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Summary 

Polycomb group proteins, including Ezh2, regulate many target genes, which control 

early cell fate decisions. We addressed whether Ezh2-dependent epigenetic regulation 

of transcriptional programs also orchestrates complex processes such as long-distance 

tangential neuronal migration in the developing nervous system.   

We focused on the migratory behavior of the anterior extramural stream (AES) that 

contributes to the brainstem pontine nuclei (PN), the main relay between cortex and 

cerebellum.  

We found that the PN neuron migratory behavior is largely pre-mapped at the 

progenitor stage. The AES stereotypic migratory pattern emerges through an inter-

dependent interaction between: i) an intrinsic Ezh2-dependent transcriptional program 

established in PN progenitors, which is maintained in migrating neurons and enables 

appropriate response to environmental cues; and, ii) an Ezh2-dependent silencing 

program that regulates the spatial distribution of extrinsic signals in the migratory 

environment, such as Ntn1, also pre-mapped in ventricular progenitors. 

Specifically, by restricting Netrin1 expression to ventral hindbrain, Ezh2 allows 

normal PN migration in a non-cell-autonomous manner. In conditional Ezh2 mutants, 

ectopic Netrin1 de-repression leads to abnormal migration and supernumerary nuclei 

that integrate the cortico-ponto-cerebellar circuitry. Importantly, we revealed for the 

first time an intrinsic topographic organization of the PN migratory stream, according 

to rostrocaudal progenitor origin. Neuronal position is maintained throughout 

migration and settling in the PN and correlates with patterned cortical input. By 

counteracting retinoid signaling, Ezh2 sets graded Hox expression in migrating 

neurons which in turn maintain graded activity of repulsive receptors Unc5b/Unc5c, 

generating subsets with distinct responsiveness to Netrin1. 

These findings point to a migratory protomap established in progenitors, whereby 

Polycomb-mediated epigenetic silencing is fundamental to establish these intrinsic 

and extrinsic programs. On the one hand, Ezh2 sets the levels of environmental 

attractive/repulsive signals through dorsoventrally-restricted silencing of Ntn1. On the 

other hand, Ezh2-mediated repression contributes to set a heterogeneous Hox 
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transcriptional program in the AES that, in turn, provides neuronal subsets with 

distinct Unc5b-mediated repulsion to environmental Ntn1.  

Our results extend the involvement of Ezh2 beyond fate and subtype identity 

specification to a novel role in orchestrating epigenetic regulation of topographic 

neuronal guidance in the mammalian brain. 

Lastly, the pontine gray nucleus is a fundamental relay station for the transformation 

of orderly motor and sensory maps in the cerebral cortex into ‘patchy’ representations 

of input in the granular layer of the cerebellar cortex. Little is known about the 

molecular and cellular mechanisms assembling these complex input-output wiring 

patterns in PN. Our results strongly suggest that the intrinsic pre-mapping of PN from 

progenitors of distinct rostrocaudal origin contributes to organize broad topographic 

input from distinct cortical areas. 

To further investigate this, we established means to analyze cortico-ponto-cerebellar 

connectivity by using a) transgenic animals b) viral tracing and c) in utero 

electroporation. These methods will serve further in-depth analysis of the pontine 

nuclei circuitry and allow functional experiments. 

This thesis encompasses the accepted publication “Ezh2 orchestrates topographic 

tangential migration and connectivity of precerebellar neurons” (Di Meglio et al., 

2013), two manuscripts that resulted from collaborations about “Partial ipsilateral 

wiring of subcortical sensory inputs duplicates the facial map” and “Mouse Hoxa2 

genetic analysis provides a model for human microtia and auricle duplication”, a 

manuscript for a book chapter about “The Cre/Lox system to assess the development 

of the mouse brain” as well as unpublished results that were part of previous versions 

of the Science publication (Di Meglio et al., 2013) and results from further 

investigations of cortico-ponto-cerebellar connectivity as well as in-depth analysis of 

generated and examined transgenic mouse lines. 
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Abbreviations 

A-P Anterior-Posterior  
AES Anterior Extramural Stream 
ANR Anterior Neural Ridge 
C Cranial spinal cord (used in Introduction) 
C Cingulate cortex (used in Results) 
C1 CrusI 
C2 CrusII 
Cb Cerebellum 
ChAT Choline Acetyl Transferase  
Chr Chordin 
CN Cochlear Nucleus 
CO Cytochrome Oxidase 
COP Copula Pyramidis 
CP Cerebellar Peduncle 
CST Corticospinal Tract 
Ctx Cortex 
Di Diencephalon 
DLPN Dorso Lateral Pontine Nucleus 
DNA Deoxyribonucleic acid  
DRG Dorsal Root Ganglia 
E Embryonal day 
ECN External Cuneate Nucleus 
Ect Ectorhinal cortex 
EZH Enhancer of Zeste Homolog 
FGF Fibroblast Growth Factor 
Fl Flocculus 
FLEX Flip-Excision (cassette) 
FLOX Flanked by LOX sites 
FN Facial Nucleus 
FrA Frontal Association cortex 
GFP Green Fluorescent Protein 
H3K27me3 Trimethylated Lysine 27 of histone H3 
Hb Hindbrain 
Hc Hippocampus 
I Insular cortex 
IHC Immunohistochemistry 
INT Intergenic Region 
ION Inferior Olivary Nuclei 
IRES Internal Ribosomal Entry Site 
ISH In Situ Hybridization 
IsO Isthmic Organizer  



6! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Abbreviations!

!

L Lumbar spinal cord 
lRL lower Rhombic Lip 
LRN Lateral Reticular Nucleus 
LS Lobus Simplex 
M1 Primary Motor Cortex 
M2 Secondary Motor Cortex 
Md Mandibular 
Mes Mesencephalon/ Midbrain 
mGFP membrane-tagged Green Fluorescent Protein 
Mx Maxillary 
NLS Nuclear Localization Signal 
Oph Ophthalmic 
OT Otic capsule 
PES Posterior Extramural Stream 
PFl Paraflocculus 
PG Paralog Group 
PML Paramedian Lobe 
PN Pontine Nuclei 
Pr5 Principal trigeminal nucleus 
PRC Polycomb Repressive Complex 
PRh Perirhinal cortex 
PRE Polycomb Responsive Element 
r Rhombomere 
R26R ROSA26 reporter 
RabiesG Rabies-Glycoprotein 
S1 Primary Somatosensory Cortex 
S2 Secondary Somatosensory Cortex 
Sc Spinal cord 
Shh Sonic hedgehog 
Sp5 Spinal trigeminal nucleus 
T thoracic spinal cord 
Tel Telencephalon 
TGFß Transforming Growth Factor ß 
V1 Primary Visual Cortex 
V2 Secondary Visual Cortex 
WISH Whole-mount In Situ Hybridization 
ZLI Zona Limitans Intrathalamica 
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1 Introduction 

1.1 Development of the mammalian nervous system 

1.1.1 From early patterning to cell-type specification  

The nervous system differentiates from the ectodermal germ cell layer. Its first sign is 

the appearance of the neural groove, a fold of a part of the ectodermal layer called the 

neural plate. The groove closes at the top and detaches from the ectoderm, which 

itself develops into epidermis. The tubular structure evolving out of the neural groove, 

is now called neural tube, the presumptive central nervous system. All parts of the 

brain as well as the spinal cord develop from this structure. 

One of the main mechanisms defining identity of brain and spinal cord regions as well 

as of cells types was conceptionally proposed by Lewis Wolpert’s “French-Flag 

Model” (Figure 1, Wolpert, 1969). He postulated that a tissue could be patterned by 

the graded presence or activity of a single factor (a morphogen). Due to the 

differential responsiveness to higher or lower concentrations of this factor, expression 

of different genes can be triggered, resulting in different cell fates (Rogers and Schier, 

2011).  

The existence of these factors was first demonstrated in Drosophila. In the early 

Drosophila larvae the anterior-posterior (A-P) axis is patterned by a localized 

expression and a thereby resulting diffusion gradient of the transcription factor Bicoid 

(Driever and Nüsslein-Volhard, 1988a; Driever and Nüsslein-Volhard, 1988b). Many 

target factors downstream of morphogens are other transcription factors, further 

defining the identity of segments, structures, tissues or cell types.  

Since then, many proteins have been found to be involved in a morphogene like 

fashion in the patterning process of many organisms and tissues (Tabata, 2001) 

including the nervous system (Gómez-Skarmeta et al., 2003). 

The differentiation of the dorso-ventral axis (Figure 2, Lupo et al., 2006), which has 

been extensively studied in the spinal cord, is triggered by the graded action of 

dorsalizing factors as BMPs (Bone Morphogenetic Proteins) and other members of 
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the TGFß family (Transforming Growth Factor) released from dorsal neural tube 

(roof plate) and the adjacent non-neural ectoderm. Ventral domains of the neural tube 

are under the influence of Shh (Sonic hedgehog), released by cells of the notochord (a 

mesodermal structure ventral to the neural tube) and the ventral neural tube (floor 

plate). By the interplay of dorsalizing and ventralizing signals different classes of 

progenitors are specified giving rise to a diversity of gliogenic and neuronal cell types  

(Figure 2). 

 

 

Figure 1 | The French-flag-model by Lewis Wolpert and the concept of 
morphogens in the Drosophila larvae. (A) At the beginning all cells (grey boxes) 
have the same phenotype. (B) A localized source of a morphogen generates a 
concentration gradient. (C) Depending on the concentration of the morphogen, cells 
acquire different fates: Blue at high morphogen concentrations, white at medium-
scale concentrations and red at low concentrations. (D-F) The localized expression of 
the transcription factor bicoid (D) is the first sign of anterior-posterior polarity in the 
Drosophila larvae. Further transcription factors induced by different Bicoid 
concentrations start to be expressed at different axial levels (E) finally defining 
different body parts of the larvae (F).  (Figure by C. Kratochwil based on Porcher and 
Dostatni, 2010; Rivera-Pomar and Jäckle, 1996; Rogers and Schier, 2011) 
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Figure 2 | Morphogen mediated patterning in the vertebrate nervous system. (A-
D) In the vertebrate spinal cord the action of morphogens as BMP, Shh, Wnts and 
Chordin (Chr) (B) define the dorso-ventral axis and result in the nested expression of 
transcription factors (C) specifying the identity of different neuronal populations (D). 
(E-G) Along the anterior-posterior axis of the nervous system (E) the graded action of 
morphogens as retinoic acid (RA), Wnt, FGFs and TGFß from posterior and 
antagonists to Wnt and RA from anterior. Also signals from organizer centers as the 
anterior neural ridge (ANR), zona limitans intrathalamica (ZLI) and isthmic organizer 
(IsO) secret factors as FGF8 locally and help to pattern their surroundings (F). Also 
here transcription factors are downstream guiding the differentiation of the distinct 
regions (G). Tel: Telencephalon; Di: Diencephalon; Mes: Mesencephalon/ Midbrain; 
r: rhombomere; C: cranial spinal cord; T: thoracic spinal cord; S: sacral spinal cord; 
L: lumbar spinal cord (Figure by C. Kratochwil based on Gómez-Skarmeta et al., 
2003; Liu and Niswander, 2005) 

Also the anterio-posterior (A-P) axis of the embryo and of the nervous system itself is 

established with the help of morphogens. Besides signaling proteins as FGFs (Mason, 

2007), Wnts (Ciani and Salinas, 2005) and TGFßs (Liu and Niswander, 2005) also 

retinoic acid (RA), a metabolic product of vitamin A plays a pivotal role in patterning 

the A-P axis (Maden, 2002).  
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On top of that signaling centers are developing e.g. in the diencephalon (zona limitans 

intrathalamica) and between mid- and hindbrain (isthmic organizer), further 

specifying and patterning the adjacent parts of the nervous system (Wilson and 

Houart, 2004; Wurst and Bally-Cuif, 2001, Figure 2).  

 

Figure 3 | Hox genes in evolution and hindbrain development. (A) It is suggested 
that the four Hox clusters in the mammalian genome derived from a single ancient 
Hox cluster, since many non-vertebrates just have one cluster. The homologies to the 
Drosophila cluster (A, top) are indicated by color. (B) The rhombomeres (r) of the 
hindbrain and their identity (e.g. which cranial nerve innervates (V, VIII, IX, X) or 
grows out (V, VII, IX, X) from the respective rhombomere) are defined by the 
expression of Hox genes and other transcription factors as e.g. Krox20 and MafB 
(Kreisler). OT: Otic capsule (often used as reference for the position of r5/r6) (Figure 
by C. Kratochwil based on Guthrie, 2007; Nolte and Krumlauf, 2007; Pearson et al., 
2005) 

A very prominent class of factors, which provide cells with positional identity and 

define thereby their future fate are the Hox genes (Pearson et al., 2005). Hox genes 

have nested domains of expression with sharp anterior expression boundaries, 

providing a molecular spatial code. The 39 Hox genes in mammals are arranged in 

four different chromosomal complexes (Hox clusters HoxA, HoxB, HoxC and HoxD). 

Considering homologies between Hox genes of different clusters, they have been 
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furthermore classified as 13 paralog groups (PG) from PG1 (most anterior) to PG13 

(most posterior). A distinguishing hallmark of Hox genes is that the chromosomal 

order inside the cluster recapitulates the order of (a) their expression along the A-P 

axis, as well as (b) the timing of their expression. This phenomenon has been 

described as colinearity (Lewis, 1978).  

Hox genes are very conserved during bilateral animal evolution and 1-7 Hox clusters 

(although, in some clades the cluster(s) are more dispersed) can be found in all 

vertebrates and invertebrates (Lemons and McGinnis, 2006). It is thought, that the 

Hox genes are key factors during evolution, since they are able to orchestrate different 

morphological traits in different body segment. Therefore duplication of Hox genes 

and/or the modification of their downstream targets could be an initial step for higher 

morphological complexity (Lemons and McGinnis, 2006). 

The characteristic feature of Hox genes is a conserved DNA motif of around 180 base 

pairs coding for the homeodomain. This domain binds to the major groove of specific 

DNA sequences and acts as an "on/off switch” for gene transcription. One structure, 

where the role of Hox genes has been intensively studied, is the vertebrate hindbrain 

(Narita and Rijli, 2009; Trainor and Krumlauf, 2000).  

The mammalian hindbrain is segmented into anatomically visible metameric units 

called rhombomeres (r). Each rhombomere has a combination of hox genes (PG1-

PG5) expressed in a tight spatio-temporal manner, giving each segment a unique 

molecular code. Loss-of-function studies with hox genes have demonstrated, that the 

morphological features of rhombomeres as well as their derivatives (that includes also 

neural crest cells) are strongly related to their “Hox code” (Figure 3, Alexander et al., 

2009). 

Another basic principle underlying the generation of diversity in the brain relies on 

the fact, that progenitors cannot only differ on an axis in space, but are also able to 

change their expression profile and thereby their identity in time. Therefore one 

progenitor can first generate cell-type A and a few cell divisions later cell-type B. 

This could rely on an internal clock of the cell or a changing environment. Both can 

lead to the expression of factors, which are changing the cellular fate (McConnell, 

1995; Rakic, 1974). 
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1.1.2 Neuronal migration 

The brain is not a uniform tissue, but consists of many distinct structures, which are 

patterned in different ways. Neural tissues like the cortex or the cerebellum consist of 

layers with different properties, cell types and functions. Other parts of the brain like 

thalamus or many parts of the hindbrain are arranged in a completely different 

fashion. Here assemblies of neurons called nuclei subserve particular functions. 

During the development of neural structures cells usually migrate from progenitor 

zones to their final location. There are two main types of neuronal migration, radial 

migration and tangential migration (Figure 4). 

 

 

Figure 4 | The two canonical types of neuronal migration. (A) Radially migrating 
neurons either pull themselves in the direction of the basal surface (a) or use radial 
glia as a scaffold. (B) Tangentially migrating neurons migrate orthogonal to radial 
glia. (Figure by C. Kratochwil based on Ghashghaei et al., 2007)      

For radial migration (e.g. cortical projection neurons migrate radially) radial glia are 

used as a scaffold for differentiating cells to migrate to the correct position. Radial 

glia extend from the basal side (the ventricular side) to the apical side (the outer side) 
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and therefore allow neurons to migrate “radially” and to position in different positions 

on the basal-apical axis. This kind of migration is the main mechanism to generate 

layered structures like the neocortex or the cerebellum. Herby, different cells (with 

different fates) migrate to different layers at different developmental stages. 

A second way of migration is tangential migration. Hereby, neurons migrate 

tangentially to the surface of the brain. Well-studied examples are the telencephalic 

interneurons (Marín and Rubenstein, 2001) or the neurons of the precerebellar system 

(Altman and Bayer, 1987a; Altman and Bayer, 1987b). The development of 

precerebellar system will be discussed in detail in chapter 1.4.2. Tangential migration 

can be also followed by radial migration (Ono et al., 2004), which gives the neurons 

their final position on the basal-apical axis. 

 

1.1.3 Development of neuronal circuitry 

One of the major challenges for a developing brain is that its different parts and cells 

have to be connected in a way that all basal function that are needed for survival are 

given to a newborn animal, but that it maintains at the same time a high degree of 

plasticity to help the organism adapting to changing environments. For this the 

balance between fixed, “hardwired” connections and plastic connections that can be 

weakened or strengthened during learning processes has to be tightly regulated. 

When the axonal process starts to grow out of a differentiated neuron, the tip of the 

axon forms a dynamic structure of multiple extensions called growth cone. This 

growth cone is guided to its target (the neurons, it will connect to) by extracting 

spatial information from the migratory environment. This process is called axon 

guidance. Spatial cues can either attract or repulse the growth cone or lead to a 

collapse of the growth cone resulting in growth arrest (Figure 5, Tessier-Lavigne and 

Goodman, 1996). These interactions can be mediated by a direct contact to other cells 

(contact-mediated repulsion/attraction) or by diffusible factors (long-range 

chemoattraction/ chemorepulsion) (Chen and Cheng, 2009). Usually, axon guidance 

is a multi-step process with intermediate targets (guideposts) and involves many 

signaling molecules. The guidance of an axon is very comparable to cell migration, 
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with the only difference that in cell migration also the cell body migrates. Therefore it 

is not surprising, that in neuronal migration similar strategies and guidance factors are 

used to lead the cell to its final position. 

 

 

Figure 5 | Mechanisms of axon guidance. (A-C) If cells secrete diffusible molecules 
and corresponding receptors are expressed at the growth cone, the axon growth can be 
repelled from the source (A) or attracted to the source (B). Contact-mediated 
attraction or repulsion is realized by proteins expressed on the surface of a cell, cell 
extensions (e.g. axons) or the extracellular matrix. Herby the physical contact is 
necessary to mediate repulsion or attraction (C). (D) Complex axon pathways can be 
explained by the consecutive action of local guidance cues. Very often these cues are 
first attractive and become repulsive (due to a change of the responsiveness of the 
cell), when the growth cone reached the guidepost. (Figure by C. Kratochwil)     

Long-range signaling molecules guiding cells or axons are usually secreted proteins 

that act as ligands and bind to receptors on the guided cell or axon. Receptor-Ligand 

complexes can trigger intercellular responses that can be local and influence e.g. the 

cytoskeleton (what can change the growth direction) or affect the whole cell (e.g. 

expression of new receptors). In general the cell-responses are concentration-

dependent in a certain range.  
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In case of contact-mediated repulsion or attraction both receptor and ligand are 

connected to a membrane (or in case of the ligand at least anchored in the 

extracellular matrix; parts of the extracellular matrix can also serve themselves as 

“ligands”, like e.g. laminins (attraction) or tenascins (repulsion)).  Contact-mediated 

attraction is also used to ease the guidance of later developing axonal projections that 

can simply follow a preexisting axonal scaffold (pioneer axons).  

