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Chapter 1

Summary

The regulation of gene expression in eukaryotes is a complex process balancing two oppos-

ing schemes into one regulatory network. Stable maintenance of gene expression patterns

is as important as quick adaption to intrinsic and extrinsic stimuli. Over the past years it

has emerged that gene regulation is a multistep process occurring at many levels. On the

level of DNA and chromatin it is determined how efficiently a gene is transcribed by RNA

polymerase II (RNAP II) in the first place. Influenced by many processing steps, which are

mediated amongst others by RNA binding proteins (RBPs), only a fraction of a respective

gene arrives to the cytoplasm, where more regulatory processes alter the lifetime of mes-

senger RNA (mRNA), during which it is available for translation into protein. Due to the

local separation of nucleus and cytoplasm in eukaryotes it is intuitive to imagine a stepwise

process, which can be split up in transcriptional regulation in the first place and subsequent

post-transcriptional regulation.

At the beginning of my PhD high resolution genome-wide data of chromatin modifications

[Barski et al., 2007; Mikkelsen et al., 2007] and transcription [Mortazavi et al., 2008; Wang

et al., 2009] became available, which allowed a global correlation of mRNA expression with

chromatin features. Also supported through RNA sequencing data, more small regulatory

RNAs were discovered and their expression linked to specific cell types [Carninci, 2009; Core

et al., 2008; Seila et al., 2008; Wang et al., 2009]. Both, histone marks influencing the

chromatin environment and post-transcriptional processes operating on RNA level, have a

contribution to the final mRNA concentration per gene in a cell. It was still largely unknown

if these processes are separable and how much each process contributes to the final mRNA

expression.
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1. SUMMARY

Therefore we set out to define the relative contributions of transcriptional and post-transcriptional

regulation which shape the mRNA profile in a cell. To this end we obtained all necessary

data from murine embryonic stem cells, which are differentiated into neurons in cell cul-

ture. Modifications at histone H3 (di-methylation of lysine 4 at histone tail H3 (H3K4me2),

tri-methylation of lysine 27 at histone tail H3 (H3K27me3) and tri-methylation of lysine

36 at histone tail H3 (H3K36me3)) and RNAP II occupancy were derived by chromatin

immunoprecipitation (ChIP) followed by deep sequencing to predict transcription rate. In

addition we measure mRNA decay rates of protein coding genes both, by transcription arrest

and pulse labeling and infer expression profiles of micro RNAs (miRNAs) during neuronal

differentiation by small RNA sequencing.

Our integrative analysis in ESC revealed that chromatin marks are very good predictors

of steady-state mRNA level. Especially, H3K36me3, which is a co-transcriptional histone

mark, is highly correlated with mRNA abundance when integrated over the whole gene

body. This is in contrast to two other studies [Cheng and Gerstein, 2011; Karlic et al.,

2010], which also use histone marks to predict mRNA expression, however because their

analysis is restricted to regions around the TSS, they do not use the full predictive power

of the H3K36me3. Here we show that with H3K36me3, additional two promoter proximal

histone marks and RNAP II occupancy, we can explain most of the variance in mRNA levels

(∼85%). Based on this result we went on to ask which regulatory mechanism could explain

the additional variance in transcript levels, and investigated the contribution of mRNA de-

cay to steady-state levels in general and in particular focus on miRNA-mediated degradation

of transcripts.

This analysis, integrating mRNA half-life of each transcript in a model together with

transcription-relevant measures, shows, that degradation has a minor quantitative impact

on mRNA levels (<2%). This is in accordance with two recent publications in murine fi-

broblast and dendritic cells [Rabani et al., 2011; Schwanhäusser et al., 2011], which show,

by measuring mRNA transcription rate and modeling RNA decay, a similar ratio of tran-

scriptional and post-transcriptional regulation to quantify mRNA levels. Furthermore, we

were interested in the quantitative contribution of mRNA degradation, which is mediated

by miRNAs specifically. To this end we established weighted miRNA-target connections by

2



combining a posterior probability score [Gaidatzis et al., 2007] of interaction with experi-

mentally inferred miRNA expression data. On a subset of likely miRNA target genes we can

see a small effect of miRNA-mediated post-transcriptional decay, however on a genome-

wide level the quantitative contribution of this regulatory layer is too small to be detectable.

Together, our findings establish a chromatin-based quantitative model for the contribu-

tion of transcriptional and post-transcriptional regulatory processes to steady-state levels

of messenger RNA and support the recent notion that the lion share of mRNA expression

regulation is happening at the level of transcription [Rabani et al., 2011; Schwanhäusser

et al., 2011].
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1. SUMMARY
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Chapter 2

Introduction

Every multicellular organism originates from a single fertilised egg. During metazoan de-

velopment this single cell divides and gives rise to many specialised cell types with different

phenotypes and functions. While the genetic information of these cells is a constant, their

set of expressed genes is subject to major changes throughout differentiation. This process

requires the coordinated regulation of gene expression, which is a complex, multi-layered

process in eukaryotes. Gene expression regulation describes the whole processes, that cells

use to regulate the way that information in genes is turned into gene products. At any step

the gene’s expression may be modulated, from transcription of the DNA to RNA, during

splicing, export to the cytoplasm, before, during and after translation. While there is a

fairly good understanding of the mechanistic details of each of the regulatory processes, the

interaction between them has not been studied until recently.

In bacteria regulatory pathways from DNA over RNA to protein are often directly coupled

due to the lack of a compartmentalisation [Montero Llopis et al., 2010]. Coupling, in a

non-direct way, might also occur in eurkaryotes [Dahan et al., 2011], however we can dis-

tinguish processes that happen in the nucleus from cytoplasmic events.

The following paragraphs will summarize current knowledge on transcriptional regulation

of RNA synthesis and post-transcriptional down-regulation of mRNA. I will also introduce

quantitaive measures that provide potential readouts of these regulatory layers, relating to

my PhD thesis project.

5



2. INTRODUCTION

2.1 Transcriptional Gene Regulation

Throughout evolution, complexity of organisms scales with genome size. Paradoxically, the

number of genes does not match up with this increase in size and complexity, a phenomenon

termed the c-value enigma [Gregory, 2001]. The mouse genome for example is 240 times

bigger than budding yeast saccharomyces cerevisiae, however it encodes only 4 times more

proteins (23,000 genes in mouse [Waterston et al., 2002] vs 5,500 in yeast [Kellis et al.,

2003]). This raises the question, how is complexity achieved? One explanation is the

number of transcription factor (TF) genes, which increases exponentially (exponent=1.26)

with the number of total protein coding genes in an eukaryotic organism [van Nimwegen,

2003]. TFs are the most prominent and best studied mediators for gene expression regula-

tion [Vaquerizas et al., 2009]. Their recognition motifs are on average 6-8 bp in length, in

prokaryotes as well as in and eukaryotes, and in many cases the binding motifs are degen-

erate [Wray et al., 2003]. In large vertebrate genomes however, where only a small portion

encodes proteins or regulatory RNAs [Waterston et al., 2002] this poses a major challenge:

in the mouse genome for example, assuming a random sequence distribution, any potential

6-mer motif could bind more than 732,400 times. From ChIP-sequencing experiments we

know that the actual number of sites bound by a TF in a cell is considerably smaller. Com-

binatorial regulation of transcription factors [Bilu and Barkai, 2005] could possibly confer

specificity of TF binding, but further structuring of large genomes is required to guide the

TFs to their respective target sites and thereby reduce random binding.

Chromatin modifying mechanisms co-evolved with genome size: although the use of chro-

mosomal architectural proteins variants is conserved back to eubacteria, in the transition

from pro- to eukaryotes, mechanisms for ’writing’ chemical modifications, that constitute

persistent signals, onto chromatin appeared [Prohaska et al., 2010].

In the following sections I will give an overview of cellular processes that contribute to

transcriptional regulation on the level of chromatin in eukayotes.

2.1.1 DNA, Histones and Chromatin

Roughly two meters of DNA are in the nucleus of every mammalian cell. For obvious pack-

aging but also regulatory purposes the DNA is highly compacted, where the chromosome

represents the highest compaction form. The chromosome is composed of a highly folded
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2.1 Transcriptional Gene Regulation

30 nm chromatin fibre of packaged nucleosomes. Nucleosome structure, so called ’beads on

a string’, consists of DNA wrapped around histones thereby achieving a high initial conden-

sation (Figure 2.1). Nucleosomes consist of approximately 150 bp of DNA wrapped around

Figure 2.1: Model of chromatin compaction of DNA in the nucleus depicts the DNA double-strand,

which is wrapped around histone proteins to form the nucleosome. This ’beads on a string’ structure

of nucleosomes is then further compacted into a 30nm fiber with the help of linker histone H1 and

even more condensed on further scaffold proteins leading to a chromosome structure.

a protein octamer of four core histones, H3, H4, H2A and H2B [Kornberg and Thomas,

1974]. Together with so called linker histones (H1), this results in a more than 50-fold

compaction of the genome in the nucleus of the cell, termed chromatin (Figure 2.1). In

addition to packaging this chromatin conformation also allows to make DNA more or less

accessible for TFs to bind. The tight structure of DNA wrapped around histones is in itself

rather in-accessible [Lam et al., 2008; Struhl, 1999; Workman and Kingston, 1998].

Alteration of core histone stoichiometry in yeast leads to constitutive activation of many
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2. INTRODUCTION

inducible genes (Han and Grundstein 1988). This provides support for the repression of

basal transcription through chromatin assembly. Chemical modifications on histone tails

lead to recruitment of non-histone proteins or directly influence the electric charge of the

chromatin and can thereby pull nucleosomes closer together or push them apart (Figure

2.1). This regulates the access of TFs and ultimately the transcription machinery to the

DNA and renders the chromatin either permissive or repressive for transcription.

2.1.2 DNA Methylation

In theory, a methyl group can be added to any of the 4 nucleic acids, making it a methyl-

A, methyl-G, methyl-T or methyl-C. However, in eukaryotes DNA methylation is exclu-

sively found at cytosine residues. Not all eukaryotes methylate their genomes, for example

yeast and the roundworm C. elegans contain no methylated cytosines at all [Antequera

et al., 1984; Simpson et al., 1986], while all vertebrates seem to display genome-wide DNA

methylation which, in mammals, mostly occurs in the context of CpG dinucleotides [Suzuki

and Bird, 2008]. Genome-wide studies revealed a bimodal distribution of CpG methylation,

with most of the genome being highly methylated (that is 80-100% methylation) and a

few regions largely devoid of methylation, which correspond to relative local enrichments

of CpG dinucleotides, called CpG islands [Bird, 1986]. CpG islands mainly co-localize with

promoters, the transcription regulatory unit of a gene. Recently, however our laboratory

identified novel regions, which are not CpG islands but which nevertheless have low methy-

lation levels, termed low methylated regions (LMRs) [Stadler et al., 2011].

DNA Methylation and Transcription

Early studies in mouse and cancer cells lines connected DNA methylation with X-inactivation,

imprinting and transposon silencing and led to the common theme that DNA methylation

functions to maintain a repressed chromatin state and silence promoter activity [Bird and

Wolffe, 1999; Suzuki and Bird, 2008]. Although it was not initially appreciated that DNA

methylation could be a transient mark, large-scale studies revealed that many promoters

and LMRs vary in their DNA methylation according to cell type [Bibikova et al., 2006;

Eckhardt et al., 2006; Mohn et al., 2008; Rakyan et al., 2004; Rollins et al., 2006; Stadler

et al., 2011; Weber et al., 2007]. The results showed that the majority of the analyzed
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2.1 Transcriptional Gene Regulation

regions do not show a continuum of CpG methylation levels. Instead they were either hy-

pomethylated (less than 30% of CpG sites) or hypermethylated (more than 70% of CpG

sites), suggesting two alternative states: silent and methylated or active and unmethylated.

The effect of DNA methylation on gene transcription seems to depend on the CpG con-

tent of the promoter. Single gene studies suggested that methylated, CpG-poor promoters

can repress transcription [Boyes and Bird, 1992; Schübeler et al., 2000]. Genome-wide

measurements of DNA methylation showed that some CpG-poor promoters are methylated,

even when the corresponding gene is actively transcribed [Ball et al., 2009; Meissner et al.,

2008; Weber et al., 2007]. In contrast to CpG-poor promoters, DNA methylation at pro-

moters with high CpG content, is clearly anti-correlated with transcription of the associated

gene [Weber et al., 2007]. Two models have been proposed, for the mechanism, by which

the transcriptional inhibition occurs [Appanah et al., 2007; Schübeler et al., 2000], however

both act at the level of transcription initiation: One model postulates that DNA methylation

inhibits the binding of methylation-sensitive TFs, the second model is more indirect where

proteins specifically binding to methylated CpGs recruit co-factors, which in turn repress

transcription. For most known methyl-CpG-binding domain proteins (MBDs) an interaction

with factors that set up a repressive chromatin environment has been reported. A variety

of such MBDs are known and for most of these proteins, it has been reported that they

interact with factors that set up a repressive chromatin environment such as HDACs and

the NURD complex [Clouaire and Stancheva, 2008]. However, not only promoter proximal

DNA methylation has an influence on gene expression: A recent study reported regions

with intermediate CpG content, that have low methylation levels and are cell-type specific.

These loci are likely to be distal regulatory regions and are occupied by cell type specific

TFs [Stadler et al., 2011].

2.1.3 Histone Modifications

Histones consist of a globular center and flexible arms, protruding from the center, called

’histone tails’, which have many basic, or positively charged, amino acids (Figure 2.2). It

was found that removal of histone tails from the nucleosome with the protease trypsin fa-

cilitates binding of TATA binding protein (TBP) [Godde et al., 1995] and other TFs [Lee

et al., 1993] and causes specific effects on gene expression [Kayne et al., 1988]. This lead

to the conclusion that the N-terminal tails of the core histones have an important role in
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2. INTRODUCTION

regulating TF access to the DNA [Godde et al., 1995]. Importantly N-terminal tails of hi-

stones are targets for enzymes that modify chromatin structure. Modifications on histones

take place on the N-terminal tails, mostly of histone H3 and H4, which stick out from the

nucleosome core. They contain more than 60 sites which are subject to post-translational

modificationss (PTMs) such as acetylation, methylation, ubiquitination, phosphorylation,

sumoylation and others [Kouzarides, 2007] (methylations and acetylations of N-terminal

tails illustrated in Figure 2.2). Later studies revealed that PTMs are highly dynamic and

have a regulatory role [Brownell et al., 1996; Rea et al., 2000; Taunton et al., 1996].

Modifications associated with active transcription, such as acetylation of histone 3 and

histone 4 or di- and tri-metylation of H3K4, are termed euchromatic modifications, whereas

modifications localized to inactive genes, such as H3K9 methylation and H3K27 methyla-

tion are referred to as heterochromatic modifications (reviewed in Li et al. [2007]). The

concept is sketched in Figure 2.3. In the following subsections I will briefly discuss active

(euchromatin) and repressive (heterochromatin) histone modifications and especially high-

light the histone lysine methylations, H3K27, H3K4 and H3K36, which will be important

for my thesis.

Histone Acetylation

Histone acetylation, similarly to the removal of histone tails, alters the constraints on the

wrapping of DNA on the nucleosome [Bauer et al., 1994] and reduces the stability with

which these flexible domains bind to DNA [Cary et al., 1982]. Histone acetylation neutralises

the charge of nucleosomes, thereby destabilizes nucleosomes, increases DNA accessibility

and leads to non-histone protein binding to DNA in vitro [Imbalzano et al., 1994; Lee et al.,

1993; Vettese-Dadey et al., 1996]. Since transcriptional co-activators in yeast and human

have the capacity to acetylate histones [Brownell et al., 1996], an attractive hypothesis is

that targeted histone acetylation followed by the disruption of chromatin will have a major

causal role in gene regulation [Wolffe and Pruss, 1996]. Acetylated lysines on histones H2B,

H3 and H4 are largely overlapping and highly correlated with active transcribed regions in

yeast [Pokholok et al., 2005], fly [Schubeler et al., 2004] and human [Wang et al., 2008].

With the exception of H4K16 acetylation, which directly interferes with higher order chro-

matin structure [Shogren-Knaak et al., 2006], acetylation of individual lysines conveys little

10



2.1 Transcriptional Gene Regulation

Figure 2.2: A nucleosome is composed of a protein octamer consisting of the four core histones, H3,

H4, H2A and H2B and the double stranded DNA. C- and N-terminal histone tails of the core histones

can be modified, here only lysine modifications, methylations and acetylations, are depicted. The linker

histone H1 aids in compaction of the chromatin.

specificity. It is rather the cumulative effect of acetyl groups at multiple lysines which is

important for regulating DNA accessibility.

Histone Methylation

In contrast to acetylation, histone methylation is often catalyzed by a specific enzyme at

a specific site and results in unique functions. Methylation of histones can either occur

at lysine or arginine residues. The same residue can exist in mono- (me1), di- (me2) or

tri-methylation state (me3) state which adds another level of regulatory potential. Sev-

eral lysines display diverging functions and localization in the genome depending on their

methylation state (Barski et al., 2007; Peters and Schubeler, 2005).

ChIP experiments showed that active genes are methylated at lysine 4 and 79 of histone H3

(H3K4and H3K79) and lysine 36 of histone H3 (detailed introduction to H3K36me, in sec-

tion 2.1.5) [Barski et al., 2007; Pokholok et al., 2005; Schubeler et al., 2004], therefore these

modifications are thought to have a role in transcription. H3K36me and H3K79me display

11



2. INTRODUCTION

a broader distribution within the gene body, while H3K4 methylation states show a distinct

promoter proximal profile: K4me3 peaks at start sites, K4me2 and K4me3 downstream of

the transcription start site (TSS) [Li et al., 2007; Pokholok et al., 2005]. H3K4 methylation

can be bound by chromatin remodelling complexes and different histone acetyltransferases,

creating accessible chromatin and may thereby directly contribute to transcription initia-

tion [Santos-Rosa et al., 2003; Taverna et al., 2006]. Although H3K4me3 can be directly

bound by the general transcription factor TFIID and thereby might facilitate transcription

[Vermeulen et al., 2007], it is not exclusively located at transcribed regions in mammals.

Recent data indicates that in contrast to invertebrates H3K4me2/3 are not exclusively

marking actively transcribed regions, depending on the CpG content of the promoter this

mark correlates with low or high levels of RNAP II [Bernstein et al., 2006; Guenther et al.,

2007; Mikkelsen et al., 2007; Roh et al., 2006; Weber et al., 2007].

An additional mark shown to be enriched at transcribed genes is H3K79 methylation

[Schubeler et al., 2004]. All three methylation variants of H3K79 are catalyzed by DOT1,

the only lysine histone methyl-transferase (HMT) that does not contain a SET domain [van

Leeuwen et al., 2002]. The role of this modification in regulation of transcription, however,

remains still unclear.

In yeast, a second HMT, named SET2, mediates H3K36 methylation, another mark asso-

ciated with transcription. Upon methylation of H3K36, the histone deacetylase complex

Rpd3 removes acetylation [Keogh et al., 2005], which has been suggested to be involved in

preventing spurious transcription [Carrozza et al., 2005]. In Section 2.1.5 I will introduce

H3K36me3 and it’s role in transcription in more detail.

Inactive loci display a different set of methylation marks mainly consisting of methylation of

H3K9, H4K20, and H3K27. H3K27 di- and tri-methylation predominantly localizes to CpG-

rich regions and is excluded from regions carrying H3K9 methylation. H3K27me3 is known

as a mechanistic intermediate during transcriptional repression by polycomb-group (PcG)

proteins. Polycomb-mediated repression is carried out by the two polycomb-repressive-

complexes PRC2 and PRC1. While PRC2 sets the H3K27me3 mark, PRC1 is thought to

be the reader protein, which in turn ubiquitinates lysine 119 at histone H2A [Simon and

Kingston, 2009]. The two PRC complexes are thought to mediate repression by inhibiting

chromatin remodeling, blocking transcription and/or by mediating chromatin compaction

[Margueron et al., 2008].
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2.1 Transcriptional Gene Regulation

Figure 2.3: The figure demonstrates two different states of chromatin: active, accessible chromatin

(left) and inactive, ’closed’ chromatin (right). Each state is accompanied by characteristic modifications

of histone tails. Here only two representative histone marks are depicted: H3K4me2 at accessible

chromatin and H3K27me3 at closed chromatin.

PcG proteins and H3K27me3 occupy many inactive promoters of key developmental regu-

lators in embryonic stem (ES) cells, suggesting that they maintain pluripotency and cellular

identity in these cells [Boyer et al., 2006]. Also in later steps of differentiation PcG proteins

were shown to play an important role [Ezhkova et al., 2009; Mohn et al., 2008].

