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“The game of science is, in principle, with-
out end. He who decides one day that sci-
entific statements do not call for any further
test, and that they can be regarded as finally
verified, retires from the game.”

Karl Popper



Abstract

This thesis reports on the on-surface magnetochemistry of square-planar transition-metal com-

plexes adsorbed on ferromagnetic substrates. Specifically, the magnetochemistry of the transition-

metal ions (Mn / Fe / Co / Ni) coordinated in square-planar porphyrin / phthalocyanine ligands

arranged on native and oxygen-reconstructed ferromagnetic Ni(001) / Co(001) thin-films is

studied. The metal-centers in the surface-adsorbed complexes are five-fold coordinated: four

coordination-bonds with the square-planar ligand and one bond with the “surface-ligand“. This

arrangement leaves the sixth site on-top of the complex open for an additional ligand to bind

with the transition-metal center and give the possibility to control the magnetic properties of the

on-surface complex. Specifically, nitric oxide (NO) or ammonia (NH3) gas is used to serve as

the sixth ligand. The experiments were performed in ultra-high vacuum and the samples were

studied by X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD),

X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM).

This work is based on the induced magnetic ordering in a monolayer of transition-metal por-

phyrins adsorbed on ferromagnetic substrates. The effect allows to study the magnetochemistry

at ambient / near-ambient temperature in the remanent magnetization of the substrate. The

experimental results are complemented by density functional theory with additional Hubbard

interactions taken into account (DFT+U) conducted by Kartick Tarafder and Peter Oppeneer

from Uppsala (Sweden).

Within the scope of this thesis, mechanisms for switching off, tuning and switching on the

magnetic moments in the adsorbed complexes are demonstrated and explained. Furthermore,

we show that apart from controlling the magnetic moment, the axial-ligand can also be used to

control the exchange-interaction with the ferromagnetic substrate. Specifically, we observe that

the strength and sign of the exchange-interaction can be controlled. These results clearly illustrate

that the coordination-chemistry and magnetochemistry on-surface extends the framework of

v
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classical coordination-chemistry, since the interaction with the ”surface-ligand” has to be included

into the considerations.

Furthermore, we show that highly-ordered two-dimensional arrays of molecular spin-systems

can be fabricated by chemically directed self-assembly. Specifically, we produce chessboard-like

Fe – Mn – Fe spin-arrays by mere co-evaporation of the functionalized molecular building-

blocks. In a second step, the magnetic properties of this spin-array can be controlled by ammonia

exposure and one half of the chessboard-like spin-array can be selectively and reversibly switched.

Also, the on-surface charge-transfer between the strong electron-acceptor TCNQ and alkali-

halides (e.g. Na+Cl−) is discussed. The experiments show that the 2D metal-organic layers can

be produced by the on-surface reaction of alkali-halides (instead of alkali-metals) and sufficiently

strong electron acceptors.
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CHAPTER 1

Introduction

1.1 Motivation

We live in the so-called “information age“.[1, 2] Today’s societies rely more than ever before on

the availability of information, e.g. written text, spoken words, displayed images. It was Shannon

and Weaver who developed a theory of information in 1949 [3] which uses the concept of entropy

as a measure of information content. This description was the basis for the development of

information technology in its modern sense. Today’s information technologies are based on

top-down fabrication of inorganic solid-state devices and rely on the electron-charge to store /

retrieve, transmit and manipulate information.1

Nowadays, new technologies emerge, which do not rely on some of the above mentioned

aspects. For example organic-electronics [4] which relies on carbon-based materials and spin-

tronics [5] which uses the electron-spin as a tool to store / receive, transmit and manipulate

information. More and more often bottom-up [6] fabrication, employing the self-assembly of

building-blocks, is used to engineer structures / devices. Some terms like molecular spintronics

[7] refer to a combination of novel technologies.

Storing / retrieving, transmitting and manipulating of information is not only important for

computers. Information is also a central part in biological systems. Vast amounts of information

are encoded in the sequence of linear macromolecules (deoxyribonucleic acids). This information

encodes the sequence of polypeptides (proteins) which form real molecular nanomachines via

intra-molecular and inter-molecular self-assembly. The actual ”logic“ in biology is mainly

based on inter-molecular and inter-cellular chemical interactions / messaging.[8, 9] Biological

1Not exclusively: information is stored in the collective arrangement of electron-spins and transmitted via photons.

1



2 Chapter 1. Introduction

systems give examples for the great potential of molecular nanotechnology. A beautiful, recent

demonstration how biology can be mimicked is given in ref. [10].

Metal-organic complexes, in particular natural porphyrins and their close derivatives, which

are of interest in this thesis, are important in many vital processes: photosynthesis, O2 / CO2-

transport, catalysis and redox-chemistry.[8, 9, 11] The O2-transport via hemoglobin is a good

example of the possible complexity in magnetochemical reaction. Hemoglobin consists of four

natural Fe-porphyrins (heme b’s) embedded in the globulin proteins. The 4-fold coordinated

Fe in free heme b has two axial open-sides where it can by ligated. In hemoglobin, one of

the two axial sides on the Fe is occupied by a histidine-ligand from the protein.[8, 9] The

remaining open-side is free to be coordinated by O2. Note that the magnetochemistry of heme b

in hemoglobin is a complex process2 and is distinct from the magnetochemistry of free heme b:

for example, free Fe(II)-porphyrin is in its intermediate-spin (S = 1) state, but the interaction

with the histidine-ligand of the protein results a high-spin (S = 2) state.[13]

This thesis is concerned with the on-surface magnetochemistry of synthetic porphyrins and

phthalocyanines.[11] The ferromagnetic substrate blocks one of the two remaining axial sites

of the transition-metal ions in the square-planar porphyrin / phthalocyanine ligands. Since the

experiments are conducted in ultra-high vacuum (UHV), the availability of chemical agents

binding to the on-top open-site of the on-surface transition-metal complex can be precisely

controlled. The induced magnetic moment [14] in the on-surface transition-metal complexes

allows the use of X-ray magnetic circular dichroism (XMCD) method to study its magnetic

moment at ambient / near ambient temperatures on the remanently magnetized ferromagnetic

substrate. We studied the influence of the on-surface coordination caused by gaseous ligands

(nitric oxide and ammonia) onto the induced magnetic moment and its exchange-interaction

with the ferromagnetic substrate (cf. figure 1.1). We have chosen the two gaseous ligands

because of their complementary electronic structures and chemical properties. NO is a strong-

field ligand (i.e. it results in a stronger splitting of the d orbitals), it is spin-bearing (S = 1/2)

with its unpaired electron in the π∗ orbital and it exhibits non-innocence (i.e. the ligand can

change its oxidation-state).[15, 16] NH3 is an innocent ligand with intermediate strength, it is not

spin-bearing (S=0) and its chemistry is shaped by its lone-pair (non-bonding pair of electrons).

The symmetry of ammonia’s lone-pair (σ type) and of NO’s π∗ orbital defines the possible

orbital-overlap in case of axial ligation to a square-planar metal complex: NO can form a σ and /

or a π bond with the dz2 (σ symmetry) and / or dxz and dyz (π symmetry) orbitals of the metal

center (depending its d-occupation), while the symmetry of NH3 only allows for orbital-overlap

with the dz2 orbital.[15, 17] For the symmetries of the d-orbitals, c.f. figure 1.2.

We were able to demonstrate that: i) coordination-chemistry can be used to control the

magnetic moment of the adsorbed complexes (quenching, tuning and inducing a magnetic

moment), ii) the magnetic response of the on-surface central metal ion towards an axial ligand

2The Fe(II) ion is found to change its oxidation-state and its spin-state,[12] but this finding has been debated for a
long time.
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Figure 1.1: A sketch of the research-design used for the magnetochemistry studies in this thesis.
Transition-metal ions (Mn / Fe / Co / Ni) embedded in four-dented porphyrin / phthalocyanine-
ligands are studied on ferromagnetic Co / Ni thin films grown on Cu(001). The ferromagnetic
thin-films can be modified by an (optional) oxygen-reconstruction. Depending on the sub-
strate, a ferromagnetically / antiferromagnetically aligned magnetic moment is expected to
appear in the transition metal complexes.[14, 18–22] The induced magnetic moment in the
ad-complexes and its specific response towards axial ligation with a chemical stimulus (nitric
oxide / ammonia) is studied by X-ray absorption spectroscopy (XAS) / X-ray magnetic circu-
lar dichroism (XMCD). The data from these element-specific techniques are complemented
by scanning tunneling microscopy (STM) experiments and density functional theory + U
(DFT+U) calculations.

differs decisively from the well studied response in bulk / solution and iii) competitive chemical

bonding (i.e. the trans effect [23]) can be used to control the exchange-interaction with the

ferromagnetic surface.

1.2 Methods and Concepts

This section provides a brief introduction into the key methods and concepts, which are essential

in the investigation of magnetochemical properties of organic monolayers. For an in depth

description of the methods the reader is advised to refer to the cited textbooks / review articles.

Note that XPS / UPS / XAS / XMCD / LEED give spatially averaged information, XPS / XAS /

XMCD provide element specific information which is complementary to STM which is a local

probe.

Photoelectron spectroscopy, also known as photoemission spectroscopy, is based on electron

emission from a substance caused by photon excitation (the photoelectric effect [24, 25]). In an
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experiment the kinetic energy of the excited photoelectrons is measured and recalculated into

their binding energy.[26, 27] The energy levels of electrons in matter discussed in two domains:

i) levels with high binding energies - they are highly localized and are of atomic character

(core-levels) and ii) levels / bands / molecular orbitals close to the Fermi-level (valence band).

The core-level spectra (i) are conventionally obtained by excitation with X-rays, whereas valence

band (ii) is approached by UV-light. Due to the very low inelastic mean free path of low-energy

photoelectrons, photoelectron spectroscopy is a highly surface sensitive technique.[27]

X-ray photoelectron spectroscopy (XPS) refers to photoelectron spectroscopy based on

excitation with X-rays. Since the core-levels can be assigned to certain elements, the method

allows to determine the elemental composition of the samples. Furthermore, the binding energy

EB of a core-level varies depending on the chemical environment of the atom. This chemical

shifts ∆EB is roughly proportional to the charge on the atom (cf. Figure 3.3 in ref. [27]).

The complementary information about composition and chemical identity makes XPS valuable

tool for the quality control of the many component systems shown in this thesis. During the

photoemission process, the core-hole can interact with the spin in valence levels. This interaction

results in multiplet splitting, i.e. an increased line-width of a core-level.[28] This effect can

be used to conclude on the presence / absence of unpaired electrons, e.g. in a paramagnetic

compound like Co(II)-porphyrin (cf. section 2.1 and refs. [29–31]).

UV photoelectron spectroscopy (UPS) is based on electron excitation with UV-light and

gives access to the occupied states in the valence region, where chemical bonding occurs.

Furthermore, From the UP spectrum the sample work function which gives insight into e.g.

charge-transfer between the ad-molecule and the substrate (cf. section 2.5) can be extracted. A

review on UPS is given in ref. [32].

X-ray absorption spectroscopy (XAS) is based on a similar physical effect as photoemission

spectroscopy, i.e. excitation of electrons by photons. In the XAS experiment the absorption

is measured as a function of the photon energy, [33, 34], that is why the method requires a

tunable source of X-rays (e.g. a synchrotron). The most intense features in a XA spectrum are

dipole-allowed (∆l = ±1) transitions into unoccupied states, e.g. 2p→ 3d or 1s→ 2p. XAS is

element-specific and can be measured in transmission, fluorescence and in partial / total electron

yield mode. The total electron yield measurement is performed by measuring the sample current.

The very low inelastic mean free path of the low-energy electrons in matter makes XAS in total

electron yield mode highly surface sensitive. All data presented in this thesis were acquired in

this mode.

XAS is very sensitive to the chemical environment of the excited atom and has a fine-structure

which arises from the excitations into unoccupied orbitals. A great advantage of XAS is that

various polarization effects can be observed when using linearly and circularly polarized X-rays :

i) X-ray natural linear dichroism (XNLD),[35] ii) X-ray magnetic linear dichroism (XMLD),[36]

iii) X-ray natural circular dichroism (XNCD),[37] iv) X-ray magnetic circular dichroism (XMCD)
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[38] and more.[39] These effects allow the use of XAS to study the orientation of molecular

orbitals (i), chirality (iii) and magnetism (ii and iv). In this thesis we use XMCD at the L3;2

edges (2p→ 3d transitions) to investigate the induced magnetic moments in the transition-metal

complexes.

X-ray magnetic circular dichroism (XMCD) is the difference between two X-ray absorption

spectra obtained with circularly polarized X-rays of opposite polarization. In case of XAS at

the L3 (2p3/2 → 3d) and L2 (2p1/2 → 3d) edge, the simple picture of the XMCD effect is as

follows: a photon transfers its angular momentum to a core electron (in 2p3/2 or 2p1/2) which is

excited to an unoccupied state in the 3d shell. If the states are spin-polarized due to the presence

of a magnetic moment, the unequal occupation of 3d spin↑ and 3d spin↓ results in differential

absorption for circular+ and circular- polarized X-rays. Due to the spin-orbit interaction a spin

magnetic moment will result in an opposite XMCD signals at the L3 and L2 edges.[39]

Low energy electron diffraction (LEED) is a highly surface sensitive, spatially averaging

method which allows to measure the diffraction pattern of a surface.[40, 41] It allows the

determination of the reciprocal unit-cells of single-crystalline substrates and of molecular ad-

layers.

Scanning tunneling microscopy (STM) is a local method which allows to directly probe

and visualize local electronic density of states of a surface of an electrically conductive material

with atomic / submolecular resolution.[42, 43] The method is based on the tunnel-effect [44] and

works by scanning a metallic tip over the surface. An electric potential is applied to the tip or the

surface and the tunneling current is recorded. In the most commonly used imaging-mode which

is also used in this thesis (constant current), a feedback-loop regulates the tip-sample distance

to maintain a desired current-setpoint. The recorded height-data over the surface should in

general not be considered as simple topography information, since the tunneling process depends

crucially on the density of states of the surface and of the tip and on the applied electric potential

over the tunneling gap. An example is bias dependent imaging given in section 2.3. It should be

noted that spectroscopy modes which give access to the density of states (via elastic tunneling)

and to vibrational / magnetic transitions (via inelastic tunneling) as well as imaging-modes based

on spin-polarized tips become increasingly relevant, in particular for spin-bearing complexes

studied such as the ones studied in this thesis.[45]

Epitaxy refers to the growth of a crystalline overlayer onto a crystalline substrate, if the

overlayer is in atomic registry with the substrate.[41] For the work shown in this thesis, the

overlayers (metals / molecules / salts) were deposited in ultra-high-vacuum by sublimation

from resistively / electron-beam heated sources onto well defined, clean single-crystalline

metal-substrates. Both the self-assembled monolayers (cf. sections 2.3 and 2.5) as well as the

ferromagnetic Co and Ni thin films on Cu(001) are examples of epitaxial systems.

Ligand field theory is an application of molecular orbital theory to transition metal complexes.[15]

Its predecessor, crystal-field theory is based on point charges in space which lift the degeneracy
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of e.g. 3d states. For example, an octahedral crystal-field splits the initially fivefold degenerate d

orbitals into a doubly-degenerate eg level at increased energy and triply-degenerate t2g level at

reduced energy. However, the crystal field theory is based exclusively on electrostatic effects and

neglects any covalent character.

An example for ligand field theory: the DFT+U calculations in section 2.2 reproduce the well

known 180◦ / 120◦ metal-NO bond angle in NO-Mn-porphyrin and NO-Co-porphyrin. This

finding can be well rationalized by ligand field theory / molecular orbital theory, considering

the orbital symmetries of the respective 3d orbitals and of the π∗ orbital of NO, cf. [[1, 2]] in

sections 2.1 and 2.2.

Figure 1.2 shows a comparison of molecular orbital (MO) theory, DFT+U and crystal field

theory, applied to Co(II)-porphyrin. It is apparent that the very simple assumptions used in the

molecular orbital model give a quite good agreement with the DFT+U model.[[2]] Thus, MO

theory can give us a quite deep qualitative insight and can help to explain and verbalize the

density of states seen in the DFT+U calculations (which are a better approximation to reality and

is needed to understand, for example, the molecule-surface interactions).

1.3 Prior Art

Molecules which show long magnetic relaxation times, i.e. hysteresis can be observed, are

called single molecule magnets.[48] Mannini et al. demonstrated a magnetic hysteresis in

such a molecule on surface.[49] The square-planar porphyrin / phthalocyanine complexes

studied in this thesis are, in this regard, simpler as they do not exhibit intrinsic magnetic

remanence. However, they can be magnetized on-surface i) in strong external magnetic fields at

low temperatures [50] and ii) by coupling them to ferromagnetic substrates.[14, 18–21] Moreover,

it was shown that the Mn and Fe based ad-complexes couple ferromagnetically on native (clean)

ferromagnetic substrates [14, 18, 19] and antiferromagnetically [20, 21] on oxygen-reconstructed

substrates. Furthermore, Iacovita et al. investigated the magnetic properties of Co-phthalocyanine

adsorbed on Co(111) nanoislands and observed a spin-polarized conductance signal above the

phthalocyanine molecule.[51] Gambardella et al. showed that the magnetic anisotropy in a

monolayer of a metal-organic framework can be controlled by coordination chemistry.[52] One

remarkable, early example of on-surface magnetochemistry is the study on the Kondo-effect3

of Cox(CO)y complexes on Cu(001) with low-temperature STM. Distinct variations in the

Kondo-temperature for different on-surface Cox(CO)y complexes were observed. However, the

use of porphyrins / phthalocyanines as well defined ligands allows for identical ligand-fields

acting on the central metal ions on the surface. This enables spatially averaging measurements

(e.g. XPS, XAS, XMCD) to study the consequences of the interactions with the ”surface-ligand“

and the axial gaseous ligand.

3The scattering of conduction electrons due to magnetic impurities.[53]



1.4. Outline 7

Figure 1.2: Ligand field theory applied to Co(II)-porphyrin. The 3d atomic orbitals (a), a molecular
orbital (MO) diagram for a square-planar complex (D4h symmetry) adapted from [15] (b),
DFT+U calculation for on-surface Co(II)-porphine (cf. 2.2) (c) and crystal field (CF) diagram
(adapted from [15]) for of a square-planar complex (d). In the MO model the porphyrin-
ligand is approximated by 4 σ-type (spherical) orbitals (which can be seen as 4 nitrogens
with lone-pairs). This simplification is not exactly accurate but it gives already a surprisingly
good agreement with the DFT+U calculations. More advanced MO models also exist.[46]
In the MO model different states appear, however we are here only interested in those with
3d-character (marked with the respective colors according to the 3d states in (a)). In total,
15 electrons (7 for 3d7 of Co(II) and 8 for the 4 N: ligands) have to be filled in. Since the
symmetry of dx2−y2 matches with the symmetry of the ligands, it is split into anti-bonding
and bonding states. This hybridization is clearly seen in the DFT+U calculations but not in the
CF model. In the MO model, dxz, dyz and dxy are non-bonding (no overlap with σ-ligands).
This in good agreement with the DFT+U calculations, although it the porphyrin ligand has
some π-character, splitting up dxz and dyz slightly. The MO model and DFT+U calculations
correctly [47] place the unpaired electron into the dz2 orbital, while the CF model shows a
wrong order of dz2 and dxy. In all 3 models (MO, DFT+U and CF), the dxz and dyz orbitals
are degenerate - this is a consequence of the square-planar ligand / crystal field.

1.4 Outline

This thesis is based on five publications concerned with on-surface coordination chemistry.[[1–

5]] Four of them report on the on-surface magnetochemistry [[1–4]] of square-planar complexes

adsorbed on ferromagnetic substrates and the fifth one [[5]] reports on the on-surface charge-

transfer between a strong electron acceptor and an alkali-halide.

In section 2.1, I introduce the magnetochemical approach to control the induced magnetic

moment in Co(II)-porphyrin on a Ni thin film, i.e. the spin in the Co(II)-ion is “switched-off”

by axial-ligation with nitric oxide.[[1]] This demonstration is based on a combination of two

fundamental pieces of work: i) one describing the induced magnetic moment in Mn-porphyrin

[14] and ii) the other illustrating the on-surface coordination chemistry of Co-porphyrin.[30]
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On the basis of our first communication,[[1]] we have systematically studied the on-surface

magnetochemistry of d7 Co(II), d6 Fe(II) and d5 Mn(II)-porphyrin with nitric oxide ligands.[[2]]

(section 2.2) In the meantime, Miguel et al. proposed the chemical control over the exchange-

interaction strength.[54] This control was proposed on the basis of the surface trans effect

[30, 31, 55, 56] which is a simple extension of the well known trans effect4 to surface-chemistry.

The trans effect is a competitive chemical interaction between two ligands binding at opposite

sides (at trans positions) of a metal atom / ion, i.e. binding of one ligand weakens the bond with

the other ligand.

