
An epigenomic approach to understanding the 
mechanism of nucleosome retention in mouse 

spermatozoa 
 
 

 
Inauguraldissertation 

 
zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch–Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

 

Serap Erkek 
aus Turkei 

 

 

 

 

Basel, 2013 

 
 

 

 

 

 

 1



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der 

Universität Basel auf Antrag von  

 

 

Prof. Antoine Peters     Prof. Gernot Längst 
(Fakultätsverantwortlicher und Referent)  (Koreferent) 

 

 

 

Basel, der 26 Februar, 2013 

 

       Prof. Jörg Schibler 

       (Dekan) 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 2



Table of Contents 
Summary          5 
Chapter 1: General introduction        6 
1.1 Epigenetic states and inheritance      6 

 1.1.1 What is epigenetics?       6 

 1.1.2 Inheritance of epigenetic states      7  

 1.1.3 Transgenerational epigenetic inheritance    7 

1.2 Epigenetic mechanisms in gene regulation and maintenance of genome 
      stability          11                       
 1.2.1 State of genomic DNA in a eukaryotic cell    11 

 1.2.2 Mechanism and function of DNA methylation    12 

 1.2.3 Chromatin based epigenetic mechanisms    18 

  1.2.3.1 Nucleosomal organization of the genome   18 

  1.2.3.2 Post-translational histone modifications   21 

  1.2.3.3 Polycomb – Trithorax system and epigenetic memory 24 

  1.2.3.4 Histone variants      27 

  1.2.3.5 Inheritance of chromatin states over cell cycle  30 

 1.2.4 RNA based epigenetic mechanisms     31 

1.3 Male germline         32 
 1.3.1 Primordial germ cells       32 

 1.3.2 Spermatogenesis       34 

  1.3.2.1 Proliferative phase      34 

1.3.2.2 Meiotic phase       34 

  1.3.2.3 Spermiogenesis      35 

1.4 Rationale and scope of the thesis      40 
 
Chapter 2: Results         56 

2.1 Published manuscript:      

Repressive and active histone methylation mark  distinct promoters in human and 

mouse spermatozoa         56 

2.2 Published review: 

Parental epigenetic control of embryogenesis: a balance between inheritance and 

reprogramming?         67 

 

 

 3



2.3 Submitted manuscript:  

Density and methylation state of CpG dinucleotides define histone variant specific 

retention of nucleosomes in mouse spermatozoa     78  

2.4 Manuscript in preparation:  
Transcript and histone modification dynamics towards sperm development 128 

 
Chapter 3: Concluding remarks and discussion     149 
3.1 DNA sequence-encoded regulation mechanisms    149 

3.2 Molecular mechanism behind specific nucleosome retention versus 
eviction          150 

3.3 Potential function of chromatin states brought by sperm in early embryonic  
      development         152 

 

Acknowledgements         157 

Curriculum vitae         158 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4



Summary 

In mammals fusion of sperm and oocyte gives rise to a totipotent embryo. 

Origin of totipotency of the early embryo is highly debated: whether it is achieved by 

inheritance of the epigenetic states of the gametes or by reprogramming of such 

parental epigenetic marks in the embryo.  

Oocyte and sperm differ in their potential to transmit epigenetic information. 

The oocyte is full of maternal transcripts, proteins and its DNA is packed into 

nucleosomes while a spermatozoon is in highly compact structure and the majority of 

its histones are exchanged by protamines. It has been determined that in mature 

sperm histone-to-protamine exchange is not complete, still around 10% and 1% of 

histones are retained in human and mouse sperm, respectively. During the initial 

period of my PhD, we and others showed that in human sperm retained histones are 

not randomly distributed in the genome but to some extent are enriched at loci 

important for developmental and signaling pathways. We obtained similar findings in 

mouse sperm at single loci. Nevertheless, genome-wide localization of nucleosomes 

in mouse sperm and the main principles defining specific nucleosome retention were 

not known. In my project, the major aim was to determine the logic of nucleosome 

retention by using mouse sperm as the model system. In addition, I investigated 

transcript dynamics during late spermatogenesis to identify characteristics of the 

transcriptomes in maturing germ cells and spermatozoa. 

 By taking a genome-wide approach we have identified that combinatorial 

effects of sequence composition, histone variants, histone modifications and gene 

expression uniquely package sperm DNA. Importantly, H3.3 constitutes the main 

histone H3 variant retained in mature sperm and localizes to CpG islands. The 

majority of the genomic regions containing H3.3 are marked by H3K4me3. H3.3 

retention in sperm reflects high nucleosome turnover in round spermatids. Canonical 

histone H3 variants H3.1 and H3.2 are present in low amounts in mature sperm and 

their retention pattern mostly shows the history from non-replicating round 

spermatids. GC-rich genomic regions marked by H3K27me3 retain H3.1/H3.2, likely 

related to low nucleosome turnover in round spermatids. Investigating transcript 

dynamics during later stages of spermatogenesis showed that overall transcript 

levels towards sperm development are static. Nevertheless, our data relating 

changes in gene expression to changes in chromatin states highly suggest for 

ongoing transcriptional activity during differentiation of spermatids into sperm.  

Overall, we identified that histone modification states of retained nucleosomes 

and spermatozoal RNA pool highly relate to early embryonic gene expression, which 

argues that sperm carries critical information to the early embryo. 

 5



Chapter 1: General introduction  
1.1 Epigenetic states and inheritance 
1.1.1 What is epigenetics? 

Epigenetics is a term first raised during 1940s by Conrad Waddington. 

Waddington was studying embryonic development and he wanted to make 

connections between genetics and development. He proposed that embryonic 

development takes place as a result of combinatorial actions of different gene 

activities via formation of gene networks. Waddington combined the words 

epigenesis- processes which result in development of an organism and genetics to 

define epigenetics (Van Speybroeck, 2002). In his terms epigenetics is defined as 

“the study of processes by which the genotype gives rise to the phenotype” 

(Morange, 2002).  

In 1958 Nanney used the term “epigenetic control systems” which are 

involved in existence of different cellular phenotypes by the regulated expression of 

the same “genetic potentialities” and he emphasized the stability of epigenetic control 

systems nevertheless still emphasizing the point that cellular memory could be 

changed depending on the environmental conditions (Nanney, 1958). 

During 1970s, DNA methylation was proposed to be involved in gene 

regulation and development (Griffith and Mahler, 1969; Holliday and Pugh, 1975; 

Riggs, 1975). Soon after these proposals, discoveries which showed that DNA 

methylation could be involved in gene silencing (especially to explain X chromosome 

inactivation) without a need of genetic mutation started to change the definition of 

epigenetics. By 1990s, epigenetics started to be referred as “inheritance which is not 

based on DNA sequence changes” (Holliday, 2006).  

Nowadays, epigenetics is defined as “the study of changes in gene function 

that are mitotically and/or meiotically heritable and that do not entail a change in DNA 

sequence” (Wu and Morris, 2001). It has been also suggested that to be called 

“epigenetic”, a process should have three main properties: it should be heritable, 

there should be a mechanism for the propagation of the state and finally it should be 

reversible (Bonasio et al., 2010).  

To conclude, epigenetics is a term with changing definitions over time and 

depending on new scientific discoveries. Personally, I find Waddington`s definition of 

epigenetics “the study of processes by which the genotype gives rise to the 

phenotype” more logical. In my terms, I would define epigenetics as “systems in a 

cell nucleus which direct execution of cellular regulation programs with interaction 

with the genome itself and other molecules/complexes”. I avoid using heritability in 

my definition, because although epigenetic inheritance has been suggested to 
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function in many systems as it will be discussed below, actually, it is not known 

whether the molecule initially involved in specification of a certain regulation program 

is inherited during DNA replication and whether inheritance of this molecule is indeed 

required.  

 

1.1.2 Inheritance of epigenetic states 

Multicellular organisms consist of a multitude of distinct cell types and each 

cell type has a unique gene expression program. Epigenetic mechanisms play an 

essential role in specification as well as maintenance of a particular cellular identity. 

Various processes such as DNA methylation, Polycomb group (PcG) and Trithorax 

group (TrxG) of proteins have been described to be involved in epigenetic memory 

(Ng and Gurdon, 2008). Detailed functioning of these systems will be discussed later 

in section 1.2.  

 Examples for transcriptional memory have been demonstrated both in yeast, 

Drosophila, and mammalian systems. In yeast treatment of cells with TSA, which is a 

histone deacetylase inhibitor, results in expression of centromeric markers with 

increased histone acetylation levels. The established expression state is maintained 

over successive generations without TSA treatment (Ekwall et al., 1997). In 

Drosophila, embryonically induced activated or repressed state of a regulatory 

element dependent on action of PCG and TrxG proteins is heritable (Cavalli and 

Paro, 1998). In mammalian somatic cells, CpG methylation is involved in inheritance 

of silenced state (Feng et al., 2006).  

 Studies which focus on position effect variegation (PEV) also provided some 

insights about epigenetic inheritance. PEV refers to a phenomenon where genes 

change their expression status depending on whether they will be close to 

transcriptionally permissive or impermissive environment. In Drosophila by using a 

gene whose expression could be easily identified such as eye color, it was shown 

that gene expression states established depending on the chromatin environment the 

gene is present are inherited over successive cell divisions (Margueron and 

Reinberg, 2010).  

 All the examples above illustrate the maintenance of an established state, 

nevertheless, the molecular details of how the cellular memory works and actually 

which molecules are inherited are not known.  

 

1.1.3 Transgenerational epigenetic inheritance 
It is widely believed that after fertilization epigenetic states carried by oocytes 

and sperm to the early embryo are reprogrammed to ensure totipotent state of the 
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zygote. Although currently, it is unclear what exactly happens to the germline set 

epigenetic states during pre-implantation development, there are certainly some 

examples which show that epigenetic states of the germ cells at some loci are 

retained after fertilization. Below, several these kinds of examples will be introduced. 

  

- Genomic imprinting 

Genomic imprinting represents a mechanism where certain genes are 

expressed in a parent-specific origin manner. For this class of genes, paternal and 

maternal alleles have different epigenetic configuration which affect their 

transcriptional outcome. Imprinted genes resist reprogramming after fertilization. 

Nevertheless, in the germline, these genes are subject to reprogramming again to 

enable the parent-specific origin of expression.  

 

- Epialleles 

Studies performed in plants represent one example of transgenerational 

epigenetic inheritance. One of the most common examples concerns the flower 

symmetry in Linaria vulgarus. Wild type flowers of this plant are bilateral symmetrical. 

It has been identified that when the Lcyc gene, controlling dorsoventral asymmetry, is 

methylated and silenced, flowers become radially symmetrical. This naturally present 

epimutation has been also shown to be heritable across the genarations (Cubas et 

al., 1999).  

One of the most well known examples in mammals is the agouti viable yellow 

allele (Avy) of the agouti locus. Agouti locus encodes for a protein that is involved in 

switching of pigment color from brown/black to yellow in melanocytes (Duhl et al., 

1994). This locus contains an intracisternal A particle (IAP) retrotransposon element 

inserted which is close the promoter region of the gene. Expression of the allele 

inversely correlates with methylation status of IAP element. Coat color is transmitted 

only maternally, which argues for the clearance of the epigenetic marks in paternal 

germline at this locus (Daxinger and Whitelaw, 2012). However, DNA methylation 

status inherited from Avy  maternal allele is lost in blastocysts, which suggests that 

DNA methylation is not the mark implicated in the transmission of the phenotype 

(Blewitt et al., 2006). In addition, transgenerational epigenetic inheritance happens at 

axin-fused allele (AxinFu) via methylation differences of associated IAP element. 

Different from agouti locus, epigenetic state of AxinFu could me both maternally and 

paternally inherited (Daxinger and Whitelaw, 2012). 

 

- Paramutation 
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Paramutation refers to allelic interaction which results in meiotically heritable 

gene expression. Most known examples of paramutation come from the studies in 

plants for loci encoding pigment colors. In maize, b1 gene is involved in purple color 

pigmentation. B-I allele is responsible for dark pigmentation, whereas B` is involved 

in light pigmentation. Upon crossing of B-I with B`, B-I is changed into B` (B`*). 

Presence of tandem repeats upstream of the gene have been shown to involved in 

the paramutation. Bidirectional transcription from the repeat elements results in 

production of siRNAs which is thought to induce to change the epigenetic state of B-I 

into B`. Nevertheless, exact molecular mechanism of this process remains to be 

determined (Arteaga-Vazquez and Chandler, 2010). 

 An example of paramutation in mouse was shown at Kit locus, which encodes 

for a tyrosine receptor kinase and involved in germ cell differentiation and 

melanogenesis. Heterozygous mutant of Kit where there is an insertion of lacZ 

sequence downstream of the ATG start site show white tail phenotypes. It was 

identified that wild type mice with heterozygous parents still have the white tail 

phenotype. It has been shown that actually the unusual amount of Kit mRNA 

produced during late spermatogenesis and its accumulation in mature sperm could 

be responsible for the inheritance of the phenotype. It was proposed that unusual Kit 

mRNA levels result in a degradation product which causes white tail phenotype as 

injecting miRNA against Kit mRNA in early embryos results in the same phenotype 

(Rassoulzadegan et al., 2006).  

  

- Environmentally induced epigenetic changes 

Epigenetic states could be influenced by environment that the organism is 

exposed to and could be transmitted to the subsequent generations. Nevertheless, in 

the context of epigenetic effects induced by environment it is important to 

differentiate between transgenerational epigenetic effects and transgenerational 

epigenetic inheritance. To be called as inherited, epigenetic states should be carried 

by gametes to the early embryo. On the other hand, epigenetic effects could simply 

result from the environment to which the embryo is exposed to in-utero (Daxinger 

and Whitelaw, 2012).  

A study in humans investigated the individuals who were periconceptual 

exposed to famine during Dutch Hunger Winter for epigenetic differences of the 

imprinted IGF2 gene. It was identified that IGF2 gene had lower levels of DNA 

methylation as compared to control non-exposed individuals. This study was one of 

the first showing that environmental changes during early gestation in humans could 

result in epigenetic changes (Heijmans et al., 2008). Another study performed in mice 
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showed that pregnant females exposed to ethanol consumption during 0.5-8.5 days 

of gestation gave offspring with epigenetic changes at agouti viable yellow (Avy) 

locus. Ethanol consumption has been found be associated with hypermethylation at 

Avy locus and transcriptional silencing. In addition, ethanol consumption resulted in 

postnatal growth restriction phenotype and craniofacial dysmorphism (Kaminen-

Ahola et al., 2010).  

Transient embryonic exposure of pregnant rats during E8 to E14 day of 

gestation to the anti-androgen vinclozolin results in offspring with spermatogenic 

defects. Born males have significant apoptosis of the germ cells in testicular tubules, 

reduced sperm count and motility. Importantly, reduced spermatogenic capacity is 

transmitted to the subsequent generations (Anway et al., 2006). A few years after this 

study, it was shown that sperm from F3 generation (with F0 mothers treated with 

vinclozolin) had DNA methylation differences at some promoter regions as compared 

to control sperm (non-treated) (Guerrero-Bosagna et al., 2010). Although this finding 

could argue for a germ-line transmitted epigenetic change, analysis of the sperm 

from F1 and F2 generations should be also included to really claim that identified 

DNA methylation changes are the transmitted mark.  

 Another study in mice investigated the effect of paternal diet on gene 

expression of the offspring. Offspring of the males who had been fed with low-protein 

diet showed upregulation of the genes involved in lipid and cholesterol synthesis. 

Analysis of the liver from offspring showed that offspring from the males fed with low-

protein diet had DNA methylation changes in promoter regions of some genes, 

especially at the promoter region of Ppara gene, which is involved in hepatic gene 

expression response. Nevertheless, analysis of the promoter region of Ppara gene 

from the sperm cells of the respective fathers did not show any DNA methylation 

changes. In addition, authors performed RNA and chromatin analysis on the sperm, 

and detected very subtle changes on some genes. Therefore, the exact mechanism 

how the offspring is affected from the paternal diet change and whether this goes 

through epigenetic inheritance via the gametes remains to be determined (Carone et 

al., 2010).  

 A recent example in rats studied the adaption of wound healing in rats. Males 

were subjected to repeated injury in F0 and F1 generations, and F2 generation was 

analyzed for hepatocellular damage and wound healing. It was identified that injury 

did not cause any heritable damage in liver but hepatic wound-healing was 

suppressed. As a result of this adaptation, the expression of antifibrogenic factor 

peroxisome proliferator-activated receptor γ (Ppar-γ) was increased and the 

expression of profibrogenic factor transforming growth factor β1 (Tgf-β1) was 
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determined to be decreased. Ppar-γ gene in liver from the injured animals was 

hypomethylated. Although analysis of sperm from the injured animals did not show 

any DNA methylation changes at Ppar-γ gene, Ppar-γ was enriched for H2A.Z and 

H3K27me3 in sperm. It has been suggested that a soluble factor from the liver of 

injured animals could change chromatin of sperm (Zeybel et al., 2012). Nevertheless, 

the ultimate connection between chromatin changes in sperm and its effect on 

expression of Ppar-γ gene remains to be determined.  

 

1.2 Epigenetic mechanisms in gene regulation and maintenance of genome 
stability 

I have discussed the epigenetic states and examples of epigenetic 

inheritance functioning in keeping certain cellular identity also potentially transmitting 

information across the generations via germline. But, how do mechanistically 

epigenetic systems work? In below sections, I will introduce the mechanism of action 

of the best known and characterized epigenetic mechanisms. 

 

1.2.1 State of genomic DNA in a eukaryotic cell 
DNA in a eukaryotic cell is not naked in the nucleus but packed into a 

structure called chromatin. Around 147 bp of DNA is wrapped around an octamer of 

histone proteins with 2 copies of histone H2A, H2B, H3 and H4 making the 

fundamental unit of chromatin, which are nucleosomes (Luger et al., 1997) 

Nucleosomes are connected by linker DNA, making an array known as “beads on a 

string” or primary structure. Presence of linker histone H1 or another architectural 

protein and short range nucleosome-nucleosome interactions further compact the 

nucleosome structure into a 30nm fiber forming a secondary structure. In addition 

long range fiber-fiber interactions could form tertiary chromatin structure which could 

be also stabilized by presence of other chromatin proteins (Luger et al., 2012) (Figure 

1).  

Packing of DNA into nucleosome structure itself is actually inhibitory to gene 

expression and other processes such as binding of transcription factors. Additional 

level of complexity comes from the fact that DNA itself is methylated, N-terminal tails 

of histones are chemically modified and there might be compositional differences 

within a nucleosome caused by presence of different histone variants (Probst et al., 

2009). Each of these possibilities, or combination of them and further interactions 

with other proteins and RNA might have different roles in gene regulation and 

genome stability. 
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Figure 1: Packaging of DNA into chromatin. Figure illustrates the packing of DNA 
into nucleosomes making the primary, secondary and tertiary structures of the 
chromatin (adapted from (Luger et al., 2012), permission to use: license number: 
3124281314453).  
 

1.2.2 Mechanism and function of DNA methylation 
DNA methylation was described many years ago. Initially identified as 

restriction modification mechanism in bacteria, analysis of the nucleotides from 

animals and plants showed that these organisms had also quite some 5-

methylcytosine and almost all of this methylation happens within CpG dinucleotide 

(Cedar and Bergman, 2012).  

 

CpG dinucleotide states, frequency and organization in the genome 

CpG dinucleotide might be in many different states: unmetyhlated, methylated 

(5mC) and hydroxymethylated (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC). Methylation occurs on the 5 position of pyrimidine ring of 

cytosine base pair (5mC). Oxidation of 5mC could create 5hmC, 5fC and 5caC (Ito et 

al., 2011). Both methylated and unmethylated forms of cytosine are prone to 

deamination which could give rise to thymidine and urasil, respectively. Urasil, not 

normally present in DNA could be efficiently removed and replaced by cytosine via 

DNA repair system. However, thymine as regular component of DNA can not be 

efficiently repaired and this causes mutations. In vertebrates, approximately 80% of 

CpGs are methylated and this creates a mutational pressure that decreases 

frequency of CpGs genome-wide. Nevertheless, in vertebrates short unmethylated 

regions in the genome exists, so called CpG islands (CGI). CGIs have 10 times more 

CG frequency compared to bulk of the genome and constitutes about the 1% of the 

genome. In invertebrates such as Drosophila melanogester and Caenorhabditis 
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elegans, there is almost no DNA methylation, therefore CpGs exist at the expected 

frequency and there are no CpG islands (Bird, 2011). About half of CGI intersect with 

promoter regions, the other half of CGI lie within intragenic or intergenic sequences 

and they might be associated with novel promoter activity for instance by recruiting 

RNA polymerase II and called as “orphan CGI” (Deaton and Bird, 2011).  

One of the main questions arising immediately is that how CGI were initially 

generated. Adrian Bird and colleagues suggest possible explanations for this 

process. Initially, it was thought CGI cannot be targeted by DNA methyltransferases 

because of sequence or organization characteristics of these elements. Since some 

CGI get DNA methylation during development, this hypothesis is likely not true. 

Alternatively, CGI could be actively demethylated to keep them in an unmethylated 

state. In this context, Tet1 protein which is involved in conversion of 5mC to 5hmC 

and having a CpG binding-CXXC domain might be the one of the best candidates 

functioning in such a mechanism. It has been argued that actually most favorable 

explanation comes from the fact that CGIs are associated with promoter regions. 

Binding of transcription factors at CGI, presence of RNA polymerase II at CGI and 

the fact that the great majority of genes with CGI are expressed in early embryo or in 

testis could all support this explanation (Deaton and Bird, 2011; Illingworth and Bird, 

2009). A supportive finding to this idea also comes from a recent study. It has been 

shown that transcription factor binding in the genome shapes DNA methylation levels 

genome-wide in mouse, creating unmethylated regions (UMRs), lowly methylated 

regions (LMRs), and fully methylated regions (FMRs) in the genome (Stadler et al., 

2011). 

 

Mammalian DNA methyltransferases 

In mammals, there are three main type of DNA methyltransferases (Dnmts) 

exist, Dnmt1, Dnmt3a, and Dnmt3b, and one Dnmt3 related protein called Dnmt3L 

with no catalytic activity. Dnmt1 is ubiquitously expressed in proliferating cells and it 

acts as maintenance Dnmt to keep DNA methylation patterns across cellular 

divisions (Jurkowska et al., 2011). Dnmt1 is required for early development as its 

disruption causes embryonic lethality after gastrulation and various defects with 

genomic imprinting and X chromosome inactivation. Nevertheless, absence of Dnmt1 

in embryonic stem cells (ESCs) shows an effect only upon differentiation (Li et al., 

1992).  

Dnmt3 family, consisting of Dnmt3a, Dnmt3b and Dnmt3L (catalytically 

inactive and functioning in germ cells) has been determined to be responsible from 

de novo DNA methylation in mammals (Jurkowska et al., 2011). In mice, Dnmt3a and 
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Dnmt3b are highly expressed in (ESCs), but their expression is down-regulated after 

differentiation (Okano et al., 1998). De novo methylation does not take place in ESCs 

upon disruption of both Dnmt3a and Dnmt3b. Heterozygous deletion of Dnmt3a and 

Dnmt3b in mice does not cause any major problems. Homozygous deletion of 

Dnmt3a gives rise to viable offspring with an early death at 1 month age. 

Nevertheless, homozygous deletion of Dnmt3b causes some developmental 

problems starting at E9.5 and no viable offspring is produced. It was identified that de 

novo methylation patterns were lost both in single homozygous or double 

homozygous mutants of Dnmt3 enzymes suggesting overlapping functions although 

some specific functions for the methylation of minor satellite repeats were observed 

for Dnmt3b (Okano et al., 1999).  

 

How are DNA methylation patterns established de novo? 

 What targets Dnmt3 enzymes to certain regions of the genome specifically? 

At this point, different mechanisms might be proposed. One mechanism might be that 

Dnmt3 enzymes recognize DNA via specific protein domains. PWWP domain present 

in human DNMT3b has been shown to be required for the catalytic activity of the 

protein. Furthermore, this domain could directly interact with DNA (Klose and Bird, 

2006). Another possibility for the targeting of Dnmt3s might be that there could be 

DNA methylation centers for instance containing repetitive elements directing DNA 

methylation. In ESCs, such a region was identified. APRT methylation center, 

containing B1 repetitive elements upstream of Aprt gene is DNA methylated in Dnmt1 

deficient ESCs arguing for an intrinsic affinity towards de novo DNA methylation 

(Bird, 2002). In addition, de novo DNA methyltransferases Dnmt3a and Dnmt3b have 

flanking sequence preferences around target CpG sites. However, presence of 

Dnmt3L decreases the effect of sequence preferences of these enzymes and leads 

to formation of more uniform DNA methylation patterns (Wienholz et al., 2010). It has 

been also shown that RNA interference (RNAi) could guide de novo methylation. In 

plants, it was identified that RNAi could target DNA methylation to the homologous 

DNA sequence. Nevertheless, it remains to be determined whether this actually 

happens also in mammals because of the contradictory results found (Klose and 

Bird, 2006). As DNA is packaged into nucleosomes, chromatin states might have an 

effect on DNA methylation status, too. It has been identified that methylation of lysine 

4 on histone H3 is inhibitory to binding of Dnmt3 enzymes (Ooi et al., 2007; Zhang et 

al., 2010). Finally, accessibility of DNA sequences to Dnmt3 enzymes might have a 

role in targeting since mutations in chromatin remodeling factors have been shown to 

affect DNA methylation patterns (Bird, 2002).  
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Reprogramming DNA methylation patterns in early embryogenesis and germ 

line 

Fusion of two highly differentiated gametes, sperm and oocyte gives rise to a 

totipotent embryo which could give rise to all cells of an organism including the germ 

cells. It is thought that DNA methylation marks are globally reprogrammed after 

fertilization in early embryo and during germ cell specification to ensure correct 

embryonic cell identities and guarantee the potential of germ cells to form a totipotent 

embryo. Nevertheless, it is already known that there are genomic regions which 

could escape reprogramming (Gill et al., 2012; Smallwood and Kelsey, 2012). 

 Primordial germ cells (PGCs) before entry into gonads are highly methylated 

with similar patterns observed for somatic cells. It was identified that during 

primordial germ cell migration to gonads, starting from E12.5 to E13.5, DNA 

methylation levels are significantly reduced (Hajkova et al., 2002). Nevertheless, 

erasure of DNA methylation does not occur in the same way along the entire 

genome. For instance, intracisternal A-particle (IAP) class repeat elements remain 

partially methylated. However, DNA metylation patterns at imprinting control regions 

(ICRs) are erased. Actually, a recent genome-wide study showed that demethylation 

already starts from E9.5 and continues until E13.5 happening with different dynamics 

depending on the characteristic of the genomic region (Seisenberger et al., 2012). 

There are different mechanisms suggested to explain demethylation events occurring 

in PGCs. Presence of DNA single strand breaks and higher levels of DNA 

methylation levels observed with Aid (a cytidine deaminase) deficiency in primordial 

germ cells argued for the involvement of DNA repair and Tet1-mediated conversion 

of 5mC to 5hmC in this process (Hajkova et al., 2010; Popp et al., 2010). 

Nevertheless, a recent study showed that DNA demethylation events happen in a 

passive manner as revealed by the comparison of DNA demethylation kinetics to 

doubling times of PGCs (Kagiwada et al., 2012). In addition, data from another recent 

study supported the  passive DNA demethylation mechanism based on the fact that 

during E9.5 to E13.5, PGCs undergo cellular divisions, and the data showing strand 

specific hemimethylated CpGs and exclusion of Dnmt1 from early PGCs 

(Seisenberger et al., 2012). 

 Following erasure of DNA methylation marks and sex determination of the 

early embryo, de novo methylation pattens start to be established in female and male 

germlines. In females, de novo methylation takes place in growing oocytes arrested 

in meiotic prophase I. In males, it initiates before the onset of meiosis in mitotically 

arrested spermatogonia and is completed before birth (Smallwood and Kelsey, 

2012).  
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 In germ line, certain genomic regions become differentially methylated. 

Among those are ICRs and repetitive elements (Smallwood and Kelsey, 2012). 

Recently, several genome-wide studies identified differentially methylated CGI or 

gametic differentially methylated regions (gDMRs). Number of identified gDMRs 

differed slightly depending on the method used for DNA methylation mapping 

(Kobayashi et al., 2012; Smallwood et al., 2011; Smith et al., 2012). 

 Dnmt3 enzymes play an essential role in establishment of germ cell specific 

DNA methylation patterns and they are all expressed both in female and male germ 

lines (Smallwood and Kelsey, 2012). Offspring from Dnmt3a conditionally mutant 

(deletion in primordial germ cells by using TNAP-Cre) females die in utero around 

E10.5 and analysis of embryos from E10.5 showed that maternal imprints were lost. 

Conditional deletion of Dnmt3a in males results in defective spermatogenesis, 

azoospermia, and loss of paternal imprints. On the other hand, conditional deletion of 

Dnmt3b did not give any apparent phenotype (Kaneda et al., 2010). Later, another 

study from the same group actually showed that Dnmt3b function is important to 

keep paternal imprint at Rasgrf1 ICR (Kato et al., 2007). Male mice homozygous for 

disrupted Dnmt3L are sterile and offspring from females homozygous for disrupted 

Dnmt3L die before midgestation. Analysis of the mutant females showed that 

maternal imprints were abolished (Bourc'his et al., 2001). Following this, another 

study showed that Dnmt3L is also required for establishment of paternal imprints, 

acquisition of DNA metylation at certain repeat elements, and lack of Dnmt3L results 

in meiotic arrest of spermatogenesis caused by structural changes in chromatin 

(Webster et al., 2005). A genome-wide study showed that Dnmt3a and Dnmt3L are 

required for oocyte specific DNA methylation patterns at CGI, extending the function 

of Dnmt3 enzymes beyond setting correct imprinting patterns (Smallwood et al., 

2011). Recently, it was also shown that although Dnmt3L is required for setting of 

maternal imprints, to a certain extent DNA methylation of some retrotransposons are 

not dependent on Dnmt3L in oocytes (Kobayashi et al., 2012).  

 After fertilization another wave of DNA methylation reprogramming takes 

place. Paternal genome undergoes a rapid and active demethylation process, on the 

other hand, for maternal genome this takes place slowly and in a passive manner 

(dependent on DNA replication) (Gill et al., 2012; Smallwood and Kelsey, 2012). 

Mechanism involved in active demethylation of paternal genome has been proposed 

to be linked to conversion of 5mC to 5hmC on the paternal genome. Maternal 

deletion of dioxygenase Tet3 blocks the conversion of 5mC to 5hmC and 5mC stays 

constant on the paternal genome. Embryos lacking maternal Tet3 show a significant 

developmental failure (Gu et al., 2011).  Starting with blastocyst implantation and the 

 16



determination of cell lineages, cell type specific DNA methylation patterns start to be 

reset (Smallwood and Kelsey, 2012). 

 There has been in a significant interest in identifying whether demethylation 

events occurring after fertilization happens everywhere in the genome or at certain 

genomic regions. In this context, ICRs are one of the best examples known to 

escape this reprogramming and represent a one generational cycle of epigenetic 

inheritance (Gill et al., 2012). In addition, recently there have been several studies 

analyzing the fate of DNA methylation states in oocyte and sperm upon fertilization at 

a genome-wide scale. Smallwood and colleagues showed that methylation levels of 

most CGIs in blastocyst, which were originally methylated in oocytes, were 

significantly higher than that would be expected from a passive demethylation 

process (Kobayashi et al., 2012; Smallwood et al., 2011). In addition, it was identified 

that about half of the gDMRs partially resist to DNA demethylation (Kobayashi et al., 

2012).  

It has been shown that there are two main transitions of DNA methylation 

patterns during early embryonic development, one happening from sperm to zygote  

with a substantial decrease in DNA methylation (Smith et al., 2012) and one 

happening from early inner cell mass (ICM) to post-implantation development with a 

significant increase in DNA methylation (Borgel et al., 2010; Smith et al., 2012). After 

fertilization, demethylation of genomic regions in sperm mainly occurs at intergenic 

sites. Certain LINE elements which are fully methylated in sperm shows the most 

dramatic demethylation (Smith et al., 2012).  

