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1 Summary 
The proto-oncogene Ski is an evolutionary conserved protein associated with 

various cellular processes such as proliferation and differentiation as well as 

transformation and tumor progression. Ski has been found to interact with 

various factors such as transcription factors, hormone receptors and different 

members of transcriptional repressor complexes. Since all these results were 

obtained in cell lines under overexpression conditions, it is not known yet 

which interactions Ski is involved under physiological conditions.  

Ski deficient mice show diverse developmental defects and are perinatal 

lethal. Even though recent progress has been made in identifying layer and 

subtype specific genes in the developing cortical plate, little is actually known 

about their function. In the present work, the endogenous protein Ski is shown 

to be a new fundamental factor in callosal neuron specification during brain 

development. In the absence of Ski, misspecified callosal projection neurons 

largely fail to form the corpus callosum and project instead to subcortical 

targets. 

Ski interacts with the chromatin-remodelling factor Satb2 for transcriptional 

repression of the transcription factor Ctip2. Neither an interaction with Satb2 

nor the regulation of Ctip2 by Ski has been reported yet. Here, for the first 

time an association of Ski with the NURD complex is shown. A proliferation 

defect and precocious differentiation in the early brain of Ski deficient mice 

are described. An altered proliferation of the intermediate progenitor 

population and a timing defect in neurogenesis of deep layer neurons of the 

cortical plate are also reported.  

 

These findings demonstrate a central role for Ski in regulating transcriptional 

mechanisms of callosal neuron specification. They are of particular relevance 

in view of the essential role of accurate connectivity and identity of neuronal 

projections. 
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2 Introduction 

2.1 Development of the neocortex 
During the development of the mammalian cortex (from embryonic day 11 

(E11) to E19 in the mouse), neuronal progenitors located in the ventricular 

and subventricular zones (VZ /SVZ) of the dorsal telencephalon give rise to 

multiple projection neurons. These projection neurons are arranged in six 

cortical layers in the mature brain. Neurons of each layer are generated at 

similar times and share similar morphologies and patterns of connectivity. 

During neurogenesis, deep layer neurons (5 and 6) are generated first, 

followed by neurons of layers 4, 3 and 2. 

 

2.1.1  The neuroepithelium 
After closure of the neural tube and before neurogenesis, the developing 

cerebral cortex is composed of a single sheet of neuroepithelium consisting of 

a homogenous population of neuroepithelial / neural stem cells. These 

primary neural progenitors are the origin from which all central nervous 

system (CNS) neurons will derive (Huttner and Brand, 1997; Gotz and 

Huttner, 2005; Kriegstein et al., 2006). The cells first proliferate symmetrically 

to generate two identical daughter cells to set up a progenitor pool of sufficient 

size. When the pool is extended enough the cells change certain epithelial 

features and switch to asymmetric, self-renewing divisions to generate one 

daughter cell and a more specified progenitor such as a radial glia cell, an 

intermediate progenitor cell or a neuron (Fig. 1.1A and B) (Rakic, 1995; 

McConnell, 1995; Gotz and Huttner, 2005). Neuroepithelial cells show typical 

epithelial features, have a prominent apico-basal polarity and show 

interkinetic nuclear movement (INM) during the cell cycle. The INM gives the 

neuroepithelium a pseudostratified appearance by an up and down movement 

of the nucleus through the whole epithelium during the cell cycle. The nucleus 

locates on the apical side of the ventricle in M-Phase, moves up towards the 
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basal side of the ventricle during G1, stays there for S-phase and moves back 

to the apical side during G2. Because of the localization at the apical side of 

the ventricle during M-phase, these cells are also called apical progenitors 

(Fig. 1.2A). With the appearance of radial glia cells and asymmetric divisions 

the neuroepithelium is then called the VZ (Gotz and Huttner, 2005) 

 

Fig.2.1 Modes of cell division. 
Neural progenitor cells divide in an A) symmetric proliferative, B) asymmetric or C) 
symmetric differentiative way.  

 

2.1.2  Radial glia cells  

Radial glia cells (RGCs) represent more fate-restricted progenitors than 

neuroepithelial cells. They maintain the prominent apico-basal polarity and 

also undergo interkinetic nuclear migration, but their nucleus remains 

restricted to the VZ (Fig 2.2B) (Gotz and Huttner, 2005; Malatesta et al., 

2008). 

RGCs express as neuroephithelium cells Sox2 but also additional markers 

such as nestin and the antigens recognized by the antibodies RC1 and RC2 

as well as typical glial molecules like Blbp, Glast, vimentin and S100beta. 

RGCs give rise to most of the pyramidal neurons in the cortex but at later time 

points they are also able to generate oligodendrocytes and astrocytes. It has 

been shown that the majority of RGCs are committed very early to either 

neural or glial fates and only a small proportion give rise to both (Malatesta et 

al., 2008).The transition of neuroepithelial to radial glial cells and their 

A) Symmetric proliferative B) Aymmetric proliferative C) Symmetric di!erentiative
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progression from proliferative to neurogenic divisions during embryogenesis is 

associated with an increase in the length of their cell cycle (Gotz and Huttner, 

2005). Specifically a lengthening of the G1-phase promotes the switch to 

neurogenesis. Therefore it is hypothesised that an extrinsic or intrinsic cell 

fate determinant might induce a cell fate change if it is allowed to function for 

a sufficient length of time (Calegari and Huttner, 2003).  

Early in neurogenesis, the majority of neurons arise directly from RGCs by 

asymmetric division to produce one postmitotic neuron (Haubensak et al.). 

These neurons migrate radially to the pial surface and form the preplate (PP), 

a transient neuronal layer which soon gets split in the more superficial 

marginal zone (MZ) and the deeply located subplate (SP). In between these 

two layers the cortical plate (CP) develops, forming first deep layers 5 and 6 

(Fig. 2.3) (Parnavelas and Nadarajah, 2001).  

 

2.1.3  Intermediate progenitor cells 
During middle and late neurogenesis (from E12.5 on) the majority of neurons 

arise indirectly from RGCs via basally located intermediate progenitor cells 

(IPCs) (Haubensak et al.; Miyata, 2004; Noctor et al., 2004). IPCs, also called 

basal progenitors, populate the SVZ divide symmetrically at the basal side of 

the VZ and produce either only neurons (Fig. 2.1C and Fig. 2.2C) or, in 

amplifying divisions, pairs of new IPCs. Their main function is to transiently 

amplify the production of projection neurons from neuroepithelium and RG 

cells and divide only 1-3 times before neuronal differentiation (Kriegstein et 

al., 2006). The different progenitor types of apical and basal progenitors can 

be distinguished as described before either on the basis of their location 

during M-phase or also by specific markers. Sox2 and pax6 are only 

expressed in progenitors that divide at the apical surface whereas Tbr2, Svet1 

or Cux2 are exclusively expressed in basal progenitors (Englund, 2005; 

Haubensak et al.; Gotz et al., 1998; Nieto et al., 2004; Tarabykin et al., 2001). 
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Fig.2.2 Different Progenitor Cells build the neocortex.  
A) Neuroepithelial cells span the entire neuroepithelium and show INM throughout 
the whole apical-basal axis of the cell. B) Radial glia cells maintain the apico-basal 
polarity of the neuroepithelium and span the whole cortex but their nucleus stays in 
the VZ. C) Radial glia cells give rise to intermediate progenitors, which divide 
symmetrically at the basal side of the VZ.      

 

2.1.4  The cortical plate and projection neurons 
After specification of the cortical progenitor domains VZ and SVZ (around 

E12.5 in the dorsal telencephalon) and splitting of the PP, the excitatory 

projection neurons are generated during approximately the next 6 days. 

These projection neurons consecutively migrate to their final position within 

specific layers (Fig 2.3).  

The six different layers of the CP are generated in a temporal order and in an 

inside out manner. Deep layer 6 and 5 neurons are born first (E10.5 – E13.5). 

Neurons of the superficial layers 4 and 2/3 are born later (E14.5 – E16.5) 

(Molyneaux et al., 2007). Therefore later born neurons migrate radially to their 

G1 S G2 M G1 S G2 M G1 S G2 M

A) Neuroepithelial cells B) Radial glia cells C) Basal progenitors
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final location by passing through the layers of those earlier born neurons 

(Britanova et al., 2006; Rakic, 2003; Noctor et al., 2001). 

Even though the cells which are born at the same time end up in the same 

layers, the layers themselves are still heterogeneous and contain many 

different subtypes of projection neurons. These neurons can be classified 

either according to their specific axonal targets or by genetic markers 

(Molyneaux et al., 2007; Nelson et al., 2006; Molnár and Cheung, 2006) 

 

      

Fig.2.3 Schematic illustration of the cortical wall during cortical development 
E10.5–E18.5.   
NE: neurospithelium; VZ: Ventricular Zone; SVZ: subventricular zone; PP: preplate; 
CP:cortical plate; FL: fiber layer; SP: subplate; MZ marginal zone. 

 

2.1.5  Axonal targets 
Three basic classes of cortical projection neurons (PNs) are described within 

the neocortex in reference to their specific projection targets: associative, 

commissural and cortifugal PNs. Associative PNs extent their axons within the 

ipsilateral cerebral hemisphere and thus connect only within the same 

hemisphere. Commissural PN connect to the opposite hemisphere by way of 

the corpus callosum (CC) or the anterior commissure. Among commissural 

neurons, the callosal projection neurons (CPN), form a broad and 

anatomically diverse population of PN. CPNs are located in layers 2/3, 5 and 

6. All CPNs extend axons through the CC but can be further defined by their 

collateral projections. Either they project ipsi- and contralateral to the striatum, 
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or ipsilateral to the frontal cortex. They never project to targets outside the 

telencephalon. 

Corticofugal PNs project out of the cortex to subcortical or subcerebral 

targets. Corticofugal PNs are located prevailingly in deep cortical layers 5 and 

6 and include corticothalamic, corticotectal, corticopontine and corticospinal 

neurons (Fig. 2.4) (Molyneaux et al., 2007; Arlotta et al., 2005; Britanova et 

al., 2005). 

 

 

 

 

Fig.2.4 Major subtypes of projection neurons within the neocortex . 
A) Commissural projections (coronal view): callosal neurons (red), callosal neurons 
with striatal projections (blue), callosal neurons with ipsilateral frontal projections. B) 
corticofugal projetions (sagittal view): corticothalamic neurons (black), corticotectal 
neurons (green), corticopontine neurons (blue), corticospinal motor neurons (pink). 

 

2.1.6  Genetic markers of the CP 
The number of known layer and subtype specific genes that have been 

identified in the cortical plate has expanded dramatically in recent years. 

Several markers have been identified so far for all six layers and their specific 

subpopulations but in most cases the function of these markers as well as 

their mechanism of action remain unclear. Examples include among many 

others: Cux1 (Layer 2/3), Satb2 (layer 2-4), Ctip2 (layer 5) and Tbr1 (layer 6). 

Until today layer 5 projection neurons are the best studied. 