Our collaboration with Kartick Tarafder and Peter Oppeneer (Uppsala, Sweden), who provided

the DFT+U calculations, resulted in theoretical description of the magnetochemical system Mn-

phthalocyanine/Co + NH3 where the molecule-substrate exchange-interaction strength was

significantly reduced upon NH3-ligation. This effect occurred indeed in our system, which we

have shown experimentally.[[2]] Furthermore, from the solution-chemistry knowledge, it should

be expected that nitric oxide quenches the spin in Mn(II)-porphyrin.[57] However in our data,

we find that after the on-surface NO exposure a magnetic moment of ca. 1/2 µB remains and it is

coupled antiferromagnetically [[2]] to the substrate. This deviation from the solution-chemistry

is a consequence of the chemical interaction with the surface. We have proposed the term spin

trans effect to refer to the influence of the axial ligand, not only on the spin, but also on the sign

and strength of the exchange interaction with the ferromagnetic substrate.[[2]]

In the course of our studies we wanted to demonstrate that our approach is also suitable to

control molecular magnetic moments in a more complex setup. Our goal was to fabricate a

supramolecular array where the arrangement of the magnetic centers is defined with atomic

precision (section 2.3).[[3]] In order to fabricate this spin-array, we have used chemically

directed molecular self-assembly. In this strategy, the molecular building-blocks are chemically

functionalized such that they self-assemble in the desired way5.[58] We have chosen to follow

the approach by Hipps et al. based on C–F· · ·H–C hydrogen-bonds.[59, 60] On this basis we

expected that the co-evaporation of a perfluoro-phthalocyanine together with an unsubstituted

phthalocyanine will result in a chessboard-like structure of alternating perfluoro-phthalocyanine

and phthalocyanine in two dimensions6. We knew from our previous studies that self-assembly

on ferromagnetic substrates was only possible on oxygen-reconstructed and not on native (clean)

Co or Ni.[21] The chessboard structure was self-assembled on an oxygen-reconstructed substrate

almost at the first trial, however it took us time to choose the right central metal ions to obtain a

spin-array with two different metal centers which both carry a magnetic moment.7 Ultimately, we

4Trans effect [15] is a broad term referring to thermodynamic and kinetic effects. We are referring here to the
structural trans effect which can be quantified by changes in bond-lengths.[23]

5Like in biological systems.
6The chessboard maximizes the number of C–F· · ·H–C hydrogen-bonds and is expected to be the thermodynamically

most stable arrangement.
7Some paramagnetic molecules loose their magnetic dipole moment by the interaction with surfaces, c.f. [61, 62]

and [[2]].
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used Fe(II)-perfluoro-phthalocyanine8 co-evaporated together with Mn(II)-phthalocyanine onto

oxygen-reconstructed Co substrate. In this array of alternating Mn and Fe magnetic moments we

could selectively switch-off the Fe’s magnetic moments by NH3-ligation,[56] i.e. we were able

to switch the spin-array from its spin on/on to its spin off/on’ state.

Up to this moment only spin on→ spin off switches and spin tuning have been established,

but a spin on switch was missing. This magnetochemical operation is introduced in section

2.4.[[4]] For this purpose we have used low-spin d8 Ni(II) on a Co substrate and converted the

Ni-complex to its high-spin (S = 1) state by ligation with NH3. The ferromagnetic Co substrate

induces a magnetic moment in the Ni-porphyrin. Thus, this system presents a first spin-on switch

and completes the magnetochemical ”tool-kit“.

In section 2.5 the on-surface charge-transfer between the strong electron acceptor 7,7,8,8-

tetracyano-p-quinodimethane (TCNQ) and alkali-halides is investigated.[[5]] The case provides

a good argument for what we call spectro-microscopy correlation, i.e. the combination of

spectroscopy and microscopy to understand a given system.

• From the scanning tunneling microscopy data we could conclude that the addition of

NaCl onto a monolayer of TCNQ on Au(111) leads to a complete reorganization of the

self-assembled layer from a brick-wall-like [63] to a windmill-like structure, similarly as

in case of sublimation of Mn / Ni / Cs onto a TCNQ-layer.[64–67]

• In the N1s and C1s X-ray photoelectron spectra we could observe that TCNQ adsorbed

on Au(111) has no charge and that it only gets negatively charged upon addition of

NaCl.[68, 69]

• In the UV photoelectron spectra we could directly spot a new electronic state which

corresponded to TCNQ− [70] and we were able to conclude that the charge-transfer

occurs mainly to NaCl and not to the Au substrate. We also found that TCNQ undergoes

charge-transfer with Ag(111).[[5]]

• From the Cl2p X-ray photoelectron spectra we could conclude that the amount of chlorine

on the sample is decreased, i.e. that 2 Cl− are oxidized to Cl2-gas which is evacuated.

This project is related with our ongoing interest the chemistry of TCNQ, i.e. the on-surface [2+2]

cycloaddition between TCNQ and acetylene-appended porphyrin [71] and the surface-doping of

the organic semiconductor pentacene with fluorine-substituted F4TCNQ.[72] While we did not

study the magnetic-properties of the TCNQ-based layers, the magnetism in such metal-organic

layers is certainly a very interesting and promising field.[73–75]

8Synthesized in the group of Silvio Decurtins.





CHAPTER 2

Results

2.1 Controlling Spins in Adsorbed Molecules by a Chemical Switch

Summary: Here we demonstrate that the induced magnetic moment in the square-planar,

low-spin Co(II)-porphyrin adsorbed on a ferromagnetic Ni thin film can be switched from S

= 1/2 to S = 0 by axial ligation with a chemical stimulus - nitric oxide (NO). The mechanism

of this spin off-switch is based on the hybridization of the singly occupied dz2 orbital with the

singly occupied π∗ orbital of NO. The experiment is inspired by the seminal work of Flechtner

et al. [30] where on-surface coordination-chemistry and the trans effect on surface was explored.

Paper [[1]] is published in Nature Communications

c© 2010 Macmillan Publishers Limited. This work is licensed under a Creative Commons

Attribution-NonCommercial 2.5 Generic License. The complete text may be viewed here:

http://creativecommons.org/licenses/by-nc/2.5/deed.
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 The development of chemical systems with switchable molecular spins could lead to the 

architecture of materials with controllable magnetic or spintronic properties. Here, we present 

conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic 

substrate can be switched between magnetic  off  and  on  states by a chemical stimulus. This is 

achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin 

(CoTPP) ferromagnetically coupled to nickel thin-fi lm (Ni(001)). On NO addition, the 

coordination sphere of Co 2    +      is modifi ed and a NO – CoTPP nitrosyl complex is formed, which 

corresponds to an  off  state of the Co spin. Thermal dissociation of NO from the nitrosyl complex 

restores the  on  state of the Co spin. The NO-induced reversible  off – on  switching of surface-

adsorbed molecular spins observed here is attributed to a  spin   trans  effect.         
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 P
lanar organometallic complexes with extended   π  -conjuga-
tion, for example, metalloporphyrins and metallophthalo-
cyanines, have an indispensable role in controlling a wide 

range of functionalities: chemical reactivity (in biochemistry), 
optical absorbance (in dyes), optoelectronic conductance (in light 
harvesting chromophores), as well as the ability to function as elec-
tron donors or acceptors (in gas sensors and organic semiconduc-
tor devices) 1 . Th is degree of control is achieved by modifying the 
coordination of the central metal ion through interaction with its 
environment, for example, by an external chemical stimulus, as 
exemplifi ed in nature by the regulation of Fe-porphyrin-to-oxygen 
affi  nity within the haemoglobin tetramer 2,3 . Recently, a similar eff ect 
has been implemented at surfaces in which the electronic surface-
molecular interaction has been controlled by chemical stimuli 4 – 6 . 
Furthermore, metalloporphyrins containing unpaired spins have 
been shown to exhibit exchange coupling to magnetic substrates 7 – 12 . 
In view of spintronics 13,14 , which has been predominantly emerging 
for thin-fi lm devices such as spin valves and transistors, it comprises 
a challenge to control single molecular spins within their specifi c 
environment at the spintronic interface. Notably, the molecular spin 
state for inorganic complexes / polymers in bulk can be controlled by 
external factors such as temperature, pressure and photon-induced 
excitation 15 – 18 . 

 Molecules containing unpaired spins and molecular magnets 
bearing several coupled magnetic atoms 19  have recently received 
increasing attention. Unpaired electron spins in a molecule off er 
a wide range of options towards the tuning of their coupling with 
the environment. Th e structure and properties of such molecules 
can be initially architectured through synthesis and can be further 
modifi ed by chemical reactions. X-ray magnetic circular dichroism 
(XMCD) spectroscopy 20,21  allows for the highly sensitive determina-
tion of the magnetization of spin systems assembled at surfaces with 
elemental and chemical specifi city. Th e XMCD technique has also 
been used to assess the magnetization of adsorbed metalloporphy-
rin spin systems with respect to ferromagnetic substrates 7 – 11 . 

 In this article, we demonstrate that the spin of a metallopor-
phyrin molecule, namely cobalt(II)tetraphenylporphyrin (CoTPP), 

is magnetically coupled to a ferromagnetic substrate (here nickel 
(Ni(001))) and can be controlled by nitric oxide (NO) functioning 
as a chemical stimulus. A reversible  off  – on  switching process of the 
molecular spin, induced by NO, in the presence of the remanent 
magnetization of the Ni substrate is shown. Addition of NO super-
sedes the Co – Ni magnetoelectronic interaction by the formation 
of a NO – CoTPP nitrosyl complex 22,23 , which corresponds to the  off  
state  of the Co spin in CoTPP. Th ermal dissociation of NO from the 
nitrosyl complex restores the initial Co – Ni magnetoelectronic inter-
action and leads to the  on  state of the Co spin in CoTPP. Th ereby, 
this work provides an example of a  chemical switch  aff ecting the 
spin in surface-adsorbed molecules and presents a case for the  spin  
 trans  eff ect in analogy to the well-established    trans  eff ect   22 – 24 . Using 
stimuli to control single atomic 25  and molecular spins at interfaces 
and determining their coupling with the environment is of eminent 
interest in the fi eld of quantum information 26 .  

 Results  
  Design of the magnetic interface   .   A cobalt-porphyrin, CoTPP 
(see  Fig. 1a ; top panel), has been chosen as a magnetic molecule 
characterized by one unpaired electron ( S     =    ½; magnetic moment 
 M  (static)    =    1.73    μ  B ,  M  (eff ective)    =    1.92    μ  B ) 27 . On the basis of its 
architecture and properties, this molecule is expected to be aff ected 
by the up or down magnetization of the ferromagnetic Ni substrate 8 . 
Atomically clean Ni substrates were prepared by deposition of thin 
fi lms ( ~ 20 monolayers (MLs)) onto clean Cu(001) single crystals 
in ultrahigh vacuum. About 1 ML of CoTPP molecules was then 
evaporated onto the freshly prepared non-magnetized Ni(001) 
substrates kept at room temperature. On such prepared samples 
the magnetization of the diff erent elemental species, that is, Co and 
Ni, has been determined by the element-specifi c XMCD technique 20  
(see  Fig. 1a ; bottom panel).   

  XMCD spectroscopy   .   X-ray absorption spectra of circularly pola-
rized synchrotron light with opposite helicities ( μ      +      and  μ      −     ) are pre-
sented in  Figure 1b . Th ey clearly show a diff erence in absorption, 
that is, magnetic circular dichroism, at L 2  and L 3  absorption edges 
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            Figure 1    |         Magnetic ordering of substrate (Ni) and organic adsorbate (CoTPP) with respect to the NO-induced switching. In all spectra,  ‘ a.u. ’  represents 

arbitrary units. ( a ) Chemical structure of the CoTPP molecule (top) and schematic view of the XMCD experiment (bottom). ( b ) Chemical identifi cation 

of Co and Ni: L-edges X-ray absorption spectra of Co (CoTPP, photon energy range: 765 – 815   eV) and Ni (substrate, photon energy range: 835 – 885   eV) 

acquired with circularly polarized X-ray light from a synchrotron source with opposite helicities ( μ      +      and  μ      −     ). The difference in X-ray absorption for the 

opposite helicities (dichroism) reveals the magnetization of the observed chemical species. ( c ) Spin-switching sequence from left to right as indicated 

by arrows: L-edges XMCD spectra of Co (top panels) and Ni (bottom panels) recorded on the CoTPP / Ni(001) system after the initial preparation of 

molecular adlayers (left), after NO addition (centre) and on temperature-induced NO desorption (right). The directions of the remanent substrate 

magnetization M are indicated by grey arrows to the left of each spectrum. Ferromagnetic ordering of molecular spins with respect to the substrate is 

observed initially. Reversible  ‘ off – on ’  switching of Co magnetization is observed with progressing NO addition and temperature-induced NO desorption.  
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of both Co (top) and Ni (bottom). In the dichroic spectra, both the 
magnetic molecule (Co;  Fig. 1c ; top left  panel initial) and the sub-
strate (Ni;  Fig. 1c ; bottom left  panel initial) show a magnetization, 
as characterized by the two peaks at photon energies corresponding 
to the L 2  and L 3  edges. A ferromagnetic coupling between CoTPP 
molecules and the Ni substrate is clearly identifi ed by the same sign 
of the L 2  and L 3  dichroic signals in the respective spectra. Such fer-
romagnetic coupling has also been observed for similar molecules 
with diff erent central metal atoms on various substrates 7 – 9 . Follow-
ing numerical calculations based on density functional theory, this 
coupling occurs by superexchange through nitrogen atoms of the 
porphyrin ring for these observations 8,28,29 . 

 To investigate the eff ect of a reaction with a chemical stimu-
lus on the magnetization of CoTPP adsorbed on the Ni substrate, 
the CoTPP / Ni system was exposed to NO gas at room tempera-
ture. Aft er the NO exposure, the initially well-detectable Co mag-
netization ( Fig. 1c ; initial) cannot be detected by XMCD anymore 
( Fig. 1c ;       +    NO). Th is behaviour is observed irrespective of the 
substrate magnetization and provides clear evidence that the mag-
netization of Co in CoTPP is switched  off   — an eff ect that goes far 
beyond earlier observations 7,8,21  and allows for the switching of 
individual molecular spins. As expected for a thin fi lm, the Ni sub-
strate magnetization was only marginally aff ected by the NO adsorp-
tion. We assign the  off   state of the molecular spin to the pairing of 
the initially unpaired Co spin, with the unpaired spin supplied by 
NO in the formation of a NO – CoTPP complex 22,23,30  as discussed 
further below. 

 To probe the reversibility of the process the sample temperature 
was temporarily increased to  ~ 615   K, leading to the removal of NO 
from the NO – CoTPP complex. Th is implies the reactivation of the 
Co spin ( S     =    1 / 2) and the regeneration of the ferromagnetic coupling 
between CoTPP and Ni as clearly refl ected in the XMCD spectra 
( Fig. 1c ;       −    NO), that is, the Co spin system was switched  on  again. 
Consequently, the ferromagnetic coupling of Co magnetic moment 
to the Ni substrate magnetization is reestablished, as confi rmed by 
the respective dichroic signals ( Fig. 1c ;       −    NO).   

  X-ray photoelectron spectroscopy   .   To assess the infl uence of NO 
ligation on the chemical species involved and on the electronic 
interaction between CoTPP and Ni, we have employed X-ray pho-
toelectron spectroscopy (XPS) and measured Co2p XP spectra at 
various stages of the experiment ( Fig. 2a ). For a monolayer of CoTPP 
on Ni, the Co2p 3 / 2  XPS signal exhibits a multiplet spectral feature, 
on which the main peak was observed at  ~ 778.2   eV resembling an 
outermost ( d  z  2  ) 1  -open-shell structure (compare CoTPP / Ag(111) 
system in Flechtner  et al.  6 ). Reaction with NO causes two major 
changes in the Co2p 3 / 2  XPS signal. First, the multiplet spectral fea-
ture is replaced by a single peak, which is the expected behaviour for 
Co, assuming an outermost ( d  z  2  ) 2  -closed-shell electronic structure. 
Second, the main peak position shift s from  ~ 778.2 to  ~ 780.2   eV —
 the latter value also being observed for the main Co2p 3 / 2  peak of 
CoTPP in multilayers (see Flechtner  et al.  6 ). Th is behaviour suggests 
the suppression of the Co – Ni interaction by the stronger NO – Co 
interaction and correlates the observed chemical shift  in XPS to a 
downshift  of the unoccupied  d  z  2   spin level aft er bonding with NO. 
On thermal treatment of the NO – CoTPP – Ni system the multiplet 
feature of the Co2p 3 / 2  XPS signal, characterized by the main peak 
at  ~ 778.2   eV, is observed again, which proves the NO dissociation 
from the nitrosyl complex — consistent with an earlier report on the 
 electronic  coupling of the NO – CoTPP – Ag system 6 . Notably, in our 
system, both the electronic coupling and the ad-molecular magneti-
zation respond simultaneously to NO addition and removal.   

  Scanning tunnelling microscopy   .   To further elucidate the nature 
of the chemical switching eff ect, it is necessary to study the adsorp-
tion geometry of the CoTPP molecules on Ni(001). Our scan-

ning tunnelling microscopy (STM) data ( Fig. 2b – d ) show that the 
Ni(001) surface exhibits extended terraces that are virtually free 
of point defects and that CoTPP molecules adsorb spatially in a 
random distribution on the surface. Th is is due to a considerable 
surface-molecular interaction limiting the diff usion length during 
the deposition process, which then hinders the  frequently  observed 
self-assembly on metallic substrates 31,32 . Th is observation is in line 
with a recent report on the Mn-porphyrin / Co(001) system showing 
limited or no self-assembly 11 . High-resolution STM images of the 
CoTPP molecules on Ni(001) ( Fig. 2d ) reveal a planar orientation 
on the surface. A quasi-planar orientation has also been found by 
means of near-edge X-ray absorption fi ne structure spectroscopy 
for similar magnetic molecule – substrate interfaces, for example, 
Mn-porphyrin / Co(001), Fe-porphyrin / Co(001) and Fe-porphyrin /
 Ni(001) 7,8 . Density functional theory calculations have shown 
that magnetic exchange coupling requires the metalloporphyrin 
molecule: (i) in a planar orientation with the metal ion – 4N moiety 
(see  ‘ Co – 4N ’  in  Fig. 3a ) on the surface and (ii) in a certain distance 
from the magnetic substrate 8,28,29 . 

 In our STM data, we observe some bright spots ( Fig. 2c ) that 
correspond to CoTPP molecules adsorbed on top of the fi rst 
(incomplete) molecular layer. Molecules in the second layer do 
not have contact with the Ni substrate and reside comparably 
far above the surface. Th us, not every CoTPP molecule on our 
samples undergoes ferromagnetic exchange coupling with the 
Ni(001) substrate. However, XPS data ( Fig. 2a ) support that the  vast  
 majority  of CoTPP molecules electronically interact with the 
Ni(001) substrate. Furthermore, in the STM overview of clean 
Ni(001) (cf.  Fig. 2b ), the small black square drawn within the 
dotted circle represents the corresponding size of one CoTPP 
molecule. From the molecular dimensions and the step density 
observed in the STM data, we estimate an upper limit of  ~ 5 to 10 %  
of the molecules (at a coverage of  ~ 1 ML CoTPP), which can reside 
at low-symmetry sites, for example, step edges. As a result, most 
of the CoTPP molecules are adsorbed at high-symmetry sites and 
in planar orien tation ( Fig. 2c and 2d ) and are thereby expected to 
contribute to the magnetic interaction and to respond well to the 
spin switching events by NO adsorption / desorption, as observed in 
the XMCD data (see  Fig. 1c ).    

 Discussion 
 On the basis of the XPS identifi cation of the Co species and the STM 
observation of a predominantly planar orientation of the molecules, 
the NO-induced reversible switching between CoTPP and Ni can be 
attributed to the  trans  eff ect 6,22 – 24 . In analogy to the elegant postulate 
reported in Flechtner  et al.  6  describing the role of the  trans  eff ect in 
interfacial coordination chemistry, the NO ligand coordinating in 
 trans  position controls the coupling to a second ligand (Ni substrate) 
acting on the same metalloporphyrin (CoTPP). Bonding of NO with 
the Co ion presumably changes the  ‘ Co – 4N ’  planar geometry (see 
 Fig. 3a ) such that the Co ion is pulled out of the plane towards the 
NO, whereby the overlap with Ni orbitals is reduced — which assists 
the switching event. Th e    trans  eff ect is frequently used to control 
chemical reactivity or electron affi  nity through ligands 22 – 24  and, as 
demonstrated here, simultaneously controls the chemical / electronic 
coupling and the spin state. 

 Th e magnetic properties, namely the Co magnetization during 
the switching process that depends on the Ni substrate magnetiza-
tion direction, can be uniquely probed for this system by the ele-
ment-specifi c XMCD technique. Th e quenching of the Co XMCD 
signal observed in our experiments is identifi ed as a consequence 
of the pairing of the originally unpaired spin in the  d  z  2   orbital on 
formation of the NO – CoTPP complex. Th is chemically stimulated 
process directly aff ects the Co spin system and the coupling to 
the substrate, as can be seen from the discussion of the molecular 
levels ( Fig. 3b ) involved: the highest occupied molecular orbital 
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of the NO – CoTPP complex 33 – 35  originates from the interaction of 
singly occupied molecular orbitals of CoTPP ( d  z  2  ) 34,35  and NO (  π   * ) 23 , 
as schematically shown in  Figure 3a,b . 

