. Protein and lipid analysis 

3.6.1. Plasma membrane isolation 

HepG2 cells were homogenized in a Potter-Elvehjem homogenizer by 30 strokes in lysis buffer 

(10 mM Tris-HCl, 1 mM MgSO4, 0.5 mM EDTA, Complete protease inhibitor mini (Roche 

Diagnostics, Rotkreuz, Switzerland), pH 7.4) and centrifuged at 1000 g for 10 min at 4°C. The 

pellet was resuspended in lysis buffer and subject to another passage of homogenization by 30 

strokes and centrifuged at 1000 g for 10 min in 4°C. The supernatant of the first and second 

centrifugation were pooled and centrifuged at 75,000 g for 45 min at 4°C. The pellet was 

resuspended in storage buffer (50 mM Hepes, 5 mM MgCl2, 1 mM CaCl2, 0.1% BSA, 200 mM 

sucrose, pH 7.5) and stored at -20°C until use. 

 

3.6.2. Western blot 

Expression of ASGPR in the plasma membrane of HepG2 cells was studied by western blot 

analysis using a monoclonal antibody against ASGPR subunit 1 and 2. Sodium dodecylsulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) was performed with a Mini-Protean Tetra cell 

apparatus (Bio-Rad) using a Tris/glycine/SDS buffer (Bio-Rad). Plasma membrane from HepG2 

cells and half the volume sample buffer (8% SDS, 40% glycerol, 0.25 M bromphenol blue, 400 mM 

DTT, Tris-HCl pH 6.8,) were mixed, incubated 5 min at 95°C and loaded on 12% Mini-Protean 

TGX Precast gels (Bio-Rad). After electrophoresis, proteins were transferred electrophoretically to 

0.45 µm pore size nitrocellulose membranes (2.5 h at a constant voltage of 20 V) using a Mini 

Trans-Blot cell (Bio-Rad) and Tris/glycine buffer (Bio-Rad). The membranes were incubated for 2 h 

in blocking buffer (PBS containing 0.025% Tween 20 (PBS-T) and 5% powdered skimmed milk). 

Washed membranes were incubated in 2 µg/ml mouse anti-human ASGPR-1/2 IgG in PBS-T 

containing 1% BSA overnight at 4°C. Subsequently, washed membranes were incubated for 1 h at 

room temperature with horseradish peroxidase-conjugated goat anti-mouse IgG, at a dilution of 

1:3000 (Bio-Rad), in PBS-T containing 1% BSA. Presence of ASGPR-1/2 was visualized by 
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incubation of the membrane 10 min at room temperature with the Opti-4CN-Kit (Bio-Rad) by 

colormetric detection. 

 

3.7. In vitro uptake assay 

3.7.1. Confocal laser scanning microscopy (CLSM) 

HepG2 cells were cultured on poly-D-lysine coated cover slips (#1.5, Menzel, Braunschweig, 

Germany). Prior to incubation, cells were washed with warm D-PBS (Gibco) and pre-incubated for 

1 h in DMEM low glucose without phenol red. For competition experiments, free AF or Gal were 

added to the medium during the pre-incubation period. Cells were incubated for 20 min with Gal-

CF and AF-CF, and for 30 to 40 min with AF-PEG-conjugated liposomes at 4°C and 37°C. Nucleus 

counterstaining was performed by adding Hoechst 33342 (1 µg/ml) throughout the last 5 min of the 

uptake experiment. Cells were washed three times with cold D-PBS and fixed for 15 min with 2% 

PFA at 4°C. After an additional wash, slides were embedded in Prolong Gold antifade reagent 

(Gibco) and sealed with nail polisher after drying. Samples were analyzed with an Olympus FV-

1000 inverted CLSM (Olympus), using a 60x PlanApo N oil-immersion objective (numerical 

aperture 1.40), and images were processed using either Imaris software (version 7.4, Bitplane, 

Zürich, Switzerland) or Gimp 2.8 software (GNU image manipulation program, 

http://www.gimp.org). Liposomes containing QDs were activated by light-emitting diodes (LEDs) 

with a wavelength of 400 nm (210 mW/cm2) or 490 nm (190 mW/cm2) (CoolLED 2012), using a 

pE-2 LED (CoolLED, Andover, UK) excitation system. Lambda scans of images containing QDs 

were performed with a fixed excitation wavelength of 488 nm and a variable emission between 

550 nm and 700 nm, with a bandwidth of 10 nm and a step-size of 2 nm. Analyses of defined 

regions of interest (ROIs) were performed using the Olympus Fluoview software (version 3.1, 

Olympus). 
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3.7.2. Flow cytometry 

Uptake experiments of Gal-CF, AF-CF, and competition studies were performed as described 

above. Cells were washed three times with cold D-PBS and detached using Accutase (Sigma-

Aldrich), followed by centrifugation at 200 g for 5 min at 4°C and resuspended in staining buffer 

containing D-PBS, 2% fetal calf serum (FCS), and 0.1% NaN3. For analyzing extracellular ASGPR, 

cells were incubated in staining buffer with mouse anti-human ASGPR-1/2 IgG (diluted 1:40) for 

30 min at room temperature. After washing and centrifugation of the cells (200 g for 5 min at 4°C), 

they were incubated with goat anti-mouse-RPE (diluted 1:200) in staining buffer for 30 min at room 

temperature. For excluding apoptotic cells, 7-AAD (2 µg/ml) was added to the cell suspension at 

least 20 min prior to the analysis and 10 000 to 20 000 cells were analyzed per sample. Flow 

cytometry measurements were carried out using a FACSCalibur flow cytometer and the CellQuest 

software (Becton Dickinson, San Jose, CA), or using a CyAn ADP flow cytometer with Summit 

software (Beckman Coulter, Nyon, Switzerland). Final analysis of the data was performed with the 

Kaluza software (Beckman Coulter). 

 

Remaining cells from flow cytometry experiments were washed, centrifugated (200 g for 5 min at 

room temperature), and fixed in 2% PFA for 10 min at room temperature. After washing and 

centrifugation (200 g for 5 min at room temperature), cells were mounted in Prolong Gold antifade 

reagent on a microscope slide. Samples were analyzed with an Olympus FV-1000 inverted CLSM 

(Olympus), using a 60x PlanApo N oil-immersion objective (numerical aperture 1.40). 
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3.8. Animal experiments 

All animal experiments were carried out in accordance with local legislation on animal welfare. 

Male jugular vein catheterized CD rats (weighing 300 – 320 g) were obtained from Charles River 

Laboratories (L'Arbresle Cedex, France). Non-pegylated liposomes (nominal 3 µmol phospholipids 

/ animal), AF-PEG-liposomes (nominal 3 µmol phospholipids / animal), free AF in 0.9% NaCl (7 mg 

/ animal), or a carbon black solution (1 ml/kg body weight, diluted 1:9 using 0.9% NaCl, (Pelikan, 

Hannover, Germany)) were injected and animals were euthanized after 30 min using CO2 

inhalation. Liver tissue was frozen in cold isopentan (colled with liquid nitrogen) and cryosections 

of 10 µm were prepared. After drying the samples on Superfrost Plus Ultra G 90 microscope slides 

(Menzel), samples were washed with D-PBS and fixed with 2% PFA for 15 min at room 

temperature. Subsequent to washing, slides were counterstained with Hoechst 33352 (1 µg/ml) 

and mounted in Mowiol 4-88 / p-phenylenediamine (9:1, v/v). Samples were analyzed with an 

Olympus FV-1000 inverted CLSM (Olympus), using a 60x PlanApo N oil-immersion objective 

(numerical aperture 1.40), and pictures were processed using Gimp 2.8 software (GNU image 

manipulation program). 
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4. Results 

4.1. Selection of a targeting vector using HepG2 as an in vitro model 

Different compounds were explored for their capacity to target the ASGPR, with the intention to 

select an optimal vector to be used for the design of a hepatocyte specific drug delivery system. 

 

4.1.1. Anti-asialoglycoprotein receptor type 1 antibody 

The commercial mouse monoclonal anti-ASGPR-1/2 antibody from type IgG2b was raised against 

the full length of the first subunit of human ASGPR and can bind the extracellular domain of the 

receptor. In addition, the antibody cross reacts with the second subunit of the receptor, due to a 

partly identical amino acid sequence (Uniprot.org 2012c). To validate a sufficient expression of the 

receptor in the plasma membrane of the used in vitro cell culture model HepG2, the presence of 

ASGPR was confirmed by western blot analysis (Figure 4). 

 

 

 

Figure 4: Western blot analysis of HepG2 plasma membrane with monoclonal 

anti-ASGPR-1/2 antibody. While the upper band corresponds to the mature receptor 

(approximately 41 kDa), the two lower bands are consistent with the first and second subunit of 

the ASGPR with an expected molecular weight of 33 kDa and 35 kDa, respectively. 
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Plasma membranes of HepG2 cells were obtained by sequential centrifugation and collecting the 

corresponding fraction. Gel electrophoresis and subsequent staining with the anti-ASGPR-1/2 

antibody resulted in three bands in the range between 33 and 41 kDa, which can be assigned to 

the unglycosylated and the apparent molecular weight of glycosylated receptor. 

 

4.1.1.1. Extracellular binding of anti-asialoglycoprotein receptor antibody 

Extracellular binding to the ASGPR was confirmed by flow cytometry and by microscopy. For the 

analysis by flow cytometry, non-permeabilized HepG2 cells were stained with anti-ASGPR-1/2 

mAb and subsequently labeled with a second antibody with RPE (Figure 5). A strong shift of the 

fluorescent signal by more than two logarithmic orders in magnitude was observed. A control with 

the secondary antibody was performed to validate the specificity of the signal. Apoptotic cells were 

excluded by gating the 7-AAD negative cell population. 

 

Samples remaining from flow cytometry experiments were subsequently fixed and further studied 

by CLSM (Figure 6). Therefore, detached cells were directly mounted on a cover slip, which 

resulted in a more rounded cell appearance compared to adherently attached cells exhibiting a 

 

Figure 5: Flow cytometry of anti-ASGPR-1/2 antibodies on HepG2 cells. Cells were labeled 

with monoclonal mouse anti-ASGPR-1/2 and goat anti-mouse-RPE antibodies (black 

histogram). The white and gray histograms result from control cells and cells only labeled with 

secondary antibodies, respectively. Dead cells were excluded by gating 7-AAD negative cells 

only. 
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more stretched out shape (e.g. Figure 11). While living cells (7-AAD negative) displayed a 

homogeneous coverage of receptors on the cell membrane, almost no signal of membrane-bound 

ASGPR was obtained from apoptotic cells. Again, control samples only using the secondary 

antibody were produced to exclude any non-specific binding of the secondary antibody. 

 

 

4.1.2. Galactose as a vector 

Since terminal galactose residues of glycoproteins bind with a high affinity to the ASGPR on 

hepatocytes, the direct binding of galactose was investigated. To be able to study binding and 

uptake of the monosaccharide, a fluorescent dye was coupled. Therefore, 4-Aminophenyl 

β-D-galactopyranoside was attached to CF-NHS (Figure 7). The NHS reagent reacted with the 

nucleophilic nitrogen of the 4-Aminophenyl moiety with a release of the NHS leaving group, to form 

a stable amide bond, resulting in a fluorescent galactose (Gal-CF). An excess of the fluorescein-

containing educt was used and the reaction progress was monitored by HPLC analysis. After a 

reaction time of 60 min, complete disappearance of the galactose-containing starting material was 

 

Figure 6: CLSM of anti-ASGPR-1/2 antibodies on HepG2 cells. ASGPR were labeled with 

monoclonal mouse anti-ASGPR-1/2 and goat anti-mouse-RPE antibodies (yellow). Nuclei of 

apoptotic cells were stained with 7-AAD (red). The insert presents the control experiment with 

secondary antibodies only. Scale bars represent 10 µm. 
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observed and a double peak of Gal-CF, corresponding to the 5- and 6-position of the carboxylic 

function of CF, was obtained (data not shown).  

 

Receptor binding was studied by CLSM (Figure 8) and flow cytometry (Figure 9). Under the 

microscope, fluorescence was detected at a concentration of 108 µM Gal-CF, while lower 

concentrations did not result in a signal (data not shown). Despite a clear sign of binding, no 

inhibition was possible with a 10-fold excess of unlabeled Gal or 90 µM AF (corresponding to 

4 mg/ml), which is a well-known ligand for ASGPR with a high affinity. 

 

 

Figure 7: Schematic illustration of the coupling reaction of fluorescent galactose 

(Gal-CF). The modified monosaccharide 4-Aminophenyl β-D-galactopyranoside was conjugated 

to a 5(6)-carboxyfluorescein N-hydroxysuccinimide ester. The primary amine reacted with the 

NHS-Ester to form a stable amide bond. 

 

Figure 8: CLSM of fluorescent-labeled galactose (Gal-CF) taken up by HepG2 cells.  

A weak uptake could be observed at a concentration of 108 µM Gal-CF after 20 min (A). 

Competing with a 10-fold excess of free galactose was not inhibiting the uptake of Gal-CF (B). 

Only slight inhibition of Gal-CF uptake was detected in the presence of 90 µM free AF (C) 

The insert in panel A displays a control sample without Gal-CF. Scale bars represent 10 µm. 
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These results were confirmed by flow cytometry. While concentrations of 36 µM Gal-CF produced 

a 10-fold increase in the signal, only a weak shift of the fluorescent peak could be detected at a 

concentration of 3.6 µM. Also pre-incubation with unlabeled AF did not diminish the signal of 

Gal-CF on HepG2 cells. 

 

 

It can be stated that a binding occurred, but a specific uptake via ASGPR is questionable, since 

the signal cannot be inhibited with an excess of unlabeled Gal or AF. 

 

4.1.3. Asialofetuin as a vector 

Labeling of the desialated glycoprotein AF was done using CF-NHS. The NHS ester binds 

primarily to the α-amine at the N-terminus and the ε-amines of lysine side chains to form a stable 

amide bond (Hermanson 2008) (Figure 10). After purification by size exclusion chromatography, 

the degree of labeling was calculated to be in the range of 3.0 to 4.2 CF molecules per molecule of 

protein (Thermo Scientific 2009). 

 

Figure 9: Flow cytometry analysis of fluorescent-labeled galactose (Gal-CF) on HepG2 

cells. The black histograms represent cells incubated with 36 µM Gal-CF, while the white 

histograms show untreated cells (panel A and B). The gray histogram in panel A displays a 

concentration dependency of the signal, representing a 10-fold reduced amount of Gal-CF 

(3.6 µM). In panel B the gray histogram, which overlaps with the black histogram, compares 

inhibition of the signal in presence of 90 µM AF. Dead cells were excluded by gating 7-AAD 

negative cells only. 

A B 
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Incubating HepG2 cells with small concentrations of 0.23 µM fluorescent-labeled AF 

(corresponding to 10 µg/ml) resulted in a strong signal after an uptake period of 20 min (Figure 11). 

When cells were pre-incubated with unlabeled AF at a 100-fold higher concentration (23 µM), the 

uptake was virtually completely inhibited. Further, it should be noted that the green signal had a 

strongly point-shaped distribution and was clearly distinguishable from the greenish ubiquitous 

background fluorescence. 

 

Figure 11: CLSM analysis of carboxyfluorescein-conjugated AF with HepG2 cells. HepG2 

cells were incubated for 20 min with 0.23 µM carboxyfluorescein-coupled AF (panel A). 

Competitive inhibition of signals using 23 µM unbound AF (panel B). An overlay of 

carboxyfluorescein signal with DIC images of the cells is shown. Scale bars represent 20 µm. 

 

Figure 10: Schematic illustration of the coupling reaction of fluorescent asialofetuin 

(AF-CF). The N-terminus of the protein backbone or ε-amines of lysine side chains from 

asialofetuin reacted with 5(6)-carboxyfluorescein N-hydroxysuccinimide ester to form a 

fluorescent-labeled asialofetuin. 
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Analysis with flow cytometry resulted in a similar outcome (Figure 12). While the fluorescent signal 

shifted by a factor of 10 in the presence of 0.23 µM AF-CF, a clear inhibition could be observed by 

pre-incubating the cells with 23 µM of unlabeled AF. 

 

In summary, the binding of AF-CF produced a distinct and strong binding signal at low 

concentrations. This signal was suppressed in presence of the free ligand. This finding stands in 

contrast with the binding of Gal-CF, which resulted in a weaker signal even at two logarithmic 

orders in magnitude higher concentrations. 

 

4.2. Liposomal Preparation 

After optimizing the vector for targeting ASGPR on the surface of hepatocytes, liposomes with 

different fluorescent cargos were produced to be able to investigate a specific delivery in vitro and 

in vivo. Functionalized and pegylated phospholipids were incorporated in the liposomal formulation 

and coupled to AF. Hence, the conjunction of the targeting vector AF with the vesicle was achieved 

after preparing the liposomes by coupling the thiolated vector with maleimide-containing 

phospholipids (Figure 13). 

 

Figure 12: Flow cytometry analysis of carboxyfluorescein-conjugated AF with HepG2 

cells. HepG2 cells were incubated for 20 min with 0.23 µM carboxyfluorescein-coupled AF 

(black histogram). Competitive inhibition of fluorescence using 23 µM unbound AF  

(gray histogram). Control cells are shown as white histogram. Dead cells were excluded by 

gating 7-AAD negative cells only. 
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Liposomes were prepared by the extrusion method, using filters with a defined pore-size. 

Depending on the lipid mixture and the cargo, vesicles with a particle size in the range between 

90 nm and 140 nm, with a moderate anionic zeta potential, were produced (Table 1). Adding small 

amounts of pegylated lipids to liposomes resulted in a significant smaller size, compared to their 

non-pegylated variants. Further, the addition of pegylated phospholipids facilitated considerably 

the force needed for the extrusion process, increased the steric stability, and was a prerequisite to 

achieve a specific targeting in the following in vivo experiments. Liposomes loaded with QDs were 

extruded through an 80 nm pore-size filter, because they were unable to pass through the smaller 

membrane of 50 nm, resulting in slightly larger vesicles. The narrow polydispersity index (PDI) of 

0.06 of the pegylated formulations indicated a monodisperse size distribution. The produced 

liposomal formulations resulted in a remarkable shelf live when stored at 4°C. No increase in mean 

particle size and only a marginal larger PDI, but still monodisperse, was observed after storage for 

14 months (data not shown). 

 

 

Figure 13: Schematic illustration of the bioconjugation of thiolated AF and maleimide-

functionalized pegylated DSPE attached to liposomes. AF was thiolated with 

2-Iminothiolane. In parallel, liposomes were prepared with maleimide-functionalized pegylated 

DSPE and thereafter conjugated to AF. Different cargos like QDs and carboxyfluorescein were 

loaded inside of the liposomes. 
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For thiolation of AF, a molecular excess of 200-times of 2-iminothiolane was used. This resulted in 

an average of two sulhydryl groups per molecule of AF, which were analyzed by Ellman’s reagent 

(Riddles et al. 1979) (data not shown). The amount of AF bound per vesicle was in the range of 30 

to 270 molecules, based on the assumption that a 100 nm liposome contains approximately 

80 000 molecules of phospholipids (Hansen et al. 1995). The coupling efficiency was on average 

20% of the used thiolated AF. 

 

Table 1: Characterization of prepared liposomes with different surface coating and cargo by 

dynamic and electrophoretic light scattering. Data represent mean ± SD; *n ≥ 5. 

Formulation Mean particle size (nm) PDI Zeta Potential (mV) 

Control Liposomes 140 ± 38 0.141 ± 0.044 -13.7 

PEG-Liposomes 89 ± 1 0.053 ± 0.001 -19.8 ± 8.5 

AF-PEG-Liposomes* 97 ± 3 0.060 ± 0.032 -11.8 ± 4.6 

AF-PEG-Liposomes / QD* 126 ± 10 0.060 ± 0.019 -13.1 ± 2.8 

 

For the in vitro studies, the fluorescent marker carboxyfluorescein was loaded inside the liposomes 

as a solution (Figure 17, panel D), incorporated into the liposome membrane by using 

phospholipid-labeled dyes, or by attaching fluorescent-labeled and thiolated AF onto the liposomal 

surface (Figure 16, panel D). As an alternative to the classic dyes, quantum dots were 

incorporated as fluorescent markers (Figure 20, panel E) 

 

4.2.1. Evaluation of the post-insertion method for labeling liposomes 

The post-insertion method was investigated as an alternative strategy to incorporate (fluorescent 

or radioactive) tracers or vectors into the liposomal bilayer after preparing the vesicles. As a model 

compound, rhodamine B-conjugated phospholipids were hydrated in an aqueous buffer to form 

micelles. Subsequently, incubation with prepared liposomes under various conditions was 

investigated. With higher temperature and longer incubation time, the amount of rhodamine B-

labeled phospholipids was increasing in the liposomal membrane. Liposomes were loaded with a 
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second dye, CF, as an internal standard to measure a possible loss of cargo during the incubation 

process (Figure 14). 