 

Mechanistics of DNA methylation: What reads DNA methylation mark? 

DNA methylation is inhibitory to transcriptional activity, but how is this 

mechanistically achieved? DNA methylation sensitive CpG binding proteins have 

been described to be involved in this process (Bird, 2002). Two families of proteins 

could bind methylated DNA:  Methyl CpG binding proteins (MBDs) and Kaiso protein 

family. MBDs mainly consist of MBD1, MBD2, MBD3, MBD4 and MeCP2. MBDs 

share a homologous MBD domain. Importantly, mutation in MeCP2 causes Rett 

syndrome, a neurological disorder. Kaiso protein family, consisting of Kaiso, Zbtb4 

and Zbtb38, have zinc finger domains. These proteins form histone deacetylase 

complexes and establish silent chromatin (Bogdanovic and Veenstra, 2009).  

  In addition to methyl CpG binding proteins, there are proteins which are 

repelled by DNA methylation. For instance, CXXC-domain containing proteins bind to 

DNA only if it is unmethylated (Allen et al., 2006).  
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Function of DNA methylation in gene and repetitive element silencing 

The role of DNA methylation has been described in many cellular contexts. 

Despite the clear role of DNA methylation in silencing, it is not thought as a 

mechanism in the initial establishment of silenced states. There are several studies 

which support this hypothesis. Silencing of exogenous retroviral elements occurs 

without the need of DNA methylation initially per se in embryonic stem cells (ESCs) 

(Bird, 2002). In addition, it has been shown that de novo methylation requires 

nucleosome for the functioning of Dnmt3 enzymes and methylation of lysine 4 on 

histone H3 is inhibitory to DNA methylation (Ooi et al., 2007).  

Studies which used knock-out mouse models of Dnmt3 enzymes clearly 

showed that DNA methylation is involved in establishment of parental specific 

imprinting patterns. Nevertheless, maintenance of parental specific imprinting 

patterns does not only involve DNA methylation, but in addition additional action of 

other proteins. For instance, recently it has been shown that Kruppel-associated box-

containing zinc finger protein (Zfp57) regulates maintenance of DNA methylation at 

imprinted loci in early embryos and embryonic stem cells via recognizing a 

methylated hexanucleotide sequence (Li et al., 2008; Quenneville et al., 2011; Zuo et 

al., 2011).  

DNA methylation is also involved in long term silencing of inactive X 

chromosome in mammals. Genes on the inactive X chromosome has been found to 

hypermethylated but not on active X chromosome. DNA methylation plays a role in 

maintenance of silencing rather than initiation on inactive X chromosome (Chang et 

al., 2006).  

DNA methylation is also required for efficient silencing of the transposable 

elements in the genome. Transposable elements are highly methylated and silenced 

in somatic cells. In the context that transposition could create DNA damage, it has 

been suggested that DNA methylation might be thought as host-defense system 

initially evolved to counteract parasitic sequence threads (Yoder et al., 1997).  

 

1.2.3 Chromatin based epigenetic mechanisms 
1.2.3.1 Nucleosomal organization of genome 
 Genomic DNA is packed around histone proteins to form the fundamental unit 

of chromatin which are nucleosomes. There have been a significant number of 

studies asking the question what kind of criteria determines the packaging of DNA 

into nucleosomes. At this point, there are two main distinctions: nucleosome 

occupancy and nucleosome positioning. Nucleosome positioning is defined as “the 

probability that a nucleosome starts at a given base pair within the genome”. On the 
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other hand, nucleosome occupancy refers to “presence or absence of nucleosomes 

over specific DNA sequences in the genome and differs from nucleosome positioning 

in that the former does not care where the nucleosome starts as long as the base 

pair is covered by it” (Arya et al., 2010). If we think that nucleosomes cover 147 bp 

DNA, there might be 147 different nucleosomes covering a given base pair. In this 

way, nucleosome occupancy could also be defined as “147-bp-moving average of 

the nucleosome positioning probabilities” (Segal and Widom, 2009).  

 Several studies mapped genome-wide nucleosome occupancy in many 

eukaryotes. It has been shown that transcriptional activity creates nucleosome free 

regions around the transcriptional start sites (TSS) of genes (Li et al., 2011; Schones 

et al., 2008). This effect is more apparent for the genes which have low GC-content 

promoters since high GC-content promoters are mostly devoid of nucleosomes 

without being necessarily associated with transcriptional activity (Fenouil et al., 2012; 

Li et al., 2011; Ramirez-Carrozzi et al., 2009). Exonic sequences were identified to 

have high nucleosome occupancy, which is suggested to regulate RNA splicing 

(Andersson et al., 2009; Choi, 2010; Schwartz et al., 2009). A recent study 

investigating genome-wide nucleosome occupancy in embryonic stem cells (ESCs) 

showed that the majority of the transcription factor binding sites were depleted from 

nucleosomes in ESCs. In differentiated cells most probably because of the lack of 

expression of the factors, those sites were occupied by nucleosomes (Teif et al., 

2012).  

 Nucleosome occupancy and positioning might be influenced by several 

factors. It has been shown that DNA sequence itself could predict nucleosome 

occupancy (Kaplan et al., 2009). Analysis of 5-base-pair sequences for average 

nucleosome occupancy both in vivo and in vitro identified that 5-mers enriched in A 

and T mononucleotides had the lowest nucleosome occupancy whereas 5-mers 

composed of C and G mononucleotides had relatively higher nucleosome 

occupancies. Later, another study determined that G+C content and frequency of 

AAAA are the most important sequence features explaining nucleosome occupancy 

in vitro such that G+C content explains 50% of variation in nucleosome occupancy 

(Tillo and Hughes, 2009).  

 DNA sequences with power to position the nucleosomes had been a great 

interest for long time. A study identified the most powerful DNA sequences to position 

nucleosomes by measuring their affinity for histone octamer via in vitro nucleosome 

reconstitution experiments (Lowary and Widom, 1998). Actually, one such sequence 

from this experiment called “601” is widely used in the studies of chromatin structure. 

It has been also shown that 10 bp periodic presence of AA/TT/AT and GC 
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dinucleotides in a given DNA sequence favors nucleosome positioning. It has been 

suggested that this kind of patterning allows the proper bending of DNA over 

nucleosomes (Arya et al., 2010).  

 Given the role of DNA methylation in genome regulation, it affects the 

nucleosomal organization of the genome. A study in Arabidopsis thaliana showed 

that genomic regions associated with nucleosomes had higher levels of DNA 

methylation compared to flanking DNA (Chodavarapu et al., 2010). In contrast, by 

using both in vitro and in vivo assays, it was also determined that packaging of DNA 

into nucleosomes was inhibitory to DNA methylation (Felle et al., 2011). In addition, 

another study identified that CGI-promoters which are DNA methylated are occupied 

by nucleosomes whereas DNA methylation and nucleosome occupancy were anti-

correlated at CTCF binding sites (Kelly et al., 2012). Ultimate relationship between 

DNA methylation and nucleosome occupancy could be context specific and depend 

on which comes first.  

 Action of physical forces plays important roles in nucleosome positioning. 

Among those, we could think of binding of transcription factors, RNA polymerase II 

occupancy and enzymatic action of chromatin remodelers. It has been suggested 

that physical presence of a factor will have an effect on the positioning of neighboring 

nucleosome, which will further affect the positioning of the next nucleosomes. This 

type of nucleosome phasing is often referred as “statistical positioning”. It is expected 

that nucleosome positioning strength decreases as the distance from the physical 

barrier increases. In this context, RNA polymerase II binding at TSS is one of the 

best examples, positioning -1 and +1 and a few more downstream nucleosomes at 

the TSS (Arya et al., 2010). Having a defined sequence binding motif, transcription 

factor CTCF has also a substantial power for positioning nucleosomes (Ohlsson et 

al., 2010). In addition, transcription factors could affect nucleosome positioning by 

competing with nucleosomes itself. At the end, nucleosome positioning might depend 

on the relative affinities of nucleosomes and transcription factors for a given 

sequence and relative concentration of the factors (Segal and Widom, 2009). In 

addition, chromatin remodeling factors which can move nucleosomes to different 

positions or remove nucleosomes completely by using ATP play important roles in 

nucleosome positioning. In this respect, SWI/SNF family of remodelers could eject 

and slide nucleosomes, and ISWI family was found to be involved in positioning of 

nucleosomes (Arya et al., 2010; Segal and Widom, 2009). Importantly, a study 

showed that nucleosome positioning around TSS requires chromatin remodeling 

factors, especially the use of ATP in yeast cells (Zhang et al., 2011). Another study in 

Drosophila mapped genome-wide distribution of main chromatin remodeler families 
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genome-wide. It was identified that different remodelers might be targeted to distinct 

DNA sequences and could counteract DNA-sequence driven positioning differentially 

(Moshkin et al., 2012).  

 To conclude, it might be argued that intrinsic DNA sequence preferences, 

transcription factors, chromatin remodelers and other chromatin binding factors have 

unique and essential roles in nucleosomal organization of the genome. At the end, 

combinatorial action of all these features might be necessary to create proper 

chromatin configuration in different cell types and distinct cellular processes.   

 

1.2.3.2 Post-translational histone modifications 
N-terminal tails of the histone tails protrude from the nucleosome core and 

they are post-translationally modified. These modifications include methylation, 

acetylation, phosphorylation, ubiquitination, sumoylation and some others. Initially 

suggested by Jenuwein and Allis, histone modifications could create a “histone code” 

which would be involved in regulation of diverse cellular processes (Jenuwein and 

Allis, 2001). There are writer and reader proteins which deposit the modification on 

histones and recognize the deposited mark, respectively (Justin et al., 2010). 

Methylation of lysine 4 and 27 on histone H3 are the best studied examples of 

histone modification mediated gene regulation and the details of function of these 

modifications will be discussed in more detail in section 1.2.3.3. Below, I will 

introduce function of several histone modifications and molecular machineries 

involved in deposition and recognition of the mark, with a special focus on histone 

methylation.  

 

- Histone acetylation 

  Histones could be acetylated and deacetylated by histone acetyltransferases 

(HATs) and histone deacetyltransferases (HDACs), respectively. One of the most 

conserved functions of histone acetylation is di-acetylation of lysines 5 and 12 on 

newly synthesized H4 which will be deposited into newly replicating DNA. Acetylation 

marks are recognized by histone chaperones and an ordered chromatin structure is 

ensured. Immediately after deposition onto DNA, histones become deacetylated to 

allow new patterns of histone acetylation (Shahbazian and Grunstein, 2007; Turner, 

2000).  

 Histone acetylation is also involved in chromatin compaction, heterochromatin 

spreading and transcription. Acetylation neutralizes the positive charge on histone 

tails which would lead to disruption of electrostatic interactions between histones and 

DNA, thus favoring a looser chromatin structure. In yeast, deacetylation of histone 
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tails has been shown to be involved in heterochromatin formation spreading via 

recognition of deacetylated forms by Sir proteins. As acetylation creates a more open 

chromatin environment, it promotes transcription by facilitating the binding of 

transcriptional machinery at promoter regions. In addition, acetylation could be 

recognized by bromodomain-containing proteins, which could activate transcription. 

On the contrary, as expected histone deacetylation plays a role in gene repression 

(Shahbazian and Grunstein, 2007).  

 

- Methylation of histone H3 on lysine 4 

H3K4me1 is often associated with enhancer function. H3K4me2 and 

H3K4me3 have been associated with transcriptional activity and they could also be 

found at promoter regions of genes poised for activation. Actually, it was also shown 

that H3K4me3 is found almost at all of high CpG-content promoters of the genes 

regardless of their expression (Greer and Shi, 2012; Zhou et al., 2011). In this 

respect, it was identified that Cfp1 which has an unmethylated CpG binding CXXC 

domain establishes H3K4me3 by recruiting H3K4 methyltransferase Setd1 (Thomson 

et al., 2010). Plant-homeo-domain (PHD) containing proteins plays and essential role 

in recognition of H3K4me3 and directing further downstream events (Justin et al., 

2010). 

The first enzyme catalyzing H3K4me is Set1 identified in yeast (Miller et al., 

2001). Mammalians have around 10 known H3K4methyltransferases. Six of them, 

Set1a, Set1b, Mixed-lineage leukemia (Mll) /Trithorax family members Mll 1-4 are 

close homologs of Set1 identified in yeast and function in complexes called 

COMPASS (Hublitz et al., 2009). In addition, there are enzymes which demethylate 

H3K4me. It was identified that LSD1 demethylates H3K4 and is involved in gene 

repression (Shi et al., 2004). Nevertheless, LSD1 does not only demethylate H3K4, 

as it was shown later that it could function as a H3K9 demethylase as well (Metzger 

et al., 2005).  

 

- Methylation of histone H3 on lysine 36 

 H3K36me is best known for its role in transcription. It has been found that 

transcribed genes had a progressive shift from H3K36me1 to H3K36me3, starting 

from promoter regions of the genes and going through 3’ of genes. H3K36 

methyltransferase Set2 is involved in H3K36me during transcriptional elongation by 

associating with hyperphosphorylated form of RNAP II. H3K36me3 mark prevents 

abnormal transcription along the coding sequences by recruiting a histone 
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deacetylase complex. Protein complexes with members having a PWWP domain 

recognize H3K36me (Wagner and Carpenter, 2012).  

 In addition, H3K36me has been implicated in transcriptional repression in 

certain cellular contexts and several organisms (Wagner and Carpenter, 2012). 

Nevertheless, the exact role of H3K36me in silencing and whether actually it is 

required to establish or maintain a silent state need to be identified.  

 

- Methylation of histone H3 on lysine 27 

H3K27 methylation is processive. H3K27me1 is involved in constitutive 

heterochromatin formation. In plants, H3K27me1 is deposited by ATRX5 and ATRX6, 

which are not conserved in mammals. Although in mammals, H3K27me1 is 

detectable, it is not clear how this mark is initially created; it could be deposited by an 

unknown enzyme or could be created via demethylation of H3K27me2/3. 

H3K27me2/3 is catalyzed by enzymatic subunits, EZH1 and EZH2, of the Polycomb 

repressive complex 2 (PRC2). H3K27me3 is the stable mark and H3K27me2 has 

been seen as an intermediate and does not have a significant role in gene regulation 

(Margueron and Reinberg, 2011). 

H3K27me3 is associated with gene repression and silenced chromatin 

formation. Chromodomain-containing CBX proteins, which are the subunits of 

Polycomb repressive complex 1 (PRC1), bind to H3K27me3 (Hublitz et al., 2009). 

Importantly, it has been also shown that EED which is another PRC2 member binds 

to H3K27me3 mark and this binding is required for the propagation of H3K27me3 

(Margueron et al., 2009).  H3K27 could also be demethylated. Histone demethylases 

UTX and JMJD3 specifically demethylates H3K27me. These demethylases are 

important in differentiation and development and their absence could create different 

defects (Hublitz et al., 2009).  

 

- Methylation of histone H3 on lysine 9 

 H3K9me is involved in transcriptional silencing, DNA methylation and 

heterochromatin formation. H3K9me is mainly catalyzed by G9A, SETDB1, PRMD2 

and SUV39H1-2. Lysine demethylases, JHDM2 (KDM3), JMJD2 (KDM4) and PHF8 

are involved in demethylation of H3K9me (Krishnan et al., 2011).  

H3K9me positively correlates with DNA methylation, and for several 

processes, it has been demonstrated that loss of H3K9me could lead to loss of DNA 

methylation as well (Cheng and Blumenthal, 2010). H3K9me2 is mainly associated 

with facultative heterochromatin and has a role in processes such as X chromosome 

inactivation (Trojer and Reinberg, 2007). Furthermore, it is enriched at  lamina-
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associated domains (LADs) in the nucleus (Guelen et al., 2008). Recently, it was also 

identified that globally H3K9me2 is found at transcriptionally silent genomic regions 

both in ESCs and differentiated cells with similar levels (Lienert et al., 2011). On the 

other hand, H3K9me3 is more involved constitutive heterochromatin formation, and 

represented within centromeric, pericentromeric and telomeric domains. At this point, 

recognition of H3K9me3 by chromodomain-containing HP1 plays an important role in 

chromatin compaction and higher order organization (Campos and Reinberg, 2009). 

In addition, it was also determined that H3K9me3 could mark olfactory receptor 

genes in the olfactory epithelium (Magklara et al., 2011).  

 

1.2.3.3 Polycomb – Trithorax system and epigenetic memory 
 During initial hours of Drosophila embryonic development, expression levels 

of homeotic genes depends on the local concentrations of activators and repressors 

present in the embryo in a position specific manner. Once the homeotic gene 

expression patterns are established, expression states of the genes are maintained 

throughout the development without further need of activators or repressors. It has 

been shown that Polycomb group (PcG) and and Trithorax group (TrxG) of proteins 

are involved in the maintenance of silent or repressed states via associating with 

Polycomb/Trithorax group response elements (PRE/TREs), respectively (Ringrose 

and Paro, 2007).  

 PcG proteins are highly conserved proteins from Drosophila to mammals. To 

date, 5 different PcG complexes were discovered in various organisms. PRC1, PRC2 

are the major characterized PcG complexes (Lanzuolo and Orlando, 2012).  

 PRC1 consists of CBX proteins, BMI1, MEL18, PHC proteins, RING1A, 

RING1B, and some others. PRC1 catalyses lysine 119 monoubiquitination on histone 

H2A (H2AK119Ub1) via E3 ligase activity of RING1B, and to some extent via 

RING1A (Lanzuolo and Orlando, 2012). In vitro, PRC1 complex has been shown to 

repress transcription and compact nucleosomal arrays (Simon and Kingston, 2009). 

In addition, Ring1A, Ring1B and H2AK119Ub1 mark have been shown to be involved 

in poising of RNAPII at developmental promoters in mouse embryonic stem cells 

(Lanzuolo and Orlando, 2012).  

 PRC2 complex mainly consists of EZH1, EZH2, SUZ12, EED, RbAp46/48 

and JARID2. As already mentioned, EZH1/2 catalyzes H3K27me2/3. JARID2 via its 

binding ability to GC rich DNA could facilitate loading of PRC2 onto chromatin. 

Nevertheless, findings which show context dependent roles of JARID2 on PRC2 

regulation make the exact role of JARID2 unclear (Lanzuolo and Orlando, 2012; 

Margueron and Reinberg, 2011).  
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 Although TrxG proteins are implicated in many cellular processes, still it is a 

bit unclear whether main function of TrxG proteins is to antagonize PcG or activate 

gene expression in general. TrxG proteins are evolutionarily conserved, and consist 

of three main classes. First class is SET domain-containing enzymes which catalyze 

H3K4me3. These include MLL group of proteins as already discussed under the 

section describing function of H3K4me3. The second class consists of ATP-

dependent chromatin remodeling complexes. Among those, there are SWI/SNF 

family, ISWI family which recognize H3K4me3 via their PHD domain, and 

chromodomain helicase DNA-binding (CHD) family which recognizes H3K4me3 via 

their chromodomains. Finally, there is a third class which recognizes DNA directly. 

These proteins are targeted to TRE elements in Drosophila. However, no TRE 

elements have been discovered in mammals. In mammals, recognition of DNA 

elements could be achieved by recognition of CpG islands via CXXC-domain 

containing proteins, which could further target H3K4 methyltransferases 

(Schuettengruber et al., 2011).  

 

How are PcG and TrxG complexes targeted? 

 Exact mechanism of targeting of PcG and TrxG proteins to the chromatin is 

not known. There are several lines of evidence which hints about targeting, 

nevertheless since in general one mechanism does not explain the targeting of whole 

complexes, it is believed that combinatorial and context dependent mechanisms 

recruit PcG and TrxG complexes.  

 In Drosophila, PcG proteins bind to PRE, however in mammals, up to date to 

specific and global DNA element for targeting has not been identified yet except for 

PRE-like sequences identified only for a few loci (Sing et al., 2009; Woo et al., 2010). 

Genome-wide studies showed that PcG localizes to CGI. PRC2 component JARID2 

binds GC-rich sequences; nevertheless it may not be fully responsible from targeting 

of PcG to CGI. In addition, PRC1 component RYBP could interact with YY1, 

transcription factor component of PhoRC complex, and is involved in recruitment of 

PRC1 and PRC2. Actually, recently long non-coding RNA (ncRNAs) has been shown 

to be play important roles in PcG targeting. Long nc-RNA could mediate PcG 

spreading and promote targeting. A genome-wide study identified over 9000 RNAs 

which were associated with PRC2 component EZH2, which shows how complicated 

PcG targeting could be (Lanzuolo and Orlando, 2012; Margueron and Reinberg, 

2011).  

 Similar to PcG, in Drosophila TrxG proteins are targeted to TRE elements. 

However, in mammals no TRE element has been identified yet. As already 
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described, TrxG proteins could be targeted to CGI via CpG binding protein CXXC1 

(Schuettengruber et al., 2011). Furthermore, already existing H3K4me3 might be 

involved in targeting of MLL via binding of PHD domain of MLL to H3K4me3 (Milne et 

al., 2010). Role of ncRNAs has been also shown for TrxG recruitment and gene 

activation at single loci basis, nevertheless it remains to be determined whether this 

is a general mechanism (Schuettengruber et al., 2011).  

 

Role of PcG during development, pluripotency and differentiation 

 There have been many studies investigating the role of PcG during early 

embryonic development by using mouse models. Ezh2 null mutant mice die early 

post-implantation and show gastrulation defects (O'Carroll et al., 2001). Similarly 

disruption of other PRC2 components Eed and Suz12 in mice results in early post-

implantation lethality (Faust et al., 1995; Pasini et al., 2004). In addition, zygotic 

depletion of PRC1 component, Ring1b results in lethality during gastrulation (Valk-

Lingbeek et al., 2004), and embryos maternally deficient for Ring1b and Ring1a can 

not develop beyond 2-cell stage (Posfai et al., 2012).  

 Role of PcG proteins has been also implicated in maintenance of pluripotency 

and differentiation. Many studies by using ESCs where components of PcG 

complexes are absent showed that actually PcG function is not required for the 

maintenance of pluripotency. However, these cells experience problems when they 

are induced to differentiate. It has been proposed that PcG function is required to 

prevent aberrant expression of developmental regulators and impairment of this 

system could interfere with execution of correct developmental programs and lineage 

commitment (Margueron and Reinberg, 2011; Vastenhouw and Schier, 2012).  

 

Bivalent chromatin states 

 Genome-wide studies in ESCs showed that promoter regions of 

developmental regulators are marked by both H3K4me3 and H3K27me3 and they 

are referred as “bivalent” domains. The function of such domains has been a debate 

for long time. It has been proposed that presence of H3K27me3 ensures repression 

of lineage-specific genes and marking by H3K4me3 poises lineage specific genes for 

activation as shown in Figure 2 (Vastenhouw and Schier, 2012). 

Since H3K4me3 and H3K27me3 mappings come from a population of cells, 

co-association of H3K4me3 and H3K27me3 may simply result from cellular 

heterogeneity. Nevertheless, several studies showed the existence of bivalent 

domains in zebrafish blastomeres and mouse epiblast cells, although no bivalent 

domains were found in Xenopus blastomeres and Drosophila embryos (Vastenhouw 
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and Schier, 2012).  It was also shown that PRC2 activity is inhibited by H3K4me3 

only if they are on the same tail (Schmitges et al., 2011). Another recent study 

showed the existence of H3K4me3 and H3K37me3 within the same nucleosome 

(Voigt et al., 2012), further supporting the occurrence of bivalency.  

   

  

 

 

  

 

 

 

 

Figure 2: Model for the role of H3K27me3 and H3K4me3 in pluripotency and 
differentiation. H3K27me3 protects aberrant transcription of lineage-specific genes 
before differentiation signal. Marking by H3K4me3 ensures the efficient induction of 
gene expression during differentiation (modified from (Vastenhouw and Schier, 
2012), permission to use: license number: 3124290173575).  
 
 

One apparent question is that how bivalent states are initially established? 

Studies performed in sperm of human, mouse and zebrafish (Brykczynska et al., 

2010; Hammoud et al., 2009; Wu et al., 2011) showed that developmental regulators 

were already bivalent and transmission of these marks might be responsible from 

bivalent domains in ESCs. Nevertheless, it has been also argued that these marks 

might be erased after fertilization and re-established during early embryonic 

development.  Currently, it is still a technical challenge to perform high-throughput 

analysis with early embryos and oocytes because of limited sample sizes. Future 

technologies could allow the identification of similarities / differences in the chromatin 

states of sperm, oocyte and early embryo.  

 
1.2.3.4 Histone variants 

Canonical histone genes are found in clusters in the genome and their 

synthesis is dependent on DNA synthesis coupled processes such as DNA 

replication and repair. There are other histone genes, which are in general found in 

the genome as single copy, and could be constitutively expressed, these are called 

as “non-canonical” histone variants (Talbert and Henikoff, 2010). Below, I will 

introduce the function and genomic localization of main histone variants, with a 

special focus on histone H3 variants.  
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H3 variants 

In mammals, 5 H3 variant have been described until now: Canonical H3 

variants H3.1 and H3.2, and non-canonical variants, H3.3, centromere-specific H3 

variant CENP-A, and testis specific H3 variant H3t. There are also two recently 

identified primate specific H3 variants, H3.X and H3.Y. Alignment of these variants is 

shown in Figure 3 (Szenker et al., 2011). 

Centromere-specific H3 variant CENP-A is involved in the assembly of 

kinetochore structure and it shows only 50-60% identity with canonical H3s (Talbert 

and Henikoff, 2010).  H3.X and H3.Y have been identified in a study by re-annotation 

of two genes similar to H3.1 initially annotated as pseuodogenes. These variants are 

expressed in some human cell at low levels and stress conditions could increase 

their expression (Wiedemann et al., 2010). H3t is a testis specific histone variant with 

a specific expression in spermatocytes (Witt et al., 1996). Nevertheless, the exact 

role of this variant is not known yet.  

H3.3 is the most studied H3 variant and it functions in distinct cellular 

processes. H3.3 protein is produced from two different mRNAs H3.3A and H3.3B 

with polyA tails. H3.3A and H3.3B genes are different in their nucleotide sequence 

but give rise to same protein (Szenker et al., 2011).   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3: Alignment of histone H3 variants in human. Major amino acid changes 
and histone domains are indicated (adapted from (Szenker et al., 2011), permission 
to use: license number: 3124290407528) 
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One of the most prominent roles of H3.3 is in transcription. A genome-wide 

study in ESCs by using tagged H3.3 showed that H3.3 is enriched around TSS of 

high-CpG content promoters independent of transcription with slight variations 

depending on the method of chromatin preparations as native or fixed. Nevertheless, 

expressed genes are marked by increasing levels of H3.3 along the gene bodies and 

transcription end sites. H3.3 chaperone Hira has been shown to be required for 

enrichment of H3.3 at genic regions (Goldberg et al., 2010).   

Several studies suggested that H3.3 containing nucleosomes especially when 

they are together with H2A variant H2A.Z are sensitive to salt disruption and form 

unstable nucleosomes and enriched at nucleosome free regions of active genes (Jin 

and Felsenfeld, 2007; Jin et al., 2009). Nevertheless, another study using 

sedimentation techniques at different salt concentrations showed that neither H3.3 

nor H2A.Z or their combination affected nucleosome stability significantly (Thakar et 

al., 2009). In addition, since the regions occupied by H3.3 are more accessible and 

GC rich, the reason why H3.3 containing nucleosomes would be more susceptible to 

disruption in vivo might be caused of accessibility issues. 

In a study investigating interaction partners of H3.3, two proteins Atrx and 

Daxx have been identified as chaperones of H3.3 and both of these proteins localize 

to heterochromatin. Atrx-Daxx complex is required for H3.3 deposition at telomeric 

regions. The exact role of H3.3 deposition at heterochromatic loci is not entirely clear. 

Nevertheless, S31 phosphorylation is unique to H3 variant H3.3 and S31 

phosphorylation on H3.3 is detected on several heterochromatic regions (Goldberg et 

al., 2010; Lewis et al., 2010).   

H3.3 is also required for fertility. In Drosophila, null mutations of two H3.3 

results in reduced viability and complete sterility both in females and males. 

Importantly, male meiosis is impaired and chromatin reorganization can not happen 

properly (Sakai et al., 2009). In mice, 50% animals with homozygous mutation in 

H3.3A die immediately after fertilization, and surviving animals especially males have 

reduced fertility (Couldrey et al., 1999).  

The majority of sperm DNA comes into embryo packed in protamines. Upon 

fertilization, protamines are rapidly exchanged by maternally provided H3.3 

(Elsaesser et al., 2010).  Furthermore H3.3 play a role in the remodeling of chromatin 

during meioic sex chromosome inactivation, and this will be discussed in more detail 

in section 2.2, Box1.  

As already pointed out, canonical histone H3s, H3.1 and H3.2 are 

incorporated in chromatin in DNA replication/repair coupled way (Szenker et al., 

2011). Analysis of chromatin from post-replicative cells such as differentiating 
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neurons, activated lymphocytes and myotubes (Bosch and Suau, 1995; Wu et al., 

1983; Wunsch and Lough, 1987) showed that differentiated non-proliferating cells 

accumulate H3.3 and lose canonical H3 variants H3.1 and H3.2 gradually.  

H3.3 has been shown to play a role in cancer also. Sequencing of the 

exomes from glioblastoma patients showed that nearly 30% of the patients had 

mutations on H3.3 especially on histone tails critical for histone modifications, 

implicating the role of chromatin organization in cancer (Schwartzentruber et al., 

2012).  

 

H2A variants 

 H2A has two main variants: H2A.Z and H2A.X. H2A.Z has been shown to 

function in a variety of processes, from transcription to heterochromatin formation. In 

yeast, it was identified that H2A.Z could positively regulate transcription by interacting 

with transcriptional machinery, and H2A.Z is positioned directly upstream and 

downstream of TSS of all genes in euchromatin (Adam et al., 2001; Raisner et al., 

2005). Similar to this finding, it was determined that H2A.Z is positioned in the -3, -2, 

+1, +2, and +3 nucleosomes surrounding TSS of active genes (Schones et al., 2008).  

Furthermore, the role of H2A.Z in recruitment of RNAPII has been also shown in 

human cells (Hardy et al., 2009). It has been suggested that H2A.Z randomly 

accumulates in the genome and transcription depletes H2A.Z from the body of 

transcribed genes, and conversely H2A.Z accumulates at the genes found in 

heterochromatin because of the lack of transcription (Hardy et al., 2009). Enrichment 

of H2A.Z at pericentric heterochromatin during early mammalian development and its 

potential function in centromere formation have been also described (Greaves et al., 

2007; Rangasamy et al., 2003). It is apparent that there might be contradictions for 

the function of H2A.Z. Differential functioning of this variant might depend on post-

translational histone modifications, interaction with chromatin remodeling complexes 

(Talbert and Henikoff, 2010).  

 H2A variant H2A.X mainly functions in double-strand breaks and DNA repair. 

Upon double-strand breaks, H2A.X gets phosphorylated and this phoshorylated form 

could recruit DNA repair proteins and chromatin remodeling complexes (Talbert and 

Henikoff, 2010). The roles of H2A variants MacroH2A and H2A.Bbd in 

spermatogenesis are discussed under section 2.2.  

 

1.2.3.5 Inheritance of chromatin states over cell cycle 
 Although packaging of DNA into nucleosomes, post-translational histone 

modifications and histone variants regulate genome function at multiple leves, the 
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exact mechanism how histones are inherited during cell division is not known. There 

are two main hypotheses. One hypothesis is that histones are distributed onto DNA 

strands in a semi-conservative manner. With this hypothesis, it is expected that 

histone modifications should exist symmetrically in nucleosomes and there should be 

a machinery which could orderly distribute histones on leading and lagging strands. 

These requirements make semi-conservative model a bit unlikely. Second hypothesis 

claims that histones are randomly distributed to DNA strands during replication, and 

mechanistically this seems more acceptable. Nevertheless, with this model for a 

histone modification to be transmitted effectively, it should be enriched on several 

adjacent nucleosomes (Margueron and Reinberg, 2010).  

