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ABSTRACT 

Despite the compelling clinical need to regenerate damaged tissues/organs, the impressive 

advances in the field of tissue engineering have yet to result in viable engineered tissue 

products with wide-spread therapeutic adoption. Although bioreactor systems have been 

proposed as a key enabling factor in the manufacture of standardized and cost-effective 

engineered products, this concept appears slow to be embraced and implemented. Here we 

address scientific, regulatory and commercial challenges intrinsic to the bioreactor-based 

translation of tissue engineering models into clinical products, proposing a roadmap for the 

implementation of a new paradigm. The roadmap underlines that bioreactors must be 

implemented throughout product development, allowing the scientific, medical, industrial and 

regulatory parties to address basic research questions, conduct sound pre-clinical studies, and 

ultimately facilitating effective commercialization of engineered clinical products. 

 2 



INTRODUCTION 

In the last couple of decades, the appealing possibility of combining living cells with suitable 

carriers for the regeneration of damaged or lost tissues and organs has promoted the 

interaction of scientists, engineers, clinicians and business people, leading to the 

establishment and progressive consolidation of the field of tissue engineering. Examples of 

successful clinical implementation of the developed concepts include restoration of corneal 

surfaces [1,2], replacement of a bronchus segment [3], reconstruction of bone [4] and 

cartilage defects [5], as well as of diseased bladder [6]. Despite significant achievements and 

enormous clinical demand, the clear need for viable tissue engineered products that are 

broadly available to patients as part of the routine toolkit of medical treatments still remains 

unsatisfied. On the one hand, this may be due to a relatively limited establishment of 

prospective, randomized clinical studies, demonstrating reproducibly superior effectiveness of 

engineered grafts as compared to conventional treatments. On the other hand, addressing 

manufacturing-related issues has been proposed to be key for the success of cell-based 

engineered products [7]. Indeed, as in other applications of biotechnology (e.g., for the 

production of antibodies or molecular vaccines), successful clinical use of engineered tissue 

products, as well as their commercial exploitation, may be critically dependent on the 

introduction of bioreactor-based manufacturing systems [8]. Bioreactors, intended as a means 

to generate and maintain a controlled physico-chemical culture environment, indeed represent 

a key element for the automated, standardized, traceable, cost-effective, safe and regulatory 

compliant manufacturing of cell-based products or engineered grafts for clinical applications 

[9,10] (Figure 1). However, notwithstanding the promise of a few pioneering systems 

currently under development or clinical testing (e.g., Octane Biotech Inc., Canada - 

http://www.octaneco.com/biotech and Aastrom Biosciences Inc., USA - 

http://www.aastrom.com) this concept has not yet broadly facilitated the transfer of cell-based 

processes into clinically and commercially viable therapeutic solutions. In this paper, we 
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address the scientific, regulatory and commercial challenges that are hampering the 

bioreactor-based translation of tissue engineering into clinical products, and based on these 

issues, propose a roadmap for the implementation of a new paradigm.  The new paradigm is 

fundamentally rooted in the perspective that sensor-based bioreactors must be deployed and 

validated throughout the product development pipeline, from initial conception until 

manufacturing of the implant. 

 

SCIENTIFIC ASPECTS 

The introduction of bioreactors in the field of tissue engineering was initially advocated as a 

powerful means to apply defined regimes of physical forces, with the ultimate goal to regulate 

and possibly improve the mechanical functionality of the resulting engineered grafts [11]. 

This approach has advanced scientific understanding of mechanoregulation of developing 

tissues and emphasized the importance of controlled physical conditioning in tissue 

regeneration. However, the effective need to apply mechanical forces in vitro to generate 

more functional grafts is still controversial. Indeed, beyond a few cases where graft 

functionality might need to be fully developed prior to implantation, such as for engineered 

blood vessels [12] or heart valves [13], it is becoming increasingly clear that tissue maturation 

could be more efficiently induced by the physiological biochemical and mechanical cues of 

our body as an ‘in vivo bioreactor’ [14], provided that an appropriate quality “starting 

material” is implanted. Moreover, introducing a mechanical loading regime that correctly 

emulates the dynamic physiology of the body in order to generate a fully functional tissue 

would likely make the manufacturing process too complicated and lengthy, and as a result, 

too expensive and impractical.  

