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Synapses are central processing units for neuronal communication. Therefore, the 

investigation of synapse development and the mechanisms underlying formation of pre- and 

postsynaptic structures are crucial for understanding directional information flow in the brain. 

The differentiation of presynaptic boutons encompasses a local re-organization of the actin 

cytoskeleton, recruitment of synaptic vesicles, and the assembly of vesicle release sites, the 

so-called active zones. Several trans-synaptic adhesion complexes, have been identified that 

can instruct this differentiation process, such as receptor tyrosine phosphatases and the 

neuroligin/neurexin complex. However, the intracellular mechanisms linking adhesion to the 

formation of mature active zones in mammalian cells have remained obscure. 

Genetic screens have led to the identification of two cytoplasmic molecules, Synapse-

Defective-1 and -2 (SYD-1, SYD-2) that are essential for active zone assembly downstream 

of cell surface receptors in C.elegans and Drosophila (Hallam et al, 2002; Owald et al, 2010; 

Zhen & Jin, 1999). In invertebrates, SYD-1 is required for the concentration of SYD-2/liprin-α 

at the presynapse where it interacts with the active zone protein ELKS-1/Bruchpilot (Dai et al, 

2006). We have identified two mouse orthologues of SYD-1, which we named mSYD1A and 

mSYD1B (mouse Synapse-Defective-1A/B). As the invertebrate proteins, mSYD1A and 

mSYD1B contain a C2 and a GTPase activating (GAP) domain. mSYD1A is expressed in 

neurons during embryonic and postnatal development. The protein is present in 

synaptosomal membrane fractions, indicating that a pool of mSYD1A is associated with 

synapses.  

Knockdown of mSYD1A in primary cultures of cerebellar granule cells leads to a 

decrease in synaptic vesicle clusters, which can be rescued presynaptically by re-expression 

of mSYD1A. Overexpression of mSYD1A increases synapse density. Using a FRET-based 

assay, we discovered that mSYD1A exhibits GAP activity towards the small GTPase RhoA. 

Intra-molecular interactions between the N-terminal domain and the GAP domain of 

mSYD1A inhibit GAP activity, whereas this inhibition can be released by targeting full-length 

mSYD1A to the plasma membrane. Using biochemical and Yeast-2-Hybrid assays, we 

identified mSYD1A interacting proteins that associate with the N-terminal domain and might 

serve as endogenous activators of mSYD1A function. Amongst these binding partners is the 

active zone protein liprin-α2. In a complex with liprin-α2, mSYD1A is recruited into plasma 

membrane clusters downstream of the synaptic receptor protein tyrosine phosphatase LAR 

in COS cells. Furthermore, we generated knockout mice for mSYD1A and mSYD1B and are 

beginning to analyze them.  

Thus, we identified a novel regulator of presynaptic assembly called mSYD1A that is 

evolutionary conserved from C.elegans to mouse.   
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1.1	
  General	
  introduction	
  

The nervous system is a complex network of billions of neurons that form a highly 

interconnected structure to control behavior and perception in animals (Williams & Herrup, 

1988). To understand how the nervous system forms during development of the animal and 

how the network of nerve cells can shape and control an animal’s actions is a major task of 

neurobiology until today. In the early 1900s, Santiago Ramón y Cajal pioneered the study of 

the brain by his microscopic analysis on the connection of nerve cells. Based on his 

observations, he established the “neuron doctrine”, which postulates that the brain is 

composed of individual information processing units, the neurons, which are connected to 

each other. His doctrine contrasted the standpoint of Camillo Golgi, who believed that the 

brain is a continuous entity and was later proven wrong. During the last century, an amazing 

progress has been made and we are beginning to understand how neurons acquire their 

identity, how specific connections between nerve cells are formed and how synaptic 

transmission works. Here, especially the study of genes and their protein products has 

provided invaluable insight. Many of the recent advances in the field stem from the analysis 

of simple, genetically accessible organisms, such as the nematode Caenorhabditis elegans 

or the fruit fly Drosophila melanogaster. C.elegans hermaphrodites comprise of 302 neurons, 

with a stereotypic pattern of connectivity that has been completely mapped (Rankin et al, 

1990), which facilitates the study of nervous system development compared to the complex 

neuronal network of higher organisms. Remarkably, many of the genes discovered in simple 

organisms have been conserved over millions of years of evolution and have been found to 

have similar functions in mammals. Therefore, results that have been obtained in 

invertebrate studies are often the starting point for the analyses of higher organisms.  

 

1.2	
  Synapse	
  formation	
  

The correct formation of synapses is one of the most important events during brain 

development. Directional flow of information crucially depends on the asymmetric 

arrangement of synapses. In the central nervous system (CNS), synapses consist of a 

presynaptic terminal, a synaptic cleft and a postsynaptic accumulation of neurotransmitter 

receptors. The presynaptic bouton is filled with neurotransmitter-containing synaptic vesicles 

and possesses a proteinaceous matrix at its plasma membrane, the so-called active zone 

(Shen & Scheiffele, 2010; Ziv & Garner, 2004). In response to action potentials, coming into 

the presynaptic terminal, synaptic vesicles fuse with the presynaptic plasma membrane at 

the active zone and release their neurotransmitters into the synaptic cleft. Secreted 

neurotransmitters diffuse across the cleft and bind to postsynaptic receptors in the 
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postsynaptic membrane, thereby activating a signaling cascade in the receiving neuron. 

During development, choice of the right synaptic partner is essential for a correct wiring of 

the brain. Neurons have evolved several molecular mechanisms to ensure the specificity of 

their synaptic connections. These involve attractive signals from the future synaptic pair and 

inhibitory signals from surrounding neurons (Shen & Scheiffele, 2010). Furthermore, several 

transient connections have been reported, which serve as “synaptic placeholders” until the 

correct future partner has been found to establish a stable connection.  

In addition to synaptic specificity, the establishment of synaptic diversity is a 

fundamentally important process during brain development. The properties of a neuronal 

circuit depend not only on the pattern of connectivity, but also on the diverse properties of 

individual synapses in this circuit (Abbott & Regehr, 2004).  

How synaptic contacts are established and how forming synapses differentiate into 

mature transmission machineries with the right synaptic properties needed, has been 

intensely studied during the last decades. In principle, synapse formation is thought to 

consist of the following steps: (1) initial contact between two cells, (2) formation of a synaptic 

junction and (3) maturation of this junction into mature synapses with specific synaptic 

properties (Fox & Umemori, 2006) (figure 1).  

Figure 1 – Steps of synapse formation 
Synapse formation is thought to consist of three steps: (1) initial contact formation between axon and 
dendrite, (2) formation of a synaptic junction, (3) maturation of the junction into a mature synapse (Fox 
& Umemori, 2006). 
 

While the establishment of synaptic specificity and diversity are important processes 

during development, the focus of my work is on synaptic differentiation, which I will now 

concentrate on.  

The coordinated differentiation of the pre- and the postsynaptic site after the initial 

contact founds the basis for functional synaptic transmission. Work during the last years has 

shown that both axon- and target-derived signals can drive this differentiation process (Shen 

& Scheiffele, 2010). Neuronal activity regulated pentraxin (NARP) (O'Brien et al, 1999) and 

ephrinB are examples for axon-derived molecules that can initiate the differentiation of the 
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postsynaptic terminal (Dalva et al, 2000). On the other side, Wnt7a (Hall et al, 2000) and 

fibroblast growth factor 22 (FGF22) (Umemori et al, 2004) have been shown to derive from 

the postsynaptic terminal and induce presynaptic differentiation. Furthermore, factors derived 

from astroglia that flank synaptic sides, have been shown to be important for this process, 

like for example thrombospondin (Christopherson et al, 2005). Finally, bidirectional 

organization by trans-synaptic adhesion complexes plays an important role for synaptic 

differentiation. The property to induce the process of synaptic differentiation has been 

referred to as “synaptogenic”. Several recent reports have identified novel synaptogenic 

trans-synaptic adhesion molecules, which I will discuss in the next section.  

 

1.2.1	
  Trans-­‐synaptic	
  adhesion	
  complexes	
  

First direct evidence for trans-synaptic adhesion complexes serving as synaptogenic 

molecules was provided for the neuroligin/neurexin complex (Graf et al, 2004; Scheiffele et 

al, 2000). Here, co-culture systems were used consisting of fibroblast cells, expressing one 

trans-synaptic partner, and neurons that form hemi-synapses upon contact. Expression of 

neuroligins in fibroblast cells is sufficient to recruit active zone components and synaptic 

vesicles to sites of contact in the axon of co-cultured neurons. Moreover, these presynaptic 

hemi-synapses contain a functional pool of neurotransmitter-containing synaptic vesicles that 

can be released upon depolarization (Dean et al, 2003; Fu et al, 2003). Subsequently, 

synaptogenic properties have been reported for several other complexes, like the homophilic 

interaction between SynCAMs (Biederer et al, 2002) and the heterophilic interaction between 

EphB and ephrinBs (Dalva et al, 2000; Kayser et al, 2006). More recently, the co-culture 

system has been used to search for unknown synaptogenic molecules and has revealed 

several novel adhesion complexes with synaptogenic activity, like LRRTM/neurexin (Linhoff 

et al, 2009), NGL-3/LAR (Kwon et al, 2010; Woo et al, 2009), TrkC/Ptpσ (Takahashi et al, 

2011) and Slitrk3/PTPδ (Takahashi et al, 2012) (figure 2).  
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Figure 2 – Trans-synaptic adhesion 
complexes with synaptogenic properties 
Several trans-synaptic adhesion complexes 
with synaptogenic properties that can 
instruct the differentiation process of the 
pre- and the postsynaptic site have been 
identified recently. The picture shows an 
example of a glutamatergic synapse on a 
dendritic spine. While the figure 
summarizes several characterized 
synaptogenic trans-synaptic adhesion 
complexes, it is important to note that the 
exact composition of adhesion complexes 
at a given synapse is unknown and might 
consist of only a few of the displayed 
molecules.  

 
Next to the trans-synaptic adhesion complexes with synaptogenic properties, a number 

of synaptic adhesion complexes without synaptogenic properties exist. For example, 

cadherins and protocadherins have been shown to be present at synaptic sites, but cannot 

induce pre- and postsynaptic differentiation in the co-culture assay. Especially the neuronally 

expressed N-cadherin has attracted a lot of attention, since it seems to be present at 

synaptic sites early during synaptogenesis (Benson & Tanaka, 1998). Furthermore, 

cooperation between N-cadherin and neuroligin1 on the postsynaptic site has been shown to 

be important for the trans-synaptogenic effect of neuroligin1 on synaptic vesicle clustering 

(Aiga et al, 2011; Stan et al, 2010). N-cadherin has a role in the modulation of the adhesive 

strength between cells (Shapiro et al, 1995) and is therefore thought to have a prominent 

function in contact formation between axons and dendrites (Arikkath & Reichardt, 2008). 

Furthermore, neuronal activity leads to dimerization of N-cadherin, which changes the 

adhesive properties of a synapse (Tanaka et al, 2000). The expression of N-cadherin, as well 

as of other cadherins in the brain is spatially and temporally regulated, indicating distinct 

functions at young and mature synapses (Elste & Benson, 2006). Presynaptically, cadherins 

have been shown to have an important role in the localization of synaptic vesicles to 

presynaptic sites via their association with the cytoplasmic proteins β-catenin, scribble and β-

pix (Bamji et al, 2003; Sun et al, 2009; Sun & Bamji, 2011).  

 

1.2.2	
  Active	
  zones	
  

During synaptic differentiation, the formation of active zones in the presynaptic terminal is 

a crucial step due to their importance for synaptic transmission. Active zones are specialized 
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sites for neurotransmitter secretion. Cell adhesion molecules on both sides of the synapse 

ensure their precise arrangement opposite of postsynaptic densities (figure 3). In vertebrate 

CNS synapses, active zones are protein-rich disc-like structures with 0.2 – 0.5 µm in 

diameter (Südhof, 2012). Surrounding the active zone lays a peri-synaptic zone, where 

synaptic vesicle endocytosis takes place.  

 
Figure 3 – Schematic drawing and electron micrograph of a glutamatergic synapse 
The presynaptic terminal is filled with neurotransmitter-containing vesicles and harbors the so-called 
“active zone” at its plasma membrane. The postsynaptic neuron contains the postsynaptic density 
(PSD) and neurotransmitter receptors.  

 

The most important role of active zones is the regulated release of neurotransmitters 

from synaptic vesicles that fuse with the plasma membrane. In line with this, they harbor a 

number of molecules important for docking and priming of synaptic vesicles (munc13, 

munc18) as well as the neurotransmitter release machinery (SNARE proteins). Ca2+ 

channels are localized to active zones, which are important for fast synchronous release. In 

addition, active zones contain a number of so-called large cytoskeletal proteins (bassoon, 

piccolo), and proteins that are proposed to have scaffolding functions (ELKS, liprin). Another 

important property of active zones is their ability to mediate short- and long-term presynaptic 

plasticity by recruitment of certain proteins, or by mediation of signaling cascades 

downstream of second messengers, such as Ca2+ (Südhof, 2012). 

While recent discoveries have identified a plethora of trans-synaptic adhesion 

complexes, the intracellular signaling cascades that link synaptic adhesion molecules to the 

development and the formation of functional presynaptic active zones in mammals are poorly 

understood.  
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One possible mechanism of synapse assembly is that trans-synaptic complexes serve as 

nucleators that recruit a number of presynaptic proteins via their cytoplasmic tail, which in 

turn recruit more proteins and lead to the formation of a dense cytomatrix at the active zone 

(CAZ). Here, a linear process of active zone assembly is as conceivable as the coordinated 

action of several parallel pathways. Furthermore, active zone proteins could serve as 

nucleators that lead to the recruitment of trans-synaptic adhesion complexes and the 

assembly of active zones. During the last years, many of the proteins building the CAZ in 

mammalian synapses have been identified and a network of biochemical interactions is 

beginning to unfold. However, only little is known about the specific functions of most of the 

active zone proteins in vitro and in vivo. The temporal cascade of events that leads to 

synapse formation and the “nucleation question” are still unclear. This is partly due to lack of 

recognizable presynaptic assembly deficits in knockout mice for CAZ components (Atasoy et 

al, 2007; Dick et al, 2003; Kaeser et al, 2009; Mukherjee et al, 2010). In the following section, 

I will describe what is known about the biochemical interactions of CAZ components and 

then go into detail about the known function of a selection of active zone proteins. 

 

1.2.3	
  Protein	
  interactions	
  at	
  the	
  active	
  zone	
  

In line with their synaptogenic activity, many trans-synaptic adhesion complexes contain 

cytoplasmic tails that directly interact with CAZ components. Based on these interactions, a 

nucleator function for trans-synaptic complexes has been hypothesized.  

Both neurexin and SynCAM can bind directly via their cytoplasmic PDZ-domain to 

calcium/calmodulin-dependent serine protein kinase (CASK), whereas neurexin can 

additionally bind to munc18-interacting protein 1 (mint1) (Hata et al, 1996). CASK is a multi-

domain scaffold protein that has been reported to support the polymerization of actin, 

together with protein 4.1 and spectrin (Biederer & Südhof, 2001). Furthermore, CASK has 

been shown to form a tripartite complex with veli and mint1 (Borg et al, 1999; Butz et al, 

1998) and can bind to N-type voltage-gated calcium channels (VGCCs) (Maximov et al, 

1999). From these findings, a model has emerged, in which neurexin provides the 

synaptogenic signal that is executed by CASK and leads to active zone protein and calcium 

channel recruitment, as well as the assembly of actin. However, this model has never been 

formally tested and still awaits validation. 

The receptor protein tyrosine phosphatase LAR has been shown to bind intracellularly to 

liprin-α (Serra-Pagès et al, 1995). Liprin-αs in turn interact with several cytoplasmic proteins 

and can oligomerize, an ability that makes them ideal candidates to provide scaffolding 

functions and serve as a recruitment platform for CAZ proteins. The N-terminal coiled-coil 
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domain of liprin-α binds to RIM, ELKS, mDiaphanous and GIT1, whereas the C-terminal 

SAM domains bind to liprin-β, CASK and LAR. Binding of liprin-α to CASK interconnects the 

pathway downstream of the two synaptic adhesion molecules neurexin and LAR. 

Furthermore, binding of liprin-α to RIM provides another link between trans-synaptic 

adhesion and Ca2+-channel recruitment. RIM has been shown to bind via its PDZ domain 

directly to VGCCs (Kaeser et al, 2011). In addition, RIM interacts with so-called RIM-binding 

proteins, which in turn bind Ca2+-channels (Hibino et al, 2002). Furthermore, RIM can bind to 

Rab3 in a GTP-dependent manner (Wang et al, 2001) and to munc13, which has been 

shown to be essential for synaptic vesicle priming and interacts with the neurotransmitter 

release machinery (Brose et al, 1995). A heterotrimeric complex between RIM, Rab3 and 

munc13 could therefore link synaptic vesicles to active zones.   

ELKS is another active zone protein that engages in multiple protein-protein interactions. 

In addition to binding to liprin-α, it also directly binds to RIM (Ohtsuka et al, 2002) and the 

two large cytoskeletal proteins piccolo and bassoon (Takao-Rikitsu et al, 2004). Piccolo and 

bassoon are structurally related and are the largest active zone proteins identified so far 

(Cases-Langhoff et al, 1996; tom Dieck et al, 1998). A link between piccolo and bassoon and 

synaptic vesicles has been reported via binding of piccolo/bassoon to the prenylated Rab 

acceptor (PRA1), which in turn interacts with Rab3 and synaptobrevin2/VAMP2 (Fenster et 

al, 2000). Furthermore, piccolo can bind to the filamentous-actin (F-actin) binding protein 

Abp1, providing a link to the actin cytoskeleton (Fenster et al, 2003). An overview of the 

complex protein interaction network in mammalian presynapses is given in figure 4.  

 
 
Figure 4 – The complex interaction network of presynaptic proteins in mammalian synapses 
Trans-synaptic adhesion complexes are intracellularly connected with active zone proteins. Many of 
these have direct or indirect links to Ca2+-channels (VGCC) or synaptic vesicles (SV). Detailed 
explanations can be found in the text.  
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It is apparent that the mammalian active zone consists of a tightly associated net of 

multiple proteins that interact with each other. In order to learn more about the specific 

functions of single proteins, knockout mice have been created. However, many of the 

proteins described above are encoded by multiple genes that may have redundant functions, 

which complicates the interpretation of single knockout mouse models. Informative results 

have therefore been obtained from C.elegans and Drosophila studies. Both invertebrate 

species carry only one homologue for most of the active zone proteins and creation of loss-

of-function mutants is easier and faster than for mice. Furthermore forward genetic screens 

for genes required for synaptic differentiation have uncovered a number of formerly unknown 

proteins that have important roles in the formation of pre- and postsynaptic sites (Crump et 

al, 2001; Hallam et al, 2002; Schaefer et al, 2000; Sieburth et al, 2005; Zhen & Jin, 1999). 

Therefore, studies from C.elegans and Drosophila have provided invaluable insight into 

active zone development. In the following section I will summarize what is known about the 

function of a selection of active zone proteins from invertebrate studies and the analysis of 

knockout mice. 

1.2.3.1	
  RIM	
  

Vertebrates express four RIM genes (RIM1 – 4), of which RIM1 and 2 have internal 

promoters leading to the expression of RIM1α,β and RIM2α,β and γ isoforms. RIM3 and 4 

encode only short isoforms called RIM3γ and RIM4γ (Wang & Südhof, 2003). RIMs were 

initially discovered as putative effectors for the small synaptic vesicle binding protein Rab3 

(Wang et al, 1997). Studies from C.elegans and mice show that RIM proteins are essential 

for synaptic vesicle docking and priming. Koushika et al. report that loss-of-function of 

C.elegans unc-10, which is the worm orthologue of RIM, leads to a reduction in fusion-

competent synaptic vesicles at release sites (Koushika et al, 2001). Knockout mice for 

RIM1α show an increase in paired-pulse facilitation at excitatory synapses, indicating a 

decrease in release probability (Schoch et al, 2002). Furthermore, double knockout of RIM1α 

and RIM2α in mice causes postnatal death due to defects in neurotransmitter release 

(Schoch et al, 2006). 

 A recent report by Kaeser et al. shows that the PDZ domain of RIMs interacts with N- 

and P/Q-type Ca2+ channels but not with L-type Ca2+ channels (Kaeser et al, 2011). By 

generating conditional knockout mice for all PDZ-domain containing isoforms, they could 

overcome the postnatal lethality of RIM1α and RIM2α double knockout mice. This study 

suggests a role for RIMs in synapse assembly, since it shows that RIMs are essential for the 

localization of Ca2+-channels to presynaptic release sites. The assembly deficit furthermore 

explains the functional impairment of neurotransmitter release in RIM-deficient mice.  



  1. Introduction   

	
   18 

1.2.3.2	
  Munc13	
  

Munc13 has originally been identified in C.elegans as UNC-13 (Maruyama & Brenner, 

1991). Worm mutants for this gene exhibit an “uncoordinated” phenotype. Subsequent 

characterizations in mammals have shown that munc13 is localized to active zones and 

revealed an essential function in synaptic vesicle priming (Brose et al, 1995). The munc13 

family encodes 5 genes, of which 3 (munc13-1, munc13-2, munc13-3) are primarily 

expressed in the brain and 2 (munc13-4 and BAP3) primarily expressed outside the brain. 

Knockout mice for munc13-1 die shortly after birth, do not feed and have a reduced breathing 

rate (Augustin et al, 1999). Synapses in munc13-1 KO mice are ultrastructurally normal with 

no difference in the number of vesicles per active zone, indicating that munc13-1 does not 

regulate synapse assembly. However, electrophysiological recordings from cultured 

hippocampal neurons shortly after birth show a reduction in evoked excitatory synaptic 

responses in mutant neurons, which is due to a selective reduction in the readily releasable 

vesicle pool in excitatory synapses. This suggests that munc13-1 is important for the 

maturation of synaptic vesicles that prepares them for fusion with the plasma membrane and 

neurotransmitter release. Similar findings could be obtained in C.elegans unc-13 and 

Drosophila dunc-13 mutant animals, although the phenotypes here seem much more severe 

(Aravamudan et al, 1999). Whereas synaptic transmission is completely abolished in 

invertebrate studies, in munc13-1 mutant mice, GABAergic transmission is unaffected and a 

small population of glutamatergic synapses produces fusion competent vesicles. Rosenmund 

et al. could later show that there are two classes of synapses that contain either munc13-1 or 

munc13-2 and that differ functionally in short-term plasticity properties, explaining the 

incomplete phenotype after KO of munc13-1 (Rosenmund et al, 2002). A recent report on the 

function of munc13 has shown that binding of RIM to munc13 releases munc13 

homodimerization and thereby activates its priming roles (Deng et al, 2011). It is assumed 

that munc13 executes its priming functions by directly binding to the SNARE complex (Guan 

et al, 2008). 

1.2.3.4	
  Liprin-­‐α 	
  

Liprin-α proteins were originally identified as “LAR-interacting proteins” LIP.1a and LIP.1b 

(Serra-Pagès et al, 1995). Invertebrates contain only a single liprin-α gene, which is termed 

syd-2 or dliprin in C.elegans and Drosophila, respectively. Mammals contain 4 liprin-α genes 

(liprin-α1 – 4), of which liprin-α2 and -α3 are the major isoforms expressed in the brain 

(Spangler et al, 2011; Zürner et al, 2011). Expression of liprin-αs is not restricted to active 

zones, however, studies in C.elegans and Drosophila provide evidence for the involvement 

of liprin-α in the formation and maintenance of active zones (Kaufmann et al, 2002; Zhen & 

Jin, 1999). Loss of liprin-α in both organisms leads to an increase in active zone length. In 
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C.elegans, SYD-2 has been placed as a central organizer of presynaptic assembly 

downstream of the protein SYD-1 and upstream of ELKS (Dai et al, 2006). A gain-of-function 

mutation in SYD-2 can overcome the defect in synapse formation caused by the absence of 

SYD-1. Here, the activity of the SYD-2 gain-of-function protein requires ELKS. Liprin-α has 

been shown to homodimerize and form large protein complexes, an ability that seems to be 

essential for SYD-2 function in C.elegans (Taru & Jin, 2011; Wei et al, 2011). A liprin 

homology domain (LH1) in the coiled coil segment of SYD-2, containing the 

homodimerization domain, is necessary and sufficient to rescue the SYD-2 loss-of-function 

phenotype (Taru & Jin, 2011). This study illustrates the importance of the LH1 domain and 

the homodimerization properties of SYD-2. Furthermore, in invertebrates, liprin-α interacts 

with receptor protein tyrosine phosphatases (PTP-3 and Dlar), an interaction that was 

validated in mouse studies between liprin-α and LAR. In the mouse, liprin-α localizes both 

pre- and postsynaptically (Wyszynski et al, 2002). In both axons and dendrites, liprin-α 

interacts with the protein GRIP. Postsynaptically, this interaction is important for the synaptic 

targeting and surface expression of AMPA receptors. Later, the interaction between liprin-α 

and GRIP and its effect on AMPA receptor distribution has been shown to be dependent on 

GIT1, since disruption of the liprin-α – GIT1 interaction leads to a reduction in dendritic 

clustering of AMPA receptors (Ko et al, 2003a). Furthermore, liprin-α has been implicated in 

targeting of LAR to dendrites (Dunah et al, 2005; Hoogenraad et al, 2007). Hoogenraad et al. 

have shown that protein levels of liprin-α are modulated by neuronal activity. Knockdown of 

CAMKII leads to an increase in liprin-α1 levels, whereas co-expression of constitutively 

active CAMKII and liprin-α1 in COS cells decreases liprin-α1 protein levels. Interestingly, 

liprin-α2 is not affected, suggesting an isoform-specific interaction between CAMKII and 

liprin-α1. Functionally, the degradation of liprin-α1 has been shown to be important for 

dendritic targeting of LAR and normal development of the dendritic tree.  

In addition to the interactions at the active zone, liprin-α also interacts with kinesin motor 

proteins (Shin et al, 2003). In Drosophila liprin-α mutants, synaptic vesicle markers show 

aberrant accumulations along the length of the axon, suggesting a defect in their transport to 

presynaptic terminals (Miller et al, 2005).  

In summary, the presynaptic assembly deficits, seen after loss-of-function of SYD-

2/liprin-α in invertebrates, as well as its involvement in transport of presynaptic components, 

suggests a crucial role for liprin-α in synapse development. However, mouse knockout 

studies, to validate the in vitro findings, are still missing.  
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1.2.3.5	
  ELKS	
  

Mammals contain two genes for elks, termed elks1 and elks2, whereas only a single elks 

gene has been described in C.elegans. The name stems from the high content of the amino 

acids glutamate (E), leucine (L), lysine (K) and serine (S). The Drosophila orthologue of 

ELKS is called Bruchpilot, which resembles ELKS only in its N-terminus and additionally 

contains a large C-terminus, supposedly giving Bruchpilot unique functions in comparison to 

its mammalian orthologues (Wagh et al, 2006). In mammals, ELKS2 is exclusively expressed 

in the brain, whereas alternative splicing of ELKS1 results in two isoforms, ELKS1a and 

ELKS1b, of which ELKS1b is exclusively brain specific and ELKS1a only expressed outside 

the brain (Ohtsuka et al, 2002). The ELKS2 gene in mammals contains an internal promoter, 

giving rise to a second ELKS2 isoform termed ELKS2β (Kaeser et al, 2009). Both isoforms 

are expressed in the brain, with ELKS2α being the most abundant one and ELKS2β only 

comprising of 4 % of ELKS2α expression levels in WT mice. 

Studies on Bruchpilot in Drosophila neuromuscular junctions (NMJ) have shown that it is 

an integral part of the characteristic T-bar structure of Drosophila active zones (Kittel et al, 

2006; Wagh et al, 2006). Loss-of-function mutations lead to deficits in synapse assembly 

with a mislocalization of Ca2+-channels, fewer individual synapses and slightly smaller NMJs 

but enlarged postsynaptic receptor fields. On the contrary, deletion of ELKS in C.elegans, 

does not cause a detectable phenotype (Deken et al, 2005). Knockout mice for ELKS2α 

have a reduction in the number of synaptic vesicles per presynaptic bouton in both excitatory 

and inhibitory synapses, but no change in the number of docked vesicles. Furthermore, they 

do not show any changes in excitatory synaptic transmission (Kaeser et al, 2009). However, 

the size of the readily-releasable pool (RRP) of vesicles at inhibitory synapses is increased, 

causing an increase in inhibitory synaptic responses. Thus, loss of ELKS2α leads to a slight 

defect in synapse assembly, which does not seem to have major functional consequences. 

