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List	of	abbreviations	
 
 
4E-BP1 eukaryotic initiation factor (eIF) 4E-binding protein 1 
α-SA α-skeletal actin 
AC9 adenylyl cyclase 9 
AMPK  cAMP-activated protein kinase 
ANP atrial natriuretic peptide 
β-MHC β-myosin heavy chain 
BNP  B-type natriueretic peptide 
BrDU bromodeoxyuridine 
DAG diacylglycerol 
Deptor DEP domain-containing mTOR-interacting protein 
ECM extracellular matrix 
eEF-2k  eukaryotic elongation factor 2 kinase 
eIF4B  eukaryotic elongation factor 4b 
ENaC epithelial sodium channel 
FAT FRAP, ATM, and TRRAP 
FATC FAT C-terminus 
FKBP12 FK506-binding protein 12kDa 
FoxO1/3 forkhead box O1/3 
FRB FKBP12-rapamycin binding 
GAP  GTPase-activating protein 
GPCR G-protein coupled receptors 
GSK  glycogen synthase kinase 
HIF-1α hypoxia-inducible factor-1α 
HM hydrophobic motif 
Hsp70 heat shock protein 70 
IGF1 insulin-like growth factor -1 
IKK  inhibitor of nuclear factor NFkB kinase (IkB kinase) 
ILK  integrin-linked kinase 
IP3 inositol triphosphate 
IRES  internal ribosome entry segment 
mLST8 mammalian lethal with SEC13 protein 8, also known as GβL 
mSIN1 mammalian stress-activated map kinase-interacting protein 1 
mTORC1/2 mTOR complex 1/2 
NDRG1 N-myc downregulated gene 1 
NFAT nuclear factor of activated T cells 
PDCD4 programmed cell death 4 
PH domain  pleckstrin homology domain 
PIKK  phosphatidylinositol kinase-related kinase 
PIP2 phosphatidylinositol biphosphate 
PKA  protein kinase 
PKC  protein kinase C 
PKG protein kinase G 
PLCβ phospholipase C-β 
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PRAS40 proline-rich AKT substrate 40 kDa 
Protor/PRR5 protein observed with TOR/prolin-rich repeat protein-5 
Raptor regulatory-associated protein of mTOR 
RBD  ras-binding domain 
REDD1 regulated in development and DNA damage response 1 
RGD peptide arginine-glycine-aspartic acid containing peptide 
Rheb ras-homolog enriched in brain 
Rictor rapamycin-insensitive companion of mTOR 
S6K1 ribosomal protein S6 kinase 1 
SERCA2a sarcoplasmic reticulum Ca2+ ATPase 
SGK serum and glucocorticoid-induced kinase 
SKAR S6K1 aly/REF-like target 
SRBP1 sterol regulatory element-binding protein 
TCTP  translationally controlled tumor protein 
TM turn motif 
TOP tract of oligopyrimidine 
TOR  target of rapamycin 
TSC tuberous sclerosis complex 
YY1 ying-yang 1 
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1.	Summary		

 
Mammalian target of rapamycin (mTOR) is an evolutionary conserved 

serine/threonine kinase that regulates cell growth and metabolism. mTOR occurs in 

cells in two complexes, termed mTORC1 and mTORC2. This thesis describes 

investigations into the in vivo functions of these two complexes in the mouse heart. 

 

The first part of the thesis focuses on the characterization of the role of mTORC1 in 

the adult heart. To inactivate mTORC1 for analysis of its cardiac functions, we 

ablated the mTORC1-specific and essential component raptor selectively and 

conditionally from cardiomyocytes using cre-loxP recombination. The resulting 

knockout mice showed decreased cardiac function at 3 weeks after gene deletion, 

culminating in heart failure and death after 5 weeks. Furthermore, the mice were 

exposed to voluntary wheel running exercise to trigger physiological cardiac growth, 

or to pathological stress, which was induced by aortic banding. Increased mortality 

was observed after exercise. In response to aortic banding, the raptor knockout mice 

lacked the phase of adaptive hypertrophic growth that normally occurs and went 

directly into dilated cardiomyopathy. In addition, the raptor knockout mice changed 

their cardiac mitochondrial gene expression pattern and switched from fatty acids to 

glucose as their primary source of energy. The decrease in cardiac function was 

accompanied by increased apoptosis and autophagy along with distorted 

mitochondrial structure. In conclusion, our findings establish mTORC1 as important 

regulator of cardiac homeostasis. 

 

The second part of the thesis describes the in vivo function of mTORC2 in the heart. 

We used a similar approach as for mTORC1 to delete the mTORC2-specific 

component rictor selectively from cardiomyocytes. At baseline, during adulthood, 

rictor deletion had no effect on cardiac function. Cardiac geometry was normal in the 

cardiac rictor knockout mice despite the fact that downstream of mTORC2, 

phosphorylated and total Akt and PKC levels were significantly reduced. In contrast, 

conditions of pathological stress induced by aortic banding caused decreased cardiac 

function in the rictor knockout mice. The mice had a phenotype of eccentric 
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hypertrophy with changed chamber dimensions. Increased fibrosis and apoptosis were 

accompanied by enhanced reexpression of fetal genes compared to wild-type mice. 

On the other hand, deletion of rictor during postnatal growth did not show any 

functional or geometrical changes of the heart. Overall, the data demonstrates that 

rictor/mTORC2 is important for cardiac function during the adaptation to pathological 

stress.
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2.	Introduction		

2.1 The heart and heart diseases 

The heart of creatures is the foundation of life, the Prince of all, the Sun of their microcosm, 

from where all vigor and strength does flow. 

- William Harvey, De Motu Cordis, 1628 

 

The first organ to form and function in the embryo is the “Heart”. The heart is composed of 

cardiac myocytes and non-myocytes such as fibroblast, endothelial cells, vascular smooth 

muscle cells and mast cells along with surrounding extracellular matrix. The basic contractile 

units of the heart are sarcomeres, arranged in a specific repeated manner to form myofibrils 

and bundles of such myofibrils constitute cardiomyocytes.1 Cardiomyocytes are the 

specialized muscle cells and form the bulk of the heart's mass, where 70-80% of total mass 

comes from the left ventricular myocytes only. Figure 1 shows the basic anatomy of the heart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic representation of anatomical structure of the heart 

The heart has four chambers; the upper two are called right and left atrium whereas the lower two are 
called right and left ventricle. A muscle wall, called septum, separates the right and left atria as well as 
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the ventricles from each other. The blue arrows indicate the direction of deoxygenated blood is 
coming from the body into the right atrium of the heart, which then further ejected by the right 
ventricle towards the lungs. Oxygenated blood from the lungs, shown by the red arrows, comes first to 
the left atrium and then to the left ventricle. The left ventricle, the biggest and strongest chamber of 
the heart, pumps the oxygenated blood to all parts of the body through the circulatory system. 
(Adapted from, http://www.texasheart.org/HIC/Anatomy/index.cfm). 
 

 

The same thing that makes you live can kill you in the end. 

-Neil Young 
 
Cardiovascular disease is the number one cause of death in the industrialized world and it is 

becoming more and more important, as the numbers of people diagnosed with cardiac 

dysfunction are increasing. Abnormalities occurring during heart formation due to inherited 

mutations in cardiac regulatory genes lead to congenital heart diseases. Cardiac 

malformations are the most common form of birth defect that affects large numbers of 

newborns every year.2 Just as the developing heart is highly prone to malfunctions, the adult 

heart is susceptible to a variety of stimuli arising from different stress conditions, affecting its 

growth and contractile function. A wide range of stimuli arising from various forms of 

hemodynamic stress including hypertension, myocardial infarction, valvular dysfunction, or 

aortic stenosis causes the heart to undergo hypertrophic remodeling. Myocardial hypertrophy 

is traditionally thought to be a protective mechanism employed by the heart, which in the 

beginning normalizes ventricular wall tension in case of myocyte injury or myocyte loss. If it 

persists for a long time, it can lead to diastolic and then systolic dysfunction cumulating to 

cardiac sudden death.3, 4 

 

2.1.1	Cardiac	hypertrophy:	definition	and	classification	

 

Myocardial hypertrophy, also called cardiac hypertrophy, is one of the most remarkable and 

important features that permits the heart to adapt in physiological or pathological stress 

conditions, according to the changes occurring in the hemodynamic load. It is a reactive 

increase in cardiac size or myocardial mass in response to hemodynamic stress.5 

 

Morphogenic changes that occur in heart due to hemodynamic stress are classified according 

to the nature of the inciting tension such as pressure-overload or volume-overload. A 

hypertrophied heart is usually concentric, eccentric, or dilated, depending on the ratio of left 
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ventricular free wall thickness to left ventricular chamber dimensions.6, 7 An increase in 

ventricular wall thickness with little or no change in chamber volume is called concentric 

hypertrophy; an increase in chamber volume with an increase in ventricular wall thickness is 

called eccentric hypertrophy, whereas no change in wall thickness accompanied by increased 

chamber volume is called dilated hypertrophy. Note that both in concentric and eccentric 

hypertrophy there is an increase in cardiac dry mass (reviewed in8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The four major patterns of ventricular remodeling  
Cardiomyocytes change their morphology according to the nature of the inciting workload. Pressure-
load increases the thickness of myocytes that leads to concentric hypertrophy, whereas volume-
overload causes myocytes lengthening resulting into eccentric hypertrophy. Dilated cardiomyopathy 
occurs from various pathological stress-stimuli causing mixed burden of workload on the heart. 
Regular physical training or exercise causes the heart to undergo physiological adaptations, which is 
beneficial for the body.  
 

According to Grossman’s systolic-stress-correction hypothesis, pressure-overload causes 

myocytes to grow in width to increase wall thickness, thereby normalizing the increased wall 

stress as per Laplace relationship, and this thickening leads to concentric hypertrophy. In case 

of sustained volume load, Grossman proposed that increased diastolic stress directs myocyte 

stretching that increases LV internal diameter, causing eccentric hypertrophy9 (reviewed in10) 

described in figure 2. 

 

Assessment of the functional consequences of reactive cardiac growth is important to 

understand the role of “hypertrophy” in the integrated cardiovascular system and overall 
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health of the organism. Based on the left ventricular chamber ejection performance and the 

presumed stage of evolution in an inevitably deteriorating condition, hypertrophy can also be 

categorized as “compensated” or “decompensated”.11, 12 These terms are often used to 

describe the presence or absence of cardiac failure as a whole, but do not reflect the myocyte 

contractile function. As these terms indicate the assumed stage of disease progression, and 

there are few examples showing disconnect between the heart failure and its individual 

myocyte function,13, 14 it is not really so useful in mechanistically classifying the hypertrophy 

as compensated or decompensated (reviewed in8). 

 

Like ventricles, atria can also go in to hypertrophy situations in response to afterload.  For 

example the mitral valve stenosis, that results into thickening of atrial walls. In this condition, 

due to resistance for the blood flow to move across the valve causes high pressure inside the 

left atrium to drive ventricular filling and that lead to atrial hypertrophy. 

 

2.1.2	Cellular	features	of	hypertrophy	

 

An increase in size is the characteristic feature of hypertrophied cardiomyocytes compared to 

normal cells. Sarcomerogenesis, a process of adding sarcomeres to the myocyte, is increased 

in response to hypertrophic stimulus along with the increased expression of the natriueretic 

polypeptides such as atrial natriuertic peptide (ANP) and B-type natriueretic peptide (BNP). It 

is believed that sarcomeres are added in parallel when the stimulus arose from pressure-

overloaded condition that causes cardiomyocytes to increase its cross-sectional area. On the 

other hand, volume-overload results in a lengthening of the myocytes where sarcomeres are 

added in series.15 In both conditions cardiac dry weight is increased.  It is also important to 

determine whether the observed increase in cardiac mass is due to actual enlargement of the 

myocyte i.e. true hypertrophy or because of the cardiac hyperplasia (increase in number of 

cardiomyocytes). Such assessment enables to understand the underlying mechanism behind 

the reactive myotrophy. To determine the cardiomyocyte size in situ, fluorescein-tagged 

wheat-germ agglutinin or anti-dystrophin, which labels the sarcolemma of cells, are used and 

by computerized analysis of cross-sectional area or long-axis, size is determined. To measure 

cardiomyocyte hyperplasia, the number of -sarcomeric actin-stain positive cells per 

myocardial area is generally used. In vivo nuclear labeling with bromodeoxyuridine (BrdU), a 
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biochemical marker of active DNA synthesis is also useful to determine cardiomyocyte 

hyperplasia (reviewed in8). 

 

2.1.3	Molecular	markers	of	cardiac	hypertrophy	

 

Next to the cellular features described above, there are specific genes that get expressed 

during hypertrophic growth of the heart, also referred as “markers of cardiac hypertrophy”. It 

concerns often as reexpression of cardiac fetal genes, including -myosin heavy chain (-

MHC) and -skeletal actin (-SA) along with the already mentioned ANP and BNP. 

Increased levels of these markers usually indicate cardiac dysfunction or a stressed heart.16, 17 

In addition, other studies have shown that decreased expression of calcium cycling protein 

sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) is associated with the hypertrophied or 

failing heart.18 However, studies have also demonstrated that these markers show independent 

or variable patterns of expression based on the hypertrophy model used,19 and therefore 

cannot be used alone to extrapolate the cardiac situation. In such cases, characterization of 

these markers is useful, as they reflect the underlying transcriptional pathways activated in 

that particular system.20 

 

2.1.4	Remodeling	of	the	heart:	physiological	and	pathological	

adaptations	

 

Although we now know that cardiac hypertrophy is a reactive process that increases cardiac 

mass in response to increased load, it is usually considered as a poor prognostic sign and it is 

associated with nearly all types of cardiac failure.5 An exception to this correlation is the 

athlete’s heart where chronic exercise induces cardiac enlargement through a hypertrophic 

response and cardiac function is normal or even enhanced.21, 22 Such modification is termed 

physiological hypertrophy and is reversible in nature. Physiological hypertrophy differs from 

pathological hypertrophy in terms of nature of the stimuli, cardiac morphology, expression of 

hypertrophic genes, reversibility and importantly, cardiac function. A chronic exercise 

program or regular physical training stimulates the physiological growth of the heart. 

Physiological hypertrophy includes embryonic, fetal and postnatal stages of cardiac 

development, and also the growth occurring during pregnancy.23 Like its pathological 



 
2. Introduction 

14 
 

counterpart, physiological hypertrophy can be sub-classified as concentric or eccentric. 

Isotonic exercise such as running, swimming, and cycling produces eccentric hypertrophy, 

whereas isometric or static exercise such as weight lifting leads to concentric hypertrophy.21 

Animal studies in which pathological hypertrophy was compared with the physiological one 

showed distinct structural and molecular bases.24, 25 For example during physiological 

hypertrophy, a fine network of collagen fibers surrounds the growing cardiomyocytes, 

creating a framework, whereas in pathological conditions cardiac fibroblasts and extracellular 

matrix (ECM) accumulate disproportionally in the heart, causing cardiac stiffness leading to 

systolic dysfunction in contrast to physiological hypertrophy. Hypertrophy markers such as 

ANP and -MHC generally do not get re-expressed in models of hypertrophy induced by 

exercise training.26 It is important to note that physiological hypertrophy does not 

decompensate into dilated cardiomyopathy or heart failure (reviewed in27). 

 

2.1.5	Signaling	pathways	involved	in	cardiac	hypertrophy	

 

The initiating stimuli for cardiomyocytes to go into hypertrophy can be classified as stimuli 

from biomechanical and stress-sensitive mechanisms, or from neurohumoral mechanisms that 

are associated with the release of hormones, cytokines, chemokines and peptide growth 

factors. Based on the nature of the stimuli, different types of ligands or transmembrane 

receptors are activated, which in turn converge to downstream signaling cascades to initiate 

reactive hypertrophic growth.28 

 

Despite having distinct characteristics, it was rather unclear until recently whether the 

physiological or pathological hypertrophy was induced by distinct biochemical pathways. 

Complexity occurs when these distinct signaling cascades overlaps in part with each other to 

yield hypertrophic growth. In general, hypertrophy induced through Gq-coupled receptors is 

considered as pathological whereas hypertrophy induced by tyrosine kinase receptor through 

PI3K/Akt/mTOR pathway is well characterized as physiological hypertrophy. 

 

In brief, multiple agonists such as angiotensin II, endothelin-1, or noradrenalin are produced 

in response to the pathological stimulus. These ligands activate G-protein coupled receptors 

(GPCR), which leads to dissociation of Gq, a common transducer for most of the 

pathological hypertrophy signals and causes activation of downstream signaling molecules.29 
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Downstream of Gq, phospholipase C (PLC) hydrolyzes the phosphatidylinositol 

biphosphate (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3). IP3 causes the 

release of calcium ions from intracellular stores such as the endoplasmic reticulum, thus 

activating the calcineurin phosphatase, which in turn dephosphorylates NFAT (Nuclear factor 

of activated T cells). Dephosphorylation of NFAT causes its nuclear translocation and leads to 

pathological hypertrophy. DAG, with or without calcium, activates protein kinase C (PKC) 

family members that also induce hypertrophic gene expression (illustrated in figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A flow chart showing signaling pathways involved in induction of physiological and 

pathological hypertrophy 27 

 

In the case of physiological cardiac growth such as during development, in exercise- or 

pregnancy-induced hypertrophy, insulin or insulin-like growth factor-1 (IGF-1) has been 

shown to play major role. Briefly, these and other peptide growth factors bind to their 

membrane tyrosine kinase receptors and cause receptor dimerization.30 This leads to their 

autophosphorylation and activation of the p110 subunit of PI3K. Activated PI3K 

phosphorylates PIP2 to PIP3, and PIP3 in turn causes recruitment of the kinase Akt to the 
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plasma membrane and leads to its activation by phosphorylation. Activated Akt then 

stimulates the protein synthesis machinery through its downstream target mTOR and also by 

inhibiting glycogen synthase kinase (GSK) (reviewed in27, 31). 

 

To date, as explained above, the GPCR-induced and Insulin/IGF/PI3K/Akt-induced pathways 

are the best-characterized signaling pathways of pathological and physiological hypertrophy, 

respectively. Along with these, there are other signaling cascades that when activated lead to 

cardiac hypertrophy (reviewed in32). 

 

2.2 The mTOR kinase and its regulation 

2.2.1	History	and	structure	

The bacterial strain, Streptomyces hygroscopicus was first isolated in 1970 from a soil sample 

of Easter Island, a small Chilean island in the South Pacific Ocean. These bacteria secreted a 

potent antifungal macrolide that was named rapamycin after Rapa Nui (name of the island in 

native language). Rapamycin was initially developed as antifungal agent as it contains 

macrocyclic lactone, but later it was proven to have immunosuppressive and anti-proliferative 

properties. These observations encouraged further research into the mechanism of action of 

rapamycin and its targets. 

 

The target of rapamycin (TOR) was originally identified by two mutations in budding yeast, 

Saccharomyces cerevisiae in 1991, termed TOR1-1 and TOR2-1.33 These mutations allowed 

yeast to escape cell cycle arrest caused by rapamycin treatment.  Upon entering the cell, 

rapamycin binds to an intracellular cofactor FKBP12 (FK506-binding protein 12kDa) and 

forms a complex. This complex then binds to TOR protein and interferes with its function. 