For the establishment of complex connectivity different mechanisms have been 

elucidated in the last two decades (Figure 6, Luo and Flanagan, 2007; Shen and 

Scheiffele, 2010). The simplest way to connect one cell to another is to make a point-

to-point connectivity, by having a unique match between projecting cell(s) and target 

cell(s). This system is for example used in the olfactory system (Murthy, 2011; Wang 

et al., 1998).  The connection can be enforced by mutual attraction or/and repulsion 

from other cells (Figure 6, B). 

Many parts of the brain are organized in a topographic manner, maintaining the 

spatial order of the input-cells (or receptors) at higher orders of processing. These 

topographic neuronal maps can be found e.g. in the somatosensory system 

(somatotopy), the visual system (retinotopy) and in the auditory system (tonotopy). In 

these neuronal systems a more parsimonious mechanism sorts the axonal input. 

Similar as during cell-type specification (1.1.1) morphogenetic gradients are used as a 

way to sort axonal inputs on a spatial axis. By using inversed gradients of receptor 

and ligand on projecting cells and target cells, projections with high levels of a 

receptor mediating attraction stop already at low ligand concentrations, while 

projections with low levels are searching for higher ligand concentrations (Figure 6, 

F). By the combination of two different receptor-ligand systems a 2-dimensional 

topographic map can be generated. 

Projections can also have a divergent (if e.g. a sensory feature is processed in 

different brain regions) or convergent character (e.g. the registration of movement in 

the visual system), which adds a further level of complexity (Figure 6, C-D). 
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Figure 6 | Different types of neuronal network connectivity and involved 
mechanisms. (A) Many networks in the brain are organized in a topographic manner. 
The arrangement of cells processing same information is maintained at the next level. 
(B) Other projections are more complex, breaking up the continuity. (C-D) 
Projections from many cells can converge on a few cells (C) or diverge from one cell 
on many (D). (E) Most neuronal networks are redefined during development by 
removing unwanted input. (F) The current understanding of the development of 
topographic circuitry (A) is, that an interplay of receptors expressed in a graded 
manner in projecting cell and matches onto a tissue, where the ligand is presented in a 
graded fashion. Growth cones with many receptors stop already at low levels of 
ligand, while those with a few receptors can continue growing to higher ligand 
concentrations.   (Figure by C. Kratochwil) 

A general feature during nervous system development is that usually an excess of 

neurons is generated and that axonal innervation tends to be broader at the beginning. 

Later on, this overabundance of cells and projections is reduced sparing only cells and 

connections that are needed. This process of generating an excess of connectivity that 

is redefined later on obviously requires more resources (because more axons are 

generated than needed), but increases on the other hand the plasticity of the neuronal 

connectivity during development and evolution (because many different projections 

patterns are possible; Figure 6, E). 
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1.1.4 Classical examples of guidance factors: Netrins and Robos 

1.1.4.1 Netrin / DCC / Unc5 

Netrins are guidance cues that trigger attraction or repulsion in migrating cells 

(Alcántara et al., 2000; Yee et al., 1999) or during axon guidance (Kennedy et al., 

1994). The bifunctional role as attractive and repulsive guidance cue can be explained 

by the existence of two receptors: DCC (just one homolog in vertebrates) and Unc5 (4 

homologs: Unc5a-d in vertebrates). DCC and Unc5 are able to build homodimers or 

heterodimers. Solely homodimers of DCC mediate attraction (Huber et al., 2003; 

Round and Stein, 2007), while all other combinations mediate repulsion. Netrin is 

typically expressed at the midline (floor plate) of spinal cord and brain and attracts 

fibers from dorsal areas expressing DCC receptors. 

1.1.4.2  Robo / Slit 

Robo receptors and their Slit ligands are a further ligand-receptor pairing with crucial 

roles during nervous system development as well as in a variety of other 

developmental processes (Chédotal, 2007; Ypsilanti et al., 2010). Robos were 

discovered in Drosophila, while screening for molecules involved in axon guidance 

(Seeger et al., 1993). Slits were identified as ligands for Robo receptors and it could 

be shown that they have a conserved role for repulsion during axon guidance (Brose 

et al., 1999). Robo-1 and Robo-2 are strongly repelled by tissues expressing Slit-1 

and/or Slit-2. Robo-3 (also called Rig-1) is itself not mediating repulsion, but 

negatively regulates Robo responsiveness to Slits (Sabatier et al., 2004). Robo-1 and 

Robo-2 are especially expressed in ipsilateral projecting neurons since they are 

repelled from the midline, a strong source of Slits. Contralaterally projecting neurons 

express Robo3, which negatively regulates Slit responsiveness. After the growth cone 

has crossed the midline, Robo3 expression is shut down and Robo-1 and/or Robo-2 

expels the axon out of the midline (Sabatier et al., 2004).  

In combination with Netrin/DCC/Unc5 as well as other axon guidance molecules the 

behavior and positioning of axonal tracts and terminals can be tightly regulated. 
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1.2 Mechanisms of transcriptional regulation in nervous system 

development 

Hindbrain and spinal cord are set up as an assortment of different neuronal pools and 

nuclei that share similar properties. The phenotype of cells is determined by guidance 

factors, which have been discussed in the last chapter, defining where the cells of a 

certain pool project, but also other factors, which define dendrite shape, input and 

other cell-architectural attributes. Still, these proteins that are finally realizing the cell 

fate, have to be orchestrated by transcriptional regulation as well as epigenetic 

regulation (see 1.3). The understanding of this process has been broadened 

extensively in the last decade by work (mainly on Hox transcription factors) in the 

hindbrain (Geisen et al., 2008; Narita and Rijli, 2009; Oury and Rijli, 2007) and 

spinal cord (Dasen et al., 2003; Dasen et al., 2005; di Sanguinetto et al., 2008; Jessell, 

2000; Philippidou et al., 2012; Vrieseling and Arber, 2006). 

1.3 Epigenetic regulation of developmental processes 

In the last 10-15 years it has become more and more obvious, that there are more 

functionally relevant modifications of chromatin that are distinct from the pure 

nucleotide sequence. The expression of genes, the accessibility of the DNA, the 

structure of the whole chromatin can be modified by changing the state of the DNA 

itself, by methylation of nucleotides (adenine or cytosine) or by the modification of 

histones that help to pack the DNA in structures called nucleosomes. All 

modifications not based on changes in DNA sequence are referred to as epigenetics 

(Bird, 2007; Francis and Kingston, 2001). 

1.3.1 The Polycomb complex 

Polycomb is a complex of central importance for epigenetic regulations mediating 

repression. In vertebrates different complexes exist called Polycomb Repressive 

Complex 1 (PRC1), PRC2, PRC3 and PRC4. These complexes contain different 

protein components at different times. PRC1 and PRC2 were the first to be discovered 

and got the most attention in recent publications.  Npcd, Cbx2/4/6/7/8, Phc1-3, Bmi1, 

Mel18 and Ring1A/1B are considered as core components of the mammalian PRC1, 
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Ezh1/2, Eed, Suz12 and RbAp46/48 as core components of the mammalian PRC2 

(Bantignies and Cavalli, 2006; Schwartz and Pirrotta, 2007, Figure 7). 

 

Figure 7 | The polycomb repressive complex 2 (PRC2).  PRC2 is composed of four 
core units: Ezh1/2, EED, SUZ12 and RbAP46/48. Together they catalyze H3K27 
trymethylation. (Figure by C. Kratochwil) 

Polycomb trimethylates histone H3 on lysine 27 (H3K27me3) (Figure 7). 

Methylation at this residue is considered as a hallmark of transcriptionally silent 

chromatin (Schwartz and Pirrotta, 2007). Polycomb-mediated repression has been 

shown to be involved in the control of stem cell maintenance (Boyer et al., 2006; 

Chamberlain et al., 2008) and early events of lineage specification (Su et al., 2003; 

Terranova et al., 2008) as well as in tissue-specific stem cells in adults (Ezhkova et 

al., 2009) and cancer (Karanikolas et al., 2009; Leung et al., 2004; Suvà et al., 2009). 

Also the importance of polycomb members of PRC1 (Leung et al., 2004) and PRC2 

(Hirabayashi et al., 2009; Pereira et al., 2010; Wang et al., 2010) for nervous system 

development has been shown recently. 

The first targets of polycomb that have been described in Drosophila were Hox genes. 

Mutants for polycomb showed homeotic transformations suggesting that Hox genes 

become activated in body regions anteriorly of their normal expression domain 

(Jürgens, 1985; Moazed and O'Farrell, 1992; Struhl, 1981). Indeed it could be shown 

that two classes of proteins are acting to maintain and stabilize expression patterns of 

Hox genes on an epigenetic level: The polycomb group of proteins, repressing Hox 

genes anteriorly and the trithorax group of proteins keeping them stably activated in 

their expression domains (Simon and Tamkun, 2002). 
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While the actions of the trithorax proteins are not well understood in vertebrates, 

polycomb-mediated regulation seems to be more similar between invertebrates as 

Drosophila and vertebrates. This includes the tight control of hox gene expression 

(Soshnikova and Duboule, 2009a; Soshnikova and Duboule, 2009b), the control of A-

P patterning (Sing et al., 2009; Wyngaarden et al., 2011) as well as their target 

elements, the Polycomb responsive elements (PREs) (Sing et al., 2009). 

Especially Ezh2 has been found to be pivotal for the functionality of PRC2 since it 

contains the domain (SET-domain) catalyzing the trymethylation of H3K27. 

1.4 The precerebellar system 

1.4.1 Function 

The precerebellar system is located in the hindbrain and receives its major inputs from 

the cerebral cortex and the spinal cord. The neuron assemblies (nuclei) of the 

precerebellar system have therefore often been considered as a synaptic relay station 

between cortex/spinal cord and cerebellum. The precerebellar system constitutes of 

five bilaterally symmetric nuclei including basal pontine nuclei (PN), 

reticulotegmental nuclei (RTN), lateral reticular nuclei (LRN), external cuneate nuclei 

(ECN) and inferior olivary nuclei (ION). The RTN are located just dorsally of the PN 

and both share similarities in their development, connectivity and function (Figure 8, 

B). 

The PN are hypothesized to adapt cortical signals for the use of the cerebellum 

(Schwarz and Thier, 1999) and serve as a first integrator of the information from 

different cortical regions including sensory cortices and motor cortex. The PN mainly 

receive projections from layer 5 of the cortex, which constitutes a major subcortical 

projection as a part of the cortico-fugal / cortico-spinal tract. The efferents of the PN 

project over the middle cerebellar peduncle to the ipsi- and contralateral side of the 

cerebellum. Ponto-cerebellar fibers terminate as mossy fibers in the granular cell layer 

(Figure 8, A). 
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Figure 8 | Pontine Nuclei connectivity and anatomy. (A) The pontine nuclei are the 
main connection between neocortex and cerebellum. (B) The pontine nuclei can be 
divided in the basal pontine nuclei (PN) and reticulotegmental nucleus (RTN), both 
prijecting to the cerebellum over the cerebellar peduncle (CP). Birthdays of PN and 
RTN cells are indicated on the coronal section scheme.  (Figure by C. Kratochwil) 

Simplified models of PN function suggest, that PN neurons receive a blind-copy of 

motor commands (a prediction of a movement) sent from cortex to spinal cord and 

processes this for the use of the cerebellum. Sensory feedback about the execution 

and degree of success are processed over spinal cord and inferior olive to the 

cerebellum. In the cerebellum motor plan and actual performance are compared and 

eventual arising discrepancies are fed back to the cortex to modify further motor plans 

(Grimaldi and Manto, 2011; Manto, 2009). This can also be understood as the basis of 

more complex motor behaviors, where sequences of muscle precise muscle 

contractions have to be executed as well as the basis for motor learning, because 

cerebellar circuits intrinsically have a very high degree of plasticity. 
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Figure 9 | Topographical representation in cortex and cerebellum. (A-C) 
Informations form different sensory modalities are processed differently in cortex (A) 
and cerebellum (B-C). While in the cortex information from vision, audition and 
somatosensation clearly posess seperated processing areas, the cerebellum has a more 
“fractured” representation of different modalities (C). Still the cerebellum has been 
clasically divided into spinocerebellum, cerebrocerebellum as well as 
vestibulocerebellum, since expirements suggest an  suggest an enrichment of input in 
these regions (B). (Figure by C. Kratochwil) 

Beside the functions raised in the model by Manto et al. PN and cerebellum have 

further equally complex functions in other behaviors. The PN have been shown to be 

involved in diverse other functions including e.g. saccadic eye movements or visually 

directed movements (Krauzlis, 2004; Strick et al., 2009; Tziridis et al., 2011).  
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Figure 10 | Input topography in the cerebellum. (A-F) The main inputs to the 
cerebellum and their topogrophic arrangement. Spinal cord innervation and nuclei, 
which itself get mainly spinal cord inputs (Lateral Reticular Nucleus, Cuneate 
Nucleus) project mainly on the anterior vermis (A, D-E). PN fibers are the main input 
to the cerebellar hemispheres (B), while RTN has a bias to the vermis of lobes V-VIII. 
Lobes IX and X get mainly input from vestibular ganglion and nuclei (F). (Figure by 
C. Kratochwil after Altman and Bayer, 1997) 

A somatotopic or at least partially topographic organization could be shown for the 

pathway from cerebral cortex to pons (Brodal, 1968; Mihailoff et al., 1982) and from 

pons to the cerebellum (Burne et al., 1978; Hoddevik, 1975). Although the projections 

are governed by a topographical pattern, convergent as well as divergent projections 

can be found (Mihailoff, 1983; Nikundiwe et al., 1994a). While the rough topography 

of corticospinal and corticopontine projections is mainly accepted and has been 

described in detail (Leergaard and Bjaalie, 2007; Leergaard et al., 2006), the 

description of connectivity to the cerebellum and its eventually topographic or more 

non-continuous and fractured character has been controversially discussed for the last 

100 years (Apps and Hawkes, 2009). The different input nuclei to the cerebellum 

have partly overlapping termination zones with a strong bias of LRN and spinal cord 
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projections to the anterior lobes I-V and vestibular nuclei to lobes IX and X (Figure 
10 and Altman and Bayer, 1997) 

1.4.2 Development 

PN neurons originate from the rhombomere (r)6 to pseudorhombomere 8 (r8) derived 

lower rhombic lip, an embryonic proliferative neuroepithelium that lies in the dorsal 

rhombencephalon and surrounds the alar recess of the fourth ventricle (Altman and 

Bayer, 1987b). All precerebellar neurons except the inferior olive are derived from a 

defined dorso-ventral part of the rhombic lip specified by the expression of the 

transcription factor Math1. Inferior olive neurons derive from progenitors negative for 

Math1, but positive for Ptf1a, which are located ventrally of the Math1-domain. 

Precerebellar neurons are only generated from the lower rhombic lip. More anterior 

Math1-positive cells generate cells of the auditory system (r2/3-r5) or the granule 

cells of the cerebellum (r1) (Ray and Dymecki, 2009; Rodriguez and Dymecki, 2000; 

Wang et al., 2005; Wingate, 2005).  

The specification of different nuclei from the same dorso-ventral and anterior-

posterior domain is achieved by the generation of different nuclei at different times. 

ECN neurons are generated first, then LRN and RTN. PN neurons are the latest that 

are generated from the lower rhombic lip (Rodriguez and Dymecki, 2000, Figure 11). 

It can be postulated, that the migration and differentiation into different nuclei is due 

to a combination of extrinsic changes (inside the cells) and extrinsic changes (in the 

environment) of expression profiles of factors as e.g. guidance molecules. 

From the rhombic lip, PN neurons undertake a long-distance tangential migration (via 

the anterior extramural stream (AES)) until they reach their final destination on the 

ventral surface of r3 and r4 (Geisen et al., 2008, Figure 12 ). 

Many guidance molecules (Di Meglio et al., 2008; Geisen et al., 2008; Marillat et al., 

2004; Qu et al., 2006; Yee et al., 1999; Zhu et al., 2009) as well as transcription 

factors  (Engelkamp et al., 1999; Geisen et al., 2008; Kumbasar et al., 2009) have 

been shown to regulate the migration of pontine neurons and other precerebellar 

neurons (Figure 13). 
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Figure 11 | The identity of hindbrain nuclei is defined on a 3-dimensional 
chrono-spatial axis. (A) The dorso-ventral axis is dorsally divided in 3 domains 
(Gdf7, Math1 and Pft1a) giving cells different specifications. (B) The hindbrain is 
patterned in rhombomeres, giving rise to different nuclei at different anterior-posterior 
levels. (C) At different time points, different nuclei are generated (even from the same 
spatial coordinates). (Figure by C. Kratochwil after Altman and Bayer, 1997; Wang et 
al., 2005; Wingate, 2005) 



26! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!Introduction!

!

 

Figure 12 | Migration pathways of pontine (PN) and lateral reticular nucleus 
(LRN) neurons. (A-G) Migration is shown in schematic illustrations (A,B) and by in 
situ hybridizations (C-E) and in utero electroporation (F,G). Pontine neurons (from 
rhombomere 6 (r6) to r8) from the precerebellar rhombic lip (RL) take an anterior 
migratory pathway via the anterior extramural stream (AES), while LRN neurons 
from r7 to r8 take a more posterior migratory route, the posterior extramural stream 
(PES). (Illustrations and Data by C. Kratochwil (A-E) and T. di Meglio (F-G)) 
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It has been shown that the PN, when they have arrived at r3/4 form regular concentric 

rings in an inside-out sequence around PN neurons, which have already settled down 

(Altman and Bayer, 1987b). Hereby neurons that have been generated first, build the 

inner core of the PN, while the neurons generated later build the outer shells (Altman 

and Bayer, 1987b). Interestingly, time point, order and origin of innervation by 

cortical afferents is correlated to the inside-out position inside the PN and therefore 

also to their time-point of generation, a phenomenon that has been denoted as chrono-

architectonic hypothesis of the corticopontine projection (Leergaard et al., 1995). 

 

 

Figure 13 | Examples of mutation affecting pontine migration. (A-C) The main 
determinants of pontine migration are attractive signals (Netrin1/Dcc signaling) from 
the midline that guide neurons to the ventral surface of r3/r4. A premature attraction 
to the midline is inhibited by repressive signals (Slit/Robo signaling) coming from the 
facial nucleus (FN) in rhombomere 6 (A). Mutations affecting Robo/Slit signaling 
induce ectopic migration in more posterior positions (B), while knockout of the 
Netrin1-receptor dcc result in a dorsal migration arrest (C). (Figure by C. Kratochwil) 

1.5 The trigeminal system 

The trigeminal nerve is the fifth cranial nerve and has a sensory as well as a motor 

component. Sensory fibers relay sensory information from face, while motor fibers 

control the muscles of the jaw, essential for chewing, biting or swallowing. The 

trigeminal nerve is divided into 3 branches: the ophthalmic branch (covering 

forehead, upper nose, area around the eyes), the maxillary branch (covering the upper 

jaw, including the whiskers in mice) and the mandibular branch (covering lower jaw). 

All relay sensory information, while the mandibular branch contains also motor 

fibers. All sensory information is relayed by the trigeminal ganglion, which is 
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composed of pseudounipolar neurons innervating at the same time the face and 

project via the fifth cranial nerve into the hindbrain (Erzurumlu et al., 2010). 

The main targets of the sensory part are neurons of the mesencephalic (Me5), 

principal (Pr5), spinal trigeminal nuclei interpolaris, oralis and caudalis (Sp5I, SP50, 

Sp5C) as well as the paratrigeminal nucleus (Pa5).  