B) A) 
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It has been shown for example that loss of Satb2 (special AT-rich sequence 

binding protein2) leads to ectopic overexpression of Ctip2 in callosally 

projecting layer 2/3 neurons and induces corticospinally directed growth to the 

thalamus and the pons. On the other hand loss of Ctip2 (COUP-TF interacting 

protein 2) causes a malformed capsule and corticofugal axons then do not 

project past the pons (Britanova et al., 2008a; Alcamo et al., 2008). For Cux1 

and its family member Cux2, it has been shown that both regulate dendritic 

branching, spine development and synapse formation specifically in layer 2/3 

(Cubelos et al., 2010). Loss of Sox5, a marker for corticofugal PNs, results in 

the premature adoption of subcerebral projection neuron features that are 

characteristic of later stages (Lai et al., 2008). The Tbr1 mutant mouse shows 

similar defects. These animals exhibit ectopic axon projections to the 

hypothalamus and the cerebral peduncle and it has been shown that Tbr1 

regulates laminar identity in part by downstream activation of Sox5 (Bedogni 

et al., 2010).  
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2.2 The proto-oncogene SKI 
The proto oncogene Ski was discovered in 1986 as the viral proto-oncogene 

v-Ski from the avian Sloan-Kettering retroviruses and the v-Ski protein 

induces the oncogenic transformation of chicken embryo fibroblasts (Li et al., 

1986; Stavnezer et al., 1986). It later emerged that the v-Ski protein is a 

truncated version of the chicken cellular homologue c-Ski (Stavnezer et al., 

1989). Several orthologs have been identified in many other species, for 

example in humans (Nomura et al., 1989), mouse (Lyons et al., 1994), 

Xenopus (Amaravadi et al., 1997) and Drosophila (Barrio et al., 2007).  

 

2.2.1  The structure of Ski 
C-Ski is a nuclear protein with a size of 727 amino acids (aa) that contains 

several conserved domains. Two of these are, the Dachshund homology 

domain (Kim et al., 2002) and a SAND-like domain (Wu et al., 2002), in the N-

terminal half and a third domain is a coiled coil domain in the C-terminal 

region (Nagase et al., 1993). The Dachshund homology domain is a 112 aa 

long compact globular structure formed out of alpha helix and beta-sheets 

(Wilson et al., 2004) and defines the Ski gene family with the six members 

Ski, SnoN, Dach, Fussel-15, Fussel-18 and Corl {Bonnon:2012ho}. The 

SAND domain (Sp100, AIRE1, NucP41/75 and DEAF) is 95 aa long and 

forms protein interactions via an extended interaction loop (I-loop) (Fig 2.5). It 

is found in a number of nuclear proteins which are involved in chromatin-

dependent transcriptional regulation. The I-loop of the SAND domain is also 

responsible for DNA binding. Ski lacks specific DNA binding, and it is 

suggested that it rather has a regulatory function via protein-protein 

interactions with co-factors, and thereby modulates transcription (Wu et al., 

2002). The coiled coil domain in the C-terminal half contains a tandem repeat 

and a leucin zipper-like motif, which supports homodimerization as well as 

heterodimerization with the family member SnoN (Cohen et al., 1999; 

Heyman and Stavnezer, 1994; Nagase et al., 1993; Sleeman and Laskey, 

1993; Zheng et al., 1997). 
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Fig.2.5 Schematic representation of mouse c-ski.  
The Ski protein consists out of 727aa and exhibits several conserved domains. DH 
(Dachshund homology domain), SAND (Sp-100,AIRE1, NucP41/75 and DEAF1), CC 
(coiled coil domain), R-Smad (Smad binding domain). 
 

2.2.2  Ski interaction partners  
In 1999, several groups described Ski as a novel component of the TGF-β 

signalling pathway. Ski acts as an inhibitor of the TGF-β pathway by 

association with Smad proteins in response to the activation of TGF-β 

signalling (Akiyoshi et al., 1999; Luo et al., 1999; Sun et al., 1999; Xu et al., 

2000). As an ubiquitously secreted cytokine, TGF-β is known to be involved in 

a variety of biological processes such as the immune response, but as well as 

in growth inhibition, differentiation, and induction of apoptosis in various cell 

types and tissues (Kulkarni et al., 2002).  

Other cellular partners of Ski generally fall into two major categories. The first 

group includes members of the transcriptional repressor complex. Ski can 

interact with N-CoR (nuclear receptor co-repressor), silencing mediator of 

retinoid and thyroid hormone receptors (SMRT) and members of HDAC 

complexes to mediate transcriptional repression of several proteins 

(Karagianni and Wong, 2007; Nomura et al., 1999; Ueki and Hayman, 2003). 

In transfected cells it has also been reported that Ski interacts with Sin3A, a 

general co-repressor involved in HDAC complex recruitment (Nomura et al., 

1999). Ski also interacts directly with methyl-CpG-binding protein MeCP2 

(Kokura et al., 2001), glioblastoma proteins Gli (Dai et al., 2002) and recently 

it has been shown that Ski is additionally part of protein complexes of p53 

histon deacetylase SIRT1 (Inoue et al., 2011).  

The second group of Ski-binding partners includes molecules involved in 

differentiation, proliferation or hormonal responses: Ski has been shown to 

interact with RAR alpha to block its transactivation activity (Dahl et al., 1998) 

and with vitamin D receptor to repress vitamin D signalling (Ueki and Hayman, 

DH SAND CCCC
R-Smad

1aa 727aa
N C
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2003). Ski blocks the DNA binding activity of GATA1 (Ueki et al., 2004), binds 

to members of the nuclear factor family (NFI) (Tarapore et al., 1997) and also 

to the transcription factors c-Jun (Pessah et al., 2002) and PU.1 (Ueki et al., 

2008). Through its interaction with pRb, Ski abrogates Rb-mediated 

transcriptional repression (Tokitou et al., 1999). It also attenuates the function 

of an other tumour suppressor, p53 (Inoue et al., 2011).  

 

2.2.3 Ski in development  
Widespread in vivo investigations in Xenopus, zebrafish and mice revealed 

critical roles for Ski during development. Sleeman and Laskey showed in 

1993 in Xenopus oocytes the presence of c-Ski transcripts during early 

development and their maternal regulation. Later an important role for Ski in 

embryonic development was suggested, when is was shown that 

overexpression of c-Ski RNA in Xenopus explants led to secondary formal 

axis formation and neuron-specific gene expression (Amaravadi et al., 1997). 

The ability of Ski to induce neural cell fate requires its ability to interact with 

BMP-specific Smads and to repress them (Wang et al., 2000). The study of 

Kaufman et al in 2000 in Zebrafish suggested first a role of c-Ski in neural 

patterning, after they showed that overexpression of SkiA and SkiB leads to a 

disruption of gastrulation and to a dorsalized phenotype (Kaufman et al., 

2000).  

In mice, c-Ski transcripts are found in almost all adult tissues at relatively low 

levels. The same is found during embryogenesis with the highest expression 

in brain and lung. However, in embryogenesis an increase of Ski expression 

at E8.5 to E9.5 in the neural tube and migrating neural crest cells (Lyons et 

al., 1994) and from E12.5 to E15.5 in skeletal muscle has been described 

(Colmenares and Stavnezer, 1995). The phenotype of the Ski-knockout 

mouse generated in the group of C. Colmenares confirmed that c-Ski plays a 

role in neural patterning and muscle differentiation (Berk et al., 1997). Ski-

deficient mice are perinatal lethal and have a strong reduction in skeletal 

muscle mass (Berk et al., 1997), a finding which is consistent with the 
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observation of skeletal muscle hypertrophy of type II skeletal muscle fibers in 

mice overexpressing c-ski (Sutrave et al., 1990).   

Ski deficient mice also show strong neural defects such as an exencephaly 

due to a failure in cranial neural tube closure. The severity of this phenotype is 

strain dependent. In the genetic C57BL6/J background a facial clefting 

appears instead. Additionally, Atanasoski et al. could show in the peripheral 

nervous system Ski expression in Schwann cells in vivo and its regulatory 

function on myelin related genes (Atanasoski et al., 2004). In all strains, 

skeletal abnormalities as well as digit and eye defects have been described 

(Berk et al., 1997; Colmenares et al., 2002) 

The 1p36 syndrome in human includes deficiencies related to those found in 

the Ski knock-out mouse, suggesting that the phenotype might depend to 

some extent on the depletion of Ski on chromosome 1p36.3 (Colmenares et 

al., 2002; Rosenfeld et al., 2010).  

. 

 

2.3 Aim of this thesis 
The aim of this thesis is to characterise the role of Ski in cortical development. 

Spatio-temporal and co-expression studies of the Ski protein together with 

different markers will be used to identify the brain regions in which Ski is 

expressed and exerts its function. By comparison of wildtype and Ski knock-

out brains, defects caused by the loss of Ski will be described. Further 

potential interactions of markers co-expressed with Ski will be tested and the 

role of Ski in these interaction analysed. 
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3.2 Ski protein is expressed in subsets of neural 

progenitor cells  
We first analysed Ski protein expression by immunohistochemistry, and found 

that it was expressed throughout the neuroepithelium at E10.5 (Fig. 3.1A), 

where it co-localized with neural stem cell markers (Fig. 3.1B and C). The 

specificity of the anti-Ski antibody was demonstrated by the lack of signal on 

E10.5 Ski−/− sections (Fig. 3.1D). Ski expression was maintained in the 

ventricular zone (VZ) of the telencephalon at E12.5 (Fig. 3.1E). Notably, Ski 

was down regulated in Tbr2-positive intermediate progenitor cells in the 

subventricular zone (SVZ), and was absent from the earliest-born HuC/D-

positive neurons, which form the preplate (PP) (Fig. 3.1F and G). 

                  

Fig. 3.1. Expression of Ski in wild type (wt) neural progenitor cells of the 
forebrain. 
(A) Ski immunohistochemistry on horizontal forebrain sections at E10.5 reveals 
prominent Ski expression throughout the neuroepithelium (NE). (B,C) Higher 
magnifications of the NE show costaining of Ski and Sox2 (B), and Ski and Pax6 (C) 
in nuclei of neuroepithelial/radial glia cells (yellow in the corresponding overlays). (D) 
Ski signal is absent in DAPI-stained nuclei (blue) on E10.5 horizontal forebrain 
sections of Ski-deficient (Ski−/−) mice, demonstrating the specificity of the anti-Ski 
antibody. (E) On coronal brain sections at E12.5, Ski protein is detected in the VZ of 
the telencephalon in a ventral-to-dorsal gradient. (F,G) High-magnification images 
from the dorsal telencephalon at E12.5 (boxed region in E) show double 
immunostainings for Ski and Tbr2 (F) and Ski and HuC/D (G). Note that in the 
overlays Ski is absent from Tbr2-positive intermediate cells in the SVZ (E) and from 
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early-born, HuC/D-positive neurons forming the preplate (PP) (F). Bars: A,E, 100 µm; 
B–D,F–G, 20 µm. LV, lateral ventricle. 
 