 

Subsequent studies with CLSM, using mounted liposomes on a cover slip, resulted in a clear co-

localization of the two fluorescent dyes. While the samples incubated at various temperatures 

(50°C to 80°C) were loaded with a self-quenching carboxyfluorescein solution, the second 

preparation of samples, incubated for different incubation periods (0 min to 60 min), contained a 

non-self-quenching fluorescent solution. Post-insertion at various temperatures resulted in a 

minimal increase in fluorescent signal, due to a reduced self-quenching effect, which derived from 

a decrease of the luminal CF concentration. The incubation of liposomes containing non-self-

quenching concentrations of CF at 60°C resulted in a minimal loss of fluorescent signal, according 

to the incubation period. Studies using mounted liposomes on a cover slip with a CLSM revealed a 

clear co-localization of the two fluorescent dyes (Figure 15). Mean particle size did not change 

during the different incubation steps and the polydispersity index remained below 0.05, even at 

80°C (data not shown). 

 

Figure 14: Incorporation of Rho-labeled phospholipids with the post-insertion method. 

Liposomes containing carboxyfluorescein as an internal standard (hatched bars) were 

incubated with rhodamine B-labeled phospholipids. The amount of rhodamine-labeled 

liposomes increased according to the incubation temperature and time. 
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Carboxyfluorescein Rhodamine B Co-localization 

 
Figure 15: Visualization of the post-insertion method at various temperatures by CLSM. 

Liposomes were loaded with CF (green, first column) and incubated at various temperatures 

with Rho-labeled phospholipids (red, second column). Samples without incubation (control) and 

at 50°C rarely exhibit any spots of co-localization (third column, first and second picture). At 

60°C and 80°C, most of the spots are co-localized (third column, third and fourth picture). 
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4.3. In vitro targeting of liposomes using asialofetuin as a vector 

In vitro uptake of liposomes coupled to AF as a targeting vector was investigated with different 

fluorescent markers. Therefore, CF was attached either to the vector or was loaded inside the 

liposome. As an alternative, water soluble QDs were loaded into liposomes, which opens new 

possibilities in term of investigating uptake and distribution of liposomal cargo. 

 

4.3.1. Uptake of pegylated liposomes coupled with carboxyfluorescein-labeled 

asialofetuin 

To be able to investigate the route of the vector attached to the vesicles, CF-labeled AF was 

thiolated as described above and conjugated to maleimide-functionalized liposomes (Figure 16, 

panel D). After 30 min of incubation, a distinct uptake was observed, although a strong 

autofluorescence from the background of the cells was present (Figure 16, panel A). However, a 

clear contrast was visible when the signal was compared to the corresponding competition 

experiments. Therefore, cells were pre-incubated with an excess of free AF before incubating with 

AF-PEG-liposomes (Figure 16, panel B). The intensity of the autofluorescent signal from the 

background was visible in the control samples, which were incubated only with buffer (Figure 16, 

panel C). 
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4.3.2. Uptake of asialofetuin-pegylated liposomes loaded with carboxyfluorescein 

Additionally to the experiments with the CF-labeled AF attached on the liposomes, as described 

above, the fluorescent dye was incorporated inside of the liposomes by passive loading (Figure 17, 

panel D). In contrast to the delivery of only single fluorescent molecules, attached to the liposomal 

surface, the vesicles were loaded with a self-quenching solution of CF. After the uptake of the 

vesicles in the endosomal-lysosomal pathway and subsequent lyses of the liposomal membrane, 

the CF solution was diluted and the fluorescence liberated. The green fluorescent signal of the 

 

 
Figure 16: CLSM analysis of CF-labeled AF, attached on pegylated liposomes incubated 

with HepG2 cells. HepG2 cells were incubated 30 min with CF-labeled AF coupled to 

pegylated liposomes (panel A, corresponding to nominal 2.9 mM phospholipids). Control 

samples were treated identically after pre-incubation with 23 µM free AF (panel B). Cells 

showing only autofluorescence are presented in panel C. Panel D shows a schematic picture of 

the fluorescence-labeled AF attached to the liposomes. Scale bars represent 10 µm. 
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vesicles was clearly visible (Figure 17, panel A), while giving a higher contrast to the background 

compared to the preparation described above (Figure 16, panel A). The competition experiment, 

with additional free AF, resulted in a substantial reduction in the signal (Figure 17, panel B). The 

background autofluorescence was again prominently visible as little green dots (Figure 17, panel 

C), but had a more blurred and a less intense signal than the CF-loaded liposomes. Therefore, the 

preparation with loading high amounts of CF inside the liposomes produced an increased signal, 

compared to the attachment of CF-labeled AF onto the surface of the vesicles. 

 

 

 
Figure 17: CLSM analysis of pegylated Liposomes coupled with AF and loaded with CF. 

AF-PEG-liposomes loaded with a CF solution of 60 mM were incubated 30 min with HepG2 

cells (panel A, corresponding to nominal 2.9 mM phospholipids). Identically treated control 

samples were pre-incubated with 23 µM free AF (panel B). Panel C displays control cells.  

A schematic picture of the AF-PEG-liposomes loaded with CF is shown in panel D. Scale bars 

represent 10 µm. 
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4.3.3. Uptake of liposomes loaded with quantum dots 

Quantum dots (QD) can be incorporated into liposomes as alternative fluorescent dyes. In our 

setting, the goal was to achieve an increased fluorescent signal-to-noise ratio by using QDs. An 

additional advantage is the resistance towards bleaching of these fluorescent materials. 

 

4.3.3.1. Liberating fluorescent signal of quantum dots after in vitro uptake 

Hardly any fluorescent signal was observed after incubation of QDs containing AF-PEG-liposomes 

(Figure 18, panel A). Further investigations revealed that photoactivation of the samples are 

needed to liberate the fluorescent signal. Visual examination resulted in the conclusion that best 

results were obtained after an exposure of the sample for 3 min at a wavelength of 490 nm (Figure 

18, panel B). Additional periods of the exposure did not result in a remarkable increase in signal 

strength (Figure 18, panel C). The incubation of the sample at a lower and energy richer 

wavelength, already for a short period of time (15 s), resulted in a strong background signal from 

the cells, which made detection of QDs difficult (Figure 18, panel D). 
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Next to liberating the fluorescent signal of QDs encapsulated in liposomes, the emission spectrum 

was investigated to validate the presence of QDs inside of the cells. Thus, a lambda scan of a 

HepG2 cell was performed and the spectra of fluorescing dots were compared (Figure 19). Bright 

spots showed a narrow emission peak around 610 nm, while spots from the background produced 

a broad emission spectra. The sharp emission peak demonstrated the presence of QDs. The 

 

Figure 18: Photoactivation of liposomal QDs in HepG2 cells with irradiation. Panel A 

displays the cells without photoactivation. Panel B and C show the same sample after 

photoactivation at a wavelength of 490 nm for 3 min and 10 min, respectively. Panel D shows 

an unspecific arising of background signal after additional activation for 15 s at a wavelength of 

400 nm. Scale bars represent 10 µm. 



4 - Results 

 51 

emission maximum of QDs (data not shown) shifted from 625 nm to 610 nm after liposomal 

incorporation and uptake by cells. This blue shift of the emission signal is an indication for a 

process resulting in a smaller QD-size. After liberating the fluorescent signal, no further emission 

shift could be observed even after a prolonged exposure or different wavelengths. 

 

4.3.3.2. In vitro uptake of quantum dot-liposomes coupled with asialofetuin 

Despite the described optical limitations of QDs, a successful incorporation into AF-PEG-

liposomes (Figure 20, panel E) and an uptake was achieved in HepG2 cells after 40 min of 

incubation. QDs were activated for 5 min at a wavelength of 490 nm with a light-emitting diode 

(LED) and small, well-defined spots became visible inside of the cells (Figure 20, panel A). 

Although the obtained signal was not as strong as comparable liposomal formulations with CF, a 

clear difference was observed when an excess of free AF was added to the sample (Figure 20, 

panel B). In further experiments, CF-labeled phospholipids were incorporated into AF-PEG-

liposomes and loaded with QDs. Distribution and co-localization were investigated after the uptake 

or binding at 37°C and 4°C, respectively (Figure 20, panel C and D). While the QDs and the 

liposomal membrane accumulated in bigger spots at 37°C, indicating a cellular uptake and 

 

Figure 19: Determination of emission peaks of intracellular QDs. A lambda scan was 

performed from 550 to 700 nm with an excitation at 488 nm. The left picture shows HepG2 cells 

with three regions of interest (ROIs # 1 to 3) of fluorescent QDs compared with three identical 

ROIs of background signal (# 4 to 6). In the right picture, the intensity of these ROIs are 

displayed at various wavelengths. Green, blue and red lines indicate spectra of QDs. 
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accumulation within the endosomal or lysosomal compartments, a distinct distribution on the cell 

surface was visible at 4°C. 

 

Further investigation of the uptake of AF-PEG-liposomes loaded with QDs revealed additional 

differences to conventional dyes, like CF. While the signal of CF became blurred when the vesicles 

were taken up and disrupted in the endosomes or lysosomes, the fluorescent signal of QDs 

remained as distinct spots inside of the cells (Figure 21). This observation could be attributed to 

 

Figure 20: Cellular uptake of QDs encapsulated in AF-PEG-liposomes into HepG2 cells. 

Cells were incubated 40 min with AF-PEG-liposomes loaded with QDs (red spots, panel A, 

corresponding to nominal 0.13 mM phospholipids). Identically treated samples in presence of 

23 µM free AF were compared (panel B). QDs were incorporated into AF-PEG-liposomes 

containing CF-phospholipids (green spots) and taken up for 40 min at 37°C (panel C) or bound 

to the cell surface at 4°C (panel D), respectively (corresponding to nominal 0.35 mM 

phospholipids). Nuclei are stained with Hoechst 33342 (blue signal). A schematic 

representation of loaded QDs inside AF-PEG-liposomes without and with additional CF-

phospholipids is displayed in panel E. Scale bars represent 10 µm. 
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the crystal structure of QDs in the nm-range, permitting to trace the fluorochromes at a single-

molecule level even after entering the endosomal or lysosomal pathway. 

 

 

 

Figure 21: 3-D visualization of QDs after intracellular uptake of loaded AF-PEG-

liposomes. A 3-dimensional scan of the nucleus (blue signal) of a HepG2 cell and uptake of 

distinct liposomal QDs (red signal) above a 2-dimensional differential interference contrast (DIC) 

image of the cell. 
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4.4. In vivo proof of concept 

For investigating the liver distribution in rats, fluorescing phospholipids were incorporated in 

pegylated and non-pegylated liposomal formulations and intravenously administrated, together 

with carbon black, which is selectively taken up by Kupffer cells (Cowper et al. 1990). In the 

obtained liver sections, it was the goal to demonstrate a different distribution pattern of the varying 

liposomal preparations, which correspond to hepatocytes or Kupffer cells, respectively (Figure 22). 

Since dyes in the red spectra compete with a lower background signal, compared to dyes like CF 

with a green emission wavelength, rhodamine B was used as a fluorescent marker. 

 

 

 

 

 

 

 

 

 

Figure 22: Schematic representation of in vivo animal experiments. Liver uptake and 

distribution patterns between hepatocytes and Kupffer cells were investigated in male rats after 

injection of AF-PEG-liposomes and compared with non-pegylated liposomes together with 

carbon black as Kupffer cell specific marker. 
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4.4.1. Uptake by hepatocytes and Kupffer cells 

In general, liposomes accumulate in the liver in Kupffer cells, which belong to the RES. Therefore, 

pegylated formulations were used to increase the half-life and omit non-specific clearance from the 

circulation (Huwyler et al. 2008). To be able to distinguish the histological pattern of non-pegylated 

liposomes taken up by Kupffer cells from vesicles specifically targeting hepatocytes, control 

liposomes, labeled with rhodamine B-phospholipids, without PEG and AF were injected. In 

combination, colloidal carbon was administrated intravenously to stain Kupffer cells (Neyrinck et al. 

2000). After an uptake period of 30 min, liver cryosections displayed well-defined single spots of 

accumulated fluorescent liposomes (Figure 23, panel A) together with the same pattern of carbon 

accumulation (Figure 23, panel B). An overlay of the two images demonstrated co-localization of 

the liposomal formulation and the colloidal carbon (Figure 23, panel C). The insert in panel C 

showed the cell density of the same image, which indicated that liposomal and carbon black-

stained cells represented only a minority of total cells. This pattern was in accordance to a cell 

density of approximately 10%, which has been reported for Kupffer cells in the liver (Cowper et al. 

1990). 

 

 

 
Figure 23: Accumulation of non-pegylated liposomes in Kupffer-cells. CLSM of 

cryosections after an in vivo uptake of 30 min. Non-pegylated liposomes (nominal 3 µmol 

phospholipids / animal) with membrane-labeled rhodamine B (red signal, panel A) were 

administrated by intravenous injection in combination with colloidal carbon, which accumulated 

in Kupffer cells (black signal, panel B). Overlay of the DIC images with the red fluorescent signal 

indicates a clear co-localization of liposomes and Kupffer cells (panel C). The insert in panel C 

shows nuclei stained with Hoechst 33352 (blue) of the same image. Scale bars represent 

40 µm. 
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4.4.2. Uptake by hepatocytes and competition 

In contrast to successful targeting of Kupffer cells with non-pegylated vesicles, AF-PEG-liposomes 

were used to specifically target hepatocytes. These rhodamine B-labeled liposomes were injected 

intravenously and the uptake was terminated after 30 min (Figure 24, panel A). A homogenous 

distribution of the fluorescent liposomes was observed in the liver sections, which corresponded to 

the ubiquitous presence of hepatocytes. This pattern showed a complete different appearance 

compared to the pattern detected with the non-targeted liposomes accumulated in the Kupffer cells 

above (Figure 23, panel A). In a second experiment, the same amount of rhodamine B-labeled AF-

PEG-liposomes was intravenously injected in the presence of an excess of free AF (Figure 24, 

panel B). Cryosections between these two experiments were compared. While the uptake was not 

completely inhibited with the excess of free AF, and not all cryosections indicated the same 

appearance, a reduced accumulation was clearly visible in the latter experiment, indicating a 

specific uptake. 

 

 

 

Figure 24: Uptake of AF-PEG-liposomes in the rat liver. Uptake of AF-PEG-liposomes 

nominal (3 µmol phospholipids / animal) with membrane-labeled rhodamine B (panel A) was 

compared to the same amount of liposomes in presence of 7 mg of free AF (panel B). Note the 

ubiquitous uptake of liposomes (panel A) compared with the reduced uptake in the control 

experiment. Nuclei were stained with Hoechst 33352 (blue). Scale bars represent 40 µm. 
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In both experiments using AF-PEG-liposomes, single spots with a higher accumulation were visible, 

resembling the pattern of Kupffer cells from the experiment above. The intensity and pattern did 

also not change in the presence of additional AF. Therefore, it must be assumed that AF-PEG-

liposomes were taken up by Kupffer cells as well, although the majority of fluorescent-labeled 

vesicles were accumulated by hepatocytes. Nevertheless, it can be stated that the used AF-PEG-

liposomes showed in vitro and in vivo a clear uptake by hepatocytes. This uptake was strongly 

reduced by the addition of free AF, which indicated specific endocytosis via the ASGPR. 
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5. Discussion 

The following chapter discusses the analysis of the asialoglycoprotein receptor (ASGPR) 

expression by HepG2 cells, the evaluation of different ligands used for an ASGPR targeting, and 

the preparation of asialofetuin (AF)-coupled and pegylated liposomes. Such AF-PEG-liposomes 

were used for in vitro and in vivo uptake experiments. Special emphasis will be given to the use of 

fluorescent liposomal markers, such as organic dyes and quantum dots (QD). 

 

5.1. Evaluation of different vectors targeting asialoglycoprotein receptor 

The ASGPR is predominantly and abundantly expressed on the surface of liver parenchymal cells, 

and is capable to trigger a clathrin-mediated endocytosis (Schwartz 1995; Poelstra et al. 2012). To 

initiate a specific binding and uptake of vesicles, it is conceivable to use either ASGPR-specific 

antibodies or mimicking endogen ligands, which are bound to the liposomal surface. 

 

In the present study, an extracellular binding monoclonal antibody against the ASGPR was used 

as a reference ligand to characterize the receptor. A strong expression of the receptor was 

validated in the used in vitro cell culture model HepG2. ASGPR is composed of the two ASGPR-1 

and ASGPR-2 subunits. Although the used antibody was raised against ASGPR-1, it binds to 

ASGPR-2 as well, due to a similar protein sequence. Therefore, the lower two bands of the 

western blot (Figure 4) can be assigned to ASGPR-1/2 subunits, with an expected molecular 

weight of 33 kDa and 35 kDa, respectively (Uniprot.org 2012a; Uniprot.org 2012b). The third and 

upper band at 41 kDa is in agreement with the reported molecular weight of glycosylated human 

ASGPR subunits (J. Wu et al. 2002). Thus, the original purpose of validating the abundant 

expression of ASGPR was provided and is in accordance to earlier publications (Schwartz et al. 

1981). In addition, ample expression of the receptor was confirmed by a signal shift of two orders 

in magnitude in flow cytometry (Figure 5) and a clear homogenous distribution of the signal on the 
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plasma membrane (Figure 6). The strong signal in flow cytometry and CLSM stem from the high 

amount of expressed ASGPR and the use of a polyclonal secondary antibody. 

 

Monoclonal antibodies have been used at various occasions as a vector in immunoliposomes, like 

targeting cells of skeletal muscle (Schnyder et al. 2004), mesangial cells in the kidney (Tuffin et al. 

2005), or the brain by bypassing the BBB (Huwyler et al. 1996). Antibodies can bind with a high 

affinity to the corresponding antigen and coupling them on to liposomes is a well-established 

procedure using covalent maleimide or non-covalent biotin-streptavidin conjugation techniques. 

Just recently, two groups published the development and characterization of a human anti-ASGPR 

antibody, which could be utilized for a drug-targeting strategy (Trahtenherts & Benhar 2009; X. 

Zhao et al. 2011). Therefore, a monoclonal antibody, binding to the extracellular moiety of the 

receptor, could likewise be used to target liver parenchymal cells. However, such an approach 

would face intrinsic difficulties. First, species selectivity of monoclonal antibodies makes 

extrapolation between different species difficult. Second, antibodies binding to extracellular 

domains are not necessary internalized and can therefore not always be used to promote cellular 

uptake (Mastrobattista et al. 1999). Third, monoclonal antibodies against ASGPR are commercially 

available only in limited quantities (i.e. a few µg), which impede the production of 

immunoliposomes even at small scale. Fourth, large scale production of monoclonal antibodies, as 

well as the industrial production of antibody-conjugate, remains a challenge. 

 

As an alternative to monoclonal antibodies, cell specific receptors can be targeted with artificial or 

natural occurring ligands. Regarding the ASGPR, Gal or GalNAc is binding towards the receptor 

(Connolly et al. 1982), which can be used as a robust, cheap and good available vector. Therefore, 

various nanoparticles have been linked in the past to Gal to deliver various cargos to hepatocytes 

with variable success and specificity (Managit et al. 2005b; Pathak et al. 2008). In the present 

evaluation of different vectors, Gal was attached as a monosaccharide to a fluorochrome and 

cellular uptake was investigated. Although a dose depending accumulation in HepG2 cells was 

observed, it was not possible to inhibit this effect by adding an excess of unlabeled Gal or the 
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glycoprotein AF, which binds to the ASGPR with a high affinity (Figure 8 and 9). These results 

indicate that the uptake was non-specific and the ASGPR played no major role. This conclusion is 

comprehensible, since Gal is mainly taken up by cells through various glucose transporters (Uldry 

et al. 2002). Especially the glucose transporters (GLUT1), which transports next to galactose also 

glucose and mannose, is often upregulated in various types of cancer and especially in the HepG2 

carcinoma cell line (F.-Q. Zhao & Keating 2007; Takanaga et al. 2008).  

