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Introduction

A characteristic property of a knot is a criterion that allows us to
recognize this knot. For example, the trivial knot is the only knot
which bounds a disk, whence it is characterized by this property. This
does not mean it is easy to recognize the trivial knot, since it might
still be difficult to tell whether a given knot bounds a disk or not. In
general, characteristic properties of knots are hard to handle. Therefore
we usually content ourselves looking at weaker properties of knots,
in particular at knot invariants, that allow us to distinguish certain
knots from others. Kurt Reidemeister’s diagrammatical formulation
of knot theory in his famous book Knotentheorie ([39]) gave rise to a
variety of combinatorial knot properties, such as the minimal crossing
number, alternation or the Jones polynomial. Some of them do also
have a topological interpretation, notably the fundamental group. In
the present doctoral thesis I discuss relations between various knot
properties, with a special emphasis on quasipositivity.

A link is called quasipositive if it has a special braid diagram,
namely a product of conjugates of the positive standard generators
of the braid group. If this product contains words of the form

0ij = (07 0j-2) 01 (0 - 0j2) !

only then we call the link strongly quasipositive. Here o; is the i-th pos-
itive standard generator of the braid group. The concept of quasipos-
itive links is due to Lee Rudolph. He showed that every quasipositive
link is a transverse C-link, i.e. a transverse intersection of a complex
plane curve with the standard sphere S® C C%. Recently, M. Boileau
and S. Orevkov proved the converse, namely, that every transverse C-
link is a quasipositive link. However, most of the considerations in my
thesis are based upon a diagrammatical point of view.

In the first chapter I introduce the class of track knots and, at the
same time, a method to construct knots with prescribed unknotting
numbers. Track knots are closely related to the class of divide knots,
which were introduced by Norbert A’Campo and served as a starting
point for my studies in knot theory. Furthermore, track knots share a
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vi INTRODUCTION

basic property with quasipositive knots. Actually they are quasiposi-
tive, as we shall see in the second chapter. For this purpose I introduce
a new diagrammatical description of quasipositive knots.

In the third chapter I prove that a knot is positive if and only if
it is homogeneous and strongly quasipositive. This result follows quite
easily from three famous inequalities due to D. Bennequin, H. Morton
and P. Cromwell. The fourth chapter contains the main result of my
thesis: any finite number of Vassiliev invariants of a knot can be realized
by a quasipositive knot. This is closely related to Lee Rudolph’s result
which says that any Alexander polynomial of a knot can be realized by
a quasipositive knot.

Crossing changes play an important part in my thesis, two. They
give rise not only to the notion of unknotting numbers, but also to
the Gordian complex of knots. The Gordian complex of knots is a
simplicial complex whose vertex set consists of all the isotopy classes
of smooth oriented knots in S®. An edge of the Gordian complex is a
pair of knots of Gordian distance one, i.e. a pair of knots which differ
by one crossing change. Similarly, an n-simplex is a set of (n+1) knots
whose pairwise Gordian distance is one. In the fifth chapter I prove
that every n-simplex of the Gordian complex of knots is contained in an
(n+1)-simplex. This is a generalization of M. Hirasawa and Y. Uchida’s
result, who showed that every edge of the Gordian complex is contained
in a simplex of infinite dimension. Further we shall see that a knot of
unknotting number two can be unknotted via infinitely many different
knots of unknotting number one.

The sixth chapter is devoted to the study of a special class of knots,
namely arborescent knots arising from plumbing positive and negative
Hopf bands along any tree. In particular, I determine the minimal
crossing numbers of these knots. This is kind of a counterpart to a
result of W. B. R. Lickorish and M. B. Thistlethwaite on the minimal
crossing number of Montesinos links, i.e. links associated with star-
shaped trees.

At last, some problems appear in the seventh and last chapter. Ap-
pendix A contains a table of all quasipositive knots up to ten crossings.
Some examples of track knots are presented in Appendix B, while Ap-
pendix C contains a table of all special fibered arborescent knots up to
ten crossings.

Altough the succession of the chapters follows a certain logical and
chronological order, most of them can be read independently, notably
chapters 3 and 6. However, chapter 4 relies upon the diagrammatical
description of quasipositive knots presented in chapter 2.
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The material of the first two chapters is published in the Osaka
Journal of Mathematics. A short article with the contents of chap-
ter 3 is accepted for publication in the Mathematical Proceedings of
the Cambridge Philosophical Society. Further, a text on the theme
of chapter 6 is accepted for publication in Commentarii Mathematici
Helvetici, and a short article on unknotting sequences (Theorem 11) is
accepted for publication in the Quarterly Journal of Mathematics.
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CHAPTER 1

Combinatorial Invariants of Track Knots

1. Track Knots

A plane curve is a generic immersion of a circle into the plane. We
may interpret a plane curve as the shadow of a knot in the 3-space.
Naturally, we cannot reconstruct a knot from its shadow, unless we
happen to know some additional information about it. For instance, a
Legendrian knot in respect of the standard contact structure dz — ydx
on R? is reconstructible from its shadow in the z-y plane. Moreover,
every knot can be brought into a Legendrian position by an isotopy of
the ambient space R3. There is another way of assigning a link to a
plane curve, more precisely, to a divide.

A divide is the intersection of a plane curve with the unit disk in
R2, provided the plane curve is transverse to the unit circle. The link
of a divide P is the set

L(P) = {(z,u) € T(R?) |z € P, u € T,P, |z* + |u]* = 1},

where the space of tangent vectors to the plane is identified with R? x
R?. We remark that L(P) lies in the three-dimensional sphere

ST (R?) = {(z,u) € T(R?) | |z|* + |u* = 1}.

The concept of links associated with divides is due to N. A’Campo
and emerged from the study of isolated singularities of complex plane
curves (see [1]). In [2] and [3], A’Campo specified some properties of
divide knots, including fiberedness and a Gordian number result. These
strong results are at the expense of the size of the class of divide knots.
In fact, only 8 knots up to ten crossings are divide knots; this follows
from the classification in M. Ishikawa’s doctoral thesis ([21], Appen-
dix B). A large extension of the class of divide links was introduced by
W. Gibson and M. Ishikawa [15]. They dropped the relativity condi-
tion P C {z € R? | |z| = 1} for divides and kept A’Campo’s result on
the Gordian number. T. Kawamura [25] and Ishikawa independently
proved the quasipositivity of these links of free divides.

1



2 1. COMBINATORIAL INVARIANTS OF TRACK KNOTS

Borrowing from all these, we propose a new construction of knots
associated with labelled generic immersions of intervals into the plane.
In spirit, this construction is based upon M. Hirasawa’s algorithm for
drawing diagrams of divide links (see [18]).

Let C be the image of a generic immersion of the interval [0, 1] into
the plane. In particular, C' has no multiple points apart from a finite
number of transversal double points, none of which is the image of 0
or 1. Further we enrich C, as follows (see Figure 1 for an illustration).

(i) A small disk around each double point of C is cut into four
regions by C'. Label each of these regions by a sign, such that
the sum of the four signs is non-negative. There are four types
of patterns of signs around a double point, called a, b, ¢ and
d. They are shown in Figure 2. If the tangent space T,C at
a double point p of C is the set {(z,y) € R? | (y — y(p))? =
(r — z(p))?}, then we may represent patterns of four signs at
p by one of the following symbols:

a, az, ba bl: b2: b37 ¢, C1, C2, C3, d.
An index ¢ at a symbol means that the corresponding pat-
tern has to be turned counter-clockwise by the angle 7.

For example, b, >< stands for the pattern —>J:< .

Henceforth we shall use these symbols.

(ii) Specify a finite number of different points pi, pa, ..., p, on the
edges of C (i.e. on the connected components of C'—{double
points}, such that C' — {p1, po,...,p,} is simply connected,
but not necessarily connected. r is greater than or equal to
the number of double points of C.

A labelled generically immersed interval in the plane will always be
denoted by C).

FIGURE 1

The following algorithm associates a knot diagram, hence a knot in
the 3-space, to a labelled generically immersed interval C).
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a +
- +
+ +
FI1GURE 2. Patterns of signs
(1) Draw a parallel companion of C,. In other words, replace C)
by the boundary of a small band following C. Join the two
strands with an arc at both end points of Cy and orient the

resulting plane curve clockwise, in regard of the small band
(see Figure 3).

FIGURE 3

(2) At each double point of C), place over- and under-crossings

according to the signs of the four regions, as shown in Figure
4.

The characters a, b, ¢ and d stand for ‘above’, ‘between’,
‘conventional’ and ‘double’, respectively. ‘Conventional’ cross-
ings appear in the visualization of links of divides, see Hirasawa
[18].