3.3 Ski protein is expressed in projection neurons 

 
Ski continued to display strong expression in the VZ at E14.5 (Fig. 3.2A, left 

panel). In addition, it appeared in postmitotic cells of the developing cortical 

plate (CP) at E14.5, and was strongly expressed in the dorso-medial part of 

the rostral telencephalon at E17.5 (Fig. 3.2A, right panel). Higher-

magnification images demonstrate that most Ski-positive cells reside in 

superficial layers of the CP, with a distribution similar to that of the Satb2-

expressing population (Fig. 3.2B). A smaller number of Ski-positive cells was 

present in layer V and even fewer in layer VI, layers that are defined by 

immunoreactivity for Ctip2 and Tbr1, respectively (Fig. 3.2B). To characterize 

the subpopulation of Ski-expressing neurons, we performed double 

immunostainings for Ski and a panel of layer-specific markers, including 

Satb2, Ctip2, and Tbr1 (Fig. 3.2C-F). At E17.5, Satb2 is expressed in callosal 

projection neurons in upper layers, as well as in subsets of DL neurons that 

comprise a diverse population of callosal and subcortical projection neurons 

(Britanova et al., 2008a). On the other hand, Ctip2 and Tbr1 are expressed in 

different subsets of DL neurons that project to subcortical targets. We find that 

subpopulations of Ski-positive neurons express Satb2 in superficial layers of 

the CP (approx. 85%) and in deep layers V and VI (approx. 30%) (Fig. 3.2C). 

Conversely, the majority of Satb2-positive cells coexpressed Ski in upper 

layers, although many Satb2-positive cells in deep layers were Ski-negative 

(Fig. 3.2C). In addition, virtually all layer V neurons expressing high levels of 

Ctip2 were positive for Ski (Fig. 3.2D). Notably, very few cells were triple 

positive for Ski, Satb2, and Ctip2 (Fig. 3.2E, arrow), which is in agreement 

with previous findings demonstrating that less than 5% of Satb2-positive cells 

express Ctip2 in deep layers (Alcamo et al., 2008). Little coexpression was 

observed for Ski and Tbr1 at E17.5 (Fig. 3.2F). The dynamic expression 

pattern of Ski points to a temporally restricted and cell-type specific function of 

Ski in cortical cells. 
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Fig. 3.2. Ski is expressed in postmitotic cells of the developing neocortex.  
(A) Ski immunostaining on coronal brain sections is predominantly detected in the VZ 
of the dorsal and ventral telencephalon, and in postmitotic cells of the neocortex at 
E14.5 and E17.5 (A). (B) Higher-magnification images of the rostro-dorsal neocortex 
at E17.5 (boxed region in A, right panel) show that neurons expressing high levels of 
Ski are mainly located in the superficial layers of the cortical plate (CP) and in layer V 
as visualized by layer-specific markers Satb2, Ctip2 and Tbr1. (C,D) Ski shows high 
coexpression with Satb2 in upper layers of the CP and to a minor extent in layer V 
(yellow in the corresponding overlays) (C), and with Ctip2 in layer V neurons (D). (E) 
Triple immunostainings for Ski, Satb2, and Ctip2 in higher-magnification images 
(boxed region in C,D) show that most Ski and Satb2 double positive cells (yellow in 
upper panel, arrow and arrowheads) do not express Ctip2 (blue in middle panel, 
arrowheads). A rare triple-positive cell is depicted (white in lower panel, arrow). (F) 
Ski and Tbr1 are coexpressed to a minor extent in layer VI neurons. Bars: A, 200 µm; 
B–F, 20 µm. 
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3.4 Ski ablation affects differentiation of neural progenitor 

cells  

We used Ski−/− mice (Berk et al., 1997) to investigate the requirement for Ski 

during cortical development. Analysis of the dorsal telencephalon at E10.5 

revealed a reduction in radial neuroepithelial thickness in Ski−/− forebrains 

compared to wild type (wt) (wt: 101±10µm; Ski−/−: 74±2µm, n=6, P ≤ 0.001) 

(Fig. 3.3A). Moreover, immunostainings for the M-phase marker phospho-

histone H3 (pHH3) (Fig. 3.3A) showed fewer proliferating apical progenitor 

cells in mutant forebrains (Fig. 3.3B). Similarly, the pool of intermediate 

progenitors was also affected in Ski−/− embryos (Fig. 3.3E and F). 

Concomitantly, we observed increased numbers of cells positive for 

doublecortin (Dcx; marker of migrating postmitotic neurons) in Ski−/− versus 

wt forebrains (Fig. 3.3C and D). Thus, our findings suggest that as a result of 

Ski deletion, cells differentiate precociously into neurons, leading to a reduced 

progenitor pool at initial stages of corticogenesis.  
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Fig. 3.3. Ski ablation reduces neural progenitor cell numbers and causes 
premature neurogenesis in the dorsal telencephalon.  
(A) Immunostaining for phospho-histone H3 (pHH3), a marker for cells in M phase, 
and DAPI staining of horizontal E10.5 wt and Ski−/− forebrain sections. Fewer 
mitotically active apical progenitor cells are present in Ski−/−, and radial thickness of 
the mutant neuroepithelium (NE) is reduced (white bars in A). (B) Numbers of pHH3-
positive cells in wt and Ski−/− are expressed as percentage of total DAPI stained 
nuclei per field. (C) Immunostaining for doublecortin (Dcx), a marker of immature 
neurons, reveals increased neurogenesis in E10.5 Ski−/− forebrain. In wt, Dcx-positive 
cells are present in the preplate (PP), while in Ski−/−, Dcx-expressing neurons are 
additionally detected within the VZ (arrow in C, right panel). (D) Numbers of Dxc-
positive cells in wt and Ski−/− are expressed as percentage of total DAPI stained 
nuclei per field. (E) Immunofluorescence for Tbr2 on coronal sections of E12.5 dorsal 
telencephalon shows a substantial decrease in the number of intermediate progenitor 
cells in Ski−/−. (F) Numbers of Tbr2-positive nuclei in wt and Ski−/− are expressed as 
percentage of total DAPI stained nuclei per field. Bars: 20 µm. Data are the mean of 
at least three embryos per genotype. Error bars indicate s.e.m. Student’s t-test: (*) P 
≤ 0.05, (***) P ≤ 0.001.  

 

Despite this defect, Ski−/− brains revealed only a slight reduction of forebrain 

size at E17.5, and DAPI-stained coronal sections showed only a moderate 

reduction of cortical thickness compared to wt (Fig. 3.4A and B). 
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3.5 The timing of deep-layer neuron generation is 

aberrant in Ski mutant mice  

To further investigate the timing of neuronal generation, pregnant females 

were injected with BrdU at E10.5, E12.5, or E14.5 to label proliferating cells, 

and the total number of pulse-labeled progeny was assessed at E17.5 (Fig. 

3.4C and D). The percentage of total BrdU-positive neurons generated at 

E10.5 and E12.5 was lower in Ski−/− (Fig. 3.4D), presumably because of the 

decreased pool of progenitor cells at these time-points (Fig. 3.3B and E). 

However, we found an excess number of neurons born at E14.5 in the mutant 

(Fig. 3.4D).  

                   

 
Fig. 3.4. Corticogenesis is impaired in the Ski−/− neocortex.  
(A) Dorsal views of wt and mutant brains reveal a slight reduction of forebrain size 
(FB) in Ski−/− mice. (B) DAPI staining of coronal sections through E18.5 cortices 
shows that the thickness of the cerebral wall is slightly reduced in mutant mice. (C) 
Photomicrographs of neocortical sections show the representative distribution of 
E14.5 BrdU birth date-labeled cells in wt and Ski−/−. For the quantification of labeled 
cells the cortical thickness was divided into ten equal bins. The bold white lines 
indicate the boundaries between the upper layers of the cortical plate (UL, bins 1–3), 
and deep layers (DL, bins 7-10). (D) Quantification of BrdU-labeled cells in E17.5 
neocortices after single BrdU injections at E10.5, E12.5, or E14.5 is shown. The 
graphical summary of the results represents the overall number of neurons 
generated at E10.5, E12.5, and E14.5, respectively, in wt and Ski−/−. Bars: B, 200 
µm; C, 20 µm. Data are the mean of at least three embryos per genotype. Error bars 
indicate s.e.m. Student’s t-test: (*) P ≤ 0.05, (**) P ≤ 0.01. 
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3.6 Intermediate progenitors substitute for the lack of early 

born neurons  

At the same time, the number of proliferating intermediate progenitors was 

increased in Ski−/− versus wt (Fig. 3.5A,B, and D) and the pool of Tbr2-positive 

progenitors was comparable between genotypes by E14.5 (Fig. 3.5C). Thus, 

during mid-corticogenesis, intermediate progenitors are likely to substitute for 

the lack of sufficient numbers of progenitors during early corticogenesis, 

ultimately leading to comparable thickness and cell numbers in corresponding 

wt and mutant cortical layers at E17.5 (Fig. 3.4B). 

                          

 

Fig. 3.5. Proliferation of apical and intermediate progenitors is disturbed in Ski 
mutants at E14.5.  
(A) Immunostaining for M phase marker pHH3 and DAPI staining of horizontal E14.5 
wt and Ski−/− forebrain sections reveals fewer apical (arrow), but more intermediate 
mitotically active progenitor cells (arrowhead) in Ski−/− compared to wt. (B) 
Quantification of the number of pHH3-positive cells per ventricular surface length 
(mm) in wt and Ski−/−. (C) Numbers of Tbr2-positive nuclei in wt and Ski−/− are 
expressed as percentage of total DAPI stained nuclei per field. (D) Numbers of 
proliferating pHH3-positive intermediate (Tbr2+) progenitors in wt and Ski−/− are 
expressed as percentage of total Tbr2 stained nuclei per field. Bar: 20 µm. Data are 

p
H
H
3
+
  c
e
ll
s
/m
m

wt Ski  -­/-­
E14.5

A B

apical intermediate
0

20

40

60

80

100

120

140

*
*

p
H
H
3
  D
A
P
I  

C

%
  o
f  
T
b
r2
+
  c
e
ll
s

0

10

20

30

40

50

60

0.0

0.5

1.0

1.5

2.0

2.5

%
  o
f  
  p
H
H
3
+
T
b
r2
+
  c
e
ll
s

D

wt

Ski  -­/-­

wt

Ski  -­/-­
wt

Ski  -­/-­**



 Results C.Baranek 

 21 

the mean of at least three embryos per genotype. Error bars indicate s.e.m. Student’s 
t-test: (*) P ≤ 0.05, (**) P ≤ 0.01. 
 
 
 

3.7 Ski is required for maintaining the identity of callosal 

neurons  

We next examined neuronal identities in mutant cortices. For this, we 

assessed and compared the distribution of cell-type specific markers by 

immunohistochemistry at E17.5 in the neocortex of wt and mutant (Fig. 3.6). 