 

Naturally occurring ligands of the ASGPR contain multi-antennary glycan residues, which result in 

an increased affinity. Compared to inhibition constants (ki) of β-galactose, mono-antennary and tri-

antennary oligosaccharides have a 4 and 200 times higher affinity, respectively (Baenziger & 

Maynard 1980). It can be argued that multiple galactose residues attached to a liposome would 

mimic a multi-antennary glycan, but it must be kept in mind that an excess of surface bound 

terminal galactose results in an increased Kupffer cell uptake, since the protective properties of 

PEG are masked. This effect was observed in studies by Shimada et al., where they used up to 

20% (mol) galactosylated lipids on the surface of liposomes, which resulted in a preferential uptake 

by Kupffer cells (K. Shimada et al. 1997). If we take in consideration that the optimal distance for a 

tri-antennary binding of the galactose lies between 1.5 nm and 2.5 nm (Stockert 1995), and the Gal 

residues are evenly distributed on the liposomal surface, we would need an average of 5 000 to 

14 000 terminal Gal residues per 100 nm liposome, which equals approximately 6% to 17% of the 

80 000 molecules of phospholipids in a 100 nm liposome (Hansen et al. 1995). Compared to 

immunoliposomes, these amounts of surface coupled vectors are several orders of magnitude 

above the reported optimal surface density of 30 mAb per vesicle (Maruyama et al. 1995; Huwyler 

et al. 1996). A significant increased number of attached vectors on the surface of liposomes might 

lead to an elevated uptake by Kupffer cells or other macrophages in vivo. It should be noted that 

the alternative use of lactose as a starting material and opening the glucose unit for attaching to a 

pegylated phospholid was successful (Morille et al. 2009), but it remains questionable if this mono-

antennary strategy results in vivo in an increased hepatocyte delivery. 
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Desialated glycoproteins with multi-antennary Gal-terminated residues are possible alternatives for 

targeting the ASGPR. A prominent example is AF, with its bi- and tri-antennary N-linked glycans, 

which is specifically taken up in the liver by hepatocytes through the ASGPR (Tolleshaug et al. 

1977; Rice et al. 1990). Because bovine AF can be obtained commercially in reasonable quantities, 

it was chosen for further studies. After successfully validating specific vector properties of bovine 

AF towards hepatocytes, it can be easily modified to be non-immunogenic for the usage in humans, 

by utilizing the isolated tri-antennary glycan residues from AF, or by replacing the whole protein 

with the human analogue α-2-HS-glycoprotein. 

 

In analogy to Gal, AF was coupled to the fluorescent marker CF and cellular uptake was 

demonstrated in HepG2 cells. In contrast to the previous experiments with Gal, binding of labeled 

AF could be inhibited with an excess of free AF (Figure 11 and 12). Since AF is specifically taken 

up by hepatocytes through the ASGPR, and competition experiments resulted in a negligible 

uptake of the labeled glycoprotein, the intracellular accumulation of the fluorescent signal can be 

explained by an ASGPR specific uptake (Cawley et al. 1981). The described approach of using 

commercially obtained AF did not contain an additional characterization of the binding properties 

towards the ASGPR. It should be noted that significant differences in the characteristics of binding 

and uptake in hepatocytes were observed between different batches. Therefore, all experiments 

were carried out with the same batch of AF. In contrast to mAb, where the protein folding is 

essential for a specific antigen binding, AF is very robust to denaturing conditions, since only the 

glycan residue determines the affinity towards the receptor. Further, a modification of the protein 

backbone for a subsequent coupling on to a nanoparticle is not critical, since the oligosaccharides 

are not affected. Altogether, considering the commercial availability, binding affinity, lack of species 

specificity, and chemical robustness, AF is an optimal vector for delivering various cargos to 

hepatocytes. 
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5.2. Liposomal preparations 

Liposome composition and preparation were based on previously successful targeting strategies to 

the brain and skeletal muscle (Huwyler et al. 1996; Schnyder et al. 2004). The lipid composition is 

important, since uptake of high phosphatidylcholine containing galactosylated liposomes by 

hepatocytes is limited to vesicles below 90 nm (Rensen et al. 2001). These results are in contrast 

to galactosylated liposomes containing a mixture of 50:45 to 70:25 (mol%) DSPC/Chol, which 

result in a specific uptake in the liver through the ASGPR (Murao et al. 2002). Therefore, a mixture 

of 53:44 (mol%) DSPC/Chol is in the range for an optimal uptake by hepatocytes. The access to 

the space of Disse (perisinusoidal space) is granted, since the particle sizes of the liposomal 

formulations were all below 150 nm (Pathak et al. 2008). Especially the AF-conjugated and 

pegylated liposomes without QDs were in the range of 90 nm. Particles with a similar size have 

been shown to be efficiently taken up by the ASGPR (Murao et al. 2002). 

 

Binding of AF to the liposomal surface with maleimide functionalized lipids resulted in a high 

variability from 30 to 270 molecules of glycoprotein per vesicle. Similar ranges between 3 and 197 

molecules of OX26 mAb per liposome were reported previously (Huwyler et al. 1996). In contrast 

to the described binding of OX26 mAb, 60 nmol maleimide functionalized DSPE were used, 

instead of 15 nmol, which resulted in a slightly higher number of bound AF and a doubled coupling 

efficiency of 20%, with respect to the thiolated protein. The total amount of bound ligand was 

calculated based on the AUC from the corresponding samples of the size exclusion 

chromatography. 

 

An alternative to better control the amount of attached AF on the liposomal surface might be the 

post-insertion method, which was originally demonstrated by Ishida et al. with antibodies coupled 

to pegylated DSPE (Ishida et al. 1999). In the present work, incorporation of fluorescent-labeled 

phospholipids by the post-insertion method was used as a proof of concept. Incorporation of 

rhodamine B was successfully achieved, while the loss of luminal cargo was minimal (Figure 14). It 
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was expected that incubating the liposomes above the transition temperature of the main lipid 

component (approximately 55°C for DSPC) would result in substantial dilution of loaded CF, which 

was not observed. Neither did the particle size or size distribution change. Co-localization studies 

by CLSM of the loaded and latter inserted fluorescent markers revealed an overlay of the signals, 

especially at a temperature of 60°C and above (Figure 15). It must be noted that due to a limited 

optical resolution of visible light (~ 180 nm in xy axis and ~ 700 nm in z axis at a wavelength of 

488 nm), a missing co-localization can rather disprove a homogenous incorporation into the 

vesicles than prove the inverse, since the signal could emerge from different agglomerated 

particles, which cannot be optically distinguished. The time and temperature depending increase of 

the fluorescent signal of the incorporated lipid indicates that the post-insertion method might be a 

better technique to control the amount of attached proteins to the liposomal surface. The co-

localization experiments with the CLSM are supporting these conclusions. 

 

5.3. In vitro targeting of hepatocytes using asialofetuin-conjugated liposomes 

After a covalent binding of AF to the liposomal surface, different fluorescent markers were 

investigated to analyze a specific binding and uptake by hepatocytes. First, the fluorochrome CF 

with its high quantum yield (ratio of photons emitted to photons absorbed) was used, which 

allowed a sensitive detection (Resch-Genger et al. 2008). Therefore, AF was labeled with CF 

before it was attached to the vesicles. These particles were taken up by HepG2 cells, but a strong 

background signal was visible, while CF bleached after a short time of observation. The following 

experiments were conducted with liposomes filled with a high concentrated solution of CF. 

Calculated for a 100 nm vesicle, these can transport around 10 to 100 times more CF molecules, 

compared to fluorescent molecules attached to AF and coupled to liposomes. Therefore, a higher 

signal can be expected, especially when the liposomes filled with high concentrated CF are 

released in the endosomes and CF is diluted to non-self-quenching concentrations (Weinstein et al. 

1977). Although a slight improvement in signal to background ratio was visible, compared to the 

experiment with CF-labeled AF, bound to the liposomes, the high background signal remained a 
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significant hurdle in tracing these particles inside of the cells (Figure 16 & 17, panel C). While the 

qualitative studies with the CLSM revealed a proof of concept with AF-PEG-liposomes labeled with 

CF, quantitative analyses were not successful with the green dye. Various metabolites and 

structural components in cell culture exhibit an autofluorescent signal in the green spectral area, 

which is the same wavelength where also CF is expected to fluoresce (Billinton & Knight 2001). 

Especially quantitative measurements in HepG2 cells with fluorescein derivates have been a 

challenge in the past (Tycko et al. 1983). 

 

An alternative is the usage of a dye in the red spectra, such as rhodamine B, which is coupled to a 

phospholipid and incorporated into the liposomal membrane. Due to a special excitation 

wavelength around 559 nm, quantitative uptake analysis of these vesicles were hampered 

because of technical reasons. Because rhodamine B cannot be excited with lasers commonly 

present in flow cytometry apparatuses, these vesicles were only used for subsequent qualitative 

studies in vivo. 

 

Although red fluorescent dyes generally emit in an area of the spectrum with a reduced 

background, it should be noted that they appear to our eye much darker, compared to an equally 

strong shining dye in the green spectrum (Thews et al. 1999). This effect is caused by different 

relative spectral responsiveness of cone cells in the retina of the human eye (Bowmaker & Dartnall 

1980) and can make visual detection more difficult. Coincidentally, similar effects are known for 

photomultipliers in CLSM, due to lower quantum efficiencies of the detectors at larger wavelengths, 

but can be electronically compensated with an increased voltage applied to the detector (Olympus 

2009). Although these effects can lead to a wrong first impression of a weak signal when analyzing 

samples with these dyes, they do not represent a relevant disadvantage compared to dyes 

emitting in other areas of the spectrum. 

 

In addition to fluorescent dyes, doxorubicin was loaded inside of liposomes by the pH gradient 

method, and pharmacological effects were investigated (data not shown). Preliminary data indicate 
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a higher toxicity of AF-conjugated liposomes compared to control samples, which were only 

pegylated. But further studies are required to validate and quantify these results. 

 

5.3.1. In vitro targeting using liposomes loaded with quantum dots 

QDs, inorganic nanocrystals composed of specific semiconductors, such as CdSe, can be 

incorporated inside of liposomes and serve as alternatives to organic fluorochromes to track 

cellular uptake and distribution. Compared to organic dyes emitting in the same area of the spectra, 

the quantum yield of these QDs is in general lower, but the high absorption rate and the increased 

photo stability finally result in a brighter fluorescent signal, which opens up new possibilities to 

track the delivery of nano particles in vitro and in vivo. In addition, the large Stockes shift and the 

narrow emission spectra make a differentiation of the fluorochrome from the background easier, at 

least in fixed cells (X. Wu et al. 2003). Various applications of QDs as bioconjugates and the usage 

in live cell imaging were extensively reviewed (Medintz et al. 2005; Michalet et al. 2005). A recent 

example is the usage of two different colors of hydrophilic QDs, one was loaded inside of 

immunoliposomes and the second type of QDs was attached to the conjugated antibody to analyze 

an in vitro uptake and intracellular distribution (Sigot et al. 2010). Hydrophobic QDs can also be 

incorporated into the lipid bilayer of the liposomal membrane, but this approach can result in an 

altered membrane stability and an increased leakage of loaded substances (Tian et al. 2011). 

 

Since most QDs contain toxic elements, such as cadmium, they are coated with a layer of ZnS to 

protect the surface from oxidation and leeching of Cd2+ ions into the environment. While the ZnS 

shell itself prevents QDs from being cytotoxic, the thickness of the shell is responsible for the photo 

stability of the nanoparticles (Derfus et al. 2004b; Ziegler et al. 2007). Various preparations of QDs 

exhibit different properties, such as shell thickness, outer coating, charge, oxidative, photolytic, and 

mechanical stability, which can result in distinct toxic effects (Hardman 2006). Because of these 

variable properties, it is difficult to make general assumptions about these particles. Nevertheless, 
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as long as the surface of the QDs is enclosed by a shell, no toxicity of most QDs preparations are 

present in in vitro and in vivo experiments (Lewinski et al. 2008). 

 

Intravenous injection of QDs, coupled on to tumor specific antibodies, results in an extensive 

uptake by the RES in the liver and the spleen. In contrast, the same antibody, conjugated to a 

small organic fluorochrome such as Alexa 680, shows a specific tumor accumulation in mice (H. 

Zhang et al. 2009). Incorporation of QDs inside pegylated liposomes without an attached vector 

can be used to circumvent a non-specific uptake by the RES, which may result in a passive tumor 

accumulation (W. T. Al-Jamal et al. 2009). Compared to non-targeted vesicles loaded with QDs, a 

specific tumor uptake is achievable with immunoliposomes, at least in vitro. In vivo, a tumor 

accumulation is also accomplished, but the superiority of the targeted liposomes is variable, which 

can be attributed to different liposomal formulations, as well as different characteristics of the used 

in vivo tumor models (Weng et al. 2008; Mukthavaram et al. 2011). 

 

The possibility to follow QDs at a single-molecule level, and the narrow emission spectra, permits 

the concurrent utilization of different types of QDs, each emitting at a specific wavelength, in 

in vitro and in vivo systems. For example, five different colors of QDs were injected 

subcutaneously into mice at five different sites and accumulation could be observed in real-time in 

separate lymphatic nodes up to 7 days (Kosaka et al. 2009). In theory, loading separate QDs 

inside different vesicles, such as liposomes or polymersomes, which differ in density or identity of 

an attached vector, particle size, charge, lipid mixture, additional loading, or other properties, 

allows simultaneous analysis and quantification of the optimal formulation, not only in vitro but also 

in vivo. The feasibility of concurrently distinguishing different colors permits a direct comparison 

and evaluation of a successful vesicle delivery to specific cells or organs in the same organism. 

Hence, various different preparations could be examined in the same animal at the same time, 

which would additionally exclude intra-individual variances when comparing different formulations. 

For example, conventional liposomes and AF-PEG-liposomes could be injected simultaneously, 

after loading with two different types of QDs, and the distribution in hepatocytes and Kupffer cells 
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could be compared in the same liver section. All these assumptions imply that the combined 

injection of two or more types of different vesicles do not interact with each other, which has to be 

validated at least in some scenarios. Altogether, this approach would not only simplify the 

development of an optimal drug delivery strategy, but could also contribute to the 3 R development 

(reduction, refinement, and replacement of animal experiments), by drastically reducing the 

number of needed animals for in vivo experiments. 

 

The formulation of liposomes loaded with QDs, and cellular uptake, revealed several unexpected 

hurdles, which limit the direct application of these vesicles in biological systems. Most important 

and in contrast to organic dyes, the fluorescent properties of QDs have to be activated by 

irradiation after endosomal uptake into cells (Figure 18). This limitation hinders a direct qualitative 

and quantitative analysis of the fluorescent signal. These results are in agreement with recently 

published data from Generalov et al. that QDs need photoactivation inside of cells before they 

reveal their fluorescent properties. The decreased fluorescence, which can be partially reactivated 

by irradiation, is attributed to a large extent to protein adsorption on the surface of QDs as well as 

to surrounding phospholipids, a drop in pH in the endosomal compartment, and the presence of a 

high-ionic strength environment (Generalov et al. 2011). 

 

After an endosomal uptake, the process of activation of QDs is accompanied by a blue shift of the 

fluorescent signal of approximately 15 nm (Figure 19), which is an indication of a decreased 

nanocrystal diameter, since the emitting wavelength is depending on the dot size (Chan et al. 

2002). Although the activation process is not completely understood, a prominent part plays the 

process of photo-oxidation, triggered by irradiation with light of a short wavelength, and leading to 

a corrosion of QDs (Carrillo-Carrión et al. 2009). Together with photoactivation, surrounding areas 

of endocytosed QDs were bleached inside of cells, predominantly by illuminating at a shorter 

wavelength of 400 nm, which resulted in a substantial appearance of background signal (Figure 

18). Photo-oxidation at the surface of QDs is described, including the production of radicals such 

as superoxides (Dembski et al. 2008) that conjugate further with surrounding water to peroxides. 
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These radicals cannot only bleach the surrounding structure, but might also contribute to the 

desorption of proteins from the surface of QDs. Hence, the corrosion of the outer layer of QDs by 

photo-oxidation can explain the increasing fluorescent signal after irradiation, which occurs 

accompanied by a blue shift of the fluorescent signal. But further studies are needed to uncover 

the exact molecular mechanism by which the fluorescent signal of QDs is quenched inside of cells, 

and how it is again reactivated, to be able to reveal the full potential of these new fluorochromes in 

biological settings. 

 

Further limitations of incorporating QDs into liposomes were observed during the process of 

vesicle preparation. Although the diameter of the used QDs, including the ZnS shell and the 

polymer coating, is stated to be around 10 nm (Invitrogen 2012), it was not possible to produce 

liposomes of a size below 100 nm by filter extrusion, in contrast to liposomes containing organic 

dyes (Table 1). With an average particle size of approximately 130 nm, these vesicles may be 

substantially less endocytosed by hepatocytes through the ASGPR, compared to smaller vesicles 

(Popielarski et al. 2005). Incorporation of QDs of the same kind, by using different liposomal 

preparation techniques, are reported to result in similar or larger particle sizes, in combination with 

an unfavorable increased polydispersity index (Sigot et al. 2010; Muthu et al. 2012; C.-J. Wen et al. 

2012). 

 

The described properties of a decreased and reactivated fluorescent signal, as well as the 

behavior in the liposomal formulation, is depending on the combination of various components of 

the QDs, such as the elements of used semiconductor nanocrystal, the core-shell, the coating, and 

the liposomal lipid mixture. Especially the shell surrounding the core of the nanocrystal, and the 

overlaying coating, determine not only the solubility and the suitability for further conjugations, but 

influence also the chemical and physical stability, which are responsible for the resulting optical 

properties (Ziegler et al. 2007). Hence, for an improved tracing of liposomal QDs in in vitro and 

in vivo systems, further studies are needed with dots containing an improved shell and coating. 
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Altogether, QDs are promising tools to follow cellular uptake and intracellular localization of 

liposomal cargos (Figure 20 and 21), but the extensively quenching of the fluorescent signal inside 

of the cells limits their use as a direct replacement for conventional dyes. Further, the non-linear 

fluorescent properties and an intermittent on and off behavior (blinking) hinder quantitative 

analyses. Although the intracellular quenching can partly be overcome by photo-activation with 

irradiation, the use of organic dyes in these biological applications is still more straightforward. 

 

5.4. In vivo proof of concept using asialofetuin-conjugated liposomes 

When targeting the liver parenchymal cells with liposomes, it is crucial to investigate also the 

uptake by Kupffer cells, which are known for their unspecific engulfment of vesicles. Together with 

the macrophages in the spleen, they are mainly responsible for clearing non-pegylated liposomes 

from the blood circulation (Dave & Patel 1986). In rodents, the presence of the Kupffer cell 

receptor on the liver macrophages is a further complicating factor, since it is also known for its 

affinity towards glycoproteins bearing oligosaccharides that end with Gal and GalNAc (Fadden et 

al. 2003). Managit et al. demonstrated in mice that varying the amount of Gal attached to the 

liposomal surface is influencing the uptake ratio between liver parenchymal to non-parenchymal 

cells (Managit et al. 2005a). Additionally, experiments in rats showed that many desialated 

glycoproteins, including AF, are taken up specifically by hepatocytes and not by Kupffer cells 

(Morell et al. 1971). Therefore, AF can be used as a vector to investigate specific drug delivery to 

hepatocytes in rats. 

 

In the present in vivo studies, Rho-labeled AF-PEG-liposomes were used and compared with non-

targeted unpegylated liposomes, together with colloidal carbon. While the allocation pattern in the 

liver sections of colloidal carbon and non-targeted liposomes matched to the occurrence of isolated 

Kupffer cells (Neyrinck et al. 2000), AF-PEG-liposomes were homogenously distributed in the liver 

tissue (Figure 23 and 24). Since the non-pegylated liposomes perfectly co-localized with the 

colloidal carbon, it is reasonable to assume that these particles accumulated mostly in the Kupffer 



5 - Discussion 

 70 

cells, while the targeted vesicles were taken up by the liver parenchymal cells. Additional 

competition experiments, with an excess of free AF, revealed a substantial reduced uptake, which 

indicates that the process of endocytosis takes place through the ASGPR. 

 

It has been demonstrated that the density of antibodies conjugated to pegylated liposomes is 

critical for an efficient targeting in vivo and lies in the range of 30 immunoglobulines per liposome. 