2.1.4 RNA Polymerase II and Transcription

The first step, at which the expression level of genes is regulated in eukaryotes, is RNA

transcription in the nucleus of the cell. RNAP II is the enzyme that transcribes all genes

encoding mRNA as well as as some structural or regulatory RNAs. A feature which distin-

guishes RNAP II from the other two eukaryotic RNA polymerases is the extended carboxyl-

terminal domain (CTD) of the largest RNAP II subunit Rpb1. The 52 copies of the CTD

are subject to modifications during the transcription cycle. While serine 5 phosphotylation

of the CTD is indicative of pausing the serine 2 phosphorylated form is characteristic for

elongating polymerase [Phatnani and Greenleaf, 2006]. The phosphorylation affects the

CTD’s conformation and ability to associate with factors involved in elongation, RNA pro-

cessing and termination of transcription (reviewed in Saunders et al. [2006]).
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Initiation of Transcription

Before transcription initiates RNAP II is positioned at the core promoter by a combination of

the general transcription factors (GTFs) TFIID, TFIIA and TFIIB to form the pre-initiation

complex (PIC) [Thomas and Chiang, 2006]. TFIIH then melts 10-15bp of the DNA in order

to position the single stranded template of RNAP II to initiate RNA synthesis. RNAP II

CTD gets phosphorylated at serine 5 during the first 30 bp, before elongation starts. The

phosphorylated CTD then recruits factors important for productive elongation and mRNA

processing [Buratowski, 2003] to the transcription machinery.

Even though this appears straight forward, the rate of transcription is subject to regula-

tion at each of these steps: A study using model fitting based on photo-bleeching and live

imaging in a human cell line, predicted that only 13% of RNAP II, which interacts with

the promoter, are delivered to the initiation step and only 8.6% of these RNAP II engage

in productive elongation [Darzacq et al., 2007]. In total this means that on average only

one RNAP II out of 90 interaction events produces a mature mRNA molecule, suggesting

a tight transcriptional regulation.

The packaging of DNA into chromatin contributes largely to this tight regulation, from

activator binding over PIC formation to productive elongation. A prominent example is the

PHO5 promoter in yeast, which contains one exposed binding site for the TF Pho4 located

in the linker DNA between two nucleosomes, while additional binding sites are buried within

nucleosomes [Adkins et al., 2004; Almer and Hörz, 1986; Boeger et al., 2004]. During in-

duction, Pho4 binds to the accessible site first, recruits proteins which modify histones and

remodel nucleosomes, and thereby expose the secondary binding sites to the TF.

Since the chromatin conformation of DNA is already repressive in itself, regions of active

transcription need to be relieved of condensation. Indeed in yeast it has been shown, that

highly transcribed genes have a lower nucleosome occupancy than intergenic regions, with

pronounced nucleosome depletion in promoter regions [Pokholok et al., 2005]. But not

only at the initiation step, chromatin needs to be de-condensed, also during transcription

elongation the barrier posed by nucleosomes in the coding regions, has to be overcome,

either by completely dis- and reassembling nucleosomes or by modifying histone tails.
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Elongation of Transcription

Recent studies have challenged that transcription is predominantly regulated at the level of

RNAP II binding and initiation and it is now apparent that regulation at the elongation step

is equally important [Min et al. [2011], also reviewed in Saunders et al. [2006]]. Elongation

is divided into three distinct stages: promoter escape, promoter proximal pausing and pro-

ductive elongation. Each of these stages involves a different behavior and stability of the

transcription complex and a specific manipulation of the chromatin environment.

Promoter escape begins after the assembly of the PIC and with the onset of transcription

initiation, from this point the transcription complex is termed the initially transcribing com-

plex (ITC). If RNAP II is subjected to other challenges, the ITC can still abort the nascent

RNA until about 23 bp downstream of the promoter [Pal and Luse, 2003]. Promoter es-

cape is considered complete and the ITC becomes an early elongation complex (EEC) when

the Rpb7 subunit of RNAP II stably associates with the nascent RNA [Ujvári and Luse,

2006]. The nascent RNA can also bind the CTD, which might affect transcription elonga-

tion [Kaneko and Manley, 2005].

Another step, other than RNAP II recruitment or transcription initiation, is rate limiting and

a target of regulation: promoter proximal pausing. This is an event in which the forward

movement of elongation competent transcription complexes is temporarily blocked owing

to template sequence, regulatory factors or both. High-resolution analysis showed that the

pausing occurs at several sites from +20 to +40 [Giardina et al., 1992; Rasmussen and

Lis, 1993]. Pausing can provide a checkpoint to assess whether the RNAP II is correctly

prepared for productive elongation, and allows rapid regulation of gene expression. Capping

enzyme associates with the Ser5-phosphorylated CTD of RNAP II [Wen and Shatkin, 1999],

and the nascent RNA becomes capped during elongation through the pause site [Rasmussen

and Lis, 1993]. The phosphorylated CTD stimulates capping enzyme activity in vitro [Wen

and Shatkin, 1999]. Promoter proximal pausing might facilitate correct capping, and a

correctly capped nascent RNA might be a prerequisite for escape from the pause [Pei et al.,

2003].

Several factors are required for the efficient release of paused RNAP II into productive elon-

gation, after which RNAP II proceeds through the remainder of the gene. This is proposed

to occur by the action of the positive transcription-elongation factor-b (P-TEFb) complex.

P-TEFb phosphorylates factors facilitating the paused state, DSIF, NELF and Ser2 of the
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RNAP II CTD [Yamada et al., 2006]. Upon transition to productive elongation DSIF re-

mains associated but NELF leaves the elongation complex [Wu et al., 2005].

Termination of Transcription

Finally, termination of transcription requires the dissociation of RNAP II and the transcrip-

tion complex from the template. This may occour either through a conformational change

in RNAP II following transcription of the poly(A) site [Zhang and Gilmour, 2006] or by an

RNA exonuclease mediated degradation of mRNA, that is still associated to RNAP II and

thereby stimulates its termination (’torpedo model’ Luo and Bentley [2004]).

2.1.5 Readout of Transcription: H3K36me3

The presence of elongating RNAP II is the sign of active transcription of genes, however,

by common methods, such as ChIP, the moving enzyme is hardly detectable along the gene

body. A more stable readout for transcription would therefore be a histone modification,

which is set co-transcriptionally: H3K36me3.

In yeast all three H3 lysine 36 methylation marks, mono-, di- and tri-methylation are me-

diated by the non-essential SET domain-containing (Set2) protein. It associates with the

large subunit of RNAP II (Rpb1) in its hyperphosphorylated form during transcriptional

elongation and deposits the trimethyl group onto H3K36 [Kizer et al., 2005; Li et al., 2003,

2002; Xiao et al., 2003]. In addition the RNAP II, CTD kinase 1 (Ctk1) and the elonga-

tion factor Spt6 regulate the levels of H3K36 tri- but not di-methylation [Lin et al., 2010;

Youdell et al., 2008].

In metazoa the lysine 36 methytransferases are essential and specific for each level of methy-

lation. H3K36 mono- and di-methylation are set by nuclear receptor binding SET domain

protein 1 (NSD1) in human [Lucio-Eterovic et al., 2010], shown through enzymatic essays

[Li et al., 2009] and structural data [Qiao et al., 2011]. Maternal effect sterile 4 (MES-

4) is the NSD1 orthologue in fly [Bell et al., 2007] and worm [Bender et al., 2006], and

although it exclusively sets mono- and di-methyl groups it indirectly regulates the H3K36

tri-methylation by adjusting the availability of substrates to the tri-methylating enzymes.

In worm and fly the tri-methylating enzymes are termed histone-methyltransferase-like 1

16



2.1 Transcriptional Gene Regulation

(MET-1) [Andersen and Horvitz, 2007] and Set2 [Bell et al., 2007] respectively. The hu-

man orthologue SET domain-containing 2 (SETD2) (aka HYPB or KMT3A) indeed requires

the NSD1 mediated substrate of H3K36me2 [Edmunds et al., 2008] to set tri-methylation.

It was shown that even with normal levels of H3K36me2 a depletion of SETD2 results in

reduced H3K36me3 levels [Yuan et al., 2009].

Similarly to yeast Set2, human SETD2 interacts with RNAP II during elongation to target

H3K36 [Sun, 2005; Yuan et al., 2009]. This interaction is also regulated by the phos-

phorylated residues in the CTD of Rpb1. During elongation heterogeneous nuclear RNAs

(hnRNAs), including precursors and mature mRNA, associate with specific proteins to form

heterogenous ribonucleoprotein (hnRNP) complexes. Knockdown analyses of one of those

proteins, heterogenous ribonucleoprotein L (hnRNPL), revealed decreased levels of H3K36

tri- but not mono- or di-mathylation [Yuan et al., 2009], indicating that hnRNPL interacts

with SETD2 during active transcription.

It was shown in single gene experiments [Bannister et al., 2005; Edmunds et al., 2008;

Vakoc et al., 2006] as well as genome-wide studies [Barski et al., 2007; Bell et al., 2007;

Mikkelsen et al., 2007; Pokholok et al., 2005] that H3K36me3 levels are correlated with

the expression of active genes. In metazoan and yeast H3K36me3 has a characteristic dis-

tribution pattern increasing towards the 3’ ends of transcription units [Barski et al., 2007;

Bell et al., 2007; Pokholok et al., 2005] . In chicken, there is a shift from mono- to tri-

methylation of H3K36 from the promoters to the 3’ ends of active genes [Bannister et al.,

2005]. Consistent with a role for H3K36me in transcription, data from yeast denote that

H3K36me prevents cryptic initiation via recruiting a histone deacetlyase to the body of

genes, which in turn presumably leads to a less accessible chromatin structure (Carrozza et

al., 2005).

Several large-scale bioinformatic studies have analysed both the positions of nucleosomes

and their modification status within the genomes of humans, C. elegans, D. melanogaster

and mice [Kolasinska-Zwierz et al., 2009; Schwartz et al., 2009; Spies et al., 2009].

In each case, nucleosomes were enriched specifically at exonic sequences. Although the

increased deposition of nucleosomes at exons guarantees a bias in histone modifications

within exons relative to those within introns, it is also clear that a subset of modifictions is

specifically enriched here. This is particularly true for H3K36me3 but also includes methy-

lation at H3K79, H4K20 and H2BK5 [Schwartz et al., 2009]. Each analysis also found
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that the H3K36me3 bias is more pronounced within exons further downstream of the tran-

scription start site. However it is subject to debate whether there is a causal relationship

between the histone modification and the exonic position and if yes, which is cause and

which is consequence [Kim et al., 2011; Schwartz et al., 2009]

Bioinformatic Aspects of H3K36me3 as a Readout

For our study we use H3K36me3 as a readout of transcription. To this end, chromatin

is isolated and fragmented. DNA fragments which are associated with histones carrying

H3K36me3 are enriched by ChIP and analyzed by deep-sequencing on an Illumina GA II.

The raw data obtained by deep sequencing are ∼80 million sequence strings (’reads’) of size

36nt. To obtain a quantitatively meaningful H3K36me3 level per gene, some processing

steps need to be considered. We initially, filtered low-complexity reads based on their

dinucleotide entropy, which is calculated by:

H =
∑
i

filog(fi),

where fi is the frequency of dinucleotide i in the read and the
∑

is over all dinucleotides (i

from 1 to 16). Reads were filtered out if H was less than half the dinucleotide entropy of

the genome, typically removing less than 0.5% of the reads in the given sample. In order to

assign H3K36me3 enrichments to genes, the reads have to be mapped to their respective

position in the genome. A read can possibly map to each position in the mouse genome,

which is 3*109 bases in size. A brute-force approach to the mapping problem would there-

fore in the worst case require 80 million times 3*109 pairwise comparisons, which even with

the fast development of computational hardware, would be too time intensive. To over-

come this limitation the concept of suffix trees is applied, which was introduced in the 70s

by Weiner [Weiner, 1973] and later speed-up by Ukkonen [Giegerich, 1997]. The genome

is decomposed into a ’tree structure’ for once and subsequently each read mapping event

runs in the time of the read length. In addition this allows to even map reads, which have

mismatches (e.g. due to sequencing errors) to their locations in the genome. Alignments

to the mouse genome allowing two mismatches per read were performed by the software

bowtie, which implements this algorithm [Langmead et al., 2009]. Due to repeat elements

and pseudogenes a read can possibly map to multiple locations in the genome, which all
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have the same probability to be the origin of this read. We therefore allow a read to map

up to 100 times not to restrict our analysis to uniquely mapping reads. In addition to track

genomically untemplated hits (e.g., exon-exon junctions), the reads were also mapped to

an annotation database containing known mouse sequences. To account for the multiple

assignment of reads each alignment was weighted by the inverse of the number of hits for

this read. All further quantifications were based on weighted alignments. To quantify the

level of H3K36me3 per gene we had to ensure that that the signal was not blurred by an-

tisense transcripts or overlapping genes with a shifted TSS. For illustration of this problem

assume we want to relate the H3K36me3 level of a region in the genome with the mRNA

level of a gene transcribed from this region (from one specific strand). The ChIP data in-

herently lacks information about the strand because the IP is done on double stranded DNA

bound to histones, however the RNA sequencing data is specific for one strand. To exclude

that we do not associate transcript abundance with H3K36me3 signal from an overlapping

gene location, we stringently excluded based on annotation all mRNA transcripts, which

either overlap with another transcript on the complementary strand or with an overlapping

transcript on the same strand but shifted TSS. In addition we had to consider that there

may be several annotated transcript variants of a gene due to alternative splicing, therefore

we selected the transcript version of median length to be the ’representative’ transcript of

this gene. These filtering steps left us with around 10.000 genes, distant enough to other

transcripts to be safely quantified as separate entities. For those transcripts H3K36me3

reads were summed up over the whole gene body and divided by the length of the gene, to

yield a H3K36me3-density per gene. This density was later logarithmically transformed for

use in the linear regression.
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2.2 Co- and Post-Transcriptional Gene Regulation

For many years, it has been assumed that transcriptional regulation of genes is the ma-

jor source of differential gene expression. However, it becomes more and more evident,

that transcriptional regulation can only partly explain why and at what level proteins are

expressed. Accordingly, quantitative mRNA expression studies are insufficient to predict

protein levels [Gygi et al., 1999].

As co-transcriptional gene regulation I will refer to all mechanisms targeting the transcript

once RNA polymerase has started to transcribe until it releases the mRNA. Following this

scheme, post-transcriptional control of gene expression begins with transcription termi-

nation in the nucleus and extends over mRNA export to all effects, which alter mRNA

abundance in the cytoplasm of the cell before translation into protein.

2.2.1 Co-transcriptional RNA processing

Co-transcriptionally, several processing steps have to take place to transform the pre-mRNA

into mature mRNA: capping, splicing and poly-adenylation (Figure 2.4). Consequently the

complexes that mediate this mRNA processing have to be tightly linked in space and time

to the transcription machinery [Proudfoot et al., 2002], which in turn makes them equally

dependent in chromatin.

Figure 2.4: RNA processing happens co-transcriptional. The CTD of the RNAP II serves as a scaffold

for modifying enzymes which aid in capping, RNA splicing and poly-adenylation.
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5’ End Processing: Capping

The first RNA processing event to occur on the nascent transcript is 5’ end capping, which

happens within the first 40 nucleotides. Three enzymes, a triphosphatase, a guanyl trans-

ferase, and a methyl transferase, all act in concert to add a cap to the 5’ terminus of the

primary transcript [Shuman, 2001]. The first two activities are present on a single polypep-

tide in mammals which gets recruited to the RNAP II initiation complex once the CTD has

become activated by Ser5 phosphorylation. Through direct association with CTD Ser5P,

the capping enzyme acts on nascent transcripts as soon as they emerge from the elongat-

ing RNAP II. Capping may well be a key component of the switch that pushes RNAP II

from abortive early elongation into fully processive elongation across the body of the gene.

Furthermore the 5’ cap allows the mature mRNA to circularize, thereby confering stability

and protecting from degradation [Rasmussen and Lis, 1993].

Transcript Splicing

In eukaryotes most pre-mRNA is composed of protein-encoding exons and large noncoding

intervening sequences, or introns. In the splicing process introns are removed and exons

are joined together to form the mature mRNA, used in translation to produce the correct

protein. Selective inclusion of different coding sequences (alternative splicing) results in the

production of different protein isoforms. For many eukaryotic introns, with exception of

self-splicing introns, splicing is catalyzed by the spliceosome. It consists of the U1, U2, U4,

U5 and U6 small nuclear RNPs (snRNPs) in conjunction with a large number of additional

proteins (reviewed in Stark and Lührmann [2006]). A series of RNA–RNA, RNA–protein,

and protein–protein interactions within the spliceosome is needed to remove intronic regions

and subsequently join exons, producing a mature transcript (reviewed in Collins and Guthrie

[2000]). Intron identification relies on specific sequences defining the 5’ and 3’ splice site.

In mammals, many genes contain multiple introns that are up to hundreds of thousands

of nucleotides in length [Waterston et al., 2002]. The presence of potential splice sites in

eukaryotes is not necessarily leading to selection of these sites by the spliceosome. Trans-

acting regulatory factors bound by pre-mRNA regulatory elements enhance or repress the

recruitment of snRNP to splice sites. These multiple factors together determine the actual

splice site in vivo. In mouse more than 50% of the transcripts are subject to alternative
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splicing, represents an important source of flexibility in gene expression.

As part of the large splicing complex, there are a number of proteins, which leave a mark

on spliced mRNAs and thereby direct localization, translation and decay of the mature

mRNA. The most studied eukaryotic splice-dependent mark is the exon junction complex

(EJC). EJCs are stably deposited ∼20 nucleotides upstream of exon-exon junctions [Le Hir

et al., 2000]. They play a role in non-sense mediated decay (NMD) and directly enhance

translation initiation by promoting the pioneer round of translation [Moore and Proudfoot,

2009]. In addition the THO/TREX complex associates with spliced mRNAs at the 5’-most

exon and promotes rapid export to the cytoplasm [Valencia et al., 2008]. Finally, a number

of DEAD-box proteins have recently been found to associate with mRNAs in a splice-

dependent manner. These proteins seem to influence many aspects of mRNA metabolism

[Rosner and Rinkevich, 2007]. All these evidences show that spliced mRNAs carry numerous

protein marks related to their splicing history, which has important downstream effects.

3’ End Processing: PolyA Addition

PolyA addition, or polyadenylation, occurs during the completion of the transcriptional pro-

cess, following transcription of the poly(A) site and cleavage of the transcript. 3’ cleavage

and polyadenylation of pre-mRNA are dictated by polyA signals that define the end of

the mRNA. These signals are recognized by a substantial cleavage/polyadenylation protein

complex (polyA complex) that is recruited to the Serine 2 phosphorylated form (Ser2P) of

the CTD through direct CTD-interacting domains (CIDs) as well as RNA binding domains

(RBDs) that specifically recognize the pre-mRNA polyA signals. Specific CIDs and RBDs

have been identified on individual polyA complex subunits [Proudfoot, 2004].

Polyadenylation, the final stage in pre-mRNA cotranscriptional processing, is a critical con-

trol point in preventing aberrant gene expression. When 3’ processing is either inefficient

or compromised by gene mutation, the nuclear exosome is recruited to rapidly degrade the

unwanted transcript. Finally, polyadenylation facilitates mRNA release from the transcrip-

tion site and its ultimate export through the nuclear pore complex (NPC) to cytoplasmic

translation. Like the 5’-cap structure, the 3’-polyA tail is important for mRNA stability in

the cytoplasm.
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2.2.2 Export of mRNA into the cytoplasm

Before an mRNA is exported into the cytoplasm it has to pass several mRNA quality control

steps. Splicing defective mRNAs as well as transcripts with aberrant 3’-ends are retained

at the site of transcription and directly degraded by the exosome in the nucleus. Once an

mRNA has passed the nuclear surveillance system, mRNA export factors, which have been

deposited on the mRNA during processing, interact with nuclear pore proteins and mediate

the transport of the mature mRNA into the cytoplasm [Hocine et al., 2010].

In mammals only about 5% of the total mass of RNA synthesized ever leaves the nucleus. In

section 2.2.1 the extensive mRNA processing, including splicing, capping, polyadenylation

and quality control was discussed. A large fraction of the transcripts that does not pass

these steps or is otherwise damaged, is immedately degraded. The export of the mature

mRNA transcript is delayed until all processing has been completed.

One of the few well described examples of regulated nuclear export that of the human im-

munodeficiency virus (HIV). The viral RNA directs the formation of double stranded DNA

and its insertion into the host genome, where it gets transcribed by the host cell’s RNAP

II. In order to produce progeny virus complete unspliced, intron containing, transcripts need

to be exported to the cytoplasm to be packaged into newly synthesized viral capsids. To

overcome the host cell’s normal block to export unspliced mRNA, HIV encodes a protein

REV, which, once translated, binds to the pre-mRNA of the virus in the nucleus and shuttles

it though the nuclear pore by interacting with the export receptor exportin 1.

A key mediator of nuclear mRNA export is the THO/TREX complex, mentioned in section

2.2.1. Consisting of the pentameric THO complex, which functions in transcription elon-

gation, and the mRNA export factors REF/Aly and UAP56, it associates with the 5’-most

exon of spliced mRNAs. UAP56 functions in spliceosome assembly [Iglesias and Stutz,

2008; Köhler and Hurt, 2007], while REF/Aly bridges the mRNA to the export receptor

NXF1/ TAP. In mammals, REF/Aly and UAP56 appear to be recruited as a consequence of

splicing: when uncoupled from transcription in vitro, THO/TREX complex recruitment is

strongly 5’ cap and splicing dependent [Cheng et al., 2006; Masuda et al., 2005]. REF/Aly

binding can potentially increase the speed and efficiency of the export process [Valencia

et al., 2008] but is not essential for export in metazoans [Gatfield and Izaurralde, 2002].