Satb2 was expressed normally in all layers (CP, V, VI, SP) in the absence of 

Ski (Fig. 3.6A). In contrast, in Ski−/− mutants expression of Ctip2, a marker for 

cortico-subcortical projection neurons, was markedly expanded to the 

superficial layers of the CP, where Ctip2 is normally absent (Fig. 3.6B). 

Further, the number of cells expressing Tbr1 in the UL neurons was reduced 

in Ski-deficient embryos, whereas Tbr1 expression in layer VI and in the 

subplate remained unchanged (Fig. 3.6C). To further characterize cells 

expressing Ctip2 ectopically, coronal sections were double-stained for Satb2 

and Ctip2 (Fig. 3.6D and E). In the superficial layers of the CP, Satb2-positive 

cells were negative for the deep layer marker Ctip2 in the wt (Fig. 3.6D and E) 

(Alcamo et al., 2008), while in the mutant, most Satb2-positive cells 

ectopically expressed Ctip2 (Fig. 3.6D and E). In deep layers, approx. 2% 

(42/2286) of total cells coexpressed Satb2 and Ctip2 in the wt (Fig. 3.6D), 

while in the mutant, the percentage of double-stained cells increased to 

approx. 7% (166/2444) (Fig. 3.6D and E). Collectively, these results 

demonstrate that subpopulations of Satb2-positive neurons in both upper and 

deep layers ectopically express Ctip2 upon loss of Ski, but that this effect is 

more prominent in UL neurons at the examined time-point.  
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Fig. 3.6. Ski deletion affects Ctip2 and Tbr1 expression patterns in the dorsal 
telencephalon.  
(A-C) Satb2 immunostaining of E17.5 coronal brain sections is similar in wt and Ski−/− 
cortex (A). Ctip2 immunoreactivity has expanded to the superficial layers of the CP in 
the absence of Ski (B), and fewer cells in the upper layers of the CP express Tbr1 in 
Ski−/− mice (C). Quantification of Satb2, Ctip2, and Tbr1-positive neurons is shown for 
the superficial layers of the CP, the deep layers V and VI, and the subplate (SP) as a 
percentage of total DAPI stained nuclei per field within the respective layer in wt 
(grey bars) and Ski−/− (black bars). Statistically significant differences were found in 
the numbers of Ctip2-positive cells (B) and Tbr1-positive cells (C) in the upper layers 
of the CP. (D,E) Double immunostainings for Satb2 and Ctip2 on E17.5 coronal brain 
sections in wt and Ski−/−(D). Higher-magnification images reveal ectopic expression 
of Ctip2 (red) in Satb2-positive cells (green) in Ski mutants (E, lower panels), while 
Ctip2 expression is absent in Satb2-positive cells of the wt (E, upper panels). Bars: 
A-D, 50 µm; E, 20 µm. Data are the mean of at least three embryos per genotype. 
Error bars indicate s.d.  
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3.8 UL neurons are born at expected time-points in Ski 

deficient mice 
 

To investigate the origin of the Ctip2 and Satb2 double-labeled cells in the 

upper layers, we performed BrdU pulse labeling at E12.5 and E14.5, and 

determined the distribution of BrdU-positive neurons among those expressing 

Ctip2, Satb2, or the specific UL marker Cux1 (Fig. 3.7A and Fig. 3.7C and D). 

We find that in contrast to the wt, Ctip2-positive cells born at E14.5 reach the 

upper layers in Ski−/− embryos (Fig. 3.7A). Mutant Ctip2-positive cells born at 

E12.5, however, migrate to deep layers as in the wt, and do not aberrantly 

reach the upper layers by E17.5 (Fig. 3.7A). Further, our results show that the 

distribution of Cux1-posititve neurons that were born at E14.5 is similar 

between genotypes at E17.5, suggesting that UL neurons are generated at 

the expected time point and migrate to the expected layers in the mutant (Fig. 

3.7A). In support of this notion, very low numbers of Cux1-positive, UL 

neurons were born at earlier stages, both in the wt and the Ski−/− (Fig. 3.7D). 

The analysis of Satb2-positive neurons born at E14.5 showed a similar 

distribution in wt and Ski−/− (Fig. 3.7A). In summary, UL neurons in the Ski−/− 

mutants are born at the expected time-point, but ectopically express Ctip2. In 

support of this conclusion, we find increased expression of Ctip2 mRNA in 

mutant cortices (Fig. 3.7B). 
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Fig. 3.7. Quantification of BrdU-labeled cells in E17.5 neocortices after single 
BrdU injections at E12.5 and E14.5.  
(A) Photomicrographs of neocortical sections show the representative distribution of 
E14.5 BrdU birth date-labeled, Ctip2-positive cells in wt and Ski−/− (arrows). For the 
quantification of labeled cells the cortical thickness was divided into ten equal bins. 
Bins 1-3 correspond to the upper layers (UL), and bins 7-10 to the deep layers (DL) 
of the cortical plate. The percentage of BrdU-labeled cells, double positive for Ctip2 
in each region (UL, DL) relative to the total number of DAPI stained nuclei per field 
was determined in wt (grey bars) and Ski−/− (black bars) (middle and right panels). 
The analysis shows that the numbers of E14.5-born Ctip2-positive cells that populate 
the UL and DL are significantly increased in the mutant. However, the increase in 
Ctip2-positive cells in the mutant UL is not due to a precocious generation of these 
cells, as Ctip2-positive cells born at E12.5 are predominantly found in the DL in both 
genotypes. (B) qRT-PCR was performed to determine Ctip2 mRNA levels in wt and 
Ski−/− cortices at E18.5. Ctip2 values were normalized to HPRT1 mRNA. cDNA from 
brains of two wt/Ski−/− littermates (Exp.1 and Exp. 2) were generated. Results are 
presented as ratios of Ctip2 levels in Ski−/− and wt, demonstrating an approx. 1.5 and 
1.8-fold induction of Ctip2 in the Ski−/− mutant. (C,D) The percentage of BrdU-labeled 
cells, double positive for either Cux1 or Satb2 in each region (UL, DL) relative to the 
total number of DAPI stained nuclei per field was determined in wt (grey bars) and 
Ski−/− (black bars). (C) The analysis shows that comparable numbers of E14.5-born 
cells expressing UL markers Cux1 or Satb2 reach the UL. (D) The analysis of Cux1-
positive cells born at E12.5 underlines the finding that no excess UL neurons are 
generated at earlier time-points in the mutant. Bar: F, 20 µm. Data are the mean of at 
least three embryos per genotype. Error bars indicate s.e.m. in (A-D). Student’s t-
test: (**) P ≤ 0.01, (***) P ≤ 0.001. (B) M.Dittrich 
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3.9 The genetic program of CP neurons is partly altered in 

the absence of Ski 
 

These experiments show definitively that subpopulations of Ski-deficient, 

Satb2-positive neurons change their genetic program. To further characterize 

the phenotype of the mutant callosal neurons, we performed in situ 

hybridization assays including fate- and layer-specific markers (Fig. 3.8A-C) 

(Alcamo et al., 2008). In addition to Ctip2, other corticospinal motor neuron 

(CSMN)-specific genes, such as Clim1/Ldb2 and Cdh13 displayed increased 

expression levels in deep layers and an expansion of expression into upper 

layers in E18.5 Ski mutants. However, another CSMN-specific gene, the 

transcription factor Fezf2 was expressed normally, suggesting that Ski-

deficient callosal neurons acquire some but not all characteristics of wt 

CSMNs (Fig. 3.8A). Further, the expression of callosal projection neuron 

(CPN)-specific genes, including the expression of Cdh10, Ptn, and Lmo4 was 

upregulated upon loss of Ski, consistent with a disturbed CPN identity (Fig. 

3.8B). We also tested layer-specific genes, and found that Cux2 was elevated 

in the intermediate zone, while expression of the transcription factor bHLHb5 

in layers II-V was reduced in the Ski mutant (Fig. 3.8C). However, not all 

expression patterns of genes were altered. For example, the expression of the 

signaling molecule Dkk3, and the layer-specific markers Cux1, RORβ, and 

Bcl6 remained normal in the absence of Ski (Fig. 3.8B and C). Overall, Ski-

deficient callosal neurons display a phenotype which is reminiscent of and 

partially overlapping with that of Satb2-deficient mice, where Satb2 mutant 

neurons acquired ectopic expression of Ctip2 and other CSMN-specific 

genes, and lost their identity as callosal projection neurons (Britanova et al., 

2008a; Alcamo et al., 2008). 
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Fig.3.8. Layer-specific markers are differentially expressed in Ski−/− cortices. 
In situ hybridization reveals that the expression levels of CSMN-specific genes is 
either elevated (Ctip2, Ldb2, and Cdh13) or normal (Fezf2) in the Ski−/− mutant (A). 
Similarly, the expression of CPN-specific genes is either elevated (Cdh10, Lmo4, and 
Ptn) or normal (Dkk-3) relative to the wt expression levels in the cortical plate (B). 
While the expression of the 2,3,4 layer marker Cux1 is unchanged, the expression 
levels of the 2,3,4 layer marker Cux2 is elevated in the mutant IZ. Further, the 
expression of 4 and 5 layer marker RORβ and the superficial CP marker Bcl6 is 
normal, while the expression level of the layer 2–5 marker bHLHb5 is drastically 
reduced upon loss of Ski (C). Bar: 200 µm for C-E. 
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3.10 Callosal projection neurons fail to cross the midline in 