It has been shown that some chromatin modifiers attach to replication 

machinery to via PCNA and this could enable replication coupled deposition of 

histone marks (Zhu and Reinberg, 2011). A recent study showed that PRC1 can stay 

on chromatin and bridge nucleosomes in vitro (Lo et al., 2012). In the context of 

replication coupled deposition of histone marks, one of the main questions is that 

whether all histone marks are copied directly upon replication or it takes gradually in 

an replication uncoupled way. Future technologies could allow identification of which 

histone/histone marks needs to be deposited in a replication coupled way (Zhu and 

Reinberg, 2011).  

 

1.2.4 RNA based epigenetic mechanisms 
 Recent high-throughput data showing that almost 65% of the mammalian 

genome is transcribed and the fact that only 2% of mammalian genome is coding for 

protein-coding genes has significantly broadened our view about role of noncoding 

RNA in genome regulation (Wery et al., 2011).  

 

Small noncoding RNAs 

Small noncoding RNAs include transfer RNAs (tRNAs), small nuclear RNAs 

(snRNAs), small nucleolar RNAs (snoRNAs) and 19-30 nt long RNAs involved in 

RNA interference. Small interfering RNAs could be classified in 3 main classes: 

short-interfering RNAs (siRNAs), micro RNAs (miRNAs) and PIWI-interacting RNAs 

(piRNAs) (Wery et al., 2011).  

 miRNAs were first discovered in C.elegans during 90s as small RNAs 

regulating development of this organism. Later, miRNAs were also identified in other 

animals and plants and has been shown to be involved in differentiation, apoptosis 

and proliferation. miRNAs are initially transcribed into primary transcripts (pri-

miRNA), which is processed in the nucleus forming the pre-miRNA and transported 
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into cytoplasm where it is cleaved by Dicer to generate 22 nt length miRNAs. 

miRNAs, which are complementary to their target mRNA 3` UTRs, function in gene 

regulation by interfering with translational initiation machinery, affecting mRNA 

stability or degradation of mRNAs (Ul Hussain, 2012). 

 siRNAs can be classified in two groups: exogenous siRNAs and endogenous 

siRNAs. Exogenous siRNAs are produced from exogenous dsRNA coming from 

viruses, transgenes, and are 21-25 nt long. Cleavage of exogenous dsRNA by Dicer 

produces siRNAs functioning in gene silencing, heterochromatin formation or antiviral 

silencing. Endogenous siRNAs has been described in plants, mammals and some 

other eukaryotes and could arise from dsRNA originated from different genomic 

regions. Although the general function of endogenous siRNAs is not known, they 

have been shown to function in silencing of transposons in flies and direction of DNA 

methylation and histone methylation in plants (Li and Liu, 2011).  

 piRNAs are longer than siRNAs and miRNAs, generally between 24-32 nt 

length. piRNAs are highly enriched in germ cells (Li and Liu, 2011). piRNAs 

expressed during spermatogenesis interact with PIWI-family of proteins, MIWI, 

MIWI2 and MILI. piRNAs are expressed in spermatocytes and spermatids, and 

mainly function in suppression of retrotransposon expression (Bak et al., 2011).  

 

Long noncoding RNAs 

 Long noncoding RNAs (lncRNAs) are generally defined as RNAs longer than 

200 bp and do not have any protein coding potential (Rinn and Chang, 2012). Initially 

lncRNAs gained attention in connection to their role in X chromosome inactivation 

and genomic imprinting (lncRNAs, Xist, Air, H19). Nevertheless, recent high-

throughput techniques revealed that function of lncRNAs go beyond these functions. 

As already described, lncRNAs have been shown to interact with PcG complexes 

and they function in gene repression and gene activation by interacting with TrxG 

proteins (Lee, 2012). One of the main questions in lncRNA field is that how lncRNAs 

exert their function. In this context, several hypotheses have been put forward: 

lncRNAs bind to DNA binding factors, they act as scaffolds to bring protein 

complexes in close proximity, they recruit chromatin modifying enzymes through 

RNA:DNA interactions and lncRNA could be targeted via chromosomal looping (Rinn 

and Chang, 2012).  

 

1.3 Male germline 
1.3.1 Primordial germ cells 
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 PGCs arise from proximal epiblast cells during embryonic day (E) 7.25 as 

approximately 40 cells. Bone morphogenetic protein (Bmp) signals generated by 

extraembryonic ectoderm have been shown to be required for specification of PGCs. 

Importantly, B-lymphocyte-induced maturation factor 1 (Blimp1) was determined to 

be expressed specifically in founder PGCs around E6.25 (Saitou, 2009). Blimp1 is a 

transcriptional repressor and represses somatic cell genes particularly Hox gene 

family while enhances expression of PGC specific genes (Richardson and Lehmann, 

2010). PR-domain containing protein (Prmd14) is another regulator functioning in the 

specification of PGCs.  It starts to be expressed in Blimp1-positive PGCs during 

E6.25 and continues to be expressed until E13.5-14.5 (Saitou, 2009).  

 Starting from E7.5, PGCs start to move from primitive steak to endoderm, 

reach to hindgut at E8-9.5, and finally migrate to genital ridges at E10.5-11.5 

(Richardson and Lehmann, 2010) and their migration is completed by E13.5 (Jan et 

al., 2012). 

 At the beginning of post-implantation development and before PGCs are 

specified, epiblast cells undergo changes in DNA methylation and chromatin 

compaction. Nevertheless, once the PGCs are specified from epiblast cells, these 

changes need to be reprogrammed to ensure acquisition of totipotency (Magnusdottir 

et al., 2012). There are epigenetic reprogramming events taking place during 

migration of PGCs. Genome-wide there is reduction of H3K9me2 while there is 

global gain of H3K27me3. There is also genome-wide DNA demethylation as 

discussed in section 1.2.2. In addition, X chromosome is reactivated in female PGCs. 

(Magnusdottir et al., 2012; Saitou, 2009).  

 Once PGCs reach at genital ridges, they are called as “gonocytes” (Jan et al., 

2012). Around E10, there are no differences in female and male genital ridges and 

they have bi-potential to form female or male gonads. Sex-specific gonad 

development starts with the expression of sex-determining region on the 

chromosome Y (Sry) in somatic cells of XY genital ridges during E10-10.5. Sry 

upregulates Sox9, which is involved in differentiation of Sertoli cells (supporting germ 

cells in testis) and expression of male specific genes. Testis cords are formed by 

E12.5. In XX genital ridges, as Sry is not present, female-specific genes starts to be 

expressed at E11.5-12.5 and ovary development is initiated (Kashimada and 

Koopman, 2010).  

 Around E13.5, female germ cells stop proliferation in the developing ovary, 

enter meiosis and they are arrested at prophase-I around birth. At puberty, arrested 

oocytes restart and complete meiosis I and they arrest at meiosis II. Meiosis II is 

completed after fertilization. On the other hand, male germ cells arrest at G1 phase 
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of mitotic cycle at E13.5. Immediately after birth, they restart proliferation and after a 

few days, they enter in meiosis to produce spermatids which will differentiate into 

sperm (Bowles and Koopman, 2007).  

 

1.3.2 Spermatogenesis 
1.3.2.1 Proliferative phase 
 Spermatogenesis is a highly coordinated process that continuously generates 

mature spermatozoa. It is characterized by three different phases. The first phase is 

the proliferative phase in which spermatogonia undergo a series of mitotic divisions 

and differentiate into primary spermatocytes. In the second meiotic phase, exchange 

of genetic information by recombination takes place and haploid spermatids are 

produced. The third, post-meiotic phase termed spermiogenesis involves 

morphogenetic events, which are required for the production of mobile mature sperm. 

All stages of spermatogenesis are completed in seminiferous tubules and interaction 

of germ cells with supporting Sertoli cells creates seminiferous epithelium (Oatley 

and Brinster, 2008).  

 In mice, spermatogonial stem cells arise from gonocytes during day 0-6 after 

birth (Oatley and Brinster, 2008). Spermatagonial stem cells present at the basement 

of seminiferous tubules are called A single spermatogonia (As). As could either divide 

to generate new spermatogonial stem cells or enter in differentiation to produce 

spermatogonia (Jan et al., 2012).   

 Differentiation of As results in A paired spermatogonia (Apr). Apr undergoes 

additional mitotic divisions to form 4, 8, and 16 A aligned spermatogonia (Aal) which 

could differentiate into A1 spermatogonia (Oatley and Brinster, 2008). Importantly, 

starting from differentiation of As and onwards, cytokinesis is not complete and 

produced spermatogonia become connected by an intercellular bridge (Jan et al., 

2012). 

 Further divisions of A1 spermatogonia give rise to A2, A3 and A4 

spermatogonia. A4 spermatogonia finally differentiate into type B spermatogonia 

(Oatley and Brinster, 2008). Mitotic division of type B spermatogina gives rise to pre-

leptotene spermatocytes which enters in meiosis (Jan et al., 2012).    

 

1.3.2.2 Meiotic phase 
 Spermatocytes after going through S and G2 phases enter in meiotic 

prophase I. Initiation of meiosis depends on retinoic acid. RNA-binding protein Dazl is 

involved in response of spermatocytes to retinoic acid, which triggers the expression 

of Stra8. Stra8 is required for initiation of meiosis as Stra8 deficient mice can not 
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produce later stage spermatocytes and spermatids (Jan et al., 2012). Because 

meiotic prophase I consists of many critical steps required for the formation of 

functional germ cells, it is divided into 4 stages. Without going into details of what is 

happening exactly in each stage, formation of synapsis, meiotic recombination and 

meiotic sex chromosome inactivation (MSCI) are the major events happening during 

meiotic prophase I. The details of meiotic recombination and MSCI are discussed in 

section 2.2, Box1 and Box2, respectively. Completion of meiotic divisions I and II 

gives rise to haploid round spermatids which would enter into spermiogenesis to 

produce mature spermatozoa (Ahmed and de Rooij, 2009).  

 Proper organization of the chromatin during meiotic prophase I is also critical 

for progression into later stages of meiosis. Mice lacking H3K9 methyltransferases 

Suv39h1 and Suv39h2 can not go beyond meiotic prophase I stage because of 

defects associated with lack of H3K9me3 at pericentric heterochromatin (Peters et 

al., 2001). In addition, deficiency in another H3K9 methyltransferase G9a impairs 

progression into meiosis (Tachibana et al., 2007). Meiosis is also affected by 

changes in DNA methylation. Deficiency in Dnmt3L results in transcriptional 

activation of retrotransposons and nonhomologous synapsis.  Furthermore, absence 

of MILI, a member of PIWI-like proteins, causes decreased levels of DNA methylation 

and activation of LINE1 retrotransposons and impairing meiosis (Kota and Feil, 

2010).  

 

1.3.2.3 Spermiogenesis 
 Spermiogenesis is subdivided into 16 substeps. Because of the overlapping 

appearance of the first 8 and last 4 stages, cycle of seminiferous epithelium is 

divided into 12 stages. Duration of the cycle of seminiferous epithelium has been 

determined to take 8.6 days with different length of time spent in each stage (Ahmed 

and de Rooij, 2009).  

 

Morphological events 

 There are a number of morphological changes happening during 

differentiation of spermatids into sperm. Development of sperm tail, required for 

motility and composed of a microtubular structure called axenome, starts in round 

spermatids and completed towards the end of spermiogenesis. During nuclear 

elongation, a ring like microtubular structure called manchette surround the base of 

nucleus and is involved in the development of sperm head. Cytoplasm is removed to 

ensure the compact structure of sperm (Jan et al., 2012).  
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Chromatin remodeling events 

During development of round spermatids into mature sperm, there are 

extensive chromatin remodeling events which happening at multiple steps (Gaucher 

et al., 2010) (Figure 4). One of the major events is genome-wide exchange of 

histones with protamines to ensure the compact packaging of sperm DNA. In 

addition, post-translational histone modifications and incorporation of histone variants 

have been shown to play essential roles during genome-wide remodeling during 

spermiogenesis, and their role is discussed in more detail in section 2.2 under the 

subtitle “Global chromatin remodeling during spermiogenesis”. Although, there are 

multiple pieces of data addressing the chromatin organization in spermiogenesis, 

actually the details and the order of events taking place are not known. Below, I will 

introduce the function of transition proteins, protamines, DNA strand breaks occurring 

during chromatin remodeling and genomic regions surviving genome-wide exchange 

of histones with protamines and still keeping nucleosomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Chromatin remodeling during spermiogenesis. Genome-wide histones 
are initially exchanged by transition proteins which will be finally replaced by 
protamines. Hyperacetylation of histones creates a more accessible chromatin 
environment which facilitates histone-to-protamine exchange (Adapted from 
(Gaucher et al., 2010), permission to use: license number: 3124300488355) 

 

 

Role of transition proteins 

 In mammals, histones are not directly replaced by protamines, but initially 

replaced by transition proteins (TPs) (Gaucher et al., 2010). There are two TPs, TP1 
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and TP2. TP mRNAs could be first detected in early round spermatids (Heidaran and 

Kistler, 1987; Heidaran et al., 1988). After their synthesis, TPs are not translated 

immediately. TP1 was determined to be translated 3-4 days after its synthesis in 

elongating spermatids (Heidaran and Kistler, 1987). At the protein level, they are first 

detected in step 10-11 spermatids (Alfonso and Kistler, 1993; Heidaran et al., 1988) 

and they reach maximal level of expression during step 12-13 spermatids constituting 

the 90% of chromatin basic proteins. TP1 and TP2 are structurally different from 

each other and TP1 is approximately 2.5 more times more abundant than TP2. TP1 

is around 6.5 kDa and TP2 is 13 kDa (Yu et al., 2000). Although TP1 is a DNA 

melting protein (Singh and Rao, 1987), TP2 is zincmetalloprotein and it has the ability 

to bind to CpG-rich sequences in a specific manner (Kundu and Rao, 1996). In 

addition, TP2 is rapidly phosphorylated soon after its synthesis but TP1 is not (Green 

et al., 1994). It has been proposed that phosphorylation of TP2 soon after its 

synthesis initially inhibits its ability to condense chromatin. TP2 first binds to CpG-rich 

sequences with its zinc fingers and subsequently with dephosphorylation of TP2, 

chromatin condensation is initiated (Meetei et al., 2002). In addition, it was shown 

that TP1 and TP2 condense DNA in vitro and binding  of TP2 to DNA was 6 times 

more stronger (Brewer et al., 2002). In the context of CpG-rich specific binding of 

TP2 to DNA, it was identified that GC versus AT-rich DNA show mutually exclusive 

localization pattern in elongating spermatids (Kolthur-Seetharam et al., 2009). 

HSPA2 has been determined to be a chaperone of TP1 and TP2, but the functional 

role of this chaperone still needs to be addressed (Govin et al., 2006). In addition, it 

was shown that TP2 could interact with histone chaperone nucleoplasmin 3 (Npm3) 

and acetylation of TP2 could negatively affect its interaction with Npm3 (Pradeepa et 

al., 2009). In the context of nuclear transport of TPs, Importin-4 is involved in nuclear 

transport of TP2 via interaction with its nuclear localization signal, while TP1 is 

transported to nucleus with passive diffusion (Pradeepa et al., 2008).  

 TPs are not fully required for the development of functional sperm. Mice either 

lacking TP1 or TP2 do not have significant abnormalities although there seems to be 

reduced fertility (Adham et al., 2001; Yu et al., 2000; Zhao et al., 2001). In mice, 

lacking both TPs, nuclear shaping and histone-to-protamine exchange takes place 

normally nevertheless, there are defects associated with chromatin condensation, 

protamine 2 remains as uncleaved precursor and mice are sterile (Zhao et al., 2004). 

Although overall effects associated with TPs seemed to be a gene dosage effect, 

there could be some functional differences.  

 In fact, it is not known what exactly transition proteins are doing in chromatin 

remodeling events during spermiogenesis. For instance, there is not solid data which 
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shows that they are first replacing histones and finally they are replaced by 

protamines.  

 

Role of protamines 

 Protamines are a group highly basic, arginine rich family of proteins and they 

are involved in compact packaging of sperm DNA in many species. In mammals, 

there two main protamines, protamine 1 (P1) and protamine 2 (P2). P2 is only found 

in primates and many rodents (Balhorn, 2007). Protamines are transcribed in round 

spermatids (step 7-9) and their mRNAs are stored in cytoplasm for about 1 week until 

they are translated in elongating spermatid stage (Stern et al., 1983).  3`UTR of 

protamine mRNA is important for their timed and efficient translation (Braun et al., 

1989). In mice carrying a transgene for protamine 1 lacking its regular 3`UTR, 

protamine 1 mRNA is prematurely translated in round spermatids (step 7-8), whereas 

normally it is first detected in step 12 spermatids. Furthermore, differentiation of 

spermatids is blocked and mice are infertile (Lee et al., 1995). P1 is around 49-50 

amino acids. P2 is first synthesized as a precursor and upon binding on to DNA N-ter 

part of the protein is cleaved and final form is around 63 amino acids (Balhorn, 2007).   

Protamines are phosphoryated soon after their synthesis and after binding to DNA 

they are dephosphorylated. It was suggested that initial interaction of phosphorylated 

protamines with DNA could facilitate optimum nucleoprotamine structure formation 

(Meetei et al., 2002).  

 P1 binds around 10-11 bp of DNA and P2 15 bp of DNA. Protamines could 

form bisulfide bridges which contribute to a more compact structure. Protamines bind 

the major groove on DNA and neutralize the negative charge forming toroidal 

structures. These toroids constitute the basic unit of nucleoprotamines and they have 

about 50 kb DNA. Protamines could package DNA into 1/20 volume of a somatic 

nucleus (Balhorn, 2007).  

 In human sperm P1/P2 ratio nearly equals 1 (Oliva, 2006), but this ratio could 

change significantly among the species (Corzett et al., 2002). Both P1 and P2 are 

required for fertility and haploinsufficiency in either of them creates infertility (Cho et 

al., 2001). Later, it was determined that protamine deficiency leads to damaged DNA. 

Although protamine 2 deficient sperm could activate oocyte by intracytoplasmic 

sperm injection (ICSI), the majority of the embryos could not develop up to blastocyst 

stage (Cho et al., 2003).   

 

Transient DNA strand breaks during chromatin remodeling 
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In elongating spermatids, DNA strand breaks were detected coincident with 

chromatin remodeling (Marcon and Boissonneault, 2004). It is proposed that normally 

DNA supercoils are constrained by nucleosomes and removal of nucleosomes will 

results in a great number of supercoils. Nevertheless, appearance of DNA breaks 

could eliminate this supercoiling. Another study showed that topoisomerase II beta 

(Top2b) was involved in the introduction of DNA breaks happening in elongating 

spermatids (Leduc et al., 2008). In the same study, it was shown that phosphorylated 

form of H2A.X and tyrosyl-DNA phosphodiesterase 1 (TDP-1), an enzyme known to 

resolve topoisomerase-mediated DNA damage, localizes to strand breaks to initiate 

DNA repair process. It has been suggested that transition proteins and protamines 

could also be involved in repair process due to their ability to neutralize negative 

charge on DNA and bring DNA ends together (Boissonneault, 2002).  

 During spermiogenesis, the presence of DNA strand breaks triggers 

poly(ADP-ribose) (PAR) formation. Mice deficient for poly(ADP-ribose) polymerase 

Parp1 have problems with nuclear condensation and are subfetile (Meyer-Ficca et 

al., 2009). It was also shown that Parp1 and Parp2 could modulate Top2b activity in 

vitro such that Top2b first creates DNA strand breaks and Parp1 and Parp2 are 

activated, in turn Parp proteins could inhibit Top2b  (Meyer-Ficca et al., 2011b). In 

addition, impairment of PAR metabolism with targeted disruption and chemical 

inhibition results in abnormal retention of nucleosomes in mature sperm (Meyer-Ficca 

et al., 2011a). 

 

Genomic regions packed into nucleosomes in mature spermatozoa 

In human and mouse, it was determined that histone-to-protamine exchange 

is not complete, still around 10% and 1% of histones are retained in human and 

mouse sperm, respectively (Brykczynska et al., 2010).  

Initially, a study demonstrated the existence of sequence specific presence of 

DNA packed into nucleosomes or protamines (Gatewood et al., 1987). Another study 

determined that genes encoding for epsilon and gamma globulin expressed in 

embryonic yolk sac were associated with histones in human sperm whereas beta and 

delta globulin genes which are not expressed in embryonic yolk sac were not 

associated with histones (Gardiner-Garden et al., 1998). By treating human sperm 

chromatin with micrococcal nuclease, it was shown that DNA is organized into 

nucleosomes in 148 bp periodicities and telomeric DNA is associated with 

nucleosomes (Zalenskaya et al., 2000).  

In addition to single gene-based analysis, genome-wide analysis of retained 

nucleosomes in human and mouse sperm provided significant evidence that retained 
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nucleosomes in mature sperm are not randomly distributed in the genome. Two 

studies in human sperm showed that nucleosomes are retained at loci which are 

important for developmental and signaling pathways. Importantly, retained histones 

are also post-translationally modified and different histone marks show differential 

association with the regulatory elements of genes (Brykczynska et al., 2010; 

Hammoud et al., 2009). Retained histones are differentially post-translationally 

modified at single loci-basis also for mouse sperm, suggesting for the evolutionary 

conservation of specific nucleosome retention (Brykczynska et al., 2010). In 

zebrafish, histone-to-protamine exchange does not take place. Instead, zebrafish 

sperm contains relatively higher levels of linker histone H1. Nevertheless, 

conceptually, similar pattern of histone modifications at developmental regulators 

were identified in zebrafish sperm in comparison to human and mouse sperm (Wu et 

al., 2011).  

 

1.4 Rationale and scope of the thesis 
 In mammals, fusion of two highly specialized gametes, sperm and oocyte 

gives rise to a totipotent embryo and this totipotent embryo could generate all cells of 

a multicellular organism. One of the critical questions is how the totipotent state of 

the early embryo is achieved.  At this point, we propose two models (Gill et al., 2012). 

In the first scenario, which is the epigenetic reprogramming model, it is assumed that 

epigenetic marks carried by sperm and oocyte to the early embryo are 

reprogrammed to ensure the totipotent state. Initially, because of the reprogramming 

of DNA methylation upon fertilization it was assumed that similarly other chromatin 

marks should be reprogrammed. Nevertheless, currently even for DNA methylation 

there is genome-wide data showing that there are many loci resisting genome-wide 

DNA demethylation (Kobayashi et al., 2012; Smallwood et al., 2011). The alternative 

scenario to reprogramming model is the inheritance model. This model proposes that 

chromatin states brought by sperm and oocyte are required for the developmental 

potential of the early embryo.  

In our lab, the ultimate question to which we would like to find an answer to is 

to what extent epigenetic states of sperm and oocyte are involved in the 

establishment of the proper gene expression program of early embryonic 

development. Importantly, sperm and oocyte differ in their potential to transmit 

epigenetic information. Whereas oocyte is full of maternal transcripts and proteins 

and its DNA is packed in nucleosomes, sperm is in a highly condensed structure and 

the majority of its histones are exchanged by protamines. Given the little of amount of 

histones retained in mature sperm, initially it was thought that sperm did not have any 
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significant potential to transmit epigenetic information. Nevertheless, as already 

discussed, retained nucleosomes associate with specific genomic regions in sperm. 

Furthermore, it was identified that genes whose promoter regions are marked by 

active H3K4me3 in sperm are mostly associated with early embryonic gene activity. 

On the other hand, the majority of the genes whose promoter regions marked by 

repressive H3K27me3 are never expressed during early embryonic development 

(Brykczynska et al., 2010).  

Although genome-wide localization of nucleosomes in human sperm has 

been determined (Brykczynska et al., 2010; Hammoud et al., 2009), genome-wide 

mapping of nucleosomes in mouse sperm is not known. Furthermore, as already 

discussed the details actually how chromatin remodeling happens during 

spermiogenesis and how nucleosomes are specifically retained are not known. In my 

project, the major aim was to determine the logic of nucleosome retention in 

spermatozoa and for this aim I used mouse sperm as the model system. Mainly, I 

determined what special features 1% of mouse genome had to keep nucleosomes. 

By taking a genome-wide approach, I tried to find out the relative contributions of 

sequence composition, DNA methylation, histone variants, gene expression and 

histone modifications in selective nucleosome retention. In addition to this major aim, 

I worked on transcript dynamics during differentiation of round spermatids into sperm 

by performing RNA-seq analysis at specific points of spermiogenesis. Ultimate goal 

of this transcript dynamics analysis is to correlate changes in chromatin states to 

gene expression and to investigate the potential of sperm in transmission of RNA to 

the early embryo.  
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Chapter 2: Results 

2.1 Published manuscript:      

Repressive and active histone methylation mark distinct promoters in human and 

mouse spermatozoa 

 

This article was first published in Nature Structural and Molecular Biology on May 16, 

2010, volume 17, pages 679-687, doi:10.1038/nsmb.1821. 
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By classical Mendelian inheritance, genetic information is transmitted 
through the generations, underlying phenotypic diversity in sexually 
reproducing organisms. Nevertheless, non-Mendelian inheritance of 
traits across generations has been reported in various higher eukaryotes1. 
Furthermore, the low reproductive efficacy of nuclear transfer versus 
natural reproduction2 suggests that resetting and maturation of chro-
matin states during gametogenesis is crucial for early embryogenesis, 
arguing for a transgenerational epigenetic contribution at conception.

In mammals, the dimorphic gametes differ greatly in their poten-
tial to transmit epigenetic information encoded in histones and the 
associated post-translational modifications3–5. Whereas in oocytes 
chromatin retains a nucleosomal conformation, marked by histone 
methylations4, most histones are replaced by protamines at the end 
of spermatogenesis6,7 (Fig. 1a). Following gamete fusion, maternally 
provided histones replace protamines that subsequently become post-
translationally modified by oocyte-derived factors4,5. Despite such 
major remodeling, histones have been reported to reside at specific 
sequences in human and mouse spermatozoa7–11 and to remain asso-
ciated with the paternal genome during de novo nucleosome forma-
tion upon fertilization12.

During somatic development, Polycomb (PcG) and Trithorax 
(TrxG) group proteins serve conserved chromatin-based repressive 
and antirepressive roles in epigenetic memory of cell identity, for 
example, by controlling the expression of developmental regulators 
that drive differentiation13,14. In mammals, PcG proteins function in 
at least two distinct Polycomb repressive complexes (PRCs). PRC2, 

which consists of Eed, Suz12 and Ezh2 or Ezh1, catalyzes trimethyla-
tion on histone H3 Lys27 (H3K27me3)15–17, a modification associ-
ated with gene repression in development18,19. Eed binds through its 
WD40 domains to trimethylated lysine histone residues associated 
with repressive chromatin. This interaction was shown to stimulate 
the enzymatic activity of PRC2 toward H3K27 and to be essential 
for early Drosophila melanogaster development20. Furthermore, the 
catalytic SET domain of Ezh2 is required for long-term repression21. 
These data suggest that PRC2 has an intrinsic ability to propagate 
H3K27me3 across cellular generations and that this mark functions in 
transcriptional memory of the repressed state. Mammalian TrxG pro-
teins of the mixed lineage leukemia (MLL) protein family counteract 
the repressive function of PcG proteins and mediate H3K4 methyla-
tion, a mark associated with transcriptional activity14.

It was recently reported that human spermatozoa show strong 
enrichments of nucleosomes, H3K27me3, H3K4me2 and H3K4me3 
at regulatory regions of genes with developmental and other specific 
functions11. The molecular basis for the selective retention of nucleo-
somes at regulatory regions is unclear, as is whether the presence of 
specific histone modifications could serve regulatory functions in the 
following generation. Here we report that H3K27me3 and H3K4me2 
are retained at regulatory sequences in mature human spermatozoa, as 
shown previously11. Our computational analyses show that they mark 
promoters of distinct gene classes with defined expression programs 
during spermatogenesis and early embryonic development. Notably, 
we show that promoters of orthologous genes are similarly marked in 
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Repressive and active histone methylation mark distinct 
promoters in human and mouse spermatozoa
Urszula Brykczynska1,4, Mizue Hisano1, Serap Erkek1, Liliana Ramos2, Edward J Oakeley1,4, Tim C Roloff1, 
Christian Beisel3, Dirk Schübeler1, Michael B Stadler1 & Antoine H F M Peters1

In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most 
nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in 
paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-
mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 
dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone  
H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are 
only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around 
transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation 
embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for 
Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.
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mouse spermatozoa. In human sperm, how-
ever, we observe genome-wide distribution of 
nucleosomes with only a minor enrichment 
at regulatory sequences. In light of the evolu-
tionary conservation and the fact that histone 
levels are one order of magnitude lower in 
human spermatozoa versus somatic cells, we 
propose a role for histone methylation in transgenerational chromatin 
inheritance as a function of histone-modification occupancy across 
regulatory regions of loci in sperm.

RESULTS
H3K4me2 and H3K27me3 mark functionally distinct gene sets
To evaluate the presence of histones and associated modifications in 
mature human and mouse spermatozoa, we performed western blotting 
analyses on highly purified human and mouse spermatozoa (Fig. 1b). As 
described previously, we observed ~10% of histone H3 in human sperm 
compared to histone H3 levels in human somatic cells7; in mouse sperm, 
we detected ~1% of histone H3 (Fig. 1b). We further detected H3K27me3 
and H3K4me2 in spermatozoa of both species (Fig. 1b). The absence 
of a signal for lamina-associated polypeptide 2β (LAP2β) (Fig. 1c), a 
marker for somatic and immature germ cells22, showed the purity of the 
sperm samples used. To define the chromosomal localization of modi-
fied histones, we developed a chromatin immunoprecipitation (ChIP) 
approach for H3K4me2 and H3K27me3 that is compatible with the highly 
condensed chromatin state present in human spermatozoa. Following 
ChIP on cross-linked chromatin isolated from a pool of human sperma-
tozoa obtained from nine fertile donors, we amplified and hybridized pre-
cipitated genomic DNA to an oligonucleotide array representing 18,152 
human promoters, each spanning 2.7 kb around the transcriptional start 
site (TSS) (further referred to as ChIP-chip experiments). We applied a 
hidden Markov model–based peak-finding algorithm (Supplementary 

Figs. 1a and 2a and Supplementary Methods) and identified more than 
1,609 and 4,555 promoters that are marked by H3K27me3 and H3K4me2, 
respectively, in three independent ChIP-chip experiments. For 458 pro-
moters, we detected the presence of both modifications (Supplementary 
Table 1). Thus, more than 30% of all tested human promoters are positive 
for these histone modifications. In independent sperm samples, single-
gene analyses of 41 selected promoters confirmed that promoters are 
uniquely modified by either one or both modifications (Supplementary 
Fig. 2b,c). As a separate validation, we performed ChIP experiments 
under native conditions and obtained similar results, arguing for an over-
all conservation of promoter distributions of H3K27me3 and H3K4me2 
in mature human spermatozoa (Supplementary Fig. 2d).

Next, we addressed whether promoters bound by H3K27me3 and/
or H3K4me2 share sequence features or characteristic functions of 
the associated genes. We grouped promoters according to their CpG 
density. We observed that H3K27me3 in sperm was restricted to CpG 
island–containing promoters (Supplementary Fig. 3a), as in somatic 
cells18,23. Gene ontology analysis showed that many developmental 
regulatory genes (for example, SOX2, CDX2, GATA6 and BMP4, 
BRACHYURY (T)) and HOX genes are strongly overrepresented 
among H3K27me3-marked genes, some of which were also marked 
by H3K4me2 (Fig. 1d, Supplementary Fig. 2 and Supplementary 
Table 2). H3K4me2 was overrepresented among promoters of genes 
that regulate various spermatogenic processes (for example, PRM1, 
PGK2, BRDT and TSH2B) (Fig. 1d, Supplementary Fig. 2 and 
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Figure 1 Methylated histones are present in 
human sperm and localize to distinct promoter 
sets. (a) The mammalian germ cell and 
embryonic development. Primordial germ cells, 
specified in the proximal epiblast, undergo 
epigenetic reprogramming including global DNA 
demethylation. During spermatogenesis, male 
germ cells first proliferate (spermatogonia), then 
undergo meiosis (spermatocytes) and convert 
into spermatozoa after transcriptional arrest 
and global exchange of histones by protamines 
(elongating spermatids). Fertilization of the 
oocyte results in the totipotent early embryo. 
(b) Presence of histone H3, H3K27me3 and 
H3K4me2 in human and mouse spermatozoa 
as measured by western blotting analysis. Cell 
numbers are given in thousands. (c) Absence 
of signal for LAP2β, a marker for somatic and 
immature germ cells22, shows the purity of 
sperm samples used. (d) Selection of gene 
ontology–based gene functions significantly 
over- and underrepresented among modified 
promoters in human sperm (in comparison to 
all annotated promoters on the array within 
a given CpG-density class). H3K4me2 and 
H3K27me3 occupy sets of genes with mutually 
exclusive functions, with spermatogenic 
and housekeeping functions for H3K4me2-
marked genes and developmental functions 
for H3K27me3-marked genes. All significantly 
over- and underrepresented gene ontology terms 
are listed in Supplementary Table 2.
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Supplementary Table 2). Promoters of genes functioning in cellular 
homeostasis and gene expression (for example, RPS3, SFRS6, DICER1 
and PRMT5) were particularly overrepresented among H3K4me2-
marked genes and underrepresented among H3K27me3-marked 
genes (Fig. 1d). These data show that functionally distinct gene sets 
are marked by the two modifications in sperm.

