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Summary 

 

Increasing evidence emphasizes the importance of the redox balance in the endoplasmic 
reticulum (ER). Disturbance of redox regulation can cause ER stress and contribute to the 
development of metabolic disease, cancer and neurodegenerative disorders. Nevertheless, 
the mechanisms underlying the well-regulated NADPH balance, and the generation and 
utilization of pyridine nucleotides in the luminal compartment are insufficiently understood. 
The aim of this work is to identify novel components involved in NADPH regulation in the ER. 

Due to the observation that fructose-6-phosphate stimulates luminal NADPH generation, 
and enhances 11β-hydroxysteroid dehydrogenase 1 dependent glucocorticoid activation, we 
hypothesized the existence of a luminal hexose-6-phosphate isomerase. Using microsomal 
fractions, we characterized a novel luminal hexose-6-phosphate isomerase, which converts 
fructose-6-phosphate to glucose-6-phosphate. By further purification and protein 
sequencing, we try to identify the gene encoding this enzyme. 

In order to identify additional genes encoding luminal enzymes involved in NAPDH 
generation in the ER (potential enzymes of the luminal pentose-phosphate pathway), we 
decided to apply a combination of classical activity-guided purification, mass-spectrometric 
analysis and sequence analysis. Furthermore, for promising candidate proteins, we attempt 
to confirm their intracellular localization and investigate their impact on luminal NADPH 
balance. To determine whether ER-associated and membrane proteins are facing the 
cytoplasmic or luminal compartment, we optimized the methods to determine membrane 
topology and intracellular localization. We used selective semi-permeabilization analysis 
using digitonin, followed by immunodetection and confocal microscopy, proteinase 
protection assays of microsomal preparations as well as glycosylation assays. 

Furthermore, we determined the membrane topology of 17β-hydroxysteroid dehydrogenase 
3, an enzyme responsible for the oxoreduction of androstenedione. We provide information 
on the functional impact of hexose-6-phosphate dehydrogenase, as well as the nutritional 
state of the cell on the formation of testosterone.   

The findings are relevant regarding the understanding of the coupling between the cellular 
energy state, hormonal regulation, ER redox regulation and oxidative stress-induced damage 
in a cell. 
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The endoplasmic reticulum (ER) has a prominent role in protein and lipid synthesis, including 

phospholipids and steroids, metabolism of carbohydrates, regulation of calcium homeostasis and also 

importantly contributes to the metabolism of drugs and the detoxification of xenobiotics. The ER 

membrane allows to separate reactions in the luminal space from those in the cytoplasm, thus 

representing another level of regulation of metabolic processes. 

Besides some nonspecific permeability of the ER membrane, which is mainly attributed to the 

translocon peptide channel (Heritage et al., 2001; Lizak et al., 2008), the specific luminal environment 

is maintained by the expression of selective transporters in the ER membrane. In the last decade, 

increasing evidence supported the hypothesis that these transmembrane traffic activities regulate 

important cytosolic and luminal metabolic processes (Csala et al., 2006). The membrane barrier 

preserves characteristic differences between the compositions of the two compartments. The 

composition of the major redox buffers, as well as the luminal Ca2+ concentration - due to a continuous 

inward ion pumping ATPase – is remarkably different the conditions in the cytoplasm. The luminal 

environment has been considered more oxidizing than the cytosol; however, the relatively oxidized 

state of the luminal thiol–disulfide system is generated by local oxidation rather than active transport 

activities. 

Probably the most important functions of the ER are the synthesis and the post-translational 

modifications of secretory and membrane proteins. The lumen of the ER provides a powerful protein-

folding machinery composed of chaperones, foldases, and sensors that are able to detect the presence 

of misfolded or unfolded proteins. Alterations of the luminal redox conditions, either in oxidizing or 

reducing direction or physiological and pathological effects as well as experimental agents that affect 

the synthesis and normal folding process, are sensed by the accumulation of misfolded/unfolded 

proteins. It induces ER stress and triggers unfolded protein response (UPR), an intracellular signaling 

pathway that coordinates the balance between ER protein-folding demand with protein-folding 

capacity. The UPR is essential for the cell to adapt to homeostatic alterations that cause protein 

misfolding and induce programmed cell death if these attempts fail. 

The aim of this chapter is to summarize the intermediary metabolism pathways localized in the ER 

lumen and to give an overview of the major redox systems (thiol/disulfide and reduced/oxidized 

pyridine nucleotide couples), especially focusing on the connection between pyridine nucleotide redox 

homeostasis and the metabolic environment in this organelle. 
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1.1 The redox environment of the ER 
 

The proteome and metabolome of the ER are characteristically different compartment from the other 

subcellular compartments. Separated by a membrane barrier, the ER contains cytosol-independent 

pools of the main electron carriers of the major redox systems i.e. the thiol/disulfide couple and the 

reduced and oxidized pyridine nucleotides. The redox potential in the ER lumen, defined by the 

oxidized state of the thiol/disulfide system is approximately -180 mV, which is much higher than that 

of the cytosol (-230 mV) (Hwang et al., 1992). In agreement with the presence of oxidative protein 

folding that requires oxidizing power the luminal environment has been considered more oxidizing 

than the cytosol. In the ER, the ratio of glutathione (GSH) to glutathione disulfide (GSSG) is much 

lower compared to that of the cytosol. This observation reflects the predominance of disulfide bridges 

in the ER and free cysteinyl thiols in cytosolic proteins (Bass et al., 2004; Dixon et al., 2008). 

The disulfide bond formation in secretory and membrane proteins is catalyzed by an electron relay 

system. The key participants of this complex system are oxidoreductases, protein disulfide isomerase 

(PDI) and ER oxidoreductin 1-α (Ero1-α), and the ultimate electron acceptor is the oxygen 

(Appenzeller-Herzog et al., 2010; Depuydt et al., 2011). The thiol oxidase flavoprotein Ero1-α is 

oxidizing the active cysteinyl thiols of PDI and delivers the electrons to oxygen, converting it to 

hydrogen peroxide (Frand and Kaiser, 1998; Pollard et al., 1998; Cabibbo et al., 2000). In the absence 

of peroxidases, the generated H2O2 can also oxidize PDI, yielding two molecules of H2O (Karala et al., 

2009). On the other hand, GSH in the ER appears to be required for the reduction of non-native 

disulfide bonds and to maintain a pool of reduced PDI for catalysis of disulfide bond isomerization 

reactions (Molteni et al., 2004). In this context, the glutathione and protein thiols compete for 

oxidizing power during disulfide bond formation. 

Until now, glutathione synthesis has not been reported in the ER. The luminal glutathione pool must 

be fueled from the cytosol and it is restricted by specific transport barriers. Since results of transport 

measurements showed that GSSG cannot pass through the ER membrane, it cannot efficiently 

counteract luminal oxidation of GSH (Bánhegyi et al., 1999). Therefore, the low luminal GSH/GSSG 

ratio can be defined as the consequence of oxidative protein folding, rather than the cause. The luminal 

GSSG is generated by PDI as a by-product of isomerization (Ellgaard and Ruddock, 2005) or via the 

action of H2O2 (Karala et al., 2009), produced by Ero1-α. In other terms, extensive thiol oxidation is 

necessary for appropriate protein processing but might come at the price of decreased antioxidant 

capacity of the ER lumen (Csala et al., 2010). 

This hypothesis has been verified by recent observations. The reoxidation of PDI-family members and 

GSH after reductive challenge is rapid, while the GSSG-dependent PDI oxidation is able to occur in 

Ero1-deficient cells as a possible Ero1-independent pathway for disulfide generation and the oxidation 
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of PDI in the ER (Appenzeller-Herzog et al., 2010). In line with the transport measurements, this rapid 

recovery process could neither be explained through import of GSH or nascent proteins from the 

cytosol, nor by the escape of disulphide-bonded molecules from the ER through the secretory 

pathway. Appenzeller-Herzog and colleagues proposed that a dynamic equilibrium is existing between 

two oxidation mechanisms of substrate proteins through PDI-family members. In the Ero1-α-driven 

oxidation pathway for de novo disulfide formation, Ero1-α oxidizes PDI, thereby producing H2O2. The 

byproduct H2O2 can also oxidize PDI as mentioned above. In turn, GSH is oxidized to GSSG. The 

accumulation of GSSG will promote GSSG-driven oxidation of PDIs and also shutdown Ero1-α 

because of low availability of reduced PDI. Namely, Ero1-α is regulated by the oxidized state of PDI. 

Reduced PDI keeps Ero1-α in an active state (Appenzeller-Herzog et al., 2008). In the GSSG-driven 

oxidation pathway the PDIs will also then oxidize substrate proteins (Figure 1). The interplay between 

the two pathways depends on the redox state of the glutathione redox couple in the ER; it is required 

for the maintenance of its characteristic redox homeostasis and it is a prerequisite for appropriate 

oxidative protein folding. However, one should note that results from Ero1 double mutant cells 

provide strong evidence for the existence of another, Ero1-independent generation of disulfides (Zito 

et al., 2010a). Besides the contribution of other prominent redox couples in the ER and the recently 

identified peroxiredoxin IV (an Ero1-independent pathway (Zito et al., 2010b)), the Ero1- and GSSG-

driven substrate protein oxidation through PDIs constitutes a central element of ER redox control and 

oxidative protein folding in the ER. 

Fig.1. Different oxidation mechanisms of substrate proteins through PDI-family members (Appenzeller-Herzog et al., 

2010). 

 

 

 

 

 

 

 

 

 

 

Similar to other subcellular organelles, the alternative major redox buffers in the ER lumen is the 

reduced/oxidized pyridine nucleotide couple. The phosphorylated nicotinamide adenine dinucleotide 

(NADP+) and nicotinamide adenine dinucleotide (NAD) are the major water-soluble electron carriers 

in the metabolism (Pollak et al., 2007). Although the pyridine nucleotides are present in all subcellular 

compartments, they are only synthesized in the cytosol and the mitochondria (Nikiforov et al., 2011). 
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Because cellular membranes are impermeable for pyridine nucleotides, the origin of the luminal 

pyridine nucleotide pool is ambiguous. Bublitz and colleagues in early studies proposed the existence 

of enzymes in the ER for the synthesis of nucleotides, coenzymes and amino acids. They provided 

evidence for the existence of a luminal pentose-phosphate pathway (Bublitz and Steavenson, 1988). 

Most of the dehydrogenase enzymes participating in the main catabolic pathways of carbohydrate and 

lipid metabolism (glycolysis, citrate cycle, fatty acid oxidation) load NAD+ with electrons, while only 

few cytosolic dehydrogenases (glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate 

dehydrogenase (6PGDH), malic enzyme and isocitrate dehydrogenase) use NADP+ as electron 

acceptor. On the other hand, NADH principally delivers electrons to the mitochondrial respiratory 

chain, whereas the main NADPH consumption occurs during biosynthesis, biotransformation and 

antioxidant defense. 

The pyridine nucleotide redox system is tightly coupled to the thiol/disulfide system in the cytosol. 

The GSSG is mainly reduced by the NADPH-dependent enzyme glutathione reductase. In addition, 

the ascorbate/dehydroascorbate (DHA) system is influenced by the two main redox couple systems. 

Dehydroascorbate can be reduced by NADPH-dependent (Del Bello B et al., 1994) or GSH-dependent 

(Maellaro E et al., 1997) reductases. In the ER, the coupling has not been observed, because of the 

lack of NADPH-dependent DHA reductase and glutathione reductase (Piccirella et al., 2006). The 

addition of both GSH and GSSG does not influence the redox state of pyridine nucleotides in liver 

microsomes. Furthermore the reduced or oxidized pyridine nucleotides are unable to affect the redox 

state of microsomal thiols or influence oxidative protein folding (Piccirella et al., 2006; Marquardt et 

al., 1993.). These observations suggest that the pyridine nucleotide redox system is separated from the 

GSH/GSSG couple in the ER lumen. Nevertheless, one possible connection between the two redox 

systems might exist: there might be a competition between NADPH and thiols for H2O2 detoxification, 

and NADPH might be involved in disulfide bond reduction during the ERAD; however, these 

possibilities need further investigations to be verified. 

Besides the two major redox systems (glutathione and pyridine nucleotides), other prominent redox 

couples, electron transfer compounds are presented in the ER, such as ascorbate  

(vitamin C) - dehydroascorbic acid (DHA) , tocopherol (vitamin E), flavin-adenin-dinucleotide (FAD), 

flavinmononucleotide (FMN), vitamin K, and ubiquinone. Although their presence in the ER is 

evident because of their requisite for various ER function, the role in redox homeostasis and protein 

folding - as well as their membrane transport and concentration - remains unclear. The ascorbate and 

dehydroascorbic acid redox couple contributes to the oxidative protein folding in the ER in the 

following way: ascorbate acts as an antioxidant and cofactor for enzymes in the lumen, while its 

oxidized form, dehydroascorbic acid, can accept electrons from PDI (Wells et al., 1990; Nardai et al., 

2001) through glutathione (May et al., 1996) and also through substrate proteins (Saaranen et al., 

2010). 
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1.2 Maintenance of the NADPH pool in the ER lumen 

 

The ER contains a pyridine nucleotide pool that is independent of that of the cytoplasm. The luminal 

NADPH/NADP+ ratio is lower than that in the cytoplasm. The cytosolic pentose-phosphate pathway is 

a well described mechanism for NADPH synthesis and generation. It generates ribose-phosphate, 

carbon dioxide and NADPH upon metabolism of glucose-6-phosphate (G6P). The oxidative steps of 

the pentose-phosphate pathway include the conversion of G6P to 6-phosphogluconate (catalyzed by 

glucose-6-phosphate dehydrogenase (G6PDH)), which is then further metabolized to ribulose-5-

phosphate (catalyzed by 6-phosphogluconate dehydrogenase (6PGDH)). Ribulose-5-phosphate is 

essential for the synthesis of nucleotides, coenzymes and amino acids. The by-product NADPH is 

utilized for the reduction of various endogenous compounds (e.g. hormones, lipids, vitamins) and for 

biotransformation of xenobiotics. Several membrane-embedded biosynthetic and biotransforming 

enzymes (cytochrome P450 (CYP450) monooxygenases, 3-hydroxy-3-methyl-glutaryl-CoA reductase, 

biliverdin reductase) catalyze their reactions on the outer surface of the lipid bilayer and hence utilize 

cytosolic NADPH. On the other side, until now, only one enzyme, 11β-hydroxysteroid dehydrogenase 

type 1 (11β-HSD1) has been convincingly shown to be located in the ER (Ozols, 1995; Mziaut et al., 

1999; Odermatt et al., 1999) and utilize NADPH (Bánhegyi et al., 2004; Atanasov et al., 2004). 

Another enzyme reported to face the ER and consume luminal NADPH is the NADPH cytochrome b5 

oxidoreductase (NCB5OR) (Zhu et al., 2004). However, the luminal localization and function as well 

as the dependence on luminal NADPH remain to be confirmed. 

While the cytosolic pentose-phosphate pathway has been extensively investigated, the luminal 

NADPH pool only recently received more attention due to the discovery of the ER-luminal NADPH 

generating enzyme hexose-6-phosphate dehydrogenase (H6PDH). This enzyme catalyzes the first two 

steps of the pentose-phosphate pathway by converting G6P and NADP+ to 6-phosphogluconate and 

NADPH. H6PDH has a broad substrate specificity compared to G6PDH; it utilizes not only G6P but 

also other hexose-6-phosphates, such as galactose-6-phosphate, glucosamine-6-phosphate, 2-

deoxyglucose-6-phosphate, as well as simple glucose although inefficiently (Beutler and Morrison; 

1967). It was found that H6PDH has a wide tissue distribution (Gomez-Sanchez et al., 2008; 

Marcolongo et al., 2011), suggesting housekeeping function of the enzyme. H6PDH has been 

suggested to act as a nutrient sensor and as a prosurvival factor (Mandl J et al., 2009). The native 

substrate (G6P) supply is ensured by influx across the ER membrane mediated by specific G6P 

transporter (G6PT) (Gerin and Van Schaftingen, 2002). This transporter is part of G6Pase system in 

the ER. The G6Pase has its catalytic site oriented towards the lumen, and that it dependent on 

transporters that supply G6P, and export glucose and phosphate (Van Schaftingen and Gerin, 2002). 
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Growing interest in H6PDH is due to its major role in the maintenance of the NADPH/NADP+ ratio in 

the lumen. H6PDH seems to be the major, but possibly not the only, enzyme responsible for NADPH 

generation within the ER. Recent studies showed that H6PDH deficiency decreased but did not 

eliminate NADPH content in liver and soleus microsomes (Rogoff et al., 2010). This observation 

corresponds with observations from H6PDH knock-out mice. No growth abnormalities were observed 

in mutant mice at birth (Lavery et al., 2006). Nevertheless, skeletal myopathy with activation of the 

UPR pathway was observed in mutant mice (Lavery et al., 2008). 

Since the ER membrane is not permeable to pyridine nucleotides, the major function of H6PDH is to 

provide NADPH for luminal reductases. It is surprising that so little information is available on the use 

of NADPH for reductases in the ER. One of these enzymes, 11β-HSD1 is responsible for 

prereceptorial activation of glucocorticoids. Glucocorticoid hormones are essential for the coordinated 

regulation of metabolic and immune responses. They form an important component of adaptation 

environmental challenges. Glucocorticoids exert their effects mainly by activating glucocorticoid 

receptors (GR) and mineralocorticoid receptors (MR). Glucocorticoids regulate pathways leading to 

cellular proliferation, differentiation, or death, in response to infection, tissue damage, and 

inflammation. By converting intrinsically inert glucocorticoids (cortisone, 11-dehydrocorticosterone) 

into their active forms (cortisol, corticosterone), 11β-HSD1 increases the local availability 

glucocorticoids (Tomlinson et al., 2004). The activity of 11β-HSD1 has attracted increasing interest 

due to its role in the pathogenesis of various metabolic diseases. Increased expression and activity of 

11β-HSD1 have been implicated in the pathomechanism of hypertension, type 2 diabetes, 

atherosclerosis, obesity, age-related cognitive dysfunction, osteoporosis and arthritis (Masuzaki et al., 

2001; Hermanowski-Vosatka et al., 2005; Chapman and Seckl, 2008). 

In our lab it was shown that the catalytic site of 11β-HSD1 is oriented into the ER lumen (Odermatt et 

al., 1999). Although the enzyme reaction is reversible in vitro, the enzyme acts as a reductase in vivo. 

The fact that the actual direction largely depends on the redox state of the pyridine nucleotides 

(Atanasov et al., 2004; Bánhegyi et al., 2004) and that the physiological direction of 11β-HSD1 is 

reductase suggests a high luminal NADPH/NADP+ ratio in the ER, which has not yet been directly 

determined. 

As mentioned above, this ratio is generated by H6PDH and probably other luminal enzymes. The 

functional cooperation of H6PDH with luminal reductases is based on common generation and 

utilization of luminal pyridine nucleotides, respectively (Figure 2). Furthermore, according to the 

present knowledge, the substrate source for H6PDH is ensured by G6PT. The availability of G6P 

reflects the nutritional and hormonal conditions of the cell. Therefore, the G6PT–H6PDH–11β-HSD1 

triad can serve as an excellent candidate for a metabolic sensor connecting intermediary metabolism 

and hormone action in the ER. In line with this, measurements in intact cells suggested that the 

extracellular glucose levels influence 11β-HSD1 activity (Dzyakanchuk et al. 2008).  
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Lowering glucose in the culture medium dose-dependently decreased 11β-HSD1 reductase activity 

and diminished the cortisol/cortisone ratio (Dzyakanchuk et al. 2008). A NADPH/NADP+ ratio of ten 

or higher was required for efficient microsomal 11β-HSD1 reductase activity. A significant increase in 

the activity started at a ratio 9:1 of NADPH/NADP+ (Dzyakanchuk et al. 2008). Therefore, minor 

changes in the NADPH/NADP+ ratio in a small compartment can lead to significant alterations in 

glucocorticoid activation. Recent observations indicate that not only G6P but also one other 

metabolite, fructose-6-phosphate (F6P) can maintain the high luminal NADPH/NADP+ ratio 

(McCormick et al., 2008). Further chapters will discuss a series of experiments performed in our 

laboratories, regarding how F6P can enter the ER lumen and stimulate intraluminal NADPH formation 

via its isomerization to G6P. 

Fig.2. Systemic model of the G6PT–H6PDH–11β-HSD1 triad in the ER lumen. 

 
Further investigations of the functional cooperation between 11β-HSD1 and H6PDH revealed a direct 

physical interaction between the two enzymes. Coimmunoprecipitation, Far-Western and FRET 

techniques were applied to study recombinant H6PDH and 11β-HSD1 in HEK-293 cells (Atanasov et 

al., 2008). Furthermore, it was confirmed that the N-terminal 39 residues of 11β-HSD1 are sufficient 

for luminal orientation and that the N-terminal luminal residues of 11β-HSD1 are involved in the 

interaction with H6PDH. This direct interaction allows the direct supply of NADPH to 11β-HSD1 in a 

close proximity for the efficient reduction of cortisone to cortisol despite a rather oxidative 

environment within the ER lumen. Zhang and colleagues confirmed the physical interaction between 

11β-HSD1 and H6PDH (Zhang et al., 2009). Moreover, they showed that the N-terminal domain of 

H6PDH can directly interact with 11β-HSD1, which was sufficient for the association. These findings 

provide explanation for the luminal localization of H6PDH, since there is no obvious retention signal 

in the H6PDH sequence. It suggests that the direct interaction with 11β-HSD1 might anchor H6PDH 

to the ER membrane. 
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1.3 Enzymatic reactions that require luminal NADPH 

 

The current knowledge on the use of NADPH for enzymatic reactions in the ER is limited. Several 

enzymes involved in the metabolism of bile acids, cholesterol, triglyceride, oxysterols, steroids and 

xenobiotics are localized in the ER membrane. Therefore, it is important to solve the membrane 

topology of these enzymes. Particularly, it is crucial to know whether an enzyme faces the cytoplasm 

or the ER in order to understand its function, regulation and physiological role. The 11β-HSD1, whose 

NADPH consumption has been largely characterized, is a good example. The enzyme has other 

glucocorticoid-independent functions that require NADPH. Our group and others demonstrated that 

11βHSD1 accepts various other substrates such as 7-oxocholesterol, 7-oxodehydroepiandrosterone  

(7-oxo-DHEA) and 7-oxolithocholic acid (7-oxo-LCA) (Nashev et al., 2007; Odermatt and Nashev, 

2010; Schweizer et al., 2004; Odermatt et al., 2011; Hult et al., 2004; Muller et al., 2006). These 

findings suggest that this enzyme has additional functions in the metabolism of neurosteroids, 

oxysterols and bile acids as well as in the detoxification of various xenobiotics that contain reactive 

carbonyl groups. There are many studies on the effect of inhibitors of cortisone reduction and the 

consequences on circulating glucocorticoid levels as well as on the transcriptional regulation of 11β-

HSD1 in obesity and diabetes. Nevertheless, it is important to investigate the role of 11β-HSD1 in the 

metabolism of the alternative substrate in vivo. 

Beyond 11β-HSD1, the lumen of the ER might contain other NADPH-consuming reductase enzymes. 

One such candidate is the recently discovered NADPH cytochrome b5 oxidoreductase (Ncb5or), which 

was suggested to be localized in the ER lumen (Zhu et al., 2004) and presumably transfers electrons 

from NADPH to the ∆9 fatty acid desaturase system (Larade et al., 2008). This unique soluble enzyme 

is a flavoheme reductase. It contains two domains: one 130-residue N-terminal domain that shares 

strong homology to cytochrome b5, and the other one at the C-terminus that shows homology to classic 

microsomal cytochrome b5 reductase flavoprotein. Nevertheless, the consequence of alterated ER-

luminal NADPH concentrations on Ncb5or activity and on subsequent fatty acid biosynthesis are 

unknown and the luminal presence of Ncb5or has not been proven unequivocally. 

Another recently discovered enzyme possessing a NADPH binding site and facing the ER lumen is 

ERFAD (ER flavoprotein associated with degradation). It interacts with proteins involved in folding 

processes (Riemer et al., 2009); however, a functional read-out of ERFAD is not available and the role 

of NADPH on ERFAD activity could not yet be determined. 

Another candidate enzyme suggested to catalyze the oxidation of NADPH in the ER lumen is the 

testosterone generating enzyme 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3). The main 

expression site of this enzyme is the Leydig cell in the testis, where it interconverts androstenedione 

and testosterone depending on the cofactor avaibility. Lower expression levels were found in other 
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tissues including prostate, bone and adipose. The protein contains well-conserved motifs present in all 

short-chain dehydrogenase/reductase (SDR) members. Recently, some studies hypothesized the 

functional interaction between 17β-HSD3-dependent testosterone formation and 11β-HSD1-mediated 

interconversion of glucocorticoids in the ER lumen of isolated mouse Leydig cells, suggesting that 

11βHSD1 acts as a dehydrogenase in these cells using the NADP+ produced during the conversion of 

androstenedione to testosterone catalyzed by 17β-HSD3 (Hu et al., 2008; Latif et al., 2011). It was 

proposed that the two enzymes compete for luminal NADPH. As a consequence of the interaction, 

high cortisone levels would inhibit testosterone formation, thereby affecting male sexual development. 

Mindnich and colleagues assigned the intracellular localization of 17β-HSD3 to the ER membrane 

(Mindnich et al., 2005); however, the membrane topology has not been determined. The functional 

coupling between 11β-HSD1 and 17β-HSD3 is only possible if 17β-HSD3 acts inside the ER lumen. 

Chapter IV describes studies on the dependence of the two enzymes on luminal and cytoplasmic 

NADPH and on the determination of the membrane topology of 17β-HSD3. 

 

1.4 Alteration of the NADPH/NADP+ ratio in pathophysiological 
processes 

 

Many cellular processes including translation, energy metabolism, steroid homeostasis, inflammation, 

apoptosis and autophagy are controlled by the ER. The majority of secreted proteins go through the 

ER, where they fold and assemble properly. One main function of the ER is to exert quality control on 

the proteins formed. Only properly folded proteins can be released from this compartment, the 

improperly folded proteins are retained in the ER and delivered for subsequent proteasomal 

degradation, called ER-associated degradation (ERAD). Redox imbalance leads to the accumulation of 

unfolded proteins; ultimately causing ER stress and initiating ER-dependent signaling pathways to 

restore proper physiological conditions. Exhaustion of the protective mechanisms results in various 

ER-dependent forms of programmed cell death. 

Little is known about sensing and signaling of the redox state of luminal pyridine nucleotides. It is 

possible that ER chaperones are responsible for sensing the redox state of luminal pyridine 

nucleotides. It is known that ER chaperones bind adenine nucleotides (Lamb et al., 2006), therefore it 

can be hypothesized that the structurally similar pyridine nucleotides are also potential ligands and 

probably they have different affinities towards the reduced and oxidized forms. This theory is 

supported by studies in H6PDH-knockout mice (Lavery et al., 2008). The pyridine nucleotide redox 

shift in these animals causes ER stress and can activate the UPR. Increased levels of ER chaperones 

affected by their redox state can regulate protein folding. Furthermore, the luminal NADPH/NADP+ 

ratio defines the direction and rate of the prereceptorial metabolism of glucocorticoids, as mentioned 
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above. Prereceptorial activation of glucocorticoids caused by high NADPH/NADP+ ratio results in 

autocrine and paracrine effects via the activation of the GR. This prereceptorial activation has been 

implicated in the pathomechanism of metabolic syndrome and related diseases (obesity, type 2 

diabetes, polycystic ovary syndrome, apparent cortisone reductase deficiency). 

It can be concluded that besides its prominent role in synthesis and processing of proteins, the luminal 

pyridine nucleotide source via the G6PT-H6PDH-11β-HSD1 triad also significantly contributes to 

carbohydrate metabolism, serving as a nutrient sensor for the cell. The carbohydrate metabolism in the 

ER lumen is mediated by the membrane-bound G6Pase (van Schaftingen and Gerin, 2002), which is 

responsible for hepatic glucose production and by H6PDH, which catalyzes the NADP-dependent 

oxidation of G6P. They compete for G6P, which is transported into the ER by the specific G6PT (van 

Schaftingen and Gerin, 2002). Lowering glucose in the culture medium of transfected HEK-293 cells 

dose-dependently decreased cortisol production and caused a pyridine nucleotide redox shift 

(Dzyakanchuk et al., 2008), reflecting the starvation of the cells. In agreement with this assumption, it 

has been recently reported in animal experiments that starvation decreased cortisone reduction, as a 

marker for luminal NADPH/NADP+ ratio (Kereszturi et al., 2010). Additionally H6PDH knock-out 

mice have a reduced weight gain, a peripheral fasting hypoglycemia, an improved glucose tolerance, 

improved insulin sensitivity and an enhanced hepatic glycogen synthesis (Lavery et al., 2007; Rogoff 

et al., 2007). These results demonstrate that nutrient supply is mirrored by the redox state of the ER 

luminal pyridine nucleotides. 

On the other hand, overfeeding either with carbohydrates or lipids results in elevated G6P levels, 

which via G6PT activates H6PDH. The generated and maintained high NADPH/NADP+ ratio in the 

ER lumen supports glucocorticoid activation. High local glucocorticoid levels counter-regulate insulin 

action leading to insulin resistance and promoting nutrient storage, producing the most characteristic 

metabolic features of the metabolic syndrome. Furthermore, enhancement of local glucocorticoid 

production is an important event in preadipocyte differentiation. The capacity of the ER to convert 

cortisone to active cortisol is enhanced during preadipocyte differentiation by a remarkable induction 

of 11β-HSD1. Disturbance of this induction by pharmacological agent (Marcolongo et al., 2008) or by 

inhibiting 11β-HSD1 (Bujalska et al., 2008a) prevents preadipocyte differentiation. To conclude, it 

seems that a failure of the ER to adapt to changes in the nutrient availability can result in a 

pathological transition in ER functions, as observed in obesity-related diseases. 
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1.5 The short-chain dehydrogenase/reductase (SDR) superfamily 

 

The short-chain dehydrogenases/reductases (SDRs) play important roles in carbohydrate, lipid, amino 

acid, hormone, cofactor and xenobiotic metabolism. Besides, some SDRs serve as a redox sensors. 

The SDR superfamily is one of the largest, most heterogenous family, with more than 47.000 members 

listed in sequence databases and found in all life forms (Kallberg et al., 2010). They catalyze 

NAD(P)(H)-dependent reactions with a wide substrate spectrum ranging from polyols, steroids, 

retinoids,  fatty acids, sugars and xenobiotics. Although the sequence identities are low (15-30%), they 

all have a conserved “Rossmann-fold” structural element. This “Rossmann-fold” motif is composed of 

a central, twisted parallel β-sheet consisting of 6–7 β-strands, which are flanked by 3–4 α-helices from 

each side (Branden et al., 1975; Lesk, 1995). The long crossover between strands 3 and 4 creates a 

characteristic binding site for the nicotinamide. This structural motif is characterized by a highly 

variable Gly-rich sequence pattern, which is critical for structural integrity, accomodation and binding 

of the pyrophosphate portion to the nucleotide cofactor (Lesk, 1995). Among this structurally 

conserved N-terminal region, which binds NAD(H) or NADP(H) cofactors, they also have a 

structurally variable C-terminal region that is responsible for the substrate diversity (Kavanagh et al., 

2008). The reactions catalyzed by SDRs appear to proceed through an ordered mechanism. The 

coenzyme binds first, extending the proper conformational changes and leaves last. They not only 

interconvert hydroxyl/carbonyl groups, but also catalyze reductions of C=C and C=N double bonds, 

thereby mediating dehydratase, epimerase, sulfotransferace, isomerase and decarboxylation reactions 

(Jörnvall et al., 1995). SDR proteins can use NAD(H) and NADP(H) cofactors depending to the 

performed catalysis. The enzymes preferring NAD(H) contain an acidic residue at the C-terminus of 

the second core β-strand that interacts with 2` and 3`-hydroxyl group of the adenine ribose part of the 

cofactor, whereas NADP(H) preferring enzymes contain a basic residue one position further along the 

sequence responsible for the stabilization of the additional phosphate group of the cofactor. An 

additional feature for NADP(H) preferences is a basic residue in the glycine rich motif of the enzyme 

(Kallberg et al., 2002). According to the sequence and predicted secondary structure analysis it is 

possible to divide three main sequence clusters among the human SDRs (Bray et al., 2009). Cluster C1 

contains mostly non-membrane bound proteins with a wide range of substrates including 

prostaglandings, coenzyme A related compounds and quinine-like molecules. The cluster C2 and C3 

consists of membrane-associated proteins that typically catalyze reactions using retinoids and steroids 

as substrate (Bray et al., 2009). 
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An additional function of SDRs is to serve as a redox sensor. The CC3/TIP30 proapoptotic oncogene 

(Shtivelman, 1997) and the fungal transcriptional regulator NmrA (Zheng et al., 2007) are suggested to 

have clear relationships to SDRs, demonstrating that the nucleotide binding scaffold can adopt other 

roles and functions. However, to clarify the role of SDRs in redox sensing additional experiments need 

to be performed. 

Although nowadays 82 human SDR genes and 77 SDR proteins have been identified only 14 members 

of human SDRs have been well characterized. The function of about half of the human SDR enzymes 

are completely unknown and the knowledge about the subcelullar localization and membrane topology 

of the many poorly characterized enzymes is not well established (Bray et al., 2009; Persson et al., 

2009; Kallberg et al., 2010). Based on experimental observations, we proposed the existence of SDRs 

other than 11β-HSD1 that are oriented to the luminal side of the ER and are dependent on the luminal 

NADPH pool. Elucidation of the function of such SDRs may help to understand the mechanisms 

underlying UPR activation in H6PDH knock-out mice (Semjonous et al., 2011) and impaired 

autophagy upon knock-down of H6PDH in cultured cells (Száraz et al., 2010). 
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1.6 Aims of this thesis 
 
The general aim of this thesis was to identify novel enzymes or mechanisms affecting the pyridine 

nucleotide balance in the ER. The proposed research contributes to the understanding of how luminal 

NADPH is regenerated and should enhance the current knowledge on disturbances of luminal NADPH 

homeostasis regarding the development of metabolic diseases. Discovering enzymes generating or 

utilizing luminal NADPH should provide novel insight into the role of luminal NADPH in 

pathophysiological redox processes and mechanisms of the antioxidant defense system in the ER. The 

expected findings could be relevant to understand the coupling between the cellular energy state, 

hormonal regulation and ER redox regulation. 

This thesis addressed the following topics: 

Due to the observation that F6P stimulated luminal NADPH generation and enhanced 11β-

HSD1 dependent glucocorticoid activation, we characterized a luminal hexose-6-phosphate isomerase. 

Using microsomal fractions, we found that this enzyme can convert F6P to G6P. 

Upon functional characterization, we initiated a classical activity-guided purification strategy 

combined with mass spectrometry with the ultimate goal to identify the gene encoding this enzyme. 

In order to identify additional luminal enzymes involved in NAPDH generation in the ER 

(potential enzymes of the luminal pentose-phosphate pathway), we applied a combination of classical 

activity-guided purification, mass-spectrometric analysis and sequence analysis. 

To determine whether ER-associated and membrane proteins are facing the cytoplasmic or 

luminal compartment we optimized the methods to determine the topology and intracellular 

localization of each enzyme. We used selective semi-permeabilization of the plasma membrane with 

digitonin, followed by immunodetection and confocal microscopy, as well as proteinase K protection 

assays of microsomal preparations as well as glycosylation assays. 

The optimized conditions were applied to determine the membrane topology of 17β-HSD3. 

The results demonstrate a cytoplasmic orientation of 17β-HSD3 and a lack of functional coupling with 

11β-HSD1 dependent glucocorticoid metabolism. 



   

 
 



Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic reticulum 
 

 

 
 

 

 

 

 

 

 

 

 

Chapter II: 

 
Contribution of fructose-6-phosphate to glucocorticoid 
activation in the endoplasmic reticulum 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic reticulum 
 

19 
 

2.1 Introduction 

 

Old times man`s ancestors obtained their food from hunting and gathering. At this time fruits were the 

major source of carbohydrates; however, their nutritional intake was primarily composed of meat. The 

modern Western society lifestyle with its tremendous technological improvement to process food led 

to extensive changes in food intake and composition. Sugar intake has dramatically increased during 

the last decades, due to the excessive consumption of high-sugar drinks and the increased use of 

sucrose, a disaccharide consisting of fructose and glucose units. As a monosaccharide, fructose 

naturally occurs in many fruits as well as in honey; however, in the human diet it is present primarily 

as a component of sucrose and in high-fructose corn syrup, a mixture of 55% free fructose and 45% 

free glucose (Elliott et al., 2002). 