 

 

Figure 14 | The topography of the different stations of trigeminal sensory 
information processing. (A) The trigeminal ganglion gets input over three main 
branches, the ophthalmic branch (innervating the area around the eyes), the maxillary 
branch (innervating mainly the whisker pad) and the mandibular branch (innervating 
the lower jaw). (B) The axons project to the hindbrain innervating different sensory 
nuclei including the principal sensory trigeminal nucleus (PrV) and spinal sensory 
trigeminal nucleus. The topographic orientation of the different parts of the face as 
well as the whiskers itself is hereby maintained. (C) Also in the next stations of 
processing, thalamus (C) and cortex (not shown), this topographic representation is 
kept. (Figure by C. Kratochwil) 

All neurons of the trigeminal system derive from a specific dorso-ventral domain of 

the basal plate that express the transcription factor Drg11. Neurons of the Pr5 are 

localized in rhombomere 2 (r2) and 3(r3), neurons of the Sp5 cover rhombomere 4 to 

pseudorhombomere 8 (Oury et al., 2006).  

The trigeminal system as such, is from the organization of its connectivity highly 

topographic. This has been extensively studied for the sensory input from the whisker 

pad, for which the relative arrangement of neurons processing information from a 

certain whisker is maintained from the receptors at the skin to Pr5 and Sp5 in the 

hindbrain, to the ventral posteromedial nucleus (VPM) of the thalamus and to the 

barrel cortex in the somatosensory cortex. Due to the high concentration of dendrites 

and axonal terminals that contain many mitochondria, the areas corresponding to 
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certain whiskers (because of their 3-dimensional structure called “barrels” in the 

cortex, barreloids in the VPM and barrelettes in the hindbrain Pr5 (just r3) and Sp5i 

and Sp5c) can be visualized by cytochrome oxidase staining (CO), an enzymatic 

staining method labeling mitochondria (Erzurumlu et al., 2010). 

 

 

Figure 15 | The principal sensory trigeminal nucleus (PrV) and its thalamic 
projections. (A) The PrV can be subdivided into a dorsal PrV (dPrV, derived from 
rhombomere 2) and a ventral PrV (vPrV, derived from rhombomere 3). While the 
mandibular branch of the trigeminal ganglion only branches in dPRV, vPRV gets 
selective input from the maxillary branch and forms the so called barrelettes, 
reflecting the organization of the whisker pad. (B) The projections to the thalamus are 
segregated. The vPrV projections form barreloids. (Figure and Data by C. 
Kratochwil) 

1.6 Aim of this thesis 

The main object of this thesis was to understand how far the origin of cells along the 

rostro-caudal axis influences the cellular behavior during late processes of neural 

development and how epigenetic modifiers as Ezh2 regulate the expression of genetic 

determinants as transcription factors (as e.g. Hox genes) and guidance factors (as e.g. 

Netrin 1 or Unc5b) to regulate complex processes as migration and circuit formation. 

A major focus was hereby on the nuclei of the precerebellar system, especially the 

pontine nuclei (3.1.1, 3.1.2 and 3.2.1).  
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To achieve this goal it was important to generate genetic tools that map contributions 

of different rostro-caudal units, the rhombomeres to understand how rhombomeric 

subsets behave during neuronal migration and connectivity. Furthermore, tools were 

needed that allow the analysis of the neuronal connectivity of the pontine nuclei. By 

conditional knockout of Ezh2 the focus was to gain a better understanding of cell- and 

non-cell-autonomous functions of an epigenetic regulator for the distinct steps of 

precerebellar system development. Our main hypothesis was hereby that progenitors 

exhibit an internal protomap of further developmental processes as migration and 

circuit formation (3.1.1). 

Furthermore, we wanted to find out if the developmental organization of the PN along 

the anterior-posterior axis may correlate with patterned axonal input of layer 5 

cortical neurons and/or with the projections to the cerebellum. The pontine nuclei are 

a relay station for the transformation of motor and sensory maps in the cerebral cortex 

into fractured representations of input in the cerebellar cortex. Little is known about 

the molecular and cellular mechanisms assembling these complex input-output wiring 

patterns in the PN. Results of 3.1.1, 3.1.2 and 3.2 suggest that intrinsic pre-mapping 

of PN from lRL progenitors of distinct rostrocaudal origin may also contribute to 

organize broad topographic input from distinct cortical areas and potentially also 

subsets of ponto-cerebellar projections. The cortico-ponto cerebellar connectivity 

possesses a high degree of divergence and convergence, redistributing permutations 

of information from cortical sensory and motor input to different areas of the 

cerebellum. Despite that, there seems to be biased projection pattern of specific 

pontine nuclei pools that will be described in the “unpublished results” part (3.2).  

Furthermore, knowledge and skills that have been acquired in this project were used 

for collaborations on the development of the external ear (3.1.4), a structure derived 

from hindbrain neural crest cells and the analysis of rhombomere specific mutants of 

the guidance cue Robo3 in the trigeminal system (3.1.3). 
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2 Materials and Methods 

2.1 Molecular Biology 

Plasmid Preparation 

Plasmids were prepared using Qiagen Mini-, Midi- or Maxikit. Cultures where 

incubated over night in 2xYT medium containing an antibiotic according to the 

plasmid resistance (Ampicillin 100 µg/ml; Kanamycin 30 µg/ml; Chloramphenicol 35 

µg/ml). In case of minipreps maximal growth was achieved with 3 ml culture in 15ml 

falcon tubes. Preps were performed according to the standard protocol. For Mini-

Preps of large constructs the Elution buffer was heated on 70 °C to increase yield. 

Concentration measurement 

Plasmid concentrations were measured using a ND-1000 Spectrophotometer. 2 µl 

were used to perform the measurement. 

Transformation 

Transformation was performed using chemical competent cells (Dh5α (self-produced 

stock) or Top10 (Invitrogen)). After the plasmid was added to the bacteria, the mix 

was incubated for 5 minutes on ice, heatshocked in a 42 °C water bath for 45 seconds 

and then incubated on ice for one further minute. After adding 250 µl medium (Soc or 

2xYT) cells were incubated in an incubator shaker for 45 to 90 minutes (500 RPM), 

depending on amplification characteristics of the plasmid.  

BAC Storage: 

For long-term storage BACs were maintained as glycerol stocks by adding 0.5 ml 

glycerol to 0.5 ml culture and storing at -80 °C. 

Restriction digests 

Restriction digests were performed using restriction enzymes and buffers from New 

England Biolabs (Beverly, MA, USA). Bovine serum albumin (BSA) end 

concentration was, if needed, 10 µg/ml. The amount of restriction enzyme was 

calculated according to unit concentration and amount of plasmid. To guarantee a 
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complete cutting of the plasmids the digestion time was prolonged to two hours and 

the 3-6 fold amount of enzyme was taken. 

For isolation of single fragments, DNA was separated with gel electrophoresis. The 

band with the expected size was cut out with a scalpel and purified with Qiagen 

Qiaquick Gel extraction Kit. 

Nucleic acid purification 

Nucleic acids were purified using phenol-chloroform extraction. The nucleic acid 

solution is diluted and mixed 1:1 with phenol. After centrifugation the aqueous phase 

is mixed with a mixture of chloroform and isoamylalcohol. After a further 

centrifugation step the nucleic acids were precipitated by a 2-fold volume of 100 % 

Ethanol and 1/10 volume of 3 M NaOAc (pH 4.8). After 30 min at -20 °C and 

centrifugation the pellet is washed with 1 ml EtOH 70 % centrifuged again. After the 

pellet has dried it is diluted in an appropriate volume of water. 

Alternatively, PCR Purification Kit (Quiagen) or Gel Extraction Kit (Quiagen) was 

used. 

Gel electrophoresis 

DNA was analysed by Gel electrophoresis (Agarose Matrix: 0.5-2  % Agarose, 1x 

TAE Buffer, 0.3 ‰ ethidiumbromide in 1x TAE buffer, along with DNA size 

standards (2 µl; 1 kB or 100 KB (MBI Fermentas)). 

Cloning 

Ligation was performed over night at 25 °C in a volume of 10 µl using an insert-

vector proportion of 7:1 and T4 DNA Ligase (MBI Fermentas) and the manufacturers 

buffer. 

If vectors were cut with only one restriction enzyme, self ligation was prevented by 

dephosphorylation using CIAP (calf intestine alkaline phosphatase; MBI Fermentas) 

or preferentially SAP (Shrimp alkaline phosphatase; MBI Fermentas). In cloning 

procedures with a lack of compatible sites overhangs have been filled in using T4 

polymerase (MBI Fermentas) in 1x T4 Polymerase buffer with 0.2 mM dNTP. 

Correct cloning was tested by restriction digest or sequencing. For the cloning of 

linkers or short synthetic DNA pieces oligos were mixed, heated for 10 minutes at 98 
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°C and slowly cooled down to room temperature. For ligation a vector-insert ratio of 

1:7 was used.  

Genotyping, Crossing schemes and mouse work 

See 3.1.1 and 3.1.5. 

2.2 Generation of transgenic mice 

Transgenic mice were generated in which Cre or mcherry is driven by rhombomere-

specific enhancers of Hoxb3 (Yau et al., 2002; r5-post::Cre), Hoxa3 (Manzanares et 

al., 1999; r5-6::Cre), or Hoxb4 (Gould et al., 1997; r7post::Cre and r7post::mcherry). 

The constructs were created by replacing the LacZ gene of the pKS-ß-globin-LacZ 

vector (BGZ40) (Studer et al., 1996) with a Cre cassette (Clontech) or mcherry 

cassette (Clontech) using homologous recombination. Enhancers for Hoxb3 (r5-

post::Cre, 483 bp), Hoxa3 (r5-6::Cre, 629 bp), Hoxb4 (r7-post::Cre, 400 bp) as well 

as a truncated enhancer for Hoxb3::Cre (Yau et al., 2002) (r6::Cre, 427 bp), which 

was supposed to have a r6-restricted expression, were amplified by PCR from 

genomic DNA (Table 1) 

The PCR bands were purified and inserted 5` of the ß-globin promoter using 

restriction sites FslI and XhoI (r5-6::Cre), BglI and PvuII (r5-post::Cre, r7-post::Cre 

and r6::Cre) and SacII and SpeI (r7-post::mcherry), thus generating constructs 

consisting of an enhancer, a ß-globin minimal promoter and Cre recombinase 

/mcherry encoding sequence. The constructs were linearized, purified and 

microinjected into the pronuclei of blastocyst embryos. Founders were identified by 

PCR and screened at P0 after crossing with R26RlacZ animals. 130 animals were 

genotyped, 26 positively genotyped animals (founders) were screened by crossing to 

R26RlacZ animals (Table 2).   3/8 showed the expected recombination pattern at P0 

for r5post::Cre; 2/8 for r5-6::Cre, 1/3 for r7post::Cre, 4/8 for r7post::mcherry and 

0/6 for r6::Cre, while the other founders showed no, ubiquitous or ectopic patterns of 

recombination. See also 3.1.1 and 3.1.5. 
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r5-post enhancer forward (f) 5`ATATCCGCGG GATCGGAGAGGAGAGGGCAA 

r5-post enhancer reverse (r) 5` CGCGACTAGT GATCTCCAAGGTCCCCTTTCA 

r56::Cre enhancer f 5`ATATCCGCGG CAACTTGAAAGGGAAGAGCC 

r56::Cre enhancer r 5`CGCGACTAGT 

GATATCAAATAGCAGCGAATCTTC 

r7-post::Cre enhancer f 5`ATATCCGCGG TCCTTGGAAGGTATGAATAG 

r7-post::Cre enhancer r 5` CGCGACTAGT TGTTACCTCTGAGCCTCTTG 

r6::Cre enhancer f 5`ATATCCGCGG TGGTACAATGGGCTTATTGA 

r6::Cre enhancer r 5` CGCGACTAGT ATAAATGATCTCCAAGGTCCC 

Table 1 | Primers used for amplification of Hox enhancers. 

 

Transgene Injections Offspring Genotyping Tested with Rosa-LacZ 

r6post::Cre 

(AG) 
1x 19 8 positives 

7/8 confirmed positive  
(AG-3, AG-7, AG-18, AG-2, 
AG-8, AG-9, AG-12) 
2 maintained (AG-3, AG-12) 

r7post:: 
mCherry 

(AI) 
1x 31 8 positives 

4/8 confirmed positive  
(AI-17, AI-8, AI-18, AI-6) 
1 maintained (AI-17) 

r5-6::Cre 

(AH) 
2x 20+18 8 positives 

3/6 confirmed positive 
(AH-14, AH-35, AH-38) 
1 maintained (AH-35) 

r7post::Cre 

(AK) 
1x 27 3 positives 

1/3 confirmed positive 
(AK-16) 

2 maintained (AK16a, AK16b; 
two insertions) 

„r6::Cre“ 

(AJ) 
1x 15 6 positives 4/6 confirmed positive 

(AJ4, AJ8, AJ10, AJ14) 

 6x 130 pubs 26 positives 19 positive; 6 maintained 

Table 2 | Summary of animals screened for transgene insertion and expression.   
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2.3 Mouse lines 

Mouse lines that were used in the thesis are summarized in Table 3 including 

references. Most lines are also shown in P7 wholemounts crossed to the conditional 

R26Rtdtomato reporter (Table 3; Figure 17). 

 

Mouse Line Transgene / Knockin Reference / generated by 

AG3::Cre Transgenic C. Kratochwil, unpublished 

ChAT::Cre ChAT-IRES-Cre Knockin (Lowell et al., 2006) 

Drg11::Cre BAC-Transgenic S. Ducret, unpublished 

Emx1::Cre Emx1-IRES-Cre Knockin (Gorski et al., 2002) 

Hoxa2::Cre Transgenic (Di Meglio et al., 2013) 

Hoxa5::Cre BAC-Transgenic (Di Meglio et al., 2013) 

Hoxb5::Cre BAC-Transgenic S. Ducret, unpublished 

Krox20::Cre Transgenic (Voiculescu et al., 2001) 

MafB::CreERT2 BAC-Transgenic (Di Meglio et al., 2013) 

Math1::Cre Transgenic S. Ducret, unpublished 

Pcp2::Cre Transgenic (Lewis et al., 2004) 

PN::Cre Transgenic C. Kratochwil, unpublished 

r2::Cre Transgenic (Ren et al., 2002) 

r4::Cre Transgenic (Oury et al., 2006) 

r5-6::Cre Transgenic (Di Meglio et al., 2013) 

r5post::Cre Transgenic (Di Meglio et al., 2013) 

r7post::Cre Transgenic (Di Meglio et al., 2013) 

r7post::mcherry Transgenic C. Kratochwil, unpublished 

Wnt1::Cre Transgenic (Danielian et al., 1998) 

R26RLacZ Knockin with lox-stop-lox (Soriano, 1999) 

R26RtdTomato Knockin with lox-stop-lox (Madisen et al., 2010) 

R26RZsGreen Knockin with lox-stop-lox (Madisen et al., 2010) 

Ezh2fl/fl Conditional knockout (Puschendorf et al., 2008) 

Rig1/Robo3fl/fl Conditional knockout (Renier et al., 2010) 

Table 3 | List of mouse lines. 
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Figure 16 | Transgenic Lines to analyze cortical projections. (A-B`) Wholemounts 
of the two transgenic lines were used to analyze projections to the pontine nuclei seen 
from dorsal (A, B) and ventral (A`, B`): Emx1::Cre (A) and Pcp2::Cre (B). 
Emx1::Cre labels cortical progenitors and therefore the whole corticospinal tract 
including the projecting to the pontine. Pcp2::Cre is normally a marker for Purkinje 
cells but labels the medio-posterior part of the cortex. 
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Figure 17 | Transgenic lines to analyze hindbrain connectivity. (A-O`) Overview 
of transgenic lines used and/or tested for this thesis in dorsal (A-O) and ventral views 
(A`-O`).  

2.4 Plasmids 

Constructs generated for this thesis are listed in Table 4. 

Construct Obtained / Generated by 

pCAG::GFP Addgene; (Okada et al., 2007) 

pCAG::mcherry C. Kratochwil, not published 

pCAG::Rabies-Glycoprotein C. Kratochwil, not published 

pCAG::flex-GFP C. Kratochwil, not published 

pCAG::flex-Rabies-Glycoprotein C. Kratochwil, not published 

pCAG::Synaptophysin-tdtomato C. Kratochwil, not published 

pCAG::NLS-tdtomato C. Kratochwil, not published 

pCAG::MARCKS-GFP C. Kratochwil, not published 

pCAG::MARCKS-GFP-2A-Cre C. Kratochwil, not published 

pCAG::MARCKS-GFP-2A-NLS-mcherry C. Kratochwil, not published 

Table 4 | List of generated constructs. 
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2.5 In utero electroporation 

In utero electroporation was performed on embryos at E13.5 or E14.5 as described in 

(Di Meglio et al., 2013). 

2.6 Neuronal tracing 

G-deleted rabies virus vectors encoding mCherry (SAD∆G-mCherry) or eGFP 

(SAD∆G- eGFP) were harvested from BHK-B19G cells (kind gift from E. Callaway) 

and centrifuged as described previously (Yonehara et al., 2011). Stereotaxic injections 

of viruses to different areas of neocortex or cerebellum were performed via pulled-

glass pipettes using a microinjector (Narishige, IM-9B). Pups were anesthetized by 

hypothermia, injected at P2 and perfused at P7 (Figure 18, A-B). See also 3.1.1. 

 
Figure 18 | Example of a Rabies-∆G-GFP injection into the P7 cortex and 
reconstruction of the input at the level of the pontine nuclei. (A-C) Pups were 
injected into the cortex with Rabies-∆G-GFP or Rabies-∆G-mcherry; in this case into 
the somatosensory cortex. (C-D) The corticopontine projection (green) as well as the 
pontine nuclei itself (blue in C, brown in D) can be 3D-reconstructed from serial 
sagittal sections as seen here from ventral (C) and lateral (D).   

2.7 3D-reconstructions 

Pictures of consecutive vibratome sections (40 µm) were taken with a LSM 700 

confocal microscope. Sections were aligned using Bitplane AutoAligner 6.0.1 

(Manual Alignment). If necessary important structures were artificially labeled in 

separated channels in Adobe Photoshop CS5.1. The artificially labeled structures as 

well as the fluorescence channels were transformed into surfaces in Bitplane Imaris 

7.5.2 (Surface Area Detail level: 20-50 µm, Thresholding: Absolute Intensity). An 

example can be seen in (Figure 18, C-D).   
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2.8 Immunostaining and in situ hybridization 

Immunohistochemistry, X-Gal revelation and in situ hybridization is described in 

detail in (Di Meglio et al., 2013). 

2.9 Imaging and Picture Processing 

Imaging of fluorescent signals was performed using an Axio imager Z2 upright 

microscope coupled to a LSM700 Zeiss laser scanning confocal 5x lens (NA 0.25), 

10x lens (NA 0.45) or oil/glycerol/water immersion lens 25x (NA 0.8). Stitching of 

wholemounts (electroporated brains) was performed using Zen Software at postnatal 

stages, and using Xuvtools (http://www.xuvtools.org) at prenatal stages. Chromogenic 

staining was examined by classical wide-field or binocular microscopy (Nikon). 

Whole-section pictures at later stages were performed by stitching a large number of 

tiles using Zen software. 

The algorithm used to create 2-D projection neuron heatmaps of the cortex were 

created by Aaron Ponti (Imaging Facility Friedrich Miescher Institute) using Matlab 

(The Math Works). 