(3) Add a full twist to the band at each specified point of C}, in
a manner that gives rise to two positive crossings (see Figure
4).
The knot diagram arising from C) by these three steps will be
denoted by D(C)), the corresponding knot by K(C,).

DEFINITION 1. A track knot is a knot which can be realized as a
knot associated with a labelled generically immersed interval C). If it
can be realized without any double point of type b, then we call it a
special track knot.
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s

FIGURE 4

REMARK. We observe that the classes of track knots and special
track knots are closed under connected sum. The connected sum opera-
tion corresponds to the gluing of two labelled immersed intervals along
end points. This is not true for knots of free divides; the connected
sum of the free divide knot 5o (in Rolfsen’s numbering [40]) with itself
is not a free divide knot.

2. Slice and Gordian Numbers

Let L be an oriented link with n components in S* = 9B*. The
slice number y;(L) of L is the maximal Euler characteristic among all
smooth, oriented surfaces in B* which are bounded by L and have no
closed components. The surfaces in consideration need not be con-
nected. If K is a knot then its 4-genus is defined as

¢"(K) = 5(1 = x,(K).

The clasp number cs(L) of a link L is the minimal number of transversal
double points of n generically immersed disks in B* with boundary L.
We will also be concerned with the Gordian unknotting number u(L),
which is the minimal number of crossing changes needed to transform
L into the trivial link with n components. Here a crossing change is a
strand passage operation along an embedded disk (see Figure 5 for an
illustration). The notion of unknotting numbers appears in an article
of H. Wendt ([54]), where he calls it Uberschneidungszahl.
The following two inequalities relate the numbers defined above:

w(L) > e(L) > (1 = x,(L)). (1)

N =
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) , 0
X X

FIGURE 5. A crossing change along a disk

v

They can be shown by purely geometrical arguments, see Kawamura
[24].

Gordian unknotting numbers and 4-dimensional invariants of track
knots are easy to determine. Let K be a track knot associated with a
labelled generically immersed interval Cy. Further let A, B, C and D
be the numbers of double points of C) with patterns of signs of type
a, b, c and d, respectively.

THEOREM 1 ([4]). The clasp number and the 4-genus of K equal
C +2D. If B is zero, then the Gordian unknotting number and the
ordinary genus of K equal C' + 2D, too.

COROLLARY 1. Both the clasp number and the 4-genus are additive
under connected sum of track knots. Moreover, the Gordian unknotting
number is additive under connected sum of special track knots.

REMARK. The connected sum of a knot with its mirror image al-
ways bounds an embedded disk in B*, thus the clasp number and the
4-genus are not additive under connected sum of knots in general. It
is still a conjecture that the Gordian unknotting number is additive
under connected sum of knots (see M. Boileau and C. Weber [11]).

ProoOr oF THEOREM 1. We first show that the 4-genus of K does
not exceed C'+2D. If C' = D = 0, then K is clearly slice, i.e. K bounds
a disk in B*. Indeed, the band following C' provides an immersed disk
in §® with boundary K. At each double point of type b we may push
a part of the band into B* to get an embedded disk. But then, at each
double point of type ¢, we add one handle to the band, as Figure 6(c)
suggests. Similarly, we add two handles to the band at each double
point of type d, see Figure 6(d). This creates an embedded surface in
B* of genus C+2D with boundary K. If B = 0, then it is an embedded
surface in S3.

We remark that the spots where we add handles to the band can
be interpreted as clasp singularities of the immersed band. Therefore
the clasp number of K does not exceed C' + 2D, either. Next, we show
that the unknotting number of K does not exceed C + 2D, provided
B is zero. If C = D = 0, then K is the unknot since it bounds an
embedded disk in S3. On a knot diagram level, double points of type
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FIGURE 6

c differ from double points of type a only by one crossing change, see
Figure 4. Similarly, double points of type d differ from double points
of type a by two crossing changes. Hence we conclude u(K) < C'+2D.

We still have to prove that C' + 2D is a lower bound for the four
numbers in question. If we prove ¢*(K) > C + 2D, then we are done,
thanks to (1). For this purpose we need the slice-Bennequin inequality.
Let Dy, be the diagram of an oriented link L. The writhe w(Dy) is
the number of positive minus the number of negative crossings of the
diagram Dy. Smoothing Dy, at all crossings produces a union of Seifert
circles. Let s(Dp) be their number.

SLICE-BENNEQUIN INEQUALITY. xs(L) < s(Dp) — w(Dy).

The slice-Bennequin inequality was first established for closed braid
diagrams by Lee Rudolph [44]; the proof of the general case can be
found in Rudolph [46]. In a recent paper ([38]), J. Rasmussen deter-
mines the 4-genera of positive knots by using the theory of Khovanov
homology of knots. His work provides the foundation for a combina-
torial proof of the slice-Bennequin inequality, see [48]. Originally, a
‘3-dimensional’ version of the inequality (concerning Seifert surfaces)
was proved by D. Bennequin [9].

Now let us compute w(D(CY)) and s(D(C))) for the knot diagram
of the labelled generically immersed interval C.

(1) w(D(Cy)) = 2C + 4D + 2r, where r is the number of specified
points on C).

(2) Each double point and each specified point of C) gives rise to
a small Seifert circle, see Figure 7. Moreover, each connected
component of Cy —{p1, pa2, - - ., pr} gives one Seifert circle. The
number of connected components of C\—{p1, pa, ..., pr} being
1+7r—(A+ B+ C+ D), we conclude

s(D(Cy)) = A+B+C+D+r+1+r—(A+B+C+D) = 2r+1.
Thus the slice-Bennequin inequality yields xs(K) < 1 —2C — 4D
and ¢g*(K) = $(1 — xs(K)) > C +2D. O
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©)

FIGURE 7

REMARKS.

(i) If we renounce twisting the band at some specified points, then
the statements of Theorem 1 are no longer true. The labelled
immersed interval (without specified points) of Figure 8 has
one double point of type ¢ and gives the unknot.

(ii) The statement of Theorem 1 about the unknotting number can
be extended for track knots with B = 1. However, if B > 2,
then the unknotting number may be greater than C'+2D. E.g.
the knots 946 and 10149 are slice track knots (see Appendix B)
and their unknotting numbers are certainly not zero.

FIGURE 8

3. The HOMFLY Polynomial

In this section we present an inequality for track knots which in-
volves the HOMFLY polynomial. The HOMFLY polynomial Py (a, z) €
Z[a*', 2] of an oriented link L is a Laurent polynomial in two vari-
ables a and z which is normalized to one for the trivial knot and satisfies
the following relation (see [13]):

%Py(aaz)—apx(“’z) = 2Py ((a,2). @)

Writing Pp(a,z) = ZkE iZL ag(2)ak, with aer)(2), apr)(z) # 0, as
a Laurent polynomial in one variable a, we define its range in a as



8 1. COMBINATORIAL INVARIANTS OF TRACK KNOTS

le(L), E(L)]. H. R. Morton gave some bounds for e¢(L) and E(L) in
terms of the writhe and the number of Seifert circles of a diagram of L.

THEOREM 2 (H. R. Morton [29]). For any diagram Dy, of an ori-
ented link L

w(Dg) — (s(Dr) — 1) <e(L) < E(L) < w(Dyg) + (s(Dg) — 1).
The first inequality is tailor-made for track knots.
THEOREM 3 ([4]). 2¢*(K) < e(K) for any track knot K.

Proor. Choose a track knot diagram D of K. The proof of Theo-
rem 1 tells us that g*(K) = (1 — s(D) + w(D)), which is exactly half
the lower bound in Morton’s theorem. U

The slice-Bennequin inequality being an equality for closed quasi-
positive braid diagrams (see [44]), we observe that Theorem 3 is true
both for track knots and quasipositive knots. In fact, the classifica-
tion of quasipositive knots up to ten crossings in Appendix A is based
upon the inequality of Theorem 3 . This is a strong indication of the
quasipositivity of track knots. In the next chapter, we shall prove the
quasipositivity of track knots.



CHAPTER 2
Quasipositivity

A quasipositive braid is a product of conjugates of a positive stan-
dard generator of the braid group. If a link can be realized as the
closure of a quasipositive braid then we call it quasipositive. When
Lee Rudolph introduced quasipositive links (in [42]), he showed that
they could be realized as transverse C-links, i.e. as transverse intersec-
tions of complex plane curves with the standard sphere S* C C2. Here
a complex plane curve is any set f~'(0) C C?, where f(z,w) € Clz, w]
is a non-constant polynomial. Conversely, every transverse C-link is a
quasipositive link, as was recently proved by M. Boileau and S. Orevkov
(in [10]). For a thorough introduction into this subject, we refer the
reader to Rudolph’s text on the knot theory of complex plane curves
[47]. As the name suggests, the notion of quasipositivity generalizes
the notion of positivity (see [33] or [46]). However, this is not quite ob-
vious. In the following, we propose a description of quasipositive knots
which is based upon Seifert diagrams rather than braid diagrams.