Mutually exclusive histone and DNA methylation at promoters
In mammals, paternal transmission of DNA methylation is required for 
imprinted gene regulation in the subsequent generation. To determine 
a possible interplay between histone and DNA methylation pathways 
during gametogenesis, we evaluated the DNA methylation status at 
CpG island promoters in human spermatozoa because DNA hyper-
methylation confers transcriptional repression at such promoters24. 
We compared promoters that were previously classified as either DNA 
methylated or unmethylated24 and observed that both histone modifica-
tions were largely mutually exclusive with DNA methylation (Fig. 2a). 
Furthermore, because developmental genes were not overrepresented 

among sperm targets of DNA methylation (data not shown), Polycomb 
and DNA methylation mark distinct gene targets in the germ line, as 
in soma. When analyzing DNA methylation levels without applying a 
defined cutoff for the methylated state, we observed that DNA methyla-
tion levels were significantly lower at promoters marked by H3K4me2 
than at those harboring neither mark (Fig. 2b). This suggests that H3K4 
and DNA methylation are largely antagonistic during spermatogenesis, 
a notion that is consistent with data observed in somatic cells18,24,25.

Histone methylation status in sperm versus somatic cells
To relate genomic localization to chromatin regulation during devel-
opment, we compared ChIP patterns in sperm to those generated in 
human embryonic stem cells (hESCs) and primary fibroblasts24,26–28. 
Most H3K4me2 targets in sperm were equally marked in somatic 
cells (Fig. 3a and Supplementary Fig. 3b). These targets are asso-
ciated with gene ontology functions in cellular homeostasis and 
gene regulation (data not shown). However, a substantial number 
of H3K4me2 targets in sperm lack this modification in hESCs and 
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Figure 3 Spermatogenic and highly expressed 
genes are marked by H3K4me2 in sperm. 
(a) State map showing clustering of 15,999 
genes according to the chromatin status of 
their promoters in human sperm and hESCs26. 
Arrow indicates genes marked by H3K4me2  
in sperm only (see also Supplementary 
Fig. 3). (b) State map showing comparison of 
modification status at 15,702 promoters  
in sperm with gene expression status in  
human spermatocytes and spermatids29.  
Of the promoters marked by H3K4me2, 90% 
control genes that are actively transcribed 
in spermatogenesis. Percentages represent 
fractions of genes expressed. (c) Box plot 
showing expression levels in human spermatids 
for genes that are differentially modified in 
sperm. Genes under the control of promoters 
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arrow in a, are the most highly expressed. 
Other H3K4me2 genes (dark blue) show 
significantly higher levels of expression than 
do genes with neither mark (Wilcoxon test; 
*P value < 2.2 × 10−16). (d,e) Venn diagram 
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Supplementary Table 2 lists enrichments at all 
relevant gene ontology terms.
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fibroblasts (blue arrow in Fig. 3a and in Supplementary Fig. 3b), sug-
gesting testis-specific regulation. Consistently, those genes are highly 
expressed in human spermatocytes and round spermatids29 (Fig. 3b,c 
and Supplementary Fig. 4a), two cell populations that represent the 
meiotic and haploid stages of spermatogenesis preceding the final 
stage of global transcriptional repression in elongating spermatids 
(Fig. 1a). Along similar lines, gene ontology analysis revealed a strong 
overrepresentation of spermatogenetic functions among this group 
of H3K4me2-marked genes (data not shown).

Figure 3a further shows that only subsets of genes containing either 
H3K4me2 or H3K27me3 in hESCs are also marked in sperm. Genes 
retaining H3K4me2 in sperm were more likely to be expressed and at 
substantially higher levels during spermatogenesis than were genes 
without H3K4me2 or with H3K27me3 (Fig. 3b,c and Supplementary 
Fig. 4a). These data argue that H3K4me2 in sperm largely reflects 
robust transcription during the final stages of spermatogenesis30, 
whereas H3K27me3 is likely to represent PcG-mediated transcrip-
tional repression at preceding developmental stages.

In sperm, only 28% of H3K27me3 promoters also contained 
H3K4me2 (Fig. 3a). Compared to hESCs, this represents a three-fold 
underrepresentation of doubly marked or ‘bivalent’ promoters, partic-
ularly among CpG island promoters in human sperm (Supplementary 
Fig. 3a). These data point toward a specific regulation of H3K4 meth-
ylation at CpG island promoters during human spermatogenesis, as 
distinct from soma.

To obtain a closer insight into genes marked by H3K27me3 in 
sperm and/or hESCs, we performed in-depth gene ontology analyses. 
Among the targets uniquely marked in sperm, only histone genes 

were overrepresented (Fig. 3d). Closer analyses revealed that more 
than 70% of the 66 canonical histone genes localized in the large 
histone gene clusters on chromosomes 1 and 6 were marked by 
H3K27me3 (as well as H3K4me2) in sperm, whereas in hESCs, 
these genes were marked by only H3K4me2 (data not shown)26.  
In contrast, histone variant genes operating beyond DNA replication 
were not uniformly marked by H3K27me3 in human sperm, but they 
did harbor H3K4me2 in hESCs (data not shown). These data argue 
for a cluster-wide marking of canonical histone genes by repressive 
H3K27me3 that may result from entry into meiosis and/or the cell-
cycle exit that is associated with terminal differentiation of male germ 
cells during spermiogenesis.

Notably, developmental gene ontology terms were more overrep-
resented among targets shared by sperm and hESCs, as compared 
to targets unique to hESCs (Fig. 3d and Supplementary Table 2). 
Furthermore, we compared targets in human and mouse ESCs and in 
human sperm. We observed that genes that were modified in all three 
cell types were more significantly overrepresented for developmen-
tal gene functions than were those genes that were modified in only 
two or one cell types (P < 1.0 × 10−10) (Fig. 3e and Supplementary 
Table 2). We conclude that many PRC2 targets are evolutionarily  
conserved between germline and ESCs of humans and mice.

Transcriptional history and potential of marked genes
To understand the origin and possible future function of modifica-
tions present in sperm, we investigated how the observed chromatin 
patterns relate to expression at multiple developmental time points 
during gametogenesis and after fertilization. Owing to the absence 
of comprehensive expression data sets for the human germ line and 
embryo, we inferred expression states from data in mice31,32. The 
validity of such a cross-species approach was supported by direct 
comparative expression analyses, which revealed high expression  
levels for those orthologs expressed in human and mouse spermato-
cytes and/or spermatids and low expression levels for those expressed 
only in germ cells of one species (Supplementary Fig. 4). We consid-
ered only genes with one ortholog, and we classified them as inactive 
or active at each developmental time point. Figure 4 shows the per-
centages of genes that are active or never expressed at various devel-
opmental stages. Similar to the results in human cells (Fig. 3b), most 
H3K4me2-marked genes were expressed in mouse spermatocytes 
and/or spermatids (Fig. 4a). Moreover, many H3K4me2 targets were 
also expressed in oocytes or became activated in two- or eight-cell 
embryos (Fig. 4b). Comparison of all developmental stages confirmed 
that more than 65% of H3K4me2-marked genes expressed in oocytes 
and/or embryos were indeed also expressed during spermatogenesis 
(Fig. 4c). These data suggest that, in sperm, H3K4me2 preferentially 
marks genes with housekeeping functions, commonly expressed in 
the germ line and during embryogenesis.

Targets of H3K27me3 in sperm show opposing behavior, as two 
out of three targets were never expressed during spermatogenesis 
(Fig. 4a). Almost 20% of H3K27me3 targets marked in sperm were 
expressed in spermatogonia. Expression of several of these genes, such 
as c-Kit, Stra8 and Dnmt3a, has been shown to be required for that 
developmental stage33–35. Thus, although not directly investigated 
in this study, PcG-mediated repression may dynamically regulate 
target genes at specific stages of germ cell development, as observed 
in other differentiation systems18,19. In oocytes, most H3K27me3 
targets were not expressed, nor did they become activated in early 
embryos, reminiscent of the situation in spermatogenesis (Fig. 4b). 
Exceptions to this were several key regulatory genes of embryonic and 
extra-embryonic differentiation, such as Cdx2, Elf5 and Bmp4, that 

14.4 16.9

Spermatogenesisa c

b

O
og

en
es

is
 a

nd
 e

m
br

yo
ge

ne
si

s

   
   

  N
ot

E
xp

r.
 e

xp
r.

   
   

  N
ot

E
xp

r.
 e

xp
r.

   
   

  N
ot

E
xp

r.
 e

xp
r.

Oogenesis and embryogenesis

Spermatogenesis

Not
expr. Expr.

19.8 48.9 %

%

%

%

%

%%

%

%

19.2

16.8 11.4 25.5

11.55.6

H3K4me2

H3K27me3

H3K4me2

H3K27me3

63.7

46.3

30.0

10.2 19.7

65.94.2

51.5 17.2

19.112.2

37.1 17.7

36.09.2

0% 100%

31.1

17.2

20.8 18.2

7.9 6.2

6.3

31.6 7.3

68.7

54.8

Not expressed Expressed

Neither

Neither

H3K4me2

H3K27me3

Not expressed Expressed

Neither

S-gonium
Spermatocyte

2–8 cells
Oocyte Blastocyst

Spermatid

Figure 4 H3K27me3 and H3K4me2 in sperm reflect differential history 
and potential for expression during development. (a,b) Classification  
of mouse genes (n = 9,859) according to their expression status during 
spermatogenesis31 (a), oogenesis and embryogenesis32 (b) (indicated by 
percentages and colors) in relation to the histone-modification status at 
orthologous genes in human sperm. For the H3K4me2, H3K27me3 and 
‘neither’ modification states, 2,293, 738 and 6,561 genes, respectively, 
represents 100%. Genes were classified as ‘expressed’ or ‘not expressed’ 
according to the last stage of spermatogenesis (in a) or to the first stage 
of embryogenesis (in b) in which their mRNAs were detected. We used 
the first stage of embryonic expression as the criterion for those genes 
expressed in oocytes and embryos. (c) Genes were classified according 
to their expression state during spermatogenesis versus oogenesis and 
early embryogenesis. Both H3K27me3- and H3K4me2-marked genes 
show significantly different distribution from genes with neither mark 
(Chi-square test; P < 2.6 × 10−14 for all comparisons). Expression 
classification of genes marked by both modifications is not shown. The 
intensity of coloring correlates with the percentage of genes expressed. 
Expr., expressed; S-gonium, spermatogonium.

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



nAture structurAl & moleculAr biology  VOLUME 17 NUMBER 6 JUNE 2010 683

A r t i c l e s

were repressed during spermatogenesis and 
oogenesis but became activated in the early 
embryo36,37. More than 50% of H3K27me3 
targets, however, were never expressed dur-
ing spermatogenesis31, oogenesis38 and early 
 embryogenesis32 (Fig. 4c and Supplementary 
Fig. 5). Even at earlier stages of gametogenesis 
such as developing primordial germ cells 
(PGC), more than 90% of the genes in this 
group were not transcribed (Supplementary Fig. 5). As H3K27me3 
target genes in sperm are highly enriched for key regulators of lineage 
 specification and differentiation in soma (Fig. 1d), their repressed state 
throughout germ-cell development and in totipotent early embryos 
suggests that this modification may serve transgenerational gene-
 regulatory functions.

Evolutionary conservation between human and mouse sperm
If H3K4 and H3K27 methylation does indeed perform transcrip-
tional regulatory functions across generations, we would expect them 
to have evolutionarily conserved targets in the sperm of humans 
and mice. A high level of conservation would imply selection for 
maintenance of histone modifications at promoters of specific target 
genes during the extensive chromatin remodeling taking place in 
elongating spermatids. As global transcription is shut down in elon-
gating spermatids and mature spermatozoa, the presence of histone 
methylation at selected loci could exert its gene-regulatory function 
only after fertilization, in line with a role in transgenerational  
epigenetic inheritance.

To address conservation, we profiled H3K4me2 and H3K27me3 at 
promoters of 39 mouse genes, which are orthologous to the human 
genes analyzed before (Supplementary Fig. 2). We developed a 
ChIP procedure with an increased immunoprecipitation efficiency 
to accommodate the lower abundance of histones and the higher 
level of chromatin compaction in mouse spermatozoa as compared 
to human sperm. We performed ChIP under native conditions fol-
lowed by quantitative PCR (qPCR) detection. For many testis-specific 
and housekeeping genes, we observed, as in human cells, strong 
enrichments for H3K4me2 (Fig. 5a), consistent with their expres-
sion in spermatids. Notably, some testis-specific genes, but none of 
the housekeeping genes, were also marked by H3K27me3 (Fig. 5b). 
The observed double marking is specific to mouse sperm and sug-
gests that these testis-specific genes acquire H3K27me3 following 
their expression in spermatocytes and round spermatids, possibly 
to safeguard their repression after fertilization. For developmental 
regulatory genes, most promoters tested were marked by H3K27me3, 
as observed in humans. Several genes also harbored H3K4me2.  

In summary, the H3K4me2 status at testis-specific and housekeeping 
genes, as well as the H3K27me3 status at developmental genes, is 
highly conserved between mouse and human spermatozoa.

Distribution of nucleosomes in the human sperm genome
In human spermatozoa, as compared with soma, approximately 
10% of histones are retained7 (Fig. 1b). To evaluate the nucleosomal 
occupancy at regulatory regions marked by histone modifications, we 
developed a micrococcal nuclease (MNase) assay that enables the iso-
lation of mononucleosomal DNA from the entire genome of human 
spermatozoa (Supplementary Fig. 6). Using this assay, we isolated 
duplicate samples of nucleosomal sperm DNA from three individuals 
and subjected the samples to high-throughput sequencing (Illumina 
GAII). We normalized the data to that for genomic DNA that was 
sonicated after being pretreated under conditions identical to those 
of the MNase-treated samples.

We observed a regular distribution of nucleosomes along the entire 
genome of all sperm samples with only a slight enrichment around 
the TSSs of genes (Fig. 6). For genome-wide nucleosomal enrich-
ments, we measured high correlations between biological replicates 
and between individuals (the Pearson correlation coefficients for the 
500-bp window were 0.84–0.88 between biological replicates and 
0.73–0.84 between individuals) (Supplementary Fig. 7a). These data 
demonstrate the high technical reproducibility of our methodology 
and a rather low interindividual variability in the nucleosomal dis-
tribution in human sperm genomes.

To study in more detail the nucleosomal distribution in human 
sperm, we pooled the six data sets and quantified the read counts in 
different parts of the genome relative to the corresponding genomic 
size. We measured a 2.2-fold overrepresentation of nucleosomes in  
1-kb regions upstream and downstream of the TSSs of Refseq genes.  
At exons, we observed a 1.6-fold overrepresentation, whereas at 
intronic and intergenic regions nucleosomal read counts conformed the  
corresponding genomic size. Comparing the nucleosomal occupancy 
with the H3K4me2 and H3K7me3 status of promoter regions, as iden-
tified by the ChIP-chip metholodogy, showed that positively marked 
promoters are enriched in nucleosomes (Supplementary Fig. 7b). 
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Figure 5 Evolutionary conservation of 
H3K27me3- and H3K4me2-marked promoters 
in mouse spermatozoa. (a,b) H3K4me2 (a) and 
H3K27me3 (b) status at the promoters of 39 
mouse genes, orthologous to the human genes 
analyzed in Supplementary Figure 2. Results 
are represented as a percentage of the material 
immunoprecipitated from input chromatin under 
native conditions, as determined by real-time 
qPCR analyses. Linear scaling was applied  
for the replicas presented (for N-ChIP#1 to  
N-ChIP#4 of H3K4me2: 1×, 0.5×, 3.5×, 1.6×; 
for N-ChIP#1 to N-ChIP#4 of H3K27me3: 1×, 
0.25×, 1×, 0.15×). Genes were selected on the 
basis of gene function and modification status 
at promoters of human orthologous genes.
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These data indicate that nucleosomes, possibly 
modified, are retained with some preference 
at regulatory sequences in human sperm.

Several reports suggested selective reten-
tion of nucleosomes at repetitive sequences 
in human and mouse spermatozoa9,10. To 
address this question in a genome-wide manner, we determined the 
nucleosomal enrichment values for all genomic coordinates cor-
responding to the major classes of long terminal repeat (LTR) and 
non-LTR repetitive sequences and to telomeric and simple repeats. 
For each class we observed that a fraction of sequences are enriched 
in nucleosomes (data not shown). However, we failed to observe a 
correlation between enhanced nucleosomal retention and the expres-
sion status of individual repeats in human testis or embryonic tissues 
(data not shown)39. Thus, the role of histone occupancy at selective 
repeats in human sperm for gene regulation following fertilization 
remains unclear.

Nucleosomes and histone modifications in human sperm
Recently, the genome-wide distribution of nucleosomes and histone 
modifications in human sperm was determined by high-throughput 
sequencing of nucleosomal DNA isolated after MNase treatment 
and immunoprecipitation under native chromatin conditions11. 
In contrast to our data, this study reported higher enrichments of 
nucleosomes at sequences around TSSs in spermatozoa of differ-
ent donors (7.6-fold versus 2.2-fold)11 (Supplementary Fig. 8a). 
The differential enrichments around TSSs may be due to techni-
cal differences in the preparation of mononucleosomal DNA from 
human sperm by micrococcal digestion. In contrast to what occurs 
in the protocol used in ref. 11, under our experimental conditions 
the entire genome is digested (Supplementary Fig. 6), thereby ena-
bling detection of nucleosomes from open and more closed regions 
of the human sperm genome7–9,40,41.

Similar to the nucleosomal distributions presented in Figure 6, 
the previous study reported that H3K4me3- or H3K27me3-modified 
nucleosomes are broadly distributed around the TSSs of many genes11 
(Supplementary Fig. 8b). We further observe strong correlations 
between the average immunoprecipitation enrichment obtained for 
each promoter region in the current ChIP-chip experiments and for 
the normalized number of ChIP-seq reads aligned to the correspond-
ing promoter region11 (Supplementary Fig. 8c). Of the promoter 
regions that we found to be enriched in H3K4 and H3K27 methyla-
tion, 99% and 96%, respectively, were also enriched in the ChIP-seq 
experiments. The strong overlap between the two data sets, despite 
differences in detection sensitivity due to the ChIP procedures used, 
argues for a widespread marking of promoters by histone methylation 
in human spermatozoa.

Histone modification coverage and paternal transmission
As approximately 10% of histones are maintained in human sperm, 
the ~2.2-fold nucleosomal enrichment at sequences near the TSSs 
of genes argues that only about 20% of nucleosomes are retained 
at regulatory sequences in individual spermatozoa. The likelihood 
of paternal transmission of epigenetic information by histone 
modifications at any locus is therefore expected to depend on the 
size of the region modified. If a region is widely marked, several 
modified nucleosomes could be transmitted even if only 20% of 
nucleosomes are retained during spermiogenesis. To assess the 
likelihood of such a mode of transmission for individual loci we 
determined the extent to which sequences flanking the TSS contain 
modified nucleosomes, a variable we termed ‘modification coverage’  
(Fig. 7a). Because, in general, genes are modified on both sides of 
their TSS (Supplementary Fig. 8b), we calculated the modification 
coverage in a 6-kb window around the TSS (±3 kb) using the data 
from ref. 11. As for somatic cells, we found that H3K27me3-marked 
TSS proximal regions are, overall, more widely enriched in modified 
nucleosomes than in H3K4me3-marked regions (Fig. 7a, above). 
For example, 46% and 32% of H3K27me3- and H3K4me3-marked 
loci, respectively, have a modification coverage of ≥0.5 (between 
3,000 and 6,000 bp). Thus, H3K27me3-marked loci may be  
more likely to transmit their modification status than are H3K4me3-
marked loci.

Notably, gene ontology analyses show that developmental gene func-
tions are more overrepresented among genes that are more broadly 
marked by H3K27me3 in spermatozoa (Supplementary Fig. 8d). The 
observed correlation probably reflects an intrinsic characteristic of 
PcG targets with developmental gene functions42. The data suggest 
that modification coverage may be relevant for paternal transmission 
of epigenetic information. To further evaluate this notion, we related 
the modification coverage to the modification status as determined in 
our ChIP-chip experiments and to the expression states of genes dur-
ing gametogenesis and embryogenesis31,32. Compared to all enriched 
TSS proximal regions (Fig. 7a, above), the modification coverage was 
significantly higher for those promoters that we had identified as 
enriched in H3K4me2 or H3K27me3 in the ChIP-chip experiments 
(Wilcoxon test: P < 2.2 × 10−16 for either mark) (Fig. 7a, middle and 
below). Furthermore, genes with a higher H3K27me3 coverage at 
their TSS were more likely to be repressed during gametogenesis and 
early embryogenesis than were genes with a low H3K27me3 coverage 
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(Fig. 7b). Together, these data are compatible 
with a role for H3K27me3 in paternal trans-
mission of the repressed state, which is likely 
to be a function of the modification coverage 
at TSS-proximal sequences.

DISCUSSION
During sperm development in animals, histones are replaced by 
sperm-specific histones, protamine-like proteins or protamines. In 
mammals and other organisms, however, a certain fraction of histones 
remain present in mature spermatozoa, providing a possibility for 
epigenetic inheritance7–11,43–45. Here we show that promoters with 
distinct gene functions and developmental expression patterns are 
selectively marked by active and/or repressive histone methylation 
in human and mouse spermatozoa. We further demonstrate com-
parable genome-wide retention of nucleosomes in purified sperma-
tozoa of three fertile human individuals with modest enrichments 
around the TSSs of genes. Given the ten-fold lower levels of histones 
in human sperm versus somatic cells6,7 (Fig. 1b), the low nucleosomal 
occupancy at regulatory sequences probably reduces the potential 
for transgenerational inheritance of chromatin-encoded epigenetic 
information by individual spermatozoa. However, we observe a strong 
positive correlation between the extent to which H3K27me3-modified 
nucleosomes are present around the TSSs of genes in spermatozoa 
(modification coverage) and gene repression in early embryos. We 
therefore propose a role for histone methylation in paternal chromatin 
inheritance as a function of the number of modified nucleosomes that 
are retained across regulatory regions of loci in sperm. Depending 
on the modification coverage at loci, paternal transmission of his-
tone modification–encoded epigenetic information may be subject 
to variegation.

The proposed model predicts that, in embryos, sperm-inherited 
modified nucleosomes remain retained in the paternal genome dur-
ing its remodeling by maternally provided histones in the course 
of pronucleus formation. Studies on the pronuclear localization of 
 replication-dependent versus replication-independent H3 variants in 

early zygotes suggest that sperm-inherited histones are indeed retained 
within the paternal human and mouse genomes during pronucleus 
formation12,46,47 (R. Kunzmann and A.H.F.M.P., unpublished data).

The model further implies that transgenerationally inherited marks 
need to be maintained during subsequent preimplantation develop-
ment. For H3K27me3, the modification becomes microscopically 
detectable at the paternal genome in the one-cell embryo, concurrent 
with replication and before global genome activation4,5,48. This stain-
ing may reflect de novo targeting of PRC2 to unmodified sites through 
sequence-specific mechanisms14,49. Alternatively, given the intrinsic 
ability of PRC2 to propagate H3K27me3 (ref. 20), establishment of 
broad H3K27me3 domains in one-cell embryos before genome acti-
vation may be seeded by H3K27me3-modified nucleosomes inher-
ited from sperm. The positive correlation observed between the 
H3K27me3 coverage around the TSSs of genes in sperm, and gene 
repression in gametes and early embryos supports the second hypo-
thesis. Furthermore, the persistent presence of H3K27me3 at the orig-
inally inactive X chromosome in cloned preimplantation embryos50, 
or at the maternal genome in one-cell embryos that are maternally and 
zygotically deficient for Ezh2 (ref. 4), strongly argues for the lack of 
substantial zygotic and/or maternal H3K27me3 demethylase activity 
in early embryos. Together, these studies support a model in which 
paternally inherited H3K27me3 is propagated through subsequent 
preimplantation development, contributing to the propagation of 
totipotency across generations.

We speculate that Polycomb serves a similar regulatory function 
at maternal alleles during oogenesis and early embryogenesis. If 
maternal alleles of the H3K27me3 targets identified in sperm would 
be differentially regulated, the situation would resemble classical 
imprinting. The undisturbed embryonic patterning observed in 
gynogenones and parthenogenones argues against such a scenario. 
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Furthermore, live-born offspring with two maternal genomes are 
obtained at a respectable frequency by genetic manipulation of only 
two imprinted loci51. Therefore, there is no strong argument for a 
restriction of the transgenerational contribution by Polycomb to the 
regulation of developmental genes on the paternal genome only.

For H3K4me2, it is unknown whether the mark functions only 
in the process of transcription or whether it also serves a role 
in epigenetic memory of the active state in proliferating cells. 
Nuclear-transfer experiments performed in Xenopus laevis oocytes 
provided evidence for a role of H3K4 in transcriptional memory52. 
In Caenorhabditis elegans, deficiency for the H3K4me2 demethylase 
Lsd1 (KDM1) caused progressive sterility over many generations that 
correlated with transgenerational accumulation of H3K4me2 in the 
germ line and increased expression of spermatogenic genes in the 
soma53. These data argue that programmed H3K4 demethylation, 
possibly of testis-expressed genes, is required for germline immortal-
ity in C. elegans. In mouse and human embryos, H3K4 methylation is 
established along the paternal genome within the first cell cycle46,54, 
providing a potential means for somatic transmission. Nevertheless, 
the fate of germline-inherited H3K4me2 at, for example, housekeep-
ing versus testis-specific genes remains to be tested.

Molecular genetic experiments will be required to elucidate the 
extent and functional significance of methylation at distinct histone 
residues and loci for transgenerational inheritance. Beyond the 
intrinsic variation in modification coverage between loci, there may 
be variability in establishment and retention of modified histones 
between spermatozoa and/or individuals in response to environ-
mental influences and/or innate cues, such as incomplete chroma-
tin remodeling during spermatid elongation55. Hence, transmission 
of histone-encoded epigenetic information may prove to constitute 
a previously unknown transgenerational mechanism for pheno-
typic variation56.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/nsmb/.

Accession codes. NCBI Gene Expression Omnibus: Data have been 
deposited with accession code GSE19892.

Note: Supplementary information is available on the Nature Structural & Molecular 
Biology website.
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ONLINE METHODS
Sperm sample collection and purification. Human spermatozoa were obtained 
from normospermic men and purified by density gradient centrifugation using 
Pure Sperm solution (Nidacom). Mature mouse spermatozoa were obtained from 
caudal epididymis of CD1 and C57BL/6J mice (for western blotting and ChIP, 
respectively) using the swim-up assay. For details on sperm sample preparation, 
see Supplementary Methods.

Western blotting. Proteins from mouse and human sperm were isolated as 
described57 with minor modifications. Additional steps of sonication (two 
times 30 s at 40% amplitude using a Branson sonicator) and extraction with 
1.6 M urea, 1 M NaCl and 0.28 M β-mercaptoethanol for 30 min at 37 °C were 
included. After precipitation with 20% (w/v) trichloroacetic acid, protein pel-
lets were boiled for 20 min in SDS sample buffer and separated by SDS-PAGE. 
Western blot analyses were performed using the following antibodies and dilu-
tions: polyclonal H3K4me2 (Upstate, catalog no. 07030) (1:1,000), polyclonal 
H3K27me3 (Upstate, catalog no. 07449) (1:1,000), polyclonal H3 (Abcam, catalog 
no. 17921) (1:10,000), monoclonal LAP2β58 (1:5). Protein extracts from WI38 
human primary lung fibroblasts and CCE mouse ESCs were used as controls and 
were prepared as described above.

Cross-linked chromatin immunoprecipitation. ChIP-chip experiments 
were performed on a pool of nine donor samples to average possible variabil-
ity between individuals. H3K4me2 and H3K27me3 ChIPs were carried out in 
parallel on identical sets of samples. For each ChIP assay, 2 × 107 spermatozoa 
were used. After thawing, pooled samples were washed with PBS to remove the 
cryopreservation medium (5 min at 800g). ChIP experiments were performed 
as described24 with several modifications. Fixation was performed with 0.5% 
(w/v) paraformaldehyde for 10 min at room temperature (22–24 °C). Lysis was 
performed in the presence of 0.5% (w/v) SDS and 10 mM DTT for 1 h at room 
temperature. N-Ethylmaleimide was added to quench the DTT, and the samples 
were diluted 2.5 times before sonication. Sonication was performed six times 
for 20 s (Branson sonicator, amplitude 70%) to obtain chromatin with fragment 
sizes of 300–700 bp.

Sperm chromatin was then used for immunoprecipitation at 4 °C overnight 
with 5 μg of antibody: H3K4me2 (Upstate, catalog no. 07030) or H3K27me3 
(Upstate, catalog no. 07449). The following steps included incubation with pro-
tein A–Sepharose beads and washing as described in ref. 24. Cross-link reversal, 
DNA isolation and amplification with the WGA2 amplification kit (Sigma) was 
performed according to ref. 59. For amplification, 50 ng of input DNA and entire 
ChIP DNA were used. For each H3K27me3 array experiment, three simultane-
ously prepared ChIP samples were pooled and used for the amplification. For 
each H3K4me2 array experiment, one ChIP sample was used for amplification. 
A set of four genes was tested for each sample by qPCR, and all showed simi-
lar bound-to-input ratios before and after amplification. Amplified DNA was 
hybridized to a tiling microarray (NimbleGen Systems) representing 18,029 pro-
moter regions (2,200 bp upstream to 500 bp downstream of TSSs) of all RefSeq 
annotated human genes. Sample labeling, hybridization and array scanning were 
performed by NimbleGen Systems according to standard procedures.

Validation of microarray results was performed by ChIP-qPCR analyses using 
the SYBR Green PCR Master Mix (Applied Biosystem) and the ABI Prism 7500 
real-time PCR machine and is presented in Supplementary Figure 2 (for a list 
of primers, see Supplementary Table 3). ChIP was performed on pools of sperm 
obtained from donors different from those used for ChIP-chip analyses.

Analyses of ChIP-chip data. For each probe, the log2 ratio of precipitated over 
input DNA was calculated. Loess normalization and a signal intensity cut off 
were applied to correct for labeling dye artifacts and to remove noise. A hidden 
Markov model peak-finding algorithm was applied to identify regions enriched 
in analyzed modifications. Peaks were mapped to the closest Ensembl anno-
tated TSS (release 48, genome build hg18). Single mouse orthologous genes were 
identified using Ensembl criteria (http://www.ensembl.org/info/docs/compara/
homology_method.html). Gene ontology analyses were performed using GO 
Stat (http://gostat.wehi.edu.au). To relate histone-modification data to expression 
status of linked genes, we processed publicly available Affymetrix CEL files using 
Genedata’s Expressionist pro 5.0 (Genedata AG). For details on data processing 
and analyses, see Supplementary Methods.

