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Summary 

 
Hepatitis C virus (HCV) is a single stranded positive RNA virus classified in 6 

different genotypes. Hepatocytes are the main targets of HCV infection. It has been 

estimated that 60 to 70% of the infected patients develop chronic infection. If left 

untreated, chronic hepatitis C (CHC) results in cirrhosis in 10 to 20% of the cases. 

Once cirrhosis is established, the risk of hepatocellular carcinoma (HCC) 

development increases dramatically, with an estimated annual rate of 1% to 4%. The 

standard of care (SOC) for CHC treatment is based on pegylated IFNα (peg-IFNα) 

and Ribavirin administration. Peg-IFNα injection activates the Jak-STAT signaling 

pathway that leads to the phosphorylation of STAT1 and culminates in the up-

regulation of hundred of genes in the liver, establishing an antiviral state. However, 

peg-IFNα-based therapy achieves the clearance of HCV only in half of the chronic 

infected individuals. In the recent past, the lack of response to peg-IFNα-based 

therapy in CHC have been associated to the broad up-regulation of interferon 

regulated genes (IRGs) in the liver of CHC patients, already before treatment. The 

reason why the pre-activated hepatic IFN system fails to clear HCV remains to be 

elucidated. Furthermore, the molecular mechanisms that define the level of activation 

of the hepatic IFN system in CHC are not clear. In the recent past, several genome-

wide association studies have reported a strong association of treatment-failure with 

minor (less frequent in the population) alleles at single nucleotide polymorphisms 

(SNPs) located in the IL28B locus on chromosome 19. Minor alleles at SNPs in the 

IL28B locus have also been associated to the up-regulation of the hepatic IFN system 

pre-treatment in CHC patients. So far the molecular mechanisms that links allelic 

variants at IL28B locus, the pre-activation of the hepatic IFN system and treatment-

response in CHC patients remain to be elucidated. The present work is aimed to 

investigate two of the possible molecular mechanisms that could mediate the pre-

activation of the IFN system in the liver of CHC patients that do not respond to 

therapy. 

In the first part of the thesis the role of unphosphorylated-STAT1 (U-STAT1) in 

mediating the up-regulation of hepatic IRGs in CHC patients was investigated. We 

have reported that STAT1 accumulates in the liver of CHC patients non-responders. 

Furthermore, experimental evidences suggest that STAT1 could play a role as 
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transcription factor independently by its phosphorylation on tyrosine 701 and its 

unphosphorylated form can drive the expression of a subset of IRGs. In the present 

study we took advantage of a cell line constitutively lacking STAT1 expression and 

we exogenously re-expressed a mutant form of STAT1 that can not be 

phosphorylated, mimicking U-STAT1. We proved that U-STAT1 per se is not able to 

induce the expression of IRGs and it is unlikely to be the cause of the pre-activated 

IFN system observed in the liver of non-responders CHC patients.  

In the second part of the thesis, we investigated the role of IFNλs signaling pathway 

in the definition of the pre-activated hepatic IFN system in CHC. IFNλs are the most 

recently group of IFNs. IFNλs signal through the cells via a different receptor 

compared to the one of IFNα. However, the intracellular signaling pathway of the two 

class of cytokines is completely overlapping, leading to the up-regulation of the same 

IRGs. We demonstrated that in an hepatoma cell line Huh7 the over-expression of 

IL28Rα, one of the two chains of INFλ receptor complex, mediates the long lasting 

up-regulation of IRGs upon IFNλ stimulation. We confirmed our results in human 

liver biopsies, where we found a significant positive correlation between IL28Rα and 

IRGs expression. We observed that IL28Rα is an IRG itself but its level of expression 

is modulated by allelic variants at SNPs mapping in the IL28B locus, that have been 

associated to treatment response in CHC patients.  

In conclusion we provide evidences of a molecular mechanism that links the pre-

activation of the hepatic IFN system (and non-response) and allelic variants at IL28B 

locus. 
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1. Introduction 
 
 
1.1 Hepatitis C virus 
	
  
Hepatitis C virus (HCV) infection is cause of chronic liver disease worldwide1. It has 

been estimated that more than 130 million of people are chronically infected and 

many will develop chronic liver disease and hepatocellular carcinoma (HCC)1.  

 

1.1.1 HCV genome and classification.  

HCV is a positive-strand RNA virus of the Flaviviridae family2. HCV genome is 

9600 nucleotides in length and it encodes for a single open reading frame (ORF), 

flanked by 5’- and 3’- untranslated regions (UTRs) (Fig. 1.1) 2. The 5’-UTR contains 

an internal ribosome entry site (IRES) and essential signals for the synthesis of the 

negative RNA strand which serves as replicative intermediate2. A liver specific 

microRNA, miR-122, have been reported to bind the 5’-UTR3, resulting in the 

modulation of HCV RNA replication3,4. The ORF encodes for a polyprotein precursor 

that is post-translationally cleaved by viral and host proteases resulting in the 

production of structural and non-structural proteins2.  

HCV is classified in 6 major genotypes based on the genome sequences. Each 

genotype is divided in subtypes (designated with a small letter, e.g. 1a, 1b) that differ 

in their genomic sequences of 20-25%5. HCV has a high replicative rate and 

mutations are often found in the viral genome because of the lack of a proofreading 

activity of the HCV RNA dependent RNA polymerase (RdRp). Consequently, a 

heterogeneous population of HCV viruses (termed quasispecies) coexists within the 

same infected individual.  

 

1.1.2 HCV lifecycle 

HCV structure has not been completely clarified. It is believed that HCV virions 

comprise a nucleocapside core surrounded by a host derived membrane containing the 

glycoproteins E1 and E26. Results of electron microscopy studies indicate that HCV 

particles are 40-70 nm in diameter2. The virus circulates free in the blood stream or 

bound to low density lipoproteins (LDL), very low density lipoproteins (VLDL) and 

immunoglobulins2.  
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HCV entry.  

Hepatocytes are the main targets of HCV infection 2. Many host factors are involved 

in HCV entry: glycosaminoglycans (GAGs)7, the low density lipoprotein receptor 

(LDLR)8,9, the high density lipopoprotein receptor scavenger receptor class B 1 (SR-

B1)10, tetraspanin CD8111, the tight junctions claudin 1 (CLDN1)12 and occluding 

(OCLN)13, and, most recently, the epithelial growth factor receptor (EGFR)14. The 

current model for HCV entry predicts a multistep process that includes attachment 

and receptor binding, post-binding association to tight junctions and then 

internalization via clathrin-mediated endocytosis6. Endocytosis is followed by the 

transit in an endosomal low-pH compartment that results in the fusion of the 

membranes and release of viral RNA in the cytoplasm6.  

 

Translation and polyprotein processing.  

HCV RNA does not contain a 5’-cap and uses an IRES-based cap-independent 

approach for protein translation15. Translation initiation of HCV RNA occurs through 

the formation of a complex between IRES, the 40S ribosomal subunit and the 

eukaryotic initiation factor 3 (eIF3)15. Subsequently, the 80S complex is formed upon 

GTP hydrolysis and binding to the 60S ribosomal subunit15. It has been reported that 

conformational change in the 40S subunit induced by the binding of IRES is required 

for the assembly of an active 80S complex in the absence of a 5’-cap16.  

HCV RNA is translated in a precursor polyprotein of 3000 amino acids that is 

subsequently processed to generate the mature structural and non-structural proteins 

(Fig. 1.1)2. The structural proteins core, E1, and E2 (envelope glycoproteins) form the 

viral particle2. The non-structural proteins include the p7 ion channel, the NS2-3 

protease, the NS3 serine protease/RNA helicase, the NS4A proteins, and the NS5B 

RNA dependent RNA polymerase (RdRp)2.  
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Figure 1.1. HCV genome organization and viral protein functions2.  

 

Replication.  

HCV replication is achieved by generating a complementary negative-stranded RNA 

that serves as a template to synthesize a positive-stranded RNA2. NS5B RdRp is the 

key enzyme in this process2. The precise composition of HCV replication complex is 

not completely understood. However, as for all positive stranded RNA viruses, HCV 

replication requires intracellular membranes2. A specific membrane alteration 

(membranous webs) derived from the endothelial reticulum (ER) has been considered 

as putative site of HCV replication2. The membranous webs could have a role in 

supporting the organization of the replication complex concentrating the viral 

products, providing lipids, and protecting the viral RNA from host defense 

mechanisms.  

Assembly, maturation, and release.  

The late steps of the viral lifecycle are not completely understood. HCV assembly 

results in the formation of the nucleocapsid and loading of the HCV RNA17. It has 

been reported that p7, NS2, NS5A, NS4B, and NS3 are involved in HCV assembly 

(reviewed in 17). This evidence suggests a close link between HCV replication and 

assembly.  

HCV assembly is tightly linked to lipid metabolism17. Many independent evidence 

supports the concept that the core association with lipid droplets (LD) is essential for 

HCV assembly (reviewed in 17).  
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Maturation and release of viral particles depends on the very low density lipoprotein 

(VLDL) pathway17. Several reports emphasize the role of apolipoprotien E (apoE) in 

the formation of infective viral particles18,19,20. Instead, Apolipoprotein B (apoB) 

contribution to HCV release remains controversial18,20. Mature HCV particles 

containing both apoB and apoE are finally released from the hepatocytes through the 

VLDL secretory pathway17.  

 

1.1.3 In vitro and in vivo models for HCV research. 

HCV, first termed non-A, non-B hepatitis (NANBH), was initially described in 1975 

in sera of post-transfusion hepatitis patients21. However, due to the lack of in vitro and 

in vivo models of infection, more than one decade had been required to clone the 

sequence of HCV genome22. In 1997, it was demonstrated that HCV cn infect 

chimpanzees.23 In 1999, a major breakthrough in HCV research was achieved with 

the development of the sub-genomic replicon system24 that allows the long-term HCV 

RNA replication in cell culture. However, this system does not permit the study of 

HCV life cycle since no viral particles are produced. Most recently, a complete HCV 

cell culture system has been developed (JFH1/HCVcc), opening the possibility to 

study HCV lifecycle in vitro. The HCVcc system is based on a unique isolate from a 

Japanese patient affected by fulminant hepatitis that was found to replicate in a 

hepatoma cell line (Huh7)25. Indeed, viral particles are produced in Huh7 cells 

transfected with the JFH1 RNA25 and HCV viruses generated in culture are able to 

infect naïve Huh7 cells as well as chimpanzees25,26.  

No vaccine against HCV infection is available so far. The design of a successful 

vaccine requires the study of HCV in in vivo models in order to investigate the 

components of the adaptive immune response against the virus27. Chimpanzees are 

the only animals that can support the complete HCV life cycle28. Many efforts have 

been made to generate mouse models that could support HCV infection. So far, only 

immunodeficient mice engrafted with human hepatocytes support a complete viral life 

cycle29,27. However, these mice are not useful to study the adaptive immunoresponse 

against HCV and to develop vaccine29,27. To overcome the limitations, a new 

humanized mouse model has been recently proposed. A fusion protein of FK506 

binding protein and caspase 8 under control of the albumin promoter (AFC8) was 

expressed in immune-deficient mice, resulting in the hepatocytes cell death upon 
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administration of a specific drug30. Subsequently, co-injection in the liver of new born 

mice of hepatocytes progenitor cells and CD34+ human hematopoietic stem cells 

resulted in hepatocytes repopulation and detection of T cells, NK cells, plasmacytoid 

and myeloid dendritic cells30. The humanized mice were permissive for HCV 

infection, generate a specific immune response against the virus, and develop liver 

diseases (hepatitis and fibrosis)31. However, the use of such mouse model to develop 

vaccines is limited since the mice are unable to support the complete HCV lifecycle31.  

 

 

1.2 Innate immune response in HCV infection 
 

HCV is sensed by the host innate immune system and then interferons (IFNs) are 

produced32. IFNs are the key mediators of antiviral response32.  HCV interferes with 

the innate immune system at different levels in order to block IFN production and 

establish a persistent infection.  

 

1.2.1.  HCV sensing by the innate immune system. 

The innate immune response is activated when pattern-associated molecular patterns 

(PAMPs) interact with pattern recognition receptors (PRRs)32. PRRs are divided in 

three major classes: Toll-like receptors (TLRs), retinoic acid inducible gene I (RIG-I)-

like receptors (RLRs), and nucleotide oligomerization domain (NOD)-like receptors 

(NLRs)32. The first two classes display a major role in HCV sensing and both mediate 

the production of type I and III IFNs (Fig 1.2).   

 

Toll-like receptors.  

TLRs family comprises at least 10 members that are expressed in various immune 

cells (macrophages, DCs, and B cells,) and in other cell types like, fibroblasts and 

epithelial cells32. Three members of the TLRs family are primarily involved in the 

sensing of viral infection: TLR3, TLR7, and TLR932. Unlike other TLRs that display 

a cell membrane expression, TLR3, TLR7, and TLR9 are localized in the 

endosomes32. All these three TLRs detect viral nuclear acids: TLR9 senses 

unmethylated CpG motifs, TLR7 binds to uridine- and guanosine rich single stranded 

RNA (ssRNA), and TLR3 recognizes double stranded RNA (dsRNA)32. TLR3 and 
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TLR7 have been reported to play a role in HCV infection33,34. Upon activation, TLR7  

binds the adaptor protein MyD88 inducing a kinase cascade that leads to the 

formation of the complex MyD88-IRAK1-IRAK4-TRAF635. This complex ultimately 

activates NF-κB and IRF732. MyD88 is a common adaptor protein for TLRs32. 

However TLR3 transduces the signal through the binding to TRIF32. TRIF, together 

with TBK1, activates ultimately IRF335. IRF3, IRF7, and NF-κB translocate into the 

nucleus32 and induce the expression of type I and type III IFNs that mediates the 

antiviral response35.  

 

RLR family. 

RLR family comprises the cytoplasmic proteins RIG-I, MAD5, and LPG232. RIG-I is 

primarily involved in HCV sensing36. HCV RNA contains two motifs that are targeted 

by RIG-I:  the 5’-triphosphate and the stem loop structure in the 3’-UTR36. Of note, 

the 3’-UTR is highly conserved among the HCV genotypes and it is essential for 

HCV replication32. Binding of RNA to RIG-I induces a conformational change that 

results in the association of the mitochondrial antiviral signaling protein (MAVS), a 

key adaptor protein localized in the mitochondria cell membrane32. MAVS induces a 

signal cascade that involves TKB and IKKi resulting in the activation of IRF3 and 

NF-κB32.  Ultimately, IRF3 and NF-κB induce the expression of type I and type III 

IFNs through the binding to response elements in their promoter region32. The key 

role of RIG-I in HCV RNA sensing has been demonstrated in hepatoma cells36. 

Indeed, in RIG-1 -/- Huh7.5 cells, HCV RNA fails to induce IFNβ36. Moreover HCV 

replication appears to be more efficient in cell lacking a functional RIG-I signal37. 
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Figure 1.2. Viral sensing and autocrine/paracrine IFNs production.38.  

 

1.2.2 HCV interference with viral sensing. 

In order to establish a persistent infection, HCV has developed different strategies to 

evade the host immune response38. HCV interference with the viral sensing pathways 

has been well characterized. Indeed, viral protease NS3 displays a major role in this 

context. NS3 binds to the co-factor NS4A allowing the complex to be anchored to the 

intracellular membranes and to facilitate the activation of the protease domain of 

NS339. The membrane-bound localization of NS3/4A is essential to interfere with 

viral sensing39. Indeed, NS3/4A cleaves MAVS leading to the impairment of RIG-I 

signaling and IFNs production40,41,42. Importantly, MAVS cleavage by NS3/4A has 

been confirmed in HCV-infected liver biopsies43. 

The role of NS3/4A in TRIF cleavage remains controversial. TRIF cleavage has been 

reported44 but this finding is not supported by others publications39. Moreover, TRIF 

cleavage has not been reported in HCV infected human liver biopsies39.  