Extensive studies in yeast have shown that TOR plays a central role in cell growth 

metabolism. Subsequent studies in mammals led to the identification and cloning of 

mammalian TOR (mTOR), also known as FRAP, RAFT, RAPT or SEP (reviewed in34, 35). 

All eukaryotic genomes possess a copy of the TOR gene with a high degree of sequence 

conservation among species, indicating an important role for TOR (reviewed in36). 

 

mTOR is an atypical serine/threonine protein kinase belonging to the phosphatidylinositol 

kinase-related kinase (PIKK) family with a molecular weight of ~290 kDa. Structurally, 
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mTOR has 20 tandem HEAT repeats (a protein-protein interaction structure of two tandem 

anti-parallel -helices found in huntingtin, elongation factor3, PR65/A and TOR) at the 

amino-terminal domain, followed by a FAT (FRAP, ATM, and TRRAP, all PIKK family) 

domain (shown in figure 4). FRB (FKBP12-rapamycin binding) domain is situated next to 

FAT domain, followed by the mTOR kinase domain. FATC (FAT C-terminus) domain is 

located at the extreme carboxy-terminal of the protein. Presence of HEAT repeats give mTOR 

the extended super-helical structure that helps for protein-protein interactions; the FRB 

domain serves as a docking site for rapamycin-FKBP12 complex whereas FAT and FATC 

domains modulate mTOR kinase activity via unknown mechanisms (reviewed in37). 

 

 

 

 

 

 
Figure 4. A schematic representation of the mTOR domain structure  
mTOR is a large protein of around 290 kDA and consists of different domains in its structure as 
shown in this figure. Rapamycin-FKBP12 complex binds to FRB domain of the mTOR that causes 
inhibition of some of mTOR downstream functions (figure from38). 
 

The binding of the rapamycin-FKBP12 complex to mTOR at the FRB domain blocks some of 

the physiological functions of mTOR. The exact mechanism behind this inhibition is poorly 

understood, as rapamycin’s effect on mTOR intrinsic kinase activity is not yet clear. Some 

scientists believe that the binding of rapamycin-FKBP12 complex blocks mTOR from 

interacting with its substrates. Ser2481 is an autophosphorylation site of mTOR. Recent 

studies have shown that phosphorylation at this site happens mainly to mTOR mTORC2 

(mTOR complexes described in next section) and is insensitive to acute rapamycin 

treatment.39, 40 The majority of the functions occur through phosphorylation at Ser2448 of the 

mTOR mainly in mTORC1.41, 42 Studies have shown that mTOR also get phosphorylated at 

Thr2446 presumably by cAMP-activated protein kinase (AMPK)43 and at Ser1261, a site 

whose phosphorylation promotes mTOR autophosphorylation and activity.44 To date, studies 

have suggested that mTOR phosphorylation appears to alter its kinase activity rather than its 

association with other components in the mTOR complexes. 

 

For most eukaryotic cells, inhibition of mTOR by rapamycin results in growth arrest, as the 

cells arrest in the cell cycle and become unresponsive to nutrients and growth factors. 
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Sensitivity of such inhibition varies according to the type of cell, for example; lymphocytes 

and certain cancer cells are highly susceptible to rapamycin. As mentioned before, rapamycin 

does not block all the mTOR activities because mTOR exists in the cell in two different 

complex forms and only one of them is inhibited by rapamycin. 

2.2.2	Components	of	the	two	mTOR	complexes	

 

As mTOR is a large protein with many domains for protein-protein interactions, genetic and 

biochemical studies have demonstrated that mTOR occurs in cells in two multiprotein 

structures, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin gives these complexes a 

unique distinguishing feature, where mTORC1 is rapamycin-sensitive while mTORC2 is 

rapamycin insensitive. Along with mTOR, mTORC1 consists of PRAS40 (proline-rich AKT 

substrate 40 kDa), mLST8 (mammalian lethal with SEC13 protein 8, also known as GL), 

Deptor (DEP domain-containing mTOR-interacting protein) and Raptor (regulatory-

associated protein of mTOR) (reviewed in36, 45). Instead, mTORC2 consists of mTOR, mSIN1 

(mammalian stress-activated map kinase-interacting protein 1), Rictor (rapamycin-insensitive 

companion of mTOR) along with Protor 1 and 2 (also known as PRR5, prolin-rich repeat 

protein-5), Deptor and mLST8. Raptor and rictor are the two accessory scaffolding proteins 

that give structural stability to the two complexes and play a role in substrate and regulator 

binding.46, 47 Biochemical and structural analysis suggests that both mTORC1 and mTORC2 

exists as dimeric complexes in cell.48 The multimerization of the TOR complexes may play a 

role in regulating its kinase activity as multimeric TORC2 appears to be more active than 

monomeric TORC2.49 

 

The best-characterized and functionally important components of mTORC1 and mTORC2 are 

shown in figure 5 and described below. 

 

Raptor 

The individual functions of the mTOR complex components are not well understood. Raptor 

is a large protein (around 150 kDa) and is a non-enzymatic subunit of mTORC1.46, 50 It 

contains a highly conserved amino-terminal region followed by three HEAT repeats and 

seven WD40 (terminating in tryptophan-aspartic acid dipeptide) repeats at the carboxy-

terminal end. The interaction between raptor and mTOR is dynamic and requires multiple 

regions from both proteins for binding. The raptor-mTOR complex can sustain 0.3% CHAPS 
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or 0.3% Tween-20 containing buffer but dissociates in buffer containing 1% NP-40 or 1% 

Triton X-100 (reviewed in51). In addition, treatments such as amino acid withdrawal increase 

the binding between raptor and mTOR, whereas rapamycin decreases it.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Components, targets and functions of the two mTOR complexes  

 

mLST8 

mLST8 is a subunit that is part of both mTORC1 and mTORC2, however little has been 

reported regarding its interaction with mTOR.53, 54 It is a 36kDa protein that has seven WD40 

repeats and binds to the kinase domain of mTOR. Knockout mice for mLST8 die around 

E10.5. Initial knockdown studies have suggested a positive role for mLST8 in the regulation 

of kinase activity of mTOR in mTORC1 but later observations from mice and Drosophila 

(with dLST8) indicate that mLST8 is neither required for mTORC1 integrity nor for its 

function.55 However, LST8 is required for full catalytic activity of TOR.49 These different 

results require further studies to elucidate the exact function of mLST8 in mTORC1. In 

contrast to mTORC1, mLST8 is needed for mTORC2, as knockout of mLST8 disrupts 

mTORC2 assembly as well as loss of Akt phosphorylation at Ser473, a downstream target of 

mTORC2. 

 



 
2. Introduction 

20 
 

Rictor 

Rictor (also known as mAVO3) is a large protein of ~200 kDa and the defining member of 

the rapamycin-insensitive mTORC2. It has domains that are conserved among species, but no 

obvious catalytic motif. Knockdown of rictor results in loss of both actin polymerization and 

chemotactic signaling,47, 56 whereas rictor knockout mice die during mid-gestation period 

around E10.5.55, 57 In addition, rictor also interacts with other proteins such as integrin-linked 

kinase (ILK),58 Myo1c59 and heat shock protein 70 (Hsp70).60 The significance of these 

interactions is unclear but through such bindings rictor may act as an adaptor to bring 

mTORC2 to its targets. 

 

mSIN1 

mSIN1 (also known as MAPKAP1) is the integral member of the mTORC2, important for 

complex assembly and function.61, 62 SIN1 is conserved in all eukaryotic species with a tissue 

expression pattern similar to that of mTOR and mLST8. It has a Ras-binding domain (RBD) 

and a C-terminal pleckstrin homology (PH) domain that is likely to interact with 

phospholipids. Phosphorylation of SIN1 by mTOR is required for mTORC2 integrity.63 The 

interaction between mSIN1 and rictor is more stable and forms the foundation of mTORC2 as 

knockdown of either of two decreases other mTORC2 proteins levels. Recently, it has been 

shown that mSIN1 protein is required for SGK1 interaction and its subsequent 

phosphorylation by mTORC2.64 

 

2.2.3	Components	affecting	mTOR	activity	

 
TSC1 and TSC2 inhibit mTORC1 

Mutations in TSC1 and TSC2 lead to tuberous sclerosis complex syndrome, an inherited 

genetic disorder manifested with tumor occurrence in multiple organs (reviewed in65, 66). The 

genes were initially identified as tumor suppressor genes and their products TSC1 and TSC2 

(also known as hamartin and tubrin) form a heterodimeric complex that has GTPase-

activating protein (GAP) activity. TSC1 stabilizes the complex, while TSC2 contains the 

GAP homology domain. Studies in Drosophila identified the small GTPase Rheb (Ras-

homolog enriched in brain) as a downstream target of TSC1 and TSC2 and upstream of TOR. 

Subsequent studies in mammalian cells confirmed that TSC1-TSC2 complex hydrolyzes 

GTP-bound active Rheb to its inactive GDP-bound form, which in turn decreases mTOR 

kinase activity. 67, 68 Coexpression of TSC1 and TSC2 reduces levels of GTP-bound Rheb, 



 
2. Introduction 

21 
 

whereas insulin stimulation increases the levels in a PI3K-dependant manner.69 

Phosphorylation of TSC2 decreases its GAP activity. TSC2 is phosphorylated at multiple 

residues by various kinases involved in different pathways including Akt, AMPK and ERK, 

which in turn impairs its function directly or indirectly. Thus ability to get phosphorylated by 

multiple kinases and accordingly altering the GAP activity to integrate and then transfer 

signals to downstream mTOR, made TSC1/2 as an important mTORC1 regulator (figure6, 

reviewed in70). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Upstream regulators of mTORC1  

 

GTP‐bound Rheb activates mTORC1 

As explained above, Rheb is a small GTPase, which acts as positive cell growth regulator. 

Rheb is close to Ras both structurally as well as the way it binds to its effector in a GTP-

dependent manner, but its intrinsic GTPase activity is lower than that of Ras. The TSC1/2 

complex acts as a GTPase for Rheb, converting GTP-bound active Rheb to GDP-bound 

inactive form to inhibit its function.67, 71 Rheb regulates mTORC1 activity positively as over-

expression of Rheb increases phosphorylation of the mTORC1 targets S6K1 and 4EBP1 and 

these effects can be blocked by rapamycin treatment or by dominant-negative mTOR. Rheb 

directly binds to mTOR and regulates its activity.72 GTP-bound active Rheb binds to FKBP38 

and releases it from mTORC1, where FKBP38 exerts inhibitory action on mTORC1 by 

binding in a manner similar to FKBP12.73 

 



 
2. Introduction 

22 
 

PRAS40 inhibits mTORC1 

PRAS40 was initially identified as a binding partner of the protein 14-3-3 upon 

phosphorylation by Akt. Later it was also recognized as a component of mTORC1 by mass 

spectroscopy. PRAS40 binds to raptor through a TOR signaling (TOS) motif and inhibits 

mTOR kinase activity. The TOS motif is usually found in mTORC1 substrates such as S6K 

and 4E-BP1, indicating that PRAS40 is also the mTORC1 substrate. The binding of PRAS40 

to mTORC1 increases under conditions of serum or nutrient deprivation or in metabolic 

stress, indicating that PRAS40 is an inhibitor of mTORC1 activity.74 It is phosphorylated by 

mTORC1 at several sites including Ser183, Ser212 and Ser221, which weakens its 

association with raptor and releases mTORC1 from the exerted inhibitory effect. This may 

also cause the positive feed-forward mechanism for mTORC1 activation.75, 76 Phosphorylation 

of PRAS40 at Thr246 by Akt or PIM1 creates a docking site for protein 14-3-3 for binding 

that leads to interference with its association with mTOR and causes increase in mTORC1 

activity.77 

 

Other components 

Along with the above described, recently some molecules were recognized that have the 

ability to regulate mTORC1 activity. These include IB kinase (IKK), phosphatidic acid and 

phospholipase D, Translationally controlled tumor protein (TCTP), p53, the Rag small 

GTPase and mVps34 (reviewed in78). 

 

2.2.4	Upstream	regulators	of	mTOR	signaling	

Growth factors 

Growth factors activate mTOR signaling through the PI3K-Akt signaling pathway. Binding of 

insulin or IGF to their respective receptors lead to phosphorylation of insulin receptor 

substrate (IRS) and subsequent recruitment of PI3K to the membrane. Active PI3K converts 

PIP2 in the cell membrane to PIP3 that recruits PDK1 and Akt to the membrane. PDK1 then 

phosphorylates Akt, which in turn phosphorylates TSC2 leading to its inactivation. Thus, via 

inhibition of the TSC1/2 complex, which as described above activates GTP-bound Rheb, 

growth factors including insulin and IGF stimulate mTORC1 through PI3K-Akt pathway 

(reviewed in78). Growth factors can also phosphorylate and thereby inhibit TSC2 via ERK, 

via part of the Ras-Raf-MEK-ERK axis.79 Furthermore, the canonical Wnt pathway prevents 

glycogen synthase kinase 3- (GSK3) induced phosphorylation of TSC2, thus acting as 
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upstream activator of mTORC1.80 Growth factors also regulate mTORC1 independently of 

the TSC complex, as phosphorylated Akt inhibits PRAS40 and thus reverses its negative 

inhibition on mTORC1.81 

 

Nutrients 

Nutrients, such as amino acids, activate mTORC1 signaling. Amino acids constitute proteins 

and are also required for the synthesis of DNA, glucose and ATP. Early studies showed that 

amino acid starvation, in particular of leucine, results in a loss of mTORC1 downstream 

signaling that can be restored by re-addition of amino acids.35, 82 The identity and mode of 

action of such a primary amino acid sensor is not yet clearly understood, but recent studies 

have provided some important clues for the mTORC1 activation by amino acids. Players 

downstream to amino acid sensing, such as the Rag family of small GTPase, 83, 84 sterile 20 

(STE20) family kinase mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3)85, 

86 and PI3K catalytic subunit type 3 (VPS34),87, 88 have emerged as activators of mTORC1. 

The Rag GTPase, which exists as heterodimer complex, is in an inactive conformation in the 

absence of amino acids. Once present, amino acids cause a GTP switch in the heterodimer 

complex that results in active Rag GTPase, which allows active Rag GTPase to physically 

interact with raptor, leading to transport of mTORC1 to the surface of late endosomes and 

lysosomes.84, 89 This relocalization may enable mTORC1 to interact with growth factor-

activated Rheb.67 The mechanism by which amino acids activate mTORC1 downstream of 

MAP4K3 is not well characterized. By inducing extracellular calcium influx, amino acids 

activate calmodulin, which binds to mVPS34. Active mVPS34 produces PIP3, which 

activates mTORC1. More recently, Duran et al showed that p62 is an integral part of 

mTORC1 as it interacts directly with raptor. Such interaction is amino acid dependent and 

required for mTORC1 activation. In addition, p62 binds with the Rags protein and favors the 

formation of active Rag heterodimer causing mTORC1 activation through small GTPase 

Rheb as described above.90 

 

Energy 

Cellular energy status regulates mTOR function as demonstrated by the observation that 

mTORC1 activity decreases in response to glycolysis or mitochondrial function inhibitors.91 

mTOR-mediated processes of growth consume a large fraction of cellular energy, therefore 

energy sensing is a decisive process in case of hypoxic or starving cells. Cellular energy 

obtained from nutrients is stored in the form of ATP, and after consumption the drop in ATP 
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is indirectly sensed by mTOR and AMPK. Both AMP and ATP are allosteric regulators of 

AMPK; therefore an increase in the AMP/ATP ratio activates AMPK. Activated AMPK 

phosphorylates TSC2, thereby increases its GAP activity, causing decreased Rheb activity, 

thus leading to mTORC1 inhibition.92 AMPK also phosphorylates raptor, thus promoting its 

binding with protein 14-3-3, leading to mTORC1 inhibition by allosteric mechanisms.93 

 

Stress 

Cells respond to a variety of the stress stimuli such as hypoxia, low energy or environmental 

factors by downregulating the mTOR-driven energy consuming processes. Along with an 

induction of AMPK, hypoxia also regulates mTORC1 by inducing expression of REDD1 

(regulated in development and DNA damage response 1) that promotes assembly of the 

TSC1/2 complex, thus inhibiting mTORC1.94, 95 In response to DNA damage, p53 directly 

activates transcription of AMPK1, TSC2, IGFBP-3 and PTEN in insulin-sensitive tissues, 

each of which negatively regulates mTORC1 activity.96 Another mechanism employed by p53 

is the induction of sestrin1 and sestrin2, which activate AMPK directly.78, 97 

 

Upstream regulators of mTORC2 signaling 

Compared to mTORC1, which is activated by several factors as described above much less is 

known about the upstream regulators of mTORC2. Growth factors have been shown to 

activate mTORC2 signaling as demonstrated by Akt phosphorylation at Ser473.98, 99 Recently, 

Gan et al showed that addition of PIP3 to a mTORC2 kinase assay enhances Akt 

phosphorylation in vitro.100 mTORC2, by associating with translating ribosomes, 

phosphorylates Akt at Thr450 site and phosphorylation at this site is not inducible by growth 

factors.101 The TSC1-TSC2 complex that downregulates mTORC1 is required for proper 

activation of mTORC2. TSC1-TSC2 complex directly associates with mTORC2 via rictor, 

and regulation of mTORC2 activity by this complex appears to be independent from its 

GTPase activity towards Rheb.102, 103 

 

2.3 Effectors and downstream functions of the mTOR complexes 

2.3.1	Effectors	of	mTORC1	signaling	

mTOR signaling plays key roles in various growth related processes. The best-characterized 

targets of mTORC1 are ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 
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(eIF) 4E-binding protein 1 (4E-BP1). mTORC1 interacts with S6K1 and 4E-BP1 via 

association between raptor and a TOS motif present in S6K1 and 4E-BP1. The TOS motif is a 

conserved five amino acid residue found in the N-terminus of S6K1 and in the C-terminus of 

4E-BP1 and as mentioned before, is essential for the phosphorylation by mTORC1.104, 105 

Phosphorylation of S6K1 by mTORC1 occurs at the Thr389 site within the hydrophobic 

motif, whereas 4E-BP1 gets phosphorylated by mTORC1 at four residues including Thr37, 

Thr46, Ser65 and Thr70.106 Phosphorylation of these effectors leads to further activation of 

downstream molecules and enhances protein synthesis (reviewed in36). 