Both fructose (Havel, 2005; Montonen et al., 2007; Stanhope, 2008; Stanhope, 2009a) and increased 

intracellular glucocorticoid production (Tomlinson et al., 2008; Bujalska et al., 2008b) have been 

suggested to contribute to the pathogenesis of the metabolic syndrome. Furthermore, increasing 

fructose and sugar-sweetened drink intake has been associated with the occurrence of hypertension 

and hyperuricemia in adolescents (Gao et al., 2007; Nguyen et al., 2009). Physiological studies 

suggested that fructose consumption is elevating the blood pressure, whereas glucose has noeffect on it 

after acute ingestion (Brown et al., 2008). 

Upon ingestion fructose is taken up by the intestine and metabolized in the liver to fructose-1-

phosphate by fructokinase and subsequently to triose phosphates (Fig. 1). By this metabolic pathway 

fructose bypasses phosphofructokinase, which is the key regulatory enzyme of glycolysis, and 

subsequently enters lipogenesis. Fructose can also increase glucose phosphorylation in the liver 

because fructose-1-phosphate binds to the glucokinase regulatory protein and decreases its affinity for 

glucokinase, thereby allowing translocation of glucokinase from the nucleus to the cytoplasm  

(Agius, 1998; Van Schaftingen et al., 1994). Postprandial hypertriglyceridemia due to increased 

hepatic de novo lipogenesis is one of the earliest metabolic derangements following fructose ingestion. 

Unregulated supply of glycerol-3-phosphate and acetyl-CoA derived from fructose strongly stimulate 

lipogenesis (Fig. 1).  
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Fig.1. Metabolism of fructose and the formation of triglycerides and uric acid. 

Hypertriglyceridemia increases visceral lipid deposition, hepatic triglyceride accumulation and insulin 

resistance. Consequently, VLDL production is upregulated and increases lipid delivery to muscle and 

adipose tissue (Stanhope, 2008). The pathway of fructose utilization in adipose tissue largely differs 

from that in the liver. Adipocytes lack fructokinase and are equipped with a hexokinase, which 

catalyzes phosphorylation of fructose thereby leading to formation of F6P (Froesch, 1962).  

Elevated intracellular activation of glucocorticoids has been shown to stimulate preadipocyte 

differentiation, which results in enhanced expression of lipoprotein lipase, and increased glycerol 

production and triglyceride synthesis (Tomlinson et al., 2008; Bujalska et al., 2008b). Active 

glucocorticoids (cortisol in humans and corticosterone in rodents) are generated by the reductase 

activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), an intraluminal enzyme of the 

endoplasmic reticulum (ER) (Mziaut et al., 1999; Odermatt et al., 1999). Reducing equivalents for the 

reaction ultimately derive from glucose-6-phosphate (G6P) by the concerted action of glucose-6-

phosphate translocase (G6PT) and hexose-6-phosphate dehydrogenase (H6PDH). H6PDH, localized in 

the lumen of the ER and physically interacting with 11β-HSD1, generates NADPH for the reduction of 

active glucocorticoids (Atanasov et al., 2008; Stanhope et al., 2009b; Bánhegyi et al., 2004; 

Marcolongo et al., 2007; Atanasov et al., 2004). 
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It is likely, however, that compounds other than G6P can contribute to the generation of NADPH in 

the ER-lumen and thus would be able to influence the direction of the reaction catalyzed by 11β-

HSD1. In this chapter, we examined whether the presence of F6P is sufficient to maintain 11β-HSD1 

reductase activity in isolated microsomes. We attempted to show that F6P is transported across the ER 

membrane through a route distinct from that of G6P. Furthermore, we propose that F6P can be 

converted to G6P in the lumen of microsomes, thus providing substrate for the activity of H6PDH. 

Moreover, we investigate whether purified H6PDH does neither act as a F6P dehydrogenase nor as a 

hexose-phosphate isomerase. 

Based on our results, we postulate the existence of a presently unidentified ER luminal hexose-

phosphate isomerase distinct from the well characterized cytosolic enzyme (Fig. 2), and provide a 

possible mechanism for the role of fructose consumption in the development of metabolic syndrome. 

 

 

 

Fig.2. Contribution of F6P to NADPH generation and cortisol production in the ER. Abbreviations: ER, endoplasmic 

reticulum; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G6PT, G6P translocase; H6PDH, hexose-6-phosphate 

dehydrogenase; 11β-HSD1, 11β-hydroxysteroid dehydrogenase type 1; NADPH, reduced nicotinamide adenine dinucleotide 

phosphate; PGI, phosphoglucose isomerase; ER-PGI, luminal hexose-phosphate isomerase. 
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Glucocorticoids play an important role in preadipocyte differentiation, since active glucocorticoids are 

required for terminal adipogenesis (Hauner et al., 1987) and limit cell proliferation (Tomlinson et al., 

2002). From experiments with transgenic mice it is known that global deletion of 11β-HSD1 caused 

reduced visceral fat accumulation and improved insulin sensitivity on a high-fat diet. These mice are 

protected from obesity, diabetes, and dyslipidemia (Kotelevtsev et al., 1997). At an early stage of 

differentiation the expression of 11β-HSD1 is very low in preadipocytes, whereas it strongly increases 

during the late phase. Inhibition of 11β-HSD1 activity by pharmacological agents or shRNA 

constructs blocked the capability of inactive oxidized glucocorticoids to promote differentiation 

(Bujalska et al., 1999; Liu et al., 2008). Depletion of luminal pyridine nucleotides in the endoplasmic 

reticulum also attenuated 11β-HSD1 activity and the accumulation of lipid droplets during 

preadipocyte differentiation (Marcolongo et al., 2008). 

Recently, we found that replacing glucose by fructose in the culture medium was sufficient to drive 

11β-HSD1 oxoreductase activity in transfected HEK-293 cells. In fact, fructose was even somewhat 

more efficient than glucose to stimulate 11β-HSD1 activity (unpublished observations). These findings 

support our hypothesis that fructose as the only carbohydrate in the medium could be sufficient for 

differentiation of preadipocytes to adipocytes. We investigated the amount of lipids, differentiation 

markers and 11β-HSD1 gene expression in 3T3-L1 cells that were incubated and differentiated in 

medium with fructose as the only source of carbohydrates. 
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2.2 Materials and Methods 

 

2.2.1 Isolation of subcellular fractions 

Rat liver microsomes and epididymal fat pad microsomes were prepared from male Sprague-Dawley 

rats (200–250 g) as described earlier (Bánhegyi et al., 2004; Simpson et al., 1983). HEK-293 

microsomes were prepared as described (Bánhegyi et al., 2003; Dzyakanchuk et al., 2009). 

Microsomes were resuspended in 100 mM KCl, 20 mM NaCl, 1 mM MgCl2, and 20 mM MOPS, 

pH 7.2 (KCl-MOPS buffer), snap frozen and stored in liquid N2 until further processing. The 

intactness of the vesicles was verified by measuring the latency of UDP-glucuronosyltransferase 

activity (Fulceri et al., 1994), which was found to be higher than 95% in each microsomal preparation. 

The protein concentration of microsomes was determined using the BCA method (Pierce, Piscataway, 

NJ). 

To further remove possible cytosolic contaminants, i.e. the cytosolic enzymes, prior to each 

experiment, microsomes were rapidly washed as previously reported (Bánhegyi et al., 1996). Briefly, 

0.5 mg/ml of microsomal suspensions in KCl-MOPS buffer containing 4.5% polyethylene glycol 8000 

(w/v) were centrifuged at 6’000 × g for 30 sec. Microsomal pellets were resuspended in KCl-MOPS 

buffer for subsequent assays. 

 

2.2.2 Glucose production 

Liver microsomes (0.5 mg protein/ml) were incubated in KCl-MOPS buffer at 37°C in the presence of 

2 mM G6P or F6P. The reaction was stopped by heat-denaturation (100°C, 5 min). After 

centrifugation (20’000 × g for 10 min at 4°C), glucose content of the supernatants was measured by 

using Glucose (GO) Assay Kit according to the manufacturer’s instruction. 

 

2.2.3 11β-HSD1 reductase activity 

The reduction of cortisone to cortisol was measured by incubating 0.25 mg/ml of liver microsomes in 

150 µl of KCl-MOPS buffer at 37°C for 20 min in the presence of 5 µM of cortisone and 50 µM of 

G6P or F6P. The reaction was stopped with 150 µl of ice-cold methanol and the samples were stored 

at -20°C until analysis. After centrifugation (20.000 × g for 10 min at 4°C), cortisol and cortisone 

contents of the supernatants were measured by HPLC (Waters Alliance 2690) using a Nucleosil 100 

C18 column (5 µm 25 µ 0.46) (Teknokroma. Barcelona, Spain). The mobile phase was isocratic 

methanol–water (58:42, v/v) at 0.7 ml/min flow rate and absorbance was detected at 245 nm 
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wavelength (Waters Dual l Absorbance Detector 2487). The retention times of cortisone (14.1 min) 

and cortisol (16.8 min) were determined by injecting standards. 

2.2.4 H6PDH dehydrogenase activity 

Microsomes were incubated in KCl-MOPS buffer at 37°C. H6PDH activity was measured by 

fluorometric detection of NADPH upon addition of 2 mM NADP+ and 50 µM G6P or F6P. 

Subsequently, microsomes were permeabilized by the addition of Triton X-100 (1% final 

concentration), to allow the entry of the cofactor in the luminal space. In some experiments, 1 IU 

(international unit) of 6-phosphogluconate dehydrogenase was added to measure 6-phosphogluconic 

acid, generated by the lactonase activity of the H6PDH dual enzyme. NADPH formation was 

monitored at 350-nm excitation and 460-nm emission wavelengths. 

 

2.2.5 Hexose-6-phosphate isomerase activity 

The isomerase activity was indirectly evaluated by incubating washed microsomes or cytosolic 

fraction in KCl-MOPS buffer at 22°C. The formation of G6P upon the addition of F6P was measured 

enzymatically with G6PDH. For this assay we used G6PDH isolated from Leuconostoc mesenteroides, 

which is NAD+-dependent, so that we could distinguish isomerase activity from H6PDH 

dehydrogenase activity (which is prevalently NADP+-dependent, see below). The production of 

NADH by the G6P-dependent dehydrogenase reaction was monitored fluorimetrically at 350 nm 

excitation and 460 nm emission wavelengths. To investigate pH sensitivity, the pH of the reaction 

buffer was adjusted with HCl and NaOH, respectively. Addition of Triton X-100 did not affect the 

enzymatic activity. 

 

2.2.6 Transport measurements 

The microsomal uptake of F6P and G6P was evaluated by a rapid filtration technique (15). Briefly, 

microsomes (1 mg protein/ml) were incubated in KCl-MOPS buffer in the presence of 10 to 1000 µM 

F6P/G6P plus D-[14C]-F6P/D-[14C]-G6P (20 µCi/ml) at 22°C. At 30 sec of incubation, samples were 

rapidly filtered through cellulose acetate/nitrate filter membranes (pore size 0.22 µm), and filters were 

washed with 4 ml of HEPES (20 mM) buffer (pH 7.2) containing 250 mM sucrose and 1 mM 4,4-

diisothiocyanostilbene-2,2-disulfonic acid. This latter compound was added to reduce the eventual 

efflux of vesicular F6P/G6P during the washing procedure. 

Total radioactivity associated with microsomes retained by the filters was measured by liquid 

scintillation counting. To distinguish intravesicular and bound radioactivity, 0.1% deoxycholate was 

added to the incubation mixture. The deoxycholate-releasable portion of radioactivity was regarded as 

intravesicular. 
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2.2.7 Affinity purification of H6PDH 

H6PDH was affinity purified as described previously (Atanasov et al., 2008). Briefly, HEK-293 cells 

were transfected with a C-terminally myc-tagged H6PDH construct (Atanasov et al., 2004) using the 

calcium-phosphate precipitation method. At 48 h post-transfection, cells were rinsed twice with a 

phosphate buffered saline solution (pH 7.4), followed by lysis in lysis buffer for 1 h at 4°C. After 

centrifugation, the protein containing supernatant was immunopurified with anti-myc antibody-

coupled agarose beads (Sigma-Aldrich) following the manufacturer’s protocol. Bound protein was 

eluted from the beads with 100 μg/ml c-myc peptide in 0.1 M ammonium hydroxide for 30 sec at 

25°C. Coomassie-stained SDS-PAGE analysis revealed a single protein band of approximately 90 

kDa, corresponding to H6PDH (see below, Fig. 6A). The purified protein was snap frozen in liquid N2 

and stored at -70°C. The dehydrogenase activity of H6PDH was measured by fluorometric detection 

of NADPH formation in the presence of 100 μM G6P and 250 μM NADP+ as described previously 

(Bánhegyi et al., 2004). The putative hexose-phosphate isomerase activity was measured by 

fluorometric detection of NADH in the presence of 100 μM G6P or 100 μM F6P plus 250 μM NAD+ 

in the presence of 1 UI of Leuconostoc mesenteroides G6PDH. 

 

2.2.8 PGI immunoblot 

Total protein amounts of microsomal and cytosolic fractions corresponding to comparable PGI activity 

(30 µg for microsomal and 3 µg for cytoplasmic fraction) of HEK 293 cells were separated on 8% 

SDS-PAGE and blotted on PVDF membrane. After overnight blocking in blocking buffer [5% milk in 

tris-buffered saline (TBS)] the membrane was incubated with the primary antibody (diluted 1:8.000 in 

blocking buffer) for 6 h, followed by intense washing with TBS containing 0.05% Tween-20 for 1 h. 

Horseradish peroxidase–conjugated goat anti-rabbit antibody was used as secondary antibody (diluted 

1 to 10.000 in blocking buffer). HRP activity was detected using enhanced chemiluminescence and a 

Fuji LAS-4000 detection system. 

2.2.9 Cell culture 

Murine 3T3-L1 fibroblasts (American Type Culture Collection, Rockville, MD, USA) were cultured 

and differentiated in a humidified incubator at 5% CO2 and 37°C as described earlier (Frost, 1985). 

Briefly, preadipocytes were allowed to reach 2-day postconfluence – referred to as day 0 – prior to 

induction of adipogenesis by the addition of DMEM containing 10% FBS, 5 μg/ml insulin, 0.5 mM 3-

isobuthyl-1-methylxanthine and 0.5 μM dexamethasone. Two days later, the medium was removed 

and cells were cultured for another 2 days in adipocyte growth medium (DMEM containing 10% FBS 

and 5 μg/ml insulin). Cells were then maintained in DMEM containing 10% FBS until use, normally 

at the 7th day after initiation of adipogenesis. 
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2.2.10 RNA isolation and analysis 

Total RNA was extracted from adherent 3T3-L1 cells using the Trizol method (Invitrogen, Carlsbad, 

CA). Total mRNA (2 µg) was reverse transcribed to cDNA using the Superscript-III First-Strand 

Synthesis System and oligo-dT (Invitrogen). Relative quantification of mRNA expression levels was 

performed by RT-PCR on a RotorGene 6000 (Corbett, Australia) using the KAPA SYBR® FAST 

qPCR Kit (Kapasystems, Boston, MA). Specific primers and sequence probes for each gene were 

obtained as assay-on-demand gene expression products (11β-HSD1, PPARγ). Relative gene 

expression compared with the internal control GAPDH was determined using the delta-delta-CT 

method (Vandesompele et al., 2002). 

 

2.2.11 Oil Red O staining 

3T3-L1 adipocytes were washed with PBS and fixed with 4% paraformaldehyde in PBS for 60 min at 

room temperature. After washed in PBS, cells were rinsed with 60% isopropanol and stained for 30 

min in freshly diluted Oil Red O solution (three parts Oil Red O stock solution and two parts of H2O; 

Oil Red O stock solution contains 0.25% Oil Red O in isopropanol). The stain was then removed and 

cells were immediately washed with H2O four times. For OD measurement, the cells were incubated 

with 100% isopropanol for 10 min and the collected solution was measured at 520 nm in 

spectrophotometer. 
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2.3 Results 

 
2.3.1 F6P-dependent cortisone reduction and glucose production in liver microsomes 

 

In intact microsomes G6P can stimulate the reduction of cortisone to cortisol catalyzed by 11β-HSD1 

in the ER lumen utilizing NADPH as a cosubstrate. The phospho-sugar enters the luminal 

compartment by means of the action of G6PT and fuels local NADPH generation as a substrate for 

H6PDH (Bánhegyi et al., 2004). A more recent observation that microsomal cortisone reduction can 

be enhanced also by F6P (McCormick et al., 2008) indicates that this hexose-phosphate can somehow 

contribute to luminal NADPH generation. However, the transport processes and enzymatic reactions 

involved are unknown. 

Here, we first measured whether F6P can be isomerized to G6P in the ER lumen by means of 

measuring glucose production following F6P addition in rat liver microsomes, taking advantage of the 

presence of the glucose-6-phosphatase enzyme in the lumen. F6P proved to be nearly as good a source 

of glucose production as G6P (Table 1), which strongly suggests the isomerization of F6P to G6P in 

this system. The isomerase activity may be due to the cytoplasmic enzyme phospho-glucose isomerase 

(PGI). This protein (which is also called autocrine motility factor, neuroleukin and maturation factor) 

can be also secreted by an unconventional (i.e. ER/Golgi-independent) mechanism and has an ER 

membrane-bound receptor named autocrine motility factor receptor/ubiquitin ligase 3 (Fairbank et al., 

2009). Alternatively, the observed isomerization might be catalyzed by an enzyme localized in the ER 

lumen. This question was first addressed by washing the microsomal vesicles by multiple 

sedimentation and buffer replacement to eliminate the membrane-adherent cytosolic proteins. The first 

such cleansing resulted in a 9-fold decrease in the rate of glucose production from F6P in intact 

microsomes, although, as expected, it modestly affected glucose production from G6P, i.e. glucose-6-

phosphatase activity (Table 1). This suggests that a major part of the total hexose-6-phosphate 

isomerase activity, probably corresponding to PGI, is loosely associated to the outer surface of the 

microsomal vesicles. However, the remaining capacity of the microsomes to utilize F6P as a glucose 

precursor could not be eliminated by subsequent washing steps and hence seems to be based on a 

tightly membrane-associated or luminal hexose-6-phosphate isomerase activity. The higher latency of 

glucose production in the case of F6P (approx 85%, compare intact and permeabilized microsomes in 

Table 1) with respect to the case of G6P (approx 40%), might be due to the lower rate of entry of F6P 

as compared to that of G6P into liver microsomal vesicles (see below, Fig. 5). 

Efficiency of F6P (and of G6P for comparison) to stimulate the conversion of cortisone to cortisol was 

also investigated in washed microsomes. In this case, the first washing step caused only a moderate 

decrease in cortisone reductase (32% and 11% when F6P and G6P was used, respectively), and the 
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subsequent washing steps did not affect the rate of cortisone reduction significantly (Table 1). It can be 

concluded that an irremovable intrinsic hexose-6-phosphate isomerase activity of the microsomes can 

provide the dehydrogenase enzymes with G6P at a sufficient rate. Nevertheless, to avoid any 

interference of the extravesicular (cytosolic) isomerase activity, only washed microsomes were used in 

all further experiments. 

Table 1. Glucose production and cortisone reduction in liver microsomes. 

Substrate Microsomes Times washed 
0 1 2 3 

Glucose production  
(nmol/min  mg protein) 

     

  G6P Intact 80.15 ± 
4.37 

45.56 ± 
3.821 

41.60 ± 
5.19 

40.31 ± 
4.73 

 Permeabilized 156.23 ± 
9.37 

72.74 ± 
5.821 

70.14 ± 
7.02 

67.54 ± 
3.91 

  F6P Intact 30.11 ± 
5.12 

3.58 ± 
1.311 

3.35 ± 
0.95 

3.22 ± 
1.06 

 Permeabilized 54.28 ± 
4.73 

23.39 ± 
2.701 

21.74 ± 
1.99 

20.83 ± 
2.12 

Cortisone to cortisol 
conversion (pmol/min  mg 
protein) 

     

  G6P Intact 50.58 ± 
0.37 

44.80 ± 
1.601 

45.77 ± 
1.99 

43.05 ± 
1.00 

  F6P Intact 51.98 ± 
1.31 

35.16 ± 
1.601 

36.15 ± 
0.81 

33.98 ± 
1.72 

Rat liver microsomes (1 mg protein/ml) were washed by sedimentation and buffer replacement as many times as indicated. 
The microsomal membrane was permeabilized by using alamethicin (0.05 mg/mg protein). Glucose production was measured 
after addition of 2 mm G6P or F6P. Conversion of cortisone (5 μm) to cortisol was assessed in the presence of 50 μm G6P or 
F6P. Data are means ± SD of five separate experiments. 
1Statistically different from the previous washing step (column to the left) at P < 0.005, determined by Student’s t test for two-group 
comparison. 

 
2.3.2 F6P-dependent NADPH generation and 6-phosphogluconate production in hepatic and adipose 
tissue microsomes 

 

F6P acts like G6P in liver microsomes, i.e. stimulates cortisol formation. We collected further 

evidence that its microsomal isomerization provides G6P, which feeds NADPH generation by 

H6PDH, both in hepatic and adipose tissue microsomes. Due to the luminal localization of H6PDH 

and the poor permeability of microsomal membrane to NADP+, when microsomes are incubated in the 

presence of NADP+ and G6P, NADPH generation cannot be detected until the membrane barrier is 

eliminated. Once the lipid bilayer is permeabilized with a detergent, the linear increase in fluorescence 

indicates the progress of the redox reaction both in hepatic and adipose tissue microsomes (Fig. 2 A 

and Fig. 2 C, respectively). In line with the results shown in Table 1, F6P proved to be also efficient in 

stimulating NADPH generation in this system (Fig. 2 B and 2 D, in liver and adipose tissue 

microsomes, respectively). 



Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic reticulum 
 

29 
 

Fructose-1,6-bisphosphate (F1,6BP), a known inhibitor of the cytoplasmic PGI, also significantly 

reduced the rate of F6P-driven NADPH generation (Fig. 2 B and Fig. 2 D), while it did not interfere 

with the process in microsomes using G6P (Fig. 2 A and Fig. 2 C). 

 

Fig.2. F6P-dependent NADPH generation in hepatic and adipose tissue microsomes. Liver (panel A and B) and adipose 
tissue (panel C and D) microsomes, prepared as describe in the “Materials and Methods” section, were incubated at 37°C in 
the KCl/MOPS buffer at a protein concentration of 0.5 mg/ml. The NADPH formation was measured fluorimetrically 
(excitation and emission wavelengths at 350 and 460 nm, respectively) following the subsequent addition (arrows) of 2 mM 
NADP+ (N), 50 µM G6P or F6P, and 1% Triton X-100 (T). Microsomes were indicated by (-) and (+) no or 10 mM F1,6BP 
was present in the incubation mixture as an inhibitor of PGI. One of five representative experiments is shown. 

 

Besides functioning as a dehydrogenase, H6PD possesses lactonase activity, converting G6P 

ultimately to 6-phosphogluconate (Clarke, 2003). Formation of 6-phosphogluconate from F6P could 

be also demonstrated in our experimental model by measuring further NADPH generation in the 

presence of exogenous 6-phosphogluconate dehydrogenase to the hepatic or adipose tissue 

microsomes (Fig. 3 A and 3 B, respectively). Since F6P-driven NADPH generation could be inhibited 

by F1,6BP and was accompanied by 6-phosphogluconate formation, we conclude that F6P is indeed 

isomerized to G6P providing H6PDH with substrate. 
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Fig.3. F6P-dependent 6-phosphogluconate production in hepatic and adipose tissue microsomes. Liver (panel A) and 
adipose tissue (panel B) microsomes, prepared as reported in the “Materials and Methods” section were incubated at 37°C in 
the KCl/MOPS buffer in a fluorimeter cuvette, at a protein concentration of 0.5 mg/ml. The dehydrogenase activity of 
H6PDH was monitored on the basis of NADPH formation following the subsequent addition (arrows) of 2 mM NADP+ (N), 
10 µM F6P, and 1% Triton X-100 (T). The production of 6-phosphogluconate was measured on the basis of the further 
increase in NADPH signal, upon the addition of 6-phosphogluconic acid dehydrogenase (1 U/ml, indicated by arrows as 
Enz) to the reaction mixture. NADPH (5 µM) was subsequently added for calibration. One of three representative 
experiments is shown. 
 

2.3.3 Luminal localization of microsomal hexose-6-phosphate isomerase activity 

 

Although our findings convincingly demonstrated the formation of G6P from F6P in hepatic and 

adipose tissue microsomes, it still remained to be elucidated whether this conversion occurs on the 

outer surface (i.e. representing the cytoplasmic side) of the vesicular membrane or inside the vesicles. 

To answer this question, formation of G6P was compared in intact and permeabilized microsomes, i.e. 

the latency of the hexose-6-phosphate isomerase was investigated. The experimental conditions were 

similar to those in the previous set of measurements but NADP+ was substituted by NAD+. In 

preliminary experiments a slow reduction of NAD+ to NADH was observed in the presence of G6P in 

permeabilized microsomes, indicating, under our experimental conditions, a lower (approximately ten-

fold) preference of H6PDH for NAD+. Accordingly, in the presence of NAD+ and F6P, the 

permeabilization of hepatic or adipose tissue microsomes resulted in a very slow NADH generation 

(Fig. 4 A and Fig. 4 B, respectively). The subsequent addition of the NAD+-specific Leuconostoc 

mesenteroides G6PDH to the samples greatly increased the rate of NADH generation (Fig. 4 A and 

Fig. 4 B), indicating the efficient isomerization of F6P to G6P in the permeabilized microsomes. The 

PGI inhibitor, F1,6BP (10 mM) remarkably repressed this process both in hepatic and adipose tissue 

microsomes. 
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The addition of F6P to intact (non-permeabilized) microsomes caused no NADH generation, since the 

membrane is impermeable to pyridine nucleotides (Fig. 4 C and 4 D). 

Most importantly, the subsequent addition of the Leuconostoc mesenteroides G6PDH poorly 

stimulated NADH generation, indicating a negligible isomerization of F6P by intact microsomes  

(Fig. 4 C and 4 D). These findings clearly demonstrate the luminal localization of hexose-6-phosphate 

isomerase activity. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Luminal localization of microsomal hexose-6-phosphate isomerase activity. Liver (panel A and C) and adipose tissue 
(panel B and D) microsomes, prepared as reported in the “Materials and Methods procedures” section, were incubated at 
22°C in the KCl/MOPS buffer in a fluorimeter cuvette, at a protein concentration of 0.5 mg/ml. The isomerization of F6P to 
G6P was evaluated by measuring the G6P-dependent reduction of NAD+ upon the addition of the NAD+-dependent 
Leuconostoc mesenteroides G6PDH both to permeabilized (panel A and B) and intact (panel C and D) microsomes. NADH 
production is evident in permeabilized microsomes only, indicating the luminal localization of isomerase activity. The 
additions indicated by arrows are: 500 μM NAD+ (N) 50 µM F6P, 1% Triton X-100 (T) and 1 U/ml G6PDH. One of three 
representative experiments is shown. 

 
2.3.4 Transport of F6P across the microsomal membrane 

 

Glucose-6-phosphate transport across the ER membrane has been thoroughly characterized (Gerin, 

2002). Although the membrane traffic of F6P has not been investigated in the ER, the luminal 

utilization in intact microsomes was proposed after our findings. The uptake of F6P and G6P was 

investigated in hepatic and adipose tissue microsomes by using a rapid filtration transport assay. The 

initial rate of transport was determined at 30 sec; to minimize the contribution of the intravesicular 

accumulation of metabolites of G6P (radiolabeled glucose and phosphogluconic acid, respectively) 

(Bánhegyi et al., 1997). 
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The transport activity was found to be concentration-dependent in both hepatic and adipose tissue 

microsomes, for both F6P and G6P, in the investigated range of extravesicular hexose-phosphate 

concentrations (10 µM to 1 mM see Fig. 5 A-C). The rate of influx of F6P was approximately 1.7 fold 

higher in adipose tissue compared to liver microsomes (Fig. 5 A), whilst G6P was transported at a 

higher rate (approximately 3.7 folds) in liver than in adipose tissue microsomes (Fig. 5 B). This latter 

observation is consistent with our previous results (Marcolongo et al., 2007), and is very likely due to 

the higher representation of G6PT in liver microsomes (Marcolongo et al., 2007). On the other hand, 

in adipose tissue microsomes, G6P was transported at a higher rate (approximately 1.4) than F6P (Fig. 

5 C). 

 

Fig.5. Transport of F6P across the microsomal membrane. The initial rate of transport of F6P (A) as well as that of G6P (B) 
was measured by a rapid filtration technique with [14C]-F6P/[14C]-G6P at different extravesicular concentrations of the 
hexose phosphates (10-1000 µM) in liver and in adipose tissue microsomes as described in the “Materials and Methods”. The 
comparison between F6P and G6P uptake in adipose tissue microsomes is shown in panel C. The effect of the G6PT inhibitor 
S3483 (40 µM) and of the other phosphoester (5 mM), as well as of G1P (5 mM) on the microsomal uptake of F6P and G6P 
(D), expressed as percentage of control, was measured liver microsomes, in the presence of 50 µM extravesicular F6P/G6P. 
Data are means ± SD of five separate experiments. Values statistically different from control are indicated: *P>0,001; 
**P>0,01. 

The possibility that F6P permeates the microsomal vesicles trough the G6P transporter G6PT (Gerin et 

al., 1997) was investigated in liver microsomes by using the selective inhibitor of the transporter 

S3483 (Arion et al., 1998). As shown in Fig 5 D, the G6PT inhibitor markedly reduced the transport of 

G6P but did not affect the transport of F6P, suggesting a different route of entry for F6P. 
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Moreover, the transport activity for each phosphohexose was unaffected by the other phosphohexose 

at a high (competitive) concentration (10 mM), which strengths the hypothesis that the phosphoesters 

do not share the same transporter. Furthermore we also observed that S3483 did not inhibit F6P 

transport in adipose tissue microsomes, and we previously reported that the inhibitor reduces G6P 

entry in adipose tissue microsomes by approximately 70% (Marcolongo et al., 2007). The possibility 

that the route of entry of F6P is via the nonspecific glucose-phosphate transporter (GPT) previously 

described in human fibrocytes was also tested by measuring the transport of F6P (50 µM) in the 

presence of competitive concentrations of glucose-1-phosphate (G1P, 5 mM), a known substrate of 

GPT (Leuzzi et al., 2001). Results demonstrated, that G1P significantly inhibited the transport of F6P 

by approximately 50%, whilst did not interfere with G6P transport. The results are consistent with the 

role of GPT in F6P transport. The apparent lack of effect on G6P transport, which is also mediated by 

GPT, is very likely due to the high representation of G6PT in liver microsomes that allows a massive 

entry of G6P. 

 

2.3.5 F6P does not serve as substrate for H6PDH, which has neither intrinsic isomerase activity 

 

To prove the assumption that H6PDH cannot use F6P as a substrate, we overexpressed the myc-tagged 

human enzyme in HEK-293 cells followed by subsequent affinity purification. Cells transfected with 

the empty pcDNA3.1 vector were used as control. After SDS-PAGE analysis and Coomassie-blue 

staining a single protein band at approximately 90 kDa, corresponding to H6PDH, was detected (Fig 6 

A). The identity of H6PDH was further confirmed by immunoblot analysis using a rabbit primary 

antibody raised against the myc peptide. Next, we measured NADPH generation by the purified 

enzyme upon supplying G6P or F6P and NADP+ as substrates. NADPH was produced in the presence 

of G6P, but not of F6P (Fig. 6B). This result confirms our assumption that F6P is not directly utilized 

by H6PDH to generate NADPH. Moreover to investigate whether H6PDH possesses intrinsic 

isomerase activity and can interconvert F6P and G6P, we used G6PDH from Leuconostoc 

mesenteroides as an indicator enzyme to measure NADH production from NAD+ with G6P or F6P as 

substrates. As shown in Fig 6 C, G6PDH could generate NADH from G6P only, independently 

whether it was supplied with or without F1,6BP, an inhibitor of the isomerase activity. H6PDH was 

not able to generate G6P from F6P. These results indicate that human H6PDH itself cannot function as 

a hexose-phosphate isomerase. 
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Fig.6. Characterization of H6PDH activity. (A) SDS-PAGE analysis of the purified H6PDH. Recombinant human H6PDH 
was purified from transfected HEK-293 cells as described in the ”Materials and Methods” section. The eluate after 
purification was separated by 10% SDS-PAGE under nonreducing conditions and Coomassie Brilliant Blue staining was 
performed. M: molecular mass marker (kDA). The protein band at 90 kDa represents H6PDH. No signal could be detected in 
the eluate after the purification procedure performed with cells transfected with the pcDNA3.1 vector only. (B) F6P does not 
serve as substrate for H6PDH. The purified H6PDH was incubated in the presence of 100 µM glucose-6-phosphate (G6P) or 
fructose-6-phosphate (F6P) and 250 mM NADP+. Dehydrogenase activity was detected by fluorimetric detection of NADPH. 
(C) H6PDH does not catalyze isomerization of F6P to G6P. The purified H6PDH was incubated with 100 μM G6P and 100 
μM F6P as well as 500 μM NAD+ as a cofactor. Where indicated by the arrow, G6PDH (1 U) (from Leuconostoc 
mesenteroides) was added to evaluate the possible isomerization of F6P to G6P. It acts only on G6P was used as an indicator 
of H6PDH isomerase activity. To inhibit the possible isomerase activity, fructose-1,6-bisphosphate (F1,6BP) (10 mM) was 
added to the indicated samples. The time course of NADH formation was determined fluorimetrically. 

 

2.3.6 Evidence for the existence of an intrinsic microsomal hexose-phosphate isomerase enzyme 

 
To rule out that the cytoplasmic PGI was responsible for the conversion of F6P to G6P in microsomes, 

we subjected total proteins that correspond to comparable hexose-phosphate isomerase activity, i.e. 30 

μg of washed microsomes or 3 μg of cytosolic fraction (proteins present in the supernatant after the 

ultracentrifugation step in the microsome isolation procedure) from HEK-293 cells, or 100 μg of 

washed microsomes or 2 μg of cytosolic fraction from rat liver to SDS-PAGE and subsequent 

immunoblot analysis using an antibody raised against the cytosolic PGI. As shown in Figure. 7 A and 

D, we could detect a single protein band at 63 kDa in the cytosolic but not in the microsomal fraction 

of HEK 293 cells (Fig. 7 A) and rat liver preparations (Fig. 7 D), even if ten or fifty times more 

microsomal protein was loaded respectively, indicating the absence of the cytosolic PGI in the lumen 

of the microsomes. The hexose-phosphate isomerase activity of the two protein preparations was 

practically the same. 
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To further strengthen this evidence, we incubated microsomes (30 μg protein) as well as the cytosolic 

fraction (3 μg protein) of HEK-293 cells in the presence of erythrose-4-phosphate (E4P), a known 

potent inhibitor of the human cytosolic PGI (Chirgwin et al., 1975), followed by measurement of 

NADH production by the G6PDH from Leuconostoc mesenteroides as described in the “Materials and 

Methods” section. Without the addition of E4P, both incubations showed comparable, time-dependent 

activity. The microsomal hexose-phosphate isomerase activity; however, was more efficiently 

inhibited by E4P than the cytosolic PGI (Fig. 7 B). We obtained similar results using 2 μg of rat liver 

cytoplasmic and 100 μg of microsomal protein with F1,6BP as an inhibitor (Fig 7 E). Upon incubation 

with F1,6BP instead of E4P, we detected similar differences between the cytosolic and microsomal 

enzymes in HEK-293 cells. These results indicate that the microsomal phosphohexose isomerase 

possesses kinetic properties distinct from the cytosolic PGI. We also investigated whether the enzymes 

in the two subcellular fractions might differ in their sensitivity towards changes in the pH of the 

reaction buffer. As depicted in Fig. 7 C, the microsomal enzyme was less sensitive to pH changes and 

showed approximately two-fold higher catalytic activity at low pH compared with the cytoplasmic 

enzyme, suggesting different pH sensitivities of the cytoplasmic and the luminal phosphohexose 

isomerases. 