 

1.2.3    Interferons and their receptors. 

Since the first discovery in 1957 by Isaac and Lindenmann, many IFNs types and 

subtypes are now known38. IFNs are currently classified in three major classes: type I, 

type II and type III. Each class of IFNs signals into the cell by engaging different 

receptor complexes (Fig 1.3). 
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Figure 1.3. Interferons, their receptors and the Jak-STAT pathway45.  

 

Type I IFNs. 

Type I IFNs comprise at least 13 IFNα subtypes and one single IFNβ46. Genes 

encoding for type I IFNs cluster are located on chromosome 9, lack introns, and are 

regulated by their own promoter46. The intracellular signaling pathway is mediated by 

the binding to a receptor comprising two chains ubiquitously expressed, IFNAR147 

and IFNAR2c48. It has been reported that mice deficient for IFNAR chains are more 

susceptible to viral infection but maintain resistance to other pathogens49,50.  

IFNα has a key role in the antiviral activity against HCV infection. Indeed, since 20 

years, IFNα has constituted the backbone of the standard of care (SOC) for the 

treatment of chronic HCV infection (see section 1.4.1)51. 

Type II IFNs.  

IFNγ is the sole type II IFN and binds to a receptor composed by two subunits 

IFNGR1 and IFNGR252.  IFNγ is produced by immune cells like T-lymphocytes, B-

cells, NK cells, and antigen presenting cells (monocyte/macrophage and dendritic 

cells)52. IFNγ -/- and IFNGR1 -/- show deficiencies to bacterial, parasitic, and viral 

infection53,54. Both type I and type II IFNs are required to efficiently clear some 
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viruses suggesting that the two class of IFNs complement each other providing 

protection against a broad spectrum of pathogens50.   

Type III IFNs.  

Type III IFNs have been more recently described55,56. This IFN class includes: IFNλ1 

(or IL29), IFNλ2 (or IL28A), and IFNLλ3 (or IL28B)56 . Type III IFNs genes display 

high sequence similarities with each other55,56. In particular, IFNλ2 and IFNλ3 have 

almost identical sequence not only in the coding region but also in the upstream and 

downstream flanking regions56. Indeed, in the promoters of type III IFNs, 

computational analysis have predicted binding sites for transcription factors like AP1, 

NFκB, and IRF that have been described to mediate also the expression of type I 

IFNs57. During the last few years, the interest of the scientific community has been 

focused on the allelic variants at the IFNλ3 (IL28B) locus. Indeed, several genome 

wide association studies (GWAS) have reported an association between allelic 

variants at single nucleotide polymorphism (SNPs) mapping in the IL28B locus and 

response treatment in CHC patients58,59,60. This topic will be further discussed in 

section 1.4.2. 

Plasmacytoid dendritic cells (pDCs) are currently considered as the “professional” 

producers of IFNλs upon viral infection61. However, many other cell types have been 

reported to produce type III IFNs upon viral infection62. Indeed, early phase of HCV 

infection has been associated with type III IFNs production63,64 and induction of type 

III IFNs has been reported in HCV infected primary human hepatocytes (PHH) 63,64 as 

well as in primary human fetal liver cells (HFLC)65.  

 

Figure 1.4 Organization of human IFNλs gene cluster on chromosome 1957. 

 

Type III IFNs bind to a receptor complex that comprises the unique IL28Rα and the 

IL-10R2 chain that is shared with the receptors of IL-10, IL-22, and IL-2656. The gene 

encoding for IL28Rα is located on chromosome 155,56, whereas the one encoding for 

of IL-10R2 maps on chromosome 21. Despite the distant chromosomal localization, 

IL28Rα and IL10-R2 genes share a similar genetic structure. The coding region 
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comprises 7 exons: exon 1 encodes for the 5’-UTR and for the plasma membrane 

signal peptide; exons 2, 3, 4, 5, and part of exon 6 encode for the extracellular 

domain; the transmembrane domain is encoded by exon 6; the intracellular domain is 

encoded by part of exon 6 and exon 7; exon 7 encodes also for the 3’-UTR55,56. Three 

different splice variants have been described for the human IL28Rα. IL28Rα-variant 1 

comprises all the previously described exons and encodes for the functional chain of 

the receptor56. IL28Rα-variant 2 is generated by a partial splicing of exon 7 resulting 

in a signaling incompetent protein that lacks most of the intracellular domain56. 

IL28Rα-variant 3, originating from the splicing of exon 6, encodes for a soluble form 

of the receptor and lacks both the transmembrane and intracellular domain55,56. The 

biologic function of the signal-incompetent variants 2 and 3 has not been completely 

elucidated. It has been suggested that splice variant 3 could act as a decoy receptor, 

partially subtracting type III IFNs from the binding to the functional receptor66.  

A computational analysis suggests the presence of binding sites for the transcription 

factors AP-2, c-Jun, p53, and STAT1 in the promoter of human IL28RA gene67. 

IL28Rα, unlike IL10-R2, display cell and tissue specific expression. Indeed, lungs 

and many organs of the immune system (spleen, thymus, PBMCs) express high level 

of IL28Rα66. The brain displays a low IL28Rα expression level66. Keratinocytes and 

melanocytes, unlike fibroblast, endothelial cells and adipocytes, express high level of 

IL28Rα66. 

 

1.2.4.   Interferons and the Jak-STAT signaling pathway. 

Interferons mediate antiviral, antiangiogenic immunoregulatory, and antiproliferative 

effects68. They exert their activity mainly through the activation of the Jak-STAT 

signaling pathway and induction of interferon regulatory genes (IRGs) 68. However, 

the effects mediated by IFNs result also through the activation of other signaling 

pathways, such as the p38-Map kinase cascade69 and the phosphatidylinositol-3-

kinase – Akt pathway70.   

The Janus kinase (Jak) - signal transducer and activator of transcription (STAT) 

signaling pathway is induced by IFNs and many other cytokines. In mammalian, 5 

Jaks (Jak 1-3 and Tyk2) and 7 STATs (STAT1-4, STAT5A, STAT5B and STAT6) 

genes have been mapped71,72,73. Of note, different splicing and post-translational 

cleavages can form multiple STATs variants, that can act as dominant71. Indeed, 
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STAT1 displays two splicing variants: STAT1α (full length) and STAT1β (lacking 

the carboxy-terminal part of the protein)68.  

Jaks are tyrosine kinases, whereas STATs are latent transcription factors, found 

inactive in the cytoplasm. Specific Jaks associate to the intracellular domain of each 

IFN receptor chains: Jak1 binds to IFNAR2, IFNGR1, and IL10-R2; Jak2 associates 

to IFNAR1; Tyk2 binds to IL28Rα, IFNAR1 and IL28Rα (Fig. 1.3)68. Upon binding 

of IFN, the receptor chains are brought in close proximity and the Jaks trans-activate 

each other and then phosphorylate specific tyrosine residues in the intracellular 

domain of the receptors. The phospho-tyrosine residues become docking sites for the 

STATs that bind to the receptors through the Src homology domain 2 (SH2)68. The 

Jaks then activate STATs by phosphorylation of specific tyrosine residues68. 

Activated STATs form homo or heterodimers that move into the nucleus and bind to 

the promoter of interferon regulated genes (IRGs) through the DNA binding domain, 

inducing gene transcription72.  

Type II IFNs mediate the activation of STAT1 (phosphorylation on tyrosine 701), 

resulting in the formation of STAT1 homodimers73 (fig 1.3). Despite the engagement 

of different receptor complexes, type I and type III IFNs intracellular signaling 

pathways are overlapping and result in the phosphorylation of STAT1, STAT2 

(phosphorylation on tyrosine 689), and STAT3 (phosphorylation on tyrosine 705)74. 

STAT1 homodimers and STAT1-STAT2 and STAT1-STAT3 heterodimers are then 

generated74. STAT1 homodimers and STAT1-STAT3 heterodimers associate to 

gamma activates sequences (GAS) in the promoter region of IRGs71. STAT1-STAT2 

heterodimers bind to IRF9 and generate the complex IFN-stimulated gene factor 3 

(ISGF3) that associates to IFN-stimulated responsive elements (ISRE) in the promoter 

of the IRGs71. 

 

IFN stimulation induces the expression of hundred of IRGs, however, the function of 

some of them has so far been investigated75. 

ISG15.  

ISG15 is an ubiquitin-like protein. The enzymatic cascade that mediates ISGylation 

comprises the activation of an E1 activating enzyme (UBE1L), an E2 conjugating 

enzyme (UbcH8), and an E3 ligase (HERC5 and TRIM25)75. ISGylation is reversible 

and USP18/UBP43 is one of the key enzymes that catalyzes the hydrolysis of ISG15 



	
  
	
  
	
  

	
   23	
  

from the targets76. Interestingly, most of the enzymes involved in ISGylation are 

induced upon IFN stimulation75. More than 150 putative targets of ISGylation have 

been identified, and many are involved in interferon signaling and viral sensing77. 

ISGylation does not mediate the degradation of the target protein75. Accordingly, it 

has been reported that ISGylation prevent virus-mediated degradation of IFN 

regulatory factor 3 (IRF3), increasing the production of IFNβ78. The prominent role of 

ISG15 in the antiviral activity has been confirmed in knock-out mice, that display an 

increased susceptibility to the infection by a number of viruses79,80. 

Mx family proteins.  

MX1 and MX2 display a GTPase activity75. Point mutations in the genes encoding 

the two MX proteins confer to mice a high susceptibility to viral infection81. The MX 

proteins seem to target viral components that are subsequently trapped and targeted 

for degradation82.  

OAS and the RNAseL pathway.  

The 2’-5’ oligoadenylate synthase (OAS) family comprises four genes (OAS1, OAS2, 

OAS3 and OASL)75. Several splice isoforms are generates75. The 2’-5’ oligoadnylate 

activates the latent RNA nuclease (RNAseL) that degrades single stranded RNA75. 

PKR.  

PKR is a protein kinase that is ubiquitously expressed and upregulated upon type I 

and type III IFN stimulation75. PKR is maintained inactive in the cytoplasm and it is 

activated through binding of viral RNA75. Activated PKR mediates the 

phosphorylation of eukaryotic initiation factor 2 (eIF2α), leading to the block of 

translation75. 

IFIT family.  

The interferon-induced protein with tetratricopeptide repeats (IFIT1 and IFIT6) have 

also been shown to display anti viral activity38. They bind to eIF3 and block 

translation38. 

 

1.2.5. Negative regulators of the Jak-STAT pathway. 

The Jak-STAT signaling pathway is modulated by a number of negative regulators 

(reviewed in 71,38,83, Fig 1.5). 

SHPs.   
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SH2 domain containing phosphatases, SH1 and SH2 are ubiquitously expressed and 

reside in the cytoplasm83. SHPs impair the Jak-STAT signaling pathway by de-

phosphorylating phospho-tyrosine residues in the intracellular domain of the receptors 

or on the Jaks, resulting in a reduced STAT phosphorylation83.  

Suppressor of cytokine signaling proteins (SOCSs).  

SOCS family comprises 8 members (CIS and SOCS1 to SOCS7) that are rapidly 

induced by IFNs, resulting in an early negative feedback loop of the Jak-STAT 

pathway38. SOCSs are cytoplasmic proteins that contain an SH2 domain38. They can 

exert the inhibitory activity on the Jak-STAT pathway in various ways: by binging 

and inhibiting Jaks, by competing with STATs for the binding to the receptors or by 

mediating the protein turnover of the receptors through ubiquitine-proteasome 

degradation83. 

Ubiquitin specific peptidase (USP18/UBP43).  

USP18/UBP43 has been first described as a protease mediating the cleavage of 

ubiquitine-like ISG15 conjugated to target proteins76. However, it has been recently 

shown that USP18/UBP43 exerts an inhibitory effect on the Jak-STAT signaling 

pathway independently from the peptidase activity84. Indeed, USP18/UBP43 has been 

reported to inhibit Jak1 activation via impairment of the Jak1 binding to IFNAR2c84. 

USP18/UBP43 is induced upon IFN treatment85,86.  Accordingly, in Huh7 cells, type I 

and III IFNs85, and at less extent type II IFN86, up-regulate USP18/UBP43 at mRNA 

and protein levels.  

PIAS.  

Protein inhibitor of the activated signal transducer and activator of transcription 

STATs (PIAS) exert an inhibitory effect on the Jak-STAT pathway in the nucleus. 

PIAS1 and PIAS3 bind to activated STAT1 and STAT3, respectively, and prevent 

STAT dimers to associate to the DNA87.  

TcPTP.  

STAT1 activation is abrogated in the nucleus via specific de-phosphorylation of 

tyrosine 70188. This process is mediated by the T-cell protein tyrosine phosphatase, 

TcPTP88. 
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Figure 1.5.  Negative regulators of the Jak-STAT signaling pathway (modified from83). 

 

1.2.6.   Refractoriness of IFN signaling pathway. 

Upon treatment with saturating doses of IFNα, py-STAT1 is induced at maximum 

level in hepatoma cells and in mouse liver after 30 minutes or one hour, 

respectively89,90.  pY-STAT1 activation results in IRGs induction in hepatoma cella 

and in mouse liver89,90. However, the constant exposure of cells to IFNα or repeated 

injections of IFNα in mice resulted in the “desensitization” (refractoriness) of the Jak-

STAT signaling pathway, leading to the impairment of STAT1 phosphorylation and 

IRGs expression89,90. The role of negative regulators in mediating the refractoriness of 

the Jak-STAT signaling pathway has been investigated in the mouse liver90. It has 

been shown that the refractoriness phenomenon does not depend on SOCS1 and 

SOCS390.  Instead, it has been proven that USP18/UBP43 mediates the refractory 

state of the IFNα signaling pathway in mouse liver90. Indeed, mice knock-out for 

USP18/UBP43 and repeatedly injected with IFNα display a long-lasting STAT1 

tyrosine phosphorylation in the liver90. Interestingly, we have recently described that 

in vivo INFλ and IFNβ signaling pathways are not refractory85. The lack of 

desensitization of the Jak-STAT pathway was confirmed also via the prolonged ex-

vivo treatment of human liver biopsies with INFλ85. Of note, since USP18/UBP43 is 
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induced by both IFNα and IFNβ, which share the same receptor complex, the 

mechanism that allows IFNβ to escape from the refractoriness state remains to be 

elucidated. 

 

1.2.7.   Interference of HCV with the Jak-STAT signaling pathway. 

In vitro evidences suggests that HCV has developed different strategies to interfere 

with the Jak-STAT signaling pathway and to block the host antiviral response. 

Indeed, transient transfection of HCV RNA in hepatoma cells has revealed that HCV 

core inhibits STAT1 activation via SOCS3 up-regulation91,92. It has also been reported 

that HCV core over-expression is associated with proteasome-dependent degradation 

of STAT193. Another group, however, observed that HCV core and NS5A over-

expression do not affect STAT1 degradation but alter the nuclear transport of 

activated STATs94. Our group described a reduction of STAT1-DNA binding in 

hepatoma cells expressing HCV open reading frame, in transgenic mice expressing 

HCV proteins, and in liver biopsies from patients chronically infected with HCV95,96. 

We reported that protein phosphatase 2A (PP2A) is the key mediator of the 

impairment of STAT1-DNA binding95. Furthermore, we observed that HCV-induced 

an ER stress response that mediates PP2A catalytic subunit over-expression97. PP2A 

induction was confirmed in hepatoma cells over-expressing HCV protein, in HCV 

transgenic mice, and in human liver biopsies from HCV chronically infected 

patients98. We have shown that PP2A binds to protein arginine methyl transferase 1 

(PRMT1) impairing its enzymatic activity resulting in a reduced methylation of 

STAT199. Despite the still controversial finding that STAT1 methylation modulates 

its association to PIAS1100,101, we have provided evidence that the inhibition of 

PRMT1 activity mediated by PP2A resulted in an increased STAT1-PIAS1 

association impairing the binding of pY-STAT1 to the DNA98,99 (schematic summary 

in Fig. 1.6). Finally, we have proven that the treatment with the methyl donor S-

adenosyl-methionine (SAMe) restores the normal IFN signaling in HCV replicon 

cells102.  