These values have been observed for immunoliposomes taken up by pulmonary endothelial cells 

(Maruyama et al. 1995), and by cells of the blood brain barrier, triggering a receptor mediated 

transcytosis of the bound vesicles (Huwyler et al. 1996). Therefore, it is reasonable to assume that 

the density of attached AF to the liposomal surface is also critical for an optimal cellular targeting of 

liver parenchymal cells. Additionally, the uptake through the ASGPR in hepatocytes and 

transcytosis in the blood brain barrier are both triggered through clathrin-mediated endocytosis and 

show therefore some functional similarities (Stockert 1995; Pang et al. 2011). In the present study, 

the amount of surface-conjugated AF on liposomes is varying approximately by a factor of 10, 

covering a range between 30 to 270 molecules of glycoprotein per liposome. Based on our in vitro 

experimentations, the density of receptor ligands on the surface of liposomes had no impact on the 

obtained results. Batch-to-batch variability, however, of AF was a critical factor. For this reason, all 

in vivo experiments were carried with AF-PEG-liposomes tested in vitro prior to in vivo 

experimentations. It should be noted that using post-insertion techniques (see chapter 5.2) may 

improve and allow a standardized coupling procedure. 

 

In comparison to experiments from Hara et al., using non-pegylated AF-liposomes, the same 

amount of liposomes per animal were used in the present study, while for the competition 

experiments less than half of free AF were sufficient to observe a clear reduced uptake in 

hepatocytes (Hara et al. 1987). These results indicate a successful proof of concept for targeting 

hepatocytes by using pegylated liposomes with AF coupled to the distal end of PEG residues. To 

be able to optimize and compare the uptake in vivo, further experiments are needed to quantify the 

total amount of accumulated liposomes in different organs, liver parenchymal and non-
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parenchymal cells. These results will allow to estimate the improvement of this approach 

compared to non-pegylated AF-liposomes or coupled Gal residues to liposomes (Hara et al. 1987; 

Murao et al. 2002; Managit et al. 2003; Popielarski et al. 2005). However, analysis of the liver 

sections is indicating that the main fraction of AF-PEG-liposomes is taken up by hepatocytes. 

 

5.5. Conclusion 

In a first step, various vectors were evaluated for the targeting of hepatocytes through the ASGPR. 

While Gal as a monosaccharide was neither efficiently nor specifically taken up in the in vitro cell 

culture model HepG2, the glycoprotein AF with tri-antennary glycans, each terminating with a Gal 

residue, was further investigated. This natural ligand resulted in a strong and specific uptake in the 

used liver carcinoma cell line. Therefore, considering the commercial availability, binding affinity, 

lack of species specificity, and chemical robustness, AF was chosen as an optimal vector for 

further development of a drug targeting strategy to hepatocytes. 

 

While the concept of utilizing AF in combination with liposomal formulations was already described 

in 1975 from Gregoriadis et al. (Gregoriadis & Neerunjun 1975), the present work is the first to 

explore AF covalently coupled on to the surface of pegylated liposomes. Thereby, AF was 

conjugated to the distal end of maleimide-functionalized phospholipids after preparation and 

extrusion of the vesicles. Subsequently, a proof of principle for the targeting of hepatocytes with 

AF-PEG-liposomes was provided in vitro by a specific uptake and accumulation of these vesicles 

inside of HepG2 cells. The uptake was inhibited in the presence of free AF, indicating receptor-

mediated endocytosis through the ASGPR.  

 

The process of coupling the glycoprotein to the surface of liposomes was highly variable, resulting 

in a range between 30 to 270 molecules AF per vesicle. Although this is of no concern, a post-

insertion technique might be a better manageable approach to control the final amount of surface-

coupled vectors per liposome. 
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To trace endocytosis of liposomes and intracellular routing of transported molecules, the use of 

fluorescent QDs was analyzed and compared to organic dyes. While the bright fluorescence, 

combined with a narrow emission peak and the resistance to photobleaching, resulted in a distinct 

and strong signal from the QDs, their altered optical properties in a biological matrix limit their 

universal and straightforward usage in a liposomal targeting strategy. Nevertheless, QDs were 

successfully loaded into AF-PEG-liposomes and intracellular localization was observed after a 

specific activation of the fluorescence signal. Especially the possibility of combining multiple colors 

of QDs in different liposomal formulations and simultaneous analysis is a promising approach, 

although their blinking behavior and the need for photoactivation is particularly hindering 

quantitative measurements. 

 

A successful proof of concept of targeting hepatocytes in vivo with AF-PEG-liposomes was 

provided. In contrast to conventional liposomes, which were uniquely accumulated in Kupffer cells, 

AF-PEG-liposomes were taken up by liver parenchymal cells. Further, endocytosis could be 

inhibited by administrating an excess of free AF, indicating a specific uptake through the ASGPR of 

the hepatocytes. Conclusively, the combination of pegylated liposomes with coupled AF as a 

vector is a prerequisite for further developments of a specific and species independent drug 

delivery system to hepatocytes. 
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5.6. Outlook 

The described AF-PEG-liposomes promote a successful and specific vesicular uptake by 

hepatocytes in vitro and in vivo. Quantitative measurements are needed to be able to compare 

different formulations and to support semi-quantitative results presented in this study. Therefore, 

liposomes will be loaded with a radioactive marker, such as the metastable nuclear isomer of 

technetium-99 (99mTC), and different organ or cell accumulations will be studied (Oyen et al. 1996; 

Underwood et al. 2012). Further, 3-D images can be obtained from living animals after injecting  

99mTC-labeled liposomes, by using single photon emission computed tomography (SPECT), 

showing an enrichment in selected organs which can be followed over time. Controlling of the 

vector density on the liposomal surface by the post-insertion method will additionally be an option 

to facilitate the preparation of AF-PEG-liposomes. 

 

The used vector AF is isolated from fetal bovine serum and thus immunogenic in humans (J. Wu et 

al. 2002). To preserve the concept of targeting hepatocytes by glycans exhibiting a high affinity 

towards the ASGPR, several alternatives to bovine AF are possible. The protein can be replaced 

with the desialated derivatives of the human homologous protein α-2-HS-glycoprotein or the 

human α-1-acid glycoprotein (also known as orosomucoid), which carry tri- and tetra-antennary 

glycan residues, respectively. Another possibility is to isolate the tri-antennary glycan residue from 

bovine AF by specifically cleaving the N-linked glycosylations or by fragmenting the protein 

backbone with proteases, leaving only the oligosaccharides linked to a short non-immunogenic 

peptide. The isolated glycans can be coupled to the distal end of pegylated liposomes 

(glycanoliposomes) and might be an alternative to the usage of the whole glycoprotein. Another 

more conventional approach is the usage of monoclonal antibodies directed against the human 

ASGPR and covalently attaching them on to pegylated liposomes. But this approach includes the 

known limitations of immunoliposomes, such as species specificity of the vector, a difficult 

production and characterization at an industrial scale. 
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Besides optimizing the vector for the targeting of hepatocytes, liposomes might be loaded with 

variable cargos. QDs can be utilized to study a specific intracellular delivery in combination with 

nuclear or mitochondrial targeting peptides (Derfus et al. 2004a). Combining hepatocyte-specific 

liposomes with pH sensitive lipids and specific organelle targeting peptides will extend the drug 

targeting strategy to an intracellular specific delivery in liver parenchymal cells. Furthermore, 

transporting DNA to hepatocytes resulting in stable and efficient transcriptions could dramatically 

advance treatments in various genetic diseases, such as hemophilia A and B or α1-antitrypsin 

deficiency. For viral hepatitis, siRNA or γ-interferon might represent promising candidates to 

improve therapy options. Finally, the delivery of various cargos uniquely to hepatocytes will open 

up a plethora of additional applications in a variety of diseases related to liver parenchymal cells, 

which can be readily transferred to clinical applications. 
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ABSTRACT: Ceftriaxone is a third-generation cephalosporin antibiotic, which has a broad

spectrum of bactericidal activity. Ceftriaxone is highly soluble as a sodium salt, but far less

soluble as a calcium salt. Incompatibility of ceftriaxone with calcium and the possible forma-

tion of precipitates have been stated in the product label from early on. It was the objective

of the present in vitro study to further assess the risk of precipitation of calcium-ceftriaxone

in human plasma. Analytical methods were developed (high-performance liquid chromatog-

raphy and flame atomic absorption spectroscopy) to quantitate calcium and ceftriaxone in

human plasma supernatants and human plasma precipitates. Using high concentrations of

ceftriaxone (10 mmol/L) and calcium (4.2 mmol/L) did not result in any precipitation after 2 h

incubation in human plasma at 37◦C. Under conditions of forced precipitation only, forma-

tion of precipitation was observed. The identity of the precipitated material was confirmed

by energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy. We conclude

that calcium-ceftriaxone in human plasma has an apparent kinetic solubility product constant

of greater than 0.42 × 10−4 (mol/L)2, which exceeds the normal thermodynamic solubility prod-

uct in water by a factor of 26. Under these conditions, the formation of plasma precipitates

is unlikely. © 2011 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci

100:2300–2310, 2011

Keywords: ceftriaxone; calcium; precipitation; in vitro; plasma; FTIR; HPLC; Solubility;

Spectroscopy

INTRODUCTION

Ceftriaxone (Fig. 1) is a well-known third-generation

cephalosporin antibiotic,1,2 which was introduced

worldwide in the early 1980s. It is commercially avail-

able as a highly soluble sodium salt.3 However, in

combination with calcium ions, it can form a poorly

soluble ceftriaxone–calcium salt.4 Although the sol-

ubility product constant for calcium-ceftriaxone is

Abbreviations used: Cmax, maximum plasma concentration;
EDTA, ethylenediaminetetraacetic acid; EDX, energy-dispersive
X-ray analysis; F-AAS, flame atomic absorption spectroscopy;
FTIR, Fourier transform infrared spectroscopy; HPLC, high-
performance liquid chromatography; i.v., intravenous; LOD, limit
of detection; LOQ, limit of quantification; SEM, scanning electron
microscopy.
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around 1.62 × 10−6 (mol/L)2, 10-fold supersaturation

of the salt is described for solutions in water and bile

by Shiffman et al.4 This effect appears to be long last-

ing because such solutions do not show precipitation

even after 24 h.4 Pharmacokinetics of the drug dif-

fers between age groups, mainly due to different renal

function and protein binding.1,5–13 Infusion of a single

intravenous (i.v.) dose of ceftriaxone (2 g) for 30 min

results in a maximum plasma concentration (Cmax)

of approximately 0.47 mmol/L in healthy adults,5,6

whereas an accumulatedCmax up to 0.624 mmol/L has

been reported after administering 2 g every 12 h for

4 days.6 The question arises whether i.v. infusions or

bolus injections of high concentrations of ceftriaxone

can be combinedwith i.v. calcium-containing fluids. In

such a situation, the formation of precipitates under

in vivo conditions might occur.

The current clinical interest for this potential ad-

verse drug reaction stems from several fatal-case
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Figure 1. Structure of ceftriaxone.

reports of calcium–ceftriaxone precipitation in

neonates during the past 2 decades.14,15 Of the

reported incidents, three showed the presence of

a crystalline material or white precipitate in the

vascular beds, mostly in the lungs and kidneys.

However, many of these infants received several

other medications, such as amikacin, which are

known to be physically incompatible when mixed

with ceftriaxone, and in some reports, the incident

was not immediately related to the last ceftriax-

one administration. In addition, although the ma-

terial found was most likely a precipitate of cef-

triaxone, none of the cases established the identity

of the material.14 Thus, in these clinical cases, it

is not possible to confirm the presence of calcium–

ceftriaxone precipitates, and other contributing fac-

tors cannot be ruled out. In addition, the concentra-

tions of calcium and ceftriaxone required for precipi-

tates to be formed in vivo are not known.

The formation of calcium–ceftriaxone precipitates

has been addressed previously in another context.

Various analyses concerning the formation of biliary

sludge4,16,17 and nephrolithiasis18 have been pub-

lished. The situation concerning the solubility in

plasma is not comparable with urine, nor to bile. This

is in part due to the extensive albumin binding of

ceftriaxone and calcium,19,20 which affects the appar-

ent solubility. The amount of dissolved ceftriaxone in

various physiological fluids was quantified previously

by high-performance liquid chromatography (HPLC)

or by an agar-diffusion bioassay.7,21,22 However, to

our knowledge, there is still no method available for

chemical analysis of ceftriaxone precipitates in hu-

man plasma.

With the objective of further evaluating the inter-

action of ceftriaxone with calcium-containing prod-

ucts and in view of ongoing discussions around these

issues,14,15,23–29 we therefore decided to assess the

risk of precipitations using an alternative strategy

to quantitatively analyze the formation of calcium–

ceftriaxone precipitates in plasma from adults. For

these experiments, we used fresh human plasma from

adults, supplemented with exogenous calcium and

ceftriaxone, using upper clinically relevant concen-

trations, while respecting a reasonable safety mar-

gin. By using fresh, uncentrifuged human plasma,

potential nuclei of crystallization are not eliminated.

Furthermore, plasma proteins, such as albumin, are

preserved from denaturation and precipitation. Po-

tential precipitates of calcium and ceftriaxone were

analyzed quantitatively by flame atomic absorption

spectroscopy (F-AAS) to measure calcium and by

HPLC to determine ceftriaxone concentrations. The

identity of calcium–ceftriaxone precipitates in hu-

man plasma was confirmed by electron microscopy,

combined with energy-dispersive X-ray (EDX) and

Fourier transform infrared (FTIR) spectroscopy.

All data presented are discussed in the context of

known properties of ceftriaxone, combined with the

clinical relevance of the findings.

MATERIALS AND METHODS

Reagents and Pretreatments

Ceftriaxone disodium salt (sterile) bulk

Ca2+–ceftriaxone (amorphous powder) and fresh

pooled heparinized adult human plasma (i.e., neither

frozen nor centrifuged) were provided by F. Hoffmann-

La Roche Ltd., Basel, Switzerland Methanol and

acetonitrile for chromatography and nitric acid

(69.0%-70.0%; “instra-analyzed” quality) were from

Baker Ltd. (Mallinckrodt Baker, Phillipsburg, New

Jersey). Hydrogen peroxide solution (“trace select

ultra for trace analysis” quality) and atomic spec-

troscopy Ca2+ standard solution were from Fluka

(Buchs, Switzerland). Water (nanopure) was pre-

pared inhouse using a Barnstead (Thermo Fisher

Scientific, Waltham, Massachusetts). Nanopure dia-

mond system (electrical resistance: 18.2 MÄ cm−1).

All other chemicals and reagents were of analytical

grade and were obtained from commercial suppliers.

Volumetric flasks, microwave tubes, and Teflon

inserts were pretreated with 10% HNO3 for at least

12 h and rinsed three times with nanopure water

before use. Autosampler tubes were rinsed once with

sample solution.

METHOD DEVELOPMENT AND VALIDATION

Calcium Analysis

Ca2+–ceftriaxone supernatants (0.2 mL) were mixed

with 2.0 mL of HNO3 (70.0%) and 2.0 mL of H2O2 in

a Teflon digestion tube followed by microwave radia-

tion (5 min in at 250 W output power, 5 min at 400 W

output power, and 5 min at 500 W output power) us-

ing a Milestone mls1200 mega microwave digester

(Shelton, Connecticut) equipped with a MDR-300/S

rotor and microwave resistant Teflon inserts. Sam-

ples were allowed to cool down to ambient tempera-

ture for 10 min and were transferred to a volumetric

flask. The digestion vessels and the Teflon tubes were

rinsed three times with 0.2% HNO3. Wash solutions
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were also transferred to the volumetric flask, and the

final volume was adjusted to 25 mL with 0.2% HNO3.

Ca2+–ceftriaxone plasma precipitates (pellets)

were washed in 0.5 mL of cold water (6◦C), vortexed

for 1 min, centrifuged, and resuspended in 5 mL of

buffer solution (pH 7; 50 mmol/L potassium dihydro-

gen phosphate, 19 mmol/L sodium hydroxide). They

were then spiked with 10 mg ethylenediaminete-

traacetic acid (EDTA) and incubated for 2 h at 37◦C

on an orbital shaker with 180 rpm. Two milliliters

of the suspension was mixed with 2.0 mL of HNO3

(70.0%) and 2.0 mL of H2O2. They were digested as

described above for plasma pellets. Digested samples

were transferred to a volumetric flask and the vol-

ume adjusted to 10 mL using 0.2% HNO3. Aliquotes

of each sample (10 mL) solution were analyzed by

a AA800 F-AAS instrument with a flame interface

(acetylene/air) and equipped with a AS-93plus au-

tosampler (PerkinElmer, Waltham, Massachusetts).

Data collection and analysis were performed using

PerkinElmer WinLab32 software. Air flow was 17 L/

min, and acetylene flow was 2.5 L/min. Element cal-

cium was monitored at a wavelength of 422.7 nm us-

ing a slit of 0.7 nm and a time average of 3 s for the

atomic absorption signal. Data represent means of

n equals to three independent measurements. The

F-AAS method was monitored in each series by inclu-

sion of quality control samples, using mineralized, di-

gested Ca2+-spiked plasma samples, and diluted stan-

dard samples in the same concentration range. Be-

fore each series of measurements, a calibration curve

was established using six distinct calibration stan-

dard solutions covering a range from 0.125 to 5 mg/

L. Aliquots of each standard solution (10 mL) were

analyzed by F-AAS. Recovery was calculated by com-

paring peak areas of calibration solutions prepared in

water with peak areas of spiked plasma samples.

Ceftriaxone Analysis

Plasma (100 :L) containing ceftriaxone was mixed

with 900 :L water/methanol (4:9, v/v), vortexed, and

incubated on ice for at least 30 min. After centrifuga-

tion (10 min at 20,000 × g), 50 :L aliquots of super-

natants were transferred to HPLC sample vials and

diluted to a final volume of 1 mL using H2O. This

solution was analyzed by HPLC. Samples contain-

ing Ca2+–ceftriaxone or plasma precipitates contain-

ing Ca2+–ceftriaxone were washed in 0.5 mL of cold

water (6◦C), vortexed for 1 min, centrifuged, and re-

suspended in 5 mL buffer solution (pH 7; 50 mmol/L

potassium dihydrogen phosphate, 19 mmol/L sodium

hydroxide). Washed samples were spiked with 10 mg

EDTA and incubated for 2 h at 37◦C. Prior to HPLC

analysis, insoluble particles were removed by cen-

trifugation and filtration through a 0.45-:m filter

(Titan-2 HPLC Filters with PVDF membrane, 17-mm

diameter, 0.45-:m pore size; Thermo Fisher Scien-

tific). HPLC analysis was performed on a quater-

nary Agilent HPLC 1200 chromatography system

(Agilent Technologies, Santa Clara, California) op-

erated at a flow rate of 0.5 mL/min. The stationary

phase was a Waters C18 XBridgeTM column (3.5 :m,

150 × 3.0 mm I.D., Waters Ltd., Milford, Pennsylva-

nia) kept at 30◦C during analysis. Injection volume

was 10 :L. The separation of analytes was achieved

using an isocratic separation lasting 7 min in solvent

A [1.0% formic acid/methanol (80:20, v/v)], followed

by a linear gradient of 2 min to 70% of solvent B

(1.0% formic acid in methanol) followed by an iso-

cratic step of 3 min under the same conditions. Before

the next sample was injected, the solvent composition

was changed to the initial conditions of 100% solvent

A, and the system was equilibrated for 8 min. Ana-

lytes were detected by ultraviolet (UV) absorbance

at 261 nm, using an Agilent DAD 1200 UV detec-

tor (Agilent Technologies). Samples were kept in a

cooled sample tray at 10◦C before injection. All ceftri-

axone standards were prepared from stock solutions

of ceftriaxone (45 mmol/L ceftriaxone disodium salt

in H2O) covering a range from 0.4 to 438 :M. Cali-

bration solutions and quality standards were stored

at −20◦C. The HPLC method in each series was mon-

itored by inclusion of quality control standards pre-

pared in water as well as human plasma. Recovery

was calculated by comparison of peak areas of cali-

bration solutions prepared in water, with peak areas

of spiked plasma samples. Data evaluation was per-

fomed using Agilent Chemstation for LC 3D System

software (Agilent Technologies).

Quantitative Analysis of Calcium and Ceftriaxone
in Human Plasma

Serial dilutions of ceftriaxone in 0.5 mL plasma were

prepared and added to test tubes containing either

0.5 mL of plasma (control) or plasma spiked with cal-

cium (final concentration 4.2 mmol/L Ca2+), and were

incubated at 37◦C on a rotary platform (60 rpm) for

2 h. The concentration of ceftriaxone was between

0.63 to 10.05 mmol/L. Plasma supernatants were sep-

arated from plasma precipitates by centrifugation

(20,000 × g for 10 min at room temperature). The

analysis of calcium and ceftriaxone in precipitates, as

well as in supernatants, was carried out as described

above in the validated concentration range.