 
Fig.7. The microsomal (MS) hexose-phosphate isomerase is distinct to the cytoplasmic (Cyto) phosphoglucose isomerase. 
(A) Immunoblot analysis of the human phosphoglucose isomerase. Amounts of 30 μg microsomal and 3 μg cytoplasmic 
proteins, corresponding to comparable phosphoglucose isomerase activities, were separated by SDS-PAGE and analyzed by 
immunoblotting using an anti-human cytoplasmic phosphoglucose isomerase antibody. A 63 kDa protein band was detected 
in the cytosolic (Cyt) but not in the microsomal (MS) fraction of HEK-293 cells. (B) Microsomal protein (30 μg, MS) and 
cytosolic protein (3 μg, Cyto) from HEK-293 cells were subjected to measurement of hexose-phosphate isomerase activity in 
the absence or presence of increasing concentrations of erythrose-4-phosphate (E4P). NADH production by the G6PDH from 
L. mesenteroides is shown. 
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(C) The microsomal hexose-phosphate isomerase was less sensitive to pH changes than the cytoplasmic enzyme. Activities of 
the cytoplasmic (Cyto) and microsomal (MS) hexose-phosphate isomerase were compared in reaction buffers of the pH 
indicated on the X-axis after 50 min of incubation. (D) Immunoblot analysis of the rat phosphoglucose isomerase. Amounts 
of 100 μg of microsomal and 2 μg of cytoplasmic proteins were loaded, followed by SDS-PAGE and immunoblot using the 
anti-rat cytoplasmic phosphoglucose isomerase antibody. (E) Microsomal proteins (100 μg, MS) and cytosolic proteins (2 μg, 
Cyto) from rat liver were subjected to measurement of hexose-phosphate isomerase activity in the absence or presence of 
increasing concentrations of fructose-1,6-bisphosphate (F1,6BP). NADH production by the G6PDH from L. mesenteroides is 
shown. 

 
2.3.7 Fructose can substitute glucose as a carbohydrate source for adipocyte differentiation 

The ER luminal NADPH/NADP+ ratio and the prereceptorial glucocorticoid regulation has an 

important role in preadipocyte differentiation. Disturbance of 11β-HSD1-mediated glucocorticoid 

activation results in modified lipogenesis and reduced lipid droplet formation. First, we investigated 

whether fructose can substitute glucose and serve as efficient carbohydrate source to generate active 

glucocorticoids and stimulate the differentiation of mouse 3T3-L1 fibroblasts into mature adipocytes. 

In our preliminary experiments we differentiated 3T3-L1 preadipocytes in medium containing only 

fructose as a carbohydrate source and compared the effects with cells grown in glucose containing 

medium as describe above. We observed that fructose is sufficient to maintain viability, and the 

capacity of cells to initiate differentiation and form lipid droplets was comparable to that of cells 

grown in glucose medium. At the end of differentiation (day 8), the amount of lipids in the cells was 

comparable with that found in cells differentiated in glucose containing medium (Fig 8 A). To test the 

differentiation stage of mature adipocytes we investigated FABP4 and PPARγ gene expression, as 

differentiation marker proteins. We found that FABP4 and PPARγ expression was slight elevated 

comparedto cells differentiated in glucose containing medium (Fig 8 B C). 

 
Fig.8. Fructose can substitute glucose during preadipocyte differenciation. At the end of differentiation the total lipid 

content was determined by Oil-Red O staining (A), and the mRNA expression of FABP4 (B) and PPARγ (C) was measured 

by RT-PCR. 
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2.4 Discussion 
 

 

Fructose, a sugar present in very low quantities in the human diet a few hundred years ago, became a 

major constituent of present-day nutrition. The increase of fructose consumption and the incidence of 

metabolic syndrome show a thought-provoking correlation. Although there is compelling evidence 

that high fructose intake can have deleterious metabolic effects such as dyslipidemia and impaired 

insulin sensitivity, the role of fructose in the development of the current epidemic of metabolic 

disorders remains controversial. Several mechanisms – increased de novo hepatic lipogenesis, 

lipotoxicity, oxidative stress, and hyperuricemia – have been forwarded to explain the adverse 

metabolic effects of fructose (Tappy, 2010). Our observations suggest a novel pathomechanism: 

fructose, via its intracellular metabolite F6P, can stimulate prereceptorial activation of glucocorticoids 

that are regarded to be a principle factor in the development of obesity-related metabolic disorders. 

F6P-promoted glucocorticoid activation can be especially important in cells lacking fructokinase 

activity, i.e. in cells of non-hepatic tissues, particularly in adipocytes. Skeletal muscle and white 

adipose cells express GLUT5, mediating insulin-independent fructose transport (Darakhshan et al., 

1998; Hajduch et al., 1998) and F6P is the obligatory intermediate of fructose metabolism therein. 

Investigating the metabolic pathway between F6P and cortisone reduction, we revealed that the last 

steps – from H6PDH – are the same as in the “classic”, G6P-dependent route. However, our 

observations indicate that in this case two new entities – a microsomal F6P transporter and a luminal 

hexose-phosphate isomerase – are required for the substrate supply of H6PDH. 

The existence of a microsomal F6P transport was demonstrated by rapid filtration assay and was also 

indirectly supported by F6P-dependent microsomal glucose production and cortisone reduction. The 

transport was not inhibited by G6P or by G6PT inhibitor showing that a transporter other than G6PT is 

responsible for the microsomal permeation of F6P. The observed competition with G1P transport 

suggests that F6P may be transported by GPT previously described in fibrocytes (Leuzzi et al., 2001). 

As expected, due to the high representation of G6PT in the liver, G6P can be transported much better 

into liver microsomes than F6P. This observation, together with the fact that the concentration of G6P 

is several fold higher than that of F6P in the liver cytoplasm (Hems, 1979), minimizes the possible 

role of F6P in the glucocorticoid activation in the intact liver. Theoretically, a notable exception might 

be the inherited deficiency of G6PT, i.e., the glycogen storage disease Type 1 b (van Schaftingen E, 

2002). It should be noted, however, that G6P and F6P are transported at similar rates in microsomes 

isolated from adipose tissue. 
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It could be hypothesized, that fructose is sufficient to maintain energy supply for adipocyte survival 

and differentiation, which requires intracellular glucocorticoid activation. We tested lipid content and 

differentiation marker gene expression after differentiating preadipocytes in medium containing 

fructose as the only carbohydrate source. Interestingly, these adipocytes showed similar morphology 

and number of lipid droplets. After measuring the lipid content with Oil-red staining, there was no 

significant difference compared to the lipid content in cells differentiated in glucose containing 

medium. Two differentiation marker genes, FABP4 and PPARγ gene expression showed similar or 

even elevated levels in cells incubated with fructose containing medium. However, under 

physiological conditions these sugars are both present. The observation that fructose could be 

transported more efficiently into adipocytes and the similar effects on preadipocyte differentiation may 

provide an explanation for the adverse metabolic effects of excessive fructose consumption. 

We also observed a microsomal hexose-phosphate isomerase activity, which is definitely distinct from 

the cytosolic enzyme. Besides the activity of a resident yet undefined enzyme, microsomal hexose-

phosphate isomerase activity may theoretically also derive from the adherence or entrapment of the 

cytosolic enzyme to/in the microsomal vesicles during the homogenization procedure. The first 

assumption can be ruled out since repeated wash could not remove the activity. The increased latency 

of the residual activity clearly shows the intraluminal positioning. Concerning the second assumption, 

the entrapment of the cytosolic PGI is unlikely, since the well measurable enzymatic activity was not 

accompanied by the presence of the immunodetectable protein, and the cytosolic and microsomal 

activities showed different sensitivity towards inhibitor and pH. It is noteworthy furthermore, that the 

cytosolic PGI does not contain an ER targeting or retention signal sequence, making it unlikely that 

this enzyme translocates into the ER lumen. The gp78/AMFR protein, which has been reported to bind 

PGI, is an ER membrane protein, but its ligand binding site faces the cytosol (Fairbank, 2009). Thus, 

our results provide strong evidence for the existence of a novel phosphohexose isomerase that is 

located in the lumen of the ER. Taken together, experimental evidence shows that these presently 

unidentified proteins are not identical with G6PT or the cytosolic PGI. Further work is described in 

this thesis for the molecular identification and definition of these entities. 

The extent of in vivo contribution of fructose for glucocorticoid activation as a reducing equivalent 

donor is presently difficult to estimate. Although several groups investigated the effect of 

macronutrients on glucocorticoid activation both in humans and in animal models (Basu et al., 2006; 

Stimson et al., 2010), similar studies with fructose are still missing. Additional studies are needed to 

verify the effect of fructose on glucocorticoid activation in living animals. As discussed above, it is 

unlikely that fructose contributes at a relevant extent to glucocorticoid activation in the liver. 

By contrast, such a role can be hypothesized in non-hepatic tissues, especially in the white adipose 

tissue. The possibility that the blood fructose concentration can increase near the millimolar range 

after fructose/sucrose enriched meals in humans (Johnson et al., 2009) and in rats (Prieto et al, 2004), 
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and our observation that F6P and G6P are transported at a similar rate across the ER membrane of 

adipocytes makes this a reasonable hypothesis. The role of fructose in the maintenance of 

glucocorticoid activation can be even more important in the already developed metabolic syndrome, 

where insulin resistance hinders glucose uptake. In conclusion, we propose that F6P-dependent 

glucocorticoid activation in the adipose tissue is a possible factor in the pathogenesis of the metabolic 

syndrome. 
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3.1 Introduction 
 

The aim of this part of the thesis project was the identification of novel components of the luminal 

NADPH balance. The recent discovery of H6PDH provided an explanation for the generation and 

maintenance of the luminal NADPH pool. However, some studies suggested the existence of 

additional enzymes that contribute to the maintenance of the NADPH pool in the ER (Rogoff et al., 

2010; Margittai and Bánhegyi, 2008; Wang et al., 2011). Furthermore, microsomes of H6PDH knock-

out mice were able to reduce cortisone (Lavery et al., 2006), although at a low rate suggesting the 

existence of a H6PDH-independent source of NADPH. Moreover, biochemical evidence also argues 

for the presence of a pentose-phosphate pathway in the ER (Bublitz and Steavenson, 1988). The 

H6PDH enzyme catalyzes the first two reactions of the pentose-phosphate pathway which produces 

6-phosphogluconate (6PG) in the ER. Despite the recent biochemical characterization of H6PDH, 

nothing is known about the fate of its product 6PG. It is not envisageable that 6PG can cross the ER 

membrane since no transport mechanism is known, or that it might accumulate in the ER due to end-

product inhibition of H6PDH. Bublitz and colleagues provided evidence for the existence of a 

6-phosphogluconate dehydrogenase (6PGDH) in rat liver microsomes (Bublitz et al., 1987). However, 

the luminal 6PGDH has not yet been identified. The enzymatic reaction of 6PGDH generates one 

molecule of NADPH; thereby this reaction would contribute to luminal NADPH generation. Our 

preliminary results showed that a latent 6PGDH activity was present in microsomes isolated from rat 

liver, but not in microsomes from HEK-293 cells. We aim to identify the gene encoding the luminal 

6PGDH, which would further strengthen the hypothesis that this enzyme may contribute to the 

maintenance of NADPH in the ER lumen. 

Surprisingly, very little information is available on the utilization of NADPH for enzymatic reactions 

in the ER. Hypothetically, the NADPH pool in the ER may be necessary for the metabolism of 

steroids, lipids, carbohydrates and xenobiotics, although at present, 11β-HSD1 is the only thoroughly 

characterized NADPH-dependent enzyme in the ER. Several observations indicated the existence of 

other NADPH-dependent luminal enzymes (McCormick et al., 2008; Semjonous et al., 2011; Latif et 

al., 2011); however, there is a lack of experimental evidence for the identity of such enzymes and their 

membrane topology. 

Therefore, our current aim is to further characterize the mechanisms of NADPH generation in the ER 

and to search for enzymes that utilize NADPH in the luminal compartment. To identify luminal 

enzymes we used rat and mouse liver microsomes and followed an activity-guided purification 

strategy. We applied the combination of fractionation, affinity purification, gel-electrophoretic 

separation and mass spectrometry methods to generate a list of potential candidates. 
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The difficulty of investigating microsomal enzymes is reason why the exact membrane topology of 

most microsomal membrane proteins has not yet been determined. A proper determination of the 

intracellular localization and determination of membrane topology of luminal proteins or epitopes 

requires a semi-permeabilization of the plasma membrane to allow the access of antibodies to the 

cytoplasmic but not the luminal compartment. The semi-permeabilization assay can be combined with 

electron microscopy detection or a glycosylation assay. This assay reveals whether a luminal protein is 

glycosylated and therefore the protein was modified when it passed the ER compartment. 

As discussed in the previous chapter, we observed that fructose can stimulate the generation of luminal 

NADPH. In experiments with washed intact microsomes from rat liver and adipose tissue, we 

characterized a novel luminal hexose-phosphate isomerase activity (Senesi et al., 2010). This enzyme 

converts F6P to G6P, thereby generating substrate supply for H6PDH and promoting the production of 

luminal NADPH. Identification of the gene encoding this luminal isomerase would allow further 

investigations regarding its transcriptional regulation and its potential role in metabolic diseases. In 

order to identify the genes encoding the luminal hexose-6-phosphate isomerase and 6PGDH and other 

genes coding for luminal enzymes utilizing NADPH we plan to apply a combination of classical 

activity-guided purification, mass-spectrometric analysis and sequence-based bioinformatics analysis 

as mentioned above. 
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3.2 Materials and Methods 

 
3.2.1 Preparation of rat liver microsomes 

Liver microsomes were prepared from Sprague-Dawley rats. The livers were homogenized in sucrose-

HEPES buffer (0.3 M sucrose, 0.02 M HEPES, pH 7.2) with a glass-Teflon homogenizer. The 

microsomal fraction was then isolated with fractional centrifugation. After centrifugation of liver 

homogenates for 10 min at 1´000 × g, the supernatant was then spun twice for 15 min at 12´000 × g. 

The resulting supernatant was centrifuged for 60 min at 100´000 × g; the pellet resuspended in MOPS 

buffer (20 mM MOPS, pH 7.5) and centrifuged again for 60 min at 100´000 × g. The final microsomal 

pellet was resuspended in MOPS buffer. 

 

3.2.2 Glycoprotein isolation kit 

Glycoproteins were purified using the Glycoprotein Isolation Kit from Thermo Scientific. The 

columns bind glycoproteins using the lectin concanavalin A (ConA) or wheat germ agglutinin (WGA) 

immobilized on agarose beads. The ConA lectin preferentially recognizes α-linked mannose whereas 

the WGA lectin preferentially binds N-acetyl glucosamine (GlcNAC) and also has affinity for sialic 

acid. The permeabilized microsomes, containing up to 1.5 mg of total protein, are first diluted with 

binding/wash buffer and applied to the ConA or WGA resin bed. Following incubation, the resin is 

washed several times and bound glycoproteins are eluted as described by the manufacturer. 

 

3.2.3 Hexose-6-phosphate isomerase and 6-phosphogluconate dehydrogenase activities 

The isomerase activity was indirectly evaluated by incubating washed microsomes or separated 

fractions in KCl-MOPS buffer at 22°C. The formation of G6P upon addition of F6P was measured 

enzymatically with G6PDH, isolated from Leuconostoc mesenteroides. This enzyme is NAD+-

dependent. The production of NADH was measured fluorimetrically at 350 nm excitation and 460 nm 

emission wavelengths. The isomerase activity was measured in the presence of 100 µM F6P and 500 

µM NAD+ as cofactor and reactions were initiated by the adding of 1 IU of G6PDH from Leuconostoc 

mesenteroides. The 6PGDH activity was measured by fluorometric detection of NADPH in the 

presence of 250 µM NADP+ and 1 µM 6-PG. The microsomes were permeabilized by addition of 

0.5% Triton X-100. The production of NADPH was measured fluorimetrically at 350 nm excitation 

and 460 nm emission wavelengths. 
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3.2.4 Enzyme purification 

To identify the luminal hexose isomerase and 6PGDH enzymes we applied an affinity-guided 

purification strategy. In a first step, the microsomal preparation was optimized. After differential 

centrifugation the microsomal pellets were washed to remove proteins attached to the cytoplasmic 

surface of the ER vesicles. To partially solubilize the microsomal fraction we incubated it with a 

buffer containing 20 mM octylglucoside (OG). This treatment permeabilized the membrane and 

released luminal proteins. The remaining membranous fraction could still be pelleted by further 

centrifugation. Using this method we separated total microsomal proteins, octylglucoside solubilized 

proteins and ER membrane pellet fraction (Mathias et al., 2011) (Fig 1). 

 

Fig.1. Preparation of different fractions by centrifugation and solubilization with OG 

Aliquots (30 μg) of each of the membrane fractions were resuspended in sample buffer containing 50 

mM dithiothreitol (DTT), boiled at 95 °C for 5 min, and loaded onto a 8–12% SDS-PAGE. 

Electrophoresis was performed in running buffer at 120 V (constant voltage) until the tracking dye 

reached the bottom of the gel. Proteins were visualised using SimplyBlue SafeStain (Invtrogen). 

Individual gel lanes were excised into 1 mm gel slices, and gel slices were reduced, alkylated, and 

subjected to in-gel tryptic digestion. Digests were then subjected to protein identification by mass-

spectrometry analysis (kindly performed by Dr. Reto Portmann, Forschungsanstalt Agroscope 

Liebefeld-Posieux ALP, Bern; and Dr. Paul Jenö Biozentrum, Basel). 
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For protein fractionation we applied ion exchange chromatography and size exclusion chromatography 

methods. We used Q Sepharose Fast Flow (strong anion exchanger) and SP Sepharose Fast Flow 

(strong cation exchanger) from GE Healthcare according to the manufacture`s instruction. We applied 

size exclusion using an FPLC system and XK16/70 column containing Superose 6 or a XK16/60 

column containing Superdex 200. Finally, we separated the samples using ionic exchange columns, 

first through anion-exchange UNO Q column (Bio-RAD) with a 1 ml/min flow rate of 20 mM MOPS 

buffer (pH 7.2), and second through a cation-exchange UNO S column (Bio-RAD) with 20 mM Tris 

buffer (pH 8.0) and increasing concentrations of sodium-chloride. 
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3.3 Results 
 
3.3.1 Both luminal hexose-6-phosphate isomerase and 6PGDH activity recovered after octlyglucoside 

solubilization of microsomes 

We started our investigation by incubating washed microsomes with a buffer containing the detergent 

octylglucoside (OG) (20 mM final concentration). With this treatment we expected recovery of 

luminal hexose-6-phosphate isomerase and 6PGDH activities by collecting the supernatant after 

centrifugation. The pelleted fraction contains the total ER membranes. Both activities effectively 

appeared in the supernatant (solubilized fraction (Fig. 2)), as it was demonstrated by our collaborators 

at the University of Siena University, Italy (Senesi el al., 2010). 

 

 

Fig.2. Both hexose-6-phosphate isomerase (upper) and 6PGDH activity (lower) were observed in octlyglucoside (OG) 
solubilized microsomal fractions. Fractions were permeabilized by addition of Triton X-100 prior to measurement of NADH 
production. Abbreviations: MS, microsomal fraction; Supernat., supernatant following 10´000 × g centrifugation step., RFU, 
relative fluorescence units. 

Upon incubation of the total microsomal fraction (MS) with a buffer containing 20 mM OG, further 

fractions were obtained: one with solubilized proteins (supernatant), which contained the activities of 

interest, and one with the remaining membranous fraction (PELLET). 
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These samples were subjected to SDS-PAGE, and after separation the corresponding lanes were 

subjected to protein identification by mass-spectrometry (performed by Dr. Portmann) (Figure 3). The 

total microsomal fraction contained about 500 different proteins. The microsomal pellet after OG 

treatment (PELLET) typically contained ER membrane proteins such as cytochrome P450 enzymes 

and other multi-span membrane proteins. The OG solubilized fraction contained about 200 different 

soluble and single-span membrane proteins. Some of them were expected, such as H6PDH, 11β-HSD1 

and several single-span membrane anchored short-chain dehydrogenase (SDR) enzymes, retinol 

dehydrogenases and alcohol dehydrogenases (Appendix II). On the other hand, the solubilized fraction 

contained some interesting candidates, revealed by sequence analysis. However, further research is 

required to confirm their intracellular localization and investigate their association with luminal 

NADPH. Since the number of potential candidates for the unidentified luminal hexose-6-phosphate 

isomerase is too large after this step, further purification was necessary. Therefore, we started to 

investigate the solubilized fraction of proteins by further separation using size and/or ion exchange 

chromatography. 

 

 
Fig.3. SDS-PAGE gel electrophoresis with SimplyBlue Stain. The first lane contains the total microsomal fraction (MS), the 
second lane contains the pelleted fraction after treatment of microsomes with OG (PELLET), while the third line is the 
solubilized supernatant fraction (SUPERNAT) containing the activities of hexose-6-phosphate isomerase and 6PGDH. 

 

3.3.2 Fractionation of the luminal hexose-6-phosphate isomerase and 6PGDH 
 

We attempted to separate the OG solubilized proteins by ion exchange chromatography. First, we 

applied Q Sepharose Fast Flow (strong anion exchanger) and SP Sepharose Fast Flow (strong cation 

exchanger) chromatography systems. 

MS PELLET SUPERNAT 
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After loading the column, we increased the salt concentration in the elution buffer by 25 mM in each 

step. During the gravity forced separation, we collected the different fractions. As a result we could 

detect an enrichment in hexose-6-phosphate isomerase activity, whereas we observed a loss of 6-

PGDH activity during increasing the salt concentration. We combined the fractions with highest 

hexose-6-phosphate isomerase activity and performed a gel-electrophoretic separation of proteins. 

After separation the lanes were sent to mass spectrometric analysis, which was performed by Dr. 

Portmann (Fig. 4). The gel lanes were cut into slices, followed by trypsinization of the proteins. The 

proteins were identified with Mascot software using the UniProt database (Appendix III). From the 

two separated fractions we were able to identify 74 proteins. Some of the identified proteins are 

members of the SDRs superfamily (methylenetetrahydrofolate dehydrogenase; alcohol dehydrogenase; 

17β-hydroxysteroid dehydrogenase), others are potential candidates with yet unknown isomerase 

function (catalase; liver carboxylesterase 4; transketolase; fructose-bisphosphate aldolase B; arginase-

1) (Appendix III). Because of the large number of possible candidates for the hexose-6-phosphate 

isomerase among the identified proteins and the fact that we could not find similarities with other 

isomerases or identify a sugar binding site, we decided to continue the protein separation by adding 

size exclusion chromatography. 

Fig.4. Gel-electrophoretic separation of the fraction proteins stained by SimplyBlue Stain. 

 

 

 

 

 

 

 

 

 

 

For further fractionation we applied Superose 6 and then the more precise Superdex 200 size exclusion 

chromatography columns. Furthermore, we used a Gel Filtration Calibration Kit assay to detect the 

approximate size of the luminal isomerase activity that was eluted from the column. In our first 

experiments we could see a clear activity peak (Fig. 5). 
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Fig.5. Hexose-6-phosphate isomerase activity measurement after size exclusion fractionation. 

However, when we mixed the cytosolic and the microsomal fractions we failed to detect two separate 

peaks that would suggest separated luminal and cytosolic enzyme activities. Thus, either we had 

contaminated cytosolic enzyme in the microsomal fraction or, alternatively, the cytoplasmic and 

luminal enzymes are of similar size. According to the Gel Filtration Calibration Kit that includes 

known proteins (ovalbumin, conalbumin, aldolase, ferritin and thyroglobulin) we estimated a size of 

the luminal isomerase enzyme of 82 – 97 kDa. 

The purchase of a BioLogic Chromatography Systems (Bio-RAD) with UNO Q and S ion exchange 

columns allowed to optimize the protein purification system. After initial optimization steps we 

applied samples from the previous size exclusion for further separation by anion exchange 

chromatography. The fraction with the highest enzyme activity was then analysed using a mass-

spectrometry by Dr. Paul Jenö at the Biozentrum (Basel, Switzerland). Only few proteins were 

contained in this fraction (Table 1). Following mass-spectrometric analysis sequence-based 

bioinformatics was performed using “DAVID Bioinformatics Resources 6.7” and UniProt databases in 

order to search for potential Rossmann-folds, sugar binding sites and ER retention sites in the 

sequence of the identified proteins. 
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Table 1. Mass-spectrometric analysis of the activity enriched fraction. Accession, Protein accession number, gene name, 
and description obtained from the IPI database, Score; MASCOT protein score, Unique Peptides, Number of unique 
significant peptides identified. 

 

 

 

3.3.3 Isolation of glycosylated proteins from the ER 

 
Alternatively, presuming that the luminal hexose-6-phosphate isomerase and other potential enzymes 

playing an important role in the luminal generation and utilization of NADPH might be glycosylated, 

we loaded the OG treated microsomal fraction to concanavalin A (ConA) and wheat germ agglutinin 

(WGA) affinity columns. The aim of this approach was to isolate glycosylated proteins. Non-

glycosylated proteins attached to microsomes at the cytoplasmic surface and proteins with 

transmembrane helices but facing the cytoplasm are expected not to bind to these columns. The eluted 

proteins from these columns (glycoproteins) were collected; followed by gel-electrophoretic 

separation and mass-spectrometric analysis (Appendix IV). The aim of this experiment was to obtain a 

list of glycosylated ER proteins for the subsequent identification of various luminal enzymes that may 

participate in the utilization or generation of the luminal NADPH pool and to identify the putative 

hexose-6-phosphate isomerase. We also tested whether our initial hypothesis was correct, that means 

to test whether the luminal isomerase may be glycosylated. Surprisingly, the enzyme activity was 

recovered from the flow fraction, meaning that the putative hexose-6-phosphate isomerase is not 

glycosylated (Fig.7). 

Accession Description Score Coverage # Proteins # Unique Peptides # Peptides # PSMs # AAs MW [kDa] calc. pI

P02535 RecName: Full=Keratin, type I cytoskeletal 10;AltName: Full=Cytokeratin-10;                              526.73 4.91 11 2 3 15 570 57.7 5.11
P19001 RecName: Full=Keratin, type I cytoskeletal 19;AltName: Full=Cytokeratin-19;                     247.08 6.20 16 2 3 9 403 44.5 5.39
Q921I1 RecName: Full=Serotransferrin;         Short=Transferrin;AltName: Full=Siderop       206.81 6.17 1 4 4 7 697 76.7 7.18
Q3TTY5 RecName: Full=Keratin, type II cytoskeletal 2 epidermal;AltName: Full=Cytoke                             136.15 1.98 1 1 1 4 707 70.9 8.06
P04104 RecName: Full=Keratin, type II cytoskeletal 1;AltName: Full=Cytokeratin-1;                           126.65 1.73 1 1 1 3 637 65.6 8.15
Q91Y97 RecName: Full=Fructose-bisphosphate aldolase B;         EC=4.1.2.13;AltName       115.99 7.69 1 2 2 3 364 39.5 8.27
P24270 Catalase OS=Mus musculus GN=Cat PE=1 SV=4 - [CATA_MOUSE] 69.97 2.47 1 1 1 2 527 59.8 7.88
P14206 RecName: Full=40S ribosomal protein SA;AltName: Full=Laminin receptor 1;                                                                     63.01 4.41 1 1 1 1 295 32.8 4.87
P40142 RecName: Full=Transketolase;         Short=TK;         EC=2.2.1.1;AltName: Full   53.23 1.28 1 1 1 1 623 67.6 7.50
P11679 RecName: Full=Keratin, type II cytoskeletal 8;AltName: Full=Cytokeratin-8;                           48.47 2.04 4 1 1 1 490 54.5 5.82
Q61176 RecName: Full=Arginase-1;         EC=3.5.3.1;AltName: Full=Type I arginase;A     46.03 2.48 1 1 1 1 323 34.8 7.01
P30115 RecName: Full=Glutathione S-transferase A3;         EC=2.5.1.18;AltName: Full            45.06 4.98 3 1 1 1 221 25.3 8.73
P10853 RecName: Full=Histone H2B type 1-F/J/L;AltName: Full=H2B 291A; - [H2B1F_M 39.45 7.14 12 1 1 1 126 13.9 10.32
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Fig.7. Recovery of the hexose-6-phosphate isomerase activity in the flow through fraction of ConA and WGA columns. 

Upon subjecting the microsomal fractions concanavalin A (ConA) and wheat germ agglutinin (WGA) 

affinity columns, we identified 321 different proteins, of which 163 were bound by both columns 

(Appendix IV). Unfortunately we detected about 20% of these proteins in both glycosylated and flow 

through fractions, which can be explained either by unspecific binding to the column or saturation of 

the column or weak affinity and recovery in the flow. Nevertheless, we received a valuable list of 

potentially glycosylated proteins, which may be helpful for the identification of potentially important 

factors for luminal NADPH homeostasis. We run our list of proteins through databases to find 

Rossmann-fold pyridine nucleotide binding sites, or possible functions in the ER. Various SDRs 

turned up in this list (Retinol dehydrogenase 7 (Rdh7, CRAD-2); 17β-hydroxysteroid dehydrogenase 

13 (17β-HSD13); 17β-HSD6; as well as the expected glycosylated proteins 11β-HSD1 and H6PDH. 

However it needs to be mentioned that we also recognized cytochrome P450 reductase enzymes (not 

known to be glycosylated) and peroxisomal and mitochondrial resident proteins (Appendix IV). 

This may indicate the contamination of the ER fraction by peroxisomal and mitochondrial proteins, 

emphasizing the difficulties of pure preparations of the subcellular organelles. 

To conclude, we identified promising candidates with yet unidentified membrane localization and 

function that now can be further investigated for potential hexose-6-phosphate isomerase activity. 

Such candidate proteins can be modified by attaching an epitope tag for further functional analysis and 

subcellular localization studies. Epitope tagging also allows affinity purification of the candidate 

proteins. 
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Fig.8. Summary of the result from experiments using the Glycosylation Kit. In total, 321 potential glycoproteins bound 

ConA and WGA columns were identified. Of those, 163 proteins were found in both concanavalin A (ConA) and wheat germ 

agglutinin (WGA) affinity columns. 
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3.4 Discussion 

 

Our main goal of protein purification was to identify the luminal hexose-6-phosphate isomerase, 

which we functionally can clearly distinguish from the phosphoglucose isomerase (PGI) activity of the 

cytoplasm (Senesi et al., 2010). We observed some chemical diversity for the cytoplasmic and luminal 

activity. The activity in washed microsomes was clearly latent. Furthermore, using the antibody 

against the cytosolic enzyme did not detect a band in the microsomal fraction that had comparable 

isomerase activity. 

For further characterization we tried to identify the luminal enzyme by classical activity-guided 

purification using a combination of size and ion exchange chromatography. With this effort, we 

obtained a list of potential candidates. The mass-spectrometry analysis confirmed the absence of the 

cytoplasmic PGI from our sample, supporting the evidence for separate isomerase enzymes. However, 

the final identification is still missing. Three candidates are of interest. One of these candidates is the 

fructose-bisphosphate aldolase B, catalyzing the conversion of D-fructose 1,6-bisphosphate to 

glycerone phosphate and D-glyceraldehyde 3-phosphate. It is a cardinal enzyme of the glycolysis 

pathway, while its genetic defect causes hereditary fructose intolerance. The second candidate is the 

transketolase. It catalyzes the transfer of a two carbon ketol group from a ketose donor to an aldose 

acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Transketolase is 

involved in the pentose phosphate pathway in all organisms and also plays a role in the Calvin cycle of 

photosynthesis in plans (Kochetov, 1982) and catalyzes different reactions (Figure 9). 

 

 

Fig.9. Transketolase enzyme catalysed reactions. 
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Interestingly, it acts in opposite directions in the two pathways. The first reaction accepts a 2-carbon 

fragment from a 5-carbon ketose (D-xylulose-5-P) and transfers this 2-carbon group to a 5-carbon 

aldose (D-ribose-5-P) to form a 7-carbon ketose (sedoheptulose-7-P). This yields the 3-carbon aldose 

glyceraldehyde-3-P from the D-xylulose-5-P. The second reaction catalyzed by transketolase in the 

pentose phosphate pathway involves the transfer of a 2-carbon fragment from D-xylulose-5-P to the 

aldose erythrose-4-phosphate, leading fructose 6-phosphate and glyceraldehyde-3-P. In the Calvin 

cycle, exactly the same two reactions occur, but in the opposite direction. Both enzymes take an 

important part in the known intermediate metabolism in the cytoplasm. But it could be hypothesized 

that an analog of this enzyme may function as an isomerase or may produce pentose or triose 

intermediates, which then leads to the NADH production during indirect measurement of the 

isomerase activity. However, the activity was missing in the absence of the Leuconostoc 

mesenteroides G6PDH enzyme. This indicates the formation of G6P from F6P, because the 

Leuconostoc mesenteroides G6PDH enzyme is able to use only G6P as a substrate. Thus, it is unlikely 

that an intermediate metabolite itself with NAD+ potentiates the measured isomerase activity and leads 

to NADH formation. The third candidate is the catalase. It catalyzes the decomposition of hydrogen 

peroxide to water and oxygen (Chelikani et al., 2004). It is a specific marker protein, typically related 

to peroxisomes. The catalase may be bound to the ER membrane, and possibly has other functions. 

Our future plan is to clone the cDNAs of these candidate proteins, and test whether the expressed 

proteins have isomerase activity upon expression in HEK-293 cells. Using epitope tagged constructs 

we will assess the intracellular localization and attempt to purify the enzymes followed by activity 

measurements. 

In addition to the effort to identify the role of these enzymes, the novel aspect of the proposed research 

is to enhance the current knowledge on ER enzymes affecting the luminal NADPH/NADP+ ratio and 

on enzymes anchored in the ER membrane and facing the luminal compartment. With the list of 

glycosylated proteins, we opened a new field of interest regarding potential new enzymes utilizing 

NADPH, and how they might influence the physiological redox status in the ER. Hopefully, this will 

help to understand how the ER pyridine nucleotide pool is regulated and how it is associated with the 

nutritional level of cells and the hormone regulation. In future experiments, several interesting genes 

(SDRs, membrane proteins) will be cloned for further functional characterization. 

The critical issue that became obvious during this work is the difficulty of proper “inside-out” 

microsome isolations and determination of the membrane topology of microsomal enzymes. There is a 

concern that during microsomal preparations the microsomal membrane partially opens and reconnects 

in a reversed way, forming an “inside-in” microsomal vesicle. Such “insdide-in” microsomes would 

also show latency. Furthermore, the contamination with peroxisomal, mitochondrial and plasma 

membrane proteins cannot be fully prevented. Therefore, the ultimate determination of the 

intracellular localization and determination of membrane topology has to be performed. 
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The missing part in our experiments –which we also plan to accomplish - is to shave washed 

microsomal preparation with Protainase K. In this way we “clean” the membrane from proteins the 

bound to the outside part of the vesicle. If we cannot detect known cytosolic-oriented enzymes any 

longer by these methods, then a contamination with a small percentage of the “wrong-oriented” 

microsomes can be minimized. 
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Membrane topology of the microsomal enzyme  
17β-hydroxysteroid dehydrogenase 3 
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4.1 Introduction 

 

Androgens play a key role in the regulation of male sexual development. In the testis the conversion of 

the weak androgen 4-androstene-3,17-dione (AD) to the potent androgen testosterone is catalyzed by 

17β-HSD3 (Geissler et al., 1994). The formation of testosterone is essential for further activation by 

5α-reductase, leading to the most potent androgen dihydrotestosterone, and also for generation of 

estradiol by aromatase. In humans and rodents 17β-HSD3 is highly expressed in testis and at a lower 

level in other tissues including prostate, bone and adipose (Geissler et al., 1994; Sha et al., 1997; 

Mustonen et al., 1997). The consequences of impaired 17β-HSD3 function are seen in patients with 

loss-of-function mutations who suffer from male pseudohermaphroditism (Geissler et al., 1994; 

Andersson et al., 1996). Besides genetic defects, 17β-HSD3 activity may be decreased by the presence 

of environmental chemicals or endogenous modulators that either directly inhibit enzyme activity or 

suppress its expression (Nashev et al., 2010; Lo et al., 2003; Ohno et al., 2005; Yuan et al., 2012). 

Glucocorticoids are important modulators of androgen action. Elevated glucocorticoid levels caused 

by stress have been associated with reduced male fertility in humans and rodents (Orr et al., 1990; 

Orr and Mann, 1992; Fenster et al., 1997) with a negative correlation between circulating 

glucocorticoid and testosterone concentrations (Smals et al., 1977; Nakashima et al., 1975; Monder et 

al., 1994; Hardy et al., 2002). Experiments with isolated rat Leydig cells showed that glucocorticoids 

can directly inhibit testosterone synthesis by a glucocorticoid receptor (GR)-dependent mechanism 

(Orr et al., 1994; Hales et al., 1989). 