In principle, as compared to smart functionalized materials or drug delivery devices, cell-

based grafts have the potential to provide superior clinical outcomes, due to the multivalent 

biological activity of cells (e.g., multiple growth factor release, self-contribution to tissue 

 4 



regeneration) and/or of the deposited extracellular matrix (e.g., efficient storage and release of 

morphogens, physiologically functional mechanical properties). However, engineered 

products will only be a viable and competitive option against the upcoming off-the-shelf 

block busters in regenerative medicine [7] if they are manufactured with reproducible 

properties, a prerequisite for consistent clinical outcomes. This important target is mainly 

challenged by the intrinsic variability, often not sufficiently underlined, in the behavior of 

human cells from different batches or donors [15], as well as by the sensitivity of cells to 

perturbations in the culture environment. While the spotlight of bioreactor-based tissue 

engineering has typically been on enhancing the functionality or maturation stage of the 

resulting engineered tissues, the potential for controlled sensor-based bioreactor systems to 

minimize process and product variability should receive equal attention. By monitoring and 

controlling physico-chemical culture parameters, bioreactors can help to standardize both the 

required bioprocesses and the resulting engineered graft, and ensure the automated protocols 

are compatible with regulatory and commercialization requirements (see sections below and 

Text Box 1). Moreover, by streamlining culture processes and bypassing operator/handling-

dependent procedures, bioreactor-based systems have the potential to increase the robustness 

and stability of the graft manufacturing process [16,17]. 

Clearly, in order to broadly deliver on the described opportunities, continued progress against 

dominant challenges remains essential. These are not only related to the limited availability of 

on-line, non-invasive ‘sensing’ techniques for important culture parameters (e.g., cell number, 

differentiation stage, metabolic activity), but also to the limited fundamental understanding of 

the cellular and molecular processes underlying regeneration and function of specific tissues 

and organs. Indeed, to better control and standardize key output product characteristics such 

as cell identity, quality, purity and potency, the mode of action associated with tissue 

regeneration should be identified and validated. For example, in most cases it is not yet 

established whether the performance of a specific engineered product is dependent upon the 
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number of implanted cells, the cell phenotype at the time of implantation, the amount of 

specific extracellular matrix proteins deposited, or the profile of released cytokines. 

Understanding these scientific uncertainties will help to identify relevant biomarkers, 

including extracellular matrix components, proteins indicative of proliferative/differentiation 

stage and metabolites, which can serve as critical process quality control points and predict 

potency of a tissue engineered product [18]. Based on this necessary fundamental knowledge, 

the next challenge will then be to define which ranges of specific biochemical, metabolic, 

and/or environmental culture parameters (e.g., growth factors, glucose, pH, etc.) are required 

to guarantee reproducible potency features. In this regard, it is clear that the monitoring and 

control capabilities provided by bioreactor systems, linked to the scientific knowledge 

obtained through the application of defined and controlled sequences, provides a valuable 

feedback loop to refine the culture processes and optimize the properties of the engineered 

product. 

 

REGULATORY ASPECTS 

The clinical introduction of engineered tissue products will likely involve significant 

regulatory oversight, with an additional degree of complexity as compared to policies and 

guidance recently implemented on different international levels for cell therapy [19-21]. 

While manufacturing strategies based on conventional manual cell culture techniques might 

find difficulties in complying with the new regulatory framework, bioreactor-based 

manufacturing processes inherently involve automation and reproducibility that facilitates 

compliance with regulatory objectives. In particular, monitoring process parameters and 

specific properties of the developing/final graft will allow for a higher level of traceability of 

key manufacturing data related to identity, purity, and potency of the implant. Moreover, by 

minimizing the required manual procedures of handling the cells and tissue constructs by the 

operator, automated bioreactor systems with control platforms and software-based data 
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management will facilitate compliance to safety regulations. Ultimately, a stand-alone, fully-

automated and closed system would provide a GMP-compatible manufacturing unit complete 

with environment control, full operational traceability and failsafe protection measures that go 

well beyond simplistic automated cell culture.  In essence, this is in itself a kind of “GMP-in-

a-box” concept, with the potential to reduce dependence on large, costly and sometimes not 

easily available regulatory-compatible facilities (see Text Box 1). 