2.10  Gene expression array and qPCR 

To average possible variability between individuals, gene expression analysis was 

performed on a pool of four r5-6::Cre;Ezh2fl/fl;R26RZsGreen and two control r5-

6::Cre;Ezh2fl/+;R26RZsGreen embryos from different litters. In brief, hand-dissected 

fluorescent tissue from E11.5 embryos were incubated in DMEM (Gibco) / 0.1% 

trypsin (Gibco) for 8 min at 37 °C. Tissue was then transferred to and rinsed 4 times 

in DMEM / 10% FBS before mechanical dissociation. Fluorescent r5-6 cells were 

collected by fluorescence-activated cell sorting. RNA was extracted using the 

PicoPure RNA Isolation Kit (Applied Biosystems, Calif., USA) and retro-transcribed. 

Each sample was hybridized to a microarray GeneChip Mouse Gene 1.0. 

(Affymetrix). Statistical analysis was performed using the R/Bioconductor package 

limma (the adjusted P-value was calculated using a Benjamini-Hochberg correction 

as implemented in the package). qPCR analysis of selected genes was performed 
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using the Fast SYBR Green PCR Master Mix (Applied Biosystem) and StepOne Plus 

real-time PCR.  

2.11 Tissue dissection and Micro Chromatin 

Immunoprecipitation (microchip) 

 r5-6-derived ZsGreen+ cells were obtained from E16.5 r5-6::Cre;R26RZsGreen fetuses 

by fluorescence-activated cell sorter (FACS). r7-8-derived ZsGreen- cells were 

collected with the same procedure. Specifically, the r7-8 domain was delimited 

rostrally by the r5-6 ZsGreen+ domain and caudally by the beginning of the spinal 

chord flexure. Cells were dissociated (trypsin 0.5%/EDTA at 37 °C for 10 minutes), 

rinsed (DMEM, 10% FBS), filtered and FACS-sorted. After sorting, microChIP was 

performed as described previously (Dahl and Collas, 2008) with some modifications. 

Briefly, 30,000 cells in PBS were cross-linked with 1% formaldehyde for 10 min at 

room temperature and quenched with 125 mM glycine (Merck). Cells were lysed with 

buffer containing 50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS (Fluka), and 

protease inhibitors (Roche). The cell lysate was sonicated in a Diagenode Bioruptor to 

achieve a mean DNA fragment size of 400 bp. After clarification by centrifugation, 

the supernatants were diluted with RIPA buffer and incubated with anti-H3K4me3 

(Millipore, 17-614) and anti-H3K27me3 (Millipore, 07-449) / protein G-magnetic 

bead complexes overnight at 4 °C. Ca. 9000 cells were used for each IP. The next 

day, the beads were washed four times with RIPA buffer and once with TE buffer and 

the bead-bound complexes incubated with complete elution buffer (20 mM Tris-HCl 

pH 7.5, 5 mM EDTA, 50 mM NaCl, 1% SDS, 50 mg/mL proteinase K) at 68 °C for 

DNA elution, cross-link reversal and protein digestion. Finally, DNA from the 

immunoprecipitates was recovered by phenol-chloroform extraction and ethanol 

precipitation and analyzed by quantitative real-time PCR. Primers for real-time PCR: 

Hoxa2: forward, 5` CGCCTGCAGTCATTAACAAA; reverse, 5` 

TCCCACTCTGCTCCTTTCTC; Hoxa5: forward, 5` cacccaaatatggggtacga; reverse, 

5` ccccattagtgcacgagttt. Hoxb5: forward, 5` cctccaaaatcacccaaatg; reverse 5` 

agagctgccactgccataat; Hoxa9: forward, 5` GGAGGGAGGGGAGTAACAAA; 

reverse, 5` TCACCTCGCCTAGTTTCTGG; Hoxc13: forward, 5` 
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CCTCCAGGGCTAAGGAGTTC; reverse, 5` GAAAGAGCCCAGTGCTGGTA; 

Int3: forward, 5` ATGCCCCTCAGCTATCACAC; reverse, 5` 

GGACAGACATCTGCCAAGGT.  

2.12  Retinoic acid and tamoxifen treatment 

Trans retinoic acid (Sigma) was dissolved in DMSO and administered to pregnant 

mice by intraperitoneal injection (30 or 60 mg/kg). Tamoxifen was dissolved in corn 

oil (SIGMA: T-5648) and injected by gavage. 
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3 Results 

3.1 Publications and Manuscripts 

3.1.1 “Ezh2 orchestrates topographic tangential migration and 
connectivity of precerebellar neurons” (accepted publication; 

Science 2013)1 

It is an outstanding question, how a seemingly homogenous population of progenitors 

in the rhombic lip of the murine hindbrain develops into neurons that position on 

different rostro-caudal and dorso-ventral levels, realizing different input-output 

patterns of connectivity and subserving different functions. During tangential 

migration migrating neurons have to respond correctly to environmental cues to reach 

their final destination. This publication reveals how the epigenetic silencer Ezh2 

controls the restricted expression of transcription factors, guidance cues and receptors 

to guide migrating precerebellar neurons to their correct position and to give them an 

intrinsic heterogeneity that can be used by the system to guide topographic map 

formation from cortex to pontine nuclei. 

The study furthermore reveals an unknown role for the Netrin receptor Unc5b during 

neuronal migration, extending the understanding of how the expression of repulsion- 

and attraction-mediating guidance receptors is tightly regulated to allow stereotypic 

migratory behavior in tangentially migrating neurons.  

                                                

1 Statement of contribution: The publication “Ezh2 orchestrates topographic tangential 

migration and connectivity of precerebellar neurons” is a shared co-first authorship 

with Thomas Di Meglio. I started the project on Ezh2 and generated and screened 

most of the Cre-driver lines (except Hoxa5::Cre and MafB::CreERT2), I discovered 

the phenotype of the r5-6::Cre; Ezh2fl/fl mice and performed all connectivity analysis. 

I performed all statistical analysis and generated all final figures. Lastly, I contributed 

to the design of the experiments, the writing of the paper as well as the analysis of 

migratory phenotypes and in utero electroporations. 
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3.1.2 “Ezh2 orchestrates topographic tangential migration and 

connectivity of precerebellar neurons” (unpublished parts)2 

Retinoid signaling and Ezh2 dependent Hox regulation in pontine neurons  

To assess all genes regulated by Ezh2-mediated silencing at the r5-6 level at pre-

migratory stage, we compared the transcriptome profiles of FACS-sorted cells from 

E11.5 r5-6::Cre; Ezh2fl/+; R26RZsGreen and r5-6::Cre; Ezh2fl/fl; R26RZsGreen embryos 

(Figure 19). Only 18 genes were significantly up-regulated (Table 5), whereas 79 

genes were down-regulated (Table 6), in Ezh2-deficient embryos compared with 

control embryos (fold change >1.5; p<0.05). Ntn1 was not yet significantly up-

regulated at this stage (Figure 21, D), indicating progressive ectopic Ntn1 

accumulation in mutants through later stages (Di Meglio et al., 2013 and Figure 21, 

E). Moreover, while no Hox genes were significantly down-regulated (Figure 20) i) 

only a handful of Hox genes were ectopically de-repressed, namely selected members 

of ‘trunk’ Hox PG4, PG5, PG6 and PG8 (n=8); ii) expression of ‘head’ Hox PG2 and 

PG3 genes was normally maintained in mutants; iii) ‘tail’ Hox PG10-13 genes were 

not de-repressed by r5-6-specific Ezh2 inactivation. Thus, erasure of the H3K27me3 

mark following Ezh2 inactivation in r5-6-derived territory (Di Meglio et al., 2013) is 

not sufficient to induce generalized Hox gene up-regulation (or ectopic de-repression) 

but has a regional, context-dependent, impact on the transcriptional status of Hox 

clusters. The de-repression of Hox genes in r5-6::Cre; Ezh2fl/fl can be also confirmed 

by qPCR (Figure 21, C) and in situ hybridization (Di Meglio et al., 2013). 

These differential Hox transcriptional responses in Ezh2 mutants may correlate with 

                                                
2 Statement of contribution: Experiments that were included in the first submitted 

manuscript, but were not included in the published version, will be presented in this 

subchapter. I contributed to the analysis of microarray and micro-Chip and performed 

all connectivity experiments. Experiments on retinoic acid injected brains were done 

by Thomas Di Meglio, qPCRs by Alberto Loche, Microarray by Alberto Loche and 

Hubertus Kohler, Micro-Chip by Antonio Vitobello and Ching-Yeu Liang. 
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their local sensitivity to signaling molecule(s). Notably, most of the over-expressed 

genes, including Hox, were retinoic acid (RA) responsive (Table 7). RA excess 

triggers PN migratory defects (Zhang et al., 2003). Higher (60mg/kg) or lower 

(30mg/kg) RA dosing of pregnant females at E9.5 caused dose-dependent AES 

ectopic migrations of distinct rostrocaudal extent and severity (Figure 22, A-B; 

Figure 23, L), partly mimicking the Ezh2 knockout migratory phenotype. Ntn1 and 

Hox PG5 genes were ectopically induced in the hindbrain of RA-treated fetuses, 

similar to Ezh2 mutants (Figure 22, C-F; Figure 23, A-D). RA synthesis occurs in 

the meninges that blanket the AES and PN (Zhang et al., 2003). Analysis of a 

RARE::LacZ retinoid reporter (Rossant et al., 1991) revealed that endogenous RA 

activity is graded ventrodorsally in the AES and caudo-rostrally in the PN (Figure 22, 

G, Figure 23, E), similar to the Hox PG5 expression patterns. LacZ activity was 

strongly enhanced and ectopically extended into the anterior PN following RA 

administration as late as E13.5 and E14.5 (Figure 22, H).  

RA administration at E11.5 (30mg/kg) did not cause migratory defects (Figure 22, I-

J; Figure 23, F-G) but a strong up-regulation of Hox PG5 in the PN, with Hoxa5 and 

to a greater extent Hoxb5 expression ectopically expanding to the anterior part of the 

nucleus (Figure 22, I-J; Figure 23, F-G). The same RA treatment of r5-6::Cre; 

Ezh2fl/fl fetuses exacerbated the PN migratory phenotype. Additional Hoxa5+/Hoxb5+ 

PN neurons were recruited into PN2 at the expense of PN1, compared with untreated 

mutant fetuses (Figure 22, K, M-N; Figure 23, H-J). In some mutants, a fraction of 

PN neurons migrated more rostrally than PN1 (PN0, Figure 22, N; Figure 23, J), a 

phenotype never observed in untreated r5-6::Cre; Ezh2fl/fl. 

Thus, PN neurons maintain the ability to respond to RA signaling and may still 

potentially change their Hox code through post-migratory stages. Maintenance of 

regionalized Hox expression throughout AES migration, and proper spatial restriction 

of environmental Ntn1, result from a balance between Ezh2-mediated silencing and 

RA-induced transcriptional response. 
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In vivo regulation of epigenetic configurations at Hox promoters  
How can Ezh2 widespread distribution contribute to spatially-restricted Hox gene 

expression? We compared the distributions of H3K27me3 and H3K4me3, associated 

with transcriptionally active chromatin regions (Soshnikova and Duboule, 2009b; 

Strahl and Allis, 2000), at specific promoters in vivo by micro chromatin 

immunoprecipitation (microChIP) (Dahl and Collas, 2008) on two distinct 

rostrocaudal subpopulations, namely r5-6 and r7-8 derived cells from E16.5 r5-

6::Cre; R26RZsGreen hindbrain (Figure 24, A). We compared the epigenetic status of 

Hoxa5 and Hoxb5 (repressed in r5-6, but expressed in r7-8) to that of Hoxa2 

(expressed throughout r5-8) or Hoxa9 and Hoxc13 (repressed throughout r5-8) 

promoters. We found bivalent (Bernstein et al., 2006) H3K27me3:H3K4me3 

chromatin domains, whose relative enrichments correlated with the loci expression 

status. Interestingly, bivalent domains at the Hoxa5 and Hoxb5 promoters switched 

configuration from higher H3K27me3:H3K4me3 levels in r5-6 to opposite higher 

H3K4me3:H3K27me3 levels in r7-8, correlating with Hox PG5 transcriptional ‘off-

on’ switch, respectively. In contrast, the Hoxa2 or Hoxa9 and Hoxc13 promoters 

maintained similar ‘on’ or ‘off’ bivalent configurations, respectively, in the two cell 

populations (Figure 24, B). Thus, spatially-restricted Ezh2-dependent Hox regulation 

could be partly achieved through local Hox promoter-specific modulation of 

H3K4me3 and H3K27me3 levels along the rostrocaudal axis. 

 

Circuitry in r5-6::Cre; Ezh2fl/fl mutants 

In r5-6::Cre; Ezh2fl/fl mutants, both PN1 and PN2 triggered collateralization of 

corticospinal axons and innervated the cerebellum (Di Meglio et al., 2013).  

Stereotactic viral injections further demonstrated that PN2 axons project to the 

cerebellum and that axonal input to PN2 can be retrogradely traced to cortical layer 5 

neurons (Figure 25, A-C). 

The r5-6::Cre; Ezh2fl/fl mutants provide a suitable model to ask whether the 

establishment of patterned cortical input is related to regional PN pre-patterning (Di 

Meglio et al., 2013). PN1 and PN2 have distinct cellular and molecular compositions: 

i) PN2 is only contributed by r7-8RL-derived Hox PG5+ PN neurons; ii) PN2 lacks 
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the r6RL-derived component; iii) Hox PG5-negative r6RL-derived PN neurons 

contribute only to PN1, where they are rostrally positioned. We examined whether 

these intrinsic PN1 and PN2 patterning differences result in distinct regional cortical 

input.  

Injection of rabies-∆G-GFP and -∆G-mCherry into MPC and medial somatosensory 

cortex (SSC), respectively, resulted in rostral GFP+ and caudal mCherry+ axonal input 

onto the P7 PN (Di Meglio et al., 2013).   3-D reconstructions (Figure 25, D-G) 

confirmed rostrocaudal segregation of cortical GFP+ and mCherry+ input fibers onto 

PN from broad visual and somatosensory areas, in agreement with (Leergaard and 

Bjaalie, 2007).  

Fold 
Change 
mt/ctrl 

adjusted 
P-value Gene Gene Description 

9.9760 0.0004 En2 engrailed 2 

3.7368 0.0138 Hoxd4 home box D4 

3.4299 0.0036 Hoxa5 homeobox A5 

2.9932 0.0144 Hoxb8 homeobox B8 

2.9123 0.0051 Hoxb4 homeobox B4 

2.4885 0.0318 Hoxb5 homeobox B5 

2.3446 0.0385 Cnpy1 canopy 1 homolog (zebrafish) 

2.2983 0.0131 D130079A08Rik RIKEN cDNA D130079A08 gene 

2.0443 0.0378 NA NA 

2.0413 0.0201 Hoxd8 homeobox D8 

1.9709 0.0060 Hoxa4 homeobox A4 

1.9489 0.0460 Hoxa6 homeobox A6 

1.8350 0.0481 Bmi1 Bmi1 polycomb ring finger oncogene 

1.8000 0.0493 NA NA 

1.7801 0.0201 Skap2 src family associated phosphoprotein 2 

1.6786 0.0262 Tmem56 transmembrane protein 56 

1.6464 0.0485 Nrgn neurogranin 

1.6188 0.0340 Shisa6 shisa homolog 6 (Xenopus laevis) 

Table 5 | Upregulated genes in r5-6::Cre; Ezh2fl/fl; R26RZsGreen. Comparison 
between E11.5 in r5-6::Cre; Ezh2fl/fl; R26RZsGreen specimens to r5-6::Cre; Ezh2fl/+; 
R26RZsGreen embryos.  18 genes are upregulated in mutants (cutoffs: fold change > 1.5; 
adjusted P-value <0.05). 
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Fold 
Change 
ctrl/mt 

adjusted 
P-value Gene Gene Description 

68.3400 0.0001 3110007F17Rik RIKEN cDNA 3110007F17 gene 

16.9545 0.0011 3110007F17Rik RIKEN cDNA 3110007F17 gene 

11.1402 0.0011 3110007F17Rik RIKEN cDNA 3110007F17 gene 

8.7098 0.0018 Post periostin, osteoblast specific factor 

7.0817 0.0060 Igf2 insulin-like growth factor 2 

6.3381 0.0001 Prrx1 paired related homeobox 1 

5.4432 0.0017 Ttr transthyretin 

5.2845 0.0060 H19 H19 fetal liver mRNA 

5.1443 0.0051 Penk preproenkephalin 

4.8738 0.0116 Hmcn1 hemicentin 1 

4.3737 0.0144 Hmcn1 hemicentin 1 

4.0049 0.0131 NA NA 

3.9164 0.0011 Hmcn1 hemicentin 1 

3.8902 0.0467 Bgn biglycan 

3.6199 0.0263 Col12a1 collagen, type XII, alpha 1 

3.5727 0.0011 Hmcn1 hemicentin 1 

3.5416 0.0058 Dct dopachrome tautomerase 

3.4947 0.0087 Erbb3 v-erb-b2 erythrobl. leukemia viral oncogene homolog 3 

3.4475 0.0045 Hmcn1 hemicentin 1 

3.3814 0.0326 Hmcn1 hemicentin 1 

3.3139 0.0439 Foxc2 forkhead box C2 

3.3075 0.0211 Hmcn1 hemicentin 1 

3.2928 0.0060 Hmcn1 hemicentin 1 

3.2036 0.0112 Hmcn1 hemicentin 1 

3.1731 0.0186 Gpc3 glypican 3 

3.1534 0.0011 Capn6 calpain 6 

3.1423 0.0467 Lgals1 lectin, galactose binding, soluble 1 

3.1367 0.0017 Six1 sine oculis-related homeobox 1 homolog (Drosophila) 

3.1022 0.0387 Dab2 disabled homolog 2 (Drosophila) 

3.0761 0.0144 Tgfbi transforming growth factor, beta induced 

3.0566 0.0260 Cnn2 calponin 2 

3.0391 0.0144 Hmcn1 hemicentin 1 

2.9862 0.0011 Ednra endothelin receptor type A 

2.9696 0.0266 Fbn2 fibrillin 2 



78! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!