In addition is was proposed that the positioning of the THO/TREX complex at the 5’-end

of spliced mRNAs influences direction of export, so that mRNAs exit the nuclear pore with
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the 5’-end first to directly become engaged in translation [Valencia et al., 2008]. In addi-

tion to the THO/TREX complex, serine/arginine-rich (SR) and SR-like proteins can also

function as mRNA export adaptors [Huang and Steitz, 2005]. These proteins are initially

recruited to pre-mRNAs for splicing in a hyperphosphorylated state, and become partially

dephosphorylated during the splicing reaction. Thus, it has been suggested that the ex-

port competence of the spliced messenger ribonucleoproteins (mRNP) is signaled by the

phosphorylation status of the bound SR proteins [Huang and Steitz, 2005].

2.2.3 Determinants of mRNA half-life

In procaryotes the rapid synthesis and degradation of mRNA is essential for their capacity

to adapt quickly to the environment. Transcripts in bacteria like E.coli live in the cytoplasm

on average less then 5 minutes [Bernstein et al., 2004]. In eukaryotes, the dynamic range

of transcript half-life is much bigger: housekeeping transcripts, from the β-globin gene for

example, can be present for more than 10 hrs [Sharova et al., 2009] while TF-mRNAs are

degraded relatively fast [Yang et al., 2003].

As described in section 2.2.1 most mRNAs acquire a 5’ cap structure and a 3’ polyA tail

during co-transcriptional processing in the nucleus. A so called cap-binding complex induces

the circularization of the transcript, which both, facilitates translation and protects it from

degradation.

There are two general ways a transcript can be degraded: from the 3’ or from the 5’ end.

From the 3’ end the polyA tail gets shortened as soon as the transcript is exported to the

cytoplasm. PolyA shortening is like a timer that counts down lifetime. When the polyA

tail reaches a critical length, in mammals ∼25 nt, two pathways of degradation diverge:

(I) Either exonucleases continue to shorten the transcript from the 3’ end into the coding

region or (II) the 5’ cap is removed (decapping) and the exposed mRNA is rapidly degraded

from the 5’ end by the exonuclease Xrn1. Most eukaryotic RNA is actually degraded by

both mechanism.

Usually, specific sequence properties of each transcript determine how fast the degradation

occurs and thereby how long the mRNA is available in the cytoplasm to be subject to trans-

lation into protein. Especially 3’ un-translated region (UTR) sequences often carry binding

sites for proteins, which specifically enhance or slow down the rate of polyA shortening,

decapping or 3’-5’ degradation. At the same time translation itself regulates the stability of

the respective mRNA: if ribosome and translation machinery are bound, degrading enzymes
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are less likely to access and act on this transcript. (reviewed in Parker and Song [2004])

Apart from the two general ways of degradation there are cases where specific nucleases

cleave the mRNA internally, which leads to rapid degradation. Transcripts which are de-

graded in this way, usually carry specific sequences in their 3’ UTR, which serve as recog-

nition sites for endonucleases to bind.

Sequence-specific mRNA repression

Post-transcriptional regulation is mediated by RBPs or small RNAs, so called, trans-acting

factors, which bind to specific cis elements in UTRs of an mRNA. This binding can then

influence mRNA degradation, sequestration, localization and translation. Most regulatory

sequences bound by trans-acting factors, are located within the 3’ UTR of an mRNA [Mer-

ritt et al., 2008; Stark et al., 2005].

Trans-acting factors and cis-acting elements

Although the 3’ UTR in a long linear RNA molecule is quite distant from the cap, the

closed loop structure, discussed above, brings both of these features into close proximity

and thereby allows the 3’ UTR to impact on translation initiation. Numerous cis elements

located in the the 3’ UTR have been described, however, only few reports, find regulatory

sequences in the 5’ UTR. For instance AU rich element (ARE) are found in mRNAs encod-

ing for cytokines, interleukins and proto-oncogenes [Caput et al., 1986; Shaw and Kamen,

1986]. Several ARE binding proteins (ARE-BPs) have been identified, which tightly regu-

late the turnover of transcripts they bind to: While the CCCH tandem zing-finger protein

tristetraprolin (TTP) promotes mRNA degradation [Lykke-Andersen and Wagner, 2005],

the ELAV protein family member HuR, another ARE-BP, has a stabilizing effect on its

target transcript [Fan and Steitz, 1998].

Proteins that bind to 3’ UTR elements can influence the stability of the transcript in sev-

eral ways. They can regulate mRNA transport within the cytoplasm or assemble repressive

complexes which sequester the mRNA away from the translation machinery. Moreover,

trans-acting factors may recruit mRNA decay enzymes, thereby inducing degradation. Be-

sides RBPs, another group of important trans-acting factors are small regulatory RNAs, like

25



2. INTRODUCTION

piRNAs and miRNAs.

In the following section I will describe miRNAs in more detail as they will be the most

relevant trans-acting factor for my PhD thesis.

2.2.4 Transcript decay by MicroRNAs

miRNAs were first discovered in 2001 in C.elegans [Lagos-Quintana et al., 2001; Lau et al.,

2001; Lee and Ambros, 2001]. Since then, this species of small RNA became recognized

as key regulators in gene expression, influencing a wide range of biological processes, post-

transcriptionally, including cell proliferation, differentiation, metabolism and development

(reviewed in Krol et al. [2010]).

Like mRNAs, miRNAs are initially transcribed by RNAP II in the nucleus, where they form

pri-miRNA precursors, folded into a so called ’hairpin’ structure. These precursors are pro-

cessed by the endoribonuclease Drosha, yielding shorter ’hairipins’, termed pre-miRNAs,

which are subsequently exported to the cytoplasm by the export factor exportin 5. In the

cytoplasm a second processing enzyme, Dicer, cuts the loop of the folded pre-miRNA and

leaves a 22nt long double-stranded RNA. From this double-strand one, the mature miR-

NAs, is incorporated together with several RNA binding proteins into the miRNA induced

silencing complex (miRISC). The miRISC locates its targets via basepairing between the

loaded miRNA and the target 3’ UTR and thereby represses mRNA expression. Key com-

ponents of the miRISC, and crucial for target mRNA repression are the Argonaute and

GW182 proteins, which interact with other proteins to affect translation initiation or recruit

mRNA decay enzymes (reviewed in Krol et al. [2010]). Initially, it was believed that in

animals miRNAs would affect gene expression mainly via translation inhibition, because the

complementary region between the miRNA and its target mRNA is very short (6-8 nt), in

contrast to the almost full complementarity in plants [Llave et al., 2002; Rhoades et al.,

2002]. While a lot of progress was made understanding the biogenesis and function of

miRNAs the actual mechanism that miRNAs use to regulate gene expression is subject to

a controversy (reviewed in Huntzinger and Izaurralde [2011]). There are in principle two

different views: (I) miRNAs function on the level of actual mRNA degradation or (II) they

only inhibit translation of the target but leave the transcript intact (Figure 2.5). The latter

mechanism, translational repression, has been suggested to occur in four different ways: in-

hibition of translation initiation, inhibition of translation elongation, premature termination
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of translation, and co-translational protein degradation.

The first studies on miRNA-mediated repression mechanism in C.elegans suggested that

Figure 2.5: Proposed models of miRNA mediated gene expression silencing. A miRNA might act on

different stages of gene expression: it might prevent transcription initiation or elongation or act to

degrade the target mRNA by deadenylation and subsequent decay mechanisms.

the repression happens post-initiation, because protein expression of target mRNAs was

inhibited while RNA could still be detected on polysomes [Maroney et al., 2006; Olsen and

Ambros, 1999; Seggerson et al., 2002]. This could be either because ribosomes drop off

from the transcript prematurely [Petersen et al., 2006] or because proteins are degraded

co-translationally [Nottrott et al., 2006].

Contrasting studies showed the absence of miRNA targets from the polysomal fraction [Pil-

lai et al., 2005] and concluded that translation is repressed already at the initiation step.

This theory was supported by the observation that miRNA mediated silencing could be

avoided if translation was driven by an internal ribosome entry site (IRES) [Iwasaki et al.,

2009; Mathonnet et al., 2007]. The transcription initiation complex eIF4F, which binds

polyA tail and cap, was actually observed to be affected because adding purified eIF4F

continuously abrogated silencing [Ding and Grosshans, 2009].

This last finding may not be in conflict with the option that miRNA target supression acts

on the level of transcript degradation. Because of the imperfect pairing of the miRNA with

its target endonucleolytic cleavage it is unlikely, however the miRNA can direct its target to

the cellular 5’-3’ miRNA decay pathway, where the circular conformation of the transcript is

broken up and progressive deandenylation takes place. The degradation theory is supported
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by numerous evidences from specific miRNA-target pairs as well as transcriptome studies.

The depletion of a miRNA lead to increased abundance of mRNAs with complementary

target sites [Baek et al., 2008; Krützfeldt et al., 2005] and conversely, the introduction of

a miRNA into the cell resulted in decreased levels of potential targets [Baek et al., 2008;

Guo et al., 2010; Hendrickson et al., 2009; Lim et al., 2005]. In addition the depletion of

any essential proteins of the miRNA biogenesis pathway had the same effect as deleting

mature miRNAs: target mRNAs accumulated [Behm-Ansmant et al., 2006; Eulalio et al.,

2009, 2007; Giraldez et al., 2006; Rehwinkel et al., 2005]. Without interfering with a cell,

expression profiles of differentiating cells show anticorrelation of miRNA expression and tar-

get [Farh et al., 2005; Stark et al., 2005].

Studies employing quantitative mass spectrometry agreed that miRNAs have only a minor

effect on protein level [Baek et al., 2008; Selbach et al., 2008]. Two more recent papers,

which use translation profiling by monitoring polysome bound mRNA estimate that mRNA

degradation explains 75-84% of miRNA-mediated changes in protein level [Guo et al., 2010;

Hendrickson et al., 2009]. In summary, evidence for rapid mRNA degradation as the main

mechanism of miRNA mediated regulation accumulates, which means that the effect of

a miRNA on its targets should be measured on the level of mRNA abundance. This as-

sumption will be important in the second part of my PhD project, when investigating the

contribution of miRNAs to steady state mRNA level.

2.2.5 Readout of post-transcriptional events: mRNA half-life

After the mRNA gets transcribed and exported to the cytoplasm, the process of RNA

degradation begins immediately. How fast a transcript is degraded is different for every

mRNA as described in the previous sections. Depending on RNA sequence but also on the

expression of interacting proteins a transcript will have a certain half-life, the time after

which only half of the initial transcript will be existent in the cell. Transcript decay or

degradation λ is indirectly proportional to half-life t1/2,

t1/2 =
ln(2)

λ
,

assuming an exponential decay process. Measuring abundance of a transcript at a time

point t reflects the equilibrium between transcript synthesis and decay. To monitor only

RNA decay, we therefore have to mask the synthesis process from our measurement. This

28



2.2 Co- and Post-Transcriptional Gene Regulation

can be done in different ways:

The direct, however strongly invasive, method is to stop transcription in the cell. This can

be done by arresting RNAP II by various chemicals, such as α-amanitin or actinomycin-D.

From the moment of transcription arrest, no new transcript is being synthesized and one

can measure the decrease of mRNA per gene over time. Typically, this time-course is not

longer than a couple of hours because the RNAP II arresting chemicals also interfere with

other cellular processes and may alter the speed of degradation [Dölken et al., 2008]. For

fast dividing cells, such as ESC in our experiments, we even observe cell death after 8 hrs of

actinomycin-D treatment. Nevertheless, this method has been widely used in genome-wide

studies as it allows for a global quantification of the decaying mRNA pool by either microar-

ray or RNA sequencing. Isolating RNA at each time point after transcription arrest from the

exact same number of cells, results in a decreasing amount of total RNA obtained over time.

This is precisely what we would like to monitor, however, both microarrays and sequencing

technology require to use a specific amount of starting material (in this case RNA) for every

experiment, which at time point t0 can be obtained from half the amount of cells compared

to t1/2, where on average half of the mRNA is degraded. This can be solved by either ’filling

up’ the required RNA amounts by an artificial spike-in RNA or we can make use of the fact,

that most of the RNA in a cell (> 80%) actually comprises ribosomal RNA, which is known

to have a long half-life (∼ 5 days, Loeb et al. [1965]). In addition rRNA is transcribed

by RNAP I, which is not inhibited by actinomycin-D. Consequently, we will not see rRNA

decreasing during the time-course experiment of a few hours, however, the relative amount

of mRNA in the RNA pool will decrease. Importantly, resulting microarray intensities from

these experiments must not be normalized between arrays, as this would erase the signal of

global mRNA decrease. For each transcript monitored on the array, one can infer a linear

fit from the log transformed signal intensity depending on the time after transcription ar-

rest. The slope of the regression line corresponds to the decay λ in the equation above and

by plugging in the time interval of the experiment, one can obtain the half-life t1/2 in hours.

Due to the side-effects of the transcription arrest, a less invasive, method has become state

of the art measuring mRNA decay rates during the last years: metabolic labeling [Dölken

et al., 2008; Rabani et al., 2011]. Here a ’label’, for example a modified nucleotide, is

added to the cell in excess for a certain time period, in which all mRNA synthesized will

incorporate this label. One can then specifically separate labeled (newly synthesized) and
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unlabeled (pre-existing) mRNA. With time the fraction of the labeled over unlabeled RNA

increases until all pre-existing RNA is degraded and all mRNA is labeled. Quantitative mea-

surement (microarray or RNA sequencing) is done between start of labeling and complete

labeling for all three fractions: labeled, unlabeled and total RNA separately. Importantly, it

is sufficient to do this measurement at one time point, because we know that at timepoint

t0 (before labeling) the ratio of unlabeled
total = 1. To calculate decay rates from the ratios

obtained at this time point t0+x use:

T1/2 = −t ∗ ln(2)

ln(1− 1

1+
(labeled/total)

(unlabeled/total)

)
,

again assuming exponential decay. Although, the advantage of this method is that the incor-

poration of a labeled nucleotide does not interfere with expression levels, a major downside

is the IP based separation of labeled and unlabeled RNA. Depending on the labeling time

this will enrich for a very small fraction of transcripts and is potentially subject to sequence

biases. Further necessary purification steps add more potential steps for introduction of

systematic errors. One has to be cautious when processing metabolic labeling data: The IP

enriches for biotinylated labeled uridines (thio-U), the U frequency within a transcript will

influence the enrichment, a newly transcribed mRNA with many Us will be more enriched

than one with low U frequency even if both have been similarly transcribed. Therefore

a U-normalization step is required before plugging in the labeled
total fraction into the above

formula.

Both methods measuring mRNA half-life have their individual shortcomings but unless

one would have a reference of the ’real’ mRNA half-life of each transcript it can not be

decided which method is superior. A report which measures mRNA half-lives in parallel

using both methods in the same system, shows a very low correlation meaning either one or

both methods do not reflect actual decay rates. Assuming these experimental limitations,

one has to take interpretations of mRNA half-life with a grain of salt, however, in theory

the decay rate of a transcript should reflect its entire history from the moment it was tran-

scribed, processed, exported and subject to decay or miRNA mediated silencing.
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2.3 Introduction to the Theoretic Approach

The above two introductory sections were concerned with biological aspects that build the

basis for my PhD Thesis. While this biological background is sufficient to raise the question

of the thesis, a basic introduction to statistical methods, that I will use, is necessary to

formulate the problem. In this section I will briefly introduce regression analysis with regard

to the biological background of my PhD topic. This will help me to formulate the scope of

my thesis in the following section 2.4.

2.3.1 Regression Analysis

Regression type problems were first considered in the 18th century to aid navigation. The

method was almost exclusively used in physical sciences until later in the 19th century,

where Francis Galton established the term ’regression to mediocracy’ in 1875 and intro-

duced r as the correlation between two variables x and y [Galton, 1890].

Galton used this definitions to explain a phenomenon called ’regression effect’: the obser-

vation that sons of tall fathers tend to be tall but not as tall as their fathers and sons of

short fathers tend to be short but not as short as their fathers. His work was later extended

by Karl Pearson to a more general statistical context [Magnello, 1998]. In the 1950s and

1960s, economists used electromechanical desk calculators to calculate regressions and be-

fore 1970, it took up to 24 hours to receive the result from one regression. With the advent

of high-speed computing regression methodology developed rapidly and as computing hard-

ware improved the scope for this analysis has widened.

Simple Regression

In sections 2.1 and 2.2 I introduced transcriptional and post-transcriptional processes in

the cell that play a role in gene expression regulation. Suppose we wish to forecast the

abundance of a certain transcript in a cell, we now have plenty of information which factors

are associated with variations in mRNA levels, chromatin, transcription, export, processing,

degradation etc. For the time being let us restrict to one factor: call it RNA polymerase

II occupancy at the promoter of the gene. Regression analysis with a single explanatory

variable is termed simple regression.
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We assume, possibly quite unrealistically, that mRNA level can be measured by a single

attribute — RNA Polymerase II occupancy (RNAP). Initially in any regression study, one

formulates a hypothesis about the relationship between the variables of interest, here, RNAP

and mRNA level, based on, for example, mechanistic knowledge in the process of transcrip-

tion. Thus, the tentative hypothesis is that higher levels of RNAP cause higher levels of

mRNA, other things being equal. To investigate this we collect data from a number of

genes in the genome, by RNA-sequencing and RNAP II-ChIP-seq. Because we have prior

knowledge about the generation of the sequencing data, we know that it has to be logarith-

mically transformed before testing our hypothesis. We can now plot this information for all

genes using a two-dimensional scatter plot, where each point represents one gene. The plot

suggests that more RNAP indeed yields higher mRNA levels but at the same time the the

relationship is not perfect. Regression analysis embraces the idea that other factors than

RNAP influence mRNA levels. Thus the new hypothesis is that the mRNA level for each

gene is determined by RNAP and an aggregation of omitted factors that we term ’noise’.

The relationship can be written:

mRNAi = α+ βRNAPi + ε,

where α is a constant, β the effect or ’coefficient’ of RNAP, hypothesized to be positive and

ε the ’noise’ term reflecting other factors that influence mRNA level. The variable mRNAi

called the dependent variable or response and RNAPi is the independent or explanatory

variable or predictor. Note that the relationship between mRNA and RNAP is the equation

for a line with an intercept α and a slope β. Regression estimates the line, which minimized

the sum of squared errors (SSE), with error being the vertical distance of each gene from

the regression line.

Multiple Regression

Plainly, mRNA levels, as described in previous section are affected by a variety of factors

in addition to RNA polymerase occupancy, factors that were aggregated into the ’noise’

term in the simple regression model above. Multiple regression allows additional factors

(predictors) to enter the analysis separately so that the effect of each can be estimated.

It is valuable for quantifying the impact of various simultaneous influences upon a single
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response variable. For example histone marks are connected with transcription and may be

incorporated in the regression. The modified model may be written:

mRNAi = α+ βRNAPi + γH3K36 + εi,

The task of estimating the parameters α, β, and γ is conceptually identical to the earlier

task, in contrast we can no longer think of regression as choosing a line in a two-dimensional

diagram. With two explanatory variables we need three dimensions, and instead of esti-

mating a line we are estimating a plane. Multiple regression analysis is capable of dealing

with an arbitrarily large number of explanatory variables, e.g. more histone modification

measures may be included.

Another common statistic associated with regression analysis is the R2, which will be used

as an estimator of goodness of the model throughout the thesis. R2 has a simple definition:

it is equal to one minus the ratio of the sum of squared estimated errors (the deviation of

the actual value of the dependent variable from the regression line, SSEfit) to the sum of

squared deviations about the mean of the dependent variable (SSEmean).

R2 = 1−
SSEfit

SSEmean

The R2 statistic necessarily takes on a value between zero and one. A high value of R2,

suggesting that the regression model explains the variation in the dependent variable well,

is obviously important if one wishes to use the model for predictive or forecasting purposes.

The SSE about the regression line is a measure of the extent to which the regression fails to

explain the response variable. Hence, the R2 statistic is a measure of the extent to which

the total variation of the response variable is explained by the regression.

Non-Linear Regression

In statistics, nonlinear regression is a form of regression analysis in which observational

data are modeled by a function which is a non-linear combination of the model parameters

and depends on one or more independent variables. The data are fitted by a method of

successive approximations. In contrast to linear regression we can not estimate the optimal

’true’ coefficients for each predictor. In non-linear regression the parameter fitting is an

iterative ’try and error’ process which terminates upon a stop criterion, for example if the

SSE is below a certain threshold. In some cases where the relationship between the predictor
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and the response variable is not linear but can be defined by another relation (exponential,

logarithmic, trigonometric, power function...) one or both variables can be transformed to

yield linear relation and use linear regression with the transformed variables. However, if

the relation between the variables is more complex, one can employ non-linear regression.