 

2.3.2	Cellular	functions	of	mTORC1	

Protein synthesis 

Downstream of PI3K-Akt activation, mTORC1 plays major role in the phosphorylation of 

proteins that regulate or are involved in mRNA translation. As mentioned before, S6K1 and 

4E-BP1 are the major direct targets of mTORC1 in this process. After activation by 

mTORC1, S6K phosphorylates several proteins that are associated with mRNA translation 

such as ribosomal protein S6, eukaryotic elongation factor 4b (eIF4B), S6K1 aly/REF-like 

target (SKAR), programmed cell death 4 (PDCD4) and eukaryotic elongation factor 2 kinase 

(eEF-2k).107 Phosphorylation of 4E-BP on the other hand, prevents its binding with eIF-4E 

and thereby increases protein translation. mTORC1 increases translation of a subset of mRNA 

that contains 5’ tract of oligopyrimidine (TOP). 5’ TOP mRNA encodes components of the 

translation apparatus (reviewed in108). Recently, a novel example of translational control by 

mTOR has been shown that involves IRES- (internal ribosome entry segment) driven 

translation of specific mRNAs.109 

 

Ribosome biogenesis 

Ribosome biogenesis is a high energy-demanding process, and mTOR tightly controls this 

process based upon nutrient and energy availability. The synthesis of ribosomal proteins and 

rRNA is positively regulated by mTORC1. Studies with rapamycin shown that mTOR 

inhibits transcription of RNA polymerase I (Pol I)-dependent rRNA genes, Pol II-dependent 

ribosomal protein genes, and Pol III-dependent tRNA genes, which altogether block ribosome 

biosynthesis. mTORC1 upregulates transcriptional activity of the rRNA polymerase RNA 

polymerase I (RNAPI) through S6K1110 and regulates processing of 35s and 5s rRNA.111 
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Recent work by Michels et al suggests that mTORC1 might control Pol III through its direct 

substrate MAF1.112 

 

Transcription 

mTORC1 controls a variety of cellular processes by controlling the rate of transcription of 

many genes. In mammalian cells, mTORC1 directly regulates SRBP1 (sterol regulatory 

element-binding protein), a transcription factor responsible for sterol and lipid 

biosynthesis.113, 114 Cunningham et al showed that mTORC1 promotes transcriptional activity 

of PPAR coactivator PGC1, which is a nuclear cofactor responsible for mitochondrial 

biogenesis and oxidative metabolism, by directly affecting its physical interaction with the 

ying-yang 1 (YY1) transcription factor.115 

 

Metabolism 

mTORC1 regulates several metabolic pathways by controlling key steps at the transcriptional, 

translational and post-translational level in different tissues types (reviewed in78). Active 

mTORC1 promotes expression of hypoxia-inducible factor-1 (HIF-1), mostly by 

regulating translation of its alpha subunit through 4E-BP1, which activates the transcription of 

many genes involved in cellular metabolism.116 Recently, mTORC1 has also been shown to 

regulate glycolysis, sterol and lipid biosynthesis in addition to control key steps in the pentose 

phosphate pathway.114 

 

Autophagy 

Autophagy is a catabolic process that recycles cellular organelles and proteins. It functions as 

a quality control, and also a mechanism by which cells replenishes their intracellular nutrients 

content under conditions of poor nutrient availability. Under nutrient-rich conditions 

mTORC1 maintains low levels of autophagy. It inhibits a conserved protein complex 

containing the protein kinases Atg1 and Atg2 that are required for induction of autophagy.117 

Recently, it has been shown that TORC1 directly phosphorylates Atg13 (ULK1) at multiple 

serine residues. Atg13 is an essential regulatory component of autophagy upstream of the 

Atg1 kinase complex and in its phosphorylated state directly inhibits the Atg1-driven 

autophagic process.118 
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2.3.3	Effectors	of	mTORC2	signaling	

 

Studies have shown that mTORC2 recognizes and phosphorylates AGC kinases, which play 

key roles in multiple intracellular signaling pathways. The AGC kinases are Ser/Thr kinases 

from a large family of conserved proteins. The prototypical members of the AGC kinase 

family are cAMP-dependent protein kinase (PKA), protein kinase G (PKG), and protein 

kinase C (PKC). In addition, the family also includes Akt, S6K and serum and glucocorticoid-

induced kinase (SGK). mTORC2 phosphorylates AGC kinases at their turn motif (TM) 

having specific Thr-Pro-Pro sequence and at hydrophobic motif (HM) when have specific 

Ser/Thr-Tyr/Phe sequence. Phosphorylation by mTORC2 allosterically activates AGC kinases 

in addition to catalytic activation of the kinases by PDK1 (reviewed in119). The substrates 

known for mTORC2 are described hereafter. 

 

Akt/PKB 

Akt gets phosphorylated at two sites by mTORC2; firstly at Thr450 of the TM and secondly 

at Ser473 of the HM domain. TM phosphorylation of Akt is a one-shot irreversible step that 

occurs exclusively during the synthesis of nascent Akt, when the polypeptide is still attached 

to the ribosome. TM phosphorylation is essential for Akt stability and lack of it results in co-

translational ubiquitination of nascent Akt.101, 120 Thr450 phosphorylation of Akt at TM is 

solely done by mTORC2 and this is well conserved from yeast to human.120 In contrast, 

phosphorylation at HM Ser473 is a post-translational modification that occurs at the 

membrane where mTORC2 is supposed to co-localize with Akt. Growth factors and 

hormones induce HM Ser473 phosphorylation that allosterically activates Akt, thereby 

increasing its activity towards many of its substrates such as forkhead box O1/3 (FoxO1/3). 

Studies have shown that HM phosphorylation by mTORC2 gives substrate specificity to Akt, 

as mTORC2-deficient cells showed defective FoxO1/3 phosphorylation but had normal 

GSK3 and TSC2 phosphorylation.55, 61 

 

PKC 

PKCs are conserved signaling molecules with a variety of cellular functions, mainly 

responsible for distribution of signals.121 Phosphorylation at the HM Ser657/660 of all 

conventional PKCs (cPKC) and of some novel PKC (nPKC), as well phosphorylation of 

PKC/II TM at Thr638/641, requires mTORC2. mTORC2 was shown to be engaged in 

PKC maturation and stability like Akt (reviewed in119). Inhibition of mTORC2 activity by 
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SIN1 deletion significantly decreases cPKC expression levels as TM phosphorylation is 

abolished. This is in contrast with Akt, which maintains its level with the help of Hsp90-

induced TM phosphorylation of Akt.122 

 

SGK 

mTORC2 is required for Ser422 phosphorylation present in HM of SGK. SGK is a short-lived 

protein stimulated by growth factors and conditions of osmotic stress.123 Unlike Akt and 

cPKC, SGK1 levels are not decreased in mTORC2-deficient cells, but rather increased in 

rictor null cells. Disruption of mTORC2 leads to decreased SGK1 phosphorylation, which in 

turn affects activation of its specific substrate NDRG1 (N-myc downregulated gene 1).124 

Protor-1 functions as the adaptor of mTORC2 activity to phosphorylate HM of SGK1.125 

Recently, mTORC2 has been shown to activate epithelial sodium channel (ENaC)-dependent 

sodium transport in kidney cells through phosphorylation of SGK1.126 

 

2.3.4	Cellular	functions	of	mTORC2	

 
Cytoskeleton organization 

Early studies by Loewith and colleagues have shown that TORC2 controls cell cycle-

dependent polarization of the actin cytoskeleton in yeast via the activation of Rho1 GTPase 

switch.56 mTORC2 activates PKC by phosphorylating its HM site, which causes its 

interaction with small GTPase Rho and Rac and thereby it signals to actin cytoskeleton.47, 56 

Knockdown of mTOR, rictor, mLST8, but not raptor causes defective actin reorganization 

along with decreased Rac1 activation, upon serum restimulation in mammalian cells.61 

Recently, Rac1 was found to be a part of both mTOR complexes upon growth factor 

stimulation. Activated Rac1 could mediate actin rearrangement by translocating to plasma 

membrane, where it increases PIP3 synthesis and thereby could led to actin organization.127 

 

Protein synthesis and maturation 

Protein synthesis is a process mainly associated with mTORC1, but recent studies have 

suggested a role for mTORC2 in this basic cellular process. Intact mTORC2 localizes in 

polysome fractions and directly interacts with the 60S large ribosome subunit. In particular 

rictor that can form stable interactions with the ribosomal proteins L23a and L26 that are 

located at the exit tunnel of ribosomes.101, 128 The nature of this interaction plays a role in 
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mTORC2-mediated co-translational maturation of the nascent Akt polypeptide.101 Zinzalla 

and coworkers recently indentified a protein involved in ribosome biogenesis and rRNA 

maturation using yeast genetic screens, NIP7, which regulates mTORC2 activity. This 

suggests that association of mTORC2 with assembled ribosomes or ribosomal proteins 

activates mTORC2. Upon mTORC2 inhibition or disruption, total translation and polysomes 

were shown to be more attenuated compared to rapamycin treatment, which inhibits 

mTORC1, suggesting a role of mTORC2 in translation.101, 129 

 

Chemotaxis, proliferation and survival 

In line with the early demonstration of its role in actin reorganization, mTORC2 was recently 

shown to be involved in cell migration and cancer metastasis.130 Rictor interacts with PKC 

and regulates metastasis of breast cancer cells, where rictor acts as a mediator of 

chemotaxis.131 In normal cell types such as neutrophils, chemotaxis is regulated by mTORC2 

via activation of adenylyl cyclase 9 (AC9).132 Recently, rictor/mTORC2 was reported to be 

essential for maintaining a balance between -cell proliferation and cell size,133 whereas in 

TSC-null cells, mTORC2 modulates its proliferation and survival through RhoA GTPase and 

Bcl2 proteins.134 

 

Gluconeogenesis 

Gluconeogenesis is the process of biosynthesis of new glucose. A recent study by Wang and 

colleagues suggests a role of mTORC2 in regulating gluconeogenesis. Deletion of Sirt1, 

which positively controls rictor expression and thus mTORC2-mediated Akt S473 

phosphorylation, causes increased gluconeogenesis in liver.135 The Insulin/Akt/FoxO1 

signaling pathway is a major regulator of glucose production and metabolism. Insulin-

activated Akt phosphorylates FoxO1, which presents its translocation to the nucleus and leads 

to its degradation via the ubiquitin proteosome pathway. This causes a decrease in expression 

of genes involved in gluconeogenesis, such as glucose-6-phosphatase (G6Pase) and 

phosphoenolpyruvate carboxykinase. 

 

Metabolism 

In Caenorhabditis elegans, rictor/TORC2 regulates fat metabolism, feeding, growth and life 

span136 but little is known about the role of mTORC2 in metabolism in mammalian cells. 

Rictor-null fibroblasts were reported to display decreased metabolic activity.57 Recently 

Colombi and coworkers using genome-wide shRNA screening revealed that mitochondrial 
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dependence increases upon mTORC2 addiction. They identified a group of genes, whose 

knockdown is selectively lethal in growth factor independent and mTORC2 addicted cells. 

Several of these genes required for mTOR addiction encode for mitochondrial functions.137 

 

2.4 mTOR in the heart 

 
Myocardial growth and metabolic regulation are crucial factors in various heart diseases. 

Therefore, extensive research has been focused on signaling molecules activated under 

conditions of increased workload or in pathological stress situations. In this regard, the 

IGF/PI3K/Akt/mTOR signaling axis is important and research on this signaling cascade has 

led to the identification of new potential therapeutic targets. 

 

Mechanical stimulation or agonists that stimulate growth factor receptors, - and -

adrenergic receptors or integrins activate mTORC1 and mTORC2 in numerous cell types.138 

Several studies demonstrated that mTORC1 is activated in pressure-overloaded myocardium, 

as evidenced by activation of its downstream targets S6K1 and 4E-BP1, phosphorylation of 

mTOR at Ser2448 and sensitivity to rapamycin inhibition. Moschella et al have shown that 

both PI3K-dependent and -independent mechanisms regulate mTORC1 activation in 

cardiomyocytes.139 Class IA PI3K, activated by growth factors and insulin, class IB PI3K, 

activated by adrenergic stimulation,140 or class III PI3K, activated during nutrient and amino 

acid availability,141 can activate mTORC1 in cardiac muscle cells. Compared to mTORC1 

much less is known about mTORC2 in the heart. p21-activated kinase (PAK) activates Akt at 

Ser473, a downstream target of mTORC2, in adult heart and in neonatal rat cardiomyocytes142 

but a direct role of mTORC2 has not yet been demonstrated. Studies suggested that nuclear 

localization of phosphorylated Akt plays a survival role in many cells types including 

cardiomyocytes.143 

 

2.4.1	Activation	of	mTOR	complexes	during	cardiac	hypertrophy	

As mentioned before, a read-out of mTORC1 activity is the phosphorylation of S6K1 at 

Thr389, whereas the phosphorylation of Akt at Ser473 generally indicates mTORC2 activity. 

In vivo models of pressure- or volume-overload and in vitro studies using hypertrophic stimuli 

in isolated neonatal or adult cardiomyocytes lead to the phosphorylation of S6K1 at 

Thr389.144-148 Furthermore, such agonist-induced phosphorylation of S6K1 was blocked by 
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rapamycin pretreatment, indicating the requirement of active of mTORC1 during 

hypertrophic growth of cardiomyocytes.139, 149. Stimulation of myocytes by insulin and to a 

lesser extent by RGD- (arginine-glycine-aspartic acid containing) peptides or mechanical 

stimulation of myocardium by pressure-overload induces phosphorylation of Akt at both 

Thr308 and Ser473, suggesting a possible role for mTORC2 in hypertrophic 

cardiomyocytes.150 As discussed earlier, lack of a direct mTORC2-specific blocker limits our 

knowledge about the role of mTORC2 in heart. More direct approaches with gene silencing or 

knockout models are required to investigate its specific functions. 

 

2.4.2	Role	of	mTORC1	in	hypertrophic	growth	of	the	heart	

 
As a mediator of protein synthesis mTORC1 activity has been demonstrated to be of central 

importance in cardiac hypertrophy. Studies using rapamycin, the mTORC1 inhibitor, 

elucidated part of the role of mTOR in cardiac hypertrophy. Rapamycin reverted or partially 

prevented hypertrophy induced by constitutive activation of Akt,144 pressure overload,147, 151-

154 thyroid hormone,155 uremia,156 hypertension, 153 and myocardial infarction.157 Although 

these studies demonstrated a role of mTOR and in particular of mTORC1-mediated protein 

synthesis in cardiac hypertrophy, other studies have questioned the extent and impact of 

mTOR function in the adaptive responses of the heart. For example, deletion of the ribosomal 

S6 kinases, direct downstream effectors of mTORC1, did not attenuate pathological, 

physiological or insulin-like growth factor-1 receptor-induced cardiac hypertrophy.147 

Additionally, a study by Shen et al reported that hypertrophic growth of the heart in response 

to physiological or pathological stimuli was not affected in mice expressing a kinase-dead 

mTOR.158 In another study, Kemi and coworkers demonstrated that the activation status of the 

myocardial Akt-mTOR signal transduction pathway could distinguish between physiological 

and pathological hypertrophy. Exercise training activates the Akt-mTOR pathway while long-

term mechanical stimulation by pressure-overload partially inactivated it.159 Reduced mTOR 

activity is responsible for cardiac dysfunction induced by the anticancer drug doxorubicin.160 

 

Although mTORC1 is considered the primary target of rapamycin, in some cell types long-

term treatment with rapamycin also inhibits mTORC2, probably through blocking the 

assembling of new mTORC2 complex.99 Furthermore, recent reports have demonstrated 

rapamycin-resistant functions of mTORC1 in some cells.106 Studies using rapamycin in vivo, 

therefore, did not adequately dissect the relative roles of mTORC1 and mTORC2 in 
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cardiomyocytes. Using cardiac-specific mTOR knockout mouse model, Zhang and coworkers 

recently showed that mTORC1 regulates cardiac function and myocyte survival through 4E-

BP1 inhibition. 161 

 

2.4.3	Role	of	mTORC2	in	protection	of	the	hypertrophying	heart	

Activated Akt is a key regulator of cell survival and, as mentioned earlier, mTORC2 is 

responsible for phosphorylation of Akt at Ser473. Activated Akt is sufficient to block cell 

death induced by a variety of apoptotic stimuli.162 Transgenic mice over-expressing Akt 

exhibit increased cardiomyocyte size and contractility,163-165 whereas in Akt1-deficient mice 

swim exercise or IGF1 treatment do not induce cardiac hypertrophy, suggesting the 

importance of Akt activation in the physiological growth of the heart.166, 167 However, Akt1-

deficient mice subjected to pressure overload showed exaggerated pathological hypertrophy 

and fibrosis,166, 168 suggesting a role of mTORC2 signaling only in physiological hypertrophy. 

It was also suggested that acute activation of nuclear Akt is beneficial for the heart.28 Other 

AGC kinase family member downstream of mTORC2 like SGK1 is shown to regulate 

cardiomyocyte survival and hypertrophic response of the heart. In cardiomyocytes, 

constitutively active SGK1 inhibits apoptosis induced by serum-deprivation or hypoxia, 

whereas kinase-dead SGK1 increases it.169 SGK1 is dynamically regulated during acute 

biomechanical stress and inhibits apoptosis while enhancing hypertrophic response. The PKC 

isoenzymes are also involved in cardioprotection during the ischemia-reperfusion (reviewed 

in170). In cardiac tissue, a low dose of resveratrol, a polyphenolic phytoalexin found in plants 

and fruits, induces rictor expression, which then bind to mTOR and leads to activation of Akt 

Ser473. Treatment with resveratrol induces a cardioprotective effect via induction of 

autophagy. This effect is lost after silencing of rictor, which in turn decreases resveratrol-

induced autophagy.171 Taken together, we can conclude that mTORC2, either directly or 

indirectly, plays a vital role in the cardioprotection of the stressed heart. 
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2.5 Role of mTOR in other organs 

 

As a full body knockout of any of the component of mTORC1 or mTORC2 is embryonic 

lethal,52, 55, 57, 61, 62, 172 studies using rapamycin or tissue-specific knockout of the mTORC 

components were used to characterize their role in a specific organ or tissue system. Using 

such approaches, many of the mTOR downstream functions in different organs have been 

elucidated recently. 

Mice with skeletal muscle specific raptor knockout showed downregulation of proteins 

involved in mitochondrial biogenesis and increased glycogen storage along with muscle 

dystrophy.173 In case of muscle specific rictor knockout, no phenotype or little with glucose 

intolerance was observed.173, 174 Adipose-specific raptor knockout mice are resistant to diet-

induced obesity show improved glucose tolerance and insulin sensitivity, and are lean in 

nature.175 In contrast, adipose-specific rictor knockout mice demonstrated increased body size 

due to enlargement of the non-adipose organs such as heart, kidney, spleen and bone. These 

mice are hyper-insulinemic with a bigger pancreas, but glucose tolerant.176 A study by Kumar 

et al with fat cell-specific rictor deletion shows impairment of glucose and lipid 

metabolism.177 Next to its regulatory role in organ and whole body metabolism, mTOR has 

been shown to play major role in neurological and inflammatory diseases (reviewed in178). 

mTORC2 also plays tissue specific roles in the pancreas, brain and immune system (reviewed 

in119). 
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2.6 Aims of the thesis 

 

The main aim of this thesis work is to evaluate the different roles of mTORC1 and 

mTORC2 in the mouse heart. Previously, with the help of rapamycin, some of the 

functions of mTORC1 were analyzed, whereas very little was known about the role of 

mTORC2 in the mouse heart due to the lack of specific inhibitors. A full body 

knockout of any of the components of mTORC1 or mTORC2 is embryonic lethal. 

Therefore, we employed an inducible tissue-specific deletion approach to reduce 

mTORC1 or mTORC2 activity in the mouse heart. 

 

The first part of the dissertation focuses on the role of mTORC1 during the adaptation 

of the heart to physiological or pathological increases in workload as well as during 

the maintenance of normal cardiac homeostasis. To achieve mTORC1-specific 

inactivation, we conditionally ablated raptor, an mTORC1-specific and -essential 

component, from cardiomyocytes in the mouse heart. 