 On heating the sample, NO dissociates from the NO – CoTPP 
complex, leaving the CoTPP molecule with an unpaired spin and 
reestablishing the magnetoelectronic association with the Ni sub-
strate. Th e dichroic signal at  ~ 778.5   eV ( Fig. 1c ; top right panel) and 
the Co XPS data ( Fig. 2a ; blue line) clearly indicate that the CoTPP 
molecules remain intact aft er the temperature-induced dissociation 
of NO. A scheme for the NO-induced reversible switching of the 
magnetic response of CoTPP coupled to a ferromagnetic Ni sub-
strate is presented in  Figure 3c . Two diff erent mechanisms can be 
considered: (i) NO reacts with CoTPP from the top and forms the 
NO – CoTPP complex or (ii) the Ni substrate reacts with NO and 
consequently aff ects the CoTPP – Ni interaction. To provide deci-
sive evidence towards mechanism (i) or (ii), we have performed 
two additional experiments. First, a bare Ni(001) surface was exposed 
to  ~ 6,000   L (Langmuir) of NO and was subsequently annealed at 

 ~ 615   K. Th e O1s (a) and N1s (b) XPS signals (see  Fig. 4 ) remain 
essentially unchanged on annealing. Th e shoulder observed at higher 
binding energies before annealing is assigned to physisorbed species 
desorbing from the surface on annealing. On the basis of the earlier 
reported observation of NO dissociation on Ni(001), even at 
room temperature 36 , the two peaks are attributed to Ni – N and Ni – O 
species, which remain chemisorbed at the annealing temperatures 
used in our experiment. 

 In the second experiment, CoTPP ( ~ 1 ML) was deposited onto 
a Ni(001) surface preexposed to NO ( ~ 6,000   L). Subsequently, this 
system was annealed at  ~ 615   K. Interestingly, the Co2p XPS data 
exhibited almost identical peak positions (Co2p 3 / 2   ~ 780.2   eV) before 
and aft er this annealing procedure (see  Fig. 5 ), which indicates 
that CoTPP remains electronically decoupled from the Ni substrate, 
that is, the preexposure of NO modifi es the Ni(001) substrate such 
that no NO-induced reversibility can be observed in this tempera-
ture window. Th ese results confi rm that our experiments on the 
NO-induced switching are not signifi cantly determined / aff ected by 
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          Figure 2    |         Probing electronic interaction and visualizing molecules on the surface. ( a ) Co2p 3 / 2  XP spectra (raw data and fi tted curves) of CoTPP molecules 

( ~ 1 ML) on Ni(001) before NO exposure (black line), after NO exposure (red line) and on desorption of NO (blue line). The spectral evolution refl ects the 

NO-induced reversible switching of the Co oxidation state and the modifi ed electronic interaction between CoTPP molecules and the Ni surface. Different 

binding energy positions of the Co2p 3 / 2  XPS signal have been marked by dotted lines;  ‘ a.u. ’  refers to arbitrary units. ( b ) Molecular adsorption on a reactive 

magnetic substrate: room temperature STM image showing the surface morphology of Ni(001) (150   nm    ×    150   nm; the size corresponding to one CoTPP 

molecule is depicted by the black square within the dotted circle). ( c ) Adsorption of CoTPP molecules on the Ni(001) surface (50   nm    ×    50   nm), where 

CoTPP is recognized by a four-leaf clover shape in symmetric and planar adsorption geometry while asymmetric conformations can also be detected 38 . 

( d ) High-resolution STM: As a guide to the eye, molecular cartoons of CoTPP have been inserted (5   nm    ×    5   nm). Tunnelling parameters:  I     =    0.07   nA, 

 U     =    0.68   V ( b ) and  I     =    0.05   nA,  U     =    1.05   V ( c ,  d ).  
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side reactions of NO on the bare fraction of the Ni substrate (    <    20 % ; 
see  Fig. 2b ), as the electronic and ferromagnetic exchange cou-
pling between CoTPP and Ni is  restored  aft er annealing at  ~ 615   K 
(see  Figs 1c and 2a ). Th us, the reported experiments are all in 
agreement with mechanism (i) and are consistent with the 
involvement of the  trans  eff ect. Note that the observation of ligand-
induced spin switching of porphyrins is not restricted to ferro-
magnetic substrates, and we expect that this work can be extended 
to antiferromagnetic or diamagnetic (for example, Cu(100)) sub-
strates as well, using suffi  ciently high external magnetic fi elds at low 
temperature, for example, 6   T and 8   K 21 . Th e  trans  eff ect, as used to 
control the site-specifi c affi  nity of porphyrins or phthalocyanines to 
chemical reactants, is used in this study to control the spin localized 
at a central metal ion, and thereby provides the case for a  spin  
 trans  eff ect. 

 Because of the large body of knowledge about porphyrins and 
phthalocyanines 1 , and their variability established in coordination 
chemistry, the  spin   trans  eff ect is expected to proceed beyond the 
case presented here. Spin switching systems on the basis of the pre-
sented architecture are expected to be demonstrated using other 
chemical stimuli (for example, CO), using modifi ed molecular 
spin systems (for example, metallophthalocyanines), and also for 
the case of antiferromagnetic exchange coupling 10,11 . Considering 
the involvement of the chromophoric group in these molecules, 
the use of other stimuli such as light is foreseeable. By exploiting a 
 pump-and-probe  approach it might become possible to study  spin  
 dynamics  in surface-supported chemical reactions using the XMCD 
technique 20 . 

 Th e reversible  off  – on  switching of the electron spin in a surface-
supported paramagnetic molecule presented here suggests further 
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      Figure 3    |         Reversible  off – on      switching of a molecular spin. ( a ) A scheme of the NO – CoTPP complex depicting the involvement of the relevant orbitals. 

The four green N atoms from the pyrrole moieties of the porphyrin represent the coordination with the Co ion and the dashed lines indicate the Co – 4N 

plane that gets a pyramidal distortion on nitrosyl complex formation. ( b ) The electronic levels involved in the chemical reaction between NO acting as 

a   π  -ligand and CoTPP. Molecular orbital diagrams (the dashed vertical arrow indicates the energy axis, E) of CoTPP ( d  7  confi guration: ( d  xz ) 2 ( d  yz ) 2 ( d  xy ) 2 

( d  z  2 ) 1  ( d  x  2  −  y  2 ) 0   adapted from Wayland  et al.  34  and Kozuka and Nakamoto 35 ) and NO (confi guration: ( σ ) 2 (  π   a ) 2 (  π   b ) 2 (  π   a  * ) 1 (  π   b  * ) 0  adapted from Huheey  et al.  23 ) 

showing the presence of unpaired electrons in both CoTPP ( d  z  2  ) and NO (  π   a  * ). On formation of the NO – CoTPP complex (grey arrow), the unpaired spin 

of CoTPP, which is responsible for the molecular magnetism, is paired up with the unpaired spin supplied by NO in the mixed bonding orbital (highest 

occupied molecular orbital, HOMO). Consequently, the mixed antibonding orbital (lowest unoccupied molecular orbital, LUMO) is lifted above the Fermi 

level (E F ) of the Ni substrate. Note that the energy levels of the orbitals within the blue dotted circle have been adapted from the literature: Wayland  et al.  34  

and Kozuka and Nakamoto 35  for the HOMO / LUMO of the NO – CoTPP complex and Flechtner  et al.  6  for E F .  α  and  β  represent orbital mixing coeffi cients of 

 d  z  2   and   π   a  * , respectively. ( c ) Schematic representation of the switching process: switching on (top) — the CoTPP molecule is ferromagnetically coupled to 

the Ni substrate and the Co magnetic moment follows the substrate (Ni) magnetization; switching  off  (bottom) — on addition of NO, CoTPP ( S     =     ½ ) forms 

the NO – CoTPP complex ( S     =    0) and the spin state of NO – CoTPP remains the same, irrespective of the Ni magnetization. Reversibility is shown by the 

reaction arrows indicating the chemical reaction with NO and the dissociation of NO.  

16 Chapter 2. Results
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studies on organic spintronic interfaces in conjunction with trans-
port measurements. In view of the rapidly advancing capabilities to 
induce events on the level of single atoms and molecules by scan-
ning probe microscopy, it is anticipated that surface-supported 
magnetic molecules can be individually switched. Th e behaviour 
of such model systems, not only as isolated spin systems and in 
dependence of their coupling to the substrate / environment but 
also as elements of quantum-coupled systems, may provide a new 

basis for experimental insight into quantum behaviour at further 
increased complexity.   

 Methods  
  Sample preparation and characterization   .   All experiments were performed 
in ultrahigh vacuum.  Cu(001) single crystals  ( MaTecK GmbH ) were cleaned by 
repeated Ar     +      sputtering / annealing cycles and the impurity level was monitored 
by recording C1s, O1s, N1s and Ni2p XPS signals.  Ni  ( MaTecK GmbH ) thin fi lms 
( ~ 20 MLs,  ~ 3.5   nm) were deposited by means of electron-beam evaporation in 
a two-step procedure onto clean Cu(001) single crystals 11 . In the fi rst step,  ~ 10 
MLs of Ni were evaporated on Cu(001) kept at room temperature, which provided 
a suffi  cient barrier to prevent the Cu atoms from diff usion across the Ni layers. 
Aft er  ~ 30   min of annealing at  ~ 530   K, another  ~ 10 MLs of Ni were deposited 
while keeping the sample at  ~ 460   K to obtain atomically fl at terraces. During these 
evaporation steps, the deposition rate was monitored by a quartz crystal micro-
balance. Aft er deposition of  ~ 20 MLs of Ni on Cu(001), the thin-fi lm substrate was 
investigated by XPS and low-energy electron diff raction studies to assure that no 
contamination of the fi lm occurred and that the growing fi lm shows the fcc(001) 
structure 11 .  CoTPP  ( Sigma-Aldrich ) molecules were evaporated ( ~ 1 ML) onto a 
freshly prepared non-magnetized Ni(001) substrate kept at room temperature. Th e 
deposition rate was monitored by a quartz crystal microbalance and the molecular 
coverage on the surface was calibrated by combined XPS and STM measurements. 
STM images were taken in constant-current mode at room temperature with a 
Pt / Ir tip and the bias voltages were referred to the grounded sample. Th e prepared 
samples were transported to the surfaces / interfaces microscopy (SIM) beamline of 
the Swiss Light Source (SLS) using a vacuum suitcase (base pressure in the order of 
 ~ 7.5 × 10     −    11    Torr), that is, without breaking the vacuum.   

  XMCD measurements   .   An external magnetic fi eld of  ~ 125 mT was applied 
perpendicular to the surface plane of the CoTPP / Ni(001) sample before the 
XMCD measurements to assure single-domain magnetization of the Ni fi lm along 
the easy axis (out-of-plane) 8 . Th e L-edges absorption spectra for both Co and Ni 
were recorded at normal incidence in total electron yield mode without externally 
applied magnetic fi eld, that is, in the remanent magnetization of the Ni substrate. 
Th e SLS-SIM beamline provides high brilliance X-ray light in the energy range of 
130 – 2,000   eV from two elliptical twin undulators, which permit switching of the 
photon helicity optically within a few seconds 37 . All spectra were recorded at room 
temperature and normalized to the incident photon fl ux. Th e Ni magnetization was 
reproducibly reversed by inverting the externally applied magnetic fi eld. XMCD 
data taken at the SLS-SIM beamline were complemented by XPS / STM measure-
ments using the same sample preparation conditions.   

  NO dosing and heating   .   Th e CoTPP / Ni(001) system was exposed to  ~ 6,000   L of 
NO (exposure time  ~ 17   min) in the XMCD chamber at room temperature. Th e 
sample was subsequently heated to  ~ 615   K to remove NO from the NO – CoTPP 
complex. Notably, our experiments suggest that cooling the sample to  ~ 100   K 
reduces the required NO exposure to a considerable extent, whereas the  off  – on  
electronic switching events can still be consistently observed by the XPS measure-
ments.                                                    
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  Figure 4    |         Effect of NO coadsorption on Ni(001). XPS data recorded 

on a Ni(001) surface after exposure of  ~ 6,000   L NO. The measurements 

were taken before (blue) and after (red) annealing at  ~ 615   K. The O1s 

( a ) and N1s ( b ) XP spectra clearly show that only the physisorbed NO is 

removed after annealing. The N / O intensity ratio is reduced after heating 

by a negligible extent, which suggests that the Ni(001) surface remained 

covered with nitrogen- and oxygen containing species even after 

annealing. We tentatively assign these species to chemisorbed 

Ni – oxygen / Ni – nitrogen and (NO)x.  ‘ a.u. ’  represents arbitrary units.  
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  Figure 5    |         Role of the  trans  effect in the observed reversibility. About 1 

ML of CoTPP was evaporated onto a Ni(001) surface that was previously 

exposed to  ~ 6,000   L of NO to prepare a CoTPP / NO / Ni(001) system. The 

system was subsequently annealed at  ~ 615   K, and Co2p XP spectra were 

recorded before and after annealing. Before annealing, the Co2p 3 / 2  peak 

at  ~ 780.2   eV indicates that there is no electronic interaction between 

CoTPP and Ni. Interestingly, even after annealing, the CoTPP remained 

electronically decoupled from the Ni. This control experiment shows that 

CoTPP on preexposed NO / Ni(001) cannot exhibit reversibility of the 

magnetoelectronic interaction between CoTPP and Ni (see  Figs 1c and 2a ). 

Thereby, the reversibility observed in our main experiment is attributed to 

gaseous NO species coordinating to the CoTPP adlayer through the  trans  

effect 6 .  ‘ a.u. ’  represents arbitrary units.  
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2.2 On-surface Coordination Chemistry of Planar Molecular Spin
Systems: Novel Magnetochemical Effects Induced by Axial Ligands

Summary: On the basis of our previous letter based on d7 low-spin S = 1/2 Co(II)-porphyrin

and spin-bearing NO, we explore the on-surface magnetochemistry of d6 intermediate-spin Fe(II)

porphyrin and d5 high-spin Mn(II)-porphyrin on ferromagnetic substrates. We show that the

magnetic moment can be tuned (Fe-porphyrin + NO) and that, in some systems, the outcome of

the on-surface-coordination is clearly distinct from the case observed in solution. Specifically,

the NO-Mn-porphyrin complex is expected to exhibit an S = 0 spin state; on the surface we find

that a non-zero spin-state remains and it is antiferromagnetically coupled to the ferromagnetic

substrate. Thus, we show that the axial ligation can invert the sign of the exchange-coupling

from ferromagnetic to antiferromagnetic. The experimental data is complemented by DFT+U

calculations performed by Peter Oppeneer and Kartick Tarafder. The calculations show increased

distance between the metal-ion in the porphyrin and the surface after NO-ligation. This is a clear

sign for the presence of a trans effect on surface [29–31] here affecting also the spin-state (e.g. in

Mn-porphyrin). This surface trans effect has been shown the reduce the chemical interaction with

the substrate.[30, 31] We show in a joint theoretical and experimental study that this reduced

chemical interaction due to axial ligation can result in a decreased exchange interaction strength

in MnPc/Co + NH3.

Paper [[2]] is published in Chemical Science.

c© The Royal Society of Chemistry 2012. Reproduced by permission of The Royal Soci-

ety of Chemistry.
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Quencher-free linear probe with multiple fl uorophores on an acyclic 

scaff old

We have developed a new quencher-free stemless linear probe involving 

multiple perylenes incorporated through D-threoninol; each perylene is 

separated by intervening natural nucleotides. Without a substrate, the 

fl exible linear probe does not emit fl uorescence due to the self-quenching 

of the weakly interacting fl uorophores. Upon hybridization with the target, 

intercalation of each dye between the base pairs results in emission of 

strong fl uorescence. The maximum signal/background ratio attained was 

180, and the response rate was signifi cantly faster than that of a classic 

hairpin-forming molecular beacon.
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Paramagnetic transition-metal complexes assembled on surfaces are of great interest for potential

applications in organic spintronics. The magnetochemical interactions of the spin of the metal centers

with both ferromagnetic surfaces and optional axial ligands are yet to be understood. We use a

combination of X-ray magnetic circular dichroism (XMCD) and quantum-chemical simulations based

on density functional theory (DFT + U) to investigate these metal–organic interfaces with chemically

tunable magnetization. The interplay between an optional axial ligand (NO, spin S ¼ 1/2 or NH3, S ¼
0) and Ni and Co ferromagnetic surfaces affecting the spin of Co(II) tetraphenylporphyrin (d7, S¼ 1/2),

Fe(II) tetraphenylporphyrin (d6, S ¼ 1), Mn(II) tetraphenylporphyrin (d5, S ¼ 5/2) and Mn(II)

phthalocyanine (d5, S ¼ 3/2) is studied. We find that the structural trans effect on the surface rules the

molecular spin state, as well as the sign and strength of the exchange interaction with the substrate. We

refer to this observation as the surface spin-trans effect.

Introduction

A large portfolio of concepts in coordination chemistry of

porphyrin- and phthalocyanine-based metal–organic complexes

has been developed to rationalize the broad spectrum of physico-

chemical functionalities.1 Recently, coordination chemistry on

the surface is being explored.2–6 In the specific case of competitive

coordination, which is usually referred to as the trans effect,7

the ligand on one side of a metal–organic complex is affecting the

ground state energy or the binding/unbinding kinetics with the

second ligand on the opposite side. To understand coordination

chemistry with the surface acting as a ligand,8–10 square-planar

complexes and their reaction with axial ligands like NO, CO,

NH3 affecting the molecule–substrate bonding have been moni-

tored experimentally.

This has been performed by measurements of the spectral

characteristics in X-ray photoelectron spectroscopy (XPS),9–11 in

UV photoelectron spectroscopy (UPS)9,10 and in scanning

tunneling microscopy/spectroscopy (STM/STS).10,6 The term

surface trans effect has recently been introduced to describe the

observed reduction in bonding with the ‘surface-ligand’.10

Magnetochemical interactions of spin-bearing, square-planar

transition metal complexes, like porphyrins and phthalocya-

nines, with ferromagnetic surfaces offer a unique platform to

fabricate metal–organic interfaces with stable magnetization at

room temperature that are of great interest for organic spin-

tronics. The search to gain control over the magnetic properties

of these interfaces has revealed a number of important findings:

paramagnetic complexes on surfaces may be magnetized by their

specific bonding interactions with the ferromagnetic (FM)

surface.12–20 Also, the coordination of surface-ligands to para-

magnetic metal-porphyrins and phthalocyanines often results in

a significant hybridization and/or charge transfer.21–26 Further-

more, it has been demonstrated that the spin state in cobalt

porphyrin adsorbed on a ferromagnetic Ni substrate can be

controlled by axial coordination on the open site, e.g. by NO27.

The present work is aimed at answering the fundamentally

important question arising from the above findings: to what

extent can classical coordination chemistry concepts, which do

not consider the surface specific molecule–substrate interaction,

be used to understand the on-surface magnetochemistry of

metal–organic complexes?

We show that the effect of axial coordination on the spin of

planar coordination complexes like porphyrins and phthalocy-

anines supported on FM substrates can only be understood by

inclusion of the surface-ligand into the considerations. Our

studies demonstrate that on-surface axial ligation can lead to (i)
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spin states that are decisively changed by the interaction with the

substrate, (ii) a change in the spin alignment (sign of the exchange

coupling: parallel or anti-parallel) or (iii) a modification of the

strength of the exchange coupling. These findings are based on

X-ray magnetic circular dichroism (XMCD) spectroscopy and

density functional theory calculations with additional Hubbard

interactions taken into account (DFT + U). Points (i) and (ii) are

revealed in the magnetochemistry of metal-tetraphenylporphyr-

ins (CoTPP, FeTPP and MnTPP) sandwiched between a FM

surface (Co or Ni thin films\) and the NO ligand. To demonstrate

(iii), we investigate the strongly chemisorbed28 Mn-phthalocya-

nine/Co (MnPc/Co) system under the influence of the non-spin-

bearing NH3 ligand in comparison to the spin-bearing NO

ligand. Therefore, the on-surface coordination of metal–organic

molecules is shown to lead to novel magnetochemical effects

beyond those of classical coordination chemistry. Hence, our

observations classify as evidence for the surface spin-trans effect.

Moreover, our data provide case studies for engineering

magnetic metal–organic interfaces in future spintronic

applications.

Results

Research design

The electronic and magnetic properties of both the ad-molecules

and the substrates were investigated by X-ray absorption spec-

troscopy (XAS) and XMCD spectroscopy (Fig. 1a). In the latter

technique, circularly polarized X-rays from a synchrotron source

with opposite helicities were used to perform the absorption

experiments.29 XMCD, the difference of the XAS for opposite

helicities, measured at the L2,3-adsorption edges of the 3d

transition metals provides information on the magnetization of

both the substrates and the adsorbed transition-metal complexes,

separately, in an element-specific manner. Our experimental

observations are complemented by density functional theory

(DFT + U) calculations in order to reveal the effects of the axial

ligation onto the electronic and spin states. In the DFT + U

approach, the strong Coulomb interactions that are present

within the open 3d-shell of the central metal ion are captured by

the supplemented Hubbard U and exchange constant J. This

approach has been shown to provide the correct spin state for

free molecules, as well as for substrate-absorbed metal-porphy-

rins.15,17,30 To manage computational efforts, we carried out

numerical calculations of the on-surface metal-porphyrins

(metal-P), i.e. without phenyl substitution.13,16,17,31

In addition, scanning tunneling microscopy (STM) experi-

ments provide insight into the 2D arrangement of the spin-

bearing molecules at a molecular level and into the morphology

of the samples in general (Fig. 1b and S1 in the ESI†\). X-ray

photoelectron spectroscopy (XPS) is primarily used to monitor

the surface composition, i.e. substrate metal film thickness,

molecular coverage and stoichiometry.