2.9377 0.0060 Ddr2 discoidin domain receptor family, member 2 

2.9326 0.0305 Hmcn1 hemicentin 1 

2.9060 0.0184 Hmcn1 hemicentin 1 

2.8964 0.0110 Ogn osteoglycin 

2.8913 0.0060 Hmcn1 hemicentin 1 

2.8326 0.0051 H19 H19 fetal liver mRNA 

2.8239 0.0032 Itm2a integral membrane protein 2A 

2.7913 0.0131 Hmcn1 hemicentin 1 

2.7911 0.0330 Hmcn1 hemicentin 1 

2.7743 0.0215 Islr immunoglobulin superfam containing leucine-rich repeat 

2.6926 0.0134 A430107O13Rik RIKEN cDNA A430107O13 gene 

2.6923 0.0046 Cdh19 cadherin 19, type 2 

2.6757 0.0290 Hmcn1 hemicentin 1 

2.6479 0.0144 Hmcn1 hemicentin 1 

2.6466 0.0051 S100a11 S100 calcium binding protein A11 (calgizzarin) 

2.5346 0.0376 Hmcn1 hemicentin 1 

2.5236 0.0305 Hmcn1 hemicentin 1 

2.5183 0.0494 Hmcn1 hemicentin 1 

2.4971 0.0116 Colec12 collectin sub-family member 12 

2.4926 0.0243 Hmcn1 hemicentin 1 

2.4631 0.0144 Pdgfra platelet derived growth factor receptor, alpha polypeptide 

2.4123 0.0338 Hmcn1 hemicentin 1 

2.4000 0.0136 Hmcn1 hemicentin 1 

2.3950 0.0494 Hmcn1 hemicentin 1 

2.3845 0.0436 Slc38a4 solute carrier family 38, member 4 

2.3613 0.0298 Hmcn1 hemicentin 1 

2.3161 0.0436 NA NA 

2.3088 0.0245 Col1a2 collagen, type I, alpha 2 

2.2903 0.0138 Sostdc1 sclerostin domain containing 1 

2.2833 0.0144 Anxa5 annexin A5 

2.2457 0.0402 Hmcn1 hemicentin 1 

2.2343 0.0093 Twist2 twist homolog 2 (Drosophila) 

2.2284 0.0144 Plp1 proteolipid protein (myelin) 1 

2.2266 0.0144 Hmcn1 hemicentin 1 

2.2244 0.0100 Foxf1a forkhead box F1a 

2.1888 0.0116 Hmcn1 hemicentin 1 

2.1564 0.0290 Mmp2 matrix metallopeptidase 2 
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2.1509 0.0131 Foxf2 forkhead box F2 

2.1488 0.0131 Lama4 laminin, alpha 4 

2.1379 0.0144 Creb3l2 cAMP responsive element binding protein 3-like 2 

2.1253 0.0227 Foxd1 forkhead box D1 

2.1158 0.0144 Hmcn1 hemicentin 1 

2.1063 0.0186 Itga4 integrin alpha 4 

2.0992 0.0417 Hmcn1 hemicentin 1 

2.0807 0.0060 Hmcn1 hemicentin 1 

2.0630 0.0236 Gm7120 predicted gene 7120 

2.0510 0.0144 S100a11 S100 calcium binding protein A11 (calgizzarin) 

2.0467 0.0112 Meox2 mesenchyme homeobox 2 

2.0242 0.0093 Ceacam1 carcinoembryonic antigen-related cell adh. molecule 1 

2.0088 0.0481 Pcolce procollagen C-endopeptidase enhancer protein 

2.0075 0.0378 Hmcn1 hemicentin 1 

2.0054 0.0276 Tnc tenascin C 

1.9993 0.0378 Hmcn1 hemicentin 1 

1.9988 0.0290 Serpinf1 serine (or cysteine) peptidase inhib., clade F, member 1 

1.9939 0.0308 Gpr124 G protein-coupled receptor 124 

1.9904 0.0200 Hmcn1 hemicentin 1 

1.9778 0.0131 Cxcl12 chemokine (C-X-C motif) ligand 12 

1.9768 0.0340 Myl9 myosin, light polypeptide 9, regulatory 

1.9758 0.0290 Hmcn1 hemicentin 1 

1.9427 0.0240 Sema3c Semaphorin 3C 

1.9274 0.0493 Flrt2 fibronectin leucine rich transmembrane protein 2 

1.9125 0.0439 Fkbp10 FK506 binding protein 10 

1.8864 0.0186 Foxf1a forkhead box F1a 

1.8840 0.0184 Duxbl double homeobox B-like 

1.8721 0.0242 Hmcn1 hemicentin 1 

1.8658 0.0467 D14Ertd449e DNA segment, Chr 14, ERATO Doi 449, expressed 

1.8579 0.0494 Hmcn1 hemicentin 1 

1.8488 0.0268 Duxbl double homeobox B-like 

1.7652 0.0450 Hmcn1 hemicentin 1 

1.7290 0.0494 Sepp1 selenoprotein P, plasma, 1 

1.7154 0.0402 Slitrk6 SLIT and NTRK-like family, member 6 

1.7140 0.0211 Hmcn1 hemicentin 1 

1.7130 0.0454 Hmcn1 hemicentin 1 

1.7095 0.0242 Hmcn1 hemicentin 1 
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1.6911 0.0303 Rxrg retinoid X receptor gamma 

1.6884 0.0482 Stard13 StAR-related lipid transfer (START) domain containing 
13 

1.6872 0.0295 Tns3 tensin 3 

1.6843 0.0482 Sox10 SRY-box containing gene 10 

1.6773 0.0162 Fbn1 fibrillin 1 

1.6701 0.0400 Sec24d Sec24 related gene family, member D (S. cerevisiae) 

1.6578 0.0223 Snai2 snail homolog 2 (Drosophila) 

1.6574 0.0194 Dse dermatan sulfate epimerase 

1.6417 0.0454 Lix1 limb expression 1 homolog (chicken) 

1.6405 0.0493 Plod2 procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 

1.6330 0.0295 Synpo synaptopodin 

1.6295 0.0402 Lrig3 leucine-rich repeats and immunoglobulin-like domains 3 

1.6275 0.0450 Ghr growth hormone receptor 

1.6146 0.0378 Hmcn1 hemicentin 1 

1.5975 0.0467 Hmcn1 hemicentin 1 

1.5872 0.0467 Mreg melanoregulin 

1.5673 0.0340 En1 engrailed 1 

1.5433 0.0467 Hmcn1 hemicentin 1 

1.5341 0.0340 Copz2 coatomer protein complex, subunit zeta 2 

Table 6 | Downregulated genes in r5-6::Cre; Ezh2fl/fl; R26RZsGreen. Comparison 
between E11.5 in r5-6::Cre; Ezh2fl/+; R26RZsGreen specimens to r5-6::Cre; Ezh2fl/fl; 
R26RZsGreen embryos.  79 genes are upregulated in controls compared to mutants 
(cutoffs: fold change > 1.5; adjusted P-value <0.05). 
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Figure 19 | Transcriptome analysis of r5-6::Cre;Ezh2fl/fl; ZsGreen mutants I. Heat 
map representation of gene expression levels for two controls (r5-6::Cre; Ezh2fl/+; 
ZsGreen) and four mutants (r5-6::Cre; Ezh2fl/fl; ZsGreen) (cutoffs: fold change > 2.0; 
adjusted P-value <0.05) 
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Figure 20 | Transcriptome analysis of r5-6::Cre; Ezh2fl/fl; ZsGreen mutants II. 
Fold change representation (r5-6::Cre; Ezh2fl/fl; ZsGreen vs. r5-6::Cre; Ezh2fl/+; 
ZsGreen) of the Hox clusters. 
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Figure 21 | FACS for Microarray and qPCRs for Hoxb5 and Ntn1. (A) Dissected 
ZsGreen+ r5-6 territory from an E10.5 r5-6::Cre; Ezh2fl/fl; R26RZsGreen embryo, prior to 
fluorescence-activated cell sorting; (B) Example of a sorted population of r5-6 cells 
(R3 inset), processed and analyzed by gene array. (C, D) Validation of gene array 
selected genes (Hoxb5 and Ntn1) by qPCR; (E) Ntn1 expression levels detected by 
qPCR in E15.5 wild-type (n=4) and r5post::Cre; Ezh2fl/fl; R26RZsGreen (n=2) posterior 
hindbrain. Measurements are normalized to GAPDH expression.  
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Figure 22 | Retinoid signaling and Ezh2 dependent Hox regulation in pontine 
neurons. (A, B), Barhl1+ PN neuron migratory patterns in E15.5 wholemount 
hindbrain treated with retinoic acid (RA) at E11.5 (30 mg/kg) (A) or E9.5 (60 mg/kg) 
(B). No migratory defects in (A), whereas ectopic migrations are in (B). (C- F), 
Hoxb5 (C, D) and Ntn1 (E, F) expression in E12.5 control (C, E) and RA-treated 
(E9.5) (D, F) embryos. Ectopic Hoxb5 and Ntn1 (arrowheads) in (D, F). G-H, X-Gal 
staining on E17.5 PN sagittal sections of untreated (G) and RA-treated (E13.5 and 
E14.5) (H) RARE::LacZ fetuses. Ectopic b-gal activity (arrowhead) in (H). (I-K), 
Hoxb5 and Barhl1 expression in control (I, J) and r5-6::Cre; Ezh2fl/fl (K, L) E17.5 
sagittal sections, either in untreated (I, K) or RA-treated (E11.5) (J, M, N) fetuses. 
Ectopic Hoxb5 in RA-treated control PN (arrowhead) (J) and mutant PN0, PN1 
(arrows), PN2 (arrowhead) (M, N); Hoxb5 expression throughout untreated mutant 
PN2 (arrowheads) (K, L). (O, P) Summary in vivo interactions between extrinsic and 
intrinsic Ezh2-mediated repression and RA signaling during PN neuron migration, 
through the regulation of Hox PG5 and Unc5b. 
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Figure 23 | Retinoid signaling and Hox regulation in pontine neurons. (A, B) 
Hoxa5 expression in sagittal sections from E12.5 control (A) and RA-treated (60 
mg/kg at E9.5) (B) embryos. Hoxa5 expression spreads more rostrally (arrowhead) in 
the RA-treated case (B). (C, D) Hoxb5 expression on sagittal sections from E17.5 
control (A) and RA-treated (30 mg/kg at E11.5) (B) fetuses. Hoxb5 expression is 
enhanced and ectopically induced in anterior pontine nuclei (arrowhead) in (D). (E), 
Ventral view of X-Gal stained whole-mount hindbrain from E16.5 RARE::LacZ 
fetuses showing graded caudo-rostral staining in pontine nuclei. (F-J), Hoxa5 and 
Barhl1 expression in control (F,G) and r5-6::Cre; Ezh2fl/fl (H-J) E17.5 sagittal 
sections, either in untreated (F,H) or RA-treated (30 mg/kg at E11.5) (G, I, J) fetuses. 
Enhanced Hoxa5 expression (arrowhead) in RA-treated control PN (G) and mutant 
PN2 (arrowhead), in contrast to PN0 and PN1 (arrow) in (I, J). Hoxa5 is expressed 
throughout untreated mutant PN2 (arrowheads) (H). (K, L), Barhl1+ PN neuron 
migratory patterns in E15.5 whole-mount hindbrain from untreated (K) or RA-treated 
(30 mg/kg at E9.5) (L) embryos. PN neuron ectopic migration after RA treatment 
(arrowhead) in (L).  
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Figure 24 | MicroChIP assay of E16.5 rhombomere 5/6 and rhombomere 7/8. (A) 
H3K27me3 and H3K4me3 microChIP assays on Hoxa2, Hoxa5, Hoxb5, Hoxa9, 
Hoxc13 promoters and an intergenic region (negative control, Int-3) from E16.5 r5-
6::Cre; R26RZsGreen r5-6 vs. r7-8 derived territories. (-) are controls using Rabbit IgG 
antibody. (B), Summary of Hox distinct epigenetic configurations at r5-6 or r7-8 
levels. PN, pontine nuclei; AES, anterior extramural stream. 
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Figure 25 | Pontine nuclei regionalization and patterned cortical input. (A-C), 
Stereotactic injection into PN2 and innervation by cortical layer 5 (L5) neurons. (D-
I), Input topography 3-D reconstruction of Rabies-∆G injections in control mice 
medioposterior/visual (MPC) somatosensory (SSC) cortex (injections illustrated in D, 
E) trace fibers into anterior (green, *) and posterior (red, arrow) PN, respectively, 
seen in a ventral (F, G) and lateral (H, I) view. r5-6::Cre; Ezh2fl/fl mutants show 
normal cortical input distribution in PN1; PN2 lacks innervation by MPC (green, *), 
while is innervated by SSC (red, arrow). Scale: 200µm, CST, corticospinal tract; M, 
medial; L, lateral; A: anterior; P, posterior. 
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gene gene description Publication showing interaction with retinoic acid pathway 

Bmi1 Bmi1 polycomb ring 
finger oncogene 

Boukarabila, H. et al. The PRC1 Polycomb group complex interacts with 
PLZF/RARA to mediate leukemic transformation. Genes Dev 23, 1195–
1206 (2009). 

Cnpy1 canopy 1 homolog 
(zebrafish) 

- 

En2 engrailed 2 Cunningham, M. L., Mac Auley, A. & Mirkes, P. E. From gastrulation to 
neurulation: transition in retinoic acid sensitivity identifies distinct stages 
of neural patterning in the rat. Dev Dyn 200, 227–241 (1994). 

Hoxa4 homeobox A4 Packer, A. I., Mailutha, K. G., Ambrozewicz, L. A. & Wolgemuth, D. J. 
Regulation of the Hoxa4 and Hoxa5 genes in the embryonic mouse lung 
by retinoic acid and TGFbeta1: implications for lung development and 
patterning. Dev Dyn 217, 62–74 (2000). 

Hoxa5 homeobox A5 Packer, A. I., Mailutha, K. G., Ambrozewicz, L. A. & Wolgemuth, D. J. 
Regulation of the Hoxa4 and Hoxa5 genes in the embryonic mouse lung 
by retinoic acid and TGFbeta1: implications for lung development and 
patterning. Dev Dyn 217, 62–74 (2000). 

Hoxa6 homeobox A6 Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA 
Mistral activates Hoxa6 and Hoxa7 expression and stem cell 
differentiation by recruiting MLL1 to chromatin. Mol Cell 43, 1040–1046 
(2011). 

Hoxb4 homeobox B4 Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 
expression requires induction by somites and a retinoid pathway. Neuron 
21, 39–51 (1998). 

Hoxb5 homeobox B5 Oosterveen, T. et al. Retinoids regulate the anterior expression boundaries 
of 5' Hoxb genes in posterior hindbrain. EMBO J 22, 262–269 (2003). 

Hoxb8 homeobox B8 Oosterveen, T. et al. Retinoids regulate the anterior expression boundaries 
of 5' Hoxb genes in posterior hindbrain. EMBO J 22, 262–269 (2003). 

Hoxd4 homeobox D4 Folberg, A., Kovàcs, E. N. & Featherstone, M. S. Characterization and 
retinoic acid responsiveness of the murine Hoxd4 transcription unit. J 
Biol Chem 272, 29151–29157 (1997). 

Hoxd8 homeobox D8 Manohar, C. F., Salwen, H. R., Furtado, M. R. & Cohn, S. L. Up-
regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression 
in human neuroblastoma cells following chemical induction of 
differentiation. Tumour Biol. 17, 34–47 (1996). 

Nrgn neurogranin Féart, C. et al. Differential effect of retinoic acid and triiodothyronine on 
the age-related hypo-expression of neurogranin in rat. Neurobiology of 
Aging 26, 729–738 (2005). 

Shisa6 shisa homolog 6 
(Xenopus laevis) 

- 

Skap2 src family associated 
phosphoprotein 2 

- 

Tmem56 transmembrane 
protein 56 

- 

Table 7 | References showing interaction between retinoic acid and genes 
upregulated in r5-6::Cre; Ezh2 fl/fl embryos 
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3.1.3 “Partial ipsilateral wiring of subcortical sensory inputs duplicates 

the facial map” (manuscript, in preparation)3 

Similar as in the precerebellar system also the trigeminal system, which relays 

information about sensory experience from the face, is patterned in a rostro-caudal 

manner. As it has been described by Oury et al., (2006) different rhombomeric 

contributions of the trigeminal column as dorsal and ventral PrV or the different 

portions of the SpV do not only get different input from the trigeminal ganglion, but 

also their projections have specific target zones in the thalamus. 

It is an important determinant for proper neural connectivity to specify if neurons 

project to the contralateral or ipsilateral side of the brain. Somatosensory processes 

are largely lateralized with a strong preference for contralateral projections. 

Exceptions are the visual system in mammals, where projections innervating the 

thalamus are partially contralateral and ipsilateral. In the following study an artificial 

scenario was generated in which projections from the trigeminal nuclei are projecting 

partially ipsilateral and partially contralateral. This was realized by conditional 

knockout of the Robo3 gene, a regulator of contralateral crossing, in rhombomere 3 

and 5 (using the Krox20::Cre driver) that includes the progenitors of the ventral PrV. 

Hereby most r3 neurons are transformed into ipsilateral projecting neurons, while all 

neurons from the dorsal PrV (derived from rhombomere 2) stay unrecombined and 

thereby projected normally to the contralateral side. 

Interestingly, conditional knockout of robo3 in r3/r5 and the resulting mixture of 

ipsilateral and contralateral sensory inputs lead to a decrease of the size of the 

thalamic area occupied by r3/5 projections and to a duplication of the sensory map in 

the cortex. Hereby one map processes purely ipsilateral information while the other 

solely gets information of the contralateral side. 

 

                                                
3 Statement of contribution: My contribution to this manuscript were all experiments 
using r2::mcherry; Krox20::Cre ; Robo3fl/fl animals as well as their controls, 
respectively. 
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Figure 1: 

 
  



3.!Results!! 125!

!

Figure 2: 
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Figure 3: 
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Figure 5: 
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Figure 7: 
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Figure 8: 
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Figure 9: 
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Figure S2: 
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Figure S3: 
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3.1.4 “Mouse Hoxa2 genetic analysis provides a model for human 

microtia and auricle duplication” (submitted manuscript)4 

Another example for the role of rostro-caudal determinants as Hox genes are neural 

crest cells. In the hindbrain region, neural crest cells migrate from the dorsal margin 

of the neural tube to the branchial arches, transient segmented structures at the ventral 

side of the embryo. Branchial arches have a differential contribution from different 

rhombomeres and generally express similar Hox codes as their pre-migratory 

progenitors. 

It is suggested that also in the neural crest system the later development is 

predetermined already at earlier stages of differentiation putting forward a similar 

kind of protomap as we demonstrated for the precerebellar system (3.1.1). 

The following manuscript describes a role of Hoxa2, a determinant for branchial arch 

2 derived structures in the generation of the external ear (including the pinna). 

Hoxa2 conditional knockouts resulted in absence of the auricle and a duplication of 

the branchial arch 1 derived ear canal. Hoxa2, if overexpressed, was able to induce a 

duplication of the pinna. It is suggested that Hoxa2 plays, as Hox genes in the 

precerebellar system, a major role in controlling the terminal fate by controlling in 

case of the neural crest cells the expression of realizator genes as Eya1, Chd7 and 

genes of the BMP pathway. 

Knowledge acquired during the analysis of the 3-dimensional connectivity patterns in 

the precerebellar system has been of use for the analysis of the external ear phenotype 

easing the understanding of the occurring structural changes. 

  

                                                
4  Statement of contribution: My contribution to this manuscript was the 3D 
reconstruction of the external ear of Hoxa2EGFP/+ control and Hoxa2EGFP/EGFP mutant 
mice  
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3.1.5 “The Cre/Lox system to assess the development of the mouse brain” 

(Book chapter, submitted manuscript, Methods in Brain 

Development)5 

The use of the Cre/lox system for the generation of transgenic mouse lines, in utero 

electroporation constructs and the design of new genetic tools is a substantial element 

of this thesis. Approaches that have been mostly exploited in the course of this PhD 

thesis or that are considered for further projects are described in detail. This submitted 

book chapter gives the background and an overview of all techniques using Cre/lox 

mediated recombination in mice. 

 

                                                
5 Statement of contribution: The first draft of this book chapter was written by myself. 
I also generated all figures. Filippo Rijli corrected the manuscript and gave 
suggestions for improvement of text and figures. 



182! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!

 



3.!Results!! 183!

!



184! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 185!

!



186! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 187!

!



188! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 189!

!



190! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 191!

!



192! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 193!

!



194! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 195!

!



196! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 197!

!



198! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 199!

!



200! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 201!

!



202! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 203!

!



204! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!



3.!Results!! 205!

!

 



206! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!