 

 



	
  
	
  
	
  

	
   27	
  

 

Figure 1.6. PP2A-mediated inhibition of STAT1-DNA binding. 

 

Another model of HCV interference with the host antiviral response has been recently 

proposed. It has been reported that HCV impairs of eukaryotic translation103. HCV 

activates PKR, leading to the phosphorylation of eIF2α and the inhibition of 

eukaryotic cap-dependent mRNA translation103. On the contrary, phosphorylation of 

eIF2α does not modulate the IRES-dependent HCV RNA translation103. However, the 

impact of HCV-mediated mRNA translation impairment remains to be assessed in 

human liver biopsies.  

 

 

 

1.3 Host-virus interaction during acute and chronic HCV 

infection. 
 

1.3.1  Natural history of HCV infection 

Transmission.  

HCV infection occurs via exposure to infected blood and sexual transmission. Blood 

transfusions have been tested since 1992, leading to the virtually complete elimination 

of HCV transmission through donated blood104. In developed countries, intravenous 

drug injection is the major source of HCV infection104. In developing countries, 

instead, the use of contaminated equipment in the medical practice is one of the most 

prominent way of HCV transmission105.  

Acute hepatitis C (AHC).  

AHC is difficult to diagnose since the patients are asymptomatic or (in 30% of the 

cases) develop non-specific symptoms like fatigue, myalgia, vomiting, and 

jaundice106. The symptoms may develop between 2 and 12 weeks after infection107. 

Within days after exposure HCV RNA is detectable in the blood107. Four to twelve 

weeks after viral exposure, an increase of alanine aminotransferase (ALT) levels may 

occur108. Fulminant liver injury is rare and occurs in less than 1% of the infected 
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individuals108. Seroconversion may occur between 4 and 12 weeks after exposure to 

the virus109,108. Early studies on infected patients due to blood transfusions have 

demonstrated that 15-30% of the patents clear the virus spontaneously110,111. 

Chronic hepatitis C (CHC), cirrhosis and hepatocellular carcinoma HCC.  

HCV infection is defined as chronic when HCV RNA is detectable in the blood after 

6 months of viral exposure110. It has been estimated that 75-80% of the infected 

patients progress to chronicity110,111. Interestingly, the rate of CHC appears to be 

lower in young individuals112, in women113, and in patients who develop jaundice or 

other clinical manifestations during the acute phase107,114. Persistent HCV infection 

can lead to liver disease (fibrosis, cirrhosis and HCC)115. Heretofore, liver biopsy is 

considered as the gold standard for the assessment of the liver disease status116. A 

systematic analysis of published epidemiological studies indicates that, after 20 years 

of infection, the rate of progression to cirrhosis varies between 10 to 20% in CHC 

patients115. Once cirrhosis is established, the risk of HCC development increases 

dramatically, with an estimated annual rate of 1% to 4%117,118. Progression of CHC to 

liver disease varies between subjects, since it is influenced by many risk factors like 

sex, race, alcohol consumption, and co-infection with HBV and HIV (reviewed in 
119). 

 

1.3.2 Host response during acute HCV infection.  

Acute HCV infection can be divided in an early-acute phase (1 to 6 weeks post 

infection) and a late acute phase (6 to 24 weeks post infection) (Fig. 1.7). The early 

acute phase of HCV infection has been studied exclusively in chimpanzees120,121,122. 

In these animals, HCV titer increases few days after infection and concomitantly 

IRGs are up-regulated in the liver120,121. However, the type of IFNs responsible for 

this effect remains to be elucidated. Of note, the IRGs up-regulation fails to clear 

HCV120,121. In the late acute phase, a cellular immune response occurs and HCV viral 

titer decreases120,121,122. Indeed, in the liver of chimpanzees, CD8+ T cells can be 

detected concomitantly with an increase of IFNγ mRNA and alanine 

aminotransferase, indicating damage of the liver , and IFNγ mRNA120,121. In vitro 

data using the HCV replicon system support the role of CD8+ T cells in HCV 

clearance. CD8+ T cells inhibits HCV replication by inducing hepatocytes lysis and 

through a non-cytolytic way, mediated by IFNγ production123. We have recently 
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assessed that a strong induction of IFNγ-stimulated genes can be detected in liver 

biopsies of AHC patients124. 

After the late acute phase, chimpanzees that do not clear HCV are characterized by 

the rise of viral titer after its transient diminution122. HCV titer is 10 times lower in 

chronic infection than in AHC, and HCV infection becomes chronic122. In the chronic 

infection both type I or type III IRGs are detectable in the liver of chimpanzees125. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7. Natural history of HCV infection68. 

 

 

1.3.3 Host response during chronic HCV infection.  

In individuals chronically infected with HCV, the hepatic up-regulation of type I and 

type III IRGs varies greatly68. Interestingly, in the Caucasian population, it has been 

observed that almost half of the CHC patients display a broad induction of IRGs in 

the liver (pre-activation of IFN system) despite the persistence of HCV infection, 

whereas the rest of the patients have no detectable induction of the innate immune 

system in the liver68. The molecular mechanism that mediates the differential 

induction of IRGs in the liver remains to be elucidated. The pre-activation of the IFN 

system could be driven by a specific IFN subtype. Expression of IFNα, IFNβ, and 
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IFNγ has not been consistently observed in liver biopsies of CHC patients68. On the 

contrary, IFNλs can be detected in the liver biopsies of CHC patients126. IFNγ can be 

further excluded as driving force of the pre-activated IFN system since we have 

recently assessed the presence of type I/III IRGs, and not type II IRGs, in the liver of 

CHC patients122,124,127. IFNα signaling pathway, as described in session 1.2.6, 

undergoes a refractory state after the first stimulation, which would prevent the long 

lasting induction of ISGs in the liver of CHC patients. IFNλs and IFNβ signaling 

pathways, on the contrary, are not refractory85. Indeed, the involvement of those two 

cytokines in the activation of the endogenous IFN system in the liver of CHC patients 

is tempting. 

CHC patients that display an up-regulation of the hepatic endogenous IFN system are 

characterized by an up-regulation of STAT1 at mRNA and protein levels in the 

liver127. As assessed by Western blotting, STAT1 it is mot likely to be in an un-

phosphorylated state (U-STAT1) in the liver of pre-activated patients127. It has been 

reported that U-STAT1 can shuttle in the nucleus independently of tyrosine 701 

phosphorylation128 suggesting a role of U-STAT1 as active transcription factors. The 

possibility that U-STAT1 could maintain the up-regulation of ISGs in the liver of 

CHC pre-activated patients is tempting. Indeed, a gene expression profile of cells 

over-expressing a STAT1 mutant that can not be phosphorylated suggests that U-

STAT1 maintain high expression of a subset of IRGs129. However several criticisms 

to the experimental settings make questionable the results of this study.  

Several reports indicate that the up-regulation of the endogenous IFN system in the 

liver of CHC patients is associated to the minor allelic variant at single nucleotide 

polymorphisms (SNPs) mapping at the IL28B locus126,130,131 (discussed also in 1.4.2, 

see fig. 1.8). In particular, the minor (less frequent in the population) allele at 

rs12979860130,126 	
   and	
   rs8099917130,131 were associated with an increased baseline 

expression of IRGs in the liver of CHC patients. However, the molecular mechanism 

that links the polymorphisms at IL28B locus to the IRGs up-regulation in a subset of 

CHC patients needs to be clarified.  
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1.4 Treatment of chronic hepatitis C. 

 
1.4.1 Interferon α-based therapy. 

The aim of CHC treatment is the achievement of a sustained virological response 

(SVR), defined as undetectable HCV RNA with PCR assay (<50 International Units 

[IU]/mL) 24 weeks after the end of the antiviral therapy51. 

In the last 20 years, IFNα has been the key component for CHC treatment51. 

Recombinant IFNα was first introduced in 1986 for the treatment of non-A, non-B 

hepatitis, even before HCV was first described132. The therapy consisted of IFNα2 (3 

Mio IU) subcutaneous injections 3 times a week for 24-48 weeks, resulting in the 

eradication of HCV in 15-25% of the patients132. In the late 1990s, the introduction of 

the orally administrated ribavirin, a broad spectrum antiviral agent, improved viral 

clearance up to 30-40% of the cases133. More recently, unmodified IFNα2 has been 

replaced with pegylated IFNα2 (pegIFNα2)134,135. There are two licensed pegIFNα2, 

that show overlapping clinical response: pegIFNα2b, with a 12KDa linear 

polyethylene glycol (PEG) moiety covalently linked to the standard IFNα2, and 

pegIFNα2a with a covalently linked 40KDa branched PEG moiety. PegIFNα2 has a 

longer serum half-life than unmodified IFNα2134,135. Consequently, the dosing interval 

has been adjusted to one weekly subcutaneous injection. Any differences in the 

clinical response have been observed for the two different pegIFNα2 available134,135. 

The administration of pegIFNα2 and ribavirin for 24-48 weeks has improved HCV 

clearance in up to 55%134,135. 

In case of non-response (NR, failure to clear HCV RNA from serum after 24 weeks of 

therapy), treatment options are limited. Due to the very low probability of achieving 

an SVR (less than 5%), retreatment is not recommended136.  

Side effects are very common in patients treated with IFNα-based therapy134,135. In the 

two clinical trials for the registration of pegIFNα2a and pegIFNα2b, more than half 

of patients experienced influenza-like symptoms such as fatigue, headache, fever and, 

rigor 134,135. Twenty two to thirty one percent of patients experienced psychiatric 

effects like depression, irritability, and insomnia134,135. Neutropenia has been observed 

in 18% of patients, but it was not associated to an increased susceptibility to 

infections134,135. Approximately one third of patients experienced anemia134,135.  
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1.4.2 Prediction of response to IFNα-based therapy. 

Since IFNα-based therapy is not effective in a significant percentage of CHC patients, 

predictors of response to treatment are useful to advise the patients for their likelihood 

to achieve the eradication of the viral infection.  

Baseline predictors.  

HCV genotype.  

HCV genotypes display different sensitivity to pegIFNα-based therapy137. Indeed, 

patients infected with genotypes non-1 (mostly 2 and 3) can be cured in over than 

75% of the cases by a combined therapy137. Patients infected with genotype 1, though, 

achieve eradication of the virus in less than 50% of the cases137. This phenomenon is 

puzzling since different HCV genotypes induce similar type of disease137.   

Ethnicity, gender, age and diseases. 

A low viral load (600.000-800.000IU/mL or less) before treatment is a predictor of 

SVR independently from the HCV genotype137. Non-African-American race138,139 , 

female gender140, age less than 40 years51 and absence of insulin resistance51 have 

been associated to a higher rate of SVR. A lower rate of response to IFNα-based 

therapy has been associated to advanced liver fibrosis and cirrhosis140. 

Pre-activation of the endogenous IFN system in the liver.   

Non-response to IFN-based therapy has been repeatedly associated to the activated 

endogenous IFN system in the liver of CHC patients (described also in section 

1.3.3.)127,130,141,142. Indeed, gene expression profile on paired liver biopsies before and 

after peg-IFNα2 injection revealed that non-responder patients display an a pre up-

regulation of the endogenous IFN system in the liver, preventing the further induction 

of IRGs by exogenous peg-IFNα2127. Responder CHC patients, though, have low 

levels of IRGs in the liver before treatment and exogenous peg-IFNα2 induces hepatic 

IRGs at high levels127. Expression of hepatic IRGs is a potent predictor of response to 

treatment in CHC patients. Indeed, we have recently developed an algorithm based on 

the hepatic expression level of 4 classifier genes (ISG15, RSAD2, IFI27 and 

HTAITP2) that allows the prediction with high accuracy of treatment-outcome in 

CHC patients126.  

Allelic variants at IL28B genotype.   
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In the last few years, several genome wide associations studies have reported a strong 

association between treatment-response in CHC patients and allelic variants at single 

nucleotide polymorphisms (SNPs) located at the IL28B locus on chromosome 19143, 
144,145,146. The SNPs found mostly associated are the following: rs12979860 (C major 

allele, T minor allele) mapping 3Kb upstream the IL28B gene143, rs8099917 (T major 

allele, G minor allele) located 7.5Kb upstream the IL28B gene144,145,146, rs12980275 

(A major allele, G minor allele) located 2.5Kb downstream the IL28B gene146 (Fig. 

1.8). For all these SNPs, the minor allele is associated to treatment failure in both 

heterozygosity and homozygosity, pointing out its dominant effect143,144,145,146. Indeed, 

in the first published genome wide association study on CHC Caucasian patients, 

C/C, C/T and TT genotypes were associated with ≈ 80%, 40% and 35% SVR rate, 

respectively143. In African-Americans, the rate of SVR was reduced, maintaining, 

though, the dominant effect of the minor allele on treatment outcome143. Interestingly, 

the frequency distribution of the major allele at rs12979860 varies among East Asians 

(90%), European Americans and Hispanics (70%), and African-Americans (40%)143. 

This finding correlates with the observation that treatment outcomes in CHC differ 

among ethic groups: 70% in East-Asian, 50% in Hispanics and European-Americans, 

and around 25% in African-Americans143.  

So far, the molecular mechanism that links polymorphisms at IL28B locus with 

treatment outcome has not yet been elucidated.  

 

Figure 1.8 Localization of SNPs at IL28B locus (chromosome 19) that are mostly associated 

to treatment response in CHC68.  

 

Predictors during therapy.  

HCV kinetic during treatment is a useful tool to predict response to therapy in CHC 

patients (refer to Table 1.1 for definitions) 51. HCV RNA is currently measured during 



	
  
	
  
	
  

	
   34	
  

therapy at weeks 4, 12, 24 or 4851. Patients are then tested 24 weeks after the end of 

the treatment for SVR assessment51. In the early phase of the therapy, achieving a 

rapid virological response (RVR, HCV RNA negative at treatment week 4) is highly 

predictive of obtaining an SVR, regardless the HCV genotype51. However, only 15 to 

20% of the patients with genotype 1 and 65% with genotype 2 or 3 achieve an 

RVR147,148. Monitoring the early virological response (EVR, HCV RNA decrease ≤ 2 

logs at treatment week 12) is useful for treatment-prediction, especially in patients 

with HCV genotype 151. Indeed, data of two retrospective studies revealed that 97% 

to 100% of genotype 1 patients that do not show an EVR fail to achieve an SVR134,149. 

EVR is less helpful to predict the treatment-response in genotype 2 and 3 infection 

since most of the patients clear the virus at week 12 and respond to therapy51.  

 
Virological response  Definition  

 
Rapid virological response (RVR) HCV RNA negative at treatment week 4 

 
Early virological response (EVR) ≥ 2 log reduction in HCV RNA level compared to baseline  

 
End of treatment response (ETR) HCV RNA negative at the end of 24 or 48 weeks  

of treatment 
Sustained virologic response (SVR) HCV RNA negative 24 weeks after cessation of treatment 

 
Breakthrough  Reappearance of HCV RNA while still on therapy 

 
Relapse Reappearance of HCV RNA after therapy is discontinued 

 
Non responders (NR) Failure to clear HCV RNA after 24 weeks of therapy 

 
Null responder Failure to decrease HCV RNA by ≤ 2 log after 24 weeks 

of therapy 
 

Partial responder Two log decrease in HCV RNA but still HCV RNA 
positive at week 24 

Table 1.1. Virological responses during therapy (modified from 51). 
 