We have systematically studied the adsorption of d7, d6 and d5

transition metal-porphyrins (Co(II)TPP, Fe(II)TPP and Mn(II)

TPP) respectively onto the FM substrates. The spin of these

square-planar complexes has been investigated with respect to

the substrate-molecular bonding and the competitive axial liga-

tion with NO. In the free molecules, the low-spin (S ¼ 1/2),9

intermediate-spin (S ¼ 1)32 and high-spin (S ¼ 5/2)33 states of

CoTPP, FeTPP and MnTPP, respectively, were reconfigured to

low-spin (S¼ 0, 1/2, 0)9,34–36 upon NO (S¼ 1/2) coordination. As

a basis for the discussion of the on-surface coordination in the

focus of this paper, molecular orbital (MO) diagrams37 illus-

trating the NO binding in the absence of the surface-ligand are

provided (Fig. 1c–e\).

XMCD experiments performed on the above spin-systems

allow us to investigate the complex electronic and spin configu-

rations that arise from the competitive interaction between the

surface-ligand and the axial NO ligand. In addition to providing

one unpaired electron, NO can undergo a non-innocent electron-

transfer reaction.38 Thus, to assess the influence of the axial

coordination onto the strength of the exchange coupling with

the surface-ligand, we have chosen to study the strongly

chemisorbed MnPc/Co system and its response to innocent38 and

non-spin-bearing NH3 (S ¼ 0).

XAS and XMCD spectroscopy

Fig. 2 compares the Co, Fe and Mn L2,3-edges XAS and XMCD

spectra recorded on CoTPP/Ni, FeTPP/Ni, MnTPP/Co and

MnPc/Co systems. In the native state, i.e. before axial ligation, the

observed energy positions of the L3-edge XAS signals appear at

�779.8, �709.2, �640.7 and �640.0 eV, respectively, suggesting

considerable electronic interaction of the central metal ion with

the axial surface-ligand, since the oxidation states of the respective

central metal ions seem to be#+2 in comparison to themolecular

bulk states.13,18,27,28,39TheXMCDsignals clearly demonstrate that

there is a stable magnetic moment of the ad-molecule. This

magnetic order in the sub-monolayer regime of paramagnetic

molecules on FM substrates originates from the considerable

Fig. 1 (a) A schematic representation of the X-ray magnetic circular

dichroism (XMCD) experiment on metal-tetraphenylporphyrin (metal-

TPP) adsorbed on a ferromagnetic thin film substrate. The magnetic

moment of the transition metal centers, which is induced by exchange

interaction with the substrate, was studied by XMCD before and after

NO coordination. (b) Scanning tunneling microscopy (STM) of CoTPP

on Ni showing that the molecules lie flat on the substrate. As a guide to

the eye, the chemical schemes have been superimposed on the STM data.

\(c–e\) Molecular orbital (MO) diagrams depicting the reactions of Co, Fe

and Mn TPPs with NO in the absence of the surface-ligands.

This journal is ª The Royal Society of Chemistry 2012 Chem. Sci., 2012, 3, 3154–3160 | 3155
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exchange interaction between the substrate and the ad-mole-

cule.7–10,13,16 From the parallel orientations of the L2,3-edges

XMCD signals of Co, Fe and Mn with respect to those of the

substrates (Fig. S2 in the ESI†\), a FM coupling is concluded in all

native cases. Angular-dependent XMCD measurements reveal a

collinear alignment of the molecular spins with the substrate

magnetization.13 Notably, it is not always the case that the para-

magnetic molecule retains its spin upon adsorption; as for

example, for Co(II) phthalocyanine (CoPc)21,40–43 on Ni substrate

we do not observe an XMCD signal (Fig. S3 in the ESI†\).

NO coordination leads to almost complete quenching of the

XMCD signal in CoTPP/Ni, while for FeTPP/Ni and for

MnTPP/Co the XMCD signal is reduced, but still present

(Fig. 2a2–c2\). Remarkably, the dichroic signal in NO-exposed

MnTPP/Co is oriented antiparallel with respect to the substrate.

Thus, the NO–CoTPP (S ¼ 0) and NO–FeTPP (S ¼ 1/2) in the

on-surface configuration behave in first approximation as

anticipated by MO theory (Fig. 1c and d). However, MO theory

predicts a spin state (S ¼ 0) for NO–MnTPP (Fig. 1e), which is

not seen in our experiment. Moreover, the reversed sign of the

circular dichroism of NO–MnTPP, indicates an antiferromag-

netic (AFM) coupling, which is contrary to the usually observed

FM coupling found in experiments on comparable

systems.12,13,27,28

The XAS of the transition metal centers are also significantly

modified upon NO exposure (Fig. 2a1–c1\): this modification can

be primarily related to (i) a change in the availability of empty

states for the transition of 2p core electrons to the unoccupied 3d

levels being excited by the X-ray photons, and/or (ii) the change

in the oxidation states of the metal ions after ligation with

NO.9–11 The Co, Fe and Mn L3-edge XAS signals are observed

with their maxima at �780.4, �709.3 and �640.9 eV, respec-

tively, after the NO ligation. The stronger shift of the X-ray

absorption peak upon NO coordination for CoTPP (+0.4 eV)

compared to NO–FeTPP (+0.1 eV) and NO–MnTPP (+0.2 eV)

resembles the versatile coordination chemistry of NO, which is

related to the NO–central metal (M) bond angle. The NO–M

bond is known to be bent (�120�) for NO–CoTPP and linear

(�180�) in case of NO–MnTPP; NO–FeTPP is found to have an

intermediate bond-angle.44 In the case of bent M–NO where

back-bonding is less important, NO is sometimes described as the

anionic p-ligand (NO�) with the tendency to withdraw charge

from the metal center, whereas with an efficient back-bonding in

the case of the linear (�180�) bond the increase of the metal

Fig. 2 XAS of CoTPP/Ni (a1), FeTPP/Ni (b1), MnTPP/Co (c1) and MnPc/Co (d1) measured at the respective L-edges, before and after exposure with

the gaseous ligand (NO or NH3). The corresponding XMCD spectra \(a2–d2\), clearly demonstrate an induced magnetic moment in the molecular spin

systems. Positive dichroism at the L3 edges corresponds to ferromagnetic exchange coupling with the substrate. NO ligation modifies the XAS peak

shape. The XMCD spectra show the respective magnetic response of the spin bearingmolecules; the magnetic moment in CoTPP/Ni is almost completely

quenched, for FeTPP/Ni it is modified and reduced, while for MnTPP/Co it is also reduced, but the sign of the XMCD signal is inverted. This

corresponds to an antiferromagnetically coupled magnetic moment. In the case of MnPc/Co (at low temperatures), the increased circular dichroism after

NH3 coordination indicates an increased spin. The magnetization density isosurface plots from the DFT +U calculation of the respective systems before

\(a3–d3\) and after addition of the ligand \(a4–d4\) illustrate the spin density distribution and the bonding geometry. The light yellow isosurface denotes

spin densities parallel to the substrate (ferromagnetic) and the light blue isosurface denotes spin densities antiparallel (antiferromagnetic) to the substrate

spin.

3156 | Chem. Sci., 2012, 3, 3154–3160 This journal is ª The Royal Society of Chemistry 2012
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oxidation state is smaller. The DFT + U calculations of the on-

surface complexes reproduce these bond angles (Fig. 2a4–d4\).

A surprisingly different system is given by MnPc/Co (inter-

mediate spin state of S ¼ 3/2 in the absence of the substrate45),

which strongly chemisorbs to the Co substrate.28 We have

studied the strength of the magnetic coupling to the surface

before and after NH3 coordination by measuring the dependence

of the XMCD/XAS ratio as a function of the temperature. NH3

(S ¼ 0) was chosen, since NO coordination with the d5 ion in

NO–MnTPP/Co (Fig. 2c) leads to a low spin state, i.e. a smaller

XMCD. For MnPc/Co (Fig. 2d1 and d2) we find that the Mn

XMCD/XAS ratio (Fig. S4 in the ESI†\), i.e. the magnetization,

exhibits almost no temperature dependence in the range of 45–

373 K, thus providing evidence for a strong molecule–substrate

magnetic coupling. After coordination with NH3, the XMCD/

XAS ratio shows a strong decrease when approaching room

temperature (Fig. S4 in the ESI†\), thus indicating a significantly

weaker exchange coupling. However, while the exchange inter-

action is reduced, the data recorded at �80 K indicate a sizeable

increase of the spin after NH3 coordination (Fig. 2d1 and d2).

In the following dicussion, the experimental results of all four

spin-systems are interpreted at a microscopic level by means of

DFT +U calculations, as illustrated in the magnetization density

plots (Fig. 2a3–d3 and a4–d4\). The DFT +U calculations predict

magnetization changes that are completely consistent with the

XMCD measurements. This is further discussed in the next

sections, evidencing towards the surface spin-trans effect.

Discussion

On-surface magnetochemistry in low-spin and high-spin metal-

porphyrins: NO coordination to CoP/Ni and MnP/Co

The mechanism of NO binding with low-spin d7 Co(II) and high-

spin d5 Mn(II) porphyrin in the free molecule and the formation

of low-spin (S ¼ 0) nitrosyl complexes9,36 can be rationalized by

the MO diagrams shown earlier (Fig. 1c and e). In the low-spin

Co(II) porphyrin, only the singly occupied dz2 is available for

bonding, thus the NO binding results in a s-bond with the singly

occupied p* orbital of NO, whereas in the high-spin Mn(II)

porphyrin the availability of singly occupied dp orbitals (i.e. dxz
and dyz) results in p-bonding with NO – schematically shown in

the insets in Fig. 3. Our experimental and theoretical results on

these two systems confirm that on the surface, NO binding

proceeds in the same fashion. This is reflected in (i) the higher

electron affinity of s-binding NO, as confirmed in the observed

stronger shift upon reaction with NO in Co XAS with respect to

MnXAS, (ii) the calculatedM–NO bond angles (Fig. 2a4 and c4)

and (iii) the hybridization of the d states with NO (Fig. 3b and d).

Recent DFT + U calculations showed that metal-porphyrins

can chemisorb or physisorb on metallic substrates.31 In the case

of chemisorbed metal–organic molecules, van der Waals inter-

action corrections can be neglected. In our DFT +U calculations

for chemisorbed CoP/Ni (Fig. 3a), the hybridization of the singly

occupied dz2 orbital with the substrate yields a reduced spin state

of�0.71 mB on Co. For the on-surface NO-complex (Fig. 3b), we

find a magnetic moment of�0.04 mB on Co, i.e. the spin is almost

completely quenched and the local magnetic density of states

(LMDOS) is now equally distributed over the two spin-channels

(spin [ and spin Y). The quenching of the spin is in accordance to

our experimental results (Fig. 2a1 and a2) and similar to the

outcome for the free molecule (Fig. 1c). The hybridization of the

dz2 with the substrate is reduced in favor of hybridization with

NO and separation into bonding and antibonding states.

Notably, the distance between the Co-ion and the substrate is

increased only slightly (by 0.06 �A from initial 2.34 �A), thus

reflecting that NO exerts here only a small structural trans

effect.7,44 Notably, the observed reduction of the magnetic

moment due to hybridization with the substrate is consistent with

our XMCD data of Co-octaethylporphyrin/Ni (CoOEP/Ni) and

CoPc/Ni systems, where we find that the magnetic moment is

more strongly reduced in CoOEP/Ni, which has less bulky

substituents than CoTPP and is even quenched in the case of

CoPc/Ni (Fig. S2 in the ESI†\). In contrast to CoP/Ni, the

influence of the surface-ligand on the spin is clearly visible in

MnP/Co (Fig. 3c and d); without NO, the spin state is slightly

reduced to �4.35 mB on Mn (between S ¼ 2 and 5/2, cf. ref. 31).

NO binding affects all d-states and yields a significant structural

trans effect, as reflected in the increased distance (by 0.3 �A from

initial from 2.11 �A) between the Mn-ion and the surface. This

leads to a decreased hybridization between the substrate and dp
(now hybridized with NO and separated into bonding and

antibonding states) and of dz2 (now mostly unoccupied orbitals

of Mn). Importantly, while reducing the spin significantly

towards a low-spin state (S¼ 0), a magnetic moment of�0.49 mB
remains AFM-coupled with the substrate. In Mn-XMCD

(Fig. 2c2), this is expressed by the inverted sign of the circular

dichroism.

Fig. 3 The 3d orbital local magnetic density of states (LMDOS) is

shown for CoP/Ni (a), NO–CoP/Ni (b), MnP/Co (c) and NO–MnP/Co

(d) in the chemisorbed case. Without NO, both CoP and MnP are found

to be ferromagnetically (FM) coupled with the respective substrates.

The out of plane dz2 and dp orbitals of CoP andMnP are hybridized with

the substrate, as reflected in the broadening of the respective states. In the

case of CoP/Ni, the hybridization of dz2 leads to a reduction of the spin

below the initial value of S ¼ 1/2. The binding of NO onto the surface-

supported CoP can be rationalized in the formation of a s-bond with dz2

of Co (depicted in the inset), as seen in the separation of the state. In the

case of MnP, a p-bond between dp of Mn and p* of NO is formed, as

depicted in the inset. The NO binding is found to weaken the hybrid-

ization of the d states with the substrate. The spin state of the on-surface

NO–CoP is approximately zero (S z 0) in good agreement with

considerations neglecting the substrate (S ¼ 0). In contrast, the spin state

of the on-surface NO–MnP complex cannot be rationalized in neglect of

the surface where a spin state of S ¼ 0 is expected. Consistent with the

experiments, a spin state between S ¼ 1/2 and S ¼ 0 is found to be

antiferromagnetically coupled to the substrate.

This journal is ª The Royal Society of Chemistry 2012 Chem. Sci., 2012, 3, 3154–3160 | 3157
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X-ray diffraction (XRD) data of NO–CoTPP in bulk shows a

displacement of the Co ion from the center of 0.09 �A, a value

which is slightly larger than our calculated Co lift-up on the

surface. The Co–N\(NO\) bond length (1.83 �A) and angle

(#128.5�) correspond very well with the calculated on-surface

bond length (1.82 �A) and angle (�123.6 �). In the case of NO–

MnTPP in bulk,46XRD data shows aMn–N\(NO\) bond length of

1.64 �A and a linear (177.8�) Mn–N–O bond.47 This corresponds

very well with the calculated on-surface Mn–N\(NO\) bond length

(1.63�A) and angle (177.0�). The displacement of theMn ion from

the center (0.34 �A) is comparable to the calculated value for the

on-surface configuration. Overall, the structural characteristics

of the calculated on-surface Co, Fe and Mn porphyrins corre-

spond very closely with the XRD data of the bulk species.

However, this is not the case for the spin states, the most

remarkable feature being provided by the AFM coupled spin in

the on-surface NO–MnTPP complex.

On-surface magnetochemistry (FeP/Ni + NO): tuning of the

molecular spin

In contrast to d7 Co and d5 Mn porphyrins where a quenching of

the magnetic moment is anticipated, the case of NO coordination

with d6 Fe porphyrin is expected to yield the low-spin S ¼ 1/2

complex35 (Fig. 1d). The mechanism of NO binding to Fe

porphyrin can be seen as an intermediate between the two

previously discussed d7 and d5 complexes and is primarily

reflected in a Fe–NO angle of �170� for FeP – in between 120�

(d7) and 180� (d5). Furthermore, the intermediate spin state

(S ¼ 1) of Fe(II) porphyrin may change its spin state easily, e.g.

the histidine-bound natural Fe-porphyrin is high-spin (S ¼ 2).48

It is worth mentioning that from all three on-surface metal-

porphyrins reacting with the NO-ligand, it is the Fe-porphyrin

that shows the best reversibility upon heating. NO is completely

desorbed from the FeTPP on-surface complex at �260 �C
(Fig. S5 in the ESI†\), thus at lower temperature than CoTPP

(�340 �C) and in contrast to MnTPP, which is found to be

irreversibly bound within the experimental range up to 400 �C.
This reflects the distinctive bonding fashion and strength

between NO and Co, Fe and Mn ions.

Our DFT +U calculations (Fig. S7 in the ESI†\) for FeP on the

Ni surface have been performed for the molecule, being in both

the physisorbed and chemisorbed conformation. The calcula-

tions yield spin states between S ¼ 3/2 and S ¼ 2 in the case of

physisorption (�3.73 mB) and chemisorption (�3.57 mB). For the

physisorbed and chemisorbed NO–FeP complex we find spin

states of �1.93 mB and�3.49 mB, respectively. On the basis of the

observed reduction of the Fe-XMCD signal (Fig. 2a and b) and

the calculations suggesting that the exchange coupling strength is

not reduced significantly (Fig. S6 in the ESI†\), we favor the

physisorbed FeP configuration which shows a significant

reduction of the spin state.

On-surface magnetochemistry (MnPc/Co + NH3): tuning the

exchange coupling

We now discuss the on-surface magnetochemistry of the MnPc/

Co system (S ¼ 3/2) and the subsequent effect induced by

s-donating axial NH3 ligand. Without an axial NH3 ligand, our

calculations for chemisorbed MnPc on Co (Fig. 4) find a

magnetic moment of �3.25 mB (spin state in between S ¼ 3/2 and

S ¼ 2) and a strong hybridization between the surface and the

out-of plane d-orbitals (dz2 and dp). Note that in spite of their

out-of-plane orientations these d-orbitals carry an in-plane

magnetic moment induced by the substrate. The calculations also

yield a high coupling energy of�189 meV. Experimentally, this is

reflected in the nearly constant XMCD/XAS ratio as a function

of temperature (Fig. S4 in the ESI†\), which yields a lower limit

for the exchange energy in the order of �103 meV, as discussed

further in the ESI.†

In the calculations for MnPc/Co with axial NH3, the ligand

pulls the Mn-ion out of the phthalocyanine plane by �0.42 �A

from initially 2.30 �A and leads to an increased spin of �4.45 mB
(between S ¼ 2 and S ¼ 5/2). In the corresponding experimental

data, the higher spin state is expressed by a higher XMCD/XAS

ratio observed at lower temperatures (Fig. 2d1 and d2).

Remarkably, in our calculations the exchange coupling energy

was found to be reduced to only �4 meV. In the temperature-

dependent XAS/XMCD data, the reduction of the exchange

energy is reflected in a significant decrease of the relative XMCD

signal with increasing temperature (Fig. S4 in the ESI†\). The data

yield an accordingly reduced exchange energy of �31 meV.

Notably, a manipulation of the exchange energy has been

Fig. 4 The 3d LMDOS for MnPc/Co (a) and NH3–MnPc/Co (b), in the

chemisorbed case. Without NH3, the out of plane dz2 and dp orbitals are

significantly hybridized with the substrate, as recognized by their

broadening. In the NH3-coordinated complex, the hybridization with the

substrate is weakened providing narrower d-states. In the calculated on-

surface structure, the Mn-ion is pulled out of the plane towards the NH3

(Fig. 2d4). The spin state of Mn is increased from approximately inter-

mediate spin to approximately high-spin. This is experimentally observed

in the increased XMCD/XAS ratio at low temperatures (Fig. S4 in the

ESI†\). The weaker hybridization with the substrate is reflected in a strong

reduction of the calculated magnetic coupling strength. This is confirmed

by a stronger decrease of the XMCD/XAS ratio of the NH3-complex in

our experiments performed with increasingly higher temperature. A

ferromagnetic coupling is found before and after NH3 coordination.
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claimed for Fe porphyrin, on the basis of the observed reduction

of the circular dichroism after NO exposure,49 but the system has

not been measured at different temperatures. We also note that

the calculations and experiments for FeTPP/Ni and NO–FeTPP/

Ni do not show significant differences in the exchange energy

(Fig. S6 in the ESI†\). The here presented MnPc/Co + NH3 case

unambiguously demonstrates the relation between axial coordi-

nation and exchange energy, i.e. surface spin-trans effect.

Conclusions

The presented data provide an insight into the on-surface mag-

netochemistry of spin-bearing square-planar complexes. The

spins of the complexes (CoTPP, FeTPP, MnTPP andMnPc) are,

before coordination with the optional axial ligand, found to be

ferromagnetically coupled to the ferromagnetic substrate. The

DFT + U calculations reveal a significant hybridization between

the d-states in the transition-metal centers and the surface-ligand

and show how the hybridization is affecting the spin states in the

on-surface complexes. Subsequent axial coordination with the

gaseous ligands (NO or NH3) was found to lead (i) to a rear-

rangement of the electronic structure in general agreement with

coordination chemistry and (ii) to induction of a structural trans

effect on the surface with a magnitude depending on the exact

chemical species involved. The structural trans effect is

concluded from the calculated increase of the distance between

the transition-metal center and the substrate, as well as from the

decrease of the hybridization with the surface-ligand. In the

XMCD data of d7, d6, d5 porphyrins and NO this is reflected

respectively by a quenching of the spin in CoTPP/Ni, a modifi-

cation of the spin in FeTPP/Ni, and most notably a remaining

magnetic moment in MnTPP/Co whose alignment with the

substrate changed from FM to AFM by axial-ligation. The last

system, namely MnPc/Co demonstrates that an axial ligand (here

NH3) may lead to a reduction of the exchange coupling strength.