Recently, a functional coupling between 17β-HSD3 and the glucocorticoid metabolizing enzyme 11β-

hydroxysteroid dehydrogenase 1 (11β-HSD1) was proposed as a possible mechanism by which 

glucocorticoids might interfere with testosterone production in Leydig cells (Hu et al., 2008; Latif et 

al., 2011). 11β-HSD1 catalyzes the oxoreduction of inactive 11-ketoglucocorticoids (cortisone, 11-

dehydrocorticosterone) into their active forms (cortisol, corticosterone) and of some other carbonyl 

containing steroidal and non-steroidal compounds into their respective hydroxyl forms (Odermatt and 

Nashev, 2010). 11β-HSD1 has been shown to function predominantly as a reductase in intact 

hepatocytes, adipocytes and macrophage (Balazs et al., 2009; Jamieson et al., 1995; Thieringer et al., 

2001). Controversial observations were reported for the reaction direction in Leydig cells  

(Ge and Hardy 2000; Leckie et al., 1998; Ferguson et al., 1999). Recently, some investigators 

proposed that 11β-HSD1 may function as a dehydrogenase, thereby generating NADPH upon 

cortisol/corticosterone oxidation and stimulating 17β-HSD3-dependent reduction of AD (Hu et al., 

2008; Latif et al., 2011). This hypothesis implies that 11β-HSD1 and 17β-HSD3 are both localized 

within the endoplasmic reticulum (ER) and are dependent on the luminal NADPH/NADP+ pool. 
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We and others demonstrated that 11β-HSD1 has an N-terminal transmembrane helix with the catalytic 

moiety facing the ER-lumen (Odermatt et al., 1999; Mziaut et al., 1999; Frick et al., 2004; Ozols 

1995). Importantly, the oxoreductase activity of 11β-HSD1 depends on NADPH supply in the ER-

lumen by hexose-6-phosphate dehydrogenase (H6PDH) (Atanasov et al., 2008; Atanasov et al., 2004; 

Bánhegyi et al., 2004). Since the ER membrane has a low permeability for pyridine nucleotides, the 

luminal NADPH/NADP+ pool is independent of that in the cytoplasm and its ratio determines the 

reaction direction of 11β-HSD1 and other luminal enzymes utilizing NADPH. H6PDH is fueled by 

glucose-6-phosphate (G6P) via a glucose-6-phosphate transporter (G6PT) in the ER membrane, or 

alternatively, by fructose-6-phosphate which can be converted to G6P in the ER by an enzyme that 

remains to be identified (Senesi et al., 2010). 

The hypothesized functional coupling between 17β-HSD3 and 11β-HSD1 is based on the assumption 

that the catalytic domain of 17β-HSD3 is oriented toward the ER-lumen. Mindnich et al. assigned the 

intracellular localization of 17β-HSD3 to the ER membrane (Mindnich et al., 2005); however, they did 

not solve its membrane topology. Here, we investigated a potential functional coupling between 17β-

HSD3 and 11β-HSD1 by using mouse MA-10 Leydig cells expressing endogenous levels of the two 

enzymes as well as transfected HEK-293 cells. We studied the dependence of the two enzymes on 

luminal and cytoplasmic NADPH and determined the membrane topology of 17β-HSD3. 
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4.2 Materials and Methods 

 
4.2.1 Expression constructs 

The plasmid for expression of C-terminally myc epitope-tagged 17β-HSD3 was constructed by PCR 

using a forward primer containing a BamHI restriction endonuclease site followed by a Kozak 

consensus sequence (Kozak 1987) upstream of the ATG to initiator codon (5’-

ATCGGATCCGCCATGGGGGACGTCCTGGAAC-3’) and a reverse primer containing a myc 

epitope tag for facilitated detection at the C-terminus followed by the stop codon and a XbaI restriction 

endonuclease site (5’-

ACTTCTAGATCAATCATCATCATCTTTATAATCCATACCTGAACCCCTGACCTTGGTGTTG

AGCTTCAG-3’) (Nashev et al., 2010). Attachment of the C-terminal myc epitope did not affect 

enzyme activity. The chimeric constructs, where the N-terminal transmembrane segment was 

exchanged, were obtained by PCR amplification. Sequences were exchanged at the beginning of the 

conserved Rossmann-fold at residue Lys36 of 11β-HSD1 and at Lys37 of 17β-HSD3. Chimeric 

construct N17-11HSD1 containing amino acids 1-36 of 17β-HSD3 followed by amino acids 36-292 of 

11β-HSD1 was obtained using the forward primer 5’- 

GAGGATCCGCCATGGGGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTGCTGGTGT

GCCTGGCCTGCCTGGCGAAGTGCGTGAGATTCTCCAGATGTGTTTTACTGAACTACTGGA

AAGTGATTGTCACAGGGGCCAGCAAAGG-3` and the reverse primer 5`-

GTTTCTAGACTAATCATCATCATCTTTATAATCCATTCCGCTTCCGCTTCCGCTTCCGCTTC

CGCTTCCGCTTCCGCTTCCGCTTCCGCTTCCGCTCTTGTTTATGAATCTGTCCATATTATAG

CTCG-3’. Chimeric construct N11-17HSD3 containing amino acids 1-35 of 11β-HSD1 followed by 

amino acids 37-310 of 17β-HSD3 was obtained using the forward primer 5’- 

GAGGATCCGCCATGGCTTTTATGAAAAAATATCTCCTCCCCATTCTGGGGCTCTTCATGGC

CTACTACTACTATTCTGCAAACGAGGAATTCAGACCAGAGATGCTCCAAGGAAAGAAAG

TTTTGCCAAAGTCTTTCTTGCGG-3’ and the reverse primer 5`-

GTTTCTAGACTAATCATCATCATCTTTATAATCCATTCCGCTTCCGCTTCCGCTTCCGCTTC

CGCTTCCGCTTCCGCTTCCGCTTCCGCTTCCGCTCCTGACCTTGGTGTTGAGCTTCAGG-3’. 

The chimeric proteins were tagged with a FLAG-epitope at the C-terminus to allow facilitated 

detection. All constructs were verified by sequencing. 
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4.2.2 Cell culture and transfection 

HEK-293 cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% 

fetal calf serum (FCS), 4.5 g/L glucose, 50 U/mL penicillin/streptomycin, 2 mM glutamine, and 10 

mM HEPES, pH 7.4. The mouse Leydig cell line MA-10 (kindly provided by Prof. Mario Ascoli, 

University of Iowa, (Ascoli 1981)) was cultivated on 0.1% gelatin-coated cell culture dishes in 

DMEM/F12 medium containing 20 mM HEPES, pH 7.4, 15% horse serum and 50 μg/ml gentamicin. 

MA-10 cells were transfected using Lipofectamine reagent as described by the manufacturer (Life 

technologies, Zug, Switzerland). 

4.2.3 Measurement of 17β-HSD3 and 11β-HSD1 enzyme activity 

Endogenous 17β-HSD3 activity of MA-10 cells was measured by incubating cells in serum- and 

steroid-free (doubly charcoal-treated) DMEM/F12 medium containing 200 nM [1,2,6,7-3H]-AD for 2–

4 h. Reactions were terminated by adding 2 mM unlabeled AD and testosterone dissolved in methanol, 

followed by steroid extraction with ethylacetate and separation of steroids by TLC using 

chloroform:methanol at a ratio of 9:1 as solvent system. Product formation was detected by 

scintillation counting. Endogenous 11β-HSD1 activity in intact MA-10 cells was determined by 

adding radiolabeled cortisone at a final concentration of 200 nM. Following incubation at 37°C for 12-

24 h, the amount of converted cortisone was assessed by ethylacetate extraction of steroids from the 

medium, TLC separation and scintillation counting. 

Activities of recombinant enzymes expressed in HEK-293 cells were measured essentially as 

described earlier (Nashev et al., 2010; Atanasov et al., 2008). Cells were transiently transfected by the 

calcium-phosphate precipitation method with human recombinant 11β-HSD1 or 17β-HSD3 containing 

a C-terminal FLAG or myc epitope, respectively. The rates of conversion of cortisone to cortisol and 

AD to testosterone were determined. Reactions were terminated after 6 h by adding 2 mM unlabeled 

cortisol and cortisone and after 90 min by adding 2 mM unlabeled AD and testosterone dissolved in 

methanol. 

4.2.4 Down-regulation of H6PDH and G6PDH by small interfering RNA (siRNA) 

MA-10 cells were cultured in 12-well plates. At 48 h after transfection with 10 nM of H6PDH siRNA 

(QIAGEN; Entrez Gene ID:100198) or G6PDH siRNA (Dharmacon; Entrez Gene ID:2539) total RNA 

was extracted from adherent cells using Trizol reagent, followed by reverse transcription using 

Superscript II reverse transcriptase (Invitrogen). The mRNA levels were analyzed on a Rotor-Gene 

6000 light cycler (Sydney, Australia). Reactions were performed in a total volume of 10 μL containing 

20 ng cDNA, KAPA SYBR Master Mix (Kapasystems, Boston, MA), and specific primers and probes 

from assay on demand (Invitrogen). Expression levels relative to that of the internal control 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined. Data represent triplicates of 

at least three independent experiments. 
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4.2.5 Selective permeabilization and immunofluorescence analysis 

For immunofluorescence analysis HEK-293 cells were transfected with the corresponding construct, 

fixed 48 h post-transfection with 4% paraformaldehyde for 10 min, followed by washing 3 times with 

NAPS buffer (150 mM sodium phosphate, pH 7.4, 120 mM sucrose) as described earlier with few 

modifications (Frick et al., 2004). For complete permeabilization of membranes, cells were incubated 

with 0.5% Triton X-100 in NAPS buffer for 30 min. For selective permeabilization of the plasma 

membrane cells were incubated for 1 min with 25 µM digitonin. After washing 3 times with NAPS 

cells were incubated in blocking solution (NAPS containing 3% FBS) for 30 min. Enzymes were 

detected upon incubation with mouse monoclonal anti-FLAG antibody and rabbit polyclonal anti-myc 

antibody overnight at 4°C, washing three times, and incubation with ALEXA-488 goat anti-mouse and 

ALEXA-594 goat anti-rabbit antibody, respectively, for 1 h at 25°C. After washing, samples were 

mounted and analyzed on an Olympus FV1000-IX81 confocal microscope (Olympus, Volketswil, 

Switzerland) or on a Cellomics high-content imaging system according to the manufacturer’s protocol 

(Cellomics ThermoScientific, Pittsburgh, PA). 

 

4.2.6 Preparation of microsomes 

HEK-293 cells (five 10 cm dishes each transfected with 5 μg of the corresponding expression plasmid) 

were collected 48 h post-transfection, washed twice with PBS and resuspended in 1.5 mL of ice-cold 

lysis buffer (10 mM MOPS, pH 7.5, 0.5 mM MgCl2, and Complete protease inhibitor (Roche 

Diagnostics, Rotkreuz, Switzerland) and kept on ice for 5 min for cell lysis. The lysate was transferred 

into a Potter-Elvehjem homogenizer. Samples were homogenized by 20 strokes, followed by addition 

of 2 mL of solution A (0.5 M sucrose, 10 mM MOPS, pH 7.5, 20 mM NaCl, 100 mM KCl, 1 mM 

dithiothreitol) and centrifugation at 11,000 × g for 15 min at 4°C. The supernatant was transferred into 

a new tube and centrifuged at 8,800 × g for 20 min at 4°C. After centrifugation of the supernatant at 

100,000 × g for 1 h at 4°C, the pellet was resuspended in 500 μl of buffer A and centrifuged again at 

100,000 × g for 1 h at 4°C. The washed microsomal pellet fraction was resuspend in buffer B 

containing 10 mM MOPS, pH 7.5, 250 mM sucrose, 10 mM NaCl, 50 mM KCl and 0.5 mM 

dithiothreitol. The protein concentration was determined by BCA protein detection assay. Microsomal 

preparations were shock-frozen and stored at –70°C until analysis. 

 

4.2.7 Proteinase K protection assay and immunoblotting 

The proteinase K protection assay was performed as described earlier (Frick et al., 2004). Microsomes 

(30 μg of total proteins) were incubated in a total volume of 25 μL with 0.5 μg/μL of proteinase K 

(Roche Diagnostics) for 15 min on ice in the presence or absence of 0.5% Triton X-100. 
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Proteinase K was inactivated by adding 0.6 μL of 200 mM phenylmethylsulfonyl fluoride in isopropyl 

alcohol solution for 2 min, followed by adding SDS-PAGE sample buffer and immediate boiling for 5 

min. Proteins were subjected to SDS-PAGE and Western blot analysis using anti-FLAG antibody M2 

or anti-myc antibody as primary antibodies and horseradish peroxidase-conjugated secondary 

antibody. 

 

4.2.8 Deglycosylation assay 

For deglycosylation of luminal proteins microsomes (5 μg total proteins) were permeabilized with 

0.5% Triton X-100, followed by boiling for 10 min in glycoprotein denaturation buffer. After cooling, 

microsomes were incubated for 1 h at 37°C in a final volume of 20 μl containing 500 U of Peptide:N-

Glycosidase F (PNGaseF, New England Biolabs, Beverly, MA). The reaction was stopped by adding 

SDS-PAGE sample buffer and samples were analyzed by SDS-PAGE and subsequent 

immunoblotting. 
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4.3 Results 

 

4.3.1 Lack of a direct functional interaction between 17β-HSD3 and 11β-HSD1 

 
The hypothesized functional interaction between 17β-HSD3 and 11β-HSD1 and competition for the 

same NADPH/NADP+ pool is based on the assumption of a luminal orientation of the catalytic moiety 

of 17β-HSD3. To test the existence of a functional coupling between the two enzymes, we 

coexpressed 17β-HSD3 and 11β-HSD1 either alone or in combination in HEK-293 cells and measured 

the respective enzyme activity. At a physiologically relevant concentration of 200 nM, neither 

cortisone nor cortisol affected the 17β-HSD3-dependent conversion of AD to testosterone upon 

incubation for 90 min in cells expressing 17β-HSD3 alone or upon coexpression with 11β-HSD1 (Fig. 

1A). Also inhibition of 17β-HSD3 by the known inhibitor benzophenone-1 (BP1) (Nashev et al., 

2010) was not affected upon coexpression with 11β-HSD1. Similar observations were made in MA-10 

mouse Leydig cells expressing endogenous levels of the two enzymes (Fig. 1B). Due to the longer 

incubation time (2 and 4 h), 1 µM of cortisone and cortisol were used to avoid a substantial decrease in 

concentrations due to metabolism. Similarly, at 200 nM final concentration, neither AD nor 

testosterone affected the 11β-HSD1-dependent reduction of cortisone in HEK-293 cells in the 

presence or absence of 17β-HSD3 (Fig. 1C). 

Fig 1. 17β-HSD3 and 11β-HSD1 do not functionally interact in MA-10 cells and in transfected HEK-293 cells. A, HEK-293 

cells were transfected with 17β-HSD3 alone or together with 11β-HSD1. At 48 h post-transfection, 17β-HSD3-dependent 

conversion of 200 nM AD to testosterone (90 min incubation) was determined in the presence of vehicle, 200 nM cortisone 

or cortisol, and 5 µM of the 17β-HSD3 inhibitor benzophenone-1 (BP1), respectively. B, 17β-HSD3-dependent conversion of 

200 nM AD to testosterone (2 and 4 h incubation) was determined in MA-10 mouse Leydig cells in the absence or presence 

of 1 µM cortisone or cortisol. C, HEK-293 cells were transfected with 11β-HSD1, followed by measuring the conversion of 

200 nM cortisone to cortisol (incubation 6 and 24 h) in the presence of vehicle, 200 nM testosterone or 200 nM AD. Data 

represent mean ± SD from three independent experiments. 
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4.3.2 H6PDH does not modulate 17β-HSD3 activity 

To investigate the impact of H6PDH on 17β-HSD3 activity we expressed 17β-HSD3 in the absence or 

presence of H6PDH in HEK-293 cells and determined the conversion of AD to testosterone. 

Coexpression with H6PDH did not affect 17β-HSD3 activity (Fig. 2A). We tested also whether 

overexpression of H6PDH in MA-10 cells might affect the activity of endogenous 17β-HSD3 (Fig. 

2B). The fact that we could not detect an increased 17β-HSD3 activity might be due to substantial 

endogenous H6PDH expression. Therefore, we treated MA-10 cells with siRNA against H6PDH. 17β-

HSD3-dependent reduction of AD was not altered (Fig. 2C); however, 11β-HSD1-dependent 

reduction of cortisone was significantly decreased as expected (Fig. 2D). These experiments suggested 

that 17β-HSD3 either has a luminal orientation but is independent of H6PDH-generated NADPH or 

that it is oriented toward the cytoplasm. 

 

Fig. 2. Coexpression with H6PDH does not affect 17β-HSD3 activity. A, HEK-293 cells were transfected with 17β-HSD3 

and either pcDNA3 vector control or H6PDH. At 48 h post-transfection, 17β-HSD3-dependent reduction of AD (200 nM) to 

testosterone was measured for 20 and 40 min. B, MA-10 cells with endogenous 17β-HSD3 expression were transfected with 

pcDNA3 control or H6PDH. Conversion of AD (200 nM) to testosterone was determined after 2 and 4 h. To investigate the 

impact of H6PDH knock-down, MA-10 cells were transfected with scrambled control siRNA or siRNA against H6PDH. At 

48 h post-transfection 17β-HSD3 activity (C) and 11β-HSD1 (D) was determined. Data represent mean ± SD from three 

independent experiments. * p<0.05, ** p<0.01, *** p<0.001. 
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4.3.3 Determination of the membrane topology of 17β-HSD3 

 

To determine the orientation in the ER membrane of 17β-HSD3 we transfected HEK-293 cells with  

C-terminally myc epitope-tagged 17β-HSD3 and analyzed the intracellular localization by 

fluorescence microscopy. As controls FLAG-tagged 11β-HSD2 (with cytoplasmic orientation) and 

myc-tagged H6PDH (with luminal localization) were used. Analysis of 5’000 cells per well and 

measurement by Cellomics ArrayScan high-content imaging revealed a transfection rate of 

approximately 30% with comparable numbers of positive signals upon selective permeabilization of 

plasma membrane with 25 µM digitonin and complete permeabilization of membranes using 0.5% 

Triton X-100 (Fig. 3A). These observations indicate that the catalytic moiety of 17β-HSD3 protrudes 

into the cytoplasm. 11β-HSD2 and H6PDH showed cytoplasmic and luminal orientation, respectively, 

as previously reported (Odermatt et al., 1999; Atanasov et al., 2004). To assess the role of the  

N-terminal transmembrane helix, we constructed two chimeric proteins. 17N-11HSD1 consisted of the 

N-terminal membrane anchor of 17β-HSD3, followed by the cytoplasmic moiety of 11β-HSD1. 

11N-17HSD3 had the N-terminal helix of 11β-HSD1 fused to the catalytic domain of 17β-HSD3. As 

shown in Figure 3A, the C-terminal tag of N17-11HSD1 was accessible to antibody in digitonin-

treated cells, whereas N11-17HSD3 was protected. Thus, the N-terminal transmembrane sequence of 

17β-HSD3 and 11β-HSD1 determines the cytoplasmic and luminal orientation, respectively. In 

addition to high-content imaging, cells treated with either Triton X-100 or digitonin were also 

analyzed by confocal microscopy by counting fluorescence positive cells among 500 cells randomly 

chosen in phase-contrast. Despite differences in the transfection rates and/or threshold of fluorescence 

detection with the different constructs, similar rates of positive cells than with high-content imaging 

were obtained (Table 1). 

Table 1. Topology of 17β-HSD3, chimeric proteins and controls 

Expressed protein Triton X-100 Digitonin 

Relative rate of 

positive cells with 

digitonin 

11β-HSD2, C-terminal FLAG 28 ± 2 28 ± 1 100 ± 1 

H6PDH, C-terminal myc 12 ± 1 1.3 ± 0.2 11 ± 1 

17β-HSD3, C-terminal myc 10 ± 1 7 ± 1 67 ± 1 

11N/17HSD3, C-terminal FLAG 20 ± 3 7 ± 1 34 ± 2 

17N-11HSD1, C-terminal FLAG 20 ± 2 14 ± 2 69 ± 1 

 

Transfected HEK-293 cells were either fully permeabilized with 0.5% Triton X-100, or the plasma membrane was selectively 

permeabilized with 25 µM digitonin, allowing restricted access of the antibody to the cytosolic compartment. Cells were 

incubated with primary anti-tag and fluorescence labeled secondary antibody, followed by analysis of fluorescent cells using 

confocal microscopy. Numbers represent the percentage of fluorescent cells relative to total cells from three independent 

experiments. In each experiment 500 cells were counted. Data represent mean ± SD. 
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To confirm the membrane topology of 17β-HSD3 and the chimeric proteins, we incubated microsomal 

vesicles expressing the respective protein for 15 min with proteinase K in the absence or presence of 

0.5% Triton X-100. In the absence of detergent the chimera 11N-17HSD3 was protected from 

degradation by proteinase K as expected (Fig. 3B). 11β-HSD1 and H6PDH were also protected from 

degradation (not shown, (Odermatt et al., 1999)). In contrast, both 17β-HSD3 and 17N-11HSD1 were 

readily degraded, indicating cytoplasmic orientation. Additionally, since luminal but not cytoplasmic 

proteins can be glycosylated, we employed a deglycosylation assay. Treatment of microsomal 

preparations with PNGaseF for 1 h at 37°C did not alter the mobility of 17β-HSD3 and 17N-11HSD1 

protein on SDS-PAGE but led to a band which migrated faster in case of H6PDH (not shown), 11β-

HSD1 and 11N-17HSD3 (Fig. 3C). 

 

 
 

Fig 3. Determination of the membrane topology of 17β-HSD3. HEK-293 cells were transfected with different constructs. A, 

after 48 h cells were fixed with 4% paraformaldehyde, followed by selective permeabilization of the plasma membrane by 

incubation for 1 min with 25 µM digitonin or full permeabilization of membranes by incubation for 30 min with 0.5% Triton 

X-100. Fluorescence was analyzed using Cellomics ArrayScan high-content screening system by staining nuclei with 

Hoechst 33342 and counting cells yielding a positive signal with the respective anti-tag antibody. Results were normalized to 

Triton X-100 positive control. B, Microsomal preparations of cells expressing the respective C-terminally myc- or FLAG-

tagged wild-type or chimeric protein were incubated for 15 min on ice with 0.5 µg/µL proteinase K in the absence or 

presence of 0.5% Triton X-100. Proteins were analysed by Western blotting using mouse monoclonal anti-tag antibody and 

secondary anti-mouse horseradish peroxidase antibody. C, For deglycosylation of proteins, microsomes were incubated with 

500 U of PNGaseF for 1 h at 37°C, followed by analysis of samples by SDS-PAGE and Western blotting. Representative 

experiments are shown. 

 



Membrane topology of the microsomal enzyme 17β-hydroxysteroid dehydrogenase 3
 

71 
 

4.3.4 Glucose and cytoplasmic NADPH generation stimulate testosterone formation in MA-10 Leydig 

cells 

A cytoplasmic orientation of 17β-HSD3 implies a dependence of the enzyme on the cytoplasmic 

NADPH pool. To test this assumption, we incubated MA-10 cells in normal medium containing 1 g/L 

glucose and in low glucose (0.1 g/L) medium. A significantly decreased 17β-HSD3-dependent 

testosterone formation was found under low glucose conditions (Fig. 4). Moreover, knock-down of the 

cytoplasmic NADPH generating enzyme glucose-6-phosphate dehydrogenase (G6PDH) by siRNA 

significantly reduced 17β-HSD3 activity both under high and low glucose conditions. 

 

 

Fig 4. Modulation of 17β-HSD3 activity by glucose and cytoplasmic NADPH. HEK-293 cells were transfected with 17β-

HSD3 and either scrambled control siRNA or siRNA against the cytosolic NADPH generating enzyme G6PDH. Prior to 

incubation with the respective medium, cells were preincubated with carbohydrate-free medium for 2 h, followed by 

incubation in low (0.1 g/L) or high (1 g/L) glucose medium and determination of 17β-HSD3 activity for 30 min at a supplied 

AD concentration of 200 nM.  
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4.4 Discussion 

 

In the present study, we could not observe a functional coupling between 17β-HSD3 and 11β-HSD1. 

Coexpression with 11β-HSD1 and/or the addition of glucocorticoids did not alter 17β-HSD3 activity. 

Furthermore, 17β-HSD3-dependent reduction of AD was not affected by overexpression or knock-

down of the luminal NADPH generating H6PDH but was decreased by knock-down of the 

cytoplasmic NADPH source G6PDH, suggesting cytoplasmic orientation of 17β-HSD3. 

The intracellular localization of human and zebrafish 17β-HSD3 has been localized to the ER 

(Mindnich et al., 2005); however, the membrane topology was not resolved. Using selective 

permeabilization of the plasma membrane, proteinase K digestion and analysis of glycosylation 

patterns of wild-type and chimeric enzymes, we demonstrate a cytoplasmic orientation of 17β-HSD3. 

Importantly, we could show that the N-terminal membrane anchor sequences of 17β-HSD3 and 11β-

HSD1 are sufficient to determine their cytoplasmic and luminal orientation, respectively. This 

resembles previous observations with 11β-HSD2 (Odermatt et al., 1999) and Rdh1 and Crad1 (Zhang 

et al., 2004). Thus, 17β-HSD3 and 11β-HSD1 are facing different compartments and utilize distinct 

NADPH pools (Fig. 5). 

 

 

Fig 5. Model of 17β-HSD3 and 11β-HSD1 localization and their respective NADPH supplying enzymes. The cytoplasm 
and ER maintain independent NADPH/NADP+ pools that are dependent on cytoplasmic G6PDH and luminal H6PDH, 
respectively. 17β-HSD3 is anchored by its N-terminal transmembrane helix in the ER membrane, protrudes into the 
cytoplasm, and its activity is stimulated by G6PDH-generated NADPH, whereas 11β-HSD1 faces the ER-lumen and interacts 
with the NADPH supplying H6PDH. 
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That 17β-HSD3 is dependent on cytoplasmic and not luminal NADPH is supported by the fact that 

both H6PDH-deficient mice and H6PDH/11β-HSD1 double knock-out mice are fertile and do not 

seem to have impaired male development (Lavery et al., 2006; Lavery et al., 2008; Semjonous et al., 

2011). Patients with cortisone reductase deficiency have increased rather than decreased androgen 

production (Draper et al., 2003), indicating that 17β-HSD3 function is not abolished by impaired 

H6PDH/11β-HSD1 activity. 

The present study emphasizes the importance of the knowledge of intracellular localization and 

membrane topology to understand enzyme function. Nevertheless, this information is available only 

for very few of the microsomal short-chain dehydrogenase/reductase enzymes (Skarydova and Wsol, 

2012; Bray et al., 2009), and resolving the membrane topology might provide further insight into the 

physiological roles of these enzymes. 

To further study a potential interference of glucocorticoids with 17β-HSD3-dependent testosterone 

formation, we recently began to investigate its transcriptional regulation. Despite the known 

suppressive effect of elevated glucocorticoids on testosterone production, we did not observe any 

effect of 100 nM of the potent glucocorticoid dexamethasone on 17β-HSD3 expression in MA-10 

Leydig cells and on a HSD17B3 promoter-driven luciferase reporter in transfected HEK-293 cells 

(data not shown). Therefore, the suppressive effect of glucocorticoids on androgen production is 

probably mainly caused by inhibition of steroidogenesis. Reduced expression of steroidogenic acute 

regulatory protein (StAR) (Wang et al., 2000), cytochrome P450 side-chain cleavage enzyme 

(P450scc) (Hales and Payne, 1989) and cytochrome P450-17 (CYP17) (Orr et al., 1994) upon 

treatment with elevated glucocorticoids have been reported. Also, glucocorticoid-dependent apoptosis 

of testosterone producing Leydig cells has been reported (Gao et al., 2002; Gao et al., 2003). 

In conclusion, glucocorticoids do not seem to modulate 17β-HSD3 expression and activity. Reduced 

steroidogenesis may be responsible for the observed glucocorticoid-mediated suppression of androgen 

production. 
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5.1 General discussion and conclusions 
 
The ER plays a central role in the cellular adaptation to pathophysiological changes. It can function as 

a metabolic sensor to responsed to an overload of sugars and fatty acids as well as to a shortage of 

energy supply. Since the synthesis and the post-translational modifications of secretory and membrane 

proteins occur in the ER, this function can be coupled to anabolic and catabolic processes and the 

luminal redox environment. The response of the ER to these environmental changes is an activation of 

the unfolded protein response (UPR) pathway. If the ER-mediated UPR fails to cope with the 

challenge, this leads to ER-associated autophagy and ER-associated degradation of proteins or 

apoptosis. Therefore, maintenance of the balance of the luminal redox environment is essential for the 

cell to adapt to homeostatic alterations that cause protein misfolding and can induce programmed cell 

death if the repair attempts fail. 

The thiol/disulfide redox system has been extensively studied and described in detail (Cuozzo and 

Kaiser, 1999; Ellgaard and Ruddock, 2005; Csala et al., 2010; Ramming and Appenzeller-Herzog, 

2012;). In contrast, less information is known on another important redox system, the NADPH/NADP+ 

pyridine nucleotide couple in the ER. It still remains a mystery how pyridine nucleotides reach the ER, 

since currently no transport is known across the ER membrane. The luminal pyridine nucleotide pool 

is separated from the cytosolic pool, because cellular membranes are impermeable for pyridine 

nucleotides. The cytosolic NADPH is generated by the widely investigated pentose-phosphate cycle, 

by the activity of G6PDH. The luminal NADPH pool only recently received greater attention due to 

the discovery of the ER-luminal NADPH generating enzyme hexose-6-phosphate dehydrogenase 

(H6PDH). This enzyme is the luminal analog of the cytosolic G6PDH. In contrast with the latter, the 

H6PDH catalyzes the first two steps of the pentose-phosphate pathway by converting G6P and NADP+ 

to 6-phosphogluconate and NADPH (Beutler and Morrison, 1967). The native substrate G6P is 

transported into the ER compartment by a specific G6P-transporter (G6PT) (Gerin and Van 

Schaftingen, 2002). The main reason of the growing interest in H6PDH is its major role in the 

maintenance of the NADPH/NADP+ ratio in the ER lumen. H6PDH is the only enzyme discovered so 

far that is generating NADPH in the ER. Evidence from cell-based studies suggests that other enzymes 

in the ER might contribute to NADPH formation, such as 6-phosphogluconate dehydrogenase 

((Bublitz and Steavenson, 1988), sodium isocitrate dehydrogenase (Margittai and Bánhegyi, 2008) or 

malic enzyme (Wang et al., 2011). However, these enzymes need to be identified. Moreover, in vivo 

studies also suggested the existence of other ER luminal NADPH sources (Rogoff et al., 2010; Lavery 

et al., 2006; Semjonous et al., 2011). Primarily, it is important to maintain a high luminal 

NADPH/NADP+ ratio for luminal redox reactions required in protein folding processes (Lavery et al., 

2008). On the other side, this ratio determines the reaction direction of the luminal 11β-HSD1 

dehydrogenase (Bánhegyi et al., 2004; Atanasov et al., 2004). 
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Several enzymatic reactions involved in the metabolism of bile acids, cholesterol, triglycerides, 

oxysterols, steroids and xenobiotics can be localized to the ER membrane. Some of these reactions 

may be dependent on luminal NADPH. However, the current knowledge on the utilization of NADPH 

for enzymatic reactions in the ER is limited. Until now, only one enzyme, 11β-HSD1, has been 

convincingly shown to be located and function in the ER (Ozols, 1995; Mziaut et al., 1999; Odermatt 

et al., 1999). 11β-HSD1 is responsible for the prereceptorial activation of glucocorticoids by 

converting intrinsically inactive cortisone and 11-dehydrocorticosterone into their active forms cortisol 

and corticosterone. Increased expression and activity of 11β-HSD1 have been implicated in the 

pathogenesis of metabolic diseases such as hypertension, type 2 diabetes, atherosclerosis, obesity, age-

related cognitive dysfunction, osteoporosis and arthritis (Masuzaki et al., 2001; Hermanowski-Vosatka 

et al., 2005; Chapman and Seckl, 2008). Although the enzyme reaction is reversible in vitro, the 

enzyme acts as a reductase in vivo. As mentioned above, the direction of the enzyme reaction largely 

depends on the redox state of the pyridine nucleotides (Atanasov et al., 2004; Bánhegyi et al., 2004), 

and the high luminal NADPH/NADP+ directly determines the physiological direction of 11β-HSD1. 

This ratio is generated by H6PDH and probably other luminal enzymes. Furthermore, a direct physical 

interaction between 11β-HSD1 and H6PDH allows the direct supply of NADPH to 11β-HSD1 in a 

close proximity for the efficient reduction of cortisone to cortisol despite a rather oxidative 

environment within the ER lumen (Atanasov et al., 2008). The physical interaction of the N-terminal 

domain of H6PDH with 11β-HSD1 might anchor H6PDH to the ER membrane, since H6PDH is 

associated with the ER membrane despite the absence of an obvious retention signal in its sequence 

(Zhang et al., 2009). 

11β-HSD1 catalyzes other enzymatic reactions besides the activation of glucocorticoids. It has 

glucocorticoid-independent functions that require NADPH. We and others demonstrated that 11β-

HSD1 can metabolize other substrates such as 7-oxocholesterol, 7-oxo-DHEA and 7-oxolithocholic 

acid (Nashev et al., 2007; Odermatt and Nashev, 2010; Schweizer et al., 2004; Odermatt et al., 2011; 

Hult et al., 2004; Muller et al., 2006). These findings suggest that this enzyme has additional functions 

in the metabolism of neurosteroids, oxysterols and bile acids as well as in the detoxification of various 

xenobiotics that contain reactive carbonyl groups. However, we hypothesize that beyond 11β-HSD1, 

the lumen of the ER might contain other NADPH-consuming reductases. 

Recently 17β-HSD3 was suggested to catalyze the oxidation of NADPH in the ER lumen for the 

generation of testosterone from its precursor androstenedione. 17β-HSD3 contains well-conserved 

motifs such as the NADPH binding site (Rossmann-fold) that are present in all short-chain 

dehydrogenase/reductase (SDR) members. It is mainly expressed in Leydig cells of the testes, and 

lower expression levels were found in other tissues, including prostate, bone and adipose. Some 

studies hypothesized the functional interaction between 17β-HSD3-dependent testosterone formation 

and 11β-HSD1-mediated interconversion of glucocorticoids in the ER lumen of isolated mouse Leydig 

cells, suggesting that 11β-HSD1 may act as a dehydrogenase in these cells by using the NADP+ 
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produced during the conversion of androstenedione to testosterone catalyzed by 17β-HSD3 (Hu et al., 

2008; Latif et al., 2011). It was proposed that the two enzymes compete for luminal NADPH. 

Mindnich and colleagues assigned the intracellular localization of 17β-HSD3 to the ER membrane 

(Mindnich et al., 2005); however, the membrane topology has not been determined. A functional 

coupling between 11β-HSD1 and 17β-HSD3 is only possible if 17β-HSD3 is oriented toward the ER 

lumen. As a consequence of the interaction, high cortisone levels would inhibit testosterone formation, 

thereby affecting male sexual development. In our experiments, we solved the question whether 17β-

HSD3 may depend on luminal or cytoplasmic NADPH and determined the membrane topology of 

17β-HSD3. 

The current knowledge on the use of NADPH for enzymatic reactions in the ER is limited. Members 

of the large family of SDRs (73 proteins in human) play important roles in the metabolism of 

carbohydrates, lipids, amino acids, hormones, vitamins and xenobiotics. They all contain a conserved 

NAD(P)(H)-cofactor binding site, the Rossmann-motif. The functions of many human SDR enzymes 

remain unknown and the knowledge on their subcelullar localization and membrane topology may 

help to uncover the physiological roles of the poorly characterized enzymes (Bray et al., 2009; Persson 

et al., 2009; Kallberg et al., 2010). Particularly, it is crucial to know whether an enzyme faces the 

cytoplasm or the ER in order to understand its dependence on the redox environment. Thus, it is 

important to solve the membrane topology of these enzymes. We optimized the conditions to 

determine the topology and intracellular localization of microsomal enzymes. We applied selective 

semi-permeabilization of the plasma membrane, followed by immunodetection and confocal 

microscopy, as well as proteinase K protection assays and glycosylation assays. 