 

The second part of the dissertation focuses on the characterization of mice with 

cardiac-specific mTORC2 inactivation. The role of mTORC2 was evaluated during 

postnatal growth as well as in pathological hypertrophic growth induced by pressure-

overload. To achieve this, rictor, an essential and specific component to mTORC2 

was selectively deleted from the mouse heart. 
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3.	Results	

3.1 Characterization of the function of mTORC1 in the mouse heart  
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Cardiac raptor ablation impairs adaptive 

hypertrophy, alters metabolic gene expression and 

causes heart failure in mice. 
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Summary	

 

Background – Cardiac hypertrophy involves growth responses to a variety of stimuli 

triggered by increased workload. It is an independent risk factor for heart failure and 

sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular 

growth responses by integrating growth factor and energy status signals. It is found in 

two structurally and functionally distinct multiprotein complexes called mTOR 

complex (mTORC)1 and mTORC2. The role of each of these branches of mTOR-

signaling in the adult heart is currently unknown. 

 

Methods and Results  – We generated mice with deficient myocardial mTORC1 

activity by targeted ablation of raptor, which encodes an essential component of 

mTORC1, during adulthood. At three weeks after the deletion, atrial and brain 

natriuretic peptide and -myosin heavy chain were strongly induced; multiple genes 

involved in the regulation of energy metabolism were altered, while cardiac function 

was normal. Function deteriorated rapidly afterwards resulting in dilated 

cardiomyopathy and high mortality within six weeks. Aortic banding-induced 

pathological overload resulted in severe dilated cardiomyopathy already at one week 

without a prior phase of adaptive hypertrophy. The mechanism involved a lack of 

adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported 

by reduced phosphorylation of ribosomal S6K1 and 4E-BP1. In addition, reduced 

mitochondrial content, a shift in metabolic substrate use and increased apoptosis and 

autophagy were observed. 

 

Conclusions – Our results demonstrate an essential function for mTORC1 in the heart 

under physiological as well as pathological conditions, and are relevant for the 

understanding of disease states in which the insulin/insulin-like growth factor 

signaling axis is affected such as diabetes, heart failure, or after cancer therapy. 

 

Key Words: heart failure; hypertrophy; myocardial metabolism; signal transduction 
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Introduction	

Although cardiac hypertrophy is a growth response that initially normalizes wall 

tension, it is associated with an unfavorable outcome: affected patients are threatened 

with sudden death or progression to heart failure.32 Much research is therefore aimed 

at understanding myocardial growth regulation, and in this setting the IGF/PI3-

kinase/Akt signaling cascade has been studied extensively.179, 180 Experiments with 

cultured cardiomyocytes have suggested that downstream of Akt, mammalian target 

of rapamycin (mTOR) mediates responses to pathological stimuli.145, 181 mTOR is an 

evolutionary conserved Ser/Thr kinase known to control cell growth.182 Nutrient, 

energy and growth factor shortage will impair mTOR activity, resulting in diverse 

effects including the slow-down of macromolecule synthesis, enhanced autophagy 

and activation of nutrient- or stress-responsive transcription factors. mTOR is found 

in two structurally and functionally distinct multiprotein complexes termed mTOR 

complex (mTORC)1 and mTORC2. The two best characterized substrates of 

mTORC1 are S6 kinase (S6K) and eukaryotic initiation factor (eIF)4E-binding 

protein (4E-BP), through which mTORC1 regulates cap-dependent protein 

translation.183 In addition, numerous novel effects downstream of mTORC1, not all 

related to translational activation, have recently been identified (reviewed in36, 78, 184). 

For instance, mTORC1 regulates autophagy and membrane trafficking for the 

delivery of nutrient transporters to the cell surface. mTORC2 controls actin 

organization and most likely also other processes that remain to be elucidated. The 

role of these distinct branches of mTOR signaling in cardiac tissue has not been 

investigated. 

 Support for a role of mTOR in pathological hypertrophy was provided in 

studies with rapamycin, which regressed or partially prevented hypertrophy induced 

by constitutive activation of Akt144 and acute or sustained pressure overload.147, 152-154, 

163 However, other studies have challenged the importance of mTOR-mediated 

protein synthesis and growth. For example, deletion of the ribosomal S6 kinases, 

direct downstream effectors of mTOR, did not attenuate pathological, physiological 

or IGF-receptor-induced cardiac hypertrophy.147 Moreover, physiological or 

pathological hypertrophic growth was not affected in mice expressing a kinase-dead 

mTOR.158 It should also be noted that although mTORC1 is considered the primary 

target of rapamycin, long-term rapamycin treatment also inhibits mTORC2 in certain 
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cell types99 and on the other hand, rapamycin does not inhibit all mTORC1 

functions.185 Studies using rapamycin systemically, therefore, have not adequately 

addressed the relative importance of mTORC1 and mTORC2 in cardiomyocytes. 

 In the present study, we used inducible cre-loxP recombination to delete 

raptor, which encodes an essential and specific subunit of mTORC1, selectively from 

cardiomyocytes. We demonstrate that raptor is required for normal physiological 

function of the heart as well as for the cardiac adaptation to increased workload. The 

attenuated mTORC1 activity critically affected cardiac protein and energy 

metabolism, mitochondrial content, apoptosis and autophagy, and rapidly led to 

cardiac failure. 

 

Methods	

Animal Models 

Mice analyzed in this study were backcrossed to C57BL/6J for 6-8 generations and 

crossed to obtain mice positive for -MHC-MerCreMer and carrying two floxed 

raptor alleles (-MHC-MerCreMer/raptorfl/fl) or mice positive for -MHC-

MerCreMer carrying the wild-type raptor alleles. Littermates were assigned to the 

control and knockout groups, with each experimental group consisting of mice 

derived from at least four litters. None of the groups contained multiple mice from the 

same litter. Intraperitoneal injections of tamoxifen citrate (20 mg/kg, Sigma, St. 

Louis, MO) in 60% PBS/40% ethanol were used to induce excision of raptor. 

Exposures to pressure overload or exercise started two weeks after the last injection. 

For voluntary exercise, mice were individually housed in cages equipped with a 

running wheel. Transverse aortic constriction (TAC) was performed and cardiac 

function determined using the Vevo 770 Ultrasonograph (VisualSonics) as detailed in 

the supplement, with the investigator blinded to genetic background or treatment 

group. All animal experiments were carried out according to guidelines for the care 

and use of laboratory animals and with approval of the Swiss authorities. 

 

Statistical Analysis 

Data are presented as meanSEM. Differences in means between two groups were 

evaluated with unpaired 2-tailed Student t tests and those among multiple groups with 
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1-way analysis of variance (ANOVA) followed by Bonferroni post hoc tests. When 

cardiac function was measured at multiple timepoints, we used repeated-measures 

ANOVA. Mortality data was analyzed by the Logrank test. All statistics was 

performed with GraphPad Prism 4.0 software. P values of <0.05 were considered 

statistically significant. 

 

Supplemental Methodology 

Routine procedures of surgery, echocardiography, isolated heart measurements, 

Western blotting, real-time PCR, histology, transmission electron microscopy are 

detailed in the Supplement. 

 

Results	

Analysis of Cardiac Raptor Knockout Mice at Two Weeks After Gene Excision 

To study the function of mTORC1 in adult mouse heart, we generated mice 

homozygous for loxP-flanked raptor exon 6173, 175 and positive for tamoxifen-

inducible Cre recombinase driven by the cardiomyocyte-specific -myosin heavy 

chain promoter (-MHC-MerCreMer/raptorfl/fl).186 Tamoxifen injections at the age 

of 10-11 weeks for five days induced Cre-mediated recombination, and Western 

analysis of protein lysates confirmed that raptor protein was reduced by 69% in 

cardiac (P=0.004), but not in skeletal muscle (Figure 1A). Thus, tamoxifen at 20 

mg/kg body weight186 was sufficient to induce tissue-specific raptor deletion. 

Hereafter, we refer to the tamoxifen-treated -MHC-MerCreMer/raptorfl/fl mice as 

“raptor-cKO”. Figure 1B shows that at two weeks after gene excision, raptor 

deficiency was accompanied by lower phosphorylated 4E-BP1 (61%, P=0.028) and 

ribosomal protein S6 (67%, P<0.0001) compared to tamoxifen-treated -MHC-

MerCreMer/raptor+/+ controls. Non-specific metabolic effects, previously reported to 

occur transiently in -MHC-MerCreMer transgenic mice peaking at three days after 

high-dose tamoxifen (80 mg/kg)187 were excluded, as no differences in expression of 

metabolic and stress-induced genes existed between three tamoxifen-treated groups: 

Cre-negative/raptorfl/fl, -MHC-MerCreMer/raptor+/+ and -MHC-

MerCreMer/raptorfl/fl (raptor-cKO) mice (Figure 1C). Consistently, ex vivo working 

heart experiments at two weeks after tamoxifen revealed no differences in palmitate 
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(P=0.87) or glucose (P=0.71) oxidation (Figure 1D) and in developed pressure 

(P=0.96) or cardiac output (P=0.84) (Figure 1E). Thus, cardiac raptor deletion 

resulted in reduced levels of phosphorylated 4E-BP1 and S6, but no molecular, 

metabolic or functional changes were detected at this early timepoint. 

 

Cardiac  Raptor Ablation  Leads  to Acute Dilated  Cardiomyopathy  in  Response  to 

Pressure Overload 

As mTORC1 is known to accelerate protein synthesis via 4E-BP1 and p70-S6K, and 

protein synthesis is an intrinsic feature of growth responses, we tested whether raptor 

deficiency diminishes cardiac hypertrophy under conditions of pressure overload and 

if so, how this affects cardiac function. Raptor-cKO mice and controls were assigned 

to two subgroups for subsequent transverse aortic constriction (TAC) or sham surgery 

at two weeks after tamoxifen. Echocardiography prior to surgery showed no 

difference in cardiac function and geometry between the groups (Supplemental Table 

I). One week after surgery, the wild-type mice had a significantly thicker left 

ventricular free wall and septum compared to baseline and compared to values 

measured in the sham-operated group (Table I). End-systolic and –diastolic left 

ventricular internal diameters (LVID) were unchanged, and cardiac function was 

preserved in this wild-type group as ejection fractions (EF) and fractional shortening 

(FS) were not affected by TAC (Table I). 

 In contrast, aortic constriction significantly reduced EF and FS in raptor-cKO 

mice (Table I). This was accompanied by reduced ventricular wall (LVPW) and septal 

thickness (IVS) as well as an increase in LVID. Moreover, raptor-cKO mice 

displayed body weight loss, and post mortem analysis showed reduced epidydimal fat 

pad and gastrocnemius weights (Table I), a cachectic phenotype reminiscent of 

advanced congestive heart failure. Together, these data showed that raptor-cKO mice 

rapidly developed dilated cardiomyopathy and severe cardiac dysfunction in response 

to pressure overload. 

 

Raptor  Knockout Mice Do Not  Increase Heart Weight  and  Cardiomyocyte  Cross‐

Sectional Area After Aortic Constriction, but ANP, BNP and ‐MHC Are Induced 

To evaluate the development of hypertrophy, we determined ventricular weight to 

tibia length ratios (VW/TL) one week after TAC (Figure 2A). No differences existed 
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between the sham-operated wild-type and raptor-cKO groups. In TAC-operated wild-

type mice, VW/TL showed an increase in heart mass of 47% over sham-operated 

controls. In contrast, raptor-cKO mice demonstrated no hypertrophic growth. A 

modest increase in size observed in raptor-cKO mice was due to dilatation of the heart 

rather than an increase in weight (Figure 2B). To assess whether this impaired 

adaptive response was related to an inability to induce an increase in cardiomyocyte 

size, we stained cardiac sections with wheat germ agglutinin (Figure 2C). TAC 

increased cardiomyocyte cross-sectional area (CSA) in wild-type mice by 50%. In 

contrast, the CSA of cardiomyocytes in raptor-cKO mice after TAC was not different 

from that in sham-operated mice. 

 Quantitative increases in cardiac mass after pressure overload are usually 

accompanied by the re-expression of a fetal gene program. Already under basal 

conditions, raptor deficiency reduced -MHC to 52%, whereas it robustly increased 

β-MHC, ANP, and BNP mRNA levels by 12.3-, 25.9- and 12.2-fold compared to 

wild-type, respectively. For β-MHC and ANP these changes were similar to those 

observed after TAC in wild-type mice (Figure 3A). In raptor-cKO mice subjected to 

TAC, β-MHC and BNP mRNA increased even further. In contrast, -skeletal actin 

was not changed after raptor deletion in sham mice. After TAC, its expression 

increased in wild-type as expected, but this increase was attenuated in the raptor-cKO 

mice (Figure 3A), suggesting that its induction depends on mTORC1. Along with 

mRNA levels, protein amounts of ANP and -MHC were increased in hearts of 

raptor-cKO (Figure 3B and C). The observed induction of compensatory genes under 

baseline conditions indicates that raptor deficiency is a stress stimulus for the heart. 

 

Raptor Deficiency Alters Mediators of Protein Synthesis and Degradation 

To address the mechanisms behind the observed defects, we analyzed protein extracts 

by Western blotting. In wild-type mice, TAC significantly increased the cardiac 

amounts of Akt and mTOR, increases that were absent after raptor deletion (Figure 

4A and B). Total protein of 4E-BP1, direct downstream target of mTOR, was also 

increased after TAC, and the presence of the two higher molecular weight bands  

and  indicated that it was to a large extent phosphorylated (Figure 4A and C). In the 

raptor-cKO mice a shift toward the lower molecular weight -band indicated reduced 

4E-BP1 phosphorylation, which was confirmed for the TAC-operated mice after 
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quantification of the -band (Figure 4C) or with an antibody to the Thr70 site of 4E-

BP1 (Figure 4A). Moreover, while total p70-S6K1 protein was equal for all groups, 

phosphorylation of its effector S6 was decreased in raptor-cKO hearts compared to 

pressure-overloaded hearts of wild-types (Figure 4A and C). Interestingly, despite the 

fact that raptor deficiency was accompanied by reduced total Akt protein, Akt 

phosphorylation at Thr308 and Ser473 was markedly increased compared to wild-

type mice (Figure 4D). Finally, glycogen synthase kinase 3 (GSK3), a target of 

Akt, showed strongest phosphorylation at Ser9 in the raptor-cKO mice subjected to 

sham-surgery (Figure 4A and D). Importantly, hyperphosphorylation of Akt at 

Ser473, one of the known downstream targets of mTORC2, indicated selective 

inhibition of the mTORC1 pathway solely. 

 Figure 4E shows that muscle atrophy F-box (MAFbx) and muscle-specific 

RING finger protein (MuRF)1 mRNA levels were modestly decreased under baseline 

conditions, whereas MuRF3 mRNA was significantly higher after TAC in raptor-cKO 

compared to wild-type. Thus, reduced mTORC1 activity affected protein synthesis as 

well as degradation pathways. 

 

Raptor Deficiency Leads to Cardiac Dysfunction and Mortality under Physiological 

Conditions 

As we observed a re-induction of the fetal gene program without concurrent changes 

in function under conditions of normal cardiac load at three weeks of gene ablation, 

we followed up on the consequences of raptor deletion at later timepoints under 

physiological conditions, i.e. in sedentary mice or mice exercising on a voluntary 

basis in a running wheel. Ejection fractions were normal in near to all mice up to three 

weeks after raptor deletion, but decreased to lower values at 38 days (Figure 5, 

P<0.01). Raptor-cKO mice started to die during the fifth week after tamoxifen. At that 

timepoint, a trend towards increased mortality was observed in exercising (64%, 

n=14) compared to sedentary (36%, n=11) mice (P=0.097). Surviving sedentary 

raptor-cKO mice had a mean EF of 17.3±1.9%, LVPW of 0.60±0.03 and 0.71±0.02 

mm, and LVID of 5.0±0.1 and 4.6±0.1 mm during diastole and systole, respectively. 

After exercise, similar values were obtained. Thus, the EF was 18.9±7.5%, the 

LVPWd/s 0.63±0.01/0.69±0.02 mm, and the LVIDd/s 4.8±0.1/4.4±0.2 mm. These 
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values indicate a significant loss of function culminating with sudden death. None of 

the wild-type mice died during this period. 

 

Raptor Deficiency Causes a Switch from Fatty Acid to Glucose Oxidation 

The heart is known to predominantly oxidize fatty acids, but switches to carbohydrate 

metabolism in response to neurohormonal, nutritional, hypoxic, or other stress 

stimuli.188, 189 Next to its role in protein synthesis, recent studies have shown that 

mTOR modulates energy metabolism.173, 175, 190 We therefore tested in ex vivo 

working heart experiments whether cardiac raptor ablation changes metabolic 

substrate use. At two weeks after tamoxifen substrate use was normal, but at later 

timepoints, palmitate oxidation was decreased to 51% and glucose oxidation 

increased by 24% above wild-type levels (Figure 6A). In subsequent experiments we 

tested whether at three weeks after tamoxifen, a timepoint at which cardiac function 

was still normal, raptor ablation changed gene expression of factors that regulate 

substrate use. In the heart, fatty acid oxidation is regulated by ERR and PPAR, 

binding partners of PGC1.191 A decrease of ERR to 75% in the raptor-cKO mice 

did not reach significance, but PPAR and PGC1 were significantly reduced to 

40.5% and 52.3% of wild-types, respectively (Figure 6B). These decreases were 

associated with reduced transcript levels of the fatty acid regulatory genes known to 

be dependent of PPAR, namely carnitine palmitoyltransferase-I (CPT-I), known 

for controlling fatty acid transfer into mitochondria, and malonyl-CoA decarboxylase-

1 (MCD-1) (Figure 6C). Malonyl-CoA is a strong inhibitor of CPT-I, and reduced 

decarboxylation by MCD-1 in raptor-cKO mice may therefore, by causing 

accumulation of malonyl-CoA, contribute to reduce fatty acid oxidation.192 However, 

in our study gene expression of the enzyme responsible for synthesis of malonyl-CoA, 

acetyl-CoA carboxylase (ACC2), was decreased concomitantly (Figure 6C), which 

may attenuate the increase of malonyl-CoA in the myocardium. Finally, gene 

expression of succinyl-CoA-3-oxoacid CoA transferase (SCOT), a regulator of ketone 

body metabolism, was reduced (Figure 6C). 

 Changes in fatty acid oxidation were associated with changes in glucose 

transporters. Figure 6D shows that raptor deficiency by itself reduced GLUT4 mRNA 

levels to 23% of those in wild-type sham mice, an effect far more drastic than that 

observed after TAC. In contrast, transcripts of GLUT1 were 2.2-fold higher in raptor-
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cKO than in wild-types and those of GAPDH, an enzyme of glycolysis, were also 

increased, consistent with enhanced carbohydrate metabolism. Taken together, our 

results suggest that mTORC1 is involved in the regulation of metabolic substrate use 

in the heart. 

 

Raptor  Knockout  Mice  Show  Abnormal  Mitochondria,  Increased  Apoptosis  and 

Increased Autophagy 

Besides modulating fatty acid oxidation, PGC1 is known to regulate mitochondrial 

biogenesis. After TAC, raptor deletion resulted in significantly decreased 

mitochondrial DNA normalized for genomic NADH (P<0.05, Figure 7A). Moreover, 

ultrastructural analysis revealed swollen mitochondria with irregular cristae as a 

feature of raptor-cKO mice (Figure 7B). To identify further mechanisms that 

potentially contributed to the observed phenotype, we assessed apoptosis by 

immunohistochemistry (Figure 7C). Cleaved caspase-3 appeared increased after 

raptor deletion, an effect that we confirmed quantitatively by immunoblotting (Figure 

7D) and which indicated that apoptotic pathways were activated. mTOR is known to 

regulate autophagy, a protective mechanism that cells activate in case of nutrient 

deficiency or other stress. Figure 7E shows that LC3BII was increased after raptor 

deletion along with ULK1, supporting that autophagy was enhanced. We conclude 

that changes in mitochondria, apoptosis and autophagy are part of the cascade of 

events that precede the development of heart failure after mTORC1 inactivation. 