While knockout of Bruchpilot in Drosophila leads to presynaptic assembly deficits, it is still 

unclear, if ELKS has a major role in presynaptic assembly in mammals. One possibility is 

that the C-terminus of Bruchpilot, which is not present in mammalian ELKS, is responsible for 

its role in presynaptic assembly in Drosophila, while this function might be executed by 

different proteins in mammals. Studies of double knockout mice of ELKS2 and ELKS1b, the 

other major isoform expressed in the brain, might provide a better insight into the function of 

ELKS in mammalian presynaptic terminals. 

1.2.3.6	
  Piccolo	
  and	
  bassoon	
  

Piccolo and bassoon are large structurally related proteins that are specific to 

vertebrates. Due to their large sizes, the generation of knockout mice with a complete loss of 
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the proteins is not straightforward. Therefore, bassoon mutant mice have been created that 

lack the central region of bassoon that is important for anchoring of the protein to the CAZ 

(Altrock et al, 2003). Analysis of these mice shows that synapses appear structurally normal, 

with comparable numbers of synaptic vesicles in presynaptic boutons of WT and mutant 

mice. However, FM-dye experiments revealed that a fraction of glutamatergic synapses is 

inactive. Furthermore, 50 % of homozygous mutant animals die within the first 6 months and 

mutant animals display spontaneous seizures. On the other hand, analysis of a specialized 

type of synapses in these mice, the photoreceptor ribbon synapses in the retina, has 

revealed presynaptic assembly deficits (Dick et al, 2003). Retinal photoreceptors are 

specialized glutamatergic synapses for high-frequency signaling, that need a continuous 

supply of synaptic vesicles to the neurotransmitter release site. This is supposedly achieved 

by a presynaptic ribbon, which is thought to be composed of scaffold proteins and to be 

equivalent to the CAZ in CNS synapses. In bassoon mutant mice, the photoreceptor ribbon is 

not anchored to the presynaptic active zone, a phenotype that has been termed “floating 

ribbons”. Functionally, this results in impaired synaptic transmission and abnormal dendritic 

branching patterns. A more recent study functionally analyzes the lack of bassoon in 

cerebellar mossy fiber – granule cell synapses in mice with a complete knockout of bassoon 

protein (Hallermann et al, 2010). Hallermann et al. show that basal synaptic transmission is 

unchanged in these mice, whereas they exhibit an enhanced depression during high-

frequency stimulation. They demonstrate that the enhanced depression is due to a decrease 

in the rate of vesicle reloading in bassoon KO mice, suggesting that bassoon is functionally 

important for the fast transfer of vesicles to release sites. 

Piccolo knockout mice also exhibit a slight increase in postnatal mortality, however no 

synaptic phenotype could be detected in these animals (Mukherjee et al, 2010). 

Simultaneous knockdown of bassoon in piccolo knockout animals leads to a significant 

decrease in the number of synaptic vesicles per presynaptic terminal, as assessed by 

electron microscopy. Furthermore, the number of docked vesicles is decreased, whereas the 

size of postsynaptic densities is slightly increased, leading to a model in which piccolo and 

bassoon function to recruit and tether synaptic vesicles in the presynaptic terminal. A recent 

study reports that knockdown of piccolo leads to an enhanced activity-dependent synapsin1a 

dispersion and reduced F-actin polymerization in presynaptic boutons (Leal-Ortiz et al, 2008; 

Waites et al, 2011). This points to a function for piccolo in the regulation of neurotransmitter 

release by facilitating activity-dependent F-actin assembly.  

The structural overlap between the two proteins suggests that they can execute similar 

functions. Both single KO of bassoon or piccolo does not lead to presynaptic assembly 

deficits, whereas a double loss-of-function reduced the number of synaptic vesicles per 
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presynaptic terminal. Thus, piccolo and bassoon might have overlapping functions in 

presynaptic assembly, whereas both execute different functions in the synaptic vesicle cycle. 

1.2.3.7	
  Synapse-­‐defective-­‐1	
  

One active zone protein that I have not described so far, but which has emerged as a 

central organizer of presynaptic development in invertebrates, is Synapse-defective-1 (SYD-

1). SYD-1 has originally been identified in a screen for genes required for synaptic 

differentiation in C.elegans (Hallam et al, 2002). Hallam et al. could show that syd-1 mutant 

worms exhibit defects in the distribution and the number of the synaptic vesicle marker 

synaptobrevin. Furthermore in syd-1 mutant worms, not only synaptic vesicle proteins, but 

also active zone markers, are localized to both axonal and dendritic processes, indicating a 

defect in polarity. SYD-1 protein is localized to presynaptic terminals and protein structure 

prediction analysis revealed that it contains an N-terminal PDZ, a C2 and a C-terminal Rho-

GAP domain. Later studies have shown that SYD-1 acts upstream of SYD-2/liprin-α, since a 

gain-of-function mutation in SYD-2 can rescue the syd-1 mutant phenotype (Dai et al, 2006). 

In syd-1 mutant worms, the synaptic localization of SYD-2 is disrupted, suggesting that SYD-

1 recruits SYD-2 to presynaptic terminals. The SYD-1/SYD-2 complex was placed 

downstream of the guidepost molecule SYG-1, which together with SYG-2 specifies the 

localization of synapses along C.elegans axons (Patel et al, 2006). In addition, SYD-1 and 

SYD-2 were shown to be regulated by regulator of synaptogenesis-1 (RSY-1), which is a 

local inhibitor of presynaptic assembly (Patel & Shen, 2009). A recent study shows that the 

F-actin binding protein NAB-1/neurabin acts downstream of SYG-1 and recruits SYD-1 and 

SYD-2 to presynaptic terminals (Chia et al, 2012).  

In addition, Drosophila SYD-1 (DSYD-1) was identified in a mass-spectrometry analysis 

for proteins that co-immunoprecipitate with the active zone protein Bruchpilot (Owald et al, 

2010). The authors show that dsyd-1 mutant flies exhibit defects in locomotion and have a 

reduced life span. Similar to the findings in C.elegans, DSYD-1 is localized to the active zone 

in presynaptic terminals and is necessary for the presynaptic localization of Dliprin-α and the 

correct distribution of active zone material. At dsyd-1 mutant NMJs, fewer release sites are 

formed and evoked junctional excitatory currents are significantly reduced. In addition to the 

presynaptic defects seen in C.elegans and Drosophila syd-1 mutant animals, dsyd-1 mutant 

flies also exhibit postsynaptic defects. Individual glutamate receptor fields are enlarged, 

which can be rescued by presynaptic re-expression of DSYD-1, suggesting that DSYD-1 acts 

presynaptically. Recently the same authors could show that DSYD-1 interacts with 

presynaptic neurexin-1 to coordinate pre- and postsynaptic assembly (Owald et al, 2012). 

The N-terminal PDZ domain of DSYD-1 is important for the clustering and retention of 

neurexin-1 at presynaptic sites. In line with this, syd-1, neurexin-1 and neuroligin-1 mutant 
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flies show similar phenotypes and the phenotypes of double mutants are non-additive, 

suggesting that all three proteins act in the same molecular pathway. Finally, dsyd-1 mutant 

flies also show a change in postsynaptic clustering of neuroligin-1. This leads to a model in 

which presynaptic DSYD-1 clusters neurexin-1, which in turn leads to an aggregation of 

postsynaptic neuroligin-1, providing a mechanism to couple pre- and postsynaptic assembly. 

In summary, loss-of-function of SYD-1 in invertebrates, causes severe presynaptic assembly 

defects, which in flies furthermore result in deficits in postsynaptic formation.  

No mammalian orthologues of SYD-1 have been identified so far. The aim of this study is 

the identification and characterization of mouse orthologues of SYD-1.  

 

1.2.4	
  “Nucleation”	
  of	
  presynaptic	
  assembly	
  

Looking at the many proteins that are present in mammalian presynaptic terminals, it 

becomes evident that the protein composition of the active zone is well described. However, 

at this moment, it is still unclear what defines the position of a future synapse along the axon 

and which proteins serve as nucleators for presynaptic assembly in mammalian neurons. 

Studies that are beginning to shed light on this question were done in invertebrates and 

SYD-1 seems to be a major player in the nucleation process. In Drosophila, DSYD-1 was 

shown to be one of the first proteins that localizes to nascent presynaptic boutons, before 

other active zone proteins, including liprin-α and Bruchpilot, could be detected in presynaptic 

terminals (Owald et al, 2010). Furthermore, complexes of DSYD-1 and liprin-α also preceded 

the accumulation of neurexin (Owald et al, 2012). These findings contradict the hypothesis 

that trans-synaptic adhesion complexes serve as nucleators for active zone assembly. 

Furthermore, in cell lines, liprin-α has been shown to regulate LAR localization and clustering 

(Serra-Pagès et al, 1995; Serra-Pagès, 1998). In line with this, two reports suggest that 

liprin-α is important for trafficking and dendritic targeting of LAR in hippocampal neurons 

(Dunah et al, 2005; Hoogenraad et al, 2007). Likely, the targeting of LAR to axons and 

presynaptic terminals is also regulated by liprin-α, furthermore contradicting the hypothesis 

that LAR can serve as the nucleator. Several studies suggest that presynaptic assembly is 

regulated by interplay between positive and negative cues. In fact, several inhibitors of 

presynaptic assembly have been described. RSY-1 acts on SYD-1 and SYD-2 in C.elegans 

and thereby suppresses presynaptic assembly (Patel & Shen, 2009). In rsy-1 mutant worms, 

an increased number of synapses are formed and a higher amount of active zone material is 

present at presynaptic sites. In addition, E3 ubiquitin ligases have been shown to target 

presynaptic proteins for degradation and therefore negatively control synapse assembly 

(DiAntonio et al, 2001; van Roessel et al, 2004). In order to understand how synapses form, 
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we need to know how presynaptic material is transported to nascent boutons and stabilized 

there. Active zone proteins and synaptic vesicles in mammals have been shown to be 

transported in pre-packaged vesicles. A recent study in C.elegans suggests that these 

vesicles possess an intrinsic property to self-assemble, which is suppressed by an arf-like 

small G protein, called ARL-8 (Klassen et al, 2010). In arl-8 mutant worms, presynaptic 

proteins prematurely aggregate and fail to localize to the distal axon. The authors suggest 

that this predisposition to self-assemble is suppressed by ARL-8, which gives presynaptic 

cargoes a “trafficking identity”. Furthermore, ARL-8 is antagonized by assembly-promoting 

proteins like SYD-1, SYD-2 and SAD-1, since double mutants of arl-8 and one of the 

assembly-promoting proteins partially suppress the premature aggregation phenotype. 

However, since previous findings on human and Drosophila ARL-8 have shown that it affects 

lysosome motility (Bagshaw et al, 2006; Hofmann & Munro, 2006), the described findings on 

C.elegans ARL-8 have to be taken with care, since they might be indirect. Nevertheless, the 

interplay between positive and negative cues for synapse assembly could result in a signal 

that leads to the stalling of pre-packaged active zone proteins and the rapid assembly of 

presynaptic boutons, once the decision about the right location has been made. Therefore, it 

might be difficult to define which protein recruits which during the assembly process and who 

serves as the nucleator. Yet, several studies both in C.elegans and Drosophila have 

identified a hierarchy in the assembly process (Chia et al, 2012; Owald et al, 2010; Patel et 

al, 2006). In mammals, studies about the temporal events of synapse assembly are 

complicated by the high number of active zone proteins and the possibility of redundancy 

mechanisms. In the following section, I will describe what we know about the transport of 

presynaptic proteins in mammals and the formation of presynaptic boutons from a cellular 

perspective.  

 

1.3	
  Development	
  of	
  presynaptic	
  boutons	
  from	
  a	
  cellular	
  perspective	
  

1.3.1	
  Transport	
  of	
  synaptic	
  proteins	
  

Studies on the time-course of presynaptic development have shown that new presynaptic 

boutons, capable of activity-evoked vesicle recycling, can form within 30 min of axo-dendritic 

contact (Friedman et al, 2000). Given the dense protein network in the presynapse and the 

distance between the soma and the tip of the axon, the question arises how transport of 

presynaptic components is regulated. The precursor protein transport vesicle hypothesis 

suggests that active zone and synaptic vesicle proteins are not transported as single proteins 

from the soma, but are pre-packaged into transport vesicles (Garner et al, 2002; Ziv & 

Garner, 2004). One of the first observations of these transport packets came from 
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Kraszewski and colleagues, where they used an anti-synaptotagmin1 antibody, conjugated 

to Cy3, to visualize synaptic vesicle dynamics in cultured hippocampal neurons (Kraszewski 

et al, 1995). They observed the presence of clusters of synaptic vesicles that move together 

both anterogradely and retrogradely. Later, Ahmari and co-workers used a similar approach 

(VAMP2-GFP fusion protein) to monitor synaptic vesicle movement (Ahmari et al, 2000). 

Here, VAMP2-GFP puncta were bigger than individual synaptic vesicles and often stalled at 

sites of new axo-dendritic contact. Subsequent immunocytochemistry analysis revealed the 

presence of other synaptic vesicle proteins (SV2, synapsin1, amphiphysin1) in these puncta. 

Zhai et al. reported the presence of 80 nm-dense core granulated vesicles that were 

concentrated in axonal growth cones (Zhai et al, 2001). Analysis of these 80 nm-dense core 

vesicles suggested that they might contain a number of active zone proteins, like piccolo, 

bassoon, syntaxin, SNAP25 and N-cadherin. Therefore, dense core vesicles were termed 

piccolo-bassoon transport vesicles (PTVs). Quantitative immunocytochemical analysis 

showed later that the number of piccolo, bassoon and RIM in presynaptic boutons is a 

multiple of two or three PTVs (Shapira et al, 2003). Consequentially, presynaptic material 

seems to be transported in two types of vesicular organelles to nascent presynaptic sites: (1) 

synaptic vesicle protein transport vesicles (STVs) and (2) piccolo-bassoon transport vesicles 

(PTVs). Both STVs and PTVs have been shown to display similar movement characteristics 

and to move both anterogradely and retrogradely in the axon (Dai & Peng, 1996; Kraszewski 

et al, 1995). Furthermore, they move in a saltatory fashion, which is thought to be important 

for presynaptic formation, since the sites where STVs repeatedly pause are more likely to 

differentiate into synapses (Bury & Sabo, 2011; Sabo et al, 2006). For anterograde transport, 

STVs and PTVs have been shown to move along microtubules with motors of the kinesin 

superfamily (Hall & Hedgecock, 1991; Okada et al, 1995; Su et al, 2004). Retrograde 

transport of STVs and PTVs is carried out by the minus end-directed microtubule motor 

protein dynein (Fejtova et al, 2009; Vallee et al, 2004). However, how is the protein 

composition of these transport vesicles determined and where are they assembled? A recent 

study by Maas and co-workers sheds some light on these questions (Maas et al, 2012). 

Using rat hippocampal neurons they could show that bassoon and ELKS2 exit the trans-

Golgi network on a common vesicle, whereas munc13 and synaptic vesicle proteins use 

distinct sets of Golgi-derived transport vesicles. RIM1α seems to associate with vesicular 

membranes in a post-Golgi compartment. Furthermore the authors suggest that PTVs 

undergo several changes in protein composition before arriving at the nascent synapse. The 

formation of a presynaptic bouton therefore depends on the stalling of PTVs at future 

presynaptic sites and the anchoring of synaptic vesicles at these sites. One cytoskeletal 

protein that has been shown to appear at forming synaptic boutons and co-localize with 

synaptic vesicles is actin (Dai & Peng, 1996). Therefore, actin has been suggested to have a 



  1. Introduction   

	
   26 

role in anchoring synaptic vesicles and in the formation of presynaptic terminals (Cingolani & 

Goda, 2008). 

 

1.3.2	
  The	
  role	
  of	
  actin	
  in	
  presynaptic	
  formation	
  

Actin is highly enriched in both pre- and postsynaptic terminals and is supposed to 

provide a cellular scaffold that determines and maintains cell shape (Hirokawa et al, 1989; 

Matus et al, 1982). The dependence of nascent presynaptic boutons on actin has been nicely 

demonstrated in a study by Zhang and Benson (Zhang & Benson, 2001). Here, the authors 

exposed hippocampal neurons during the time of synapse formation to the actin 

depolymerizing drug lantrunculin A, resulting in a near complete loss of synapses. However, 

as the culture matured, synapses became more and more resistant to lantrunculin A 

treatment. Studies by Sankaranarayanan have shown that actin is concentrated in 

presynaptic terminals and surrounds presynaptic vesicle clusters (Sankaranarayanan et al, 

2003). Interestingly, increases in activity can remodel the position of actin in presynaptic 

terminals, with actin condensing towards the periphery after stimulation (Colicos et al, 2001). 

Furthermore, promoting actin polymerization with jasplakinolide is sufficient to trigger the 

conversion of silent presynaptic boutons into functional ones (Yao et al, 2006). A recent 

study provides a link between actin polymerization, anchoring of synaptic vesicles and 

components of the presynaptic active zone. Waites et al. could demonstrate that the piccolo 

knockdown phenotype, which leads to enhanced exocytosis of synaptic vesicles and 

synapsin1a dispersion, can be rescued by F-actin stabilization with jasplakinolide (Waites et 

al, 2011). Furthermore, knockdown of profilin2, an ATP/ADP exchange factor that promotes 

F-actin assembly, phenocopies knockdown of piccolo, suggesting that both proteins function 

in the same molecular pathway. These studies underline the important function of actin 

during development, however exactly how actin polymerization contributes to presynaptic 

development, is not clear yet. The polymerization of actin is controlled by Rho-GTPases and 

their regulators. In order to understand the role of actin in presynaptic formation, we therefore 

need to look at its regulators, which will be discussed in the next section. Figure 5 provides 

an overview over what is known about the transport of precursor proteins to nascent boutons 

and the role of actin in presynaptic formation. 
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Figure 5 – Development of presynaptic terminals 
Synaptic vesicle transport vesicles (STVs) and piccolo-bassoon transport vesicles (PTVs) are traveling 
along the axon during the time of synapse formation. After contact between axon and dendrite, F-actin 
condenses towards the periphery of the presynaptic bouton and several transport packets pause at 
this site to release their content. Subsequently, the presynaptic release site and the postsynaptic 
density mature.  

 

 

1.4	
  GAP	
  and	
  GEF	
  proteins	
  in	
  synapse	
  formation	
  

Rho-GTPases, a subfamily of small GTP-binding proteins, are known regulators of the 

actin cytoskeleton (Govek et al, 2005; Tolias et al, 2011). The best-studied ones are RhoA, 

RacI and Cdc42. Rho-GTPases can cycle between an active GTP- and an inactive GDP-

bound state (figure 6). In the active, GTP-bound conformation, they have the ability to bind to 

various effector proteins and thereby initiate a number of signaling pathways. These 

signaling pathways range from the control of actin cytoskeleton reorganization and 

microtubule dynamics over gene transcription and membrane trafficking. In light of the 

various functions of Rho-GTPases in many cellular processes, they have to be tightly 

spatially and temporally regulated. The precise spatio-temporal control of Rho-GTPases is 

carried out by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins 
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(GAPs). GEFs activate Rho-GTPases by catalyzing the GDP/GTP exchange, whereas GAPs 

inactivate Rho-GTPases by enhancing their intrinsic GTPase activities (figure 6).  

 

 

Figure 6 – Rho-GTPases and their regulators 
Rho-GTPases cycle between an active GTP-bound state and an inactive GDP-bound state. Guanine 
nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) catalyze the conversions. 
GTPases can only interact with effector proteins in the GTP-bound state and initiate downstream 
signaling cascades.  

 

In postsynaptic development, a number of GEFs and GAPs have been identified that are 

important for dendritic spine development, growth and plasticity (Tolias et al, 2011). It is 

conceivable, that GEF and GAP proteins have equally important roles in the development 

and plasticity of the presynapse. However, the knowledge about the role of GEFs and GAPs 

in presynaptic development is by far sparser. This is partly due to the fact that many GEF 

and GAP proteins and their Rho-GTPases have functions in neuronal polarity, axon 

outgrowth and guidance (Govek et al, 2005; Tahirovic & Bradke, 2009), which makes it 

difficult to dissect their roles in synapse development. In the following section, I will describe 

what is known about GEFs and GAPs in presynaptic development.  

 

1.4.1	
  GEFs	
  and	
  GAPs	
  in	
  presynaptic	
  development	
  

Most of what is known about GEFs and GAPs in presynaptic development stems from 

studies in C.elegans and Drosophila.  

In a recent study in C.elegans, Stavoe et al. investigate the presynaptic signaling 

cascade downstream of the netrin-receptor unc-40/DCC (Stavoe & Colon-Ramos, 2012). 
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They show that the Rac-GEF ced-5 (C.elegans orthologue for DOCK180) interacts with unc-

40 and regulates signaling of the C.elegans Rac-GTPase ced-10. Loss-of-function of either 

of the three proteins leads to a defect in synaptic vesicle clustering, whereas the 

accumulation of active zone proteins in presynaptic terminals is not altered. Furthermore, 

they demonstrate that ced-10 interacts with the effector MIG-10 (C.elegans orthologue for 

RIAM and lamellipodin) to increase the accumulation of F-actin in presynaptic terminals. This 

study shows the importance of the Rac-GEF ced-5 for presynaptic assembly and confirms a 

role for F-actin in synaptic vesicle clustering during development. 

In Drosophila, two studies have shown that the Rac-GEF trio has an important role in 

NMJ bouton growth and the regulation of the actin cytoskeleton. Pawson et al. show that 

diaphanous is necessary presynaptically for normal NMJ growth, since dia mutant flies show 

a decrease in synaptic bouton numbers (Pawson et al, 2008). In genetic experiments, they 

demonstrate that dia acts downstream of the receptor tyrosine phosphatase dlar and the 

Rac-GEF trio to control NMJ growth and F-actin accumulation in presynaptic terminals. In the 

second study, Ball et al. show that overexpression of the GTPase Rac leads to synaptic 

overgrowth and that the action of Rac requires BMP signaling (Ball et al, 2010). They 

demonstrate that retrograde BMP signaling directly regulates the transcription of trio, which 

mediates Rac signaling. In line with the data by Pawson et al., loss of trio leads to a 

reduction in NMJ growth.  

Finally, another study in Drosophila provides a link between a GEF protein and the 

regulation of synaptic homeostasis (Frank et al, 2009). Here, the authors show that the GEF 

ephexin acts downstream of the Eph receptor and upstream of Cdc42 to modulate the 

presynaptic calcium channel CaV2.1. Regulation of CaV2.1 is important for homeostatic 

modulation of presynaptic release. 

In vertebrates, the only study providing a direct link between a GEF and presynaptic 

vesicle clustering is a study by Sun and Bamji (Sun & Bamji, 2011). Here, the authors 

demonstrate that the Rac/Cdc42 guanine nucleotide exchange factor (GEF) β-pix forms a 

complex with cadherin, β-catenin and scribble at the synapse. Knockdown of β-pix leads to a 

reduction in actin polymerization and disrupts synaptic vesicle localization. This phenotype 

can be rescued by overexpression of cortactin, which stabilizes the Arp2/3 complex and thus 

enhances actin polymerization.  

Given the important role of actin during development and maintenance of presynaptic 

terminals, its assembly and disassembly has to be tightly regulated. However, the knowledge 

about its regulation by GAP and GEF proteins as described above, is scarce. The 
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identification of regulators of presynaptic actin will help to shed light on the process of 

synapse development.  

 

1.5	
  The	
  role	
  of	
  actin	
  in	
  mature	
  presynaptic	
  terminals	
  

As described above, many presynaptic active zone proteins have direct or indirect links 

to the actin cytoskeleton. Next to its role in the formation of presynaptic boutons, actin is also 

one of the major components of mature presynaptic terminals, but its exact role is debated 

until today. However, due to the linkage between actin and presynaptic proteins, 

comprehension of the role of actin in the presynapse is important for the interpretation of 

loss-of-function phenotypes of presynaptic components. In the following section, I will give an 

overview over the possible functions of presynaptic actin and the evidence for them.  

Synaptic vesicles in presynaptic terminals are organized into three functionally distinct 

pools: the readily-releasable pool, the recycling pool and the reserve pool of synaptic 

vesicles (Rizzoli & Betz, 2005). The readily-releasable pool consists of synaptic vesicles that 

are docked and primed at the active zone and are immediately available for exocytosis. The 

recycling pool harbors vesicles that are released at moderate stimulation intensities, whereas 

the reserve pool of vesicles can only be released at very high stimulation intensities. Some 

presynaptic terminals contain reserve pool vesicles that are not released at all. The reserve 

pool constitutes the biggest pool of synaptic vesicles.  

Actin has been proposed to build a topographic divide between these different pools of 

vesicles (Cingolani, 2008). Here, it could provide a scaffold to restrict vesicle mobility. 

Evidence comes from a study by Jordan et al., in which the authors show that actin 

depolymerization with lantrunculin A leads to an increased mobility of synaptic vesicles 

(Jordan et al, 2005). This and other studies also provide evidence for actin having a guiding 

function, helping the transfer of vesicles between the different pools. Actin is linked to 

synaptic vesicles via short filaments of synapsin. After increased neuronal activity, synapsin 

gets phosphorylated, leading to a release of the reserve pool vesicles from the actin network 

(Chi et al, 2003). These vesicles can then replenish the readily-releasable pool of vesicles 

and undergo exocytosis. Furthermore, the actin-based motor myosin-V has been shown to 

be associated with synaptic vesicles (Evans et al, 1998). Myosin-V associated vesicles can 

move along actin filaments in in vitro actin filament motility assays. In a more recent study, 

myosin-Va has been shown to interact with the t-SNARE syntaxin-1A upon increases in Ca2+ 

concentrations (Watanabe et al, 2005). This suggests that upon stimulation and Ca2+ 
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elevation, vesicles are trafficked on myosin-Va motors along actin filaments to the active 

zone, where they are captured by binding of myosin-Va to syntaxin.  

Furthermore, actin-based transport of synaptic vesicles has been implicated in 

endocytotic recycling of synaptic vesicles. In electron micrographs of the lamprey 

reticulospinal synapse, actin-like filaments can be detected in the endocytic zone of 

synapses (Shupliakov et al, 2002). After stimulation, these filaments proliferate towards the 

synaptic vesicle cluster and have synaptic vesicles associated with them. Furthermore, a 

recent study in cultured hippocampal neurons demonstrates that actin-based vesicle 

recycling is not confined to individual presynaptic boutons (Darcy et al, 2006). Darcy et al. 

could show that endocytosed synaptic vesicles can be recruited into the functional pool of 

nearby boutons. The sharing of vesicles between boutons requires actin turnover, since 

treatment of cultures with jasplakinolide reduces the movement of synaptic vesicles.  

At the active zone, actin has also been suggested to provide a physical barrier to prevent 

unwanted fusion and exocytosis of synaptic vesicles. Studies of the neuromuscular junction 

in frogs have shown that treatment with cytochalasin D, an actin-depolymerizing agent, do 

not affect acetylcholine secretion triggered by low-frequency stimulation (Wang et al, 1996). 

Instead, evoked secretion at higher frequency stimulations is affected by cytochalasin D 

treatment, with an increase in paired-pulse facilitation. The authors conclude that actin 

filaments do not affect the exocytosis of readily-releasable vesicles, but serve to restrain 

vesicles from the reserve pool to readily undergo exocytosis.  

Instead, Sankaranarayanan and colleagues reduce the function of actin at presynaptic 

terminals to providing a scaffold to anchor synapsin1a in the terminal (Sankaranarayanan et 

al, 2003). In their study, they do not detect any deficits in the synaptic vesicle cycle after 

disruption of the actin cytoskeleton. However, actin disruption reduces the concentration of 

synapsin1a and leads to a dispersion of synapsin1a out of the terminal. Therefore, the 

authors conclude that actin may simply serve as a scaffold for retaining important molecules 

in the presynapse, while disruption of actin leads to a dilution of these regulatory molecules 

resulting in the diverse defects, seen in other studies.  

