edoc-vmtest

Modulation of T-cell activation by malignant melanoma initiating cells

Schatton, Tobias and Schütte, Ute and Frank, Natasha Y. and Zhan, Qian and Hoerning, André and Robles, Susanne C. and Zhou, Jun and Hodi, F. Stephen and Spagnoli, Giulio C. and Murphy, George F. and Frank, Markus H.. (2010) Modulation of T-cell activation by malignant melanoma initiating cells. Cancer research, Vol. 70,2. pp. 697-708.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6004633

Downloads: Statistics Overview

Abstract

Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. Thus, only a restricted minority of tumorigenic malignant cells may possess the phenotypic and functional characteristics needed to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis. Tumorigenic ABCB5(+) malignant melanoma initiating cells (MMICs) possessed the capacity to preferentially inhibit IL-2-dependent T-cell activation and to support, in a B7.2-dependent manner, induction of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). Compared with melanoma bulk cell populations, ABCB5(+) MMICs displayed lower levels of MHC class I, aberrant positivity for MHC class II, and lower expression levels of the melanoma-associated antigens MART-1, ML-IAP, NY-ESO-1, and MAGE-A. Additionally, these tumorigenic ABCB5(+) subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1, both in established melanoma xenografts and in clinical tumor specimens. In immune activation assays, MMICs inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5(-) melanoma cell populations. Moreover, coculture with ABCB5(+) MMICs increased the abundance of Tregs, in a B7.2 signaling-dependent manner, along with IL-10 production by mitogen-activated PBMCs. Consistent with these findings, MMICs also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T-cell modulatory functions of ABCB5(+) melanoma subpopulations and suggest specific roles for these MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Oncology Surgery (Spagnoli)
UniBasel Contributors:Spagnoli, Giulio C.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Association for Cancer Research
ISSN:0008-5472
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:21 Jun 2013 12:29
Deposited On:21 Jun 2013 12:21

Repository Staff Only: item control page