Nucleosomal DNA preparation and native chromatin immunoprecipitation. 
Native ChIP on human and mouse sperm was performed according to the protocol 
by Umlauf and colleagues (http://www.epigenome-noe.net/researchtools/protocol.
php?protid=22) with modifications60. For one ChIP on human sperm, three donor 
samples were pooled. For both mouse and human samples, 1 × 107 spermatozoa 
were used per ChIP assay. Before ChIP, mouse spermatozoa were treated with  
50 mM DTT in PBS at room temperature for 2 h, followed by N-ethylmaleimide 
treatment and washing with PBS. Subsequently, human spermatozoa were lysed on 
ice for 30 min in a buffer containing 0.3 M sucrose, 15 mM Tris (pH 7.5), 60 mM 
KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM EGTA, 0.5% deoxycholate, 0.25% nonidet 
P-40 and 10 mM DTT. Mouse spermatozoa were lysed for 10 min under identical 
conditions except for DTT (0.5 mM). Chromatin digestion was performed by 
MNase as described60. Immunoprecipitation was then carried out with H3K4me2 
(Upstate, catalog no. 07030) or H3K27me3 (Upstate, catalog no. 07449) antibodies 
following the published protocol60. Real-time PCR was performed using the SYBR 
Green PCR Master Mix (Applied Biosystems) and an ABI Prism 7500 Real-time 
PCR machine (for list of primers, see Supplementary Table 3).

Mononucleosomal DNA was prepared using the same protocol, subjected 
to DNA electrophoresis and isolated from polyacrylamide gels. For one mono-
nucleosomal DNA preparation, one donor sample was used. DNA was prepared 
for deep sequencing using the ChIP-Seq sample preparation kit from Illumina 
and sequenced on the Genome Analyzer 2 following manufacturer’s protocols. 
For details on data processing and analyses, see Supplementary Methods.

Statistical analyses. Statistical tests were performed using the R software (http://
www.r-project.org). In Figures 2b and 3c, a two-sided Wilcoxon rank-sum test 
was used, as a nonparametric test of location for non-normal data. In Figure 2a, 
the one-sided hypergeometric test (R “Phyper” function) was used to measure the 
probability of observing an overlap equal to or smaller than that obtained from 
the real data. Associations in Figure 4 were tested using Pearson’s Chi-square test 
on the raw count data. The P values reported for enriched gene ontology terms 
(Figs. 1d and 3d,e) were obtained using GO Stat.

57. Lee, K., Haugen, H.S., Clegg, C.H. & Braun, R.E. Premature translation of protamine 
1 mRNA causes precocious nuclear condensation and arrests spermatid 
differentiation in mice. Proc. Natl. Acad. Sci. USA 92, 12451–12455 (1995).

58. Dechat, T. et al. Detergent-salt resistance of LAP2α in interphase nuclei and 
phosphorylation-dependent association with chromosomes early in nuclear assembly 
implies functions in nuclear structure dynamics. EMBO J. 17, 4887–4902 (1998).

59. O’Geen, H., Nicolet, C.M., Blahnik, K., Green, R. & Farnham, P.J. Comparison of sample 
preparation methods for ChIP-chip assays. Biotechniques 41, 577–580 (2006).

60. Umlauf, D., Goto, Y. & Feil, R. Site-specific analysis of histone methylation and 
acetylation. Methods Mol. Biol. 287, 99–120 (2004).
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At fertilization, fusion of two differentiated gametes forms the

zygote that is capable of forming all of the varied cell lineages of

an organism. It is widely thought that the acquisition of

totipotency involves extensive epigenetic reprogramming of

the germline state into an embryonic state. However, recent

data argue that this reprogramming is incomplete and that

substantial epigenetic information passes from one generation

to the next. In this review we summarize the changes in

chromatin states that take place during mammalian

gametogenesis and examine the evidence that early

mammalian embryogenesis may be affected by inheritance of

epigenetic information from the parental generation.
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Introduction
Embryos develop from the fusion of two highly specialized

haploid germ cells, oocytes and sperm, yet possess during

early development the property of totipotency, the ability

to give rise to every cell type in an organism. The acqui-

sition of developmental potency is thought to arise from

reprogramming of the parental germline epigenetic state to

a new epigenetic state in the early embryo. The full extent

of this reprogramming is, however, unknown, leaving open

the question of how much epigenetic information present

in mature gametes is retained in the embryo.

Epigenetic information is generally considered to

represent heritable information in genome function that

is not encoded by the DNA sequence. On the basis of

studies of embryonic development and cellular differen-

tiation, several mechanisms have been proposed for

the transmission of epigenetic information. These in-

clude chemical alteration of DNA itself (most often by
www.sciencedirect.com 
methylation or related chemical groups), post-transla-

tional modifications of histones, and transmission of

RNA. Recent genome-wide chromatin analyses in a

variety of cell types revealed that regulatory sequences

of genes as well as of repetitive sequences are generally

associated with DNA and/or distinct histone modifi-

cations and chromatin associated proteins [1]. The pre-

sence of a defined ‘epigenome’ in embryonic stem (ES)

cells raises the question about the ontogeny of such a

pluripotency-related chromatin program: whether it is

newly defined during pre-implantation development or

inherited from gametes.

To establish a conceptual framework for future exper-

iments, we propose two opposite models for epigenetic

control of mammalian pre-implantation development

(Figure 1): The reprogramming model proposes that chro-

matin states in gametes become reset upon fertilization to

enable the acquisition of totipotency. This classical

model is in part based on global changes in DNA meth-

ylation along the paternal and maternal genomes of pre-

implantation embryos, as visualized by immuno-fluor-

escence microscopy [2] and the ability of the cytoplasm

of oocytes and zygotes to partially reprogram the epigen-

ome of differentiated nuclei [3]. Likewise, during pri-

mordial germ cell (PGC) specification, somatic epigenetic

programs acquired during early embryogenesis are erased

and subsequently replaced by female-specific and male-

specific germ cell programs. In the case of DNA meth-

ylation in the context of genomic imprinting, however,

part of the germline program escapes reprogramming in

early embryos, safe guarding parental-specific expression

during somatic development [4].

In contrast, the inheritance model proposes that chromatin

states in mature germ cells are inherited by embryos to

direct transcriptional activation or silencing upon zygotic

genome activation and subsequent development. Chro-

matin programs in mature germ cells may either be

specified during gametogenesis, or originate from pre-

implantation embryos or even from parental gametes,

thereby enabling intergenerational or transgenerational

inheritance of epigenetic information. Transmission of

such pre-patterned chromatin states, constituting a

default ‘intrinsic intergenerational/transgenerational inheri-
tance program’, could contribute to the high level of

developmental potential of early embryos. We further

postulate that ‘acquired intergenerational/transgenerational
inheritance’ results from a temporal exposure to environ-

mental cues altering the cellular state of the germline in
Current Opinion in Cell Biology 2012, 24:387–396
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The reprogramming model (left) and inheritance model (right) of chromatin-based epigenetic control of early embryonic development. See text for

explanation.
one generation and changing transitorily, for one or

multiple generations, the execution of the default intrin-

sic inheritance program, and thereby affecting the phe-

notype of offspring [5]. Acquired inheritance would

depend on the interaction between germ cells and

somatic cells in the organism, either directly between

gonadal somatic cells and germ cells, or indirectly by

hormonal signaling. In general, acquired inheritance (and

not the intrinsic inheritance program) is referred to as

transgenerational inheritance [6].

Studies in non-mammalian model organisms have pro-

vided evidence for various mechanisms playing a role in

intergenerational/transgenerational epigenetic inheri-

tance. For instance, studies in plants demonstrated that

altered patterns of DNA methylation (so-called epial-

leles) can be inherited over successive generations

[7�,8]. Transmission of the chromatin state of a chromo-

somal regulatory element through both mitosis and meio-

sis has been shown in Drosophila [9�,10]. In zebrafish
embryos, homeostatic and developmentally regulated

genes are marked by permissive and repressive histone

modifications before zygotic genome activation. This pre-

patterning reflects in part chromatin marking observed in

zebrafish sperm, providing means for intergenerational

inheritance [11,12]. In the context of RNA-based inheri-

tance, transmission of silencing induced by siRNAs

(for instance in Caenorhabditis elegans) [13] or maternal

piRNAs (in Drosophila) [14�]) has also been established.

Below, we review the current knowledge on chromatin

dynamics during germ cell development and intergenera-

tional epigenetic inheritance in mouse.

Germ cell development in mammals
In several well-studied model organisms germ cells arise

via asymmetric distribution of germline inducing factors,

known as germplasm, providing an obvious mechanism

for intergenerational inheritance [15]. This is not the case
Current Opinion in Cell Biology 2012, 24:387–396 
in mammals, where PGCs are specified from a small

population of posterior proximal epiblast cells

(Figure 2) [16,17]. Before undergoing overt cellular differ-

entiation, PGCs undergo changes in gene expression state

and DNA and histone methylation levels that are

believed to represent re-programming of these cells

[18�,19]. The balance between epigenetic reprogram-

ming versus inheritance in PGCs is, however, not under-

stood, in part due to the technical challenges of working

with these rare and relatively inaccessible cells. Following

the early events of germline reprogramming, germ cells in

male and female embryos embark on drastically different

differentiation programs, which may suggest different

capacities for intergenerational inheritance between the

sexes.

DNA methylation
Methylation of the fifth position of cytosine on DNA

(5mC) represents one well-studied mechanism of epige-

netic transmission in the mouse. This mechanism pro-

vides evidence for both germline reprogramming and

germline inheritance. During PGC migration to the

developing gonad, germ cell chromatin undergoes sub-

stantial changes [19]. During the same time period levels

of 5mC in germ cells also begin to decrease [18�]. PGC

DNA demethylation continues after their arrival in the

gonad and affects around 80–90% of the genome [20�].
The mechanism behind this demethylation has been the

subject of many years of research. It was hypothesized

that, following a paradigm established in plants [21],

deamination and subsequent DNA repair might be

involved in DNA demethylation. Deletion of the cytidine

deaminase Aid in the mouse provided some support for

this model as PGCs in these animals display modest DNA

hypermethylation [20�]. Further support was provided by

the observation that PGC demethylation is also associated

with the presence of DNA single stranded breaks [22]. A

similar mechanism for demethylation of the paternal
www.sciencedirect.com
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Figure 2
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Life cycle of mammalian gametogenesis and embryogenesis. Primordial germ cells (PGCs) arise from proximal epiblast cells and undergo extensive

erasure of DNA methylation and chromatin changes during migration to and upon entry into the gonad. Directed by the somatic gonadal

environment, germ cells enter the male or female fate. Male germ cells, initially called gonocytes, are cell cycle arrested and start to establish male-

specific DNA methylation patterns. During subsequent meiotic prophase, the X and Y chromosomes undergo meiotic sex chromosome inactivation

(MSCI) characterized by major chromatin remodeling events. Following meiotic divisions, haploid spermatids undergo extensive nuclear and

morphological changes including an almost genome-wide exchange of histones by protamines. Regulatory sequences, however, retain

nucleosomes providing means for epigenetic inheritance. Female germ cells enter meiotic prophase in the embryo and complete the meiotic

divisions upon hormonal induction in the adult ovary and fertilization by sperm. During the growing phase, oocytes establish DNA methylation at

genes and imprinting control regions, undergo chromatin remodeling and acquire competence to direct embryogenesis. Upon fertilization, parental

genomes form two pronuclei that are epigenetically distinct, reflecting the history of parental germline specific chromatin remodeling events.

Paternal and maternal genomes undergo active and passive erasure of DNA methylation. The asymmetry in chromatin states at paternal and

maternal chromosomes may potentially regulate activation and repression of de novo gene expression in pre-implantation embryos thereby

directing embryogenesis.
genome may exist in the early embryo as well [23].

Another recent advance was the discovery that the

hydroxylated form of methylated DNA (5hmC) is present

in substantial quantities in mammalian genomes and that

this modified base could be formed from 5mC by proteins

of the Tet family [24,25�]. Three different Tet proteins

exist in mice. While deletion of Tet1 leads to no obvious

mutant phenotypes [26], Tet2 seems to function as a

tumor suppressor during hematopoiesis [27,28]. Maternal

deletion of Tet3 leads to defects in early development

with 50% of maternally Tet3-deficient embryos failing to

develop to term [29]. What differences exist between

these two classes of Tet3-deficient embryos remains

unknown. Likewise, it is unclear whether this observed

embryonic lethality is due to impaired 5mC to 5hmC

conversion of the paternal genome in the zygote versus

changes to the maternal epigenome, inherited from the

mutant oocyte.

While removal of DNA methylation across the majority of

the genome in PGCs would seem to preclude the inheri-

tance of this mark, certain DNA sequences, such as the

Intracisternal A Particle (IAP), appear rather resistant

DNA demethylation in PGCs [30]. A well-known
www.sciencedirect.com 
example of maternal epigenetic inheritance in the mouse

is the agouti viable yellow (Avy) allele of the agouti locus

which contains an IAP retrotransposon sequence inserted

near the promoter of the gene [31]. Gene expression from

this allele correlates positively with the degree of DNA

methylation of the IAP sequence in soma of the individ-

ual itself as well as of the mother. Furthermore, the

methylation state is susceptible to environmental cues

such as maternal diet [32]. Nonetheless, DNA methyl-

ation at the Avy allele inherited from the oocyte is lost in

pre-implantation embryos arguing that DNA methylation

is not the primary mediator of intergenerational epige-

netic inheritance [33]. Comparable observations were

made for the Axin-fused allele [34,35].

Unlike IAP retrotransposons, DNA methylation at

imprinted control regions (ICRs) is erased in PGCs

[30]. ICRs become subsequently methylated in either

the male or female germline and maintain their methyl-

ation state following fertilization to direct parental-

specific expression during embryonic and postnatal de-

velopment. Thus, developmental changes in DNA meth-

ylation at ICRs represent a one generational cycle of

epigenetic reprogramming (in PGCs) and inheritance
Current Opinion in Cell Biology 2012, 24:387–396
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(in early embryos). Intriguingly, while DNA methylation

is clearly involved in epigenetic inheritance of imprinted

DNA methylation, recent work indicates that feedback to

DNA sequence via the Krüppel-associated box-contain-

ing zinger finger protein Zfp57 is required for efficient

maintenance of imprinted DNA methylation in early

embryos [36] and in ES cells [37,38].

While imprinted loci have been extensively studied, the

role of inherited DNA methylation throughout the gen-

ome is less well understood. Recently, two genome-wide

studies of DNA methylation on developing mouse

oocytes revealed that DNA methylation established in

the female germline by the de novo DNA methyltrans-

ferase Dnmt3a and its non-catalytic paralog Dnmt3l

correlates with DNA methylation profiles measured in

blastocyst embryos [39��,40�]. Surprisingly, the DNA

methylation level in blastocysts was several-fold higher

than expected on the basis of the widely cited model of

active and passive demethylation that are thought to

reprogram the paternal and maternal genomes during

pre-implantation development. Kobayashi and colleagues

also demonstrated that ICRs versus retrotransposons have

a differential requirement for Dnmt3l for DNA methyl-

ation establishment [40�]. Nonetheless, embryos derived

from oocytes deficient for Dnmt3a or Dnmt3l are capable

of developing to midgestation in the mouse [41,42]

suggesting that maternally inherited DNA methylation

does not play a critical role in pre-implantation devel-

opment.

Oogenesis and chromatin
Female germ cells initiate meiosis during fetal life, arrest-

ing their cell cycle at the diplotene stage of meiotic

prophase (Figure 2). Beginning a few days after birth

(and continuing periodically throughout the reproductive

lifespan of the organism) oocytes are recruited into a

growing phase, which associates with increased transcrip-

tional activity. At the end of this growing phase, oocytes

are induced to resume meiosis by a surge of luteinizing

hormone (LH), re-arresting at metaphase of meiosis II

(M-II). It has long been known that morphological

changes in chromatin are associated with growing oocyte

development [43]. During the early growing phase, chro-

matin of mouse oocytes exists in a de-condensed con-

figuration known as the Non-Surrounded Nucleolus

(NSN) state [44–46]. As oocytes reach the final stage of

oocyte growth they undergo a change in chromatin state,

forming condensed rings of chromatin (containing peri-

centric heterochromatin [47] around the prenucleolar

body), forming the Surrounded Nucleolus (SN) state

[44–46]. The transcriptional activity of oocytes correlates

with their chromatin configuration: NSN oocytes display

transcriptional activity while SN oocytes are transcrip-

tionally repressed. However, the transcriptional repres-

sion found in mature oocytes is not dependent on their

SN chromatin state. Despite failing to achieve the SN
Current Opinion in Cell Biology 2012, 24:387–396 
chromatin configuration [47], oocytes deficient for the

histone chaperone Nucleoplasmin 2 (Npm2) undergo

transcriptional repression [48]. Importantly, oocyte chro-

matin configuration does, however, correlate strongly

with embryonic competence [49,50].

The linker histone H1 variant H1foo is specifically

expressed in growing oocytes [51,52]. Knockdown of this

variant in growing oocytes by morpholino antisense oli-

gonucleotides leads to a reduced capacity of these oocytes

to resume meiosis [53]. Oocyte chromatin also contains

the H2A variant macroH2A throughout the growing

phase, as well as during meiotic resumption [54]. This

variant also remains associated with maternal chromatin

following fertilization [54], providing a possible mediator

for inheritance. As expected for non-replicating cells,

growing oocytes do not incorporate the replication-de-

pendent H3 variants, H3.1 and H3.2 [55��]. They do,

however, robustly incorporate the replication-indepen-

dent variant H3.3, suggesting that ongoing changes in

chromatin composition occur during oocyte growth [55��].
H3.3 incorporation was observed in the nuclei of oocytes

where transcription had ceased, indicating the existence

of continuous, transcription-independent nucleosome

turnover in oocytes [55��].

Changes in histone modifications during oogenesis have

been extensively cataloged in many publications

(reviewed in [56]); however, only a limited number of

studies have identified functional roles for these modifi-

cations. Growing oocyte development is associated with

increasing levels of histone acetylation, followed by

abrupt de-acetylation during meiotic resumption [57].

Modulation of HDAC (histone de-acetylase) activity in

oocytes can alter the condensation of chromatin in these

cells, with increased HDAC activity leading to premature

chromatin condensation [58], and HDAC inhibition lead-

ing to chromatin de-condensation [48]. Genetic ablation

of Hdac1 and Hdac2 severely impairs oocyte growth and

transcription leading to female sterility [59]. Histone de-

acetylation is also important for the development of

oocytes following meiotic resumption, with failure to

de-acetylate histones impairing chromosome elongation

and alignment during M-II. These defects are thought to

be caused in part by failure centromeric heterochromatin

binding by the chromatin remodeler Atrx in these cells

[60�].

Histone methylation appears to be inherited by embryos

through the female germline. In early embryos, hetero-

chromatic sequences are differentially marked in pronu-

clei of maternal and paternal origins [61��]. Maternal

heterochromatin carries Suv39h2-dependent H3K9 tri-

methylation, which is inherited from the oocyte and is

required for maintenance of the canonical heterochro-

matic state in embryos. In paternal heterochromatin,

which lacks this mark, proteins of the Polycomb
www.sciencedirect.com
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Box 2 Meiotic sex chromosome inactivation.

The heteromorphic nature of mammalian sex chromosomes means

that these chromosomes cannot fully homologously pair during

male meiosis. These chromosomes are held together during meiotic

prophase by the formation of a single crossover at X–Y homologous

sequences known as the pseudoautosomal region [99]. The

unpaired regions of the chromosomes form a subdomain on the

nuclear periphery termed the sex body where they undergo

transcriptional silencing in a process known as MSCI (meiotic sex

chromosome inactivation) [100]. MSCI represents a specific

instance of a common response to the existence of unpaired DNA

regions during meiosis, first identified in the fungus Neurospora,

known as MSUC (meiotic silencing of unpaired chromatin)  [101].

The establishment of MSCI requires phosphorylation of the histone

variant H2AX by the kinase ATR to form gH2AX [101]. While ATR is

initially targeted to chromatin by the tumor suppressor BRCA1

[101], spreading of gH2AX along the sex chromosomes occurs in an

MDC1-dependent manner [102]. Several additional histone variants

and modifications have been proposed to regulate MSCI. For

instance Rnf8, an E3 ubiquitin ligase is responsible for accumula-

tion of ubiquitinated H2A on meiotic sex chromosomes. However,
Repressive Complex 1 (a major repressive complex impli-

cated in epigenetic repression of, e.g. developmental

regulatory genes during development [62]) mediate tran-

scriptional repression of heterochromatin associated satel-

lites sequences [61��]. In addition to roles for histone

methylation associated with repressive chromatin, tri-

methylation of H3K4, an active mark, has also been

shown to be important in the female germline. Oocyte-

specific deletion of Mll2, an H3K4 methyltransferase,

results in decreased levels of H3K4 methylation in

peri-ovulatory oocytes and impairs either ovulation or

pre-implantation development, depending on the timing

of conditional deletion during oogenesis [63�].

Global chromatin remodeling during
spermiogenesis
In contrast to female germline development, meiosis

begins in male germ cells only after birth (Figure 2).

With respect to chromatin, changes are clearly detectable

from the onset of meiosis. Chromatin changes may

be responsible for localization of meiotic recombination

(Box 1) and the specialized meiotic behavior of the sex

chromosomes (Box 2). Following meiosis, haploid round

spermatids undergo dramatic and extensive chromatin

remodeling. This process results in the genome-wide

exchange of histones by spermatogenesis-specific basic

DNA packaging proteins (initially transition proteins and

ultimately protamines) [64,65]. Nevertheless, in human

and mouse approximately 10 and 1% of histones are

retained in spermatozoa, respectively [66��]. Since these

retained histones harbor post-translational modifications,
Box 1 Prdm9 and chromatin in meiotic recombination.

Chromatin plays a role in one of the fundamental processes of

gametogenesis: meiosis. The products of meiosis contain a genetic

complement that differs from that of their parental cells because of

the process of meiotic recombination. Recombination does not

occur at equal rates throughout the genome, but instead preferen-

tially occurs at specific sites, known as ‘hotspots,’ where the

incidence of DNA double strand breaks (DSBs) is increased [91].

Little interspecific conservation of hotspot usage has been observed,

and in mice various genetic strain backgrounds also display different

recombination patterns [92]. In species from yeast to mammals,

recombination hotspots correlate with enrichment for H3K4me3

[93,94]. In mammals, these sites are bound by Prdm9 (also known as

Meisetz), a protein capable of methylating H3K4 [95] and which is

required for the completion of both male and female meiosis in mice

[96]. It was shown that variations in hotspot usage correlate with

variation in the DNA binding domain of Prdm9 [95,97]. It is currently

unknown whether Prdm9’s role in promoting DSB formation and

completion of meiosis depends on its methyltransferase activity

towards H3K4. Whether additional chromatin factors (beyond DNA

sequence) serve to recruit Prdm9 to hotspots also remains unknown.

Interestingly, hotspots strongly affect the inheritance of specific

sequences, as their tendency to undergo gene conversion drives

their removal from the genome [98]. This suggests that a chromatin-

based system utilized during spermatogenesis contributes to

paternal inheritance of DNA sequences.
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as in somatic cells, they may function as mediators of

epigenetic inheritance between generations.

Some histone variants such as testis-specific histone H2B

variant, TH2B and testis-specific histone H1, H1t are

present from early spermatogenic cells to the round

spermatid stage [67–69]. However, variants of H2A such

as H2AL1/2, H2A.Bbd, or of H1, such as H1t2 and Hils1,

are specifically incorporated during the histone-to-prota-

mine exchange in round/elongating spermatids [70–73].

While H2AL1/2 mark pericentric heterochromatin during
although deletion of Rnf8 leads to a loss of this signal, MSCI is not

impaired suggesting that H2A ubiquitination is not required for

MSCI [82]. Additionally macro-H2A, a variant of H2A possessing a

large non-histone domain, is strongly associated with the X and Y

chromosomes during the early stages of MSCI, becomes lost (and,

it is thought to be replaced with H2AZ) during late meiotic prophase

[103,104]. Intriguingly, canonical replication-loaded H3 (known in

mammals as H3.1/H3.2) is depleted from sex chromosomes and

replaced with the replication-independent variant H3.3 during the

process of MSCI [105]. What functional role this global nucleosome

replacement plays in MSCI and how this process is regulated by the

known regulators of MSCI (such as ATR or MDC1) remain unknown.

Subsequent to the initiation of MSCI and nucleosomal remodeling,

meiotic sex chromosomes are dynamically methylated at various

lysine residues of histone H3 and H4 [91,105], as well as de-

acetylated on the same histones.

Following meiosis, most single copy genes on the X and Y

chromosomes remain in a transcriptionally silent state known as

Post-meiotic Sex Chromatin (PMSC) [106,101,104], while genes

present in multicopy arrays show expression in postmeiotic cells

[107]. The role that PMSC plays in paternal inheritance in the early

embryo is unknown. It has been proposed that imprinted inactivation

of the paternal X chromosome in the pre-implantation embryo is

established via a continuation of the PMSC state [108,106].

However, this view remains controversial, as several studies

indicated that imprinted X inactivation is initiated in the early embryo

either in a Xist-dependent or Xist-independent manner [109–111]. In

addition, the maternal X chromosome harbors a strong imprint that

prevents its inactivation in early mouse embryos [112,113].
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spermatogenesis, they are quickly displaced from

paternal heterochromatin after fertilization [74], poten-

tially restricting a functional role in paternal inheritance.

H2A.Bbd was found to destabilize nucleosomes, thus its

presence in nucleosomes was suggested to facilitate

replacement of histones by protamines [71]. Recently,

another H2A variant, H2A.Lap1, has been shown to be

loaded onto the X chromosome and autosomes in round

spermatids and suggested to have a role in transcription of

repressed genes [75]. Among testis-specific H1 variants, it

was shown that Hils1 localizes to the same sites as Tnp2

and Prm1 [73], while deficiency for H1t2 was found to

result in reduced sperm mobility and condensation

defects [72].

In addition to incorporation of histone variants, post-

translational modifications of histones and their read-

out play a critical role for genome-wide chromatin remo-

deling during late spermatogenesis. Histones are hyper-

acetylated beginning at the round spermatid stage with

increasing levels detectable in the elongating spermatid

stage [76,77]. This hyperacetylation is thought to facili-

tate global chromatin remodeling through creation of a

more accessible chromatin environment. Hyperacety-

lated histones are recognized by the bromodomain con-

taining protein Brdt [78,79]. Deletion of the first

bromodomain of Brdt in mice results in abnormal chro-

matin remodeling and male infertility [80�]. Brdt-mutant

sperm is, however, capable of supporting normal embryo-

nic development when used for intracytoplasmic sperm

injection (ICSI) [80�]. Histones are also ubiquitinated in

elongating spermatids [81]. In particular, the E3 ubiquitin

ligase Rnf8 is required for normal histone eviction during

spermatogenesis [82]. Rnf8-deficient spermatids are also

deficient for spermatid histone acetylation, suggesting

interplay between these two pathways [82]. Recently, a

global survey of histone modifications identified crotony-

lation as a new histone modification that was found at high

levels in elongating spermatids. Histone crotonylation

correlates with gene expression with a specific enrich-

ment on sex chromosomes in spermatogenic cells. The

exact role that histone crotonylation plays in spermato-

genesis (and elsewhere) remains to be determined [83��].

The role of several other chromatin regulators in sperma-

togenesis has been studied by knockout mouse models.

Deficiency for Jmjd1a, a demethylase for H3K9me1/2, was

found to block spermatid elongation and cause infertility

[84]. In contrast, the absence of Kdm4d, a demethylase for

H3K9me3, did not influence the progression of spermato-

genesis, perhaps because of functional redundancy with

other histone demethylases [85]. Other recent studies

showed that the histone methyltransferase Mll5 is required

for proper spermatid maturation and fertility [86,87].

Although there have been many studies investigating the

role of histone variants and chromatin regulators in
Current Opinion in Cell Biology 2012, 24:387–396 
reorganization of the paternal genome, in general the

mechanisms of their actions remain unknown. Several

recent studies have shown that histones (and their modi-

fications) retained in human sperm are not randomly

distributed, but are instead enriched at regulatory

elements of genes [88��,89,66��]. Intriguingly, differen-

tial histone modifications associate with functionally

distinct set of genes suggesting that transmission of

retained histones might guide transcription during early

embryonic development [88��,66��].

Conclusions
Embryonic development requires epigenetic repro-

gramming to regenerate totipotency from a germline

state in each generation. This reprogramming is likely

counterbalanced by the inheritance of epigenetic infor-

mation present in mature gametes. Many questions

remain as to the relative contributions of these two

forces in early embryogenesis and what functional roles

inherited epigenetic information plays in mammalian

embryogenesis.

Establishing that a system actually utilizes, for example,

chromatin-based mechanisms for epigenetic inheritance

is, however, difficult. For example, the recent finding that

the maintenance of imprinted DNA methylation in

embryos and ES cells requires feedback to the underlying

genome via the Zfp57 protein, binding to specific meth-

ylated DNA sequences within ICRs, sheds a new light on

‘epigenetic’ inheritance of DNA methylation during early

development [36–38]. Furthermore, a number of chro-

matin modifying enzymes have been shown to possess

catalytic activity towards non-histone proteins, poten-

tially complicating the interpretation of genetic

deficiency studies [90].

Nonetheless, to provide evidence for the ‘intrinsic

intergenerational/transgenerational inheritance program’

model, more in depth molecular genetic studies are

needed to elucidate the germline function of major epi-

genetic regulators shown to be involved in inheritance

during somatic development. To understand the function

of paternally transmitted (modified) histones for embry-

ogenesis, it is necessary to dissect the mechanisms of

histone eviction versus retention during spermiogenesis.

Ultimately, it will be required to study the effect of

germline expression of histones with residue specific

mutations on parent-of-origin transcription during embry-

ogenesis.
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Nucleosomes are the principal packaging units of chromatin and critical for 
gene regulation and genome stability1,2. In mammals, a subset of nucleosomes 
fail to be replaced by protamines during spermatogenesis and are retained in 
mature spermatozoa providing opportunities for paternal epigenetic 
transmission3. In humans, the remaining 10% localize at regulatory elements of 
genes4,5. To assess evolutionary conservation and to dissect the molecular 
logic underlying nucleosome retention, we determined the genome wide 
nucleosome occupancy in mouse spermatozoa that only contain 1% residual 
histones. In striking contrast to mammalian somatic cells6,7,8,9 and haploid 
round spermatids, we observe high enrichment of nucleosomes at CpG-rich 
sequences throughout the genome, at conserved regulatory sequences as well 
as at intra- and intergenic regions and repetitive DNA. This preferred 
occupancy occurs mutually exclusive with DNA methylation both in mouse and 
human sperm. At unmethylated CpG-rich sequences, residing nucleosomes 
are largely composed of the H3.3 histone variant, and trimethylated at lysine 4 
(H3K4me3). Both canonical H3.1/H3.2 and H3.3 variant histones are present at 
promoters marked by Polycomb-mediated H3K27me3, which is strongly 
predictive for gene repression in pre-implantation embryos. Our data indicate 
important roles of DNA sequence composition, DNA methylation, variant H3.3 
and canonical H3.1/H3.2 histones and associated modifications in nucleosome 
retention versus eviction during the histone-to-protamine remodeling process 
in elongating spermatids and potentially in epigenetic inheritance by 
nucleosomes between generations.  

 

In mammals, fusion of two morphologically distinct gametes, oocytes and 

spermatozoa, leads to the formation of totipotent embryos. Acquisition of totipotency 

concurs with extensive epigenetic reprogramming, affecting DNA methylation, 

histone modifications, replication timing and transcriptional activity in parental specific 

manners10,11,12,13. It is currently unclear to what extent differential reprogramming of 

maternal and paternal genomes is due to differences in chromatin states inherited 

from the oocyte and spermatozoon14,15,16,17,18.  

To assess the potential of paternal epigenetic inheritance by nucleosomes in 

mouse we first aimed at determining the position of nucleosomes in mature 

spermatozoa that are competent for fertilization and transmission of genetic and 

epigenetic information. We isolated motile spermatozoa from caudal epididymi and 

performed deep-sequencing of DNA associated with mono-nucleosomes that we had 

prepared by micrococcal nuclease (MNase) digestion of sperm chromatin. We 
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observed strong nucleosomal enrichment at promoter regions of many but not all 

genes (Fig. 1a; Supplementary Fig. 1). Classification of promoters according to their 

GC content, CpG ratio and length of CpG-rich region19 showed that high-CpG (HCP) 

and intermediate-CpG (ICP) promoters are highly and moderately enriched in 

nucleosomes respectively (representing strong and weak CpG islands (CGIs)) while 

most promoters with low CpG content (LCP) lack nucleosomes (Fig. 1b). 