 

Discussion	

 

In this study we analyzed the function of mTORC1 in the adult mouse heart by 

conditionally deleting raptor from cardiomyocytes. Raptor-cKO mice had normal 

cardiac architecture, function and metabolism at two weeks after gene ablation. 

Function was maintained for up to three weeks, but at this time-point significant 

changes in metabolic gene expression along with a strong induction of ANP, BNP and 

-MHC, indicative of a stress response, were measured. Cardiac function began to 

deteriorate afterwards and developed all features typical of severe dilated 

cardiomyopathy at four weeks after raptor ablation. Pressure overload applied to 
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raptor-cKO mice resulted immediately in severe cardiac dilation with strongly 

reduced EFs; a prior phase of adaptive cardiomyocyte hypertrophy was missing. With 

these experiments we established that mTORC1 is a critical mediator of adaptive 

ventricular growth in conditions of pressure overload, but importantly, that it also is 

an essential component for cardiac homeostasis under physiological conditions. Our 

study provides evidence for a causal relationship between depressed mTORC1 

activity and cardiac dysfunction. 

 Metabolic stress may have been one of the early triggers preceding the 

dysfunction that developed after three weeks and culminated in heart failure in our 

raptor-cKO mice. This notion is supported by recent studies in which mTORC1 was 

shown to control mitochondrial gene expression and oxygen consumption via 

transcriptional mechanisms that involve direct interactions between mTOR and raptor 

as binding partners of YY1, and PGC1.115, 193 Consistently, PGC1 expression was 

reduced and mitochondrial content and structure were negatively affected in the 

raptor-cKO mice, in line with our previous report on skeletal muscle.173 Interestingly, 

expression of PPAR and ERR, PGC1-binding partners that regulate transcription 

of fatty acid oxidation genes in the heart, was also decreased. The effects were 

confirmed because CPT-I and MCD-1 were reduced concomitantly. Furthermore, 

there was a shift in mRNA expression from GLUT4 to GLUT1, and our working 

heart experiments indeed showed a switch from fatty acid towards glucose oxidation, 

typically observed after myocardial infarct and in heart failure.194, 195 Along with these 

metabolic changes, we found an isoform change towards -MHC, reminiscent of the 

switch from fast- to slow-twitch muscle described after raptor ablation in skeletal 

muscle.173 As -MHC generates force in an energetically more economic manner than 

the -isoform, it may represent a compensatory energy-preserving effort after raptor 

ablation. Taken together, our data demonstrate that raptor deletion changes 

mitochondria and metabolic gene expression at a timepoint that cardiac function and 

geometry are normal, and that this is followed by increased carbohydrate metabolism 

and loss of cardiac function. Further studies are required to elucidate how exactly 

deletion of raptor induces this shift in the metabolic gene program. 

 Our study also provides support for a role of mTORC1 in regulating cardiac 

apoptosis and autophagy, because cleaved caspase-3 and LC3B II were increased 

after raptor ablation. This is in line with what is known for mTORC1 in other cell-
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types, in which for example the regulation of autophagy involves direct interactions 

between raptor and ULK1.196 Our results also provide additional support for the 

conclusion of a recent study by Zhang, which were based on the combined 

inactivation of mTORC1 and mTORC2 after mTOR ablation.161 

 The hearts of sham-operated raptor-cKO mice did not decrease in weight, 

suggesting either that 4E-BP1 and S6-mediated reductions in protein translation were 

not sufficient to yield an atrophic response during this time period, or that alternate 

pathways of protein synthesis were activated, or that degradation via mTORC1-

independent pathways was diminished. In support of attenuated degradation, we 

observed reduced MAFbx and MuRF1 mRNA levels as a possible consequence of the 

hyperphosphorylated Akt in raptor-cKO hearts. Akt hyperphosphorylation has 

previously been explained by lacking negative feedback through S6K1, a feedback 

loop that normally causes IRS-1 degradation thereby controlling Akt 

phosphorylation.173, 175, 197 Our present observation of hyperphosphorylated Akt 

supports the existence of a similar feedback loop in the heart. 

 The consequences of blunted protein synthesis were more pronounced after 

TAC and likely became an important reason for precipitated functional deterioration. 

Accelerated protein synthesis is required for the adaptive hypertrophic response that 

preserves cardiac function. Consistently, we found an increase in total and 

phosphorylated levels of multiple mediators of protein synthesis in wild-type and their 

blockade in the raptor-cKO mice explains why ventricular weight and cardiomyocyte 

CSA did not increase. The resulting high wall stress likely triggered neurohormonal 

and inflammatory responses. Moreover, the induction of -MHC already observed 

under baseline conditions became significantly more pronounced after TAC and 

probably contributed to cardiac dysfunction as reported previously.198 Finally, MuRF3 

was induced in TAC-operated raptor-cKO mice, which, consistent with its role in 

degrading -MHC,199 provides another mechanism for the rapid wall thinning and 

heart failure. 

 Consistent with our findings after mTORC1 inactivation, rapamycin treatment 

resulted in reduced hypertrophic responses to hemodynamic stress.144, 147, 153 Like in 

our study, -MHC was reported to be increased after rapamycin, suggesting a stress 

response of the cardiomyocytes.147, 154 In contrast, studies with rapamycin reported 

either preserved function or protection from overload-induced dysfunction.144, 147 This 
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discrepancy might be explained by the dosing and timing of the rapamycin treatment. 

Notably, rapamycin fully inactivated S6K1 but nevertheless, suppression of the 

growth response to overload was incomplete. This suggests that rapamycin-resistant 

effects of mTORC1, recently reported for other systems,200 may have contributed to 

incomplete inhibition of hypertrophy and maintenance of cardiac function. In 

addition, a major difference with our model is that rapamycin affects all 

compartments of the heart, including fibroblasts, microvasculature, and inflammatory 

cells. While our study demonstrates the essential function of mTORC1 in 

cardiomyocytes in vivo, extensive further studies are required to dissect its relative 

importance in other cell types of the heart. In conclusion, our study demonstrates that 

mTORC1 activity in cardiomyocytes is critical for the preservation of cardiac 

function in response to pressure overload. Importantly, we show that mTORC1 is also 

essential under normal workload conditions. Thus, cardiac raptor deficiency caused 

severe heart failure with high mortality within six weeks after gene ablation in mice. 

Our study underlines that monitoring of cardiac function in clinical studies with 

mTOR inhibitors is important. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Functional, molecular and metabolic analysis of raptor-cKO and control mice 

reveals no differences at two weeks after tamoxifen. Adult male MHC-MerCreMer/raptorfl/fl 

and control mice were injected with tamoxifen or vehicle for five days and sacrificed two 

weeks later for analysis by Western blotting (A and B), real-time PCR (C) or ex vivo isolated 

heart experiments (D and E). For A and B, cardiac (20 µg) or skeletal (10 µg) muscle 

proteins were separated by SDS-PAGE and probed with antibodies as indicated. WT-

1=vehicle/MHC-MerCreMer/raptorfl/fl; WT-2=tamoxifen/MHC-MerCreMer/raptor+/+; 

cKO=tamoxifen/MHC-MerCreMer/raptorfl/fl; n=3-5 per group. For C, 1-way ANOVA 

analysis resulted in P-values of 0.90, 0.42, 0.86, 0.81, 0.98 and 0.72 for ANP, BNP, PPAR, 

PGC1, Glut1 and Glut4, respectively.
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Raptor deletion prevents TAC-induced hypertrophy. A, ventricular weight to tibia 

length ratios of wild-type (vehicle/MHC-MerCreMer/raptorfl/fl) and raptor-cKO mice 

(vehicle/MHC-MerCreMer/raptorfl/fl) one week after surgery (n=6-8 per group). B, 

Representative images of the hearts. C, Wheat germ agglutinin staining and quantification of 

cardiomyocyte cross-sectional area (n=3-4 per group). ***P<0.001, **P<0.01 for raptor-

cKO vs wild-type, ###P<0.001 for TAC vs sham. Scale bars indicate 5 mm in B and 25 µm in 

C. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Raptor deficiency induces fetal gene expression in the heart. A, Quantitative PCR 

analysis to assess relative mRNA levels of the indicated genes one week after sham or TAC 

surgery (n=4-6 per group; groups as for Fig. 2). B, Analysis of ANP and -MHC by 

immunoblotting shows that mRNA induction is correlated with increased protein expression. 
###P<0.001 and ##P<0.01 for TAC vs sham; ***P<0.001 and *P<0.05 for raptor-cKO vs 

wild-type. C, Immunofluorescence microscopy confirms increased -MHC protein in 

cardiomyocytes. Nuclei were visualized with DAPI. The scale bar represents 25 µm. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of raptor deletion on molecules that regulate protein synthesis (A-D) and on 

gene expression of E3 enzymes involved in proteasomal degradation (E) at one week after 

surgery with groups as in Figure 2-3. A, Representative immunoblots of cardiac protein 

extracts (20 µg). Equal loading was verified with Ponceau C, and membranes probed with 

specific antibodies to indicated proteins. For B-D, labeled bands were quantitated using LI-

COR Odyssey imaging software (n=6 per group). For E, total RNA was used to determine 

relative mRNA levels by quantitative PCR with primers as listed in the online supplement 

(n=4 per group). ###P<0.001 and #P<0.05 for TAC vs sham; ***P<0.001, **P<0.01  and 

*P<0.05 for raptor-cKO vs wild-type. 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Time course of changes in cardiac function and geometry in sedentary raptor-cKO 

mice. Echocardiography was performed at 14, 21-23 and 38 days after stopping tamoxifen. 

Shown are the ejection fractions as well as LV free wall thickness and diameter during 

diastole.  
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Raptor deletion changes cardiac substrate oxidation (A) and metabolic gene 

expression (B-D). A, Ex vivo palmitate and glucose oxidation rates were measured in isolated 

working hearts of raptor-cKO and controls (tamoxifen/MHC-MerCreMer/raptor+/+, n=4-7 

per group) at two and four weeks after tamoxifen. B-D, Cardiac RNA extracts from mice 

sacrificed three weeks after raptor deletion were analyzed by real-time PCR with primers 

specific to regulators of fatty acid metabolism (B-C) and carbohydrate metabolism (D) (n=4 

per group). 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Raptor deletion changes mitochondrial content (A) and structure (B), and increases 

caspase-3 cleavage (C-D) and autophagy (E). A, Mitochondrial DNA (D-loop non-coding 

region) was measured in total DNA by quantitative PCR and normalized for genomic Ndufv1. 

B, Representative transmission electron micrographs of raptor-cKO and wild-type 

(tamoxifen/MHC-MerCreMer/raptor+/+) at three weeks after tamoxifen (bar: 1 µm). For C, 

cryosections were incubated with an antibody selective for the cleaved fragment of caspase-3. 

D, Quantification of cleaved caspase-3 by immunoblotting. E, Quantification of the 

autophagy markers LC3B II and ULK1 (n=3-4 per group, groups as in Fig. 2-4). *P<0.05 for 

raptor-cKO vs wild-type. 
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Supplemental	material	

 

Generation of Inducible, Cardiac‐Specific Raptor Knockout Mice 

Mice homozygous for loxP-flanked raptor exon 6173, 175 were crossed with mice 

expressing Cre recombinase under the control of the cardiomyocyte-specific -

myosin heavy chain (MHC) promoter in a tamoxifen-inducible manner.186 Resulting 

heterozygous floxed raptor mice positive for the -MHC-MerCreMer transgene (-

MHC-MerCreMer/raptorfl/+) were further mated with homozygous floxed raptor 

(raptorfl/fl) mice to obtain mice positive for -MHC-MerCreMer and carrying two 

floxed raptor alleles (-MHC-MerCreMer/raptorfl/fl). Mice analyzed in this study 

were backcrossed to C57BL/6J for 6-8 generations. PCR genotyping of floxed raptor 

mice was performed using the forward primer: 5’-ATG GTA GCA GGC ACA CTC 

TTC ATG-3' and reverse primer: 5'-GCT AAA CAT TCA GTC CCT AAT C-3', 

resulting in an amplicon of 228 bp for floxed raptor and of 141 bp in case of wild-type 

allele. Genotyping of mice for the presence of Cre recombinase was performed using 

the forward primer 5'-GTT CGC AAG AAC CTG ATG GCA A-3' and the reverse 

primer 5'-CTA GAG CCT GTT TTG CAC GTT C-3' yielding a product of 340 bp for 

the recombined allele and no product for the wild-type. 

 

Experimental models 

For voluntary exercise, mice were individually housed in cages equipped with a 

running wheel. A sensor was attached to the wheel and connected to a computer for 

continuous monitoring of running activity. Transverse aortic constriction was 

performed and cardiac function determined using the Vevo 770 Ultrasonograph 

(VisualSonics) according to published procedures.173, 201, 202 Both models were started 

at two weeks after the last tamoxifen injection. 

 

Wheat Germ Agglutinin Staining and Immunohistochemistry 

Hearts were arrested with ice cold 0.9% NaCl and frozen in OCT (Medite, 

Nunningen, Switzerland) using isopentane cooled in liquid nitrogen. Cryosections 

were fixed for 20 min at RT with 4% paraformaldehyde and washed with PBS-

glycine (100 mmol/l) for 10 min. Sections were permeabilised with 0.1% Triton X-

100 for 20 min and incubated with FITC-labeled wheat germ agglutinin (4 µg/ml) for 
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90 min at RT. Cross sectional areas of at least hundred cardiomyocytes in three 

independent sections of 3-4 mice per group were measured. For 

immunohistochemistry, sections were incubated with antibodies to -MHC (Abcam) 

and cleaved caspase-3 (Becton, Dickinson and Company), followed by Cy3- (Jackson 

Immunoresearch) or Alexa555- (Molecular Probes) labeled secondary antibodies. 

Nuclei were stained with DAPI (Sigma, 1 µg/ml). 

 

Protein Extraction and Western Blot Analysis 

Tissue for protein analysis was flash-frozen in liquid nitrogen and stored at –80°C. 

Total protein was extracted using a Polytron homogenizer and RIPA buffer (50 

mmol/l Tris-HCl, pH=7.4, 150 mmol/l NaCl, 1% NP40, 0.25% Na deoxycholate, 5 

mmol/l EDTA, 10 µmol/l leupeptin, 1 mg/ml benzamidine, 100 U/ml bacitracin, 0.1 

TIU/mL aprotinin, 1 mg/ml TAME, 1 mg/ml BAEE, 10 mmol/l Na-pyrophosphate, 

10 mmol/l glycerophosphate 0.5 % phosphatase inhibitor cocktail 1 and 2 (Sigma), 2 

mmol/l Pefabloc plus and "Mini-Complete" protease inhibitor cocktail (Roche 

Diagnostics)). Equal amounts of protein were separated on SDS-PAGE and after 

transfer to PVDF membrane, incubated overnight with primary antibody. The 

unbound primary antibody was removed by 3-4 consecutive washings, the membrane 

incubated with IRDye labeled secondary antibody for 1 h, and the signal detected and 

quantitated using Odyssey imaging software (LI-COR Biosciences, Lincoln, Nevada, 

USA). 

 Polyclonal rabbit antibodies against phospho-Akt (Ser473), phospho-Akt 

(Thr308), Akt total, GSK3 (Ser9), phospho-4E-BP1 (Thr70), 4E-BP1 total, 

phospho-S6 kinase (Ser240/244), p70 S6 kinase, mTOR and monoclonal antibody 

against raptor were all from Cell Signaling Technology (Danvers, MA). The GAPDH 

mouse monoclonal antibody and ANP rabbit polyclonal antibody were from Santa 

Cruz Biotechnology (Santa Cruz, CA). 

 

RNA Preparation and Quantitative RT‐PCR 

Total RNA was extracted from frozen hearts using Tri Reagent (Sigma) and treated 

with DNAse I (Ambion, Austin, TX). Concentration, purity and quality of the RNA 

were assessed by spectrophotometry and agarose gel eletrophoresis. cDNA was 

prepared from these total RNA extracts using the high capacity DNA reverse 
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transcription kit (Applied Biosystems). The product was diluted 1:100 and 5 µl were 

amplified on a 7500 fast real-time PCR system (Applied Biosystems), with 1x ITaQ 

SYBR Green Supermix Kit (Bio-Rad, Reinach, Switzerland) and 300 nmol/l for 

forward and reverse primers in a total volume of 20 µl. The mRNA level was based 

on the critical threshold (Ct) value. The primers used for the real time PCR were 

designed with the software Primers Express (Applied Biosystems, Foster City, CA) 

and synthesized by Microsynth (Balgach, Switzerland). Primer sequences for 

quantitative real-time PCR are provided in the following table: 

 

Table: Primers used in RT-PCR 

Gene Forward primer Reverse primer 

GAPDH 5'-CGG CCG CAT CTT CTT GTG-3' 5'-CAC CGA CCT TCA CCA TTT TGT-3' 

-actin 5'-CAG CTT CTT TGC AGC TCC TT-3' 5'-GCA GCG ATA TCG TCA TCC A-3' 

ANP 5'-TGG GAC CCC TCC GAT AGA TC-3' 5'-TCG TGA TAG ATG AAG GCA GGA A-3' 

-MHC 5'-CTA CGC GGC CTG GAT GAT-3' 5'-GCC ACT TGT AGG GGT TGA C-3' 

-MHC 5'-TTG AGA ATC CAA GGC TCA GC-3' 5'-CTT CTC AGA CTT CCG CAG GA-3' 

-sk.actin 5'-CAG CTC TGG CTC CCA GCA CC-3' 5'-AAT GGC TGG CTT TAA TGC TTC A-3' 

GLUT1 5'-GGG CAT GTG CTT CCA GTA TGT-3' 5'-ACG AGG AGC ACC GTG AAG AT-3' 

GLUT4 5'-AGA GAG AGC GTC CAA TGT CCT T-3' 5'-CCG ACT CGA AGA TGC TGG TTG A-3' 

PGC1 5'-AAC GAT GAC CCT CCT CAC AC-3' 5'-TCT GGG GTC AGA GGA AGA GA-3' 

MAFbx 5'-CTC TGT ACC ATG CCG TTC CT-3' 5'-GGC TGC TGA ACA GAT TCT CC-3' 

MuRF1 5'-ACG AGA AGA AGA GCG AGC TG-3' 5'-CTT GGC ACT TGA GAG GAA GG-3' 

MuRF3 5'-CCA TTT ACA AAC GCC AGA AGAGT-3' 5'-GCC CGC CAC CAG CAT-3' 

MCD1 5'-ACC CCT GGT GGT TCT GCA T-3' 5'-TCG GAG GGC ACT CCT TCA-3' 

CPT1 5'-CCG CAG GAG GAA GGG TAG AG-3' 5'-GTC TCA TCG TCA GGG TTG TAG CT-3' 

ACC2 5'-GAA TCT CAC GCG CCT ACT ATG A-3' 5'-GAA ATC TCT GTG CAG GTC CAG TT-3' 

PPAR 5'-CAA GGC CTC AGG GTA CCA CT-3' 5'-TTG CAG CTC CGA TCA CAC TT-3' 

SCOT 5'-AAG CCA TCA CGG GAG ATT TT-3' 5'-CCA CGG TAG TTC CTG CAG C-3' 

 

Glucose  and  Palmitate  Oxidation  and  Cardiac  Function  During  Ex  Vivo  Heart 

Perfusion 

Cardiac function and substrate oxidation were measured in isolated perfused hearts 

essentially as described.203 Briefly, the hearts were perfused with a modified Krebs–

Henseleit bicarbonate buffer supplemented with 0.5 mmol/l palmitate, 5 mmol/l 

glucose and 100 μU/ml insulin. The preload pressure was 7.5 mm Hg, while hearts 

were ejecting against an afterload of 50 mm Hg. The amount of 3H2O released from 
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[9,10-3H] palmitate was measured to determine fatty acid oxidation and the amount 

of 14CO2 released from [U-14C] glucose to determine glucose oxidation. Metabolic 

rates were normalized for cardiac mass. Functional data were obtained since a 2-Fr 

micromanometer-conductance catheter (Millar Instruments, Houston, TX) was 

inserted in the left ventricle through the apex. Developed pressure, cardiac output, 

cardiac power and myocardial oxygen consumption (MVO2) were analyzed as 

described.204, 205  

 

Transmission Electron Microscopy (TEM) 

Mouse heart was perfused with 2.5% glutaraldehyde in 0.1 mol/l sodium phosphate 

(pH7.4), for 10-15 min. After isolation of heart, cardiac muscles were post-fixed 

overnight at 40C in 2.5% glutaraldehyde in 0.1 mol/l sodium phosphate. The next 

day, heart was cut into small pieces of around 2 mm3. After treatment with 1% OsO4 

in 0.1 mol/l cacodylate buffer (pH 7.2), muscle pieces were rinsed in 1% Na2SO4 in 

0.1 mol/l cacodylate buffer and embedded in Epon. Sections (60-nm thick) were cut 

on a microtome (Ultracut E; Leica) and post-stained with uranyl acetate and lead 

citrate. The specimens were examined with an electron microscope (Philips EM400) 

at an accelerating voltage of 80 kV.  