According to the present knowledge, H6PDH is the only well-characterized luminal NADPH 

generating enzyme. It can utilize galactose-6-phosphate, glucosamine-6-phosphate, 2-deoxyglucose-6-

phosphate, as well as simple glucose, although it uses G6P most efficiently (Beutler and Morrison; 

1967). The availability of the substrate for H6PDH is ensured by G6PT. Recent observations indicated 

that not only G6P but also fructose-6-phosphate (F6P) can maintain a high luminal NADPH/NADP+ 

ratio (McCormick et al., 2008). In the present work, we studied how F6P can enter the ER lumen and 

whether H6PDH can use F6P as a substrate and, if not, whether F6P is able to isomerized to G6P and 

thereby stimulates intraluminal NADPH formation. 

In the present work, we addressed some of the open question regarding the generation and utilization 

of NADPH in the ER. 

The first part of the present work showed that F6P can substitute for G6P and is sufficient to maintain 

the reductase activity of 11β-HSD1 in isolated microsomes. Moreover, using a rapid filtration 

transport assay we showed that F6P is transported across the ER membrane. This transport activity 

was found to be concentration-dependent both in hepatic and adipose tissue microsomes; however, the 

influx of F6P was much higher in adipose microsomes compared with liver microsomes. 
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Furthermore, our data revealed that the transport was not inhibited by G6P or by a G6PT inhibitor, 

suggesting that a transporter other than G6PT is responsible for the microsomal uptake of F6P. 

The GPT previously described in fibrocytes (Leuzzi et al., 2001) may be responsible for F6P transport 

into the ER lumen. Using the purified H6PDH enzyme, we showed that F6P cannot be directly 

dehydrogenated by H6PDH, and we also excluded H6PDH as a phosphohexose isomerase. Therefore, 

we postulate the existence of an ER-luminal hexose-phosphate isomerase that is distinct from the 

cytosolic enzyme. We began to characterize this novel luminal hexose-6-phosphate isomerase activity 

and found slight but reproducible differences in pH preference and effects of known inhibitors. 

Further, the results suggest that F6P promotes prereceptor glucocorticoid activation in white adipose 

tissue, which might have a role in the pathophysiology of the metabolic syndrome. Moreover, it is 

known that glucocorticoid activation has a privotal role during preadipocyte differentiation. Therefore, 

we investigated the effects of fructose on adipocyte survival and differentiation. We demonstrated that 

fructose can substitute for glucose and that it is sufficient to maintain energy supply and proper 

differentiation of preadipocytes into mature adipocytes. There was not difference in the lipid content 

and in the expression of differentiation markers upon cultivation of cells in medium containing 

fructose instead of glucose, as the only carbohydrate source. However, under physiological conditions 

these sugars are both present, with fructose being present at lower concentrations. The observation that 

fructose can be transported more efficiently into adipocytes and has similar effects on preadipocyte 

differentiation may provide an explanation for the adverse metabolic effects of excessive fructose 

consumption. The gene expression pattern in cells differentiated in glucose and fructose containing 

media is currently under investigation. 

The second part of our work focused on the identification of new components of the pyridine 

nucleotide homeostasis in the ER. Especially, we focused on the identification of the enzyme 

responsible for the isomerization of F6P to G6P and on the enzyme catalyzing the reduction of 6-

phosphogluconate. 

To identify these and other potential enzymes that influence the homeostasis of the luminal NADPH 

pool we used rat and mouse liver microsomes and employed an activity-guided purification strategy. 

We applied a combination of fractionation, affinity purification, gel-electrophoretic separation and 

mass spectrometry methods to generate a list of potential candidates. 

Additionally, we optimized the method for microsomal preparation. After differential centrifugation 

the microsomal pellets were washed three times to remove proteins that are attached to the 

cytoplasmic surface of the vesicles. To partially solubilize the microsomal vesicles we treated the 

washed microsomes with a buffer containing 20 mM of the detergent octylglucoside (OG). This 

additional step permeabilized the membrane and released soluble luminal proteins as well as some 

membrane proteins with a single transmembrane helix. The remaining membranous fraction, 

containing mostly multi-span membrane proteins, could still be pelleted by further centrifugation. 
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Using this method we separated total microsomal proteins, OG solubilized proteins and ER membrane 

pellet fraction. After verification that the enzyme activities of interest appeared in the OG solubilized 

fraction, we further applied a combination of size and ion exchange chromatography for fractionation 

and partial purification in order to minimize the number of potential candidates. After these steps the 

number of candidates for the luminal hexose-6-phophate isomerase decreased to less than 15 proteins 

(Chapter III. Table 1). The most promising candidate proteins now can be modified by attaching an 

epitope tag for further functional analysis and for subcellular localization studies. Epitope tagging also 

facilitates affinity purification of the candidate proteins. The incubation of the total microsomal 

fraction with OG resulted in a separation of solubilized luminal proteins from the membrane. Using 

protein identification by mass-spectrometry in collaboration with Dr. Paul Jenö we created a valuable 

list of proteins followed by sequence analysis for the presence of a “Rossmann-fold” pyridine 

nucleotide binding motif (Appendix II). This list of proteins potentially contains proteins with their 

catalytic domain facing the ER lumen. However, further research is needed to confirm their 

intracellular localization and to investigate their relevance for luminal NADPH. Alternatively, luminal 

enzymes playing a role in the generation and utilization of NADPH in the ER might be glycosylated. 

Therefore, the OG fraction of microsomes was subjected to concanavalin A and wheat germ agglutinin 

affinity columns. The aim of this approach was to isolate glycosylated proteins, since non-glycosylated 

proteins attached to microsomal vesicles at the cytoplasmic surface and proteins with transmembrane 

helices but facing the cytoplasm will be excluded. The advantage of this strategy is the separation of 

glycosylated luminal enzymes from total microsomal proteins and the increased chance to identify 

noval luminal NAD(P)-binding proteins. We identified 321 proteins that eluted from these columns 

(glycoproteins) and were separated by gel-electrophoresis separation and analyzed by mass-

spectrometry (Appendix IV). This list of glycosylated ER proteins should help to identify luminal 

enzymes that participate in the utilization or generation of luminal NADPH. 

In the third part, we optimized the conditions for the determination of the membrane topology of 

microsomal enzymes. One approach includes the semi-permeabilization of the plasma membrane 

using highly pure digitonin to allow the access of antibodies to the cytoplasmic but not the luminal 

compartment. The semi-permeabilization assay can be combined with electron microscopy or confocal 

microscopy. Another approach is proteinase K digestion of isolated microsomes, followed by 

immunodetection. Suitable positive and negative controls must be included in both approaches. 

Additionally, glycosylation analysis can be performed. This assay reveals whether the examined 

protein is glycosylated and either is a resident ER protein or it passed the ER compartment before 

reaching its destination (secretory proteins, plasma membrane proteins). If the targeted enzyme 

contains transmembrane helices, can be constructed chimeric proteins, where the luminal and 

cytoplasmic parts are exchanged with a protein of known topology. This approach helps to identify the 

determinants of the topology. 
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Recently, a functional coupling between 17β-HSD3 and 11β-HSD1 was proposed as a possible 

mechanism by which glucocorticoids might interfere with testosterone production in Leydig cells 

(Hu et al., 2008; Latif et al., 2011). According to this hypothesis, both enzymes are dependent on the 

luminal NADPH/NADP+ pool, and it implies that 11β-HSD1 and 17β-HSD3 are both localized within 

the ER. Mindnich et al. assigned the intracellular localization of 17β-HSD3 to the ER membrane 

(Mindnich et al., 2005); however the membrane topology was not solved. Therefore, we investigated a 

potential functional coupling between 17β-HSD3 and 11β-HSD1 by using the mouse MA-10 Leydig 

cell line, expressing endogenous levels of the two enzymes, as well as transfected HEK-293 cells. We 

studied the dependence of the two enzymes on luminal and cytoplasmic NADPH. Using our 

established methods we determined the membrane topology of 17β-HSD3. We did not observe any 

functional coupling between 17β-HSD3 and 11β-HSD1. 17β-HSD3-dependent reduction of AD was 

neither affected by coexpression with 11β-HSD1 nor by overexpression or knock-down of the luminal 

NADPH generating H6PDH. In contrast, it was decreased by knock-down of the cytoplasmic NADPH 

generating enzyme G6PDH, suggesting cytoplasmic orientation of 17β-HSD3. Using selective 

permeabilization of the plasma membrane by digitonin, proteinase K digestion and analysis of 

glycosylation patterns of wild-type and chimeric enzymes, where the N-terminal anchor sequences 

between 17β-HSD3 and 11β-HSD1 were exchanged, we demonstrated a cytoplasmic orientation of 

17β-HSD3. Importantly, we could show that the N-terminal membrane anchor sequences of 17β-

HSD3 and 11β-HSD1 are sufficient to determine their cytoplasmic and luminal orientation, 

respectively. In conclusion, the results demonstrated a cytoplasmic orientation of 17β-HSD3 and 

dependence on G6PDH-generated NADPH, explaining the lack of a direct functional coupling with 

the luminal 11β-HSD1-mediated glucocorticoid metabolism. 
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5.2 Outlook 
 
Although the SDR superfamily is one of the largest and most heterogenous enzyme family with more 

than 47.000 members listed in sequence databases and found in all life forms, only 14 members of 

human SDRs have been well characterized to date. The function of most of the human SDR enzymes 

remains unknown and the knowledge on the subcelullar localization and membrane topology is scarce 

(Bray et al., 2009; Persson et al., 2009; Kallberg et al., 2010). Enzymes belonging to the cluster C2 

and C3 are membrane-associated proteins that typically catalyze reactions using retinoids, fatty acids 

and steroids as substrates (Bray et al., 2009). Some of them prefer NADPH as a cofactor, predicted by 

sequence analysis. Our future goal is to identify luminal SDRs, mainly those utilizing NADPH. 

Therefore, to begin to characterize such enzymes, we will determine their subcellular localization and 

initiate a screen for identification of substrates. 

Based on our preliminary results on potentially glycosylated proteins 17β-HSD11 and 17β-HSD13 that 

were predicted to be oxidative NAD+-dependent enzymes and 17β-HSD12 that prefers NADP+ as a 

cofactor (Lukacik et al., 2006; Moeller and Adamski, 2009) are of specific interest: 17β-HSD11 and 

17β-HSD13 share 78% sequence similarity. They have an interesting localization, being bound to the 

ER or to lipid droplets, depending on the physiological conditions (Yokoi et al., 2007; Horiguchi et al., 

2008). The activity of both enzymes toward steroids or other substrates has not been clarified, thus, it 

is not known at present whether they catalyze oxidative or reductive reactions. Furthermore, the 

information on the membrane topology of these enzymes is missing. 17β-HSD12 shares highest 

sequence similarity with 17β-HSD3, but its properties and tissue distribution rather resemble those of 

17β-HSD7, which reduces estrone to estradiol and dihydrotestosterone to 3β-adiol (Törn et al., 2003). 

Similarly, 17β-HSD12 is a NADPH-dependent microsomal enzyme that has been identified as 3-

ketoacyl-CoA reductase (KAR) participating in the elongation of long-chain fatty acids (Moon and 

Horton, 2003), but it was also found to have estrone reductase activity and play an important role in 

estrogen activation in the mammary gland (Luu-The et al., 2006). Even if the orientation of this 

enzyme has not yet been determined, its wide distribution and preference for NADPH and together 

with the preliminary evidence for glycosylation from the present work makes this enzyme a promising 

candidate for further studies. 

Another subgroup of interest includes DHRS1, DHRS3, DHRS7, DHRS7b and DHRS7c. Based on 

sequence analysis, they are suggested to use NADPH, but both subcellular localization and substrate 

specificity have not been defined so far. These enzymes belong to the C3 cluster, and little information 

is available. Thus, we aim to obtain more information on these enzymes by cloning the cDNA and 

constructing epitope-tagged version of these enzymes in order to determine their membrane topology 

and for facilitated purification. Using LC-MS based methods, we further aim to define the substrate 

specificity of these enzymes in future experiments. 
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Despite the increasing recognition of the importance of ER redox regulation and ER stress regarding 

the development of diabetes, cardiovascular disease and other metabolic disorders, and despite of the 

recent evidence for the importance of luminal NADPH for oxidative defense, the regulation of 

NADPH generation in the ER and the reactions utilizing NADPH in this compartment are 

insufficiently understood. Our general aim is to identify novel enzymes or mechanisms affecting the 

pyridine nucleotide balance in the ER. The proposed research contributes to the understanding of how 

luminal NADPH is regenerated and should enhance the current knowledge on disturbances of luminal 

NADPH homeostasis regarding the development of metabolic diseases. Discovering enzymes 

generating or utilizing luminal NADPH should provide novel insight into the role of luminal NADPH 

in pathophysiological redox processes and mechanisms of the antioxidant defense system in the ER. 

The expected findings could be relevant to understand the coupling between the cellular energy state, 

hormonal regulation and ER redox regulation. 
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List of abbreviations 
 

6PGDH     6-phosphogluconate dehydrogenase  
11β-HSD1     11β-hydroxysteroid dehydrogenase type 1 
11β-HSD2     11β-hydroxysteroid dehydrogenase type 2 
17β-HSD3    17β-hydroxysteroid dehydrogenase type 3  
AD      4-androstene-3,17-dione 
BP1     benzophenone-1 
ConA      concanavalin A  
DHA      dehydroascorbate  
DHRS      dehydrogenase/reductase SDR family member 
ER      endoplasmic reticulum 
ERAD      ER-associated degradation  
Ero1-α      ER oxidoreductin 1-α  
F6P      fructose-6-phosphate  
FABP4      fatty acid binding protein 4 
G6P      glucose-6-phosphate 
G6PDH     glucose-6-phosphate dehydrogenase  
G6PT      glucose-6-phosphate transporter  
GAPDH     glyceraldehyde-3-phosphate dehydrogenase 
GR      glucocorticoid receptor 
GSH      glutathione  
H6PDH     hexose-6-phosphate dehydrogenase 
MR      mineralocorticoid receptors  
MS      microsomal fraction 
NAD      nicotinamide adenine dinucleotide  
NADPH     reduced nicotinamide adenine dinucleotide phosphate 
NCB5OR     NADPH cytochrome b5 oxidoreductase  
OG      octylglucoside 
PDI      protein disulfide isomerase 
PGI      phosphoglucose isomerase 
PPARγ      peroxisome proliferator-activated receptor gamma 
SDR      short chain dehydrogenase/reductase 
siRNA     small interfering ribonucleic acid  
UPR      unfolded protein response 
WGA      wheat germ agglutinin 
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List of proteins identified by mass-spectrometry after octylglucoside 
treatment 

The total microsomal fraction: 
 
LRP1_MOUSE Prolow-density lipoprotein receptor-related protein 1 
FRIL1_RAT Ferritin light chain 1 
Q7TP91_RAT Ab1-205 
CLH_RAT Clathrin heavy chain 1 
MYH9_RAT Myosin-9 
APOB_RAT Apolipoprotein B-100 
FAS_RAT Fatty acid synthase 
A1I3_RAT Alpha-1-inhibitor 3 
UGGG1_RAT UDP-glucose:glycoprotein glucosyltransferase 1 
B5DFK1_RAT Copa protein 
CO3_RAT Complement C3 
A1M_RAT Alpha-1-macroglobulin 
Q3KRF2_RAT High density lipoprotein binding protein 
Q6P136_RAT Hyou1 protein 
SC31A_RAT Protein transport protein Sec31A 
AT2A2_RAT Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 
AT1A1_RAT Sodium/potassium-transporting ATPase subunit alpha-1 
TPP2_RAT Tripeptidyl-peptidase 2 
CPSM_RAT Carbamoyl-phosphate synthase [ammonia], mitochondrial 
ACLY_RAT ATP-citrate synthase 
A2AMV0_MOUSE Novel DUF1620 domain containing protein 
DPP4_RAT Dipeptidyl peptidase 4 
LDLR_RAT Low-density lipoprotein receptor 
STRUM_MOUSE Strumpellin 
Q9JL97_RAT GPI-anchored ceruloplasmin 
DDB1_RAT DNA damage-binding protein 1 
MYO1B_RAT Myosin-Ib 
SC24A_MOUSE Protein transport protein Sec24A 
B5DEG8_RAT LOC685144 protein (RCG41932) 
VPP1_RAT V-type proton ATPase 116 kDa subunit a isoform 1 
MYO1C_RAT Myosin-Ic 
ENPP1_RAT Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 
ENPL_RAT Endoplasmin 
SND1_RAT Staphylococcal nuclease domain-containing protein 1 
Q5EBC3_RAT Methylenetetrahydrofolate dehydrogenase (NADP+ dependent),  
GANAB_MOUSE Neutral alpha-glucosidase AB 
AP2B1_RAT AP-2 complex subunit beta-1 
MVP_RAT Major vault protein 
COPB_RAT Coatomer subunit beta 
EIF3B_RAT Eukaryotic translation initiation factor 3 subunit B 
PIGR_RAT Polymeric immunoglobulin receptor 
ERAP1_RAT Endoplasmic reticulum aminopeptidase 1 
TERA_RAT Transitional endoplasmic reticulum ATPase 
Q91X33_MOUSE Microsomal triglyceride transfer protein 
C1TC_RAT C-1-tetrahydrofolate synthase, cytoplasmic 
Q7M079_RAT Calcium-binding protein 4 (Fragment) 
COPG_RAT Coatomer subunit gamma 
COPB2_RAT Coatomer subunit beta 
Q5U302_RAT Catenin (Cadherin associated protein), alpha 1 
FTHFD_RAT 10-formyltetrahydrofolate dehydrogenase 
EF2_RAT Elongation factor 2 
AP2A2_RAT AP-2 complex subunit alpha-2 
CALX_RAT Calnexin 
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B5DFC3_RAT SEC23A (S. cerevisiae) (Predicted) 
HS90B_RAT Heat shock protein HSP 90-beta 
DDX1_RAT ATP-dependent RNA helicase DDX1 
PLMN_RAT Plasminogen 
B3DMA2_RAT Acyl-Coenzyme A dehydrogenase family, member 11 
GCS1_RAT Mannosyl-oligosaccharide glucosidase 
G6PE_MOUSE GDH/6PGL endoplasmic bifunctional protein 
PDIA4_RAT Protein disulfide-isomerase A4 
NCPR_RAT NADPH--cytochrome P450 reductase 
ACSL1_RAT Long-chain-fatty-acid--CoA ligase 1 
DHB4_RAT Peroxisomal multifunctional enzyme type 2 
ECHP_RAT Peroxisomal bifunctional enzyme 
B1WC34_RAT Protein kinase C substrate 80K-H 
ECHA_RAT Trifunctional enzyme subunit alpha, mitochondrial 
TRFE_RAT Serotransferrin 
K6PL_RAT 6-phosphofructokinase, liver type 
ACOX2_RAT Peroxisomal acyl-coenzyme A oxidase 2 
Q5WQV5_RAT Radixin 
Q6P6R6_RAT Transglutaminase 2, C polypeptide 
ALBU_RAT Serum albumin 
GRP78_RAT 78 kDa glucose-regulated protein 
HSP7C_RAT Heat shock cognate 71 kDa protein 
S27A5_RAT Bile acyl-CoA synthetase 
ANXA6_RAT Annexin A6 
S27A2_RAT Very long-chain acyl-CoA synthetase 
RPN2_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 
Q6P7A7_RAT Ribophorin I 
CMC2_MOUSE Calcium-binding mitochondrial carrier protein Aralar2 
Q3KR94_RAT Vitronectin 
RETST_RAT All-trans-retinol 13,14-reductase 
HNRPQ_RAT Heterogeneous nuclear ribonucleoprotein Q 
SPA3K_RAT Serine protease inhibitor A3K 
EST2_RAT Liver carboxylesterase 1 
DHSA_RAT Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 
ETFD_RAT Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial 
EST4_RAT Liver carboxylesterase 4 
FAAH1_RAT Fatty-acid amide hydrolase 1 
TCPE_RAT T-complex protein 1 subunit epsilon 
AOFB_RAT Amine oxidase [flavin-containing] B 
TCPG_RAT T-complex protein 1 subunit gamma 
PDIA1_RAT Protein disulfide-isomerase 
SAC1_RAT Phosphatidylinositide phosphatase SAC1 
CATA_RAT Catalase 
EHD3_RAT EH domain-containing protein 3 
PDIA3_RAT Protein disulfide-isomerase A3 
CES3_RAT Carboxylesterase 3 
CALR_RAT Calreticulin 
LMAN1_RAT Protein ERGIC-53 
UD11_RAT UDP-glucuronosyltransferase 1-1 
EST3_RAT Liver carboxylesterase 3 
FMO5_RAT Dimethylaniline monooxygenase [N-oxide-forming] 5 
NUCL_RAT Nucleolin 
ATPA_RAT ATP synthase subunit alpha, mitochondrial 
DHE3_RAT Glutamate dehydrogenase 1, mitochondrial 
CP4A2_RAT Cytochrome P450 4A2 
UD2B5_RAT UDP-glucuronosyltransferase 2B5 
TCPB_RAT T-complex protein 1 subunit beta 
FMO1_RAT Dimethylaniline monooxygenase [N-oxide-forming] 1 
ATLA3_RAT Atlastin-3 
Q4V8I9_RAT UDP-glucose pyrophosphorylase 2 
FMO3_RAT Dimethylaniline monooxygenase [N-oxide-forming] 3 
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PRRC1_RAT Protein PPRC1 
CP2D1_RAT Cytochrome P450 2D1 
A1AT_RAT Alpha-1-antiproteinase 
CP2B3_RAT Cytochrome P450 2B3 
ATPB_RAT ATP synthase subunit beta, mitochondrial 
CP4F4_RAT Cytochrome P450 4F4 
TBB2A_RAT Tubulin beta-2A chain 
AL3A2_RAT Fatty aldehyde dehydrogenase 
CP3A2_RAT Cytochrome P450 3A2 
UD2B4_RAT UDP-glucuronosyltransferase 2B4 
CP2CN_RAT Cytochrome P450 2C23 
CP4AE_RAT Cytochrome P450 4A14 
UD2B3_RAT UDP-glucuronosyltransferase 2B3 
CP2CB_RAT Cytochrome P450 2C11 
CP51A_RAT Cytochrome P450 51A1 
CP1A2_RAT Cytochrome P450 1A2 
CP2E1_RAT Cytochrome P450 2E1 
CP4F1_RAT Cytochrome P450 4F1 
CP2J3_RAT Cytochrome P450 2J3 
CP2DQ_RAT Cytochrome P450 2D26 
CP2CD_RAT Cytochrome P450 2C13, male-specific 
CP2C7_RAT Cytochrome P450 2C7 
CP3AI_RAT Cytochrome P450 3A18 
CP2A2_RAT Cytochrome P450 2A2 
PDIA6_RAT Protein disulfide-isomerase A6 
RL4_RAT 60S ribosomal protein L4 
Q63125_RAT Rat cytochrome P-450b type b (Fragment) 
AAAD_RAT Arylacetamide deacetylase 
Q9WTN7_RAT Sterol 12-alpha hydroxylase 
HYEP_RAT Epoxide hydrolase 1 
Q4QQW7_RAT Cytochrome P450, family 2, subfamily c, polypeptide 7 
EF1A1_RAT Elongation factor 1-alpha 1 
RL3_RAT 60S ribosomal protein L3 
CP2A1_RAT Cytochrome P450 2A1 
NTCP_RAT Sodium/bile acid cotransporter 
CP270_RAT Cytochrome P450 2C70 
BHMT1_RAT Betaine--homocysteine S-methyltransferase 1 
Q6AYD3_RAT Proliferation-associated 2G4 
GGLO_RAT L-gulonolactone oxidase 
IF4A2_RAT Eukaryotic initiation factor 4A-II 
Q6P6S9_RAT Ectonucleoside triphosphate diphosphohydrolase 5 
OST48_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit 
ASGR1_RAT Asialoglycoprotein receptor 1 
ASSY_RAT Argininosuccinate synthase 
BASI_RAT Basigin 
A2IBE0_RAT Membrane-bound carbonic anhydrase 14 
METK1_RAT S-adenosylmethionine synthetase isoform type-1 
CGL_RAT Cystathionine gamma-lyase 
SCPDH_RAT Probable saccharopine dehydrogenase 
ACTB_RAT Actin, cytoplasmic 1 
Q5BJN6_RAT Paraoxonase 1 
RSSA_RAT 40S ribosomal protein SA 
PON3_RAT Serum paraoxonase/lactonase 3 
Q7TP48_RAT Ab2-305 
FAAA_RAT Fumarylacetoacetase 
DJB11_RAT DnaJ homolog subfamily B member 11 
E2AK1_RAT Eukaryotic translation initiation factor 2-alpha kinase 1 
HPPD_RAT 4-hydroxyphenylpyruvate dioxygenase 
PON2_RAT Serum paraoxonase/arylesterase 2 
ALDOB_RAT Fructose-bisphosphate aldolase B 
3BHS5_RAT 3 beta-hydroxysteroid dehydrogenase type 5 
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PON1_RAT Serum paraoxonase/arylesterase 1 
Q5I0F0_RAT Developmentally regulated GTP binding protein 1 
F16P1_RAT Fructose-1,6-bisphosphatase 1 
DHCR7_RAT 7-dehydrocholesterol reductase 
NSDHL_RAT Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 
ARGI1_RAT Arginase-1 
ANXA1_RAT Annexin A1 
HNRPC_RAT Heterogeneous nuclear ribonucleoprotein C (Fragment) 
S61A1_RAT Protein transport protein Sec61 subunit alpha isoform 1 
RL6_MOUSE 60S ribosomal protein L6 
Q9QX80_RAT CArG-binding factor A 
Q5BK21_RAT Transmembrane 7 superfamily member 2 
IF2A_RAT Eukaryotic translation initiation factor 2 subunit 1 
RLA0_RAT 60S acidic ribosomal protein P0 
RL6_RAT 60S ribosomal protein L6 
ADH1_RAT Alcohol dehydrogenase 1 
B2RYX0_RAT Naca protein 
EIF3I_RAT Eukaryotic translation initiation factor 3 subunit I 
G3P_RAT Glyceraldehyde-3-phosphate dehydrogenase 
Q68G38_RAT Dystonia 1 
SSRA_RAT Translocon-associated protein subunit alpha 
Q6I7R1_RAT Dehydrogenase/reductase (SDR family) member 7 
RGN_RAT Regucalcin 
DHI1_RAT Corticosteroid 11-beta-dehydrogenase isozyme 1 
B0BNG3_RAT Lman2 protein 
RL5_RAT 60S ribosomal protein L5 
URIC_RAT Uricase 
DIDH_RAT 3-alpha-hydroxysteroid dehydrogenase 
HPT_RAT Haptoglobin 
PECR_RAT Peroxisomal trans-2-enoyl-CoA reductase 
LDHA_RAT L-lactate dehydrogenase A chain 
LRC59_RAT Leucine-rich repeat-containing protein 59 
VDAC1_RAT Voltage-dependent anion-selective channel protein 1 
PHB2_RAT Prohibitin-2 
GBLP_RAT Guanine nucleotide-binding protein subunit beta-2-like 1 
MDHC_RAT Malate dehydrogenase, cytoplasmic 
APOE_RAT Apolipoprotein E 
NB5R3_RAT NADH-cytochrome b5 reductase 3 
RS3_RAT 40S ribosomal protein S3 
ANXA5_RAT Annexin A5 
RL7_RAT 60S ribosomal protein L7 
MLEC_RAT Malectin 
DHB11_RAT Estradiol 17-beta-dehydrogenase 11 
SNAA_RAT Alpha-soluble NSF attachment protein 
RS2_RAT 40S ribosomal protein S2 
DHB2_RAT Estradiol 17-beta-dehydrogenase 2 
DHB13_RAT 17-beta hydroxysteroid dehydrogenase 13 
B0BN52_RAT Mitochondrial carrier homolog 2 (C. elegans) 
RS3A_RAT 40S ribosomal protein S3a 
B0K031_RAT RCG30479, isoform CRA_b 
RDH2_RAT Retinol dehydrogenase 2 
RDH3_RAT Retinol dehydrogenase 3 
RS6_RAT 40S ribosomal protein S6 
RL7A_HUMAN 60S ribosomal protein L7a 
H17B6_RAT Hydroxysteroid 17-beta dehydrogenase 6 
RL8_RAT 60S ribosomal protein L8 
RDH7_RAT Retinol dehydrogenase 7 
RS4X_RAT 40S ribosomal protein S4, X isoform 
ADT2_RAT ADP/ATP translocase 2 
RL7A_RAT 60S ribosomal protein L7a 
GPSN2_RAT Synaptic glycoprotein SC2 
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DHB12_RAT Estradiol 17-beta-dehydrogenase 12 
RS15A_RAT 40S ribosomal protein S15a 
CAH3_RAT Carbonic anhydrase 3 
PSA4_RAT Proteasome subunit alpha type-4 
CRP_RAT C-reactive protein 
O89035_RAT Mitochondrial dicarboxylate carrier 
ERP29_RAT Endoplasmic reticulum protein ERp29 
RS8_RAT 40S ribosomal protein S8 
RL13_RAT 60S ribosomal protein L13 
RL10A_RAT 60S ribosomal protein L10a 
PRDX1_RAT Peroxiredoxin-1 
PGRC1_RAT Membrane-associated progesterone receptor component 1 
Q9Z0V5_RAT PRx IV 
MET7B_RAT Methyltransferase-like protein 7B 
B0BNK1_RAT RCG32615, isoform CRA_a 
RL14_RAT 60S ribosomal protein L14 
RL19_RAT 60S ribosomal protein L19 
GSTA3_RAT Glutathione S-transferase alpha-3 
GSTM1_RAT Glutathione S-transferase Mu 1 
RS8_BOVIN 40S ribosomal protein S8 
SC22B_RAT Vesicle-trafficking protein SEC22b 
RL9_RAT 60S ribosomal protein L9 
RL15_RAT 60S ribosomal protein L15 
RAB7A_RAT Ras-related protein Rab-7a 
GSTA1_RAT Glutathione S-transferase alpha-1 
RL13A_RAT 60S ribosomal protein L13a 
RL18_RAT 60S ribosomal protein L18 
RL10_RAT 60S ribosomal protein L10 
RS9_RAT 40S ribosomal protein S9 
RAB8B_RAT Ras-related protein Rab-8B 
RS7_RAT 40S ribosomal protein S7 
RL21_RAT 60S ribosomal protein L21 
RET4_RAT Retinol-binding protein 4 
GBRT_HUMAN Gamma-aminobutyric acid receptor subunit theta 
TMED2_RAT Transmembrane emp24 domain-containing protein 2 
Q6PDW2_RAT Ribosomal protein L21 
RER1_RAT Protein RER1 
RL31_RAT 60S ribosomal protein L31 
PPIB_RAT Peptidyl-prolyl cis-trans isomerase B 
RL29_RAT 60S ribosomal protein L29 
FRIH_RAT Ferritin heavy chain 
AP1B1_RAT AP-1 complex subunit beta-1 
HS90A_RAT Heat shock protein HSP 90-alpha 
VPS35_MOUSE Vacuolar protein sorting-associated protein 35 
Q99PS8_RAT Histidine-rich glycoprotein 
Q6IMZ3_RAT Anxa6 protein 
RPN1_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 
PABP1_RAT Polyadenylate-binding protein 1 
SPA3L_RAT Serine protease inhibitor A3L 
ATPB_HUMAN ATP synthase subunit beta, mitochondrial 
Q3MIE4_RAT Vesicle amine transport protein 1 homolog (T californica) 
NUCB2_RAT Nucleobindin-2 
Q6P3V8_RAT Eukaryotic translation initiation factor 4A1 
CP2CC_RAT Cytochrome P450 2C12, female-specific 
MPRD_RAT Cation-dependent mannose-6-phosphate receptor 
APOA4_RAT Apolipoprotein A-IV 
DHSO_RAT Sorbitol dehydrogenase 
QOR_RAT Quinone oxidoreductase 
BDH_RAT D-beta-hydroxybutyrate dehydrogenase, mitochondrial 
PSA7_RAT Proteasome subunit alpha type-7 
GSTM2_RAT Glutathione S-transferase Mu 2 
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MUG1_RAT Murinoglobulin-1 
CERU_RAT Ceruloplasmin 
EZRI_RAT Ezrin 
P70540_RAT Peroxisomal multifunctional enzyme type II 
TKT_RAT Transketolase 
B5DF80_RAT Poly(A) binding protein, cytoplasmic 3 (Similar to RIKEN cDNA 4932702K14)  
B5DF18_RAT Activating transcription factor 6 
DHAK_RAT Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing) 
COPD_RAT Coatomer subunit delta 
SPA3N_RAT Serine protease inhibitor A3N 
AL9A1_RAT 4-trimethylaminobutyraldehyde dehydrogenase 
ACOX1_RAT Peroxisomal acyl-coenzyme A oxidase 1 
CSAD_RAT Cysteine sulfinic acid decarboxylase 
FETUB_RAT Fetuin-B 
ENOA_RAT Alpha-enolase 
METK2_RAT S-adenosylmethionine synthetase isoform type-2 
BAAT_RAT Bile acid-CoA:amino acid N-acyltransferase 
HNRPK_RAT Heterogeneous nuclear ribonucleoprotein K 
LICH_RAT Lysosomal acid lipase/cholesteryl ester hydrolase 
SAHH_RAT Adenosylhomocysteinase 
IDHC_RAT Isocitrate dehydrogenase [NADP] cytoplasmic 
VP26A_RAT Vacuolar protein sorting-associated protein 26A 
HAOX1_MOUSE Hydroxyacid oxidase 1 
CHID1_RAT Chitinase domain-containing protein 1 
CS066_RAT UPF0515 protein C19orf66 homolog 
HNRPD_RAT Heterogeneous nuclear ribonucleoprotein D0 
AK1D1_RAT 3-oxo-5-beta-steroid 4-dehydrogenase 
HAOX2_RAT Hydroxyacid oxidase 2 
B0BN46_RAT Grhpr protein 
PAHX_RAT Phytanoyl-CoA dioxygenase, peroxisomal 
B2RYF8_RAT Cnpy3 protein 
B5DF91_RAT ELAV (Embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R) 
ST1E1_RAT Estrogen sulfotransferase, isoform 1 
Q2MHD9_RAT 17beta-hydroxysteroid dehydrogenase 
Q5BK78_RAT Sumf2 protein 
ASPD_RAT Putative L-aspartate dehydrogenase 
KHK_RAT Ketohexokinase 
MBL1_RAT Mannose-binding protein A 
MBL2_RAT Mannose-binding protein C 
HAP28_RAT 28 kDa heat- and acid-stable phosphoprotein 
GSTA5_RAT Glutathione S-transferase alpha-5 
PEBP1_RAT Phosphatidylethanolamine-binding protein 1 
GSTP1_RAT Glutathione S-transferase P 
HBB1_RAT Hemoglobin subunit beta-1 
MUP_RAT Major urinary protein 
HBA_RAT Hemoglobin subunit alpha-1/2 
SODC_RAT Superoxide dismutase [Cu-Zn] 
CNPY2_MOUSE Protein canopy homolog 2 
PPIA_RAT Peptidyl-prolyl cis-trans isomerase A 
TTHY_RAT Transthyretin 
ARMET_RAT Protein ARMET 
REEP6_RAT Receptor expression-enhancing protein 6 
IF5A1_RAT Eukaryotic translation initiation factor 5A-1 
UK114_RAT Ribonuclease UK114 
RLA1_RAT 60S acidic ribosomal protein P1 
CYB5_RAT Cytochrome b5 
RRBP1_MOUSE Ribosome-binding protein 1 
HYOU1_RAT Hypoxia up-regulated protein 1 
FINC_RAT Fibronectin 
CO4_RAT Complement C4 
MUG2_RAT Murinoglobulin-2 
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UBE4A_RAT Ubiquitin conjugation factor E4 A 
ITIH3_RAT Inter-alpha-trypsin inhibitor heavy chain H3 
Q5EBC0_RAT Inter alpha-trypsin inhibitor, heavy chain 4 
RENT1_MOUSE Regulator of nonsense transcripts 1 
MTP_MOUSE Microsomal triglyceride transfer protein large subunit 
PYGL_RAT Glycogen phosphorylase, liver form 
B2RYN6_RAT Adaptor-related protein complex 1, gamma 1 subunit, isoform CRA_b 
Q5PQK5_RAT Radixin 
Q7TMC7_RAT Ab2-417 
THRB_RAT Prothrombin 
PICA_RAT Phosphatidylinositol-binding clathrin assembly protein 
HSP72_RAT Heat shock-related 70 kDa protein 2 
Q68FT7_RAT Phenylalanyl-tRNA synthetase, beta subunit 
Q7TMB9_RAT Ab1-021 
A1CF_RAT APOBEC1 complementation factor 
AIFM1_RAT Apoptosis-inducing factor 1, mitochondrial 
B5DFH4_RAT Papss2 protein 
Q66WT9_RAT Clathrin-assembly lymphoid myeloid leukemia protein 
TCPA_RAT T-complex protein 1 subunit alpha 
Q8K3R0_RAT Carboxylesterase isoenzyme 
EST5_RAT Liver carboxylesterase B-1 
PCKGC_RAT Phosphoenolpyruvate carboxykinase, cytosolic [GTP] 
STIP1_RAT Stress-induced-phosphoprotein 1 
A1L114_RAT Fga protein 
NUCB1_RAT Nucleobindin-1 
DNJC3_RAT DnaJ homolog subfamily C member 3 
VTDB_RAT Vitamin D-binding protein 
CP2D4_RAT Cytochrome P450 2D4 
AP1M1_RAT AP-1 complex subunit mu-1 
EF1G_RAT Elongation factor 1-gamma 
FIBG_RAT Fibrinogen gamma chain 
ARP3_RAT Actin-related protein 3 
Q5VLR5_RAT BWK4 
NSF1C_RAT NSFL1 cofactor p47 
TXND5_MOUSE Thioredoxin domain-containing protein 5 
PGK1_RAT Phosphoglycerate kinase 1 
PURA_MOUSE Transcriptional activator protein Pur-alpha 
Q3KR93_RAT Putative uncharacterized protein 
PURB_RAT Transcriptional activator protein Pur-beta 
THIKA_RAT 3-ketoacyl-CoA thiolase A, peroxisomal 
Q9Z0U8_RAT Nucleic acid binding factor pRM10 
GALM_RAT Aldose 1-epimerase 
SEC13_RAT Protein SEC13 homolog 
CATB_RAT Cathepsin B 
ADH1_MOUSE Alcohol dehydrogenase 1 
Q68FR9_RAT Eukaryotic translation elongation factor 1 delta (Guanine nucleotide exchange  
ARK72_RAT Aflatoxin B1 aldehyde reductase member 2 
HEM2_RAT Delta-aminolevulinic acid dehydratase 
Q5BJN1_RAT START domain containing 10 
MGLL_RAT Monoglyceride lipase 
CLCA_RAT Clathrin light chain A 
ARK73_RAT Aflatoxin B1 aldehyde reductase member 3 
ASPD_MOUSE Putative L-aspartate dehydrogenase 
ROA2_RAT Heterogeneous nuclear ribonucleoproteins A2/B1 
GNMT_RAT Glycine N-methyltransferase 
ST1E3_RAT Estrogen sulfotransferase, isoform 3 
NIT2_RAT Nitrilase homolog 2 
ARPC2_RAT Actin-related protein 2/3 complex subunit 2 
DECR_RAT 2,4-dienoyl-CoA reductase, mitochondrial 
VATE1_RAT V-type proton ATPase subunit E 1 
CATZ_RAT Cathepsin Z 
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PNPH_RAT Purine nucleoside phosphorylase 
DECR2_RAT Peroxisomal 2,4-dienoyl-CoA reductase 
1433E_RAT 14-3-3 protein epsilon 
RSU1_MOUSE Ras suppressor protein 1 
RS3_HUMAN 40S ribosomal protein S3 
1433G_RAT 14-3-3 protein gamma 
Q6P9V7_RAT Proteasome (Prosome, macropain) 28 subunit, alpha 
PSA1_RAT Proteasome subunit alpha type-1 
DCXR_RAT L-xylulose reductase 
D3D2_RAT 3,2-trans-enoyl-CoA isomerase, mitochondrial 
1433Z_RAT 14-3-3 protein zeta/delta 
PSA3_RAT Proteasome subunit alpha type-3 
KAD2_RAT Adenylate kinase 2, mitochondrial 
B5DEN5_RAT Eukaryotic translation elongation factor 1 beta 2 (RCG22471, isoform CRA_b) 
SAMP_RAT Serum amyloid P-component 
GDIR1_RAT Rho GDP-dissociation inhibitor 1 
GSTM4_RAT Glutathione S-transferase Yb-3 
PSA6_RAT Proteasome subunit alpha type-6 
DHPR_RAT Dihydropteridine reductase 
PRDX6_RAT Peroxiredoxin-6 
FUBP2_RAT Far upstream element-binding protein 2 
HUTU_MOUSE Probable urocanate hydratase 
AFAM_RAT Afamin 
Q6QI47_RAT LRRGT00161 
HEMO_RAT Hemopexin 
SBP1_RAT Selenium-binding protein 1 
PGCP_RAT Plasma glutamate carboxypeptidase 
AL7A1_MOUSE Alpha-aminoadipic semialdehyde dehydrogenase 
DLDH_RAT Dihydrolipoyl dehydrogenase, mitochondrial 
ANX11_MOUSE Annexin A11 
AL8A1_MOUSE Aldehyde dehydrogenase family 8 member A1 
MMSA_RAT Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial 
FETUA_RAT Alpha-2-HS-glycoprotein 
6PGD_RAT 6-phosphogluconate dehydrogenase, decarboxylating 
FUMH_RAT Fumarate hydratase, mitochondrial 
PGK1_MOUSE Phosphoglycerate kinase 1 
BUP1_RAT Beta-ureidopropionase 
AATC_RAT Aspartate aminotransferase, cytoplasmic 
THIL_RAT Acetyl-CoA acetyltransferase, mitochondrial 
PLBL1_RAT Putative phospholipase B-like 1 
CATD_RAT Cathepsin D 
BAAT_MOUSE Bile acid-CoA:amino acid N-acyltransferase 
ANXA2_RAT Annexin A2 
AK1A1_RAT Alcohol dehydrogenase [NADP+] 
CATL1_RAT Cathepsin L1 
Q5U362_RAT Annexin A4 
GNMT_HUMAN Glycine N-methyltransferase 