Hence, our data provide compelling evidence that on-surface

axial-ligation leads to a trans effect, which influences the

molecular spin state, as well as the sign and strength of the

exchange interaction. We therefore propose the term surface

spin-trans effect for the consequences of the structural trans

effect on the spin and the exchange coupling’s sign and strength.

The surface spin-trans effect is anticipated to serve as a

powerful concept in the design of tailor-made spin-tunable

metal–organic interfaces, which may find applications in mag-

netochemical sensors, in components for future spintronic

devices or quantum computing building-blocks. Our study

underlines that on-surface magnetochemistry is emerging as a

novel arena challenging the notions of classical coordination

chemistry.
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1 Experimental section 
The Ni and Co thin films of 20 monolayer thickness have been grown on Cu(001) single 
crystals, thereby producing ferromagnetic thin films with well defined magnetic shape-
anisotropy in order to re-orient the sample magnetization with a limited external field1,2. 
CoTPP, FeTPPCl, MnTPPCl, MnPc, CoOEP and CoPc were evaporated (~0.7-0.9 ML) 
onto freshly prepared non-magnetized Ni and Co substrates kept at room temperature. 
Upon deposition of Fe(III)TPPCl and Mn(III)TPPCl onto Co and Ni substrates, Cl 
dissociates to form Fe(II)TPP and Mn(II)TPP3,1. 
 
We have used commercially available transition-metal compounds,. The purity of the ‘as 
deposited’ substance is generally higher due to the characteristics of the sublimation 
process. This is particularly true after thorough degassing at lower than sublimation 
temperatures. The molecules have been checked occasionally by sublimation with 
posterior chemical analysis and routinely with XPS 4. The suppliers and purities (if 
available) are listed as follows: 

• CoTPP, Co(II) tetraphenylporphyrin, Porphyrin Systems, Germany, 98 % 
• CoPc, Co(II) phthalocyanine, Sigma-Aldrich, Switzerland 
• CoOEP, Co(II) octaethylporphyrin, Sigma-Aldrich, Switzerland 
• FeTPPCl, Fe(III) tetraphenylporphyrin chloride, Sigma-Aldrich, Switzerland 
• MnTPPCl, Mn(III) tetraphenylporphyrin chloride, Porphyrin Systems, Germany, 

98 % 
• MnPc, Mn(II) phthalocyanine, Sigma-Aldrich, Switzerland 

 
The quality of the substrates and the epitaxy of the monolayer and multilayer films was 
monitored by a quartz microbalance and verified in the XPS (monochromatic Al Kα 
excitation). The evaporation of the molecules was performed with home-built 
evaporators, the molecules were thoroughly degassed before sublimation,  and the 
stochiometry after sublimation was checked by XPS. The evaporation rates were in the 
order of 0.5 to 0.25 ML/min, and the pressure during the evaporations was resided in the 
low 10-9 mbar regime. We would like to note that the used transition-metal compounds 
evaporate well and that XPS studies on multilayer films did not show the presence of 
impurities. The Co and Ni thin films were produced by electron beam evaporation, the 
Cu(001) single crystals were prepared by repeated cycles and Ar+ ion sputtering and 
annealing. The cleanliness and morphology of the samples was checked by XPS and 
STM, respectively, c.f. refs. 1,2.  
 
STM images were taken in the constant-current mode at room temperature using W tips. 
The ferromagnetic thin films were magnetized with an external magnetic field of ~150 
mT along the respective easy axis of magnetization. The L2,3-edges absorption spectra 
were recorded in total electron yield (TEY) mode in remanent magnetization of the 
substrate at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source 
(SLS)5. About 30 Langmuir (L) of NH3 was dosed on the MnPc/Co system kept at ~80 K. 
Dosing of NO (~6000 L) on both CoTPP/Ni and MnTPP/Co systems was done at room 
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temperature while for the FeTPP/Ni system the temperature was kept at 100 K. All 
measurements were performed in UHV and a portable vacuum chamber was used for 
sample transfer1,2. 
For the DFT+U calculations, we have used the VASP full-potential plane-wave code6 
with a kinetic energy cut-off of 400 eV. The Perdew-Wang parametrization7 of the DFT-
generalized gradient approximation exchange-correlation functional was used. The 
Hubbard U and exchange constant J were taken to be 4 eV and 1 eV, respectively. We 
performed full geometric optimizations of the porphyrin molecules, including their 
distance and position on the surface, together with a full relaxation of the top substrate 
layers. Three atomic layers modeled the substrate. Reciprocal space sampling was 
performed using 2x2x2 Monkhorst-Pack k-points.  
To manage computational efforts, we have carried out numerical calculations of the on-
surface metallo-porphins (metal-P), i.e. without phenyl substitution3,8–10. The replacement 
of the phenyl end groups by hydrogen atoms might influence the magneto-chemical 
properties in the following ways. First, the phenyl end groups might induce a somewhat 
shorter or longer bonding distance of the metal-organic macrocycle to the substrate. This 
might affect the strength of the magnetic coupling of the central metal ion to the 
substrate. However, we do not expect that the magnetic coupling is changed thereby, for 
example, from parallel to anti-parallel coupling. It is also worthwhile to note that the 
current calculations (without phenyl end groups) reproduce fully the experimentally 
observed magneto-chemical couplings. Also, aspects of the NO or NH3 bonding to the 
central metal ion will most likely not be affected. A second way in which the phenyl end 
groups might affect the coupling of the metal-organic molecule to the substrate could be 
through inducing a slight deformation of the macrocycle. Some forms of induced chirality 
have been observed by STM for metal-organic molecules on surfaces11. Such stronger 
chirality might affect the crystal electrical field at the central ion. An answer to the 
occurrence and possible importance of such deformations might be obtained from future 
precise STM measurements.  
 

2 STM data 

 
Fig. S1 STM images recorded on sub-monolayer coverages of the metallo-porphyrins on the ferromagnetic 
thin films: CoTPP/Ni (a), FeTPP/Ni (b) and MnTPP/Co (c).   
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In STM experiments performed at room-temperature (Fig. S1), we find that the metallo-
porphyrins on the here studied ferromagnetic thin films (20 ML of Ni and 20 ML of Co 
on Cu(001)) do not self-assemble. The molecules are found in different adsorption 
geometries, i.e. conformations and orientations with respect to the substrate. Only a slight 
ordering between next neighbors is observed, mainly for FeTPP on Ni. The suppression 
of self-assembly at room temperature indicates a considerable interaction between the 
molecules and the substrate. This is in contrast to self-assembly as observed on less 
reactive substrates, i.e. oxygen-reconstructed Co/Cu(001)1. The STM tunneling 
parameters used in the shown STM data are: 1.05 V, 50 pA for Figs. 1b and S1a; -1.2 V, -
60 pA for Fig. S1b; 1.25 V, 30 pA for Fig. S1c. 
 

3 XAS and XMCD of the substrates 

 
Fig. S2 XAS and XMCD of the substrates.  
 
XMCD and XAS data of the substrates of the CoTPP/Ni, FeTPP/Ni, MnTPP/Co and 
MnPc/Co systems are shown in Fig. S2. Exposure with NO marginally affected the 
magnetization of the substrate, giving rise to a < 15 % reduction in the XMCD/XAS. 
When dosing NO/NH3 onto the sample kept at ~100 K, i.e. as done for FeTPP/Ni and 
MnPc/Co no reduction in the XMCD/XAS signals is observed.  
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4 XAS and XMCD of CoOEP/Ni and CoPc/Ni 

 
Fig. S3 XAS and XMCD of Co-phthalocyanine (CoPc) and Co-octaethylporphyrin (CoOEP) on Ni, 
measured at room temperature.  
 
Performing a XAS and XMCD study of CoPc/Ni and CoOEP/Ni (Fig. S3) we find, in 
comparison to CoTPP/Ni (Figs. 2a1 and 2a2) with an XMCD/XAS ratio at the L3-edge of 
~23%, that the circular dichroism in CoOEP/Ni is reduced to ~15%, while CoPc/Ni 
shows only small remnant features in the circular dichroism, amounting to ~1.5% at the 
L3 edge. Also, CoPc/Ni does not show the circular dichroism signal at the L2 edge with 
opposite sign to that at the L3 edge, as found in the other systems. Thus, the XMCD 
signal indicates the absence of a dipolar magnetic moment of CoPc on Ni.   
 
In view of the literature12–15 concerned with CoPc on ferromagnetic substrates and our 
DFT+U calculations, showing a reduction of the magnetic moment already in CoTPP/Ni 
(Figs. 3a and 3b), we tentatively explain the observed loss of the magnetic moment in 
CoPc and the observed reduction in CoOEP/Ni compared to CoTPP/Ni as a result of a 
strong hybridization of the half-filled dz

2 orbital with substrate orbitals.  
 
Note that, for CoPc/Au(111) where the absence of a Co XMCD is observed16, too, this 
was explained in terms of a coherent superposition a d7 and d8 electronic states. This 
explanation could be considered in the present case as well, however keeping in mind the 
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decisive differences in the character of the Au and Ni substrates respectively: 6s vs. 3d 
bands at the Fermi level and diamagnetism vs. ferromagnetism.  

5 Exchange coupling strength in MnPc/Co and NH3-MnPc/Co 
The temperature-dependence of the magnetization in MnPc was fitted with the Brillouin 
function17:  
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In the model, the magnetization in the molecule µmol depends on the magnetization of the 
substrate µsub, the absolute temperature T and the exchange energy Eex: 
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Tk

E
B

B
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Jsubmol µµ =  

J is the total angular momentum and kB the Boltzmann constant. For the fit, J was chosen 
in accordance with the DFT+U calculations to be 3/2 for MnPc and 2 for NH3-MnPc. The 
exchange energies calculated from the fit vary only slightly with the choice of different 
values for J. The approach to extract the exchange energy is discussed in detail in Refs. 
18,9.  
 
The magnetic moment of Co was found to depend only weakly on the temperature 
(~5%)18, and is therefore assumed to be constant.  
 

 
Fig. S4 Temperature dependence of the XMCD/XAS ratio of MnPc/Co before and after NH3 exposure. The 
symbols (e.g. triangles, etc) mark different experimental runs.   
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The fit to the temperature dependence (Fig. S4) of MnPc/Co before NH3 exposure, which 
yields a value of 103 meV, is to be seen as an estimate of a lower limit since the 
XMCD/XAS ratio was found to vary only slightly within the measured temperature 
range. In comparison, for FeOEP/Co, a high exchange energy of 70 meV was found 9.  
After exposure to NH3 with the sample kept at 70 K, and variation of the temperature, a 
significant temperature dependence of the XMCD/XAS ratio was found. The estimated 
exchange energy is ~31 meV.  
 
Note, that the herein shown temperature dependence data before and after NH3 exhibits 
significant scatter and high error bars mainly due to limitations in the control of the exact 
temperature, the coverage and the fact that at room temperature NH3 was found to desorb 
slowly with a lifetime of a few hours. 
The decrease of the exchange energy from ≥ 103 meV to 31 meV, is in qualitative 
agreement with the DFT+U calculations which yield values of 189 meV without NH3 and 
4 meV with NH3. 

6 Reversible coordination of NO on FeTPP/Ni and temperature 
dependence 

 
Our XAS/XMCD experiments on FeTPP/Ni reveal that the coordination of NO onto 
FeTPP/Ni shows a very good reversibility by annealing to 260°C (Fig. S5).  
The spin on Co of CoTPP/Ni is recovered by annealing to 340°C, a significantly higher 
temperature than for FeTPP/Ni, which opens up the possibility for structural changes on 
the reactive substrate as indicated by an incomplete (~70%) response to subsequent NO 
exposure. Notably, we found that NO coordination onto MnTPP/Co was not reversible in 
the experimental range up to 400°C.  
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Fig. S5 XAS and XMCD of FeTPP/Ni for the native, NO-dosed and annealed system. 
 

 
Fig. S6 Temperature dependence of the XMCD/XAS ratio of FeTPP/Ni before and after NO exposure. 
Compared to ~40K, the XMCD/XAS ratio of the room temperature data is reduced by 58.6 and 53.8 % 
respectively. This difference is within our error-bars, i.e. we do not observe a significant change of the 
exchange energy in FeTPP/Ni (+NO).  
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We have measured the XMCD/XAS ratio (Fig. S6) of FeTPP/Ni and NO-FeTPP/Ni at 
low temperature and at room temperature. However, the respective data taken at ~40 K 
and 300 K for FeTPP/Ni (before and after NO coordination) showed only a small 
difference in the Fe-XAS/XMCD ratio thereby suggesting that the magnetic exchange 
coupling strength was not significantly affected by the NO coordination. These 
observations are further confirmed by DFT+U calculations revealing an exchange energy 
of 114 meV for FeP/Ni and of 110 meV for NO-FeP/Ni. 
 

7 FeP/Ni + NO: physisorption vs. chemisorption  
In case of the intermediate-spin system FeTPP (S=1), the axial ligation with NO (S=1/2) 
is expected to lead to an S=1/2 state of NO-FeTPP if the surface is neglected (Fig. 1d). 
This is achieved by the unpaired spin of the NO in combination with the high ligand-field 
strength of NO imposing a low-spin electronic configuration in the nitrosyl complex.  
The coordination of NO with FeTPP affecting the spin-state of Fe2+ ion is reflected by the 
Fe-XAS/XMCD spectra presented in Figs. 2c and 2d. Specifically, the vanishing of the 
Fe-XAS/XMCD shoulder peak at ~707.1 eV and diminishing of the main peak at ~709.2 
eV is a signature of NO coordination. Importantly, the coordination of NO to FeTPP was 
found to be reversible by annealing to 260°C (c.f. Fig. S5). 
 
In the DFT+U calculations we have considered both the physisorbed and chemisorbed 
FeP/Ni configuration (Fig. S7). In the latter adsorption configuration, the Fe ion distance 
to the top Ni layer is 2.19 Å and the Fe magnetic moment is 3.57 µB, i.e. a spin state 
between S=3/2 and S=2, with tiny magnetic moments existing on the N and C atoms in 
the molecule. Hence, the molecular spin has increased from S=1 for FeP in the gas phase.  
Ferromagnetic coupling of the FeP to the Ni is identified.  
 
With NO, the molecule is significantly distorted and the Fe atom is pulled towards the 
NO leaving a distance of 2.55 Å to the surface. The Fe-NO bond angle is 169.5° and the 
Fe-NO bond length is 1.76 Å. Surprisingly, the magnetic moment of Fe is reduced only 
slightly to 3.49 µB. This small decrease in the Fe spin found in the DFT+U calculations 
for chemisorbed FeP on Ni is clearly not enough to explain the observed Fe-XMCD data 
obtained after NO exposure.  
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Fig. S7 Results of DFT+U calculations for FeP on Ni before and after NO coordination. Fe 3d 
orbital LMDOS for FeP/Ni (a) and NO-FeP/Ni (b) chemisorbed, and FeP/Ni (c) and NO-FeP/Ni 
(d) physisorbed on Co. Spin density isosurfaces for FeP/Ni and NO-FeP/Ni on Co, in 
chemisorbed (e&f) and physisorbed (g&h) configuration. Light yellow color denotes a spin 
density parallel to that of the Co substrate, light blue color an antiparallel spin density.  
 
In the case of physisorbed FeP/Ni configuration, where the influence of the surface is 
weaker, the situation is different: the Fe magnetic moment is strongly reduced from 3.73 
µB to 1.93 µB upon NO coordination (corresponding to a spin state close to S=1/2). Such 
a change in the molecular spin state is close to the expectations for the gas phase and can 
be seen as an effect of the strong ligand field of the NO-ligand resulting in an up-shift of 
the formerly singly occupied dx

2-y
2 state which is almost completely unoccupied after NO 

coordination and a down-shift and occupation of the formerly singly occupied dxy orbital. 
With NO, the distance from the surface is increased from 3.11 Å to 3.69 Å and Fe-NO 
bond length is 1.76 Å. Thus on the basis of our presented data, we prefer to assign the 
FeTPP/Ni system to be in rather physisorbed than chemisorbed configuration since the 
observed change in the XMCD in combination with the temperature dependence 
XAS/XMCD intensity ratio is consistent only with physisorption.  
 
The calculated values are in good agreement with X-ray diffraction data on bulk NO-
FeTPP, where a Fe-N-O angle of 149° and a Fe-N(NO) bond length of 1.72 Å is 
reported19. In this case, the NO-induced displacement of the Fe ion is 0.21 Å. This is 
clearly higher then in case of the NO-Co porphyrin bond.  
  
In case of FeTPP/Ni, we find that the interaction with the substrate leads to an increase of 
the spin. Furthermore, we find that in contrast to CoTPP/Ni, NO exerts a significant 
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structural trans-effect. Not surprisingly, the coordination of NO (one unpaired electron) 
with d6-Fe(II) (even number of electrons) does not result in a loss of the spin as for d7-
Co(II) (odd-number of electrons). 
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2.3 Two-Dimensional Supramolecular Electron Spin Arrays

Summary: In this study we show the formation of a nanoscale array of Fe and Mn spin-

systems arranged in an alternating, chessboard-like fashion. The nanoscale array is produced by

mere co-evaporation of the molecular building-blocks. The work is based on a number of impor-

tant concepts: i) the molecular self-assembly of planar molecules based on C–F· · ·H–C hydrogen-

bonds [59, 60], ii) the previous observation from our group that porphyrins/phthalocyanines

self-assemble only on oxygen-reconstructed Co or Ni and not on native (clean) substrates [21]

and iii) the magnetochemical spin-switching effect by axial ligation with a suitable chemical

agent. In this work, we use Fe(II)-perfluoro-phthalocyanine (synthesized in the group of S.

Decurtins) and Mn(II)-phthalocyanine as molecular building blocks, an oxygen-reconstructed Co

thin film as the ferromagnetic substrate and NH3 as the axial ligand. Remarkably, the mechanism

responsible for Fe(II)-perfluoro-phthalocyanine’s spin off-switch is analogous to the mechanism

in the spin on-switch, i.e. the interaction with the lone-pair of NH3 increases the energy of

the dz2 orbital.[[4]] However, in case of intermediate-spin Fe-perfluoro-phthalocyanine the dz2

orbital is initially singly occupied. Rising the dz2 energy level results in a situation where the

low-spin (S = 0) state is preferred. In case of Mn(III)-phthalocyanine (as identified by XAS),

NH3-coordination could not quench the spin-state.

Paper [[3]] is published in Advanced Materials

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permis-

sion.

http://dx.doi.org/10.1002/adma.201204274
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 In the pursuit of future spintronic applications, investigations 
of addressable atomic and molecular arrangements of spin sys-
tems on surfaces have received increasing attention in recent 
years. [  1–3  ]  Common to this work is that spin-bearing ad-surface 
atoms are probed individually by scanning tunneling micro-
scopy/spectroscopy (STM/STS) and that they are arranged by 
atomic repositioning techniques. This piece by piece assembly 
technique is very time-consuming and therefore impractical 
for technological applications. Further, the limited resolution 
of lithography does not yet allow for the production of spin-
systems with atomic precision. In the present work, we dem-
onstrate that spontaneous molecular self-assembly [  4  ,  5  ]  is able 
to provide an interesting alternative. A well-defi ned supramo-
lecular spin-array on a ferromagnetic substrate is obtained by 
the self-assembly of appropriately functionalized square-planar 
molecular building-blocks. [  6–16  ]  In these unique bi-molecular 
arrays the electron spin state can be reversibly controlled by 
a chemical stimulus [  17  ,  18  ]  acting specifi cally on one of the 
two metal centers. Our approach involves a combination of 

supramolecular chemistry for  engineering  the spin arrays and 
coordination chemistry for  manipulating  them. A selective mag-
netic control over specifi c sublattices in large area spin arrays 
has therefore been achieved. 

 The on-surface self-assembly of spin-bearing molecules is 
obtained by decorating the substrate with oxygen atoms [  11  ]  
and by supramolecular arrangement of the molecular building 
blocks which is directed by functional groups. The incorpora-
tion of fl uorine-substituents into the Fe-phthalocyanine enables 
the formation of intermolecular C − F ·  ·  · H hydrogen-bonds 
with the Mn-phthalocyanine. [  19  ,  20  ]  The such generated bi-
molecular chessboard pattern is thermodynamically the most 
stable arrangement as the number of hydrogen-bond interac-
tions is maximized ( Figure    1  ). Specifi cally, we use a perfl uori-
nated iron(II) phthalocyanine (FeF 16 Pc) [  21  ]  and a manganese(II) 
phthalocyanine (MnPc) as the molecular building blocks. 
Thereby a 2D  spin array  of alternating Fe–Mn–Fe spins (Fe–Mn 
pitch:  ∼ 1.65 nm) is produced by mere co-evaporation of the 
molecules. Here, we have assembled the molecules on a c(2 × 2) 
oxygen-reconstructed Co(001) surface, [  11  ]  but we show that the 
chessboard-like assembly also takes place on other surfaces, e.g. 
on Ag(111) (Supporting Information). Note that, in absence of 
fl uorine-functionalization, the molecules occupy random sites 
in the self-assembled layer (Supporting Information).  