3.2 Unpublished Results  

3.2.1 Further description of generated and analyzed transgenic lines6 

To address the molecular and cellular aspects of precerebellar system and cortico-

ponto-cerebellar circuitry development a major effort was put into the generation and 

characterization of novel Cre- and reporter-based transgenic mice that constitute 

instrumental genetic tools. Hereby the aim was to identify subsets of pontine neurons 

during migration and circuitry formation.  These transgenic tools can not only be used 

to understand the development of the system but also to manipulate the expression of 

dedicated epigenetic modifiers, transcription factors and guidance molecules. These 

lines have been partially used in Di Meglio et al. (2013) to fate map the different 

rhombomeric contributions to the pontine nuclei as well as to conditionally knockout 

Ezh2 in pontine nuclei neurons and their migratory environment. 

Additionally, some of the generated transgenic mice show expression patterns in other 

parts of the nervous system that are potentially relevant for later work and will be 

described in this chapter with a major focus on other hindbrain nuclei. Furthermore, 

other transgenic lines that were obtained from other laboratories or created in the 

laboratory of Filippo Rijli will be described for their usability to analyze the 

development of the precerebellar system. 

To screen the different Cre lines that have been generated using rhombomere-specific 

enhancers of Hoxb3 (Yau et al., 2002) (r5-post::Cre), Hoxa3 (Manzanares et al., 

1999) (r5-6::Cre) or Hoxb4 (Gould et al., 1997) (r7post::Cre), they were outcrossed 

to R26RLacZ animals, in which upon Cre mediated recombination cells express ß-

Galactosidase. β-galactosidase is visualized by adding X-Gal, which is hydrolyzed to 

5-bromo-4-chloro-3-hydroxyindole generating characteristic blue stain. The 

expression patterns of the 15 founders that were genotyped positively and developed 

staining are shown in Figure 26. 3/6 had the expected recombination pattern at P0 for 

r5post::Cre (Figure 26, E-G) ; 2/8 for r5-6::Cre (Figure 26, K-L), 1/2 for 

                                                
6 Statement of contribution: Nathalie Vilain performed all in utero electroporation in 
this chapter. The transgenic lines Hoxa5::Cre and Hoxb5::Cre were generated by 
Sebastien Ducret. 
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r7post::Cre (Figure 26, H) and 0/3 for r6::Cre , while the other founders showed no 

(not shown), ubiquitous (Figure 26, C) or ectopic patterns (Figure 26, A-B, D, I-J, 

M-O) of recombination.  

 

Figure 26 | Screen of outcrosses of transgenic line founders with R26RLacZ mice at 
P0. (A-M) To screen Cre driver line founders for their ability to recombine either the 
expected rhombomeres or other relevant subpopulations, founders of mice injected 
with Hoxb3::Cre (A-E), Hoxb4::Cre (F-G), Hoxa3::Cre (H-J) and Hoxb3_mt::Cre 
(K-M) were crossed to R26RLacZ mice, dissected at birth (P0) and revealed by X-Gal 
staining over night. Founders B, F, H, I and K were maintained. 



208! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!

Two of the founders that showed ectopic expression patterns (Figure 26, B, I), were 

kept, because their expression is specific for nuclei of the precerebellar system. They 

were name AG3::Cre (Figure 26, B) and PN::Cre (Figure 26, I).  

Some founders show strong differences in their expression patterns depending on 

their insertion site. AG3::Cre and r5-post::Cre, which both have been generated with 

the same construct do not only show differences in their late expression pattern 

(Figure 26, B, D), but already at early stages at E12.5 (Figure 27).  

 

Figure 27 | Characterization of r5-post::Cre and AG3::Cre. (A-B) r5-post::Cre ; 
R26RLacZ mainly express LacZ in tissues derived from the neural plate including 
neural crest cells. The whole spinal cord (Sc in A-B) is labeled including the dorsal 
root ganglia (DRG in B). (C-D) Founder AG3::Cre has an untypical expression 
pattern, differing from other founders injected with the Hoxb3-enhancer construct. 
Also here neural crest cells, as well as parts of the anterior spinal cord are labeled. (E-
G) At P0 especially nuclei derived from the Math1 domain are labeled including 
cerebellum (cb), pontine nuclei (PN), cochlear nucleus (CN), lateral reticular nucleus 
(LRN) and external cuneate nucleus (ECN) (E, ventral view; F, lateral view; G, dorsal 
view). 
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Figure 28 | Description of PN::Cre transgene crossed with the R26Rtdtomato reporter 
at postnatal stages (P7 and P21). (A, B, E) Sagittal (A, E) and coronal (B) section at 
P7 (A, B) and P21 (E) show that PN including reticulotegmental (RTN) and basal 
pontine nuclei (PN) and as well as lateral reticular nuclei (LRN), spinal trigeminal 
nuclei (Sp5) and cuneate (Cu) and gracile (Gr) nuclei are labeled. (C, D, F)  PN::Cre 
;  R26Rtdtomato specimen additionally label terminals of the Sp5 in the ventral 
posterolateral nucleus (VPL) of the thalamus (C), the calyx of held synapses in the 
medial nucleus of the trapezoid body (MNTB, D) as well as subsets of granule cells in 
the hippocampal dentate gyrus and CA3 area (F). 
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Figure 29 | Characterization of r7post::mcherry transgene. (A) The late neuronal 
enhancer of Hoxb4 (Gould et al., 1997) was cloned in front of a minimal promoter 
followed by the mcherry open reading frame and polyA. (B-E) Four out of eight 
founders showed mcherry fluorescence in the posterior hindbrain as seen here in 
wholemounts at P0. Pontine Nuclei (PN) and the anterior expression boundary 
(dashed line) are indicated. (F-G) Sagittal sections show the restrictions to 
rhombomere 7-8 (r7, r8) and spinal cord (Sc). Crossing with r5-6::Cre; TaumGFP/+, 
which labels rhombomeres 5 and 6 (Di Meglio et al., 2013) further confirms the 
rhombomere restriction of r7post::Cre (G). (H) The PN are labeled as well (F-H). (I-
J) Crossing with Krox20::Cre TaumGFP/+ also shows tiled expression in wholemount 
specimens (I) as well as specific targeting in the projections of principal (Pr5; green, 
Krox20+) and spinal trigeminal nucleus (Sp5, red, r7post::Cre+) to the VPM (from r3) 
and VPL (from r7 and r8) of the Thalamus. 
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While r5post::Cre is expressed throughout the whole spinal cord, including the dorsal 

root ganglia (DRG) and some neural crest derivatives (Figure 27, A-B), in AG3::Cre 

Cre expression is restricted to an anterior domain of the spinal cord and its DRGs 

(Figure 27, C-D). At P0, the pattern of LacZ expressing cells, resembles the 

expression of Math1 (Wang et al., 2005) with labeling in precerebellar nuclei (pontine 

nuclei, external cuneate nucleus and lateral reticular nucleus) as well as cochlear 

nuclei and the granule cells of the cerebellum (Figure 27, E-G) 

Beside AG3::Cre another founder, obtained by using the Hoxb4 enhancer (Gould et 

al., 1997) also shows an atypical expression pattern using the conditional reporter 

R26Rtdtomato at P7 and P21 (Figure 28). Due to the pontine nuclei specific expression it 

was named PN::Cre. Beside the pontine nuclei also other precerebellar nuclei are 

labeled here, including the lateral reticular nuclei (Figure 28, B). Additionally, 

positive cells can be found in cerebellum, spinal trigeminal nucleus (Sp5), cuneate 

and gracile nucleus, cochlear nucleus and hippocampal granule cells (Figure 28, A-B, 

F). Axonal projections can be seen in thalamus (from gracile and cuneate nucleus) as 

well as in the superior olive (coming from the cochlear nucleus) (Figure 28, C-D).  

A further transgenic line, r7post::mcherry, was generated by combining the Hoxb4 

enhancer (Gould et al., 1997) with the reporter mcherry, replacing in which Cre 

recombinase (Figure 29, A). Hereby the aim was to generate a further reporter that 

can be used in the background of Cre mediated recombinations. Four mcherry 

expressing founders were obtained (Figure 29, B-E), all showing comparable 

expression patterns. Similarly to r7post::Cre, r7post::mcherry is expressed 

posteriorly of the rhombomere 6/7 boundary (Figure 29, F). Crossings to r5-6::Cre ; 

TaumGFP mice further reveal this restriction (Figure 29, G). Also the PN are 

r7post::mcherry positive (Figure 29, H). Crossing to Krox20::Cre ; TaumGFP, 

expressed in rhombomere 3 and 5, reveals the segregated thalamic inputs from the 

r3/5 and r7/8 trigeminal complex to the thalamus (Figure 29, I-J)  

Two further transgenic lines have been generated by replacing Hoxa5 (Hoxa5::Cre; 

Di Meglio et al., 2013) and Hoxb5 (Hoxb5::Cre) by Cre recombinase in BACs of the 

HoxA cluster and HoxB Cluster, respectively (Figure 30, Figure 31). Cells 

recombined by Hoxa5::Cre cover rhombomere 8 and spinal cord (Figure 30, A-B, Di 
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Meglio et al., 2013) but also, especially after birth, label cortical cells in layers V and 

VI (Figure 30, C-D). Strong projections to thalamus and cerebellum coming from 

hindbrain and spinal cord can be visualized as well (Figure 30, C, E).  

Hoxb5::Cre has a more restricted expression pattern, solely covering the anterior part 

of the spinal cord and excluding the hindbrain and pontine nuclei (Figure 31, A). 

Thereby, Hoxb5::Cre; R26Rtdtomato mice allow the analysis of spinal cord projections 

to hindbrain (Figure 31, B),  cerebellum (Figure 31, B-C) and thalamus (hindbrain 

(Figure 31, D). The discrepancy to the Hoxb5 expression pattern might be due to 

different isoforms, which (as shown for other Hox genes as Hoxa5) have different 

transcripts controlled by different promoters and therefore different axial expression 

boundaries (Coulombe et al., 2010). 

 

Figure 30 | Description of Hoxa5::Cre transgene.  (A-E) Localization of 
Hoxa5::Cre ; R26Rtdtomato positive cells in the nervous system. As it can be seen on 
sagittal sections tdtomato positive cells can be mainly found in the spinal cord (Sc) as 
well as in the most posterior part of the hindbrain, rhombomere 8 (A-B). Furthermore, 
the transgene shows expression in a subset of cells in cortical (Ctx) layer V and VI as 
well as in the Hippocampus (Hc) (C-D). The cerebellum (Cb) is broadly innervated 
(E).  

 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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Figure 31 | Description of Hoxb5::Cre transgene.  (A-D) In Hoxb5::Cre ; 
R26Rtdtomato specimen expression is more restricted than in Hoxa5::Cre; R26Rtdtomato. 
Only the most anterior part of the spinal cord is labeled (posterior expression 
boundary labeled by arrowhead) (A). Hoxb5::Cre; R26Rtdtomato positive projections 
(arrowheads) can be found on coronal sections in the facial nucleus (FN) and around 
the spinal trigeminal nucleus (B). Mossy fibers terminals in the cerebellum are 
localized to lobe II, III, IV, V, VIII and IX of the vermis as seen on sagittal sections 
(C). In coronal sections of the thalamus Hoxb5::Cre ; R26Rtdtomato positive fibers 
localize to the external part of the nucleus ventralis posterolateralis, VPL (arrowheads 
in D). 

Many of the analyzed transgenic Cre lines result in recombinations of PN neurons as 

described in Di Meglio et al. (2013) and Figure 32. R5post::Cre, PN::Cre, 

Math1::Cre, Wnt1::Cre drivers triggers recombinations throughout the pontine 

nuclei, r7post::Cre, r5-6::Cre and Hoxa5::Cre solely in subsets of pontine neurons 

and r4post::Cre in all pontine neurons and their environment. To analyze the cortico-

ponto-cerebellar circuitry the aim was to find or generate transgenic lines that drive 



214! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Results!

!

reporter expression in a) subsets of pontine innervating cells and b) in subsets of 

pontine nuclei cells. For b) it was especially important to obtain no expression in the 

cerebellum itself and to label a minimum of other non-pontine cells recombined that 

also have mossy fiber or parallel fiber projections to the cerebellum. 

For the analysis of the cortical input two lines were found to be the most interesting. 

Emx1::Cre (Gorski et al., 2002) labels all cortical neurons and therefore the major 

input to the pontine nuclei (Figure 32, A-D). A second transgene, Pcp2::Cre (Lewis 

et al., 2004) recombines parts of the posterior cortex (including visual cortex) as well 

as cerebellar Purkinje cells (for which the line was generated in the first place) 

(Figure 32, E-H). 

 

Figure 32 | Genetic tools to label pontine nuclei, their environment and to show 
their composition. (A-H) To test the ability of the different Cre drivers to recombine  
PN cells and their surounding, they were crossed to R26Rtdtomato reporter mice. All Cre-
drivers are able to recombine PN cells as shown here on sagittal sections, while 
r7post::Cre; R26Rtdtomato (B), r5-6::Cre; R26Rtdtomato (C) and Hoxa5::Cre; R26Rtdtomato 
(D) labeled distinct subsets. Anterior cells are not labeled in Hoxa5::Cre; R26Rtdtomato 
and less in r7post::Cre; R26Rtdtomato (arrowheads in D and B) but in r5-6::Cre; 
R26Rtdtomato (arrowhead in C). In  Wnt1::Cre; R26Rtdtomato (G) and r4post::Cre; 
R26Rtdtomato (H) tdtomato is also strongly expressed in the environment. R5post::Cre 
(D), PN::Cre (E) and Math1::Cre (F) recombined PN cells, but not the juxtaposed 
environment. 
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Figure 33 | Innervation of the pontine nuclei by Emx1::Cre and Pcp2::Cre. (A-D) 
The pontine nuclei (PN) show broad innervation from the cortex (Ctx), labeled by 
Emx1::Cre as shown on sagittal sections (A). The complete PN is innervated 
excluding the reticulotegmental nucleus (RTN, asterisk) as it can be seen on sagittal 
sections as well as reconstructions (lateral view (C) and ventral view (D)). (E-H) 
Pcp2::Cre labels cell of the posterior cortex including visual cortex as it can be seen 
on sagittal sections (E) and reconstructions from lateral (G) and ventral (H). The 
innervation is restricted to the anterior part of the nucleus (arrow) and excluded from 
the posterior (asterisk). A further innervation can be seen in the dorso-medial RTN 
(arrowhead), which might come from the Pcp2::Cre positive purkinje cells, since 
these projections can`t be reproduced by viral tracing from the cortex. 

Interestingly, Emx1::Cre; R26Rtdtomato solely innervates the pontine nuclei and its 

projections exclude the reticulotegmental nucleus (RTN) (Figure 33, A-D), although 

it was shown to be innervated by cortical areas in other mammals as e.g. monkeys 

(Ono and Mustari, 2008). The innervation from the Pcp2::Cre; R26Rtdtomato  positive 

fibers converges on the anterior pontine gray as reported in Di Meglio et al. (2013). A 

second zone of innervation lies in the dorsal RTN and due to the fact that these fibers 

can not be seen in Emx1::Cre; R26Rtdtomato specimens this projection most likely 

originates in a non-cortical area. It might be speculated, that it constitutes a feedback-

circuit from the cerebellar purkinje fibers that are strongly labeled in Pcp2::Cre; 

R26Rtdtomato  specimen. Those feedback-circuits (although described as coming from 

the deep cerebellar nuclei) have been previously described (Schwarz and Schmitz, 

1997). 
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For the pontine neurons, most lines that have been screened show either expression in 

cerebellar granule cells (PN::Cre, Math1::Cre, Wnt1::Cre) and/or in other mossy 

fiber/ climbing fiber nuclei (r5post::Cre, r7post::Cre, Hoxa5::Cre; Wnt1::Cre, 

PN::Cre, Math1::Cre) or have postnatally ectopic expression (r5-6::Cre). Therefore 

these transgenes cannot be used for an in-depth analysis of pontine neuron mossy 

fiber projections. 

Solely two lines, ChAT::Cre, a knockin into the ChAT locus (Lowell et al., 2006) and 

MafB::CreERT2 a BAC transgene in which MafB is replaced with Cre (Di Meglio et 

al., 2013) fulfill the requirements of a high specifity to pontine neurons mossy fibers 

and restriction to a subset of pontine neurons.  

 
Figure 34 | Characterization of ChAT::Cre expressing cells in the pontine nuclei. 
(A-L) ChAT::Cre ; R26Rtdtomato (A-G)/ ChAT::Cre ; R26RZsGReen (I-K) positive cells 
have a strong restriction in the pontine nuclei (PN). They can be separated into one 
medio-central domain and one lateral domain. Especially the medio-central domain 
involves as well part of the reticulotegmental nucleus (RTN) and not just of the basal 
pontine gray (PGN) as it can be seen on coronal sections (A-G), sagittal sections (I-K) 
and in 3D-reconstruction from a ventral view (L). 

The ChAT gene encodes the enzyme Choline acetyltransferase that drives the 

synthesis of the neurotransmitter acetylcholine by catalyzing the reaction of Acetyl-

CoA and choline to acetylcholine and coenzyme A. Choline acetyltransferase and 
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ChAT::Cre are therefore expressed in cholinergic neurons including motor neurons in 

hindbrain and spinal cord as e.g. the facial nucleus. Also neurons in the basal 

forebrain, midbrain and dorsal pons express ChAT (Lowell et al., 2006; Madisen et 

al., 2010; Schäfer et al., 1998). Interestingly, subsets of pontine neurons express Cre 

in the ChAT::Cre background (Figure 34), although they lack expression of ChAT 

itself (Henry and Hohmann, 2012; Schäfer et al., 1998). 

ChAT positive pontine cells are distributed into two segregated populations, one 

medial population in close proximity to the midline and one lateral population 

(Figure 34, A-L). Cells start to express the floxed reporter (in this case R26Rtdtomato) at 

P0 (data not shown). Their identity as pontine neurons was confirmed by in utero 

electroporation (Chapter 3.2.2). While the medial population localizes in a medial part 

of the RTN, the lateral population might be part of the pontine nuclei, more 

specifically the dorso-lateral pontine nucleus (DLPN).  

 

Figure 35 | Characterization of ChAT::Cre positive fibers in the cerebellum. (A-
D) Distribution of ChAT::Cre ; R26Rtdtomato positive fibers in the cerebellum. Coronal 
sections (A) show the strong innervation in paramedian lobe (PML) and paraflocculus 
(PF). This can be confirmed by sagittal sections at lateral (B), mediolateral (C) and 
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medial levels (D). At more medial levels also lobe IX and VII have tdtomato positive 
mossy fibers. In the anterior lobes (arrows) scattered climbing fibers can be seen (C). 

Interestingly, also the mossy fiber terminals in the cerebellum are restricted to specific 

lobes. While the highest density of mossy fiber terminals can be found in the lateral 

cerebellum, especially in paramedian lobe and paraflocculus, the vermis was poorly 

innervated with solely some mossy fibers projecting to lobe VII and IX (Figure 35, 
A-D).  Although it might be doubted that all of these fibers originate from the pontine 

nuclei, this segregation was striking. Further experiments in which ChAT::Cre 

animals were electroporated in utero, which will be discussed in the next subchapter 

(Chapter 3.2.2), give further insights into the connectivity of ChAT::Cre expressing 

pontine neurons. Additionally also recombined climbing fibers can be seen in the 

cerebellum that are mainly located in the anterior part of the vermis (lobe I-VI,  

Figure 35, C).   

The second line, MafB::CreERT2 that has been partially described in (Di Meglio et 

al., 2013), labels the rhombomere 6 derived pontine neurons in as similar way as the 

r5-6::Cre driver. Indeed MafB is the gene that regulates the rhombomere 5 and 6 

specific expression of the Hoxa3 enhancer used for the generation of the r5-6::Cre 

transgene (Manzanares et al., 1999). Due to the fact, that the expression of Cre can be 

tightly regulated by the tamoxifen injection at E7.5, this transgenic line is less 

receptive to expression in other areas, illustrated by the very confined expression in 

rhombomere 5 and 6 (Figure 36). Solely some glia cells in the flocculus of the 

cerebellum, which might be even derived from rhombomere 5/6, express the 

recombined reporter in an unexpected manner (Figure 37, B).  