 

Measurement of Mitochondrial Content 

DNA was purified from frozen heart tissue using a routine phenol/chloroform 

protocol after proteinase K digestion. The amount of mtDNA and genomic DNA was 

measured by quantitative PCR using the following primers. Mitochondrial DNA, D-

loop non-coding region: forward GGTTCTTACTTCAGGGCCATCA, reverse 

GATTAGACCCGTTACCATCGAGAT; Genomic DNA, NADH dehydrogenase 

flavoprotein 1 (Ndufv1): forward CTTCCCCACTGGCCTCAAG, reverse: 

CCAAAACCCAGTGATCCAGC. 
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Supplemental Table 

 

Table SI: Physiological and echocardiography parameters of wild-type and raptor-

cKO mice prior to surgery. 

 Wild-type Raptor cardiac knockout 

Echocardiography 
Pre-sham  

(n = 7) 

Pre-TAC 

(n = 11) 

Pre-sham  

(n = 7) 

Pre-TAC  

(n = 14) 

Heart rate (beats/min) 43311 46115 45311 46113 

Septum thickness (mm)     

      diastole 0.700.02 0.730.01 0.720.01 0.710.01 

      systole 0.880.02 0.920.02 0.890.02 0.890.02 

Left ventricular free wall 

thickness (mm) 
    

      diastole 0.700.01 0.730.01 0.700.01 0.700.01 

      systole 0.880.02 0.920.03 0.880.02 0.890.01 

Left ventricular diameter (mm)     

      diastole 4.060.06 4.080.05 4.210.10 4.280.06 

      systole 3.130.07 3.150.08 3.350.13 3.300.07 

Ejection fraction (%) 46.31.4 46.12.6 41.93.3 46.41.8 

Fraction of shortening (%) 22.80.8 22.91.6 20.51.9 23.00.9 

Body weight (g) 25.90.6 28.00.5 26.70.6 27.80.6 
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3.2 Characterization of the function of mTORC2 in the mouse heart 

 

 

 

The results of this study have been prepared as a preliminary manuscript. 
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Summary	

 
Background - mTOR, a central regulator of growth and metabolism, has distinct 

targets with tissue-specific functions depending on whether it is part of the 

multiprotein complex mTORC1 or mTORC2. Previously, we have shown that cardiac 

mTORC1 is required for adaptive hypertrophic growth and maintenance of function 

in response to pressure overload. In the present study, we aimed to elucidate the role 

of mTORC2 in cardiac pathophysiology. 

Methods and Results - We reduced cardiac mTORC2 activity by deleting the 

mTORC2-specific component rictor from mouse cardiomyocytes using tamoxifen-

induced cre-recombinase driven by the -MHC promoter. The deletion resulted in 

significantly reduced total and phosphorylated Akt (Ser473) and PKC (Thr638). 

Deletion at an age of 4 weeks and follow-up with ultrasound imaging until adulthood 

revealed no changes in postnatal cardiac growth, geometry and function. When 

induced during adulthood, rictor ablation did not change cardiac function or geometry 

under basal conditions up to an age of 54 weeks. However, one week of aortic 

constriction-induced pressure overload caused eccentric hypertrophy and decreased 

ventricular function in the rictor-deficient mice. Thus, compared to wild-type, the 

rictor knockout mice developed less profound increases in wall thickness along with 

increases in chamber diameter, whereas cardiac mass was similarly increased after 

aortic constriction for both groups. The rictor knockout hearts displayed increased 

fibrosis, apoptosis and -MHC transcript levels. Myocytes isolated from adult rictor-

cKO hearts and neonatal rat cardiomyocytes in which rictor was knocked-down had 

increased cleaved caspase-3 levels. Furthermore, treatment with the mTOR kinase 

inhibitor PP242, but not with the mTORC1 inhibitor rapamycin, led to increased 

apoptosis in cardiomyocyte cultures. 

Conclusion - Our study demonstrates that under baseline conditions, rictor deficiency 

does not affect postnatal cardiac growth or function. However, rictor/mTORC2 is 

playing a protective role during the cardiac hypertrophic adaptation to pressure 

overload. The protective effects are explained, at least in part, by the anti-apoptotic 

actions of mTORC2. 

 

Key Words- heart failure; hypertrophy; remodeling; signal transduction 
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Introduction	

Mechanistic target of rapamycin (mTOR), an evolutionary conserved serine/threonine 

kinase belonging to the phosphoinositide 3-kinase (PI3K)-related kinase family of 

proteins, is a central regulator of cell growth and metabolism. mTOR regulates 

homeostasis and growth by responding to various stimuli including nutrient and 

energy status, growth factors, oxygen levels and stress. Correspondingly, the 

activation state of mTOR switches energy-demanding processes on or off.36, 45, 178, 206 

In mammalian cells, mTOR occurs in two distinct multiprotein complexes, termed 

mTOR complex 1 (mTORC1) and mTORC2, each of which regulates different 

branches of mTOR signaling. Sensitivity to rapamycin distinguishes the two 

complexes from each other, where mTORC1 is to a large extent inhibited by 

rapamycin while mTORC2 is not. Along with mTOR, mTORC1 contains raptor, 

PRAS40, mLST8, and deptor, whereas mTORC2 consists of rictor, mSIN1, protor-1 

and -2, deptor and mLST8. mTORC1, through its best-characterized substrates S6K 

and 4E-BP1, regulates cap-dependent RNA translation.107 Moreover, it controls 

cellular processes such as ribosome biogenesis, transcription, metabolism and 

autophagy and correspondingly, it is implicated in cancer and aging as well as 

metabolic, neurological and inflammatory diseases (reviewed in45, 78, 178, 206). 

 

Much less is known about the function of mTORC2 owing to the unavailability of 

selective inhibitors, like rapamycin for mTORC1. By activating members of the AGC 

kinase family such as PKC, Akt and SGK1, mTORC2 regulates cytoskeletal actin 

organization, cell survival and other processes.47, 56, 119 mTORC2 phosphorylates Akt 

at Ser473 and thereby influences some but not all targets of Akt.128 It has been 

reported that mTORC2 is involved in the maturation process of Akt that involves 

direct association of mTORC2 with ribosomal proteins.101, 128 A full-body deletion of 

any component of mTORC2 is embryonic lethal and therefore tissue-specific 

knockout approaches were necessary to reveal functions of mTORC2 in vivo. 

Knockout of the mTORC2 component rictor in skeletal muscle showed either no 

phenotype,173 or impaired insulin-stimulated glucose transport and enhanced glycogen 

synthase activity.174 Adipose specific rictor deleted mice showed increased body size 

due to the enlargement of the non-adipose organs; the mice had enlarged pancreas and 

were hyperinsulinemic but glucose tolerant.174, 176 Furthermore, -cell-specific rictor 
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knockout showed a decrease in -cell mass and proliferation133 and a recent study 

with liver-specific rictor knockout mice provided evidence for a role of mTORC2 in 

the regulation of hepatic glucose and lipid metabolism.207 These studies provided 

important insights into the function of mTORC2 in different tissues and underlined its 

role in metabolism and in the pathology of various disease states. The role of 

mTORC2 in the heart has not been analyzed yet. 

 

The heart is an organ with strong metabolic demands and has developed highly 

complex signaling networks to regulate metabolism and hypertrophic growth, thereby 

securing or optimizing pumping function under a wide variety of physiological and 

pathological conditions. Cardiac hypertrophy is an adaptive remodeling process that 

occurs in response to hemodynamic stress including chronic hypertension, myocardial 

infarction or valvular dysfunction. It becomes maladaptive and may lead to heart 

failure when metabolic and structural requirements for contractile function are not 

met. The remodeling process involves a reactive increase in myocardial mass that 

requires increased protein synthesis, in which the PI3K/Akt/mTOR pathway plays a 

central role. Using cardiac-specific raptor deletion, we have recently demonstrated 

that mTORC1 is required for adaptive cardiac hypertrophy and maintenance of 

cardiac function.208 Cardiac remodeling also involves important metabolic 

adaptations. Given the metabolic and anti-apoptotic functions of mTORC2 reported 

for other tissues, the present study investigated whether mTORC2 is involved in the 

cardiac adaptations to hemodynamic stress. To this end, we used an inducible cre-

loxP system to delete rictor specifically from cardiomyocytes. Postnatal growth and 

function of the heart were not affected by rictor deficiency. During adulthood, 

deletion of rictor also did not have any effect on cardiac function and geometry up to 

an age of 54 weeks. However, in response to a pathological increase in cardiac work 

induced by aortic constriction, cardiac function was significantly decreased and 

associated with eccentric hypertrophy, along with apoptosis and fibrosis in the rictor 

knockout mice. Altogether our data support that rictor/mTORC2 plays a protective 

role in pathological hypertrophy, but is not required for postnatal cardiac growth.  
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Materials	and	Methods	

 

Generation of Inducible Cardiac‐Specific Rictor Knockout Mice 

Mice homozygous for loxP-flanked rictor exon 6173, 175 were crossed with mice 

expressing tamoxifen-inducible Cre recombinase under control of the cardiomyocyte-

specific -myosin heavy chain (MHC) promoter.186 Resulting heterozygous floxed 

rictor mice positive for the -MHC-MerCreMer transgene (-MHC-

MerCreMer/rictorfl/+) were further mated with floxed rictor (rictorfl/+) mice to obtain 

mice positive for -MHC-MerCreMer and carrying two floxed rictor alleles (-

MHC-MerCreMer/rictorfl/fl). Mice positive for -MHC-MerCreMer carrying the wild-

type rictor alleles were used as controls. PCR genotyping of floxed rictor mice was 

performed using the forward primer 5’-TTA TTA ACT GTG TGT GGG TTG-3' and 

reverse primer 5'-CGT CTT AGT GTT GCT GTC TAG-3', which results in an 

amplicon of 295 bp for the floxed rictor allele and 197 bp for the wild-type allele. 

Genotyping of mice positive for the Cre transgene was performed using the forward 

primer 5'-GTT CGC AAG AAC CTG ATG GCA A-3' and reverse primer 5'-CTA 

GAG CCT GTT TTG CAC GTT C-3' that gives a product of 340 bp for the 

recombined allele and no product for the wild-type. 

 

Experimental Animal Models 

Injections of tamoxifen citrate (20 mg/kg, Sigma, St. Louis, MO) in 60% PBS and 

40% ethanol were given I.P. for 5 consecutive days to mice (10-11 weeks or 4 weeks 

old) homozygous for the floxed rictor or wild-type rictor gene. In some experiments, a 

second control group was included (indicated in the figure legends) consisting of Cre-

positive mice, homozygous for the floxed rictor gene, and injected with vehicle 

instead of tamoxifen. Transverse aortic constriction (TAC) was performed at the age 

of 12-13 weeks, two weeks after the last tamoxifen injection according to published 

procedures.201, 202 Echocardiography was carried out using a Vevo 770 or Vevo 2100 

high-frequency ultrasound system (VisualSonics). For the ultrasound examinations, 

the mice were anesthetized with inhaled isoflurane (2%) in room air. The body 

temperature of the mice was kept constant at 37°C. M-mode recordings of the left 

ventricle were acquired in a left parasternal short axis and long axis plane. Images 

were transferred to an offline computer for assessment by an investigator blinded to 
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genetic background or surgery group. Diastolic and systolic anteroseptal wall 

thickness (AWD, AWS), left ventricular end diastolic diameter (LVEDD), left 

ventricular end systolic diameter (LVESD), and left ventricular diastolic and systolic 

posterior wall thickness (PWD, PWS) were measured on M-mode tracings.  

Fractional shortening was calculated as (LVEDD-LVESD/LVEDD x 100). Ejection 

fraction was calculated as (LVEDD3-LVESD3/LVEDD3 x 100). Left ventricular 

mass was calculated as 1.04 x (AWD+LVEDD+PWD3-LVESD3) x 0.8.209 All 

animal experiments were carried out according to guidelines for the care and use of 

laboratory animals and with approval of the Swiss authorities. 

 

Neonatal Rat Cardiomyocyte Culture and Transfection 

Rat neonatal cardiomyocytes were isolated and transfected as published.210 Freshly 

isolated cardiomyocytes were transfected with scrambled, rictor or raptor siRNA (4 

µg/2x106 cells, Dharmacon) using the AMAXA cardiomyocyte kit according to the 

manufacturer's instructions. After overnight incubation in serum-free DMEM, cells 

were incubated for 1 h with rapamycin (Calbiochem, 20 ng/mL), PP242 (Sigma, 2 

µM), or IGF-I and extracted in lysis buffer as described below. 

 

Adult Mouse Cardiomyocyte Isolation 

Adult mouse cardiomyocytes were isolated from wild-type and rictor-cKO mice at 12 

weeks of age as published211 with minor modifications. Briefly, after IP injection with 

200U of heparin, hearts were rapidly dissected under isofluorane anaesthesia and 

transferred to ice-cold Ca2+-free Tyrode's solution (137 mM NaCl, 5.4 mM KCl, 0.5 

mM MgCl2, 10 mM HEPES, 10 Glucose, pH=7.4). Retrograde perfusion was 

performed in a Langendorff system with Ca2+-free Tyrode's solution at 37°C for 5 

min, followed by 1 mg/ml Collagenase IV (Worthington) and 0.05 mg/ml protease 

(Sigma) for 22 min. After digestion, the myocytes were mechanically released from 

the left ventricle, allowed to pellet for 15 min, and resuspended in Tyrode's buffer at 

rt with increasing concentrations of Ca2+ (0.06 mM, 0.24 mM, 0.6 mM and 1.2 mM). 

Cells were allowed to attach to laminin-coated dishes in 20% FBS containing DMEM 

medium for 1 h, washed, kept in serum-free medium for 1 h or overnight, followed by 

extraction of total proteins as described below. 
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Protein Extraction and Western Blot Analysis 

Tissue for molecular analysis was flash-frozen in liquid nitrogen and stored at –80°C. 

Total protein was extracted using a Polytron homogenizer and RIPA buffer (50 

mmol/l Tris-HCl, pH=7.4, 150 mmol/l NaCl, 1% NP40, 0.25% Na deoxycholate, 5 

mmol/l EDTA, 0.5 % phosphatase inhibitor cocktail 1 and 2 (Sigma), SDS 0.1% and 

"Mini-Complete" protease inhibitor cocktail (Roche Diagnostics). Cultured 

cardiomyocytes were extracted with the same extraction buffer after 2 washes in ice-

cold PBS. Equal amounts of protein were separated on SDS-PAGE and after transfer 

to PVDF membrane, incubated overnight with primary antibody. All antibodies were 

from Cell Signaling Technology (Danvers, MA), except the antibodies to GAPDH 

and ANP, which were from Santa Cruz Biotechnology (CA) and to -MHC, which 

was from Sigma (St. Louis, MO). After 3-4 consecutive washings, the membrane was 

incubated with IRDye-labeled secondary antibody for 1 h and the signal detected and 

quantified using Odyssey imaging software (LI-COR Biosciences, Lincoln, Nevada, 

USA). 

 

RNA Preparation and Quantitative RT‐PCR 

Total RNA was extracted from frozen hearts using Tri Reagent (Sigma) and treated 

with DNAse I (Ambion, Austin, TX). Concentration, purity and quality of the RNA 

were assessed by spectrophotometry and agarose gel eletrophoresis. cDNA was 

prepared from these total RNA extracts using the high capacity DNA reverse 

transcription kit (Applied Biosystems). The product was diluted 1:100 and 5 µl were 

amplified on a 7500 fast real-time PCR system (Applied Biosystems), with 1x ITaQ 

SYBR Green Supermix Kit (Bio-Rad, Reinach, Switzerland) and 300 nmol/l for 

forward and reverse primers in total volume of 20 µl. The mRNA level was based on 

the critical threshold (Ct) value. The primers used for the real time PCR 

(Supplementary Methods) were designed with the software Primers Express (Applied 

Biosystems, Foster City, CA) and synthesized by Microsynth (Balgach, Switzerland). 

 

Analysis of Fibrosis and Apoptosis on Paraffin Sections 

The excised cardiac tissue was fixed overnight in 4% paraformaldehyde, dehydrated 

and embedded in paraffin. Sections of 4 m thickness were de-paraffinized, 

rehydrated and stained with hematoxylin and eosin (H&E) or picrosirius red as 
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published.212 The amount of cardiac fibrosis was expressed as percentage of a given 

total tissue area that was Sirius red positive. An average of 17 microscopic fields was 

analyzed of at least 3 sections per animal. TUNEL assay was performed using an in 

situ apoptosis detection kit (Roche Diagnostics) and the nuclei were stained with 

DAPI (Sigma, 1 µg/ml). 

 

Wheat Germ Agglutinin and Immunohistochemistry of Cryosections 

Hearts were rapidly frozen in OCT (Medite, Nunningen, Switzerland) using 

isopentane cooled in liquid nitrogen. Cryosections were fixed for 20 min at RT with 

4% paraformaldehyde and washed with PBS-glycine (100 mmol/l) for 10 min. 