 The electronic confi guration and the corresponding magneti-
zation of the transition metal centers in the FeF 16 Pc and MnPc 
molecular building blocks and in the Co substrate are probed by 
X-ray absorption (XA) spectroscopy (XAS) and X-ray magnetic 
circular dichroism (XMCD). [  22  ]  XMCD, the difference between 
XA spectra obtained with circular plus and minus (circ + /circ-) 
polarized X-rays, provides a measure of the magnetization for 
each element. The dichroism measured at the L 3,2  absorption 
edges allows for the element-specifi c detection of the mag-
netic moments in the Fe and Mn ions of the supramolecular 
array and in the Co atoms of the substrate (Figure  1 ). The pres-
ence of a negative XMCD signal (the direction of the substrate 
XMCD signal is defi ned as positive) at the L 3  edge denotes an 
antiferromagnetic (AFM) spin alignment of the Fe and Mn ions 
in the molecules with respect to the oxygen-reconstructed sub-
strate. [  23  ,  11  ]  We call the initial state of the supramolecular spin 
array, in which both Fe- and Mn-lattices bear an AFM-coupled 
spin, the spin ON/ON state ( Figure    2  a,e). The oxidation states 
can be identifi ed from the XA spectra. Specifi cally, the Mn L 3  
XA peak-shape and position (maximum at  ∼ 641.7 eV) of MnPc 
on the oxygen-reconstructed cobalt surface identify it as Mn(III)
Pc, in contrast to the molecule in bulk. [  24  ]  In the case of FeF 16 Pc, 
the L 3  XA peak-shape and position (maxima at  ∼ 710.0 eV) can 
be assigned to Fe(II)F 16 Pc. [  25  ]   
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 We selectively control the electron spin states in the self-
assembled array by the metal center’s specifi c response to a 
chemical stimulus. [  17  ,  18  ]  This approach is inspired by the bio-
chemical oxygen transport and storage through O 2  coordina-
tion to the metal-organic heme group. The coordination and 
desorption of NH 3 , the chemical stimulus chosen in this study, 
switch the spin states of the self-assembled supramolecular 
array (Figure  2 ). The axial NH 3 -ligation is imposed by dosage 
of 100 Langmuir while the sample has been kept at  ∼ 70 K. The 
electronic structures of  both  the Fe and Mn are consequently 
modifi ed, as refl ected in the characteristically different peak 
shapes observed in both XA spectra (Figure  2 b,f). The coordina-
tion with NH 3  via its lone-pair results in an increased energy of 
the  3dz2    orbital, consequently yielding a low-spin (S  =  0) con-
fi guration in NH 3 -ligated Fe(II)F 16 Pc which corresponds to a 
vanished Fe-XMCD signal as seen in Figure  2 b. Note that NH 3 -
ligation is distinctly different from the axial coordination with 
nitric oxide (NO, S  =  1/2) where the observed annihilation of 
the spin has been attributed to the unpaired electron in the NO 
ligand. [  26  ]  In the case of NH 3 -ligated Mn(III)Pc, the coordina-
tion  does not  quench the spin (Figure  2 f) but merely modifi es 
it, as evidenced by the modifi ed XMCD peak-shape, cf. ref. [16] 
Since the Fe spin is quenched, whereas the Mn spin remains 
in a modifi ed spin ON’ state, this results in a spin OFF/ON’ 
state of the supramolecular chessboard. The relatively weak 
binding between NH 3  and the ad-complexes allows desorp-
tion of the NH 3  ligand and restoration of the original spin ON 
state by annealing to 300 K (Figure  2 c,g). Repeated exposure 
to NH 3  leads to the spin OFF/ON’ state of the supramolecular 

spin array, demonstrating reversibility of the switching process 
(Figure  2 d,h). Importantly, the substrate is not affected by the 
adsorption/desorption cycles (Figure  2 i–l). 

 Besides the selective spin switching we observe character-
istic, site-specifi c differences in the ammonia bonding by direct 
STM experiments. The native spin array ( Figure    3  a,b) appears 
with distinct imaging contrast at a sample bias-voltage of 
 + 1.9 V. Under these conditions, the FeF 16 Pc macrocycle appears 
larger than the MnPc macrocycle and an eight-lobed feature 
is observed. The feature corresponds well to the macrocycle’s 
lowest unoccupied molecular orbital as also depicted in Figure  1 . 
Upon exposure to NH 3  at a sample temperature of 78 K, we 
observe the ligands on both FeF 16 Pc and MnPc molecules 
at a bias voltage of  + 0.4 V (Supporting Information). After 
increasing the sample temperature to  ∼ 130 K, the NH 3  ligands 
are only found on the MnPc molecules, where they are seen as 
shaky, streak-like features which appear and disappear between 
individual scan lines (Figure  3 c). Note that at both temperatures 
a low current set-point is important to minimize the interac-
tion with the STM tip and to avoid NH 3  desorption. These data 
directly reveal a higher affi nity of NH 3  to Mn(III)Pc over Fe(II)
F 16 Pc. This selectivity constitutes an additional parameter to 
control the spin in the self-assembled bi-molecular array. We 
may note here, that the formation constants of NH 3  complexes 
with metal ions are not yet well known, since aqueous phase 
coordination chemistry of NH 3  is limited as most metal ions do 
not form stable ammonia complexes, but react with hydroxide. 
Nevertheless, the estimation of the formation constants of NH 3  
complexes for a large selection of metal ions also demonstrates 

     Figure  1 .     Bottom-up assembly of the supramolecular spin array. Chemical structures of FeF 16 Pc and MnPc are superimposed on the scanning tunneling 
microscopy (STM) image which directly visualizes the supramolecular chessboard-like 2D lattice and the intramolecular electronic structure. Thus, the 
resulting molecular array consists of two superimposed spin-bearing lattices: Fe (dark-blue spheres in jigsaw pieces) and Mn (green spheres in jigsaw 
pieces). X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) on the respective L 3,2  edges indentify the antiparallel 
orientation of the Fe or Mn magnetic moments in the self-assembled 2D array with respect to the magnetization of the oxygen-covered ferromagnetic 
Co substrate. This antiparallel alignment stems from the super-exchange interaction via the oxygen-reconstruction. The data shown here are obtained 
at 70 K, but the spin-alignment as well as the supramolecular arrangement is strong enough to be observed up to room temperature.  
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molecules differ not only in their orientation with respect to the 
substrate but also in the relative orientation of the molecular 
building blocks. The FeF 16 Pc and MnPc molecules are found 
to be rotated by  + /– 14 °  with respect to the  < 110 >  directions 
of the substrate, leading to organizational chirality. [  30  ]  (Figure  3  
and Supporting Information). Thereby a 2D magnetic lattice 

a considerably higher affi nity for Mn(III) over Fe(II) ions. [  27  ,  28  ]  
In vacuum, the coordination of NH 3  with FePc [  29  ]  is consistent 
with our observations.  

 The interaction with the oxygen-reconstructed substrate 
results in the formation of two mirror-domains of the self-assem-
bled 2D lattices. [  11  ]  These mirror domains of self-assembled 

     Figure  2 .     Reversible and selective manipulation of the electron spin states in the Fe and Mn lattices on the oxygen covered Co substrates. X-ray absorp-
tion spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) of the Fe (a-d), Mn (e-h) and Co (i-l) L 3,2  edges of the respective Fe(II)F 16 Pc 
(with dark-blue centers) and Mn(III)Pc (with green centers) molecules and the oxygen-reconstructed Co substrate. The complex electronic structure 
of the transition metal ions is refl ected in the XAS (red and blue for circ +  and circ- X-rays respectively). XMCD is a measure for the magnetic moment 
induced by the ferromagnetic substrate. The spins in the bi-molecular array (a,e) are controlled by consecutive ammonia (NH 3 )-ligation to both 
complexes (b,f), thermal NH 3  desorption (c,g) and subsequent NH 3 -ligation (d,h). As a result, the spin of FeF 16 Pc is selectively switched between the 
spin ON and OFF states (a-d), while the electronic structure of MnPc is modifi ed but the molecules remain spin ON respective spin ON’ (a slightly 
modifi ed state with close to identical magnetization after forming the NH 3 -complex) during the whole process (e-h). The magnetic moment in the 
substrate remains unchanged during the cycles (i-l).  
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tunneling parameters used in the STM experiments are summarized in 
the Supporting Information. 

  XAS/XMCD measurements and NH 3  dosage : XAS/XMCD 
measurements were carried out at the Surfaces/Interfaces Microscopy 
(SIM) beamline of the Swiss Light Source, Paul Scherrer Institute, 
Switzerland. [  36  ]  A portable vacuum chamber with a base pressure in the 
order of  ∼ 10  − 10  mbar, as established in previous experiments by our 
group, [  11  ,  13  ,  16  ,  17  ]  has been used for sample transfer without breaking 
the vacuum. NH 3  (99.98%, water-free, Air Liquide, Germany) was 
introduced with the sample kept at  ∼ 70 K for XMCD (100 Langmuir) 
and at 130 K (100 Langmuir) or 78 K (20 Langmuir) for STM. NH 3  was 
desorbed by annealing to 300 K. The gas-line was cleaned by repeated 
fi lling/pumping cycles. The gas-line was pumped by an oil-free pump, 
the obtained base-pressure of the line was  < 10  − 1  mbar, i.e., less than 
10  − 4  of the NH 3  pressure in the line ( ∼ 1 bar). 

   Supporting Information 
 Supporting Information is available from the Wiley Online Library or 
from the author. 
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without an inversion symmetry is obtained, as currently dis-
cussed in the context of magneto-chiral effects. [  31  ]  

 The combination of on-surface  supramolecular chemistry  with 
 coordination chemistry  provides a facile and unique approach to 
manufacture extended supramolecular arrays with switchable 
spin states. This methodology works irrespective of the lateral 
extent of the 2D spin array. The observation of Mn(III)Pc as 
the on-surface species, also demonstrates that it is important to 
further explore the infl uence of the surface  trans  effect on the 
electronic [  32  ]  as well as on the spin states [  16  ,  17  ]  of coordination 
complexes. Together with the ability to chemically turn OFF the 
spin states of one species in the supramolecular array leading to 
spin ON/ON and OFF/ON’ states, the present approach opens 
the possibility to gain selective magnetic control over large area 
spin arrays. 

 The spin array can be fabricated on other, non-magnetic, 
superconducting [  33  ]  or antiferromagnetic [  34  ]  substrates since 
self-assembly is governed by intermolecular interactions 
between the molecular building-blocks. [  19  ,  20  ]  Particularly inter-
esting for future spintronic applications might be antiferromag-
netic substrates since they promise to obtain exchange-coupled 
spin arrays at room temperature, which can be manipulated 
with external fi elds independent of the substrate. [  35  ]  

  Experimental Section 
  Sample preparation and STM experiments : Cu(001) single crystals 

were cleaned by cycles of sputtering with Ar  +   ions and annealing. 
The preparation of the oxygen-reconstructed Co thin fi lms has been 
described previously. [  11  ]  MnPc (Sigma-Aldrich, Switzerland) and FeF 16 Pc 
(synthesized according to ref. [21]) were co-evaporated on the substrate 
at room temperature. To obtain a  ∼ 50:50 molar ratio of two building 
blocks, the deposition rates were controlled independently for both 
molecules. The cleanliness, the Co fi lm thickness, the oxygen induced 
surface reconstruction, the molecular coverage and the stoichiometry of 
the surface layers were checked by XPS and STM. The STM experiments 
were performed using electrochemically etched W tips and cut Pt-Ir tips 
which were treated in situ by sputtering. Positive bias voltages result 
in tunneling from the tip into unoccupied states of the samples. The 

     Figure  3 .     Direct observation of the coordinated NH 3  ligands by STM. The bi-molecular lattice is imaged at different bias voltages before (native, a,b) 
and after NH 3  exposure (c,d). The FeF 16 Pc and MnPc molecules are represented by jigsaw pieces with dark-blue and green centers, respectively. The 
coordinating NH 3  can be observed at  ∼ 0.4 V bias voltage as elevated streaks (c). At  ∼ 130 K, NH 3  is only observed on the MnPc molecules. The green 
arrows and the blue dotted lines denote a vacancy defect where one molecule is missing (a,b) and a phase-shift domain boundary in the supramolecular 
lattice (c,d), respectively.  
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Figure S1: Formation of the bimolecular array on Ag(111) 

The sublimation of the molecular FeF16Pc and MnPc building-blocks onto a structurally 

different substrate (noble metal, no oxygen-reconstruction, hexagonal symmetry) 

demonstrates that the formation of the bimolecular FeMnFe spin array is dominated 

more by the intermolecular interactions than by interactions with the substrate (Figure S1). 

Obviously, interactions with the substrate have to be weak enough to allow for self-assembly. 

A Moiré-pattern in the bimolecular layer is observed on the Ag(111) substrate.[1] 

 

 
Figure S1. STM of a self-assembled bimolecular layer obtained by co-evaporation of FeF16Pc and 

MnPc on Ag(111). The slightly smaller MnPc and the slightly bigger FeF16Pc building-blocks are 

clearly visible in the zoom-in (a). In the larger-scale image (b) the apparent height of the building-

blocks is observed to vary slightly (signified by dotted lines). This indicates the presence of a Moiré-

pattern, i.e. a superstructure based on the mismatch of the respective lattices of the Ag(111) substrate 

and the bimolecular lattice.  

 

Figure S2: STM data of non-functionalized building blocks 
As a reference, we have co-evaporated FePc (without fluorine-functionalization) with MnPc 

onto oxygen-reconstructed Co. The STM image (Figure 2) shows the occurrence of self-

assembled layers as observed for similar complexes.[2] However, the molecular Fe and Mn 

building-blocks occupy random places within the 2D lattice, i.e. they form a 2D solid solution. 

The molecular building blocks are not readily distinguishable as in the case of FeF16Pc and 

MnPc, but they differ slightly in their apparent brightness.  
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Figure S2. STM of a self-assembled layer obtained by co-evaporation of FePc with MnPc onto 

oxygen-reconstructed Co, i.e. when using the non-functionalized Fe building-block. Both the FePc and 

MnPc appear in STM very similar and do not allow for straightforward identification of the Fe and Mn 

centers, but they have a slight difference in the image-contrast. A self-assembled 2D layer is observed, 

however the position of the Fe and Mn ions within the layer is random, i.e. the system represents a 2D 

solid-solution.  

 

Figure S3: Bias-dependent STM data 

We have studied the imaging contrast obtained on the bimolecular layer as a function of the 

bias voltage (Figure S3). At high positive bias voltages (+1.3 to +1.9 V) the F16Pc and Pc 

macrocycles are well resolved with intramolecular contrast. This contrast can be associated 

with tunneling into the respective (partially) unoccupied states.[3] A distinctively different 

contrast is observed at +0.4 V. In case of tunneling into the singly/fully occupied states at 

negative bias voltages, no pronounced intramolecular contrast is observed; however, a large 

difference in the apparent height on the metal-centers is found.[4,5] 

 

The oxygen-reconstruction on the Co thin film is expected to result in a significant electronic 

decoupling of the electronic states in the molecular adsorbate from the substrate’s electronic 

states, thus allows a good intramolecular contrast, cf. the case of Pentacene/NaCl/Cu(111).[6] 
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Figure S3. STM data of the same area on bimolecular FeF16Pc + MnPc lattice on oxygen-

reconstructed Co. The central molecule is FeF16Pc, the arrangement is illustrated by the jigsaw puzzle 

pieces (dark-blue: Fe, green: Mn). Positive bias voltage values correspond to the tunneling into 

unoccupied states of the sample, negative voltage values correspond to tunneling from occupied states 

of the sample. The size of the images is 5 nm x 5 nm. 

 

Figure S4: Direct observation of the NH3 ligand on both building-blocks at 78K 

Figure S4 shows STM data obtained on the bimolecular layer on oxygen-reconstructed Co 

kept at 78 K, after exposure to NH3. In this case, if scanning is performed at a low current set 

point, the NH3 ligand is observed on both the FeF16Pc and MnPc molecules. 
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Figure S4. STM data of the bimolecular FeF16Pc+MnPc lattice on oxygen-reconstructed Co after 

exposure to NH3 (20 Langmuir), imaged at 78 K with a bias voltage of +0.4 V. In this scanning regime 

(temperature, low current set-point), the NH3 ligand on MnPc is imaged as a solid bright protrusion. 

On the FeF16Pc building-block, the NH3 ligand is imaged as streaks, very similar to the appearance of 

the NH3 ligand on MnPc at 130 K (Figure 3c). A minority of the FeF16Pc molecules appear without 

streaks.  

 

For NH3 adsorbed on Cu(111)[7], the NH3 molecule is imaged as a bright protrusion. The 

transfer of an NH3 molecule to the tip is reported to cause an apparent elongation of the tip by 

0.2 nm. This value corresponds to the observed apparent height of the protrusions on FeF16Pc 

and MnPc displayed in Figure 3c and Figure S4. Note that these values are considerably 

larger than the apparent heights observed on unligated FeF16Pc and MnPc. Interestingly, ref. 

[7] reports the current-induced desorption of NH3 from the Cu(111) surface. This observation 

correlates with the requirement for low current set point to observe the NH3 ligand, and the 

streak-like appearance of the ligand. 

 

Figure S5: Large scale STM data 
The treatment of the Co thin film with O2 during epitaxy (cf. Methods section and ref. [2]) 

results in the formation of a c(2x2) reconstruction[2,8]. The oxygen-reconstruction passivates 

the initially very reactive ferromagnetic thin film and allows the diffusion of the ad-molecules, 

which is a requirement for self-assembly to occur.[2] The STM micrograph of an oxygen-

reconstructed Co thin film is shown in Figure S5a. The oxygen-reconstruction results in 

rectangular step edges along the <100> crystallographic directions. Fine lines are observed on 

the oxygen-reconstruction; we tentatively explain those as grain boundaries in the c(2x2) 

reconstruction, which are related to the oxygen-surfactant mediated growth. 

 

The bimolecular arrays are oriented +/- 14° with respect to the <110> directions (Figure S5b). 

This is a consequence of the square molecular lattice, characterized by four-fold rotational 

symmetry, and its placement on a substrate with four-fold rotational symmetry, thus resulting 

in two energetically equivalent orientations. Thus, the interaction with the substrate breaks the 

initial inversion symmetry of the ideal chessboard lattice and results in organizational 

chirality of the 2D spin arrays.  
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The supramolecular unit cells of the two mirror domains are marked by blue and green 

squares. Both mirror domains also differ in the rotation of the molecular building blocks 

within the unit cell as designated by the crosses within the squares. This internal structure is 

also seen in Figure 3. 

  

In between of the self-assembled molecular arrays, the STM data has a streak-like appearance. 

We ascribe this to the co-existence of a molecular 2D gas with the self-assembled arrays. At 

room temperature (Figure S5b), single molecular building blocks at the edges of the self-

assembled array are adsorbed/desorbed from the molecular 2D gas. They are imaged only 

partly (white circles) since they adsorb/desorb during the scanning process, i.e. within seconds.  

 

 
Figure S5. Large scale STM data of the oxygen-reconstructed Co thin film (a) and of the bimolecular 

co-assembled FeF16Pc+MnPc layer on this substrate (b). The exposure of Co to oxygen results in a 

reconstruction of the Co(001) thin film and leads to the formation of step edges which prefer to follow 

<100> directions of the substrate. In case of the bimolecular chessboard-lattice two mirror domains of 

the supramolecular lattice, rotated by +/-14
o
 with respect to the <110> directions of the substrate, are 

observed. 

 

Table S1: STM imaging parameters 

Table S1 summarizes the bias voltage, current set point and sample temperature of the 

presented STM data. All data were obtained in the constant-current mode. A positive bias 

voltage corresponds to the tunneling from tip into the sample, i.e. into unoccupied states. The 

STM data at 78 K were obtained using a sputtered Pt-Ir tip, all other data was obtained using a 

sputtered W tip. The images were processed with the WSxM software.[9]  

 
Table S1. Imaging parameters of the presented STM data.  

Figure Bias voltage / V Current set  

point / pA 

Sample temperature / 

K 

1 1.9 20 78 

3a 0.4 10 130 

3b 1.9 10 130 

3c 0.4 10 130 

3d 1.9 10 130 
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S1a 0.3 10 300 

S1b 0.35 10 300 

S2 0.8 50 300 

S3 +1.9 to -1.9 10 to 20 78 

S4 0.4 4 78 

S5a 1.25 10 300 

S5b 1.8 40 300 
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2.4 Ammonia Coordination Introducing a Magnetic Moment in
On-Surface Low-Spin Porphyrin

Summary: In the previous works we have shown that axial coordination can result either

in quenching or in tuning of the magnetic moment of a complex. However, no on-surface

magnetochemical reaction has been shown until now to induce a magnetic moment, i.e. act as

a chemical spin on-switch. In this work, we study the d8 low-spin (S = 0) Ni(II)-porphyrin on

a ferromagnetic substrate. The experimental data as well as theoretical calculations show that

the axial coordination of NH3 induces a magnetic moment. The mechanism of this effect is a

conversion from low-spin to high-spin caused by NH3 coordination on surface.