Any planar knot diagram gives rise to a system of Seifert circles
with signed arcs, where each arc stands for a crossing joining two Seifert
circles, as shown in Figure 1. The sign of an arc tells us whether the
crossing is positive or negative.

FIGURE 1. A system of Seifert circles

DEFINITION 2. A knot diagram is quasipositive if its set of crossings
can be partitioned into single crossings and pairs of crossings, such that
the following three conditions are satisfied.

9
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2. QUASIPOSITIVITY

(1) Each single crossing is positive.

(2) Each pair of crossings consists of one positive and one negative
crossing joining the same two Seifert circles.

(3) A pair of crossings does not separate other pairs of crossings.
More precisely, going from one crossing of a pair to its opposite
counterpart along a Seifert circle, one cannot meet only one
crossing of a pair.

EXAMPLES.
(i) Positive knot diagrams are obviously quasipositive.

(ii) Track knot diagrams are quasipositive: negative arcs are inci-
dent with a small Seifert circle corresponding to a double point
of type a, b or c. They can be paired with neighbouring pos-
itive crossings of the same small Seifert circle (see Figure 2).
At this point, it is essential that Cy — {p1, pa, ..., pr} is simply
connected. This guarantees that pairs of crossings do not get
entangled (see Figure 1).

(iii) Quasipositive braid diagrams are quasipositive.

+

FIGURE 2. A pair of crossings

THEOREM 4 ([4]). A quasipositive knot diagram represents a quasi-

positive knot.

Together with Example (ii), Theorem 4 proves the quasipositivity

of track knots.

THEOREM 5 ([4]). Track knots are quasipositive.

In order to prove Theorem 4, we adopt the pattern of Takuji Naka-

mura’s proof of strong quasipositivity of positive links (see [33]).

PrROOF OF THEOREM 4. Any link diagram can be deformed into

a braid representation, i.e. a system of concentric Seifert circles, by
a finite sequence of bunching operations or concentric deformations
of two types, without changing the writhe and the number of Seifert
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circles of the link diagram. This algorithm is due to Shuji Yamada,
see [55]. We shall explain these two deformations and their effect on
quasipositive knot diagrams.

First of all, we may consider only knot diagrams which have an
outermost Seifert circle Sp, i.e. one that contains all the other Seifert
circles. This corresponds to choosing a point on the sphere S? appro-
priately.

If S contains a maximal Seifert circle S, with the opposite orien-
tation of Sp, then we apply a concentric deformation of type I to Sy,
as shown in Figure 3.

)

FIGURE 3. A concentric deformation of type I

If S| contains maximal Seifert circles with the same orientation as
S1 only, then we apply a concentric deformation of type II to any of
these maximal Seifert circles, say to Sy, as shown in Figure 4.

FIGURE 4. A concentric deformation of type II

In the next step, we consider maximal Seifert circles inside Sy, and
so on. This algorithm clearly ends in a braid representation. Now we
observe that concentric deformations of both types preserve the quasi-
positivity of knot diagrams in the above sense. They merely introduce
new pairs of crossings, which do not get entangled. Figures 5 and 6
show how a positive crossing (or a pair of crossings, respectively) gets
more ‘conjugated’ by new pairs of crossings after a concentric deforma-
tion.



12 2. QUASIPOSITIVITY

S S S 355

FIGURE 6

Thus, starting with a quasipositive knot diagram, we end up with

a quasipositive braid diagram, which clearly represents a quasipositive
knot.

O



CHAPTER 3
Quasipositivity and Homogeneity

1. A Characterization of Positive Knots

Quasipositive links have special braid diagrams, namely products
of conjugates of the positive standard generators of the braid group. If
such a product contains words of the form

0ij = (05~ 0j—2)0j-1(07 -~ 0j2) "
only, then we call the corresponding link strongly quasipositive. Here o;
is the i-th positive standard generator of the braid group. The word o; ;
is often called a positive band, see Figure 1, where the corresponding
section of its Seifert diagram is drawn, too.

1)
117

FIGURE 1. A positive band: o095

A geometric characterization of strongly quasipositive links was
given by Lee Rudolph ([43]). In [46], Rudolph proved that posi-
tive knots are strongly quasipositive and asked whether positive knots
could be characterized as strongly quasipositive knots which satisfy
some extra geometric conditions. It turns out that the appropriate
extra condition is homogeneity. Homogeneous links were introduced
by P. R. Cromwell ([12]) as a generalization of alternating links and
positive links. A link diagram is homogeneous around a Seifert circle
S if the following two conditions are met:

(1) all the crossings inside S, which are adjacent to S, have the
same sign.

(2) all the crossings outside S, which are adjacent to S, have the
same sign.

A link is homogeneous if it has a diagram which is homogeneous
around each Seifert circle. A homogeneous link diagram is shown in
Figure 2, together with its Seifert diagram.

13
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A
H A

Y UL

FIGURE 2. A homogeneous diagram

We observe that a braid diagram is strongly quasipositive and ho-
mogeneous if and only if it is a positive braid diagram. This suggests
that the two classes of strongly quasipositive knots and homogeneous
knots have a small intersection. We shall make this statement more
precise.

THEOREM 6 ([5]). A knot is positive if and only if it is homogeneous
and strongly quasipositive.

The proof of Theorem 6 is based upon three famous inequalities.
One of them is Morton’s inequality ([29]), which we have already en-
countered in the first chapter. One more inequality involves the HOM-
FLY polynomial Pk (a, z). Again, we denote its minimal degree in the
variable a by e(K), its maximal degree by E(K). The minimal genus
among all orientable surfaces spanning a knot K will be denoted by

9(K).

THEOREM 7 (D. Bennequin [9]). Let D be a closed braid diagram
with s(D) strings of a knot K. Let w(D) be the writhe of D, i.e. the
number of positive minus the number of negative crossings of D. Then

9(K) > (14 w(D) - 5(D)).

THEOREM 8 (P. R. Cromwell [12]). For any homogeneous knot K,
e(K) < 29(K).
Moreover, equality holds if and only if K is positive.

PRrROOF OF THEOREM 6. First we observe that a positive knot is
homogeneous and strongly quasipositive (see Lee Rudolph [46], T. Naka-
mura [33] or chapter 2 of the present text). Conversely, let K be a ho-
mogeneous strongly quasipositive knot. K has a closed braid diagram
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D which is a product of o;;’s. From D we can construct a natural
Seifert surface of K. It is a union of s(D) disks and w(D) bands with a
positive half-twist. Such a band is depicted on the left side of Figure 1.
The Euler characteristic of this Seifert surface equals s(D) — w(D); its
genus is 3 (14+w(D)—s(D)). By Bennequin’s inequality, it is a minimal
genus Seifert surface of K, i.e.

9(K) = 5(1+w(D) ~ 5(D)).
Now Morton’s inequality tells us that
29(K) < e(K),
whereas Cromwell’s inequality tells us that
e(K) < 29(K).

We conclude that equality holds, and hence, by Cromwell’s Theorem,
that K is positive. ]

2. Construction of Non-Homogeneous Knots

Theorem 6 enables us to construct many non-homogeneous knots.
For instance, it has been shown by Lee Rudolph that any Alexander
polynomial of a knot can be realized as the Alexander polynomial of
a strongly quasipositive knot (see [41]). On the other hand, the coef-
ficients of the Alexander polynomial of a positive knot satisfy strong
conditions. In this way, we can find many non-homogeneous knots.

We discuss one application, concerning positive Hopf plumbings.
Let K be a knot which can be obtained from the unknot by iter-
ated plumbing of positive Hopf bands. By a result of Lee Rudolph
([45]), K is strongly quasipositive. Hence K is either positive or non-
homogeneous.

ExAMPLE. The knot 10145 (in Rolfsen’s notation [40]) is a non-
positive divide knot (see N. A’Campo [2] for a definition of divide
knots). Divide knots bound a unique Seifert surface which is a plumb-
ing of positive Hopf bands (see M. Ishikawa [20]). Hence the knot 10145
is non-homogeneous.