Similar to r5-6::Cre animals, recombined cells strictly localize in the anterior and 

anterior-lateral part of the pontine nuclei as it can be seen on sagittal sections (Figure 

36, A-C) and 3D-reconstructions (Figure 36, D-E). Also for the MafB::CreERT2 

transgene two slightly segregated populations exist in the medio-anterior and in the 

dorso-lateral pontine nuclei. Due to the sparse labeling in MafB::CreERT2 specimen, 

also dendritic organizations can be analyzed (Figure 36, F). The population in the 

dorso-lateral pontine nuclei is in a similar location as the lateral population in 

ChAT::Cre specimen. 
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In contrast to ChAT::Cre specimens, the connectivity of the MafB::CreERT2 progeny 

mossy fibers is slightly more dispersed in the cerebellum (Figure 37, A-F). This is 

characteristic for medial levels of the vermis, where low numbers of terminals can be 

seen in all lobes (Figure 37, A, C, E). Despite the disperse projections to the vermis 

there is a strong and localized innervation to the paraflocculus (Figure 37, B, C-D, F).  

Thereby, MafB::CreERT2 and ChAT::Cre positive cells and fibers seem to share a 

similar region in the pontine nuclei (dorso-lateral part; DLPN) and a similar target 

area in the cerebellum (paraflocculus). 

 

 

Figure 36 | Characterization of MafB::CreERT2. (A) Localization of recombined 
cells in a sagittal section of a MafB::CreERT2 ; R26RZsGreen specimen injected with 
1mg Tamoxifen at E7.5. Cells localize to rhombomere 5 and 6. Furthermore, cells can 
be found in the anterior pontine nuclei (PN) and reticulotegmental nucleus (RTN) 
(arrowhead). A prominent projection to interstitial nucleus of Cajal can be seen as 
well (arrow). (B-C) Localization inside the PN on a medial (B) and more lateral (C) 
section. Cells mainly localize to the anterior and lateral part of the PN/RTN. (D-E) 
Reconstruction of the ZsGreen-positive cells inside the PN from a lateral (D) and 
ventral (E) view. (F) High resolution picture of ZsGreen positive PN cells. 
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Figure 37 | Cerebellar connectivity of MafB::CreERT2; R26RtdTomato positive cells. 
(A) Solely a small number of mossy fiber terminals can be seen on sagittal sections at 
the level of the vermis. They are mostly scattered in lobes I-V and VIII-X. (B) At 
lateral levels a higher number can be seen in the paraflocculus (PF), some in the 
flocculus (FL) and almost none in CrusI-II. (C-F) The high number of synapses in PF 
can be confirmed by looking at coronal section. 
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3.2.2 Combination of in utero electroporation and genetic tools to assess 

pontine nuclei connectivity 

ChAT::Cre and MafB::CreERT2, if crossed to reporters, are useful tools to analyze 

the behavior of subsets of hindbrain mossy fibers. To understand better the targets of 

pontine fibers, constructs for in utero electroporation had to be optimized to be able to 

analyze projections. If embryos are electroporated at E14.5 mainly neurons at the 

caudal rhombic lip are transfected. The only part of the precerebellar system, which is 

labeled at this specific time are the pontine nuclei (Okada et al., 2007). To better 

visualize the position of nuclei, axons and synapses, three constructs were 

electroporated: A tdtomato with a nuclear localization signal (NLS-tdtomato) to label 

the cell body / cell nuclei position, a GFP with a membrane-localization tag of the 

MARCKS (myristoylated alanine-rich protein kinase C substrate) protein (MARCKS-

GFP/mGFP) (De Paola et al., 2003) and a Synaptophysin-tdtomato fusion protein that 

localizes to the synapses in the cerebellum (Figure 38, Figure 39). 

 

Figure 38 | In utero electoporation as a tool to analyze ponto-cerebellar ciruitry I. 
(A-C) Embryos were electroporated with NLS-tdtomato, synaptophysin-tdtomato and 
mGFP at E14.5 and analyzed at P21. Electroporated cells are mainly located in the 
outer layers of the pontine nuclei as seen here on sagittal sections. NLS-tdtomato 
localized to the nucleus of the cells (A-B), while mGFP was also visible in the axonal 
projections. 

Using this approach it is possible to track distribution and structure of cells (Figure 

38, A-C), axons (Figure 38, Figure 39) and synapses (Figure 39, A-L) on sagittal 

sections of P21 animals, 25 days after electroporation. As expected NLS-tdtomato 

localizes to cell nuclei (Figure 38, A-C), Synaptophysin-tdtomato to synapses (the 

mossy fiber rosettes) (Figure 39, G-L). 
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Figure 39 | In utero electoporation as a tool to analyze ponto-cerebellar ciruitry I. 
(A-F) Distribution of mossy fiber terminals localization of synaptophysin-tdtomato 
(A-B, D-E) and mGFP (A, C, D, F) visualized by medial sagittal sections (D-F) and 
lateral sagittal sections (A-C). (G-L) Higher resolution pictures show the localization 
in lobe VI (G-I) and the localization of the mGFP construct and the synpophysin-
tdtomato construct at the level of one synapse (J-L). 
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Figure 40 | In utero electroporation as a tools to analyze lobe specifity of 
projections and mossy fiber rosette morphology. (A) In utero electroporation 
allows to analyze the lobe specifity of pontine mossy fibers and gives reproducible 
results. Here in three cases mossy fiber terminals of embryos electroporated at E14.5 
were analyzed at P21 (n=3). Synapses were counted at medial sections and the 
percentages of terminals per lobe were calculated. Errorbars indicate standard 
deviation. (B) Example of a more sparsely labeled mossy fibers in lobe V. Red 
counterstain is a flurorescent nissl staining. (C-D) Furthermore, PN mossy fiber 
terminals can be analyzed at a very high resolution and reconstructed in 3D. The 
picture on the left side was taken with a 63x objective, deconvoluted and then 
reconstructed in Imaris (right picture). PN cells were electroporated at E14.5 with 
pCAG::Marcks-GFP and analysed at P21. 
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Figure 41 | Characterization of the connectivity of ChAT::Cre positive pontine 
neurons. (A-C) To see the localization of ChAT::Cre expressing neurons from the 
pontine nuclei (PN), Embryos were coelectroporated with Flex-mGFP and mCherry at 
E14.5 and analyzed at P21. GFP is expected to be only recombined and expressed in 
ChAT::Cre expressing cells in medial and lateral PN (A, C), while mcherry cells are 
scattered over the nucleus (A-C). (D-F) Projections to the cerebellum are partially 
segregated with GFP positive fibers more localized to the posterior part of the middle 
cerebellar peduncle in contrast to mcherry positive fibers. (G-K) GFP positive mossy 
fiber rosettes (synapses) are absent in the vermis, but can be observed in lateral 
sections. Most GFP/mcherry positive synapes can be found in the paraflocculus (PF, 
arowheads in J-K), while only very few rosettes are GFP/mcherry positive in the 
CrusI lobe (arrowheads H-I) where most express solely mcherry (arrows H-I). (L-M) 
High resolution pictures of synapses in the paraflocculus showing colocalization 
(arrowheads).  

These tools do not only allow the high-resolution analysis of mossy fiber and mossy 

fiber rosette structures (Figure 39, G-L; Figure 40, C-D), but also the analysis of the 

gross projection pattern of pontine derived mossy fibers. As it can be seen on sagittal 
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sections, most pontine fibers project to lobus simplex, Crus I and to lobe VI of the 

vermis (Figure 39, A-F). These results are reproducible and can be quantified by 

counting Synaptophysin-tdtomato positive rosettes and calculating their relative 

number per lobe (Figure 40, A; n=3). 

To find out first, if the ChAT::Cre cells derive from the rhombic lip and second to 

estimate, where the ChAT::Cre positive pontine nuclei subset projects to, in utero 

electroporation of mcherry and FLEX-GFP (GFP with double inverted lox sites; see 

also chapter 3.1.5) was performed in ChAT::Cre animals.  

Coelectroporation of mcherry and FLEX-mGFP reveals that both ChAT::Cre positive 

subpopulations can be targeted by in utero electroporation. In both lateral and medial 

ChAT::Cre positive areas, cells are found that show mcherry expression as well as 

expression of the recombined mGFP  (Figure 41, A, C). On the other hand, central 

cells solely express mcherry (Figure 41, B). 

In the cerebellar peduncle (the axon bundle going from pontine nuclei to cerebellum) 

mGFP positive fibers are evidently more localized in the caudal part of the peduncle, 

while mcherry positive fibers spread all over. In the cerebellum all rosettes at the level 

of the vermis are negative for mGFP, but express mcherry (data not shown). At lateral 

levels, mGFP positive fibers can be found in paraflocculus and paramedian lobe 

(Figure 41, G-I) and in lower numbers in CrusI (Figure 41, G, J-N).  

This data suggests that the ChAT::Cre pontine fibers project to the lateral cerebellum 

and therefore to the lobes that are in general strongly innervated by ChAT::Cre 

positive fibers. Since both ChAT::Cre positive pontine nuclei populations are labeled 

by the electroporation, it is unclear, if they each of them project to similar areas or 

have specific termination zones. 

Regarding the progeny of MafB::CreERT2 positive cells in the pontine nuclei, there is 

evidence that their fibers project mainly to the paraflocculus of the cerebellar 

hemispheres. Main arguments are hereby that other lobes of the cerebellum that are 

strongly innervated by the pontine nuclei have very low numbers of MafB::CreERT2; 

R26Rtdtomato positive rosettes (Figure 37). To confirm this hypothesis, 

MafB::CreERT2; R26Rtdtomato embryos would have to be electroporated with a GFP 

vector to screen for GFP/tdTomato terminals (terminals originating from the 
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MafB::CreERT2 positive progenitors derived pontine neurons). However up to now 

this experiment did not give any results due to an increased abortion (that can be 

explained by the combination of tamoxifen treatment and in utero electroporation, 

both increasing the rate of abortion). 

To get further insights into the role of transcription factors and guidance factors a 

system had to be established that is able to address their cell-autonomous role for 

ponto-cerebellar circuit formation. Although it is possible to obtain coexpression rates 

of over 80% by coelectroporation of plasmids (Loturco et al., 2009), a system that 

expresses constructs from the same promoter with the same efficiency would be 

preferential. Conventional approaches make use of internal ribosomal entry sites 

(IRES) to express a second gene, i.e. to combine the overexpression of a gene with a 

reporter. Disadvantage of this system is the low expression of the gene downstream of 

the IRES site. This can be overcome by the generation of multicistronic constructs 

using the selfcleaving 2A peptides of the picornavirus that are able to efficiently 

translate two or more genes (Szymczak et al., 2004). 

A vector (pCAG-MARCKS-GFP-2A-NLS-mcherry) with an improved version of 

MARCKS-GFP (improved with mammalian codon usage) followed by the 2A peptide 

and NLS-mcherry was generated to test this system. When embryos were 

electroporated with this construct, all cells were coexpressing the two proteins with 

MARCKS-GFP localized at the membrane and NLS-mcherry localized in the nucleus 

(Figure 42 A-I), illustrating that both proteins are successfully translated and that the 

peptide chain is cleaved mediated by the 2A sequence. 

This system is therefore an appropriate system to analyze ponto-cerebellar 

connectivity by now replacing the NLS-mcherry sequence of pCAG-MARCKS-GFP-

2A-NLS-mcherry by a a) Cre-recombinase electroporated in homozygote conditional 

mutants or b) a gene of interest that will be thereby overexpressed (Figure 42, J).  

The approach has the advantage that now all MARCKS-GFP positive fibers express 

Cre (and thereby generate a conditional knockout) or overexpress a gene of interest. It 

is even possible to combine the construct with pCAG-mcherry as an internal control 

allowing a comparison between mcherry+/GFP- fibers (that should behave normally) 

and GFP+ fibers  (that might possess a phenotype). 
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Figure 42 | Coexpression of in utero electroporated genes by using 2A-peptide 
technology. (A-I) To effectively express a reporter and a second gene of interest, 
constructs with MARCKS-GFP and NLS-mcherry separated by a 2A sequence were 
designed. All electroporated cells coexpressed GFP and mcherry as it can be seen in 
ventral views of wholemounts (A-F) and sagittal sections (G-I). (J) This can be now 
used to robustly overexpress e.g. Cre (to induce the recombination of conditional 
knockouts) or genes of interest. 
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Figure 43 | Concept of the retrograde transsynaptic tracing from cerebellum to 
cortex via in utero electroporation delivery of G-Protein complement I. (A-C) 
Schematic illustration of the experimental design. If Rabies-∆G-GFP viruses are 
injected into the cerebellum, they travel retrogradely to the pontine nuclei (PN), but 
are not able to cross synapses to infect cortical neurons (A). By supplementing 
pontine neurons by in utero electroporation with the missing G-Protein 
(glycoprotein), the virus is able to jump to the cortico-pontine fibers and infect 
cortical cells (B). Embryos are electroporated at E14.5, injected with Rabies-∆G-GFP 
at P2 and perfused and analyzed at P7 (C). (D-F) To analyze the topography of the 
cortico-ponto-cerebellar projection, the position of the cells on coronal sections (D) 
can be transformed into a 2-dimensional space (E) and registered for all sections to 
generate a 2-dimensional map of cortical cells projecting to the PN (F). 

 

3.2.3 Combination of in utero electroporation and rabies virus tracing to 

assess cortico-ponto-cerebellar connectivity 

As shown in Di Meglio et al. (2013) tracing using Rabies-∆G-GFP/mcherry from 

cortex (anterograde tracing from Layer 5 neurons) or cerebellum (retrograde tracing 

from mossy fiber synapses) can be used efficiently to analyze cortico-ponto-cerebellar 

connectivity.  
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To achieve a further understanding of the circuitry between cortex and cerebellum, an 

approach was designed that allows transsynaptic labeling of cortical cells from the 

cerebellum. Hereby Glycoprotein-deleted rabies viruses carrying GFP (Rabies-∆G-

GFP) were injected into the cerebellar hemisphere at P7. From there the virus 

transports retrogradely to the pontine mossy fiber neurons. Due to the knockout of the 

Rabies-Glycoprotein (Rabies-G), the virus is, unlike wildtype rabies viruses, not able 

to retrogradely jump to presynaptic cells. To allow the restricted retrograde jump, the 

rabies-glycoprotein is provided to pontine neurons by in utero electroporation of a 

rabies-glycoprotein construct at E14.5. In cells that are positive for Rabies-∆G-GFP 

and rabies-glycoprotein, the virus is now able to jump on synapse to infect the cortical 

layer 5 neurons innervating the pontine nuclei (summarized in Figure 44, A-C). 

 
Figure 44 | Concept of the retrograde transsynaptic tracing from cerebellum to 
cortex via in utero electroporation delivery of G-Protein complement II. (A-B) 
Coronal sections at the PN level show the overlap of cells electroporated with pCAG-
mcherry (and pCAG-RabiesG) and cells retrogradely labeled from cerebellum 
(green). Electroporated cells are mainly ipsilateral, retrogradely traced cells mainly 
contralateral. (C-F) Cells in the cortex are mainly located in layer 5 of the ipsilateral 
cortex, contralateral cells can be explained by cells which have been traced 
ipsilaterally and electroporated contralaterally. (G-I) There are different ways to 
visualize the aquired data. Coronal sections can be reconstructed (G) or transformed 
into a two-dimensional density map (H-I) 
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Figure 45 | Retrograde tracing of cortico-ponto-cerebellar connectivity. (A-C) 
Localization of cells traced back from cerebellum to pontine nuclei (PN) to Cortex 
(Ctx) using a combination of Rabies-∆G-GFP injection and in utero electroporation of 
RabiesG (Glycoprotein) on lateral (B), mediolateral (A) and medial sections (C) 

Indeed it was possible to obtain cases that were both electroporated with pCAG-

Rabies-G/ pCAG-mcherry and transfected with Rabies-∆G-GFP (Figure 44, G-H). In 

these cases the cortical layer 5 was strongly labeled unilaterally, ipsilateral to the 

electroporated pontine nuclei and contralateral to the injections site in the cerebellum 

(Figure 44, C-F; Figure 45, A-C).  On the contralateral side, solely a small numbers 

of cells was labeled, which can be explained by midline-crossing electroporated cells, 

that projected to the ipsilateral hemisphere. 

By the reconstructing of coronal sections of the cortex it is possible to analyze and 

map cortical neurons innervating pontine nuclei and cerebellum (Figure 44, D-F). In 

this way the labeled cells can be either presented as a whole-cortex-3D-reconstruction 
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(Figure 44, G) or in a 2-dimensional heatmap by transforming the 3-dimensional 

cortex into a 2-dimensional map of layer 5 (Figure 44, H-I). 

By doing so, it is possible to understand which parts of the cortex are in direct 

communication with the cerebellum using the pontine nuclei as a relay station.   

 

 

Figure 46 | Retrograde tracing of cortico-ponto-cerebellar connectivity in 
wildtypes. (A-F) To analyze the cortico-ponto-cerebellar connectivity wildtype 
embryos were electroporated with Rabies G at E14.5. Coronal sections are taken from 
anterior (A) to posterior (F). M2: Secondary Motor Cortex; FrA: frontal association 
cortex; C: Cingulate cortex; M1: Primary motor cortex; S1: Primary Sensory Cortex; 
I: Insular cortex; S2: Secondary densory cortex; V1: Primary visual cortex; V2: 
Secondary visual cortex; RS: Retrospenial cortex; Ect: Ectorhinal cortex; Prh: 
Perirhinal cortex 

The pontine nuclei receive input from a variety of cortical regions. The highest 

density of labeled layer 5 cells can be found in the anterior cortex, which includes 

prefrontal areas as well as the primary and secondary motor cortex (Figure 44, G, I; 
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Figure 45, A-B; Figure 46; A-C). Furthermore, cells in the somatosensory areas, 

especially the barrel cortex, visual cortex as well as retrosplenial and perirhinal cortex 

can be found (Figure 46; B-F). 

 

Figure 47 | Retrograde tracing of cortico-ponto-cerebellar connectivity subsets 
using ChAT::Cre. (A-F) To analyze the cortico-ponto-cerebellar connectivity of 
different pontine nuclei subsets ChAT::Cre embryos were electroporated with a loxed 
RabiesG construct (D-F, J-L). Coronal sections are taken from anterior (A) to 
posterior (F). In ChAT::Cre mice less cortical cells are labeled, obvious reduction of 
the number of cells can be seen in M2, V1 and RS (retrosplenial cortex) while the 
number of cells is less reduced in M1, some parts of S1 and V2. 

The chosen approach gives further possibilities to select subpopulations of PN cells 

by a) more specific injections into specific cerebellar regions, b) to modify the 

amount and identity of electroporated cells by changing the time of electroporation 

(early electroporation labels more internal, late electroporation more external pontine 

nuclei layers) or by c) combining the approach with a subpopulation labeling Cre line. 

To restrict the expression of Rabies-Glycoprotein a FLEX-construct was generated 

and electroporated into ChAT::Cre animals. Hereby RabiesG was solely expressed in 



3.!Results!! 233!

!

ChAT::Cre positive cells, where Cre mediated recombination can occur.  The result 

was a strongly reduced number of GFP labeled cortical neurons (Figure 47, A-F). 