1.4.3 IFNλ-based therapy. 

Since IFNλs display an antiviral effect against HCV in vitro and activate an 

intracellular signaling pathway that overlaps the one of IFNα, clinical trials are 

currently ongoing to assess the safety and efficacy of peg-IFNλ in the treatment of 

CHC patients150,151. The tissue-restricted localization of IFNλ receptor makes this 

cytokine very appealing for clinical use since the therapy should be associated with 

fewer side effects compared to IFNα. A study conducted on healthy volunteers 

assessed the safety of peg-IFNλ1150. Administration of a single dose up to 7.5µg/Kg 
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pegIFNλ1 revealed minor side effects up to 50 days of follow up150. On the basis of 

this results, a phase 1b clinical trial with peg-IFNλ1 in combination of not with 

ribavirin has been conduced on genotype 1 treatment-naïve or treatment-relapse CHC 

patients151. Different doses of peg-IFNλ1 were tested (between 1.5 and 35µg/Kg) and 

patients were treated with a weekly single subcutaneous injection up to 4 weeks151. 

The results of the clinical trial show an antiviral activity of peg-IFNλ1 in all the doses 

selected151. Twenty nine percent of the naïve patients achieved a RVR and in general 

the treatment was associated with reduced side effects151. However, this study lacks 

comparison with peg-IFNα treatment151. At the last EASL meeting in Barcelona, 

results from a phase 2b clinical trial were presented. In this study, SVR was assessed 

in CHC naïve patients with HCV genotype 2 and 3 treated with peg-IFNλ1-ribavirin 

or peg-IFNα2-ribavirin. SVR rate was similar in the two arms of the clinical trial152. 

However, treatment with peg-IFNλ1 was associated with reduced side effects 

compared to peg-IFNα2 treatment152. 

These results point out a possible role of peg-IFNλ1 as substitute of peg-IFNα2 in the 

treatment of CHC. Further investigation is required to assess the rate of SVR achieved 

in case of treatment-relapse in CHC patients. 

 

1.4.4.  Direct-acting antiviral agents (DAA) for CHC treatment 

Since INFα-base therapy is only partially effective in the treatment of CHC patients 

and it is associated with side effects, new antiviral strategies are required.  Intense 

studies in the past years resulted in the elucidation of the crystal structure of several 

HCV viral proteins, allowing the design of direct-acting antiviral agents (DAA). In 

2011, for the first time, two DAA (Telaprevir and Boceprevir) have been approved for 

the treatment of genotype 1 infected CHC patients in combination with INFα-based 

therapy153,154,155,156. Telaprevir and Boceprevir are both inhibitors of NS3/4A 

proteases and they differ for the nature of the covalent complex generated with the 

target (irreversible for Telaprevir, reversible for Boceprevir). Phase III randomized 

clinical trials on treatment-naïve genotype 1 infected patients revealed that the triple 

therapy, compared to peg-IFNα and ribavirin, led to a higher SVR rate: 75% for 

Teleprevir, 66% for Boceprevir156,154.  Previously treated patients have been also 

assessed for their response to the triple therapy. In this case SVR rates varies from the 

30% of prior null response to the 85% in prior reponders/relapsers156,154. 
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Of note, patients treated with the triple therapy experienced additional side effects like 

anemia, pruritus, and rash156,154.  

Teleprevir and Boceprevir can not be administrated as a monotherapy because 

resistant viral variants are selected within 1-2 weeks, leading to virological 

breakthrough157,158. Therefore, the association of the two DAA with IFNα-based 

therapy is mandatory to achieve SVR.  

Other DAA targeting HCV non-structural proteins, like NS2/3, NS4B, NS5A and 

NS5B, are currently in pre-clinical or clinical evaluation (reviewed in 159). However, 

IFNα-based therapy remains the backbone of HCV treatment.  

In the future, emerging of DAA that do not require IFNα-based therapy is expected. 

 

 

	
  
1.4.5 Host-targeting antiviral agents (HTA) 

An additional category of potential drug target consists in the host cell factors 

required for HCV replication. Cyclophillin A, a cellular peptidil-prolylisomerase that 

acts on NS5A160 and has a key role in HCV replication161 is a promising target for 

HCV antiviral therapy. The cyclophillin A-binding molecule Alisporivir has been 

reported to induce genotype 1 resistant variant at lower time rate compared to 

Teleprevir/Boceprevir (20 weeks and less than 2 weeks, respectively)162. Recent 

results from a phase II clinical trial suggests that triple therapy with Alisporivir results 

in a higher SVR rate compared to pegIFNα/ribavirin regimen in genotype I infected 

patients163. Phase III clinical trials are ongoing.   

Another promising target for HCV antiviral therapy is the liver-specific miRNA, 

miR-122. Mir-122 is required for HCV replication4. Miravirsen has been designed to 

target and sequester miR-122164. Pre-clinical studies on chimpanzees indicate that 

Miravirsen successfully long-lasting prevents HCV viremia without the emerging of 

resistant viral variants and side effects164. Clinical trials to assess safety and efficacy 

for Miraviresn are currently ongoing. 
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2. Aim of the thesis 
 
In chronically infected HCV patients, the response to IFNα-based therapy depends on 

the induction of the IFN system in the liver before the therapy. Indeed, non-responder 

patients are characterized by a broad pre-up-regulation (pre-activation) of IRGs in the 

liver127. It has also been reported that in CHC patients, the expression level of hepatic 

IRGs130,131,126 and the clinical outcome143, 144,145,146 are associated to allelic variants at 

IL28B locus.  

So far, the molecular mechanisms that link the hepatic expression level of IRGs, the 

allelic variants at IL28B locus, and the treatment outcome in CHC patients have not 

yet been clarified. The aim of the thesis is to investigate molecular mechanisms that 

could explain these observations. 

 

a) Unphosphorylated STAT1 (U-STAT1) induces a long-lasting up-regulation of 

IRGs.  

STAT1 is over-expressed at protein level in liver biopsies of non-responder CHC 

patients compared to responder patients127.  In non-responder patients, the IFNα 

signaling is refractory since an exogenous administration of peg-IFNα does not lead 

to a significant increase of pY-STAT1 in the liver127. It has been reported that STAT1 

can be detected in the nucleus independently from its tyrosine phosphorylation, 

indicating a possible role of U-STAT1 as a transcription factor128. The role of U-

STAT1 in prolonging IRGs expression is tempting and it has been already 

investigated in a report published in 2009 by the Stark group129. However, criticisms 

to the experimental settings in this paper make the reported results not conclusive. 

Therefore, we decided to investigate the role of U-STAT1 in the maintenance of IRGs 

expression using a different experimental set up.  

 

b) IFNλ signaling mediates the pre-activation of the IFN system in the liver of 

CHC non-responder patients.   

The pre-activation of the IFN system in the liver of CHC non- responder patients 

could be due to a constant activation of the Jak-STAT signaling pathway. We have 

recently assessed that IFNλ signaling pathway is not desensitized in case of repeated 

injection of IFNλ in the mice leading to a prolonged pY-STAT1 signal in the mouse 
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guts85. IFNλ activates a type-I like intracellular signaling pathway57 and it can be 

detected in liver biopsies of CHC patients126. Therefore, we wanted to assess if the 

absence of refractory state in the IFNλ signaling pathway could mediate the long-

lasting up-regulation of ISGs in the liver of non-responder CHC patients. 
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3. Materials and methods 
 
3.1. Role of unphosphorylated STAT1 (U-STAT1) in the pre-

activation of the hepatic IFN system. 

 
The following material and methods refer to the results described in the chapter 4.1. 

 

3.1.1 Cells and reagents. 

2fTGH and U3A cell lines were described in165,166. Briefly, human sarcoma cell line 

HT 1080 has been transfected with a selectable marker (guanine 

phosphoribosyltransferase) regulated by an IFNα-dependent promoter, allowing the 

generation of 2fTGH cell line165.  2fTGH cells were chemically mutagenized with 

ICR-191 (Polysciences) and selected as described in165. Selected cells were 

characterized for the response to IFNα and the expression of Jak-STAT signal 

components. The U3A clone lacks STAT1 expression at protein level and, 

consequently is not responsive to IFNα stimulation166. 2fTGH and U3A cell lines 

were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% 

FBS and 250µg/ml of hygromycin B (cat n. 10843555001, Roche Pharma). Stable 

transfected cells were selected with 800µg/ml of G418 (Calbiochem, cat n. 345810). 

Experiments were performed in serum-starved culture medium. IFNα-2a (Roferon-A) 

was purchased by  (Roche Pharma).  

 

3.1.2 Site-directed mutagenesis and cloning.  

STAT1α-FLAG-pcDNA3 was provided by J.E. Darnell. STAT1α(Y701F)-FLAG 

pcDNA3 was generated from STAT1α-FLAG-pcDNA3 according to the method 

described in167 with the following primers: 5’-CTGGCACCAGAACGAATGA-3’, 5’-

ATTTAGGTGACACTATAG-3’, 5’-GGAACTGGATTCATCAAGACTGAG-3’, 

5’GGAACTGGATTCATCAAGACTGAG-3’,         5’-

CTCAGTCTTGATGAATCCAGTTC-3’, the restriction sites BlpI and ApaI and Pfu 

DNA polymerase (Promega Biosciences Inc.). Mutation of tyrosine 701 to 

phenylalanine was confirmed by sequencing. 

STAT1α-FLAG-pcDNA3 and STAT1α-FLAG-pcDNA3 were transfected in U3A 

STAT1 knock out (STAT1 -/-) cells using Fugene HD (Roche Pharma, Basel, 
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Switzerland), selection with hygromycin B was carried out for 15 days and single 

clones were picked. Over-expression of STAT1α WT of STAT1α-(Y701F) was 

assessed by Western blotting. 

 

3.1.3  Cell lysis and Western blotting. 

Cells were lysed for 20 minutes on ice with a buffer containing 100mM NaCl, 50mM 

Tris pH 7.5, 1mM EDTA, 0.1% Triton X-100, 10mM NaF, 1mM phenylmethyl 

sulfonyl fluoride, and 1M sodium orthovanadate and protease inhibitors. Lysates were 

centrifuged at 14,000 rpm for 15 minutes, and protein concentration was determined 

by Bio-Rad protein assay. 10µg of whole protein cell lysate was loaded on 8% 

SDS/PAGE and transferred onto nitrocellulose membrane (Schleicher & Schuell, 

Switzerland). After blocking for 1 hour with 5% BSA in TBS-Tween (20nM Tris pH 

7.4, 0.15 M NaCl, 0.1% ), the membranes were incubated overnight with the 

following antibodies diluted in TBS-Tween: STAT1 N-terminus (cat. n. 610119, BD 

Transduction Laboratories), phosphpo-Y701-STAT1 (cat. n. 9167, Cell Signaling), β-

actin (cat. n. A2228, Sigma-Aldrich). After washing with TBS-Tween membranes 

were incubated at room temperature for 1h with secondary infrared antibodies goat 

anti-mouse (IRDye 680) or goat anti-rabbit (IRDye 800) form LI-COR Bioscience. 

Membranes were scanned with Odyssey Infrared Imaging System (LI-COR).  

 

3.1.4 RNA extraction, reverse transcription and quantitative real-time 

polymerase analysis. 

RNA extraction was performed with NucleoSpin RNA II (Macherey-Nagel, GmbH & 

Co. KG) according to the manufacturer’s instructions. 1µg of RNA was reverse-

transcribed with random hexamers and Moloney murine leukemia virus reverse 

transcriptase (Promega Biosciences Inc.). Quantitative real-time polymerase chain 

reaction was performed with SYBR green fluorescence (Applied Biosystems) and an 

ABI 7500 detection system (Applied Biosystems). Gene expression was normalized 

to human GAPDH using the ΔCt method. Primers used for quantitative real-time 

polymerase chain reaction are listed in the following table: 
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Target Forward primer  Reverse primer 
BST2 5’-TCTCCTGCAACAAGAGCTGA-3’ 5’-TCTTCTCAGTCGCTCCACCT-3’ 
HERC6 5’-CACTACCACTCCCTGGCATT-3’ 5’-TGTTACTTCCCCAGCCAAAV-3’ 
IFI27 5’-GGCAGCCTTGTGGCTACTCT-3’ 5’-CCCAGGATGAACTTGGTCAATC-3’ 
IFI44L 5’-GCTGCGGGCTGCAGAT-3’ 5’-CTCTCTCAATTGCACCAGTTTCC-3’ 
ISG15 5’-TCCTGCTGGTGGTGGACAA-3’ 5’TTGTTATTCCTCACCAGGATGCT-3’ 
MX1 5’-GTGCATTGCAGAAGGTCAGA-3’ 5’-TCAGGAGCCAGCTTAGGTGT-3’ 
OAS1 5’-TGATGCCCTGGGTCAGTTG-3’ 5’-TCGGTGCACTCCTCGATGA-3’ 
OAS2 5’ACAGCTGAAAGCCTTTTGGA-3’ 5’-AAGTTTCGCTGCAGGACTGT-3’ 
RSAD2 5’-CTTTGTGCTGCCCCTTGAG-3’ 5’-TCCATACCAGCTTCCTTAAGCAA-3’ 
Table 3.1. Real-time PCR primers list. 
 

3.1.5 Statistical Analysis 

Statistical analysis was performed using Prism4 (GraphPad software Inc). 

 
 
 
3.2. The interferon λ receptor chain α (IL28Rα) triggers high 

expression levels of interferon stimulated genes in non responsive 

chronic hepatitis C patients. 

 
The following material and methods refer to the results described in the chapter 4.2. 

 

3.2.1  Reagents and antibodies. 

The following human IFNs were used: IFNα-2a (Roferon-A, Roche Pharma, Basel, 

Switzerland); IFNβ-1β Betaferon (Bayer Schering Pharma, Zürich, Switzerland); 

IFNλ2 (Peprotech Inc., Rocky Hill, NJ). LPS was purchased from Sigma (Sigma-

Aldrich Chemie GmbH, Steinheim, Germany L5293). The following antibodies were 

used for Western blotting and immunofluorescence staining: phospho-STAT1, 

phospho-STAT1 Alexa Fluor® 555 conjugated, p53, and pSer18-p53 (Cell Signaling 

Technology, Bioconcept, Allschwil, Switzeland), STAT1 (Transduction Laboratories, 

BD Biosciences Pharmingen, San Diego CA), β-actin (Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany), and IL28RA (ProSci Inc. cat. n. 26-279, Poway, CA).  
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3.2.2 Cell culture. 

Huh7 cells were cultured in Dulbecco’s modified Eagle medium supplemented with 

10% fetal bovine serum and penicillin/streptomycin. The coding sequence for IL28Rα 

was amplified from a commercially available IMAGE human cDNA clone (cat.n. 

EHA10001-99865534 Open Biosystems, Thermo Fisher Scientific Inc.) with the 

primers 5’-TTTTCTAGACGGCAGGAAGGCCATGGC-3’ and 

5’TCTAGACCTGGCCATGTAATGCCCCAAT-3’, and subsequently cloned into  

pcDNA3.V5-His vector with XbaI restriction enzyme. The expression plasmid was 

transfected into Huh7 cells using Fugene HD (Roche Pharma, Basel, Switzerland). 

Cells were selected with DMEM culture medium supplemented with 10% FBS, 

penicillin/streptomycin and 1mg/ml G418 (cat.n. 345810; Calbiochem EMD 

Chemicals, Inc. San Diego) to generate stable over-expressing clones.   

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Plaque (Life 

Technologies, Cergy Pontoise, France) density gradient centrifugation. Monocytes 

were purified from PBMCs by positive selection using a magnetic cell separator and 

CD14 microbeads (cat. n. 130-050-201;MACS, Miltenyi Biotec, Bergisch Gladbach, 

Germany). Dendritic cells (DCs) were differentiated into culturing monocytes for six 

days in RPMI 1640 supplemented with 10% fetal bovine serum, 

penicillin/streptomycin, 20ng/ml IL4, and 50ng/ml GM/CFS. 

Primary human hepatocytes (PHHs) were isolated from liver resections from patients 

at the Strasbourg University Hospitals with approval from the Institutional Review 

Board. Briefly, liver specimens were first perfused with calcium-free 4-(2-

hydroxyethyl)-1-piperazine ethanesulfonic acid buffer containing 0.5 mM ethylene 

glycol tetra-acetic acid followed by a second perfusion with 4-(2-hydroxyethyl)-1-

piperazine ethanesulfonic acid containing 0.05% collagenase at 37°C. After several 

washes with PBS, non-viable cells were removed by Percoll gradient centrifugation. 