CHAPTER 4

Quasipositivity and Vassiliev Invariants

It has been known that any Alexander polynomial of a knot can
be realized by a strongly quasipositive knot, as we mentioned in the
previous chapter. Rewriting the Alexander polynomial in Conway’s
variable, we get a polynomial whose coefficients are certain Vassiliev
invariants of finite order. Thus it seems reasonable to ask whether any
finite number of Vassiliev invariants can be realized by a quasipositive
knot. This question was posed by A. Stoimenow in [51]; we shall answer
it in this chapter.

THEOREM 9 ([8]). For any oriented knot K and any natural number
n there exists a quasipositive knot QQ whose Vassiliev invariants of order
less than or equal to n coincide with those of K.

The following corollary is an immediate consequence of Theorem 9.

COROLLARY 2. It is impossible to decide whether a given knot in
the standard sphere in C? is isotopic to a transverse intersection of a
complex plane curve with this sphere by means of finitely many Vassiliev
mvariants.

The proof of Theorem 9 is based upon a construction of Y. Ohyama,
who showed that any finite number of Vassiliev invariants can be re-
alized by an unknotting number one knot (see [35]). His construction
involves certain Cj-moves, which were defined by K. Habiro in [17],
see also [36]. A special C,-move is defined diagrammatically in Fig-
ure 1. It takes place in a section with 2(n + 1) endpoints or (n + 1)
strands, respectively. The strands are numbered from 1 to n + 1 and
are all connected outside the indicated section, since they belong to the
same knot, say K. Going along K according to its orientation, starting
at the first strand, we encounter the other strands in a certain order
which depends on how the strands are connected outside the indicated
section. This order defines a permutation, say o € S,,, of the numbers
2,3, ..., n+l.

In [37], Y. Ohyama and T. Tsukamoto explain the effect of a
Cp-move on Vassiliev invariants of order n. Their result ([37], The-
orem 1.2) implies the following:

17
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a0

n+1l 1 2 n-1 n n+1

FIGURE 1

(1) A C,-move does not change the values of Vassiliev invariants
of order less than n.

(2) Let K and K be two knots which differ by one C,-move, and
v, any Vassiliev invariant of order n. Then |v,(K) — v,(K)|
depends only on the permutation o € S,, defined by the cyclic
order of the (n + 1) strands of the section where the C,,-move
takes place.

PROOF OF THEOREM 9. Starting from the diagram of the positive
twist knot 55 shown in Figure 2, we construct a quasipositive knot @)
with the desired properties by applying several C,-moves, 2 < 1 < n,

( ?

FIGURE 2

In the first step, we construct a quasipositive knot (); whose Vas-
siliev invariants of order two (the Casson invariant) equals that of K.
Choose natural numbers @ and b, such that vy(K) = 2+ a — b. Here
vo(K') is the Casson invariant of K. Using these two numbers, we define
a knot (); diagrammatically, as shown in Figure 3.

By construction, we have

Ug(Ql) =2+a—b= ’UQ(K).
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J

FIGURE 3

This follows easily by one application of the following relation for the
Casson invariant of knots:

v2 () — v2(X) = Ik() ().
Indeed, a crossing change at the clasp on the left side of the diagram
of @1 produces a trivial knot, and the linking number [k of the corre-
sponding link equals 2 + a — b. Moreover, the Seifert diagram of ), at
the bottom of Figure 3 is quasipositive, whence () is a quasipositive
knot (see chapter 2).

In the second step, we arrange the Vassiliev invariants of order
three. Since ‘all’ the Vassiliev invariants of order less than or equal to
two of @1 and K coincide (i.e. v3(Q1) = v2(K)), we conclude that @,
and K are related by a sequence of C'3-moves. This is K. Habiro’s result
for n = 2 (see [17]). Let K1 = @1, K, ..., K; = K be a sequence of
knots, such that two succeedding knots are related by a C3-move. Our
aim is to replace this sequence of knots by a sequence of quasipositive
knots K, = Q1, Kg, . Kl, such that

v3(Kip1) — v3(K;) = v3(Kip1) — v3(K),

1 <4 <1 —1. By Ohyama and Tsukamoto’s result, |vs(K3) — v3(Q1)|
depends only on the permutation ¢ € S3 defined by the cyclic order
of the four strands of the section where the Cs-move takes place, as
explained above. From this viewpoint, i.e. if we are only interested
in the change of the Vassiliev invariants of order three, there are only
finitely many combinatorial patterns of C's-moves. A ‘standard’ pattern
of a C3-move can be applied inside a local box on the right side of the
diagram of @)1, as shown in Figure 4.
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3

FIGURE 4

Moreover, we can choose a quasipositive representative for this pat-
tern, i.e. a representative whose Seifert diagram (inside the box) is
quasipositive, see Figure 5. Here we remark that the two segments
above and below the cross-shaped Seifert circle belong to the same
Seifert circle since they are connected outside the local box.

FIGURE 5

However, this standard pattern corresponds to one specific permu-
tation o € S3. In order to get patterns corresponding to other permu-
tations, we have to permute the strands inside the local box, as shown
by two examples on the left side of Figure 6. We observe that all these
patterns have quasipositive representatives. They are depicted on the
right side of Figure 6, together with their Seifert diagrams.

Thus we can replace the knot K5 by a quasipositive knot K, such
that

vs(K2) — v3(Q1) = *(vs(K2) — v3(Q1))-
If the sign of this difference is wrong (i.e. ‘—’), we may arrange it
to be ‘+’ by changing four crossings between two strands inside the

local box, see Figure 4, where the four crossings are encircled. This
modified pattern has the inverse effect on Vassiliev invariants of order
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three, as follows from Ohyama and Tsukamoto’s calculation ([37], proof
of theorem 1.2).

Likewise, we can replace all C'3-moves of the sequence K; = 1, Ko,
..., K; = K by Cs-moves that take place in a clearly arranged box and
preserve the quasipositivity of the knot 1. In this way, we obtain a
sequence of quasipositive knots K; = (1, Ks, ..., K; and end up with
a quasipositive knot @y := K; whose Vassiliev invariants of order two
and three coincide with those of K.

At this point we merely sketch how the process continues: in the
1-th step, we arrange the Vassliev invariants of order ¢ + 1 and define
a quasipositive knot (); whose Vassiliev invariants of order less than
or equal to ¢ + 1 coincide with those of K. For this purpose, we need
only observe that every combinatorial pattern of a C;,;-move has a
quasipositive representative with i? + i conjugating pairs of crossings,
i.e. pairs of crossings satisfying the conditions (2) and (3) of quasipos-
itive knot diagrams (see chapter 2). The heart of such a quasipositive
representative for a Cy-move is shown in Figure 7, together with its
Seifert diagram. Here the 12 negative crossings can be paired with
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positive ones along vertical lines. In addition, we have already seen
that it is easy to permute two strands inside the local box without
losing quasipositivity.

JJ

A
=

560
MMM

FIGURE 7

At last, the quasipositive knot () := (Q,,_1 has the required proper-
ties. O

REMARKS.

(1) All the quasipositive knots @); can be unknotted by a single
crossing change at the clasp that appears on the left side of
their defining diagram (see e.g. Figure 3). In particular, the
unknotting number of () is one, unless ) happens to be the
trivial knot.

(2) By Theorem 9 and Habiro’s result, we conclude that every
knot can be transformed into a quasipositive knot by a finite
sequence of C,-moves, for any fixed natural number n. It
would be interesting to have a direct proof for this fact, which
in turn implies Theorem 9. This would possibly simplify the
construction of the desired quasipositive knots.

(3) The knot @@ might even be chosen to be strongly quasipositive.
However, we do not know how to prove that.



CHAPTER 5

Vassiliev Invariants and the Gordian Complex of
Knots

1. The Gordian Complex of Knots

In this chapter, we will focus on a certain neighbourhood relation on
the set of knots induced by the crossing change operation. The Gordian
complex of knots is a simplicial complex whose vertex set consists of
all the isotopy classes of smooth oriented knots in S®. An edge of the
Gordian complex is a pair of knots of Gordian distance one, i.e. a pair
of knots which differ by one crossing change (see section 2, chapter 1).
Similarly, an n-simplex is a set of (n+ 1) knots whose pairwise Gordian
distance is one. Recently, M. Hirasawa and Y. Uchida proved that
every edge of the Gordian complex is contained in a simplex of infinite
dimension (see [19]) and asked whether every n-simplex is contained in
a simplex of infinite dimension, for arbitrary n € N. The next theorem
gives a positive answer to their question.

THEOREM 10. Every n-simplex of the Gordian complex of knots is
contained in an (n + 1)-simple.