In order for these opportunities to be translated into effective ways to facilitate a more 

widespread use of tissue engineered products in the clinic, we foresee commonly 

underestimated difficulties and challenges, related to the practical details of implementation. 

First, the often rather undefined mode of action of engineered tissues and the limited 

availability of potency markers on a tissue level eclipses pragmatic testing protocols that can 

be realistically deployed in the production process (see section on scientific aspects). Issues 

related to the lack of certainty with which the product output provides the expected patient 

benefit challenges a credible plan for ‘validation’, namely the ability to predict performance 

with a high degree of confidence in the absence of direct data.  The validation of production 

processes is pivotal to regulatory compliance and needs considerable attention in preparation 

for regulatory review. 

The clinical deployment of bioreactors for the preparation of engineered tissues inherently 

depends upon the safe, reliable and user friendly operation of the system in production 

environments. Fundamental to any regulatory assessment is the comprehensive analysis of 

product, process, and environment risk, along with the specific implementation of risk 

mitigation practices to address ‘critical’ risks.  Risk criticality is assessed based on 

occurrence, severity and detection, with all factors playing a crucial role in identifying key 

nodes for active risk management.  As for other fields of biotechnology, the use of 

standardized and automated systems (in this case bioreactor-based manufacturing systems) 

enables critical risk factors associated with operator handling and the production process to be 
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successfully mitigated. However, an overview of risk and risk control associated with the use 

of bioreactor-systems for the production of engineered tissues, illustrated in Table 1, indicates 

the complexity and large spectrum of processes involved. Indeed, skepticism by regulatory 

authorities on the implementation of bioreactor-based graft manufacturing could be tempered 

by introducing a sound risk assessment early enough in product development.  

Beyond the characterization and mitigation of risk associated with the automated tissue 

engineering process, the regulatory approval of bioreactor systems for production of cell-

based implants for clinical use will be highly dependent upon the compliance of the 

surrounding production environment.  For facilities with pre-approval for cell manipulations, 

the integration of additional equipment to further the culturing of the implant would be 

significantly more straightforward (although appropriately challenging on the details of the 

process) than implementation in the more open environment of a specialized clinic. In this 

regard, uncertainties on the interpretation of ‘closed system’, especially considering the 

necessary sampling for off-line monitoring (e.g., for sterility tests) or the need for direct 

intervention based on “out of specification” (OOS) signals, make it difficult to identify 

precise rules on the practicality, from a regulatory/safety standpoint, of the “GMP-in-a-box” 

concept.  

 

COMMERCIAL ASPECTS 

While the promise of tissue engineering has captivated many enthusiasts and has generated 

significant international investments in research, commercially engineered products are 

confronted with tough economic realities related to uncertain cost-benefit performance and 

ultimate eligibility for reimbursement. The limited and perhaps discouraging commercial 

progress to date could be related to the fact that the basic procedures for generating 

engineered tissues have generally been based around conventional manual bench-top cell and 

tissue culture techniques. These manual techniques seem to be particularly appealing during 
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initial stages of product development (particularly for start-up initiatives) since the simple and 

wide-spread manual approach is generally viewed as being a route to minimize initial 

development time and investment costs, and allow for quick entry into clinical trials and to 

the market. However, down the line as scientific, technical and commercial momentum 

builds, production costs associated with manual production quickly become a barrier, in 

addition to the fact that the traditional techniques possess inherent risks for contamination and 

intra-/inter-operator variability.  Furthermore, pragmatic limits on the escalation of unit 

production volumes (up-scaling) and related inefficiencies in traceability result in significant 

challenges to business models that had been founded on manual protocols. As an alternative, a 

closed, standardized, and operator-independent bioreactor-based production system would 

possess great benefits in terms of safety and regulatory compliance, and despite incurring high 

product development costs initially, would have great potential to improve the cost-

effectiveness of a manufacturing process in the long run, while maximizing the potential for 

process scale-up (see Text Box 1). 

The advantages of a bioreactor-based approach appear convincing and yet bioreactor 

technology is not widely adopted.  This cannot be due to a lack of competent bioreactor 

designs, as one only needs to perform a literature or patent search to appreciate the plethora of 

various bioreactors developed to date. So why have we not seen more of a drive to implement 

bioreactors for the manufacturing of engineered products for clinical applications? 