Qualitative Analysis of Calcium and Ceftriaxone
in Human Plasma

Preparation of Plasma Precipitates by Forced
Precipitation of Ceftriaxone

For the forced precipitation of calcium-ceftriaxone,

two equal amounts of fresh human plasma sam-

ples were spiked with either Na+–ceftriaxone or ex-

ogenously added CaCl2 and mixed, resulting in a
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concentration of 20 mmol/L ceftriaxone and 20 mmol/

L calcium. Samples were incubated for 1 h at 37◦C,

followed by centrifugation. The analysis of plasma

precipitates was performed by light microscopy and

scanning electron microscopy (SEM) combined with

EDX analysis.

Light Microscopy

Plasma precipitates were analyzed by visual inspec-

tion, using an inverted Olympus IX-71 microscope

or a direct transmission Olympus BX-51 microscope

(Olympus Ltd., Tokyo, Japan). Both microscopes were

equipped with a digital camera. Phase-contrast im-

ages were obtained under 400 × magnifications.

SEM and EDX Analysis

For SEM combined with EDX analysis of plasma pre-

cipitates, a Zeiss Gemini supra 40VP field emission

scanning electron microscope was used (Carl Zeiss,

Jena, Germany). The instrument was operated un-

der secondary electron, back-scattered detection, and

EDX mode. The accelerating voltage was 20 keV.

FTIR Spectroscopy

Fourier transform infrared spectra were acquired us-

ing a Digilab FTS 7000 Series FTIR spectrophotome-

ter equipped with a Germanium-ATR MCT detector

(Varian Medical Systems Inc., Palo Alto, California).

FTIR spectra represent the mean of 32 scans obtained

with a resolution of 4 cm−1.

RESULTS

Method Development and Validation

Flame atomic absorption spectroscopy gave a linear

range of the calcium response (Table 1), and the limit

of detection (LOD) and limit of quantification (LOQ)

were determined according to guidelines of the In-

ternational Conference on Harmonisation (ICH) 30:

LOD = 0.025 mg/L, LOQ = 0.075 mg/L. These val-

ues were associated with a relative standard devia-

tion of 30% and 10%, respectively (data not shown).

It is important to note that the intrinsic concentra-

tions of calcium in the human plasma preparations

were measured and were in the expected physiologi-

cal range of 2.74 mmol/L ± 1.8% ( mean ± rel. SD,

n = 5). Here, measured calcium concentrations al-

ways refer to the total amount of calcium present in

a given sample. They are thus representative of the

sum of exogenously added calcium and the endoge-

nous plasma calcium concentration of 2.74 mmol/L.

Recovery of Ca2+ was determined in human

plasma by adding calcium to a final concentration

of 3.2 mmol/L (addition of 0.5 mmol/L Ca2+) and

4.2 mmol/L (addition of 1.5 mmol/L Ca2+) (Table 1).

Recovery was calculated by comparing peak areas

of calibration solutions prepared in 0.2% HNO3 with

peak areas of spiked plasma samples. It should be

noted that identical results were obtained irrespec-

tive of the origin of the measured calcium (i.e., either

Ca2+ standard or Ca2+–ceftriaxone) because all proce-

dures for the determination of Ca2+ were based on the

complete digestion of any organic matter, before the

solutions were analyzed with F-AAS. For the quanti-

tative determination of ceftriaxone in human plasma,

an HPLC-based method was utilized, wherein cef-

triaxone showed a retention time of approximately

6 min. Calibration samples were prepared in water,

and unknown plasma samples were diluted with wa-

ter into the linear range. The assay was linear over a

concentration range of three orders of magnitude (Ta-

ble 1). The corresponding LOD represents a signal-to-

noise ratio of 3, whereas the LOQ represents a signal-

to-noise ratio of 9. Overall, accuracy and precision

of ceftriaxone determination in human plasma were

measured at ceftriaxone concentration levels of 10, 5,

2.5, 1.26, and 0.62 mmol/L (Table 1). Recovery of cef-

triaxone in human plasma was determined at ceftri-

axone concentration levels of 10, 2.5, and 0.6 mmol/L.

Highest recovery of ceftriaxone from precipitates was

achieved at pH 7 in presence of EDTA (Table 1).

Table 1. Validation of the Method to Analyze the Amount of Calcium and Ceftriaxone in Human Plasma

Analyte Matrix

% Recovery

(Concentration, mmol/L)

Precision

(Concentration, mmol/L)

Accuracy

(Concentration,

mmol/L)

Linear Range

(:mol/L) [R2]

Limit of

Quantification

(:mol/L)

Ca2+ Supernatant 102.6 ± 5.2, n = 4 (3.2) ±1.2%, n = 4 (2.7) – 3.1–125 [0.999] 1.87

100.8 ± 4.4, n = 4 (4.2)

Ca2+ Pellet 102.6 ± 5.2, n = 4 (3.2) ±1.2%, n = 4 (2.7) – 3.1–125 [0.999] 1.87

100.8 ± 4.4, n = 4 (4.2)

Ceftriaxone Supernatant 95 ± 1.0, n = 3 (0.6) ±3.2%, n = 20 (0.62–10) 102% (0.62–10) 0.44–440 [0.999] 0.49

98.9 ± 1.4, n = 3 (2.5)

103 ± 1.0, n = 3 (10)

Ceftriaxone Pellet 93.4 ± 3.2%, n = 20 (0.62-10) 102% (0.62–10) 0.44–440 [0.999] 0.49

Calibration samples were prepared in water. Unknown plasma samples were diluted with water into the linear range. Ceftriaxone is stable over 22 h at
10◦C. Different experiments are summarized, which were performed using the indicated concentration of analytes. Values are means ± RSD. Used
concentrations are given in parenthesis.
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Table 2. Analysis of Supernatants and Plasma Precipitates

Supernatant Pellet

Ceftriaxone (mmol/L) Calcium (mmol/L) % Recovery Ceftriaxone % Recovery Calcium % Recovery Ceftriaxone % Recovery Calcium

0.63 4.2 97.6 ± 0.2 108.6 ± 0.0 0.24 ± 0.08 3.76 ± 0.38

1.26 4.2 99.1 ± 1.9 104.7 ± 3.4 0.30 ± 0.09 2.55 ± 0.95

2.51 4.2 99.5 ± 0.1 106.2 ± 1.1 0.25 ± 0.00 2.42 ± 0.38

5.03 4.2 100.9 ± 0.8 107.0 ± 0.0 0.18 ± 0.04 2.29 ± 0.57

10.05 4.2 100.3 ± 3.0 101.5 ± 1.1 0.26 ± 0.13 2.55 ± 0.57

Recovery mean 99.5 105.6 0.25 2.72

SD 1.8 2.6 0.08 0.56

N 20 10 20 10

Recovery of calcium (4.2 mmol/L total concentration) and ceftriaxone (0.63–10.05 mmol/L) in fresh human plasma. Values are means ± RSD.

Quantitative Analysis of Calcium and Ceftriaxone in
Human Plasma

The serial dilutions of ceftriaxone in human plasma

were mixed with plasma-containing CaCl2 and incu-

bated. Note that the fresh human plasma used for

these experiments was not frozen and was not pre-

centrifuged. The results are presented in Table 2.

Total recovery of calcium from plasma pellets was

consistently low and did not depend on the added cef-

triaxone concentrations. For ceftriaxone, a trend to-

ward a lower recovery from plasma supernatants was

observed with decreasing ceftriaxone concentrations.

Within the uncertainty of measurement, the con-

tent of ceftriaxone and calcium in the pellets was

in the range of 0.25% to 2.72% of the amounts ini-

tially added. Within the uncertainty of measurement,

a nominal 100% of added ceftriaxone, as well as added

calcium, was recovered from human plasma super-

natants. There was no apparent loss due to precipita-

tion (Table 2).

It should be noted that our methods cannot be used

to analyze the formation of cefriaxone precipitates in

full blood. Precipitates are separated from the incuba-

tion mix by centrifugation. The hematocrit or packed

cell volume of human blood would make it very diffi-

cult to detect small amounts of drug precipitates.

Qualitative Analysis of Calcium and Ceftriaxone
in Human Plasma

Inspection of Plasma Precipitates Using Light
Microscopy and EDX Analysis of Calcium
for Qualitative Analysis

Fresh human plasma had a clear appearance and did

not contain any crystalline material (Fig. 2, panel a).

This situation was very similar to the situation in

which fresh human plasma spiked with 1.5 mmol/L

of CaCl2 (4.2 mmol/L total calcium) and ceftriaxone

(10 mmol/L) after incubation for 1 h at 37◦C (Fig. 2,

panel B). Furthermore, incubation for 2, 4, and 24 h

did not yield any precipitation (data not shown).

Small particles found in these negative-control ex-

periments presumably represent cell debris or pre-

cipitated plasma proteins (Fig. 2, panel a). In order

to prepare plasma precipitates of calcium-ceftriaxone

needed for visual inspection, a “forced precipitation”

protocol was used in which nonphysiological con-

centrations of calcium (20 mmol/L) and ceftriaxone

(20 mmol/L) were added to fresh human plasma. Un-

der these forced conditions, precipitates were formed,

with a large number of small crystals observed within

1 h (Fig. 2, panel c), followed by a phase of crys-

tal growth during a second hour of incubation (data

not shown). From these experiments, plasma pre-

cipitates were recovered (Fig. 3) and the identity of

Ca2+–ceftriaxone was further analyzed by EDX anal-

ysis and FTIR spectroscopy. Very similar elemental

X-ray dispersive spectra were obtained, using precip-

itates from water as well as precipitates isolated from

human plasma that had been spiked with 20 mmol/L

Figure 2. Efficiency of wash steps during sample prepara-

tion of plasma pellets. Human plasma (0.5 mL) was spiked

with about 2.7 :mol of calcium-ceftriaxone. Plasma pellets

containing insoluble calcium-ceftriaxone were collected af-

ter repeated centrifugation and wash steps. SN1, plasma

supernatant recovered after the first centrifugation step.

Measured Ca2+ represents endogenous calcium and calcium

derived from dissolved calcium-ceftriaxone. W2 to W6, anal-

ysis of wash solutions recovered after the indicated centrifu-

gation step.
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Figure 3. Visual inspection of plasma precipitates from

fresh human plasma. Negative controls (panel a) or plasma

spiked with 1.5 mmol/L CaCl2 and 10 mmol/L ceftriaxone

(panel b) or plasma spiked with 20 mmol/L CaCl2 and

20 mmol/L ceftriaxone (representing conditions of forced

precipitation, panel c). Samples were incubated for 1 h at

37◦C. Small particles found in these negative control ex-

periments represent presumably cell debris or precipitated

plasma proteins.

CaCl2 and 20 mmol/L ceftriaxone (representing

conditions of forced precipitation) (Fig. 4). The spec-

tra of FTIR spectroscopy of dried plasma precipitates

were similar to the ceftriaxone reference spectra pro-

vided by Roche (Fig. 5).

DISCUSSION

Several analytical procedures were evaluated in order

to identify a robust and reliable method for the quan-

titative analysis of Ca2+, both in plasma supernatants

and plasma precipitates. Inductively coupled–plasma

mass spectrometry was initially tested, but without

success: 40Ar, which is used as plasma gas, has the

same molecular weight as 40Ca. Therefore, less abun-

dant isotopes such as 43Ca have to be used for the

quantitative determination of calcium, with a very

Figure 4. Inspection by scanning electron mi-

croscopy of plasma precipitates. Samples were obtained

from fresh human plasma spiked with 20 mmol/L

CaCl2 and 20 mmol/L ceftriaxone (representing conditions

of forced precipitation). Positions used for energy-dispersive

X-ray analysis (Fig. 5) are labeled by a black cross. Acceler-

ating voltage: 20.0 kV; magnification, 1480×.

low sensitivity of this method. Tests with graphite

furnace atomic absorption spectroscopy (GF-AAS)

resulted in a linear response of the instrument with

respect to calcium in a range of 0.4–8 :g/L, with a de-

tection limit in the range of 0.1–0.5 :g/L. A problem

associated with this very high sensitivity is interfer-

ence of contaminating Ca2+. Because calcium is ubiq-

uitous, this effect can hardly be controlled, and would

interfere with the analysis of samples that have to be

diluted by a factor of approximately 1000 to 10,000 to

obtain calcium concentrations in the expected range

of the experiments. As a consequence, a less sensi-

tive method for the detection of calcium was evalu-

ated (F-AAS). Tests resulted in a 100 times less sen-

sitive method than GF-AAS, and in a suitable range

of quantification for total calcium in plasma super-

natants and precipitates.

Analytical procedures for quantitative analysis of

Ca2+ in plasma precipitates were evaluated. After

centrifugation of plasma samples, the supernatant

was separated by decanting from the pellet. The

pellets remained contaminated with adherent su-

pernatant. Therefore, recovered plasma pellets were

washed with a small volume of 0.5 mL H2O (ice-cold

water) to remove residual supernatant without dis-

solving Ca2+–ceftriaxone. After one washing step, the

content of contaminating calcium was reduced to a

minimum. Further washing is not recommended be-

cause with every additional wash cycle, an amount

of approximately 0.2 mmol/L Ca2+–ceftriaxone is dis-

solved and lost (Fig. 6).

On the basis of these results, it can be stated that

a validated analytical procedure could be established.

This method was used subsequently for the quantita-

tive determination of ceftriaxone and Ca2+ in human

plasma and human plasma precipitates.

Using a HPLC-based analytical method,

ceftriaxone-containing plasma supernatants and

pellets were analyzed. Validation of the method

demonstrated a high recovery and a linear re-

sponse covering a concentration range from 0.5 to

500 :mol/L.

Formation of calcium–ceftriaxone precipitates was

studied in human plasma, with a total concentration

of 4.2 mmol/L calcium, which is well above physio-

logical limits.31,32 Ceftriaxone concentrations tested

started at 0.63 mmol/L, which reflects the maximum

amount that has been measured in a clinical study,6

and increased to a level of 10.05 mmol/L.

To simulate in vivo conditions, we used fresh,

pooled, and noncentrifuged human plasma. Without

precentrifugation, we expected to preserve crystal nu-

clei needed to initiate possible plasma precipitation.

As a consequence, a small amount of particulate ma-

terials (i.e., cell debris and protein aggregates) was

recovered in plasma in all experiments, including neg-

ative controls (Fig. 2a).
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Figure 5. Determination of elemental composition of Ca2+–ceftriaxone. Samples were

obtained by precipitation in water (upper panel) and plasma precipitates of Ca2+–

ceftriaxone (lower panel) by energy-dispersive X-ray analysis. The used plasma precipitate

(Fig. 4) was obtained from fresh human plasma spiked with 20 mmol/L CaCl2 and 20 mmol/L

ceftriaxone (representing conditions of forced precipitation).

In experiments in which plasma was spiked with

4.2 mmol/L calcium and varying concentrations of

ceftriaxone, a mean of 2.72% calcium and 0.25% cef-

triaxone was recovered in the plasma pellet after cen-

trifugation. This is considered to represent a small

amount of adherent supernatant solution that was

not fully removed by the washing procedures. This

percentage was independent from the ceftriaxone con-

centrations tested and therefore did not reflect calci-

um–ceftriaxone precipitates. Consequently, approxi-

mately 100% of the analytes were recovered from the

supernatants. It should be noted that for ceftriaxone,

a trend toward a higher recovery from plasma su-

pernatants was observed with increasing ceftriaxone

concentrations (Tables 1 and 2). An analytical arti-

fact (e.g., degradation during storage of samples in

Figure 6. Fourier transform infrared spectroscopy spec-

tra of dried human plasma precipitates (dashed line)

obtained by forced precipitation of Ca2+–ceftriaxone

in plasma. For comparison, a reference spectrum of

Ca2+–ceftriaxone in water is superimposed (continuous

line).

the HPLC autosampler prior to analytics) can be ex-

cluded because the effect was also visible if the order

of experiments was reversed. A likely explanation for

the effect could be protein binding. It has been de-

scribed by Brodersen and Robertson33 that a second

molecule of ceftriaxone is bound weakly to albumin.

Thus, a disproportionately low amount of ceftriaxone

would be bound to plasma proteins at higher concen-

trations.

In addition to the quantitative assays, we con-

firmed the absence of calcium–ceftriaxone precipi-

tates under the maximum tested concentrations of

10 mmol/L ceftriaxone and 4.2 mmol/L total calcium

with a light microscope (1 h incubation at 37◦C

Fig. 2b). Small particles could be attributed to cell de-

bris or precipitated plasma proteins, which were also

seen in control samples containing only fresh human

plasma (Fig. 2a). Even after 24 h, no precipitates were

visible. These results confirm our observation that at

the tested concentrations of ceftriaxone and calcium,

no relevant precipitation occurs in fresh, pooled, and

noncentrifuged human plasma.

In a set of additional control experiments, forma-

tion of calcium–ceftriaxone precipitates was induced

using very high (nonphysiological) concentrations of

both ceftriaxone and calcium (20 mmol/L each). How-

ever, the first signs of precipitations were appar-

ent only after 1 h of incubation (Fig. 2c). The iden-

tity of the precipitated material was confirmed to be

calcium-ceftriaxone using SEM (Fig. 3) and EDX anal-

ysis (Fig. 4). EDX analysis resulted in very similar

elemental spectra compared with samples obtained

from calcium–ceftriaxone precipitations in water and

revealed the presence of elemental sulfur and calcium

in both samples (Fig. 4). Thus, human plasma precip-

itates generated under conditions of forced precipita-

tion were confirmed to contain Ca2+–ceftriaxone. The
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identity of Ca2+–ceftriaxone recovered from plasma

precipitates, under conditions of forced precipitation,

was further confirmed by FTIR spectroscopy. Again,

IR spectra of dried plasma precipitates were similar

to the ceftriaxone reference spectra (Fig. 5).

Our results are in line with the following state-

ments:

First, no calcium–ceftriaxone precipitates were de-

tected in fresh human plasma at concentrations of

calcium up to 4.2 mmol/L and ceftriaxone up to

10 mmol/L.

Second, formation of plasma precipitates could

be induced under conditions of forced precipitation

(20 mmol/L each).

Third, the identity of calcium–ceftriaxone precip-

itates, prepared under forced conditions, was con-

firmed qualitatively by microscopy and spectroscopy

methods.

The question arises, how these results can be inter-

preted in the context of the clinical use of ceftriaxone.

On the basis of our results, the concentration of

10 mmol/L ceftriaxone in plasma from adults does

not form precipitates in the presence of 4.2 mmol/L

calcium. Thus, an apparent kinetic solubility product

constant of greater than 0.42 × 10−4 (mol/L)2 can

be calculated. This value is around 26 times higher

than the thermodynamic solubility product in water

determined by Shiffman et al.4

This difference can be attributed to following fac-

tors:

First, the presence of a supersaturated solution,

which exceeds the solubility product constant by a

factor of 10, has also been described in water and

bile by Shiffman et al.4 This state was described as

“metastable” by Shiffmann et al.4 and showed no vis-

ible or microscopic precipitates, even after 24 h. Even

when calcium–ceftriaxone precipitates in an aqueous

solution, the formation is rather slow. Using a light

obscuration particle counter, Nakai et al.23 demon-

strated that the formation of precipitates from a su-

persaturated solution is time dependent. Depending

on the concentration and temperature, the formation

of microparticles did not occur for several hours. Even

after mixing 18 mmol/L ceftriaxone with 2.5 mmol/L

calcium, no immediate precipitates were visible. On

the basis of the clinical reports, supersaturation is ap-

parently exceeded in the excreting organs, the liver

and kidneys, where the nonmetabolized drug is ex-

creted. Compared with blood plasma, up to 10-fold

higher concentrations of ceftriaxone are obtained in

urine,20 whereas the concentration in bile even ex-

ceeds the urinary levels several fold.34 Calcium con-

centrations in urine are also several fold augmented,

compared with blood plasma, and depend on the

calcium uptake.19,35 The free Ca2+ concentration in

bile is normally in the same range as in plasma,

in contrast to total calcium concentration, which is

increased.36–38 However, as a result of the high ceftri-

axone concentration in the bile, free calcium passively

enters the canalicular bile and further increases the

concentration of the supersaturated solution.39 For-

mation of calcium–ceftriaxone precipitates is further

favored through the concentrating function of the

gallbladder,16,40 especially during overnight fasting.

Taking into account these higher concentrations of

ceftriaxone and calcium, and the stasis in the urinary

bladder as well as in the gallbladder, it is comprehen-

sible why renal and biliary lithiasis emerges.18,41–45

Therefore, biliary precipitation and nephrolithiasis

limit the Cmax that can be achieved in vivo.