Freshly isolated hepatocytes (3 × 105 cells/well) were then plated in 24-well plates 

pre-coated with collagen (Biocoat, BD Biosciences). Cells were then cultured in 

William's E medium (Sigma-Aldrich) supplemented with 1% Glutamax (Gibco), 1% 

insulin transferrin selenium (Gibco), 10−7 M dexamethasone (Sigma), 0.15% bovine 

serum albumine (Sigma), and 10% fetal bovine serum (PAN Biotec).  

 



	
  
	
  
	
  

	
   43	
  

3.2.3 Patients. 

Liver biopsies from CHC and non-HCV infected patients were obtained during 

diagnosis workup. A liver biopsy for research purposes was obtained upon informed 

consent, in accordance with the Ethics Committee of Basel. Grading and staging of 

CHC was defined according to METAVIR classification. Serum HCV RNA was 

quantified using the Cobas AmpliPrep/COBAS TaqMan HCV Test and the Cobas 

Amplicor Monitor from Roche Molecular Systems (Basel, Switzerland). Response to 

treatment in CHC patients was defined as described previously126. Diagnosis of non-

HCV infected patients was obtained by histopatologic assessment. CHC and non-

HCV infected patients characteristics are summarized in Supplementary Tables 1 and 

3, respectively. Liver specimens for PHH isolation were obtained from donors listed 

in Supplementary table 4. 

 

3.2.4 Western blotting. 

Protein extracts from adherent cells and immunoblotting were performed according to 

the protocol described in 3.1.3. 

 

3.2.5 RNA extraction, reverse transcription and quantitative real-time 

polymerase analysis. 

RNA isolation from Huh7 cells was performed with Trizol reagent (Invitrogen, Basel, 

Switzeland) according to the manufacturer’s instruction. DNA digestion was 

performed with RQ1 RNase-Free DNase (Promega Biosciences Inc., Wallisellen, 

Switzerland). RNA isolation from PHH was performed with NucleoSpin RNA II 

(Macherey-Nagel, GmbH & Co. KG) according to the manufacturer’s instructions. 

1µg of RNA was reverse-transcribed with random hexamers and Moloney murine 

leukemia virus reverse transcriptase (Promega Biosciences Inc., Wallisellen, 

Switzerland). Quantitative real-time polymerase chain reaction was performed with 

SYBR green fluorescence (Applied Biosystems, Foster City, CA) and an ABI 7500 

detection system (Applied Biosystems). Primers used for quantitative real-time 

polymerase chain reaction are listed in Table 3.2. For IL28Rα variant 1, IFNλ1, and 

IFNλ2 the specificity of the polymerase chain reaction was assessed on 3% agarose 

gel and by sequencing the PCR product. Gene expression was normalized to human 
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GAPDH using the ΔCt method. Complete gene expression data from CHC patients 

and PHHs are listed in Supplementary Tables 2 and 4.  

 
Target Forward primer  Reverse primer 
ATF3 5’-CTCCTGGGTCACTGGTGTTT-3’ 5’-AGGCACTCCGTCTTCTCCTT-3’ 
GAPDH 5’-GCTCCTCCTGTTCGACAGTCA-3’ 5’-ACCTTCCCCATGGTGTCTGA-3’ 
HTATIP2 5’-GGGCGGAGGGATTTGTTC-3’ 5’-TGCCAGCTCTGCAGACTTCA-3’ 
IFI27 5’-GGCAGCCTTGTGGCTACTCT-3’ 5’-CCCAGGATGAACTTGGTCAATC-3’ 
IFI44L 5’-GCTGCGGGCTGCAGAT-3’ 5’- CTCTCTCAATTGCACCAGTTTCC -3’ 
IFNl1 5’-CACAGGAGCTAGCGAGCTTCA3’ 5’- TTTTCAGCTTGAGTGACTCTTCCA -3’ 
IFNl2 5’-TTTCTTCTGCTGACAAAGACC3’ 5’- AGCGACTCTTCTAAGGCATCTTT -3’ 
IL28Rav1 5’ CAGTGTCCCGAAATACAGCA -3’ 5’- TGTGTCCAGAAAAGTCCAGGGC -3’ 
ISG15 5’- TCCTGCTGGTGGTGGACAA -3’ 5’- TTGTTATTCCTCACCAGGATGCT -3’ 
NOXA 5'-AGAGCTGGAAGTCGAGTGT-3' 5'-GCACCTTCACATTCCTCTC-3' 
RSAD2 5'-CTTTGTGCTGCCCCTTGAG-3' 5'-CTTTGTGCTGCCCCTTGAG-3' 
STAT1 5'-TCCCCAGGCCCTTGTTG-3' 5'-CAAGCTGCTGAAGTTCGTACC-3' 
USP18 5'-CTCAGTCCCGACGTGGAACT-3' 5'-ATCTCTCAAGCGCCATGCA-3' 
Table 3.2. Real-time PCR primers list. 

 

3.2.6 Ex vivo treatment of human liver biopsies 

Freshly obtained liver biopsies from CHC patients were incubated with PBS, IFNα-2α 

1000U/ml, or IFNλ2 100ng/ml for 15min at 37°C. Specimens were then embedded in 

Tissue-Tek OCT (Sakura Finetek USA. Inc). Sections of 8µm were prepared. 

 

3.2.7  Immunofluorescence 

Liver biopsies sections were fixed in freshly prepared 4% formaldehyde for 15 

minutes.  After a wash with PBS, they were permeabilized in cold methanol. 

Background was then removed with Background Buster (Innovex Bioscience). 

Phosphorylated Y701-STAT1 was then detected using phospho-STAT1-Alexa Fluor® 

555 conjugated antibody. Sections were mounted with Mount FluorCare DAPI (Roth, 

Germany).  

Adherent cells were incubated with cold methanol for 10 minutes, washed with TBS-

Tween, and blocked with blocking solution (5.5% FBS in TBS-Tween) for 60min at 

room temperature. Cells were then washed and incubated with antibodies against 

phosphorylated Y701-STAT1 or IL28Rα. 
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3.2.8 DNA isolation and single nucleotide polymorphisms (SNPs) genotyping.  

Genomic DNA was isolated from liver biopsies using Trizol reagent (Invitrogen, 

Basel, Switzeland) and DNeasy Blood & Tissue Kit (Qiagen) according to the 

manufacturer's instructions. Genomic DNA from donors listed in Supplementary 

Table 4 was obtained from non-parenchymal liver cells using DNeasy Blood & 

Tissue Kit (Qiagen).  

rs12979860 and rs8099917 genotyping was performed with TaqMan SNP genotyping 

assays (Applied Biosystems Inc, Foster City, CA). TaqMan probes and primers were 

designed and synthesized by Applied Biosystems: rs12979860, forward 5′-

TGTACTGAACCAGGGAGCTC-3′, reverse 5′-GCGCGGAGTGCAATTCAAC-3′; 

Vic probe 5′-TGGTTCGCGCCTTC-3′, Fam probe 5′-CTGGTTCACGCCTTC-3′; 

rs8099917, ABI reference C_11710096_10.  

 

3.2.9 Statistical Analysis 

Statistical analysis was performed using Prism4 (GraphPad software Inc). 
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4. Results 
 
4.1. Role of unphosphorylated STAT1 (U-STAT1) in the 

pre-activation of the hepatic IFN system. 

 
We have observed that CHC patients who do not respond to IFN-based therapy 

display a pre-activation of the hepatic IFN system, resulting in an up-regulation of a 

subset of IRGs, including STAT1. The pre-activation of the IFN signaling cascade is 

believed to impair the antiviral effect of exogenous administration of pegIFNα by 

preventing further stimulation of the Jak-STAT pathway (Fig. 4.1.1)127. Heretofore, 

the molecular mechanism that leads to the pre-activation of the IFN system remains 

undetermined.   

 

 

 

 

 

 

 

 

 

Figure. 4.1.1. Analysis of the Jak-STAT signaling in liver biopsies from CHC patients before 

(B1) and after (B2) 4 hours of peg-IFNα administration. In blue CHC responder patients, in 

red CHC non-responder patients (from127, Fig.4A).  

 

Because of the high expression level of STAT1 observed in CHC non-responsive 

patients (Fig. 4.1.1), we hypothesized that this transcription factor could induce and 

maintain the elevated expression level of IRGs in the liver. The transcriptional 

activity of STAT1 requires its activation through phosphorylation on tyrosine 701 

residue. Activated STAT1 are then translocated from the cytoplasm to the nucleus 

where they trigger gene transcription. Nevertheless, it has been reported that 

unphosphorylated STAT1 (U-STAT1) shuffles between cytoplasm and nuclei 
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independently from its tyrosine phosphorylation suggesting its potential 

transcriptional activity 128. U-STAT1 enters the nucleus via carrier-free mechanism 

that requires the interaction with nucleoporins whereas pY701-STAT1 dimers are 

transported in the nucleus in an energy-dependent manner that relies on importins128. 

Cheon H. and Stark G.R. recently investigated U-STAT1-mediated gene expression in 

fibroblasts (BJ cells) and in mammary epithelial cells (hTERT-HME1 cells)129. They 

over-expressed STAT1 wild type (STAT1-WT) or an unphosphorylable  STAT1 

mutant containing a substitution of tyrosine 701 to phenylalanine (STAT1Y701F) 

(Figure 4.1.2) and analyzed gene expression profile129. 

 

 

 

 

 

 
Figure 4.1.2. Infection of BJ and hTERT-HME with lentivirus expressing STAT1-WT (WT), 

STAT1Y701F (YF) and empty vector (Vec) (From129, Fig 2A). 

 

The authors concluded that the high expression level of U-STAT1 is sufficient to 

mediate the transcription of a subset of IRGs (Table 4.1.1)129.  

Cheon and Stark performed the experiments in cell lines that retain the endogenous 

STAT1 expression. Since the experiments were not preformed in serum-starved 

condition, the presence of a basal level of STAT1 phosphorylation can not be 

excluded. Furthermore, the authors claim the use of a monoclonal antibody specific 

for U-STAT1 (cat. n. 610185, BD Bioscience).  However, there is no experimental 

evidence that this monoclonal antibody is sufficiently specific to discriminate 

between STAT1 and pY701-STAT1. Therefore, the conclusion of major nuclear 

localization of U-STAT1 is questionable. Based on these critical points, we decided to 

reassess the transcriptional activity of U-STAT1 suing a different experimental 

setting. 
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Table 4.1.1. Genes induced by U-STAT1 in a gene expression profile analysis. WT, BJ cells 

over-expressing STAT1-WT; YF, BJ cells over-expressing STAT1-Y701F. Results expressed 

as fold change induction relative to the empty-vector transduced BJ cells. (From129, part of 

Table 1). 

 

4.1.1. Generation and characterization of U3A clones expressing STAT1-WT or 

STAT1Y701F. 

We generated STAT1-WT and STAT1Y701F expressing clones by transfecting U3A 

cells that lack STAT1 expression165,166, with mammalian expression vectors 

containing either STAT1-WT or STAT1Y701F coding sequences. The clones were 

selected according to the expression level of STAT1-WT or STAT1Y701F compared 

to the maximal expression level of endogenous STAT1 induced by IFNα in 2fTGH 

cells, from which U3A cells derive. For instance, we show that the level of STAT1 

expression is equal in WT_clone1, Y701F_clone1, and IFNα-stimulated 2fTGH cells 

(Fig. 4.1.3A and 4.1.3B, lanes 5 versus 6). Next, we analyzed and confirmed the 

absence of STAT1 activation in Y701F clones upon IFNα stimulation. Indeed, a pY-

STAT1 signal was detected in STAT1-WT clones but absent in Y701F clones 

(Fig.4.1.3A & B). We confirmed the transcriptional activity of these phosphorylated 

STAT1 by measuring the expression of OAS1 upon IFNα stimulation by quantitative 
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real time PCR.  As expected, OAS1 was detected only in U3A cells containing 

STAT1-WT but not in STAT1Y701F expressing cells (Fig.4.1.4.). 

 

Figure 4.1.3. Expression of STAT1WT and STAT1Y701F in U3A STAT1-/- cells. A. U3A 

STAT1 -/-, 2fTGH cells and U3A clones 1 to 3 expressing STAT1WT were stimulated with 

1000 IU/mL of IFNα for the indicated time. Whole cell protein extracts were subjected to 

Western blotting for the detection of STAT1, pY701STAT1 and β-actin. B. U3A STAT1 -/-, 

2fTGH cells and U3A clones 1 to 3 over-expressing STAT1Y701F were stimulated with 

1000IU/mL for the indicated time. Whole cell protein extracts were subjected to Western 

blotting for the detection of STAT1, pY701STAT1 and β-actin. 
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Figure 4.1.4 OAS1 expression upon IFNα stimulation in STAT1-WT and STAT1Y701F 

clones. Cells were stimulated for 8 hours with 1000IU/ml of IFNα. Total RNA was extracted 

and OAS1 expression level was assessed by quantitative real time PCR. Relative expression 

to GPADH is reported.   

 

 

4.1.2. STAT1-WT and STAT1Y701F expression does not induce IRGs 

expression.  

Because Choen and Stark proposed that U-STAT1 is transcriptionally active and 

maintains a high expression level of a subset of IRGs, we therefore analyzed the 

ability of STAT1Y701F to trigger IRGs. The expression of selected IRGs such as 

OAS1, HERC6, BST2, MX1, IFI44L, IFI27, ISG15, and RSAD2, was analyzed by 

qPCR in overnight serum starved STAT1-WT and STAT1Y701F clones. We included 

STAT1-WT clone 3 stimulated with 1000IU/ml for 4h as a positive control for the 

induction of gene transcription. As shown on Fig.4.5.1, none of the STAT1Y701F 

clones, neither the STAT1-WT clones were able to induce IRGs expression despite 

the elevated expression level of STAT1.  

Our data clearly demonstrate that unphosphorylated STAT1 is transcriptionally 

inactive and, thus, it can not mediate the pre-activation of the hepatic IFN system 

observed in CHC non-responsive patients.  
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Fig. 4.1.5. IRGs expression is U-STAT1 independent. RNA was extracted from 

STAT1-WT and STAT1Y701F cells serum-starved over night. Expression of indicated 

IRGs was assessed by real time PCR and values expressed as relative to GAPDH. 

STAT1-WT_clone 3 treated with 1000 IU/ml of IFNα for 8 hours and U3A STAT1 -/- 

cells were included as positive and negative control of the experiment.  
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4.2. The interferon λ receptor chain α (IL28Rα) triggers 

high expression levels of interferon stimulated genes in non-

responsive chronic hepatitis C patients. 
 

From our previously shown data, we exclude unphosphorylated STAT1 as a key 

player in the pre-activation of the IFN system in the liver of CHC patients non-

responder. The transcriptional activity of STAT1 requires its activation through 

tyrosine phosphorylation71. Therefore, we reasoned that the up-regulation of hepatic 

IRGs could result from a prolong activation of STAT1 mediated by a specific type of 

cytokine. Indeed, we have recently reported that the Jak-STAT signaling pathway is 

not desensitized by repeated exposure to IFNβ or IFNλ resulting in a prolonged 

STAT1 phosphorylation85. On the contrary, we observed that the Jak-STAT pathway 

is refractory to repeated exposure to IFNα leading to the impairment of STAT1 

phosphorylation90. These data strongly suggest that IFNβ or IFNλ-mediated STAT1 

activation may contribute to elevated hepatic IRGs expression in the liver of CHC 

patients non-responders.  

 

4.2.1. IFNα up-regulates IL28Rα and enhances IFNλ2-mediated STAT1 

phosphorylation in primary human hepatocytes (PHHs).  