Perhaps the clinical vision in each of the different segments of tissue engineering is still 

relatively immature and hence quality, validation and productivity demands are considered 

secondary challenges. One contributing factor to the delayed introduction of novel bioreactor 

technology could be the required change of mindset to break from well-established cell 

culture methods. To make this leap, and for bioreactors to gain greater general acceptance, 

simple and more user-friendly bioreactor systems will have to be introduced during the 

research phase, given that the routine handling of complex and technically challenging 
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systems may discourage their introduction into laboratories that lack a specialized and trained 

work force. Moreover, even if one does acknowledge that bioreactors can generate engineered 

tissues of higher quality, there is currently little data highlighting the process reproducibility 

and – to the best of our knowledge – no sound analysis that critically assesses the potential 

cost-effectiveness of a bioreactor-based production system. Indeed, economic tools to help 

guide investment decisions and to evaluate the potential cost-effectiveness of an engineered 

product are complex, rely on strong assumptions, and are not yet well-established. As a first 

step, typical methods for the analysis of factors influential in strategic planning need to be 

applied to the commercialization of bioreactor-based tissue engineering for the clinic. Without 

reference to a specific clinical indication, the results from a SWOT (Strengths, Weaknesses, 

Opportunities and Threats) analysis (see Table 2) indicate that the adoption of bioreactors in 

the clinical delivery of tissue engineering could indeed introduce attractive strengths and 

opportunities. Not surprisingly, the new bioreactor-based approach also carries certain 

weaknesses and invokes threats that need to be addressed as part of a well developed clinical, 

regulatory and reimbursement plan. In order to derive more quantitative indications, the use of 

a Headroom Method has been proposed as a simple but rigorous way to make preliminary 

conclusions as to the cost-effectiveness of a new tissue engineering treatment [22]. 

Difficulties with the implementation of such analytical tools are related to the fact that some 

critical parameters required as input, for example the expected improvement of clinical 

performance, can only be arbitrarily assumed, in lieu of the uncertainties associated with an 

undeveloped technology. 

The lack of cost-benefit analyses in the context of clinical efficacy precludes a plausible 

assessment of the likelihood of reimbursement coverage for the production and surgical 

implantation of engineered products, which in turn severely impacts the credibility of 

commercial business plans founded on the widespread use of tissue engineering. Taken 

together, challenges to the tissue engineering business model coupled with budding but as yet 
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not robust demand for bioreactor systems, it is not surprising that industry has been hesitant to 

embrace commercialization of engineered products and invest significant resources upfront to 

develop and/or utilize sophisticated manufacturing technology.  

Closer interactions between scientists/engineers and the other involved stakeholders (e.g., 

regulatory bodies, clinicians, industrial partners, health care providers) must therefore aim at 

an integrated bioreactor design, deployed in a system which can be practical and economical 

for clinical use. We now have nearly two decades of bioreactor technology for engineered 

tissues at our disposal, and although these research-oriented systems are generally too 

complex, user-unfriendly, unsafe, and expensive to be directly utilized for clinical 

applications, their underlying principles could nevertheless lay a solid foundation for more 

clinically compliant manufacturing systems. This will require the identification of only the 

most essential processes, culture parameters, and construct parameters that must be monitored 

and controlled in order to standardize production and provide meaningful quality and 

traceability data, but which minimizes risks, costs, and user-complexity.  

In this regard, it is questionable whether complex and rather costly automated/robotic 

systems, which essentially mimic established manual procedures, could actually demonstrate a 

real cost-benefit by replacing manual cell culture techniques in a manufacturing process. 