Second, the process of precipitation can also be

modified by interfering plasma proteins. Similar ef-

fects have been described for the formation of choles-

terol gallstone in the gallbladder, where biliary

proteins inhibit crystallization and stabilize a su-

persaturated state of cholesterol in bile, or induce

precipitation.46–48 For supersaturated drug delivery

systems, Brouwers et al.49 mentioned different mech-

anisms of precipitation inhibition, which can also be

applied to our situation, especially when plasma pro-

teins possibly influence the process of nucleation and

crystal growth.

Third, differences in solubility between blood

plasma, compared with water, were shown for sev-

eral other drugs and were attributed to protein

binding.50,51 Ceftriaxone is reversibly bound to al-

bumin in plasma, and only the free fraction can

contribute to the process of initial salification. The

fraction of free drug is dependent on several factors

including ceftriaxone concentration that can vary be-

tween 5% and greater than 35%.52,53 The free fraction

of endogenous calcium in plasma is in the range of

1.1 to 1.4 mmol/L. This amount represents approx-

imately 50% of the total calcium concentration in

plasma, which is in the range of 2.65 mmol/L.31,32

Our apparent kinetic solubility product constant in

human plasma is a hypothetical value calculated us-

ing total (i.e., free and bound) plasma concentrations.

One could argue that this constant should be calcu-

lated using free concentrations only. In the latter case,

the apparent kinetic solubility product constant in

plasma would decrease by approximately one order of

magnitude.

Taking all the above-mentioned factors, such as su-

persaturation, crystal growth, and protein binding to-

gether, we have a good explanation why our apparent

kinetic solubility product constant in plasma differs

from the reported thermodynamic solubility product

in water by Shiffman et al.4

The question arises, whether or not push injections

of 0.5 and 1 g ceftriaxone, which are available in many

countries in Europe for more than 20 years, can lead

to precipitate formation before the drug has been dis-

tributed in the body. To define upper critical doses
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of ceftriaxone, kinetic factors such as hydrodynamic

parameters (e.g. blood flow rate at the injection site),

injection rate, and in situ crystal growth rate have to

be known.54,55 Portmann and Simmons50 showed for

several other drugs that no crystals or oily droplets

are formed in plasma at critical concentrations in an

in vitro dynamic injection system due to a rapid di-

lution effect. Therefore, we expect to observe precip-

itation rather in more static environment than in a

dynamic injection system.

Although we cannot make precise assumption on

the basis of our data about the hydrodynamic behav-

ior during push injections, there have been no fatal

cases reported in adults in the context of intravas-

cular precipitation. The lack of reports of such fatal

incidents in adults, including widespread use of bolus

injections, has been mentioned several times.24 Tak-

ing all that is known of ceftriaxone from both non-

clinical and clinical sources, combined with its favor-

able tolerability profile over the last 2.5 decades,2 it is

very unlikely that relevant calcium–ceftriaxone pre-

cipitation occurs in human adults, even after a push

injection.

Because the combination of calcium and ceftriax-

one is contraindicated in neonates, we used in the

present study blood plasma from adults only. Care

should be taken to extrapolate from our results to

the situation in neonates: the affinity of ceftriaxone

to albumin is remarkably lower in newborns than in

adults.33 Furthermore, bilirubin competes with cef-

triaxone to the binding site of albumin and thereby

influences the free fraction of the drug in neonates.33

Next to this theoretical point of view, the question

remains why these fatal adverse drug events with the

precipitation of ceftriaxone occurred only in neonates.

If we take a closer look at the data, it turns out that

one case was reported twice, and another lethal case

was assigned to pneumonia and sepsis with dissem-

inated intravascular coagulation in an autopsy.14 In

two cases, the causality of the calcium–ceftriaxone

interaction was questionable because either no pre-

cipitates were found in the autopsy14,15 or the patient

responded well to adrenaline after a bradycardia,56

which is unlikely to have an effect on potential cal-

cium–ceftriaxone precipitates. Of the remaining five

cases, four used either a Y-set or the same line to

coadminister calcium-containing fluids. In the fifth

case, the route of administration is unknown.14 It

should be noted that in these cases, ceftriaxone

was not administered according to the product label,

which states that ceftriaxone must not be adminis-

tered simultaneously with calcium-containing i.v. so-

lutions, including continuous calcium-containing in-

fusions such as parenteral nutrition via a Y-site.

Although ceftriaxone seems to be compatible with

some parenteral nutrition for adults, even with higher

calcium concentrations,57 precipitates are formed in

parenteral nutrition for neonates.25,58 This observa-

tion can be explained by a higher amount of calcium

in parenteral nutrition of neonates,58 and may be

related to the fact that no fatal cases of calcium–

ceftriaxone interactions in adults have been reported.

There may have been some administration errors

in the past decades in adults as well, but in con-

trast to newborns, review of cumulative data did

not suggest clinically relevant consequences. In ei-

ther case, coadministration by mixing these two so-

lutions must be prevented under all circumstances.20

The lack of evidence of plasma precipitation between

ceftriaxone and calcium in adults was recently sup-

ported by Steadman et al.,24 by comparing adverse

event reports of calcium combined with ceftriaxone

or ceftazidime, another well-known third-generation

cephalosporin. Furthermore, a recent cohort study by

Dalton et al.59 showed no difference in adverse out-

comes and mortality in high-risk patients receiving

high concentrations of calcium chloride.

The greatest risk in neonates is probably hyper-

bilirubinemia because of the competition between cef-

triaxone and bilirubin for albumin.33 Free bilirubin

can pass the blood–brain barrier and can cause ker-

nicterus, which is associated with neurological im-

pairment or death. In addition to the age-dependent

levels of bilirubin increased in neonates, there are also

different opinions about the critical values of biliru-

bin in the blood.15,60–62 Therefore, switching from cef-

triaxone to safer alternatives in neonates is reason-

able, especially because the risk of calcium–ceftri-

axone precipitation in neonates is not clearly deter-

mined. This point of view supports information in the

product label advising that the use of ceftriaxone with

calcium-containing i.v. solutions in neonates must be

avoided because of the risk of precipitation of ceftri-

axone and calcium.20

CONCLUSION

With the presented data, we conclude that ceftriax-

one concentration up to 10 mmol/L combined with

4.2 mmol/L total calcium in fresh adult plasma re-

sults in no precipitation. The lack of evidence for such

precipitation supports our conclusion. Therefore, we

can state that the use of ceftriaxone in adults is a low

risk, even at higher i.v. calcium concentrations.

This conclusion cannot be applied to patients at ex-

tremes of age, and especially not to neonates because

we used fresh human plasma from adults.

On the basis of our data, we cannot draw conclu-

sions about the safety of ceftriaxone push injections.

However, owing to the slow formation of precipitates,

even at forced conditions, as well as the lack of evi-

dence from nonclinical evaluations or clinical reports

in adults over the past 2 decades, no incidents would

be expected.
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Our in vitro method to quantify the precipitates

of ceftriaxone in human plasma can be used for

further studies. With EDX analysis, and especially

with FTIR spectroscopy, we provide two methods to

verify the presence of calcium–ceftriaxone precipi-

tates in human plasma samples. This technique can

help in clinical incidents to verify the presence of

calcium-ceftriaxone, in which precipitated material is

found in an autopsy. In this way, other possible causes

can be excluded, especially when multiple medica-

tions have been used, which are known to interact

physically.
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Introduction

Resveratrol (trans-3,4’,5-trihydroxystilbene) (Figure 1; 
Table 1) is a natural polyphenol found in grape skin and 
red wine. It is believed to contribute to the so-called 
“French paradox,” which is based on the observa-
tion that the French population has a low incidence of 
cardiovascular diseases while consuming a diet that is 
relatively high in fat (Kopp, 1998). Next to its potential 
cardioprotective e�ects, additional health bene ts have 
been ascribed to resveratrol (Jang et al., 1997). Most 
recently, for instance, it has been demonstrated that 
resveratrol mimics calorie-restriction e�ects in obese 
humans (Timmers et al., 2011). !ese positive e�ects 
are brought about by a variety of molecular mechanisms 
that have been reviewed elsewhere (Vang et al., 2011; Yu  
et al., 2011). With respect to the cancer-preventive activity 
of resveratrol, a reduction in the exposure of cells to car-
cinogens was proposed, resulting from its inhibition of 

various cytochrome P450 metabolic enzymes (CYPs). In 
addition, resveratrol was proposed to block the transcrip-
tion of various CYPs through antagonism of the nuclear 
aryl hydrocarbon receptor (AHR). !ese mechanisms are 
expected to reduce the cellular load of chemically reac-
tive—and therefore potentially toxic—drug metabolites.

On the other hand, inhibition of CYP activity by res-
veratrol could lead to safety problems by altering the 
pharmacokinetics (i.e., absorption and disposition) of 
coadministered drugs. Biotransformation of xenobiotics is 
catalyzed by a broad array of metabolizing enzymes. One 
of the most important metabolic enzyme systems involved 
in drug metabolism is the CYP superfamily of mixed func-
tion oxidases, which are responsible for phase I oxidative 
metabolism of many compounds (Table 2). !ese enzymes 
contain a common catalytic center, but a di�erent three-
dimensional structure at each active site, which conveys 
substrate speci city to individual enzymes. Among the 
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various CYP isozymes identi�ed to date, hepatic CYP1A2, 
2C9, 2C19, 2D6, 2E1, and 3A4 are the most important iso-
forms in human drug metabolism. Drug-drug interactions 
(as well as food-drug or nutrient-drug interactions) with 
these CYP isoenzymes can have a strong e ect on drug 
concentrations in plasma or tissue and may therefore result 
in serious toxic side e ects. For example, coadministration 
of CYP3A4 inhibitors with terfenadine, cisapride, or aste-
mizole can lead to QT prolongation and life-threatening 
ventricular tachycardia (Zhou et al., 2005). Consequently, 
studies on drug-drug interactions are a key aspect of drug 
development. By the same token, enzyme induction may 
lead to the accelerated elimination of a drug and therefore 
might reduce its e!cacy.

Although resveratrol is only one of several polyphenols 
found in grapes, the topic of potential resveratrol-drug 

interactions is of great interest, because an increasing 
variety of resveratrol food supplements is commercially 
available to the public. Dosages used cover a range of 
50 mg up to 2 g/day (Williams et al., 2009), which greatly 
exceeds the amounts of resveratrol taken up from natural 
sources. "ough typical food-supplement servings con-
tain 20–200 mg of resveratrol, higher doses (≥500 mg) are 
currently under investigation for pharmacological uses. 
Other possible drug interactions with polyphenols, such 
as catechines from green tea, have also been reviewed 
recently (Yang and Pan, 2012).

"e aim of the present review is to summarize pub-
lished information on resveratrol in consideration of 
potential interactions with di erent medications. Special 
emphasis is placed on the modulation of activity and the 
expression levels of drug-metabolizing enzymes, such as 
CYP enzymes.

Interaction of wine, as a naturally occurring 
resveratrol source, with CYP

Resveratrol is synthesized in grape skin and seed in 
response to plant stress, injury, (fungal) infection, and 
ultraviolet radiation. Naturally occurring amounts of 
resveratrol found in grapes are in the range of 5–7 mg/kg 
of grape skin and 1 mg/kg of grape seeds. As the amount 
of resveratrol in grape products (e.g., juice, white wine, 
rosé, and red wine) depends on numerous factors, 
such as the vine cultivar, geographic origin, intensity 
of fungal infection, and enological practices (i.e., skin 
maceration time, storage, and so on), high variability is 
observed. "ough the resveratrol content in white wine 
is usually below 0.1 mg/L, red wine contains an average 
of 1.9 ± 1.7 mg/L (8.3 ± 7.4 μM) trans-resveratrol, rang-
ing from nondetectable levels to 14.3 mg/L (62.7 μM). 
Cis-resveratrol content in red wine is usually lower 
(1.0 ± 0.9 mg/L; range, 0.0–5.1 mg/L). "e average level of 
trans-resveratrol-glucoside (trans-piceid) in red wine 
is 5.4 ± 4.8 mg/L and may be as much as 29.2 mg/L. "e 

Table 2. Summary of selected CYP enzymes.

CYP isoform Species Comment Reference

CYP1A1 Human, mouse, rat Extrahepatic (Ingelman-Sundberg, 2004) (Mugford and 
Kedderis, 1998)

CYP1A2 Human, mouse, rat Liver (Ingelman-Sundberg, 2004) (Mugford and 
Kedderis, 1998)

CYP1B1 Human Extrahepatic (Ingelman-Sundberg, 2004)

CYP2B1/2 Mouse, rat Liver, substrate speci�city between species (Ingelman-Sundberg, 2004) (Martignoni et al., 
2006)

CYP2B6 Human Human homolog to rodent CYP2B1/2 (Ingelman-Sundberg, 2004) (Martignoni et al., 
2006)

CYP2C9 Human Liver; polymorphic,10% of drugs metabolized (Ingelman-Sundberg, 2004) (Zhou et al., 2009)

CYP2C19 Human Liver; polymorphic (Ingelman-Sundberg, 2004) (Zhou et al., 2009)

CYP2D6 Human Liver; polymorphic, 30% of drugs metabolized (Ingelman-Sundberg, 2004) (Zhou et al., 2009)

CYP2E1 Human, mouse, rat Liver (Ingelman-Sundberg, 2004) (Mugford and 
Kedderis, 1998)

CYP3A4 Human Liver, intestine; 50% of drugs metabolized (Ingelman-Sundberg, 2004) (Zhou et al., 2009)

CYP3A Rat Homolog to human CYP3A4, substrate similarity 
highest between male rat and human

(Ingelman-Sundberg, 2004) (Bogaards et al., 
2000)

Table 1. Basic chemical data for resveratrol.

Name and synonyms trans-Resveratrol

5-[(1E)-2-(4-hydroxyphenyl)
ethenyl]-1,3-benzenediol
3,5,4’-trihydroxystilbene

3,4’,5-stilbenetriol 
(E)-5-(p-hydroxystyryl)resorcinol

CAS Registry Number 501–36–0

Chemical formula C
14

H
12

O
3

Molecular weight (g/mol) 228.24

logP (octanol/water)a 3.1

pKaa 9.14
a Calculated using Advanced Chemistry Development Software 
V11.02 (ACD/Labs, Toronto, Canada).

HO

HO

OH

Figure 1. Chemical structure of resveratrol.

D
ru

g
 M

et
ab

o
li

sm
 R

ev
ie

w
s 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
ah

ea
lt

h
ca

re
.c

o
m

 b
y
 1

7
8
.3

8
.2

2
6
.1

9
6
 o

n
 0

7
/1

3
/1

2
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Drug interactions with resveratrol 255

© 2012 Informa Healthcare USA, Inc.  

respective cis-piceid content is 1.4 ± 2.4 mg/L (Stervbo 
et al., 2007).

CYP interactions with white and red wine have been 
addressed in several in vitro studies, mostly using recon-
stituted wine “solids” (i.e., nonvolatile compounds). 
�ese are prepared by evaporating a certain volume 
of wine to dryness, followed by a reconstitution with 
as many volumes of bu er as necessary to result in the 
desired “natural strength.” In one study, red wine solids 
(RWS) were reported to potently inhibit CYP3A4 activ-
ity in vitro in a concentration-dependent manner. At 
8% of natural strength, enzyme activity was inhibited by 
approximately 85%, whereas white wine solids (WWS) 
did not appreciably inhibit CYP3A4 activity (Chan et 
al., 1998). Inhibition by RWS was found to be primarily 
reversible in nature in this study. In contrast, RWS inhibi-
tion of CYP3A4 in human liver microsomes was catego-
rized as irreversible in a later study (Piver et al., 2001). 
�e observed inhibition was nicotinamide adenine 
dinucleotide phosphate (NADPH)-dependent and could 
not be reversed by dilution, suggesting an irreversible, 
mechanism-based inactivation. �e half-maximal inhib-
itory concentration (IC

50
) was reported to be at 8 and 9% 

of natural strength for human liver CYP3A4 and heter-
ologously expressed CYP3A4, respectively. Further, RWS 
strongly inhibited CYP1A1/2 in human liver microsomes 
(IC

50
 at approximately 3% natural strength) and heterolo-

gously expressed CYP1A1 and 1A2, with IC
50

 values of 1 
and 0.3% of natural strength, respectively (Piver et al., 
2001). Inhibition of CYP2E1 in human liver microsomes 
by RWS was noncompetitive and reversible, with an IC

50
 

of 3% natural strength (Piver et al., 2001).
It should be noted that studies carried out with RWS 

are often controversial. For example, red wine caused a 
50% increase in apparent clearance after oral ingestion of 
the immunosuppressant, cyclosporine, a known CYP3A4 
substrate. �e signi!cant decrease in cyclosporine expo-
sure was the result of reduced absorption (Tsunoda et 
al., 2001). In this case, the mechanism of CYP-related 
resveratrol-cyclosporine interaction is doubtful, because 
cyclosporine requires a special drug formulation for 
optimal intestinal absorption. Moreover, the solubility 
of cyclosporine in red wine appears to be lower than in 
water, which could also explain a lower oral absorption. 
In other reports, the discrepancy between studies was 
attributed to the di erent origins of red wine, leading 
to di erent resveratrol content in RWS. It is assumed, 
without further analytical con!rmation, that resveratrol 
amounts correspond to approximately 0.6–0.8 μM in RWS 
at 8% natural strength. An additional complicating factor 
is the complex chemical composition of RWS, containing 
various other polyphenols and secondary metabolites. 
Because resveratrol content does not correlate with CYP 
inhibition, several groups consider that resveratrol is not 
the main CYP inhibitor present in red wine (Chan and 
Delucchi, 2000; Piver et al., 2001, 2003).

In contrast to the monomer, the role of naturally 
occurring oligomers of resveratrol has hardly been 

explored because of their complex structure. With new 
approaches to the synthesis of these compounds (Snyder 
et al., 2011), we will probably hear more of their biologi-
cal properties in the near future. Further, some resvera-
trol derivatives have shown higher activity with respect 
to several targets in in vitro test systems, as well as higher 
systemic bioavailability in rats (Kondratyuk et al., 2011).

Interaction of resveratrol with  
specific CYP isoenzymes

CYP3A4

Resveratrol has been reported to inhibit the activity of 
CYP3A4 in vitro and in vivo. High intakes of resveratrol 
could theoretically increase bioavailability and the risk 
of toxicity of drugs that undergo extensive !rst-pass 
metabolism by CYP3A4. Drugs known to be metabo-
lized by CYP3A4 with a high intestinal and/or hepatic 
extraction include—but are not limited to—3-hydroxy-
3-methylglutaryl-coenzyme A reductase inhibitors (e.g., 
atorvastatin, lovastatin, and simvastatin), calcium-channel 
antagonists (e.g., felodipine, nicardipine, nifedipin, 
nisoldipin, nitrendipin, nimodipine, and verampamil), 
antiarrhythmic agents (e.g., amiodarone), human immu-
node!ciency virus protease inhibitors (e.g., saquinivir), 
immunosuppressants (e.g., cyclosporine and tacroli-
mus), antihistamines (e.g., terfenadine), benzodiaz-
epines (e.g., midazolam and triazolam), and drugs used 
to treat erectile dysfunction (e.g., sildena!l) (Delcò et al., 
2005).

In a clinical trial performed by Chow et al., an 
increased area under the plasma-concentration versus 
time curve (AUC) by a factor of 1.33 was found for bus-
pirone after administrating 1 g of resveratrol per day for  
4 weeks (Chow et al., 2010). For the CYP3A4 substrate 
nicardipine, which has a low bioavailability, it was shown,  
in male rats, that resveratrol at 10 mg/kg body weight 
(b.w.) increased the AUC and maximum concentration 
(C

max
) by a factor of 2.3 and 2.2, respectively (Choi et al., 

2009). Less-dominant e ects were observed in an analo-
gous experiment using diltiazem as a CYP3A4 substrate, 
resulting in an AUC and C

max
 augmented by a factor of 

approximately 1.6 for both values (Hong et al., 2008). 
Interestingly, no signi!cant changes in AUC or C

max
 were 

observed after intravenous administration of nicardip-
ine, which indicates a prominent role of the intestinal 
CYP3A4 and/or P-glycoprotein (Pgp).