This way one might be able to catch plateau effects in biological measurements or other

biases which are known to be technical. One should use non-linear modeling with caution

because non-linear relationships between variables are much harder to interpret and it may

be more useful to understand a biological process having a linear model with a higher SSE

that is interpretable than a non-linear model, where the relationship between predictors is

not clear.
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2.4 Motivation, Idea and Scope of Thesis

“The formulation of the problem is often more essential than its solution which may be

merely a matter of mathematical or experimental skill.” [Albert Einstein]

All different cell types in a multicellular organism arise from one fertilized cell. During repli-

cation and differentiation the genetic information is static while differentiated cells show an

enormous diversity in phenotype and function. This results from varying expression patterns

of the genes in an organism’s genome and the resulting protein pool in each cell, which is

determined by the cell’s gene regulation system.

Gene regulation is a multilayered process, which starts in the nucleus of the cell and con-

tinues in the cytoplasm (Figure 2.6). To regulate which gene is expressed at which time

involves a complex interplay between proteins (transcription factors) that bind DNA in a

sequence-specific manner as a genetic component, and the epigenetic state of the target

sequence, defined at large by modifications of DNA and bound histones. In addition to this

RNA synthesis determining steps, RNA degradation plays a role in setting up which tran-

scripts will be available to the ribosome for translation. RNA binding proteins and particular

small non-coding RNAs are well studies molecules mediating such post-transcriptional reg-

ulation.

When I started my PhD in 2008, genome-wide mapping of histone modifications switched

from ChIP-chip technology to ChIP followed by deep-sequencing (ChIP-seq). The first high-

resolution maps in mammals derived by ChIP-seq [Barski et al., 2007; Mikkelsen et al., 2007]

together with deep sequencing studies of corresponding transcriptomes [Mortazavi et al.,

2008; Wang et al., 2009] allowed to correlate mRNA expression with the epigenetic state

of a certain cell type. This revealed a genome-wide contribution of active and repressive

histone marks at promoter regions with transcription. At the same time the flood of new

RNA sequencing data [Affymetrix ENCODE Transcriptome Project and Cold Spring Harbor

Laboratory ENCODE Transcriptome Project, 2009] allowed detection of a large pool of RNA

molecules previously masked by targeted microarray approaches and supported theories of

pervasive transcription [Carninci et al., 2005; Pheasant, 2007; Taft et al., 2006] outside

of protein coding-genes [Carninci, 2009; Core et al., 2008; Seila et al., 2008; Wang et al.,

2009]. While both, epigenetic modifications of chromatin as well as regulatory RNAs, were
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Figure 2.6: This sketch illustrates a simplified view of locally separated regulatory processes of RNA

expression in an eukaryotic cell. Histone modifications, chromatin and transcription in the nucleus and

different mechanisms of RNA degradation in the cytoplasm.

reported to be linked to mRNA expression and different phenotypes, there was no study

comparing the contribution of these regulatory layers on a quantitative base.

To meet this challenge we made use of an in vitro differentiation system of ESC to terminal

neurons [Bibel et al., 2007], where chromatin modification maps and transcription data was

readily available from previous studies in the lab [Lienert et al., 2011; Mohn et al., 2008;

Tiwari et al., 2012]. With this and public data in the same cell type [Mikkelsen et al., 2007]

we initially identified the chromatin readouts most relevant for mRNA levels. We found

that together with RNAP II occupancy and two other histone modification at the promoter

region (H3K4me2 and H3K27me3), H3K36me3, a co-transcriptional histone mark, is most

predictive for mRNA abundance. Hence, we generated high-resolution H3K36me3 maps by

ChIP-sequencing in our in vitro differentiation system and used a regression model to inte-

grate these maps with the other available ChIP-seq data in order to predict transcription.

The idea of our study, is that given these chromatin-based transcription measures, it would

be impossible to capture information from the post-transcriptional layer. Therefore any de-

viation between the chromatin-derived ’predicted transcription’ and actual measured mRNA

levels should be due to regulation that happens after the RNA is synthesized, meaning post-

transcriptionally. In order to quantify the relative contributions of these layers of regulation
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we primarily infer the explained variance of mRNA levels by the linear combination of histone

marks and RNAP II occupancy and secondly, determine how much of the remaining variance

might be explained by post-transcriptional processes. We aimed to quantify this effect of

post-transcriptional regulation by measuring mRNA decay rates initially by transcription ar-

rest in our system. Later we compared these results with metabolic labeling of RNA, which

emerged as the method of choice to defined decay rates [Dölken et al., 2008]. Specifically,

we wanted to describe the quantitative contribution of miRNAs to post-transcriptional de-

cay of their respective target transcripts. To this end we inferred abundance of small RNAs

throughout in vitro differentiation in our system by small RNA sequencing. We integrate

the miRNA abundance with experimentally [Sinkkonen et al., 2008] and computationally

predicted miRNA-target interactions [Gaidatzis et al., 2007] with the data derived on the

chromatin level and compare their relative contributions to steady-state mRNA level as well

as changes in mRNA abundance throughout differentiation.
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Abstract

Messenger RNA levels in eukaryotes are controlled by multiple consecutive regu-

latory processes, which can be classified into two layers: Primary transcriptional

regulation at the levels of chromatin and secondary, co- and post-transcriptional

regulation of the mRNA. To identify the individual contribution of these layers to

steady-state RNA levels requires separate quantification. Using mouse as a model

organism, we show that chromatin features are sufficient to model RNA levels

but with different sensitivities in dividing versus post-mitotic cells. In both cases

chromatin derived transcription rates explain over 80% of the observed variance in

measured RNA levels. Further inclusion of measurements of mRNA half-life and

microRNA expression data enabled the identification of a low quantitative contri-

bution of RNA decay by either microRNA or general differential turnover to final

mRNA levels. Together this establishes a chromatin based quantitative model for

the contribution of transcriptional and posttranscriptional processes to steady-state

levels of messenger RNA.

3.1.1 Introduction

Regulation of mRNA levels is a key mech-

anism that defines cell identity. Cellular

homeostasis requires stable gene expres-

sion patterns, while differentiation events in

metazoan development or responses to ex-

ternal stimuli involve resetting of the tran-

scriptional program. During the lifespan of

an mRNA from transcription over matura-

tion, export, translation and decay, its ac-

tivity and abundance is controlled by vari-

ous mechanisms: histone modifications and

DNA methylation determine the epigenetic

state of the chromatin environment of a

gene depending on the DNA accessibility

the transcription machinery can bind and

initiate transcription and thereby produce

primary transcript at different rates [Bell

et al., 2010; Segal and Widom, 2009]. This

is modulated co-transcriptionally by splic-

ing and poly-adenylation [Di Giammartino

et al., 2011; Millevoi and Vagner, 2010;

Nilsen and Graveley, 2010] and further reg-

ulated at the level of nuclear export. Once

the mRNA is in the cytoplasm it is sub-

ject to further post-transcriptional process-

ing, that can reduce the transcript level

in a targeted manner. Two major post-

transcriptional regulatory processes influ-

encing the amount of mRNA molecules

available for translation are general RNA

decay and microRNA-mediated RNA inter-

ference. Single-gene experiments have pro-

vided examples of the involved regulatory

mechanisms that include transcription fac-

tor binding but also what is currently re-

ferred to as epigenetic regulation. These

summarize chromatin regulation of DNA
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accessibility through active or repressive

histone modifications [Kouzarides, 2007]

or nucleosomal positioning [Kornberg and

Lorch, 1999; Wyrick et al., 1999], transcrip-

tional repression by DNA methylation of

gene promoters [Bird, 2002; Eckhardt et al.,

2006; Weber et al., 2007] and post- tran-

scriptional regulation of RNA decay rates

by non-coding small RNAs [Ambros, 2004].

Additionally, genome-wide studies success-

fully approximated mRNA levels with infor-

mation of transcription factor binding and

histone modification patterns at promoter

proximal sequences [Cheng and Gerstein,

2011; Karlic et al., 2010; Ouyang et al.,

2009]. mRNA abundance however, may

be determined to different degrees by tran-

scriptional and post-transcriptional events

and the contribution of these layers may

vary depending on how stable or how fast

the expression change needs to be. At a

quantitative level, there is only a limited un-

derstanding of the individual contributions

of these regulatory layers. To understand

these relations we abstract the many lay-

ers into two processes: primary regulation

of synthesis or transcription on the level of

chromatin and secondary, post- transcrip-

tional degradation of mRNA. We assume

that the change of mRNA level (dR/dt)

depends linearly on mRNA synthesis and

degradation,

dR

dt
= txj [DNA]− dj [RNAj ] (3.1)

where [RNAj] is the RNA concentration for

gene j, [DNA] is constant ([DNA] = 1),

txj is the transcription rate and dj is the

degradation rate of gene j. For simpli-

fication, we initially assume the degrada-

tion rate to be constant, meaning indepen-

dent of gene j. Therefore in steady state

where dR/dt = 0, the RNA concentration

of gene j is proportional to transcription

and degradation rates of gene j. Subse-

quently when we investigate the contribu-

tion of post-transcriptional regulation, we

allow dj to depend on gene j (see supple-

mental information section 1 for details).

Consequently, we can estimate the individ-

ual contribution of transcription and mRNA

degradation, or mRNA decay, by correlat-

ing them to mRNA levels respectively. Here

we explore quantitatively how a prediction

of transcription based on chromatin char-

acteristics relates to mRNA levels and how

such an approach can quantify changes in

mRNA abundance that occur during the

course of cellular differentiation. We ask if

pluripotent and differentiated cells differ in

their regulatory behaviors, potentially relat-

ing to differences in cell cycle and the abil-

ity to set and propagate epigenetic marks

or a different usage of posttranscriptional

processes. As a biological model we use

mouse stem cells that we differentiate into

a highly pure neuronal population through a

defined progenitor state [Bibel et al., 2007].

We focus our analysis on pluripotent embry-

onic stem cells (ES) and post-mitotic gluta-

matergic neurons (TN). In order to quanti-

tate the contribution of different regulatory

processes to observed mRNA levels, we cre-
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ated a linear model for each cell type based

on various measures from transcriptional

and post- transcriptional layers. In these

models, a measure that is a strong corre-

late of transcription is expected to be highly

predictive of mRNA levels. We found that

genome-wide measures of histone modifi-

cations and polymerase occupancy alone

– measures which stand for the transcrip-

tional layer of regulation - allowed accurate

prediction of mRNA levels and explained

most of the observed experimental variation

in steady-state mRNA levels. In addition we

measured transcript half-life and microRNA

abundance in these cells, representing the

post-transcriptional layer of regulation, and

identified only a minor contribution to the

determination of mRNA levels.

3.1.2 Results

Histone marks are predictive of tran-

scription rate

In order to separately quantify transcrip-

tional and post-transcriptional processes on

a genome-wide level, we estimated tran-

scription rates for individual genes. Tran-

scription rate is a function of multiple fac-

tors: transcription factors bind influenced

by the chromatin environment and concor-

dantly determine the rate of transcription.

We use chromatin correlates of transcrip-

tion as readout, which can be measured

genome-wide in a robust way by chromatin

immunoprecipitation followed by deep se-

quencing (ChIP- seq). We created genome-

wide maps for RNA polymerase II (Pol-II)

and tri- methylation of lysines 4, 27 [Lienert

et al., 2011; Tiwari et al., 2012] and 36

in histone H3 (H3K4me2, H3K27me3 and

H3K36me3) in both dividing and post-

mitotic cells (see materials and methods for

details) and investigated the distribution of

sequence reads along the gene body in ref-

erence to gene activity defined by mRNA

abundance of representative transcripts (see

supplemental information section 2 for de-

tails). Figure 3.1 summarizes average distri-

butions of these marks for non-overlapping

genes: Pol-II, H3K4me2 and H3K27me3

are located around the promoter of the gene

[Boyer et al., 2006; Guenther et al., 2007;

Mohn et al., 2008; Rahl et al., 2010; Young

et al., 2011] while H3K36me3 is distributed

over the gene body [Barski et al., 2007;

Bell et al., 2007; Mikkelsen et al., 2007;

Pokholok et al., 2005] steadily increasing

within the first 2 kilo bases downstream of

the transcription start site (TSS). Based

on these observations, which are in ac-

cordance with previously published models

[Bell et al., 2007; Edmunds et al., 2008;

Hon et al., 2009; Vakoc et al., 2006], we

selected the regions to quantify these marks

for individual genes. While most of the hi-

stone marks have a functional impact close

to the TSS, the abundance of H3K36me3

throughout the gene body is notably by

far the most informative measure for tran-

scription (Figure 3.2, supplemental infor-

mation section 3 for details), as could be

expected from its mechanistic link to tran-
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Figure 3.1: Using histone marks and RNA polymerase II to model mRNA levels. Metagene plot

showing the distribution of histone marks along the gene body of genes aligned at their TSS with low,

intermediate and high expression levels.

scription: H3K36me3 chromatin mark is

set by a complex that associates with the

active elongating RNA-polymerase-II [Joshi

and Struhl, 2005; Keogh et al., 2005; Kizer

et al., 2005; Krogan et al., 2003; Li et al.,

2003, 2002; Pokholok et al., 2005; Strahl

et al., 2002; Sun, 2005; Xiao et al., 2003;

Yuan et al., 2009].

Using these marks as regressors (Figure

3.2) we infer a linear model, where mRNA

measured by deep sequencing is the re-

sponse variable (combining poly-A RNA

and ribosomal-depleted RNA sequencing,

for details see materials and methods) (Fig-

ure 3.2). The coefficients assigned to each

of the regressors by the linear model reflect

their function as active or repressive histone

mark (sign of the coefficients) and their

contribution to explaining transcription

(absolute value of the coefficients). The

correlation (controlled by a 2-fold cross-

validation) between observed and predicted

mRNA abundance is 0.92. This means that

84.6% of the observed differences in mRNA

levels (variance) can be explained by this

model (Figure 3.2, black bar) – exclusively

based on measures from the transcriptional

layer.

The remaining 15.4as measurement noise.

While post-transcriptional effects could be

explained by a more sophisticated model

that includes additional experimental data

from the post-transcriptional layer (see be-

low), the technical and biological mea-

surement noise cannot be predicted and

thus defines an upper limit of prediction

accuracy. We went on to partition this

sum, by (A) estimating the noise, and

thereby the maximum variance which can

be explained by our regressors and (B) as-

signing relative contributions of two major

post-transcriptional processes – microRNA-
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Figure 3.2: Using histone marks and RNA polymerase II to model mRNA levels. Scatter plot of RNA

polymerase II (Pol-II, green) and three histone marks H3K36me3 (dark blue), H3K4me2 (light blue),

H3K27me3 (orange) versus mRNA levels on the vertical axis. The number of reads aligned to either

gene body (H3K36me3, mRNA) or at the TSS (H3K4me2, H3K27me3, Pol-II) is shown in logarithmic

scale. Predicted transcription rate combining the four measures in a linear model versus mRNA level.

Axes as in B. Bar plot showing the fraction of total variance in mRNA levels that is explained by each

single histone mark, Pol-II occupancy or a linear combination of them (black). The maximally ex-

plainable variance (grey) is limited by the amount of measurement noise (see supplemental information

section 4 for details).

mediated degradation and RNA decay - to

final mRNA levels.

Estimating the upper bound of ex-

plained variance in RNA levels

Fluctuations in biological systems limit the

explainable variance of mRNA through the

variability between biological replicates. In

order to determine how much of the remain-

ing unexplained variance is due to such bi-

ological variability and measurement noise

versus actual post- or co-transcriptional

processes, we estimated the maximum vari-

ance to be explained given the variabil-

ity in the data. In the linear model

noise originates from both measurements

of mRNA levels and measurements of chro-

matin marks. Since we use multiple regres-
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sor measurements that each have indepen-

dent noise, their individual noise adds up,

which in turn sets the limits of explainable

variance. To estimate its upper bound we

follow the theory of noise propagation to

calculate model noise based on replicates

of RNA-seq and ChIP-seq experiments (see

supplemental information section 4 for de-

tails). This approach sets the maximal ex-

plainable variance in mRNA levels to 91%

(Figure 3.2, light-grey bar). The variance in

RNA levels, which remains to be explained,

is therefore the difference between this max-

imal to be explained variance and the vari-

ance that is already explained by the linear

model using transcriptional information. In

the case of ESC this difference is 6.4%.

The effect of degradation on steady-

state mRNA level

Having estimated transcription rate and an

upper bound for explainable variance we

next explored the remaining 6.4% unex-

plained variance. We assumed that genes

with lower measured RNA level than pre-

dicted by the transcription measures are

degraded more rapidly than average due

to post-transcriptional down-regulation of

their transcript. To test this hypothesis

we inferred the RNA decay rates of genes

by measuring their abundance in a time-

course after inhibition of transcription with

actinomycin D (see methods and supple-

mental information section 5 for details).

Transcript abundance was determined in

replicates at 0, 1, 2, 4 and 8 hours after

inhibition of transcription, but not later in

order to reduce secondary effects due to

long chemical treatment. From the degra-

dation slope we calculate the RNA half-life

according to Sharova et al. [Sharova et al.,

2009], summarized in Figure 3.3 and Figure

3.4. The high correlation between biolog-

ical replicates allowed us to extrapolate

half-life times up to 20 hours and thus to

include genes with slower decay rates. In

accordance with a previous study in mouse

ES cells [Sharova et al., 2009] we observe

a mean half-life of around 8 hours with

a distribution tailed towards longer half-

lives (Figure 3.4). The extremely short-

lived RNAs mostly belong to the class of

non-polyadenylated genes, which are not

protected from degradation (supplemental

information section 5, supplemental figure

7). These genes are expected to show lower

mRNA levels compared to other genes with

the same predicted transcription rate. In-

deed, short-lived RNAs are deviating nega-

tively from the linear fit. This is particularly

visible in the shift in the boxplots in Fig-

ure 3.4 in the 40-100% transcription bins,

while there are hardly short lived genes in

the low- transcribed bins (supplemental in-

formation section 5, supplemental figure 8).

The degree to which the half-life explains

additional variance in mRNA levels can be

quantified by the correlation of the half-

life with the residual of the linear fit. This

correlation is 0.3; meaning of the 6.4%

unexplained variance of mRNA levels in

the transcriptional model, mRNA half-life
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Figure 3.3: Effect of RNA half-life on mRNA levels. (A) Example genes (short-lived histone gene

Hist1h2bb (orange) and the stable gene Adck5 (purple)) illustrating the inference of mRNA half-lives

from expression data. Data points correspond to measured mRNA abundance at various time points

after inhibition of transcription (time zero). (B) Half-life distribution of RefSeq genes with estimated

mRNA decay rates. Half-lives of very stable genes were set to 21 hrs (the maximal inferable half-life

given the experimental setup). (see supplemental information section 5 for details)

explains 0.32 = 9% (supplemental informa-

tion section 5, supplemental figure 9). As

an alternative we can simply include the

half-life as an additional feature in the lin-

ear model and infer the correlation to the

measured mRNA levels again. Indeed the

explained variance increases from 84.6% to

86%. To test if this result is independent

from the experimental approach to measure

half-life we next employed metabolic label-

ing of mRNA [Dölken et al., 2008; Rabani

et al., 2011; Schwanhäusser et al., 2011].

After a short pulse of a modified ribonu-

cleotide newly synthesized and pre-existing

mRNA fractions are separated to determine

their differential abundance in order to es-

timate a decay rate. This method has the

advantage of not interfering with the tran-

scriptional program, as does actinomycin

D, and thus is less likely to cause indirect

effects [Dölken et al., 2008]. However it is

limited to a single time point. With this dif-

ferent approach we obtained a highly similar

additional contribution of mRNA half-life to

overall mRNA levels (total explained vari-

ance 85.9%; see supplemental information

section 6 for details). Notably, the variance

in mRNA levels explained by transcript half-

life measures alone is between 11 and 12%,

for thioU and actinomycinD derived half-

lives respectively. This sets a theoretical

upper bound for the relative contribution

of transcript half-life to mRNA levels and

further supports the observation of a minor

contribution of mRNA half-life to steady-

state levels inferred by different methods.
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Figure 3.5: Effect of targeting by microRNAs on mRNA levels. (A) Scatter plot of Dicer+/− versus

Dicer−/− ES cells inferred by microarray measurement [Sinkkonen et al., 2008]. Genes with increased

mRNA levels in Dicer−/− are enriched for putative microRNA targets (orange), while genes with de-

creased mRNA levels are possibly affected by secondary effects (purple). (B) Distribution of the log

fold-change (logFC) between Dicer−/− and Dicer+/−.