Moreover, current automation techniques may fail to capture the expert nature and role of the 

cell culture technician. Instead, bioreactor designs could be dramatically simplified, and 

related development costs significantly reduced, if we re-evaluate the conventional tissue 

engineering paradigms and implement novel concepts and techniques that could streamline 

the numerous individual bioprocessing steps. Simplified tissue engineering processes could be 

key to future manufacturing strategies by requiring only a minimal number of bioprocesses 

and unit operations, thereby facilitating simplified and compact bioreactor designs with 

limited automation requirements, with the likely result of reduced product development and 

operating costs. Here we underline the importance of simplicity and minimal costs while 
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maintaining core attributes of implant consistency and overall manufacturing productivity and 

scalability. And while we have attempted to draw several parallels to bioreactors in other 

fields of biotechnology, the analogy begins to break down during up-scaling, especially in the 

context of autologous implants. Given that cells from each patient will be highly variable and 

must be processed as completely independent batches, we cannot simply upscale the total 

volume as we would a fermentation process or even for an allogeneic product. Alternatively, 

the clinical need requires “scaling out” (i.e., to replicate the same bioprocesses at multiple 

sites) simply by adding additional (low-cost) units to the production as product demand 

increases [23] (see Figure 1).  

Finally, we must ask where the potential exploitation of bioreactors lies within the broad 

spectrum of tissue engineering applications. Could there be a market for a simple and user-

friendly bioreactor for general use in basic research applications? Are hospitals a viable 

market? A closed “GMP-in-a-box” system would allow competent hospitals to manufacture 

engineered grafts on-site, without reliance upon a centralized industrial manufacturing 

facility. On the other hand, would the predominant market lie in industrial firms producing 

engineered products in-house, with the perspective of introducing automated bioreactors 

within their manufacturing process? At the present stage, none of these markets can be 

excluded, and it is likely that business models will have to be adapted to some specific upfront 

decisions. For example it is possible that a centralized manufacturing facility is appropriate 

for the engineering of allogeneic grafts, whereas hospital-based production could become a 

reality for autologous cell-based tissues.  

 

CONCLUSIONS  

The use of bioreactor-based platforms for the translation of tissue engineering strategies into 

clinical products offers attractive opportunities for exploitation, as well as the potential for 

broad implementation of cell-based grafts as therapeutic solutions. However, in order to make 
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this paradigm successful, several challenges of diverse nature need to be realistically 

considered and constructively addressed, as outlined in the roadmap proposed in Figure 2. 

The roadmap advocates that bioreactor-based manufacturing concepts need to be introduced 

in the development of a tissue engineered product as early as possible. This will allow 

academics, developers, and industry participants to (i) properly address underlying research 

questions (e.g., offering the possibility to test the effect of controlled changes in discrete 

parameters), (ii) carry out sound pre-clinical studies (e.g., offering the possibility to test the in 

vivo performance of grafts with reproducible features), and (iii) maintain strong ties with 

regulatory and commercial dimensions (e.g., offering the possibility to implement scaling 

concepts and compliance with safety requirements). The proposed roadmap also conveys that 

scientific, regulatory and commercial aspects should all be considered in each of the 

translational stages, from the initial conception to the final implementation of a clinical 

product, leading to continuous refinements and beneficial corrections.  

Last but not least, success of bioreactor-based tissue engineering products will also depend on 

the acceptance of the proposed paradigms by the involved stakeholders (e.g., surgeons, 

industry alliance partners [24], investors, health insurance companies), as well as by the 

general public (i.e., the potential patient population) [25]. In fact, while the availability of 

therapeutic products has the potential to develop the market, it should not be underestimated 

that key for their ultimate success will closely depend on the generation of a receptive society, 

which needs to be educated by appropriate dissemination activities.   
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Text box 1: Key opportunities and challenges for implementing bioreactors  
 
Scientifc aspects  
 
Key Opportunity 
Sensor-based bioreactors enable unmatched ability to regulate bioprocesses to minimize process and product 
variability. 
 
Key Challenge 
Additional scientific insight is required to maximize the utility of bioreactor technology in providing TE grafts 
with consistent properties. 
 
 
Regulatory aspects  
 
Key Opportunity 
Bioreactor-based processes, which include monitoring and data management systems, can offer a high level of 
traceability and compliance to safety guidelines. 
 
Key Challenge 
Ambiguous regulatory guidelines currently hinder the deliberate design of bioreactors which comply with 
specific and clear specifications.  
 
 
Commercial aspects 
 
Key Opportunity 
Automated bioreactor systems may enable safe and standardized production of TE grafts, maximizing the 
prospective of up-scaling and cost-effectiveness in the long-term. 
 