Paper [[4]] is published in Angewandte Chemie International Edition

c© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission.
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The controlled manipulation of spin states in atoms/molecules
is of profound interest towards the design of future spin-based
devices.[1, 2] A prominent example of how spin states are
modified (S = 2$S = 0) can be found in nature�s FeII porphy-
rin moiety within hemoglobin and its coordination with the O2

ligand.[3] Recently, we have implemented this concept in
a synthetic on-surface arrangement using metallo-porphyrins
adsorbed on ferromagnetic surfaces. By axial coordination
with an external NO ligand the induced magnetic moment in
the (S = 1/2) CoII porphyrin has been switched-off.[4] These
experiments depend on a characteristic property of para-
magnetic metallo-porphyrins as well as phthalocyanines: their
interfacial chemical interaction with the ferromagnetic sur-
face ligand induces a magnetic moment stable up to room
temperature.[4, 5] Axial coordination can also be used to
control the magnetic anisotropy[6] as well as the strength
and sign of the exchange interaction.[4b]

Controlling on-surface/interface spin systems[4,5j,k, 6, 7] is
a prerequisite for applications in organic spintronics[1] which
makes this research field increasingly popular. Recently, we
combined chemically directed self-assembly and coordination
chemistry to obtain selectively switchable, highly ordered
supramolecular 2D spin arrays.[5j] Concerning chemical con-
trol of the magnetic moment, only off-switching[4, 5j] and spin-
tuning,[4b, 5k] that is, switching spin-on!spin-off and spin-on!
spin-on’ (a modified spin state) have been established. So far
this set of on-surface chemical spin operations was incomplete
since the spin-off!spin-on case was missing. Generally,

switching the spin in organometallic complexes by external
ligands to the on-state is more difficult to achieve than
switching to the off-state, since chemical bonding has to
overcome the spin-pairing energy. An additional complica-
tion arises from the possibility that the surface can modify the
spin states before as well as after the axial ligation.[4b] This can
also lead to spin-quenching on the surface.[4b, 8] Here we report
on the first demonstration of an on-surface chemical spin on-
switch, for NiII porphyrins (S = 0) adsorbed on a ferromag-
netic (FM) Co substrate, by the diamagnetic (S = 0) external
NH3 ligand. A schematic representation of this spin on-switch
(S = 0$S = 1) is shown in Figure 1a.

To study this effect, NiII tetraphenylporphyrin (NiTPP;
see Figure 1a) molecules were thermally sublimed in ultra-
high vacuum onto clean Co thin films on Cu(001) single
crystals.[4,5e,f,j] For a description of the methods see the
Supporting Information.

In scanning tunneling microscopy (STM) experiments
(Figure 1b), we consistently find the molecules adsorbed in
a random fashion on Co and Ni substrates,[4, 5f] in contrast to
self-assembly of NiTPP on Au and Ag substrates.[9a] Most of
the NiTPP molecules on the Co surface can be recognized as
rectangular shapes—the so-called saddle-shape conforma-
tion[9b] (Figure 1c), whereas a minority of the molecules is
observed as four-leaf clovers,[5f] that is, in the flat, square-
planar conformation of the free molecule. The adsorption-
induced saddle-shape conformation is characterized by a tet-
rahedrally distorted macrocycle[9b,c] and its coexistence with
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the flat conformation has been observed in our previous
studies.[4] Note, that an intermediate conformation (half flat,
half saddle-shape) is also observed (Figure 1c, marked half

green, half blue). STM data obtained after exposure to NH3 at
78 K depict bright blurry protrusions which partly have
a streak-like appearance[5j,10] (see the Supporting Informa-
tion). This suggests considerable degrees of freedom of the
NH3 ligand or partial removal of NH3 during the scanning
process.[5j, 10]

The electronic and magnetic properties of both ad-
molecules (NiTPP) and substrate (Co(001) thin films), as
well as the magnetochemical effect induced by the NH3 ligand
were investigated by element-specific X-ray absorption
spectroscopy (XAS) and X-ray magnetic circular dichroism
(XMCD)[11a] measurements (Figure 2) at the Surface/Inter-
face: Microscopy (SIM) beamline of the Swiss Light Source
(SLS).[11b] For 3d transition metals, the absorption cross-
section at the L3;2 edges (2p!3d electronic transitions)
provides element-specific information on the magnetization
of the surface adsorbed transition-metal complexes (here
NiTPP) and the substrate (here Co) separately.

Figure 2 shows the Ni and Co L2;3 edge XAS/XMCD
signals sequentially obtained at about 70 K with the substrate
kept in its remanent magnetization on the native NiTPP/Co
system (a), after exposure to NH3 gas (b), after thermal
desorption of NH3 (c) and, finally, after re-exposure to NH3

gas (d). Note that the Ni L3;2 edge XAS is affected by far-edge
oscillations, originating from the Co thin-film substrate, giving
rise to a slowly varying background in XAS/XMCD signals. In
the main panels we show the spectra upon subtraction of the
background measured on a reference substrate.

Figure 1. a) NiTPP and the reversible spin on-switch (S =0$S = 1).
The molecular orbital diagram shows that the NH3 ligand increases the
energy of the 3dz2 orbital and thus allows a S =1 high-spin state.
b) Constant current STM image of NiTPP on Co(001) without NH3

(tunneling parameters: 20 pA, 650 mV, W-tip). The considerable mole-
cule–surface interaction leads to irregular arrangement of the ad-
molecules. c) The zoom-in STM image shows that the NiTPP mole-
cules are found in either one of two conformations: saddle-shape
(blue rectangles) and flat (green squares).

Figure 2. XAS/XMCD of Ni in the molecule and the Co substrate of the native NiTPP/Co (a,e), after exposure to NH3 gas (b,f), after thermal
desorption (D) of NH3 (c,g) and after re-exposure to NH3 gas (d,h). The spectra were recorded at about 70 K. At the Ni L3;2 edge XAS/XMCD
data, the respective backgrounds as shown in the insets (green/cyan for circ + /circ- XAS and gray for XMCD), have been subtracted. The original
spectra (red/blue for circ + /circ- XAS and black for XMCD) are also shown in the insets. In absence of NH3 (a,c), no XMCD signal is observed in
Ni (spin-off state). The red arrows indicate the presence of magnetic dipole moments.
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For native NiTPP/Co, the absence of an XMCD signal
demonstrates that the adsorption of the molecules on the Co
substrate alone does not induce a magnetic dipole moment in
the Ni2+ central ion (Figure 2a). The exposure with NH3,
however, results in a clear XMCD signal evidencing the
presence of a magnetic moment on the Ni2+ center (Fig-
ure 2b). Annealing to 300 K restores the initial spin-off state
and subsequent NH3 exposure leads to the recovery of the
spin-on state (Figure 2c and d). The spin-on state is charac-
terized by a FM coupling to the substrate as indicated by the
parallel red arrows in Figure 2. Such coupling for para-
magnetic porphyrins and phthalocyanines in contact with
ferromagnetic substrates has been observed earlier[5a] and
studied in detail.[4, 5] However, in the case presented here the
FM coupled spin, confirmed by the observed change in the
sign of the Co and Ni XMCD signals after remagnetizing the
substrate in the opposite direction, is observed only in
presence of the axial NH3 ligand. The magnetic signature of
the substrate remains unaffected (see Co-XMCD signals in
Figure 2e–h) in the sequential processes of NH3 coordination/
decoordination, that is, the switching between the molecular
spin-off and spin-on states occurs in the presence of the
substrate magnetization and its exchange interaction with the
central metal ion of the molecule.

The origin of the induced magnetic moment is related to
the increase of the coordination number of the Ni ion upon
exposure to NH3. Four-coordinated Ni2+ complexes are
usually in the low-spin (S = 0) state.[12] Ni2+ ions with
a coordination number of five (square pyramidal) or six
(octahedral) are usually paramagnetic high-spin (S = 1)
species.[13] However, the nature of the ligand, that is, whether
it acts as a s donor or as a p acceptor, plays a crucial role for
the thermodynamic stability of the coordination bond.[13c]

Notably, we can observe this low-spin to high-spin transition
also by X-ray photoelectron spectroscopy (XPS) as an
increase in the full-width-at-half-maximum of the Ni2p3/2

spectral feature (see the Supporting Information).
To explain our experimental observations and to provide

detailed insight into the on-surface molecular spin-switching,
numerical simulations based on density functional theory
were performed taking additional Hubbard interactions
(DFT+ U) into account (Figure 3). The calculations were
performed on Ni–porphine, that is, without phenyl substitu-
tion, to manage the computational efforts.[4b, 5b–e, 14] Note that
in view of the coexistence of different conformations, local
experiments, for example, spin-polarized STM, would be
desirable to correlate conformation and magnetochemistry.
For Ni–porphine on Co (NiP/Co), we find that the 3d orbital
local magnetic density of states (LMDOS) of Ni is equally
distributed over the two spin-channels, that is, spin › and spin
fl; hence the magnetic dipole moment of NiP on Co is not
present (S = 0). The calculated electronic configuration,
approximately (dxy)

2 (dyz,dxz)
4 dz2ð Þ2 dx2�y2

� �0, corresponds
well to the free NiII porphyrin.

Through NH3 coordination, the 3d LMDOS of Ni2+

changes into (dxy)
2 (dyz,dxz)

4 dz2ð Þ1 dx2�y2

� �1, revealing singly
occupied and FM coupled dz2 and dx2�y2 orbitals. The magnetic
moment is about 1.61 mB on the Ni ion and 0.06 mB on each of
the nitrogen atoms of the porphyrin. Moreover, the Ni ion is

pulled-up from the porphyrin plane towards the NH3 ligand.
Note that, depending on the electronic configuration NH3 can
also act as a spin-off switch.[5j, 7] The calculated Ni–Co distance
for NH3-NiP/Co (3.59 �) is significantly longer than the value
obtained for the native NiP/Co (3.09 �) system, consistent
with the observation of a surface spin-trans effect.[4] Notably,
the coordination of the Co surface ligand[4,15] to the Ni2+ ion is
identified by a broadening of the calculated 3dz2 LMDOS,
however, this occurs without modification of the total
molecular magnetic moment. Furthermore, the calculations
show an increase of the Ni–Nporphine distance from 1.98 to
2.05 �. This increase has been attributed for a similar system
to the reduced formal bond order because of the presence of
an unpaired electron in the anti-bonding dx2�y2 orbital of
NH3–NiTPP.[13b] Note, that the NH3-induced FM coupled spin
density is distributed across the nitrogen atoms of the Ni–
porphyrin and the NH3 ligand (0.06 mB). The spin density sums
up to about 1.92 mB, corresponding to a molecular spin state of
S = 1, consistent with the two singly occupied levels seen in
Figure 3b.

In conclusion, we have provided evidence for the capa-
bility of NH3 to act as an on-switch for the spin of the NiTPP/
Co system and confirmed the surface spin-trans effect.[4]

Notably, the observation of a magnetic moment in the
molecule only after exposure to NH3 rules out that the
ligand quenches the magnetic moment of the substrate. The
presented findings are of fundamental interest and provide
a showcase for magnetochemistry in an on-surface setting.
The consequence of ligation-induced transitions on spin
multiplicity and magnetic moment are uniquely probed by
XPS and XMCD, respectively. Moreover, they open-up new
possibilities to control magnetic moments down to the single-
molecule level by chemical stimuli. Possible applications

Figure 3. DFT + U calculations presenting the spin-projected 3d orbital
local magnetic density of states (LMDOS) for the Ni-porphine/Co
system with S =0 before (a) and with S = 1 after (b) reaction with
NH3. The given energies are with respect to the Fermi-level (EF). The
calculations show that the NH3 ligation leads to an increased energy
of the dz2 orbital (because of interaction with the lone-pair of the NH3

ligand), shifting it closer in energy to the dx2�y2 orbital and allowing for
a high-spin (S = 1) state being FM coupled to the Co substrate.
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include the use of this system in a magnetochemical sensor
and in molecular spintronics.
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Experimental 

The Co thin films (20 monolayers) were grown on Cu(001) single crystals
[1–3]

 by electron 

beam evaporation. NiTPP (Sigma-Aldrich, Switzerland) was evaporated (~0.7 – 0.9 

monolayers for the XMCD experiments; lower coverage for the STM experiments) onto 

the Co thin films kept at room temperature. The quality of the samples (thickness, 

morphology, stoichiometry, absence of contamination) was checked by XPS 

(monochromatic Al Kα excitation) and STM.  

The XAS/XMCD data were measured at the Surface/Interface: Microscopy (SIM) 

beamline of the Swiss Light Source (SLS).[4] The Co thin films were magnetized with an 

external magnetic field of ~150 mT along the easy axis of magnetization (in-plane). The 

XAS/XMCD data were recorded in total electron yield with the Co substrate kept in its 

remanent magnetization. All experiments were performed in ultra-high vacuum; a 

portable vacuum chamber was used for sample transfer to the beamline.
[1–3]

 NH3 was 

dosed (20 Langmuir) onto the samples kept at 70 K.  

The STM data were recorded in the constant current mode at room temperature using 

sputtered W and Pt-Ir tips. Positive bias voltage corresponds to tunneling from the tip 

into unoccupied states of the sample. 

The calculations presented here are based on density-functional theory +U, where the 

strong Coulomb interactions in the open 3d-shell are implemented by the 

supplementary Hubbard U (4 eV) and exchange constant J (1 eV). We used the VASP full-

potential plane wave code,[5] with a kinetic energy cut-off of 400 eV. The used 

generalized gradient approximation was parameterized according to Perdew-Burke-

Ernzerhof.[6] The calculations were performed on Ni-porphine, i.e. without phenyl 
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substitution, to manage the computational efforts.[7–10] We performed full geometric 

optimization of the porphine molecule and its distance and position on the surface in 

combination with a full relaxation of the top surface layer (3 layers in total model the 

surface). Reciprocal space sampling was performed using 2x2x2 Monkhorst-Pack k-

points. 

 

 

XPS data of NiTPP/Co + NH3 

Figure S1 displays Ni2p3/2 XPS data of NiTPP/Co/Cu(001) before and after exposure to 

NH3 The data reveal an increased full width at half maximum (FWHM) after NH3 

exposure which is consistent with the formation of the high-spin Ni-complex. Note that 

the reverse effect (the observation of a decreased FWHM) has been observed for the 

transition “open-shell � closed-shell” in the cases of CoTPP+NO
[2,11]

 and FePc+NH3.
[12]

 

The Ni2p3/2 peak maximum shifts only very slightly upon NH3 exposure (from 853.1 eV 

to 853.2 eV). This very small peak shift is consistent with the small peak shifts of +0.2 eV 

observed for ZnTPP/Ag(111)+NH3
[13]

 and -0.2 eV for FePc/Au(111)+NH3
[12]

 and suggests 

a predominantly neutral character of the ammonia ligand. 
 

 

 
Figure S1 Ni2p3/2 XPS data (background subtracted) of NiTPP/Co/Cu(001) before and after exposure to 

NH3 (100 Langmuir). The sample is kept at 120 K during the experiment. The peak-width of the Ni2p3/2 

signal is significantly increased by multiplet effects upon exposure to NH3.  
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STM data of NiTPP/Co + NH3 

Figure S2 exhibits STM data of a submonolayer of NiTPP/Co/Cu(001) before and after 

NH3 exposure. The data was obtained at 78 K using a PtIr-tip. Before exposure to NH3 

(Fig. S2a), the NiTPP molecules are clearly resolved as square and rectangular shapes for 

the corresponding flat (minority) and saddle-shape (majority) conformations. After 

exposure to NH3 (Fig. S2b&c), the free surface is observed to be covered with ammonia. 

We find that a low-current set-point and bias-voltage is necessary to minimize the 

interaction with the STM tip and to avoid “picking-up”/desorbing ammonia. These 

findings are fully consistent with the reported desorption of NH3/Cu(111) by tunneling 

electrons.
[14]

. In ref. [14], ammonia is imaged as a relatively big (up to ~1 nm), bright 

protrusion. Indeed, in our STM experiments we observe the ammonia-ligand as bright 

protrusions. Some of the bright protrusions have a streak-like appearance, i.e. they 

appear and disappear between individual scan-lines. We interpret this as the signature 

of the NH3-ligand having considerable degrees of freedom when coordinated with NiTPP 

and may be released/excited by the STM experiments even at low bias voltage and 

tunneling current. Note that intramolecular resolution was not obtained on the NH3-

NiTPP/Co samples in extensive measurements, in contrast to NiTPP/Co without NH3, 

where intramolecular resolution is obtained regularly. We tentatively explain this by the 

presence of a monolayer of NH3 being attached to the free area on the Co-substrate. 
 

 
Figure S2 STM data of NiTPP/Co recorded at 78 K. Before NH3 exposure (a), the NiTPP molecules are 

clearly resolved in the saddle-shape (majority, blue rectangles) and flat (minority, green squares) 

conformations (25 pA, 400 mV) as discussed in the main-text. After exposure with 50 Langmuir of NH3 

(b,c) the ammonia ligands are imaged as bright protrusions which partly have a streak-like appearance (3 

pA, 400 mV). 

References 

[1]  D. Chylarecka, C. Wäckerlin, T. K. Kim, K. Müller, F. Nolting, A. Kleibert, N. Ballav, T. A. Jung, J. Phys. 

Chem. Lett. 2010, 1, 1408–1413. 

[2]  C. Wäckerlin, D. Chylarecka, A. Kleibert, K. Müller, C. Iacovita, F. Nolting, T. A. Jung, N. Ballav, Nat. 

Commun. 2010, 1, 61. 

60 Chapter 2. Results



 

 

 

4 

 

 

 

 

 

[3]  D. Chylarecka, T. K. Kim, K. Tarafder, K. Müller, K. Gödel, I. Czekaj, C. Wäckerlin, M. Cinchetti, M. E. 

Ali, C. Piamonteze, et al., J. Phys. Chem. C 2011, 115, 1295–1301. 

[4]  U. Flechsig, F. Nolting, A. Fraile Rodríguez, J. Krempaský, C. Quitmann, T. Schmidt, S. Spielmann, D. 

Zimoch, R. Garrett, I. Gentle, et al., AIP Conf. Proc. 2010, 1234, 319–322. 

[5]  G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186. 

[6]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868. 

[7]  M. E. Ali, B. Sanyal, P. M. Oppeneer, J. Phys. Chem. C 2009, 113, 14381–14383. 

[8]  M. Bernien, J. Miguel, C. Weis, M. E. Ali, J. Kurde, B. Krumme, P. M. Panchmatia, B. Sanyal, M. 

Piantek, P. Srivastava, et al., Phys. Rev. Lett. 2009, 102, 047202. 

[9]  P. M. Oppeneer, P. M. Panchmatia, B. Sanyal, O. Eriksson, M. E. Ali, Prog. Surf. Sci. 2009, 84, 18–29. 

[10]  H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel, M. Piantek, X. Xu, P. 

Eckhold, et al., Nat. Mater. 2007, 6, 516–520. 

[11]  K. Flechtner, A. Kretschmann, H.-P. Steinrück, J. M. Gottfried, J. Am. Chem. Soc. 2007, 129, 12110–

12111. 

[12]  C. Isvoranu, B. Wang, K. Schulte, E. Ataman, J. Knudsen, J. N. Andersen, M. L. Bocquet, J. Schnadt, J. 

Phys.: Condens. Matter 2010, 22, 472002. 

[13]  K. Flechtner, A. Kretschmann, L. R. Bradshaw, M.-M. Walz, H.-P. Steinruck, J. M. Gottfried, J. Phys. 

Chem. C 2007, 111, 5821–5824. 

[14]  L. Bartels, M. Wolf, T. Klamroth, P. Saalfrank, A. Kühnle, G. Meyer, K.-H. Rieder, Chem. Phys. Lett. 

1999, 313, 544–552. 

 

2.4. Ammonia Coordination Introducing a Magnetic Moment in On-Surface Low-Spin Porphyrin 61





2.5. Assembly of 2D Ionic Layers by Reaction of Alkali Halides with the Organic Electrophile
7,7,8,8-tetracyano-p-quinodimethane (TCNQ) 63

2.5 Assembly of 2D Ionic Layers by Reaction of Alkali Halides with the
Organic Electrophile 7,7,8,8-tetracyano-p-quinodimethane (TCNQ)

Summary: The organic compound TCNQ is a strong electron acceptor which is of interest

in the fields of molecular electronics and surface-chemistry.[76, 77] Its high electron-affinity is

due to its electronic structure: like its relative 1,4-Benzoquinone, the bonds in the central carbon

6-ring are not delocalized, but the uptake of 1 or 2 electrons allows for partial/full delocalization

which is energetically favored.[78] On surface, the charge-transfer between organic electron-

acceptors and alkali-metals,[79] transition-metals [66] and molecular electron-donors [73] has

been studied. In this context we are interested to find out if alkali-halides (e.g. NaCl) instead

of alkali-metals can be used to produce such structures. On the basis of STM, XPS and UPS

we find that TCNQ undergoes charge-transfer with NaCl (or LiCl) to form an ionic layer. This

is possible because TCNQ can oxidize even halides (e.g. Cl− + e− → 1/2 Cl2).[76, 77] The

surface-chemistry of small organic molecules and alkali-halides is of renewed interest - cf. the

recent publications from the Tait-group.[80, 81]

Paper [[5]] is published in Chemical Communications.

c© The Royal Society of Chemistry 2011. Reproduced by permission of The Royal Soci-

ety of Chemistry.

http://dx.doi.org/10.1039/c1cc12519b
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a
Cristian Iacovita,

b
Dorota Chylarecka,

a
Petra Fesser,

c

Thomas A. Jung*
a
and Nirmalya Ballav*

d

Received 29th April 2011, Accepted 21st June 2011

DOI: 10.1039/c1cc12519b

Sublimation of alkali halides (NaCl and LiCl) onto a pre-

assembled hydrogen-bonded layer of TCNQ on Au(111) resulted

in the formation of 2D ionic layers via a direct charge-transfer

reaction without involvement of the substrate. The presented

approach allows for the fabrication of different ionic layers,

decoupled from the substrate and offering new, potentially

interesting properties.