Furthermore, we show that if two knots are not connected by an
edge, then there are infinitely many shortest paths between these two
knots in the 1-skeleton of the Gordian complex of knots.

THEOREM 11 ([7]). For any pair of knots K and K of Gordian dis-
tance two there exist infinitely many non-equivalent knots whose Gor-
dian distance to K and K 1is one.

Here the Gordian distance between two knots is the minimal num-
ber of crossing changes needed to transform one knot into the other
(see [19] and [30]). Theorem 11 has an interesting special case. We
shall state it as a corollary.

COROLLARY 3. A knot of unknotting number two can be unknotted
via infinitely many different knots of unknotting number one.

Once again, the proof of Theorem 10 involves C,-moves and Vas-
siliev invariants; it is written in the second section. For technical rea-
sons, we have to assume that all knots are endowed with an orientation.

23
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Nevertheless, Theorems 10 and 11 are true both for oriented knots and
non-oriented knots. The third section contains the proof of Theorem 11
and can be read independently. We conclude this section with a remark
on the set-up of Theorem 10.

Let A be an n-simplex of the Gordian complex of knots (n € N,
n > 1). The vertices Ky, Ki,..., K, of A have pairwise Gordian
distance one. In particular, K, and K, are connected by a strand
passage operation along an embedded disk D;, 1 <7 < n. We observe
that we may move a disk D; by an isotopy {D;() }+c[o,1 that preserves
the following two conditions:

(1) The boundary of the disk 0D;(t) meets K; in an interval, for
all t € [0,1].

(2) The interior of the disk int(D;(t)) meets K, transversaly in
one point, for all ¢ € [0, 1].

Such an isotopy of strand passage disks does not affect the knot
type of K;. More precisely, the isotopy {D;(t)}:cp,1) of disks defines
an isotopy of corresponding knots {Kj(t)}co,1y- In this way we can
arrange that all the disks D;, 1 < 7 < n are pairwise disjoint. Thus
K, has a diagram with a section as shown in Figure 1, with n distin-
guished spots Ay, A,,..., A,, where crossing changes should take place
to obtain K, Ks,..., K,, respectively. This section has 2n strands
labelled s1, So,..., S2,. Going along the knot K according to its ori-
entation, starting at s;, we encounter the strands s; (2 < i < 2n) in a
certain order which depends on how the strands are connected outside
the indicated section. This order defines a permutation, say o € Sy, _1,
of the numbers 2, 3,..., 2n. We claim that we can easily change the
order of two succeeding strands. Indeed, let s, sy be two succeeding
strands, as shown in Figure 2. By applying regular isotopy only, we
can transform the indicated section into the section of Figure 3. We
observe that the order of the strands si, s, is reversed, now. Moreover,
a crossing change at the clasps involving s; or s, yields the same knots
as before.

] ﬁféﬁg S5l [{%] _______ S?":l(é%]- -

FIGURE 1
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FIGURE 3

Hence we may assume that we encounter the strands s; of Figure 1
in an order corresponding to a fixed prescribed permutation o € Sy, ;.
This will be important in the proof of Theorem 10.

2. Constructing simplices by C,-moves

Given an n-simplex A of the Gordian complex of knots, we shall
construct a knot that spans an (n + 1)-simplex, together with A.

Let Ky, K,..., K, be the vertices of A. Kj has a diagram with a
section as shown in Figure 1, such that a crossing change at A; trans-
forms K into K;, 1 < ¢ < n. Using the first Reidemeister move, we
may introduce an extra band with a clasp, such that a crossing change
at that clasp does not change the knot type. So K, has a diagram with
a section as shown in Figure 4, where A, ,; is the additional clasp.

] %ﬁa S5 ([j%] _______ %1(éﬁ -

FIGURE 4

Now we are ready to define a knot K. Weave the n bands with
clasps on the left of Figure 4 around the rightmost band, using the
weaving pattern of the C,;-move shown in Figure 1, chapter 4, to
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obtain a knot Kj. We observe that K is a neighbour (in the Gordian
complex) of all the knots Ky, Ki,..., K, since the weaving pattern of
the ), 1-move shown in Figure 1, chapter 4, is part of a Brunnian link
(see [40]). In order to establish Theorem 10, we have to prove that K
is different from Ky, K;,..., K,. For this purpose, we first investigate
how Kj and K, are related. K|, and K, differ by an n-times iterated
double of a C,;;-move, which is a Cy,1-move (see [36]). By the result
of Y. Ohyama and T. Tsukamoto, we know that |va, 11 (K{)—van11(Ko)|
depends only on the permutation o € S,,_; defined by the cyclic order
of the (2n+2) strands of the section of Figure 4. Further, there always
exists an order of the (2n + 2) strands, such that this difference is not
zero (see e.g. [35], where Y. Ohyama constructs an infinite family of
knots by applying C,-moves which change some Vassiliev invariants of
order n). According to the discussion at the end of the first section, we
may assume that we have already arranged such an order in the diagram
of Figure 4. Thus K and K are non-equivalent. However, K could
still coincide with one of the knots K;, 1 < 7 < n. Suppose K|, coincides
with K. In the above construction of K, we have inserted an extra
band with a seemingly useless clasp, such that a crossing change at that
clasp did not change the knot type. We may as well insert two such
extra bands with clasps. Then we may apply a similar construction as
above, using a Cy, 3-move instead of a Cy,.1-move to obtain a knot
K. As before, K and K are distinguished by a Vassiliev invariant of
order (2n + 3). Moreover, K and K, are distinguished by a Vassiliev
invariant of order (2n+1). Indeed, K| and K; have the same Vassiliev
invariants up to order (2n + 2), since they differ by one Cy,3-move,
whereas K and K = K are distinguished by a Vassiliev invariant of
order (2n + 1). If K happens to coincide with one of the knots Ko,
Ks,. .., K,, we may insert one more band with a clasp to the diagram
of Ky and apply a Cy,5-move to obtain a knot K{'. Repeating this
process (n + 1)-times, at most, we end up with a knot whose Gordian
distance to K; isone, 1 =0,1,...,n.

3. An infinite family of shortest paths

In this section we show that there are infinitely many knots between
two knots of Gordian distance two, as stated in Theorem 11. Although
we could use an analogous construction as in the second section, we
prefer another construction which is much simpler.

The two knots K and K having Gordian distance two, there exists
a knot K, which differs from K and K by one crossing change. K
has a diagram with a section as shown in Figure 1, for n = 2, such
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that a crossing change at A; (or Ay) transforms K into K (or K,
respectively). Since we can slide one of the bands along Ky, we may
assume that Ko has a diagram with a section as shown in Figure 5,
such that a crossing change at A (or B) transforms K, into K (or K,
respectively).

FIGURE 5

Again, we are ready to define a family of knots { K, },,cn diagram-
matically. A diagram of the knot K, is shown in Figure 6. It is
understood that it coincides with the diagram of Figure 5 outside the
indicated section.

i —n full twists
I
NN
n full n full
twists twists

5y

FIGURE 6. A family of knots { K, }nen

The horizontal band is twisted —n times, in a manner that gives
rise to 2n negative crossings. The two vertical bands are both twisted
n times. We observe that all the knots K, have the two required
properties: changing a crossing at A transforms K, into K. Similarly,
a crossing change at B transforms K, into K.

However, we have to prove that the family { K, },cn contains infin-
itely many different knots. For this purpose we consider the Alexander
polynomial, written in Conway’s notation (see [22]). This polynomial
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in one variable z is normalized to one for the trivial knot and satisfies
the following relation:

We remark that the Conway polynomial corresponds to the evalua-
tion Pr(1,2z) of the HOMFLY polynomial. As we shall apply this skein
relation several times, it is convenient to introduce a concise notation
for the knots arising from crossing changes and smoothings at different
spots.

NoTATION. For x, y,z € ZU {o0}, K, , denotes the knot with x
full twists in the horizontal band at the top left of the section shown in
Figures 5 & 6, y full twists in the left vertical band and z full twists in
the right vertical band. The special case where x (y or z) is co means
that we have to smooth the diagram (in an oriented manner) at the
corresponding place. As an example, K g o is shown in Figure 7.

I_)W

A Kg\, B
RS
FIGURE 7. K0

In particular, K_, ,, denotes K,, (n € N).

LEMMA 1.
. 1 2
nh_)IEo 3 P(K,;2) = —2"P(Ku0oo;2)

Before we prove Lemma 1, let us complete the proof of Theorem 11.
Suppose the family {K,},cn contained finitely many different knots,
only, then the limit of Lemma 1 would clearly be zero. However, this
is not the case, since P(Ky0o0;2) is not zero. Indeed, Ky oo 1S 2
connected sum of a knot and two Hopf links. Therefore, its Conway
polynomial P(K ¢ «; 2) is a product of a Conway polynomial of a knot
and £22, which can certainly not be zero.