Key Challenge 
Models for the commercialization of TE products are not well-established, resulting in uncertainties related to 
markets, regulatory approvals, reimbursement and overall clinical adoption. 
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Table 1: Overview of Risks and Risk Mitigation for Bioreactor-based Manufacturing 
Systems.   
 
Risk Risk Control/Mitigation 

Bi
ol

og
y 

Contamination & Infection • Closed sterilized system 
• Inputs sterile/clean when introduced 
• Contamination testing on every lot (individual patient level) 

Toxicity/Bioburden/Pyrogens • Bioreactor and related fluid contacting surfaces selected from USP Grade 
• Pre-test bioreactor system with target cell type 
• Validate production bioburden and pyrogen levels 

Shear Stress Damages Cells • Bioreactor system designed with benefit of fluid modeling 
• Validate operational sequence and maximum flow rates with target cell type 

Compromised Cell Vitality & 
Performance 

• Biosensors for strict maintenance of culture conditions 
• Media and reagent sources refrigerated while on-line 
• Adaptive software to minimize effects of donor variability 

Final Cell Population Insufficient for 
Clinical Objective 

• Establish gateway specifications in multi-step bioprocesses 
• Automate monitoring of cell behavior to trigger cell collection 

Sterilization Failure • Validate according to established international standards 
Inadequate Packaging Shelf Life • Validate according to established international standards 

Bi
or

ea
ct

or
s &

 In
st

ru
m

en
ta

tio
n 

Disposable Cassette Fails to Ensure 
Consistent and Error Free Operation 

• Direct attachment of cell/tissue input container to minimize manual handling 
• Multi-layers to input container to reduce contamination risks 
• High level of operator visibility on process bioreactors for verification steps 
• Biological pathway entirely closed within cassette - zero transfer to instrument  
• Sampling ports to enable sterile withdrawal of samples (e.g. microbial testing) 
• Output container designed for direct transfer to clinical setting 

Bioreactor System Integrity Failure • Validate connections & methods 
• 100% leak test 
• Sampling program 

Sensor Reliability Issues • Sensor selection enables accurate monitoring for ex-vivo period without fouling 
• Operational back-up (i.e. dual monitoring & alternate monitoring) 
• Validate sensor tolerance to sterilization protocol 
• Validate sensor shelf life when incorporated into cassette 

Electromagnetic Interference (EMI) & 
Static Discharge Sensitivity 

• Test EMI emissions and sensitivity 

Electrical Safety Issues • Meet legislative standards for safety 

So
ft

w
ar

e 

Code Error • Design code per standards 
• Rigorous code validation practices 

Software Corruption • Standard software error checking 
• Reload from non-volatile memory 
• System watch-dog 

Power Failure Recovery • Establish redundant memory 
• Automated recovery routines 

Operating System Compromised • Code redundancy 

U
se

r 
 

Inadvertent Misuse • Design of bioreactors and instrumentation anticipate and preclude misuse 
• Failsafe operation 
• Clear instructions for use 
• Field maintenance program 
• Remote service link-up 

Inadequate Operational Records • Process tracking and storage in non-volatile memory 
• Data output via computer link 
• Compliant with regulations on electronic records 

Unauthorized Use • User security codes/redundancy 
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Text Box 2:  

SWOT Analysis for Bioreactor-based Manufacturing of Engineered Products 

Strengths Weakness 

• Bioreactors enable consistent implementation of bioprocesses 
under regulated culture conditions to maximize TE productivity 

• ‘Smart’ bioreactor systems employing integrated sensors provide 
foundation for validation of TE processes for implant production 

• Intelligent operation of system enables autonomous sequences to 
be delivered without the need for continual staff intervention 

• Bioreactor control systems utilize protective measures to ensure 
output of process is safe and effective 

• Operation of automated system and related user interface controls 
are easy to use within implant production facilities 

• Pre-configured bioreactors and related system components enable 
reduced cost of routine operation, following initial set-up 

• Automatic monitoring, collection and archiving of process data 
enhances institutional compliance with regulatory requirements 

• TE production systems based on automated bioreactor technology 
are ideally suited to progressive scale up of process throughput 

• No pre-existing market model to use as commercialization 
benchmark 

• Operational constraints associated with bioreactor design 
potentially limits visualization of on-going process  