In addition, several trans-synaptic adhesion complexes have indirect links to the actin 

cytoskeleton. For example, the cell adhesion molecule N-cadherin can form a complex with 

β-catenin and scribble. Scribble is important for the localization of the Rac/Cdc42 GEF β-pix 

at the synapse, which regulates actin polymerization (Sun & Bamji, 2011). The presynaptic 

cell adhesion molecule neurexin binds to CASK, which, together with protein 4.1, can 

nucleate local assembly of actin/spectrin filaments (Biederer & Südhof, 2001). In line with 
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these studies, the actin cytoskeleton might reinforce adhesion between the pre- and the 

postsynaptic cell, provided by cell adhesion complexes.  

Many of the findings described above contrast each other. One explanation for these 

contradictory results might be the fact that diverse model systems, as well as different ways 

to disrupt the actin cytoskeleton, were used. It is conceivable that large presynaptic 

terminals, such as the lamprey reticulospinal synapse, may use actin in different ways than 

smaller terminals, in which synaptic vesicles do not have to travel such long distances to 

reach the presynaptic plasma membrane.  

Despite of the many contradictions, the increasing number of studies on the presynaptic 

actin cytoskeleton shows that actin has an important role in many functional processes, both 

for presynaptic differentiation and in mature presynaptic terminals. Figure 7 gives an 

overview of the possible roles of actin in presynaptic terminals. 

 
Figure 7 – The role of actin in presynaptic terminals 
Actin has been proposed to have many roles in presynaptic terminals. Details are described in the 
text.  
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1.6	
  The	
  dissertation	
  project	
  

Recent studies have identified a number of trans-synaptic adhesion complexes that 

induce the differentiation of pre- and postsynaptic terminals. However, the intracellular 

signaling cascades that link adhesion to the formation of mature active zones in mammalian 

cells have remained obscure. In C.elegans and Drosophila, the protein SYD-1 has emerged 

as a central organizer of presynaptic development (figure 8). Given the crucial role of SYD-1 

for presynaptic assembly in invertebrates, the question arises, if SYD-1 exists in mammalian 

cells and if it executes similarly important functions. In fact, many proteins that have been 

shown to be important for synaptic development in C.elegans have mammalian orthologues 

with similar functions. Prominent examples are SYD-2/liprin-α (Zhen & Jin, 1999), RPM-1 

(regulator of presynaptic morphology-1) (Schaefer et al, 2000) and SAD-1/SAD-A/B 

(synapses of the amphid defective-1) (Crump et al, 2001). Furthermore, invertebrate SYD-1 

has a predicted RhoGAP domain, but its functionality has never been directly tested. Due to 

the important role of actin in presynaptic development, the identification and characterization 

of GEF and GAP proteins that act in presynaptic assembly are of major interest and will 

advance our understanding on presynaptic formation.   

 

Figure 8 – Comparison of presynaptic assembly in C.elegans, Drosophila and mammals  
SYD-1 has been described as a central organizer of presynaptic assembly in invertebrates. Here, 
SYD-1 is one of the first proteins that localizes to nascent presynaptic boutons and recruits 
downstream interaction partners, like SYD-2/liprin-α and ELKS/Bruchpilot. The arrows indicate genetic 
interactions, whereas proteins that have been shown to interact biochemically are displayed in contact 
with each other. RSY-1 is a negative regulator of presynaptic assembly that acts on SYD-1 and SYD-2 
(red arrows). In mammals, many of the invertebrate proteins are conserved (orthologues are displayed 
in the same color) and a dense network of presynaptic proteins has been identified. However, how the 
assembly process downstream of trans-synaptic adhesion complexes is regulated, has remained 
obscure. No mammalian SYD-1 protein has been described yet.  
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No mammalian orthologues for SYD-1 have been identified so far. Therefore, the aim of 

this study is: 

1.) Identification of vertebrate orthologues of SYD-1 

2.) Investigation of mSYD1 GAP activity   

3.) Identification of mSYD1 interaction partners  

4.) Investigation of mSYD1 function in vitro and in vivo 
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2.	
  Results	
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2.1	
  Preface	
  

Parts of the work that I will present in the following section have been done by 

collaborators, whereas other parts have been joint efforts. Therefore, I herewith describe the 

individual contributions.  The SYD-1 project was initiated by Julia Sommer, a PhD student in 

the lab. She identified mouse SYD1A and SYD1B in Database searches and raised and 

purified an antibody against mSYD1A. When I joined the project, we jointly characterized the 

antibody, as well as mSYD1A expression and distribution in the brain. Furthermore, Julia 

carried out the first analysis of the mSYD1B KO mice and evaluated the Yeast-2-Hybrid 

screen. The investigation of mSYD1A GAP activity, analysis of interaction partners, as well 

as the analysis of mSYD1A knockdown and overexpression in neurons is my work. 

Furthermore, I was involved in generating mSYD1A KO mice together with the Transgenic 

Mouse Facility of the Biozentrum, and carried out the first characterization of the mouse line. 

All electrophysiological recordings that are presented in this work have been done by Ramya 

Nair, a post-doc in the lab.  

Most of the results that we have obtained on mSYD1A distribution and function are 

described in a submitted manuscript, which is displayed in the first part of the results section. 

In the second part of the results section I present additional data on mSYD1A that is relevant 

for the understanding and discussion of mSYD1A function, but that we have not included in 

the manuscript. The following part describes the creation and initial characterization of 

mSYD1A and mSYD1B KO mice. In the last chapter I describe our efforts to produce an 

additional antibody against mSYD1A.   

 

2.2	
  submitted	
  manuscript	
  

The identification of mSYD1A and mSYD1B, as well as the characterization of mSYD1A 

distribution and function have resulted in a manuscript which has been submitted for 

publication and is displayed in the following section. 
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Summary 

Structure and function of presynaptic terminals are critical for the processing and 

transmission of neuronal signals. Trans-synaptic signaling systems instruct the differentiation 

of presynaptic sites but their downstream signaling mechanisms are poorly understood. 

Here, we identify a novel protein called mSYD1A (mouse Synapse-Defective-1A) as an 

important regulator of synaptogenic signaling in mammalian neurons. Knockdown of 

mSYD1A impairs synaptic vesicle clustering and reduces synaptic transmission, whereas 

overexpression results in an increase in synapse density. mSYD1A functions in the 

presynaptic cell, interacts directly with the active zone protein liprin-α2, and mediates its 

function via an intrinsically unstructured liprin-interaction sequence. Our work identifies an 

evolutionary conserved signaling module that transduces synaptogenic signaling in the 

presynaptic compartment. 

 

Introduction 

The transformation of an axonal plasma membrane into a presynaptic release site 

requires a profound re-organization of the axonal cytoskeleton and presynaptic membrane 

organelles (Shen & Scheiffele, 2010; Ziv & Garner, 2004). This process can be instructed by 

synaptogenic adhesion complexes that bridge the synaptic cleft and drive the differentiation 

of the synaptic terminal. Over the past decade several such synaptic organizers have been 

identified, including the neuroligin-neurexin complex (Graf et al, 2004; Scheiffele et al, 2000), 

leucine-rich repeat proteins (LRRTMs and netrin G ligands) (Linhoff et al, 2009), Ig-domain 

containing proteins (Biederer et al, 2002), and receptor protein tyrosine phosphatases 

(RPTPs) (Kwon et al, 2010; Takahashi et al, 2011). However, for none of these systems it is 

understood how trans-synaptic interactions instruct the morphological and functional 

differentiation of presynaptic terminals. Therefore, the signaling cascades that link synaptic 

adhesion to the formation of functional synaptic terminals in mammalian neurons are poorly 

understood.  

Presynaptic terminals are characterized by the accumulation of synaptic vesicles and 

active zones, where regulated neurotransmitter release takes place (Südhof, 2012; Ziv & 

Garner, 2004). A multitude of protein-protein interactions links these components into highly 

specialized macromolecular complexes. While specific contributions of individual active zone 

proteins to synaptic transmission have been identified (Südhof, 2012) the current 

understanding of active zone assembly and the recruitment of synaptic vesicles is much 

more limited. Key insights into this question have been obtained in forward genetic screens 
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in invertebrates (Jin & Garner, 2008; Sigrist & Schmitz, 2011). From this work, two central 

organizers have emerged, called Synapse-defective-1 and -2 (SYD-1 and SYD-2) (Chia et al, 

2012; Hallam et al, 2002; Owald et al, 2010; Sieburth et al, 2005; Zhen & Jin, 1999). 

C.elegans syd-1 and syd-2 mutants show diffuse localization of active zone components and 

synaptic vesicles along axonal processes (Hallam et al, 2002; Zhen & Jin, 1999). The SYD-1 

and SYD-2 proteins couple to surface receptors Syg-1 and PTP-3 (a LAR-related receptor 

tyrosine phosphatase), respectively, and promote presynaptic assembly through ELKS-1 

(Dai et al, 2006; Patel et al, 2006; Patel & Shen, 2009). Genetic experiments suggest that 

SYD-1 acts upstream of SYD-2. Thus, gain-of-function mutations or forced oligomerization of 

SYD-2 can suppress syd-1 phenotypes, indicating that SYD-1 may regulate SYD-2 

oligomeric state (Dai et al, 2006; Taru & Jin, 2011). At the Drosophila neuromuscular junction 

SYD-1 interacts via its PDZ domain with the presynaptic receptor neurexin and coordinates 

pre- and postsynaptic assembly through a trans-synaptic signaling link (Owald et al, 2012). In 

analogy to the invertebrate SYD-2 proteins, their mammalian counterparts, called liprins (for 

LAR-interacting proteins), form oligomeric scaffolds (Hoogenraad et al, 2007; Olsen et al, 

2005) but specific functions in the presynaptic terminal are little understood. Importantly, no 

mammalian SYD-1 orthologues have been characterized, thus, raising the question whether 

an analogous SYD-1/SYD-2 signaling system exists in mammals and if so, whether it has a 

functional contribution to active zone assembly or synaptic vesicle recruitment. 

Here, we identify two previously uncharacterized mouse SYD-1 orthologues that we 

name mSYD1A and mSYD1B. These mammalian SYD1 proteins share sequence homology 

with their invertebrate counterparts but differ significantly in domain organization and in 

signaling properties. Gain- and loss-of-function experiments strongly support a key role in 

presynaptic assembly. mSYD1A function depends on an intrinsically unstructured liprin-

interaction sequence (LIS). The LIS mediates recruitment of mSYD1A to the receptor 

tyrosine phosphatase LAR through direct interactions with the SYD-2 orthologue liprin-α2. 

Finally, we demonstrate that mSYD1A down-regulation impairs multiple trans-synaptic 

signaling systems, establishing mSYD1A as a central regulator of presynaptic differentiation. 

 

Results 

mSYD1A is expressed during the time of synapse formation and associates with 

synaptic membranes  

Based on sequence similarity searches we identified two candidate mouse syd-1 

orthologues: syde1/NP_082151.1 (in the following referred to as msyd1a, for mammalian 
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synapse-defective-1A) and syde2/NP_001159536 (msyd1b) (Figure S1A). The domain 

organization with C.elegans and Drosophila SYD-1 proteins is only partially conserved in the 

candidate mammalian orthologues. The SYD1 proteins share predicted C2 and Rho-GAP 

domains. However, the mammalian SYD1 proteins lack the N-terminal PDZ-domain 

sequences observed in the invertebrate proteins (Figure 1A), a domain critical for trans-

synaptic signaling by Drosophila SYD-1 (Owald et al, 2012). Notably, the mouse genome 

contains no protein with consecutive PDZ, C2 and Rho-GAP domains. mSYD1A and 

mSYD1B resemble invertebrate SYD-1 most closely, followed by Bcr (breakpoint cluster 

region protein)(Figure S1A). However, Bcr differs significantly from SYD-1 proteins due to its 

more complex domain architecture with additional RhoGEF and PH domains. A remarkable 

feature of mSYD1A and mSYD1B is the presence of extensive stretches of N-terminal 

sequences that are predicted to be intrinsically unstructured (Figure 1B, S1B), a property that 

has been hypothesized to endow proteins with an ability to adapt to multiple specific binding 

partners and to contribute to the assembly of macromolecular arrays (Dyson & Wright, 2005). 

In summary, the mSYD1A and mSYD1B proteins do not exactly conform to the invertebrate 

proteins but represent the best candidate SYD-1 orthologues based on sequence 

information.  

Expression of cDNAs encoding HA-epitope tagged mSYD1A and mSYD1B in HEK293T cells 

resulted in proteins with an apparent molecular weight of 100 and 150 kDa, respectively 

(Figure 1C, “cDNA”). An affinity-purified antibody raised against the N-terminus of mSYD1A 

recognized overexpressed mSYD1A but not mSYD1B. Using this mSYD1A-specific antibody 

we confirmed expression of endogenous mSYD1A in lysates of purified cerebellar granule 

cells (GC) and P5 whole brain (Figure 1C). Endogenous mSYD1A exhibited the same 

apparent molecular weight (100 kDa) as the protein expressed from cDNA. Notably, the 

deviation from the size predicted from the primary amino acid sequence (80 kDa) is a 

phenomenon frequently observed for intrinsically unfolded proteins (Tompa, 2002). mSYD1A 

was also detected in HEK293 cells (Figure 1C, “HEK”) demonstrating that the protein is also 

expressed in non-neuronal cells. Specificity of mSYD1A detection was confirmed by RNA 

interference knockdown in HEK293T cells and neuronal cultures, which strongly reduced 

abundance of the 100 kDa immunoreactive band (Figure 1D). Note that small double-

stranded RNAs were applied conjugated to a cell membrane penetrating tag, which allows 

for direct delivery into cultured cells and efficient mSYD1A knockdown in the majority of cells 

(Figure S2A).  

In mouse brain extracts, we observed significant expression of mSYD1A from E14 until 

adult stages (Figure 1E). Cross-reactivity of our antibody with unknown cellular proteins 

precludes an analysis with histological methods. Therefore, we employed subcellular 

fractionation to investigate the localization of endogenous mSYD1A. In P2 mouse brain 
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extracts mSYD1A was enriched in a membrane fraction (P2) (Figure 1F). Notably, a pool of 

mSYD1A was recovered in nuclear fractions (P1). To address whether mSYD1A is found at 

synapses, we isolated synaptosomal membranes from adult mouse brain (Figure 1G). 

mSYD1A was recovered in brain cytosol (S2) but also in the crude purified synaptosomal 

fractions (P2). After lysis of the synaptosomes, similar amounts of mSYD1A were associated 

with the Triton X-100 soluble and insoluble fractions. Finally, we examined the localization of 

epitope-tagged mSYD1A that was overexpressed in cultured cerebellar granule neurons. 

The tagged protein was detected throughout the cell, however, within axons immune-

reactivity was observed in a punctate pattern with a significant fraction of mSYD1A 

accumulations also containing synaptic markers vGluT1 and PSD95 (Figure 1H). In 

combination, these findings demonstrate that mSYD1A is expressed in the developing brain 

with pools of the protein distributed between the cytoplasm, membranes and synaptic 

structures.   

 

mSYD1A is required for synapse assembly 

We tested a requirement for mSYD1A in presynaptic differentiation using RNA 

interference. To measure the density of synaptic terminals along the axon we marked 

synaptic vesicles in a subset of cells by transfection of a synaptophysin-mCherry fusion 

protein (Figure 2A). Postsynaptic elements were visualized by immunostaining for PSD95. 

Morphometric analysis of synaptic markers was performed by a wavelet-based segmentation 

method with a Multidimensional Image Analysis (MIA) module (Figure S2F) (Izeddin et al, 

2012; Racine et al, 2006). This approach enables reliable quantitative assessment of 

synaptic markers. In mSYD1A knockdown neurons, the mean density of synaptophysin-

mCherry-positive puncta was reduced by 39 ± 8 (s.e.m.) % whereas the density of PSD95-

containing structures was not significantly altered (Figure 2B-D). Furthermore, the intensities 

of synaptophysin-mCherry-positive puncta were reduced in mSYD1A knockdown neurons, 

with puncta of higher intensities being less frequent (Figure 2E). When restricting the 

analysis to synaptophysin/PSD95 double-positive structures or when analyzing an 

endogenous synaptic vesicle marker a similar reduction in the accumulation of synaptic 

vesicles was observed (Figure 2D, and see Figure 6C). In comparison to synaptic vesicle 

proteins active zone markers were less severely affected. Munc13-1 distribution was not 

noticeably altered whereas the density of bassoon-positive clusters was slightly reduced in 

mSYD1A knockdown neurons (Figure 2F). Thus, in cerebellar granule cells loss of mSYD1A 

primarily affects the recruitment of synaptic vesicles to synaptic contacts. Notably, mSYD1A 

knockdown did not result in alterations in the length or branching of dendritic trees or an 

overall density of axonal processes in the neuronal cultures (Figure S2A-E). We tested 
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whether function of mSYD1A is specifically required in the presynaptic cell by introducing a 

human, siRNA-resistant form of SYD1A (hSYD1A) into the synaptophysin-mCherry-positive 

cells. Importantly, this was sufficient to rescue the presynaptic terminal and synapse density 

back to wild-type level (Figure 2C,D).  

Recording of miniature EPSCs in mSYD1A knockdown cultures further supported a 

presynaptic phenotype. The mEPSC frequency in knockdown neurons was reduced by 43 ± 

6.4 (s.e.m.) % as compared to controls (Figure 2G). This reduction was rescued by re-

introduction of hSYD1A using lenti-viral infection. We also observed an apparent decrease in 

mEPSC amplitude in mSYD1A knock-down neurons, however, since this was not fully 

rescued by hSYD1A re-expression it remains to be explored whether mSYD1A indeed 

regulates postsynaptic properties.  In combination with the morphological effects on synaptic 

vesicle distribution these experiments demonstrate that mSYD1A controls presynaptic 

differentiation in cultured neurons and is required specifically in the presynaptic cell.  

 

mSYD1A exhibits GAP activity towards RhoA 

To explore mechanisms of mSYD1A function we analyzed its signaling properties. Based 

on sequence comparisons, the invertebrate SYD-1 proteins are thought to contain inactive 

Rho-GAP-like domains (Hallam et al, 2002). By contrast, the mammalian SYD1 sequences 

show a high conservation with the Rho-GAP consensus (Figure S3A). We directly probed 

GAP activity of mSYD1A in intact cells using a FRET-based assay (Itoh et al, 2002) (Figure 

3A). Using a RhoA sensor (Pertz et al, 2006), we observed a significant RhoA inactivation in 

cells expressing mSYD1A. The degree of RhoA inactivation was similar to that observed for 

p50rhoGAP, a well-characterized GAP (Figure 3B,C). Importantly, mutation of the arginine 

finger (Graham et al, 1999) in mSYD1A (R436A) strongly reduced mSYD1A activity 

observed in this assay and no change in FRET was observed when Lin-2/CASK, a protein 

lacking GAP domains, was introduced (Figure 3B,C). 

We further examined the impact of sequence alterations in invertebrate Rho-GAP 

sequences by engineering corresponding mutations into the mammalian mSYD1A protein. 

R436V/N552R mimic C.elegans SYD-1 amino acid alterations from the Rho-GAP consensus, 

specifically in the arginine finger and an asparagine that stabilizes the effector loop of RhoA 

(Hallam et al, 2002; Scheffzek & Ahmadian, 2005). In Drosophila DSYD-1 the same 

asparagine residue is altered to alanine (corresponding mutation in mSYD1A is N552A) 

whereas the arginine finger is preserved (Figure S3A). Both mutant mSYD1A forms lacked 

GAP activity, suggesting that the mutations indeed strongly reduce activity towards RhoA 
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(Figure 3D,E). Therefore, mSYD1A is a functional Rho-GAP whereas amino acid 

substitutions render the GAP domains of invertebrate SYD-1 proteins inactive. 

Neuronal cells undergo characteristic morphological changes in response to 

manipulation of Rho-GTPase activities (Luo, 2000). Expression of C-terminally Myc-tagged 

mSYD1A in cerebellar granule cells led to a significant increase in the dendritic tree of these 

neurons compared to GFP-transfected neurons (Figure 3F). A similar phenotype was 

observed in cells expressing p50rhoGAP, but not in cells expressing mSYD1A containing 

arginine finger mutations (R436A or ΔYRL). Furthermore, we detected a significant increase 

in dendritic branching. These morphological read-outs are consistent with an inactivation of 

endogenous RhoA-dependent contractility by mSYD1A overexpression and support the 

hypothesis that mSYD1A regulates RhoA in primary neuronal cells.  

 

GAP activity of mSYD1A is auto-inhibited by its N-terminal domain 

The functional and morphological differentiation of synapses requires a substantial local 

re-organization of the neuronal plasma membrane and the underlying cytoskeleton. We 

hypothesized that mechanisms should exist that impose spatial and temporal control on the 

GAP activity of mSYD1A during presynaptic differentiation. Therefore, we tested whether the 

N-terminal intrinsically unstructured sequences of mSYD1A might contribute to its functional 

regulation. Deletion of the N-terminal domain (NTD) and C2 domain resulted in a doubling of 

mSYD1A GAP activity (Figure 4A,B). A similar increase was observed when full-length 

mSYD1A was targeted to the plasma membrane with an N-terminal lipid modification (myr-

mSYD1A) suggesting that full-length mSYD1A is in an auto-inhibitory conformation and can 

be activated by the displacement of N-terminal sequences (Figure 4A,B). To further dissect 

the potential auto-inhibitory function of mSYD1A sequences, we generated deletion 

constructs and tested their function in the Rho-GAP assay. These experiments revealed that 

the NTD was required for auto-inhibition of mSYD1A (Figure 4C). When we co-expressed 

NTD and GAP domains as independent polypeptides (Figure 4D), the NTD alone as well as 

the NTD-C2 domain supplied in cis where able to repress activity of the isolated mSYD1A 

GAP domain. In this assay, presence of the C2 domain reduced GAP activity to somewhat 

larger extent than the NTD construct lacking the C2 domain (Figure 4D). Finally, we tested 

whether the inhibition of mSYD1A GAP activity is mediated through protein-protein 

interactions between the NTD and GAP domains in co-immunoprecipitation experiments 

(Figure 4E). Myc-tagged GAP domain was co-immunoprecipitated with the HA-tagged 

NTD,C2 domain. Therefore, the mSYD1A GAP activity is regulated through protein-protein 

interactions with the intrinsically unstructured N-terminal region suggesting that full-length 
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mSYD1A adopts a closed, auto-inhibited conformation. Displacement of the NTD, either by 

truncation or membrane targeting, provides a mechanism for local activation of mSYD1A. 

 

We tested the functional relevance of the characterized mSYD1A subdomains in 

synapse formation using gain-of-function experiments. Overexpression of full-length 

mSYD1A in cultured granule cells resulted in a 64 ± 10 (s.e.m.) % elevation in the density of 

synaptic vesicle clusters and a 38 ± 11 (s.e.m.) % increase in synapse density, defined as 

puncta containing the markers synaptophysin and PSD95. Thus, presynaptic expression of 

mSYD1A is sufficient to stimulate pre- and postsynaptic differentiation. Surprisingly, a 

construct in which the arginine finger was deleted (ΔYRL) retained the ability to elevate 

presynaptic terminal number (Figure 4F). Moreover, a membrane-targeted form of the NTD 

(that lacks the entire C2 and GAP domain sequences of mSYD1A) was sufficient to increase 

presynaptic terminal density and partially co-localized with the synaptic vesicle marker 

vGluT1 in axons (Figure 4F and S3B). While the GAP-domain was not required for driving 

the recruitment of synaptic vesicles it was essential for the concomitant recruitment of 

PSD95 (Figure 4F). Therefore, recruitment of synaptic vesicles downstream of mSYD1A is 

independent of its GAP activity but the further maturation of these incipient sites relies on the 

presence of the GAP domain, presumably through a trans-synaptic signaling mechanism.  

 

mSYD-1A interacts with the active zone protein liprin-α2 

To obtain insight into how the mSYD1A NTD may contribute to presynaptic differentiation 

we sought to identify proteins that interact with this domain. In pull-down assays with purified 

recombinant fragments of liprin-α1, α2 and α4 proteins, we uncovered selective protein-

protein interactions with mSYD1A (Figure 5A-C). We first examined interactions of the N-

terminal coiled-coil domains of liprin-α which was previously reported to bind to ELKS2 (Ko et 

al, 2003b). While we could reproduce this interaction we did not detect any binding of 

mSYD1A to this domain (Figure 5B). By contrast, mSYD1A interacted efficiently with the 

SAM-domains located in the C-terminal half of liprin-α2. The same liprin-α2 SAM-domain 

also exhibited robust binding to Lin-2/CASK (as previously reported (Olsen et al, 2005); 

Figure 4C). Interestingly, liprin-α – mSYD1A interactions were strictly isoform-specific. Liprin-

α2 contains a 37 amino acid insertion located between the first and the second SAM domain 

that is absent in the primary liprin-α1 isoform (Wei et al, 2011; Zürner & Schoch, 2009) 

(Figure 5A). Deletion of these 37 amino acids (SAMΔPQ) abolished binding between 

mSYD1A and liprin-α2 (Figure 5C, see Figure S4A for recombinant proteins used in the pull-

down). Pull-down assays with the liprin-α2 SAM domains and several deletion constructs of 
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mSYD1A showed that the N-terminal domain (NTD) engages in binding to liprin-α2 (Figure 

5D). Interestingly, this liprin binding sequence (LIS) does not resemble any recognizable 

domain structure and more than 87 % of this sequence is predicted to be unstructured 

(protein disorder prediction; http://prdos.hgc.jp).   

We confirmed direct mSYD1A-liprin-α2 protein-protein interaction with purified 

recombinant proteins. Beads loaded with purified liprin-α2-SAM led to a dose-dependent 

recovery of purified mSYD1A NTD whereas no binding was observed to a control protein 

(Figure 5E). In summary, these experiments demonstrate that the N-terminal LIS of mSYD1A 

binds directly to the SAM-domains of liprin-α2 and that these interactions require the liprin-

α2-specific PQ loop insertions.  

 

LAR/liprin-α2-nucleated scaffolding complexes recruit mSYD1A 

The biochemical interactions between mSYD1A and the active zone protein liprin-α2 

raise the question whether mSYD1A and liprin-α2 act in a complex downstream of synaptic 

cell surface receptors, in particular receptor protein tyrosine phosphatases (RPTP) that 

recruit liprins and contribute to synapse formation (Kwon et al, 2010; Takahashi et al, 2011; 

Yoshida et al, 2011). To investigate mSYD1A – liprin-α – LAR complexes in intact cells, we 

co-expressed the proteins in COS7 cells and analyzed their subcellular distribution. When 

expressed alone, liprin-α2 was distributed in clusters throughout the cell, whereas LAR was 

mainly found in intracellular peri-nuclear structures reminiscent of the ER-Golgi/Intermediate-

compartment (Figure 5F). By contrast, mSYD1A was diffusely distributed throughout the 

cytoplasm. Co-expression of mSYD1A and liprin-α2 resulted in recruitment of mSYD1A into 

the liprin-α2 containing structures (Figure 5F). In presence of LAR, liprin-α2 and mSYD1A 

were found concentrated in patches of LAR at the cell surface (Pearson’s coefficient, 0.85 ± 

0.05 (s.d.)), suggesting that these proteins function in a signaling complex (Figure 5G, 

S4B,C). Deletion of the mSYD1A NTD abolished concentration of mSYD1A in the LAR-liprin-

α2 complexes (Pearson’s coefficient 0.19 ± 0.2 (s.d.), Figure 5G). These cellular assays 

demonstrate that mSYD1A is recruited to sub-membrane clusters of liprin-α2 that are 

associated with the cell surface receptor LAR in heterologous cells. 
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mSYD1A regulates presynaptic assembly downstream of multiple trans-synaptic 

signals 

The association of mSYD1A with the active zone protein liprin-α2 and its recruitment to 

the receptor tyrosine phosphatase LAR suggest that mSYD1A may contribute to the 

assembly of presynaptic terminals specifically downstream of protein receptor tyrosine 

phosphatases (Woo et al, 2009). Alternatively, liprin-α2 may be a common regulator 

downstream of multiple neuronal cell surface receptors. To explore this, we stimulated 

presynaptic differentiation by overexpression of the LAR-receptor NGL-3 or neuroligin-1 

(NL1, which promotes presynaptic differentiation through neurexins but does not interact with 

LAR). We monitored the density of vGluT-1-positive synaptic vesicle clusters and the active 

zone marker bassoon (Figure 6). Overexpression of NGL-3 or neuroligin-1 led to a significant 

elevation in the density of vGluT1 and bassoon puncta along the dendrites of transfected 

neurons (Figure 6A,B). Knockdown of mSYD1A significantly attenuated this increase, both 

for cells expressing NGL-3 as well as neuroligin-1 (Figure 6A-C). Furthermore, knockdown of 

mSYD1A led to a reduction in the number of vGluT1 and bassoon puncta formed onto the 

dendrites of GFP-transfected control neurons. Importantly, NGL-3 or NL1 expression levels 

were not significantly different in siSYD1A- versus siCNT-treated cultures (Figure 6D). These 

findings demonstrate that in cerebellar granule cells, mSYD1A acts in a common presynaptic 

pathway downstream of at least two different synaptic adhesion complexes and represents a 

novel regulator of presynaptic differentiation. 