ProOF oF LEMMA 1. Applying the skein relation of the Conway
polynomial n times at the crossings of the left vertical band of K ,, ,, ,,,
we get
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P(K_pnn;z)=P(K_non;2) +n2P(Kyso;2)-
Continuing at the crossings of the right vertical band of P(K 04, ;2),
we get

P(K_ynn;z) =P(K_no0;2) +nzP(K_n000;2) +12P(Ko 0} 2)-

Finally, we apply the skein relation at the crossings of the horizontal
bands of K_,, 09 and K_,, g« t0 obtain

P(K_ppnn;2)=P(Kooo;2) —nzP(Ksxo0;2)
+nZ(P(K0()OO,Z)_nZP(KOOOOO)Z))
+nzP (Ko 0} 2)-






CHAPTER 6

On Minimal Diagrams of certain Fibered Knots

1. Hopf Plumbing and Minimal Diagrams

One of the most striking applications of the Jones polynomial con-
cerns crossing numbers of knots. Indeed, several proofs of the first Tait
conjecture were announced shortly after the discovery of the Jones
polynomial (see [23], [31] and [52]). Yet there is another bound for
the crossing number of knots coming from the HOMFLY polynomial
(see [32] and [16]). In this chapter we show that the latter estimate
works especially well for fibered knots. More precisely, we exhibit a
large class of fibered arborescent knots and find minimal diagrams for
them. This class contains 50 knots of Rolfsen’s table ([40]) and is not
contained in the class of Montesinos links, for which minimal diagrams
are known, already (see [28]).

Let I' be a planar tree with signed vertices, as shown in Figure 1.

FIiGURE 1. A planar tree with signs

There is a well-known procedure, called Hopf plumbing, which as-
sociates a link K(I') to a planar tree with signs I':
(1) draw a positive or negative Hopf band (see Figure 2) at each
vertex of I', according to its sign.
(2) plumb the Hopf bands together along the edges of I', as shown
in Figure 3.

We shall determine the minimal crossing number and draw minimal
diagrams of knots associated with trees with signs. For this purpose
we have to introduce two quantities of trees with signs I'. Deleting all

31
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Ol

FIGURE 2. A positive and a negative Hopf band

FIGURE 3. Plumbing along an edge

negative vertices of I' we get a forest I';, i.e. a union of trees (with
positive signs). An analogous procedure (deleting all positive vertices
of I') yields I'_. We set

Tel'-

where the sums run over all trees T of the forests I' or I'_, respectively,
and the function s is defined as follows:

s(T) =1+ min{#S|S C E(T), T — S has no vertices of
valency greater than two}
Here E(T) is the set of edges of the tree T. We remark that s
depends on the abstract structure of a tree only, whereas P and N

depend on the abstract structure and the signs of a tree. Now we
are ready to state our main result about the minimal crossing number

c(K(T)).

THEOREM 12 ([6]). Let " be a tree with signs, such that K(T') is a
knot with one component. Then

c¢(K(I)) =V([')+P(')+ N(T).
Here V(I') is the number of vertices of T'.
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REMARK. The class of knots associated with trees with signs con-
tains the class of slalom divide knots (see N. A’Campo [3] for a defini-
tion of slalom divide knots). Indeed, according to M. Hirasawa ([18],
see also M. Ishikawa [20]), we know that slalom divide knots correspond
to knots of certain slalom trees with positive signs only. Thus Theo-
rem 12 proves a conjecture of M. Ishikawa ([21]) about the minimal
crossing number of slalom divide knots.

It is well-known that every knot can be represented as the closure
of a braid. The minimal number of strands among all the braids rep-
resenting K is called the braid index b(K) of the knot K.

THEOREM 13 ([6]). Let " be a tree with signs, such that K(T') is a
knot with one component. Then

b(K(T))=P(')+ N(T) + 1.
In the following section we prove a recursive formula for the function
s for trees, which we shall use in the proof of Theorem 12. In the third

section we present a lower bound for the minimal crossing number of
knots and prove the inequality

¢(K(T)) > V(T) + P(T) + N(I).

The proofs of Theorems 12 and 13 will be accomplished in the fourth
section.

2. The Function s for Trees

Let T be a tree, E(T) its set of edges. We call S C E(T) a grinding
subset for T', if T'— S has no vertex of valency greater than two. Thus
the function s(7T") equals one plus the minimal cardinality among all
grinding subsets for 7.

Let k£ be an outer edge of T'. Figure 4 shows a section of 7" near k.

FIGURE 4. A section of T

Two vertices of T' are incident with k; they are labelled v; and v,.
The trees of the forest T — {vy, v} are labelled T, T, ..., T,,. They
are attached to the vertex vy by the edges k1, ko, ..., kn.
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PROPOSITION 1.
m
s(T) = max{s(T — vy), Zs
=1

PROOF. First we observe that
S(T —v1) <s(T) <14 s(T —vy).

Further, a careful inspection of the definition of s shows that

zm:S(TZ) <s(T)y< 1+ f:s(T

Indeed, if S is a grinding subset for 7', then S — {k, ki, ko, ... ky} is
a grinding subset for the forest T — {vy,vo}. This implies the first
inequality, since #S N {k, k1, ko, ...k} = m — 1. Conversely, if S is a
grinding subset for the forest T'— {v1,v2}, then SU{k1, ko, ...k} is a
grinding subset for 7". This implies the second inequality.

In order to prove Proposition 1, we have to exclude the case

S(T):1+3(T—v1)=1+zm:s(T

Suppose s(T) = 1+ s(T — v1). Let S be a minimal grinding subset
for T' — vy, i.e. a grinding subset for 7" — v; of minimal cardinality.
Since s(T) = 1 + s(T — vy1), the vertex ve must have valency two in
T — v, — S;say ki, ke € E(T — v, — S). We claim that SN E(T;) is a
minimal grinding subset for 7;, 1 < 7 < m. If ¢ # 1,2, this is obvious,
since then k; ¢ F(T — vy — S). The case i = 1 (and, analogously, the
case i = 2) needs a special consideration. Suppose 77 had a grinding
subset S; C E(T}) of smaller cardinality than S N E(7}). Then the
subset B
S=5- (SﬂE(Tl)) Uus;u {/{1} C E(T— 1)1)

were a minimal grinding subset for T — v;. Furthermore, the vertex
vo would have valency one in T — v; — S, which is a contradiction to
the assumption s(7') = 1+ s(T" — vy). At last, S U {k} is a minimal
grinding subset for 7" with

#S U {k} = m—1+Z#SﬂE = —1+Z
Hence m
s(T)=Zs(Tz)
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3. The HOMFLY Polynomial and Crossing Numbers

We have already seen that the HOMFLY polynomial Pk (a, z) pro-
vides a tool for detecting quasipositive knots, via Morton’s inequality
(see section 2, chapter 2 and appendix A). In this chapter we shall
present another application of Morton’s inequality, concerning minimal
crossing numbers of knots. As usual, we denote the minimal degree in
the variable a of Pk(a, z) by e(K), the maximal degree by E(K). The
following Theorem is mainly due to K. Murasugi ([32]); an explicit for-

mulation can be found in H. Gruber (see Lemma 3.2. and Corollary 6.1.
in [16]).

THEOREM 14.
(i) e(K) > 3(E(K) - e(K)) + 2g(K)
(i) If c(K) = 3(E(K) — e(K)) + 29(K), then

b(K) = S (E(K) —e(K)) +

Here g(K) is the minimal genus among all orientable surfaces
spanning the knot K.

PROOF OF THEOREM 14. Let D be a minimal diagram of the knot
K. There is a natural Seifert surface S(D) associated with D. Its Euler
characteristic x(S(D)) equals s(D)—c(D), where s(D) and ¢(D) denote
the number of Seifert circles and the number of crossings of the diagram
D, respectively. We conclude

c¢(K) =c¢(D) =s(D)—x(S(D)) > b(K) + 2¢g(K) — 1.

The last inequality follows from a Theorem of S. Yamada ([55])
which asserts that the number of Seifert circles in any diagram of a
knot K cannot be smaller than the braid index of K. An alterna-
tive simple proof of this fact is due to P. Vogel ([53]). Now both
statements of Theorem 14 follow immediately by Morton’s inequality
(see [29]; a thorough discussion on braid index criteria can be found in
A. Stoimenow [49]):

b(K) > 5(E(K) —e(K)) + 1.