The effect of microRNAs on steady-

state mRNA level

Next we investigated whether we can at-

tribute part of the observed mRNA half-life

to the activity of microRNAs that target

selected messages for degradation. To de-

fine the percentage of variance in mRNA
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Figure 3.6: Effect of miRNAs on mRNA levels. Genes are classified into five equal groups accord-

ing to predicted transcription rate (0-100shown as box-plots separately for genes with different log

fold-change between Dicer−/− and Dicer+/− (color coded). Within the same transcription group,

putative microRNA target genes (orange) show insignificantly different mRNA levels as non-target

genes (pvalue=0.303).

level that can be explained by microRNA

mediated degradation requires the identifi-

cation of mRNAs that are regulatory tar-

gets of microRNAs. This can be attempted

by identifying mRNAs bound to proteins in-

volved in the RNAi pathway (such as Ago-

IP [Beitzinger et al., 2007; Chi et al., 2009;

Hafner et al., 2010; Landthaler et al., 2008]

or by calculating the enrichment for motifs

complementary to the microRNA within 3’-

untranslated regions (UTR) of mRNAs [van

Dongen et al., 2008] or by predicting targets

using a combination of sequence, struc-

ture and conservation of the microRNA

and its target mRNA site [Enright et al.,

2003; Gaidatzis et al., 2007; Krek et al.,

2005; Lewis et al., 2003; Rehmsmeier et al.,

2004]. These methods share a high false-

positive rate since actual targets are not

only defined by sequence complementarity

alone, but by additional sequence and struc-

tural constraints and other modulating fac-

tors that are currently only poorly under-

stood. In order to circumvent these poten-

tial limitations we initially based our defini-

tion of microRNA-targets on mRNAs that

increase in expression in ES cells that lack

microRNAs due to a genetic deletion of

the gene encoding Dicer [Hutvágner et al.,

2001; Murchison et al., 2005]. An increased

mRNA abundance in Dicer−/− cells sug-

gests that these transcripts had been under

negative control by microRNAs in wild-type

ES cells (Figure 3.5). Consequently we cor-

relate fold-changes in mRNA abundance be-

tween Dicer+/− and Dicer−/− cells with

the deviation from the model in the linear

fit (also referred to as ‘residual of the linear

fit’). This did not reveal a relationship be-

tween negative residuals indicative for post-
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Figure 3.7: Focus on high-confidence microRNA target genes. (A) All RefSeq genes are classified into

three color-coded groups according to up-regulated in Dicer-/- (orange), down-regulated in Dicer−/−

(purple) and unchanged (grey). (B) Subset of all the genes in (A), where the absolute log fold-change

(logFC) between Dicer−/− and Dicer+/− is higher than 0.5. This subset contains likely targets and

non-targets. (C) Pearson correlation (r) between the residual of the linear model and the logFC between

Dicer−/− and Dicer+/− as a function of cut-off in absolute logFC between Dicer−/− and Dicer+/−.

A logFC cut-off of zero corresponds to (A), and a cut-off of 0.5 (solid vertical line) corresponds to

(B). Correlations are shown for subsets of genes for logFC cut-offs incremented in 0.1 intervals. The

point size illustrates the number of genes at each cut-off. At 0.8, the subset contains 1000 genes

(dashed line), the subset at 1.9 contains 100 genes (dotted line). Increasing logFC cut-offs select

higher-confidence microRNA-target genes that can explain the residual of the linear fit increasingly

better.

transcriptional regulation and the likelihood

of an mRNA being a microRNA target (cor-

relation between fold-change upon Dicer

KO and residual is r = 0.01; Figure 3.6, sup-

plemental information section 7). Impor-

tantly however, it has been shown that ex-

pression changes of mRNAs upon removal

of all microRNAs in Dicer−/− cells are rel-

atively small in general ( 2-fold) [Babiarz

et al., 2008]. It is thus conceivable that

such small effects are not detectable in the

population of all mRNAs that consist of

targets and non-targets, changing their ex-

pression both, through direct effects caused

by the lack of microRNAs and indirect ef-

fects unrelated to microRNAs. To test

this hypothesis we directly compared high-

confidence targets (based on fold-change in

abundance) with non- targets (Figure 3.7,

B). We stepwise increase the cut-off applied
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to the change in mRNA levels upon Dicer

KO to define microRNA targets, thereby se-

lecting a smaller and smaller subgroup and

inferred for each of these subgroups the cor-

relation of residual and fold-change (Fig-

ure ??). In these groups of higher confi-

dence microRNA-targets, we can detect a

negative correlation with the residual (Fig-

ure ??, dotted line, supplemental informa-

tion section 7, supplemental figure 14). We

thus conclude that genes that are likely mi-

croRNA targets have indeed less detectable

transcript than expected based

Transcriptional and posttranscriptional

regulation in dividing versus post-

mitotic cells

Having established that chromatin and

bound polymerase are highly predictive of

mRNA levels in rapidly dividing stem cells

we next asked if the same trend is observed

in post-mitotic neurons that have exited

the cell cycle. Consequently we differen-

tiated stem cells first into neuronal pro-

genitors (NPs), which show reduced pro-

liferation and further into terminal neu-

rons, which do not divide. Similarly to

the analysis in ES we determined globally

the abundance of mRNA, microRNA, Pol-

II and of several histone marks and rebuild

the linear model. This revealed that at

all three stages chromatin data are com-

parably predictive for mRNA levels (Figure

3.8). To compare post-transcriptional con-

tribution between cell-types we also derived

mRNA half-life datasets at the TN stage.

Including mRNA half-life in TN as regres-

sor in the linear model increased explained

variance (r2) of mRNA in TN about 1%,

from 79% to 80%, revealing an equally low

contribution of mRNA degradation in neu-

rons as the one observed in dividing stem

cells. Together this suggests that there is no

general change in regulatory contributions

once stem cells have exited the cell cycle

and, in this particular case, gain neuronal

functions. Having defined the relation be-

tween chromatin measures, RNA decay and

mRNA abundance at individual cell states

we next asked whether changes in transcrip-

tion or changes in degradation between cell

states are equally predictive for changes in

mRNA levels. We fitted the linear model

using the differences in measurements be-

tween two cell types, which reveals that

changes in chromatin can indeed predict

67% of the change in mRNA levels. Sim-

ilarly changes in transcript half-life can ex-

plain 1% of the remaining variance (see sup-

plemental information section 9 for details).

This illustrates that the experimental mea-

surements in combination with the applied

analytical approach enable quantification of

the relative contributions of transcription

and degradation to changes in mRNA lev-

els.

Influence of cell division on the informa-

tion content of transcription- coupled

chromatin marks

H3K36me3 is set by a histone methyltrans-

ferase which interacts specifically with the
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Figure 3.8: H3K36me3 explains most of the variance in mRNA level. Scatter plot of predicted tran-

scription rate versus measured mRNA level for the ES, NP and TN. (B) Distribution of mRNA levels

in ES, categorized into low and high expression groups. (C) Correlation (r) between H3K36me3 and

mRNA for genes in expression groups from (B) in ES, NP and TN. The correlation of H3K36me3 with

mRNA level differs between dividing cells and post-mitotic TN cells: In diving cells (ES and NP), it is

best for high expressed genes, while in the post-mitotic TN, it is best for low expressed genes.

elongating RNA-polymerase-II [Joshi and

Struhl, 2005; Keogh et al., 2005; Kizer

et al., 2005; Krogan et al., 2003; Li et al.,

2003, 2002; Pokholok et al., 2005; Strahl

et al., 2002; Sun, 2005; Xiao et al., 2003;

Yuan et al., 2009]. As a consequence

H3K36me3 accumulates with repeated

rounds of transcription explaining why this

mark can not only predict sites but also

rate of transcription [Barski et al., 2007;

Bell et al., 2007; Buratowski and Kim,

2011; Edmunds et al., 2008; Mikkelsen

et al., 2007; Pokholok et al., 2005; Wag-

ner and Carpenter, 2012]. In dividing cells

new nucleosomes that are not H3K36 tri-

methylated are deposited during genome

replication. This is expected to dilute the

prevalence of H3K36 methylation while this

modification should further accumulate in

non-dividing cells. In turn rate of cell divi-

sion might influence the ability to predict

mRNA levels from this modification. A po-

tential accumulation of H3K36me3 in non-

dividing cells could lead to higher sensitivity

to predict transcription at weakly expressed

genes and, in case all available residues are

modified, to saturation and reduced predic-

tive power at highly expressed genes. To
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test the hypothesis of different H3K36me3

signal in dividing versus non-dividing cells

we group genes according to their mRNA

abundance into low and high expressed and

correlate their mRNA levels with the abun-

dance of the transcription coupled mark

H3K36me3 along the gene body (Figure

3.8). In the dividing cell types ES and NP

this mark shows highest predictive power

for highly expressed and reduced sensitiv-

ity for lowly expressed genes. However in

post-mitotic neurons there is a clear shift:

in these cells predictability is now highest

for low expressed genes in comparison to

highly expressed genes. This is fully com-

patible with a model whereby chromatin

modifications such as H3K36me3 integrate

transcriptional activity over time and that

the resulting signal is diluted with every

cell division. In turn the sensitivity range

changes in non-dividing cells, where signal

for H3K36me3 accumulates above detec-

tion threshold for lowly expressed genes but

also saturates for highly expressed genes.

Regulatory differences between tissue-

specific and housekeeping genes

Genes can be classified according to their

expression characteristics between cell types

and tissues. Figure 3.9 shows a histogram

of the number of tissues with detectable

mRNA abundance (log2 intensity > 7) for

the same set of genes studied in 72 tis-

sues and cell types profiled in the SymAt-

las project (Su et al., 2004). This re-

veals a clear bimodal distribution where

genes show either widespread activity (ex-

pressed in most samples, also referred to as

“housekeeping” genes) or selective activity

in only up to five samples (also referred to

as “tissue-specific”). This global behavior

is also evident in the stem cell to neuron

differentiation that we study here, where

genes with widespread activity according to

SymAtlas are enriched for genes that are

expressed in both cell types, while tissue-

specific genes tend to be expressed in either

one or none of the two studied cell types

(p-value < 2.2e-16, see supplemental infor-

mation section 10 for details). Importantly

previous studies already noted that these

two classes of genes differ in their regula-

tion: housekeeping genes are mostly under

the control of CpG rich promoters, while

tissue-specific genes show a high frequency

of CpG poor promoters [Mohn et al., 2008;

?]. These two classes of genes are differ-

entially occupied by histone modifications

[She et al., 2009], show different exon den-

sity [Eisenberg and Levanon, 2003; Vino-

gradov, 2004] and differ in 3’UTR length

and sequence composition making them un-

equal targets for microRNAs [Stark et al.,

2005]. To ask if these classes of genes also

differ in the relative regulatory contribu-

tion of transcriptional and posttranscrip-

tional layers we compared the predictabil-

ity of mRNA levels for tissue-specific and

housekeeping genes using an identical lin-

ear model approach as described above. In

this model, tissue-specific genes show more
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Figure 3.9: Post-transcriptional regulation in tissue-specific and ubiquitously expressed genes. (A) His-

togram of the number of cell or tissue types with detectable expression of the analyzed genes. Genes

are grouped in tissue-specific (expressed in 1-5 tissues, purple), intermediate (grey), and ubiquitously

expressed (expressed in 70 or more tissues, green). (B) Genes are classified into five equal groups

according to predicted transcription rate (0-100for genes with different tissue expression (as in (A),

color- coded). At a given level of transcription tissue-specific genes have on average less measured

mRNA than ubiquitously expressed genes, suggesting that the degree of post-transcriptional regulation

is higher in tissue-specific genes.

negative deviation from the fit, correspond-

ing to observed mRNA levels being lower

than predicted based on the transcriptional

features (Figure 3.9). We conclude that

tissue-specific genes are more prominently

controlled by post-transcriptional regula-

tion than housekeeping genes.

3.1.3 Discussion

In our study we tried to quantify the relative

contribution of transcriptional and post-

transcriptional regulation to mRNA levels.

We show that tri-methylation of lysine 36 of

histone H3, a chromatin modification that

is set co- transcriptionally, provides a quan-

titative measure of the process of RNA syn-

thesis. We built a linear model that com-
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bines H3K36 tri-methylation with other his-

tone marks and Pol-II occupancy to predict

transcription and to relate it to mRNA lev-

els. This reveals a high correlation between

predicted transcription based on chromatin

and actual mRNA abundance in both divid-

ing pluripotent cells and terminally differen-

tiated neurons suggesting that transcription

and mRNA levels are tightly linked at differ-

ent cellular stages. These findings are con-

sistent with two recent studies comparing

direct measures of transcription with mRNA

abundance [Rabani et al., 2011; Schwan-

häusser et al., 2011]. Furthermore we in-

vestigated the predictive power of histone

marks towards changes in mRNA levels be-

tween the two cell types and find similarly

that transcription is also the main deter-

minant when looking at genes that change

their mRNA levels. Following the deter-

mination of transcriptional contribution we

investigated the contribution of different

post-transcriptional processes by extending

the model to include information on mi-

croRNA targeting and transcript half-life.

The effect of transcript half-life is indeed

detectable on a genome-wide scale explain-

ing minor additional variance of mRNA lev-

els. Notably however we can also detect this

minor contribution when we look at the pre-

dictive power of half-life towards changes

in mRNA levels from ES to TN. Reliable

reproduction of the effect of degradation

for changes in mRNA levels suggests that

the method to measure half-life is sensi-

tive. Moreover, this supports that degra-

dation indeed plays a small but measur-

able role in determining mRNA levels and

changes. Targeted degradation of mRNA

by the action of microRNAs affects actual

half-lives of mRNAs [Guo et al., 2010]. Im-

portantly however we could not detect the

actual effect of microRNA at a genome-

wide scale, but only in a subset of high-

confidence microRNA targets. This pre-

cludes correct quantification of the con-

tribution of microRNA regulation to to-

tal mRNA decay. However, when focus-

ing only on those genes that are highly up-

regulated in cells that lack Dicer we ob-

serve that microRNAs can explain about

2.25% of the residual variance. Extrapo-

lating this contribution to all genes as a

fraction of the total measured mRNA de-

cay effect, we can estimate that microRNAs

contribute between 2.5 and 25% to the total

mRNA decay. This effect is compatible with

the notion that microRNAs generally cause

small changes in mRNA abundance [Babi-

arz et al., 2008; Sinkkonen et al., 2008].

At the same time we foresee that the inher-

ent complexity in correctly predicting mi-

croRNA targets leads to an underestima-

tion of the actual effect. The relatively

low contribution of post-transcriptional reg-

ulation on the mRNA levels and changes

shows that that the lion’s share of regula-

tory contribution is at the level of mRNA

synthesis and predictable from chromatin

alone. It is important to note that the iden-

tified quantitative contribution (the frac-

tion of explained variance), while important
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for understanding the regulatory principles,

does not translate to functional relevance

and thus should not be taken as a mea-

sure for biological importance. For exam-

ple, the Dicer−/− cells used here to iden-

tify microRNA-targets lack the ability to

differentiate into neurons. The low quan-

titative contribution of post-transcriptional

processes is however compatible with the

model that these mostly function in fine-

tuning mRNA levels rather than function-

ing as on-off switches [Mukherji et al.,

2011]. Our study shows that chromatin

is highly predictive of transcriptional out-

put, in particular methylation of lysine 36

of H3, a mark that is set throughout the

gene body and depending on the elongating

polymerase. Most other histone marks that

are involved in transcription occur primarily

at promoters and, such as K4 methylation

of CpG islands, can even occur at a sub-

class of promoters without activity of the

linked gene, which in turn limits their pre-

dictive power [Weber et al., 2007]. Inter-

estingly H3K36me3 is a far better predic-

tor than RNA polymerase itself. We believe

that this reflects the fact that the histone

mark is stable once it is set, while the poly-

merase rapidly elongates and thus is only

present at the gene at low frequency. While

it is inherently difficult to directly compare

the performance of H3K36me3 with direct

labeling approaches for ongoing transcrip-

tion we note that the correlation between

H3K36me3 and steady-state mRNA levels

is higher at all three cell states than at

recent reports using alternative approaches

like GRO-seq (r2 = 0.62 [Min et al., 2011]).

One likely explanation for the high predic-

tive power of H3K36me3 is that it increases

with every round of transcription, which

in turn means that it can eventually sat-

urate, when all possible lysines are methy-

lated. In dividing stem cells such satura-

tion is not observed, likely due to the “di-

lution” of modified histones that occurs at

every S-phase during genome duplication in

addition to the general turnover of nucleo-

somes [Deal and Henikoff, 2011; Wirbelauer

et al., 2005]. In post-mitotic cells however

we indeed observe such saturation at highly

expressed genes. At the same time the ac-

cumulation of signal increases the sensitiv-

ity for the detection of weakly expressed

genes, which in the linear model compen-

sates for the reduced predictability at highly

expressed genes.
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Cell Culture

Wild-type embryonic stem cells (129Sv-

C57Bl/6) were cultured and differentiated

as previously described (Bibel et al., 2007;

Mohn et al., 2008).

Chromatin Immunoprecipitation (ChIP)

Cells were cross-linked in medium con-

taining 1as described before (Mohn et

al., 2008), starting with 70µg of chro-

matin and 5µg of the following anti-

bodies: anti-dimethyl-H3K4 (Upstate, no.

07-030 (Lienert et al., 2011; Tiwari et

al., 2012), anti-trimethyl-H3K36 (Abcam

ab9050), anti-trimethyl- H3K27 (Upstate,

no. 07-449) (Lienert et al., 2011; Tiwari et

al., 2012) anti- RNA-polymerase-II (Santa

Cruz Biotechnology, no. SC899) (Lienert et

al., 2011; Tiwari et al., 2012). Chromatin

was sonicated for 10 cycles of 30 sec using

a Diagenode Bioruptor. Precipitated DNA

was subjected to next generation sequenc-

ing.

Next generation sequencing

5 to 10 ng of precipitated DNA was pre-

pared for Solexa Sequencing as described

(Mikkelsen et al., 2007). Briefly, ChIP DNA

was ligated to adapters and ligation prod-

ucts of about 250 bp were gel purified on 1.5

18 PCR cycles. DNA sequencing was car-

ried out using the Illumina/Solexa Genome

Analyzer II (GA2) sequencing system. In

addition 2 lanes of non-enriched chromatin

from ES cells were sequenced and pooled

to serve as an input/background to calcu-

late the enrichment of reads obtained from

ChIP-seq experiments. The raw .srf and

.wig files are accessible at GEO GSE33252

(reviewer link)

Genomic coordinates

The July 2007 M. musculus genome

assembly (NCBI37/mm9) provided by

NCBI http://www.ncbi.nlm.nih.gov/

genome/guide/mouse/ and the Mouse

Genome Sequencing Consortium http:

//www.sanger.ac.uk/Projects/M_

musculus/ was used as a basis for all anal-

yses. Annotation of known RefSeq tran-

scripts was obtained from UCSC.

Read filtering, alignment and weighting

Low-complexity reads were filtered out

based on their dinucleotide entropy as fol-

lows: For each read, the dinucleotide en-

tropy was calculated according to the for-

mula H =
∑

i filog(fi) , where fi is the

frequency of dinucleotide i in the read and

the sum is over all dinucleotides (i from

1 to 16). The read was filter out if its

H was less than half the dinucleotide en-

tropy of the genome, typically removing

less than 0.5% of the reads in a given sam-

ple. Alignments to the mouse genome were

performed by the software bowtie (version

0.9.9.1) [Langmead et al., 2009] with pa-

rameters -v 2 -a -m 100, tracking up to

100 best alignment positions per query

and allowing at most two mismatches. To
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track genomically untemplated hits (e.g.,

exon-exon junctions or missing parts in

the current assembly), the reads were also

mapped to an annotation database contain-

ing known mouse sequences (microRNA

from ftp://ftp.sanger.ac.uk/pub/

mirbase/sequences/13.0, rRNA,snRNA,

snoRNA and RefSeq mRNA from GenBank

http://www.ncbi.nlm.nih.gov/sites/

entrez, downloaded on July 16, 2009,

tRNA from http://lowelab.ucsc.edu/

GtRNAdb/ and piRNA from NCBI (acces-

sions DQ539889 to DQ569912). In that

case, all best hits with at most two mis-

matches were tracked. Each alignment

was weighted by the inverse of the num-

ber of hits. In the cases where a read had

more hits to an individual sequence from

the annotation database than to the whole

genome, the former number of hits was se-

lected to ensure that the total weight of a

read does not exceed one. All quantifica-

tions were based on weighted alignments.

For generation of wiggle files samples were

normalized for library size first and files were

generated with a window size of 100 bps.

RNA-Sequencing

Poly-A-RNA-seq: RNA from ES cells, NP

cells and TN was isolated using the Trizol

(Invitrogen). The sequencing libraries were

prepared according to mRNA-Seq Sample

Preparation Guide (Illumina) starting from

1µg of total RNA and using oligo dT

primers for selection of polyadenylated mR-

NAs. The libraries were sequenced on an Il-

lumina GA II analyzer. Ribosome-depleted-

RNA-seq: RNA was isolated from ES, cells

NP cells and TN using Trizol (Invitrogen)

followed by depletion of ribosomal RNA,

starting with 2µg of total RNA and follow-

ing the instructions of Ribo-Zero Kit (Epi-

centre). Strand specific RNA libraries were

prepared according to pre-release version of

the Directional mRNA-Seq Library Prepa-

ration guide (Illumina) and sequenced on

an Illumina GA II analyzer. Reads were

mapped to the Mus musculus transcriptome

and normalized to transcript length and se-

quencing library size. The raw .srf and .wig

files are accessible at GEO GSE33252

Small RNA sequencing

RNA of ES, NP and TN was isolated in trip-

licates from cell culture with mirVanaTM

microRNA Isolation Kit (AM1560) accord-

ing to the kit instructions. Small RNA was

prepared for sequening with Illumina Small

RNA Sequencing Kit (FC-102-1009) follow-

ing the Small RNA Sample Prep v1.5.0 pro-

tocol.