Ski mutants 
 

Thus, we next evaluated whether the formation of the corpus callosum was 

also impaired in the Ski mutants (Fig. 3.9). Immunohistochemical staining for 

the neural cell adhesion molecule L1 revealed striking alterations in axonal 

connectivity in Ski mutants. Axonal tracts either failed to cross the midline, or 

the population of L1-positive axons forming the corpus callosum was largely 

decreased (Fig. 3.9A). To investigate the origin of axons arriving at the 

midline, we performed tract tracing by placing crystals of the lipophilic marker 

Dil in the neocortex of wt and Ski−/− at E18.5, allowing an anterograde labeling 

of cortical axons traveling to the contralateral hemisphere. Coronal sections of 

rostral levels showed that in contrast to the wt, Dil-labeled axons in the mutant 

approached the midline, but did not cross it (Fig. 3.9B). Similarly to the 

findings in the Satb2 mutant (Alcamo et al., 2008), the development of the 

glial sling, which is required for axons to grow contralaterally (Shu et al., 

2003), appeared normal in the Ski mutant (Fig. 3.9C), suggesting that the 

malformation of the corpus callosum is not solely based on a midline defect. 
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Fig. 3.9. Ski deletion leads to failure in the formation of the corpus callosum.  
(A) Immunohistochemistry for the axonal marker L1 on E18.5 coronal brain sections 
depicts axonal projections forming the corpus callosum. In comparison to wt (arrow in 
left panel), the population of axons crossing the corpus callosum is largely decreased 
(arrow in middle panel) or is completely missing (arrow in right panel) in Ski−/− 

embryos. (B) Dil labeling from the neocortex at E18.5 demonstrates that cortical 
efferent fibers form the corpus callosum in wt, but not in Ski−/− embryos (arrows). (C) 
Double immunohistochemistry for the neuronal marker NeuN and the glial marker 
GFAP shows the presence of the glial sling (arrow), the glial wedge (asterix), and the 
induseum griseum (arrowhead) in wt and Ski−/−. Note that these structures are 
present in Ski mutants, but the corpus callosum is missing. Bars: 100 μm  
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3.11 Lack of Ski in Satb2-positive callosal projection 

neurons causes them to project ectopically to 

subcortical targets  
We next examined whether axonal projections of Satb2-positive neurons were 

altered in the absence of Ski. For this, we placed Dil in the cerebral peduncle 

at E18.5 (Fig. 3.10A and B) to retrogradely label cortico-subcerebral 

projections (Fig. 3.10C and D). In these experiments, we concentrated on the 

dorso-medial cortex, and we specifically studied the contribution of Satb2-

expressing neurons to cortico-subcerebral projections (Fig. 3.10E). We found 

that approx. 55% (214/392) of subcerebrally projecting neurons, retrogradely 

labeled from the cerebral peduncle, were Satb2-positive in wt mice, while the 

percentage of Dil-positive, Satb2-expressing cells increased to approx. 84% 

(343/408) in the Ski mutant. Thus, the percentage of Satb2-expressing 

neurons that project via the cerebral peduncle was markedly increased in the 

Ski mutants as compared to the wt (Fig. 3.10F). Taken together, our data 

show that callosally projecting neurons redirect their axons to subcortical 

targets in the absence of Ski, as described previously in Satb2−/− mutants 

(Britanova et al., 2008a; Alcamo et al., 2008). These similarities between the 

Ski−/− and Satb2−/− phenotypes prompted us to evaluate whether Ski and 

Satb2 act in a common genetic pathway.  
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Fig. 3.10. Callosal neurons redirect their axons towards subcortical targets in 
Ski mutants.  
(A) The placement of DiI crystals in the cerebral peduncle (CP, arrowheads) in wt 
and Ski−/−. (B) Schematic representation showing the position of DiI crystal 
placement in the CP. Ncx, neocortex; dTH, dorsal thalamus. (C) DiI placed in the CP 
retrogradely labels subcerebrally projecting cortical neurons in both wt and Ski−/−. (D) 
Higher-magnifications of wt and Ski−/− cortical plate shown in (C). (E,F) Colocalizing 
the retrogradely labeled neurons with Satb2 shows that the majority of Dil-labeled 
neurons are Satb2-posititive in the Ski−/− mutant (arrowheads in E), while more Dil-
labeled neurons are Satb2-negative in the wt (arrows in E). The percentage of 
subcortically projecting neurons that are Satb2-positive is significantly higher in Ski 
mutants as compared to wt (F). Bars: 20 µm. Error bars indicate s.e.m. Student’s t-
test: (**) P ≤ 0.01.The figure was kindly provided by S. Parthasarathy.   
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3.12 Ski interacts with Satb2  
 

To investigate whether these two factors interact, we cotransfected HEK293 

cells with Ski and Satb2 expression vectors and performed 

immunoprecipitation experiments using lysates of cotransfected and control 

untransfected cells (Fig. 3.11A and B). Immunoblots with Ski and Satb2-

specific antibodies, respectively, showed that Ski and Satb2 coprecipitated 

(Fig. 3.11A). As no Ski or Satb2 immunoreactivity was detected when using 

control antibody, this experiment identifies Satb2 as a novel intracellular 

partner of Ski. These results were confirmed using cortical lysates 

demonstrating the presence of Ski-Satb2 complex formation in vivo (Fig. 

3.11B). To examine the location of endogenous Ski and Satb2 complexes in 

the developing cortex, we applied an antibody-based proximity ligation assay 

(PLA), which allows individual interacting pairs of protein molecules to be 

visualized in situ (Söderberg et al., 2006) (see Materials and Methods). 

Specific Ski-Satb2 complex formation was observed in nuclei of UL neurons 

(Fig. 3.11C, arrows in upper panel), while there was no signal detectable on 

control Ski−/− or Satb2−/− sections (Fig. 3.11C, middle and lower panels). 
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Fig. 3.11. Ski associates with Satb2 and represses Ctip2 transcription in 
cortical neurons. 
(A) Lysates from Ski and Satb2-cotransfected (+) and untransfected (–) HEK cells 
were analyzed by immunoprecipitation (IP) with anti-Ski antibody (Ab) (IP Ski), anti-
Satb2 Ab (IP Satb2), or an unrelated control Ab (IP contr). Western blotting was 
subsequently performed using Abs against Satb2 (upper panel) or Ski (lower panel). 
Note that HEK cells endogenously express low levels of Satb2 (input in upper panel), 
while there is no endogenous Ski detectable (Input in lower panel).. (B) Lysates of wt 
cortical tissue were analyzed by IP with anti-Ski Ab (IP Ski) or an unrelated control 
Ab (IP contr) followed by immunoblotting using Abs against Satb2.  An IP with anti-
Ski Ab (IP Ski) with lysates of Ski−/− cortical tissue served as control to demonstrate 
the specificity of the anti-Ski antibody. Equal input of protein extracts was controlled 
by Lamin detection. (C) Endogenous Ski-Satb2 complexes were detected in situ in 
cortical neurons on wt brain sections using the proximity ligation assay (PLA). Panels 
represent magnifications of wt, Ski−/−, and Satb2−/− superficial layers of the CP. The 
Duolink fluorescent probe 563 (see Methods) was used as hybridization probe 
(green) and the nuclei were stained with TO-PRO®-3 stain (red). The Ski-Satb2 
complex formation in the wt (arrows in upper panel) was specific, as there was no 
signal detectable in the Ski−/− and Satb2−/− (middle and lower panels). Bars: C and H, 
5 µm. Fig. A:M.Dittrich. Fig.B M.Dittrich/C.Gaiser. 
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3.13 Ski binds with Satb2 to regulatory regions of Ctip2 in 

cortical neurons 

We next investigated whether Ski targets regulatory sequences of Ctip2 (Fig. 

3.12). Since Ski does not directly interact with DNA, but interacts with Satb2, 

we asked whether Ski is recruited to the previously identified Satb2-binding 

sites in the Ctip2 gene locus in vivo (Alcamo et al., 2008) (Fig. 3.12A). We 

performed chromatin immunoprecipitation (ChIP) with mouse E18.5/P0 

cortical tissue using a Ski antibody and previously published primer pairs for 

targeting sequences of matrix attachment regions (MARs) within the Ctip2 

locus (amplicons within five Ctip2 MAR regions: A1-A6) (Alcamo et al., 2008) 

(Fig. 3.12A). The analysis using cortical lysates revealed an enrichment of five 

MAR sequences (A1-A5), suggesting that Ski was targeted to complexes at 

multiple MAR sequences within the Ctip2 locus (Fig. 3.12D). Since the 

enrichment of the A4 amplicon was most prominent, we next examined Ski-

Satb2 complex formation at this site.  Semiquantitative and quantitative PCR 

with primer pairs amplifying the A4 site disclosed a specific Ski protein/Ctip2 

DNA complex in wt, which was substantially reduced in the absence of Satb2 

protein and was undetectable in the Ski−/− negative control (Fig. 3.12B and 

Fig. 3.12E). In contrast, ChIP experiments with Satb2 antibody revealed that 

Satb2-binding to the A4 site was as efficient in the absence of Ski as in wt 

(Fig. 3.12B and Fig. 3.12E). Taken together, we demonstrate that in the 

presence of Satb2, Ski is recruited to the Ctip2 locus in vivo, but Satb2-

binding to the Ctip2 cis-regulatory region is independent of Ski.  

 

3.14 Ski is part of the NURD complex which down-

regulates Ctip2  

As previously reported, Satb2 downregulates Ctip2 expression by interacting 

with two members of the NURD complex, the histone deacetylases HDAC1 

and MTA2 (Britanova et al., 2008a). Thus, to further evaluate the role of Ski in 

the formation of repressor complexes on the Ctip2 gene, we then asked 
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whether the NURD/Ctip2 DNA complex was affected by Ski deletion. ChIP 

experiments with MTA2 and HDAC1 revealed that only MTA2, but not HDAC1 

interacted with the Ctip2 locus in the absence of Ski (Fig. 3.12C and Fig. 

3.12E). 

 

Fig. 3.12. Ski is essential for recruiting HDAC1 to the NURD complex.  
(A) A schematic representation of the Ctip2 locus (adapted from Alcamo et al., 2008). 
Green bars indicate exons 1-4 (ex1-ex4). Matrix attachment regions 1-5 (MAR 1-5) 
are shown as red bars. ChIP amplicons 1-6 (A1-A6) and their position in the locus 
are depicted below. (B,C) Semiquantitative chromatin immunoprecipitation (ChIP) 
assay was performed to detect protein occupancy at the Ctip2 locus using wt, Ski−/−, 
and Satb2−/− cortical tissue from E18.5/P0 pups. A 245 bp fragment was amplified 
from a previously described Ctip2 regulatory DNA sequence, the matrix attachment 
region 4 (Alcamo et al., 2008) (A and E). The samples were immunoprecipitated with 
anti-Ski and anti-Satb2 antibodies (C), or anti-MTA2 and anti-HDAC1 (D) ChIP assay 
to detect Ski occupancy at the Ctip2 locus (amplicons A1-A6) using wt cortical tissue 
from E18.5 pups. (E) ChIP assay to detect protein occupancy at the Ctip2 locus 
(amplicon A4) using wt, Ski−/−, and Satb2−/− cortical tissue from E18.5/P0 pups. The 
samples were immunoprecipitated with anti-Ski, anti-Satb2, anti-MTA2, or anti-
HDAC1 antibodies. The results are normalized to the levels of the Ski−/− sample for 
ChIPs with anti-Ski antibodies, to the levels of the Satb2−/− sample for ChIPs with 
anti-Satb2 antibodies, and to the levels of a negative antibody control for ChIPs with 
anti-MTA2 and anti-HDAC1 antibodies. The analysis confirms the results shown in 
Fig. B and C, and demonstrates that Satb2 and MTA2 bind to the Ctip2 locus in the 
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absence of Ski, but HDAC1 is not recruited to the site. Each bar represents the mean 
value of three PCR experiments. Error bars indicate s.e.m. 
 
 

3.15 Ski recruits HDAC1 to the NURD complex  
 

To add further evidence that Ski is required for the recruitment of HDAC1 to 

the Satb2-containing repressor complex, we performed co-

immunoprecipitation studies for Satb2, MTA2, and HDAC1 on cortical cell 

lysates (Fig. 3.13A and B). Our data demonstrate that Satb2 and MTA2 

interactions were largely unaffected in the Ski mutant compared to wt (Fig. 