 
The microsomal pellet after OG treatment (PELLET): 
 
LRP1_MOUSE Prolow-density lipoprotein receptor-related protein 1 
FRIL1_RAT Ferritin light chain 1 
Q7TP91_RAT Ab1-205 
CLH_RAT Clathrin heavy chain 1 
MYH9_RAT Myosin-9 
APOB_RAT Apolipoprotein B-100 
FAS_RAT Fatty acid synthase 
A1I3_RAT Alpha-1-inhibitor 3 
UGGG1_RAT UDP-glucose:glycoprotein glucosyltransferase 1 
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B5DFK1_RAT Copa protein 
CO3_RAT Complement C3 
A1M_RAT Alpha-1-macroglobulin 
Q3KRF2_RAT High density lipoprotein binding protein 
Q6P136_RAT Hyou1 protein 
SC31A_RAT Protein transport protein Sec31A 
AT2A2_RAT Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 
AT1A1_RAT Sodium/potassium-transporting ATPase subunit alpha-1 
TPP2_RAT Tripeptidyl-peptidase 2 
CPSM_RAT Carbamoyl-phosphate synthase [ammonia], mitochondrial 
ACLY_RAT ATP-citrate synthase 
A2AMV0_MOUSE Novel DUF1620 domain containing protein 
DPP4_RAT Dipeptidyl peptidase 4 
LDLR_RAT Low-density lipoprotein receptor 
STRUM_MOUSE Strumpellin 
Q9JL97_RAT GPI-anchored ceruloplasmin 
DDB1_RAT DNA damage-binding protein 1 
MYO1B_RAT Myosin-Ib 
SC24A_MOUSE Protein transport protein Sec24A 
B5DEG8_RAT LOC685144 protein (RCG41932) 
VPP1_RAT V-type proton ATPase 116 kDa subunit a isoform 1 
MYO1C_RAT Myosin-Ic 
ENPP1_RAT Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 
ENPL_RAT Endoplasmin 
SND1_RAT Staphylococcal nuclease domain-containing protein 1 
Q5EBC3_RAT Methylenetetrahydrofolate dehydrogenase (NADP+ dependent), 

methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthase 
GANAB_MOUSE Neutral alpha-glucosidase AB 
AP2B1_RAT AP-2 complex subunit beta-1 
MVP_RAT Major vault protein 
COPB_RAT Coatomer subunit beta 
EIF3B_RAT Eukaryotic translation initiation factor 3 subunit B 
PIGR_RAT Polymeric immunoglobulin receptor 
ERAP1_RAT Endoplasmic reticulum aminopeptidase 1 
TERA_RAT Transitional endoplasmic reticulum ATPase 
Q91X33_MOUSE Microsomal triglyceride transfer protein 
C1TC_RAT C-1-tetrahydrofolate synthase, cytoplasmic 
Q7M079_RAT Calcium-binding protein 4 (Fragment) 
COPG_RAT Coatomer subunit gamma 
COPB2_RAT Coatomer subunit beta 
Q5U302_RAT Catenin (Cadherin associated protein), alpha 1 
FTHFD_RAT 10-formyltetrahydrofolate dehydrogenase 
EF2_RAT Elongation factor 2 
AP2A2_RAT AP-2 complex subunit alpha-2 
CALX_RAT Calnexin 
B5DFC3_RAT SEC23A (S. cerevisiae) (Predicted) 
HS90B_RAT Heat shock protein HSP 90-beta 
DDX1_RAT ATP-dependent RNA helicase DDX1 
PLMN_RAT Plasminogen 
B3DMA2_RAT Acyl-Coenzyme A dehydrogenase family, member 11 
GCS1_RAT Mannosyl-oligosaccharide glucosidase 
G6PE_MOUSE GDH/6PGL endoplasmic bifunctional protein 
PDIA4_RAT Protein disulfide-isomerase A4 
NCPR_RAT NADPH--cytochrome P450 reductase 
ACSL1_RAT Long-chain-fatty-acid--CoA ligase 1 
DHB4_RAT Peroxisomal multifunctional enzyme type 2 
ECHP_RAT Peroxisomal bifunctional enzyme 
B1WC34_RAT Protein kinase C substrate 80K-H 
ECHA_RAT Trifunctional enzyme subunit alpha, mitochondrial 
TRFE_RAT Serotransferrin 
K6PL_RAT 6-phosphofructokinase, liver type 
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ACOX2_RAT Peroxisomal acyl-coenzyme A oxidase 2 
Q5WQV5_RAT Radixin 
Q6P6R6_RAT Transglutaminase 2, C polypeptide 
ALBU_RAT Serum albumin 
GRP78_RAT 78 kDa glucose-regulated protein 
HSP7C_RAT Heat shock cognate 71 kDa protein 
S27A5_RAT Bile acyl-CoA synthetase 
ANXA6_RAT Annexin A6 
S27A2_RAT Very long-chain acyl-CoA synthetase 
RPN2_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 
Q6P7A7_RAT Ribophorin I 
CMC2_MOUSE Calcium-binding mitochondrial carrier protein Aralar2 
Q3KR94_RAT Vitronectin 
RETST_RAT All-trans-retinol 13,14-reductase 
HNRPQ_RAT Heterogeneous nuclear ribonucleoprotein Q 
SPA3K_RAT Serine protease inhibitor A3K 
EST2_RAT Liver carboxylesterase 1 
DHSA_RAT Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 
ETFD_RAT Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial 
EST4_RAT Liver carboxylesterase 4 
FAAH1_RAT Fatty-acid amide hydrolase 1 
TCPE_RAT T-complex protein 1 subunit epsilon 
AOFB_RAT Amine oxidase [flavin-containing] B 
TCPG_RAT T-complex protein 1 subunit gamma 
PDIA1_RAT Protein disulfide-isomerase 
SAC1_RAT Phosphatidylinositide phosphatase SAC1 
CATA_RAT Catalase 
EHD3_RAT EH domain-containing protein 3 
PDIA3_RAT Protein disulfide-isomerase A3 
CES3_RAT Carboxylesterase 3 
CALR_RAT Calreticulin 
LMAN1_RAT Protein ERGIC-53 
UD11_RAT UDP-glucuronosyltransferase 1-1 
EST3_RAT Liver carboxylesterase 3 
FMO5_RAT Dimethylaniline monooxygenase [N-oxide-forming] 5 
NUCL_RAT Nucleolin 
ATPA_RAT ATP synthase subunit alpha, mitochondrial 
DHE3_RAT Glutamate dehydrogenase 1, mitochondrial 
CP4A2_RAT Cytochrome P450 4A2 
UD2B5_RAT UDP-glucuronosyltransferase 2B5 
TCPB_RAT T-complex protein 1 subunit beta 
FMO1_RAT Dimethylaniline monooxygenase [N-oxide-forming] 1 
ATLA3_RAT Atlastin-3 
Q4V8I9_RAT UDP-glucose pyrophosphorylase 2 
FMO3_RAT Dimethylaniline monooxygenase [N-oxide-forming] 3 
PRRC1_RAT Protein PPRC1 
CP2D1_RAT Cytochrome P450 2D1 
A1AT_RAT Alpha-1-antiproteinase 
CP2B3_RAT Cytochrome P450 2B3 
ATPB_RAT ATP synthase subunit beta, mitochondrial 
CP4F4_RAT Cytochrome P450 4F4 
TBB2A_RAT Tubulin beta-2A chain 
AL3A2_RAT Fatty aldehyde dehydrogenase 
CP3A2_RAT Cytochrome P450 3A2 
UD2B4_RAT UDP-glucuronosyltransferase 2B4 
CP2CN_RAT Cytochrome P450 2C23 
CP4AE_RAT Cytochrome P450 4A14 
UD2B3_RAT UDP-glucuronosyltransferase 2B3 
CP2CB_RAT Cytochrome P450 2C11 
CP51A_RAT Cytochrome P450 51A1 
CP1A2_RAT Cytochrome P450 1A2 
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CP2E1_RAT Cytochrome P450 2E1 
CP4F1_RAT Cytochrome P450 4F1 
CP2J3_RAT Cytochrome P450 2J3 
CP2DQ_RAT Cytochrome P450 2D26 
CP2CD_RAT Cytochrome P450 2C13, male-specific 
CP2C7_RAT Cytochrome P450 2C7 
CP3AI_RAT Cytochrome P450 3A18 
CP2A2_RAT Cytochrome P450 2A2 
PDIA6_RAT Protein disulfide-isomerase A6 
RL4_RAT 60S ribosomal protein L4 
Q63125_RAT Rat cytochrome P-450b type b (Fragment) 
AAAD_RAT Arylacetamide deacetylase 
Q9WTN7_RAT Sterol 12-alpha hydroxylase 
HYEP_RAT Epoxide hydrolase 1 
Q4QQW7_RAT Cytochrome P450, family 2, subfamily c, polypeptide 7 
EF1A1_RAT Elongation factor 1-alpha 1 
RL3_RAT 60S ribosomal protein L3 
CP2A1_RAT Cytochrome P450 2A1 
NTCP_RAT Sodium/bile acid cotransporter 
CP270_RAT Cytochrome P450 2C70 
BHMT1_RAT Betaine--homocysteine S-methyltransferase 1 
Q6AYD3_RAT Proliferation-associated 2G4 
GGLO_RAT L-gulonolactone oxidase 
IF4A2_RAT Eukaryotic initiation factor 4A-II 
Q6P6S9_RAT Ectonucleoside triphosphate diphosphohydrolase 5 
OST48_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit 
ASGR1_RAT Asialoglycoprotein receptor 1 
ASSY_RAT Argininosuccinate synthase 
BASI_RAT Basigin 
A2IBE0_RAT Membrane-bound carbonic anhydrase 14 
METK1_RAT S-adenosylmethionine synthetase isoform type-1 
CGL_RAT Cystathionine gamma-lyase 
SCPDH_RAT Probable saccharopine dehydrogenase 
ACTB_RAT Actin, cytoplasmic 1 
Q5BJN6_RAT Paraoxonase 1 
RSSA_RAT 40S ribosomal protein SA 
PON3_RAT Serum paraoxonase/lactonase 3 
Q7TP48_RAT Ab2-305 
FAAA_RAT Fumarylacetoacetase 
DJB11_RAT DnaJ homolog subfamily B member 11 
E2AK1_RAT Eukaryotic translation initiation factor 2-alpha kinase 1 
HPPD_RAT 4-hydroxyphenylpyruvate dioxygenase 
PON2_RAT Serum paraoxonase/arylesterase 2 
ALDOB_RAT Fructose-bisphosphate aldolase B 
3BHS5_RAT 3 beta-hydroxysteroid dehydrogenase type 5 
PON1_RAT Serum paraoxonase/arylesterase 1 
Q5I0F0_RAT Developmentally regulated GTP binding protein 1 
F16P1_RAT Fructose-1,6-bisphosphatase 1 
DHCR7_RAT 7-dehydrocholesterol reductase 
NSDHL_RAT Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 
ARGI1_RAT Arginase-1 
ANXA1_RAT Annexin A1 
HNRPC_RAT Heterogeneous nuclear ribonucleoprotein C (Fragment) 
S61A1_RAT Protein transport protein Sec61 subunit alpha isoform 1 
RL6_MOUSE 60S ribosomal protein L6 
Q9QX80_RAT CArG-binding factor A 
Q5BK21_RAT Transmembrane 7 superfamily member 2 
IF2A_RAT Eukaryotic translation initiation factor 2 subunit 1 
RLA0_RAT 60S acidic ribosomal protein P0 
RL6_RAT 60S ribosomal protein L6 
ADH1_RAT Alcohol dehydrogenase 1 
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B2RYX0_RAT Naca protein 
EIF3I_RAT Eukaryotic translation initiation factor 3 subunit I 
G3P_RAT Glyceraldehyde-3-phosphate dehydrogenase 
Q68G38_RAT Dystonia 1 
SSRA_RAT Translocon-associated protein subunit alpha 
Q6I7R1_RAT Dehydrogenase/reductase (SDR family) member 7 
RGN_RAT Regucalcin 
DHI1_RAT Corticosteroid 11-beta-dehydrogenase isozyme 1 
B0BNG3_RAT Lman2 protein 
RL5_RAT 60S ribosomal protein L5 
URIC_RAT Uricase 
DIDH_RAT 3-alpha-hydroxysteroid dehydrogenase 
HPT_RAT Haptoglobin 
PECR_RAT Peroxisomal trans-2-enoyl-CoA reductase 
LDHA_RAT L-lactate dehydrogenase A chain 
LRC59_RAT Leucine-rich repeat-containing protein 59 
VDAC1_RAT Voltage-dependent anion-selective channel protein 1 
PHB2_RAT Prohibitin-2 
GBLP_RAT Guanine nucleotide-binding protein subunit beta-2-like 1 
MDHC_RAT Malate dehydrogenase, cytoplasmic 
APOE_RAT Apolipoprotein E 
NB5R3_RAT NADH-cytochrome b5 reductase 3 
RS3_RAT 40S ribosomal protein S3 
ANXA5_RAT Annexin A5 
RL7_RAT 60S ribosomal protein L7 
MLEC_RAT Malectin 
DHB11_RAT Estradiol 17-beta-dehydrogenase 11 
SNAA_RAT Alpha-soluble NSF attachment protein 
RS2_RAT 40S ribosomal protein S2 
DHB2_RAT Estradiol 17-beta-dehydrogenase 2 
DHB13_RAT 17-beta hydroxysteroid dehydrogenase 13 
B0BN52_RAT Mitochondrial carrier homolog 2 (C. elegans) 
RS3A_RAT 40S ribosomal protein S3a 
B0K031_RAT RCG30479, isoform CRA_b 
RDH2_RAT Retinol dehydrogenase 2 
RDH3_RAT Retinol dehydrogenase 3 
RS6_RAT 40S ribosomal protein S6 
RL7A_HUMAN 60S ribosomal protein L7a 
H17B6_RAT Hydroxysteroid 17-beta dehydrogenase 6 
RL8_RAT 60S ribosomal protein L8 
RDH7_RAT Retinol dehydrogenase 7 
RS4X_RAT 40S ribosomal protein S4, X isoform 
ADT2_RAT ADP/ATP translocase 2 
RL7A_RAT 60S ribosomal protein L7a 
GPSN2_RAT Synaptic glycoprotein SC2 
DHB12_RAT Estradiol 17-beta-dehydrogenase 12 
RS15A_RAT 40S ribosomal protein S15a 
CAH3_RAT Carbonic anhydrase 3 
PSA4_RAT Proteasome subunit alpha type-4 
CRP_RAT C-reactive protein 
O89035_RAT Mitochondrial dicarboxylate carrier 
ERP29_RAT Endoplasmic reticulum protein ERp29 
RS8_RAT 40S ribosomal protein S8 
RL13_RAT 60S ribosomal protein L13 
RL10A_RAT 60S ribosomal protein L10a 
PRDX1_RAT Peroxiredoxin-1 
PGRC1_RAT Membrane-associated progesterone receptor component 1 
Q9Z0V5_RAT PRx IV 
MET7B_RAT Methyltransferase-like protein 7B 
B0BNK1_RAT RCG32615, isoform CRA_a 
RL14_RAT 60S ribosomal protein L14 
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RL19_RAT 60S ribosomal protein L19 
GSTA3_RAT Glutathione S-transferase alpha-3 
GSTM1_RAT Glutathione S-transferase Mu 1 
RS8_BOVIN 40S ribosomal protein S8 
SC22B_RAT Vesicle-trafficking protein SEC22b 
RL9_RAT 60S ribosomal protein L9 
RL15_RAT 60S ribosomal protein L15 
RAB7A_RAT Ras-related protein Rab-7a 
GSTA1_RAT Glutathione S-transferase alpha-1 
RL13A_RAT 60S ribosomal protein L13a 
RL18_RAT 60S ribosomal protein L18 
RL10_RAT 60S ribosomal protein L10 
RS9_RAT 40S ribosomal protein S9 
RAB8B_RAT Ras-related protein Rab-8B 
RS7_RAT 40S ribosomal protein S7 
RL21_RAT 60S ribosomal protein L21 
RET4_RAT Retinol-binding protein 4 
GBRT_HUMAN Gamma-aminobutyric acid receptor subunit theta 
TMED2_RAT Transmembrane emp24 domain-containing protein 2 
Q6PDW2_RAT Ribosomal protein L21 
RER1_RAT Protein RER1 
RL31_RAT 60S ribosomal protein L31 
PPIB_RAT Peptidyl-prolyl cis-trans isomerase B 
RL29_RAT 60S ribosomal protein L29 
FRIH_RAT Ferritin heavy chain 

 
The OG solubilized fraction (supernatant): 
 
CLH_RAT Clathrin heavy chain 1 
A1I3_RAT Alpha-1-inhibitor 3 
CO3_RAT Complement C3 
A1M_RAT Alpha-1-macroglobulin 
SC31A_RAT Protein transport protein Sec31A 
AT1A1_RAT Sodium/potassium-transporting ATPase subunit alpha-1 
TPP2_RAT Tripeptidyl-peptidase 2 
Q6P136_RAT Hyou1 protein 
B5DEG8_RAT LOC685144 protein (RCG41932) 
ENPL_RAT Endoplasmin 
AP1B1_RAT AP-1 complex subunit beta-1 
SND1_RAT Staphylococcal nuclease domain-containing protein 1 
Q5EBC3_RAT Methylenetetrahydrofolate dehydrogenase (NADP+ dependent),  
Q91X33_MOUSE Microsomal triglyceride transfer protein 
TERA_RAT Transitional endoplasmic reticulum ATPase 
HS90A_RAT Heat shock protein HSP 90-alpha 
CALX_RAT Calnexin 
PLMN_RAT Plasminogen 
G6PE_MOUSE GDH/6PGL endoplasmic bifunctional protein 
B5DFC3_RAT SEC23A (S. cerevisiae) (Predicted) 
B1WC34_RAT Protein kinase C substrate 80K-H 
VPS35_MOUSE Vacuolar protein sorting-associated protein 35 
Q99PS8_RAT Histidine-rich glycoprotein 
ACSL1_RAT Long-chain-fatty-acid--CoA ligase 1 
GRP78_RAT 78 kDa glucose-regulated protein 
PDIA4_RAT Protein disulfide-isomerase A4 
TRFE_RAT Serotransferrin 
ALBU_RAT Serum albumin 
HSP7C_RAT Heat shock cognate 71 kDa protein 
Q6IMZ3_RAT Anxa6 protein 
S27A2_RAT Very long-chain acyl-CoA synthetase 
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RPN1_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 
PABP1_RAT Polyadenylate-binding protein 1 
SPA3L_RAT Serine protease inhibitor A3L 
RETST_RAT All-trans-retinol 13,14-reductase 
EST2_RAT Liver carboxylesterase 1 
ETFD_RAT Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial 
PDIA1_RAT Protein disulfide-isomerase 
EST4_RAT Liver carboxylesterase 4 
CES3_RAT Carboxylesterase 3 
PDIA3_RAT Protein disulfide-isomerase A3 
CALR_RAT Calreticulin 
EST3_RAT Liver carboxylesterase 3 
ATPA_RAT ATP synthase subunit alpha, mitochondrial 
UD11_RAT UDP-glucuronosyltransferase 1-1 
A1AT_RAT Alpha-1-antiproteinase 
Q4V8I9_RAT UDP-glucose pyrophosphorylase 2 
FMO5_RAT Dimethylaniline monooxygenase [N-oxide-forming] 5 
AL3A2_RAT Fatty aldehyde dehydrogenase 
CP2D1_RAT Cytochrome P450 2D1 
CP3A2_RAT Cytochrome P450 3A2 
UD2B3_RAT UDP-glucuronosyltransferase 2B3 
CP2DQ_RAT Cytochrome P450 2D26 
UD2B4_RAT UDP-glucuronosyltransferase 2B4 
FMO3_RAT Dimethylaniline monooxygenase [N-oxide-forming] 3 
CP2E1_RAT Cytochrome P450 2E1 
FMO1_RAT Dimethylaniline monooxygenase [N-oxide-forming] 1 
CP4F1_RAT Cytochrome P450 4F1 
CP2CN_RAT Cytochrome P450 2C23 
PDIA6_RAT Protein disulfide-isomerase A6 
CP2CB_RAT Cytochrome P450 2C11 
EF1A1_RAT Elongation factor 1-alpha 1 
CP2A2_RAT Cytochrome P450 2A2 
CP2A1_RAT Cytochrome P450 2A1 
AAAD_RAT Arylacetamide deacetylase 
CP3AI_RAT Cytochrome P450 3A18 
Q3MIE4_RAT Vesicle amine transport protein 1 homolog (T californica) 
BHMT1_RAT Betaine--homocysteine S-methyltransferase 1 
GGLO_RAT L-gulonolactone oxidase 
NUCB2_RAT Nucleobindin-2 
CP2B3_RAT Cytochrome P450 2B3 
Q6P3V8_RAT Eukaryotic translation initiation factor 4A1 
Q6P6S9_RAT Ectonucleoside triphosphate diphosphohydrolase 5 
ASGR1_RAT Asialoglycoprotein receptor 1 
METK1_RAT S-adenosylmethionine synthetase isoform type-1 
CP2CC_RAT Cytochrome P450 2C12, female-specific 
CGL_RAT Cystathionine gamma-lyase 
OST48_RAT Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit 
MPRD_RAT Cation-dependent mannose-6-phosphate receptor 
ASSY_RAT Argininosuccinate synthase 
ACTB_RAT Actin, cytoplasmic 1 
PON1_RAT Serum paraoxonase/arylesterase 1 
PON3_RAT Serum paraoxonase/lactonase 3 
APOA4_RAT Apolipoprotein A-IV 
ALDOB_RAT Fructose-bisphosphate aldolase B 
F16P1_RAT Fructose-1,6-bisphosphatase 1 
3BHS5_RAT 3 beta-hydroxysteroid dehydrogenase type 5 
NSDHL_RAT Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 
DHSO_RAT Sorbitol dehydrogenase 
ADH1_RAT Alcohol dehydrogenase 1 
ARGI1_RAT Arginase-1 
G3P_RAT Glyceraldehyde-3-phosphate dehydrogenase 
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RGN_RAT Regucalcin 
DHI1_RAT Corticosteroid 11-beta-dehydrogenase isozyme 1 
QOR_RAT Quinone oxidoreductase 
HPT_RAT Haptoglobin 
LDHA_RAT L-lactate dehydrogenase A chain 
PECR_RAT Peroxisomal trans-2-enoyl-CoA reductase 
APOE_RAT Apolipoprotein E 
RDH2_RAT Retinol dehydrogenase 2 
BDH_RAT D-beta-hydroxybutyrate dehydrogenase, mitochondrial 
RDH3_RAT Retinol dehydrogenase 3 
RDH7_RAT Retinol dehydrogenase 7 
PSA4_RAT Proteasome subunit alpha type-4 
CAH3_RAT Carbonic anhydrase 3 
ERP29_RAT Endoplasmic reticulum protein ERp29 
PSA7_RAT Proteasome subunit alpha type-7 
Q9Z0V5_RAT PRx IV 
PGRC1_RAT Membrane-associated progesterone receptor component 1 
GSTM2_RAT Glutathione S-transferase Mu 2 
GSTA1_RAT Glutathione S-transferase alpha-1 
GSTA3_RAT Glutathione S-transferase alpha-3 
SC22B_RAT Vesicle-trafficking protein SEC22b 
GSTM1_RAT Glutathione S-transferase Mu 1 
PRDX1_RAT Peroxiredoxin-1 
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List of proteins identified by mass-spectrometry after further 
separation by protein chromatography 
 
Q5EBC3_RAT Methylenetetrahydrofolate dehydrogenase (NADP+ dependent),  
PLMN_RAT Plasminogen 
ENPL_RAT Endoplasmin 
EST4_RAT Liver carboxylesterase 4 
CES3_RAT Carboxylesterase 3 
TRFE_RAT Serotransferrin 
FUBP2_RAT Far upstream element-binding protein 2 
DHB4_RAT Peroxisomal multifunctional enzyme type 2 
HUTU_MOUSE Probable urocanate hydratase 
AFAM_RAT Afamin 
EST5_RAT Liver carboxylesterase B-1 
TKT_RAT Transketolase 
Q6QI47_RAT LRRGT00161 
EST2_RAT Liver carboxylesterase 1 
HEMO_RAT Hemopexin 
CATA_RAT Catalase 
SPA3L_RAT Serine protease inhibitor A3L 
A1AT_RAT Alpha-1-antiproteinase 
SBP1_RAT Selenium-binding protein 1 
SPA3K_RAT Serine protease inhibitor A3K 
PGCP_RAT Plasma glutamate carboxypeptidase 
AL7A1_MOUSE Alpha-aminoadipic semialdehyde dehydrogenase 
DLDH_RAT Dihydrolipoyl dehydrogenase, mitochondrial 
ANX11_MOUSE Annexin A11 
FETUB_RAT Fetuin-B 
CSAD_RAT Cysteine sulfinic acid decarboxylase 
AL8A1_MOUSE Aldehyde dehydrogenase family 8 member A1 
MMSA_RAT Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial 
ENOA_RAT Alpha-enolase 
EF1A1_RAT Elongation factor 1-alpha 1 
ACOX1_RAT Peroxisomal acyl-coenzyme A oxidase 1 
FETUA_RAT Alpha-2-HS-glycoprotein 
6PGD_RAT 6-phosphogluconate dehydrogenase, decarboxylating 
FUMH_RAT Fumarate hydratase, mitochondrial 
BHMT1_RAT Betaine--homocysteine S-methyltransferase 1 
CGL_RAT Cystathionine gamma-lyase 
BAAT_RAT Bile acid-CoA:amino acid N-acyltransferase 
SAHH_RAT Adenosylhomocysteinase 
ASSY_RAT Argininosuccinate synthase 
PGK1_MOUSE Phosphoglycerate kinase 1 
FAAA_RAT Fumarylacetoacetase 
HPPD_RAT 4-hydroxyphenylpyruvate dioxygenase 
BUP1_RAT Beta-ureidopropionase 
IDHC_RAT Isocitrate dehydrogenase [NADP] cytoplasmic 
PGK1_RAT Phosphoglycerate kinase 1 
ALDOB_RAT Fructose-bisphosphate aldolase B 
AATC_RAT Aspartate aminotransferase, cytoplasmic 
THIL_RAT Acetyl-CoA acetyltransferase, mitochondrial 
PLBL1_RAT Putative phospholipase B-like 1 
ARGI1_RAT Arginase-1 
CATD_RAT Cathepsin D 
BAAT_MOUSE Bile acid-CoA:amino acid N-acyltransferase 
DHSO_RAT Sorbitol dehydrogenase 
G3P_RAT Glyceraldehyde-3-phosphate dehydrogenase 
AK1D1_RAT 3-oxo-5-beta-steroid 4-dehydrogenase 
ANXA2_RAT Annexin A2 
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AK1A1_RAT Alcohol dehydrogenase [NADP+] 
RGN_RAT Regucalcin 
DIDH_RAT 3-alpha-hydroxysteroid dehydrogenase 
ADH1_RAT Alcohol dehydrogenase 1 
Q5BJN1_RAT START domain containing 10 
B0BN46_RAT Grhpr protein 
CATL1_RAT Cathepsin L1 
PECR_RAT Peroxisomal trans-2-enoyl-CoA reductase 
QOR_RAT Quinone oxidoreductase 
Q5U362_RAT Annexin A4 
GNMT_HUMAN Glycine N-methyltransferase 
NIT2_RAT Nitrilase homolog 2 
HPT_RAT Haptoglobin 
PAHX_RAT Phytanoyl-CoA dioxygenase, peroxisomal 
Q2MHD9_RAT 17beta-hydroxysteroid dehydrogenase 
MDHC_RAT Malate dehydrogenase, cytoplasmic 
LDHA_RAT L-lactate dehydrogenase A chain 
PNPH_RAT Purine nucleoside phosphorylase 
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List of glycosylated proteins identified by mass-spectrometry 

Eluted fraction from concanavalin A (ConA) column 
 
P20029 RecName: Full=78 kDa glucose-regulated protein; Short=GRP-78;AltName: Full=Heat shock 70 kDa protein 

5;AltNam  
P09103 Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 - [PDIA1_MOUSE] 
P08113 RecName: Full=Endoplasmin;AltName: Full=Heat shock protein 90 kDa beta member 1;AltName: Full=94 kDa 

glucose-reg  
P02535 RecName: Full=Keratin, type I cytoskeletal 10;AltName: Full=Cytokeratin-10; Short=CK-10;AltName: Full=Keratin-

10  
P14206 RecName: Full=40S ribosomal protein SA;AltName: Full=Laminin receptor 1; Short=LamR;AltName: Full=37/67 kDa  
P08003 Protein disulfide-isomerase A4 OS=Mus musculus GN=Pdia4 PE=1 SV=3 - [PDIA4_MOUSE] 
P62908 RecName: Full=40S ribosomal protein S3; - [RS3_MOUSE] 
P04104 RecName: Full=Keratin, type II cytoskeletal 1;AltName: Full=Cytokeratin-1; Short=CK-1;AltName: Full=Keratin-1;  
Q922R8 RecName: Full=Protein disulfide-isomerase A6; EC=5.3.4.1;AltName: Full=Thioredoxin domain-containing protein 

7;F  
Q6IFX2 RecName: Full=Keratin, type I cytoskeletal 42;AltName: Full=Cytokeratin-42; Short=CK-42;AltName: Full=Keratin-

42  
P14211 RecName: Full=Calreticulin;AltName: Full=CRP55;AltName: Full=Calregulin;AltName: Full=HACBP;AltName: 

Full=Endoplas  
P50446 RecName: Full=Keratin, type II cytoskeletal 6A;AltName: Full=Cytokeratin-6A; Short=CK-6A;AltName: Full=Keratin-

6  
Q63880 RecName: Full=Liver carboxylesterase 31; Short=Esterase-31; EC=3.1.1.1;AltName: Full=ES-male;Flags: Precu  
Q921I1 RecName: Full=Serotransferrin; Short=Transferrin;AltName: Full=Siderophilin;AltName: Full=Beta-1 metal-binding 

gl  
Q8VCT4 RecName: Full=Carboxylesterase 3; EC=3.1.1.1; EC=3.1.1.67;AltName: Full=Triacylglycerol hydrolase; S  
P01027 Complement C3 OS=Mus musculus GN=C3 PE=1 SV=3 - [CO3_MOUSE] 
Q9QWL7 RecName: Full=Keratin, type I cytoskeletal 17;AltName: Full=Cytokeratin-17; Short=CK-17;AltName: Full=Keratin-

17  
Q8VCC2 RecName: Full=Liver carboxylesterase 1; EC=3.1.1.1;AltName: Full=Acyl-coenzyme A:cholesterol 

acyltransferase;Alt  
Q6NXH9 RecName: Full=Keratin, type II cytoskeletal 73;AltName: Full=Cytokeratin-73; Short=CK-73;AltName: Full=Keratin-

7  
Q8VED5 RecName: Full=Keratin, type II cytoskeletal 79;AltName: Full=Cytokeratin-79; Short=CK-79;AltName: Full=Keratin-