Linear model to predict transcription

rate

We used R (Team, 2011) and the func-

tion lm() to fit a linear model to describe

transcription rate. For every gene we se-

lected a representative transcript of median

length. Only transcripts, which did not

overlap with alternative transcripts with dif-

ferent TSS or transcripts in antisense di-
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rection, were kept for further analysis (sup-

plemental information section 2). ChIP-seq

reads of Pol-II, H3K4me3 and H3K27me3

were mapped to the TSS (+/- 500 bp) of

the representative transcript. H3K36me3

was mapped to 4 different regions along the

gene-body: (i) exons within first 2kb of the

transcripts, (ii) introns within the first 2kb

of the transcripts, (iii) exons located 2kb

downstream from the TSS, (iv) introns lo-

cated 2kb downstream from the TSS, (sup-

plemental information section 3). Input

chromatin sequencing reads were mapped

to the whole gene body and used as an addi-

tional regressor to account for amplification

and sequencing biases caused by the DNA

sequence itself. These 7 regressors were

fitted to mRNA levels as response value

(mean read count of poly-A-enriched RNA-

sequencing and strand-specific-sequencing)

with 2-fold-cross validation. The squared

pearson correlation coefficient corresponds

to the explained variance in the response

variable (Achen, 1982).

Transcript half-life measurement

ES cells and TN of two independent bio-

logical replicates were treated with actino-

mycin D as previously described (Sharova et

al., 2009). RNA was isolated from an equal

number of cells with Trizol at 1,2,4, and

8 hrs after treatment. 100ng of extracted

total RNA was amplified using the Ambion

WT Expression kit (Ambion) and the re-

sulting sense-strand cDNA was fragmented

and labeled using the Affymetrix GeneChip

WT Terminal Labeling kit (Affymetrix).

Affymetrix GeneChip arrays were hybridized

following the GeneChip Whole Transcript

(WT) Sense Target Labeling Assay Man-

ual (Affymetrix) with a hybridization time

of 16h. The Affymetrix Fluidics pro-

tocol FS450-0007 was used for washing.

Scanning was performed with Affymetrix

GCC Scan Control v. 3.0.0.1214 on a

GeneChip® Scanner 3000 with autoloader.

Subsequently arrays were normalized with

RMA, without in between normalization to

preserve absolute mRNA abundance. Decay

slope of every transcript was inferred with

a linear model and only transcripts with re-

liably inferable slopes (R>=0.4) were kept

for further analysis. Transcripts half-lives

were calculated from the mRNA abundance

over time according to (Sharova et al.,

2009) (see supplemental information sec-

tion 5 for detailed description). The raw

.CEL files and a table with normalized ex-

pressions are accessible at GEO GSE33252.

To confirm our results obtained by acti-

nomycinD treatment we infer mRNA half-

life by metabolic labeling of nascent RNA

adapted from the protocol described in

[Dölken et al., 2008]. RNA was isolated

with trizol, using 30µg RNA (a final concen-

tration of 120ng/µl) for the biotinylation,

followed by 2 chloroform/IAA extractions

on the bio tagged RNA. Non-denaturated

RNA is used in the IP with Dynabeads M-

280 Streptavidin (112.06D, Invitrogen) for

pull down (50µl /30µg RNA), followed by

one elution step with DTT. See supplemen-
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tal information section 6, for experimental

details, analysis and results. The raw .CEL

files and a table with normalized expressions

are accessible at GEO GSE33252

Data Accession

All the data used in this study is accessible

at GEO in the superseries GSE33252

Reviewer Link to GEO superset

GSE33252: http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?token=

jzchtusugkqcwbo&acc=GSE33252
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3.2.1 Definition of the model

As a general model of production and degradation contribution to mRNA abundance we

can formulate:
dR

dt
= txj [DNA]− dj [RNAj ] (3.2)

Importantly all measures of mRNA abundance and chromatin readouts of transcription are

log transformed to be able to use them in a linear regression.

Therefore tx is log10(transcription rate of gene j) and d is log10(degradation rate). [DNA]

and [RNA] are both concentrations, where [RNA], log10(RNA abundance of gene j), de-

pends on the gene j and [DNA] = 1.

At equilibrium dR
dt = 0 and we can write:

txj [DNA] = dj [RNAj ] (3.3)

Because [DNA] = 1 we can write:

txj = dj [RNAj ] (3.4)

Therefore, if we are speaking about one cell type, where mRNA concentrations are not

changing, we are in an equilibrium. In this case the transcription rate txj is proportional to

RNA concentration [RNAj ].

Note that for the first part, talking about transcriptional regulation, we assume the degra-

dation rate to be independent of the gene j and therefore, for the first part dj is a constant.

In the second part, when we introduce post-transcriptional regulation into the model, we

allow dj to be dependent on the gene j and actually infer the gene dependent degradation

rates experimentally.
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3.2.2 Selection of representative transcripts

For each RefSeq annotated gene in the mouse genome, a representative transcript of median

length was selected. For the whole analysis described in the paper we only used RefSeq

transcripts, which do not overlap with an anti-sense transcript and do not overlap with any

transcript containing an alternative transcription start site. About half of the mouse genes

fulfill these criteria ( 10.000 genes).

Supplemental Figure 3.1: Scheme illustrating transcript selection for the analysis performed in the

paper.

Regions to infer regressors for the linear model

Sequencing reads from ChIP-seq experiments where mapped to different regions, depend-

ing on where the histone modification of interest is most predictive for mRNA levels.

H3K27me3, H3K4me2 and pol-II were mapped to the TSS while H3K36me3 was mapped

to 4 independent regions due to the distribution pattern of this modification (Figure 2).

Supplemental Figure 3.2: Enrichment of H3K36me3 along the first 6 kb into the transcript. X-axis

shows position relative to TSS, y-axis shows enrichment over input. The reads were separately mapped

to exonic (blue) and intronic (green) regions. Enrichment in exons is generally higher than in introns,

however because exons are shorter, they bear less total reads leading to a more noisy signal in the

metagene plot.

H3K36me3 is set by the elongating RNA polymerase. The signal increases over the

first 2 kb starting from TSS and remains throughout the gene body. Exons and introns

have different H3K36me3 levels, possibly due to their different sequence compositions. We
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account for this locally different H3K36me3 patterns by separating the signal in 4 different

bins (Figure 3).

Supplemental Figure 3.3: Illustralion of regions relative to TSS used to map ChIP reads: Pol-II,

H3K27me3 and H3K4me2 were mapped to TSS (purple). H3K36me3 was mapped separately to TSS

proximal and genebody, to exons (blues) and introns (greens) respectively.

Supplemental Figure 3.4: H3K36me3 mapped to the 4 different regions within the genes (Figure 3)

and correlated to the mRNA levels of the respective gene. H3K36me3 levels over the exons located

2kb upstream of the TSS to the end of the gene body are most predictive for mRNA levels.
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3.2.3 Estimation of error in the linear model

Estimation of Error in the Linear Model in one Cell Type

The Problem

We want to model mRNA levels as linear function of the levels of 3 histone marks and RNA

polymerase II occupancy at the corresponding gene’s locus. To both fit and test this model,

we measured mRNA expression, Pol2 occupancy, and the 3 histone marks in duplicate dur-

ing differentiation of mouse embryonic stem cells into post-mitotic glutamatergic neurons.

Importantly, a separate biological replicate differentiation was used for each measurement.

In this note we use the variation across replicate measurements to estimate the noise on

our estimates of mRNA and chromatin mark levels, and derive the maximal fraction of the

observed variation in mRNA levels that could potentially be explained by the model, i.e.

taking into account variation that is due to noise.

The linear model and its relative error

For the quantification of mRNA levels we count the reads over annotated refSeq genes.

For histone marks H3K27me3, H3K4me2 and Pol-II-IPs we count the reads in a 1kb region

around the TSS. H3K36me3 is measured in 4 separate regions: exonic and intronic TSS

proximal region (0-2kb downstream of TSS) and exotic and intronic gene body region. All

values are log2 transformed (pseudo count=1).

Let mi denote the log2 transformed level of mRNA i, and let hc,i denote the log2

transformed level of histone mark c at gene i. We fit a linear model of the form

mi = c+
∑
h

αhhc,i, (3.5)

where c is a constant and αh are the linear coefficients that we estimate when fitting the

model. c = 〈m〉 −
∑

h αh〈hc〉, where 〈m〉 is the mean mRNA level. At a given time point,

the expression levels mi show a variation that is given by

var(m) =
1

N

N∑
i=1

(mi − m̄)2 , (3.6)

where N is the total number of genes and m̄ is the average mRNA level

m̄ =
1

N

N∑
i=1

mi. (3.7)
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We now want to compare the variance var(m) with the average squared-deviation (the

‘error’) between the model and the true mRNA levels. This error is defined as

D2 =
1

N

N∑
i=1

(
mi − c−

∑
c

αchi,c

)2

. (3.8)

The fraction of the variance f that is explained by the model can now be defined as

f =
var(m)−D2

var(m)
. (3.9)

Note that for a perfect model D2 = 0 so that f = 1, and for a model that just predicts

mi = m̄, i.e. just the average for every gene, we have f = 0.

Measurement and biological replicate noise

In equation (3.5), the quantities mi and hc,i denote the ‘true’ mRNA and chromatin mark

levels at a particular stage of differentiation, which can be thought of as the mean levels

in the population of cells, averaged over a large number of biological replicates. However,

we do not have direct access to these levels, we only have duplicate measurements from

different experimental replicates. As a consequence, part of the deviations between the

measured mRNA levels and the predicted levels in terms of the measured chromatin mark

levels will be due to deviations between the true and measured levels.

Let m1
i and m2

i denote the duplicate measurements of the mRNA level of gene i. These

values will differ from the ‘true’ mRNA level mi by some unknown amount εi, i.e.

m1
i = mi + ε1i , (3.10)

and similar for m2
i . Note that the deviation ε1i includes both biological ‘noise’ from variations

in levels across the biological replicates, as well as measurement noise. Note also that, per

definition, the expectation value of the deviation is zero

〈ε1i 〉 = 0. (3.11)

The size of the noise is characterized by the variance of the deviations, i.e. we define

σ2i = 〈(ε1i )2〉 = 〈(ε2i )2〉. (3.12)

In our model we will allow different genes i to have different sized variations across the

replicates.

For the chromatin marks we similarly write

h1i,c = hi,c + ε1i,c, (3.13)
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and

σ2c,i = 〈(ε1i,c)2〉 = 〈(ε2i,c)2〉. (3.14)

A key assumption that we will make is that, the values of the deviations εji and εji,c are

all mutually independent. This is a highly reasonable assumption since these measurements

derive from separate biological replicates. That is, all covariances are zero, e.g.

〈εji ε
k
i,c〉 = 0, (3.15)

for all j, k and c.

Estimating the noise levels

We can use the replicate measurements to both estimate the true values mi and hi,c, as

well as estimate the size of the noise σ2i and σ2i,c. In particular, given the measured values

m1
i and m2

i , the expected value of mi is simply given by the mean

〈mi〉 =
m1

i +m2
i

2
, (3.16)

which we will also refer to as m̄i. Similarly, the expected variance 〈σ2i 〉 is given in terms of

the difference of the measurements, i.e.

〈(m1
i −m2

i )
2〉 = 〈(ε1i − ε2i )2〉 = 〈(ε1i )2〉+ 〈(ε2i )2〉+ 2〈(ε1i ε2i )〉 = 2σ2i , (3.17)

where we have used that the covariance is zero, i.e. 〈ε1i ε2i 〉 = 0. From this we have the

estimate

σ2i =
1

2
〈(m1

i −m2
i )

2〉. (3.18)

In complete analogy, we have for the estimated chromatin mark levels

〈hi,c〉 =
h1i,c + h2i,c

2
= h̄i,c, (3.19)

and for the noise levels of the chromatin marks

σ2i,c =
1

2
〈(h1i,c − h2i,c)2〉. (3.20)

Finally, we can define the average noise levels across all genes as

σ2 =
1

N

N∑
i=1

σ2i , (3.21)

and

σ2c =
1

N

N∑
i=1

σ2i,c. (3.22)
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Estimating the variance in mRNA levels

We cannot directly measure the variance var(m) in mRNA levels, but we can calculate the

observed variation V 2 in measured mRNA levels. Defining

m̄ =
1

N

N∑
i=1

m̄i, (3.23)

we have

V 2 =
1

N

N∑
i=1

(m̄i − m̄)2 . (3.24)

Writing m̄i in terms of the true level mi and the deviations due to replicate fluctuations

and measurement error, we have

〈V 2〉 =
1

N
〈
(
mi − m̄+

ε1i + ε2i
2

)2

〉. (3.25)

Using the fact that the cross-correlations are zero we have

〈V 2〉 = var(m) +
1

2
σ2. (3.26)

As a technical note, we have here neglected the deviation of the measured average mRNA

level m̄ from the true average level (1/N)
∑

imi. Taking this into account would lead to

corrections of order 1/N , which are negligible in practice.

We can thus estimate the true variance var(m) in terms of the measured variance V 2

as

var(m) = V 2 − 1

2
σ2. (3.27)

Estimating the error of the model

To estimate the error in the model, we compare the estimated mRNA levels m̄i with the

predicted ones based on the chromatin marks h̄i,c. We define the average squared-deviation

as

T 2 =
1

N

N∑
i=1

(
m̄i − c−

∑
c

αch̄i,c

)2

. (3.28)

We can write the expectation of this quantity 〈T 2〉 in terms of the true deviation between

model and mRNA levels for each gene i, i.e.

Di = mi − c−
∑
c

αchi,c, (3.29)
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and the noise due to biological replicate variations and measurement errors. That is, we

have

〈T 2〉 =
1

N

N∑
i=1

〈

(
Di +

ε1i + ε2i
2

−
∑
c

αc

ε1i,c + ε2i,c
2

)2

〉. (3.30)

Using that the covariances between all different noise terms are zero, and making the final

assumption that there are no correlations between the true deviations Di and the noise

levels, e.g.

〈Diε
j
i,c〉 = 0, (3.31)

we find that all cross-terms are zero and we have

〈T 2〉 = D2 +
1

2
σ2 +

1

2

∑
c

α2
cσ

2
c . (3.32)

Since we can measure T 2, and we have above derived expressions for the noise levels σ2

and σ2c in terms of the duplicate measurements, we can thus estimate the true deviation

D2, i.e.

D2 = T 2 − 1

2
σ2 − 1

2

∑
c

α2
cσ

2
c . (3.33)

Putting it all together, we finally estimate the fraction of explained variance as

f =
V 2 − T 2 + 1

2

∑
c α

2
cσ

2
c

V 2 − 1
2σ

2
. (3.34)

Error in the model of the expression changes across two cell types ∆TN,ES

Instead of explaining absolute mRNA levels we also want to use a linear model to predict the

changes in expression levels between the embryonic stem cell and neuron stage. Specifically,

we will model the log fold-change ∆i,m in mRNA expression level of each gene i. All

values are log transformed, ’TN-ES’ therefore stands for a log ratio, log(TN)− log(ES) =

log(TN/ES).

1

N

∑
i

(mi(TN)−mi(ES)− m̄(TN) + m̄(ES))2 (3.35)

Linear model of expression changes

∆i,m = mi(TN)−mi(ES), (3.36)

in terms of the changes ∆i,c in chromatin marks

∆i,c = hi,c(TN)− hi,c(ES) (3.37)
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using a linear model. That is, in complete analogy with our previous linear model we write

∆i,m = c̃+
∑
c

α̃c∆i,c. (3.38)

Measurement and replicate noise

We use the same replicate measurements to estimate the changes ∆i,m and ∆i,c. Impor-

tantly, individual measurements are coming from separate biological replicates so that our

assumption that the cross-correlation of deviations are expected to be zero still holds.

We thus estimate the change ∆i,m by averaging over the duplicate measurements, i.e.

∆̄i,m =
m1

i (TN) +m2
i (TN)−m1

i (ES)−m2
i (ES)

2
, (3.39)

and similary for the chromatin marks

∆̄i,c =
m1

i (TN) +m2
i (TN)−m1

i (ES)−m2
i (ES)

2
. (3.40)

We estimate the noise levels in our estimates ∆̄i,m and ∆̄i,c at both time points using

the replicates exactly as described above. That is, we have

〈σ2i,m(ES)〉 =
1

2

(
m1

i (ES)−m2
i (ES)

)2
, (3.41)

〈σ2i,m(TN)〉 =
1

2

(
m1

i (TN)−m2
i (TN)

)2
, (3.42)

〈σ2i,c(ES)〉 =
1

2

(
h1i,c(ES)− h2i,c(ES)

)2
, (3.43)

and

〈σ2i,c(TN)〉 =
1

2

(
h1i,c(TN)− h2i,c(TN)

)2
. (3.44)

The variance in expression changes

We again estimate the true variance of expression changes

var(∆m) =
1

N

N∑
i=1

(
∆i,m − ∆̄m

)2
, (3.45)

with

∆̄m =
1

N

N∑
i=1

∆i,m, (3.46)
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from the observed variance of the measured expression changes

V 2 =
1

N

N∑
i=1

(
∆̄i,m − ∆̄m

)2
. (3.47)

Writing the measured gene expression changes ∆̄i,m in terms of the true values ∆i,m

and the deviations, and using that cross-correlations are zero, we obtain

〈V 2〉 = var(∆m) +
1

2
σ2i,m(ES) +

1

2
σ2i,m(TN). (3.48)

Using this we thus estimate the true variance in expression changes as

var(∆m) = V 2 − 1

2
σ2i,m(ES)− 1

2
σ2i,m(TN). (3.49)

Error in the model

We again define the true deviation between predicted and true expression change for gene

i as

Di = ∆i,m − c̃−
∑
c

α̃c∆i,c, (3.50)

and want to estimate the true average squared-deviation

D2 =
1

N

N∑
i=1

(Di)
2 . (3.51)

The observed total deviation between measured and predicted levels is given by

T 2 =
1

N

n∑
i=1

(
∆̄i,m − c̃−

∑
c

α̃c∆̄i,c

)2

. (3.52)

Writing the measured expression changes ∆̄i,m and chromatin mark changes ∆̄i,c in terms

of the true changes and deviations, and using that the cross-correlations in the deviations

are zero, we obtain

〈T 2〉 = D2 +
1

2
σ2i,m(ES) +

1

2
σ2i,m(TN) +

1

2

∑
c

α̃2
c

(
σ2i,c(ES) + σ2i,c(TN)

)
. (3.53)

From this we estimate the true average squared-deviation as

D2 = T 2 − 1

2
σ2i,m(ES)− 1

2
σ2i,m(TN)− 1

2

∑
c

α̃2
c

(
σ2i,c(ES) + σ2i,c(TN)

)
. (3.54)

Combining these results we finally estimate the fraction f of expression-change that can

possibly be explained by the model as

f =
V 2 − T 2 + 1

2

∑
c α̃

2
c

(
σ2i,c(ES) + σ2i,c(TN)

)
V 2 − 1

2σ
2
i,m(ES)− 1

2σ
2
i,m(TN)

. (3.55)
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3.2.4 Calculation of transcript half-life by actinomycinD treatment

RNA was isolated from a fixed number of cells in culture (ES cells as well as Neurons) and

subjected to Affymetrix ST 1.0 Mouse Gene Arrays. The raw data was processes with R’s

’oligo’ package, RMA was used without normalization. Expression values were aggregated

on transcript level and degradation rates of each transcript were estimated using linear

regression of the log (log2) transformed signal intensity values y versus time t.

y = n−mt (3.56)

where t is time, m is the slope, n is the intercept and d = m ∗ ln(2) is the decay rate.

Using R’s ’limma package’ we calculate log2 fold-changes from t=0 to t=8 in duplicates

Supplemental Figure 3.5: (A) Duplicates of mRNA abundance measurements (orange, blue) in a

time-course after actinomycinD treatment. For each experiment the log2 transformed values of all

transcripts are summarized in a boxplot. Overall mRNA abundance decreases over time. (B) Raw

mRNA abundance in log2 as a function of time after actinomycinD treatment for a single transcript.

Measurement and linear regression in duplicates (orange and blue).

and infer the p-value for each. The resulting ’vulcano plot’ is shown in Figure 2. Assuming

a p-value of 0.01 (1 false in 100) the vast majority of genes with a log2 fold-change lower

than -0.4 show significantly decreased levels in the time interval from 0 to 8 hrs to be

considered. The slope m of these genes is calculated by:

m =
∆y

∆x
=
logFC

∆time
=
−0.4

8h
= −0.05 (3.57)

The corresponding half-life τ to the slope m of -0.05 is calculated by:

τ =
−1

m
=
−1

−0.05
= 20h (3.58)

This value of 20 hrs corresponds to an upper limit that we select for the extrapolation of

half-lives based on a time-course experiment covering an interval of 8 hours.
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Supplemental Figure 3.6: Vulcano plot showing log fold-change from time point t=0 to time point

t=8 on the x-axis versus corresponding p-values from replicates. Intersection of red lines at -0.4 log

fold-change with p-value of 0.01.