3.13B), while Satb2-HDAC1 complex formation was markedly reduced in the 

absence of Ski (Fig. 3.13A). Further, in situ PLA assays showed that in the 

absence of Satb2, Ski-MTA2 interactions were reduced compared to wt (Fig. 

3.13C, panels to the left), while MTA2-Satb2 interactions were readily found in 

the absence of Ski (Fig. 3.13C, middle panels), and no Satb2-HDAC1 

complexes were detectable upon loss of Ski (Fig. 3.13C, panels to the right). 

To further assess the role of Ski in transcription of Ctip2, we performed 

transient transfection assays with a fos-luciferase reporter containing MAR 

region A4. As shown in Fig. 3.13D, concomitant expression of Satb2 and Ski 

in transfected COS cells was necessary to reduce the activity of the A4-fos-

luciferase reporter approx. 2-fold, whereas no change in activity was detected 

upon expression of either protein alone.  
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Fig. 3.13. In the absence of Ski or Satb2 is the assembly of the NURD complex 
disturbed.   
(A,B) Lysates of wt and Ski−/− cortical tissue were analyzed by IP with anti-HDAC Ab 
(IP HDAC) (A) or anti-MTA2 Ab (IP MTA2) (B) followed by immunoblotting using Abs 
against Satb2 (A,B). An unrelated Ab was used as control (IP contr) (A,B). Equal 
input of protein extracts was controlled by Lamin detection (F,G). Note that Satb2-
HDAC complex formation is drastically reduced in the Ski−/− (A), while Satb2-MTA2 
complex formation is unaffected in the absence of Ski (B). The IP experiments were 
repeated at least three times (A,B). (C) Using PLA, endogenous protein complex 
formation was detected in UL neurons in situ as indicated on wt, Ski−/−, and Satb2−/− 
cortical brain sections (arrows). Note that Satb2-HDAC1 complex formation is absent 
in UL neurons on Ski−/− sections. (D) A4 sequence activity in presence or absence of 
Satb2 and/or Ski in COS cells transfected with a fos-luciferase reporter construct that 
contains the A4 sequence. Bars: C and H, 5 µm. FigA/B M.Dittrich and 
C.Gaiser.Fig.D: O.Britanova. 
 

These results demonstrate that Ski is necessary for the Satb2-mediated A4 

transcriptional repression in vitro, and further support our in vivo finding that 

both proteins are required to repress Ctip2 expression. Alcamo et al. (2008) 

previously demonstrated that forced expression of Satb2 alone led to a 

substantial decrease of the A4 sequence activity in mouse EL4 lymphoma 

cells. These cells are likely to express endogenous Ski, as previously reported 

for numerous cancer cell lines {Bonnon:2012ho}; this may explain the 

observed cell-type related differences. Taken together, our findings 

demonstrate that Ctip2 is a direct target of Ski and Satb2 in cortical neurons, 

and that both proteins are required for efficient recruitment of members of the 

NURD complex to the Ctip2 locus. While Satb2 directly binds MAR sequences 

in the Ctip2 locus and recruits MTA2 to the site, Ski is required for attracting 

HDAC1, thereby allowing the NURD complex to form appropriately (Fig. 3.14). 
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Fig.3.14. Model for Ski function at the Ctip2 locus in callosal projection 
neurons. 
Ski is required to assemble a functional NURD repressor complex containing Satb2, 
MTA2, and HDAC1 at MAR sites in the Ctip2 locus. In the absence of Ski, Satb2 still 
binds the regulatory DNA sequences together with MTA2, but recruitment of HDAC1 
is impaired. In the absence of Satb2, the NURD complex is not assembled. Thus, 
Satb2 and Ski play specific roles in the formation of a functional NURD complex, and 
individual loss of these factors prevents transcriptional repression of Ctip2 in callosal 
projection neurons. 
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4 Discussion  
Great progress has been made in recent years in identifying numerous 

subtype specific genes in the cortical plate. However, in most cases their 

function remains unclear and very few regulatory molecular mechanisms have 

been described yet. In this work we identify the transcriptional regulator Ski as 

a new factor in callosal neurons specification by cooperating with Satb2 in 

these cells.  

4.2 Spatio-temporal expression pattern of Ski 
All former studies of the expression pattern of Ski, whether in the developing 

embryo or postnatal brain, were done by in situ hybridisation (Lyons et al., 

1994; Leferovich et al., 1995). It has been shown that Ski transcripts are 

highly expressed in germinal layers and in the cortical plate (Lyons et al., 

1994). Since various genes are posttranscriptionally regulated, we determined 

the spatio-temporal expression pattern of the Ski protein. Our findings are 

more precise then the in situ data since we are able to identify for the first time 

the specific cell types in which the Ski protein is actually expressed, and thus 

where Ski might perform its function in the developing brain.  

Our detailed analysis of co-expressed markers revealed an expression of Ski 

in specific subtypes of progenitor cells as well as in post-mitotic projection 

neurons. Ski was found to be expressed in apical progenitor cells together 

with the neural stem cell and radial glia marker Sox2 and Pax6. As soon as 

the cortical plate is established Ski expression also appears in post-mitotic 

neurons of this compartment. Notably, no Ski expression was found in Tbr2 

positive IPCs of the SVZ.  

Similar expression patterns have been previously described for the marker 

OTX1 and Fezf2 – both have been shown to be expressed in VZ precursor 

cells, down regulated in SVZ precursor cells and again up regulated in 

specific deep-layer neurons. Interestingly, both OTX1 and Fezf2 have a 

crucial role in specifying axonal projections in subsets of deep layer neurons 

(Weimann et al., 1999; Hirata et al., 2004; Molyneaux et al., 2005). However, 
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it is still not clear if the expression of a factor in the VZ correlates with the 

specification of the neuronal subpopulations or if these genes have two 

independent functions in different compartments (Alvarez-Bolado et al., 1995). 

 

4.3 Does Ski function independently in different 

compartments? 
The expression of Ski in both proliferative VZ progenitors and postmitotic 

neurons raises the question if Ski acts independently in different 

compartments. Ski has already been shown to promote differentiation in 

muscles and Schwann cells and also to be involved in cancerogenesis as 

either tumor suppressor or oncogene (Sutrave et al., 1990; Atanasoski et al., 

2004; Pardali and Moustakas, 2007). This indicates defined roles in both 

proliferation as well as in differentiation. Furthermore, the interaction of Ski 

with the retinoblastoma protein (pRb) might be a direct link between Ski and 

the regulation of the cell cycle machinery in apical progenitor cells as well as 

its co-localisation with the centrosomes and the mitotic spindle during mitosis 

(Tokitou et al., 1999; Marcelain and Hayman, 2005). Our present finding, that 

in the absence of Ski the VZ of the dorsal telencephalon is thinner and fewer 

cells are in M-phase, accompanied by precocious differentiation due to a 

defect in proliferation and an exhaustion of the progenitor pool, is consistent 

with this proposition.  

 

4.4 The Role of Ski in intermediate progenitors and 

migration 
Surprisingly, the amount of cells in the cortical layers at perinatal stage was 

comparable to that in wild-type littermates with a somewhat higher density 

due to overall reduced body size of the knock-out animal as reported before 

(Berk et al., 1997). This is an unexpected result, considering the previously 

described effects of premature differentiation and proliferation defects. Birth-

dating analysis revealed that in fact less neurons where born at early stages 
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(E10.5 and E12.5), consistent with the defect in apical progenitors 

proliferation, which are the main source for neurons at these stages. On the 

contrary, the amount of late born (E14.5) neurons was increased – due to 

increased proliferation of intermediate progenitor cells of the SVZ. This finding 

helps to explain how the initial defect in neuronal number could have been 

compensated. Still puzzling about this finding is that Ski itself is not expressed 

in intermediate progenitors and also that the amount of Tbr2 positive cells at 

early stage was reduced. It is still not clear which mechanisms regulate 

intermediate progenitor proliferation. By showing that intermediate progenitor 

cell proliferation changes during cortical development, Kowalczyk et al. 

supports the idea of a dynamic regulated system (Kowalczyk et al., 2009). 

Several factors that may selectively regulate intermediate progenitor cell 

proliferation were identified in recent years, such as Id4 (Yun et al., 2004) , 

delta notch signalling (Mizutani et al., 2007), secreted morphogens such as 

Wnts (Zhou et al., 2006), beta-catenin signalling (Mutch et al., 2010) and also 

the cell cycle protein CyclinD2 (Glickstein et al., 2009). 

In the case of Ski deficiency, further investigations will be needed to elucidate 

if here an intrinsic effect in apical progenitors is influencing daughter cell 

types, since intermediate progenitor cells are produced by apical progenitors, 

or if an extrinsic effect of cell signalling cascades signal the need for 

increased cell production.  

The same is true for the role of Ski in migration. It is not clear which 

mechanism causes the effects we see. Since migration of early born neurons 

(E10.5-12.5) appeared normal, the main differences were found in late born 

neurons born at E14.5. Beside the expected and normal migrating population 

of the upper layers neurons, the cells produced in excess, migrate to balance 

the deficit in the deep layers. Nevertheless the layering of the CP remained 

unaffected since Cux1 positive upper layers and also Tbr1 positive deep-

layers emerged normally.  
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4.5 Ski interacts with Satb2 in a transcriptional complex 
Although the layering of the cortex and expression of upper-layer markers 

appeared normal, we found ectopic expression of Ctip2 in upper layer 

neurons. Birth-dating analysis revealed that these cells were born at the 

expected time-point. This raised the question whether the genetic program of 

these cortical projection neurons was disturbed. 

In Satb2 deficient mice, a comparable phenotype has been described in the 

case of increased Ctip2 expression in upper-layer neurons (Alcamo et al., 

2008; Britanova et al., 2008a).  However, the effects were not completely 

identical in both knock-outs. Some neurons in Satb2 mutants exhibit a 

delayed migration, which we could not find in our Ski deficient mice. Also, a 

comparison of gene expression data by in situ analysis between our present 

results in Ski deficient mice and the published results of Alcamo et al in Satb2 

knock-out mice revealed only partially corresponding effects (Alcamo et al., 

2008). For example, CSMN specific genes such as Clim1/Ldb2 and Cdh13 

displayed increased expression levels in both Ski and Satb2 knock-out 

animals. On the other hand, interestingly, CPN specific genes such as Cdh10, 

Ptn and Lmo4 were up-regulated upon loss of Ski in opposition to the 

observed effects in Satb2 deficient mice. Nevertheless, overall the 

comparable phenotype of Ski-/- and Satb2-/- mice in respect to Ctip2 

expression suggests that the function of Ski and Satb2 is closely related in 

upper-layers where these two proteins are mainly co-expressed.  