N =

0

We observe that the plumbing construction of Hopf bands along
a tree provides a natural fiber surface of minimal genus (see [14]).
Therefore
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in case K(I') is a knot. Comparing the first statement of Theorem 14
and Theorem 12, we see that it remains to settle the equation

E(K(T)) — e(K(T)) = 2P(T) + 2N(I)

to establish the desired lower bound for the crossing number of The-
orem 12. Tt turns out that the range in the variable a of Pk(a,z) is
not affected by the specialization z = 1. Therefore we restrict our
computations to the polynomial in one variable

Ok (a) = Pk(a,1).

Further we redefine e(K) and E(K) as the minimal and maximal degree
of Ok (a), respectively. In order to compute e(K) and E(K), we have
to keep book on the signs of the extremal coefficients very carefully.
Thus let us write o.(K) and og(K) for the signs of the minimal and
maximal coefficients of Ok (a), respectively.

LEMMA 2. Let I be a tree with signs (here K(I') may have several
components).
(i) e(K(I) = V(I'y) = V(I'-) = 2N()
i) E(K(T) = V(T ) V(L) +2P(I)
g (K (D)) = (=1)VE=I+ND

@y(a) is either even or odd and alternating, i.e. there are
natuml numbers ¢, 0, e < k < E, such that

%(Efe)

Ok(r)(a) = (1) Z (=1 ceyor a®t.

1=0
In particular, og(K(I)) = (=1)VI-)+PID),

(i
(iil) o

(iv) O

Proor oF LEMMA 2. First we observe that Lemma 2 is true if I’
has one vertex only. Indeed,
OK(. +) = 2a — CL3,
OK(. oy = a3 =27t
Now let us assume that all the statements of Lemma 2 are true for all
trees ' with n(> 1) vertices, at most. We have to verify the statements
for a tree I' with n 4+ 1(> 2) vertices. Let k be an outer edge of T, as
shown in Figure 4. As before, two vertices (v; and v9) are incident with
k. In addition, each vertex carries a sign. Now let us remember the
defining relation for Ok (a):

éOX(a)—aOX(a)=O><(G)- (3)
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We shall apply this relation to a crossing of the Hopf band at the
vertex v;. For this purpose, we have to understand the effect of the
following two operations:

(1) smoothing a crossing at v; (in an oriented manner) causes a
small collapse; the Hopf band at v; disappears. At this point,
it may be helpful to look at Figure 3.

K(I) — K(I' = {w})

(2) a crossing change at v; causes a big collapse; the Hopf bands
at v; and vy disappear, and we end up with a connected sum
of all the arborescent links corresponding to the trees of the
forest I' — {v1, v2}. We notice that these trees 71, Ty, ..., Tp,
are trees with signs.

K(F) — K(Tl)# -#K(Tm)a Tz el - {UlaUQ}

After these preparations, we are in a position to carry out the in-
ductive step. However, we have to consider four cases corresponding
to the signs of the vertices v; and vy, separately.

Case 1. v; and v, carry negative signs. Relation (3) for K(I') at
vy reads

1

“Ox(1y)(@) - Okt (@) — €Oy (0) = Ok(r—(u) (),
since the HOMFLY polynomial is multiplicative under the connected
sum operation. Thus

1 1
Okry(a) = EOK(TI)(G) - Okt (@) — aOK(rf{m})(a)- (4)
We remark that

P(T) = P(T = {w}) = Y P(Ty).
i=1
Therefore, the maximal degrees and the signs of the maximal coeffi-
cients of SOk (ry)(a) - - - Og(z,)(a) and =20k, })(a) agree, and we
conclude that Og(ry(a) is either even or odd and alternating. Further-
more,
E(K(T)) =V(I'y) = V(I'-) +2P(I),
op(K (D)) = (~1) 000

As to the minimal degree, we need the statement of Proposition 1

in the second section:
m

N(D) = max{N(T — {.}), S N(T)}-

i=1
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In any case, we conclude
e(K)=V{ITy) —-V(IT.)—-2N(T).

Case 2. v; carries a negative sign, v carries a positive sign. As in
the first case, equation (4) holds for Ok )(a). The crucial quantities
are

P() =PI —{w}),

PO =Y PT)|< 1,

NGU=1+NH¥~MbD=1+§5NHU

Thus 2Ok (my)(a) - - - Ok(r,.)(a) contributes to the required minimal de-
gree of O ry(a) with the correct sign, whereas —=Or—{u,})(a) con-
tributes to the required maximal degree of Og(ry(a) with the correct
sign. In particular, Ogy(a) is either even or odd and alternating.

The remaining two cases (i.e. wv; carries a positive sign) can be
treated analogously; no new phenomena occur. Alternatively, we may
consider the mirror image of K (I") and replace the variable a of Ok ()
by —a~!.

O

As an immediate consequence of Lemma 2, the width of Oxry(a)
equals 2P (I')4+-2N(I"). However, the width of Pk ry(a, z) in the variable
a could still be greater than 2P(I") + 2N(I'). In any case, due to the
first statement of Theorem 14, we get the required lower bound for the
number of crossings:

c¢(K() = V() + P(I') + N(T),
in case K(I') is a knot.

4. Construction of Minimal Diagrams

In this section, we construct minimal diagrams for knots associated
with trees with signs and accomplish the proofs of Theorems 12 and 13.
First we remark that a knot K (I') has a natural diagram with 2V (T")
crossings. This fact is illustrated in Figure 5, for the knot K (\+ ).

If the signs of the vertices of I' are distributed in an alternating
pattern, then P(I")+ N(T') = V(T'"), and Theorem 12 is true. This is no
surprise, since in this case, the natural diagram of K (I") is alternating.
Now suppose I' contains an edge k£ with two positive vertices. Then
we can change the natural diagram of K (I') in order to eliminate one
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:

/

FIGURE 5. A natural diagram of K (I")

crossing, as shown in Figure 6. The two squares contain the parts of
the diagram of K (T') corresponding to I" — k; we may possibly have to
flype a square through the corresponding twisted band before we can

apply such a reduction move.
N N N
\3 —

FIGURE 6. Eliminating a crossing at a positive edge

However, the Hopf bands of the two involved vertices are damaged
by this process; they both ‘lose one crossing’. Hence we cannot apply
this procedure to more than two edges containing the same vertex. If
T is a subtree of I}, then we can choose V(T') — P(T) edges of T', such
that their union does not contain any vertex of valency greater than 2
(by definition of the function P). Thus we can eliminate V(T') — P(T)
of the crossings associated with T, even if T is a single point (since
then V(T) — P(T) = 1 —1 = 0). The same is true for subtrees of
['_, of course, replacing P(T) by N(T). Altogether, we can eliminate
V(') — P(I') — N(T') crossings of the natural diagram of K (I'), ending
up with

2V() — (V(I') = P(I') = N(I')) = V(') + P(I") + N(I")

crossings. As a consequence, Theorem 12 is true. At last, Theorem 13
is a consequence of the second statement of Theorem 14.






CHAPTER 7

Problems

PROBLEM 1. Does there exist a quasipositive knot which is not a
track knot?

The free divide knots 914, 10194, 10152 and 10;54 might be good candi-
dates. However, we do not know any criterion for distinguishing track
knots from quasipositive knots.

PROBLEM 2. Is it true that a knot is strongly quasipositive if and
only if it is quasipositive and its 4-genus equals its ordinary genus? In
particular, is it true that special track knots are strongly quasipositive?

ProBLEM 3. Do alternating quasipositive knots have positive dia-
grams? More generally, is it true that a knot is positive if and only if
it is homogeneous and quasipositive.

Up to ten crossings, the ‘statements’ of Problems 2 and 3 are true, as
we can see from the classification of quasipositive knots in Appendix A.

PROBLEM 4. Can every knot be transformed into a strongly quasi-
positive knot by a finite sequence of C,-moves, for any fixed natural
number n? Equivalently, can any finite number of Vassiliev invariants
of a knot be realized by a strongly quasipositive knot?

The results of chapter 6 say nothing about the topology of the
Gordian complex of knots. This awaits exploration. We continue with
some questions and problems related to the Gordian complex of knots.

PROBLEM 5. Does the Gordian complex of knots have non-trivial
homology groups, or fundamental group?

PROBLEM 6. Given a knot of unknotting number two, is it possible
to unknot it via a knot of arbitrary high bridge number?

This question was posed by Y. Uchida. We found that the answer is
affirmative for the torus knot 5;, but we cannot prove a general result.

Y. Nakanishi suggested restricting ourselves to the class of fibered
knots.

41
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PRrROBLEM 7. Is it possible to unknot a fibered knot of unknotting
number two via infinitely many different fibered knots of unknotting
number one?