Supplemental Figure 3.7: Short-lived transcripts are polyA-depleted. (A) PolyA depleted transcripts

were identified contrasting mRNA sequencing with following polyA selection (x-axis) and mRNA se-

quencing following ribosomal RNA depletion without polyA enrichment (y-axis). Reads present in the

non-polyA-selected experiment, which are not present in the polyA-selection are defined as non-polyA

transcripts (orange). (B) Box-plot showing the shift in transcript half-life comparing polyandenylated

(grey) and non-polyadenylated (orange) transcripts.
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Supplemental Figure 3.8: Scatter plot of linear-model derived transcription rate (x-axis) and measured

mRNA levels (y-axis). Both are log2 transformed read-counts. This plot illustrates i) that mRNA levels

are less well modelled in low transcribed regions (corresponding to bin <20transcribed genes are depleted

of short lived-genes (therefore the box-plot in Figure 2C in the leftmost bin can be misleading)

Supplemental Figure 3.9: Correlation of the model’s residuals with the respective measure of post-

transcriptional regulation. (A) Histogram of the residuals of the linear model. Colors indicate grouping

of residulas in bins of equal size, this binning also applies for B,C and D. (B) Boxplot showing the

correlation of mRNA half-life versus the residual of the linear model. Pearson correlation shown on top

is 0.29, which means that almost 30% of the residual variation in mRNA levels can be explained by

mRNA half-life.
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3.2.5 Calculation of transcript half-life by metabolic labeling

We treated ESCs with medium containing thioU in a final concentration of 200µM for 1hr.

RNA was isolated with Trizol. 4sU-labeled RNA was biotinylated using EZ-Link Biotin-

HPDP (Pierce) and streptavidin IP was performed to separate the labeled RNA fraction.

To recover the unlabeled RNA the flow-through was collected. RNA was recovered from

the washing fractions and eluates using the RNeasy MinElute Spin columns (Qiagen).

Supplemental Figure 3.10: Dot blot assay according to Doelken et al. 2008. Exposure 20 mins

shown. Cells were treated for 60 mins with different concentrations of ThioU. We did not observe a

difference in flourescence of labeled RNA between the two highest concentrations, therefore we choose

200µM as reported before in Doelken et al. 2008 for our experiment.

Experiment was done in biological triplicates. All three fractions of each replicate, RNA,

total RNA, labeled and un-labeled RNA, were subjected Affymetrix Gene Arrays. All arrays

(triplicates of total, labeled and unlabeled RNA) were normalized together by RMA and

summarized on transcript level. Transcripts with RMA intensities less than 5 on linear scale

were discared. To account for the relative measurement of the microarrays we calculate

correction factors for the ratios (labeled/total RNA) and (unlabeled/total RNA) accoring

to Doelken et al. 2008, for each of the triplicates separately. In addition we account for the

U-bias in the IP (described in Schwannhaeuser et al. 2011) by normalizing to ’U’ density

of the transcript. RNA half-lives are subsequently calculated for each replicate assuming

exponantial decay:

T1/2 = −t ∗ ln(2)

ln(1− 1

1+
(labeled/total)

(unlabeled/total)

)
(3.59)

were −t is the labeleing time. As decribed in Doelken et al. we use t =55mins assuming

the thioU labeling starts 5 mins after addition of thioU to the medium.
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Supplemental Figure 3.11: Transcript half-life calculated from biological triplicates of total-, newly

synthetized and preexisting RNA. Shown are pairwise comparisons and their pearson correlations.
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Supplemental Figure 3.12: RNA half-life derived by metabolic labeling was integrated in the linear

model predicting transcription. The upper boxplots show half-lifes derived by actinomycinD treatment

(left) and thioU treatment (right) agains the residual of the linear model. Both half-life measures can

explain the remeining variance (residual) to the same extend, pearson correlation shown above the

plot respectively. Correlation beweeen the two half-life measures shown in the scatterplot below. The

histogram shows half-life distribution derived by thioU treatment. The lower plot shows mRNA half-life

in the context of predicted transcription and measured mRNA level. Lower mRNA level in the same

transcription bin can be explained by mRNA half-life derived by thioU treatment, in accordance with

out actinomycinD derived data.
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3.2.6 MicroRNA target determination by Dicer knockdown

Supplemental Figure 3.13: Correlation of the model’s residuals with the respective measure of post-

transcriptional regulation. Histogram of the residuals of the linear model. Colors indicate grouping of

residulas in bins of equal size, this binning also applies for B,C and D. Boxplot showing the correlation

of the log fold-change between Dicer knockout Dicer +/- cells versus the residual of the linear model.

Pearson correlation shown on top is 0.01, which means that 1% of the residual variation in mRNA

levels can be explained by a miRNA-target definition based on Dicer KO data.

Supplemental Figure 3.14: Box Plots for different cut-offs of log fold-changes upon Dicer KO (y-axis)

versus the residual of the linear model (x-axis). The color separates genes with positive (purple) or

negative (orange) logFC upon Dicer KO. If the log fold-change is negative, the level of the respective

mRNA is higher in Dicer -/- cells. These mRNA should be the ones affected by miRNAs and therefore

we expect their residual to be negative. Hence we expect an increasing anti-correlation the higher the

cut-off in absolute log fold-change. This increasing shift of the two groups can be observed for cut-offs

of log fold- changes of: (A) 0, (B) 0.5, (C) 0.7, (D) 0.9, (E) 1.1, (F) 1.3, (G) 1.5, (H) 1.7, (I) 1.9
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3.2.7 MicroRNA target determination by calculation of iMir score

For the representative mRNA of each refSeq gene we calculated a score, which reflects

the probability of this mRNA to be down regulated by miRNAs, here called iMir score.

This score is influenced by two factors: (A) the posterior probability of a miRNA to bind

a specific target sequence in the 3’ UTR of the mRNA and (B) by the abundance of the

miRNA in the respective sample. The posterior probability of a miRNA to bind a specific

target sequence was adapted from the EIMMo algorithm (Gaidatzis et al. 2007). MiRNA

abundance in the three cell types ES, NP and TN was measured in triplicates by small RNA

sequencing (see methods). The iMir score is a sum of all the posterior probabilities of a

miRNA target site in a mRNA weighted by the abundance of the miRNA and summed up

for each mRNA. Formally we can write the iMir score for one mRNA as:

iMirmRNA =

N∑
n=1

ppn ∗ expmiRNA
n (3.60)

where N is the number of possible mRNA-miRNA interactions in a given 3’ UTR and exp

is the expression (abundance) of the respective miRNA involved in this interaction.

Consequently an mRNA will have a high iMir, or likely being down regulated by miRNAs,

if there are many possible binding sites, the posterior probability of each binding site is high

and the abundance of the possibly binding miRNAs is high.
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Supplemental Figure 3.15: Effect of targeting by miRNAs on mRNA levels. (A) Scheme illustrating

the components used in the calculation of the iMir value, a measure for the likelihood of an mRNA

to be regulated by miRNAs. (B) Distribution of the logarithmic iMir value. Genes are grouped by

iMir value into five equal groups indicated by color. (C) Genes are classified into five equal groups

according to predicted transcription rate (0-100%), and within each group measured mRNA levels are

shown as boxplots separately for genes with different iMir values (as in (B), color-coded). Within a

given transcription group, predicted miRNA-target genes (iMir ‘HIGH’) have similar mRNA levels as

other genes.
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Supplemental Figure 3.16: Correlation of the model’s residuals with the respective measure of post-

transcriptional regulation. Histogram of the residuals of the linear model. Colors indicate grouping of

residulas in bins of equal size, this binning also applies for B,C and D. Boxplot showing the correlation

of the logarithmic iMir value versus the residual of the linear model. Pearson correlation shown on top

is -0.04 (note that here we expect the correlation to be negative, as the more negative the residual, the

higher the iMir value), which means that 4% of the residual variation in mRNA levels can be explained

by a miRNA-target definition based on in-silico target prediction.
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Supplemental Figure 3.17: Focus on high-confidence miRNA target genes. (A) Same plot as in Figure

1C. All refSeq genes are classified according to their iMir value as in Supplementary Figure 1B. (B)

Subset of all the genes in (A) with log2(iMir) values higher than 4. This subset contains genes that are

more likely to be miRNA-targets. (C) Pearson correlation (r) between the residual of the linear model

and the log2(iMir) value as a function of cut-off applied to the posterior probability to be a miRNA

target. A cut-off of zero corresponds to (A), and a cut-off of 4 (solid vertical line) corresponds to (B).

Correlations are shown for subsets for log2 posterior probability cut-offs in 1.0 inter- vals. The point-

size illustrates the number of genes at each cut-off. At 4.9, the subset contains 1000 genes (dashed

line), the subset at 6.2 contains 100 genes (dotted line). Increasing cut-offs select higher-confidence

miRNA-target genes that can explain the residual of the linear fit slightly better.
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3.2.8 Prediction of mRNA abundance change between cell types

Supplemental Figure 3.18: Predictive power of chromatin and hal-life in changes of mRNA. (A)

Scatter plot showing correlation between change predicted transcription rate (x-axis) and change in

measured mRNA level (y-axis), changes from ES to TN respectively. (B) Scatter plot showing corre-

lation between experimen- tally inferred half-life in ES (x-axis) and TN (y-axis). Transcript half-life

changes between the cell types indi- cating a functional importance of RNA decay. (C) Potential of

mRNA half-life changes to explain remaining changes in measured mRNA levels. Similarly to (A),

correlation between changes in transcription (x-axis) and changes in measured mRNA (y-axis), colours

indicate level of change in mRNA half-life. Negative values indicate genes which decrease in half-life

during differentiation. These genes contribute to a decrease in mRNA levels during differentiation.
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3.2.9 Tissue-specific expr.: test of independence or homogeneity

We test here whether ES or TN specific expressed genes are independent of the definition

of tissue-specificity obtained from SymAtlas. Tissue specific expression was defined based

on symAtlas expression over 75 tissues. For each refSeq gene we counted the number of

tissues/cell types in which it is expressed (expression defined by a cut-off in log-transformed

expression, exp > 7). RefSeqs are then classified accruing to the number of tissues in not

expressed (0 tissues), tissues-specific expressed (1-5 tissues), intermediate (6-70 tissues)

and ubiquitous expressed (71-75 tissues). ES or TN specific expression was defined given

the mRNA sequencing data in our differentiation system, comparing ES and TN. We clas-

sified into expressed in [ES AND TN] or [ES OR TN] by a cut-off at +/ − 2 from the

x = y diagonal. Based on these groups we tested the if tissue-specific expression accruing

to symAtlas is independent to the expression pattern observed in our system. We use the

following matrix to perform a chi-squared test:

tissues-specific ubiquitous

ES or TN 279 661

ES and TN 386 2019
.

The p-value obtained is close to zero ( < 2.2e − 16). Hence we reject the hypothesis

that the expression type according to symAtlas is the same for genes expressed in either or

both of our cells types. Looking at the data, ubiquitous expressed genes are more enriched

in genes expressed in both cell types.
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3.2.10 A partially non-linear model

In a linear setting we have:

Ti = a0 +
∑
j

ajCij (3.61)

where Cij are measured chromatin modifications of type j for gene i and aj are the cor-

responding coefficients of the multilinear regression. The fitted response (mRNA level) is

sigmoidal distorted (Figure 13, left).

σ(x) = sigmoid(a0 +
∑
j

ajCij) (3.62)

where σ(x) is a sigmoidal function that captures the distortion of the linear relationship due

the detection limit at the lower end and due to the saturation of 3K36me3 at the upper

end of the mRNA levels. One of the simplest sigmoidal functions is:

σ(x) = c+
d− c

1 + exp(b ∗ (x− e)
(3.63)

It has the simple inverse:

σ̄(y) = e+
1

b
∗ log(

−d+ y

c− y
) (3.64)

where e is the position of the largest inflection, b is the slope there.

However, inSig is only defined between the saturation levels c and d. If we want to

fit all our datapoints, some of which will be outside these boundaries, we have to use a

complex function composed of an inverse sigmoid with a linear function attached to each

side of the inverse sigmoid. For that we introduce a fifth parameter, δ that determines the

’attachment point’ of these linear functions relative to the left and right boundaries c and

d of the inverse sigmoid. The formula for the composite function can be written as:

σ̄(x)∗(b, c, d, e, δ) =


mx+ n, if x <= c+ δ

mx+ n, if x >= d− δ
e+ 1

b ∗ log(−d+x
c−x ), else

(3.65)

where the slope m of the ’attached’ linear functions is the first derivative of σ̄(x) at (c+ δ)

and (d − δ). The y-intercept n for each of the linear functions can be calculated from x,

m and σ̄(x).
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Using a range of starting parameters for b, c, d, e and δ we do a non-linear model fitting.

In case the nls converges, it always converges with the parameters b = −16.39, c = 0.49,

d = 0.87, e = 0.5 and δ = 0.07 (see Figure 13, left).

Indeed, the lower mRNA levels seem to relate linear to the predicted transcription, whereas

the sigmoid distortion is detected only in a small intervall. TThe normalized covariance

between the measured mRNA levels and the predicted transcription values after transfor-

mation by the inverse sigmoidal function is only marginally larger than for the linear fit (see

Figure 13, 0.846 vs. 0.851).

Supplemental Figure 3.19: Non-linear fitting of a composite function to the data, predicted tran-

scription vs. measured mRNA. Left: A non-linear model composed of an inverse sigmoid with linear

functions attached is fitted. The orange line shows the composite function. The green lines indicate

the range of the invese sigmoid in the x-axis and the inflection point on the y-axis. Right: Predicted

transciption was transformed accoding to the composite function and plotted against mRNA again.

Explained variance of mRNA by original and transformed predicted transcription is shown above the

plots respectively.
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3.2.11 Additional supplemental figures

Supplemental Figure 3.20: Scatter plot of linear-model derived transcription rate (x-axis) and mea-

sured mRNA levels (y-axis). Both are log2 transformed read-counts. In additon to pearson correlation,

we also show kendall and spearman correlations and corresponding p-values to show the significance of

the high correlation between the two values despite their non-normal distribution.

Supplemental Figure 3.21: Scatter plots show correlation of the regressors in the linear model (histone

modifications) with half-life. Shown are the respective regressors on the x-axes and half-life of the

corresponding transcript on the y-axes.
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Supplemental Figure 3.22: Bar plot represents the correlation (r) of different post-transcritional

measures with the residual of the linear model. For mRNA half-life measurements by metabolic labeling

(HL.thioU), as well as for the measures of being a miRNA target, pearson correlation was tested by

bootstrapping using the repective contiuous variables. For the mRNA half-life measure derived by

actinomycinD treatment (HL.actiD) we use a categorical variable (due to group of long lived genes)

and infer r by linear regression. In all cases, error bars represent 95% confidence interval, p-value

respectively for each test.
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Supplemental Figure 3.23: Mapability of mRNA-sequencing reads. Foreach refSeq transcript a

mapability score m was calculated as the ratio of uniquely mapable over all 36mer sequences of

that transcript. To calculate mapablity of 36mers, each transcript was tiled in n 36mers, where

n = lengthtranscript − 35. All 36mes were aligned to the mm9 genomic sequences as well as to refSeq

transcripts and defined as unique if it did not match more than once in either of the references. The

distribution of m is shown in the density plot on the left, inset plot contains only m! = 1. The scatter

plot on the right shows the distribution of non-uniquely mapping transcripts (lower 5%, m <0.79)

within the population of all representative transcripts.
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Chapter 4

Conclusions

In the past 5 years much progress has been made understanding the mechanisms that in-

fluence steady-state or dynamic mRNA level at the level of chromatin, transcription or on

the post-transcriptional level. However an integrated view of all these layers is needed to

understand the interplay and relative contributions to gene expression in a cell.

At the beginning of my PhD thesis there were no genome-wide studies on global contribu-

tions of transcription, mRNA stability and other factors to mRNA levels [Cheadle et al.,

2005] and my aim was to integrate genome-wide chromatin data available in the lab with

measures of post-transcriptional regulation to determine the relative contributions of these

layers to steady state mRNA levels. We found that the lion share of steady state mRNA

level is set on the transcriptional level, and post-transcriptional contributions are quanti-

tatively minor. Additionally, we describe histone marks, especially the co-transcriptional

histone mark H3K36me3, as very good predictors of mRNA abundance in the cell.

In the following sections I would like to discuss our findings in the context of recent studies,

published during the time-period of my PhD. These recent studies on the one hand make

use of global measurements of numerous genomic features and attempt to predict mRNA

abundance and on the other hand integrate different regulatory layers into a network ex-

plaining the connectivity in gene expression regulation.

Gene regulation in a broad sense however, goes from DNA not only until mRNA levels

but ultimately to protein levels. Recent developments in quantitative mass spectrometry

opened possibilities to measure protein abundance on a genome-wide scale allowing for the

first time global comparisons of mRNA and protein level and consequently regulatory impact

of translational and post-translational mechanism. I will also discuss some of those findings

and how the results of my PhD project can be interpreted in light of these new developments.
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4.1 A Longstanding Task: Decoupling Regulatory Layers

In my PhD project I asked the question: If regulation of gene expression in eukaryotes is a

stepwise, multi-layered process, what are the relative contributions of these layers? What

are the actual numbers as percentage from ’total’ 100% determination of the steady state

mRNA level?

To address this question we had to separate at least two layers: the transcriptional regula-

tion, ’what get’s transcribed and how efficient?’, and the post-transcriptional regulation, as

’how long is the life-time of the initial transcript?’. To estimate what is being transcribed in

the fist place, there are various methods. The most straightforward approach would be to

monitor ongoing transcription directly, for which nuclear run-on (NRO) would be the closest

method to do so [Garćıa-Mart́ınez et al., 2004]. By pulse-labeling, one can integrate the

labeled mRNA over time and have a readout what was transcribed [Garćıa-Mart́ınez et al.,

2004]. By integration of a modified, radiolabeled nucleotides, intensities can be detected on

a blot, however, it does not allow for quantitative readout by microarray or deep-sequencing.

Other, less direct, methods try to infer transcription from different genomic features: DNA

sequence itself was shown to be predictive for gene expression. Predicted TF binding sites

and their evolutionary conservation have been used to infer promoter activity [Hemberg and

Kreiman, 2011; Irie et al., 2011]. But DNA sequence not only provides binding specificity for

TFs but also largely determines nucleosome positioning [Segal et al., 2006]. DNA binding

complexes, nucleosomes, TFs and the recruited RNAP II transcription machinery compete

for binding around promoter regions and one can calculate probabilities of transcription

initiation at promoters based on thermodynamic equilibrium (reviewed in Segal and Widom

[2009]). However, experimentally derived TF binding makes a much better predictor [Cheng

and Gerstein, 2011] since only a subset of predicted TF binding sites will be actually occu-

pied in vivo. In the same line experimentally inferred histone modification data provides a

powerful prediction of mRNA abundance of the linked gene. Several studies build on the

histone modification maps in human T cells [Barski et al., 2010; Wang et al., 2008] and

inferred patterns of histone modifications characteristic for actively transcribed promoters

[Hon et al., 2009]. Based on this data the levels of histone modifications were found to

be predictive for both protein-coding mRNA expression, depending on CpG density of the

promoter [Karlic et al., 2010] and even for miRNA expression [Zhang and Zhang, 2011].

Notably, all of these studies restrict their readout of histone modification on a region around

the TSS and thereby miss the high predictive power H3K36me3 in transcription elongation.
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Moreover they find that a few histone modifications are sufficient to predict mRNA levels

and that adding more histone marks does not improve modeling significantly.

We choose to monitor RNAP II together with a few histone marks, that are bi-uniquely

connected with either active of repressed genes. In particular however, we do not restrict

our analysis to the promoter region of the gene, where initiation is regulated but instead

use a more downstream readout which is set during transcription elongation: H3K36me3.

As reviewed in the introduction, this mark is set by the elongating polymerase and stays

and accumulates until it gets diluted by cellular division. Therefore to measure H3K36me3

is actually more informative than RNAP II occupancy itself because RNAP II is only catch-

and detectable at the promoter or in the moment when it ’runs’ through the gene body. It is

also the closest measure in terms of direct readout of transcription without using an invasive

labeling method, IP on chromatin of normal grown cells is sufficient and enrichments yield

high specificity. The variance in mRNA levels, which can be explained by H3K36me3 alone

is therefore already higher than some of the complex predictors used in other studies.

Based on being able to predict more than 80% variance in mRNA levels by 3 histone marks

and RNAP II occupancy, we inferred RNA decay rates transcriptome wide with two different

methods (detailed in the introduction) and found, that although mRNA decay is measurable

in terms of transcript abundance, it only shapes the steady-state level of an mRNA very

little. The percentage contribution we assigned to RNA decay modulating mRNA levels is

between 2 and 12%.