We analyzed the response of non-infected primary human hepatocytes (PHHs) to 

IFNα, IFNβ, or IFNλ2 stimulation. PHHs were exposed to saturating doses of the 

three cytokines and pY701-STAT1 signal was assessed by Western blot. We observed 

that IFNλ2 is a weak inducer of pY701-STAT1 presumably due to the low abundance 

of the IFNλ receptor168 (Fig 4.2.2A). Nevertheless, an in silico promoter analysis of 

IL28RA gene, encoding for the IL28Rα, revealed the presence of a putative STAT1 

binding site67. This finding suggests that IL28Rα is an IRG and that the response to 

IFNλ in PHHs could be amplified by pYSTAT1-induced IL28Rα up-regulation. 

Therefore, we stimulated PHHs with IFNα, IFNβ, or IFNλ2 and assessed IL28Rα 

expression by quantitative PCR. PCR primers specific for IL28Rα full length (variant 

1) were designed as indicated in Figure 4.2.1A. The specificity of the PCR product 

was confirmed on agarose gel, according to the product size (Figure 4.2.1B), and by 

sequencing.  
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Figure 4.2.1. Primers validation for IL28Rα transcript variant 1 qPCR. (A) Schematic representation 

of three IL28Rα transcription variants. Arrows indicates the position of specific forward and reverse 

primers used for the analysis of variant 1. The white box indicates the missing sequence in variant 2. 

(B) Validation of IL28RΑ primers by end-point PCR in Huh7 cells. cDNA (lane 1), RNA (lane 2), and 

H2O (lane 3). 

 

We show that IFNα up-regulates IL28Rα in PHHs with a maximal level reached at 4 

hours (Fig 4.2.2B; left panel), demonstrating that IL28Rα is an IRG. Surprisingly, we 

observed that the IFNα-mediated up-regulation of IL28Rα was impaired in Huh7 

cells, although STAT1 expression was induced (Fig. 4.2.2B; right panel). Analysis of 

the response to INFλ2 stimulation after pre-exposure to IFNα shows that the pre-

incubation of PHHs with IFNα for 4 hours improved the IFNλ2-induced pY701 

STAT1 signal (Fig 4.2.2C: left panel, lane 4 versus lane 6). In line with the absence of 

IFNα-mediated IL28Rα expression in Huh7 cells, we show that a pre-incubation with 

IFNα did not lead to the amplification of the IFNλ signaling (Fig. 4.2.1C, right 

panel). Using immunofluorescent staining for IL28Rα and pY701-STAT1 we 

confirmed that IFNα induces IL28Rα expression and therefore amplifies the IFNλ-

mediated pY701-STAT1 signal in PHHs from two different donors (Fig. 4.2.2D and 

4.2.2E).  
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Figure 4.2.2. IFNα induces IL28Rα expression and amplifies pY-STAT1 signal upon IFNλ2 

stimulation in human primary hepatocytes. (A) Primary human hepatocytes were stimulated with 

1000IU/ml IFNα, 1000IU/ml IFNβ, or 100ng/ml IFNλ2 for 15 minutes and pY-STAT1 signal was 

analyzed by Western blotting. Shown is a representative result from 2 independent experiments. (B) 

IFNα induces IL28Rα transcription in PHHs but not in human hepatoma cells. PHHs (black bars) and 

Huh7 cells (grey bars) were stimulated with 1000IU/ml IFNα for 0, 2, 4, and 6h. IL28Ra and STAT1 

expression were analyzed by qPCR. Statistical analysis was performed using a Fisher’s exact t-test. 

Shown are the results from 3 independent experiments. (C) IFNα pre-stimulation enhances the IFNλ2-

induced STAT1 phosphorylation in PHHs but not in human hepatoma cells. PHHs and Huh7 cells were 

incubated with 1000IU/ml IFNα for 4h prior being stimulated with 1000IU/ml IFNα or100ng/ml IFNλ 

for another 15min. (C) Whole cell lysates were then prepared and STAT1 activation was measured by 

immunoblotting. Shown is a representative blot from at least 3 independent experiments. (D) & (E) 

PHHs isolated from two non-HCV donors were pre-stimulated with 1000IU/ml IFNα for 4h prior being 

exposed to IFNλ2 for another 15min. STAT1 activation and IL28Rα were monitored by 
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immunofluorescence. Phosphorylated STAT1 signal is shown in red, IL28Rα in green, and nuclear 

staining (DAPI) in yellow or blue (panels D and E, respectively). Yellow arrow indicates nuclear 

localization of pY-STAT1. 

 

Similarly to IFNα, we show that IFNβ and IFNλ are capable to upregulate IL28Rα 

expression. IFNβ induces a high expression level of IL28Rα whereas IFNλ2 only 

slightly increases IL28Rα expression (Fig. 4.2.3).  

	
  
	
  
	
  
	
  

 
 
 
Figure 4.2.3. IL28Rα is induced by IFNβ and IFNλ. (A) PHHs from non-HCV donors were 

stimulated with 100ng/ml IFNλ2 or with 1000IU/ml of IFNβ for 0, 2, 4, and 6h. IL28Rα and 

STAT1 expression were analyzed by qPCR. Results are expressed as mean ± s.e.m. and are 

representative of 2 independent experiments. Statistical analysis was performed using a 

Fisher’s exact t-test.  

	
  
Interestingly, while analysing the IFNα-mediated IL28Rα expression, we observed 

that the induction of IL28Rα varied among PHHs donors, suggesting a differential 

response to IFNλ stimulation. We therefore selected 4 donors who differentially 

express IL28Rα in response to IFNα stimulation and assessed pY-STAT1 signal upon 

IFNλ treatment. As expected, we show that the response to IFNλ-mediated STAT1 

activation is dependent on the expression level of IL28Rα (Fig 4.1.4A and B). 

 

	
  Figure 4.1.4. IFNα-induced IL28Rα up-regulation varies among PHHs donors. (A) PHHs 

from four non-HCV donors were stimulated with 1000IU/ml IFNα for 4h and the expression 

level of IL28Rα was measured by qPCR. (B) The response to IFNλ2 stimulation depends on 

the expression level of IL28Rα. PHHs from four non-HCV donors previously analyzed for the 
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expression level of IL28Rα were pre-stimulated with 1000IU/ml IFNα prior being exposed to 

100ng/ml IFNλ2 for additional 15min. The phosphorylation of STAT1 was then monitored by 

immunoblotting.  

	
  

4.2.2 The Jak-STAT signaling pathway is not refractory to continuous 

stimulation of IFNλ and leads to high expression levels of pre-activated IRGs.  

In order to further investigate the IFNλ signaling pathway, we stably over-express 

IL28Rα in Huh7 cells. Three clones  (LR-clone 1, 2 and 3) with increasing IL28Rα 

expression were selected. The over-expression of IL28Rα was assessed by 

quantitative PCR and by immunofluorescence staining (Fig. 4.2.5A; Fig. 4.2.4B). 

IL28Rα over-expression resulted in an increased IFNλ2-induced pY701-STAT1 

signal without affecting the response to IFNα stimulation (Fig. 4.2.5C). We then 

analyzed the desensitization of the Jak-STAT signaling pathway upon IFNα and 

IFNλ2 stimulation in IL28Rα over-expressing cells. We observed that the Jak-STAT 

pathway became refractory to further stimulation by IFNα (Fig 4.2.5D; lanes 11 

versus 13 and 2 versus 4) in Huh7 and in IL28Rα over-expressing cells. Interestingly, 

the prolonged exposure to IFNλ2 in IL28Rα over-expressing cells resulted in a robust 

maintenance of pY-701STAT1 signal (Fig. 4.2.5D; lane 2 versus 5). Furthermore, the 

repeated stimulation of IL28Rα over-expressing cells with IFNλ2 increased pY701-

STAT1 signal (Fig. 4.2.5D; lane 7 versus lane 6). These data suggest that IFNλ2 

stimulation does not lead to the desensitization of the Jak-STAT signaling pathway 

and, therefore, propose the lack of refractoriness of the IFNλ signaling pathway as a 

potential event that contribute to the maintenance of high expression levels of IRGs.  
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Figure 4.2.5. Absence of desensitization of the Jak-STAT signaling pathway in response to 

IFNλ2 stimulation. (A) & (B) Huh7 cells were stably transfected with a plasmid containing 

IL28Rα coding sequence. The over-expression of IL28Rα was confirmed by qPCR and by 

immunofluorescence. (C) The over-expression of IL28Rα does not alter IFNα-induced STAT1 

activation but enhances STAT1 phosphorylation upon IFNλ2 stimulation. Huh7 and Huh7LR 

cells were stimulated with 1000IU/ml IFNα or 100ng/ml IFNλ2 for 15 minutes and pY-STAT1 

signal was analyzed by immunoblotting from whole cell extract. Shown is a representative 

blot from 2 independent experiments. (D) The IFNλ signaling is not refractory to further 

stimulation by IFNλ2 in human hepatoma cells that over-express IL28Rα. Huh7 and LR cells 

were pre-stimulated for 24h with 1000IU/ml IFNα or 100ng/ml IFNλ2 prior being incubated 

with IFNα or IFNλ2 for additional 15 minutes. Phosphorylated STAT1, STAT1, and β-actin 

signals were analyzed by Western-blotting from whole cell extracts. Shown is a representative 

blot of at least 3 independent experiments. 	
  

 

 

Next, we investigated whether IFNλ-mediated Jak-STAT signaling is able to maintain 

elevated the expression of IRGs in cells that over-express the IFNλ receptor. For that 

purpose, Huh7 cells and LR clones were stimulated with IFNλ2 up to 96 hours and 

the expression level of RSAD2, USP18, ISG15 and IFI44L (four described pre-

activated genes in the liver of CHC nonresponsive patients127) was measured by 
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quantitative real time PCR. Our results demonstrate that IFNλ2 up-regulates IRGs in 

an IL28Rα-dependent manner (Fig. 4.2.6). Furthermore, we observed that IFNλ2 was 

capable to prolong the expression of IRGs up to 96 hours whereas IFNα failed (Fig. 

4.2.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.6. IFNλ2, but not IFNα, maintains high expression level of a set of IRG 

identified as pre-activated genes in non-responsive CHC patients. IFNλ2 induces a long-

lasting expression of pre-activated genes in IL28Rα over-expressing cells. Huh7 (n=3) and 

LR clones (n=3) were stimulated with 1000IU/ml IFNα or 100ng/ml IFNλ2 for 0, 8, 24, and 

96h. The expression of RSAD2, ISG15, USP18, and IFI44L was assessed by qPCR. Results 

are expressed as mean ± s.e.m and are representative from 3 independent experiments. 

 

Additionally, analysis of pY-STAT1 signal showed that STAT1 remained 

phosphorylated up to 96 hours in IL28Rα over-expressing cells upon IFNλ2 

stimulation (Fig. 4.2.7A; lanes 4, 5, 6 versus 3 and lanes 8, 9, 10 versus 7) whereas 

we observed a complete disappearance of STAT1 phosphorylation at this time point 

when cells were stimulated with INFα (Fig. 4.2.7; lane 1 versus 2).  

In order to confirm that the IFNλ-mediated specifically an upregulation of pre-

activated genes, we analyzed the expression level of ATF3 and NOXA, two IRGs that 

are not highly induced in the liver of CHC non-responder patients127. We show that 

both IFNα and IFNλ2 failed to maintain a high expression level of ATF3 and NOXA 

(Fig. 4.2.7B). All together these findings support our conclusion that the elevated 
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expression of pre-activated ISGs in CHC non-responder patients is triggered by the 

IFNλ2 signaling pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.7. IFNλ2 mediates a prolonged STAT1 activation but fails to induce a long 

lasting expression of non pre-activated IRGs. (A) Huh7, LR clone 2, and LR clone 3 were 

stimulated with IFNα 1000IU/ml or with IFNλ2 100ng/ml up to 96h. pY-STAT1, STAT1, and 

actin signals were visualized by immunoblotting. Shown is a representative blot from at least 

2 independent experiments. (B) Huh7 (n=3) and LR clones (n=3) were stimulated with 

1000IU/ml IFNα or 100ng/ml IFNλ2 for 0, 8, 24, and 96h. The expression of ATF3 and 

NOXA were assessed by qPCR. Results are expressed as mean ± s.e.m. and are representative 

from 3 independent experiments. 
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4.2.3 The Jak-STAT signaling pathway is not refractory to continuous 

stimulation of IFNβ but lead to intermediate expression levels of pre-activated 

IRGs.  

Since we previously reported that the IFNβ signaling pathway is not refractory in 

mouse liver85, we analyzed the ability of IFNβ to induce a prolonged expression of 

RSAD2, ISG15, and USP18 in Huh7 cells. Our data show that IFNβ up-regulated the 

IRGs at intermediate extent (Fig. 4.2.8A), despite a strong pY-STAT1 signal detected 

up to 96h of continuous stimulation by IFNβ (Fig. 4.2.8.B). However, we did not 

observe any significant correlation between IFNβ and IRGs (IFI27, ISG15, and 

RSAD2) expression in liver biopsies from CHC patients (Fig. 4.2.8.C). Additionally, 

no correlation was observed between IFNAR1 and IFI27, ISG15, and RSAD2 (Fig. 

4.2.8.D). Our data exclude the involvement of IFNβ in the prolonged expression of 

IRGs in non-responder CHC patients.  
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Figure 4.2.8. IFNβ induces intermediate expression of pre-activated in vitro (A) IFNβ failed 

to induce a long-lasting expression of IRGs in Huh7 cells. Huh7 cells were stimulated with 

1000IU/ml IFNα, 1000IU/ml IFNβ, or 100ng/ml IFNλ2 for indicated time points. IRGs 

expression of RSAD2, ISG15, and USP18 was assessed by qPCR. (B) IFNβ treatment 

prolongs STAT1 phosphorylation in Huh7 cells. Huh7 cells where treated for 15’, 8, 24, 48 

and 96h with 1000IU/ml IFNβ. Phosphorylated STAT1, STAT1, and β-actin measurement was 

assessed by immunoblotting from whole cell lysate. (C) IFNβ expression does not correlate 

with IRGs expression in liver biopsies of CHC patients (n=46). IFNβ, IFI27, ISG15, and 

RSAD2 expression was assessed by qPCR. Association was assessed by Spearman correlation 

analysis. (D) IFNAR1 expression does not correlate with ISGs expression in liver biopsies of 

CHC patients (n=46). IFNAR1, IFI27, ISG15, and RSAD2 expression was analyzed by qPCR 

and the association was assessed by Spearman correlation analysis. 
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4.2.4. IL28Rα is highly expressed and strongly correlated with IRGs in liver 

biopsies from CHC patients. 

In order to validate our in vitro findings, we analyzed the expression level of IL28Rα 

in liver biopsies from non-HCV and CHC patients. We assessed  a significant over-

expression of IL28Rα in CHC compared to non-HCV patients (Fig. 4.2.9A). 

Furthermore, we observed a significant correlation between the expression of IL28Rα 

and pre-activated IRGs, such as IFI27, ISG15, and RSAD2 in CHC liver biopsies 

(Fig. 4.2.9B). Using a previously published algorithm for the prediction of the 

probability of SVR (pSVR) in CHC patients treated with IFNα-based therapy126, we 

showed that patients with pSVR value below 0.5 (meaning less than 50% chance to 

clear HCV) displayed a significant higher expression of IL28Rα compared to the ones 

with a pSVR above 0.5 (meaning more than 50% chance to clear HCV) (Fig. 4.2.9C). 

In line with this observation, analysis of CHC patient clinical outcome upon IFNα-

based therapy indicated a significant higher expression of IL28Rα in non-responder 

(NR) than in SVR (Fig. 4.2.9D).  

We assessed the predictive power of IL28Rα for treatment-response in CHC patients 

by calculating the receiver operating characteristic (ROC) curve for IL28Rα. The area 

under the curve (AUC) for IL28Rα is 0.744 (Std Err=0.071; p=0.002) indicating that 

the expression level of IL28Rα could be used to discriminate NR from SVR (Fig. 