We may ask the same question for other classes of knots, e.g. al-
ternating knots or quasipositive knots.

PROBLEM 8. Find similar results for the A-unknotting operation
or the #-unknotting operation (For a report on unknotting operations,
see Y. Nakanishi [34]).

PROBLEM 9. Determine the unknotting number of the knot 3;#!5;.
Here ‘4’ stands for the connected sum operation and ‘!” denotes the
mirror image operation.

The knot 3;#!5; can be transformed into several ten crossing knots
by one crossing change: 1045, 10125, 10196, 10148, 10153. The unknotting
number of the latter knots is conjectured to be two (see [26]). Appar-
ently, there is no simple proof for that fact, whence it is interesting to
prove that the unknotting number of the knot 3;#!5; is three.

PROBLEM 10. More generally, prove the additivity of the unknot-
ting number under connected sum of knots.



APPENDIX A

Table of Quasipositive Knots

This appendix contains a complete list of quasipositive and strongly
quasipositive knots up to ten crossings. As we mentioned in the first
chapter, this classification relies on the inequality of Theorem 3:

29" (K) < e(K),
for any quasipositive knot K.

Looking at Kawauchi’s table of knots [26] (see [27] for an updated
version), we observe that 60 of 249 prime knots up to 10 crossings sat-
isfy this inequality. Among these 60 knots, 42 have positive diagrams,
whence they are strongly quasipositive:

31; 517 52’ 71’ 72’ 73: 747 75; 815’ 8197 917 927 93; 94: 951 96’ 97’ 997 9101
913, 916, 918, 923, 935, 938, 949, 1049, 1053, 1055, 1063, 1066, 1080, 10101,
10120, 10124, 10128, 10134, 10139, 10142, 10152, 10154, 1016;.

REMARKS.

(i) Since knots are always listed up to mirror image, we must
be more precise: ‘a knot K satisfies the inequality ...” means
‘either K or its mirror image !K satisfies the inequality ...".

(ii) The 4-genus of the knot 105, is not known. However, it is
known not to be slice, hence the inequality 2¢g*(1051) < e(105)
= 0 is not satisfied.

The remaining 18 knots are listed in Table 1, except for the knot
10139, which is not quasipositive. A. Stoimenow already pointed out
that the quasipositivity of the knot 103, would imply the quasipositiv-
ity of its untwisted 2-cable link, together with a violation of Morton’s
inequality, which is a contradiction (see [50]). Table 1 contains one
strongly quasipositive, non-positive knot: 10145. It is non-positive since
it is non-homogeneous (see P. R. Cromwell [12]). The other 16 knots
are not strongly quasipositive since their 4-genus is smaller than their
genus. In particular, they are non-positive. So in Table 1 we list all
quasipositive, non-positive prime knots up to 10 crossings in Rolfsen’s
numbering, together with a quasipositive braid representation, the 4-
genus ¢* and the ordinary genus g. In the second column a, b, ... and
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A. TABLE OF QUASIPOSITIVE KNOTS

Knot

quasipositive braid representation

*

N}

820

(abAbaBA)(baB)

821

(abA)b(Abba)

945

a(Bcb)b(bacB)

946

(abbcBBA)(bacB)

10126

aa(aaabAAA)b

10127

abbb(bAbbaB)

10131

a(aaBCbdBcbAA)(BcbdeBCb)d(Bcb)

10133

aab(bDCbcdB)(bCBcACbcdCBcaCbceB)(bCBcaCbceB)

10140

(abbbcBBBA)b(Chbc)

10143

a(BBBaaabbb)

10145

(abA)cd(abA)(beB)(bedCB)(edC)b

10148

ab(bbacBB)(cbC)

10149

a(bbCbccBB)a(bceeB)

10155

(abA)(ABcbCba)(bcB)

10157

a(Baab)b(baaB)

10159

a(BBaabb)(baB)

10166

(abcBA)(acbA)(Bcb)(Aba)

== NI R N=O= = o= o= =o

DWW W W WIN|W NN DN W W =N~

A, B, .

.. stand for oy, 09, ... and 01_1, 02_1, .

TABLE 1. Quasipositive, non-positive prime knots up to
10 crossings

. . Parentheses should

help to recognize positive bands. The braid of the knot 10145 is strongly
quasipositive.

This classification of quasipositive and strongly quasipositive knots
gives us an interesting criterion for detecting strongly quasipositive

knots.

PROPOSITION 2. A knot with 10 crossings at most is strongly quasi-
positive if and only if it s quasipositive and its 4-genus equals its ordi-
nary genus.




APPENDIX B

Examples of Track Knots

In this appendix we present all track knots associated with the
labelled immersed interval shown in Figure 1. It has two double points
and two specified points.

FIGURE 1

There are 112 patterns of signs, represented by a symbol (z and ) at
each double point (see chapter 1). Knots associated with different pat-
terns of signs need not be different. It is still remarkable that we obtain
24 different prime knots in this way. They are listed in Table 1. The
second and third column of Table 1 show the Dowker-Thistlethwaite
numbering and the Rolfsen numbering, respectively. The fourth col-
umn tells us whether the knot is a free divide knot or not. In [15],
Gibson and Ishikawa listed knots of free divides. Up to 10 crossings,
their list is complete. We add the 4-genus in the fifth column. It equals
the clasp number and, except for the knots 944, 10149 and 1172139, also
the unknotting number.
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B. EXAMPLES OF TRACK KNOTS

*

(z,y) | DT numbering | Rolfsen numbering | free divide | g
(b, c) Ta4 79 No 1
(b, ¢1) bal 59 Yes 1
(b, d) 7ab 73 Yes 2
(bl, bl) Ind 946 No 0
(bl, bg) 10n29 10140 No 0
(b1, ¢) 12n121 - No 1
(bl, Cl) 3al 31 Yes 1
(bl, d) 10n14 10145 Yes 2
(b3, bg) 11n139 - No 0
(b3, 03) 10n4 10133 No 1
(C, 63) 8a2 815 No 2
(C, d) 10n30 10142 No 3
(Cl, bl) 8n2 821 No 1
(Cl, bg) In2 945 No 1
(Cl, Cl) 5a2 51 Yes 2
(01, 03) 7a3 75 Yes 2
(Cl, d) 10n31 10161 Yes 3
(Cg, bg) 10n19 10131 No 1
(03, d) 10n22 10128 No 3
(d, by) 11n118 - No 2
(d, b3) 12n407 - No 2
(d,c1) Ta7 7 Yes 3
(d, 03) 10n6 10134 No 3
(d,d) 12n591 — ? 4
TABLE 1. Knots associated with a special immersed interval




APPENDIX C

Table of Special Fibered Knots

The subsequent table lists all knots associated with trees with signs
up to ten crossings. We need only consider eight types of trees, on
account of Theorem 1. They are drawn in the first column of Table 9.
The second column lists all knots with 10 or fewer crossings that arise
from the trees of the first column, depending on different choices of
signs. We use Rolfsen’s notation ([40]).

We may ask ourselves for which knots the inequality

oK) > 5(B(K) = e(K)) + 29(K)

is actually an equality. A result of K. Murasugi says that equality holds
for alternating fibered knots (see [32], Theorem A and Corollary 2). It
turns out that equality holds for 86 knots, up to ten crossings, namely
the 50 knots of Table 1, and 36 more knots:

8167 8177 818: 9297 932: 9337 9347 940: 9477 1057 1097 10177 10457 10697 1075:
10g1, 10g2, 1085, 10gg, 10gg, 1091, 1094, 1096, 1099, 10100, 10104, 10105,
10106, 10107, 10109, 10110, 10112, 10115, 10116, 10118, 10123.

We remark that all these knots are fibered. However, there exist
non-fibered knots whose minimal crossing number equals £(F(K) —
e(K)) + 2¢(K), e.g. the knots 11a263 and 14n6302 (here we use the
Dowker-Thistlethwaite numbering). These examples were found by

A. Stoimenow.
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C. TABLE OF SPECIAL FIBERED KNOTS

tree

knots

31, 41

51’ 627 63’ 76’ 77a 812

71’ 82; 87’ 89’ 9117 917’ 9207 9267 927’ 9317 10297
1041, 10427 10437 1044

s
N
NN
NN

91, 102

85, 810, 819, 922, 924, 928, 930, 936, Y43, 1059,
1060, 1079, 1071, 1073, 1078, 10138

1046’ 1047’ 1048; 10124

1062, 1064, 10139

S
S
I
=

1079, 10152

TABLE 1.

Trees and knots up to 10 crossings
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