 

Discussion 

While recent studies have identified a number of trans-synaptic signaling systems that 

promote the formation of synapses in the central nervous system, there is a significant gap of 

knowledge with respect to the cytoplasmic signal transducers that control synaptogenic 

signaling (Shen & Scheiffele, 2010). Several lines of evidence obtained in this study support 

a function for mSYD1A as a novel presynaptic regulator of synapse assembly: (a) Elevation 

of mSYD1A protein level stimulates synaptic differentiation, (b) suppression of mSYD1A 

impairs presynaptic differentiation and synaptic transmission; (c) mSYD1A function is 

required in the presynaptic neuron and endogenous mSYD1A is recovered in synaptosome 

fractions; (d) mSYD1A interacts directly with liprin-α proteins via an intrinsically unstructured 

liprin-interacting sequence (LIS), and (e) the mSYD1A LIS alone stimulates presynaptic 

differentiation without modifying postsynaptic scaffolds.  
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Considering that mammalian and invertebrate SYD-1 proteins share significant 

sequence homology only in their C2 and GAP domains it was a critical question whether 

mSYD1A can indeed be considered a functional SYD-1 orthologue. We uncovered functional 

and biochemical properties of mSYD1A that parallel hallmarks of SYD-1 activity deduced 

from genetic studies in invertebrates, thus supporting the notion that mSYD1A is indeed a 

bona fide orthologue. However, our analysis also reveals several striking differences 

between mSYD1A and invertebrate SYD-1 proteins. We identified an intrinsically 

unstructured LIS in mSYD1A as key determinant for presynaptic differentiation. Liprin-α 

binding to the LIS requires a specific PQ-loop insertion in liprin-α2. Notably, this insertion is 

not present in the invertebrate SYD-2s, suggesting that this biochemical interaction is unique 

for the vertebrate proteins.  Trans-synaptic signaling by Drosophila SYD-1 requires the PDZ-

domain of the protein (Owald et al, 2012) which is absent in mSYD1A. By contrast, for the 

mammalian protein trans-synaptic signaling relies on its Rho-GAP domain. Thus, in 

mammalian SYD1 proteins certain divergent mechanisms of synaptic function have evolved. 

 

Identification of an intrinsically unstructured region in mSYD1A as presynaptic 

scaffolding regulator 

Multiple Rho-GTPase regulators (GAPs and GEFs) have been previously recognized as 

regulators of synapse size and tethering of synaptic vesicles at presynaptic release sites 

(Ball et al, 2010; Frank et al, 2009; Sun & Bamji, 2011). While mSYD1A is an active GAP, 

regulation of presynaptic terminal differentiation downstream of mSYD1A does not require its 

GAP activity. Instead, the LIS is critical for mSYD1A-stimulated synapse assembly. Liprin-αs 

contain an N-terminal liprin-homology domain, which drives oligomerization of the protein, a 

key step in presynaptic terminal assembly (Taru & Jin, 2011; Zürner & Schoch, 2009). 

Considering that the mSYD1A LIS is sufficient to elevate presynaptic terminal density in 

cerebellar neurons, we hypothesize that liprin-binding through these sequences results in the 

displacement of the liprin-α SAM domains and subsequent liprin-homology-domain 

dependent oligomerization. The mSYD1A - liprin-α scaffold would then serve as an 

organizing platform for active zone components that interact directly with the N-terminal 

liprin-α coiled-coil domains, such as ELKS, GIT, and RIM (Ko et al, 2003b; Schoch et al, 

2002). We observed an impairment of presynaptic vesicle recruitment to synaptic terminals 

as a primary defect resulting from mSYD1A loss-of-function whereas mutation of C.elegans 

SYD-1 results in severe disruption of both, synaptic vesicle clustering and active zone 

assembly (Dai et al, 2006; Patel et al, 2006). The more modest alterations in active zone 

markers in response to mSYD1A down-regulation suggest that additional pathways control 

active zone components in mammalian neurons.  



submitted manuscript  2. Results 

	
   48 

In addition to its ability to recruit liprin-α, the LIS contributes to an auto-regulatory 

mechanism of the mSYD1A Rho-GAP domain, where displacement of the LIS results in an 

elevation of GAP activity. At least in our gain-of-function experiments, the mSYD1A Rho-

GAP domain was not required for presynaptic assembly, but played a critical role in the 

recruitment of postsynaptic components. Thus, two different domains of mSYD1A regulate 

presynaptic assembly and trans-synaptic signaling. 

 

mSYD1A is a downstream effector of multiple presynaptic receptors 

Presynaptic differentiation in the mammalian central nervous system relies on multiple 

parallel signaling pathways that may converge on common signal mediators (Shen & 

Scheiffele, 2010). We probed whether loss of mSYD1A impacts the formation of presynaptic 

terminals downstream of two different classes of synaptogenic trans-synaptic links, the NGL-

3/LAR and neurexin/neuroligin adhesion complexes. We observed a similar reduction in 

presynaptic differentiation in response to either synaptogenic trigger, indicating that mSYD1A 

is a common mediator in both trans-synaptic signaling systems. For LAR, we directly 

demonstrated recruitment of mSYD1A/liprin-α2 complexes in heterologous cells, whereas a 

mechanism for coupling of mSYD1A to mammalian neurexins (the neuroligin-1 receptor) 

remains to be explored. Regardless, our data indicate that mSYD1A is a common mediator 

of multiple synaptogenic signals that controls presynaptic differentiation in mammalian 

neurons.  
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Figure 1 – Identification and characterization of mSYD1A 
(A) Predicted domain structure of C.elegans SYD-1, Drosophila DSYD-1, mouse mSYD1A and mouse 
mSYD1B. (B) The N-terminal region of mSYD1A is predicted to be instrinsically unstructured 
(http://prdos.hgc.jp/cgi-bin/top.cgi). Residues above a threshold of 0.5 are predicted to be disordered. 
(C) Western blot with anti-mSYD1A antibodies on HA-tagged mSYD1A and mSYD1B overexpressed 
in HEK293T cells (HA-1A, HA-1B), untransfected HEK293T cells, cerebellar granule neurons (GC) 
and P5 mouse brain lysate (brain). The star marks unspecific bands. Note that higher amounts of cell 
lysates were loaded for detection of endogenous proteins to enable direct comparison with the protein 
expressed from cDNA. (D) The 100 kDa mSYD1A-immuno-reactive band is selectively lost after 
treatment of cultured HEK293T cells and cortical neurons with syd1a specific siRNAs (si1A) but not 
non-targeting control siRNAs (siCNT). (E) mSYD1A immune-reactivity is detected in whole brain 
lysate between E14 and adult. (F) Fractionation of P2 mouse brain lysate. H: homogenate, P1: nuclei 
and intact cells, PNS: post-nuclear-supernatant, P2: membrane fraction, S2: cytosolic fraction. (G) 
Synaptosome fractionation of adult mouse brain. 10 µg of proteins were loaded for each fraction. H: 
homogenate; Syn.: synaptosomes; TX-sol.: Triton X-100 soluble synaptic proteins; TX-insol.: Triton X-
100 insoluble synaptic protein complexes. (H) Overexpressed mSYD1A with a C-terminal myc-epitope 
tag is detected in soma, axon and dendrites of cultured cerebellar granule cells. In the axon, mSYD1A 
shows a punctate distribution partially overlapping with vGluT1/PSD95 puncta (scalebar left = 20 µm, 
scalebar right = 10 µm). 
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Figure S1 – Sequence alignments 
(A) Phylogenetic tree of mouse proteins identified in protein homology searches with C.elegans SYD-1 
against the non-redundant protein database NCBI. Only the proteins with the closest similarity to SYD-
1 are shown. The Phylogram was created based on the ClustalW2 
(http://www.ebi.ac.uk/Tools/msa/clustalw2) primary amino acid sequence alignment of SYD-1, DSYD-
1, mSYD1A, mSYD1B, hSYD1A, hSYD1B, chSYD1 (chick), and fSYD1 (zebrafish). Branch lengths 
are proportional to inferred evolutionary change. (B) The N-terminal domain of mSYD1A is predicted 
to be instrinsically unstructured. Disordered residues are shown in red (http://prdos.hgc.jp/cgi-
bin/top.cgi). C2 and RhoGAP domains are shown in blue and yellow. 
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Figure 2 – Knockdown of mSYD-1A decreases synaptic vesicle clustering  
(A) Global knockdown of mSYD1A is combined with selective marking of a subset of cerebellar 
granule cells using eGFP and synaptophysin-mCherry. For selective presynaptic rescue of mSYD1A, 
siRNA-resistant hSYD1A is expressed in a subset of cells. (B) Knockdown of mSYD1A was verified by 
Western-Blot in untreated (none), control (siCNT) and mSYD1A knockdown (si1A) granule cell 
cultures. (C) Accumulation of synaptophysin-mCherry (physin) and endogenous PSD95 along 
transfected neurons in control (siCNT) and mSYD1A knockdown (siSYD1A) neurons. Rescue of the 
knockdown was achieved by transfection of the siSYD1A-resistant human SYD1A (hSYD1A) 
(scalebar = 10 µm). (D) Quantitative analysis of synaptic markers. The number of physin or PSD95-
positive puncta per 10 µm axon length were counted, as well as the number of physin/PSD95 double 
positive puncta (n=45 cells; *: p<0.05; ***: p<0.0001; ANOVA and Tukey’s multiple comparison test; 
mean ± s.e.m.). (E) Cumulative distribution of staining intensity for synaptophysin-mCherry-positive 
puncta in siCNT and siSYD1A-treated neurons. (F) Number of munc13-1+, bassoon+ and munc13-
1/PSD95, bassoon/homer double positive puncta per 10 µm axon length (n=45 cells; ns: not 
significant; ***: p=0.0005; two-tailed t-test; mean ± s.e.m.). (G) Recordings of miniEPSC frequency 
and miniEPSC amplitude from cerebellar granule cells infected with a lentivirus driving expression of 
GFP or GFP and hSYD1A (rescue) and treated with siCNT or siSYD1A (n=30 cells; *: p<0.05; **: 
p<0.001; ***: p<0.0001; ns: not significant; non-parametric ANOVA and Dunn’s multiple comparison 
test; mean ± s.e.m.). 
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Figure S2 – Knockdown of mSYD1A with siRNA 
(A) Cerebellar granule cells treated with dye-conjugated siRNAs (green) and stained with Hoechst 
(magenta) (scalebar = 10 µm). (B) Axonal density after application of control (siCNT) and SYD1A 
(si1A) siRNA to cerebellar granule cells transfected with GFP and stained for Tau1 (scalebar = 
50 µm). (C) The Tau1 positive area in siRNA-treated neurons (n=20, ns: not significant; two-tailed t-
test; mean ± s.e.m.). (D) Knockdown of mSYD1A does not change dendritic morphology (scalebar = 
20 µm). (E) Analysis of total dendritic length and branch points in neurons treated with siCNT or 
siSYD1A, overexpressing GFP or hSYD1A (n=45 cells; *: p<0.05; **: p<0.001; ***: p<0.0001; ANOVA 
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and Tukey’s multiple comparison test; mean ± s.e.m.). (F) Wavelet segmentation of a typical image, 
used for quantification of physin+ and PSD95+ puncta in figure 2. Left column displays the original 
images. Right column shows the result of puncta identification performed by wavelet segmentation. A 
threshold of 15 (synaptophysin-mCherry) or 35 (PSD95) times the noise standard deviation of the 
image was applied on the third wavelet map (scalebar = 10 µm). 
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Figure 3 – mSYD1A shows GAP activity towards RhoA 
(A) FRET sensor for the measurement of GAP activity towards RhoA. HEK293T cells were co-
transfected with expression constructs for RhoA sensor and mSYD1A or p50rhoGAP. The emission 
spectra for excitation at 433 nm were normalized by subtraction of signals obtained with control cells 
lacking sensor expression. RBD: Rho-binding domain of the effector rhotekin. (B) Emission ratios 
(Intensity 530nm/Intensity 475nm) from FRET sensor assays (n=12 replicates; **: p<0.001; ***: 
p<0.0001; ns: not significant; ANOVA and Tukey’s multiple comparison test; line at median, whiskers: 
min to max). (C,E) Expression of the RhoA sensor and the co-expressed proteins (anti-HA and anti-
Myc antibodies) were verified by Western-Blotting after conducting the FRET measurements. (D) 
Emission ratio (Intensity 530 nm/Intensity 475 nm) observed for mSYD1A constructs with GAP domain 
mutations (n=12 replicates; ***: p<0.0001; ANOVA and Tukey’s multiple comparison test; line at 
median, whiskers: min to max). (F) Morphology and total dendritic length of cerebellar granule cells 
after overexpression of GFP, C-terminally Myc-tagged mouse SYD1A or p50rhoGAP (n=40 cells; **: 
p<0.001; ***: p<0.0001; ANOVA and Tukey’s multiple comparison test; mean ± s.e.m.; scalebar = 
20 µm).  
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Figure S3 – Alignment of domains and localization of overexpressed mSYD1A 
(A) Alignment of RhoGAP domains of SYD-1 from C.elegans, Drosophila, mouse mSYD1A, mSYD1B 
and human p50rhoGAP (ClustalW2). Arrows indicate the arginine finger (red) as well as the switch I 
region (green), which are critical for efficient GTP hydrolysis (Scheffzek & Ahmadian, 2005). (B) 
Overexpressed Myr-NTD(mSYD1A) in cerebellar granule cells partially overlaps with vGluT1/PSD95 
puncta (scalebar = 10 µm). 
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Figure 4 – mSYD1A GAP activity is auto-inhibited by its N-terminal domain 
(A) mSYD1A deletion constructs. N-terminal lipid modification (myristoylation and palmitoylation) is 
marked in red. (B-D) Emission ratios (Intensity 530 nm/Intensity 475 nm) oberserved for full-length 
mSYD1A and deletion constructs. For GAP+NTD and GAP+NTD-C2, two mSYD1A deletion 
constructs were co-expressed in the same cell. (n=12 replicates; **: p<0.001; ***: p<0.0001; ANOVA 
and Tukey’s multiple comparison test; line at median, whiskers: min to max). (E) Co-
immunoprecipiation of proteins co-transfected in HEK293T cells. Anti-HA immunoprecipitates (IP) 
were probed with anti-HA and anti-Myc antibodies. (F) Overexpression of mSYD1A truncation 
constructs in neurons. Number of physin or PSD95 puncta per 10 µm axon length in cerebellar 
granule cells overexpressing GFP or mSYD1A constructs (n=30 cells; *: p<0.05; **: p<0.001; 
***: p<0.0001, ANOVA and Tukey’s multiple comparison test; mean ± s.e.m.). 
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Figure S4 –  Liprin α2 – mSYD1A interaction 
(A) Recombinant GST- or His-tagged liprin-α proteins used in pull-down assays. (B) Colocalization of 
LAR and Myc-tagged liprin-α2 in COS7 cells. For surface staining, LAR was detected in non-
permeabilized cells. In the same incubation, rabbit anti-Myc-antibody against Myc-tagged liprin-α2 was 
applied to confirm the integrity of the plasma membrane. Subsequently, intracellular liprin-α2 was 
detected after permeabilization with a mouse anti-Myc antibody. (C) Colocalization analysis between 
mSYD1A and LAR, and liprin-α2 and LAR (n=10 cells; ***: p<0.0001; ANOVA and Tukey’s multiple 
comparison test, mean ± s.d.). 
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Figure 5 – mSYD1A interacts with liprin-α2  
(A) Domain organization of liprin-α fragments used in pull-down assays, and protein interaction sites. 
LH1 and LH2 denote highly conserved liprin homology regions. Liprin-α contains an alternative splice 
insertion between the first and the second SAM domain (PQ-loop), which is absent from the most 
abundant liprin-α1 isoform. (B) Beads containing recombinant liprin-α1, α2, and α4 coiled-coil domain 
fragments (liprin-CC) were incubated with HEK293T cell lysates containing overexpressed mSYD1A 
or ELKS2. Recombinant GST was used as negative control (GST). Equivalent fractions of input and 
bound proteins were analyzed by Western blotting. (C) Beads containing liprin-α2 SAM domains with 
(α2-SAM) or without the PQ-loop (SAM DPQ) were incubated with HEK293T cell lysates containing 
overexpressed mSYD1A, CASK or mint1. (D) Beads containing liprin-α2 SAM domains were 
incubated with HEK293T cell lysates containing overexpressed mSYD1A deletion constructs. (E) 
Binding assay with purified recombinant liprin-α2 SAM and increasing amounts of purified recombinant 
N-terminal domain of mSYD1A (NTD). (F) COS7 cells single, double or triple transfected with 
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expression constructs for liprin-α2, LAR, and/or mSYD1A. Upper rows show entire cells (scalebar = 
10 µm), lower rows show enlargement of sub-membrane clusters (scalebar = 5 µm). (G) Quantitative 
colocalization analysis of LAR, liprin-α2, mSYD1A co-expressing cells. Scatter plots display pixel 
values of liprin-α2 and mSYD1A, or liprin-α2 and mSYD1A GAP immune-reactivities. The mean 
Pearson‘s coefficient provides a quantitative measure for the distribution of the observed puncta (n=10 
cells; two-tailed t-test, ***: p<0.0001; mean ± s.d.).  
 
 
 
 
 

 
 
 
Figure 6 – mSYD1A is a general mediator of presynaptic assembly 
(A,B) Cerebellar granule cells treated with control (siCNT) or mSYD1A (siSYD1A) siRNAs transfected 
with expression vectors for GFP, neuroligin-1 or NGL-3 (green). Presynaptic terminals are visualized 
by immunostaining for endogenous vGluT1 (red) and bassoon (blue). Scalebar overview = 20 µm, 
scalebar segment = 5 µm.m(C) Quantification of the density of vGluT1+ and bassoon+ puncta along 
the dendrites of GFP, neuroligin-1 (NL1) or NGL-3 expressing neurons (n = 25 cells; *: p<0.05; **: 
p<0.001; ***: p<0.0001; ANOVA and Tukey’s multiple comparison test, mean ± s.e.m.). (D) The 
average staining intensity of the transfected proteins does not significantly change after application of 
siRNA against mSYD1A (n = 25 cells, ns: not significant; ANOVA and Tukey’s multiple comparison 
test, mean ± s.e.m.). 
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Experimental Procedures 

DNA constructs 

Mammalian mSYD1A expression vectors contained the CMV enhancer and chicken 

beta-actin promoter (pCAGGS). For detection of overexpressed protein, either a N-terminal 

HA-tag or a C-terminal Myc-tag was inserted. The following mSYD1A fragments were used 

(in amino acids): NTD: 1-267, NTD+C2: 1-369, C2+GAP: 267-737, GAP: 411-737. Point 

mutations in the GAP domain were introduced with Quick Change Multi Site Directed 

Mutagenesis Kit (Agilent-Stratagene). In myristoylated and palmitoylated full-length mSYD1A 

(myr-SYD1A), the minimal MARCKS-3/4 Cys (MGCCFSKT) sequence was added to the N-

terminus. For lentiviral delivery of hSYD1A, a lentiviral vector with a dual human synapsin 

promoter was used to express GFP and hSYD1A(Gascon et al, 2008). For HA-LAR, the 

transmembrane and the cytoplasmic domain of mouse LAR (amino acids: 1236 – 1898) were 

inserted in frame with an N-terminal HA-tag into pDisplay. The following previously published 

DNA constructs were used: mouse liprin-α1, -α2, -α4 coiled-coil domains (liprin-α-CC, amino 

acids α1: 351-673, α2: 369-696, α4: 185-419) (Ko et al, 2003b), His-tagged human liprin-α2 

SAM domains (liprin-α2-SAM, amino acids: 866-1258) and liprin-α2 SAM ΔPQ (as above but 

lacking amino acids 976 – 1012) (Wei et al, 2011), RhoA sensor and p50rhoGAP (Pertz et al, 

2006), epitope-tagged liprin-α2 (Zürner & Schoch, 2009), Myc-CASK (Borg et al, 1998) and 

ELKS2-Myc (Ohtsuka et al, 2002). 

Antibodies 

Rabbit polyclonal antibodies against mSYD-1A were raised against a synthetic peptide 

(MAEPLLRKTFSRLRGREK) and affinity purified on the antigen. Anti-pan-neuroligin was 

described previously (Taniguchi et al, 2007). Rabbit anti-munc18 was a gift from Matthijs 

Verhage (de Vries et al, 2000). Other antibodies were purchased from commercial sources: 

mouse anti-actin (clone AC-40, Sigma-Aldrich), rabbit anti-histone H3 (#96715, Cell 

Signaling), mouse anti-PSD95 (#73-028, Neuromab), mouse anti-VAMP2 (clone 69.1, 

Synaptic Systems), anti-vesicular glutamate transporter 1 (vGluT1, #1353303, Synaptic 

Systems), rabbit anti-GAPDH (#E1C604, Enogene), mouse anti-CASK (#75-000, 

Neuromab), rabbit anti-munc13-1 (#126103, Synaptic Systems), mouse anti-beta-tubulin (E7, 

DSHB), rabbit anti-ELKS 1b/2 (#143003, Synaptic Systems), rat anti-HA (clone 3F10, Roche 

Applied Science), rabbit anti-c-myc (#sc-789,Santa-Cruz), mouse anti-flag (#F1804, Sigma), 

rabbit anti-homer (#160003, Synaptic Systems), mouse anti-bassoon (#GTX13249, 

GeneTex). Secondary antibodies conjugated to cyanine dyes or Alexa 488 or 643 (Jackson 

ImmunoResearch and Invitrogen) were used for visualization in immunostainings. 
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Biochemical Fractionation Methods 

Cells or brain tissues were lysed in 20 mM Tris-HCl pH 8.0, 10 % Glycerol, 150 mM 

NaCl, 1 % Triton X-100, 0.1 % SDS and complete protease inhibitor (Roche Applied 

Science) and soluble fractions were analyzed by immunoblotting. Signals were acquired 

using an image analyzer (LAS-3000; Fujifilm). 

For fractionation brain tissue was homogenized in 10 volumes of buffer A [10 mM 

HEPES pH 7.4, 2 mM EDTA, 1 mM MgCl2, 1 mM DTT, complete protease inhibitor (Roche 

Applied Science)]. The homogenate was centrifuged (2900 x g for 20 min) to yield post-

nuclear supernatant (PNS) and pellet P1. PNS was centrifuged (100,000 x g, 2 h) resulting in 

pellet P2 and supernatant S2. 

For synaptosome isolation three adult mouse brains were homogenized with a motor 

driven homogenizer in 0.32 M sucrose, 1 mM NaHCO3, 1mM MgCl2, 0.5 mM CaCl2, 

containing complete protease inhibitor (Roche) (10 ml / 1 g of tissue). The homogenate (H) 

was centrifuged (1400 x g, 10 min) resulting in the pellet P1 and the supernatant S1. 

Centrifugation of S1 (13,800 x g, 10 min) resulted in the crude synaptosomal pellet (P2) and 

a cytosolic supernatant. P2 was resuspended in 1 mM NaHCO3, 0.32 M sucrose and loaded 

on top of a sucrose gradient (0.8 M, 1 M, 1.2 M sucrose) and centrifuged at 82,500 x g for 2 

h. The synaptic plasma membranes (SPM) were collected at the interface between the 1.0 M 

and 1.2 M sucrose layers. The SPM fraction was extracted for 15 min at 4 °C in 12 mM Tris-

HCl pH 8.1, 0.32 M sucrose, 1 % Triton X-100 and centrifuged at 32,800 x g for 1 h to yield 

Triton X-100 soluble and insoluble fractions. 

Rho-GAP Assays 

Förster-resonance energy transfer (FRET) assays were performed as described 

previously (Itoh et al, 2002). Briefly, HEK293T cells were transfected with the RhoA sensor 

(Pertz et al, 2006) and expression constructs of interest. After 48 h cells were suspended in 

1x PBS. The emission spectrum between 450-600 nm after excitation with 430 nm light was 

measured in a Fluorescence Spectrophotometer (FP-6500, Jasco). Following the 

measurement cells were lysed for protein expression analysis.  

Pull-Down Assays 

The following proteins were purified from E. coli and coupled to Glutathione Sepharose 

(GE Healthcare) or Ni-NTA (Qiagen) Agarose beads: GST-Liprin-α1-CC, GST-Liprin-α2-CC, 

GST-Liprin-α4-CC, 6xHis-Liprin-α2-SAM or 6xHis-Liprin-α2-SAM ΔPQ.  HEK293T cell 

lysates containing the protein of interest were lysed in 50 mM HEPES pH 7.4, 1 % Triton X-
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100, 0.1 % SDS, 10 % glycerol, 1.5 mM MgCl2, 1 mM EDTA, 100 mM NaF, 1 mM Na3VO4, 

complete protease inhibitor (for pull down with liprin-CC) or 20 mM Tris-HCl pH 8.0, 1 % 

Triton X-100, 10 % glycerol, 100 mM NaCl and complete protease inhibitor (for pull-down 

with liprin-SAM). 10 µl of beads coupled to the recombinant proteins were incubated with the 

lysate for 5 h at 4 °C. The beads were washed and bound proteins analyzed by 

immunoblotting.  

Cellular Assays 

For co-aggregation experiments COS7 cells were transiently transfected (Fugene, 

Roche) and proteins were expressed for 48 h. Cells were fixed with 4 % PFA, 4 % sucrose in 

100 mM sodium phosphate buffer (pH 7.4) for 15 min at room temperature. Immunostaining 

was done using standard procedures.  

Dissociated cultures of mouse cerebellar granule cells were prepared from P5-P7 pups 

as previously described (Dean et al, 2003). Knockdown of msyd-1a was performed on day 1 

(replenished at day 4) with 0.75 µM Accell SMART pool siRNA against msyd-1a or a non-

target control siRNA (Dharmacon). At day 7, cells were fixed with 4 % paraformaldehyde, 

containing 4 % sucrose in 100 mM phosphate buffer (pH 7.4). After antibody staining the 

coverslips were mounted with ProLong (Invitrogen).  

Electrophysiology 

Whole cell patch clamp recordings were performed on DIV 8-11 cerebellar granule cell 

cultures. For rescue, the lentivirus was added at DIV 3. The extracellular solution (pH 7.3) 

contained the following: 145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM Glucose, 

25 mM Sucrose and 5 mM HEPES. For all the experiments 300 nM TTX, 0.1 mM Picrotoxin 

and 0.1 mM AP5 were used in the solution. The internal solution contained the following: 

130 mM CsCl, 10 mM HEPES, 10 mM EGTA, 10 mM Phosphocreatine, 2 mM MgATP, 5 mM 

NaCl, pH 7.25 and 298 mOsm. Data was analyzed using Axograph X software and the 

mEPSCs were detected using a template based detection algorithm package.  

Image Acquisition and Analysis 

Images were acquired on a LSM5 confocal microscope (Zeiss, Germany) and assembled 

using Adobe Photoshop and Illustrator software.  For the analysis of dendritic arborization, 

soma and dendrites of the neurons were traced and analyzed with Neurolucida (MBF 

Bioscience).  
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Co-localization analysis of proteins in COS cells was performed by the Pearson’s 

coefficient method computed on fluorograms, using the JaCOP plugin in ImageJ (Bolte & 

Cordelieres, 2006).  

Quantification of pre- and postsynaptic proteins in granule cells was performed by a 

wavelet-based segmentation method, using the Multidimensional Image Analysis module 

(Izeddin et al, 2012; Racine et al, 2006), run in Metamorph software (Molecular Devices, 

USA). Puncta on different channels were segmented and counted by thresholding the third 

wavelet map with a value ranging from 15 to 35 times the noise standard deviation. 