Our findings show that Ski interacts with Satb2 in a transcriptional complex, 

which regulates Ctip2 expression in upper-layer neurons. Satb2 as well as its 

family member Satb1 is known to function either as a transcriptional activator 

or repressor by binding to MAR sides (Britanova et al., 2005). It is also known 

that Satb2 represses Ctip2 transcription by recruiting the NURD complex, that 

contains amongst other factors two histone deacetylases, MTA2 and HDAC1 

(Britanova et al., 2008a). This complex fails to function if either Ski or Satb2 is 

absent. Alcamo et al identified several binding sites in the promoter of Ctip2 

and they were able to show that Satb2 interacts differently with each of these 

regions (Alcamo et al., 2008). In Ski deficient mice, the binding of Satb2 to 
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these regions is not impaired, but we provide evidence that Ski is essential for 

recruiting HDAC1 and assure a correct complex formation.  

 

4.6 Ski binds with Satb2 to specific regulatory regions of 

Ctip2 in cortical neurons 
In differentiated Satb2-deficient neural stem cells, it has been shown that 

there is preferential H3K4 dimethylation at MAR site A4. This shows that the 

chromatin at this site is transcriptionally active in the absence of Satb2 

(Alcamo et al., 2008). Consistent with this finding, we were able to show with 

ChIP experiments that binding of Ski is strongest to the A4 site in wt cortical 

tissue. The binding of Ski to the other identified Satb2-binding sites 

(amplicons A1-A3, A5, A6) was weaker or not detectable. The result shows 

that not all MAR sites within the Ctip2 locus are equally targeted by Ski in UL 

neurons. This proposition is also supported by the results obtained from 

cultured neural stem cells upon forced Satb2 expression {Alcamo:2008cc}. 

 

4.7 Does Ski act cell autonomously in callosal projection 

neurons? 
Ski and Satb2 are both co-expressed in cortical neurons that extend axons to 

the corpus callosum. In both the Satb2 knock-out mice and in the Ski deficient 

mice, the corpus callosum is severely reduced or even absent due to a 

redirection of the callosal projections subcortically through the cerebral 

peduncle (Alcamo et al., 2008). We find here that the callosal structures, 

including the glial sling and the glial wedge, are intact in Ski deficient mice. 

This argues strongly for a cell autonomous interaction of Ski and Satb2 in 

callosal projection neurons and rather excludes the possibility of a dorsal 

midline defect in this region.  

It is known that subcortical and corticocortical projection neurons can coexist 

within a layer (Fame et al., 2011). In deep-layers, the percentage of Ski-Satb2 

double positive cells is lower, and ectopic expression of Ctip2 in these cell 
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populations is less obvious in the absence of Ski. It is also known that Satb2-

expressing deep-layer neurons consist of a heterogeneous population of 

projecting neurons (Britanova et al., 2008a). Therefore Ski might be 
selectively expressed in Satb2 positive callosal projecting deep-layer neurons. 

Since Ski expression appears preferentially in younger neurons, a second 

alternative explanation is that Ski could act here transiently in late born 

neurons to initiate proper callosal neuron identity. In support of this hypothesis 

we show here for the first time an interaction of Ski with the NURD complex, 

one of the two major histone deacetylation complexes, the other being the 

Sin3 complex. In several studies it has been shown that the NURD complex is 

particularly important for developmental transitions and lineage choice. The 

Sin3 complex appears instead to be in the control of cell cycle progression, 

proliferation and differentiation (for review see (McDonel et al., 2009)). The 

interaction of Ski with Sin3A has already been shown (Nomura et al., 1999). 

Reviewing our results in this context leads to the suggestion that Ski might 

play a fundamental role in development by interacting with both. Therefore the 

early defects could be due to a Sin3A defect in neural progenitors and the 

non-functional NURD complex could cause the later defects. A function for Ski 

together with the NURD complex in defining lineage choice would also explain 

the higher percentage of Ski-Satb2 double positive cells in later born upper-

layers.  

The only partially overlapping phenotypes of gene expressions in the cortical 

plate between Ski and Satb2 deficient mice could be explained by the fact that 

Ski and Satb2 have different spatio-temporal expression patterns and are only 

mainly coexpressed in UL-neurons, whereas in DL neurons they are not 

always co-expressed.  It can be expected that they play different roles and 
have different impact in cells in which they are not co-expressed. 
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4.8 Concluding remarks 
In summary, we demonstrate that Ski function in Satb2-expressing callosal 

neurons is essential to maintain their identity, and that the presence of both 

transcriptional regulators is required for repressing the genetic program of 

subcortically projecting neurons.  

Still, many questions remain for prospective studies about the role of Ski in 

cortical development. What role does Ski play in apical progenitors? How 

does Ski deficiency influence basal progenitor proliferation? Which 

mechanism allows late born neurons to fill up missing deep layer populations? 

If Ski plays a role in cell identity determination, does this also apply for other 

cell types in the brain such as glia cells?  

Altered proportion in cleavage plane distribution and misregulation of specific 

genes linked with asymmetric divisions in Ski deficient mice (preliminary data) 

might be a starting-point to explain the early effects we reported. Lmo4, a 

transcription factor up regulated in the CP of Ski deficient mice at E17.5 but 

down regulated in Satb2 knock-out mice, is also a specific intermediate 

progenitor marker at earlier time-points (Sessa et al., 2008). Microarray 

analysis at E14.5 in Ski deficient animals has already revealed increased 

amounts of Lmo4 transcripts at 14.5 (data not shown), suggesting that Ski 

might play a role in the specific regulation of this factor. Alfano et al. have 

shown that COUP-TFI promotes radial migration by repression of Rnd2 

(Alfano et al., 2011). Altered levels of COUP-TFI in Ski deficient mice 

(preliminary data) suggest that misregulation of COUP-TFI might lead to the 

reported migration defects in ski knock-out mice. Finally, expression studies in 

spinal cord of Ski knock-out mice revealed altered expression of GFAP 

positive cells (preliminary data). Together with the newly reported interaction 

with the NURD complex shown here, the reported need of DNA methylation of 

the GFAP gene promoter for enabling CNS stem cells to differentiate into 

astrocytes supports the hypothesis of a role of Ski in cell identity 

determination (Okano and Temple, 2009).  

Further studies with conditional Ski knock-out mice will be needed to solve 

these questions.  
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5 Material and Methods 
 

5.2 Mice 
All mouse studies were approved by the veterinary office of the Canton of 

Basel Stadt and were performed in accordance with Swiss law. Ski mutant 

mice were generated and genotyped as described previously (Berk et al., 

1997), and were maintained on a pure C57BL/6 background (Colmenares et 

al., 2002). We have used C57BL6/J congenics, since mutant fetuses in the 

129 genetic background suffer from exencephaly and show gradually 

degenerating brain tissue during embryonic development (Berk et al., 1997). 

We intercrossed Ski+/−  mice to obtain Ski−/−  and  control Ski+/+ littermates, 

and considered the day of vaginal plug as E0.5. Satb2−/−  P0 pups were 

provided by V. Tarabykin (Britanova et al., 2008b) 

 

5.3 Immunohistochemistry, microscopy and image 

analysis  
Embryos were fixed with 4% paraformaldehyde (wt/vol), cryoprotected with 

30% sucrose (wt/vol) overnight, and embedded in OTC (Leica, Germany). 

12µm horizontal (E10.5) and coronal (E12.5 to E17.5) sections were 

processed (Microm HM560) for immunohistochemistry.  

For immunohistochemistry, antigen retrieval was performed by incubating 

sections in a pressure cooker in Citrate Buffer (pH 6) for 10 min at 100 C, 

blocked and incubated 4h to overnight at room temperature. For BrdU 

detection sections were additional treated with 2N HCl at 37C for 15min, 

neutralized in 0,1M borat buffer (pH 8,5) and washed in PBS. 
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We used following primary antibodies:  

goat Sox2 1:200 SantaCruz 

Biotechnology 

rat L1 1:50 Chemicon 

rat BrdU 1:100 Novus Biologicals 

rabbit Ski 1:200 SantaCruz 

Biotechnology 

rabbit Tbr1 1:200 Abcam 

rabbit Tbr2 1:200 Abcam 

rabbit Ctip2 1:400 Novus Biologicals 

rabbit Dcx 1:200 Cell-Signaling 

Tech 

rabbit GFAP 1:200 Dako 

rabbit pHH3 1:200 Upstate 

Biotechnology 

rabbit MTA2 1:300 Abcam 

rabbit HDAC1 1:200 Millipore 

mouse Satb2 1:50 Abcam 

mouse Pax6 1:100 DSHB 

mouse HuC/D 1:50 Invitrogen 

mouse NeuN 1:200 Chemicon 

mouse MTA2 1:300 Abcam 

 

Where necessary, signal amplification was achieved using the TSA Plus 

System from PerkinElmer according to the manufacturer’s instructions. 
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Secondary antibodies  

Cy2 Goat-anti rat 1:100 Jackson 

Laboratories 

Cy3 Goat-anti-rabbit 1:200 Jackson 

Laboratories 

Cy5 Donkey-anti-

mouse 

1:100 Jackson 

Laboratories 

Alexa488 Goat-anti-mouse 1:200 Molecular Probes 

Alexa488 Goat-anti-rabbit 1:200 Molecular Probes 

All cryosections were counterstained with DAPI or ToPro (Invitrogen).  

 

Tissue sections were viewed on a Zeiss Image Z1 microscope equipped with 

an X-Cite 120 illuminator (EXFO), and images were collected and analyzed 

with Axio Vision Image Analysis Software (Improvision, 4.8.1). Alternatively, 

images were procured on a Zeiss LSM 510 Meta Axiovert 100M confocal 

microscope. Images were optimized for size, color, and contrast using 

Photoshop CS4 (Adobe).  

 

5.4 BrdU Birthdating  
Timed pregnant females received a single intraperitoneal injection of BrdU (40 

mg/kg of body weight) at E10.5, E12.5 or E14.5. Pups were collected at E17.5 

and processed for BrdU immunohistochemistry. At least three sets of wt and 

Ski−/− littermates were examined for each time point. Quantification of BrdU-

labeled cells and distribution within cortical layers were analysed. We selected 

a minimum of 3 anatomically matched sections from each mouse, and 

fluorescence photomicrographs were obtained spanning the motor cortex. 

The cortical plate was divided evenly into ten bins, and the distribution of 
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strongly BrdU-positive cells in all bins was determined in a 500-µm-wide 

column. The paired t-test was used for statistical analysis. 

 

5.5 In situ hybridization on tissue sections  
Non-radioactive in situ hybridizations were performed according to a modified 

protocol by D. Henrique (IRFDBU, Oxford, UK). Cryosections were brought to 

room temperature, and hybridization buffer supplemented with DIG-labeled 

cRNA treated for 10 min at 95°C was added. Hybridization was performed 

overnight at 68°C in buffer containing 50% formamide (v/v), 10% dextran 

sulfate (w/v), 1 mg/ml yeast RNA, 1× Denhardts, 5 mM EDTA, 12.6 mM Tris-

HCl, pH 7.5, 185 mM NaCl, 5 mM Na2HPO4, 0.5 mM NaH2PO4. On the 

following day, slides were washed 1h at 65°C in 1× SSC, 50% formamid, 

0.1% Tween 20, and 2x 1h at room temperature in 100 mM maleic acid, 150 

mM NaCl adjusted to pH 7.5, supplemented with 0.1% Tween 20 (MABT). 