4.2.9E). Furthermore, we observed that IL28Rα has similar performance as the one of 

two SNPs mapping at IL28B locus (rs12979860 and rs8099917) in predicting 

treatment-response in CHC patients (AUC=0.73; Std Err=0.16)126. 

In order to be activated, the IFNλ signaling pathway requires the presence of both 

IFNλ and receptor. Therefore, we measured by quantitative real-time PCR the 

expression of IFNλ1 and IFNλ2 in liver biopsies from non-HCV and CHC patients. 

The specificity of the primers for IFNλ1 and IFNλ2 was validated by assessing the 

PCR product size on agarose gel and by sequencing (Fig. 4.2.10A). Further analysis 

showed that quantitative real time PCR signals were detected only in samples from 

monocyte-derived dendritic cells (MDDCs) stimulated with LPS confirming the 

specificity of our IFNλ1 and IFNλ2 detection method (Fig. 4.2.10B & C). IFNλ1 and 

IFNλ2 were not detectable in liver biopsies from non-HCV patients whereas we could 

measure IFNλ1 in 63% and IFNλ2 in 46% of CHC liver biopsies samples (Fig. 

4.2.10C). Further analysis showed no correlation between IFNλ2 and IFI27, ISG15, or 
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RSAD2 in liver biopsies form CHC patients (Fig. 4.2.9D). These results suggest, that 

the pre-activation of the hepatic IFN system in CHC non-responder patients is not 

triggered by the elevated expression of IFNλs. 

Taken together, our results provide evidences that the continuous activation of the 

IFNλ signaling pathway leads to a prolonged expression of pre-activated IRGs in 

CHC patients and point out a key role for IL28Rα in such mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
	
  

Figure 4.2.9. IL28Rα is over-expressed in nonresponsive CHC patients and correlates with 

the expression of pre-activated IRGs. (A) IL28Rα is upregulated in the liver of CHC patients. 

The hepatic expression of IL28Rα was quantified in CHC patients (n=122) and in non-HCV 

patients (n=53) by qPCR. Statistical analysis was performed using a Mann-Whitney’s test. 

(B) Positive correlation between IL28Rα and the pre-activated IRGs the liver biopsy from 

CHC patients (n=122). IL28Rα, IFI27, ISG15 and RSAD2 were analyzed by qPCR. The 

relationship between IL28Rα and the pre-activated ISGs was estimated by Spearman’s 

correlation analysis. (C) IL28Rα is highly expressed in the liver biopsy from CHC patients 

with a low pSVR. The hepatic expression level of IL28Rα was measured by qPCR and then 
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sorted according to the predicted SVR values (pSVR≤0.5; n=29 and pSVR≥0.5; n=31). 

Statistical analysis was performed using a Mann-Whitney’s test. (D) IL28Rα is over-

expressed in nonresponsive CHC patients to peg-IFNα/ribavirin therapy. The hepatic 

expression level of IL28Rα was quantified by qPCR in SVR (n=24) and in NR (n=29) 

patients. Statistical analysis was performed using a Mann-Whitney’s test. (E) ROC curve for 

the clinical treatment response with the expression level of IL28Ra (n=53). 
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Figure 4.2.10. IFNλ1 and IFNλ2 are detectable at mRNA level but did not correlate with 

the pre-activated IRGs expression in the liver biopsies from CHC patients. (A) Validation of 

specific primers for IFNλ1 and IFNλ2. MDDCs were stimulated or not with 1µg/ml LPS for 

2h and the expression of IFNλ1 and IFNλ2 were analyzed by end-point PCR. (B) Melting 

curves for IFNλ1 and IFNλ2  (in red) and GAPDH (in black) were reported for MDDCs 

stimulated or not with LPS for 2h. (C) IFNλ1 and IFNλ2 were measured in CHC patients by 

qPCR (n=53; positive for IFNλ2 n=24, positive for IFNλ1n=33). MDDCs stimulated with 

LPS were used as a positive control. (D) IFNλ1, IFNλ2, IFI27, ISG15, and RSAD2 were 

quantified by qPCR in liver biopsy from CHC patients (IFNλ1 n=33, IFNλ2 n=24). The 

relationship between the genes was assessed by Spearman’s correlation analysis. 

 
4.2.5  The response to IFNλ2 stimulation in liver biopsies from CHC patients is 

dependent on IL28Rα expression level. 

In order to prove that the response to IFNλ in vivo is regulated by the expression level 

of IL28Rα, we performed a functional assay by stimulating ex-vivo liver biopsies from 

CHC patients with IFNλ2. Activated STAT1 was monitored by immunofluorescence 

and the results were classified on the basis of the hepatic expression level of IL28Rα. 

We sorted patients with low (Fig. 4.2.11A) and high (Fig. 4.2.11B) expression level 

of IL28Rα. Our results show an absence of pY-STAT1 signal in PBS-treated biopsies 

from patients with low hepatic expression of IL28Rα (Fig. 4.2.11A; left column) 

whereas cells are positively stained for pY-STAT1 in the PBS-treated biopsies from 

the patients with high hepatic expression of IL28Rα (4.2.11B; left column). This 

finding suggests that patients expressing a high amount of the IFNλ receptor have a 

pre-activated hepatic IFN system. Upon IFNα stimulation, all samples with a low 

IL28Rα expression showed a strong positive pY-STAT1 staining (Fig. 4.2.11A; 

middle column) whereas in only 2 samples on 9 (B761 and B757) from the high 

IL28Rα expressing group were positive for pY- STAT1 (Fig. 4.2.11B; middle 

column). Finally, the stimulation with IFNλ2 resulted in an enhanced pY-STAT1 

staining in all the samples with high expression of IL28Rα (Fig. 4.2.11B; right 

column) whereas pY-STAT1 signal was much less pronounced in the samples with 

low expression of IL28Rα (Fig. 4.2.11A; right column). 

These data clearly demonstrate that the hepatic response to IFNλ stimulation is 

dependent on the expression level of IL28Rα. 
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Figure 4.2.11. The ability of IFNλ2 to induce STAT1 phosphorylation in human liver 

biopsies depends on the hepatic expression of IL28Rα. (A) & (B) Needle liver biopsies 

freshly obtained from CHC patients were incubated in 1000IU/ml IFNα, in 100ng/ml IFNλ2, 

or in PBS for 15min at 37°C. pY-STAT1 signal (in red) was monitored by 

immunofluorescence. Nuclei were stained with DAPI (in yellow). Panel A shows the results 

obtained from CHC patients (n=9) with a hepatic expression of IL28Rα <0.004. Panel B 

shows the data from CHC patients (n=9) with a hepatic expression of IL28Rα > 0.005.  
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4.2.6 IFNα-mediated IL28Rα up-regulation is associated to allelic variants at 

IL28B locus in PHHs. 

Several genome wide association studies reported that minor alleles at two SNPs 

(rs12979860 and rs8099917) mapping at the IL28B locus are associated to high 

hepatic expression level of IRGs130,131,126 and with poor treatment-outcome143,144,145,146 

in CHC patients. We have observed that the IFNα-mediated IL28Rα up-regulation 

varies among different PHH donors (Fig. 4.1.4A). Therefore, we wanted to 

investigate whether the differential IL28Rα induction in PHHs upon IFNα stimulation 

correlates with allelic variants at the IL28B locus. Genotyping of rs12979860 and 

rs8099917 was performed on all the donors from whom PHHs were isolated. Our data 

show that donors harboring the homozygous major allele at the two selected SNPs 

(CC for rs12979860; TT for rs8099917) display a low expression level of IL28Rα 

(median<0.004) upon IFNα stimulation, while donors harboring the minor allele at 

the two SNPs (CT/TT for rs12979860; TG/GG for rs8099917) show a significantly 

more pronounced induction of IL28Rα expression (median>0.006) in response to 

IFNα treatment (Fig. 4.2.12A & B). Further analysis of the IFNα-mediated STAT1 

and RSAD2 up-regulation in PHHs revealed no significant difference among the 

genotypes demonstrating a specific effect of IL28B polymorphisms on the IFNα-

induced IL28Rα expression.  

We then calculated ROC curves for the SNPs (rs12979860 and rs8099917) using the 

expression levels of IL28Rα and STAT1 upon IFNα stimulation. The AUC for IL28Rα 

and STAT1 were 0.779/0.854 and 0.625/0.593 for rs12979860/rs8099917 respectively 

(Fig. 4.2.13A&B). These data indicate that the expression level of IFNα-induced 

IL28Rα is a better parameter than STAT1 to discriminate the genotypes at IL28B 

locus.   

Finally, we show a higher expression of IL28Rα in liver biopsies of CHC patients 

with CT/TT (rs12979860) or TG/GG (rs8099917) genotypes compared to the samples 

with a CC or a TT genotype (rs12979860 and rs8099917 respectively) (Fig. 4.2.12C). 
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Figure 4.2.12. IFNα induces a high expression level of IL28Rα in PHHs carrying the 

minor allele at rs12979860 and rs8099917. PHHs from 30 non-HCV donors were stimulated 

for 4h with 1000IU/ml IFNα. IL28Rα, STAT1 and RSAD2 expression were measured by 

qPCR. Statistical analysis was performed using a Mann-Whitney’s test. (A) IL28Rα, unlike 

STAT1 and RSAD2, is strongly induced by IFNα in PHHs carrying the minor allele (CT; 

n=13) and (TT; n =1) compared to the ones carrying the major allele (CC; n=16) at 

rs12979860. (B) IL28Rα, unlike STAT1, is strongly induced by IFNα in PHHs carrying the 

minor allele (GT; n=17) and (GG; n =2) compared to the ones carrying the major allele (TT; 

n=19) at rs8099917. (C) Liver biopsies from CHC patients carrying the minor allele at 
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rs12979860 and rs8099917 have a higher hepatic expression of IL28Rα than the ones that 

carry the major allele. The IL28Rα expression levels were quantified by qPCR in liver 

biopsies from CHC patients and the results are presented according to the genotypes 

rs12979860 (CC; n=39), (CT; n=68), and (TT; n=13). rs8099917 (TT; n=64), (GT; n=47), 

and (GG; n=9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.12. ROC curves for rs12979860 and rs8099917 with the expression levels of 

IL28Rα and STAT1. PHHs from non-HCV donors (n=30) were stimulated with 1000IU/ml 

IFNa for 4h and ROC curves were calculated for rs12979860 (A) or for rs8099917 (B). 

 

In conclusion, the data presented support the hypotehsis that the pre-activation of the 

hepatic IFN system observed in the liver of CHC non-responder patients is mediated 

by IFNλ signaling pathway and requires a minimal expression level of IL28Rα. We 

also provide evidence that the IFNα-mediated IL28Rα expression is linked to allelic 

variants at SNPs at IL28B locus.   
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Supplementary table 1: CHC patients characteristics 
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Supplementary table 2: Gene expression levels in CHC patients 
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Supplementary table 3: Gene expression levels in non-HCV patients 
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Supplementary table 4: PHHs donors characteristics 
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5. Discussion  
 
 
The response to IFNα-based therapy in patients with chronic hepatitis C infection is 

closely associated to the hepatic expression level of IRGs prior peg-IFNα 

treatment127,130,141,142. Indeed, we have reported that in CHC patients, the basal hepatic 

expression level of four classifier genes (ISG15, RSAD2, IFI27 and HTAITP2) can be 

used to predict treatment-response with good accuracy126. Despite the clinical 

relevance of the pre-activated hepatic IFN system, the molecular mechanisms that 

modulate the gene expression in the liver of CHC patients remain unclear. In the 

present study two putative molecular pathways mediating this phenomenon were 

investigated.  

The hypothesis of U-STAT1 contribution to the pre-activated IFN system was quite 

appealing. Cheon H. and Stark G.R. recently investigated the role of U-STAT1 in 

triggering gene expression129. They concluded that the exogenous over-expression of 

STAT1 wild type or its unphosphorylable  mutant form STAT1Y01F is sufficient per 

se to induce the expression o a set of IRGs in a fibroblast cell line (BJ)129. However, 

we believe that the some experimental setting and methods selected by Cheon H. and 

Stark G.R. make the results of the paper questionable: 

1. The authors assess STAT1 up-regulation upon IFNβ and IFNγ stimulation of BJ 

and hTERT-HME cell lines by Western Blotting (Fig 1 and Fig. 2 of 129). They 

claim that the monoclonal antibody used (cat. n. 610185, BD Biosciences) is U-

STAT1 specific. However, experimental evidences indicate that this antibody is 

binding STAT1 independently from its phosphorylated status. Indeed, we have 

repeatedly observed85,98 that in case of short stimulation of hepatoma cells with 

IFNα of IFNβ, in which STAT1 is mostly in its phosphorylated form, no 

difference in term of intensity can be detected between the band of STAT1 of 

untreated and IFN-stimulated cells. If the indicated STAT1 antibody would have 

been specific for the unphosphorylated form of the protein, we would have 

observed a decrease in the intensity of the STAT1 band in the IFN-treated samples 

compared to the un-stimulated one.  
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2. The authors assessed the role of U-STAT1 on gene transcription by performing a 

gene expression profile on BJ and hTERT-HME cells transfected with STAT1 

wild type and STAT1Y701F. However, as indicated in Fig. 4.1.2 both cell lines 

retain the endogenous STAT1. Cells were not serum starved during the 

experiments, implying that a basal level of pY701-phosphprylation could be 

present in the experimental setting.  

3. The author performed a gene expression profile on BJ and hTERT-HME 

transfected with STAT1-WT and STAT1-Y701F. However, results form the two 

cell lines are discrepant. Indeed, the authors state that only in BJ cells and not in 

hTERT-HME STAT1-transfected cells an up-regulation of a set of IRGs (like 

IFI27, BST2, OAS1, OAS2, OAS3, IFI44L and STAT1) was detected. The author 

do not discuss this difference in the paper.  

4. In Table 4.1.1., the authors indicate a set of genes that are up-regulated upon over-

expression of  STAT1-WT or mutant STAT1-Y701F in BJ cells. The values are 

expressed as fold change compared to non-transfected BJ cells. BJ cells over-

expressing STAT1-Y701F display a much higher fold change induction of the 

same set of genes compared to BJ cells over-expressing STAT1-WT. This 

discrepancy can not be justified by the extent of STAT1 over-expression because 

STAT1 up-regulation is comparable between the two in systems (Fig 4.1.2). The 

authors do not discuss this discrepancy in the paper. 

 

On the basis of those observations, we decide to newly assess the role of U-STAT1 in 

gene transcription. In the present study, a more rigorous experimental setting was 

used. U3A STAT1 -/- is a well established cell line used in the IFN research field 

since many years166. Several STAT1 mutants are now available and the one harboring 

the single amino acid substitution Y701F has been well characterized169. This mutant 

constitutes the best option to mimic U-STAT1 since the amino acid change affects the 

ability of Jak1 to mediate activation of STAT1169. We have generated multiple cell 

clones expressing different levels of either STAT1WT or STAT1Y701F. Thus, we 

were able to assess the dose-dependent effect of U-STAT1 on gene expression, 

avoiding clonal effects. We demonstrate that U-STAT1 is unable to maintain a high 

expression of IRGs in hepatoma cells, regardless its level of expression. In particular, 

the expression of IFI27, BST2, OAS1, and IFI44L, the most up-regulated genes upon 
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STAT1Y701F over-expression in Cheon & Stark paper, was not influenced by U-

STAT1 expression in our system. Taken together, our results do not support the 

hypothesis that U-STAT1 mediates the up-regulation of the IFN system in the liver of 

CHC patients who do not respond to IFNα-based therapy.   

Subsequently, we reasoned that the broad up-regulation of IRGs detected in the liver 

of non-responder CHC patients could result from the prolonged activation of the 

hepatic IFN system by a specific cytokine. Indeed, our group previously reported that 

non-responder CHC patients display an appreciable nuclear pY-STAT1 staining in 

most of the hepatocytes, suggesting that the IFN system is activated126. According to 

our hypothesis, one or more cytokines may have been involved in the process.  