Recently, the observation of chemical reactions at surfaces by

scanning probe microscopes has gained significant attention,

both for individual reagents being moved into sufficient

proximity, as well as for the observation of an ensemble of

molecules confined to surfaces.1 Among the general case of

redox reactions performed in surface confinement2 we here

put the emphasis on those which can be used to influence the

self-assembly.

The remarkable electron-affinity of 7,7,8,8-tetracyano-p-

quinodimethane (TCNQ) permits not only charge-transfer (CT)

with metals and organic electron-donors, but also CT by

oxidation of halogens, i.e. in alkali halides.3a,b The products

of the reaction show interesting properties, i.e. high conductivity

or magnetism.3 In this paper, we study the reaction of NaCl

and LiCl with TCNQ on a surface and discuss the CT

processes between the adsorbates as well as with the substrate.

We use a CT reaction between sublimed TCNQ and NaCl,

both in a submonolayer regime, on Au(111) as a design

concept to fabricate two-dimensional (2D) ionic layers.4 In

this ‘solvent free’ dry ultra-high vacuum environment, we

perform spectro-microscopy correlation experiments involving

scanning tunneling microscopy (STM) and photoelectron

spectroscopy to demonstrate that CT exclusively occurs

between the reactants, and not with the Au(111) substrate.

The self-assembly of TCNQ on Au(111) samples as probed

by STM (Fig. 1a) has been predominantly attributed to

H-bonding of the cyano groups.5 Sublimation of NaCl onto

TCNQ/Au(111) drastically changes the molecular arrange-

ment as clearly visible in both large scale (Fig. 1b) and high

resolution STM images (Fig. 1c). The latter image contains a

vacancy defect ‘1’ in the 2D molecular layer which allows for

the unambiguous identification of the adsorption geometry.

The four-round protrusions ‘2’ appear due to the arrangement

of four-cyanogroups from the adjacent four TCNQ molecules.

This assigned structure is supported by the fact that next to the

vacancy ‘3’ only three protrusions are observed.

In order to explore the mechanism behind the drastic change in

the molecular assembly of TCNQ upon addition of NaCl we have

employed X-ray photoelectron spectroscopy (XPS) (Fig. 2a).

TCNQ in a multilayer exhibits a single N1s core-level signal with

a binding energy of B399.1 eV and a C1s signal composed of

two components (B284.95 eV and B286.3 eV; ratio B8 : 4)

Fig. 1 STM image of (a) TCNQ layer on Au(111) and (b,c) TCNQ

layer on Au(111) after addition of NaCl.
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characteristic for neutral TCNQ as observed in bulk TCNQ.

Our results are in good agreement with studies of bulk

TCNQ6a and in particular also reproduce the shake-up

features.6a,b For a monolayer of TCNQ on Au(111), both

the N1s (B398.7 eV) and C1s (B284.65 eV and B285.9 eV)

binding energies are slightly reduced presumably due to many-

body effects.7a The C1s peak shape (i.e. the 8 : 4 ratio) clearly

reveals that TCNQ remains neutral on Au(111)—a conclusion

also supported by STM and scanning tunneling spectroscopy

data: the herringbone reconstruction persists the deposition of

a full monolayer of TCNQ and the highest occupied mole-

cular orbital (HOMO) also survives the adsorption process.5

The addition of NaCl significantly lowers the N1s (B397.95 eV)

and C1s (B284.15 eV and B285.55 eV) binding energies and

considerably changes the C1s peak shape. Now the two C1s

peaks are in B6 : 6 ratio, which is characteristic for [TCNQ]�,

as previously observed for bulk Li+[TCNQ]�.6b Interestingly,

without the addition of NaCl, very similar N1s (B398.2 eV)

and C1s (B284.35 eV andB285.5 eV) binding energies as well

a similar C1s peak shape are observed in our data for TCNQ/

Ag(111). This implies the presence of negatively charged

TCNQ through substrate-to-molecule CT, as recently observed

for TCNQ on Cu(001)8a and for Ag nanoparticles.8b The

addition of LiCl instead of NaCl onto TCNQ/Au(111)

leads to very similar changes in self-assembly and XP spectra

(Fig. S1 and S2 in ESIz) and demonstrates that the reaction of

TCNQ with salts provides a general toolbox to direct self-

assembly in surface supported layers.

The XPS data together with the STM observations clearly

demonstrate that upon addition of NaCl a CT reaction on the

Au(111) surface occurred which resulted in the conversion of

TCNQ to [TCNQ]�. As a consequence of the CT reaction, the

initial H-bonded self-assembly was modified towards a 2D

ionic layer. In order to clearly distinguish the observed CT

reaction between TCNQ and NaCl on Au(111) from substrate-

to-molecule CT as observed for TCNQ/Ag(111), we have

employed ultra-violet photoelectron spectroscopy (UPS)

(Fig. 2b). Besides the valence electronic structure, UPS also

yields information on substrate-to-molecule CT which is

strongly influencing the vacuum level at the surface due to

formation of an additional electric dipole thereby changing the

measured sample workfunction (F).7b

In the case of a substrate-to-molecule CT reaction as

evidenced by the TCNQ/Ag(111) XPS data, an increase of

the sample workfunction is expected7b due to the formation of

a negatively charged TCNQ layer. Indeed, this increase amounts

to a workfunction change of D E 0.62 eV (Fig. 2b, right). In

the contrary case, in the absence of a substrate-to-molecule CT

reaction, the work function is expected to decrease slightly.7b

For both systems, TCNQ/Au(111) and TCNQ + NaCl/

Au(111), the workfunction is decreased by B0.30 eV and

B0.37 eV, respectively, in comparison to the clean Au(111)

substrate. This clearly excludes the possibility of a substrate-to-

molecule CT reaction (Fig. 2b left, green arrow).

Two cases of CT are observed in this study: TCNQ +

NaCl/Au(111) exhibiting CT within the ad-layer and TCNQ/

Ag(111) where CT with the substrate occurs. Both cases lead

to the formation of negatively charged TCNQ which can be

identified by the occurrence of two new features in the valence

region (blue triangles). This corresponds to the (partial)

occupation of the former lowest unoccupied molecular orbital

(LUMO), very similar to the UP spectra measured on bulk

K+[TCNQ]�.6c The STM images, recorded at a bias voltage

close to this resonance at B1.5 eV, yield a high intra-

molecular contrast for the TCNQ + NaCl/Au(111) system

(Fig. 1c, cf. Fig. S3 in ESIz for more STM data). Notably,

similar STM images of intra-molecular resolution have been

Fig. 2 Photoemission spectroscopy data towards the assignment of

the species in the reacted and reorganized surface layer: (a) N1s and

C1s XP spectra show evidence for neutral (TCNQ/Au(111)) and

negatively charged TCNQ, accompanied by aromatization (TCNQ +

NaCl/Au(111) and TCNQ/Ag(111)) derived from the characteristic

C1s peak shapes.6a,b (b) UP spectra provide evidence for a substrate-

to-molecule CT in the case of TCNQ/Ag(111) while no such CT

occurs for TCNQ/Au(111) and TCNQ + NaCl/Au(111). The green

arrows indicate the shift in the secondary electron cut-off which relates

to the sample work function (F).7b (c) Na1s and Cl2p XP spectra of

NaCl/Au(111) before and after addition of TCNQ show a decrease of

the Cl/Na ratio, indicating the loss of chlorine. The numbers give the

integrated peak intensity of the respective signals.
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obtained by tunneling into presumably the same molecular

orbital on the TCNQ/Au(111) system.5 Note that for TCNQ

adsorbed on noble metals (Cu, Ag, Au), charge transfer has

been observed in the case of TCNQ/Cu(001)8a and TCNQ/

Ag(111)8b but not for TCNQ/Au(111).

Experimental support for the ‘on-surface’ redox reaction of

TCNQ and NaCl is provided by comparing XPS spectra for

NaCl/Au(111) before and after addition of TCNQ. The Na1s

and Cl2p XPS signals (Fig. 2c) show a decrease of the Cl/Na

ratio by a factor of 1.67 � 0.11 upon sublimation of TCNQ.

This decrease indicates a partial loss of chlorine according to

the following reaction: Cl�+ TCNQ - 1
2
Cl2 + [TCNQ]�.3a,9

Consequently, the structural rearrangements shown in Fig. 1c

can easily be explained on the basis of an ionic assembly of

[TCNQ]� with a Na+ ion sitting next to four cyano groups ‘2’.

The electron charge is fully compensated over the whole layer

by the depicted coordination. Notably, adsorbed Cl2 (Cl2p3/2
at B200.2 eV)10 was not observed, suggesting a rapid

sublimation of molecular chlorine into the vacuum.

Fig. 3 represents an STM image of TCNQ on Ag(111). In

between the molecules one can identify dots of either dark or

bright contrast, which were not observed in the case of TCNQ/

Au(111) (Fig. 1a). We tentatively assign these features as Ag

vacancies and Ag atoms, respectively. The proposed inclusion

of Ag substrate atoms into the layer of TCNQ is qualitatively

similar to the rearrangement of substrate atoms observed at

the TCNQ/Cu(001)8a interface and is induced by CT, in full

agreement with our UPS data on TCNQ/Ag(111). Notably,

the Ag(111) and the Cu(001) surfaces differ in their symmetry

and lattice constants. As a consequence, the epitaxy and

interaction of any periodic layer with these substrates are

also expected to differ. On Ag(111) the arrangement of the

vacancies/depressions is dynamic at room-temperature in the

B2 minute interval between the two subsequent STM scans

(Fig. 3a and b, for overview STM images see Fig. S4 in ESIz).
Remarkably, the number of vacancies remains practically

constant (Table S1 in ESIz), thereby suggesting that the system

is geometrically frustrated, i.e. the density of the vacancies is

governed by geometric constraints in the TCNQ/Ag(111) system.

In summary, we have demonstrated an ‘on surface’ chemical

reaction between TCNQ and NaCl or LiCl on Au(111), which

led to the formation of an extended ionic 2D layer. Sublimation

of alkali halides is simple and therefore this approach is of a

more general use to obtain extended (few hundred nanometer)

2D ionic layers. By choosing various combinations of other

salts and electron acceptors similar to TCNQ, ultra-thin ionic

layers with tunable electronic and magnetic properties can be

prepared without having to rely on i.e. alkali metals, where

excess atoms can easily undergo CT with the substrate.11 In

particular, the ionic coordination network on the Au(111)

surface is found to be decoupled from the substrate.
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(a) and (b) with vacancies marked by circles in three colours to
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Addition of LiCl onto TCNQ/Au(111) 
The STM image of the TCNQ+LiCl/Au(111) system (Fig. S1) exhibits a similar 
arrangement to TCNQ+NaCl/Au(111) system. XPS data for TCNQ+LiCl/Au(111) in  
submonolayer and multilayer regimes are shown in Fig. S2. In both, the NaCl and LiCl 
case, a significant decrease in N1s binding energy is observed after deposition of the 
ionic compound. Furthermore the C1s peak shape is modified consistently, as discussed 
in the main text for the TCNQ+NaCl/Au(111) sample. 

 
Figure S1: STM image of TCNQ molecules on Au(111) surface with subsequently evaporated LiCl. 
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Figure S2: XPS data for TCNQ+LiCl/Au(111) in a submonolayer and multilayer regime.  
 

Bias dependent STM of TCNQ+NaCl/Au(111) 
Fig. S3 shows STM images of TCNQ+NaCl/Au(111) obtained at three different bias 
voltages. Intra-molecular resolution as shown in Fig. 1c was obtained with bias voltages 
close to -1.45 V.  
 

 
Figure S3: STM images of TCNQ+NaCl/Au(111) at different tunneling parameters 
 

Dynamic vacancies in TCNQ/Ag(111) 
Fig. S4 shows two subsequently taken STM images of TCNQ/Ag(111). By superposition 
of these two images the mobility of interstitial Ag can be visualized.  Overlay data taken 
on the TCNQ/Ag(111) system displayed in Fig. 3. The numbers of vacancies are given in 
Tab. S1. 
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Figure S4: STM data of TNCQ/Ag(111). The two images a) and b) were recorded within 2 minutes. A 
differential visualization of the vacancies is shown in c). Black dots correspond to vacancies observed in 
both images, red dots indicate the vacancies appearing in the second image, while blue dots reveal the 
vacancies visible in the first image and disappearing in the second image. A prominent defect is marked 
(blue circle) to illustrate that the same sample area has been measured. The rectangular black frames denote 
the section of the data chosen in preparation of Fig. 3 in the main text to support the frustrated dynamics of 
the ionic layer. 
 
 Number Percentage 
Total (vacant + full) 421 100 % 
vacancies in a) 122 29.0 % 
vacancies in b) 123 29.2 % 
vacancies observed in both a) and b) 53 12.6 % 
Table S1. Numbers of occupied and vacant sites in TCNQ/Ag(111) from Fig. 3  
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Experimental conditions 
The experiments have been performed in ultra-high vacuum environment in a multi-
chamber system with a base pressure in the order of 10-10 mbar. Au(111) and Ag(111) 
single crystals were cleaned by repeated sputtering / annealing cycles until no O1s and 
C1s peaks were observable in the XP spectrum. TCNQ and NaCl/LiCl (Sigma-Aldrich) 
were sublimed consecutively (first TCNQ and then NaCl) in a 1:2 molar ratio onto single 
crystals kept at room temperature. The deposition rate was monitored by a quartz crystal 
microbalance and the monolayer coverage was confirmed by XPS and STM. XPS has 
been measured using monochromatic Al Kα line. The full with half maximum of the 
Au4f7/2 peak was 0.8 eV.  
Valence spectra have been acquired using UV light generated by He I excitation (21.22 
eV) and with an applied sample bias of ~-9 V. STM measurements have been performed 
at room temperature in constant current mode using electrochemically etched and in-situ 
sputtered tungsten tips. The respective tunneling parameters are given in Tab. S2. 
 
Figure Sample Bias voltage (V) Tunnel current (pA) 
1a TCNQ/Au(111) -0.7 -10 
1a (inset) TCNQ/Au(111) 1.95 50 
1b TCNQ+NaCl/Au(111) -1.3 -30 
1c TCNQ+NaCl/Au(111) -1.45 -20 
3; S4 TCNQ/Ag(111) -0.5 -50 
S1 TCNQ+LiCl/Au(111) -0.9 -10 
S3a TCNQ+NaCl/Au(111) -0.5 -20 
S3b TCNQ+NaCl/Au(111) -0.12 -20 
S3c TCNQ+NaCl/Au(111) 0.7 30 
Table S2 Tunneling parameters used in the generation of the STM images shown. 
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CHAPTER 3

Conclusion

As discussed in the introduction, the complexity found in nature with its highly developed

nanomachines demonstrates the possibilities and the prospects of molecular nanotechnology. In

contrast to nature, the metal-organic complexes, shown here, are simple and well understood, the

single-crystal surfaces are well defined and the used chemical stimuli are among the simplest

ligands possible. On the basis of the above discussed example of heme b in hemoglobin it is not

a surprise that a reasonable description of the ad-complexes magnetochemistry requires often

(but not always) to include the substrate into considerations.[[2]]

This thesis deals with the questions i) how coordination chemistry can be used to control

the magnetic properties of square-planar ad-complexes and ii) how the surface modifies the

magnetochemistry of the ad-complexes. The on-surface magnetochemistry of the complexes

is studied on ferromagnetic substrates which induce a magnetic moment into the molecular

monolayer, thus the axial ligation acts on the induced magnetic moment which is a consequence

of the spin-state of the ad-complexes. This arrangement also allows to study the influence of

the axial ligation onto the exchange interaction with the ferromagnetic substrate. The element

specific spectroscopies (XAS, XMCD and XPS) allow for a methodically interesting approach

towards (on-surface) coordination chemistry. The spectroscopy methods are complemented by

STM experiments which allow for the direct imaging of the ad-complexes and their axial ligands.

The experimental results are complemented by DFT+U calculations.

This thesis shows that the magnetic moment in a monolayer of molecules can be controlled by

the use of chemical stimuli.[[1–4]] We demonstrate that the axial ligation can switch-off [[1–3]]

the magnetic moment in ferromagnetically and antiferromagnetically exchange-coupled ad-

complexes. This can be achieved by i) using the spin-bearing NO ligand (S = 1/2) in combination
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with the odd-spin CoTPP ad-complex (S = 1/2) as well as by ii) using the non-spin bearing NH3

ligand (S = 0) in combination with the even-spin FePc ad-complex (S = 1). This demonstrates that

the magnetic moment can be quenched by cancellation of the unpaired electrons (i) as well as by

ligand-field effects (ii) inducing low-spin states. Using even-spin FeTPP (S = 1) and NO allows

for the tuning of the magnetic moment.[[2, 3]] Furthermore, this thesis shows that a magnetic

moment can be also induced by coordination-chemistry.[[4]] Many of the chemical reactions,

presented here, are reversible, i.e. the initial state can be recovered by thermal annealing.

The coordination of a ligand on one side of a complex has usually consequences for the

chemical bond with an other ligand on the other side of the complex (trans effect).[15, 23] It

has been shown that this is also the case for the chemical bond with the surface (surface trans

effect).[31] We show that, though this effect, apart from having consequences for the magnetic

moment of the ad-complex, the axial ligation can also modify the exchange interaction with the

ferromagnetic substrate (we propose the term spin trans effect).[[2]] Specifically, we found that

i) the strength, as well as ii) the sign of the exchange interaction can be modified. This, as well

as the modified magnetic moments found in the DFT+U calculations, is evidence that in order to

understand the magnetic properties and the coordination chemistry at the organic – inorganic

interface, one needs to include the substrate into the considerations.

Furthermore, we demonstrate that by using chemically directed self-assembly (as found in

biological systems), two metal-organic molecules, with distinct magnetic centers (Fe and Mn),

can be arranged into a supramolecular chessboard-array by mere co-evaporation.[[3]] With a

chemical stimulus we were able to selectively switch-off one of the components in the chessboard-

array. We directly imaged the ligand binding to the metal-organic complexes. Note that both, the

chemically directed self-assembly as well as the magnetochemical control over the magnetic

moments do scale very well with the number of involved molecules. As such, both approaches

are clearly distinct from STM-based atom-by-atom manipulation used to fabricate and control

magnetic nanostructures. Of course, the fabricated magnetic chessboard is only a simple structure,

however it may allow for the study of the intermolecular exchange interaction (on a non-magnetic

substrate) and can enable spin-polarized diffraction experiments. The demonstrated selective

switching of the one-half of the magnetic chessboard-lattice is a straightforward way to control

the magnetic unit-cell. Furthermore, since functional self-assembled nanomachines exist in

biological systems,[8, 9] the possibility to use molecular self-assembly for the fabrication of

very complex functional structures is already demonstrated.

It is evident that the chemical stimuli act as an input to control the magnetic properties of

on-surface complexes. We are aware of the fact that the chemical stimuli used as input in these

studies are distinct from physical stimuli (e.g. light or electric fields) as commonly used in

solid-state devices for information processing. But the above examples from nature show that

complex logic operations can be based on inputs via chemical stimuli.[10]

It would be exciting to study the on-surface magnetochemistry of metal-organic complexes by
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a local probe like STM, i.e. by spin-polarized / inelastic tunneling.[45] At present, I am not aware

of an STM study on the consequences of the surface trans effect onto the surface’s magnetic

properties. For example, the proposed spin-polarized interference pattern around a magnetic

ad-atom / molecule [82, 83] should be related to the ad-complexes interfacial hybridization with

the substrate. Since the axial ligation of the ad-complex modifies the substrate’s electronic states

by modification of the interaction between the ad-complex and the substrate, this may result in a

modification of the spin-polarized interference pattern.

The results shown in this thesis may be useful in the context of organic spintronics, in particular

at the organic – inorganic interface. They may find applications in magnetochemical sensors

or as a means to control and fine tune the magnetic properties of ad-complexes in spintronic

devices. We hope to contribute to the understanding of coordination-chemistry on the surface,

specifically magnetochemistry on the surface. The studies demonstrate the successful use of XAS

and XMCD as experimental methods to get a spectroscopic insight into the chemical reactions

at surfaces and their impact on magnetic properties. By using STM as a tool to manipulate the

axial ligands, the magnetic properties of individual ad-complexes could be controlled. Since the

magnetochemical approach provides a straightforward way to control the magnetic quantum-state

in a molecule, this may serve as an input for spintronic few-molecule devices or even devices

exploiting the quantum nature of spin and its entanglement.
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The image on page iv displays STM data of the supramolecular chessboard-array self-

assembled from Fe and Mn containing molecular phthalocyanine building-blocks. Note the

different contrast in the center of the molecules due to the Fe and Mn ions.

The images on this page display room-temperature STM data of a self-assembled monolayer of

Co tetraphenyl-porphyrins decorated with nitric oxide (NO) ligands. The green, red and blue

images show the same area, but different electronic states are probed. The missing molecule

helps to identify the exact position of the molecules (blue image). The NO-coordinated molecules

are imaged with bright protrusions (green image).
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