• Automation requires upfront investment in capital equipment; 
however, follow-on costs are economical 

Opportunities Threats 

• Large regenerative medicine market [7] provides opportunity for 
TE-based product derivatives once effective implant production 
and delivery methods are available 

• The  success of a few representative models of bioreactor-based 
delivery of TE into the clinic will accelerate commercial & 
healthcare provider interest 

• Technical and administrative consistency of bioreactor-based TE 
supports transition and expansion from research through to clinic 

• Adoption of bioreactor-based standards will enhance clinical data 
analysis and reinforce regulatory documentation 

• Inherent consistency and quality of bioreactor output maximizes 
opportunity to pursue effective reimbursement for TE procedures 

• Continued refinement of scientific insights on tissue engineering 
processes can be translated to clinic via bioreactor upgrades 

• Early focus of TE in clinical therapeutics will likely focus on 
critical conditions that enable recovery of bioreactor R&D costs. 

• Cost-benefit of cell-based product may prove insufficient to 
compete with off-the-shelf alternative 

• The use of preconfigured bioreactor assemblies and automated 
techniques may require the mindset of certain users to change 

• Operation of system to produce cell-based implants via automated 
techniques potentially displaces specialized work force 

• Underlying science of bioreactor-based TE may be limited by 
insufficient supporting data (e.g. mechanism of action) 

• Innovative bioreactor technology might be constrained or delayed 
by mismatch with established regulatory standards 

• Implementation of bioreactor-based TE strategies could be 
constrained or delayed by validation challenges inherent in the 
adoption of automated processes (e.g., lack of appropriate quality 
control markers) 
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FIGURE LEGENDS 

Figure 1. Potential model for a commercial bioreactor-based system. The translation of 

bioreactor-based tissue engineering into the clinic would benefit from the integration of 

bioreactor technology into state of the art systems which meet the safety, traceability and 

efficiency expected in healthcare environments.  In order to eliminate the prospect of cross 

contamination, the bioreactor and associated media management would be ideally isolated on 

a patient-specific level through the use of disposable bioreactor ‘cartridges’ or ‘cassettes’.  

Automated operational control over the cassette would occur via a space-efficient, multi-

channel (i.e. multi-patient) instrument that operates under password-protected security access.  

Initiation and monitoring of the process underway for each patient would occur via an 

intuitive graphical interface that provides an accurate and timely indication of status 

operation, along with secure data archiving.  As the process advances within the cassette, 

biosensors associated with the bioreactors and media management system provide feedback 

on tissue culture conditions and enable the control system to maintain critical process 

parameters.  Upon completion of the process, the cassette would enable the removal of an 

output cartridge that inherently protects the internal vial during the final stages of transport to 

the surgical center for implantation. Automated cell processing systems have been developed 

by several groups such as Aastrom Biosciences Inc., (http://www.aastrom.com) and Tissue 

Genesis Inc. (http://www.tissuegenesis.com).  The example illustrated is under development 

by Octane Biotech Inc. (http://www.octaneco.com/biotech) with the essential goal of enabling 

full GMP processing on a miniature and cost-effective scale. 

Figure 2. A proposed roadmap for translating bioreactor-based engineered products 

into the clinic. Highlighted are the most critical scientific, regulatory, and commercial 

challenges that will need to be addressed along the path irrespective of the particular tissue 

engineering application. 
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Once embarking into the development of a bioreactor-based tissue engineering system, and 

targeting a specific clinical application with clear goals in terms of projected clinical outcome, 

core biological criteria associated with the engineered product, the relevant bioprocesses, and 

basic regulatory guidelines must be established and verified. Planning and conducting sound 

pre-clinical studies will allow to further assessing and validating the criteria that had been 

previously established in the core biology platform, most likely leading to refinements and 

optimization of bioprocesses as well as to a better understanding of the underlying biology. 

Interactions with industrial partners will facilitate the transition between platforms, through 

the evolution and industrialization of research based technologies as well as by defining the 

commercial potential for the product. In the final stage of the roadmap, which clearly is the 

most challenging and critical, the translation to the clinic platform will engage clinical, 

regulatory and reimbursement strategies [26]. 
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