Sections were permeabilised with 0.1% Triton X-100 for 20 min and incubated with 

FITC-labeled wheat germ agglutinin (Sigma, 4 µg/ml) for 90 min at RT. Cross 

sectional areas of at least hundred cardiomyocytes in three independent sections of 3-

4 mice per group were measured. For immunohistochemistry, sections were incubated 

with antibodies to -MHC (Abcam), cleaved caspase-3 (Becton, Dickinson and 

Company), or myomesin (Developmental Studies Hybridoma Bank) followed by 

Cy3- (Jackson Immunoresearch) or Alexa555- (Molecular Probes) labeled secondary 

antibodies. Nuclei were stained with DAPI (Sigma, 1 µg/ml). 

 

Statistical Analysis 

Data are presented as meanSEM. Differences in means between two groups were 

evaluated with unpaired 2-tailed Student t tests and those among multiple groups with 

1-way or 2-way analysis of variance (ANOVA) followed by Bonferroni post hoc 

tests. When measurements of the same mice were performed at multiple timepoints, 

we used repeated-measures ANOVA. All statistics was performed with GraphPad 

Prism 4.0 software. P values of <0.05 were considered statistically significant. 
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Results	

 

Conditional  Deletion  of  Rictor  Does  Not  Affect  Cardiac  Weight,  Function  or 

Geometry in Adult or Growing Mice 

To characterize the role of mTORC2 in the heart during adulthood, we bred mice 

homozygous for floxed rictor and transgenic for inducible cre recombinase driven by 

the -myosin heavy chain promoter (rictorfl/fl -MHC-MerCreMerTg/0), and injected 

them at the age of 10 weeks with tamoxifen for five consecutive days. Western 

analysis of cardiac lysates at 3 weeks after induction of the deletion showed that rictor 

protein was reduced to 38% of the wild-type levels. Echocardiography was performed 

at 4, 6, 10, 16 and 25 weeks after tamoxifen to assess cardiac function and geometry 

at the age of 14, 16, 20, 26 and 35 weeks (Figure 1A and Supplementary Table I). At 

all time-points, the ejection fraction and fractional shortening values of the rictor 

knockout (rictor-cKO) mice were similar to those measured in the wild-type mice. 

Systolic and diastolic septum and LV free wall thickness were also indistinguishable 

over the 25 weeks that the mice were followed. Consistently, post mortem analysis at 

the age of 35 weeks revealed no differences in ventricular weight to tibia length ratios 

between the wild-type and rictor-cKO mice (Figure 1B). In an independent 

experiment with a different batch of mice, we confirmed that also at the age of 54 

weeks, rictor-cKO mice were indistinguishable from wild-type mice with respect to 

cardiac function and geometry (Table I). 

As mTOR and Akt have been implicated in growth-related mechanisms, we next 

deleted the rictor gene in cardiomyocytes of growing mice by injecting tamoxifen at 

an age of 4 weeks. Figure 2 shows an increase in LV mass over time with no 

differences between the two control groups of wild-type mice and the rictor-cKO 

mice. Ventricular weight to body weight ratio were also identical for the groups over 

time. Moreover, ejection fractions (Figure 2) and all other echocardiographic 

parameters (Supplementary Table II) were normal at all time-points measured up to 

an age of 16 weeks. 
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Rictor Deletion Reduces Phosphorylated and Total Akt and PKC 

In contrast to a complete lack of effects of rictor ablation on cardiac function, 

geometry and mass over this period, expression of several signaling proteins was 

substantially changed (Figure 3, Supplementary Table III). As expected, rictor protein 

was significantly lower in rictor-cKO than in wild-type hearts at 25 weeks after 

tamoxifen. The amounts of phosphorylated Akt (Ser473) and PKC (Thr638) were 

markedly reduced (Figure 3A), indicating that mTORC2 activity was reduced in 

cardiomyocytes of the rictor-cKO mice. It is of note however that total levels of Akt 

and PKC protein were also reduced. After normalization for these reductions, the 

Ser473/total Akt ratio was significantly decreased and the Thr308/total Akt ratio was 

not affected, which confirmed that mTORC2 kinase activity was reduced in our 

model at 25 weeks after the tamoxifen-induced rictor deletion. In contrast, for PKC 

the phosphorylated/total ratio was higher in rictor-cKO than in wild-type 

(Supplementary Table III), suggesting compensatory PKC phosphorylation in 

response to the decrease in total PKC protein. Previously it has been demonstrated 

that mTORC2, by co-translational phosphorylation of the turn motif of members of 

the AGC kinase family such as Akt (Thr450), prevents their degradation.101, 122 Our 

observation of reduced Akt and PKC total protein may be explained by this 

mechanism, and confirms that rictor ablation led to inactivation of mTORC2. 

 To test if long-term rictor deficiency alters mTORC1 or its downstream 

effectors, we analyzed raptor, mTOR, 4E-BP1, P70-S6K1 and S6 (Figure 3B and 

Supplementary Table IV). Total or phosphorylated levels of these proteins were not 

different between the wild-type and knockout groups. Furthermore, Erk1/2 and 

GSK3 phosphorylation were not affected by rictor ablation.  

 Taken together, the above data show that despite marked decreases in total and 

phosphorylated Akt (Ser473, Thr308) and PKC (Thr638), the rictor-cKO mice 

maintained normal cardiac function under baseline conditions.  

 

Rictor Deficiency Accelerates the Development of Cardiac Dysfunction after Aortic 

Constriction 

We next investigated whether mTORC2 plays a role under pathological conditions, 

because its downstream target Akt is an important survival kinase,{Sussman, 2011 

#1323} and PKC is known to be involved in cardiomyocyte contractility.{Liu, 2011 



 
3.2 Role of mTORC2 in heart 

73 
 

#1362} Rictor-cKO and wild-type mice were assigned randomly to sham or 

transverse aortic constriction (TAC) groups for surgery at two weeks after the last 

tamoxifen injection. Echocardiography before surgery showed no differences between 

the wild-type and knockout groups (Supplementary Table IV). One week after aortic 

constriction, the wild-type mice displayed concentric left ventricular remodeling with 

increased LV and anteroseptal wall thickness during diastole and with unchanged 

end-systolic and decreased LV end diastolic diameters (LVEDD) compared to the 

pre-surgery measurements (P<0.001, < 0.001, and <0.05 for LV wall, septum, and 

LVEDD, respectively) and compared to sham-operated wild-type mice (Table II, 

Figure 4A and B). The wild-type mice maintained normal cardiac function after aortic 

constriction, as their ejection fraction and fractional shortening values were similar to 

those measured before surgery (not shown) and in time-matched sham-operated wild-

type mice (Table II, Figure 4A).  

 On the other hand, the rictor-cKO mice showed eccentric left ventricular 

remodeling and a decline in cardiac function after TAC. Thus, one week of aortic 

constriction resulted in significantly lower ejection fraction and fractional shortening 

values in the rictor-cKO mice compared to their pre-surgery baseline values (P<0.01 

and P<0.05, respectively), and compared to time-matched sham-operated rictor-cKO 

or TAC-operated wild-type mice (Table II, Figure 4A). In contrast to the wild-type 

mice, the rictor-cKO mice had increased LV internal diameters during diastole and 

systole (Figure 4A). Finally, although the rictor-cKO mice displayed an increase in 

anteroseptal and LV free wall thickness compared to pre-surgery baseline and to 

sham-operated rictor-cKO, this increase was significantly less pronounced than that 

measured in wild-type mice after TAC (Table II, Figure 4B). 

 Post mortem analysis revealed that the ventricular weight to tibia length ratio 

at one week after TAC was not different between wild-type and rictor-cKO. Thus, 

both groups developed similar increases in cardiac mass compared to the 

corresponding sham-operated group (Figure 4B). Consistent with this hypertrophic 

response, ANP expression was induced similarly (Figure 4C and D), and BNP mRNA 

levels were also not different between the wild-type and rictor-cKO mice after TAC 

(data not shown). Interestingly however, -MHC mRNA transcript levels were 2.2-

fold higher in the rictor-cKO mice than in wild-type controls under banded conditions 

(Figure 4C). This was associated with a smaller 1.45-fold increase in protein, a 
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difference that did not reach statistical significance (Figure 4D). In sham-operated 

rictor-cKO mice, -MHC mRNA levels were 2.8-fold higher than in controls 

(Student's T-test: P<0.001), an increase that was again not fully mirrored at the 

protein level (1.34-fold increase in protein). In addition to these markers of 

hypertrophy, we measured mRNA levels of genes that regulate energy metabolism. 

As expected TAC induced GLUT1 and decreased both GLUT4 and PGC1 (P<0.001 

for all genes), but rictor deficiency did not change this response to pressure overload. 

 Taken together, we conclude that wild-type mice develop concentric 

hypertrophy with preserved cardiac function, whereas the rictor-cKO mice show a 

phenotype of eccentric hypertrophy with decreased function at one week of aortic 

constriction. The eccentric hypertrophy is associated with increased -MHC 

expression, whereas other hypertrophic or metabolic genes are not affected by rictor 

deficiency. 

 

Analysis  of  mTOR  Signaling  in  Cardiac  Rictor  Knockout  Mice  After  Aortic 

Constriction 

The above findings demonstrate that the activity of mTORC2 is important during the 

cardiac adaptation to pressure overload. To investigate the mechanisms that underlie 

this protective role, we analyzed cardiac protein extracts (Figure 5). In sham-operated 

cKO mice, rictor protein was significantly reduced, but in spite of the deletion, TAC 

significantly increased rictor expression (2-fold for cKO, 1.6-fold for wild-type). 

These increases provide additional support for a role of mTORC2 during the response 

to overload. In the rictor-deficient mice, the ratio of phosphorylated (Ser473) to total 

Akt was decreased significantly compared to wild-type for both sham- and TAC-

operated mice (Figure 5B). Phosphorylation at Thr308 showed high variability with 

no clear difference between the experimental groups. The amount of total PKC, 

another downstream target of mTORC2, was significantly reduced (Figure 5A); 

nevertheless the phosphorylated/total PKC ratios were also lower after rictor 

deletion (Figure 5B). As Akt (Ser473) and PKC both are direct targets of mTORC2, 

these data confirm that mTORC2 activity was reduced. Examination of mTORC1 

targets on the other hand revealed that phosphorylated 4E-BP1 was not different 

between the wild-type and rictor-cKO mice, consistent with the fact that we found 

unchanged Akt-Thr308 phosphorylation upstream of mTORC1 and normal levels of 
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raptor after rictor deletion (Figure 5C). It is of note that levels of raptor and 4E-BP1 

were increased after TAC in rictor-cKO, with no difference between the rictor-cKO 

and wild-type, suggesting that protein synthesis via this pathway was activated 

normally after TAC. Interestingly, phosphorylation of S6, a substrate of S6K1, which 

in-turn is a target of mTORC2, was reduced in rictor-cKO mice (Figure 5D). 

 

Fibrosis and Apoptosis Are Increased in Cardiac Rictor Knockout 

The rictor-cKO mice exhibited normal increases in cardiac mass in response to TAC, 

but at the same time their ventricular wall and septum thickness was significantly less 

increased than in wild-type controls, in line with a pattern of eccentric hypertrophy. 

Analysis of the cross sectional area of cardiomyocytes using wheat-germ agglutinin 

did not reveal any difference between wild-type and rictor-cKO mice after TAC 

(Figure 6A). On the other hand, picro-sirius red staining showed a 2.8-fold increase in 

fibrosis after TAC in the rictor-cKO mice (Figure 6B). 

 To identify further mechanisms that potentially contributed to the observed 

phenotype, we assessed apoptosis using the TUNEL assay and cleaved caspase-3 

labeling (Figure 7A and B). The hearts of rictor-cKO mice contained more TUNEL 

positive cells than those of wild-type mice. Quantification of cleaved caspase-3 

labeling confirmed increased apoptosis: after TAC, rictor-cKO mice (N=6) had 2.2-

fold more positive cells per section area than wild-type mice (N=5). Double-labeling 

experiments with antibodies to myomesin revealed that the cleaved caspase-3 positive 

cells were negative for this cardiomyocyte marker, indicating that apoptosis took 

place in the non-myocyte compartment of the heart. Apoptosis may have remained 

undetected in cardiomyocytes because it was a rare event at the time point that we 

analyzed the tissues. To further assess the involvement of mTORC2 in regulating 

apoptosis in cardiomyocytes, we therefore performed experiments with primary 

cultures prepared from neonatal rat and adult rictor-cKO mouse hearts. Figure 7C 

shows that the mTOR kinase inhibitor PP242 increased the cleaved caspase-3 

fragment, whereas rapamycin did not increase it. As rapamycin only inhibits 

mTORC1 whereas PP242 inhibits both mTORC1 and mTORC2, these results suggest 

that mTORC2 is involved in the protection of cardiomyocytes against apoptosis. 

However, rapamycin-resistant effects of mTORC1 have been described, and we 

therefore performed additional experiments in which mTORC2 activity was decreased 
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by knockdown of rictor in neonatal rat cardiomyocytes using silencing technologies. 

Figure 7D shows that rictor protein was reduced after transfection of siRNA and that 

at the same time cleaved caspase-3 fragment was increased. Together, these data 

support that mTORC2 regulates apoptosis in neonatal cardiomyocytes. Finally, Figure 

7E shows that in cardiomyocytes isolated from the hearts of adult rictor-cKO cleaved 

caspase-3 was increased, confirming that rictor deficiency causes enhanced apoptosis 

not only in neonatal but also in adult mouse cardiomyocytes. 

 Taken together, our histological analysis shows fibrosis with increased 

apoptosis in the non-myocyte compartment of the heart, whereas our experiments 

with cultured cells support that mTORC2 prevents apoptosis in neonatal and adult 

rodent cardiomyocytes. These observations may explain, at least in part, the 

development of cardiac dysfunction in the rictor-cKO mice after pressure overload. 
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Discussion	

 

In the present study we demonstrated that cardiac deletion of rictor during postnatal 

growth or adulthood had no effects on cardiac geometry and function under baseline 

conditions up to 54 weeks of age. However, hemodynamic stress induced by aortic 

constriction caused a decrease in cardiac function in rictor-cKO mice, whereas in 

wild-type mice function was preserved. Thus, in wild-type mice, one week of TAC 

caused an adaptive increase in posterior and anteroseptal wall thickness and a 

decrease in LVEDD while ejection fraction and fractional shortening were 

maintained, indicating that the mice were in the compensatory phase of cardiac 

hypertrophy. In the rictor-cKO mice, ventricular weight was increased as much as in 

the wild-type mice, but ejection fraction and fractional shortening were reduced. 

Although an increase in LV wall thickness was developed by the rictor-cKO mice, 

this increase was less pronounced than in wild-type mice and moreover, the LVEDD 

was increased. These results demonstrate that cardiac rictor-deficient mice developed 

a phenotype reminiscent of decompensated eccentric hypertrophy at one week of 

aortic constriction and point to a role for mTORC2 during the adaptive response of 

the heart to pressure overload. This role is furthermore supported by our observation 

that rictor protein is significantly increased after TAC. 

 

We showed that cardiac rictor ablation strongly diminished Akt phosphorylation at 

Ser473, confirming that the deletion decreased mTORC2 activity. In cancer and other 

cells, mTORC2-mediated Akt phosphorylation was reported to regulate apoptosis.213 

Although Akt is known to modulate apoptosis in the heart (reviewed in214), it has not 

been investigated whether mTORC2 is implicated in regulating apoptosis in this 

organ. The reduced LV wall thickness, increased LVEDD and the associated decrease 

in cardiac function that we observed in the rictor-cKO mice may in part be a 

consequence of cardiomyocyte apoptosis. We found that numbers of apoptotic cells 

were indeed increased in the rictor deficient hearts. Interestingly, the apoptotic cells 

were part of the non-cardiomyocyte compartment as demonstrated after double 

labeling with myomesin antibodies, whereas apoptosis in cardiomyocytes was below 

detection levels at 7 days of TAC. Three independent cell culture experiments 

provided support that mTORC2 regulates apoptosis also in the cardiomyocytes. 
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Firstly, in primary rat neonatal cardiomyocytes, the mTOR kinase inhibitor PP242 

rapidly increased cleaved caspase-3 whereas rapamycin had no effects. As rapamycin-

resistant effects of mTORC1 have been described, we provided further support for 

this conclusion after silencing of rictor with siRNA, which increased cleaved caspase-

3. Finally, cardiomyocytes isolated from adult rictor-cKO mouse hearts had higher 

levels of cleaved caspase-3 than those prepared in parallel from wild-type hearts. 

Altogether, our data indicate that prevention against apoptosis represents one of the 

mechanisms by which mTORC2 protects the heart during pressure overload. 

 

Next to a decrease in contractile tissue due to apoptosis, fibrosis may have contributed 

to the observed decrease in cardiac function, as it is known to enhance myocardial 

stiffness and impede systolic ejection function.215 While fibroblasts and extracellular 

matrix are necessary for structural support of the heart under physiological conditions, 

increased fibrosis as observed in the rictor-cKO mice indicates a repair process 

triggered by cardiomyocyte stress or cardiomyocyte loss. Alternatively, the fibrotic 

response could be due to changed communication between the cardiomyocytes and 

their neighboring cells as a direct consequence of the deletion. Rictor deletion in fat 

tissue increases the size of other organs including the heart via systemic signaling176 

and similarly, reduced mTORC2 activity in cardiomyocytes may in a paracrine 

manner affect the fibrotic response in the heart. Whether or not the observed fibrosis 

is due to paracrine effects that depend on mTORC2 or secondary to the stress 

response to reduced cardiomyocyte viability or performance needs further evaluation. 

 

We have recently shown that mTORC1 is essential for the cardiac adaptation to 

pressure overload with protein synthesis being one of the prior mechanisms 

implicated.208 mTORC2-mediated phosphorylation of Akt at Ser473 allosterically 

activates Akt. Akt in turn is one of the activators of protein translation via 

TSC1/TSC2, Rheb and mTORC1, but Jacinto and Guertin suggested that mTORC2-

induced Akt HM site phosphorylation confers substrate specificity to Akt, which 

would narrow down its role to FoxO-regulated functions such as apoptosis and 

protein degradation, whereas functions regulated by GSK3 and TSC2 would remain 

unchanged.55, 61 Consistently we show here that 4E-BP1 phosphorylation was 

increased in the rictor-cKO as much as in wild-type mice, which indicates that mRNA 

translation via this pathway was not affected by rictor ablation. To our surprise 
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however, rictor ablation for 3 weeks resulted in significantly reduced S6 

phosphorylation (Figure 5). Our data suggest that in the heart, mTORC2 regulates p70 

S6K upstream of S6. Ribosomal S6Ks regulate the 5'TOP mRNAs, which include 

ribosomal proteins and elongation factors involved in translation, but it remains 

unclear what the phosphorylation of substrates of the S6Ks contribute to mRNA 

translation.216 It has previously been shown with S6K1 and S6K2 knockout mice that 

ribosomal S6 kinases are not essential for TAC-induced pathological hypertrophy.147 

Moreover, recent work demonstrates that the acute effects of mTOR inhibition on 

mRNA translation are predominantly mediated by the 4E-BPs; this concerns in 

particular TOP and TOP-like mRNA translation but to some extent also the 

translational suppression of all mRNAs.217 Consistent with these studies, as well as 

with our observation that other pathways that may activate protein synthesis 

independently such as MAPK/Erk1/Erk2 and GSK3β were unchanged, we found that 

cardiomyocyte cross-sectional areas were not decreased after rictor ablation. 

Altogether, we conclude that overall protein synthesis intrinsic to the hypertrophic 

response of the heart to TAC was not influenced by rictor ablation. 