In the present study, we demonstrated that IFNα fails to long-lasting up-regulate IRGs 

in a hepatoma cell line, making IFNα quite unlikely to be the driving force of the pre-

activated hepatic IFN system in non-responder CHC patients. The drop of IRGs 

expression level observed after 8 hours of continuous stimulation with IFNα results 

from the desensitization of the IFN system as reported previously in vivo and in 

vitro85,90. Subsequently, we investigated the role of IFNβ and IFNλ in mediating the 

up-regulation of IRGs in the liver of CHC patients. Interestingly, we have reported 

that IFNβ and IFNλ signaling pathway is not subjected to desensitization in vivo upon 

repeated sub-cutaneous injections85. However, we observed that a continuous 

stimulation of hepatoma cells with IFNβ fails to long-lasting up-regulate the IRGs. 

Interestingly, the IRGs were not maintained up-regulated, despite the prolonged 

STAT1 activation upon continuous stimulation with IFNβ. We confirmed in liver 

biopsies from CHC patients that the IRGs expression does not correlate with IFNβ 

expression level. Finally, we reported that IFNAR1 and IRGs expression levels were 

not correlated in liver biopsies from CHC patients, excluding the hypothesis that the 

distinct activation of the hepatic IFN system results from inter-individual difference in 

type I IFN receptor expression.  

Heretofore, the difference of STAT1 phosphorylation intensity upon continuous 

stimulation with IFNα and IFNβ remains unclear, considering that these two 

cytokines engage the same receptor complex85,170. The negative regulator USP18 has 

been regarded as the major determinant of the refractoriness of IFNα signaling 

pathway90. Experimental evidences indicates that USP18 impairs Ifnar2-Jak1 binding, 

leading to the impairment of STAT1 activation90. USP18 is up-regulated by IFNβ but, 
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surprisingly, does not impair the signaling pathway85,170. It has been reported that 

IFNα and IFNβ show different affinities for their binding to the receptor171. This 

phenomenon may induce a different conformational change of Ifnar2 upon binding of 

the cytokines that could influence the negative activity of USP18 on the IFN signaling 

pathway. Furthermore, one could hypothesize that the IFNβ signaling may lead to the 

expression of additional negative regulators that could specifically act on the 

transcription level, limiting the signaling pathway despite the long-lasting activation 

of STAT1.  

The results of our study do not support the role of type I IFNs in mediating the pre-

activation of the hepatic IFN system in CHC patients. Instead, our findings provide 

evidences for a key role of the IFNλ signaling pathway in defining the basal hepatic 

expression level of IRGs in CHC patients.  

First, we show that the expression level of IL28Rα defines the response rate to IFNλ, 

assessed by STAT1 phosphorylation, in primary human hepatocytes, in Huh7 cells 

over-expressing IL28Rα, and in human liver biopsies from CHC patients. 

Accordingly, we observe that the extent of IRGs up-regulation correlates to the 

IL28Rα expression in Huh7 cells that over-express IL28Rα and in human liver 

biopsies from CHC patients. Interestingly, not only the maximal expression level but 

also the kinetic of IRGs up-regulation depends on the IL28Rα expression. Recently, it 

has been reported that infection of Huh7 cells with HCV viral particles leads to an up-

regulation of IL28Rα, and thus a prolonged IRGs expression upon IFNλ 

stimulation172. Although the authors show a positive correlation between IRGs and 

IL28Rα, they failed to provide direct and convincing evidence that the prolonged 

IRGs expression is triggered by IL28Rα up-regulation172. Moreover, we could not 

reproduce these data showing an up-regulation of IL28Rα in Huh7 cells infected with 

HCVcc. 

Second, we show that the long lasting up-regulation of IRGs in vitro is due to the lack 

of refractoriness of the IFNλ signaling pathway. These findings support data 

previously published85. The Jak-STAT signaling pathway is not desensitized by 

repeated stimulation with IFNλ, despite the induction of the negative regulator 

USP18. Since it has been reported that USP18 exert its inhibitory activity via the 

binding to Ifnar2, we could hypnotized that USP18 does not exerts its inhibitory 

effect because the IFNλ receptor engages IL28Rα. 
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Third, we were able to detect IFNλ1 and IFNλ2 in liver biopsies of CHC patients. 

This finding strongly suggests that, in the liver of CHC patients, the Jak-STAT 

signaling pathway could be activated by those cytokines.  This finding support also 

previously published results126. Interestingly, we assessed that the level of induction 

of hepatic IRGs does not correlate with the amount of IFNλ1 and IFNλ2. This result 

points out that the hepatic up-regulation of IRGs in the liver of CHC patients depend 

mainly on the IFNλ receptor abundance and not on the expression level of the 

cytokine.  

 

Several reports show that allelic variants at SNPs mapping close to the IL28B are 

associated to the hepatic expression level of IRGs130,131,126. In particular, minor alleles 

(less frequent in the general population) at rs12979860 and rs8099917 have been 

associated to high expression level of IRGs in the liver130,131,126 of patients chronically 

infected with HCV. We propose here a molecular mechanism that may explain this 

phenomenon. Despite the weak STAT1 activation upon IFNλ treatment, we showed 

that the response to IFNλ stimulation is highly dynamic in PHHs. Indeed, we 

demonstrated that IL28Rα is an IFN stimulated gene and that pre-treatment of PHH 

with IFNα, IFNβ, or IFNλ improves the response to IFNλ, due to the up-regulation of 

IL28Rα. Type III IFNs and, to lesser extent type I IFNs, have been detected in the 

liver of chimpanzees acutely infected with HCV63,64, suggesting that those cytokines 

could modulate IL28Rα expression level in hepatocytes in vivo . Therefore, we 

postulate that an initial up-regulation of IL28Rα mediated by type I/III IFNs 

production upon HCV infection would be sufficient to improve the response to IFNλ 

stimulation (Fig. 5.1). Interestingly, we assessed that the extent of IL28Rα up-

regulation upon IFNα stimulation varies among PHH donors. Particularly, the IL28Rα 

expression is highly induced in donors harboring the minor allele at rs12979860 or 

rs8099917. These data strongly indicate that genetic elements in the IL28B locus 

could modulate in trans the expression of IL28Rα that positively correlates with the 

IRGs expression in liver biopsies of CHC patients. However, the precise mechanism 

that links allelic variants at IL28B locus to the IFNα-mediated IL28Rα expression 

remains to be elucidated. We excluded the involvement of micro RNAs (miRNAs, 

short non-coding RNA of ≈ 20 nucleotides in length that modulate gene expression 

post-transcriptionally173), since we have performed a genomic analysis on IL28B 
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locus and failed to map miRNAs in this region (data not shown). Increasing evidence 

have pointed out the role of long non-coding RNAs (lncRNAs) in the regulation of 

gene transcription174. This class of RNAs comprehends trancripts that are more than 

200 nucleotides in length and do not encode for proteins174. Despite the limited 

number of lncRNAs characterized so far, several mechanisms have been proposed to 

explain lncRNAs mode of action (reviewed in174).  Some lncRNAs have been 

reported to bind to regulatory proteins impairing their association to the DNA, others 

act as scaffolds bringing together two or more proteins in discrete complexes174.  The 

role of lncRNA has been related mainly to gene silencing and repressing chromatin 

modifier complexes174,175. However, it has been recently reported that lncRNAs are 

associated also to active transcribed chromatin and can act as enhancers176. It has been 

reported that lncRNA expression is mediated by the binding of known transcription 

factors to their promoters175,177. For instance, lncRNA-p21 is induced by p53 and acts 

by repressing gene transcription177.  Thus, the identification of lncRNA mapping in 

the IL28B locus that are induced by IFNs concomitantly with the IRGs would help to 

clarify the mechanism that links these allelic variants at the IL28B locus to the IL28Rα 

expression level. 
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Fig. 5.1. Proposed mechanism for the pre-activated IFN system in the liver of CHC patients 

non-responders. HCV infection stimulates the production of IFNα and IFNλ by dendritic 

cells. IFNα rapidly induces the IRGs expression including IL28Rα The strength of induction 

of IL28Rα upon IFNα stimulation is associated to allelic variants at SNPs mapping in the 

IL28B locus. Because of the refractory state of the IFNα signaling pathway, IFNα fails to 

maintain a long lasting up-regulation of the IRGs. However, in case the subject harbors the 

minor allele at SNPs mapping at IL28B locus, the increased IFNα-induced IL28Rα 

expression triggers a response to IFNλ stimulation that results in the maintenance of the 

elevated the expression of IL28Rα and IRGs. 

	
  
The IFNα-base therapy allows the clearance of HCV only in 50 to 60% of chronically 

infected patients51. The introduction of direct-acting antiviral agents (Telaprevir and 

Boceprevir) for the treatment of HCV genotype 1 chronic infection has improved the 

viral clearance in this difficult to treat HCV genotype154,156. However, Telaprevir and 

Boceprevir need to be administrated together with the IFNα-based therapy in order to 

avoid the appearance of viral resistant species157,158. Despite the use of those new 

drugs, a high rate of treatment failure is still registered154,156.  

Peg-IFNλ has been currently evaluated for its efficacy in HCV clearance versus peg-

IFNα-based regimen. Recent clinical trials indicate that peg-IFNλ is at least as 

efficient as peg-IFNα for the treatment of chronic HCV infection and it is associated 

with less adverse effects151. A clinical trial conducted on treatment-naïve CHC 

patients showed a similar SVR rate for IFNλ and IFNα-treated patients 152. Due to the 

promising performances of peg-IFNλ, it is quite likely that in the next future peg-

IFNλ will substitute IFNα in the standard of care for CHC. Keeping this idea in mind, 

it would be useful to predict response to peg-IFNλ treatment in CHC patients. In the 

present study we propose IL28Rα as a suitable marker for the prediction of IFNλ 

based treatment-response. Indeed, we showed in liver biopsies that a minimal 

intrahepatic expression level of IL28Rα is required to achieve a significant activation 

of the IFN system in the liver of CHC patients. Furthermore, it would be interesting to 

evaluate the rate of SVR in previously non-responder CHC patients in case of re-

treatment with peg-IFNλ. Indeed, the results presented in this study indicate that CHC 

patients non-responsive to IFNα display a higher hepatic expression of IFNλ receptor 

and would respond well to peg-IFNλ.  
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It remains unclear the reason why the pre-activated IFN system in CHC non-

responder patients is unable to eradicate the virus. Indeed, one would expect that the 

strong activation of the IFN system is associated to a higher antiviral activity and 

therefore led to viral clearance. It has been proposed that HCV can block ISGs 

translation via PKR phosphorylation and inhibition of the eukaryotic translation 

initiation factor, eIF2α 103. Though this mechanism, cap-dependent RNA translation is 

impaired, leading to a reduced production of antiviral proteins despite mRNA 

synthesis103. On the contrary, IRES-dependent RNA translation remains unaffected, 

allowing the synthesis of HCV proteins103. Furthermore, HCV interferes with viral 

sensing and IFN production through MAVS cleavage41,43. We have shown that HCV 

impairs the Jak-STAT pathway through an ER-stress mediated up-regulation of 

PP2Ac97,98. These findings suggest that cells infected with HCV fail to up-regulate 

ISGs. Thus, the high expression of IRGs may derive from non-infected hepatocytes. 

So far the percentage of hepatocytes that are positive for HCV infection in CHC 

patients is imprecise, with an average number of 40%. New techniques are required to 

achieve reliable HCV staining assessment in vivo. Moreover, it would be interesting 

to assess the spatial localization of HCV and IRG mRNAs in order to elucidate if the 

IRGs expression is limited to non-infected hepatocytes.  

 

In conclusion, we exclude that the pre-activated hepatic IFN system before treatment 

in CHC patients is mediated by U-STAT1 or by type I IFNs. We propose instead, that 

the broad up-regulation of IRGs in the liver of CHC patients is mediated by IFNλ 

signaling pathway. In this context we assessed the prominent role of IL28Rα 

expression level in defining the response to IFNλ in vivo. We propose IL28Rα 

expression as a suitable marker for peg-IFNλ based therapy. Furthermore, we provide 

evidence that the amplitude of IL28Rα expression in hepatocytes is linked to genetic 

elements located at the IL28B locus. Our data provide the missing mechanism that 

explains the association of SNPs mapping at the IL28B and the up-regulation of the 

hepatic IRGs observed in CHC patients non-responders.  
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Subjects covered Thesis Title “Expression of human RNASET2 protein lacking signal peptide for 

secretion: effect of  cytoplasmic accumulation in human cell lines ” 
 
Cellular and molecular biology, cancer research 
 

Name and type of organization Università degli Studi dell’Insubria Via H. Dounant 3 21100 Varese-Italy 
  

Dates September 1996- July 2001 

Title of qualification awarded Scientific High School degree (score: 100/100) 

  
Name and type of organization Liceo Scientifico Statale “Paolo Giovio”, via Pasquale Paoli 28, 22100 – Como. 

  

Personal skills and 
competences 

 

Mother thongue Italian 

Other language(s) English: independent user in listening, reading, writing and speaking 
 
French:  basic user 
 

Social skills and competences I have good skills in team work and I’ve been working in in three different research 
groups. I also worked as secretary during elections in  
2003, 2004 and 2005.  
 

 
  

Organizational skills and 
competences 

I have good ability in working in an autonomous way and in planning my work  
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Technical skills and 
competences 

During the different experiences of lab work, I acquired competences in molecular 
biology such as: DNA and RNA purification from cultured cells and animal tissues, 
electrophoresis of nucleic acids on agarose gel, DNA cloning with restriction 
enzymes digestion in bacterial and mammalian cells, reverse-transcriptase PCR, PCR 
and quantitative PCR with Syber green method, analysis of Single Nucleotide 
Polymorphisms (SNPs) by Pyrosequencing (PSQ96MA system - Biotage AB, 
Uppsala, Sweden); analysis of Short Sequence Length Polymorphisms (SSLP) by 
PCR and polyacrylamide/agarose gel, Western blotting. 
I acquired competences in gene silencing using lentiviral system.  
I acquired basic competences in the use of HPLC and immunoflueorescence. 
 
I acquired competences in cell biology such as: maintain and culture human cancer 
cell lines, culture primary mouse hepatocytes, transfect cancer cells to obtain 
transient or stable overexpressing cell lines, set up clonogenicity tests.  
 
I acquired competences in working with mice: IP and subcute injection, organ 
removal, liver perfusion, isolation of primary mouse hepatocytes.  
In 2009 I attended and successfully completed the Introductory Course in Laboratory 
Animal Science (FELASA category B accredited) at the University of Zurich. 

  

Computer skills  I have good knowledge of the Office Suite (Word Excel, Power Point); 
I have basic knowledge of Photoshop and ImageJ.  
 
I have good knowledge of bioinformatics programs and Databases  

 
  

Artistic skills and competences For seven years I had studied armonium and organ.  
  

Driving licence I obtained European driver's license B 
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“Protein phosphatase 2A impairs IFNα-induced antiviral activity against the hepatitis 
C virus through the inhibition of STAT1 tyrosine phosphorylation”. Journal of Virla 
Hepatatitis  (in press). 
 
 
Makowska Z, Duong FH, Trincucci G, Tough DF, Heim MH. 
“Interferon-β and interferon-λ signaling is not affected by interferon- induced 
refractoriness to interferon-α in vivo.” Hepatology. 2011. 

 
Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A, Milani S, 
Gonzalez-Neira A, Dragani TA. 
“Mouse genome-wide association mapping needs linkage analysis to avoid false-
positive Loci.” PLoS Genet. 2009. 
 
Mannati G., Trincucci G., Pettinicchio A., Amendola E., Scrfo’ M., Dragani TA. 
“Cis-acting genomic elements of the Pas1 locus control Kras mutability in lung  
tumors.” Oncogene (2008= 

 
  

 
I like reading romances and essays; I like visiting art exhibitions and going to the 
theatre. I prectice salsa dancing.   

 
 

 
 
 
 
 
 
 
 

 
  

 
 
 
 
 
 