Nucleosomal enrichment is, however, not restricted to CGI-promoters but is also 

detected at intra- and intergenic CGIs as well as within GC-rich simple repeat 

sequences (Fig. 1c; data not shown).  

 To investigate whether nucleosomal occupancy in sperm correlates with a 

specific sequence composition, we firstly determined single nucleotide frequencies in 

1kb windows tiled throughout the genome. While guanine and cytosine strongly 

correlate with nucleosome occupancy genome-wide, adenine and thymine do not 

(Fig. 1d). We next assessed the contribution of different dinucleotides on nucleosome 

occupancy, independent of single nucleotide frequencies, by calculating the ratio of 

“observed over expected” frequencies for each dinucleotide. Remarkably, these 

genome-wide analysis revealed that CpG is the most important dinucleotide 

contributing to sequence related nucleosomal packaging of sperm DNA  (Fig. 1d). In 

contrast, the GpC dinucleotide has almost no contribution while ApA and TpT 

dinucleotides contribute moderately. To determine whether CpG density constitutes 

an intrinsic DNA sequence preference for nucleosome formation, we reanalyzed data 

of an in vitro nucleosome reconstitution experiment with histone octamers assembled 

onto yeast genomic DNA20. Similar to21, we observed a strong contribution of G+C to 

in vitro nucleosome formation, yet no specific contributions of either CpG nor GpC 

dinucleotides (Supplementary Fig. 2). Thus, the strong association of CpG density to 

nucleosome retention in mouse sperm does not reflect an intrinsic DNA preference of 

nucleosomes but represents a novel feature of CGIs in genome function and germ 

cell biology22. Consistently, motif analysis did not reveal any specific sequence 

compositions other than a strong correlation to GC composition (Supplementary Fig. 

3). 

 The nucleosomal occupancy at CGIs in sperm strongly contrasts with the 

depletion of nucleosomes at CGI-promoters in somatic cells6,7,9. Indeed, we observed 

extensive nucleosomal depletion around TSS and a clear anti-correlation between 

nucleosome occupancy and CpG frequency in mouse liver8 (Supplementary Fig. 4). 

However, in somatic cells, nucleosomes are not depleted at CGI-promoters 

repressed by Polycomb Group (PcG) proteins or by DNA methylation 23. Therefore, to 

investigate whether nucleosomes are preferentially retained at CGIs that are DNA-
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methylated in sperm, we performed bisulfite conversion and high throughput 

sequencing of sperm DNA associated with nucleosomes24. In contrast to expectation, 

our data shows that methylated genomic regions are devoid of nucleosomes in 

sperm (Fig. 1e). We observed a similar inverse relationship using genome-wide 

shotgun bisulfite sequencing data of mouse sperm (Supplementary Fig. 5a, 5b)16. 

The exclusive inverse relationship is nicely illustrated at imprinting control regions 

(ICRs) of the paternally imprinted genes H19, Dlk1/Gtl2 and Rasgrf1, that are 

methylated and devoid of nucleosomes in mouse sperm. In contrast, ICRs that 

control maternally imprinted gene clusters and that are methylated in oocytes such 

as Kcnq1ot1, Gnas/Nespas, Snrpn, and Peg10 contain nucleosomes in sperm 

(Supplementary Fig 6). Furthermore, LINE1 retroelements that are methylated in 

sperm and become demethylated after fertilization10 lack nucleosomes in sperm (data 

not shown). Thus, DNA methylation established early during male germ cell 

development25 prevents nucleosome retention during spermiogenesis, thereby 

precluding paternal transmission of chromatin states that were associated with DNA 

methylated sequences in immature male germ cells. This finding is consistent with 

differential reprogramming of DNA methylation in zygotes, generated by micro-

insemination of round spermatids or mature spermatozoa17. Finally, we found a 

strong positive correlation between nucleosomal enrichment and density of CpG 

dinucleotides within CGIs that are devoid of DNA methylation (Supplementary Fig. 

5c). Taken together, we can predict with high accuracy nucleosome occupancy in 

mouse sperm as a function of CpG dinucleotide frequency and DNA methylation 

level using a linear mathematical model (Fig. 1f). 

We and others previously showed that retained histones are not randomly 

distributed in human sperm, but are to some extent enriched at GC-rich regulatory 

elements of genes4,5,26. Our current sequence analysis demonstrates that 

nucleosome retention at CGIs is conserved in mouse and human spermatozoa 

(Supplementary Figure 7).  

The unique nucleosomal organization in mature sperm, highly distinct from the 

chromatin state in somatic cells, emphasizes the unique nature of the chromatin 

remodeling processes taking place during the formation of mature sperm. Given the 

important roles of histone variants in chromatin dynamics during transcription, cellular 

differentiation, reproduction and development27,28,29 we assessed whether canonical 

H3.1/H3.2 and variant H3.3 histones may serve specific functions in nucleosome 

eviction versus retention during spermiogenesis. We used antibodies highly specific 

for either H3.3 (Supplementary Fig.8) or H3.1/H3.230 to perform Western blot analysis 

and ChIP-sequencing experiments. Compared to proliferating embryonic stem cells  
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Figure 1: Nucleosome occupancy in sperm is highly dependent on CpG 
composition.  
a, Nucleosome occupancy and GC percentage at representatitve CpG and non-CpG 
islands loci in mouse sperm. b, Density plot showing the distribution of nucleosome 
enrichment around TSS (±1kb) of genes classified according to GC composition of 
their promoters: high, intermediate, and low GC content (HCP, ICP, LCP). c, 
Nucleosome occupancy and GC percentage at an intergenic region in sperm. d, 
Correlation of single nucleotide frequencies (left) and single nucleotide composition 
normalized dinucleotide frequencies (right) with nucleosome enrichment in sperm in 
1kb windows tiling the mouse genome. e, Distributions of nucleosome enrichments in 
regions of different DNA methylation status (1kb windows, genome-wide). f, 
Correlation of observed to predicted nucleosome enrichment that was calculated by a 
linear model integrating CpG dinucleotide frequency and DNA methylation status in 1 
kb windows (R=0.789).  
 

 

(ESCs) and even to quiescent aging neurons31, H3.3 is incorporated into chromatin of 

round spermatids and sperm to extremely high levels relative to H3.1/H3.2, 
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suggesting an extensive and rapid replacement of most canonical histones by the 

H3.3 variant, presumably upon entry into meiosis and/or during spermatid 

differentiation (Fig. 2a). In sperm, ChIP-sequencing profiles of H3.3 are highly similar 

to nucleosomal profiles whereas we fail to measure globally a correlation between 

H3.1/H3.2 and nucleosomal enrichments (Fig. 2b). Consistently, H3.3 enrichments 

are well predicted by our linear model that is largely based on CpG densities 

genome-wide. In contrast, H3.1/H3.2 enrichments are highly underestimated 

suggesting a CpG density-linked retention mechanism for H3.3 but not for H3.1/H3.2 

containing nucleosomes (Fig. 2c).  

To better understand the mechanisms of histone variant specific eviction and 

retention, we profiled the occupancy of H3.3 and H3.1/H3.2 nucleosomes and 

measured levels of mRNA transcripts by ChIP- and RNA-sequencing in isolated 

round spermatids. We observed a widespread reduction in occupancy of H3.1/H3.2-

nucleosomes as well as increased positioning of remaining nucleosomes around 

transcriptional start sites (TSS) of expressed genes that correlate well with mRNA 

levels of associated genes suggesting transcription coupled eviction of canonical 

histones (Fig. 2d; Supplementary Fig. 9a). Transcription-coupled depletion of 

H3.1/H3.2 around TSS is more pronounced in spermatids than that of H3.2-HA 

tagged nucleosomes in embryonic stem cells (Supplementary Fig. 9b)32. This is likely 

due to the progressive loss of H3.1/H3.2 replication-coupled histones during 

transcription in post-replicative germ cells like round spermatids that further extends 

the general replacement of canonical nucleosomes by H3.3 as indicated by western 

blot analysis (Fig. 2a). For H3.3 nucleosomes, we also measured some depletion 

around TSS that was more pronounced downstream of TSS at medium and highly 

expressed genes. Comparison of H3.3 over H3.1/H3.2 occupancy levels, however, 

suggests extensive transcription-coupled eviction of canonical histones and dynamic 

replacement by H3.3 nucleosomes in round spermatids, like in ESCs (Supplementary 

Fig. 9).  

When comparing round spermatids to spermatozoa, we see that regions that are 

strongly and intermediately enriched for H3.3 containing nucleosomes in sperm are 

actually depleted of such nucleosomes in round spermatids, suggesting dynamic 

redistribution or de novo incorporation of H3.3 nucleosomes at CGIs during 

spermatid differentiation (Fig. 2d, 2e). On the other hand, H3.1/H3.2 nucleosomes 

are predominantly detected at weak nucleosomal peak regions in spermatozoa. 

Furthermore, such local H3.1/H3.2 enrichments in sperm highly resemble the ones in 

round spermatids suggesting that H3.1/H3.2 nucleosomes retained in sperm largely 
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reflect reduced turnover of canonical H3.1/H3.2 histones in spermatocytes and 

spermatids (Fig. 2e). 

We next addressed whether the gain in nucleosomal occupancy at CGIs in 

sperm relates to transcription-coupled histone turnover seen in round spermatids 

(Supplementary Fig. 9) For nucleosomes in general as well as for H3.3-containing 

nucleosomes we observed that enrichments at promoter regions of genes (±1kb 

TSS) in sperm do not correlate with the expression level of genes in round 

spermatids but with the CpG percentage of the promoter regions (Fig. 3a). For 

H3.1/H3.2-nucleosomes in sperm, we observed enrichments at two classes of genes 

(Fig. 3a). First, CpG-poor promoters (<3% CpG) are relatively enriched for 

H3.1/H3.2, irrespective of their transcriptional status. Second, lowly and non-

expressed CpG-rich promoters are slightly enriched. These later promoters contain 

also H3.3 nucleosomes. To explain this conundrum, we more closely examined the 

dynamics of H3.1/H3.2 in round spermatids. These analysis revealed a low level of 

eviction of canonical histones at non-expressed CpG-rich but not at non-expressed 

CpG-poor TSS regions (Supplementary Fig. 10), suggesting that the presence of 

H3.1/H3.2 and H3.3 histones at lowly and non-expressed CpG-rich promoters in 

sperm may be linked to a low level of default histone replacement at such CGIs in 

spermatids.  

To study whether histone modification states may affect nucleosome dynamics 

during spermiogenesis, we performed ChIP-sequencing for H3K4me3 and 

H3K27me3, two modifications that are associated with CGIs in somatic cells. We 

measured comparable enrichments around TSS for both modifications in round 

spermatids and sperm (Supplementary Fig. 11) indicating maintenance of the 

modification state during spermiogenesis. Interestingly, CGI promoters containing 

H3.3 nucleosomes are generally marked by H3K4me3 in sperm (Supplementary Fig. 

12a). A fraction of these CGIs are also positive for H3K27me3, indicating the 

presence of bivalent promoters in sperm. Importantly, such bivalent CGI promoters 

also show some enrichment for H3.1/H3.2 histones in sperm (Supplementary Fig. 

12b) suggesting that Polycomb-mediated H3K27me3 may suppress the default 

eviction of such histones at CGIs in round spermatids and consequently promote 

retention of pre-existing canonical histones (and similarly of newly incorporated H3.3 

histones) during chromatin remodeling in elongating spermatids (Supplementary Fig. 

12).   
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Figure 2: Histone variant specific packaging of sperm DNA. 
a, Western blots showing relative levels of chromatin bound H3.1/H3.2, H3.3, and 
total H3 in embryonic stem cells (ESC), round spermatids (RS) and sperm. b, 
Occupancy of nucleosomes, H3.3 and H3.1/H3.2 histones and GC percentage at the 
Fgf9 locus in sperm. c, Scatter plots showing the correlation between observed and 
predicted nucleosome occupancies (1kb windows) in relation to relative enrichment 
of H3.3 (left) and H3.1/H3.2 (right ) in sperm. d, Average profiles of H3.3 and 
H3.1/H3.2 enrichments around TSS (±3kb) and transcriptional end sites (TES; ±3kb) 
in sperm and RS. e, Scatter plots showing the correlation between histone H3.3 (left) 
and H3.1/H3.2 (right) enrichments in sperm versus RS at genomic regions enriched 
for nucleosomes in sperm. Enriched regions are classified as “weak”, “intermediate” 
and “strong” according to their relative occupancy by nucleosomes in sperm.  
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On the basis of sequence composition and occupancy levels of nucleosomes, 

histone variants and histone modifications at gene promoters as well as expression 

states, we can classify genes into five different clusters (Fig. 3b; Supplementary Fig. 

13) that correlate well with different gene functions in cellular homeostasis (clusters 2 

and 3), germ cell and embryonic development (clusters 1 and 4 respectively) and 

lineage specific differentiation (cluster 5) (Supplementary Table 1). To determine the 

extent by which different variables, measured in round spermatids, contribute to 

nucleosome occupancy in sperm, we performed a variance partitioning analysis for 

promoter regions (Fig. 3c). As expected, CpG percentage of promoters has the 

highest unique contribution to H3.3 occupancy in sperm (clusters 1-4 in Fig. 3b; Fig. 

3c). In contrast, H3.1/H3.2 enrichments in sperm mostly relate to H3.1/H3.2 

enrichments in round spermatids (cluster 5 in Fig. 3b; Fig. 3c). In addition, CGI 

promoters marked by H3K27me3 in round spermatids, constituting canonical 

Polycomb regulated genes, preferentially retain H3.1/H3.2 in sperm (cluster 4 in Fig. 

3b; Fig. 3c). Beside unique contributions, we find that a significant portion of variation 

cannot be uniquely attributed to a single variable. We obtained similar results when 

performing the variance partitioning analysis in genome-wide 1kb windows 

(Supplementary Fig. 14), arguing that the principles we determined for retaining 

nucleosomes at promoters in sperm are generally applicable to the entire genome.  

To assess the potential of nucleosomes and associated modifications retained in 

sperm for regulating transcription in the next generation, we analyzed the expression 

of genes belonging to the five different clusters shown in Fig. 3b in oocytes and in 

pre-implantation embryos33,5. Of germ line and housekeeping genes (clusters 1-3) 

that are moderately to highly expressed in spermatids and marked by H3K4me3 in 

spermatozoa, merely ~18% become de novo transcribed in pre-implantation embryos 

indicating a rather limited potential of H3K4 tri-methylated nucleosomes in sperm to 

predetermine transcription in early embryos (Supplementary Fig. 15). This may relate 

to the prevalent H3K4 methylation of CGIs observed in spermatids, ESCs and during 

somatic differentiation independent of their transcriptional status22 (Supplementary 

Fig. 11a). In contrast, only ~10% of CGI promoters marked by H3K27me3 in sperm 

(cluster 4) are expressed in pre-implantation embryos (Supplementary Fig. 15). 

Consistently, the majority of Polycomb target genes in sperm are similarly modified 

by H3K27me3 in ESCs (Supplementary Fig. 11b), supporting a model of H3K27me3 

mediating epigenetic inheritance of transcriptional repression between generations. 

Indeed, loss of Polycomb function in mature oocytes causes misexpression of 

canonical Polycomb target genes, marked by H3K27me3 in mouse sperm34 and data 

not shown.  
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Figure 3: Combinatorial effects of CpG density, histone variants and histone 
modifications uniquely package sperm DNA. 

a, Scatter plots showing the correlation between percentage of CpGs at TSS 
(±1kb) and expression of linked genes in RS in relation to relative enrichment of 
nucleosomes (left), H3.3 (middle), and H3.1/H3.2 (right ) in sperm. b, Heatmap of 
genes illustrating expression status in RS, CpG density, nucleosome coverage in 
sperm, histone variant and modification coverage around TSS (±3kb) in RS and 
sperm. Feature density shows the scaled read densities from ChIP-seq experiments. 
Genes (n=19180) were grouped using k-means into five clusters (1 to 5) containing 
1346, 5358, 4468, 2902 and 5106 genes, respectively. 1000 genes were randomly 
selected for visualization. c, Variance partitioning analysis (see Methods for details) 
assessing the unique contribution of different variables to the relative enrichments of 
H3.3 (left) and H3.1/H3.2 (right) around TSS (±1kb) in sperm. Combinatorial effects 
refer to variation which is common to different combination of variables included. 
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Taken together, we demonstrate a remarkably strong occupancy of H3.3 

containing nucleosomes at unmethylated CGIs in sperm that linearly correlates with 

CpG density. These data are in striking contrast to the default depletion of 

nucleosomes at CGIs in somatic cells8,9 and in round spermatids that occurs 

independently of but is enhanced by transcription (Supplementary Fig. 10). Our 

findings support a model in which H3.3 nucleosomes present at CGIs in sperm are 

incorporated into chromatin and posttranslationally modified in late round spermatids 

in response to global ceasing of transcription and histone turnover in late round 

spermatids. This model implies that CpG-rich DNA would resist loading of transition 

proteins and protamines in elongating spermatids, thereby enabling nucleosome 

retention at CGIs in sperm (Fig. 4a). Alternatively, H3.3 nucleosomes may be de 

novo incorporated at CGIs during the histone-to-protamine exchange process in 

elongating spermatids after removal of an unknown intermediary place-holding factor 

(Fig. 4b). In round spermatids, Polycomb based repression may directly or indirectly 

reduce eviction of H3.1/H3.2 nucleosomes normally occurring at CGIs thereby 

promoting retention of such canonical, H3K27me3-labeled, nucleosomes in 

spermatozoa (Fig. 4c). Based on these data, genetic gain and loss-of function 

experiments can be designed to unambiguously determine the role of canonical and 

variant histones and their modifications in nucleosomal eviction during 

spermiogenesis and in epigenetic inheritance between generations.  

 

 

 
 
 
 
 
 
 
 
Figure 4: Models of nucleosome retention and eviction during spermiogenesis.  
a, Incorporation of H3.3 nucleosomes, marked by H3K4me3, at unmethylated CGIs 
in late round spermatids in response to global ceasing of transcription and histone 
turnover in late round spermatids. b, De novo incorporation of H3.3 nucleosomes at 
CGIs in elongating spermatids after removal of an unknown intermediary place-
holding factor. c, Polycomb repression may reduce nucleosome turnover in round 
spermatids and promote retention of canonical H3.1/H3.2 nucleosomes, labeled with 
K27me3, in spermatozoa.  
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Methods Summary 
 

Sample collection and sequencing of libraries for ChIP-seq and RNA-seq 
Mouse spermatozoa were collected by swim-up procedure5 from C57BL/6J mice. 

Round spermatids were isolated by FACS sorting using 28 day old BL6 mice. Mono-

nucleosomal chromatin samples were prepared by MNase treatment. ChIP 

experiments for histone variants, H3.1/H3.2, H3.3, and histone modifications 

H3K4me3 and H3K27me3 were performed on native chromatin. ChIP-seq libraries 

were produced using the Illumina ChIP-seq DNA Sample Prep Kit (Cat# IP-102-

1001). RNA isolated from round spermatids was subjected to Ribo-Zero rRNA 

removal kit (Epicentre) and subsequently strand specific libraries were prepared. 

ChIP-seq and RNA-seq libraries were sequenced either on Illumina GA II or Illumina 

Hiseq 2000. 

 
Processing of the reads and analysis of the data 
Reads were aligned to mm9 mouse genome assembly by using Bowtie allowing up 

to 2 mismatches. Genomic coordinates (all based on mouse mm9 assembly) were 

obtained from UCSC. Nucleosome and histone variant enrichments in 1kb windows 

or at promoter regions of the genes were calculated by taking the ratio of sample 

reads over genomic input reads in the respective windows. Nucleosome enrichment 

in 1kb windows was predicted by CpG dinucleotide frequencies and average DNA 

methylation by linear regression using lm() function of R (www.r-project.org). 

Nucleosome peak finding was performed by training a two state hidden semi-Markov 

model on nucleosome enrichments in genome-tiling 1kb windows and using the 

maximum likelihood path through the model, as implemented in the R-mhsmm 

package. Variance partitioning analysis to explain histone variant enrichment in 

sperm was carried out using the R package yhat. Expression in round spermatids 

was quantified as the sum of reads mapping to the respective transcripts, selecting 

one transcript with the most extreme coordinates as a representative for each gene.  
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Supplementary Information 
 
Density and methylation state of CpG dinucleotides define histone variant 
specific retention of nucleosomes in mouse spermatozoa  
 

Supplementary Figures and Legends 
Supplementary Figure 1:  Genome-wide distribution of nucleosome peaks.  

Supplementary Figure 2:  Nucleosome occupancy in Saccharomyces cerevisiae. 

Supplementary Figure 3:  Motif enrichment analysis for nucleosome peaks in 

sperm. 

Supplementary Figure 4:  Nucleosome occupancy in mouse liver. 

Supplementary Figure 5:  Nucleosome occupancy correlates negatively with DNA 

methylation in sperm. 

Supplementary Figure 6:  Chromatin states of imprinting control regions (ICRs) in 

sperm and round spermatids. 

Supplementary Figure 7:  Principles defining nucleosome occupancy in mouse 

sperm is conserved for human sperm.  

Supplementary Figure 8:  Specificity of the H3.3 antibody. 

Supplementary Figure 9:  Average profiles of canonical and variant histone 

occupancy along genes in relation to expression status 

in round spermatids and ESCs. 

Supplementary Figure 10:  Average profiles of canonical and variant histone 

occupancy along genes with CpG-low and CpG-high 

promoters in relation to expression status in round 

spermatids. 

Supplementary Figure 11: Comparison of histone modification patterns between 

round spermatids and sperm. 

Supplementary Figure 12:  Differential association of histone modifications with 

histone variants in sperm. 

Supplementary Figure 13:  Chromatin states of genes representative of the gene 

clusters described in Fig. 3b in sperm and round 

spermatids. 

Supplementary Figure 14:  Variance partitioning analysis of H3.3 and H3.1/H3.2 

histone enrichments in sperm. 

Supplementary Figure 15:  Expression status of genes belonging to different genes 

cluster during oogenesis / early embryogenesis. 



94 
 

Supplementary Table 1:  GO-term analysis for the gene clusters described in 

Fig. 3b. 

 

Supplementary Methods 
Biological Sample Collection 

Mononucleosomal DNA preparation and native ChIP 

RNA isolation 

Library preparation and sequencing 

Mononucleosome-BisSeq (MN-BisSeq) library preparation 

Chromatin-bound (histone) fractionation and immunoblotting 

Processing and alignment of the reads 

Genomic coordinates 

UCSC tracks 

Peak identification 

Quantification of enrichment levels genome-wide, at promoter regions and at 

nucleosome peaks 

Classification of nucleosome peaks 

Classification of genes according to their promoter GC content 

Calculation of observed/expected ratios for dinucleotide frequencies 

Analysis of bisulfite converted sequencing (BisSeq) data 

CGI definition and usage 

Genome-wide modeling of nucleosome occupancy 

Plotting profiles around genomic regions 

Quantifying expression in round spermatids 

Heatmap plots 

GO-term analysis 

Variance partitioning analysis 

Motif finding for histone peaks 

Defining expression for oogenesis or early embryogenesis 
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Supplementary Figure 1: Genome-wide distribution of nucleosome peaks.  
The mouse genome is classified into promoter (± 1 kb around TSS), exon, intron, 
repeat and intergenic (non-repeat) regions. a, Observed and expected fraction of 
nucleosome peaks by genomic region. “Observed” refers to experimentally identified 
nucleosome peaks and “expected” is calculated assuming uniform distribution of the 
same number of peaks in the genome. b, Barplot showing the data from a as the 
log2 enrichments (observed/expected) of nucleosome peaks in different genomic 
regions. 
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Supplementary Figure 2: Nucleosome occupancy in Saccharomyces 
cerevisiae. 
Correlation of single nucleotide frequencies (left) and single nucleotide composition 
normalized dinucleotide frequencies (right) with nucleosome occupancy in 
Saccharomyces cerevisiae20 in 1kb windows tiling the yeast genome. a, in vitro 
reconstituted nucleosomes. b, in vivo (YPD medium). 
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Supplementary Figure 3: Motif enrichment analysis for nucleosome peaks in 
sperm. 
a, Motif abundance/enrichment plot showing the enrichment of 7-mer motifs in 
nucleosome peaks compared to background (see Methods for the description of 
background). b, Top 20 enriched motifs.  
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Supplementary Figure 4: Nucleosome occupancy in mouse liver. 
a, Correlation of single nucleotide frequencies (left) and single nucleotide 
composition normalized dinucleotide frequencies (right) with nucleosome occupancy 
in mouse liver8 in 1kb windows tiling the mouse genome. b, Average profiles for 
nucleosome occupancy in mouse sperm and liver around ± 3kb TSS of genes.  
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Supplementary Figure 5: Nucleosome occupancy correlates negatively with 
DNA methylation in sperm. 
a, Scatter plot showing the correlation of nucleosome occupancy with average DNA 
methylation according to Kobayashi and coworkers16 in 1kb windows genome-wide. 
b, Distributions of nucleosome enrichments in regions of different DNA methylation 
status (1kb windows, genome-wide). c, Panels show the relationship between 
number of CpGs in CGI and width of CGI as a function of nucleosome enrichment in 
sperm. CGIs35 were grouped into 4 classes according to their DNA methylation status 
in sperm16. 
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Supplementary Figure 6: Chromatin states of imprinting control regions (ICRs) 
in sperm and round spermatids. 
From top to bottom, images show the DNA methylation status for sperm, oocyte and 
blastocyst16, CpG density, CGI localization, nucleosome, histone variant and histone 
modification states in sperm and histone modification states in round spermatids. 
Imprinting control regions16 for paternally imprinted genes are shown with light blue 
boxes and imprinting control regions for maternally imprinted genes are shown with 
light pink boxes. a, H19. b, Rasgrf1. c, Dlk1-Meg3. d, Kcnq1ot1. e, Nespas-Gnas. f, 
Snrpn. g, Peg10 
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Supplementary Figure 6: Chromatin states of imprinting control regions (ICRs) 
in sperm and round spermatids. 
From top to bottom, images show the DNA methylation status for sperm, oocyte and 
blastocyst16, CpG density, CGI localization, nucleosome, histone variant and histone 
modification states in sperm and histone modification states in round spermatids. 
Imprinting control regions16 for paternally imprinted genes are shown with light blue 
boxes and imprinting control regions for maternally imprinted genes are shown with 
light pink boxes. a, H19. b, Rasgrf1. c, Dlk1-Meg3. d, Kcnq1ot1. e, Nespas-Gnas. f, 
Snrpn. g, Peg10 
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Supplementary Figure 6: Chromatin states of imprinting control regions (ICRs) 
in sperm and round spermatids. 
From top to bottom, images show the DNA methylation status for sperm, oocyte and 
blastocyst16, CpG density, CGI localization, nucleosome, histone variant and histone 
modification states in sperm and histone modification states in round spermatids. 
Imprinting control regions16 for paternally imprinted genes are shown with light blue 
boxes and imprinting control regions for maternally imprinted genes are shown with 
light pink boxes. a, H19. b, Rasgrf1. c, Dlk1-Meg3. d, Kcnq1ot1. e, Nespas-Gnas. f, 
Snrpn. g, Peg10 
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Supplementary Figure 6: Chromatin states of imprinting control regions (ICRs) 
in sperm and round spermatids. 
From top to bottom, images show the DNA methylation status for sperm, oocyte and 
blastocyst16, CpG density, CGI localization, nucleosome, histone variant and histone 
modification states in sperm and histone modification states in round spermatids. 
Imprinting control regions16 for paternally imprinted genes are shown with light blue 
boxes and imprinting control regions for maternally imprinted genes are shown with 
light pink boxes. a, H19. b, Rasgrf1. c, Dlk1-Meg3. d, Kcnq1ot1. e, Nespas-Gnas. f, 
Snrpn. g, Peg10 
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Supplementary Figure 7: Principles defining nucleosome occupancy in mouse 
sperm is conserved for human sperm.  
a, Correlation of single nucleotide frequencies (left) and single nucleotide 
composition normalized dinucleotide frequencies (right) with nucleosome occupancy 
in human sperm5 in 1kb windows tiling the human genome. b, Same as in (a) except 
displaying human sperm nucleosome data from4. c,  Correlation of human sperm 
DNA methylation36 with nucleosome occupancy in human sperm5 in 1kb windows 
tiling the human genome. d, Same as in (c) except displaying human sperm 
nucleosome data from4. 
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Supplementary Figure 8: Specificity of the H3.3 antibody. 
Western blots showing endogenous and exogenously expressed histone variant H3.3 
as detected by H3.3 and tag antibodies. 293 cells were transfected with constructs 
encoding tagged canonical H3.1, H3.2 and variant H3.3 histones. 
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Supplementary Figure 9: Average profiles of canonical and variant histone 
occupancy along genes in relation to expression status in round spermatids 
and ESCs. 
a, Average profiles of H3.3 and H3.1/H3.2 enrichments around transcriptional start 
sites (TSS; ±3kb) and transcriptional end sites (TES; ±3kb) in sperm and RS. Genes 
were classified according to expression status in RS. Transcripts without any aligned 
reads were classified as “not detected”. Remaining transcripts were classified on the 
basis of increasing expression values into three equally sized groups. In the bottom 
panel, the ratio between H3.3 over H3.1/H3.2 is shown. 
b, Average profiles of histone variants H3.3-HA and H3.2-HA in embryonic stem cells 
(ESC)32.  Genes were classified as in (a) according to expression status in ESC24. In 
the bottom panel, the ratio between H3.3 over H3.1/H3.2 is shown. 
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Supplementary Figure 10: Average profiles of canonical and variant histone 
occupancy along genes with CpG-low and CpG-high promoters in relation to 
expression status in round spermatids.  
Average profiles of H3.3 and H3.1/H3.2 enrichments around TSS (±3kb) and 
transcriptional end sites (TES; ±3kb) in sperm and RS. Genes were classified 
according to expression status in RS (as described in Supplementary Fig. 9a) and 
the percentage of CpGs within ±1kb windows around TSS of genes (left: CpG % < 3, 
right: CpG % ≥ 3). 
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Supplementary Figure 11: Comparison of histone modification patterns 
between round spermatids and sperm. 
a, Scatter plots showing the enrichments of H3K4me3 in round spermatids and 
sperm (left), in relation to the five gene clusters as described and color coded in Fig. 
3b (middle), and in comparison to H3K4me3 levels in mouse ESCs37. b, H3K27me3 
enrichments in RS, sperm and ESCs24, displayed as in (a).  
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Supplementary Figure 12: Differential association of histone modifications with 
histone variants in sperm.  
Scatter plots showing the correlation of the percentage of CpGs with enrichments of 

variant and canonical H3 histones (±1 kb around TSS) in sperm. The color of the 

points represents the enrichment of H3K4me3 (a) and H3K27me3 (b) in sperm.  
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Supplementary Figure 13: Chromatin states of genes representative of the 
gene clusters described in Fig. 3b in sperm and round spermatids. 
From top to bottom, images show at various loci the DNA methylation status for 
sperm, oocyte and blastocyst16, CpG density, CGI localization, nucleosome, histone 
variant and histone modification states in sperm and histone modifications in round 
spermatids. a, and b, examples for cluster 1, Sfrs6 and H3f3a. c, and d, examples for 
cluster 2, Rps14 and Dnajb1. e, and f, examples for cluster 3, Tsen2 and Hint3. g, 
and h, examples for cluster 4, T and Gata2. i, and j, examples for cluster 5, Olfr 
family and Cts6.  
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Supplementary Figure 13: Chromatin states of genes representative of the 
gene clusters described in Fig. 3b in sperm and round spermatids. 
From top to bottom, images show at various loci the DNA methylation status for 
sperm, oocyte and blastocyst16, CpG density, CGI localization, nucleosome, histone 
variant and histone modification states in sperm and histone modifications in round 
spermatids. a, and b, examples for cluster 1, Sfrs6 and H3f3a. c, and d, examples for 
cluster 2, Rps14 and Dnajb1. e, and f, examples for cluster 3, Tsen2 and Hint3. g, 
and h, examples for cluster 4, T and Gata2. i, and j, examples for cluster 5, Olfr 
family and Cts6.  
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Supplementary Figure 14: Variance partitioning analysis of H3.3 and H3.1/H3.2 
histone enrichments in sperm.   
a, H3.3 enrichments (top panel) and H3.1/H3.2 enrichments (bottom panel) were 
measured genome-wide in 1kb windows and modeled as a linear combination of 
explanatory variables (CpG content and histone measurements in round spermatids). 
The unique contribution of each variable to observed sperm variation is shown in %. 
Combinatorial effects refer to variation which is explained by combinations of 
variables used in the analysis. b, analysis as in a but only using genomic windows 
not intersecting ± 1kb TSS.   
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Supplementary Figure 15: Expression status of genes belonging to different 
genes cluster during oogenesis / early embryogenesis.  
Expression states during oogenesis and early embryogenesis are referred as 
“maternal”, “2-8 cell”, “blastocyst” and “not expressed” as described in5. Expression 
status of genes belonging to different clusters (Fig. 3b) is shown as % in the bar 
plots. From a total of 19180 genes, 14032 could be matched for expression status 
during oogenesis and/or early embryogenesis. Number of genes in each cluster is 
shown at the top of the bar plots. To facilitate comparison, data from Fig. 3b is 
presented in the bottom panel.  
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Supplementary Table 1: GO-term analysis for the gene clusters described in 
Fig. 3b. 
Table provides the top 20 enriched GO-terms for each cluster. 