Some images for figures were processed by deconvolution using a theoretical PSF, a 

signal/noise ratio of 10 for each channel and 30 iterations of the deconvolution algorithm 

(Huygens remote manager v2.1.2). 

Statistical Analysis 

Statistical Analysis was done with Prism software (GraphPad software). Data was tested 

for normality using the Kolmogorov-Smirnov normality test. Normally distributed data was 

analyzed for statistical differences with the t-test (pairwise comparisons) or ANOVA and 

Tukey’s for multiple comparisons. For data that was not normally distributed, non-parametric 

ANOVA and Dunn’s multiple comparison test were used.  
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2.3	
  Additional	
  data	
  on	
  mSYD1A 
In the following section, I will describe additional data that we have obtained during our 

analysis of mSYD1A. Due to space constraints, we could not include this information in the 

submitted manuscript. However, the additional data relates to the results that are presented 

in the manuscript and is important to fully understand mSYD1A distribution and function.  

 

2.3.1	
  Invertebrate	
  SYD-­‐1	
  proteins	
  show	
  residual	
  GAP	
  activity	
  

In our analysis of the GAP activity of mSYD1A, we compared mSYD1A to its invertebrate 

orthologues. As shown in figure S3 in the manuscript, C.elegans and Drosophila SYD-1 

sequences deviate from the consensus RhoGAP sequence in two, respectively one amino 

acids that are important for RhoGAP function (Scheffzek & Ahmadian, 2005). The first of 

these two amino acids is an arginine (termed “arginine finger”), which is important for efficient 

catalysis of GTP to GDP and is changed to valine in the C.elegans SYD-1 sequence. During 

RhoGAP/GTPase complex formation, the arginine finger is positioned in the active site of the 

GTPase and stabilizes the transition state. The second amino acid is an aspartic acid that 

belongs to the “switch I” region of the GAP protein, which is supposed to stabilize the 

RhoGAP/GTPase complex. In the C.elegans SYD-1 sequence, the aspartic acid is changed 

to arginine, whereas in Drosophila it is changed to alanine. To investigate the consequences 

of these amino acid changes, we introduced them into the mSYD1A sequence (R436V, 

N552R for C.elegans and N552A for Drosophila). In the FRET assay, these proteins did not 

show any detectable GAP activity towards RhoA (figure 9A and figure 3 of the manuscript). 

However, we also introduced the same amino acid changes into a deletion mutant of 

mSYD1A, consisting only of its GAP domain. In the WT conformation, the GAP domain alone 

shows stronger GAP activity than the full-length construct, which is due to the absence of the 

auto-inhibitory N-terminal domain. Surprisingly, the amino acid changes did not render the 

GAP constructs inactive. Instead, they exhibited considerable GAP activity towards RhoA 

(figure 9B). The level of GAP activity was reduced compared to the WT mSYD1A GAP 

construct, but similar to the mSYD1A full-length construct. This suggests that proteins 

containing these amino acid changes in their GAP domain still have the potential to act as 

GAP proteins.  

In figure 3 of the manuscript, we had used a full-length mSYD1A construct, containing an 

alanine in place of the arginine finger (R436A) as a negative control, since it did not show 

any detectable GAP activity. However, the GAP construct containing this mutation (R436A), 

also showed some residual GAP activity. Former reports on p50rhoGAP have shown that the 

arginine is crucial for efficient hydrolysis, but residual GAP activity can still be detected after 
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mutation to alanine (Graham et al, 1999), which explains the GAP activity detected for GAP 

R436A. These results suggest that the C.elegans and Drosophila SYD-1 sequences have 

the potential to act as RhoGAP proteins, despite the amino acid changes and strengthens 

the evolutionary conservation of SYD-1 from C.elegans to mouse. However, if the 

invertebrate SYD-1 proteins are indeed functional GAPs has to be determined in a different 

assay.  

In order to analyze the functional role of mSYD1A in neurons, we overexpressed 

mSYD1A in cerebellar granule cells (figure 3 of the manuscript). However, transfection of the 

N-terminally HA-tagged mSYD1A constructs that had been used in the FRET assay did not 

result in a detectable expression of the protein in neurons. Therefore, we changed the N-

terminal HA-tag to a C-terminal Myc-tag. These constructs yielded significant protein 

expression in neurons and their overexpression led to a change in the morphology of the 

dendritic tree, resulting in longer and more branched dendrites (figure 3 of the manuscript). 

An increase in the dendritic tree is indicative for an increased inactivation of RhoA, 

suggesting that the GAP activity of mSYD1A is responsible for the observed phenotype. 

However, overexpression of the arginine finger mutation constructs (RA and ΔYRL) did not 

completely abolish this phenotype, but rather led to a less pronounced increase in dendrite 

length. To analyze if the position of the tag has an influence on mSYD1A GAP activity, we 

carried out another FRET assay. Surprisingly, the C-terminally tagged R436A construct 

exhibited detectable GAP activity (figure 9C), while the N-terminally HA-tagged R436A 

construct had not shown any GAP activity before (figure 9A).  For the ΔYRL construct, we 

could not detect any significant differences compared to control, but a trend towards GAP 

activity was present. This result explains the intermediate phenotype for the dendritic 

branching and suggests that the position of the tag has an influence on the activity of the 

protein. Possibly, the C-terminal tag prevents a complete folding of the protein and therefore 

leaves mSYD1A in a more active state than with a N-terminal tag.   
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Figure 9 – GAP activity of mSYD1A mutation constructs 
Emission ratios (Intensity 530nm/Intensity 475nm) for FRET assays. (A) Full-length constructs of 
mSYD1A that mimic the amino acid changes of C.elegans (R436,N552) and Drosophila (N552) GAP 
domains do not show any detectable GAP activity. (B) Deletion constructs of mSYD1A that only 
contain the GAP domain show GAP activity after mutation of R436 and N552. (C) Change oft he N-
terminal HA-tag to a C-terminal Myc-tag leads to an increase in GAP activity for R436. ΔYRL: deletion 
of the arginine finger and the two flanking amino acids in the GAP domain of mSYD1A. Expression of 
the FRET sensor construct and co-expressed proteins was confirmed by Western-Blot analysis (n=12 
replicates; *: p<0.05; **: p<0.001; ***: p<0.0001; ns: not significant; ANOVA and Tukey’s multiple 
comparison test; line at median, whiskers: min to max). 

 

2.3.2	
  Interaction	
  between	
  mSYD1A,	
  liprin-­‐a2	
  and	
  LAR	
  

In our search for interaction partners for mSYD1A, we could show that the N-terminal 

domain of mSYD1A binds to the SAM domains of liprin-α2 (figure 5 of the manuscript). 

Furthermore, we could show that the NTD is sufficient to increase synaptic vesicle clustering 

upon overexpression in neurons. The NTD of mSYD1A consists of a stretch of 267 amino 

acids and is predicted to be intrinsically unstructured. Mapping down the interaction site 

between liprin-α2 and mSYD1A, could help us to get a better insight into the mode of action 

of this sequence and would also enable us to use more defined deletion constructs in our 

overexpression experiments in neurons. Therefore, we subdivided the NTD into several parts 

and asked if the resulting segments are sufficient for binding to liprin-α2. Furthermore, 

domain prediction programs detect a 124 aa proline-rich sequence within the NTD, which we 

also tested for sufficiency for liprin-binding. The only deletion construct, which repeatedly 

showed a strong binding to the SAM domains of liprin-α2, consisted of the last two thirds of 

the NTD (amino acids: 88 – 267) (figure 10A,B). All other constructs did not bind to liprin-α2 

in the pull-down assay. Having identified the last two thirds of the NTD to be sufficient for 
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liprin-binding, we next wanted to test if it is also required. Since a construct, only consisting 

of the first third of the NTD (aa: 1 – 87) does not yield significant protein expression in 

HEK293T cells, we used a construct, consisting of the NTD and the C2 domain of mSYD1A, 

with deletion of amino acids 124 – 262. Surprisingly, also this construct exhibited binding to 

liprin-α2 in the pull-down assay, suggesting that multiple sequence elements of mSYD1A, 

and not only amino acids 124 – 262, are involved in binding to liprin-α2 (figure 10C).  

 

Figure 10 – Interaction between the N-terminal domain of mSYD1A and liprin-α2 
(A) An N-terminal deletion construct of mSYD1A that only consists of the last two thirds of the NTD 
(88-267) is sufficient to bind to the SAM domains of liprin-α2. (B) Schematic representation of the N-
terminal deletion constructs and their binding to liprin-α2. (C) Deletion of amino acids 124 – 262 in the 
NTD of mSYD1A does not abolish binding of mSYD1A to liprin-α2. 
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While not providing conclusive answers as to the requirement of liprin-α2 binding, this 

experiment indicated another interesting aspect in the interaction between mSYD1A and 

liprin-α2. After pull-down with liprin-α2-SAM, all of the mSYD1A truncation proteins have a 

smaller apparent molecular weight than the input. This small change in molecular weight 

could be indicative of posttranslational modifications, like phosphorylation. Indeed, several 

phosphorylation prediction programs predict a number of possible phosphorylation sites in 

the N-terminal domain of mSYD1A (NetPhos 2.0 Server) (figure 11A). A more detailed 

analysis shows that there are several serine and threonine residues in the mSYD1A NTD, 

which are predicted to be phosphorylated by the cyclin-dependent kinase Cdk5 (figure 11B). 

Since Cdk5 has been implicated in presynaptic development (Samuels et al, 2007; Su et al, 

2012), it would be interesting to investigate further, if mSYD1A is a Cdk5 target. For example 

CASK has been shown to interact with liprin-α only in its dephosphorylated state, whereas 

phosphorylation of CASK by Cdk5 leads to a dissociation of the two proteins (Samuels et al, 

2007). Similar mechanisms could exist to regulate the interaction between mSYD1A and 

liprin-α2. 

 

Figure 11 – Predicted phosphorylation sites for the N-terminal domain of mSYD1A 
(A) Potential phosphorylation sites in the NTD of mSYD1A are shown in red. (B) Potential Cdk5 
phosphorylation sites are shown in green. The prediction was done with the NetPhos 2.0 Server. 

 

The COS cell experiments showed that mSYD1A and liprin-α2 co-localize in clusters 

together with the receptor protein tyrosine phosphatase LAR (figure 5 of the manuscript). 

While the pull-down experiments indicate that mSYD1A interacts directly with liprin-α2, we 

were also interested in a possible direct interaction between mSYD1A and LAR. To this end, 

we overexpressed mSYD1A, liprin-α2 and LAR in HEK293T cells and immunoprecipitated 

mSYD1A (figure 12). As expected, after transfection of all three proteins, both liprin-α2 and 

LAR co-precipitated, suggesting again the presence of a complex of all three proteins in the 
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cell. Interestingly, in a double transfection of mSYD1A and LAR, LAR was repeatedly co-

precipitated with mSYD1A. This result suggests the possibility of a direct interaction between 

mSYD1A and LAR. In COS cells, double transfection of mSYD1A and LAR did not lead to a 

co-localization of the proteins. On the other hand, in the absence of liprin-α2, LAR is mainly 

present in Golgi-intermediate compartments, leading to the fact that mSYD1A and LAR are 

localized to different subcompartments of the cell. This compartmentalization is broken up in 

co-immunoprecipitation assays, due to lysis of the cell. LAR is dependent on liprin for its 

recruitment to the plasma membrane, where a direct interaction with mSYD1A would be 

possible. Surprisingly, in this co-immunoprecipitation assay we could not co-precipitate liprin-

α2 with mSYD1A after double transfection of the two proteins. The absence of an interaction 

in this assay suggests that LAR assists in an efficient binding between mSYD1A and liprin-

α2. It is conceivable that liprin binding to LAR leads to a conformational change of liprin, 

resulting in an easier access for mSYD1A. Furthermore, LAR is a tyrosine phosphatase. 

Therefore, dephosphorylation of either mSYD1A or liprin-α2 could lead to a more efficient 

interaction. The fact that mSYD1A binds directly to liprin-α2 in the pull-down assay without 

the presence of LAR, might be due to higher amounts of purified liprin-α2 in this assay, 

which increases the likelihood of binding. On the other hand, for the pull-down assay liprin-

α2 was purified from E.coli and therefore does not contain post-translational modifications. If 

phosphorylated liprin-α2 does not bind to mSYD1A, we would expect to see a binding in the 

pull-down assay, but not after overexpression of the proteins in HEK293T cells. 

 

Figure 12 – mSYD1A, LAR and liprin-α2 form a complex in HEK293T cells 
Liprin-α2 and LAR co-immunoprecipitate with mSYD1A after triple transfection in HEK293T cells. 
Double transfection of liprin-α2 and mSYD1A does not lead to co-immunoprecipitation of liprin-α2, 
whereas double transfection of LAR and mSYD1A results in co-immunoprecipitation of LAR with 
mSYD1A. 
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2.3.3	
  A	
  possible	
  link	
  between	
  mSYD1A	
  and	
  neurexin	
  

Recently published work from Stephan Sigrist’s laboratory (Owald et al, 2012) has shown 

that Drosophila SYD-1 interacts with neurexin via its PDZ domain. While mammalian SYD1A 

does not contain a PDZ domain, we were interested if an analogous interaction through 

different domains might exist for the mouse proteins. We carried out a pull-down assay with 

the purified cytoplasmic domain of neurexin and mSYD1A overexpressed in HEK293T cells. 

As a positive control, we used CASK (Hata et al, 1996). As has been shown before, CASK 

efficiently bound to neurexin, whereas we could not detect any interaction between mSYD1A 

and neurexin (figure 13). Surprisingly, after double transfection of both mSYD1A and CASK 

in HEK293T cells, we could not only detect CASK, but also mSYD1A in the pull-down with 

neurexin, suggesting a complex of all three proteins. Thus, the loss of the PDZ domain and 

therefore the loss of an interaction between mSYD1A and neurexin might be compensated 

for by an indirect interaction via CASK in the mouse.  

 

Figure 13 – Complex formation between mSYD1A, CASK and neurexin 
mSYD1A, overexpressed in HEK293T cells, does not bind to the recombinant cytoplasmic domain of 
neurexin in the pull-down assay, whereas CASK shows binding. Co-expression of mSYD1A and 
CASK in HEK293T cells leads to the pull-down of both proteins with neurexin.  

 

2.3.4	
  Additional	
  interaction	
  partners	
  for	
  mSYD1A	
  

The analysis of interaction partners for mSYD1A can give insight into the cellular 

functions of mSYD1A, as well as its distribution patterns. Proteins that interact with mSYD1A 

might play a role in the activation of its GAP activity. Furthermore, the CAZ is a dense 

proteinacous structure and most of the proteins that form the CAZ were shown to have 

numerous interaction partners. Therefore, the analysis of mSYD1A function requires a 

careful examination of its binding properties. To get a comprehensive understanding of 

possible interaction partners for mSYD1A, Julia commissioned the company Hybrigenics, 

specialized in Yeast-2-Hybrid (Y2H) screens, to search for potential binding partners. They 

used two overlapping mSYD1A expression constructs (aa: 1 – 411 and aa 369 – 737) as bait 
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to screen an adult mouse brain cDNA library. The potential interaction partners, recovered 

from the screen, were evaluated for their likeliness to represent a true versus a non-specific 

interaction with mSYD1A. All recovered proteins were ranked from A – F, with A having the 

highest probability of being a true interaction partner and F the least. In our subsequent 

analysis, we excluded proteins in categories E and F from further analysis. The potential 

interaction partners have roles in different cellular pathways. Figure 14A gives an overview 

over proteins from categories A – D and their involvement in different cellular functions. This 

figure, as well as a thorough description of the Y2H screen, can be found in Julia Sommer’s 

PhD Thesis.  

 

Figure 14 – Potential interaction partners for mSYD1A, identified in the Yeast-2-Hybrid screen 
(A) The potential interaction partners for mSYD1A that were identified in the Yeast-2-Hybrid screen 
were ranked by their likelihood to present a “true” interaction partner from A – D. The potential 
interaction partners are arranged by their cellular function and the names of some interesting 
candidates are displayed in the graph. (B) Co-immunoprecipitation between mSYD1A and munc18, 
overexpressed in HEK293T cells. Munc18 co-immunoprecipitates with mSYD1A, while mSYD1A 
cannot be detected in an immunoprecipitation of munc18.  
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While we did not detect liprins in this screen, several other proteins with functions in 

presynaptic terminals were identified. In particular, we were interested in the protein munc18, 

since it is known to be present in presynaptic terminals and has a prominent role in synaptic 

vesicle exocytosis (Burgoyne et al, 2009). Therefore, we carried out several co-

immunoprecipitation assays, to validate the potential protein interaction between mSYD1A 

and munc18. Whereas we could reliably co-immunoprecipitate munc18 with tagged 

mSYD1A, we did not succeed in detecting mSYD1A in an immunoprecipitation for munc18 

with a munc18 antibody (figure 14B). Furthermore, co-immunoprecipitations with several 

deletion constructs of mSYD1A gave contradictory results. Therefore, this interaction still has 

to be validated, possibly with pull-down assays of purified proteins, which have proven to 

provide reliable results in the case of liprin-α2.  

 

2.3.5	
  Knockdown	
  of	
  mSYD1A	
  decreases	
  mEPSC	
  frequency	
  

Knockdown of mSYD1A in cerebellar granule cells led to a decrease in the number of 

synaptic vesicle clusters per axon length, as well as the number of the active zone protein 

bassoon (figure 2 of the manuscript). A decrease in the number of synaptic vesicle clusters 

suggests a decrease in the number of functional synapses. We tested this hypothesis by 

recording miniEPSCs from siCNT- as well as siSYD1A-treated cultures. Indeed, we detected 

a decrease in the frequency of mEPSCs, which could be rescued after overexpression of a 

human SYD1A construct, resistant to knockdown by siRNA (figure 2 of the manuscript). In 

this experiment, overexpression of hSYD1A was carried out using a lentivirus to deliver the 

expression sequence for hSYD1A into the cells. The lentiviral delivery of hSYD1A resulted in 

the expression of hSYD1A in about 90 % of the cells. Consequently, we could ensure that 

hSYD1A is expressed in most of the presynaptic cells that formed synapses onto the 

postsynaptic cell that we recorded from. However, in this experiment we also observed a 

decrease in mEPSC amplitude after knockdown of mSYD1A, which could not be rescued 

with hSYD1A. Here, several explanations are possible: (1) the decrease in amplitude is an 

off-target effect of the siRNA, therefore it cannot be rescued by hSYD1A, (2) the decrease in 

amplitude is due to infection of the cells with a lentivirus, (3) the decrease in amplitude is a 

specific phenomenon resulting from mSYD1A knockdown, but because of technical reasons 

(for example rescue with hSYD1A vs mSYD1A), it cannot be rescued in these conditions. An 

indication for an explanation provides an experiment that we had done initially to test the 

effect of the siRNA. Here, we used WT cerebellar granule cell cultures that had not been 

infected with lentivirus and treated them with siCNT or siSYD1A. In these conditions, we 

could not observe any decrease in mEPSC amplitude, whereas mEPSC frequency was 

significantly reduced in the knockdown cultures (figure 15). Addition of the lentivirus (lenti-
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GFP for control or lenti-hSYD1A for rescue) was the only difference to the later experiment, 

where the decrease in amplitude was observed. This suggests that the presence of the 

lentivirus leads to an unspecific decrease in amplitude in these cells. In fact, presence of 

double-stranded and single-stranded RNA molecules can lead to off-target effects (Singh et 

al, 2011). Since lentiviruses contain double-stranded RNA, treatment of the cells with a 

lentivirus and the siRNA might have led to the decrease in mEPSC amplitude and therefore 

might be unspecific. However, a later experiment on mSYD1A KO neurons, which is 

described in section 2.3.4, strengthens our conclusion that the reduction in mEPSC 

frequency after knockdown of mSYD1A is not an off-target effect of the siRNA.  

 

 

Figure 15 – Knockdown of mSYD1A reduces miniEPSC frequency 
Treatment of cerebellar granule cultures with siRNA against mSYD1A leads to a reduction in 
miniEPSC frequency, while the miniEPSC amplitude is not changed (n = 24 cells; **: p<0.001; two-
tailed t-test; mean ± s.e.m). 

 

 

2.3.6	
  The	
  NTD	
  of	
  mSYD1A	
  localizes	
  to	
  the	
  nucleus,	
  whereas	
  overexpression	
  of	
  a	
  

membrane-­‐targeted	
  NTD	
  increases	
  endogenous	
  vGluT1	
  puncta	
  

Since knockdown of mSYD1A led to a decrease in the density of synaptophysin puncta, 

we were interested, if mSYD1A overexpression increases synaptic vesicle clustering. Figure 

4 in the manuscript shows that overexpression of mSYD1A and synatophysin-mCherry in the 

same cell, leads to an increase in synaptophysin puncta density in the axon. To test if the N-

terminal domain of mSYD1A alone is sufficient to induce synaptic vesicle clustering, we 

wanted to overexpress an mSYD1A deletion construct, only consisting of the NTD. However, 

initial experiments in neurons showed that the NTD is localized to the nucleus after 

overexpression in neurons (figure 16A). To get a better insight into the subcellular 

localization of the different domains of mSYD1A, we overexpressed different deletion 

constructs of mSYD1A in HEK293T cells (figure 16B). In some cells, the NTD of mSYD1A 
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was localized to the nucleus, whereas in other cells, we could detect a cytoplasmic 

localization of the NTD. Furthermore, a subset of cells showed a perinuclear staining, 

suggesting that the NTD localizes to the nuclear membrane. In contrast, a deletion construct 

consisting of the NTD and the C2 domain of mSYD1A (NTD-C2) exhibited a mainly 

cytoplasmic localization, whereas we could still detect a perinuclear staining in some cells. 

Instead, the GAP domain of mSYD1A showed a diffuse cytoplasmic localization. These 

results suggest that the NTD of mSYD1A contains nuclear localization signals. In fact, the 

web-based prediction program PSORT (prediction of protein sorting signals and localization 

sites in amino acid sequences) detects several nuclear localization signals in the N-terminal 

domain of mSYD1A (http://psort.hgc.jp/) (figure 16C). Furthermore, our subcellular 

fractionation experiments in mouse brain lysates have shown that a pool of mSYD1A 

localizes to the nucleus and therefore strengthens the hypothesis that mSYD1A might 

contain a nuclear localization signal (figure 1 of the manuscript). Future experiments will 

have to investigate a possible role for mSYD1A in the nucleus.  
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Figure 16 – Localization of mSYD1A deletion constructs 
(A) The N-terminal domain (NTD) of mSYD1A is localized to the nucleus after overexpression in 
cerebellar granule cells. Cells were co-transfected with GFP and NTD-Myc and immunostained for 
GFP and Myc (scalebar = 20 µm). (B) The NTD of mSYD1A is localized to the nucleus, the cytoplasm 
and a perinuclear region in HEK293T cells. NTD-C2 (N-terminal domain and C2 domain of mSYD1A) 
is localized to the cytoplasm with perinuclear staining, whereas the GAP domain of mSYD1A shows a 
diffuse cytoplasmic localization (scalebar = 10 µm). (C) Several amino acids in the NTD of mSYD1A 
are predicted to serve as nuclear localization sequences (NLS, shown in red). Two typical NLS 
patterns were identified: green brackets:	
  starting with P followed within 3 residues by a basic segment, 
containing 3 basic amino acids (K,R) out of 4; blue brackets: 2 basic residues, 10 residue spacer, and 
another basic region consisting of at least 3 basic residues out of 5 (http://psort.hgc.jp/). 
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Since we wanted to test if the NTD of mSYD1A is sufficient to induce synaptic vesicle 

clustering in neurons, it was necessary to target the NTD to the axon. Therefore, we added a 

myristoylation and palmitoylation tag to the NTD of mSYD1A (myr-NTD), which targets the 

protein to the plasma membrane. In fact, myr-NTD exhibited a punctate distribution in the 

soma, dendrites and the axon after overexpression in cerebellar granule neurons (figure S3 

of the manuscript). Using this construct, we could show that the N-terminal domain of 

mSYD1A alone (myr-NTD) is sufficient to increase the density of synaptophysin-mCherry 

puncta. In this experiment, myr-NTD and synaptophysin-mCherry were overexpressed in the 

same cell. One possible concern about this experiment is that due to double-transfection, the 

cells have an increased expression machinery, which leads to an increase in synaptophysin 

puncta in the axon that might not necessarily represent a specific effect of mSYD1A on 

synaptic vesicle clustering. To rule that out, we also counted the density of endogenous 

vGluT1 puncta along axons of cells only overexpressing myr-NTD. Here as well, we could 

see a significant increase in the density of vGluT1 puncta, whereas the density of PSD95 

puncta did not change (figure 17). This shows that overexpression of the N-terminal domain 

of mSYD1A alone is indeed sufficient to increase the density of synaptic vesicle clusters in 

the cell.  

  

 

Figure 17 – Overexpression of mSYD1A increases synapse density 
Overexpression of the N-terminal domain of mSYD1A (Myr-NTD) in cerebellar granule cells leads to 
an increase in endogenous vGluT1 compared to overexpression of GFP, while the density of PSD95 
puncta is not changed. However, the number of vGluT1/PSD95 double positive puncta is significantly 
increased. The number of vGluT1 and PSD95 positive puncta per 10 µm axon were counted (n=45 
cells; ***: p<0.0001; ns: not significant, two-tailed t-test; mean ± s.e.m).  
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2.4	
  Generation	
  of	
  mSYD1A	
  KO	
  mice	
  

Our in vitro results show that mSYD1A is important for a coordinated assembly of 

presynaptic terminals. To analyze, if these results can be reproduced in vivo and if mSYD1A 

has an equally important role in neural development of the mouse, we decided to create 

mSYD1A knockout (KO) mice. The European Conditional Mouse Mutagenesis Program 

(EUCOMM) provides a large number of conditionally targeted genes that can be ordered 

either as mutant ES cell lines, or mutant mice (Skarnes et al, 2011). We decided to order 

mutant ES cell lines for mSYD1A and work together with the Transgenic Mouse Facility of 

the Biozentrum to create mSYD1A mutant mice. 

 

2.4.1	
  mSYD1A	
  KO	
  mouse	
  constructs	
  and	
  generation	
  of	
  different	
  mouse	
  lines	
  

We ordered ES cell clones from EUCOMM, containing a manipulation in the gene syde1 

(Project ID: 82373). The EUCOMM vector for conditional gene targeting allows several 

different ways to create knockout mice. In the case of mSYD1A, an expression cassette was 

inserted between exon 1 and 2 of the msyd1a gene (figure 18). This expression cassette 

contains a splice acceptor (En2 SA), resulting in a gene trap and a loss-of-function of the 

gene after insertion. Furthermore, the presence of an internal ribosomal entry site (IRES) and 

a lacZ expression construct behind the splice acceptor allow for detection of cells that 

express mSYD1A by β-galactosidase staining. The neomycin resistance, used for selection 

of positive ES cell clones, is expressed under control of the human β-actin promoter. The first 

generation of mice that we produced, carry this cassette between exon 1 and 2 of mSYD1A 

and represent the first generation of mSYD1A knockout mice with the line name SYD1A-

lacZ-loxP. Here, a successful insertion of the construct should result in the absence of 

mSYD1A in all tissues.  

In addition, this construct has the potential to produce mSYD1A conditional knockout 

mice. The inserted cassette is flanked by FRT sites and can therefore be deleted with the 

Flip recombinase. Breeding of SYD1A-lacZ-loxP mice with mice containing the Flip 

recombinase will result in the mouse line with the name SYD1A-loxP. These mice will contain 

one loxP site that was inserted behind the FRT-flanked cassette between exon 1 and 2, and 

another loxP site, which has been inserted between exon 4 and 5. Crossing of SYD1A-loxP 

mice with a Cre mouse line will lead to a deletion of exon 2 – 4. Splicing of exon 1 to exon 5 

results in a frame shift in the msyd1a sequence and therefore a loss-of-function of mSYD1A 

(SYD1A-del). The conditional potential is here dependent on the promoter-specific 

expression of the Cre recombinase.  
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Furthermore, mice containing the original lacZ-loxP cassette can be crossed with mice 

containing the Cre recombinase instead of the Flip recombinase. This will also result in a loss 

of the neomycin expression cassette and exon 2 – 4, but leaves the lacZ cassette between 

exon 1 and 5, which can be beneficial for tracing mSYD1A-expressing cells (SYD1A-lacZ-

del).  