In vitro resveratrol showed inhibition of human 
CYP3A4-dependent transformation of cyclosporine with 
an IC

50
 value of 4.5 μM (approximately 1 μg/mL) and also 

inhibition of 6β-hydroxylation of testosterone by CYP3A4 
with an IC

50
 value of 1.4 μM. �e latter CYP3A4 enzyme 

activity of testosterone 6β-hydroxylation was also inhibited 
by resveratrol-related compounds, such as piceid (IC

50
 = 31 

μM), resveratroloside (IC
50

 ≥40 μM), 5,4’-dihydroxy-3-O-
methoxystilbene (IC

50
 = 0.47 μM), and 5,3-dihydroxy-

4’-O-methoxystilbene (IC
50

 = 0.42 μM) (Regev-Shoshani  
et al., 2004). Both glucosyl stilbenes were found to be weak 
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inhibitors of CYP3A4, whereas the methoxy stilbenes had 
lower IC

50
 values than resveratrol, suggesting that lipophi-

licity, rather than number or positions of free hydroxyls 
(3,5 or 5,4’), determines the CYP3A4 inhibition capacity 
of polyphenols. IC

50
 values of 1.1 µM of resveratrol for 

6β-testosterone hydroxylation were reported using the 
complementary DNA (cDNA) recombinant expressed 
human isoenzyme (Yu et al., 2003). In other studies, an 
IC

50
 value of 10 and 4 µM were determined using heterolo-

gously expressed CYP3A4 (Piver et al., 2001) and human 
liver microsomes, respectively. Similar experiments using 
heterologous expression in Escherichia coli showed an 
IC

50
 value of 6.8 µM (McLaughlin et al., 2008). Human 

microsomes appear to be more sensitive to inhibition, 
because the IC

50
 value for CYP3A-mediated testosterone 

6β-hydroxylation in rat microsomes was observed to be 
much higher (20 versus 4 μM) (Piver et al., 2001). In a dif-
ferent study using Sf9 insect microsomes containing bacu-
lovirus-derived human CYP3A4 and NADPH-cytochrome 
CYP reductase, resveratrol inactivated CYP3A4 in a time- 
and NADPH-dependent manner, with rate (k

inact
) and 

a�nity (equilibrium dissociation constant for enzyme-
inhibitor complex; K

I
) of 0.2 min–1 and 20 μM, respectively 

(Chan and Delucchi, 2000).  ese values are in the range 
of the inhibitory potency of bergamottin (present in grape-
fruit juice), which is known as a strong inhibitor of CYP3A4 
activity and displays a k

inact
 and K

i
 of 0.3 min–1 and 7.7 μM, 

respectively (He et al., 1998). Using human recombinant 
enzyme, resveratrol inhibited CYP3A4-mediated 7-benzy-
loxy-4-tri!uoromethylcoumarin O-dealkylation with a K

i
 

of 10.2 μM (Chang and Yeung, 2001).
Resveratrol seems to be a low-a�nity substrate of 

CYP3A4 [Michaelis constant (K
m

) of ~58 µM] (Regev-
Shoshani et al., 2004). However, a speci"c metabolite 
of resveratrol deriving from the reaction with CYP3A4 
has never been identi"ed. Besides a noncompetitive 
inactivation between resveratrol and CYP3A4 (Chang 
and Yeung, 2001), it was speculated that epoxidation 
might occur at the ethylene bridge between the phenolic 
rings of resveratrol. A reactive p-benzoquinone methide 
derivative might be subsequently generated, followed by 
covalent modi"cation of CYP3A4.  is would agree with 
a suggested, irreversible, mechanism-based inactivation 
of CYP3A4 (Chan and Delucchi, 2000; Piver et al., 2001).

In a reporter gene assay, using the human pregnane 
X receptor and promoter regions of CYP3A4 transiently 
transfected into HepG2 cells, resveratrol had no in!u-
ence on CYP3A4 messenger RNA expression (Raucy, 
2003).  us, resveratrol seems to interact with CYP3A4 
by direct inhibition of enzyme activity, rather than by 
modulation of gene expression.

With respect to the major metabolite in human 
plasma (resveratrol-3-sulfate), no inhibition of CYP3A4 
was observed up to the highest concentration (50 μM) 
tested (Yu et al., 2003). Using recombinant enzyme prep-
arations and an NADPH-regenerating system, a high IC

50
 

value for resveratrol-3-sulfate in the range of 16 µM was 
con"rmed (unpublished data by M. Beck).

CYP1A1 and CYP1A2

A weak induction of CYP1A2 was shown in vivo after 4 
weeks of 1 g of resveratrol per day in healthy volunteers 
by measuring the ratio between ca#eine and the metabo-
lite, paraxanthine (Chow et al., 2010).  e induction was 
measured by comparing the concentration ratio of parent 
to metabolite after 4 hours in plasma. Induction resulted 
in a decrease in the metabolic ratio by a factor of 0.84. A 
moderate increase of CYP1A2 in the rat was detected in 
liver samples after induction with resveratrol (100 mg/kg 
b.w.) (Trusov et al., 2010). Also, Sergent et al. showed an 
increase in CYP1A1 activity after 24 hours in Caco-2 cells 
in vitro (Sergent et al., 2009).

In vitro resveratrol seems to be a weak inhibitor of 
CYP1A1/2.  e IC

50
 value of resveratrol exceeded 50 μM 

in CYP1A2-dependent ethoxyresoru"n deethylation using 
cDNA recombinant expressed human isoenzyme (Yu  
et al., 2003). Using the same type of activity test (ethoxy-
resoru"n-O-dealkylase; EROD), similar IC

50
 values of 150, 

40, and 30 μM were found in another study, using human 
liver microsomes or cells containing recombinant CYP1A1 
and 1A2, respectively (Piver et al., 2001). Ciolino and Yeh 
found EROD activity (CYP1A1/2 inhibition) in microsomes 
from human HepG2 cells and in intact cells with a resve-
ratrol IC

50
 value of 1.1 μM (Ciolino and Yeh, 1999).  e 

calculated binding a�nity was 0.42 μM. Interestingly, res-
veratrol proved to be a stronger inhibitor of CYP1A activity 
in rat microsomes (IC

50
 = 5 μM). In a further study, using 

human liver microsomes, resveratrol inhibited EROD activ-
ity (CYP1A1/2) weakly with an IC

50
 value of 1.1 mM (Chun 

et al., 1999). Interestingly, the IC
50

 value was lower [23 and 
11 μM for EROD and methoxyresoru"n-O-dealkylase 
(MROD) activity, respectively] when recombinant CYP1A1 
enzyme was used. Inhibition of recombinant CYP1A2 was 
weak (IC

50
 = 1.2 and 0.58 mM for EROD and MROD activity, 

respectively). Resveratrol inhibited human recombinant 
CYP1A1 and 1A2 with a K

i
 of 1.2 and 15.5 μM, respectively. 

In contrast to CYP1A1, CYP1A2 inhibition was mechanism 
based and therefore irreversible (Chang et al., 2001).

Although the clinical data showed a weak induc-
tion, the published in vitro results for human CYP1A1/2 
often indicate a moderate-to-weak inhibition with a 
wide IC

50
 range. Resveratrol seems to antagonize the 

transactivation of genes.  is process is mediated by 
AHR interactions and has been veri"ed in di#erent cell 
types with various polycyclic aromatic hydrocarbons 
(7,12-dimethylbenz(a)anthracene, tetrachloro-dibenzo-
p-dioxin, and benzo[a]-pyrene) (e.g., Casper et al., 1999). 
However, the ability of resveratrol to bind to AHR and 
act as a competitive antagonist of this receptor is con-
troversial. Some investigators demonstrated that resve-
ratrol suppresses CYP1A1 transcription by preventing 
the conversion of the ligand-bound cytosolic AHR into 
its nuclear DNA-binding form. For example, resveratrol 
prevented the induction of CYP1A1 in the lungs of mice 
after administration of the potent inducer, benzo[a]
pyrene (Revel et al., 2003). Others have shown that the 
inhibitory activity of resveratrol rather takes place during 
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the interaction between AHR and the transcriptional 
complex. �e discrepancy in the available experimental 
results is likely to be the result of technical di erences in 
methodology (Gusman et al., 2001).

In a study with human liver microsomes, resveratrol 
was suggested to be metabolized by CYP1A2, giving rise 
to its metabolites (piceatannol and tetrahydroxystilbene 
M1) (Piver et al., 2004). �e P450 dependence of the reac-
tions was evidenced by its need of NADPH as well as by 
its inhibition by classical P450 inhibitors. In this context, 
it is noteworthy that the stability of piceatannol is poor 
because of its fast photo-oxidation in aqueous medium 
or at low concentrations (Gill et al., 1987).

CYP2D6

Data in humans showed a decrease of CYP2D6 activity 
after 4 weeks of 1 g of resveratrol per day (Chow et al., 
2010). �e metabolic ratio between dextromethorphan 
and dextrorphan increased in this study by a factor of 
1.70, measured in the urine after 8 hours.

In vitro, resveratrol did not inhibit cDNA recombi-
nantly expressed human isoenzyme. �e IC

50
 value of 

CYP2D6-dependent bufuralol hydroxylation exceeded 
50 μM (Yu et al., 2003). An IC

50
 value of 9.8 µM was 

reported using heterologously expressed CYP2D6 in 
E. coli (McLaughlin et al., 2008).

CYP2C9

Resveratrol ingestion of 1 g per day for 4 weeks decreased 
human CYP2C9 activity. In this study, the metabolic 
ratio in urine between losartan and its metabolite 
(E3174) was increased after 8 hours by a factor of 2.71 
(Chow et al., 2010).

In vitro, resveratrol IC
50

 values exceeded 50 μM in 
CYP2C9-dependent diclofenac hydroxylation using 
cDNA recombinantly expressed human isoenzyme (Yu 
et al., 2003). On the other hand, an IC

50
 value of 2.3 µM 

was recorded in CYP2C9 using E. coli as an expression 
system (McLaughlin et al., 2008).

No CYP2C9 enzyme inhibition was observed with 
resveratrol-3-sulfate by Yu et al. (2003). In contrast, 
resveratrol-3-sulfate moderately inhibited CYP2C9 (IC

50
 

of 9 μM) in an assay using human recombinant enzyme 
preparations (unpublished data by M. Beck).

CYP2C19

Resveratrol showed an IC
50

 value of 11.6 μM on CYP2C19-
dependent (S)mephenytoin hydroxylation using the 
cDNA recombinantly expressed human isoenzyme. 
Resveratrol was considered to be a weak inhibitor of 
CYP2C19 (Yu et al., 2003).

CYP2E1

Resveratrol was shown to be a very weak, noncompetitive, 
reversible inhibitor of CYP2E1, with IC

50
 values of 75 and 

150 μM in microsomes from rat and human liver, respec-
tively (Piver et al., 2001). In liver microsomes of acetone-
induced mice, resveratrol inhibited p-nitrophenol 

hydroxylase, an enzymatic marker of CYP2E1, with an 
IC

50
 value of 18.5 μM (Mikstacka et al., 2002).

CYP1B1 and CYP2B1/2

CYP1B1 has gained a lot of interest lately because of its 
overexpression in a wide variety of human tumors. It 
is hardly- or non-detectable in liver microsomes and 
catalyzes aromatic hydroxylation reactions. It is specu-
lated that it might act as a tumor suppressor or “rescue” 
enzyme and serve to activate nontoxic dietary compo-
nents into growth-inhibitory substances. Using a micro-
somal preparation of the human recombinant CYP1B1, 
resveratrol was found to be metabolized to piceatannol 
and a second tetrahydroxystilbene, M1 (Potter et al., 
2002; Piver et al., 2004).

A moderate increase of CYP2B1/2 was detected in 
liver samples of resveratrol-treated rats (100 mg/kg b.w.) 
(Trusov et al., 2010). �is stands in contrast to the results 
of Canistro et al., who showed a moderate reduction of 
CYP2B1/2 in male CD1 mice (Canistro et al., 2009).

Additional considerations

In vivo, resveratrol is extensively metabolized by phase 
II enzymes, which results in much lower levels of the 
aglycone than the corresponding resveratrol conjugates. 
Rapid, e!cient conjugation of resveratrol (i.e., intestinal 
and hepatic "rst pass in humans) does not result in the 
inhibition of metabolizing enzymes, such as glutathione 
S-transferase and uridine diphosphate glucuronosyl 
transferase (UGT) (Chow et al., 2010). �e phase II conju-
gates of resveratrol show no binding to CYP isoenzymes at 
relevant concentrations. No inhibition of CYP1A2, 2C19, 
2D6, and CYP3A4 has been found in in vitro tests for the 
main metabolite observed in human plasma, resveratrol-
3-sulfate (Yu et al., 2003). Only CYP2C9 showed some 
moderate inhibition (IC

50
 of 9 µM, human recombinant 

enzyme preparations; unpublished data by M. Beck).
In the rat, resveratrol (100 mg/kg b.w.) has no e ect on 

phase II metabolism (i.e., quinone reductase, hemoxy-
genase-1, glutathione transferase, and UGT) (Trusov  
et al., 2010). However, high doses of resveratrol (0.3, 1.0, and 
3 g/kg b.w./day for 4 weeks) have an e ect on phase I and 
II detoxifying enzymes in rat liver. A general trend toward 
downregulating genes encoding phase I drug-metaboliz-
ing enzymes and to upregulating phase II response was 
observed. Enzyme expression and stress responses were 
studied using cDNA stress arrays coupled with drug-
metabolizing enzymatic assays (Hebbar et al., 2005).

In addition to the relatively low resveratrol plasma 
levels resulting from fast metabolic conjugation, it is 
noteworthy that protein binding of resveratrol is high and 
in the range of 97–98% in both human and rat plasma 
(unpublished data by M. Beck).

Discussion

�e aim of this review is to summarize the known facts 
about the in vitro and in vivo involvement of resveratrol 
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in CYP inhibition. Possible clinical risks, which might 
emerge from a resveratrol-CYP inhibition, shall be dis-
cussed below.

Resveratrol inhibition of CYPs: mechanism  
of inhibition
A broad range of therapeutic drugs, as well as herbal and 
dietary constituents, have been reported to undergo met-
abolic activation by metabolizing enzymes. Such reactive 
metabolites may bind covalently to various target pro-
teins, such as the reactive site of metabolizing enzymes. 
Drug-protein adducts may cause toxicity either through 
immune-mediated mechanisms or mechanism-based 
inhibition (i.e., irreversible inactivation) of CYPs (Zhou 
et al., 2005).

It has been proposed that metabolism of resveratrol 
may yield chemically reactive metabolites, although 
the overall rate of metabolism of resveratrol by phase 
I enzymes seems to be very low (Chan and Delucchi, 
2000; Piver et al., 2001). Resveratrol has the potential to 
inactivate CYP3A4, and possibly CYP1A2, by acting as a 
mechanism-based inhibitor. Bioactivation of chemicals 
is a common phenomenon. However, there is no direct 
link between the formation of protein-drug adducts and 
organ toxicity, which limits our ability to predict whether a 
reactive metabolite will be toxic or not (Evans et al., 2004). 
It has therefore been proposed that threshold values be 
de�ned for in vivo covalent protein binding (Evans et al., 
2004), based on the observation that drugs given at daily 
doses of 10 mg or less are rarely, if ever, associated with 
a signi�cant degree of adverse drug reactions related to 
reactive metabolites. In view of the very low systemic 
exposure of free resveratrol observed after dietary intake, 
as well as the very low rate of CYP-mediated metabolism 
of resveratrol, the risk for adverse reactions associated 
with systemic exposure to resveratrol should be negligible 
in the lower dose range. But, also for higher doses, no reac-
tive metabolites for resveratrol have been reported to date.

It should be noted that resveratrol is most likely not 
one of the main constituents of red wine that causes 
CYP3A4 inactivation. Fractions of red wine, which did 
not contain resveratrol, inhibited CYP3A4 signi�cantly 
in vitro. In addition, the resveratrol content in red wine 
was too low to account for the degree of CYP3A4 inacti-
vation observed after red wine treatment.  ese results 
were corroborated by inactivation studies using a variety 
of red wine types.  ey showed that CYP3A4 inactiva-
tion did not correlate with resveratrol content (Chan and 
Delucchi, 2000; Piver et al., 2001).

Resveratrol inhibition of CYPs: drug-drug  
interactions affecting drug absorption
 e reported resveratrol IC

50
 values for CYP3A4 activity 

are lower than for the other CYP isoenzymes (1–5 μM). 
In addition to potential hepatic CYP3A4 inhibition, there 
is an additional aspect to be considered, because this 
enzyme is also the predominant CYP present in the small 
intestine. For certain drugs that are good substrates of 

CYP3A4, hepatic extraction is not the main mechanism 
determining their bioavailability, because the intestinal 
metabolism by CYP3A4 is the body’s �rst defense in limit-
ing drug entry into the systemic circulation. A prominent 
“food and diet” representative for this kind of (clinically 
signi�cant) selective intestinal CYP3A4 interaction is 
grapefruit juice (Kupferschmidt et al., 1995; Bailey et al., 
1998; Ozdemir et al., 1998). Grapefruit juice augments the 
AUC and the C

max
 of several CYP3A4 substrates, includ-

ing cyclosporine, felodipine, midazolam, nicardipine, 
ni�dipine, saquinavir, and verapramil (Kupferschmidt  
et al., 1995; Bailey et al., 1998). Bergamottin, one of 
several active inhibitors in grapefruit juice, caused an 
increase of felodipine in C

max
 of 40% and in the AUC of 

37% after administrating 12 mg orally to healthy volun-
teers (Goosen et al., 2004).

One clinical study in humans addressed the drug-
interaction potential of red wine, compared to that of 
grapefruit juice, using cisapride (O!man et al., 2001). 
Because resveratrol probably is not the only CYP inhibi-
tor in red wine, it is not possible to extrapolate the results 
directly to resveratrol ingested as a food supplement. 
However, the results indicate a potential for drug-drug 
interactions, because the IC

50
 values of both beverage 

extracts are at the same order of magnitude (Piver et al., 
2001), and the mechanism of inactivation of CYP3A4 
by resveratrol and bergamottin, a mechanism-based 
CYP3A4 inhibitor in grapefruit juice, might share some 
similarities.

With respect to resveratrol, it should be kept in mind 
that the concentrations in red wine are variable and 
rather low. Resveratrol concentrations in red wine typi-
cally range from 0.3 to up to 15 mg/L. A concentration of 
approximately 3 mg/L or 10–15 μM is considered realis-
tic, but on the somewhat high side (Stervbo et al., 2007). 
Although 250 mL of grapefruit juice signi�cantly increased 
the bioavailability of cisapride by more than 50%, the 
same volume of red wine had a much smaller e!ect, with 
an increase of 15% in both the AUC and C

max
. In addi-

tion, compared to control (water), the di!erence with red 
wine was not statistically signi�cant (O!man et al., 2001). 
However, in some individuals with a preexisting high intes-
tinal CYP3A4 content, red wine caused a marked interac-
tion similar to that of grapefruit juice. When compared 
to wine consumption (approximately 1 mg of resveratrol 
intake by one serving of 250 mL), the dose of resveratrol 
ingested as a supplement is much higher. For example, 
if 500 mg of resveratrol are dissolved in a gastrointestinal 
(GI) "uid volume of 250 mL (Zhang et al., 2008; Galetin  
et al., 2010), the possible resveratrol concentration at the 
site of absorption can be as high as 8.8 mM.  is value 
exceeds the observed IC

50
 values for CYP3A4 inhibition  

(in vitro) by an order of magnitude of 3–4.
Supplement doses of resveratrol might lead to sig-

ni�cant clinical interactions with drugs that are predomi-
nantly metabolized by intestinal CYP3A4. For example, 
in the male rat, moderate resveratrol doses of 2.5 and 
10 mg/kg b.w. lead to an increase in oral bioavailability 
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of diltiazem and nicardipine. For diltiazem, the C
max

 and 
AUC rose between 46 and 60% with 2.5 and 10 mg/kg b.w. 
of resve ratrol, respectively (Hong et al., 2008). �e C

max
 and 

AUC more than doubled for nicardipine (Choi et al., 2009). 
In these experiments, the observed e ects were attrib-
uted to a reduced intestinal metabolism and elevated 
absorption, because the metabolic ratio of diltiazem to 
desacetyldiltiazem, a major metabolite of diltiazem, did 
not change with various doses of resveratrol. Further, 
it was shown, by in vitro experiments, that resveratrol in 
higher concentrations (100 µM) inhibited the activity of 
the drug-e!ux transporter Pgp, which may have contrib-
uted to the increased drug absorption (Hong et al., 2008).