This reduction was especially obvious in some motor areas, somatosensory areas, 

frontal association, cingulate, insular, ectorhinal and retrosplenial cortex, while higher 

numbers of cells can be found in primary motor cortex, secondary visual cortex and 

somatosensory barrel cortex. 
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4 Discussion 

Ezh2 orchestrates epigenetic regulation of topographic tangential migration  

Polycomb proteins regulate many target genes that control cell fate decisions (Simon 

and Kingston, 2009). The results of Di Meglio et al. (2013) extend the involvement of 

Ezh2 beyond neuronal fate and subtype identity specification (Pereira et al., 2010) to a 

novel role in orchestrating epigenetic regulation of topographic neuronal guidance in 

the mammalian brain.  

In the radial migratory mode, migrating neurons maintain physical interaction with 

their glial progenitors throughout migration and their final rostrocaudal location 

directly correlates to their position of origin (Rakic, 1988). In contrast, the final 

destination of tangentially migrating neurons is apparently unrelated to starting 

position (Hatten, 1999). Molecular regional programs and relative original position of 

progenitors along the AP axis are faithfully ‘transposed’ into the final nucleus, due to 

a remarkable topographic organization of the migratory AES. Whether this intrinsic 

molecular and cellular topography is a general feature of tangentially migrating 

populations in other regions of the brain, or is specific to precerebellar neurons, 

remains to be determined. The importance of transcription factors to segregate distinct 

populations of migrating forebrain interneurons begins to emerge (e.g. Nkx2.1 on-off 

expression in MGE-derived striatal versus cortical interneurons, respectively 

(Nóbrega-Pereira et al., 2008)). However, this is the first time that the fine intrinsic 

organization of a single migratory population (the AES) is revealed, along with the 

demonstration that its regional transcriptional information is epigenetically 

maintained. 

This system is highly buffered in wild type, as ventral AES neurons maintain their 

normal migratory pathway despite their low Unc5c/5b activity. This is partly due to 

additional Slit-mediated repulsive activity from the facial motor nucleus maintaining 

the AES normal migration pathway (Di Meglio et al., 2008; Geisen et al., 2008). 

However, when the system is challenged by increased environmental Ntn1 attraction 

or reduced Unc5c/5b repulsion in the AES, this predictably results in stereotypic 

migratory responses of selected, molecularly defined, subsets of PN neurons. Graded 
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Unc5c/5b-mediated Ntn1 response within the AES may normally maintain the 

relative topographic position of PN subsets and/or organize PN topographic 

projections to cerebellum (Kim and Ackerman, 2011).  

PN neurons settle in ‘inside-out’ concentric laminae depending on their birthdate 

(Altman and Bayer, 1987b). This concentric temporal gradient of neuronal 

organization in the PN may correlate with patterned axonal input related to temporal 

maturational gradients of layer 5 cortical neurons (Leergaard and Bjaalie, 2007). 

Cortical areas are broadly pre-patterned along the rostrocaudal axis by the graded 

activity of homeobox transcription factors (O'Leary et al., 2007). It is noteworthy that 

rostrocaudal pre-patterning and regionalization is also observed in the developing PN, 

thus intersecting a spatial dimension to the temporal gradient model. The pontine 

nuclei are a fundamental relay station for the transformation of orderly motor and 

sensory maps in the cerebral cortex into ‘patchy’ representations of input in the 

granular layer of the cerebellar cortex. Still, little is known about the molecular and 

cellular mechanisms assembling these complex input-output wiring patterns in PN. 

Our results strongly suggest that intrinsic pre-mapping of PN from lRL progenitors of 

distinct rostrocaudal origin may also contribute to organize broad topographic input 

from distinct cortical areas. 

Topography of the corticopontine projection 

The projections from pontine to cerebellum have been intensively studied in rats 

(Azizi et al., 1981; Mihailoff et al., 1981) and monkeys (Brodal, 1982) by performing 

retrograde tracing. Experiments that have been carried out in rats (that are probably 

the most comparable to mice) already suggested 30 years ago, that cells of PN and 

RTN project to multiple locations in both cerebellar vermis and hemispheres (Azizi et 

al., 1981; Mihailoff et al., 1981). The results give evidence for a high degree of 

divergence and convergence of single pontine neurons or clusters of pontine cells. 

Divergence is suggested by the fact that neurons located in similar regions of PN and 

RTN are labeled by different injection sites, convergence is put forward by the fact 

that restricted injections result in the labeling of spatially separate pontine neuron 

populations. The presence of single neurons that project to different lobes could be 

confirmed later on (Bolstad et al., 2007).  
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Therefore the complexity of the cerebrocerebellar connectivity seems to arise from 

properties of the pontine nuclei that do not only relay information from the cortex, but 

to redistribute permutations of information from cortical sensory and motor input in a 

con- and divergent manner to different areas of the cerebellum. 

As stated before a clear topography has been demonstrated for the cortico-pontine 

projection (Leergaard and Bjaalie, 2007; Leergaard et al., 1995; Leergaard et al., 

2000; Leergaard et al., 2004) and mechanisms have been put forward that could 

explain the establishment of this topography by birthdate (Leergaard and Bjaalie, 

2007; Leergaard et al., 1995) and rostro-caudal axis (Di Meglio et al., 2013) (3.1.1). 

This is less clear for the ponto-cerebellar connectivity. Tracing data by (Azizi et al., 

1981; Broch-Smith and Brodal, 1990; Mihailoff et al., 1981) do not suggest, that 

either a temporal (that is transformed into a concentric inside-out axis in the PN) or 

other spatial axes might be strong determinants for the establishment of a potentially 

topographic ponto-cerebellar connectivity (summarized in Table 8). Cells labeled by 

retrograde tracings of specific lobes do not cluster unambiguously on inside-out, 

medio-lateral or rostro-caudal axes in the PN (Azizi et al., 1981; Broch-Smith and 

Brodal, 1990; Mihailoff et al., 1981).  

Lobule 
Innervated by Model Organism 

(References) RTN rostPN medPN centPN latPN caudPN 
VIa +++ + + + - + Rat (Azizi et al., 1981) 
VIb-c +++ +++ ++ + + + Rat (Azizi et al., 1981) 
VII +++ +++ +++ + +++ + Rat (Azizi et al., 1981) 
VIII - - + + ++ +++ Rat (Azizi et al., 1981) 
IX + ++ +++ +++ ++ +++ Rat (Azizi et al., 1981) 
LS ++ + + ++ - + Rat (Mihailoff et al., 1981) 
CrusI +++ +++ ++ ++ ++ - Rat (Mihailoff et al., 1981) 
CrusII ++ ++ ++ +++ - ++ Rat (Mihailoff et al., 1981) 
PML +++ +++ +++ +++ +++ +++ Rat (Mihailoff et al., 1981) 

PFL ? +++ +++ + + + 
Cat (Broch-Smith and 
Brodal, 1990; Nikundiwe et 
al., 1994b) 

Table 8 | Summary of HRP studies on the pontocerebellar system. Summary of 
the results presented in (Azizi et al., 1981; Broch-Smith and Brodal, 1990; Mihailoff 
et al., 1981; Nikundiwe et al., 1994b). 
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In utero electroporations give indirectly further evidence for this hypothesis. By in 

utero electroporations at E14.5 only PN neurons that have not yet migrated out can be 

labeled, therefore tracing a “temporal subset” that reproducibly localizes in the outer 

layer of the PN (Figure 38), with a slight tendency to be more restricted to outer 

layers in the caudal part than in the rostral part. Still this subset of pontine neurons 

that almost completely excludes the RTN strongly labels all cerebellar areas reported 

to be innervated by the PN (Azizi et al., 1981; Mihailoff et al., 1981; Nikundiwe et 

al., 1994b) including lobes VI-IX, lobus simplex, CrusI and to lesser extent CrusII, 

paramedian lobe and paraflocculus. Thereby, it is unlikely that there the temporal 

neurogenesis gradient of PN neurons has a dominant role for the connectivity to the 

cerebellum, although it has been suggested as a potential mechanism (Nikundiwe et 

al., 1994b). Experiments in which in utero electroporations is performed at earlier 

stages (E13.5, E12.5) could further support this hypothesis. 

An indeed surprising result, given the degree of divergence and convergence of the 

ponto-cerebellar projection, were the relatively defined target zones of Chat::Cre; 

R26Rtdtomato and MafB::CreERT2; R26Rtdtomato positive mossy fibers strongly targeting 

paraflocculus and paramedian lobe and in ChAT::Cre additionally flocculus and lobes 

VII and IX of the vermis (Figure 35, Figure 37). Still the projection patterns of 

ChAT::Cre; R26Rtdtomato and MafB::CreERT2; R26Rtdtomato specimen are in accordance 

to retrograde tracing experiments performed in cats (Broch-Smith and Brodal, 1990; 

Nikundiwe et al., 1994b) in which more  than 70% of the neurons labeled after 

injections in the paraflocculus are located in the rostral half of the pontine nuclei 

(Nikundiwe et al., 1994b); furthermore they show as well a medial population of cells 

closely located to the midline (Broch-Smith and Brodal, 1990), similar to the one 

observed in ChAT::Cre; R26Rtdtomato mice (Figure 34).  

It has been already suggested by Broch-Smith and Brodal (1990) and Nikundiwe et al. 

(1994b) that the paraflocculus projecting areas of the pontine nuclei are also those that 

mainly get input from visual cortical areas, parietal association cortex and to a lesser 

extent from primary and secondary sensory and primary motor cortex but on the other 

hand almost no input from secondary motor areas and prefrontal cortex. This 

assumption can be confirmed by the retrograde conditional transsynaptic Rabies-∆G-
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GFP tracing (Figure 47) in the ChAT::Cre background. Here the number of cells 

labeled in the rostral cortex was strongly decreased compared to controls (Figure 46), 

while cells can still be found in primary sensory and visual cortex. It appears that the 

ChAT::Cre positive pontine nuclei subset constitutes a part of the circuitry, which has 

a strongly convergent character, conveying information from different sensory areas 

including visual and somatosensory areas mainly to the cerebellar paraflocculus. 

It would be extremely revealing to perform these experiments also in MafB::CreERT2 

specimen, but due to the fact that the expression is solely present at early stages, it 

cannot be used for this approach. Although the ChAT::Cre population in contrast to 

the MafB::CreERT2 subpopulation does not necessarily constitute a subset derived 

from a specific progenitor zone, the ChAT::Cre line is a very valuable tool to analyze 

a specific subset of the cortico-ponto-cerebellar circuitry. Furthermore, the transgenic 

lines seem to share a common expression in the dorso-lateral pontine nuclei (DLPN) 

as they share a common target area in the paraflocculus (Figure 34, Figure 35, 

Figure 36, Figure 37). Hence, in contrast to most other parts of the pontine nuclei the 

ChAT::Cre and MafB::CreERT2 positive subpopulations seem to  constitute a 

neuronal module, that has a relatively restricted projection pattern with a relatively 

high degree of convergence. 

 

Role of the pontine nuclei for processing visual information. 

One part of the pontine nuclei that has been particularly well analyzed is the dorso-

lateral pontine nucleus (DLPN). It receives major inputs from the visual cortex 

(Glickstein et al., 1980; Glickstein et al., 1994) and auditory cortex (Perales et al., 

2006) and partially encompasses the subpopulations labeled by ChAT::Cre and 

MafB::CreERT2. The DLPN has been involved in optokinetic nystagmus including 

smooth-pursuit eye movements, ocular following, visually guided motor learning 

(Tziridis et al., 2011; Tziridis et al., 2009) and visually guided eye movements (May 

et al., 1988; Ono et al., 2003; Thier and Möck, 2006; Thier et al., 1988; Thier et al., 

1989). Together with the RTN (receiving input from non-cortical visual areas) the 

DLPN constitutes the major relay for visual and visuomotor input into the cerebellum 

(Glickstein et al., 1994; Thielert and Thier, 1993).  
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The retrograde tracing of the cerebellum innervating ChAT::Cre pontine nuclei cells 

to the cortex revealed not only cells in the visual cortex, but also in the somatosensory 

barrel cortex (Figure 47), an innervation that has been demonstrated previously by 

anterograde tracing from the cortex (Broch-Smith and Brodal, 1990). 

Although it might be at the first sight not intuitive that an area that is functionally 

involved in smooth-pursuit eye movements (and thereby stabilizing the image of 

moving objects) and visually guided movements gets further input from 

somatosensory areas, spatial information can be extracted as well from sensory 

systems including receptors in the skin, but especially in case of cats and rodents from 

the whiskers, relayed by the S1 barrel cortex. Further support for this more general 

role of the DLPN in sensory guidance comes also from the monkey model, where a 

role in goal-directed hand-movements was proposed (Tziridis et al., 2009; Tziridis et 

al., 2011) and from echolocating bats in which the DLPN gets a substantial input from 

the auditory system, relaying it from there to the cerebellar paraflocculus (Schuller et 

al., 1991). Both suggest a species-specific integrative role of the DLPN.  

 

Evolution of the precerebellar system and cortico-ponto-cerebellar connectivity 

Pontine nuclei have been analyzed in many mammals from rats (Mihailoff et al., 

1978) to opossums (Mihailoff and King, 1975), cats (Hoddevik, 1975) and macaques 

(Glickstein et al., 1980). In other amniotes as reptiles and birds the pontine nuclei 

have been poorly described and are considered as being specific mammalian 

structures. Two population of pontine nuclei have been described in chicken, referred 

to as medial pontine nucleus and lateral pontine nucleus (Brodal et al., 1950; Marín 

and Puelles, 1995). This two populations are located medially and laterally to the 

midline at the level of rhombomere 3 / rhombomere 4 and originate at the posterior 

rhombic lip (Marín and Puelles, 1995). Birds neither have a cortico-spinal tract 

(Aboitiz et al., 2003) nor pronounced cerebellar hemispheres, their cerebella consist 

almost entirely of vermis (Butler and Hodos, 2005; Striedter, 2005; Sultan and 

Glickstein, 2007), thereby PN neurons lack the main input (cortex) as well as their 

main output areas (cerebellar hemispheres). Still they share some striking similarities 
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with two nuclei which exist also in mammals, which is the reticulotegmental nucleus 

(RTN) and the recently described interfascicular trigeminal nucleus (Fu et al., 2013), 

a nucleus that we also can observe in in utero electroporations and in transgenic lines 

(data not shown). Both nuclei are not innervated by the cortex and have both strong 

projections to the vermis in rodents (Azizi et al., 1981; Fu et al., 2013; Mihailoff et 

al., 1981). The mammalian RTN is mainly involved in visually guided eye 

movements and smooth-pursuit eye movements and innervated almost exclusively 

from subcortical afferents as e.g. from tectum and thalamus by which it receives 

visual and oculomotor information (Thielert and Thier, 1993). Considering the 

importance of the visual and oculomotor system in birds in contrast to somatosensory 

and tactile information it is likely that a ponto-cerebellar system focused on visual and 

vestibular information preexisted. Mammals as rodents and monkeys extensively use 

the somatosensory sense to experience their environment, especially by the use of 

whiskers (especially in rodents and cats), lips and paws/hands (e.g. in monkeys).  

Hence, it can be postulated that the coevolution of cortex, pontine nuclei and 

cerebellar hemispheres, the three parts of the cortico-ponto-cerebellar circuit, played a 

pivotal role for the evolution of complex motor behaviors (including the 

corresponding sensory feedback), since all three areas dramatically increased in size 

throughout evolution. In humans, almost a third of the hindbrain is taken by the 

pontine nuclei, and both cortex and cerebellar hemispheres increased dramatically in 

volume (the hemispheres are therefore also referred to as cerebro- or neo-cerebellum). 

A further interesting observation on the evolution of the cortex is, that the cortical 

topography that is well described in rodents, monkeys and humans (Rakic, 1988; 

Rakic, 2009) is not as strictly segregated in monotremes and marsupials, the sister 

groups of mammals (Karlen and Krubitzer, 2007; Lende, 1963; Lende, 1964) and 

absent in non-mammalian vertebrates (Aboitiz et al., 2003). Marsupials as the 

opossum and wallaby (Lende, 1963) and monotremes (Lende, 1964) have a strong to 

almost complete overlap of somatosensory and motor areas in the cortex (Aboitiz et 

al., 2003). 

It is suggested that the spatial segregation of distinct somatic motor and sensory 

representations developed throughout evolution and comes along with the increasing 
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occupation of cortical areas with the interpretation of sensory information and the 

control of motor behavior (Aboitiz et al., 2003; Rakic, 1988; Rakic, 2009). 

Interestingly this spatial segregation is less obvious in the cerebellum (Apps and 

Hawkes, 2009); due to the functional role of the cerebellum as a major integrator of 

motor and sensory information. Therefore the pontine nuclei arose during early 

mammalian evolution, at a time when the neocortex evolved from the dorsal pallium 

and the neocerebellum (the hemispheres) evolved in the cerebellum (Butler and 

Hodos, 2005; Striedter, 2005). Cortex and Cerebellum have a strikingly correlated 

volumetric evolution (Barton, 2002; Barton and Harvey, 2000) further suggesting a 

causal relationship between the evolution of these two areas. It is also likely, that the 

main structure connecting these two areas has an important function during the 

evolution of these two systems. From an “evo-devo” perspective, it could be even 

postulated that the highly convergent and divergent circuitry between cortex and 

cerebellum might even reflect the cortical characteristics of evolutionary early 

mammals in which somatosensory and motor areas might have been grossly 

overlapping, as it still is in the pontine nuclei of living mammal species.  

Hence, it is possible that the evolution of a stronger connectivity to the cerebellum 

“outsourced” integrative computations that were performed in the cortex of early 

mammals to the cerebellum, that due to its structural characteristics is a very powerful 

part of the brain to compute complex integrations of sensory and motor information 

(Apps and Garwicz, 2005; Apps and Hawkes, 2009; Ramnani, 2006). This could, 

from an evolutionary standpoint, explain the gradual decrease of sensory topography, 

coming along with an increase of divergence and convergence, from the 

somatotopically continuous sensory maps in the cortex over pontine nuclei to the a 

fractured somatotopy in the cerebellum. A further evidence for this could be the 

increase in the precision of the cortico-pontine projection from lower mammals as 

rodents to monkeys with regard to the somatotopic pattern (Brodal, 1982) that can be 

interpreted as further specializations of the system. 
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Outlook 

The results of this thesis as well as the established techniques give a conceptual and 

technical framework to analyze the development, evolution, function and biology of 

the pontine nuclei and its integration into the cortico-ponto-cerebellar circuitry. 

Using the two genetically defined subsets (ChAT::Cre and MafB::CreERT2) and by 

the generation of a further transgenic labeling a posterior subset of pontine neurons 

(Hoxa5::CreERT2) it will be possible to extend the knowledge about the molecular 

mechanisms controlling the circuitry of specific pontine nuclei modules and their role 

in cortico-ponto-cerebellar connectivity. Furthermore, in utero electroporation gives 

the possibility to analyze the role of genetic determinants as transcription factors or 

their downstream targets as e.g. guidance factors for the development of the system. 

Using the 2A system mossy fibers, overexpressing a gene of interest and reporter, can 

be analyzed at resolutions reaching from gross connectivity to synapse structure. 

More precise genetic tools using intersectional Cre recombinase / Flip recombinase 

techniques (see 3.1.5) could even give the possibility to analyze the role of the 

ChAT::Cre or MafB::CreERT2 subset in behavior, allowing to look for behavioral 

correlates and the underlying structural plasticity in the mossy fiber circuitry.  

As stated before, also the evolutionary aspects of the pontine nuclei are very 

interesting. Comparative analysis in mammals (and eventually birds and reptiles) 

could give new insights into evolutionary principles and the evolution of the cross-

talk between higher-order brain areas as pallium and tectum and the cerebellum. 
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