The parental ES cell line (JM8A3.N1) was derived from the mouse strain C57BL/6N with 

the fur color agouti. In order to identify chimeric offspring by means of fur color, the 

manipulated ES cells were injected into blastocysts of Balb/c mice and transferred into Balb/c 

females, which have a white fur color. 

  

 

Figure 18 – Creation of mSYD1A KO mice 
To create mSYD1A KO mice, a construct, containing a splice acceptor (En2 SA), an expression 
cassette for lacZ and the neomycin resistance, was inserted between exon 1 and 2 of mSYD1A. 
Insertion of this construct should result in a gene-trap and a loss-of-function of mSYD1A. Crossing of 
these mice with mice containing the Flip recombinase will result in a mouse line (SYD1A-loxP) that 
can be used for conditional, Cre-dependent deletion of exon 2 through 4 of msyd1a (SYD1A-del). 
Crossing of SYD1A-lacZ-loxP with a Cre-containing mouse line will create a deletion of exon 2 through 
4 of msyd1a while the lacZ expression cassette is still present (SYD1A-lacZ-del). 
 
 
 

2.4.2	
  mSYD1A	
  protein	
  expression	
  is	
  completely	
  lost	
  in	
  mSYD1A-­‐lacZ-­‐loxP	
  mice	
  

The first mSYD1A mutant mouse line that we created (SYD1A-lacZ-loxP) contained the 

lacZ-neo expression cassette between exon 1 and 2. The resulting transcript of this gene 

should encode exon 1 of mSYD1A, which should be splice onto the splice acceptor En2 SA, 

followed by an internal ribosomal entry site (IRES) and a cDNA sequence encoding lacZ. To 
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analyze, if insertion of this cassette results in a genetrap and a loss-of-function of mSYD1A, 

we lysed brains of adult WT, heterozygous and homozygous littermates and carried out a 

Western-Blot analysis. mSYD1A protein expression was completely lost in homozygous 

animals, whereas heterozygous animals showed a reduction in expression compared to WT 

(figure 19A). Our antibody is a peptide antibody, raised against the first 18 amino acids of 

mSYD1A, which are encoded in exon 1. Fusion of exon 1 of mSYD1A and the splice 

acceptor En2 SA should result in a small protein with the molecular weight of 8 kDa. Since 

no mSYD1A protein of lower molecular weight could be detected on the Western-Blot, it is 

likely that the protein product is instable and degraded. 

To investigate regional expression patterns of mSYD1A in the brain in WT and mSYD1A 

KO mice, we separated cortex, hippocampus and cerebellum and subjected the lysates to 

Western-Blot analysis. Probing for mSYD1A showed that the protein is expressed in all three 

brain regions with similar expression levels (figure 19B). Furthermore, we could confirm that 

mSYD1A is lost in all brain regions analyzed in the KO animals.  

Overall brain architecture was assessed with immunostaining for NeuN (neuron specific 

nuclear marker) and calbindin (labels interneurons in the cortex and Purkinje cells in the 

cerebellum) and was found to be unchanged in the KO mice as compared to WT littermate 

controls (figure 19C).  

Unfortunately, immunostainings for β-galactosidase in heterozygous and homozygous 

animals were not successful. We reasoned that the low expression levels of mSYD1A might 

be the cause for our difficulties to detect the presence of β-galactosidase by 

immunohistochemistry. Here, detection of β-galactosidase via its enzymatic reaction, or 

qPCR analysis might yield more successful results in the future.  
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Figure 19 – Analysis of mSYD1A KO mice 
(A) mSYD1A protein is completely lost in brain lysates of adult homozygous mice, whereas protein 
levels are reduced in heterozygous animals. (B) mSYD1A is expressed in cortex, hippocampus and 
cerebellum of P15 WT mice, and absent in homozygous KO animals. (C) Brain cyto-architecture of 
WT and homozygous mSYD1A KO mice was assessed in brain sections of adult mice by 
immunostaining for NeuN and calbindin (scalebar = 200 µm). 
 
 

2.4.3	
  Increase	
  in	
  postnatal	
  death	
  in	
  mSYD1A	
  KO	
  mice	
  

To analyze if loss-of-function of mSYD1A protein has an impact on the health and 

survival rate of mSYD1A KO mice, we calculated the ratio of genotype distribution for each 

litter (figure 20A) at the time of genotyping (P5 – P7). The division of genotypes was close to 

Mendelian ratios, suggesting that there is no prenatal death. However, we observed an 

increase in postnatal death in mSYD1A heterozygous and homozygous mice (figure 20B). At 

12 weeks of age, 20 % of all heterozygous and homozygous animals that were born had 

died, whereas only 6 % of the WT animals were dead. A closer examination revealed that 

most animals died between 2 and 4 weeks of age (figure 20C). However, it is important to 

note here that the analyzed animals have a mixed background. For the generation of the 

mSYD1A-lacZ-loxP mouse line, ES cells derived from C57BL/6N mice were injected into 

blastocysts derived from Balb/c mice. Chimeric offspring were then crossed with Balb/c mice 

again, yielding the heterozygous mice, which are the parents of the analyzed breedings 

above. A mixed background can lead to instabilities in animal health, resulting in postnatal 

death that might not be the result of mSYD1A loss-of-function. Therefore, these results are 

preliminary and have to be regarded with care. Backcrossing of these mice with C57BL 
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animals will be important before a thorough analysis of mSYD1A KO mice is initiated. In total, 

20 litters were born from 6 different breedings, generating 61 WT, 104 heterozygous and 37 

homozygous animals that were analyzed for the occurrence of postnatal death (see appendix 

tables 5.2.1 and 5.2.2 for more detail). Nevertheless, the number of animals is sufficient to 

provide a first trend, which indicates that the occurrence of postnatal death is increased in 

mSYD1A heterozygous and homozygous animals and peaks around week 3. Future 

experiments will have to be done to define the reason for the increase in postnatal death. 

Furthermore, it needs to be investigated why both heterozygous and homozygous animals 

seem to be equally affected. Our Western-Blot analysis has shown that heterozygous 

animals express reduced levels of mSYD1A protein compared to WT mice. If the increase in 

postnatal death in both heterozygous and homozygous mSYD1A KO animals after 

backcrossing with C57BL mice can be confirmed, it suggests that the amount of mSYD1A 

expression level is crucial for its function. Furthermore, we could confirm that mSYD1A 

homozygous KO animals are fertile. 

 

 
 
 
Figure 20 – Mendelian ratios and survival rate for mSYD1A KO mice 
(A) The distribution of genotypes from breedings of heterozygous parents in the mSYD1A KO mouse 
line conforms to Mendelian ratios. The analysis was done at the time of genotyping (P5 – P7). 
(analysis of 13 litters; n(+/+) = 39 animals, n(d/+) = 67 animals, n(d/d) = 37 animals). (B) 
Heterozygous and homozygous animals for msyd1a show an increase in postnatal death. Displayed is 
the percentage of animals that died of the total number of animals that were born with this genotype 
(total number of animals analyzed: +/+: 61; d/+: 104; d/d: 37). (C) A closer examination of postnatal 
death shows that most animals die around 3 weeks of age (number of animals analyzed is the same 
as in B).  

 

2.4.4	
  No	
  decrease	
  in	
  mEPSC	
  frequency	
  in	
  mSYD1A	
  KO	
  neurons	
  

As a first assessment of synaptic transmission in mSYD1A KO mice and a further 

validation of the results obtained from knockdown of mSYD1A by siRNA, we chose to record 

miniEPSCs from cerebellar granule cell cultures. To this end, we prepared primary cultures 

from WT and KO littermate animals and compared mEPSC amplitude and frequency (figure 

21A). In a first set of experiments, we could not detect any significant changes in mEPSC 

amplitude or frequency in the KO compared to WT animals. Thus, in mSYD1A KO mice, we 
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could not reproduce our data obtained from knockdown studies, showing a reduction in 

mEPSC frequency. To rule out that the reduction in mEPSC frequency in the knockdown 

studies was due to an off-target effect of the siRNA, we treated cultures, derived from 

mSYD1A KO mice, with siRNA against mSYD1A (figure 21B). Since no functional mSYD1A 

protein is present in these cells, any phenotype observed with the siRNA would be likely to 

represent off-target effects. We could not detect any changes in mEPSC amplitude or 

frequency after treatment of mSYD1A KO cultures with siSYD1A as compared to mSYD1A 

KO cultures treated with control siRNA. However, the effect of the siRNA against mSYD1A 

was validated in this experiment, since WT cultures treated with siSYD1A showed a 

reduction in frequency as compared to WT cultures treated with siCNT. This suggests that 

the reduction in mEPSC frequency after knockdown of mSYD1A is specifically due to a loss 

of mSYD1A and not an off-target effect. Lack of the phenotype in KO cultures can be 

explained by compensational effects during the development of the animal and has been 

seen for other presynaptic proteins (Kaeser et al, 2009; Rosenmund et al, 2002; Schoch et 

al, 2006). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21 – mEPSC recordings from mSYD1A KO mice 
(A) Cerebellar granule cell cultures were prepared from mSYD1A KO mice and miniEPSC amplitude 
and frequency were recorded; n(WT) = 22 cells, n(KO) = 19 cells. (B) Cerebellar granule cell cultures 
from WT and mSYD1A KO mice were treated with control siRNA (siCNT) and siRNA against mSYD1A 
(si1A); n = 9 cells.  
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2.5	
  mSYD1B	
  KO	
  mice	
  

In our initial database search, we identified two candidate orthologues for C.elegans 

SYD-1: mSYD1A and mSYD1B. Since the amino acid sequences of the two proteins are 

very similar, it is likely that they execute similar functions. Therefore, potential effects 

resulting from loss of mSYD1A might be undetectable in mSYD1A KO mice, due to the 

expression of mSYD1B. Therefore, we sought to generate mSYD1B knockout mice, 

providing us with the possibility to create a double knockout of mSYD1A and mSYD1B. For 

the creation of mSYD1B knockout mice, we commissioned the Gene Targeting and 

Transgenic Facility of the University of Connecticut Health Center. An FRT-site-flanked Neo 

expression cassette, containing a loxP site at its 3’-end, was inserted between exon 3 and 4 

of the msyd1b gene (figure 22). Furthermore, another loxP site was inserted between exon 1 

and 2 of msyd1b. Crossing of these mice with a line containing the Flip recombinase resulted 

in animals containing loxP sites flanking exons 2 and 3 (SYD1B-flox). These animals were 

subsequently crossed with mice expressing the Cre recombinase under control of the CMV 

promoter (Cre-deleter), leading to excision of exons 2 and 3 in the whole organism (SYD1B-

KO). Splicing of exon 1 into exon 4 results in a frame shift with a premature stop codon. 

However, a translational start codon in exon 5 could give rise to a truncated mSYD1B protein 

product, containing half of the GAP domain. Creation and analysis of these mice was part of 

Julia’s project. She could confirm the absence of exon 2 and 3 by RT-PCR, however, she 

could also detect the presence of transcripts from exons 5 and 6 of msyd1b in the knockout 

animals (see PhD Thesis Julia Sommer). Quantitative PCR showed that msyd1b mRNA 

levels containing exons 5 and 6 were reduced by 44 % in the KO compared to WT levels, 

suggesting that the product is instable. Absence of the protein could not be evaluated, since 

we do not have an antibody available that recognizes endogenous mSYD1B. mSYD1B mice 

are viable and fertile and do not show any obvious behavioral abnormalities. Immunostaining 

for NeuN and calbindin suggested a normal overall brain cyto-architecture. In our future 

experiments, we will use these mice to create double knockouts for mSYD1A and mSYD1B. 

However, production of an antibody against mSYD1B protein will be important for the future 

analysis of mSYD1B expression and function. 
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Figure 22 – Creation of mSYD1B KO mice 
To create mSYD1B KO mice, a neomycin cassette, flanked with FRT sites and a loxP site was 
inserted between exons 3 and 4 of msyd1b. A second loxP site was inserted between exons 1 and 2. 
Crossing with mice containing the Flip recombinase led to the deletion of the neomycin cassette and 
creation of the line mSYD1B-flox. Subsequent crossing with Cre-deleter mice resulted in deletion of 
exons 2 and 3 in the line mSYD1B-KO.  

 

2.6	
  Production	
  of	
  additional	
  mSYD1A	
  antibodies	
  

The antibodies for mSYD1A that we have used throughout the study reliably detect 

mSYD1A on Western-Blot, but cannot be used for immunostaining of the endogenous 

protein. In our immunocytochemistry experiments, we could not detect a recognizable 

staining pattern after application of the antibody, suggesting that it does not detect native 

mSYD1A. Furthermore, the cross-reactivity of the antibody with several other proteins, as 

seen on Western-Blot, provides a second difficulty for its usage in immunostainings. 

Therefore, we decided to take a new approach for the production of a new mSYD1A 

antibody. Instead of raising antibodies against synthetic peptides, as we had done before, we 

chose to purify parts of mSYD1A as recombinant proteins and to use these proteins for 

production of an additional antibody. To this end, we generated six bacterial expression 

constructs covering randomly selected sequence stretches of msyd1a, which could serve as 

potential epitopes (figure 23A). In earlier studies, recombinant mSYD1A proved to be highly 

insoluble in bacteria and therefore difficult to purify. We encountered the same difficulties for 

all 6 segments of mSYD1A, with epitope 2 showing the biggest fraction of soluble protein. 

Therefore, we chose to use epitope 2 and to solubilize the protein in the presence of Urea. 

After affinity purification of the protein using IMAC (Nickel) resins, the concentration of Urea 

was reduced to 2 M by dialysis and the purity of the protein was analyzed by gel 

electrophoresis and commassie staining (figure 23B).  
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We commissioned Eurogentec with the immunization of three rabbits with epitope 2 of 

mSYD1A. Initial tests of the antisera showed that antisera from all three rabbits detected 

overexpressed protein on Western-Blot, whereas none detected endogenous mSYD1A in 

HEK293T cells or brain lysate. We purified two antisera on the antigen (purified recombinant 

protein). Unfortunately, the purification did not lead to a higher detection efficiency of 

mSYD1A (figure 23C). Thus, the new antibodies against mSYD1A detect overexpressed, but 

not endogenous mSYD1A on Western-Blot.  

 

Figure 23 – Production of an additional mSYD1A antibody 
(A) Constructs of mSYD1A that can be used as epitopes for the production of mSYD1A antibody from 
recombinant protein. (B) Epitope 2 of mSYD1A was purified from E.coli, resolved by gel-
electrophoresis and stained with commassie to evaluate the purity of the protein. (C) Antisera from 
rabbits no. 48 and 49 were purified on the antigen (recombinant protein) and detection of 
overexpressed and endogenous mSYD1A was tested on Western-Blot. mSYD1A and mSYD1B: 
overexpressed protein in HEK293T cells; untransf.: untransfected HEK cell lysate. As a positive 
control, the anti-mSYD1A antibody that we have used so far was applied.   
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We identified two mammalian orthologues for SYD-1 that show considerable sequence 

similarity and similar domain organization as the C.elegans SYD-1 protein. mSYD1A is 

expressed during the time of synapse formation and localizes to synaptic membrane 

fractions in synaptosome preparations. Functionally, mSYD1A acts as a GAP protein 

towards the small GTPase RhoA and is auto-regulated by its N-terminal domain. Knockdown 

of mSYD1A in cerebellar granule cells decreases synaptic vesicle clustering, whereas 

overexpression increases synapse density. Furthermore, the GAP domain of mSYD1A 

seems to contribute to trans-synaptic signaling. Thus, we identified mSYD1A as a 

presynaptic regulator of synapse assembly.  

 

3.1	
  Is	
  mSYD1A	
  a	
  true	
  orthologue?	
  

mSYD1A and mSYD1B show a similar domain organization as C.elegans and Drosophila 

SYD-1, however, they lack the N-terminal PDZ domain that is present in invertebrates. An 

analysis of SYD-1 in different species shows that the N-terminal PDZ domain was lost 

relatively early during evolution, since also predicted SYD-1 proteins for fish (Danio rerio) 

and chick (Gallus gallus) do not contain PDZ domains (see also Appendix, figure 25). 

However, all nematode (Ascaris suum, Trichinella spiralis) and fly species (Aedes aegypti, 

Drosophila simulans, Culex quinquefasciatus) that I have looked at contain the N-terminal 

PDZ domain, suggesting that it has an important function in these species. Many orthologues 

that have been described from C.elegans to mouse show the exact same domain 

organization, like for example SYD-2/liprin-α (Zhen & Jin, 1999). On the other hand, there 

are also proteins that differ considerably in domain organization from species to species. 

One example is ELKS, whose orthologue in Drosophila is called Bruchpilot. Bruchpilot 

contains an extensive C-terminus that is not present in C.elegans or mammalian ELKS 

(Wagh et al, 2006). By definition, orthologues are genes that diverged after a speciation 

event, and that encode proteins with similar functions in different species. Therefore, to 

define if proteins are true orthologues, we have to examine the function of these proteins. We 

identified mSYD1A as a GAP protein that inactivates the small GTPase RhoA. C.elegans 

and Drosophila SYD-1 contain amino acid changes in crucial positions in their GAP domain 

however it has never directly been tested, if the proteins exhibit GAP activity. Our mutation 

constructs that mimic the amino acid changes do not show GAP activity in the full-length 

conformation, however, they exhibit GAP activity after deletion of the N-terminal domain. This 

suggests that proteins with these amino acid changes in their GAP domain have the potential 

to act as GAP proteins, although the GAP activity is reduced. Yet, it has to be kept in mind 

that the constructs that we tested were proteins containing the mouse SYD1A sequence. 

Therefore, it is difficult to draw a direct conclusion about the GAP activity of the C.elegans 
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and Drosophila SYD-1 GAP domain. We also directly used the invertebrate proteins in the 

FRET assay, but due to degradation of the proteins in the human cell line, the experiment 

was not conclusive.  

In all three species, SYD-1 is a regulator of presynaptic assembly. However, the precise 

role in presynaptic assembly differs slightly between species. In C.elegans, SYD-1 has been 

shown to regulate both synaptic vesicle and active zone assembly (Hallam et al, 2002). In 

Drosophila, loss-of-function of SYD-1 mainly affects active zone assembly (Owald et al, 

2010), whereas in our mouse studies, mSYD1A loss-of-function mainly affected synaptic 

vesicle clustering. It is conceivable that during evolution, because of gene duplications and 

new proteins emerging, the function of a given protein becomes more specific. Therefore it is 

easy to explain that C.elegans SYD-1 has a broader spectrum of functions than Drosophila 

or mouse SYD-1. Instead, it is more difficult to explain the functional differences between 

Drosophila and mouse SYD-1. However, the number of proteins that is present in 

mammalian presynaptic terminals is massively increased, compared to Drosophila. In 

Drosophila, DSYD-1 is assumed to have “active zone nucleation activity” (Owald et al, 2010), 

since in the absence of DSYD-1, the number of active zones is reduced and active zone 

material localizes at ectopic locations. It is likely, that in the mouse the role of the “active 

zone nucleator” is distributed among several proteins, leading to a redundancy. This could 

lead to the fact that most active zone proteins still localize after knockdown of mSYD1A, but 

the correct downstream signaling events are perturbed, ultimately leading to a defect in 

synaptic vesicle assembly. On the other hand, in this study we observed a decrease in the 

number of bassoon puncta along axons of mSYD1A knockdown neurons. Since we have not 

done a comprehensive analysis of the distribution of all active zone markers, it is too early to 

state that mSYD1A does not affect active zone assembly.  

Both Drosophila and mouse SYD-1 show some degree of trans-synaptic signaling. In 

Drosophila, the PDZ domain of DSYD-1 has been shown to mediate signals to the 

postsynapse via neurexin (Owald et al, 2012), whereas in our study we could show that the 

GAP domain of mSYD1A is required to increase PSD95 puncta after overexpression of 

mSYD1A. This suggests that different mechanisms have emerged in both species to mediate 

trans-synaptic signaling. In the mouse, loss of the PDZ domain and a more efficient GAP 

activity might have led to the difference in the signaling cascades. However, if the effect of 

SYD-1 on the postsynapse is similar in both species, still has to be clarified. In Drosophila, 

loss of DSYD-1 leads to an overgrowth of postsynaptic glutamate receptor fields (Owald et 

al, 2010), with a specific defect in GluRIIA incorporation (Owald et al, 2012). In our mouse 

studies, we could not detect a significant decrease in the density of PSD95 puncta after 

knockdown of mSYD1A, although a trend to a reduction was apparent in all experiments. On 
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the other hand, overexpression of mSYD1A increased the density of PSD95 puncta, only 

when the GAP domain was present. Therefore, it is difficult to directly compare the 

postsynaptic phenotypes in Drosophila and mouse, since different proteins and parameters 

have been examined.  

Furthermore, it has to be considered that most studies in C.elegans and all studies in 

Drosophila were done at the NMJ, whereas the mouse studies were done in CNS neurons. 

Most likely, different protein compositions at different synapses lead to different results after 

loss-of-function of one of these proteins.  

In our studies we could show that mSYD1A directly interacts with the SAM domains of 

liprin-α2. Although no biochemical interactions have been proven in C.elegans or Drosophila, 

SYD-1 and SYD-2/liprin-α interact genetically in both species. In C.elegans syd-1 mutants, 

SYD-2 does not localize to presynaptic terminals, whereas loss of SYD-2 does not affect the 

localization of SYD-1 (Dai et al, 2006; Hallam et al, 2002). Furthermore, a gain-of-function 

mutation in SYD-2 can overcome the syd-1 loss-of-function phenotype. This suggests that 

the two proteins functionally interact and that SYD-1 acts upstream of SYD-2. In Drosophila, 

DSYD-1 has been shown to recruit and anchor liprin-α to presynaptic terminals (Owald et al, 

2010; Owald et al, 2012). These results indicate that SYD-1 and SYD-2/liprin-α functionally 

interact in all three species.  

In summary, SYD-1 acts presynaptically in all three species and regulates the assembly 

of presynaptic terminals. Furthermore, genetic or biochemical interactions with SYD-2/liprin-α 

have been reported in both invertebrates and mouse. Therefore, mSYD1A can be 

considered a true orthologue of invertebrate SYD-1, but has evolved slightly different 

mechanisms of action during evolution.  

 

3.2	
  Regulation	
  of	
  mSYD1A	
  GAP	
  activity	
  

We could show that the GAP activity of mSYD1A is auto-inhibited by its N-terminal 

domain. For several RhoGAP proteins auto-inhibitory mechanisms have been reported. The 

RacI-GAP β2-chimaerin for example, is auto-inhibited by its own N-terminal domain, whereas 

it can be activated by phospholipid binding to its C1 domain, resulting in release of the auto-

inhibition (Canagarajah et al, 2004). Furthermore, both for p50rhoGAP, as well as for p120 

GAP, auto-inhibitory mechanisms have been reported (Drugan et al, 2000; Moskwa et al, 

2005). GAP and GEF proteins have very specific functions during development and act 
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locally (Pertz, 2010; Tolias et al, 2011). Therefore it is plausible that auto-inhibitory 

mechanisms exist for many of them, to ensure a tight temporal and spatial regulation.  

Overexpression of mSYD1A led to an increase in length and branching of the dendritic 

tree, whereas knockdown of mSYD1A did not result in a decrease in dendrite length. 

Estimating from our Western-Blot analysis, the endogenous expression levels of mSYD1A 

are very low, as seen for many GAP and GEF proteins. However, overexpression of 

mSYD1A led to a massive increase in mSYD1A protein levels globally, possibly leading to 

various functions that mSYD1A endogenously does not have. Since knockdown of mSYD1A 

did not lead to a decrease in the dendritic tree, we assume that mSYD1A does not regulate 

dendritic tree length and branching endogenously. However, since the FRET assay was not 

conclusive as to the specific Rho-GTPase that mSYD1A interacts with, the overexpression 

experiment was important to advance our understanding in this respect. An increase in 

dendrite length suggests that mSYD1A inactivates the Rho-GTPase RhoA and not RacI or 

Cdc42 (Luo, 2000).  

 

3.3	
  mSYD1A	
  interaction	
  partners	
  

We could show that mSYD1A interacts with liprin-α2 and that this interaction is 

dependent on a PQ-loop insertion between the first two SAM domains of liprin-α2. Similar 

requirements have been shown for the binding between CASK and liprin-α2 (Wei et al, 

2011). The dependence of binding to liprin-α2 on the PQ-loop suggests two conclusions: 

first, the interaction is splice isoform specific, since liprin-α1 is alternatively spliced at this 

position, with the PQ-loop being either included or excluded. Second, there is probably no 

direct interaction of these domains between the two respective proteins in invertebrates, 

since invertebrate liprin-α does not contain the PQ-loop insertion. In fact, an analysis of liprin-

α and SYD-1 sequences of different species has shown that the appearance of the PQ-loop 

insertion in liprin-α coincides with the disappearance of the PDZ domain in SYD-1 (see 

Appendix 5.1 figure 25). While this could be a coincidence during evolution, it offers the 

interesting possibility that an interaction between invertebrate SYD-1 and SYD-2/liprin-α is 

dependent on the PDZ domain of SYD-1. Furthermore, the PDZ domain of invertebrate SYD-

1 could substitute for a direct interaction between SYD-1 and SYD-2/liprin-α in a different 

way. One possibility is that the PDZ domain of SYD-1 recruits active zone proteins in 

invertebrates, whereas a complex of mSYD1A and liprin-α forms the recruitment platform in 

mice. The PDZ domain of Drosophila DSYD-1 has for example been shown to interact with 

neurexin (Owald et al, 2012). While we could not reproduce this interaction between the 
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mouse proteins, we detected neurexin and mSYD1A together in a complex in the presence 

of CASK. This provides another example that the loss of an interaction domain during 

evolution could be substituted by the presence of another protein that links the former 

interaction partners. Since mSYD1A and CASK both bind to the same part of liprin-α2, it 

would be interesting to know if this interaction is competitive or if both proteins can bind 

liprin-α2 at the same time. Furthermore, the SAM domains of liprin-α have also been shown 

to bind to LAR (Astigarraga et al, 2010; Serra-Pagès, 1998). Liprin-α has the ability to 

oligomerize via its coiled-coil domain. Therefore it is possible, that mSYD1A, CASK and LAR 

can bind to a liprin-α oligomer at the same time. This would suggest a complex between 

mSYD1A, liprin-α, CASK, LAR and neurexin in mammalian presynaptic terminals. Our co-

immunoprecipitation experiments have opened the possibility that mSYD1A can also directly 

interact with LAR. Pull-down assays with LAR and mSYD1A as purified proteins would give a 

definite answer to this possibility. Furthermore, it would be interesting to know if mSYD1A 

acts upstream of liprin-α, as it has been shown for the invertebrate proteins, or if mSYD1A is 

downstream of liprin-α in mammals. Here, knockdown of liprin-α and localization studies for 

mSYD1A could give an answer to this question. However, the interpretation of this 

experiment is complicated by the fact that we do not have an antibody that immunostains 

endogenous mSYD1A. Therefore, one would have to rely on the localization of 

overexpressed protein. Another possible experiment that could provide an answer to this 

question will be presented in section 3.8.1 of the discussion.  

Our pull-down experiments between mSYD1A and liprin-α2 revealed a slight decrease in 

molecular weight of mSYD1A after binding to liprin-α2, possibly indicative of a 

dephosphorylation. Indeed, several phosphorylation sites are predicted in the N-terminal 

domain of mSYD1A. In particular, cyclin-dependent kinase 5 (Cdk5) has been shown to play 

an important role in presynaptic development. Samuels et al. report that Cdk5 regulates the 

subcellular distribution of CASK and its association with liprin-α (Samuels et al, 2007). Their 

experiments suggest that liprin-α is implicated in the trafficking of CASK to presynaptic 

terminals, where phosphorylation of CASK by Cdk5 leads to a dissociation of the interaction 

and an anchoring of CASK in the presynaptic terminal. A recent report suggests that 

phosphorylation of N-type calcium channels by Cdk5 increases channel open probability and 

facilitates the interaction with RIM (Su et al, 2012). These results suggest that Cdk5 plays an 

important role both in the distribution of active zone material as well as the properties of 

presynaptic terminals. It would be interesting to know, if Cdk5 also regulates mSYD1A 

phosphorylation and distribution.   