 

The cardiac hypertrophic response normally involves specific changes in gene 

expression towards fetal genes. ANP levels were equally induced after TAC in wild-

type and cKO mice in accordance with the similar magnitudes of their hypertrophic 

growth responses. In contrast, we found that β-MHC mRNA levels were more 

strongly increased after rictor ablation, indicating an enhanced cardiomyocyte stress 

response and consistent with the accelerated development of cardiac dysfunction in 

the rictor-cKO mice. In fact, of all hypertrophic markers measured, β-MHC was the 

only gene that was induced by rictor deficiency under baseline conditions of normal 

cardiac load. These results could mean that mTORC2 has a direct effect on β-MHC 

gene expression. Alternatively, the observed β-MHC induction may be secondary to 

other deleterious consequences of mTORC2 inactivation, and represent a 

compensatory mechanism that contributed to the normal cardiac function observed 

under baseline conditions.  

 

The direct functional consequence of rictor deficiency may be, in addition to 

apoptosis, related to one of the other targets of mTORC2. The currently known targets 

include, next to Akt, the AGC kinase family members serum/glucocorticoid-regulated 
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kinase 1 (SGK1)124 and several protein kinase C isozymes.122,218 We demonstrated 

that rictor ablation strongly reduced Thr638 phosphorylation in the turn motif of 

PKC. This effect was accompanied by reduced total PKC protein, consistent with a 

previous report in which it was demonstrated that this phosphorylation site is 

substrates of mTORC2 important for the maturation and stability of PKC.122 The 

PKC family of kinases contains downstream effectors of the Gq/PLC signaling 

pathway that induces hypertrophy in response to biomechanical stress such as aortic 

constriction (reviewed in219). PKC reduces cardiomyocyte contractility.220, 221 

Deletion of the gene or its inhibition with drugs, inhibitory peptides, or dominant 

negative mutant PKC has yielded considerable protective effects in heart failure 

models. Moreover, PKC knockout mice displayed improved cardiac contractility 

(reviewed in219). Based on these earlier studies, we conclude that the reduced PKC 

is most likely not the reason for reduced ejection fractions and contractility measured 

in rictor-deficient hearts. In fact, reduced phosphorylated and total PKC may have 

contributed to the maintenance of cardiac performance that we observed in the sham-

operated rictor-cKO mice. 

 

In conclusion, our study shows that rictor deficiency leads to decompensated 

eccentric cardiac hypertrophy associated with enhanced fibrosis and apoptosis after 

transverse aortic constriction and points to a protective role for mTORC2 during the 

adaptation of the heart to hemodynamic stress. Our cell culture experiments support 

that mTORC2 has anti-apoptotic activities and that the mTOR kinase inhibitor PP242 

increases apoptosis in cardiomyocytes. Several compounds inhibiting both mTOR 

complexes are in clinical trials for the treatment of cancer,38 and special attention 

should be paid in these studies to patients with concurrent heart disease. Moreover, 

our data on mTORC2 in the heart may open up new avenues for the treatment of 

cardiac disease. 
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Figure 1. Rictor deletion in the heart of adult male mice has no effects under baseline 

conditions. A, shown are graphs of the repeated measurements of ejection fraction and LV 

wall thickness after rictor deletion at the age of 10 weeks. B, Post mortem analysis of cardiac 

weight- 24 weeks of rictor deficiency does not change cardiac weight. 
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Figure 2. Analysis of cardiac protein extracts of wild-type (WT) and rictor cardiac knockout 

(cKO) mice by Western blotting. A, shows that phosphorylation of downstream targets of 

mTORC2 is inhibited. B, shows that mTORC1 targets are not affected. C, shows that potential 

compensatory pathways are not affected. GAPDH was used as loading control.  
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Figure 3. Effect of rictor deletion on cardiac function, geometry and hypertrophic markers. 

Aortic constriction surgery was performed at the age of 10 weeks and cardiac parameters 

were measured by ultrasound one week later. A, LVID: Left ventricular internal diameter. B, 

LVWT: LV wall thickness; VW/TL: ventricular weight/tibial length ratio. C, qPCR analysis of 

ANP and β-MHC and D, protein levels of ANP and β-MHC.
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Figure 4. Effect of rictor deletion on mTORC1 and mTORC2 signaling 1 week after aortic 

constriction (TAC) or control surgery (Sham). A, Western blot analysis of the proteins 

involved in mTOR signaling. B, Quantification of the ratios of phosphorylated to total Akt and 

PKC. 
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Figure 5. Microscopic images of cardiac tissue sections after 1 week of aortic constriction. A, 

Analysis of cardiac cross-sectional area by wheat-germ agglutinin (WGA) on cryosections. B, 

Analysis of fibrosis by picro-sirius red staining on paraffin sections. C, Analysis of apoptosis 

by TUNEL assay and D, by immunostaining using an antibody against cleaved caspase-3 

fragment.  
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Figure 6. Effect of rictor deletion during postnatal cardiac growth. Rictor deletion was 

induced at the age of 4 weeks and echocardiography was performed at the indicated 

timepoints after rictor deletion up to the age 14 weeks. Shown are the graphs for repeated 

measurements of ejection fractions and LV corrected mass during the growth phase. 
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Table I. Physiological and echocardiographic parameters of wild-type and rictor 

knockout mice after 1 week of sham and TAC surgery  

 

 Wild-type Rictor-cKO 

Echocardiography Sham (N=8) TAC (N=5) Sham (N=5) TAC (N=6) 

Heart rate (beats/min) 52824.2 49715.1 47316.3 51814.6 

Septum thickness (mm)     

      diastole 0.760.01 1.050.01*** 0.730.02 0.900.03**$$ 

      systole 1.020.02 1.400.03*** 0.970.04 1.130.05*$$ 

Left ventricular wall 

thickness (mm) 
    

      diastole 0.760.02 1.160.03*** 0.720.02 0.940.03***$$$ 

      systole 1.020.02 1.370.02*** 0.970.04 1.100.04*$$$ 

Left ventricular internal 

diameter (mm) 
    

      diastole 3.780.09 3.370.09** 3.730.13 4.030.24$ 

      systole 2.640.09 2.450.13 2.700.18 3.360.30$ 

Ejection fraction (%) 58.041.71 54.243.14 54.583.71 35.955.31*$ 

Fraction of shortening (%) 30.121.11 27.411.93 27.932.36 17.222.74*$ 

Post-mortem analysis     

Body weight (g) 28.70.4 25.80.8 26.80.8 26.70.6 

Ventricular weight (VW, mg) 107.35.3 140.62.8*** 103.93.1 136.94.7*** 

VW / tibial length (mg/mm) 5.890.30 7.680.19** 5.690.18 7.560.24*** 

 

*P<0.05, **P<0.01, ***P<0.001 TAC- vs corresponding Sham-operated group 
$P<0.05, $$P<0.01, $$$P<0.001 Knockout vs corresponding Wild-type group 
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Supplementary Table I: Physiological and echocardiographic parameters of wild-

type and rictor knockout mice at 24 weeks after induction of the deletion 

 
 Wild-type  Rictor-cKO   

Echocardiography (N=10) (N=8) 

Heart rate (beats/min) 46113 50518 

Septum thickness (mm)   

      diastole 0.790.01 0.780.01 

      systole 1.000.03 0.980.03 

Left ventricular wall thickness (mm)   

      diastole 0.760.01 0.750.02 

      systole 0.990.03 0.970.03 

Left ventricular internal diameter (mm)   

      diastole 4.330.08 4.400.06 

      systole 3.350.09 3.370.09 

Ejection fraction (%) 45.91.7 46.81.9 

Fraction of shortening (%) 22.71.0 23.31.1 

Post-mortem analysis   

Body weight (g) 36.11.1 37.41.5 

Ventricular weight (VW, mg) 130.13.3 129.91.7 

VW / tibial length (mg/mm) 7.00.18 6.90.08 
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Supplementary Table II. Physiological and echocardiographic parameters of wild-

type and rictor knockout mice at baseline prior to surgery. 

 

 Wild-type Rictor-cKO 

Echocardiography 
Pre-sham 

(N=9) 

Pre-TAC 

(N=8) 

Pre-sham 

(N=5) 

Pre-TAC 

(N=8) 

Body weight (g) 27.50.6 26.40.4 26.91.0 27.50.5 

Heart rate (beats/min) 48617 48518.5 47412.6 53315.8 

Septum thickness (mm)     

      diastole 0.770.01 0.730.01 0.750.01 0.740.01 

      systole 0.980.02 0.950.04 0.990.02 0.990.03 

Left ventricular wall thickness 

(mm) 
    

      diastole 0.750.01 0.700.01 0.730.02 0.740.01 

      systole 0.980.03 0.940.03 0.990.02 0.990.02 

Left ventricular internal 

diameter (mm) 
    

      diastole 3.910.12 3.800.10 3.790.15 3.930.11 

      systole 2.870.14 2.780.15 2.620.19 2.890.15 

Ejection fraction (%) 52.892.6 52.973.6 59.263.5 52.563.0 

Fraction of shortening (%) 26.941.6 27.142.4 31.112.4 26.761.8 
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4.	Final	conclusions	and	remarks	

 
Based on studies with rapamycin, mTOR kinase has been implicated in protein 

synthesis and growth. However, this role was challenged by some studies on the 

heart.147, 160 Rapamycin has been shown to inhibit mTORC2 in certain cell types99 and 

additionally, rapamycin resistant functions of mTOR have been described recently.106 

Altogether this underlines the importance of analyzing cardiac functions of mTOR, 

even more so as several rapalogs are in clinical trials for the treatment of various 

types of cancers or cardiovascular diseases. Furthermore, active-site mTOR inhibitors 

have recently been developed that inhibit both mTORC1 and mTORC2. The aim of 

this dissertation project was therefore to elucidate the roles of mTORC1 and 

mTORC2 in the heart. 

 

As global deletion of any component of the mTOR complexes is embryonic lethal,52, 

55, 57, 61, 62, 172 we used inducible cre-loxP methodology to selectively inactivate 

mTORC1 or mTORC2 in the mouse heart. Mice lacking the mTORC1- or mTORC2-

specific components raptor and rictor in cardiomyocytes were subjected to various 

physiological or pathological conditions to analyze the growth response and function 

of the heart. 

 

In the first part of the thesis, the role of mTORC1 in the adult mouse heart was 

characterized. The raptor-cKO mice showed deterioration of cardiac function, leading 

to heart failure. Four weeks after raptor deletion raptor-cKO mice showed typical 

signs of dilated cardiomyopathy in normal cage conditions that culminated to cardiac 

sudden death during the fifth week. Voluntary exercise in a running wheel did not 

make things any better. Under pathological conditions of pressure-overload, raptor 

deleted mice did not develop any adaptive hypertrophy but went directly into dilated 

cardiomyopathy. With this observation we established mTORC1 as a critical mediator 

of hypertrophic growth under the conditions of stress. This is in line with previous 

studies that demonstrated a role of mTOR in cardiac hypertrophy using rapamycin.147, 

151-154 However, rapamycin treatment resulted in maintained cardiac function in the 

initial period of the hypertrophic response to aortic constriction, in contrast to the 

raptor deficient hearts, in which function started to deteriorate already during the first 
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week. How and why rapamycin treatment showed this difference in comparison to our 

mTORC1 inactivation model requires further study, where systemic effects of 

rapamycin, if any, along with dosing should be evaluated. 

 

The other major observation with the raptor knockout mice was the altered pattern of 

mitochondrial gene expression and distorted mitochondria. This is consistent with the 

results from the skeletal muscle raptor knockout mice, indicating the similar role for 

mTORC1 in these different muscle tissues.173 Metabolic stress can be the early trigger 

for cardiac dysfunction caused by depressed mTORC1 activity. Along with changes 

in metabolic gene expression including PPAR, PGC1, GLUT4 and GLUT1, we 

observed a shift from fatty acid to glucose oxidation in our ex-vivo working heart 

experiments. These experiments therefore suggest a role for mTORC1 as a regulator 

of the metabolic switch that adapts the prime energy source according to cardiac 

stress conditions. Our study also provides support for a role of mTORC1 in regulating 

apoptosis and autophagy in the heart. How exactly mTORC1 controls these processes 

in cardiac tissue needs further study. In conclusion, our study with the raptor deletion 

provides a causal relationship between depressed mTORC1 activity and cardiac 

dysfunction. It establishes mTORC1 as an essential component of cardiac 

homeostasis. 

 

The second part of the thesis focused on the in vivo functions of mTORC2 in the 

heart. Unavailability of an mTORC2-selective inhibitor, like rapamycin for mTORC1, 

has limited the knowledge about mTORC2 downstream functions. Employing the 

inducible and tissue-specific gene deletion approach, our study demonstrates for the 

first time a role of mTORC2 in the adult mouse heart, as cardiac rictor ablation 

resulted in significantly decreased cardiac function in response to pathological 

pressure-overload. It is interesting to note that rictor-cKO mice showed signs of 

eccentric hypertrophy already after 1 week of aortic constriction, whereas the 

increased afterload induced by this surgical procedure generally first leads to 

concentric hypertrophy. Similar increases in cardiac mass after aortic constriction in 

both rictor-cKO and wild-type mice indicated that bulk protein synthesis was not 

affected. As mTORC2-mediated TM phosphorylation of Akt Ser473 is important for 

its stability and thus for Akt activity, it could have affected the mTORC1-mediated 
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protein synthesis. Unchanged levels of 4E-BP1 phosphorylation suggested normal 

cap-dependent translation occurring via mTORC1, though we did not measure cardiac 

protein synthesis directly. Further studies are required to analyze the effect of rictor 

deletion on cardiac protein content as it is influenced by protein synthesis as well as 

degradation. The eccentric phenotype seen in our rictor-cKO mice may be due to the 

consequence of various defects induced by the deletion. The mice showed increased 

apoptosis and fibrosis in response to aortic constriction, which likely contributed to 

the observed decrease in cardiac function. Paracrine effects of rictor deletion from 

cardiomyocytes might have affected neighboring non-myocytes cells to increase 

apoptosis and fibrosis but further studies are required to confirm paracrine effects of 

rictor deletion. 

 

In further experiments, we demonstrated that in normal physiological situations, 

reduced mTORC2 activity in adult mice did not affect cardiac function or geometry 

up to 34 weeks of age, suggesting that mTORC2 is not required for normal cardiac 

homeostasis. Additional experiments with the rictor-cKO mice during their postnatal 

growth phase supported the above notion, because rictor deletion did not change 

cardiac growth or geometry. Interestingly, despite the loss of two important targets of 

mTORC2, Akt and PKC, these mice maintained their normal cardiac function. This 

might be explained by compensatory mechanisms taking over the functions 

downstream of mTORC2. Alternatively, these signaling molecules may have an 

important function only in case of stress. To answer these questions, further in vitro 

studies using gene silencing are needed. 

 

In summary, using genetic knockout models, I have characterized the functions of 

mTORC1 and mTORC2 in the mouse heart. Both signaling branches of mTOR are 

crucial for the heart, where mTORC1 is essential during physiological and 

pathological growth situations, while mTORC2 is required to maintain cardiac 

function under conditions of pathologically increased workload. Therefore during the 

use mTOR-active site inhibitors in clinical trials, which block both complexes of 

mTOR, monitoring of the cardiac performance is very important.  
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5.	Appendix		

During my PhD research period, I was involved in a related project together with my 

colleague Isabelle Plaisance. The project aimed to elucidate the role of mTORC1 role 

IGF- or TNF-induced cardiac hypertrophy. Along with the scientific discussions and 

planning related to the project, I was mainly doing the neonatal rat primary culture. 

The culture involves the isolation of primary cardiomyocytes from neonatal rat hearts 

(1-2 days old). The project is ongoing and since I was giving primarily the technical 

support with experiments, here I am appending only an abstract of the study.   

 
 
Abstract 

 

Blocking of mTORC1 prevents IGF- but not TNF-induced hypertrophy in rat 

neonatal cardiomyocytes 

 

Isabelle Plaisance, Pankaj Shende, Katrin Bühler, Christian Morandi and Marijke 

Brink 

CardioBiology, Institute of Physiology, Department of Biomedicine, University of 

Basel and University Hospital Basel, Switzerland 

 

Background: mTOR, a key regulator of cellular growth, associates in cells with 

distinct partner proteins in two complexes, mTORC1 and mTORC2. Several in vivo 

studies with rapamycin have implicated mTORC1 in cardiac hypertrophy. Tumor 

necrosis factor- (TNF) and insulin-like growth factor-I (IGF) are very important 

factors involved in cardiac remodeling. However, very little is known about the role 

of mTORC1 in TNF- or IGF-induced cardiac hypertrophy. In the present study we 

analyzed the effects of TNF on cardiomyocyte protein content in comparison to IGF, 

and assessed the role of mTORC1 in the responses to both factors. 

 

Methods: Neonatal rat ventricular cardiomyocytes were isolated from 1-3 days old 

Wistar rats. Cells depleted of serum were treated with TNF (5 ng/ml) or IGF (10 

ng/ml). Total protein and DNA content were analyzed in Lowry and Hoechst assays , 

and the protein/DNA ratio was used as a measure for cellular protein content. Protein 
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kinase activity was assessed with phospho-antibodies on Western blots. Expression of 

mTOR or raptor was blocked by using siRNA technology and electroporation. 

 

Results: Treatment of cardiomyocytes with TNF or IGF for 24 h resulted in 

significant increases in cellular protein content of 655% and 767%, respectively 

(p<0.001 for both). TNF and IGF caused marked phosphorylation of Akt, mTOR and 

its targets p70-S6K and 4E-BP1. The mTOR inhibitor rapamycin (Rap 2 ng/ml) fully 

blocked TNF or IGF-induced p70-S6K phosphorylation. Rap also inhibited IGF-

induced phosphorylation of 4E-BP1. Interestingly, TNF kept its ability to 

significantly phosphorylate 4E-BP1 in the presence of Rap. Correspondingly, protein 

content remained significantly higher in the TNF-treated cardiomyocytes while 

protein synthesis was completely abolished by Rap in the IGF-treated cells. To further 

investigate the role of mTORC1, cardiomyocytes were transfected with specific 

siRNAs, which resulted in strong decreases in mTOR or raptor protein expression 

compared with control cells transfected with non-targeting siRNA. mTOR- or raptor-

silenced cells showed a complete inhibition of TNF- or IGF-induced phosphorylation 

of p70S6K. Both siRNAs fully abolished the stimulation of 4E-BP1 phosphorylation 

by IGF while TNF was still strongly increasing it. The IGF-induced hypertrophic 

response was abrogated in mTOR- or raptor-silenced-cells whereas TNF retained its 

ability to stimulate increases of protein content. To explore the role of the TNF-

induced rapamycine-insensitive phosphorylation of 4E-BP1, we transfected cells with 

4E-BP1, a non-phosphorylable mutant of the 4E-BP1. Overexpression of 4E-BP1 

significantly reduced the Rap-sensitive as well as Rap-insensitive part of the TNF-

evoked increase in protein content.  

 

Conclusion: Our data show that mTORC1 fully mediates the IGF-induced increase of 

protein content in cardiomyocytes. TNF induces cardiac hypertrophy via a Rap-

insensitive pathway that involves phosphorylation of 4E-BP1. Our study brings new 

insights into the signaling pathways implicated in cardiac hypertrophy and may help 

to define new strategies against this disease. 
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