 

Cluster 1-Go terms Significant Expected classicFisher Over-representation 

protein modification by small protein conjugation or removal 69 29.44 2.40E-11 2.344 

spermatogenesis 52 19.79 1.10E-10 2.628 

male gamete generation 52 19.79 1.10E-10 2.628 

protein ubiquitination 57 23 1.50E-10 2.478 

cellular protein catabolic process 54 21.96 6.10E-10 2.459 

ubiquitin-dependent protein catabolic process 48 18.67 1.20E-09 2.571 

proteolysis involved in cellular protein catabolic process 52 21.26 1.50E-09 2.446 

protein modification by small protein conjugation 58 25.03 1.50E-09 2.317 

sexual reproduction 66 30.28 1.50E-09 2.180 

cellular macromolecule metabolic process 458 364.86 2.10E-09 1.255 

modification-dependent protein catabolic process 48 19.09 2.60E-09 2.514 

cellular protein metabolic process 264 189.7 3.40E-09 1.392 

modification-dependent macromolecule catabolic process 48 19.3 3.80E-09 2.487 

protein catabolic process 60 28.6 3.50E-08 2.098 

cellular macromolecule catabolic process 61 29.3 3.60E-08 2.082 

proteasomal ubiquitin-dependent protein catabolic process 28 9.23 9.90E-08 3.034 

gamete generation 55 26.08 1.10E-07 2.109 

proteasomal protein catabolic process 29 9.93 1.40E-07 2.920 

cellular metabolic process 582 499.04 4.20E-07 1.166 

protein polyubiquitination 22 7.06 1.40E-06 3.116 

 

 

Cluster 2-Go terms Significant Expected classicFisher Over-representation 

RNA splicing 137 55.53 < 1e-30 2.467 

mRNA processing 177 73.38 < 1e-30 2.412 

mRNA metabolic process 206 87.26 < 1e-30 2.361 

RNA processing 296 128.34 < 1e-30 2.306 

nuclear division 177 79.61 < 1e-30 2.223 

mitosis 177 79.61 < 1e-30 2.223 

organelle fission 185 84.15 < 1e-30 2.198 

M phase of mitotic cell cycle 180 81.88 < 1e-30 2.198 

DNA repair 186 85 < 1e-30 2.188 

M phase 250 117.86 < 1e-30 2.121 

chromosome organization 310 160.64 < 1e-30 1.930 

cell cycle phase 307 161.77 < 1e-30 1.898 

cell cycle process 386 206.82 < 1e-30 1.866 

mitotic cell cycle 266 143.36 < 1e-30 1.855 

DNA metabolic process 330 185.29 < 1e-30 1.781 

cell cycle 535 302.58 < 1e-30 1.768 

organelle organization 800 491.84 < 1e-30 1.627 
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cellular protein metabolic process 1105 768.64 < 1e-30 1.438 

cellular component organization or biogenesis at cellular level 1052 754.48 < 1e-30 1.394 

nucleic acid metabolic process 1326 953.08 < 1e-30 1.391 

 

Cluster 3-Go terms Significant Expected classicFisher Over-representation 

metabolic process 2189 2023.32 2.10E-09 1.082 

cellular metabolic process 1813 1669.8 1.30E-07 1.086 

cofactor metabolic process 85 51 1.70E-07 1.667 

small molecule metabolic process 513 430.73 1.50E-06 1.191 

primary metabolic process 1837 1713.32 4.60E-06 1.072 

cofactor biosynthetic process 41 21.76 8.40E-06 1.884 

coenzyme metabolic process 68 42.35 1.20E-05 1.606 

cellular lipid metabolic process 194 149.74 2.50E-05 1.296 

type I interferon production 18 7.49 6.30E-05 2.403 

cofactor transport 10 3.04 6.80E-05 3.289 

cellular ketone metabolic process 201 159.1 9.40E-05 1.263 

B cell homeostasis 15 5.85 9.50E-05 2.564 

interferon-beta production 15 5.85 9.50E-05 2.564 

B cell differentiation 30 15.91 0.00013 1.886 

oxidation-reduction process 229 185.07 0.00013 1.237 

biosynthetic process 1018 931.65 0.00014 1.093 

lipid metabolic process 256 211.27 0.00023 1.212 

regulation of interferon-beta production 14 5.62 0.00025 2.491 

alcohol metabolic process 75 51.94 0.00027 1.444 

glycerolipid biosynthetic process 41 24.8 0.0003 1.653 

 

Cluster 4- Go terms Significant Expected classicFisher Over-representation 

cell fate commitment 137 31.35 <1e-30 4.370 

embryonic organ morphogenesis 142 33.23 <1e-30 4.273 

axonogenesis 171 46.17 <1e-30 3.704 

regionalization 168 45.39 <1e-30 3.701 

pattern specification process 222 61.93 <1e-30 3.585 

cell morphogenesis involved in neuron differentiation 188 54.44 <1e-30 3.453 

cell morphogenesis involved in differentiation 246 71.91 <1e-30 3.421 

neuron projection morphogenesis 192 56.31 <1e-30 3.410 

brain development 201 59.28 <1e-30 3.391 

central nervous system development 260 78.93 <1e-30 3.294 

embryonic morphogenesis 243 75.35 <1e-30 3.225 

regulation of nervous system development 227 70.67 <1e-30 3.212 

regulation of cell development 240 76.75 <1e-30 3.127 

organ morphogenesis 345 110.44 <1e-30 3.124 

tissue morphogenesis 220 70.51 <1e-30 3.120 

neuron projection development 244 79.25 <1e-30 3.079 

neuron differentiation 369 120.27 <1e-30 3.068 

neuron development 283 93.29 <1e-30 3.034 

epithelium development 251 82.99 <1e-30 3.024 
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generation of neurons 400 133.06 <1e-30 3.006 

 

 

Cluster 5- Go terms Significant Expected classicFisher Over-representation 

detection of chemical stimulus involved in sensory perception of smell 1057 274.52 < 1e-30 3.850 

detection of chemical stimulus involved in sensory perception 1085 282.99 < 1e-30 3.834 

sensory perception of smell 1062 279.4 < 1e-30 3.801 

detection of chemical stimulus 1092 288.64 < 1e-30 3.783 

sensory perception of chemical stimulus 1107 295.06 < 1e-30 3.752 

detection of stimulus involved in sensory perception 1091 292.75 < 1e-30 3.727 

detection of stimulus 1118 310.21 < 1e-30 3.604 

sensory perception 1204 371.59 < 1e-30 3.240 

defense response to bacterium 110 36.21 < 1e-30 3.038 

G-protein coupled receptor signaling pathway 1448 477.13 < 1e-30 3.035 

neurological system process 1298 508.21 < 1e-30 2.554 

system process 1411 594.75 < 1e-30 2.372 

cell surface receptor signaling pathway 1659 781.7 < 1e-30 2.122 

response to chemical stimulus 1531 739.07 < 1e-30 2.072 

defense response 346 182.84 < 1e-30 1.892 

signal transduction 1877 1142.24 < 1e-30 1.643 

signaling 1941 1225.45 < 1e-30 1.584 

cell communication 1959 1252.16 < 1e-30 1.564 

cellular response to stimulus 2009 1318.67 < 1e-30 1.524 

response to stimulus 2411 1606.8 < 1e-30 1.500 

 

 

 
Supplementary Methods 
 

Biological Sample Collection 
Mouse sperm were collected from C57BL/6J mice by using swip-up procedure as 

described5.  To isolate round spermatids, testicular cells were prepared from 28 day 

C57BL/6J mice. Isolated cells were subjected to Hoechst (Invitrogen, catalog number 

33342) staining for 30 min at 37°C and round spermatids were collected via 

Fluorescent Activated Cell Sorter (FACS) with 90 % purity. 

 

Mononucleosomal DNA preparation and native ChIP 
Chromatin isolation from mature sperm was performed under native conditions as 

described5.  MNase treatment for sperm was performed with 15 U (Roche Nuclease 

S7, catalog number 10107921001) at 37°C for 5 min per 2 million spermatozoa. 

Round spermatid chromatin was isolated in the same way, except for the DTT 
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treatment which was used for sperm. MNase treatment for round spermatids was 

performed with 5 U at 37°C for 30 minutes per 1 million cells. Immunoprecipitation 

was carried out with antibodies against H3.3 (Millipore 17-10245), H3.1/H3.238,30, 

H3K4me3 (Millipore 17-614) and H3K27me3 (Millipore 07-449) by using roughly 15-

20 million sperm or 5 million round spermatids per immunoprecipitation. Both 

mononucleosomal DNA and immunoprecipitated DNA were resolved by 5% 

polyacrylamid electrophoresis and DNA was cut at the size of 150 bp. Input genomic 

DNA control was prepared by treating sperm with DTT and detergents as in 

mononucleosomal preparation, followed by isolation of genomic DNA and 

subsequent sonication.   

 

RNA isolation 
RNA from FACS sorted round spermatids was isolated by using the Qiagen RNeasy 

Mini kit. RNA integrity was confirmed by running RNA samples on Agilent 2100 

Bioanalyzer mRNA pico arrays.  
 

Library preparation and sequencing 
Library preparation for ChIP-seq was done via the Illumina ChIP-seq DNA Sample 

Prep Kit (Cat# IP-102-1001). Before preparing RNA-seq libraries, rRNA from RNA 

was depleted by using the Ribo-Zero rRNA removal kit (Epicentre Biotechnologies). 

Strand specific RNA-seq libraries were prepared by following the Illumina directional 

mRNA-seq library preparation pre-release protocol. Quality of libraries was assessed 

by Agilent 2100 Bioanalyzer. Libraries were sequenced on Illumina GA II (36 bp 

reads) and Illumina Hiseq 2000 (51 bp reads).  

 

Mononucleosome-BisSeq (MN-BisSeq) library preparation 
The protocol was adapted from Illumina Genomic DNA Sample Preparation Guide. 

Briefly, 2 μg of mononucleosomal fraction DNA were end repaired by incubation at 

20°C for 30 minutes with 200µM dNTP, 7.5 units of T4 DNA polymerase (NEB 

#M0203S), 5 units of DNA Polymerase I Large Fragment (Klenow) (NEB #M0210S), 

25 units of T4 PNK (NEB #M0201S), 1x T4 DNA ligase buffer containing 10mM ATP 

(NEB). 3’ ends of DNA fragments were adenylated by incubation at 37°C for 30 

minutes with 100µM dATP, 1xNEB Buffer 2, 10 units Klenow Fragment (3´→5´ exo–) 

(NEB # M0212L). Single End adapter sequences were produced based on Illumina 

adapter sequences (Oligonucleotide sequences © 2006-2008 Illumina, Inc. All rights 

reserved). 5’ P- GATXGGAAGAGXTXGTATGXXGTXTTXTGXTTG and 5’ 

AXAXTXTTTXXXTAXAXGAXGXTXTTXXGATXT, where X is a methylated cytosine. 
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Adapters were ordered as single stranded oligos (Microsynth AG), resuspended in 

annealing buffer (10mM Tris pH7.5, 50mM NaCl, 1mM EDTA), annealed by heating 

at 95°C for 10 minutes and cooling down slowly. Annealed adapters were ligated to 

the DNA fragments as per manufacturer’s instructions for genomic DNA library 

construction. Adapter-ligated DNA of ≈ 250 bp was isolated on 2% agarose gel 

electrophoresis. Gel purified DNA was then converted with sodium bisulfite using the 

Imprint® DNA Modification Kit (Sigma-Aldrich) following the manufacturer’s 

instructions. Half of the bisulfite-converted, adapter-ligated DNA molecules 

wasenriched by 7 cycles of PCR with the following reaction composition: 2.5 U of 

uracil-insensitive PfuTurboCx Hotstart DNA polymerase (Stratagene), 5 μl 10X 

PfuTurbo reaction buffer, 25 μM dNTPs, 0.5µM of Illumina single end PCR primers. 

The thermocycling parameters were: 95°C 2 min, 98°C 30 sec, then 7 cycles of 98°C 

15 sec, 65°C 30 sec and 72°C 3 min, ending with one 72°C 5 min elongation step. 

The reaction products were purified using the MinElute PCR purification kit (Qiagen, 

Valencia, CA), resolved by 2% agarose gel electrophoresis to separate the library 

from adapter-adapter ligation products, and purified from the gel using the MinElute 

gel purification kit (Qiagen, Valencia, CA). Quality of the libraries and template size 

distribution were assessed by running an aliquot of the library on an Agilent 2100 

Bioanalyzer (Agilent Technologies). 

 
Chromatin-bound (histone) fractionation and immunoblotting 
Round spermatids were isolated from C57BL/6J mouse testes by centrifugal 

elutriation39 and chromatin-bound fractionation was performed according to40 with 

some modifications. Briefly, cells were resuspended in buffer A (10 mM HEPES 

pH7.5, 10 mM KCl, 1.5 mM MgCl2, 0.05% Nonidet P-40, 0.5 mM DTT with protease 

inhibitors) and incubated for 10 min on ice. After centrifugation, the nuclear pellet was 

collected and washed twice with buffer A. Nuclei were further lysed in buffer B (3 mM 

EDTA, 0.2 mM EGTA, 1 mM DTT, protease inhibitors). Then insoluble chromatin was 

collected by centrifugation, washed twice with buffer B and resuspended in 0.2 M HCl 

to extract histones. Sperm samples collected by swim-up procedure were initially 

treated with 50mM DTT at room temperature for 2 hours. Then, the chromatin bound 

fraction was isolated as described for round spermatids and was concentrated by 

trichloroacetic acid precipitation. Chromatin-bound extracts were analyzed by 15% 

SDS-PAGE gels and transferred onto PVDF membranes that were incubated with 

antibodies against H3 (abcam ab1791), H3.3 (Millipore 17-10245) and H3.1/H3.238,30.  
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Processing and alignment of the reads 
Filtering, alignment and processing of the reads for both ChIP-seq and RNA-seq 

were done as described24. Reads from native ChIP-seq experiments were shifted by 

74 nucleotides, corresponding the ½ length of a nucleosome, towards their 3` end to 

account for the fragment length.  

 

Genomic coordinates 
All coordinate regions used in analyzing mouse ChIP-seq and RNA-seq data were 

based on mouse mm9 assembly (July 2007 Build 37 assembly by NCBI and Mouse 

Genome Sequencing Consortium). To obtain 1kb windows used in genome-wide 

analysis, the mouse genome was divided into non-overlapping 1kb windows. From 

these, the subset of mapable windows (as defined in24) was used in the subsequent 

analysis. Refseq coordinates were downloaded from UCSC41 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/refGene.txt.gz from 

August 16, 2009). For each gene, only one transcript with the most extreme 

coordinates was selected.  

Genomic regions were classified as promoter, exon, repeat, intron or intergenic as 

follows: Promoter is defined as the bases covering +/-1 kb surrounding Refseq 

transcripts. Exons are exonic sequences of Refseq transcripts which are not 

overlapping +/-1 kb TSS. Repeats are repeat elements of repeat masker (obtained 

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/chr*_rmsk.txt.gz from 

Jan 30, 2009), which are not overlapping promoter/exon regions. Introns are intronic 

sequences of Refseq transcripts which are not overlapping promoter/exon/repeat. 

The rest of the genome, which is not promoter/exon/repeat/intron was classified as 

intergenic. Genomic regions used in analysis of published human ChIP-seq data 

were based on human hg18 assembly (March 2006 Build 36.1 assembly by NCBI 

and International Human Genome Sequencing Consortium). 1kb windows for human 

genome were generated in a similar way as for the mouse genome.  

 

UCSC tracks 
Wiggle files were generated for 100 bp windows and uploaded to the UCSC genome 

browser41. Data was visualized using smoothing over 3 pixels (Fig.1a and 1c, Fig. 

2b).  

 
Peak identification 
Peak identification for nucleosome data was performed by training a two state hidden 

semi-Markov model, R-mhsmm package42 on nucleosome enrichments calculated for 
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1 kb windows. The two-state model (non-peak and peak states) was initialized using 

Gaussian emissions (means of 0, 1, and variances of 0.5, 0.5), a gamma sojourn 

distribution with shape=2 and scale=10, and initial state probabilities of 0.5, 0.5.  

Parameter estimation of the model was performed by using 1kb window enrichments 

on chr1 as a training data set and by selecting a maximum of 200 windows in one 

state. Model parameters were estimated using EM algorithm, and the fitted model 

with emission distribution means of -0.21, 0.57, variances of 0.071, 0.48, and sojourn 

distribution parameters shape of 1.32 , 0.38 , and scale of 52.84 , 7.86 was used to 

predict the maximum likelihood state path for the sequence of all 1kb windows in the 

genome. Adjacent 1kb windows with identical state labels were fused.  

 

Quantification of enrichment levels genome-wide, at promoter regions and at 
nucleosome peaks 
Enrichment levels for ChIP-seq experiments were calculated for the 1kb windows, 

promoter regions of the genes (± 1kb surrounding transcriptional start sites (TSS)), 

and nucleosome peaks identified by hidden semi-Markov model. To calculate 

enrichment, total read counts mapping to a coordinate region were calculated for IP 

sample and control (input genomic DNA). Then, these counts were normalized to 

account for different library sizes between IP sample and control. Enrichment for 

each region was calculated as the ratio between library size normalized read counts 

for IP sample and control according to the following formula: 

log2(((Cntsmp/LSizesmp*min(LSizesmp, LSizecnt))+pscnt)/ ((Cntcnt/LSizecnt*min(LSizesmp, 

LSizecnt))+pscnt)), where Cntsmp is the total number of reads mapping to the 

coordinate in IP sample, LSizesmp  is the total library size for the IP sample, Cntcnt is 

the total number of reads mapping to the coordinate in the control sample, LSizecnt is 

the total library size for the control sample, and pscnt is a constant number (8), which 

was used to stabilize enrichments based on low read counts.  

 

Classification of nucleosome peaks 
Nucleosome enrichments were quantified on the peaks identified by a hidden semi- 

Markov model. Peaks were classified into three equal sized groups according to 

enrichment levels, termed “weak”, “intermediate” and “strong” peak groups (Fig. 2e).  

 

Classification of genes according to their promoter GC content 
CpG classifications of the genes as high CpG (HCP), intermediate CpG (ICP) and 

low CpG (LCP) was performed according to criteria defined in19. For the 

classifications, coordinates ± 1kb surrounding TSS were used (Fig. 1b).  
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Calculation of observed/expected ratios for dinucleotide frequencies 
Dinucleotide and single nucleotide counts per 1kb window were obtained using the R 

package Biostrings43. Observed/expected ratio was calculated as follows: 

XYcnt/(Xcnt*Ycnt)*(Wsize-1), where XYcnt is the dinucleotide count of XY in one 1kb 

window, Xcnt  and Ycnt  are single nucleotide counts, and Wsize is the window size 

(1kb).  

 

Analysis of bisulfite converted sequencing (BisSeq) data  
Read filtering and alignment of the BisSeq data from this study (bisulfite converted 

mononucleosome associated sperm DNA), published sperm whole methylomes 

(mouse sperm16 and human sperm36) and published oocyte and blastocyst 

methylomes16 were performed as described24.  

 

CGI definition and usage 
CpG island definitions are based on a CpG cluster algorithm35. The algorithm was run 

with default parameters on mm9 to obtain genomic coordinates of CGI.  

 

Genome-wide modeling of nucleosome occupancy 
Modeling of genome-wide mouse sperm nucleosome occupancy (Fig. 1f) was 

performed by using enrichment values in 1kb windows. Nucleosome occupancy data 

was modeled by a linear model with CpG dinucleotide frequency and the average % 

DNA methylation in 1kb windows as regressors, including only windows with 

detectable levels of nucleosomes, defined as log2 nucleosome occupancy greater 

than 0.2. This filtering excludes the majority of 1kb windows without nucleosomes 

from the analysis which is required since the majority of the genome does not contain 

any nucleosomes in mouse sperm. In the model, DNA methylation data which was 

obtained by bisulfite converted sequencing of nucleosome associated DNA was 

used. Average DNA methylation was calculated by taking the ratio of total number of 

reads for methylated C over total number of reads for all C (methylated or 

umethylated) per window. Windows with less than 5 total reads for all Cs were 

excluded from the analysis. Finally, n=105571 (9% of all windows) were used in 

modeling of nucleosome occupancy in mouse sperm. The same windows were used 

to analyze the relationship between mouse sperm nucleosome occupancy and DNA 

methylation / sequence composition (Fig. 1d, Supplementary Fig. 5a and 5b). 
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To analyze the relationship between human sperm nucleosome occupancy5,4 and 

DNA methylation / sequence composition (Supplementary Fig. 7), 1kb windows were 

processed in a similar way as for mouse sperm. Finally, n=894787 (29% of all 

windows) of5 and n=515937 (17% of all windows) of4 were used in the analysis.  

 

Plotting profiles around genomic regions 
For each sample, reads mapping to the genomic regions of interest (Fig. 2d, 

Supplementary Fig. 9 and 10) were summed up for every base pair within the 

genomic region analyzed. Average read counts per bp were calculated by dividing 

the total number of reads per bp to total number of genomic regions analyzed. To 

plot average enrichment values for multiple ChIP-seq samples on the same plot, 

counts were scaled by the library size and enrichment values were calculated as the 

ratio between scaled read counts of ChIP and control samples (sonicated sperm 

genomic DNA). Profiles were smoothed for plotting by taking the rolling mean over 

40bp.  

 

Quantifying expression in round spermatids 
Round spermatid expression data was quantified by summing the total number of 

reads mapping to Refseq transcripts. Concerning the classification of the expression 

status, transcripts without any aligned reads were classified as “not detected”, and 

the remaining transcripts were classified on the basis of increasing expression values 

into three equally sized groups termed “low, “medium” and “high”. 

 

Heatmap plots 
For ChIP-seq experiments, the number of reads covering each base pair in the 

region +/-3 kb around TSS of genes was quantified. Read coverage was averaged in 

50 bp windows along +/- 3kb TSS. Within each dataset, values were scaled to 

arange between 0 - 1. CpG coverage around +/-3 kb was obtained by Bioconductor 

package Biostrings and coverage intensities were scaled in a similar way like ChIP-

seq features. Expression data for RS was calculated as log2 (read count per 

transcript). Clustering was performed by using k-means with k=5, empirically selected 

as the minimal value of k that resulted in distinct clusters consisting of homogenous 

members.  

 

GO-term analysis 
GO-term analysis was performed by using Bioconductor package topGO44. 

Enrichment tests were done by using Fisher`s exact test (Supplementary Table 1).  
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Variance partitioning analysis 

Variance partitioning analysis was performed via using R package yhat45. Unique and 

combinatorial effects for each variable were obtained by using the function 

commonalityCoefficients().  

 

Motif finding for histone peaks 

7-mer motif frequencies in the foreground and background sets were calculated by 

using Bioconductor package Biostrings. Foreground refers to histone peaks identified 

via the hidden semi-Markov model approach. As a background, we used CGI that do 

not intersect any of the peak regions in the foreground set. Motif enrichment (M) and 

abundance (A) values were calculated as follows: M=log2((fgZ/fgTotal*min(fgTotal, 

bgTotal))+pscnt)-log2((bgZ/bgTotal*min(fgTotal,bgTotal))+pscnt), and A = 

(log2((fgZ/fgTotal*min(fgTotal,bgTotal))+pscnt)+log2((bgZ/bgTotal*min(fgTotal,bgTotal))+pscnt))*

0.5, where fgZ  is the number of counts of motif Z in the foreground, fgTotal  is the total 

number of all motifs in foreground, bgZ  is the number of counts of motif Z in 

background, bgTotal  is the total number of all motifs in the background, and pscnt is a 

constant number (8). Results were visualized in a motif enrichment abundance plot 

(MA plot) and the top 20 motifs enriched in the foreground set were displayed.  

 

Defining expression for oogenesis or early embryogenesis 
Expression data from33 was processed as described in5. The first developmental 

stage in which expression was measured was used for the classification of 

expression as “maternal”, “2-8 cell” or “blastocytst”. The distinction between maternal 

and embryonic expression was made by comparing the expression levels in early 

embryos treated or untreated with α-amanitin.  
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Introduction 
 

 Germ cells carry critical information for the proper development of the 

embryo. In mammals, two highly differentiated gametes sperm and oocyte highly 

differ in their capacity to convey information to the next generation. The oocyte is 

seen as the main source of transcripts and proteins required for early embryonic 

development given the large pools of mRNAs that are generated during early 

oogenesis and their tightly regulated control (Kang and Han, 2011). On the other 

hand, sperm is thought to have a very little potential to transmit information as the 

majority of its histones are replaced by protamines during later stages of 

spermatogenesis and it is in a very compact structure. Nevertheless, recent genome-

wide studies on human and mouse sperm showing the specific association of 

retained histones and their modifications with developmentally important loci pointed 

out the capacity of sperm to regulate early embryonic development (Brykczynska et 

al., 2010; Hammoud et al., 2009).  

 In addition to a potential function of the chromatin states of sperm, studies 

especially performed in human sperm showing the differential presence of certain 

RNAs between fertile and infertile man suggested that sperm born transcripts could 

have an effect on embryonic development or could be used as diagnostic markers 

(Hamatani, 2012).  

 It is currently believed that after round spermatid stage during differentiation 

into mature spermatozoa, transcription is shut-down and RNA transcribed in round 

spermatids is stored by post-transcriptional mechanisms to be translated in 

elongating spermatids. This argument mostly comes from the studies showing the 

absence of labeled RNA incorporation in late spermatids (Kierszenbaum and Tres, 

1975), high accumulation of transcriptional machinery components in round 

spermatids compared to other later stages (Schmidt and Schibler, 1995), 

transcription of the sperm basic proteins such as transition proteins and protamines 

in round spermatids but their translation in elongating spermatids, and impairment of 

spermatogenesis with absence of certain RNA-binding proteins (Steger, 2001). 

Although all this data argues for a significant contribution of the post-transcriptional 

regulation in proper propagation of spermiogenesis, it does not directly exclude the 

occurrence of transcription after the round spermatid stage.  

 In mice, the first wave of spermiogenesis results in the appearance of early 

round spermatids around 23 days after birth, followed by the development of late 

round spermatids around the 28th day, followed by nuclear elongation, and finally 

production of mature spermatozoa around the 35th day.  In this study, we investigated 
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the transcript dynamics during spermiogenesis by performing high-throughput 

sequencing of RNA in early round, late round, elongating spermatids and sperm. Our 

results show that overall gene expression levels among the four stages analyzed are 

static. Nevertheless, the changes in expression of genes and their association with 

chromatin states highly suggest for ongoing transcriptional activity during late 

spermiogenesis. In addition, analysis of the content of spermatozoal RNA pool 

showed a potential function of sperm RNA for early embryonic development.  

 

Results 

Genome-wide distribution of transcripts in spermatids and sperm 
We analyzed the distribution of the reads in the genome for different cell 

types. In round and elongating spermatids almost 90 % of the reads map to already 

annotated Ensembl transcripts. Nevertheless, we determined that in sperm there is a 

significant amount of reads mapping to the repetitive part of the genome. We 

prepared RNA-seq libraries for all spermatid samples by removing rRNA from 

spermatid RNA. However, given the very small amount of RNA present in sperm, we 

could not perform rRNA depletion on sperm RNA and the majority of the reads for 

sperm sample map to rRNA (Supplementary Table 1). Nevertheless, in Figure1a, in 

the repeat part of the genome, rRNA is excluded. Therefore, having more reads at 

repetitive part of the genome in sperm can not be attributed to rRNA.  It is currently 

difficult to say whether the read count increase we see in the repetitive part of the 

genome in sperm could be due to new transcription, RNA stability or something 

completely technical (Supplementary Note 1 and Supplementary Figure 1). 

A zoom into known Ensembl transcripts showed that for any given cell type, 

approximately 95 % of the reads were obtained for the protein-coding genes. In the 

remaining part of the Ensembl transcripts, we determined that the levels of 

miscellaneous RNA (misc_RNA), processed transcripts and microRNAs (miRNAs) 

increase as the cells differentiate into sperm. On the other hand, the levels of 

pseudogenes and small nuclear RNAs (snRNAs) go down during this differentiation 

process. Nevertheless, given the fact that annotation of the non-coding part of the 

genome is still not fully characterized, relative increase or decrease in the levels of 

non-coding transcripts need to be treated with caution.  
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Figure 1: Classification of RNA-seq reads per sample. (A), Pie-charts show the 
distribution of reads in Ensembl annotation, repetitive and non-repetitive parts of the 
genome in 23 day round spermatids (RS23d), 28 day round spermatids (RS28d), 
elongating spermatids (Estd), and sperm, respectively. (B), Zoom into Ensembl 
transcripts. Barplot shows the distribution of reads in major Ensembl transcripts.  
 

Gene expression dynamics during spermiogenesis 

After determining that the great majority of reads map to protein coding-

genes, we checked differential gene expression among the 4 stages for Ensembl 

protein-coding genes. Initially, pair-wise scatter plot comparisons showed that 

transcript levels for the different samples and their replicates are highly correlating; 

23 day and 28 day round spermatids being most similar, and towards differentiation 

into sperm a slight changes in expression (Supplementary Figure 2). Performing a k-

means clustering showed that 80% of the transcripts are stable over the 4 stages 

(class a). Moreover, we identified transcripts with higher levels in round spermatids 

(class b), significantly lower levels in sperm (class c), specifically high only in 

elongating spermatids (class d), and finally with elevated levels in sperm (class e). 

The presence of increased levels of transcripts in elongating spermatids and sperm 

stages suggests that the condensing phase of spermiogenesis may not be 

transcriptionally inactive as originally thought. Furthermore, early (23 day) and late 

(28 day) round spermatids have remarkably similar transcript dynamics. In addition, 

profiles of sample replicates nicely illustrate the reproducibility of our results.  
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Figure 2: Differential gene expression analysis during spermiogenesis. 
Heatmaps shows the relative transcript levels (protein-coding genes) for the 4 
different cell types (RS23d-2 replicates, RS28d-2 replicates, Elongating std.-2 
replicates and sperm-3 replicates) compared the to median level of expression for all 
samples analyzed.  
 