The Yeast-2-Hybrid screen has provided us with a number of possible interaction 

partners for mSYD1A that still await validation. A possible interaction between mSYD1A and 
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munc18 could not be conclusively confirmed in this study. However, an interaction between 

these two proteins would furthermore strengthen the link between mSYD1A and active zone 

assembly. Munc18 is essential for regulated exocytosis of synaptic vesicles (Burgoyne et al, 

2009). Since synaptic vesicle clustering is perturbed after knockdown of mSYD1A, a link 

between mSYD1A and a component of the vesicle release machinery is interesting to 

investigate further.  

Several of the proteins identified in the Yeast-2-Hybrid screen are localized to or 

associated with the nucleus. In this study we found that overexpression of a deletion 

construct that only consists of the N-terminal domain (NTD) of mSYD1A in neurons leads to 

a nuclear localization of the truncated protein. In fact, web-based prediction programs 

forecast that the NTD of mSYD1A contains several potential nuclear import signals 

(http://psort.hgc.jp/form2.html). These results suggest the possibility that mSYD1A has a 

nuclear function. Future studies will have to be done to confirm this hypothesis.  

 

3.4	
  Mechanism	
  of	
  mSYD1A	
  regulation	
  of	
  synaptic	
  vesicle	
  clustering	
  

Knockdown of mSYD1A has led to a decrease in synaptophysin and vGluT1 puncta 

density, whereas overexpression of mSYD1A increased the density of synaptic vesicle 

markers. This result gives rise to the question, how mSYD1A controls synaptic vesicle 

clustering. In C.elegans, a recent report suggests that SYD-1 acts by facilitating the 

oligomerization of SYD-2/liprin-α, leading to recruitment of downstream proteins by liprin-α 

oligomers (Taru & Jin, 2011). It is possible that similar mechanisms exist in mammals. Liprin-

α in mice has been shown to interact with ELKS, RIM, and GIT. All three proteins have 

indirect links to synaptic vesicles. ELKS has been shown to bind to piccolo and bassoon, 

which in turn can bind to PRA1 that interacts with Rab3 and synaptobrevin in the synaptic 

vesicle membrane (Fenster et al, 2000). Knockout of both bassoon and piccolo leads to a 

perturbation of synaptic vesicle clustering in presynaptic terminals (Altrock et al, 2003; 

Waites et al, 2011). RIM binds in a GTP-dependent manner to Rab3, which is present in 

synaptic vesicle membranes and has been implicated in vesicle dynamics (Wang et al, 

2001). Finally GIT proteins have been shown to interact with piccolo and β-pix (Kim et al, 

2003). Knockdown of β-pix leads to a disruption in synaptic vesicle localization (Sun & Bamji, 

2011). Therefore, knockdown of mSYD1A could lead to a perturbation of the coordinated 

recruitment of downstream signaling components, ultimately resulting in a reduction of 

synaptic vesicle clustering.  
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In addition, GAP and GEF proteins have recently been implicated in signaling events that 

localize synaptic vesicles and active zone proteins to presynaptic terminals (Ball et al, 2010; 

Pawson et al, 2008; Sun & Bamji, 2011). Therefore, we hypothesized that the GAP activity of 

mSYD1A is important for synaptic vesicle clustering. However surprisingly, mutant constructs 

that do not contain the GAP domain of mSYD1A are sufficient to increase the density of 

synaptic vesicle markers in axons. Thus, the GAP activity of mSYD1A does not seem to 

mediate synaptic vesicle clustering.  

 

3.5	
  How	
  does	
  mSYD1A	
  GAP	
  activity	
  increase	
  PSD95	
  levels?	
  

While the GAP domain was not necessary to increase presynaptic vesicle clustering, it 

was important for the simultaneous elevation of PSD95 puncta after overexpression of 

mSYD1A in neurons. How could the GAP domain mediate trans-synaptic signaling? Here, at 

least two modes of action are possible. Either the GAP activity itself initiates a signaling 

cascade that results in trans-synaptic signaling, or the GAP domain serves as a protein 

interaction domain for proteins that mediate trans-synaptic signaling. Overexpression of 

mSYD1A GAP mutation constructs that contain a non-functional GAP domain led to an 

intermediate phenotype in PSD95 puncta density between overexpression of the WT 

construct and the N-terminal domain only. However, in the FRET assay we could still detect 

residual GAP activity for these constructs, suggesting that also the overexpressed constructs 

in neurons were able to act as a GAP to a reduced extent. Since this also reduced the 

amount of PSD95 puncta elevation, we assume that the GAP activity is needed for trans-

synaptic signaling.  

In general, active RhoA destabilizes F-actin, whereas active RacI and Cdc42 lead to a 

stabilization of the actin cytoskeleton (Govek et al, 2005). Active RhoA can increase actin-

myosin contractility through its effector, the Rho kinase ROCK. Active ROCK directly 

phosphorylates and activates myosin light chain (MLC), which leads to actomyosin assembly 

and contraction. Furthermore, active RhoA can increase actin polymerization through its 

effector mDia. Active mDia can bind to the barbed ends of actin filaments and therefore 

enhance actin nucleation. This process might involve binding of mDia to profilin, which is 

often associated with actin monomers. Therefore, an activation of RhoA leads to changes in 

the actin cytoskeleton. However, a stable F-actin network has been shown to be important 

for presynaptic development, since actin depolymerizing drugs like lantrunculin A lead to a 

loss of synapses (Zhang & Benson, 2001). A local increase of the GAP activity of mSYD1A 

in presynaptic terminals would lead to a local inactivation of RhoA and therefore a 

stabilization of the actin cytoskeleton. Trans-synaptic adhesion complexes link indirectly to 
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the actin cytoskeleton and actin is thought to stabilize adhesion. Therefore, it is conceivable 

that stabilization of the actin cytoskeleton could provide the signals for the formation of a 

postsynaptic density. During development, the assembly of presynaptic terminals precedes 

the formation of a postsynaptic density. Furthermore, it has been shown that the initial 

localization of active zone precursor proteins to sites along the axon does not necessarily 

lead to the formation of synapses. Many initial clusters of active zone proteins are later 

disassembled and reassembled somewhere else (Bury & Sabo, 2011; Owald et al, 2012). 

Therefore, it is important that the maturation of the postsynaptic density is only initiated after 

the presynaptic assembly process has reached a critical threshold. A stabilization of the 

presynaptic actin cytoskeleton could provide such a threshold. Here, the increased adhesive 

forces provided by actin linked to trans-synaptic adhesion molecules might lead to a 

maturation of postsynaptic terminals. Furthermore, increases in presynaptic F-actin could 

lead to the recruitment of mediators of trans-synaptic signaling. It would be possible to 

visualize a local inactivation of RhoA by overexpression of the RhoA sensor in neurons. 

Here, it would be interesting to induce synapse formation locally and image RhoA sensor 

activation over time. A local induction of synapse formation could for example be performed 

by an application of beads that are coated with a postsynaptic synaptogenic adhesion 

molecule, like neuroligin or NGL-3. Furthermore, it has been reported that beads coated with 

poly-lysine can trigger presynaptic differentiation in contacting axons (Lucido et al, 2009). 

This experiment would directly investigate the local regulation of Rho-GTPases during 

presynaptic assembly.  

An increase in synapse density should be reflected by an increase in miniEPSC 

frequency in these cultures. However, our electrophysiological studies on neurons 

overexpressing human SYD1A have not shown an increase in miniEPSC frequencies. 

Several explanations are possible for this apparent contradiction. In the 

immunocytochemistry studies, we detected puncta that were double positive for 

synaptophysin and PSD95. However, the incorporation of the scaffolding protein PSD95 

does not mean that a functional postsynaptic terminal is present. Our studies have been 

done with relatively young cultures that are probably still maturing. An increase in miniEPSC 

frequency would only be detected after incorporation of AMPA receptors into the 

postsynaptic membrane. On the other hand a lack of miniEPSC frequency increase could 

also mean that mSYD1A-mediated trans-synaptic signaling does not provide all signals 

necessary for the functional maturation of postsynaptic terminals. Instead, the incorporation 

of AMPA receptors into the postsynaptic membrane might be mediated by other signals, 

which are diluted due to overexpression of mSYD1A and therefore not sufficiently present. 

Therefore, more experiments have to be done to determine the nature of the trans-synaptic 

effect of mSYD1A. 
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3.6	
  Model	
  for	
  the	
  role	
  of	
  mSYD1A	
  in	
  presynaptic	
  assembly	
  

Based on the evidence presented in this study and the knowledge of SYD-1 function in 

invertebrates, I would like to suggest the following model for the role of mSYD1A in 

presynaptic assembly (figure 24). During development, mSYD1A is transported into the axon 

in its closed, inactive conformation. A signal that still has to be identified, leads to the 

recruitment of mSYD1A to the plasma membrane, where the liprin-interaction sequence (LIS) 

in the N-terminal domain of mSYD1A binds to the SAM domains of liprin-α. This interaction 

has two functional consequences: liprin-α oligomerizes and builds a recruitment platform for 

other active zone proteins, leading to presynaptic assembly and synaptic vesicle recruitment. 

Furthermore, displacement of the N-terminal domain of mSYD1A by liprin-α leads to an 

open, active conformation of mSYD1A, resulting in a local increase in GAP activity. A local 

inactivation of RhoA leads to a stabilization of the actin cytoskeleton, providing the trans-

synaptic signal for a coordinate maturation of the postsynaptic density.  

 

Figure 24 – Model for the role of mSYD1A in synaptic assembly 
Recruitment of mSYD1A to the presynaptic plasma membrane leads to the interaction of the liprin-
interaction sequence (LIS) in the N-terminal domain of mSYD1A with liprin-α. The interaction with 
mSYD1A activates liprin-α oligomerization, which leads to the recruitment of active zone proteins and 
synaptic vesicles to presynaptic terminals. At the same time, binding of mSYD1A to liprin-α changes 
the conformation of mSYD1A and relieves the auto-inhibition of its GAP domain, leading to a local 
increase in GAP activity. The resulting local inactivation of RhoA leads to a stabilization of the actin 
cytoskeleton, resulting in a trans-synaptic signal and the recruitment of PSD95 to the postsynaptic 
density.  
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While this model explains many of the results that have been described in this and other 

SYD-1 studies, it leaves several important questions unanswered that will have to be subject 

of future experiments: How is mSYD1A recruited to nascent presynaptic boutons? How does 

mSYD1A influence synaptic vesicle clustering? What is the exact nature of the synaptic 

vesicle clustering phenotype after knockdown of mSYD1A? Does mSYD1A play a role in 

synaptic vesicle docking and priming? How does mSYD1A mediate trans-synaptic signaling? 

 

3.7	
  Analysis	
  of	
  mSYD1A	
  function	
  in	
  vivo	
  

We started our initial studies on mSYD1A KO mice with electrophysiology and tried to 

reproduce our in vitro findings that knockdown of mSYD1A leads to a reduction in miniEPSC 

frequency. However, we could not detect any changes in miniEPSC frequency or amplitude 

in the knockout cultures. One difference between the two experiments is that knockdown of 

mSYD1A is an acute manipulation, leading to a sudden loss of the protein, whereas in 

mSYD1A KO mice, mSYD1A is absent from the beginning of development. During evolution 

from C.elegans to mouse, the number of active zone proteins has massively increased. One 

likely explanation is that several of the proteins that are present in mammalian presynaptic 

terminals have similar functions, so that after loss of one protein, others can resume its 

function. Since the active zone is such an important structure, functional redundancies could 

provide a way to overcome the detrimental effect of mutations in one presynaptic protein. 

Therefore, our results on mSYD1A KO mice can be explained by functional redundancy 

between active zone proteins. The protein that most closely resembles mSYD1A is 

mSYD1B. Due to lack of an antibody, we have not been able to study the localization and 

function of mSYD1B so far. It would be interesting to know if protein expression levels of 

mSYD1B are upregulated in mSYD1A KO mice. However, mSYD1A protein expression 

levels were unchanged in mSYD1B KO mice (PhD thesis Julia Sommer). Furthermore, it will 

be interesting to examine protein expression levels of other active zone proteins in these 

mice, to determine if there are changes after KO of mSYD1A.  
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3.8	
  Future	
  directions	
  

One big question that we have not answered and only speculated about so far is, how 

exactly mSYD1A influences synaptic vesicle clustering. Therefore, a major goal of future 

studies will have to include a more detailed analysis of the synaptic vesicle phenotype after 

knockout of mSYD1A. In culture, the functionality of synapses from mSYD1A KO and 

knockdown neurons can be investigated by FM-dye experiments. Furthermore, mSYD1A KO 

mice can be used for electron microscopic analysis of synapse ultrastructure and synaptic 

vesicle numbers and localization in vivo.  

In our initial observations, mSYD1A KO mice are viable and fertile and do not show an 

obvious phenotype. However, we could detect an increase in postnatal death in 

heterozygous and homozygous animals, compared to WT. Piccolo and bassoon knockout 

mice both show an increase in postnatal mortality rate, which for bassoon was accompanied 

with a decrease in fusion-competent vesicles and a reduced number of active synapses 

(Altrock et al, 2003; Mukherjee et al, 2010). Our data on mSYD1A knockdown studies that 

we have collected so far, suggests that a similar phenotype could exist in mSYD1A KO mice. 

The initial electrophysiological experiments on KO mice do not detect a decrease in 

miniEPSC frequency. However, a decrease in the number of fusion-competent vesicles will 

likely not be detected in miniEPSC recordings. Future studies will involve an analysis of 

evoked responses, paired-pulse ratio and the size of the readily-releasable pool of synaptic 

vesicles.  

Furthermore, crossing of mSYD1A and mSYD1B KO mice to create a double KO will help 

us to overcome a potential redundancy between the two proteins. In addition, we could co-

culture mSYD1A KO neurons with WT neurons to create a more competitive environment for 

synapse assembly, which might enable us to uncover a phenotype in the KO neurons that is 

otherwise hidden due to redundancy mechanisms. Similarly, we could overexpress 

postsynaptic synaptogenic adhesion molecules in mSYD1A KO cultures, similar to what we 

have done in WT cultures. Here, “pushing” neuronal cultures to build an increased number of 

synapses might help to uncover a perturbation in synapse assembly that is only revealed in a 

competitive environment.   

 

3.8.1	
  An	
  assay	
  for	
  presynaptic	
  assembly	
  

We could show that overexpression of mSYD1A in cerebellar granule neurons increases 

the density of synaptophysin puncta. This suggests that an increase of mSYD1A in axons is 

sufficient to induce synaptic vesicle clustering. To ultimately test this hypothesis, we would 
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need an assay in which we can target mSYD1A to a specific site in the axonal plasma 

membrane and then examine presynaptic assembly downstream of mSYD1A. Several 

systems have been invented during the last years that can be used to target a cytoplasmic 

protein to the plasma membrane after a certain stimulus (Fegan et al, 2010; Tucker, 2012). 

These involve chemically-induced dimerization, and more recently, light-induced dimerization 

systems. The first demonstration of a chemically-induced dimerization under control of a 

small molecule was given for the prolyl-isomerase FKBP12, which forms a homodimer after 

binding to rapamycin (Spencer et al, 1993). This system was subsequently used and 

optimized in a number of studies. Fusion of two proteins or two halves of a protein of interest 

to either side of the monomer, led to a temporal control of protein interaction or reconstitution 

after application of the small molecule. It was possible to study protein interactions, induce 

gene expression and recombination events and study signal transduction pathways in a 

temporally controlled manner (Inoue et al, 2005; Jullien et al, 2003; Nyanguile et al, 1997). 

However, spatial control of the induced interaction is difficult in this system, since the small 

molecule that induces dimerization diffuses rapidly throughout the cell. More recently, light-

induced dimerization systems have been created, which provide a spatial control of 

dimerization by applying the light pulse only to a certain region of the cell. Here, 

photosensory domains from light-sensing organisms like plants and bacteria were used. The 

laboratory of Chandra Tucker has developed a system that employs the proteins CIB1 and 

cryptochrome 2 (CRY2) derived from the plant Arabidopsis thaliana (Kennedy et al, 2010). 

CRY2 is a blue light-absorbing photosensor that interacts with the helix-loop-helix protein 

CIB1 in its photoexcited state. An interaction between the two proteins can be induced on a 

timescale of 10 seconds after application of the blue light pulse, and is reversible in the dark 

(the dissociation of the proteins takes about 12 minutes). Fusion of CIB1 to GFP and a 

membrane anchor and of CRY2 to mCherry enabled the monitoring of CRY2 translocation to 

the plasma membrane in blue light.  

We are planning to use the CIB1-CRY2 system as an assay for presynaptic assembly. 

Here, we will fuse mSYD1A to CRY2 and induce the translocation of mSYD1A to a defined 

site of the plasma membrane after application of blue light. Simultaneous transfection of the 

cells with synaptophysin-mCherry will then allow the visualization of synaptic vesicle 

clustering downstream of mSYD1A plasma membrane recruitment. Furthermore, active zone 

proteins, fused to a fluorescent tag, can be monitored.  Using this assay, we might also be 

able to answer the question if mSYD1A acts upstream of and recruits liprin-α to presynaptic 

terminals. 
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3.8.2	
  Mediation	
  of	
  synaptic	
  diversity	
  

In our studies, we found that mSYD1A interacts with liprin-α2 and is found in a complex 

with liprin-α2 and LAR. Therefore, we hypothesized that mSYD1A might act specifically 

downstream of NGL-3/LAR induced synapse formation. However, our results in cerebellar 

granule cells revealed that mSYD1A does not only act downstream of NGL-3/LAR, but also 

of neuroligin/neurexin induced presynaptic formation. This suggests that mSYD1A acts in at 

least two different pathways of synapse assembly. Recently, several novel trans-synaptic 

adhesion complexes with synaptogenic properties have been identified (Linhoff et al, 2009; 

Takahashi et al, 2011; Takahashi et al, 2012; Woo et al, 2009). The fact that many different 

adhesion complexes with seemingly similar properties exist, has given rise to the idea that 

they mediate synaptic diversity (Craig & Kang, 2007; Huang & Scheiffele, 2008). It is not 

known, how many and which trans-synaptic adhesion complexes populate a given synapse 

at the same time. Furthermore, we do not know if all of the trans-synaptic complexes that a 

given synapse needs, are incorporated at the same time. A temporal control of receptor 

incorporation might provide synapses with different properties compared to their neighbors. 

For example, receptor protein tyrosine phosphatases and kinases have the ability to mediate 

protein-protein interactions, as well as changing the phosphorylation state of interacting 

proteins. Local control of phosphorylation at a subset of synapses might provide synapses 

with different properties (Dabrowski & Umemori, 2011). The picture is furthermore 

complicated by the fact that some adhesion complexes undergo extensive alternative 

splicing. Neurexins for example are encoded by three different genes, each of which has two 

alternative promoters. Alternative splicing at five different sites generates over 2000 potential 

mRNA transcripts (Baudouin & Scheiffele, 2010), possibly mediating synaptic diversity. 

Therefore, it will be interesting to examine if the signaling pathways that are downstream of 

the different adhesion complexes diverge. Does presynaptic differentiation mediated through 

NGL-3/LAR lead to the same CAZ composition as presynaptic differentiation mediated 

through neuroligin/neurexin or TrkC/PTPσ? Furthermore, do different types of synapses in 

different brain regions contain a different set of trans-synaptic adhesion complexes and does 

the adhesion complex composition change over time as synapses mature? Here, mSYD1A 

might play a central role, due to its importance for presynaptic assembly. Since we found that 

mSYD1A acts downstream of several trans-synaptic adhesion complexes, it might not only 

have a role in presynaptic assembly during initial synapse formation, but also mediate 

changes in active zone composition when the set of trans-synaptic adhesion complexes 

changes. Here, it will be important to investigate if mSYD1A is differentially regulated by 

upstream adhesion complexes. We found that mSYD1A might directly interact with the 

tyrosine phosphatase LAR. Therefore, LAR might have the potential to regulate the 

phosphorylation state of mSYD1A and consequently regulate its association with 
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downstream interaction partners. It will be interesting to investigate a potential 

phosphorylation of mSYD1A and its consequences on mSYD1A binding properties. 

Furthermore, liprin-αs are expressed by four different genes and it has been shown that the 

isoforms differ in regional distribution pattern. We found that the interaction between 

mSYD1A and liprin-α is splice isoform specific. Therefore, a regional difference in the 

expression of specific liprin-α isoforms might lead to changes in its interaction with mSYD1A 

and therefore in presynaptic assembly. Furthermore, we need to examine if mSYD1A is 

present at all types of synapses, or if a certain subset of neurons does not express mSYD1A.  

 

3.8.3	
  Non-­‐synaptic	
  functions	
  for	
  mSYD1A/B	
  	
  

Our expression and distribution analysis of mSYD1A has shown that mSYD1A is also 

expressed in non-neuronal cells. An RT-PCR analysis that was done by Julia (see PhD 

Thesis Julia Sommer) has shown that msyd1a and msyd1b transcripts are expressed in 

kidney, lungs, muscle and brain tissue. Therefore, mSYD1A and mSYD1B most likely have 

an additional role in different cell types. The actin cytoskeleton has an important function for 

maintaining and changing cell shape and structure, not only in neurons. Therefore, the 

property of mSYD1A, and probably also mSYD1B, to act as a GAP protein, might provide it 

with important functions in a number of cell types. For example β-pix, a Rac/Cdc42 GEF that 

has been shown to have a role in presynaptic actin polymerization and synaptic vesicle 

localization, had previously been shown to function in the regulation of focal adhesions in 

various other cell types (Rosenberger & Kutsche, 2006). Possible functions of mSYD1A and 

mSYD1B in non-neuronal cells remain to be investigated in the future. 

Furthermore, overexpressed mSYD1A in neurons localizes not only to the axon, but also 

to dendritic processes and the soma. While this could be an artifact of overexpression, the 

fact that mSYD1A can also be found in dendrites suggests a potential role for mSYD1A in 

dendritic development. The N-terminal domain of mSYD1A contains several nuclear 

localization sequences and our subcellular fractionation experiments detected a pool of 

mSYD1A in the nuclear fraction. In addition, several of the potential binding partners for 

mSYD1A, identified in the Yeast-2-Hybrid screen, are localized to the nucleus. Therefore it is 

likely that mSYD1A has an additional role in the nucleus, which awaits future investigation. 
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4.	
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4.1	
  Expression	
  constructs	
  

Mammalian mSYD1A and mSYD1B expression constructs contained the CMV splice 

enhancer and the chicken beta-actin promoter (pCAGGS). mSYD1A constructs either 

contained an N-terminal HA- or Flag-tag, or a C-terminal Myc-tag. Point mutations in the 

GAP domain were introduced with Quick Change Multi Site Directed Mutagenesis Kit 

(Agilent-Stratagene). In myristoylated and palmitoylated mSYD1A (myr-SYD1A and myr-

NTD), the minimal MARCKS-3/4 Cys (MGCCFSKT) sequence was added to the N-terminus. 

For lentiviral delivery of hSYD1A, a lentiviral vector with a dual human synapsin promoter 

was used to express GFP and hSYD1A (Gascon et al, 2008). The following previously 

published DNA constructs were used: mouse liprin-α1, -α2, -α4 coiled-coil domains (liprin-α-

CC, amino acids α1: 351-673, α2: 369-696, α4: 185-419) (Ko et al, 2003b), His-tagged 

human liprin-α2 SAM domains (liprin-α2-SAM, amino acids: 866-1258) and liprin-α2 SAM 

ΔPQ (as above but lacking amino acids 976 – 1012) (Wei et al, 2011), RhoA sensor and 

p50rhoGAP (Pertz et al, 2006), epitope-tagged liprin-α2 (Zürner & Schoch, 2009), Myc-

CASK (Borg et al, 1998), ELKS2-Myc (Ohtsuka et al, 2002) and Munc18 (Toonen et al, 

2005). The following list provides an overview of all expression constructs that were used in 

this study. 

Table 1 – List of constructs, used in this study 
name tag contains amino acids promoter vector species 
mSYD1A 
HA-mSYD1A HA (N-terminal) 1 - 737 (full-length) β-actin pCAG mouse 
HA-NTD(mSYD1A) HA (N-terminal) 1 - 267 β-actin pCAG mouse 
HA-NTD-C2(mSYD1A) HA (N-terminal) 1 - 368 β-actin pCAG mouse 
HA-C2-GAP(mSYD1A) HA (N-terminal) 267 - 737 β-actin pCAG mouse 
HA-GAP(mSYD1A) HA (N-terminal) 410 - 737 β-actin pCAG mouse 
HA-NTD 532-966(mSYD1A) HA (N-terminal) 178 - 322 β-actin pCAG mouse 
HA-NTD-C2 532-1104(mSYD1A) HA (N-terminal) 178 - 368 β-actin pCAG mouse 
HisGST-epitope1(mSYD1A) 6xHis/GST (N-terminal) 5 - 222 T7 pET9d mouse 
HisGST-epitope2(mSYD1A) 6xHis/GST (N-terminal) 198 - 408 T7 pET9d mouse 
HisGST-epitope3(mSYD1A) 6xHis/GST (N-terminal) 198 – 408 T7 pET9d mouse 
HisGST-epitope4(mSYD1A) 6xHis/GST (N-terminal) 373 – 569 T7 pET9d mouse 
HisGST-epitope5(mSYD1A) 6xHis/GST (N-terminal) 553 – 739 T7 pET9d mouse 
HisGST-epitope6(mSYD1A) 6xHis/GST (N-terminal) 480 - 669 T7 pET9d mouse 
HA-mSYD1A N552A HA (N-terminal) 1 - 737 β-actin pCAG mouse 
HA-mSYD1A R436A HA (N-terminal) 1 - 737 β-actin pCAG mouse 
HA-mSYD1A R436V N552R HA (N-terminal) 1 - 737 β-actin pCAG mouse 
HA-GAP N552A HA (N-terminal) 410 - 737 β-actin pCAG mouse 
HA-GAP R436A HA (N-terminal) 410 - 737 β-actin pCAG mouse 
HA-GAP R436V N552R HA (N-terminal) 410 - 737 β-actin pCAG mouse 
mSYD1A R436A-Myc Myc (C-terminal) 1 - 737 β-actin pCAG mouse 
mSYD1A ΔYRL-Myc Myc (C-terminal) 1 - 737 Δ435 - 437 β-actin pCAG mouse 
FLAG-mSYD1A FLAG (N-terminal) 1 - 737 β-actin pCAG mouse 
FLAG-GAP(mSYD1A) FLAG (N-terminal) 410 - 737 β-actin pCAG mouse 
FLAG-NTD(mSYD1A) FLAG (N-terminal) 1 - 267 β-actin pCAG mouse 
HA-NTD prorich(mSYD1A) HA (N-terminal) 38 - 163 β-actin pCAG mouse 
HA-NTD 1-531(mSYD1A) HA (N-terminal) 1 - 177 β-actin pCAG mouse 
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HA-NTD 265-531(mSYD1A) HA (N-terminal) 88 - 177 β-actin pCAG mouse 
HA-NTD 265-801(mSYD1A) HA (N-terminal) 88 - 267 β-actin pCAG mouse 
Myr-SYD1A-HA Myr (N-term) HA (C-term) 1 - 737 β-actin pCAG mouse 
mSYD1A-Myc Myc (C-terminal) 1 - 737 β-actin pCAG mouse 
GAP(mSYD1A)-Myc Myc (C-terminal) 410 - 737 β-actin pCAG mouse 
NTD(mSYD1A)-Myc Myc (C-terminal) 1 - 267 β-actin pCAG mouse 

lenti Syn-hSYD1A-SYD-GFP   1 - 668 hSynapsin 
LenLox 
3.7 human 

Myr-NTD(mSYD1A)-Myc Myc (C-terminal) 1 - 267 β-actin pCAG mouse 
Myr-NTD-C2(ΔLB)-Myc Myc (C-terminal) 1 - 368 Δ124 - 262 β-actin pCAG mouse 
hSYD1A-Myc  Myc (C-terminal) 1 - 668 β-actin pCAG human 
mSYD1B 
HA-mSYD1B pCAG HA (N-terminal) 1 - 1314 (full-length) β-actin pCAG mouse 
Liprins 
Myc-Liprin-α2 Myc (N-terminal) full-length β-actin pCAG mouse 

GST-Liprina1 351-673 GST (N-terminal) 351 - 673 tac 
pGEX-
4T-1 mouse 

GST-Liprin-α2 369-696 GST (N-terminal) 369 - 696 tac 
pGEX-
4T-1 mouse 

GST-Liprin-α4 185-419 GST (N-terminal) 185 - 419 tac 
pGEX-
4T-1 mouse 

6xHis Liprin-α2 SAM 6xHis (N-terminal) 866 - 1193 T7 
pET.32
M.3C human 

6xHis Liprin-α2 SAM ΔPQ  6xHis (N-terminal) 
866 - 1193 Δ976 - 
1012 T7 

pET.32
M.3C human 

others 
pMunc18-IRES2EGFP    full-length CMV   rat 
RhoA biosensor pTriEX    full-length CMV pTriEX   
p50rhoGAP Myc  full-length CMV pTriEX   
EGFP    full-length β-actin pCAG   
NGL-3-Myc Myc (C-terminal)  full-length β-actin pCAG rat 
HA-LAR HA (N-terminal) 1236 - 1898 CMV pDisplay mouse 
HA-Neuroligin1 HA (N-terminal)  full-length β-actin pCAG   
Synaptophysin-mCherry mCherry (C-terminal)  full-length CMV pNICE   

ELKS2-Myc-His Myc/His (C-terminal)  full-length CMV 
pcDNA3
-1 rat 

 

4.2	
  Antibodies	
  

4.2.1	
  Production	
  of	
  mSYD1A	
  antibodies	
  

4.2.1.1	
  mSYD1A	
  antibody	
  used	
  in	
  this	
  study	
  

The rabbit polyclonal antibody against mSYD-1A that was used in this study, was raised 

against a synthetic peptide (MAEPLLRKTFSRLRGREK) and affinity purified on the antigen. 