7  
P11499 Heat shock protein HSP 90-beta OS=Mus musculus GN=Hsp90ab1 PE=1 SV=3 - [HS90B_MOUSE] 
O08601 RecName: Full=Microsomal triglyceride transfer protein large subunit;Flags: Precursor; - [MTP_MOUSE] 
P17717 RecName: Full=UDP-glucuronosyltransferase 2B5; Short=UDPGT 2B5; EC=2.4.1.17;AltName: Full=M-1;Flags:  
Q78PY7 RecName: Full=Staphylococcal nuclease domain-containing protein 1;AltName: Full=p100 co-activator;AltName: 

Full=100  
P68040 RecName: Full=Guanine nucleotide-binding protein subunit beta-2-like 1;AltName: Full=Receptor of activated 

protein kinas  
P29341 Polyadenylate-binding protein 1 OS=Mus musculus GN=Pabpc1 PE=1 SV=2 - [PABP1_MOUSE] 
P63017 RecName: Full=Heat shock cognate 71 kDa protein;AltName: Full=Heat shock 70 kDa protein 8; - [HSP7C_MOUSE] 
Q8BHN3 RecName: Full=Neutral alpha-glucosidase AB; EC=3.2.1.84;AltName: Full=Glucosidase II subunit alpha;AltName: 

Fu  
Q60817 RecName: Full=Nascent polypeptide-associated complex subunit alpha;AltName: Full=Alpha-NAC;AltName: 

Full=Alpha-NAC  
P07901 RecName: Full=Heat shock protein HSP 90-alpha;AltName: Full=Heat shock 86 kDa; Short=HSP 86; Short=HSP  
O08795 RecName: Full=Glucosidase 2 subunit beta;AltName: Full=Glucosidase II subunit beta;AltName: Full=Protein kinase 

C subs  
Q8VCU1 RecName: Full=Liver carboxylesterase 31-like; EC=3.1.1.1;Flags: Precursor; - [ES31L_MOUSE] 
P28665 RecName: Full=Murinoglobulin-1; Short=MuG1;Flags: Precursor; - [MUG1_MOUSE] 
Q3TTY5 RecName: Full=Keratin, type II cytoskeletal 2 epidermal;AltName: Full=Cytokeratin-2e; Short=CK-2e;AltName: 

Full=  
P56480 RecName: Full=ATP synthase subunit beta, mitochondrial; EC=3.6.3.14;Flags: Precursor; - [ATPB_MOUSE] 
P60710 RecName: Full=Actin, cytoplasmic 1;AltName: Full=Beta-actin;Contains: RecName: Full=Actin, cytoplasmic 1, N-

terminally  
Q64176 RecName: Full=Liver carboxylesterase 22; Short=Esterase-22; Short=Es-22; EC=3.1.1.1;AltName: Full=E  
Q9Z2U0 RecName: Full=Proteasome subunit alpha type-7; EC=3.4.25.1;AltName: Full=Proteasome subunit RC6-1; - 

[PSA7_M 
Q8CFX1 GDH/6PGL endoplasmic bifunctional protein OS=Mus musculus GN=H6pd PE=2 SV=2 - [G6PE_MOUSE] 
P07759 RecName: Full=Serine protease inhibitor A3K; Short=Serpin A3K;AltName: Full=Contrapsin;AltName: Full=SPI-

2;Flag  
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P11589 RecName: Full=Major urinary protein 2; Short=MUP 2;Flags: Precursor; - [MUP2_MOUSE] 
P57780 RecName: Full=Alpha-actinin-4;AltName: Full=Non-muscle alpha-actinin 4;AltName: Full=F-actin cross-linking 

protein; - [A 
Q9EQK5 Major vault protein OS=Mus musculus GN=Mvp PE=1 SV=4 - [MVP_MOUSE] 
P23953 Liver carboxylesterase N OS=Mus musculus GN=Es1 PE=1 SV=4 - [ESTN_MOUSE] 
Q6P5E4 UDP-glucose:glycoprotein glucosyltransferase 1 OS=Mus musculus GN=Uggt1 PE=1 SV=4 - [UGGG1_MOUSE] 
Q00897 RecName: Full=Alpha-1-antitrypsin 1-4;AltName: Full=Serine protease inhibitor 1-4;AltName: Full=Serine protease 

inhibito  
Q01853 RecName: Full=Transitional endoplasmic reticulum ATPase; Short=TER ATPase;AltName: Full=15S Mg(2+)-ATPase 

p  
P01029 Complement C4-B OS=Mus musculus GN=C4b PE=1 SV=3 - [CO4B_MOUSE] 
P10126 RecName: Full=Elongation factor 1-alpha 1; Short=EF-1-alpha-1;AltName: Full=Eukaryotic elongation factor 1 A-1;  
P63325 RecName: Full=40S ribosomal protein S10; - [RS10_MOUSE] 
Q9QUM9 RecName: Full=Proteasome subunit alpha type-6; EC=3.4.25.1;AltName: Full=Proteasome iota chain;AltName: 

Full=  
Q99KV1 RecName: Full=DnaJ homolog subfamily B member 11;AltName: Full=ER-associated dnaJ protein 3; Short=ERj3p;  
Q9EQH2 Endoplasmic reticulum aminopeptidase 1 OS=Mus musculus GN=Erap1 PE=2 SV=2 - [ERAP1_MOUSE] 
Q99PL5 RecName: Full=Ribosome-binding protein 1;AltName: Full=Ribosome receptor protein; Short=RRp; Short=mRR  
Q8QZY1 RecName: Full=Eukaryotic translation initiation factor 3 subunit L; Short=eIF3l;AltName: Full=Eukaryotic translation  
O08807 RecName: Full=Peroxiredoxin-4; EC=1.11.1.15;AltName: Full=Peroxiredoxin IV; Short=Prx-IV;AltName: Full=T  
Q9D1Q6 RecName: Full=Endoplasmic reticulum resident protein 44; Short=ER protein 44; Short=ERp44;AltName: Full=  
P27773 RecName: Full=Protein disulfide-isomerase A3; EC=5.3.4.1;AltName: Full=Disulfide isomerase ER-60;AltName: 

Full=  
Q91W90 RecName: Full=Thioredoxin domain-containing protein 5;AltName: Full=Thioredoxin-like protein p46;AltName: 

Full=Endop  
Q00898 RecName: Full=Alpha-1-antitrypsin 1-5;AltName: Full=Serine protease inhibitor 1-5;AltName: Full=Serine protease 

inhibito  
P37040 RecName: Full=NADPH--cytochrome P450 reductase; Short=CPR; Short=P450R; EC=1.6.2.4; - [NCPR_M 
O70435 RecName: Full=Proteasome subunit alpha type-3; EC=3.4.25.1;AltName: Full=Proteasome component C8;AltName:  
P26443 RecName: Full=Glutamate dehydrogenase 1, mitochondrial; Short=GDH 1; EC=1.4.1.3;Flags: Precursor; - [DH 
P21614 RecName: Full=Vitamin D-binding protein; Short=DBP; Short=VDB;AltName: Full=Group-specific component;A  
P20918 Plasminogen OS=Mus musculus GN=Plg PE=1 SV=3 - [PLMN_MOUSE] 
Q3UPL0 RecName: Full=Protein transport protein Sec31A;AltName: Full=SEC31-related protein A;AltName: Full=SEC31-like 

protein  
P17897 RecName: Full=Lysozyme C-1; EC=3.2.1.17;AltName: Full=Lysozyme C type P;AltName: Full=1,4-beta-N-

acetylmura  
Q9D0F3 RecName: Full=Protein ERGIC-53;AltName: Full=ER-Golgi intermediate compartment 53 kDa protein;AltName: 

Full=Lectin  
Q68FD5 RecName: Full=Clathrin heavy chain 1; - [CLH_MOUSE] 
Q8R0Y6 RecName: Full=10-formyltetrahydrofolate dehydrogenase; Short=10-FTHFDH; EC=1.5.1.6;AltName: Full=Aldeh  
Q9R1P4 RecName: Full=Proteasome subunit alpha type-1; EC=3.4.25.1;AltName: Full=Proteasome component C2;AltName:  
Q8VDN2 RecName: Full=Sodium/potassium-transporting ATPase subunit alpha-1; Short=Na(+)/K(+) ATPase alpha-1 

subunit;  
P60843 RecName: Full=Eukaryotic initiation factor 4A-I; Short=eIF-4A-I; Short=eIF4A-I; EC=3.6.1.-;AltName: Fu  
Q64514 RecName: Full=Tripeptidyl-peptidase 2; Short=TPP-2; EC=3.4.14.10;AltName: Full=Tripeptidyl-peptidase II;  
Q63886 UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1 PE=2 SV=2 - [UD11_MOUSE] 
P24369 RecName: Full=Peptidyl-prolyl cis-trans isomerase B; Short=PPIase B; EC=5.2.1.8;AltName: Full=Rotamase B;A  
P0CG49 Polyubiquitin-B OS=Mus musculus GN=Ubb PE=1 SV=1 - [UBB_MOUSE] 
P24456 RecName: Full=Cytochrome P450 2D10; EC=1.14.14.1;AltName: Full=CYPIID10;AltName: Full=Cytochrome P450-

16  
P04939 RecName: Full=Major urinary protein 3; Short=MUP 3;AltName: Full=Non-group 1/group 2 MUP15;Flags: 

Precursor;  
Q07456 RecName: Full=Protein AMBP;Contains: RecName: Full=Alpha-1-microglobulin;Contains: RecName: Full=Inter-

alpha-tryp  
Q8R180 RecName: Full=ERO1-like protein alpha; Short=ERO1-L-alpha; Short=ERO1-L; EC=1.8.4.-;AltName: Full=  
P10518 RecName: Full=Delta-aminolevulinic acid dehydratase; Short=ALADH; EC=4.2.1.24;AltName: Full=Porphobilino  
O55234 RecName: Full=Proteasome subunit beta type-5; EC=3.4.25.1;AltName: Full=Proteasome epsilon chain;AltName: 

Fu  
Q8R0F3 Sulfatase-modifying factor 1 OS=Mus musculus GN=Sumf1 PE=1 SV=2 - [SUMF1_MOUSE] 
Q3U2P1 RecName: Full=Protein transport protein Sec24A;AltName: Full=SEC24-related protein A; - [SC24A_MOUSE] 
P63101 RecName: Full=14-3-3 protein zeta/delta;AltName: Full=Protein kinase C inhibitor protein 1; Short=KCIP-

1;AltName:  
P50580 RecName: Full=Proliferation-associated protein 2G4;AltName: Full=Proliferation-associated protein 1;AltName: 

Full=Protein  
P62806 RecName: Full=Histone H4; - [H4_MOUSE] 
Q64435 RecName: Full=UDP-glucuronosyltransferase 1-6; Short=UDPGT 1-6; Short=UGT1-06; Short=UGT1.6;  
Q60692 RecName: Full=Proteasome subunit beta type-6; EC=3.4.25.1;AltName: Full=Proteasome delta chain;AltName: 

Full=  
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Q9DB77 RecName: Full=Cytochrome b-c1 complex subunit 2, mitochondrial;AltName: Full=Ubiquinol-cytochrome-c 
reductase comp  

P62960 RecName: Full=Nuclease-sensitive element-binding protein 1;AltName: Full=Y-box-binding protein 1; Short=YB-
1;Alt  

O09159 Lysosomal alpha-mannosidase OS=Mus musculus GN=Man2b1 PE=2 SV=4 - [MA2B1_MOUSE] 
Q9JKR6 RecName: Full=Hypoxia up-regulated protein 1; Short=GRP-170;AltName: Full=140 kDa Ca(2+)-binding protein;  
P14824 Annexin A6 OS=Mus musculus GN=Anxa6 PE=1 SV=3 - [ANXA6_MOUSE] 
Q5SW19 RecName: Full=Protein KIAA0664; - [K0664_MOUSE] 
Q9WVJ3 RecName: Full=Plasma glutamate carboxypeptidase; EC=3.4.17.-;AltName: Full=Hematopoietic lineage switch 

2;Flag  
Q01405 RecName: Full=Protein transport protein Sec23A;AltName: Full=SEC23-related protein A; - [SC23A_MOUSE] 
Q9ET22 Dipeptidyl peptidase 2 OS=Mus musculus GN=Dpp7 PE=2 SV=2 - [DPP2_MOUSE] 
Q05117 RecName: Full=Tartrate-resistant acid phosphatase type 5; Short=TR-AP; EC=3.1.3.2;AltName: Full=Tartrate-r  
Q921X9 RecName: Full=Protein disulfide-isomerase A5; EC=5.3.4.1;AltName: Full=Protein disulfide isomerase-related 

protein  
Q9Z1Z2 RecName: Full=Serine-threonine kinase receptor-associated protein;AltName: Full=UNR-interacting protein; - 

[STRAP_MOU 
Q9CYA0 RecName: Full=Cysteine-rich with EGF-like domain protein 2;Flags: Precursor; - [CREL2_MOUSE] 
O09061 RecName: Full=Proteasome subunit beta type-1; EC=3.4.25.1;AltName: Full=Proteasome component C5;AltName: 

F  
Q9R1P0 RecName: Full=Proteasome subunit alpha type-4; EC=3.4.25.1;AltName: Full=Proteasome component C9;AltName:  
O08677 RecName: Full=Kininogen-1;Contains: RecName: Full=Kininogen-1 heavy chain;Contains: RecName: 

Full=Bradykinin;Con  
P50172 RecName: Full=Corticosteroid 11-beta-dehydrogenase isozyme 1; EC=1.1.1.146;AltName: Full=11-beta-

hydroxystero  
P67984 RecName: Full=60S ribosomal protein L22;AltName: Full=Heparin-binding protein HBp15; - [RL22_MOUSE] 
Q8R2E9 RecName: Full=ERO1-like protein beta; Short=ERO1-L-beta; EC=1.8.4.-;AltName: Full=Oxidoreductin-1-L-beta  
Q6ZWX6 RecName: Full=Eukaryotic translation initiation factor 2 subunit 1;AltName: Full=Eukaryotic translation initiation 

factor 2 su  
P14847 C-reactive protein OS=Mus musculus GN=Crp PE=2 SV=1 - [CRP_MOUSE] 
P34927 RecName: Full=Asialoglycoprotein receptor 1; Short=ASGP-R 1; Short=ASGPR 1;AltName: Full=Hepatic lectin 1  
Q9JM62 RecName: Full=Receptor expression-enhancing protein 6;AltName: Full=Polyposis locus protein 1-like 1;AltName: 

Full=TB2  
Q9CZ13 Cytochrome b-c1 complex subunit 1, mitochondrial OS=Mus musculus GN=Uqcrc1 PE=1 SV=2 - [QCR1_MOUSE] 
Q8CIM7 RecName: Full=Cytochrome P450 2D26; EC=1.14.14.1;AltName: Full=CYPIID26; - [CP2DQ_MOUSE] 
Q91X72 Hemopexin OS=Mus musculus GN=Hpx PE=1 SV=2 - [HEMO_MOUSE] 
P70195 RecName: Full=Proteasome subunit beta type-7; EC=3.4.25.1;AltName: Full=Proteasome subunit Z;AltName: 

Full=M  
Q9DCH4 Eukaryotic translation initiation factor 3 subunit F OS=Mus musculus GN=Eif3f PE=1 SV=2 - [EIF3F_MOUSE] 
Q61147 RecName: Full=Ceruloplasmin; EC=1.16.3.1;AltName: Full=Ferroxidase;Flags: Precursor; - [CERU_MOUSE] 
Q5FW60 Major urinary protein 20 OS=Mus musculus GN=Mup20 PE=1 SV=1 - [MUP20_MOUSE] 
Q91YQ5 RecName: Full=Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1; EC=2.4.1.119;AltName: 

Fu  
P51410 RecName: Full=60S ribosomal protein L9; - [RL9_MOUSE] 
P61982 RecName: Full=14-3-3 protein gamma;Contains: RecName: Full=14-3-3 protein gamma, N-terminally processed; - 

[1433G 
Q8K182 RecName: Full=Complement component C8 alpha chain;AltName: Full=Complement component 8 subunit 

alpha;Flags: Pre  
Q91YW3 RecName: Full=DnaJ homolog subfamily C member 3;AltName: Full=Interferon-induced, double-stranded RNA-

activated p  
Q8BWY3 RecName: Full=Eukaryotic peptide chain release factor subunit 1; Short=Eukaryotic release factor 1; Short=eR  
P32233 RecName: Full=Developmentally-regulated GTP-binding protein 1; Short=DRG-1;AltName: Full=Neural precursor 

cell  
Q91Y97 RecName: Full=Fructose-bisphosphate aldolase B; EC=4.1.2.13;AltName: Full=Liver-type aldolase;AltName: 

Full=Ald  
P99026 RecName: Full=Proteasome subunit beta type-4; Short=Proteasome beta chain; EC=3.4.25.1;AltName: Full=M  
Q9WUU7 RecName: Full=Cathepsin Z; EC=3.4.18.1;Flags: Precursor; - [CATZ_MOUSE] 
P97290 Plasma protease C1 inhibitor OS=Mus musculus GN=Serping1 PE=1 SV=3 - [IC1_MOUSE] 
P35979 RecName: Full=60S ribosomal protein L12; - [RL12_MOUSE] 
Q61646 RecName: Full=Haptoglobin;Contains: RecName: Full=Haptoglobin alpha chain;Contains: RecName: 

Full=Haptoglobin be  
Q9CZX8 RecName: Full=40S ribosomal protein S19; - [RS19_MOUSE] 
Q9WUZ9 RecName: Full=Ectonucleoside triphosphate diphosphohydrolase 5; Short=NTPDase 5; EC=3.6.1.6;AltName: F  
Q9Z2U1 RecName: Full=Proteasome subunit alpha type-5; EC=3.4.25.1;AltName: Full=Proteasome zeta chain;AltName: 

Full=  
O08573 RecName: Full=Galectin-9; Short=Gal-9; - [LEG9_MOUSE] 
P99027 RecName: Full=60S acidic ribosomal protein P2; - [RLA2_MOUSE] 
Q8BT60 RecName: Full=Copine-3;AltName: Full=Copine III; - [CPNE3_MOUSE] 
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Q9Z0N1 RecName: Full=Eukaryotic translation initiation factor 2 subunit 3, X-linked;AltName: Full=Eukaryotic translation 
initiation f  

Q8BWQ1 RecName: Full=UDP-glucuronosyltransferase 2A3; Short=UDPGT 2A3; EC=2.4.1.17;Flags: Precursor; - [UD2A3 
P70662 RecName: Full=LIM domain-binding protein 1; Short=LDB-1;AltName: Full=Nuclear LIM interactor;AltName: 

Full=Ca  
Q9QZD9 RecName: Full=Eukaryotic translation initiation factor 3 subunit I; Short=eIF3i;AltName: Full=Eukaryotic translation 

i  
P62264 RecName: Full=40S ribosomal protein S14; - [RS14_MOUSE] 
P49935 Pro-cathepsin H OS=Mus musculus GN=Ctsh PE=2 SV=2 - [CATH_MOUSE] 
Q9R1P3 RecName: Full=Proteasome subunit beta type-2; EC=3.4.25.1;AltName: Full=Proteasome component C7-

I;AltName:  
P06797 RecName: Full=Cathepsin L1; EC=3.4.22.15;AltName: Full=Major excreted protein; Short=MEP;AltName: Full=  
P62270 RecName: Full=40S ribosomal protein S18;AltName: Full=Ke-3; Short=Ke3; - [RS18_MOUSE] 
P62259 RecName: Full=14-3-3 protein epsilon; Short=14-3-3E; - [1433E_MOUSE] 
Q8VCG4 Complement component C8 gamma chain OS=Mus musculus GN=C8g PE=1 SV=1 - [CO8G_MOUSE] 
Q66JS6 RecName: Full=Eukaryotic translation initiation factor 3 subunit J; Short=eIF3j;AltName: Full=Eukaryotic translation  
Q9D2G2 RecName: Full=Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

complex, mito  
P28843 RecName: Full=Dipeptidyl peptidase 4; EC=3.4.14.5;AltName: Full=Dipeptidyl peptidase IV; Short=DPP IV;AltN  
P35564 RecName: Full=Calnexin;Flags: Precursor; - [CALX_MOUSE] 
Q61838 Alpha-2-macroglobulin OS=Mus musculus GN=A2m PE=1 SV=3 - [A2M_MOUSE] 
Q5XJY5 Coatomer subunit delta OS=Mus musculus GN=Arcn1 PE=2 SV=2 - [COPD_MOUSE] 
O70194 RecName: Full=Eukaryotic translation initiation factor 3 subunit D; Short=eIF3d;AltName: Full=Eukaryotic 

translation  
Q9ERR7 15 kDa selenoprotein OS=Mus musculus GN=Sep15 PE=1 SV=3 - [SEP15_MOUSE] 
Q61702 Inter-alpha-trypsin inhibitor heavy chain H1 OS=Mus musculus GN=Itih1 PE=1 SV=2 - [ITIH1_MOUSE] 
P56395 RecName: Full=Cytochrome b5; - [CYB5_MOUSE] 
Q8CDN6 RecName: Full=Thioredoxin-like protein 1;AltName: Full=32 kDa thioredoxin-related protein; - [TXNL1_MOUSE] 
O70570 RecName: Full=Polymeric immunoglobulin receptor; Short=Poly-Ig receptor; Short=PIgR;Contains: RecName:  
Q9R1P1 RecName: Full=Proteasome subunit beta type-3; EC=3.4.25.1;AltName: Full=Proteasome theta chain;AltName: 

Full=  
Q8BYU6 RecName: Full=Torsin-1A-interacting protein 2; - [TOIP2_MOUSE] 
P58252 RecName: Full=Elongation factor 2; Short=EF-2; - [EF2_MOUSE] 
P38647 RecName: Full=Stress-70 protein, mitochondrial;AltName: Full=75 kDa glucose-regulated protein; Short=GRP-

75;Alt  
P23116 Eukaryotic translation initiation factor 3 subunit A OS=Mus musculus GN=Eif3a PE=1 SV=5 - [EIF3A_MOUSE] 
Q505F5 RecName: Full=Leucine-rich repeat-containing protein 47; - [LRC47_MOUSE] 
P14131 RecName: Full=40S ribosomal protein S16; - [RS16_MOUSE] 
P29699 RecName: Full=Alpha-2-HS-glycoprotein;AltName: Full=Fetuin-A;AltName: Full=Countertrypin;Flags: Precursor; - 

[FETUA_ 
Q8BYB9 Protein O-glucosyltransferase 1 OS=Mus musculus GN=Poglut1 PE=2 SV=2 - [PGLT1_MOUSE] 
P07724 RecName: Full=Serum albumin;Flags: Precursor; - [ALBU_MOUSE] 
P63323 RecName: Full=40S ribosomal protein S12; - [RS12_MOUSE] 
Q01279 RecName: Full=Epidermal growth factor receptor; EC=2.7.10.1;Flags: Precursor; - [EGFR_MOUSE] 
P04186 RecName: Full=Complement factor B; EC=3.4.21.47;AltName: Full=C3/C5 convertase;Contains: RecName: 

Full=Com  
O54782 RecName: Full=Epididymis-specific alpha-mannosidase; EC=3.2.1.24;AltName: Full=Mannosidase alpha class 2B 

mem  
Q9D8N0 RecName: Full=Elongation factor 1-gamma; Short=EF-1-gamma;AltName: Full=eEF-1B gamma; - [EF1G_MOUSE] 
Q6ZQI3 RecName: Full=Malectin;Flags: Precursor; - [MLEC_MOUSE] 
Q99JX4 RecName: Full=Eukaryotic translation initiation factor 3 subunit M; Short=eIF3m;AltName: Full=PCI domain-

containin  
P19221 RecName: Full=Prothrombin; EC=3.4.21.5;AltName: Full=Coagulation factor II;Contains: RecName: Full=Activation  
P07356 RecName: Full=Annexin A2;AltName: Full=Annexin-2;AltName: Full=Annexin II;AltName: Full=Lipocortin 

II;AltName: Full=  
P80314 RecName: Full=T-complex protein 1 subunit beta; Short=TCP-1-beta;AltName: Full=CCT-beta; - [TCPB_MOUSE] 
P97821 Dipeptidyl peptidase 1 OS=Mus musculus GN=Ctsc PE=2 SV=1 - [CATC_MOUSE] 
P62082 RecName: Full=40S ribosomal protein S7; - [RS7_MOUSE] 
Q9D1M0 RecName: Full=Protein SEC13 homolog;AltName: Full=SEC13-related protein;AltName: Full=SEC13-like protein 1; - 

[SEC1 
Q9CR57 RecName: Full=60S ribosomal protein L14; - [RL14_MOUSE] 
P62900 RecName: Full=60S ribosomal protein L31; - [RL31_MOUSE] 
P16406 RecName: Full=Glutamyl aminopeptidase; Short=EAP; EC=3.4.11.7;AltName: Full=Aminopeptidase A; Sh  
P47962 RecName: Full=60S ribosomal protein L5; - [RL5_MOUSE] 
P47754 RecName: Full=F-actin-capping protein subunit alpha-2;AltName: Full=CapZ alpha-2; - [CAZA2_MOUSE] 
P97351 RecName: Full=40S ribosomal protein S3a;AltName: Full=Protein TU-11; - [RS3A_MOUSE] 
Q8R146 RecName: Full=Acylamino-acid-releasing enzyme; Short=AARE; EC=3.4.19.1;AltName: Full=Acyl-peptide hydro  
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Q8BM72 Heat shock 70 kDa protein 13 OS=Mus musculus GN=Hspa13 PE=2 SV=1 - [HSP13_MOUSE] 
P25444 RecName: Full=40S ribosomal protein S2;AltName: Full=40S ribosomal protein S4;AltName: Full=Protein LLRep3; - 

[RS2_M 
P01942 RecName: Full=Hemoglobin subunit alpha;AltName: Full=Hemoglobin alpha chain;AltName: Full=Alpha-globin; - 

[HBA_MO 
Q9QXC1 Fetuin-B OS=Mus musculus GN=Fetub PE=1 SV=1 - [FETUB_MOUSE] 
Q9D7N9 RecName: Full=Adipocyte plasma membrane-associated protein;AltName: Full=Protein DD16; - [APMAP_MOUSE] 
Q8JZQ9 RecName: Full=Eukaryotic translation initiation factor 3 subunit B; Short=eIF3b;AltName: Full=Eukaryotic 

translation  
P15105 RecName: Full=Glutamine synthetase; Short=GS; EC=6.3.1.2;AltName: Full=Glutamate--ammonia ligase;AltNa  
Q9CXW4 RecName: Full=60S ribosomal protein L11; - [RL11_MOUSE] 
Q8BI84 RecName: Full=Melanoma inhibitory activity protein 3;AltName: Full=Transport and Golgi organization protein 1; 

Sho  
Q64459 RecName: Full=Cytochrome P450 3A11; EC=1.14.14.1;AltName: Full=CYPIIIA11;AltName: Full=Cytochrome P-

450II  
P68433 RecName: Full=Histone H3.1; - [H31_MOUSE] 
Q6AW46 RecName: Full=Carboxylesterase 7; EC=3.1.1.1;AltName: Full=Carboxylesterase-like urinary excreted protein 

homolo  
P62852 RecName: Full=40S ribosomal protein S25; - [RS25_MOUSE] 
Q9CY58 RecName: Full=Plasminogen activator inhibitor 1 RNA-binding protein;AltName: Full=PAI1 RNA-binding protein 1; 

Sh  
O54734 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Mus musculus GN=Ddost PE=1 

SV=2 -  
P62281 RecName: Full=40S ribosomal protein S11; - [RS11_MOUSE] 

 
Eluted fraction from wheat germ agglutinin (WGA) column 
 
P08113 RecName: Full=Endoplasmin;AltName: Full=Heat shock protein 90 kDa beta member 1;AltName: Full=94 kDa 

glucose-reg  
P02535 RecName: Full=Keratin, type I cytoskeletal 10;AltName: Full=Cytokeratin-10; Short=CK-10;AltName: Full=Keratin-

10  
P20029 RecName: Full=78 kDa glucose-regulated protein; Short=GRP-78;AltName: Full=Heat shock 70 kDa protein 

5;AltNam  
P09103 Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 - [PDIA1_MOUSE] 
P62908 RecName: Full=40S ribosomal protein S3; - [RS3_MOUSE] 
P14206 RecName: Full=40S ribosomal protein SA;AltName: Full=Laminin receptor 1; Short=LamR;AltName: Full=37/67 kDa  
P04104 RecName: Full=Keratin, type II cytoskeletal 1;AltName: Full=Cytokeratin-1; Short=CK-1;AltName: Full=Keratin-1;  
Q922R8 RecName: Full=Protein disulfide-isomerase A6; EC=5.3.4.1;AltName: Full=Thioredoxin domain-containing protein 

7;F  
P14211 RecName: Full=Calreticulin;AltName: Full=CRP55;AltName: Full=Calregulin;AltName: Full=HACBP;AltName: 

Full=Endoplas  
Q3UPL0 RecName: Full=Protein transport protein Sec31A;AltName: Full=SEC31-related protein A;AltName: Full=SEC31-like 

protein  
P68040 RecName: Full=Guanine nucleotide-binding protein subunit beta-2-like 1;AltName: Full=Receptor of activated 

protein kinas  
Q6IFX2 RecName: Full=Keratin, type I cytoskeletal 42;AltName: Full=Cytokeratin-42; Short=CK-42;AltName: Full=Keratin-

42  
Q78PY7 RecName: Full=Staphylococcal nuclease domain-containing protein 1;AltName: Full=p100 co-activator;AltName: 

Full=100  
O08601 RecName: Full=Microsomal triglyceride transfer protein large subunit;Flags: Precursor; - [MTP_MOUSE] 
P08003 Protein disulfide-isomerase A4 OS=Mus musculus GN=Pdia4 PE=1 SV=3 - [PDIA4_MOUSE] 
P28665 RecName: Full=Murinoglobulin-1; Short=MuG1;Flags: Precursor; - [MUG1_MOUSE] 
P11499 Heat shock protein HSP 90-beta OS=Mus musculus GN=Hsp90ab1 PE=1 SV=3 - [HS90B_MOUSE] 
Q9JKR6 RecName: Full=Hypoxia up-regulated protein 1; Short=GRP-170;AltName: Full=140 kDa Ca(2+)-binding protein;  
Q8BHN3 RecName: Full=Neutral alpha-glucosidase AB; EC=3.2.1.84;AltName: Full=Glucosidase II subunit alpha;AltName: 

Fu  
Q91ZX7 RecName: Full=Prolow-density lipoprotein receptor-related protein 1; Short=LRP-1;AltName: Full=Alpha-2-

macroglob  
Q8VDN2 RecName: Full=Sodium/potassium-transporting ATPase subunit alpha-1; Short=Na(+)/K(+) ATPase alpha-1 

subunit;  
P17717 RecName: Full=UDP-glucuronosyltransferase 2B5; Short=UDPGT 2B5; EC=2.4.1.17;AltName: Full=M-1;Flags:  
Q8VED5 RecName: Full=Keratin, type II cytoskeletal 79;AltName: Full=Cytokeratin-79; Short=CK-79;AltName: Full=Keratin-

7  
P07901 RecName: Full=Heat shock protein HSP 90-alpha;AltName: Full=Heat shock 86 kDa; Short=HSP 86; Short=HSP  
P29341 Polyadenylate-binding protein 1 OS=Mus musculus GN=Pabpc1 PE=1 SV=2 - [PABP1_MOUSE] 
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Q6P5E4 UDP-glucose:glycoprotein glucosyltransferase 1 OS=Mus musculus GN=Uggt1 PE=1 SV=4 - [UGGG1_MOUSE] 
Q9D1Q6 RecName: Full=Endoplasmic reticulum resident protein 44; Short=ER protein 44; Short=ERp44;AltName: Full=  
P57780 RecName: Full=Alpha-actinin-4;AltName: Full=Non-muscle alpha-actinin 4;AltName: Full=F-actin cross-linking 

protein; - [A 
Q60817 RecName: Full=Nascent polypeptide-associated complex subunit alpha;AltName: Full=Alpha-NAC;AltName: 

Full=Alpha-NA  
P28666 Murinoglobulin-2 OS=Mus musculus GN=Mug2 PE=2 SV=2 - [MUG2_MOUSE] 
Q3TTY5 RecName: Full=Keratin, type II cytoskeletal 2 epidermal;AltName: Full=Cytokeratin-2e; Short=CK-2e;AltName: 

Full=  
P24456 RecName: Full=Cytochrome P450 2D10; EC=1.14.14.1;AltName: Full=CYPIID10;AltName: Full=Cytochrome P450-

16  
O08795 RecName: Full=Glucosidase 2 subunit beta;AltName: Full=Glucosidase II subunit beta;AltName: Full=Protein kinase 

C sub  
P11714 Cytochrome P450 2D9 OS=Mus musculus GN=Cyp2d9 PE=1 SV=2 - [CP2D9_MOUSE] 
P63325 RecName: Full=40S ribosomal protein S10; - [RS10_MOUSE] 
Q9D0F3 RecName: Full=Protein ERGIC-53;AltName: Full=ER-Golgi intermediate compartment 53 kDa protein;AltName: 

Full=Lectin  
Q91W90 RecName: Full=Thioredoxin domain-containing protein 5;AltName: Full=Thioredoxin-like protein p46;AltName: 

Full=Endop  
O08807 RecName: Full=Peroxiredoxin-4; EC=1.11.1.15;AltName: Full=Peroxiredoxin IV; Short=Prx-IV;AltName: Full=T  
P01029 Complement C4-B OS=Mus musculus GN=C4b PE=1 SV=3 - [CO4B_MOUSE] 
P60710 RecName: Full=Actin, cytoplasmic 1;AltName: Full=Beta-actin;Contains: RecName: Full=Actin, cytoplasmic 1, N-

terminally  
P56480 RecName: Full=ATP synthase subunit beta, mitochondrial; EC=3.6.3.14;Flags: Precursor; - [ATPB_MOUSE] 
P34927 RecName: Full=Asialoglycoprotein receptor 1; Short=ASGP-R 1; Short=ASGPR 1;AltName: Full=Hepatic lectin 1  
Q61147 RecName: Full=Ceruloplasmin; EC=1.16.3.1;AltName: Full=Ferroxidase;Flags: Precursor; - [CERU_MOUSE] 
P0CG49 Polyubiquitin-B OS=Mus musculus GN=Ubb PE=1 SV=1 - [UBB_MOUSE] 
P63017 RecName: Full=Heat shock cognate 71 kDa protein;AltName: Full=Heat shock 70 kDa protein 8; - [HSP7C_MOUSE] 
Q01853 RecName: Full=Transitional endoplasmic reticulum ATPase; Short=TER ATPase;AltName: Full=15S Mg(2+)-ATPase 

p  
Q91X72 Hemopexin OS=Mus musculus GN=Hpx PE=1 SV=2 - [HEMO_MOUSE] 
Q8R0Y6 RecName: Full=10-formyltetrahydrofolate dehydrogenase; Short=10-FTHFDH; EC=1.5.1.6;AltName: Full=Aldeh  
Q9Z2U0 RecName: Full=Proteasome subunit alpha type-7; EC=3.4.25.1;AltName: Full=Proteasome subunit RC6-1; - 

[PSA7_M 
Q64514 RecName: Full=Tripeptidyl-peptidase 2; Short=TPP-2; EC=3.4.14.10;AltName: Full=Tripeptidyl-peptidase II;  
P35951 RecName: Full=Low-density lipoprotein receptor; Short=LDL receptor;Flags: Precursor; - [LDLR_MOUSE] 
P04938 RecName: Full=Major urinary proteins 11 and 8;AltName: Full=MUP11 and MUP8;Flags: Fragment; - 

[MUP8_MOUSE] 
Q8JZR0 RecName: Full=Long-chain-fatty-acid--CoA ligase 5; EC=6.2.1.3;AltName: Full=Long-chain acyl-CoA synthetase 5;  
Q9WUZ9 RecName: Full=Ectonucleoside triphosphate diphosphohydrolase 5; Short=NTPDase 5; EC=3.6.1.6;AltName: F  
Q8R1B4 RecName: Full=Eukaryotic translation initiation factor 3 subunit C; Short=eIF3c;AltName: Full=Eukaryotic 

translation  
Q8VCM7 RecName: Full=Fibrinogen gamma chain;Flags: Precursor; - [FIBG_MOUSE] 
Q9R1P4 RecName: Full=Proteasome subunit alpha type-1; EC=3.4.25.1;AltName: Full=Proteasome component C2;AltName:  
Q9QZW0 RecName: Full=Probable phospholipid-transporting ATPase 11C; EC=3.6.3.1;AltName: Full=ATPase class VI type 