In humans, possible intestinal CYP3A4 inhibition by 
resveratrol is supported by a controlled study, which 
observed inhibition of CYP3A4 in healthy volunteers 
(Chow et al., 2010). In this study, volunteers ingested 1 g 
of resveratrol daily for 4 weeks. Considering the high dose, 
a rather low, 1.33-fold increase in AUC was observed for 
the CYP3A4 substrate buspirone. It should be noted that 
buspirone has a bioavailability of only 5% as the result 
of an extensive "rst-pass metabolism (Lilja et al., 1998). 
�erefore, the observed e ects are most likely the result 
of inhibition of intestinal CYP3A4.

Altogether, data from in vitro experiments and animal 
and clinical trials point to a potential metabolic interac-
tion of resveratrol with intestinal CYP3A4. �e question 
arises as to whether the e ect on concomitant intake 
of intestinal CYP3A4 substrate drugs other than buspi-
rone is similar or more pronounced and, ultimately, if 
such interactions might be of clinical relevance (e.g., for 
drugs with a steep dose-response relationship or a nar-
row therapeutic range). Current data are not su#cient to 
de"ne a resveratrol dose below which a drug interaction 
with intestinal CYP3A4 can be ruled out. In addition, it is 

di#cult to extrapolate from animals to humans. Adapting 
doses between species can be done by normalization to 
b.w. (mg/kg b.w.) or by normalizing to body-surface area 
(mg/m2) (FDA, 2005). Taking a dose of 2.5 mg/kg b.w. in 
rats and transfering it to a 60-kg person results in a corre-
sponding dose of 24 or 150 mg of resveratrol normalized 
to the surface area or to b.w., respectively. �is amount 
is in the range of resveratrol as sold commercially as a 
food supplement (Williams et al., 2009). However, to 
date, no drug interactions have been reported in patients 
who ingest resveratrol supplements in combination with 
drugs. More clinical trials will be needed to clarify the 
question of whether the observed in vivo and in vitro 
interactions of resveratrol with intestinal CYP3A4 is of 
clinical signi"cance, and whether the concomitant intake 
of resveratrol with drugs that are metabolized mainly by 
intestinal CYP3A4 should be avoided.

Resveratrol inhibition of CYPs: drug-drug interactions 
affecting drug clearance
Resveratrol is generally accepted to be a moderate-to-
weak inhibitor of CYPs. Concentrations required for  
in vitro inhibition of CYPs are mostly in the range of 1–100 
μM. Lowest in vitro IC

50
 values were reported consis-

tently for CYP3A4 inhibition (1–5 μM), whereas reported 
IC

50
 results varied widely for CYP1A1/2 (1 µM–1.2 mM), 

CYP2C9 (2.3 and >50 µM), and CYP2D6 (9.8 and >50 
µM). CYP2C19 displayed an IC

50
 value of 11.6 μM, and 

CYP2E1 showed a value above 50 μM. For an overview, 
see Tables 3 and 4.

�e question arises as to whether this inhibitory 
potential of resveratrol could possibly lead to systemic 
drug-drug interactions. A quantitative assessment of 
interaction potentials is often carried out on the basis 
of the I/K

i
 ratio (Blanchard et al., 2004). In this formula, 

Table 3. Reported IC
50

 values of CYP inhibition by resveratrol: isolated enzymes.

Isoform Substrate Species IC
50

 (μM) K
i
 (μM) Reference

CYP3A4 Cyclosporine Human 4.5 (Regev-Shoshani et al., 2004)

Testosterone Human 1.4 (Regev-Shoshani et al., 2004)

(6β-OH formation) 10 (Piver et al., 2001)

1.1 (Yu et al., 2003)

<10 20 (Chan and Delucchi, 2000)

BFC O-dealkylation Human 10.2 (Chang and Yeung, 2001)

DBF Human 6.8 (McLaughlin et al., 2008)

CYP1A1 EROD Human 40 (Piver et al., 2001)

1.2 (Chang et al., 2001)

EROD/MROD Human 23/11 (Chun et al., 1999)

CYP1A2 EROD Human >50 (Yu et al., 2003)

30 (Piver et al., 2001)

15.5 (Chang et al., 2001)

EROD/MROD Human 1,200/580 (Chun et al., 1999)

CYP2D6 bufuralol hydroxylation Human >50 (Yu et al., 2003)

AMMC 9.8 (McLaughlin et al., 2008)

CYP2C9 Diclofenac hydroxylation Human >50 (Yu et al., 2003)

VIVID CYP2C9 Red Human 2.3 (McLaughlin et al., 2008)

CYP2C19 (S)-mephenytoin hydroxylation Human 11.6 (Yu et al., 2003)

DBF, dibenzyl $uorescein; AMMC, 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-methoxy-4-methylcoumarin.
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“I” corresponds to the inhibitor concentrations at the 
site of metabolism, a value that can be approximated 
by the unbound concentrations in the systemic circula-
tion. “K

i
” represents the constant of inhibition, which is 

usually lower than the IC
50

 value, depending on the K
m

 
and substrate concentration (Todesco et al., 2009). �e 
substitution of K

i
 by the IC

50
 value at the ratio of I/K

i
 tends 

therefore to underestimate the risk of interactions. An 
I/K

i
 ratio >0.1 and <1 is considered to be indicative of a 

medium risk of in vivo drug-drug interactions, whereas 
an I/K

i
 ratio >1 is often associated with a high risk of 

clinically signi cant drug-drug interactions. In the case of 
resveratrol, K

i
 or IC

50
 values in the range between 1 and 10 

μM are more than 10-fold higher than concentrations in 
systemic circulation after an intake of doses of resveratrol 
up to 500 mg. Very high levels of resveratrol (= aglycone) 
in plasma can only be reached with extremely high doses 
and/or special drug formulations, such as micronization, 

as outlined in Table 5. �e maximum plasma concen-
tration of resveratrol observed in humans was in the 
micromolar range of (8.5 µM = 1.942 µg/mL) after oral 
intake of 5 g of micronized resveratrol. Considering  
in vitro measured IC

50
 values, the risk of drug interactions 

is higher for CYP3A4 than for the other CYPs. �erefore, 
the potential for systemic drug-drug interaction must be 
considered at very high doses (e.g., >1 g) of resveratrol, 
especially for CYP3A4. However, these results should be 
discussed in the context of the high protein binding of 
resveratrol, which reduces the risk of an interaction.

In mice, resveratrol inhibits AHR-mediated tran-
scriptional activation of CYP1A1 and thus may interfere 
with the induction and/or upregulation of CYP1A1  
(Revel et al., 2003). In contrast, the clinical study by Chow 
et al. revealed an increase in CYP1A2 activity (Chow  
et al., 2010), which is also regulated by AHR (Nebert et al.,  
2000). Whether these di!erences are dose or species 

Table 4. Reported IC
50

 values of CYP inhibition by resveratrol: liver microsomes.

Isoform Substrate Species IC
50

 (μM) Reference

CYP3A4 Testosterone (6β-OH) Human 4 (Piver et al., 2001)

CYP3A Rat 20 (Piver et al., 2001)

CYP1A2 EROD Human 150 (Piver et al., 2001)

CYP1A1/2 EROD Rat 5 (Piver et al., 2001)

Human 1,100 (Chun et al., 1999)

Human HepG2 1.1a (Ciolino and Yeh, 1999)

CYP2E1 Chlorozoxazone 6-OH Human 150 (Piver et al., 2001)

Rat 75 (Piver et al., 2001)
aK

i
 (calc): 0.42 μM; also inhibition of CYP1A1 transcription.

Table 5. Maximal plasma concentration of resveratrol aglycone.

Species Dose Dosing Route

C
max

Reference(μg/mL) (μM)

Rabbit 20 mg/kg Single Oral 0.25 1.1 (Asensi et al., 2002)

Rat 50 mg/kg Single Oral 1.5 6.57 (Marier et al., 2002)

Mouse 20 mg/kg Single Oral 0.6 2.6 (Piver et al., 2003)

230 mg/kg Single i.g. 7.3 32 (Sale et al., 2004)

4,000 mg/kg Single Oral 6.85 30 (Crowell et al., 2004b)

Human 25 mg Single Oral 0.0071 0.031 (Soleas et al., 2001)

Single Oral 0.0079 0.034 (Goldberg et al., 2003)

Single Oral 0.0015 0.007 (Almeida et al., 2009)

50 mg Single Oral 0.0066 0.029 (Almeida et al., 2009)

100 mg Single Oral 0.0214 0.094 (Almeida et al., 2009)

150 mg Single Oral 0.0248 0.109 (Almeida et al., 2009)

200 mg Single Oral 0.0249 0.109 (Nunes et al., 2009)

0.5 g Single Oral 0.073 0.318 (Boocock et al., 2007)

Dailyb Oral 0.044 0.19 (Brown et al., 2010)

1 g Single Oral 0.117 0.513 (Boocock et al., 2007)

Dailyb Oral 0.141 0.62 (Brown et al., 2010)

Single Oral 0.073 0.320 (Chow et al., 2010)

2.5 g Single Oral 0.268 1.174 (Boocock et al., 2007)

Dailyb Oral 0.331 1.45 (Brown et al., 2010)

5 g Single Oral 0.539 2.361 (Boocock et al., 2007)

Dailyb Oral 0.967 4.24 (Brown et al., 2010)

5 ga Dailyc Oral 1.942 8.5 (Howells et al., 2011)
aMicronized formulation. bDaily dosing, plasma sampled over 21–28 days. cDaily dosing, plasma sampled over 10–21 days.
i.g., intragastrical.
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dependent needs to be veri�ed in further studies. It 
should be noted that a potentially bene�cial e ect of the 
modulation of CYP1A1/2 resulting from reduced activa-
tion of procarcinogens is controversial (Revel et al., 2003; 
Chow et al., 2010).

Moderate inhibition of CYP2C9 was also observed in 
the clinical study by Chow et al. In plasma, resveratrol-
3-sulfate reached more than 50-fold higher concentra-
tions than the unconjugated compound. !erefore, the 
CYP2C9 inhibition may be explained by interactions of 
CYP2C9 with the metabolite, resveratrol-3-sulfate.

In the study by Chow et al., the metabolic ratios of the 
concentrations of the metabolite to the parent compound 
were indicated for several CYPs. !e published changes 
in metabolic ratios (parent compound/metabolites) 
were 1.70 and 2.71 for CYP2D6 and 2C9, respectively, and 
0.84 for CYP1A2. !ese changes in the metabolic ratios of 
CYP1A2, 2D6, and 2C9 cannot be translated directly into 
an absolute value of C

max
 and AUC for the parent com-

pound, because an increase in the numerator (parent 
compound) can be assumed to be followed in parallel by 
a decrease in the denominator (metabolite) in the case 
of enzyme inhibition, assuming that there is only one 
relevant metabolic pathway. !erefore, an increase in 
the metabolic ratio by a factor of 2 does not indicate an 
inhibition of parent drug degradation by 50%. Metabolic 
ratios therefore display the consequence of enzyme inhi-
bition or induction in a qualitative way. !is is in contrast 
to changes in AUC values, which give a quantitative mea-
sure of altered drug exposure. With respect to the study 
of Chow et al., the changes in metabolic ratios were more 
dramatic than the changes in the absolute values of C

max
 

and AUC. Nevertheless, inhibition of the metabolism of 
drugs, such as warfarin or sulfonylureas, by resveratrol 
may be clinically relevant, because these compounds 
have a very narrow therapeutic range.

While estimating a potential drug-drug interaction 
for a patient, it must be considered that interindividual 
di erences exist, such as various genetic polymorphism, 
especially considering CYP2D6 and 2C9 (Meyer, 2000; 
Weinshilboum, 2003). On the other hand, there are inter-
individual variances in the expression levels of various 
CYP isoenzymes (Bebia et al., 2004). !ese di erences 
are the cause for large variations in baseline metabolic 
ratios, even without any potential inhibitor. A range of 
0.002–7.96 was measured in 38 volunteers as the ratio 
of the CYP2D6 substrate, dextromethorphan, to dex-
trorphan (Chow et al., 2010). !is variability, combined 
with a variation of systemic resveratrol concentrations 
between 0.036 and 1.77 µM after a single dose of 1 g of 
resveratrol, makes a general conclusion regarding sys-
temic drug-drug interactions di"cult. It is conceivable 
that, in patients reaching high systemic concentrations 
after oral ingestion of resveratrol, not only intestinal, but 
also hepatic interactions of CYPs could occur. However, 
it must be stated that, for doses below several hundred 
milligrams, the risk of clinically signi�cant drug-drug 
interactions on the hepatic level is probably minimal.

Potential benefits of resveratrol and side effects in 

clinical trials

Any inhibition of CYP activity leading to a potential 
drug-drug interaction must be discussed in the context 
of the clinically relevant dosing regimens. In the case of 
resveratrol, potential pharmacological e ects are di"-
cult to interpret in a dose- and time-dependent manner. 
Although work is ongoing evaluating the appropriate 
dose and clinical use of resveratrol, so far no clinical 
application has been established (Smoliga et al., 2011; 
Vang et al., 2011). However, indirect evidence from  
in vitro studies and in vivo animal experiments point to 
potential health bene�ts, such as cardiovascular protec-
tive e ects. In addition, preliminary clinical trials using 
doses that exceeded those provided by resveratrol occur-
ring naturally in red wine induced e ects that suggested 
a contribution to human health (Smoliga et al., 2011). 
!ese studies can be summarized as follows.

Life extension has been shown in mice fed with a 
high-calorie diet when resveratrol was added to the diet 
(Baur et al., 2006). However, further studies showed that 
resveratrol does not prolong the lifespan of mice fed with 
a standard diet (Pearson et al., 2008).

First favorable e ects in humans are occurring. Most 
recently, it has been demonstrated that supplementation 
with 75 mg of resveratrol twice-daily for 30 days induced 
metabolic changes that mimic the e ect of calorie restric-
tion in obese human volunteers (Timmers et al., 2011).

Resveratrol also possesses cancer-preventive activity 
in the micromolar range (Jang et al., 1997). !erefore, 
several attempts were made to achieve micromolar sys-
temic concentrations of resveratrol, despite its extensive 
�rst-pass metabolism. High dosages of 5 g of resvera-
trol per day were well tolerated in healthy volunteers 
and resulted in plasma concentrations of 2.4 and 4.24 
µM after single and multiple dosing for up to 28 days, 
respectively (Boocock et al., 2007; Brown et al., 2010). 
Metabolites such as monoglucuronides and resveratrol-
3-sulfate exceeded the parent resveratrol considerably 
in terms of C

max
 and AUC. !e secretion of insulin-like 

growth factor-1, which is associated with higher risk of 
colorectal cancer (Sandhu et al., 2002), seemed to be 
inhibited. However, repeated dosing resulted in mild or 
moderate GI symptoms. !erefore, further clinical stud-
ies were suggested to be limited to 1 g per day (Brown  
et al., 2010; Patel et al., 2011).

Even higher plasma concentrations were achieved in 
humans by using an altered pharmaceutical formula-
tion. Daily doses of 5 g of micronized resveratrol (Sirtris 
SRT501) were administrated for 14 days, resulting in high 
bioavailability and reaching average plasma levels of  
8.5 µM of resveratrol with C

max
 values up to 21.4 µM in one 

individual (Howells et al., 2011). An indication that very 
high dosages of resveratrol have some drawbacks can be 
derived from the announcement that a clinical phase 
II trial using this micronized compound formulation 
(SRT501) in patients su ering from multiple myeloma 
was stopped prematurely (Sirtris and GlaxoSmithKline, 
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2011). Details of the study have not been made avail-
able yet to the scienti�c community. It should be noted 
that rats treated with up to 300 mg/kg b.w. showed no 
adverse e ects, whereas at much higher repeated doses 
of 3,000 mg/kg b.w., renal toxicity was observed (Crowell 
et al., 2004a). Further studies concluded a no observed 
adverse e ect level of a nominal 750 mg/kg b.w. level of 
resveratrol in rats (Williams et al., 2009; Edwards et al., 
2011). Extrapolating a dose of 750 mg/kg b.w. in the rat to 
a human without any safety margin, based on b.w. con-
version or body-surface area conversion, leads to doses 
of 52.5 g per 70 kg or 8.5 g per 70 kg b.w., respectively 
(FDA, 2005; Edwards et al., 2011).

First human studies also focus on the putative bene�-
cial e ects of resveratrol in strengthening endogeneous 
antioxidant defenses to promote vasodilatiation and 
cardiovascular health. In a randomized, double-blind, 
placebo-controlled crossover study, single doses of 250 
and 500 mg of resveratrol were shown to modulate cere-
bral blood !ow dose-dependently in healthy volunteers 
(Kennedy et al., 2010). Promising data on humans were 
also obtained by administrating unique dosages of 30, 
90, or 270 mg of resveratrol to overweight/obese volun-
teers. In this double-blind, crossover study, a signi�cant 
increase in !ow-mediated dilatation of the brachial 
artery (FMD) was measured. FMD is an independent 
indicator of the risk factor for the development of car-
diovascular diseases (Wong et al., 2011). Remarkable is 
the fact that between the 30- and 270-mg dose, only a 
very weak increase of the FMD was shown, whereas the 
di erence between 30 mg and placebo was already sig-
ni�cant. Further studies should verify whether this e ect 
persists over time with continuous resveratrol intake and 
whether the higher dose of 270 versus 30 mg provides any 
advantages resulting in clinically measurable e ects.

"e proposed bene�cial e ect of low-dose resveratrol, 
found in several food compositions, and an increase in 
FMD between 30- and 270-mg doses demonstrates that 
the general assumption of higher doses equaling better 
e ects is questionable (Calabrese et al., 2010). Indeed, 
under some experimental conditions, bene�cial e ects 
of resveratrol are more pronounced at lower concen-
trations or doses. "is is the case for endothelial pro-
genitor cells (EPCs) in vitro and in vivo (Gu et al., 2006).  
In vitro concentrations of 1 µM of resveratrol signi�cantly 
induced EPC proliferation, migration, and adhension 
capacity, whereas 60 µM signi�cantly inhibited these 
e ects. "is is compatible with the observation that 
10 mg/kg of oral resveratrol showed a signi�cant increase 
in circulating EPCs in a rat model of aorta repair, whereas 
50 mg/kg was not e ective.

Conclusion

Resveratrol is a moderate-to-weak inhibitor of hepatic 
CYP enzymes only. Concentrations required for in vitro 
CYP inhibition are mostly in the range of 1–100 μM. IC

50
 

values of resveratrol for CYP3A4 activity (1–5 μM) are 

consistently lower than for the other CYPs. Inductive 
e ects can be observed for CYP1A1/2. In vivo, resveratrol  
is rapidly and e#ciently conjugated presystemically, 
and systemic levels of the free resveratrol aglycon are far 
below concentrations of the conjugates. High plasma 
protein binding of resveratrol further reduces the risk 
of any relevant inhibition of “victim” drug clearance. No 
inhibition of CYPs by resveratrol conjugates has been 
documented so far. Unpublished data point to an inhibi-
tory potential of resveratrol-3-sulfate toward CYP2C9.

For the ingestion of resveratrol in the range of a few 
milligrams per day, which corresponds to resveratrol 
doses contained in an average serving of red wine, the 
risk of systemic or intestinal resveratrol-drug interac-
tions is minimal when taking into account the low con-
centrations reached in the gut and systemic circulation. 
"e use of low-milligram doses of resveratrol as a food 
supplement should not lead to critical interactions with 
the intestinal metabolism of coadministered drugs.

Interaction studies in rats between resveratrol and diltia-
zem or nicardipine lead to a more cautious recommenda-
tion for higher doses of resveratrol. Although high doses of 
resveratrol (in the range 1 g/day or above) are well tolerated 
by healthy volunteers, the administration of such doses can 
potentially lead to clinically signi�cant resveratrol-drug 
interactions resulting from inhibition of intestinal CYP3A4 
and/or Pgp. "is is especially relevant for drugs with a high 
intestinal �rst-pass e ect, such as certain calcium-channel 
blockers, sildena�l, midazolam, and nefazodone. "ere-
fore, ingestion of several hundred milligrams per day of 
resveratrol as a food supplement may be a risk for patients 
treated with drugs that possess a narrow therapeutic range 
and undergo extensive intestinal metabolization. In such 
patients, the risk of drug interactions exceeds the potential 
health bene�ts of resveratrol and should be avoided.

To answer the question of whether and to what extent 
resveratrol can interact with various drugs, appropriate 
interaction studies in humans are required, for example, 
with warfarin (CYP2C9 substrate) and with felodipine or 
midazolam (CYP3A4 substrate with a high presystemic 
interaction). Such trials should focus on the absolute bio-
availability of the parent compound, and not only on the 
metabolic ratio, to allow for a quantitative assessment of 
the interaction potential of resveratrol.
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