A description of the purification procedure can be found in Julia Sommer’s PhD Thesis. 

4.2.1.2	
  Production	
  of	
  an	
  additional	
  antibody	
  against	
  mSYD1A	
  

For production of a new mSYD1A antibody, several constructs, covering different parts of 

the mSYD1A sequence were expressed in E.coli. The construct named “epitope 2”, 

consisting of amino acids 198 – 408 of the mSYD1A sequence, showed the best protein 
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expression and highest solubility in E.coli and was purified as recombinant protein. For 

protein purification, the expression of epitope 2 was induced with 0.1 mM IPTG and bacteria 

were grown at 22 °C for 3 h. After centrifugation (1000 x g, 15 min, 4 °C), bacteria were 

resuspended in buffer A (20 mM Tris-HCl pH 9.0, 10 mM imidazole, 300 mM NaCl, 0.5 mM 

AEBSF) and lysed in the French press. After passing the bacteria through the French press 

twice, 1 % Triton X-100 was added to the suspension, followed by incubation at 4 °C for 

30 min with overhead rotation. The cell suspension was centrifuged (17000 x g, 30 min, 4 °C) 

and the supernatant was saved. The pellet was resuspended in buffer A, containing 8 M urea 

and lysed for 45 min at 4 °C with overhead rotation. The urea-containing cell suspension was 

centrifuged (17000 x g, 30 min, 4 °C) and the supernatant was saved. An aliquot of all 

supernatants and pellets was loaded on SDS-Gel and analyzed by coommassie staining. 

Subsequently, the first supernatant was adjusted to 8 M urea and combined with the urea-

containing supernatant. Ni-NTA (Qiagen) columns were washed with PBS and buffer A and 

the combined supernatant was loaded onto the column. The column was incubated with the 

bacterial supernatant for 30 min at 4 °C with overhead rotation and the flow-through was 

collected and saved. In subsequent wash steps with buffer B (20 mM Tris-HCl pH 9.0, 5 mM 

imidazole, 1 M NaCl, 0.1 % Triton X-100, 8 M urea) and buffer A (containing 6 M or 4 M 

urea), the urea concentration was reduced to 4 M. The elution was done with buffer A 

containing 2 M urea and 200 mM imidazole. The concentration of the eluted protein was 

measured with Bradford Reagent (Bio-Rad) and the purity was confirmed by SDS-PAGE, 

before the eluted fractions were pooled. The eluted protein was dialyzed against 20 mM Tris-

HCl pH 9.0, 300 mM NaCl, 2 M urea, 2 mM EDTA, 2 mM DTT, 10 % glycerol and 

subsequently the protein concentration was measured again. 3 mg of protein (epitope 2 of 

mSYD1A) was sent to Eurogentec for the immunization of three rabbits.  

4.2.1.3	
  Purification	
  of	
  the	
  additional	
  mSYD1A	
  antibodies	
  

The final bleeds of all three rabbits, immunized with epitope 2 of mSYD1A, were tested 

for the detection of mSYD1A on Western-Blot. Two of the three antisera were subsequently 

purified on nitrocellulose strips. Here, 80 µg of recombinant epitope 2 mSYD1A protein was 

loaded on SDS-PAGE (1 big lane) and transferred to a nitrocellulose membrane by Western- 

Blotting. The membrane was transiently stained with Ponceaus S and the band for epitope 2 

of mSYD1A was cut out and destained with water. The membrane strip was transferred to a 

15 ml Falcon tube, washed twice with 100 mM glycine-HCl pH 2.5, 100 mM NaCl for 30 sec 

and rinsed once in a large volume of 1x TBS-Tween. Subsequently, the membrane was 

blocked with 2 mg/ml BSA in 1x TBS-Tween for 1 h at room temperature. 1.5 ml of the 

antiserum was diluted with 10 ml 1x TBS-Tween and then added to the strip after removing 

the blocking solution. The incubation was performed overnight at room temperature, slowly 

shaking. The next day, the antibody solution was removed and the strip was washed three 
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times for 10 minutes with 10 ml 1x TBS-Tween. Subsequently, the membrane was rinsed 

with 10 ml diluted TBS-Tween (1:50 in water). In order to elute the antibody, the strip was 

gently soaked with 1 ml 100 mM glycine-HCl pH 2.5, 100 mM NaCl for 30 seconds and the 

eluate was collected in an Eppendorf tube containing 300 µl of 1 M Tris-HCl pH 7.5 to reach 

a final pH of 7. This elution step was repeated three times. All eluates were kept separately. 

After the final elution step, the strip was washed twice with 10 ml 1x PBS and stored in 10 ml 

1x PBS, 1 mg/mL BSA, 0.02 % sodium azide at 4°C. Finally, the eluates were tested for 

detection of mSYD1A overexpressed and endogenous protein on Western-Blot.  

4.2.2	
  Other	
  antibodies	
  used	
  in	
  this	
  study	
  

Anti-pan-neuroligin was described previously (Taniguchi et al, 2007). Rabbit anti-munc18 

was a gift from Matthijs Verhage (de Vries et al, 2000) and rabbit anti-liprin-α3 was a gift from 

Casper Hoogenraad (Spangler et al, 2011) Other antibodies were purchased from 

commercial sources: mouse anti-actin (clone AC-40, Sigma-Aldrich), rabbit anti-histone H3 

(#96715, Cell Signaling), mouse anti-PSD95 (#73-028, Neuromab), mouse anti-VAMP2 

(clone 69.1, Synaptic Systems), anti-vesicular glutamate transporter 1 (vGluT1, #1353303, 

Synaptic Systems), rabbit anti-GAPDH (#E1C604, Enogene), mouse anti-CASK (#75-000, 

Neuromab), rabbit anti-munc13-1 (#126103, Synaptic Systems), mouse anti-beta-tubulin (E7, 

DSHB), rabbit anti-ELKS 1b/2 (#143003, Synaptic Systems), rat anti-HA (clone 3F10, Roche 

Applied Science), rabbit anti-c-myc (#sc-789,Santa-Cruz), mouse anti-flag (#F1804, Sigma), 

rabbit anti-homer (#160003, Synaptic Systems), mouse anti-bassoon (#GTX13249, 

GeneTex), mouse anti-VAMP2 (#104211, Synaptic Systems), mouse anti-NeuN (#MAB377, 

Chemicon), rabbit anti-calbindin D28K (CB-38, Swant). Secondary antibodies conjugated to 

cyanine dyes or Alexa 488 or 643 (Jackson ImmunoResearch and Invitrogen) were used for 

visualization in immunostainings. 

 

4.3	
  Cell	
  and	
  tissue	
  lysis	
  and	
  detection	
  of	
  proteins	
  by	
  Western-­‐Blot	
  

All lysates of cultured cells or mouse brains were prepared on ice in 20 mM Tris-HCl 

pH 8.0, 1 % Triton X-100, 0.1 % SDS, 10 % glycerol, 150 mM NaCl and complete protease 

inhibitor (Roche Applied Science) unless indicated differently. Samples were loaded on SDS-

PAGE and transferred onto nitrocellulose membranes by Western-Blotting. Membranes were 

blocked in 5 % milk in 1x TBS, containing 0.1 % Tween-20 (TBS-Tween). Primary antibodies 

were incubated over night in 5 % milk in TBS-Tween. Secondary antibodies were applied for 

1 h at room temperature. Membranes were incubated with ECL substrate (Pierce ECL 

Western Blotting Substrate, Thermo Scientific or WesternBright Quantum Western blotting 
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detection kit, advansta). Signals were acquired using an image analyzer (LAS-3000; Fujifilm). 

 

4.4	
  Biochemical	
  fractionation	
  methods	
  

4.4.1	
  Brain	
  subcellular	
  fractionation	
  

Brains of mice at postnatal day 2 (P2) were dissected on ice and lysed in 10 volumes of 

buffer A [10 mM HEPES pH 7.4, 2 mM EDTA, 1 mM MgCl2, 1 mM DTT, complete protease 

inhibitor (Roche Applied Science)]. The homogenate was centrifuged (2900 x g for 20 min) to 

yield post-nuclear supernatant (PNS) and pellet P1, containing nuclei, mitochondria and 

unbroken cells. PNS was centrifuged (100,000 x g, 2 h) resulting in pellet P2 (insoluble and 

membrane-associated proteins) and supernatant S2 (cytosolic proteins). 

4.4.2	
  Synaptosome	
  preparation	
  

Three adult mouse brains were homogenized with a motor driven homogenizer in 0.32 M 

sucrose, 1 mM NaHCO3, 1mM MgCl2, 0.5 mM CaCl2, containing complete protease inhibitor 

(Roche) (10 ml / 1 g of tissue). The homogenate (H) was centrifuged (1400 x g, 10 min) 

resulting in the pellet P1 and the supernatant S1. Centrifugation of S1 (13,800 x g, 10 min) 

resulted in the crude synaptosomal pellet (P2) and a cytosolic supernatant. P2 was 

resuspended in 1 mM NaHCO3, 0.32 M sucrose and loaded on top of a sucrose gradient 

(0.8 M, 1 M, 1.2 M sucrose) and centrifuged at 82,500 x g for 2 h. The synaptic plasma 

membranes (SPM) were collected at the interface between the 1.0 M and 1.2 M sucrose 

layers. The SPM fraction was extracted for 15 min at 4 °C in 12 mM Tris-HCl pH 8.1, 0.32 M 

sucrose, 1 % Triton X-100 and centrifuged at 32,800 x g for 1 h to yield Triton X-100 soluble 

and insoluble fractions. 

 

4.5	
  FRET	
  sensor	
  assay	
  

HEK293T cells were seeded on 6-well plates and transfected with the RhoA sensor 

(Pertz et al, 2006) and an mSYD1A expression construct or an empty control vector (mock) 

in a ration of 1:4. After 48 h, the culture medium was taken off, cells were washed once with 

1x PBS and 100 µl of 2x Trypsin was added to each well. After 1 min, 900 µl of 1x PBS was 

added to each well and the cell suspension was transferred into Eppendorf tubes and kept 

on ice. For the FRET measurements, the cell suspension was transferred into a quartz 

cuvette and the emission spectrum between 450 and 600 nm after excitation with 430 nm 

light was measured in a Fluorescence Spectrophotometer (F-4500, Hitachi or FP-6500, 
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Jasco). After the measurement, cells were pelleted, the supernatant was discarded and the 

cells were resuspended in Cell Lysis Buffer [20 mM Tris-HCl pH 8.0, 10 % Glycerol, 150 mM 

NaCl, 1 % Triton X-100, 0.1 % SDS and complete protease inhibitor (Roche Applied 

Science)]. The cell lysates were analyzed for expression of the RhoA sensor and co-

expressed proteins by Western-Blot analysis. The RhoA sensor was detected with a 

homemade anti-GFP antibody (rabbit; 1:1000), whereas tagged-mSYD1A proteins were 

either detected with an anti-HA (rat; 1:1000; Roche Applied Science) or an anti-Myc (rabbit; 

1:500; Santa Cruz) antibody. All Western-Blots were tested for equal loading of the protein 

lysates by staining for actin (mouse, 1:5000; Sigma). 

 

4.6	
  Co-­‐immunoprecipitation	
  

HEK293T cells were transiently transfected (Fugene, Roche) with different combinations 

of expression constructs for the proteins of interest. After 48 h, cells were washed once with 

ice-cold 1x PBS and lysed in Cell Lysis Buffer [20 mM Tris-HCl pH 8.0, 1 % Triton X-100, 

0.1 % SDS, 10 % Glycerol, 150 mM NaCl, complete protease inhibitor (Roche Applied 

Sciences)]. Lysates were pelleted at 13,200 rpm for 10 min and the soluble supernatant was 

transferred into a new Eppendorf tube. Two-thirds of the lysate were mixed with 2 volumes of 

Dilution buffer [20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 % glycerol, complete (Roche 

Applied Science)]. Antibody (0.5 µl anti-HA, 1 µl anti-Flag or 0.5 µl anti-munc18) was added 

and the mixture was incubated for 90 min on ice. After the incubation the lysate-antibody-mix 

was centrifuged at 13,000 rpm, 4 °C for 10 min and the supernatant transferred into a new 

tube. Protein A sepharose (GE Healthcare) for anti-Flag and anti-munc18 antibodies or anti-

rat IgG (Sigma) for anti-HA was added to the samples and the mix was incubated with 

overhead rotation at 4 °C over night. The next morning the sepharose/agarose beads were 

precipitated at 1000 rpm in an Eppendorf tabletop centrifuge and washed three times in 

Wash buffer (20 mM Tris-HCl pH 8.0, 200 mM NaCl, 10 % glycerol, 0.2 % Triton X-100). 

After the last wash step beads were resuspended in 2x SDS-sample buffer (200 mM DTT, 

100 mM Tris-HCl pH 6.8, 4 % SDS, 20 % glycerol, 0.05 % bromphenolblue). Proteins were 

resolved on SDS-PAGE, transferred to a nitrocellulose membrane and immunoblotted for the 

proteins of interest. 

 

4.7	
  Pull-­‐Down	
  assays	
  

The following proteins were purified from E. coli and coupled to Glutathione Sepharose 

(GE Healthcare) or Ni-NTA (Qiagen) Agarose beads: GST-Liprin-α1-CC, GST-Liprin-α2-CC, 
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GST-Liprin-α4-CC, 6xHis-Liprin-α2-SAM, 6xHis-Liprin-α2-SAM ΔPQ or GST-neurexin 

(cytoplasmic domain).  HEK293T cells were transiently transfected (Fugene, Roche) with the 

protein of interest and cell lysates were lysed in 50 mM HEPES pH 7.4, 1 % Triton X-100, 

0.1 % SDS, 10 % glycerol, 1.5 mM MgCl2, 1 mM EDTA, 100 mM NaF, 1 mM Na3VO4 and 

complete protease inhibitor (for pull down with liprin-CC and GST-neurexin) or 20 mM Tris-

HCl pH 8.0, 1 % Triton X-100, 10 % glycerol, 100 mM NaCl and complete protease inhibitor 

(for pull-down with liprin-SAM). The lysates were centrifuged at 13,200 rpm for 10 min at 4 °C 

in an Eppendorf tabletop centrifuge and soluble components were transferred into a new 

tube. Lysates were diluted 1:6 in Dilution buffer: Dilution Buffer liprin-CC and GST-neurexin: 

20 mM HEPES pH 7.4, 50 mM NaCl, 10 % glycerol, 1 mM EDTA, 1.5 mM MgCl2, 1 mM NaF, 

1 mM Na3VO4. Dilution Buffer liprin-SAM: 20 mM Tris-HCl pH 8.0, 10 % glycerol, 100 mM 

NaCl, 5 mM imidazole pH 8.0. 10 µl of beads coupled to the recombinant proteins were 

incubated with the lysate for 5 h at 4 °C. The beads were precipitated at 1000 rpm and 

washed three times in Wash buffer: Wash Buffer liprin-CC and GST-neurexin: 20 mM 

HEPES pH 7.4, 200 mM NaCl, 0.2 % Triton X-100, 10 % glycerol, 1 mM EDTA, 1.5 mM 

MgCl2, 1 mM NaF, 1 mM Na3VO4. Wash Buffer liprin-SAM: 20 mM Tris-HCl pH 8.0, 0.2 % 

Triton X-100, 200 mM NaCl, 10 mM Imidazole pH 8.0. After the last wash the beads were 

resuspended in 2x SDS-sample buffer and bound proteins analyzed by immunoblotting.  

 

4.8	
  COS	
  cell	
  recruitment	
  assay	
  

For co-aggregation experiments, COS7 cells were seeded on coverslips in 24-well plates 

and transiently transfected (Fugene, Roche) with different combinations of Myc-liprin-α2, HA-

LAR and Flag-mSYD1A. After 48 h, cells were fixed with 4 % PFA, 4 % sucrose in 100 mM 

sodium phosphate buffer (pH 7.4) for 15 min at room temperature. After three washes with 

1x PBS, cells were blocked and permeabilized with 10 % donkey serum, containing 0.1 % 

Triton X-100 in 1x PBS for 1 h at room temperature. Incubation with the primary antibody 

(rabbit anti-Myc 1:500, rat anti-HA 1:1000, mouse anti-Flag 1:500) was carried out in 

blocking buffer at 4 °C over night. The next day, coverslips were washed three times in 1x 

PBS and the secondary antibody (donkey anti-rat Cy3, 1:500; donkey anti-mouse Cy2, 

1:200; donkey anti-rabbit Cy5, 1:500, Jackson Immunoresearch) was applied in blocking 

buffer for 2 h at room temperature. Subsequently, cells were washed in 1x PBS and mounted 

with Fluoromount G (Southern Biotech). 
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4.9	
  Preparation	
  of	
  cerebellar	
  granule	
  cells	
  and	
  siRNA	
  mediated	
  knockdown	
  

Dissociated cultures of mouse cerebellar granule cells were prepared from P5-P7 pups 

as previously described (Dean et al, 2003). Cells were dissociated with 0.05 % Trypsin 

(Gibco) in the presence of DNaseI (Roche Applied Science). Cerebellar granule cells were 

purified by size exclusion using centrifugation through a 40 % Percoll cushion and a 4 % 

BSA cushion. After purification, cells were transfected in suspension with Lipofectamine 2000 

(Invitrogen). Cells were plated on 12 mm coverslips [coated previously with Poly-D-Ornithine 

(10 µg/ml) and Laminin (10 µg/ml)] in 24-well plates in a density of 150,000 cells per 12 mm 

coverslip. Cells were maintained in Neurobasal medium (Gibco) containing 2 % B27 

(Invitrogen) supplement, 2 mM Glutamax (Invitrogen) and brain derived neurotrophic factor 

(10 ng/ml, PeproTech). Knockdown of msyd-1a was performed on day 1 (replenished at day 

4) with 0.75 µM Accell SMART pool siRNA against msyd1a or a non-target control siRNA 

(Dharmacon). At day 7, cells were fixed with 4 % paraformaldehyde, containing 4 % sucrose 

in 100 mM phosphate buffer (pH 7.4). After 3 washes with 1x PBS, cells were blocked and 

permeabilized in 10 % donkey serum, containing 0.1 % Triton X-100 for 1 h at room 

temperature. Incubation with primary antibody was carried out in blocking solution over night 

at 4 °C. Coverslips were incubated with secondary antibody for 2 h at room temperature and 

mounted with ProLong (Invitrogen).  

 

4.10	
  Electrophysiology	
  

Whole cell patch clamp recordings were performed on DIV 8-11 cerebellar granule cell 

cultures. For knockdown of mSYD1A, 0.75 µM Accell SMART pool siRNA against msyd1a or 

a non-target control siRNA (Dharmacon) was added at DIV 1 and 4. For rescue, the lentivirus 

(lenti-hSYD1A or lenti-GFP as control) was added at DIV 3. The extracellular solution (pH 

7.3) contained the following: 145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM 

Glucose, 25 mM Sucrose and 5 mM HEPES. For all the experiments 300 nM TTX, 0.1 mM 

Picrotoxin and 0.1 mM AP5 were used in the solution. The internal solution contained the 

following: 130 mM CsCl, 10 mM HEPES, 10 mM EGTA, 10 mM Phosphocreatine, 2 mM 

MgATP, 5 mM NaCl, pH 7.25 and 298 mOsm. Data was analyzed using Axograph X 

software and the mEPSCs were detected using a template based detection algorithm 

package.  
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4.11	
  Image	
  acquisition	
  and	
  analysis	
  

Images were acquired on a LSM5 confocal microscope (Zeiss, Germany) and assembled 

using Adobe Photoshop and Illustrator software. For the analysis of dendritic arborization, 

soma and dendrites of the neurons were traced and analyzed with Neurolucida (MBF 

Bioscience). Co-localization analysis of proteins in COS cells was performed by the 

Pearson’s coefficient method computed on fluorograms, using the JaCOP plugin in ImageJ 

(Bolte & Cordelieres, 2006). Quantification of pre- and postsynaptic proteins in granule cells 

was performed by a wavelet-based segmentation method, using the Multidimensional Image 

Analysis module (Izeddin et al, 2012; Racine et al, 2006), run in Metamorph software 

(Molecular Devices, USA). Some images for figures were processed by deconvolution using 

a theoretical PSF, a signal/noise ratio of 10 for each channel and 30 iterations of the 

deconvolution algorithm (Huygens remote manager v2.1.2). 

 

4.12	
  Statistical	
  analysis	
  

Statistical Analysis was done with Prism software (GraphPad software). Data was tested 

for normality using the Kolmogorov-Smirnov normality test. Normally distributed data was 

analyzed for statistical differences with the t-test (pairwise comparisons) or ANOVA and 

Tukey’s for multiple comparisons. For data that was not normally distributed, non-parametric 

ANOVA and Dunn’s multiple comparison test were used.  

 

4.13	
  Generation	
  of	
  mSYD1A	
  knockout	
  mice	
  

We bought mouse mutant embryonic stem (ES) cell clones for Syde1 from the European 

Conditional Mouse Mutagenesis Program (EUCOMM ID: 82373). The mutant ES cells 

contain a lacZ and neomycin expression cassette with a 5’ splice acceptor that has been 

inserted between exon 1 and 2 of the msyd1a gene. The cells were thawed in the Transgenic 

Mouse Facility of the Biozentrum, injected into blastocysts and transplanted into pregnant 

Balb/c mice. Chimeric offspring were crossed with Balb/c mice and the litters were genotyped 

for detection of germline transmission. Mice carrying this transgene represent the first 

generation of mSYD1A KO mice (line name: SYD1A-loxP-lacZ). These mice were crossed 

with mice carrying the Flip recombinase to delete the lacZ and neomycin expression 

cassette. The resulting mice carry two loxP sites (between exon 1 and 2 and exon 4 and 5) 

and belong to the line SYD1A-loxP. These mice have the potential to create conditional 

knockout mice by crossing them with mice containing the Cre recombinase.  
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4.14	
  Generation	
  of	
  mSYD1B	
  knockout	
  mice	
  

We commissioned the University of Connecticut Gene Targeting and Transgenic Facility 

for cloning and creation of mice carrying two loxP insertions in the msyd1b (syde2) gene. 

The 5’ loxP site was inserted in intron 2 the 3’ loxP site in intron 4. mSyd1B flox mice were 

crossed with mice carrying a Cre recombinase transgene expressed under control of the 

CMV promoter (Cre-deleter), giving rise to mSYD1B knockout mice. 

 

4.15	
  Immunohistochemistry	
  on	
  mSYD1A	
  KO	
  mice	
  

Two adult littermates (WT and mSYD1A homozygous KO) were sacrificed and perfused 

with 4 % PFA in 0.1 M phosphate buffer (pH 7.4). The brain was post-fixed over night in 4 % 

PFA and cut on a vibratome (Leica VT1000S) into 50 µm sections. For immunostaining, the 

sections were washed in 1x PBS and blocked and permeabilized in 10 % donkey serum in 

1x PBS, containing 0.1 % Triton X-100. The primary antibody was applied in blocking buffer 

over night at room temperature (mouse anti-NeuN 1:500 and rabbit anti-calbindin 1:10,000). 

The next day, sections were washed in 1x PBS and the secondary antibodies were applied in 

blocking buffer for 2 h at room temperature in the dark (donkey anti-mouse Cy2 1:200 and 

donkey anti-rabbit Cy5 1:500, Jackson Immunoresearch). Sections were mounted with 

Fluoromount-G (Southern Biotech).  
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5.1	
  Additional	
  figures	
  

	
  

 

 
Figure 25 – Sequence comparison of SYD-1 and liprin-α  for different species 
C.elegans and Drosophila SYD-1 have a predicted PDZ domain, whereas in the predicted SYD-1 
sequences of Danio rerio and Gallus gallus, as well as in mouse mSYD1A, no PDZ domain is present 
(domain predictions: http://pfam.sanger.ac.uk/search/sequence). The SYD-2/liprin-α sequences of 
C.elegans and Drosophila do not contain a PQ-loop insertion, whereas the PQ-loop is present in 
Danio rerio, Gallus gallus and mouse liprin-α2 (highlighted in pink) (sequence alignment: 
http://www.tcoffee.org/). 
 
 
 
 

5.2	
  Additional	
  tables	
  

5.2.1	
  Analysis	
  of	
  genotype	
  distribution	
  in	
  the	
  SYD1A-­‐lacZ-­‐loxP	
  mouse	
  line	
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Table 2 – The division of genotypes in SYD1A-lacZ-loxP 

heterozygous breedings litter (DOB) 

number of pups with the respective 
genotype 

+/+ d/+ d/d 
4 (d/+) X 6 (d/+) 09.05.12 4 3 6 

02.06.12 5 5 4 
29.06.12 2 5 7 
23.07.12 6 7 1 
19.08.12 2 6 3 
13.09.12 2 6 2 

47 (d/+) X 60 (d/+)  17.06.12 1 3 1 
14.07.12 4 5 1 
25.08.12 2 4 3 
22.09.12 2 6 2 

31 (d/+) X 51 (d/+)  28.06.12 5 4 2 

11.08.12 3 7 1 

06.09.12 1 6 4 

total number of animals 39 67 37 
ratio 1.1 1.9 1 
expected mendelian ratio 1 2 1 

	
  

5.2.2	
  Analysis	
  of	
  postnatal	
  death	
  in	
  the	
  SYD1A-­‐lacZ-­‐loxP	
  mouse	
  line	
  
	
  

Table 3 – Analysis of postnatal death in SYD1A-lacz-loxP 

genotype +/+ d/+ d/d 

total number of animals born 61 104 37 
no. of animals that 
died at 

1 week   1   
2 weeks 1   3 
3 weeks 2 14 3 

4 weeks 1 3 2 

5 weeks       

6 weeks   3   
7 weeks       

8 weeks       

9 weeks       

10 weeks       

11 weeks   1   

total number that died 4 22 8 
percentage (died animals of 
total that were born) 6.6 21.2 21.6 
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  Abbreviations	
  

aa     amino acid 

bp     base pair 

C.elegans    Caenorhabditis elegans 

CAZ     cytomatrix of the active zone 

CMV     cytomegalovirus 

CNS     central nervous system 

DIV     day in vitro 

E1     embryonic day 1 

ECL     enhanced chemi luminescence 

EPSC     excitatory postsynaptic current 

EUCOMM    European Conditional Mouse Mutagenesis Program 

F-actin     filamentous actin 

FRET     Förster resonance energy transfer 

GAP     GTPase-activating protein 

GFP     green fluorescent protein 

GEF     guanine nucleotide exchange factor 

HRP     horseradish peroxidase 

IRES     internal ribosomal entry site 

KD     knockdown 

KO     knockout 

LIS     liprin-interaction sequence 

NMJ     neuromuscular junction 

NTD     N-terminal domain 
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P1     postnatal day 1 

PTV     piccolo-bassoon transport vesicle 

RNAi     RNA interference 

rpm     rounds per minute 

RRP     readily-releasable pool 

RT     room temperature 

STV     synaptic vesicle protein transport vesicle 

SV     synaptic vesicle 

VGCC     voltage-gated calcium channel 

WB     Western-Blot 

WT     wildtype 

Y2H     yeast-2-hybrid 
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