Sections were blocked 1h with MABT supplemented with 0,5% BSA (Sigma 

Aldrich) (MABT/BSA) before incubation in anti-DIG alkaline phosphatase 

conjugate (Roche, Mannheim, Germany) in MABT/BSA (1:5000) at room 

temperature overnight. On the following day, slides were washed for 1h in 

MABT and 2×10 min in alkaline phosphatase buffer (AP-Buffer) containing 

100 mM Tris-HCl, pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.24 mg/ml 

levamisole, 0.1% Tween 20. The color reaction was started by adding Deep 

Purple AP-substrate 1:1 in AP-Buffer (Roche, Mannheim, Germany). The 

reaction was performed in the dark at room temperature for several hours and 

stopped by washing in phosphate-buffered saline (PBS). After washing, 

sections were mounted in Kaiser's Glyceringelatine (Merck, Darmstadt, 

Germany). 

 

 

 



 Material Methods C.Baranek 

 49 

5.6 Preparation of in situ hybridization probes  
cDNAs were prepared from total E17.5 wt mouse brain RNAs using the 

SuperScript II Reverse Transcriptase (RT) (Invitrogen, Switzerland) according 

to the manufacturer’s instructions. 1.5 µl of cDNA from the RT reaction was 

then amplified by PCR in the presence of 10 pM primer, with the negative 

strand primer additionally containing a promoter for T7 RNA polymerase. PCR 

products were then purified using the QIAquick PCR Purification Kit according 

to the manufacturer’s instructions. The expected sizes of the probe products 

were checked by electrophoresis on a 1% agarose gel and the probes were 

quantified using a Nanodrop spectrophotometer (Thermo Scientific, 

Switzerland). 300ng of the DNA probes were transcribed using digoxigenin-

UTP (DIG-UTP, Roche, Switzerland) by in vitro transcription with T7 RNA 

polymerase (Roche, Switzerland) at 37°C for 2h. The DIG-labeled riboprobes 

were then purified using the RNeasy kit (Qiagen, Switzerland) according to 

the manufacturer’s instructions. The amount of DIG-labeled riboprobes was 

determined using a Nanodrop spectrophotometer (Thermo Scientific, 

Switzerland). The sequences of primers used are listed in pairs below, with 

the forward primer listed first. All reverse primers had the T7 promoter 

sequence (5'-GCGCGTAATACGACTCACTATAGGGC-3') added to their 5' 

end.  

 

Bcl6:  5’-CATCATGGCCTACCGAGG-3’ 

  5’-CCCACTGGCACTGAGCTT-3’ 

Bhlhb5:  5‘-CAGCCTCTCTTCCCAGCTCC-3‘ 

  5‘-CTGTACTTCCTTGAGATCTAG-3‘ 

Cdh10: 5’-AAAAAGCTCCGGCGAGAT-3’ 

  5’-CAGGCTGCATATCACACCA-3’ 

Cdh13: 5'-GAATGCCACAGACCCAGACT-3‘ 

  5’-CTTGGGAGTCAAGCTTCAGG-3‘ 

Ctip2:  5’-GCTGCGGCTCTGGCGGATGA-3’ 
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  5’-GACGATGTGGCGAAAGGC-3’ 

Cux1:  5'-AAGAAGGCTGCGAACTTGAA-3‘ 

5’- CCCCCTTCCTGGTTTAAGAA-3‘ 

Cux2:  5'-AGACAGGGCTCTGGTGAAGA-3‘ 

  5’-AAGGTGACCTCTGGGGCTAT-3‘ 

DKK3:  5'-ACGGCTGAAGCAATGAACTT-3‘ 

5’-GATGCGATTTACAGGCGTTT-3’ 

Fezf2:  5’-CAGCTTCCCTGGAGACCA-3’ 

  5’-ACACCTTGCCGCACACTT-3’ 

Lmo4:  5'-AGAATTGCTCATCCCAGGTG-3‘ 

  5’-TTCATTCAGCAAATTAGAAGTAGGG-3’ 

Ptn  5’- GACTGTGGATTGGGCACC-3‘ 

  5’-CATCGTTGCTCTGCCTCTC-3‘ 

RORβ  5’- GTGTACAGCAGCAGCATTAGCA-3' 

5’-GGTCTCATCATCCAGGTGCTTC-3' 

 

5.7 Axonal tracing  
After fixation of the brains in 4% PFA, single crystals of 1,1'-dioctadecyl-

3,3,3',3'-tetramethylindocarbocyanine perchlorate ('DiI'; DiIC18(3), Molecular 

Probes) were placed in E18.5 cortices just lateral to the midline from rostral to 

caudal of one hemisphere to label callosal axons. DiI crystals were placed in 

the cerebral peduncle to study the distribution of subcortically projecting 

neurons in the cortex. At least three mice were used per genotype. Brains 

were stored in the dark at room temperature for at least 4 weeks to allow DiI 

diffusion. Brains were embedded in 2% agarose and cut at 100 µm on a 

Vibratome (Microm HM 650V). The coronal sections were counterstained with 

DAPI and mounted with Vectamount (Vector Laboratories). Digital images 

were taken using an AxioCam camera (Zeiss). Alternatively, brains were 

transected coronally, rostral to the superior colliculus, to gain access to the 
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cerebral peduncle. Post injection, the brains were incubated for two weeks in 

the dark at 37oC. Thereafter, the brains were sectioned into 60µm thick 

sections using a Leica vibroslicer. The sections were stained with an antibody 

against Satb2. Images were procured on an inverted Leica confocal 

microscope (TCS-SP2 AOBS), at a pinhole of 1AU. Overview images were 

procured on a Zeiss microscope. The proportion of subcortically projecting 

cells that were Satb2 positive was counted manually. Statistical analysis was 

done using R and the two-tailed students t-test was used to determine 

statistical significance.  

 

5.8 Transient transfection of HEK cells  
HEK293T cells were grown in DMEM (4,5 gluc./l; Invitrogen) containing 10% 

FCS. Cells were transfected with Ski (Atanasoski et al., 2004) and Satb2 

expression plasmids using JetPEI transfection reagent (Polyplus transfection) 

according to the manufacturer’s recommendations. Cell lysates were 

prepared in a buffer containing 50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% 

Triton X-100, and MiniComplete Protease inhibitors (Roche). After clearing by 

centrifugation (1000 x g, 5 min), supernatants were subjected to 

immunoprecipitation and immunoblotting. 

 

5.9 Chromatin immunoprecipitation (ChIP), 

coimmunoprecipitation (co-IP), and immunoblotting  
The ChIP assay was performed using the EZ-ChIP Kit (Upstate 

Biotechnology) according to the manufacturer’s instructions. Cortices from 

E18.5 embryos or P0 pups were used for crosslinking of proteins and 

sonication of DNA as described. Ctip2 locus primer sequences (A1 to A6) are 

as described previously and control GAPDH primer sequences are as 

described. For the co-IPs we used lysates of cortices from E18.5 embryos or 

cell lysates, and processed them using the Dynabeads Protein G 

Immunoprecipitation kit (Invitrogen) according to the manufacturer’s 

instructions. Immunoprecipitations were carried out overnight at 4oC with 5-10 
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µg of the following antibodies: rabbit anti-Ski (Santa Cruz Biotechnology), 

rabbit anti-MTA2 (Abcam), rabbit anti-HDAC1 (Millipore), mouse anti-Satb2 

(Abcam), normal rabbit/mouse serum as negative control, and mouse anti-

RNA polymerase (provided in the EZ-ChIP Kit, Upstate Biotechnology) as 

positive control. Proteins were identified by immunoblotting with mouse anti-

Satb2 (1:50, Abcam), rabbit anti-Ski (1:5000, Santa Cruz Biotechnology), or 

goat anti-Ski (1:2000, Santa Cruz Biotechnology). Secondary antibodies were 

goat anti-mouse-AP (1:50 000; Santa Cruz Biotechnology), goat anti-rabbit-

HRP (1:50 000, Santa Cruz Biotechnology), or bovine anti-goat-AP (1:50 000, 

Santa Cruz Biotechnology). ECL Western blotting Analysis System (GE 

Healthcare) or CDP-Star ready-to-use kit (Roche) was used for detection 

(Amersham). 

 

5.10 Proximity ligation assay (PLA)  
The principle of the technology is based on two unique bi-functional probes 

called PLA probes. Each PLA probe consists of a secondary antibody 

attached to a unique synthetic oligonucleotide, which acts as a reporter. The 

two species-specific secondary antibodies recognize the primary antibodies 

directed against the molecules of interest. If the primary antibodies are in 

close proximity (< 40nm distance), unique synthetic oligonucleotides attached 

to the secondary antibodies guide the formation of circular DNA strands. The 

DNA circles in turn served as templates for localized rolling-circle 

amplification, whose product is detected through hybridization of 

complementary fluorescence-labeled oligonucleotides (Söderberg et al., 

2006). PLA was performed using the Duolink Kit II (Olink Bioscience) 

according to the manufacturer’s instructions. Primary antibodies were used at 

the same dilutions as for immunohistochemistry. Secondary antibodies were 

anti-rabbit plus (Duolink II, Bioscience) and anti-mouse minus (Duolink II, 

Bioscience). All cryosections were counterstained with TO-PRO®-3 stain 

(Invitrogen). 
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5.11 Luciferase Assay  
COS cells were cultured in DMEM with 4,5 g/l glucose (Invitrogen) and 10% 

FCS (Invitrogen). The expression plasmid Satb2 was constructed by PCR 

techniques using proofreading polymerase Tersus (Evrogen). The fragment 

was digested by AgeI and Xho I and cloned into the pC1 vector (Evrogen). 

The construct was verified by DNA sequencing. Cells were transfected with 

100 ng of pfosluc vector containing amplicon A4 (3) (kindly provided by R. 

Grosschedl) and were cotransfected with 50 ng Satb2 and/or 200 ng Ski (1) 

plasmid as indicated. DNA amounts were adjusted to equal levels with 

pcDNA3. Luciferase assays were performed in 96-well plates using the Dual-

Luciferase kit (Promega), and transfected cells were analyzed after 24 hr 

using a Lumat LB96V reader (BertholdTechnologies). All experiments were 

repeated at least three times with a minimum of twelve replicates for each 

data point.  

 

5.12 Data analysis  
Radial thickness of the neuroepithelium was quantified on anatomically 

matched forebrain sections using Axio Vision Image Analysis Software 

(Improvision, 4.8.1). We carried out all cell quantifications in the medio-lateral 

extent of the rostral cortex and counted cells in a 250-µm-wide column 

through the cortical plate. For all quantifications, we analyzed at least three 

embryos per genotype and at least 2 sections per embryo. We determined 

statistical significance using Student's t-test. 
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