 
Transcription in round spermatids 
 RNA-seq analysis shows the relative abundance of a transcript in a given cell 

type. To understand whether transcripts we detected in round spermatids are a 

reflection of ongoing transcription in round spermatids or showing transcriptional 

activity from the earlier stages, we related RNA levels to RNA Polymerase II 

(RNAPII) occupancy around transcriptional start sites in late round spermatids. To 

measure RNAPII, we used a RNAPII antibody which recognizes both Ser5P 

phosphorylated and unphosphorylated forms of RNAPII. Enrichment level of this form 

of RNAPII around transcriptional start site of genes has been shown to be a good 

measure of gene expression in embryonic stem cells (Brookes et al., 2012). We 

identified that the great majority of the genes actually were not associated with 

RNAPII peak (Figure 3A). Genes which are started to be expressed from 

spermatogonia or spermatocyte stage onwards (as determined by the analysis of the 

microarray data for spermatogenic gene expression) (Brykczynska et al., 2010; 

Namekawa et al., 2006) have major contributions to RNA levels measured in round 

spermatids, which highly suggests that expression levels of the genes without 
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RNAPII are reflecting a history from previous stages (Figure 3B). In contrast, history 

from earlier stages has minor and irregular contributions to RNA levels for the genes 

with RNAPII (Supplementary Figure 3).  

 

 
 

Figure 3: Comparison of RNA levels and RNAPII enrichments in 28 day round 
spermatids. (A) Scatter plot shows the correlation of transcript levels and RNAPII 
enrichments. Genes with promoter regions intersecting RNAPII peak are shown in 
red. (B) Scatter plot shows the RNA level and RNAPII enrichment comparisons only 
for the genes which are not associated with RNAPII. Red shows the genes which are 
started to be expressed from spermatogonia stage onwards, and green marks the 
genes which are started to be expressed from spermatocyte on (Brykczynska et al., 
2010).  
 
 
Annotation of genes according to chromatin states and function in relation to 

their RNAPII status 
 After determining that genes with detectable RNA are or are not associated 

with RNAPII in round spermatids, we analyzed the chromatin states of the genes with 

and without RNAPII. Our analysis showed that genes with RNAPII in round 

spermatids are almost devoid of H3K27me3 and they are exclusively marked by 

H3K4me3. Almost 80% of these genes have high CpG-containing (HCP) or 

intermediate CpG-containing (ICP) promoters (Figure 4).  
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Figure 4: Chromatin states of genes associated with RNAPII. Heatmap of genes 
illustrating CpG density, RNAPII in 28 day round spermatids, H3K4me3 and 
H3K27me3 coverage in round spermatids and sperm around TSS (±3kb), and gene 
expression levels in 23 day round spermatids, 28 day round spermatids, elongating 
spermatids and sperm, respectively. Feature density shows the scaled read densities 
from ChIP-seq experiments or relative expression levels. Number of genes in each 
class is as follows: class a, 1750, class b, 1019, class c, 678, class d, 376, and class 
e, 170. 1000 genes were randomly selected for visualization. 
 

 

On the other hand, 85 % of the genes which are not associated with RNAPII 

are in class (a), very low level expressed or not expressed and approximately 40 % 

have low CpG-containing (LCP) promoters (Figure 5).  

Furthermore, we have identified that differentially expressed genes could be 

differentially enriched for a functional go term depending on their RNAPII status 

(Figure 6).  Genes which are stably and low level expressed (class a) are not 

significantly associated with any term except RNA processing (genes having 

RNAPII). Genes with relatively higher levels of RNA in round spermatids (class b) are 

involved in metabolic functions and regulation of spermatogenesis. Genes with stable 

levels of expression in round and elongating spermatids but lower levels in sperm 

(class c) are associated with spermatid development related functions, and RNAPII 

associated genes are more enriched for this function.  
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Figure 5: Chromatin states of genes which are not associated with RNAPII. 
Heatmap of genes illustrating CpG density, RNAPII in 28 day round spermatids, 
H3K4me3 and H3K27me3 coverage in round spermatids and sperm around TSS 
(±3kb), and gene expression levels in 23 day round spermatids, 28 day round 
spermatids, elongating spermatids and sperm, respectively. Feature density shows 
the scaled read densities from ChIP-seq experiments or relative expression levels. 
Number of genes in each class is as follows: class a, 27383, class b, 2192, class c, 
989, class d, 628, and class e, 1276. 1000 genes were randomly selected for 
visualization. 
 
 
 

The most remarkable difference between RNAPII associated versus non-

associated genes is for the genes which have higher levels of RNA in elongating 

spermatids (class d). For this class, genes which are not associated with RNAPII 

show almost no enrichment for spermatogenesis related functions, which suggests 

that those genes need to be transcribed from round spermatids on. Genes with 

higher levels of RNA in sperm (class e) are involved in RNA processing functions or 

spermatid development if they are marked by RNAPII in round spermatids. 

Nevertheless, genes in class (e) which are not marked by RNAPII in round 

spermatids are associated with functions involved in cell activation and embryonic 

development. At this point, it could be proposed that these genes get RNAPII later in 

spermiogenesis and their expression might regulate early embryonic development. 
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Figure 6: Go term analysis according to differential gene expression states and 
RNAPII association. (A) Genes with RNAPII. (B) Genes without RNAPII. Colors 
refer to classes identified in differential gene expression analysis (Figure 2).  
 
 
 
H3K4me3 and gene expression dynamics during spermiogenesis 

Our chromatin analysis for the different groups of genes showed that changes 

in H3K4me3 levels highly relates to gene expression changes during spermiogenesis 

(Figure 4 and 5). To analyze this observation in more detail, we related change in 

H3K4me3 and expression levels separately for each differentially expressed gene 

group and their RNAPII status. Enrichment level of H3K4me3 around promoter 

regions of genes has been identified to be a good predictor in estimation of 

transcriptional activity from chromatin states in the ENCODE project consortium 

(Dunham et al., 2012). We identified that the genes which are associated with 

RNAPII in round spermatids and have lower levels of expression in sperm (class b or 
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class c) lose their expression levels from round spermatids towards differentiation 

into sperm most likely as a result of shut-down of transcription as it is reflected in 

change in H3K4me3 levels. Nevertheless, genes which do not have RNAPII in round 

spermatids lose their expression towards differentiation into sperm most probably as 

a result of a post-transcriptional mechanism such as active degradation. For those 

genes changes in expression levels do not correlate to change in H3K4me3 levels 

(Figure 7A and B).  

 

 
 

Figure 7: Relationship of change in H3K4me3 levels to change in RNA levels 
during spermiogenesis. For each class of the genes, changes in RNA levels were 
binned into 3 groups. Boxplots show the change in H3K4me3 levels for the different 
groups of change in RNA levels. Red color specifies the genes which are associated 
with RNAPII in round spermatids. Gray color specifies the genes which are not 
associated with RNAPII in round spermatids. At the top of the boxplots, an image 
representing the gene expression class is shown. (A) class (b) genes. (B) class (c) 
genes. (C) class (d) genes. (D) class (e) genes.  
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Changes in the expression level of the genes with higher levels in elongating 

spermatids (class d) correlate to changes in H3K4me3 for both RNAPII associated 

and non-RNAPII associated genes.  This finding highly suggests that there is 

ongoing transcriptional activity in elongating spermatids and part of this could be 

achieved by de novo marking of some genes by RNAPII in elongating spermatids 

(Figure 7C). Genes which are upregulated in elongating spermatids but not 

associated initially with RNAPII spermatids are involved in ketone body metabolism 

(Fisher’s exact test P-value=0.0016). Ketone bodies have been shown to be involved 

in sperm motility and a testis specific isoform of succinyl CoA transferase (SCOT-t) 

localizes to mitochondria of elongating spermatids and sperm (Tanaka et al., 2004). 

In this respect, de novo transcription of ketone metabolism genes in elongating 

spermatids might be required for the energy supply of sperm.   

Regarding the genes with elevated levels in sperm (class e), the relationship 

between gene expression and H3K4me3 levels is a bit more complicated (Figure 

7D). In this case, increased level of expression in sperm might be both achieved by 

de novo targeting of RNAPII or RNA stability.  

 

Potential function of sperm RNA for embryonic development 
We have performed RNA expression analysis during spermiogenesis and 

confirmed the presence of RNA in sperm. At this point, one of the critical questions is 

that whether the transmission of RNA to early embryo could have a function. To 

understand this, we first determined the genes with transcripts detected in 2-cell 

embryos, but not expressed or low level expressed in oocytes and at the same time 

are not  de novo transcribed in 2-cell embryos (α-amanitin insensitive) (Posfai et al., 

2012). Then, we checked the expression level of those genes in sperm. If sperm 

RNA is potentially regulating embryonic development, it will more likely to have an 

effect with paternal transmission only. We determined that almost 80% of the 

transcripts which are not maternal, not zygotically transcribed but present in early 

embryo had “medium” or “high” expression levels in sperm. Among those genes, we 

found a significant number involved in chromatin organization (Fisher`s exact test P-

value=5.8E-09). These findings highly suggest for a potential function of sperm RNA 

in early embryonic development (Supplementary Figure 4). Nevertheless, given the 

little amount of RNA sperm could have, comparison of absolute levels of RNA for the 

respective genes in oocytes versus sperm is required to support this hypothesis.  

 
Discussion 
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Sperm is produced as a result of complex chromatin remodeling and nuclear 

reorganization events. Nevertheless, still the details of these events and control 

mechanisms are not fully characterized. Because of its compact chromatin structure, 

sperm is thought to be inert. Here, we investigated the transcript dynamics during 

later stages of spermatogenesis to understand gene expression regulation in 

different stages of spermatids and mature sperm and potential of sperm RNA pool.  

We have determined that the transcriptome of early round, late round and 

elongating spermatids are very similar. Sperm transcriptome showed an increased 

abundance for the transcripts associated with repetitive elements. Nevertheless, 

significance of this increase needs to be determined. Overall, transcript levels for the 

protein-coding part of the genome are quite stable. In addition to this stable 

expression pattern, our analysis revealed that genes especially the ones involved in 

regulation of spermatogenesis showed dynamic expression patterns.  

We identified that actually the majority of the genes with detectable levels of 

RNA in round spermatids were not associated with RNAPII and detected RNA most 

probably reflect transcriptional history from spermatocytes and spermatogonia. 

Furthermore, genes depending on their association with RNAPII showed differential 

chromatin states and functional annotation. 

Although transcription is thought to be shut-down after round spermatid stage, 

our results for the first time strongly argue that there is ongoing transcriptional activity 

during later stages of spermatogenesis. We have determined that changes in 

transcript levels highly relate to changes in H3K4me3 levels. H3K4me3 has been 

determined to be one of the main histone modifications in the analysis inferring 

transcriptional activity from chromatin states (Dunham et al., 2012). Therefore, we 

propose that change in chromatin states is reflected in transcriptional outputs during 

spermiogenesis. This hypothesis could be further supported by experiments showing 

the association of RNAPII with genes in elongating spermatids and maybe even in 

sperm. Nevertheless, compact structure of elongating spermatids and sperm could 

bring some technical difficulties to fixed ChIP experiments in these cells.  In addition, 

labeling of RNA for instance by using 5-ethynyl uridine (EU) in specific stages of 

spermiogenesis and analysis of labeled RNA could show ongoing transcriptional 

activity in a more quantitative manner. This approach requires injection of labeling 

molecule into testis at specific time points and careful characterization of turnover 

rates from clean population of cells.  

Presence of RNA has been already shown in human sperm. Actually many 

studies related the content of human sperm RNA pool to fertility. A study by profiling 

RNA from 24 fertile donors showed that although there might be slight variations 



140 
 

within individual donors, overall fertile donors had stable abundance of certain 

transcripts (Lalancette et al., 2009). In addition, comparison of fertile donor 

transcripts with the ones from teratozoospermic individuals indicated the differential 

presence of transcripts involved in ubiquitin-proteosome pathyway between fertile 

versus teratozoospermic individuals (Platts et al., 2007).  Here, we also showed that 

mouse sperm has a defined RNA content as it has been indicated by the three 

replicates we have. Importantly, transcripts with elevated levels in sperm are involved 

in functions related to cell activation and early embryonic development. Furthermore, 

the transcripts which are more likely to be transmitted paternally are involved in 

chromatin organization which could have an impact also on the genome organization 

of early embryo. Still the remaining issue with sperm transmitted RNA is its relative 

effect compared to the large pool of maternal transcripts. Human sperm has been 

determined to have 10-400 fg of RNA (Hamatani, 2012). In contrast, human oocyte is 

estimated to contain 1500 pg of RNA (Elder and Dale, 2011). Although there seems 

to be a huge difference between oocyte and sperm RNA amounts, maybe quality of 

RNA rather than the actual quantity might be more important in certain cases. One of 

the best examples to this situation might be the unusual accumulation of Kit m-RNA 

in sperm, which causes a degradation product and lead to a paramutation at Kit locus 

(Rassoulzadegan et al., 2006).  

 

 

Materials and Methods 
Isolation of spermatids and sperm 
Mouse sperm were collected from C57BL/6J mice by using swip-up procedure as 

described (Brykczynska et al., 2010). To isolate early or late round spermatids, 

testicular cells were prepared from 23 day or 28 day C57BL/6J mice. Isolated cells 

were subjected to Hoechst (Invitrogen, catalog number 33342) staining for 30 min at 

37°C and round spermatids were collected via Fluorescent Activated Cell Sorter 

(FACS) with 90 - 95 % purity. Elongating spermatids were isolated by collecting 

testicular cells from a transgenic mouse line which expresses Protamine1-GFP. 

Elongating spermatids were isolated based on GFP and Hoechst staining intensity 

via FACS with 90 % purity.  

 

RNA isolation and library preparation 
RNA from FACS sorted round spermatids was isolated by using the Qiagen RNeasy 

Mini kit. RNA integrity was confirmed by running RNA samples on Agilent 2100 

Bioanalyzer mRNA pico arrays. Before preparing RNA-seq libraries, except for sperm 
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RNA (given the very low amounts of RNA that could be isolated), rRNA from all 

spermatid sample RNAs was depleted by using the Ribo-Zero rRNA removal kit 

(Epicentre Biotechnologies). Strand specific RNA-seq libraries were prepared by 

following the Illumina directional mRNA-seq library preparation pre-release protocol. 

Quality of libraries was assessed by Agilent 2100 Bioanalyzer. Libraries were 

sequenced on Illumina GA II (36 bp reads) and Illumina Hiseq 2000 (51 bp reads).  

 

RNAPII ChIP in round spermatids 
28 day round spermatids were collected by FACS (around 10 million cells). Fixed 

ChIP was performed as described in (Weber et al., 2007) with slight modifications. 

Fixed round spermatid chromatin was sonicated by using Bioruptor in 10 cycles with 

30 sec on and 45 sec off settings. Pre-cleared chromatin was incubated 5 ul of 

RNAPII antibody (Covance CTD4H8) overnight. Then, antibody-chromatin complex 

were coupled to Dynabeads 280 (Invitrogen). After elution of beads and reversal of 

crosslink, immunoprecipitated DNA was isolated by phenol/chloroform extraction.  

 

Processing and alignment of the reads 
Filtering, alignment and processing of the reads for RNA-seq were done as described 

(Stadler et al., 2011). 

 

Genomic coordinates 
All coordinate regions used in analyzing mouse ChIP-seq and RNA-seq data were 

based on mouse mm9 assembly (July 2007 Build 37 assembly by NCBI and Mouse 

Genome Sequencing Consortium). All annotated transcript analysis is based on 

Ensembl65 gene annotation (Mus_musculus.NCBIM37.65.gtf). For protein-coding 

genes, differential gene expression analysis was performed by selecting the 

transcript with most extreme coordinates per gene.  

 

Analysis of genome-wide distribution of reads 
Number of weighted alignments are assigned to each group according to the 

following hierarchy: rRNA, Ensembl65 transcript, repeat and non-repeat. RNA-seq 

library preparation for sperm did not include rRNA depletion. Therefore, in sperm 

approximately 95 % of reads map to rRNA. Pie chart showing the distribution of the 

reads in the genome (Figure 1A) is done by excluding the reads mapping to rRNA to 

make all spermatid and sperm samples comparable.   

 

Differential gene expression analysis 
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Differential gene expression analysis (Figure 2) was done for protein-coding Ensembl 

transcripts by selecting one transcript per gene with the most extreme coordinates. 

First, simply number of reads mapping to each transcript was counted per sample 

and counts were normalized for library size differences among the samples. By using 

the normalized counts, a “pseudosample”, which has the median level of expression 

for all samples analyzed, is defined. Differential gene expression for any given cell 

type per gene was calculated in the following way: log2((datNorm + pscnt) / (Med + 

pscnt)), where datNorm is the normalized read count for the given cell type, Med is 

the median level of read count in all cell types analyzed, and pscnt is a constant 

number (8), which was used to stabilize values based on low read counts. Clustering 

was performed by using k-means with k=5, empirically selected as the minimal value 

of k that resulted in distinct clusters consisting of homogenous members. Results 

were visualized by using heatmap.2 function of R (www.r-project.org).  

 

Heatmap plots 
For ChIP-seq experiments, the number of reads covering each base pair in the 

region +/-3 kb around TSS of genes was quantified. Read coverage was averaged in 

50 bp windows along +/- 3kb TSS. Within each dataset, values were scaled to a 

range between 0 - 1. CpG coverage around +/-3 kb was obtained by Bioconductor 

package Biostrings and coverage intensities were scaled in a similar way like ChIP-

seq features. Expression data for was quantified as log2 (read count per transcript).  

 

GO-term analysis 
GO-term analysis was performed by using Bioconductor package topGO (Alexa et 

al., 2006). Enrichment tests were done by using Fisher`s exact test.  

 

RNAPII peak finding 
RNAPII peak finding was performed by using MACS peak finder (Zhang et al., 2008) 

with the default parameters except –mfold=5 and –tsize=51.  

 

Classification of gene expression in sperm 
Sperm expression data was quantified by summing the total number of reads 

mapping to Ensembl transcripts. Concerning the classification of the expression 

status, transcripts without any aligned reads were classified as “not detected”, and 

the remaining transcripts were classified on the basis of increasing expression values 

into three equally sized groups termed “low, “medium” and “high”. 
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Supplementary Figures, Tables and Notes 
 
Supplementary Note 1 

We determined that the proportion of the reads mapping to the repetitive part 

of the genome is increased in sperm compared to spermatids samples. To tackle this 

question in more depth, we compared read counts per repeat type between 28 day 

round spermatids and sperm and related this comparison to H3K4me3 levels (as a 

marker of transcription) in these cell types. Pair-wise comparison of read counts 

showed that there are repeat elements with more abundant read counts in sperm 

(these include CG-rich repeats, tRNA repeats, some LINEs and SINEs) 

(Supplementary Figure 1a). Nevertheless, for these repeat elements a corresponding 

increase in H3K4me3 levels was not clearly apparent (Supplementary Figure 1b).  

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1: Repeat element expression in 28 day round 
spermatids and sperm. (A) Comparison of read counts per repeat type (repeat 
masker rename) in round spermatids and sperm. Repeats deviating from the 
regression line (residuals >3) are shown in red. (B) Comparison of change in repeat 
expression to change in H3K4me3.  
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Supplementary Figure 2: Comparison of transcript levels in spermatids and 
sperm. Pair-wise scatter plot shows the correlation of read counts (log2) across the 
samples for Ensembl protein-coding transcripts.  
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Supplementary Figure 3: Comparison of RNA and RNAPII levels in 28 day 
round spermatids for the genes with RNAPII. Red shows the genes which are 
started to be expressed from spermatogonia stage onwards, and green marks the 
genes which are started to be expressed from spermatocyte on (Brykczynska et al., 
2010). 
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Supplementary Figure 4: Relation of gene expression levels in sperm to 
embryonic gene expression. First the genes with transcripts detected in 2-cell 
embryos, but not expressed or low level expressed in oocytes and at the same time 
are not  de novo transcribed in 2-cell (α-amanitin insensitive) were determined 
(Posfai et al., 2012). Barplot shows the expression class of the resulting genes in 
sperm.  
 
 
 
 
 
 
 
Supplementary Table 1: Table shows the read counts mapping to different 
annotations for different samples and their replicates. 
 
 

class RS23d_1 RS23d_2 RS28d_1 RS28d_2 Estd_1 Estd_2 Sperm_1 Sperm_2 Sperm_3 

rRNA+ 237666 1146333 291127 800790 231884 327046 33473706 118673348 145713708 

rRNA- 48221 145821 49542 121908 70738 158671 137 439 1093 

Ensembl+ 25147815 108603180 25332883 107995312 29177922 100094143 1256429 2528708 3231193 

Ensembl- 139986 564579 153982 447836 127151 326343 13202 25624 31889 

non-repeat 2918833 11664220 3256594 9310394 2425081 5843058 205599 381587 403205 

repeat 1437148 6265262 1675088 4549303 948137 1965864 204506 1667408 2092001 

Total  29929669 128389395 30759216 123225543 32980913 108715125 35153579 123277114 151473089 
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Chapter 3: Concluding remarks and discussion 
3.1 DNA sequence-encoded regulation mechanisms 

As I already discussed in introduction the term “epigenetics” changed 

definitions over the years with the new discoveries. Currently, a clear definition which 

is interpreted in the same manner by everybody is not available. Nevertheless, I 

would like to discuss about “independency of epigenetics from DNA sequence” which 

is present in the recent definition of epigenetics - “the study of changes in gene 

function that are mitotically and/or meiotically heritable and that do not entail a 

change in DNA sequence”- (Wu and Morris, 2001). 

In my project studying the molecular determinants of nucleosome retention in 

mouse sperm, we identified that the  CpG dinucleotide is the most important factor 

specifying the genomic regions keeping nucleosomes. Furthermore, CpG specific 

nucleosome retention is histone variant type sensitive. We see retention of H3.3 

containing nucleosomes but depletion of H3.1/H3.2 containing nucleosomes at CGIs. 

If the transmission of sperm histones and their modifications are potentially regulating 

early embryonic gene expression, then we could argue that this regulation will be 

sequence-specific. As it will be discussed below, actually, there are already many 

known examples showing how important DNA sequence is in directing “epigenetic” 

regulation mechanisms. 

DNA in a eukaryotic cell is wrapped around histone proteins to form the 

fundamental unit of chromatin, nucleosomes (Luger et al., 2012). Nucleosomes could 

be still thought as the primary structures which change the nuclear environment with 

interaction with other protein/RNA complexes. Even this primary level of organization 

depends on DNA sequence (Kaplan et al., 2009; Ramirez-Carrozzi et al., 2009; Tillo 

and Hughes, 2009).  

DNA methylation is currently being regarded as a system which could be truly 

called “epigenetic”, given the fact that CpGs are symmetrically methylated and such 

DNA methylation pattern is maintained during cellular division (Goll and Bestor, 

2005). However, there have been several studies which question the independency 

of DNA methylation from DNA sequence. A recent study showed that DNA 

methylation patterning in the mouse genome is mainly shaped by transcription factor 

binding, and pattern of DNA methylation for a given cell type is also dependent on 

cell type specific expression of transcription factors (Stadler et al., 2011). 

Furthermore, several studies showed that Kruppel-associated box-containing zinc 

finger protein Zfp57 was involved in maintenance of DNA methylation at imprinted 

loci via recognizing a methylated hexanucleotide sequence (Li et al., 2008; 

Quenneville et al., 2011; Zuo et al., 2011). 
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In the context of deposition of histone marks, H3K4me3 is deposited at 

almost all of high CpG-content promoters of the genes independent of their 

expression (Greer and Shi, 2012; Zhou et al., 2011). In Drosophila, Polycomb group 

proteins (PcG) binds to Polycomb response elements (PREs) within the genomic 

sequence.  In mammals specific DNA elements required for PcG binding are only 

identified for a few loci (Sing et al., 2009; Woo et al., 2010), and genome-wide 

studies showed that PcG was mainly targeted to CpG islands (Lanzuolo and 

Orlando, 2012). A recent study actually demonstrated that CXXC-domain containing 

lysine demethylase KDM2B targets PRC1 to CpG islands (Farcas et al., 2012).  

All the examples above highlight the importance of DNA sequence in many 

genome regulation mechanisms (used by many people as “epigenetic”). Personally, I 

think that DNA in a eukaryotic cell is in interaction with histones and other protein 

complexes, and depending on the presence/concentration of all these components, 

different regulation programs could arise. In this sense, definition and interpretation 

of epigenetics should be revisited.  

 

3.2 Molecular mechanism behind specific nucleosome retention versus 
eviction 
 Differentiation of haploid round spermatids into sperm consists of highly 

complicated chromatin remodeling events. At the end of these sophisticated 

remodeling processes, a genome packing structure arise which is actually not 

present in any other cell types. Although a number of studies showed the role of 

incorporation of histone variants, global hyperacetylation of histones, and some other 

chromatin proteins in remodeling of the sperm chromatin (Gill et al., 2012), still the 

details of the remodeling events and the actual role of already identified 

proteins/complexes remains as a mystery. For instance, transition proteins are 

thought to first replace the histones and finally replaced by protamines. Nevertheless, 

this argument currently mainly relies on the dynamics of these proteins levels during 

spermiogenesis. Regarding the role of chromatin remodelers in this process, actually 

there are not many studies addressing this question. I checked the expression of 

main chromatin remodelers in several stages of spermatids and sperm by using 

RNA-seq data. I found out that based on gene expression data it is a bit difficult to 

say which chromatin remodeler might be involved in organization of the sperm 

chromatin based on the fact that many of them are expressed during 

spermiogenesis. 

 In my project, we mainly determined the principles specifying selective 

nucleosome retention versus eviction from a genomics perspective. Our results are 
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not directly linked to the molecular mechanism of this process. Nevertheless, our 

genomic approach provided important hints about how the selective remodeling 

process is achieved, which could enable the design of functional experiments for the 

future.  

We have identified that overall selective nucleosome retention occurs as a 

result of combinatorial action of many factors. However, the major finding from my 

project is that nucleosomes are retained selectively at CpG islands. The big question 

is how this sequence specific packaging is achieved. We have determined that in 

round spermatids, there is high nucleosome turnover as a result of high eviction of 

canonical H3 variants H3.1/H3.2 at CpG islands. These sites correspond to the 

regions where we have the high enrichment of the replacement variant H3.3 in 

sperm. In this respect, I propose that specific enrichment of the nucleosomes at CpG 

islands is coupled to a mechanism which does not evict nucleosomes at those sites 

because of dynamic chromatin environment and accessibility issues, resulting in 

H3.3 fill in at CpG islands. The same mechanism enables H3.1/H3.2 retention at 

CpG islands most probably linked to low turnover of H3K27me3 marked 

nucleosomes at CpG islands. This model assumes that H3.3 and H3.1/H3.2 are 

present at the same CpG rich regions occasionally.  Nevertheless, as the majority of 

H3.1/H3.2 is replaced with H3.3 in round spermatids, CpG specific retention of 

nucleosomes in sperm is best reflected with H3.3 retention.  

One of the main questions concerning this dynamic chromatin environment-

coupled retention of nucleosomes at CpG islands is that whether this is a general 

mechanism which means that presence of any transcription/ chromatin factor creates 

a dynamic chromatin environment and protection against exchange with protamines 

is achieved passively. Alternatively, the presence of a specific CpG binding protein 

could actively prevent the replacement of nucleosomes by protamines. Even in an 

another theory, protamines may not simply have affinity for CpG-rich sequences and 

do not remodel nucleosomes at CpG islands. These possibilities might be clarified by 

the identification of protein complexes interacting with nucleosomes in round and 

elongating spermatids. In addition, experiments measuring the affinity of the 

protamines for a range of DNA sequences with different composition might be 

designed.  

In addition to specific retention of nucleosomes at CpG islands, occasionally 

incomplete remodeling of nucleosomes by protamines results in random retention of 

nucleosomes. This random retention theory should be equally true for the retention of 

both H3.3 and H3.1/H3.2 containing nucleosomes. Nevertheless, as the majority of 
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H3.1/H3.2 containing nucleosomes is evicted from CpG islands in round spermatids, 

globally H3.1/H3.2 retention appears as more irregular.  

 

3.3 Potential function of chromatin states brought by sperm in early embryonic  
development 
 Sperm has been thought for many years as inert and not carrying any 

information for embryonic development. This could be mostly attributed to little 

amount of histone retention and presence of very small amount of RNA in mature 

sperm.   

Upon fertilization protamines are rapidly exchanged by maternally provided 

histones. Retained histones in paternal genome are not readily detected by 

immonofluorescence staining. For instance, H3K27me2/3 becomes only visible 

during first DNA replication (Albert and Peters, 2009). Nevertheless, genome-wide 

studies in human sperm (Brykczynska et al., 2010; Hammoud et al., 2009) and data 

from this study in mouse sperm showed the existence of modified histones in mature 

sperm. This example basically highlights the importance of use of an high-resolution 

method in making conclusions about a cellular system.  

After fertilization information carried by sperm and oocyte encounter a critical 

decisive process: reprogramming or inheritance? At this point, most of the ideas are 

based on DNA methylation patterns. Initially, it was thought that genome-wide DNA 

methylation landscapes were reprogrammed upon fertilization. Nevertheless, a 

number of genome-wide studies showed the existence of escapers from this 

reprogramming process (Borgel et al., 2010; Kobayashi et al., 2012; Smallwood et 

al., 2011; Smith et al., 2012). For chromatin marks, reprogramming versus 

inheritance issue is more under debate since it is very difficult to perform ChIP 

experiments in oocyes and early embryos and compare histone modifications to the 

ones obtained with sperm given the little amount of material that could be obtained 

with early embryos and oocytes.  

Several studies investigating the role of paternal epigenetic inheritance 

pointed out the potential role of sperm-transmitted information to the next generations 

although the molecular mechanisms linking the epigenome of sperm to the 

phenotypes observed are mostly unclear (Carone et al., 2010; Zeybel et al., 2012). 

We have identified that histones are retained in sequence and histone variant 

specific manner in mouse sperm. Although, we do not have functional data yet, we 

identified that the majority of the genes which have repressive H3K27me3 were 

never expressed during early embryogenesis, on the other hand, genes which are 

marked by active H3K4me3 in sperm were associated with embryonic gene activity. 
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Furthermore, histone modification states in sperm are highly similar to histone 

modifications identified in embryonic stem cells. These data highly suggests that 

retained histones in sperm are involved in the regulation of gene activity in early 

embryonic development.  

We have determined that histone H3 variants are differentially retained in 

mature sperm. In this respect, transmission of information on H3.3 and H3.1/H3.2 

might be highly different. We could say that H3.3 has more potential to transmit 

epigenetic information than H3.1/H3.2 and the genomic regions passing  information 

on H3.3 to the next generation will be more specific (mostly CpG islands). However, 

transmission of H3.1/H3.2 containing nucleosomes might be more subject to 

variegation as its retention is most probably connected to incomplete remodeling 

events.  

Transmission of specific chromatin structure of the sperm to the early embryo 

might be critical for the correct patterning of embryogenesis. Although it is not highly 

efficient, normally round spermatid injection (ROSI) into oocyte gives rise to offspring 

without the need of a mature sperm. It has been shown that embryos obtained with 

ROSI have abnormal levels of DNA methylation at the end of first DNA replication 

compared to embryos obtained with intracytoplasmic sperm injection (ICSI). It was 

identified that H3K9me3 was present in centromeric heterochromatin region in round 

spermatids but not in mature sperm. Given the close association between DNA 

methylation and H3K9me3, it has been suggested that presence of H3K9me3 might 

be the cause of abnormal DNA methylation in early embryos obtained with ROSI 

(Kishigami et al., 2006). Fittingly, we have observed that H3K9me3 is not retained in 

mature sperm. It mainly marks the repetitive part of the genome in round spermatids 

(data not shown). Overall, these findings highly suggest that improper retention of 

nucleosomes in mature sperm actually can impair proper chromatin organization of 

the early embryo.  

Although it is not completely clear, a study identified that in infertile men 

histones were more randomly retained and levels of H3K4me3 and H3K27me3 at 

developmentally important loci were slightly reduced compared to fertile men 

(Hammoud et al., 2011). With respect to our finding that histones are retained in 

histone variant specific manner, in future it would be interesting to check whether 

differential histone variant retention is associated with fertility status of individuals.  

In conclusion, currently functional data which shows the necessity and 

function of retained nucleosomes for early embryonic development does not exist. 

Nevertheless, our results and data from other studies indicate the potential of sperm 

in this respect. At the end, even if the absence or the presence of a chromatin mark 

153 
 



in sperm would not be critical for the full competence of early embryo, it could have a 

role in fitness of an organism.  
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