11C  
P07759 RecName: Full=Serine protease inhibitor A3K; Short=Serpin A3K;AltName: Full=Contrapsin;AltName: Full=SPI-

2;Flag  
Q8VDJ3 RecName: Full=Vigilin;AltName: Full=High density lipoprotein-binding protein; Short=HDL-binding protein; - 

[VIGLN_ 
Q9QUM9 RecName: Full=Proteasome subunit alpha type-6; EC=3.4.25.1;AltName: Full=Proteasome iota chain;AltName: 

Full=  
Q5SW19 RecName: Full=Protein KIAA0664; - [K0664_MOUSE] 
Q6GQT9 Nodal modulator 1 OS=Mus musculus GN=Nomo1 PE=1 SV=1 - [NOMO1_MOUSE] 
Q64435 RecName: Full=UDP-glucuronosyltransferase 1-6; Short=UDPGT 1-6; Short=UGT1-06; Short=UGT1.6;  
Q9DB77 RecName: Full=Cytochrome b-c1 complex subunit 2, mitochondrial;AltName: Full=Ubiquinol-cytochrome-c 

reductase comp  
Q01405 RecName: Full=Protein transport protein Sec23A;AltName: Full=SEC23-related protein A; - [SC23A_MOUSE] 
Q8CIM7 RecName: Full=Cytochrome P450 2D26; EC=1.14.14.1;AltName: Full=CYPIID26; - [CP2DQ_MOUSE] 
P60843 RecName: Full=Eukaryotic initiation factor 4A-I; Short=eIF-4A-I; Short=eIF4A-I; EC=3.6.1.-;AltName: Fu  
P62259 RecName: Full=14-3-3 protein epsilon; Short=14-3-3E; - [1433E_MOUSE] 
Q9CZX8 RecName: Full=40S ribosomal protein S19; - [RS19_MOUSE] 
Q91YQ5 RecName: Full=Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1; EC=2.4.1.119;AltName: 

Fu  
P17897 RecName: Full=Lysozyme C-1; EC=3.2.1.17;AltName: Full=Lysozyme C type P;AltName: Full=1,4-beta-N-

acetylmura  
P61982 RecName: Full=14-3-3 protein gamma;Contains: RecName: Full=14-3-3 protein gamma, N-terminally processed; - 

[1433G 
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P20918 Plasminogen OS=Mus musculus GN=Plg PE=1 SV=3 - [PLMN_MOUSE] 
P28843 RecName: Full=Dipeptidyl peptidase 4; EC=3.4.14.5;AltName: Full=Dipeptidyl peptidase IV; Short=DPP IV;AltN  
Q07113 RecName: Full=Cation-independent mannose-6-phosphate receptor; Short=CI Man-6-P receptor; Short=CI-MP  
O70435 RecName: Full=Proteasome subunit alpha type-3; EC=3.4.25.1;AltName: Full=Proteasome component C8;AltName:  
O09061 RecName: Full=Proteasome subunit beta type-1; EC=3.4.25.1;AltName: Full=Proteasome component C5;AltName: 

F  
P37040 RecName: Full=NADPH--cytochrome P450 reductase; Short=CPR; Short=P450R; EC=1.6.2.4; - [NCPR_M 
P01027 Complement C3 OS=Mus musculus GN=C3 PE=1 SV=3 - [CO3_MOUSE] 
Q3U2P1 RecName: Full=Protein transport protein Sec24A;AltName: Full=SEC24-related protein A; - [SC24A_MOUSE] 
P26443 RecName: Full=Glutamate dehydrogenase 1, mitochondrial; Short=GDH 1; EC=1.4.1.3;Flags: Precursor; - [DH 
P99026 RecName: Full=Proteasome subunit beta type-4; Short=Proteasome beta chain; EC=3.4.25.1;AltName: Full=M  
Q99KV1 RecName: Full=DnaJ homolog subfamily B member 11;AltName: Full=ER-associated dnaJ protein 3; Short=ERj3p;  
Q68FD5 RecName: Full=Clathrin heavy chain 1; - [CLH_MOUSE] 
P21614 RecName: Full=Vitamin D-binding protein; Short=DBP; Short=VDB;AltName: Full=Group-specific component;A  
P27773 RecName: Full=Protein disulfide-isomerase A3; EC=5.3.4.1;AltName: Full=Disulfide isomerase ER-60;AltName: 

Full=  
O08705 RecName: Full=Sodium/bile acid cotransporter;AltName: Full=Na(+)/bile acid cotransporter;AltName: 

Full=Na(+)/taurocho  
Q03265 RecName: Full=ATP synthase subunit alpha, mitochondrial;Flags: Precursor; - [ATPA_MOUSE] 
Q01279 RecName: Full=Epidermal growth factor receptor; EC=2.7.10.1;Flags: Precursor; - [EGFR_MOUSE] 
Q9D1M0 RecName: Full=Protein SEC13 homolog;AltName: Full=SEC13-related protein;Full=SEC13-like protein 1; - [SEC1 
Q921X9 RecName: Full=Protein disulfide-isomerase A5; EC=5.3.4.1;AltName: Full=Protein disulfide isomerase-related 

protein  
P11679 RecName: Full=Keratin, type II cytoskeletal 8;AltName: Full=Cytokeratin-8; Short=CK-8;AltName: Full=Keratin-8;  
Q5FW60 Major urinary protein 20 OS=Mus musculus GN=Mup20 PE=1 SV=1 - [MUP20_MOUSE] 
Q64176 RecName: Full=Liver carboxylesterase 22; Short=Esterase-22; Short=Es-22; EC=3.1.1.1;AltName: Full=E  
Q3UPH1 RecName: Full=Protein PRRC1; - [PRRC1_MOUSE] 
Q60692 RecName: Full=Proteasome subunit beta type-6; EC=3.4.25.1;AltName: Full=Proteasome delta chain;AltName: 

Full=  
P14246 RecName: Full=Solute carrier family 2, facilitated glucose transporter member 2;AltName: Full=Glucose transporter 

type 2  
P10126 RecName: Full=Elongation factor 1-alpha 1; Short=EF-1-alpha-1;AltName: Full=Eukaryotic elongation factor 1 A-1;  
P80318 RecName: Full=T-complex protein 1 subunit gamma; Short=TCP-1-gamma;AltName: Full=CCT-gamma;AltName: 

Ful  
P62960 RecName: Full=Nuclease-sensitive element-binding protein 1;AltName: Full=Y-box-binding protein 1; Short=YB-

1;Alt  
Q9DBH5 Vesicular integral-membrane protein VIP36 OS=Mus musculus GN=Lman2 PE=2 SV=2 - [LMAN2_MOUSE] 
Q61830 Macrophage mannose receptor 1 OS=Mus musculus GN=Mrc1 PE=1 SV=2 - [MRC1_MOUSE] 
P63101 RecName: Full=14-3-3 protein zeta/delta;AltName: Full=Protein kinase C inhibitor protein 1; Short=KCIP-

1;AltName:  
Q8QZY1 RecName: Full=Eukaryotic translation initiation factor 3 subunit L; Short=eIF3l;AltName: Full=Eukaryotic translation  
P10518 RecName: Full=Delta-aminolevulinic acid dehydratase; Short=ALADH; EC=4.2.1.24;AltName: Full=Porphobilino  
Q63886 UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1 PE=2 SV=2 - [UD11_MOUSE] 
Q9R1P0 RecName: Full=Proteasome subunit alpha type-4; EC=3.4.25.1;AltName: Full=Proteasome component C9;AltName:  
P11276 RecName: Full=Fibronectin; Short=FN;Contains: RecName: Full=Anastellin;Flags: Precursor; - [FINC_MOUSE] 
Q61702 Inter-alpha-trypsin inhibitor heavy chain H1 OS=Mus musculus GN=Itih1 PE=1 SV=2 - [ITIH1_MOUSE] 
P11438 RecName: Full=Lysosome-associated membrane glycoprotein 1; Short=Lysosome-associated membrane protein 1;  
P62281 RecName: Full=40S ribosomal protein S11; - [RS11_MOUSE] 
P42932 RecName: Full=T-complex protein 1 subunit theta; Short=TCP-1-theta;AltName: Full=CCT-theta; - [TCPQ_MOUSE] 
Q8CFX1 GDH/6PGL endoplasmic bifunctional protein OS=Mus musculus GN=H6pd PE=2 SV=2 - [G6PE_MOUSE] 
Q9Z2U1 RecName: Full=Proteasome subunit alpha type-5; EC=3.4.25.1;AltName: Full=Proteasome zeta chain;AltName: 

Full=  
P67984 RecName: Full=60S ribosomal protein L22;AltName: Full=Heparin-binding protein HBp15; - [RL22_MOUSE] 
Q8BI84 RecName: Full=Melanoma inhibitory activity protein 3;AltName: Full=Transport and Golgi organization protein 1; 

Sho  
Q9CZ13 Cytochrome b-c1 complex subunit 1, mitochondrial OS=Mus musculus GN=Uqcrc1 PE=1 SV=2 - [QCR1_MOUSE] 
Q8R2E9 RecName: Full=ERO1-like protein beta; Short=ERO1-L-beta; EC=1.8.4.-;AltName: Full=Oxidoreductin-1-L-beta  
P32261 RecName: Full=Antithrombin-III; Short=ATIII;AltName: Full=Serpin C1;Flags: Precursor; - [ANT3_MOUSE] 
Q9JM62 RecName: Full=Receptor expression-enhancing protein 6;AltName: Full=Polyposis locus protein 1-like 1;AltName: 

Full=TB2  
P51410 RecName: Full=60S ribosomal protein L9; - [RL9_MOUSE] 
P97290 Plasma protease C1 inhibitor OS=Mus musculus GN=Serping1 PE=1 SV=3 - [IC1_MOUSE] 
Q9QY30 Bile salt export pump OS=Mus musculus GN=Abcb11 PE=1 SV=2 - [ABCBB_MOUSE] 
P70194 RecName: Full=C-type lectin domain family 4 member F;AltName: Full=C-type lectin superfamily member 13; 

Short=  
Q05117 RecName: Full=Tartrate-resistant acid phosphatase type 5; Short=TR-AP; EC=3.1.3.2;AltName: Full=Tartrate-r  
P68510 RecName: Full=14-3-3 protein eta; - [1433F_MOUSE] 
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Q6ZWX6 RecName: Full=Eukaryotic translation initiation factor 2 subunit 1;AltName: Full=Eukaryotic translation initiation 
factor 2 su  

Q8BWQ1 RecName: Full=UDP-glucuronosyltransferase 2A3; Short=UDPGT 2A3; EC=2.4.1.17;Flags: Precursor; - [UD2A3 
Q61838 Alpha-2-macroglobulin OS=Mus musculus GN=A2m PE=1 SV=3 - [A2M_MOUSE] 
P62245 RecName: Full=40S ribosomal protein S15a; - [RS15A_MOUSE] 
P99027 RecName: Full=60S acidic ribosomal protein P2; - [RLA2_MOUSE] 
O54734 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Mus musculus GN=Ddost PE=1 

SV=2 -  
O08573 RecName: Full=Galectin-9; Short=Gal-9; - [LEG9_MOUSE] 
Q8K182 RecName: Full=Complement component C8 alpha chain;AltName: Full=Complement component 8 subunit 

alpha;Flags: Pre  
P11983 RecName: Full=T-complex protein 1 subunit alpha; Short=TCP-1-alpha;AltName: Full=CCT-alpha;AltName: 

Full=Tail  
O08677 RecName: Full=Kininogen-1;Contains: RecName: Full=Kininogen-1 heavy chain;Contains: RecName: 

Full=Bradykinin;Con  
P35564 RecName: Full=Calnexin;Flags: Precursor; - [CALX_MOUSE] 
P24369 RecName: Full=Peptidyl-prolyl cis-trans isomerase B; Short=PPIase B; EC=5.2.1.8;AltName: Full=Rotamase B;A  
Q9CYA0 RecName: Full=Cysteine-rich with EGF-like domain protein 2;Flags: Precursor; - [CREL2_MOUSE] 
P50580 RecName: Full=Proliferation-associated protein 2G4;AltName: Full=Proliferation-associated protein 1;AltName: 
Q91XD7 RecName: Full=Cysteine-rich with EGF-like domain protein 1;Flags: Precursor; - [CREL1_MOUSE] 
P35979 RecName: Full=60S ribosomal protein L12; - [RL12_MOUSE] 
P62852 RecName: Full=40S ribosomal protein S25; - [RS25_MOUSE] 
P56395 RecName: Full=Cytochrome b5; - [CYB5_MOUSE] 
Q63880 RecName: Full=Liver carboxylesterase 31; Short=Esterase-31; EC=3.1.1.1;AltName: Full=ES-male;Flags: Precu  
Q8R4U0 RecName: Full=Stabilin-2;AltName: Full=Fasciclin, EGF-like, laminin-type EGF-like and link domain-containing 

scavenger re  
P16406 RecName: Full=Glutamyl aminopeptidase; Short=EAP; EC=3.4.11.7;AltName: Full=Aminopeptidase A; Sh  
Q8VCG4 Complement component C8 gamma chain OS=Mus musculus GN=C8g PE=1 SV=1 - [CO8G_MOUSE] 
P04939 RecName: Full=Major urinary protein 3; Short=MUP 3;AltName: Full=Non-group 1/group 2 MUP15;Flags: 

Precursor;  
P50172 RecName: Full=Corticosteroid 11-beta-dehydrogenase isozyme 1; EC=1.1.1.146;AltName: Full=11-beta-

hydroxystero  
Q61559 RecName: Full=IgG receptor FcRn large subunit p51; Short=FcRn;AltName: Full=Neonatal Fc receptor;AltName: 

Full  
P23116 Eukaryotic translation initiation factor 3 subunit A OS=Mus musculus GN=Eif3a PE=1 SV=5 - [EIF3A_MOUSE] 
O55234 RecName: Full=Proteasome subunit beta type-5; EC=3.4.25.1;AltName: Full=Proteasome epsilon chain;AltName: 

Fu  
Q9D8N0 RecName: Full=Elongation factor 1-gamma; Short=EF-1-gamma;AltName: Full=eEF-1B gamma; - [EF1G_MOUSE] 
Q64459 RecName: Full=Cytochrome P450 3A11; EC=1.14.14.1;AltName: Full=CYPIIIA11;AltName: Full=Cytochrome P-

450II  
Q9DCN2 RecName: Full=NADH-cytochrome b5 reductase 3; Short=Cytochrome b5 reductase; Short=B5R; EC=1.6  
Q4LDG0 RecName: Full=Bile acyl-CoA synthetase; Short=BACS; EC=6.2.1.7;AltName: Full=Bile acid-CoA ligase; S  
Q5XJY5 Coatomer subunit delta OS=Mus musculus GN=Arcn1 PE=2 SV=2 - [COPD_MOUSE] 
Q9QZD9 RecName: Full=Eukaryotic translation initiation factor 3 subunit I; Short=eIF3i;AltName: Full=Eukaryotic translation 

i  
P50285 RecName: Full=Dimethylaniline monooxygenase [N-oxide-forming] 1; EC=1.14.13.8;AltName: Full=Hepatic flavin-

co  
P32233 RecName: Full=Developmentally-regulated GTP-binding protein 1; Short=DRG-1;AltName: Full=Neural precursor 

cell  
Q2VLH6 Scavenger receptor cysteine-rich type 1 protein M130 OS=Mus musculus GN=Cd163 PE=1 SV=2 - [C163A_MOUSE] 
P80315 RecName: Full=T-complex protein 1 subunit delta; Short=TCP-1-delta;AltName: Full=CCT-delta;AltName: Full=A45;  
Q9EQH2 Endoplasmic reticulum aminopeptidase 1 OS=Mus musculus GN=Erap1 PE=2 SV=2 - [ERAP1_MOUSE] 
Q8C129 RecName: Full=Leucyl-cystinyl aminopeptidase; Short=Cystinyl aminopeptidase; EC=3.4.11.3;AltName: Full=O  
Q8VEK3 RecName: Full=Heterogeneous nuclear ribonucleoprotein U; Short=hnRNP U;AltName: Full=Scaffold attachment 

fact  
Q9DD20 RecName: Full=Methyltransferase-like protein 7B; EC=2.1.1.-;Flags: Precursor; - [MET7B_MOUSE] 
P23953 Liver carboxylesterase N OS=Mus musculus GN=Es1 PE=1 SV=4 - [ESTN_MOUSE] 
Q9Z1Z2 RecName: Full=Serine-threonine kinase receptor-associated protein;AltName: Full=UNR-interacting protein; - 

[STRAP_MOU 
Q8BM72 Heat shock 70 kDa protein 13 OS=Mus musculus GN=Hspa13 PE=2 SV=1 - [HSP13_MOUSE] 
Q7TMK9 RecName: Full=Heterogeneous nuclear ribonucleoprotein Q; Short=hnRNP Q;AltName: Full=Synaptotagmin-

binding,  
Q9CR57 RecName: Full=60S ribosomal protein L14; - [RL14_MOUSE] 
Q61129 Complement factor I OS=Mus musculus GN=Cfi PE=1 SV=3 - [CFAI_MOUSE] 
P08226 RecName: Full=Apolipoprotein E; Short=Apo-E;Flags: Precursor; - [APOE_MOUSE] 
Q9EPU0 RecName: Full=Regulator of nonsense transcripts 1; EC=3.6.1.-;AltName: Full=ATP-dependent helicase 

RENT1;AltNa  
Q99JX4 RecName: Full=Eukaryotic translation initiation factor 3 subunit M; Short=eIF3m;AltName: Full=PCI domain-
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containi  
Q9EQK5 Major vault protein OS=Mus musculus GN=Mvp PE=1 SV=4 - [MVP_MOUSE] 
P07356 RecName: Full=Annexin A2;AltName: Full=Annexin-2;AltName: Full=Annexin II;AltName: Full=Lipocortin 

II;AltName: Full=  
O08547 RecName: Full=Vesicle-trafficking protein SEC22b;AltName: Full=SEC22 vesicle-trafficking protein homolog 

B;AltName: Fu  
Q8BWY3 RecName: Full=Eukaryotic peptide chain release factor subunit 1; Short=Eukaryotic release factor 1; Short=eR  
Q9DBW0 RecName: Full=Cytochrome P450 4V3; EC=1.14.-.-; - [CP4V3_MOUSE] 
P56657 Cytochrome P450 2C40 OS=Mus musculus GN=Cyp2c40 PE=2 SV=2 - [CP240_MOUSE] 
Q91VS7 RecName: Full=Microsomal glutathione S-transferase 1; Short=Microsomal GST-1; EC=2.5.1.18;AltName: Full=  
P60867 RecName: Full=40S ribosomal protein S20; - [RS20_MOUSE] 
Q9DBZ5 RecName: Full=Eukaryotic translation initiation factor 3 subunit K; Short=eIF3k;AltName: Full=Eukaryotic 

translation  
Q9R1P1 RecName: Full=Proteasome subunit beta type-3; EC=3.4.25.1;AltName: Full=Proteasome theta chain;AltName: 

Full=  
Q9WVJ3 RecName: Full=Plasma glutamate carboxypeptidase; EC=3.4.17.-;AltName: Full=Hematopoietic lineage switch 

2;Flag  
P47740 Fatty aldehyde dehydrogenase OS=Mus musculus GN=Aldh3a2 PE=2 SV=2 - [AL3A2_MOUSE] 
P10853 RecName: Full=Histone H2B type 1-F/J/L;AltName: Full=H2B 291A; - [H2B1F_MOUSE] 
P62082 RecName: Full=40S ribosomal protein S7; - [RS7_MOUSE] 
Q9DBG6 RecName: Full=Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2; EC=2.4.1.119;AltName: 

Fu  
Q61703 RecName: Full=Inter-alpha-trypsin inhibitor heavy chain H2; Short=Inter-alpha-inhibitor heavy chain 2; Short=  
Q8R146 RecName: Full=Acylamino-acid-releasing enzyme; Short=AARE; EC=3.4.19.1;AltName: Full=Acyl-peptide hydro  
Q9D662 RecName: Full=Protein transport protein Sec23B;AltName: Full=SEC23-related protein B; - [SC23B_MOUSE] 
O88451 RecName: Full=Retinol dehydrogenase 7; EC=1.1.1.105;AltName: Full=Cis-retinol/androgen dehydrogenase type 2;  
Q921G7 RecName: Full=Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial; Short=ETF-ubiquinone 

oxido  
Q8BT60 RecName: Full=Copine-3;AltName: Full=Copine III; - [CPNE3_MOUSE] 
Q9EQH3 RecName: Full=Vacuolar protein sorting-associated protein 35;AltName: Full=Vesicle protein sorting 35;AltName: 

Full=Mat  
O89079 RecName: Full=Coatomer subunit epsilon;AltName: Full=Epsilon-coat protein; Short=Epsilon-COP; - 

[COPE_MOUSE] 
Q8VCR2 RecName: Full=17-beta-hydroxysteroid dehydrogenase 13; Short=17-beta-HSD 13; EC=1.1.-.-;AltName: Full=  
P62900 RecName: Full=60S ribosomal protein L31; - [RL31_MOUSE] 
Q9D7N9 RecName: Full=Adipocyte plasma membrane-associated protein;AltName: Full=Protein DD16; - [APMAP_MOUSE] 
P55302 RecName: Full=Alpha-2-macroglobulin receptor-associated protein; Short=Alpha-2-MRAP;AltName: Full=Low 

density  
Q9D379 Epoxide hydrolase 1 OS=Mus musculus GN=Ephx1 PE=1 SV=2 - [HYEP_MOUSE] 
Q91WK2 RecName: Full=Eukaryotic translation initiation factor 3 subunit H; Short=eIF3h;AltName: Full=Eukaryotic 

translation  
Q62186 RecName: Full=Translocon-associated protein subunit delta; Short=TRAP-delta;AltName: Full=Signal sequence 

recep  
P60229 RecName: Full=Eukaryotic translation initiation factor 3 subunit E; Short=eIF3e;AltName: Full=Eukaryotic 

translation  
Q9R0E2 RecName: Full=Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1; EC=1.14.11.4;AltName: Full=Lysyl hydroxylase 

1  
P97872 Dimethylaniline monooxygenase [N-oxide-forming] 5 OS=Mus musculus GN=Fmo5 PE=2 SV=4 - [FMO5_MOUSE] 
Q9CY58 RecName: Full=Plasminogen activator inhibitor 1 RNA-binding protein;AltName: Full=PAI1 RNA-binding protein 1; 

Sh  
Q7TMS5 RecName: Full=ATP-binding cassette sub-family G member 2;AltName: Full=Breast cancer resistance protein 1 

homolog;A  
Q8JZZ0 RecName: Full=UDP-glucuronosyltransferase 3A2; Short=UDPGT 3A2; EC=2.4.1.17;Flags: Precursor; - [UD3A2 
Q8VEK0 RecName: Full=Cell cycle control protein 50A;AltName: Full=Transmembrane protein 30A; - [CC50A_MOUSE] 
Q64458 Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 SV=2 - [CP2CT_MOUSE] 
P12970 RecName: Full=60S ribosomal protein L7a;AltName: Full=Surfeit locus protein 3; - [RL7A_MOUSE] 
P33267 RecName: Full=Cytochrome P450 2F2; EC=1.14.14.-;AltName: Full=CYPIIF2;AltName: Full=Naphthalene 

dehydroge  
Q8VCC2 RecName: Full=Liver carboxylesterase 1; EC=3.1.1.1;AltName: Full=Acyl-coenzyme A:cholesterol 

acyltransferase;Alt  
Q91YW3 RecName: Full=DnaJ homolog subfamily C member 3;AltName: Full=Interferon-induced, double-stranded RNA-

activated p  
Q9ERR7 15 kDa selenoprotein OS=Mus musculus GN=Sep15 PE=1 SV=3 - [SEP15_MOUSE] 
Q9DCH4 Eukaryotic translation initiation factor 3 subunit F OS=Mus musculus GN=Eif3f PE=1 SV=2 - [EIF3F_MOUSE] 
Q8JZQ9 RecName: Full=Eukaryotic translation initiation factor 3 subunit B; Short=eIF3b;AltName: Full=Eukaryotic 

translation  
P62806 RecName: Full=Histone H4; - [H4_MOUSE] 
P26043 Radixin OS=Mus musculus GN=Rdx PE=1 SV=3 - [RADI_MOUSE] 
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Q9R1P3 RecName: Full=Proteasome subunit beta type-2; EC=3.4.25.1;AltName: Full=Proteasome component C7-
I;AltName:  

Q9ESP1 RecName: Full=Stromal cell-derived factor 2-like protein 1; Short=SDF2-like protein 1;Flags: Precursor; - 
[SDF2L_MO 

O70251 RecName: Full=Elongation factor 1-beta; Short=EF-1-beta; - [EF1B_MOUSE] 
P97855 RecName: Full=Ras GTPase-activating protein-binding protein 1; Short=G3BP-1; EC=3.6.1.-;AltName: Full=AT  
O55143 RecName: Full=Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; Short=SR Ca(2+)-ATPase 2; Short=SER  
Q99PG0 RecName: Full=Arylacetamide deacetylase; EC=3.1.1.3; - [AAAD_MOUSE] 
P47962 RecName: Full=60S ribosomal protein L5; - [RL5_MOUSE] 
Q9CRC0 RecName: Full=Vitamin K epoxide reductase complex subunit 1; EC=1.1.4.1;AltName: Full=Vitamin K1 2,3-epoxide 

r  
Q9R0E1 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 OS=Mus musculus GN=Plod3 PE=1 SV=1 - [PLOD3_MOUSE] 
Q9Z0N1 RecName: Full=Eukaryotic translation initiation factor 2 subunit 3, X-linked;AltName: Full=Eukaryotic translation 

initiation f  
O70570 RecName: Full=Polymeric immunoglobulin receptor; Short=Poly-Ig receptor; Short=PIgR;Contains: RecName  
P24668 RecName: Full=Cation-dependent mannose-6-phosphate receptor; Short=CD Man-6-P receptor; Short=CD-MPR  
O89020 RecName: Full=Afamin;AltName: Full=Alpha-albumin; Short=Alpha-Alb;Flags: Precursor; - [AFAM_MOUSE] 
Q07456 RecName: Full=Protein AMBP;Contains:Full=Alpha-1-microglobulin;Contains: RecName: Full=Inter-alpha-tryp  
P68433 RecName: Full=Histone H3.1; - [H31_MOUSE] 
Q99PE8 ATP-binding cassette sub-family G member 5 OS=Mus musculus GN=Abcg5 PE=1 SV=1 - [ABCG5_MOUSE] 
Q9JIL4 RecName: Full=Na(+)/H(+) exchange regulatory cofactor NHE-RF3; Short=NHERF-3;AltName: Full=PDZ domain-

con  
P18572 RecName: Full=Basigin;AltName: Full=Basic immunoglobulin superfamily;AltName: Full=Membrane glycoprotein 

gp42;AltN  
Q9D2G2 RecName: Full=Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

complex, mito  
P52479 RecName: Full=Ubiquitin carboxyl-terminal hydrolase 10; EC=3.1.2.15;AltName: Full=Ubiquitin thioesterase 

10;AltNa  
Q8CDN6 RecName: Full=Thioredoxin-like protein 1;AltName: Full=32 kDa thioredoxin-related protein; - [TXNL1_MOUSE] 
P62264 RecName: Full=40S ribosomal protein S14; - [RS14_MOUSE] 
P47963 RecName: Full=60S ribosomal protein L13;AltName: Full=A52; - [RL13_MOUSE] 
P57776 RecName: Full=Elongation factor 1-delta; Short=EF-1-delta; - [EF1D_MOUSE] 
P62702 RecName: Full=40S ribosomal protein S4, X isoform; - [RS4X_MOUSE] 
P33587 RecName: Full=Vitamin K-dependent protein C; EC=3.4.21.69;AltName: Full=Autoprothrombin IIA;AltName: 

Full=An  
Q9DCG2 CD302 antigen OS=Mus musculus GN=Cd302 PE=2 SV=2 - [CD302_MOUSE] 
P97461 RecName: Full=40S ribosomal protein S5;Contains: RecName: Full=40S ribosomal protein S5, N-terminally 

processed; - [R 
O88587 RecName: Full=Catechol O-methyltransferase; EC=2.1.1.6; - [COMT_MOUSE] 
Q8BSY0 RecName: Full=Aspartyl/asparaginyl beta-hydroxylase; EC=1.14.11.16;AltName: Full=Aspartate beta-hydroxylase;  
P06909 RecName: Full=Complement factor H;AltName: Full=Protein beta-1-H;Flags: Precursor; - [CFAH_MOUSE] 
P28063 Proteasome subunit beta type-8 OS=Mus musculus GN=Psmb8 PE=1 SV=2 - [PSB8_MOUSE] 
P68373 RecName: Full=Tubulin alpha-1C chain;AltName: Full=Tubulin alpha-6 chain;AltName: Full=Alpha-tubulin 

6;AltName: Full=  
Q8VBT0 RecName: Full=Thioredoxin-related transmembrane protein 1;AltName: Full=Thioredoxin domain-containing protein 

1;Flag  
Q7SIG6 RecName: Full=Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2;AltName: 

Full=Development an  
P14131 RecName: Full=40S ribosomal protein S16; - [RS16_MOUSE] 
Q8K297 RecName: Full=Procollagen galactosyltransferase 1; EC=2.4.1.50;AltName: Full=Hydroxylysine 

galactosyltransferase  
P61164 RecName: Full=Alpha-centractin; Short=Centractin;AltName: Full=Centrosome-associated actin homolog;AltName: 

F  
Q505F5 RecName: Full=Leucine-rich repeat-containing protein 47; - [LRC47_MOUSE] 
Q6ZQI3 RecName: Full=Malectin;Flags: Precursor; - [MLEC_MOUSE] 
Q60872 RecName: Full=Eukaryotic translation initiation factor 1A; Short=eIF-1A;AltName: Full=Eukaryotic translation 

initiatio  
Q9D1D4 RecName: Full=Transmembrane emp24 domain-containing protein 10;AltName: Full=21 kDa transmembrane-

trafficking pr  
P97351 RecName: Full=40S ribosomal protein S3a;AltName: Full=Protein TU-11; - [RS3A_MOUSE] 
P40336 RecName: Full=Vacuolar protein sorting-associated protein 26A;AltName: Full=Vesicle protein sorting 26A; 

Short=mV  
P10605 RecName: Full=Cathepsin B; EC=3.4.22.1;AltName: Full=Cathepsin B1;Contains: RecName: Full=Cathepsin B light 

c  
Q920A5 Retinoid-inducible serine carboxypeptidase OS=Mus musculus GN=Scpep1 PE=2 SV=2 - [RISC_MOUSE] 
Q99L45 RecName: Full=Eukaryotic translation initiation factor 2 subunit 2;AltName: Full=Eukaryotic translation initiation 

factor 2 su  
P28798 RecName: Full=Granulins;AltName: Full=Proepithelin; Short=PEPI;AltName: Full=PC cell-derived growth factor;  
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P47753 RecName: Full=F-actin-capping protein subunit alpha-1;AltName: Full=CapZ alpha-1; - [CAZA1_MOUSE] 
P49722 RecName: Full=Proteasome subunit alpha type-2; EC=3.4.25.1;AltName: Full=Proteasome component C3;AltName:  
P24668 RecName: Full=Cation-dependent mannose-6-phosphate receptor; Short=CD Man-6-P receptor; Short=CD-MPR  
O89020 RecName: Full=Afamin;AltName: Full=Alpha-albumin; Short=Alpha-Alb;Flags: Precursor; - [AFAM_MOUSE] 
Q07456 RecName: Full=Protein AMBP;Contains: RecName: Full=Alpha-1-microglobulin;Contains: RecName: Full=Inter-

alpha-tryp  
P68433 RecName: Full=Histone H3.1; - [H31_MOUSE] 
Q99PE8 ATP-binding cassette sub-family G member 5 OS=Mus musculus GN=Abcg5 PE=1 SV=1 - [ABCG5_MOUSE] 
Q9JIL4 RecName: Full=Na(+)/H(+) exchange regulatory cofactor NHE-RF3; Short=NHERF-3;AltName: Full=PDZ domain-

con  
P18572 RecName: Full=Basigin;AltName: Full=Basic immunoglobulin superfamily;AltName: Full=Membrane glycoprotein 

gp42;AltN  
Q9D2G2 RecName: Full=Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

complex, mito  
P52479 RecName: Full=Ubiquitin carboxyl-terminal hydrolase 10; EC=3.1.2.15;AltName: Full=Ubiquitin thioesterase 

10;AltNa  
Q8CDN6 RecName: Full=Thioredoxin-like protein 1;AltName: Full=32 kDa thioredoxin-related protein; - [TXNL1_MOUSE] 
P62264 RecName: Full=40S ribosomal protein S14; - [RS14_MOUSE] 
P47963 RecName: Full=60S ribosomal protein L13;AltName: Full=A52; - [RL13_MOUSE] 
P57776 RecName: Full=Elongation factor 1-delta; Short=EF-1-delta; - [EF1D_MOUSE] 
P62702 RecName: Full=40S ribosomal protein S4, X isoform; - [RS4X_MOUSE] 
P33587 RecName: Full=Vitamin K-dependent protein C; EC=3.4.21.69;AltName: Full=Autoprothrombin IIA;AltName: 

Full=An  
Q9DCG2 CD302 antigen OS=Mus musculus GN=Cd302 PE=2 SV=2 - [CD302_MOUSE] 
P97461 RecName: Full=40S ribosomal protein S5;Contains: RecName: Full=40S ribosomal protein S5, N-terminally 

processed; - [R 
O88587 RecName: Full=Catechol O-methyltransferase; EC=2.1.1.6; - [COMT_MOUSE] 
Q8BSY0 RecName: Full=Aspartyl/asparaginyl beta-hydroxylase; EC=1.14.11.16;AltName: Full=Aspartate beta-hydroxylase;  
P06909 RecName: Full=Complement factor H;AltName: Full=Protein beta-1-H;Flags: Precursor; - [CFAH_MOUSE] 
P28063 Proteasome subunit beta type-8 OS=Mus musculus GN=Psmb8 PE=1 SV=2 - [PSB8_MOUSE] 
P68373 RecName: Full=Tubulin alpha-1C chain;AltName: Full=Tubulin alpha-6 chain;AltName: Full=Alpha-tubulin 

6;AltName: Full=  
Q8VBT0 RecName: Full=Thioredoxin-related transmembrane protein 1;AltName: Full=Thioredoxin domain-containing protein 

1;Flag  
Q7SIG6 RecName: Full=Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2;AltName: 

Full=Development an  
P14131 RecName: Full=40S ribosomal protein S16; - [RS16_MOUSE] 
Q8K297 RecName: Full=Procollagen galactosyltransferase 1; EC=2.4.1.50;AltName: Full=Hydroxylysine 

galactosyltransferase  
P61164 RecName: Full=Alpha-centractin; Short=Centractin;AltName: Full=Centrosome-associated actin homolog;AltName: 

F  
Q505F5 RecName: Full=Leucine-rich repeat-containing protein 47; - [LRC47_MOUSE] 
Q6ZQI3 RecName: Full=Malectin;Flags: Precursor; - [MLEC_MOUSE] 
Q60872 RecName: Full=Eukaryotic translation initiation factor 1A; Short=eIF-1A;AltName: Full=Eukaryotic translation 

initiatio  
Q9D1D4 RecName: Full=Transmembrane emp24 domain-containing protein 10;AltName: Full=21 kDa transmembrane-

trafficking pr  
P97351 RecName: Full=40S ribosomal protein S3a;AltName: Full=Protein TU-11; - [RS3A_MOUSE] 
P40336 RecName: Full=Vacuolar protein sorting-associated protein 26A;AltName: Full=Vesicle protein sorting 26A; 

Short=mV  
P10605 RecName: Full=Cathepsin B; EC=3.4.22.1;AltName: Full=Cathepsin B1;Contains: RecName: Full=Cathepsin B light 

c  
Q920A5 Retinoid-inducible serine carboxypeptidase OS=Mus musculus GN=Scpep1 PE=2 SV=2 - [RISC_MOUSE] 
Q99L45 RecName: Full=Eukaryotic translation initiation factor 2 subunit 2;AltName: Full=Eukaryotic translation initiation 

factor 2 su  
P28798 RecName: Full=Granulins;AltName: Full=Proepithelin; Short=PEPI;AltName: Full=PC cell-derived growth factor;  
P47753 RecName: Full=F-actin-capping protein subunit alpha-1;AltName: Full=CapZ alpha-1; - [CAZA1_MOUSE] 
P49722 RecName: Full=Proteasome subunit alpha type-2; EC=3.4.25.1;AltName: Full=Proteasome component C3;AltName:  
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