At the beginning of my PhD there was no study addressing the actual quantitative contri-

butions of the different regulatory layers to mRNA levels with high throughput methods.

The first systematic account to this question used transcription run-on (TRO) involving

isolation of nuclei to measure ongoing transcription [Garćıa-Mart́ınez et al., 2004]. RNA

stability can then be calculated from mRNA levels and measured transcription rate. In

yeast, Garcia-Martinez et al. found the median pearson correlation (r) of mRNA levels with

transcription is 0.6 while r with mRNA stability is -0.24 and concluded that transcription is

the main determinant of RNA levels. The first study in higher eukaryotes measured changes

in both, transcription and mRNA half-life, during T cell activation in [Cheadle et al., 2005].

Using the same method as [Garćıa-Mart́ınez et al., 2004], they observe a lack of detectable

transcriptional regulation (change in newly transcribed RNA) of large numbers of changing

mRNA levels and speculate that mRNA stability may account for as much as 50% of all

changes in mRNA measured. However, this conclusion is largely driven by possible technical

shortcomings of NRO (transcription in isolated nuclei) that bias the measurement and lead

to a reduced correlation with mRNA level changes. To circumvent the downfalls of NRO,

it is possible to measure mRNA decay directly as opposed to inferring it from transcription,
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for example by RNAP II inhibition. A study in yeast showed the response of mRNA abun-

dance and decay under different stress conditions and found that, depending on the type

of stress (transient or enduring) RNA half-life can explain different amounts of changes in

mRNA levels [Shalem et al., 2008]. Many following publications used the same method to

infer mRNA half-life resulting in partially different conclusions (see further down). Using

inhibition of RNAP II, or transcription arrest has the major problem, that the expression

pattern of the cell will potentially change due to the effect of the stress imposed by arresting

transcription.

Two studies in mouse cells recently revisited the question of relative contributions of differ-

ent layers to gene expression [Rabani et al., 2011; Schwanhäusser et al., 2011]. Both studies

used the less invasive method of metabolic labeling [Dölken et al., 2008] to measure tran-

scription and calculate mRNA degradation. In contrast to our study, where transcription

is modelled and half-life is experimentally measured, Rabani et al. measured transcription

directly. Based on measured transcription and mRNA levels, the researchers test two dif-

ferent models: (I) assuming constant degradation for all gene their model can explain 78%

of the variance in mRNA levels whereas a model (II) allowing gene dependent decay rates,

has the capacity to explain 86% variance. This result is consistent with our findings and

although using a different approach, almost yields the same percentages of relative contri-

bution. This is equally consistent with the study by Schwannhäuser et al. [Schwanhäusser

et al., 2011] which also predicts a minor contribution of mRNA degradation to steady-state

levels and goes even a step further to predict relative regulatory contributions to protein

levels (detailed discussion in section 4.3)

4.2 The Difficulty: Coupling of Regulatory Layers

The main idea of my thesis is based on the assumption that a decoupling of regulatory

layers is fair and possible, because only if they do not depend on each other, we can assess

the relative contribution of each layer.

In yeast, however, there is evidence for a direct coupling mechanism between mRNA tran-

scription and degradation, mediated by two RNAP II subunits: Rpb4 and Rpb7. These

subunits bind to the mRNA during transcription and escort the transcript from the nu-

cleus to the cytoplasm. Thereby they can affect mRNA stability and modulate translation

[Goler-Baron et al., 2008; Lotan et al., 2005, 2007]. Another complex linking production

and degradation is CCR4-NOT, the major mRNA deadenylase in yeast, which controls the

initial step of degradation (see introduction) [Chen et al., 2002; Tucker et al., 2001]. In
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addition it is part of a multicomponent assembly containing diverse transcription initiation

factors, such as members of the SAGA complex [Benson et al., 1998], subunits of RNAP

II [Liu et al., 2001] and subunits of the transcription initiation factor TFIID [Lemaire and

Collart, 2000; Sanders et al., 2002].

Most of the studies on coupling so far have been undertaken in yeast, because a lot is known

about the proteins involved in a possible connection between transcription and degradation.

Two principally different models of interconnection between transcription and degradation

emerged, which I will refer to as ’co-operative’ and ’non-co-operative’ models. In the co-

operative model transcription and degradation act in concert to achieve higher or lower

levels of a certain mRNA, meaning if transcription rate of an mRNA is increased, it would

also be stabilized post-transcriptionally. In the ’non-co-operative’ model mRNA would be

in contrast destabilized when transcriptionally induced. This would result in a ’balancing’

mechanism where transcription and degradation ’buffer’ each other to stabilize a certain

level of mRNA abundance.

All studies on this topic where published within the last 3 years of my PhD, and show

partially contradicting results. Evidence for the cooperative model comes from two studies

in fission and bakers yeast, which monitor transcription by labeling with newly transcribed

RNA with either 4sU [Amorim et al., 2010] or radioactive UTPs [Castells-Roca et al., 2011].

In response to heat shock Castells-Roca et al. found that changes in transcription rates

and mRNA stabilities are mostly homo-directional, meaning induced transcription leads to

higher stability of the mRNA. A similar observation was reported by Amorim et al. in in-

duced meiotic differentiation of S.pombe. Here, the positive link between transcription and

stability was shown to be a TF inducing the production of a stabilizing RBP Meu5p along

with other genes, which are stabilized by Meu5p in the cytoplasm.

A cooperative mechanism would be advantageous in terms of an economic strategy for

gene expression regulation. If in a specific steady-state low levels of an mRNA are sufficient

a homo-directional regulation would similarly produce few mRNA, to avoid unnecessary

degradation of wastefully produced transcript. However in cells of higher eukaryotes the en-

ergy spend to synthesize mRNA in terms of high energy phosphates is roughly one tenth of

the energy consumption by translation [Schwanhäusser et al., 2011]. Therefore the cellular

energy usage in transcription and post-transcriptional processes might not be a driving force

to select a way of regulatory interaction. However the cooperative model may be sensible

in terms of responsiveness to environment. If transcription and degradation of mRNA are

able to act in concert to achieve higher or lower mRNA levels adaption to external stimuli

will be fast.
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Evidence for the non-cooperative model comes from both, yeast but also mammalian sys-

tems. When transcription and degradation are able to counter act, and thereby balance

each other, noise is minimized when a precise level of expression is required.

Monitoring mRNA levels and decay rates in yeast under hyperosmotic stress conditions,

Molin et al. observe genes with decreased transcription are stabilized in the cytoplasm

while stress induced genes undergo destabilization [Molin et al., 2009]. This way the cell

achieves a balancing effect, where final mRNA levels are changed only minimally. A sim-

ilar effect was observed in yeast under oxidative stress [Shalem et al., 2011]: A wild type

yeast could balance mRNA levels by a counteracting response in RNA stability, however a

mutant strain, carrying a RNAP II, that poorly recruits Rpb4 and Rpb7, can not buffer the

change in transcription. This is another evidence for the two RNAP II subunits Rpb4/Rpb7

being involved in coupling between transcription and degradation. Also in favor of the

non-cooperative model is a study by Elkon et al. [Elkon et al., 2010] based on mRNA tran-

scription data in mouse fibroblasts [Dölken et al., 2008]. As a response to interferons the

mRNA stability is modulated according to the rapidity of gene induction: a higher induction

leads to shorter half-life.

Within the last year two studies posed the question, if transcription and degradation ap-

pear to be coupled between conditions, is there an evolutionary connection between the

two processes? Therefore they used two related yeast species respectively to investigate

fold-changes in RNA synthesis and decay. Both studies, although using different techniques

to infer mRNA decay, come to the same conclusion: there is coupled evolution between

synthesis and decay [Dori-Bachash et al., 2011; Sun et al., 2012]. Moreover, Sun et al.

used mutants of either RNAP II or the deadenylase Ccr4-Not and found that besides the

expected decrease in transcription or degradation, the counteracting mechanism was buffer-

ing the mRNA levels respectively.

A previous paper from the same lab [Miller et al., 2011] investigating stress response in

yeast, had shown that the interplay between mRNA synthesis and decay is largely depen-

dent on the phase of the stress response. While there was non-cooperative behavior in the

initial shock and induction phase, no correlation between production and degradation was

observed.

With the data derived from our murine in vitro differentiation system, we see that predicted

transcription at a single time point agrees with the non-cooperative model in that highly

transcribed genes (high H3K36me3) are degraded fast and lowly transcribed genes have a

long half-life (correlation of predicted transcription vs. degradation, r = 0.36 ). Based on

the contradicting observations in yeast stress responses, it would be interesting to inves-

tigate how mRNA transcription and degradation rates change upon an external stimulus
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to ESC or terminal neurons. Proteins like Rpb4/Rpb7 exist in mammals and it should be

subject to investigation in the future if these proteins similarly build a physical link between

transcriptional and post-transcriptional regulation.

4.3 mRNA to Protein

A key assumption in studying mRNA expression is that it is informative for the prediction of

protein abundance. However, only recently studies have explored the mRNA-protein expres-

sion correlation in yeast or human tissues and the results have been relatively inconsistent

[Guo et al., 2008].

Two early studies in yeast [Griffin et al., 2002; Gygi et al., 1999], which assessed this

correlation, where restricted to a very low number of genes (< 250) due to the laborious

work of mass spectrometry. Looking at steady state [Gygi et al., 1999] and fold-changes

between yeast growth conditions [Griffin et al., 2002] both groups found a very low corre-

lation between mRNA and protein. Apart from the low number of monitored genes, mass

spectromety itself is thought to be difficult for quantitative studies because the efficiency

with which peptides ionize and enter the mass spectrometer depends upon both their com-

position and the local chemical environment, producing variation in the MS signal intensity

[Lu et al., 2007]. Lu et al., also in yeast, used a method to normalize for this effect (APEX)

and found that 73% of the protein abundance is explained by mRNA abundance. This

high correlation was confirmed by another lab which imposed osmotic stress on yeast and

measured abundance of about 2500 proteins together with their coding mRNAs (pearson

correlation = 0.87, Lee et al. [2011]).

Moreover, studies in mammalian systems are also in disagreement whether mRNA levels

reflect protein abundance in a cell. Three studies in human monocytes [Guo et al., 2008],

murine ES [Lu et al., 2009] and liver [Ghazalpour et al., 2011] cells report that a large pro-

portion of changes in protein levels is not accompanied by analog changes in the expression

of corresponding mRNAs, suggesting an important role for translational regulation. On the

other hand, results in human cancer cell lines [Nagaraj et al., 2011; Vogel et al., 2010],

which monitored up to 9207 genes by RNA-sequencing and microarrays and corresponding

proteins levels, report a higher correlation ranging from 0.53 to 0.6. In human ESC, induced

pluripotent stem cells and fibroblasts, the reported explained variance of protein by mRNA

level was even higher (r=0.7, Munoz et al. [2011]).

Recent studies using the SILAC method (stable isotope labeling by amino acids in cell cul-
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ture) to quantify protein abundance and sequencing to quantify mRNA abundance are in

good agreement with a correlation between the two measures of more than 0.6 [Lundberg

et al., 2010; Schwanhäusser et al., 2011].

In my PhD thesis I do not investigate the abundance of proteins at all and just ask whether

transcription, or features related to transcription are predictive for mRNA levels. Following

these more recent studies, which report a high correlation between mRNA and protein, our

results would implicate that one can fairly estimate the actual protein output of a cell by

measuring histone marks and RNAP II abundance alone. Many studies investigating mRNA

levels, implicitly assume a high correlation to protein and extrapolate their findings the be

relevant for the phenotype of the cell. This is challenged by reports showing a low explained

variance of proteins on the mRNA level [Ghazalpour et al., 2011; Guo et al., 2008; Lu et al.,

2009]. From the current knowledge and ongoing discrepancy about contributions to pro-

tein levels, and in the scope of my PhD project it would be too speculative to extrapolate

to protein levels and phenotype but it would be an inevitable next step to investigate the

quantitative contribution of chromatin marks not only to mRNA but to protein abundance.

4.4 Modeling in Biology

In my PhD thesis I attempt to explain the relative contributions of different regulatory lay-

ers in gene expression regulation to mRNA levels in a given cell. The last three conclusion

chapters extend this aim in summarizing studies which investigate not only quantitative

contributions but also the coupling between the regulatory processes. Some studies (sec-

tion 4.3) even go further in trying to explain protein levels which implies the consideration

of even more regulatory processes. The final goal of collecting this information on relation-

ships between process is to build an abstract model which simplifies the complex biological

processes. In general, an abstract scientific model can help to explain a system, to study

the effects of different components, and to make predictions about unobserved data points.

A statistical model, like the linear model used in my thesis, is a formalization of the rela-

tionships between variables in the form of mathematical equations.

Mathematical models can be classified differently, one of which is the distinction between

deterministic and probabilistic (stochastic) models. A deterministic model is one in which

every set of variable states is uniquely determined by parameters in the model and by sets

of previous variable states. A stochastic model does not describe variables by unique values

but rather by probability distributions. Due to the brownian motion in a cell for exam-

ple, randomness is present and a stochastic model would likely reflect the situation better.
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However, deterministic models always perform the same way for a given set of initial con-

ditions, which is preferable when we want to make predictions. Amongst other possible

classifications of models, we choose to use linear over non-linear models to describe our

system. There may be cases where one can through biological reasoning assume linearity,

as an example one could assume that one RNAP II produces 5 mRNAs/h, two RNAP II

produce 10 mRNAs/h and so on. This would imply a linear relationship between RNAP

II and the amount of mRNA produced. However in most cases this relationships between

elements in a biological system are not known because quantitative measures are hard to

obtain or vary largely either between molecules in a cell, between cells within a population

or between replicates within an experiment. In our case we use the most simple model: a

linear model.

Linear modeling, or linear regression, as introduced in the first chapter, was coined in the

18th century, where it was applied to observations about properties of peas and people

[Galton, 1890]. At this time however, to make a single linear regression on a larger set of

data could take days to solve manually. With the rapid development of computing in terms

of memory and performance in the last decades regression problems for many data intensive

purposes, such as in economics, are solved computationally. Since biological readout turned

from ’blobs on films’ to quantitative measurements, regression models started to find their

application in this field, too. The advent of high-throughput methods for data quantifica-

tion such as microarrays or deep-sequencing in the 1990s allowed parallel investigation of

thousands of genes. Bringing together computational and technological advance enables us

now to employ modeling on a new level. Due to the large amount of data, we can actually

visualize if the relationship between two biological variables, is linear, or non-linear. We

obtained measurements for more than 10.000 genes and visualized predicted transcription

based on enrichment of histone modifications in relation to transcript abundance of the

respective gene. From the scatter plot we can conclude that the relationship between the

log-transformed values of these readouts is almost linear, which led us to employ linear

regression. The non-linear behavior on the upper and lower end of the predicted transcrip-

tion can be explained by the technical limitations of ChIP for a histone mark. We tried

to account for this systematic deviation from the linear regression line by implementing a

more complex model, composed of a linear and an inverse sigmoid part. Fitting the complex

model to the data revealed that it is not much more powerful in predicting mRNA levels

from histone modification data. In general, model complexity always involves a trade-off

between simplicity and accuracy of the model. We therefore applied a principle particularly

relevant to modeling, the essential idea being that among models with roughly equal pre-

dictive power, the simplest one is the most desirable (known as ’Occam’s razor’). While
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added complexity usually improves the predictive power of a model, it can make the model

more difficult to interpret. In the special case of a linear model we can even conclude from

the correlation coefficient to the explained variance, and coefficients of the predictors will

return contributions to the explained variance. This is not possible with a non-linear model,

therefore we chose the advantage of simplicity over the little improvement in explanatory

power.

With models built on experimentally inferred high trough-put data from biological systems

researchers can now start to investigate if concepts developed from single gene analyses

hold true on genome wide level. Modeling allows us to reevaluate with a large amount of

datapoints and potentially change these concepts on the way to understand gene regulation

as a whole process. This follows the idea that natural systems and their properties, should

be viewed as wholes, not as collections of parts. This holistic way of scientific research is

reflected in the relatively young discipline of systems biology and will mostly be driven by

the application of different modeling approaches.
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Castells-Roca, L., Garćıa-Mart́ınez, J., Moreno,
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C. C., Zimmer, R., Mages, J., Hoffmann,
R., Dickinson, P., Forster, T., Ghazal, P. and
Koszinowski, U. H. (2008). High-resolution
gene expression profiling for simultaneous ki-
netic parameter analysis of RNA synthesis
and decay. RNA (New York, NY) 14, 1959–
1972. 29, 37, 47, 59, 94, 96

103



BIBLIOGRAPHY

Dori-Bachash, M., Shema, E. and Tirosh, I.
(2011). Coupled evolution of transcription
and mRNA degradation. PLoS biology 9,
e1001106. 96

Eckhardt, F., Lewin, J., Cortese, R., Rakyan,
V. K., Attwood, J., Burger, M., Burton,
J., Cox, T. V., Davies, R., Down, T. A.,
Haefliger, C., Horton, R., Howe, K., Jack-
son, D. K., Kunde, J., Koenig, C., Liddle,
J., Niblett, D., Otto, T., Pettett, R., See-
mann, S., Thompson, C., West, T., Rogers,
J., Olek, A., Berlin, K. and Beck, S. (2006).
DNA methylation profiling of human chro-
mosomes 6, 20 and 22. Nature genetics 38,
1378–1385. 8, 42

Edmunds, J. W., Mahadevan, L. C. and
Clayton, A. L. (2008). Dynamic his-
tone H3 methylation during gene induction:
HYPB/Setd2 mediates all H3K36 trimethy-
lation. EMBO J. 27, 406–420. 17, 43, 52

Eisenberg, E. and Levanon, E. Y. (2003).
Human housekeeping genes are compact.
Trends Genet 19, 362–365. 53

Elkon, R., Zlotorynski, E., Zeller, K. I. and
Agami, R. (2010). Major role for mRNA sta-
bility in shaping the kinetics of gene induc-
tion. BMC genomics 11, 259. 96

Enright, A. J., John, B., Gaul, U., Tuschl, T.
and Marks, D. S. (2003). MicroRNA targets
in Drosophila. Genome biology 5, R1. 49

Eulalio, A., Huntzinger, E., Nishihara, T., Re-
hwinkel, J., Fauser, M. and Izaurralde, E.
(2009). Deadenylation is a widespread ef-
fect of miRNA regulation. RNA (New York,
NY) 15, 21–32. 28

Eulalio, A., Rehwinkel, J., Stricker, M.,
Huntzinger, E., Yang, S.-F., Doerks, T.,
Dorner, S., Bork, P., Boutros, M. and Iza-
urralde, E. (2007). Target-specific require-
ments for enhancers of decapping in miRNA-
mediated gene silencing. Genes & develop-
ment 21, 2558–2570. 28

Ezhkova, E., Pasolli, H. A., Parker, J. S.,
Stokes, N., Su, I.-h., Hannon, G.,
Tarakhovsky, A. and Fuchs, E. (2009).
Ezh2 orchestrates gene expression for the
stepwise differentiation of tissue-specific
stem cells. Cell 136, 1122–1135. 13

Fan, X. C. and Steitz, J. A. (1998). Overex-
pression of HuR, a nuclear-cytoplasmic shut-
tling protein, increases the in vivo stability

of ARE-containing mRNAs. EMBO J. 17,
3448–3460. 25

Farh, K. K.-H., Grimson, A., Jan, C., Lewis,
B. P., Johnston, W. K., Lim, L. P., Burge,
C. B. and Bartel, D. P. (2005). The
widespread impact of mammalian MicroR-
NAs on mRNA repression and evolution. Sci-
ence (New York, NY) 310, 1817–1821. 28

Gaidatzis, D., van Nimwegen, E., Hausser, J.
and Zavolan, M. (2007). Inference of miRNA
targets using evolutionary conservation and
pathway analysis. BMC Bioinformatics 8,
69. 3, 37, 49

Galton, F. (1890). Kinship and correlation. 31,
99
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Acronyms

ARE AU rich element.

ChIP chromatin immunoprecipitation.

CTD carboxyl-terminal domain.

EEC early elongation complex.

EJC exon junction complex.

GTF general transcription factor.

H3K27me3 tri-methylation of lysine 27 at hi-

stone tail H3.

H3K36me3 tri-methylation of lysine 36 at hi-

stone tail H3.

H3K4me2 di-methylation of lysine 4 at histone

tail H3.

HIV human immunodeficiency virus.

HMT histone methyl-transferase.

hnRNPL heterogenous ribonucleoprotein L.

IRES internal ribosome entry site.

ITC initially transcribing complex.

LMR low methylated region.

MBD methyl-CpG-binding domain protein.

MES-4 maternal effect sterile 4.

MET-1 histone-methyltransferase-like 1.

miRISC miRNA induced silencing complex.

miRNA micro RNA.

mRNA messenger RNA.

mRNP messenger ribonucleoproteins.

NPC nuclear pore complex.

NSD1 nuclear receptor binding SET domain

protein 1.

P-TEFb positive transcription-elongation

factor-b.

PIC pre-initiation complex.

PTM post-translational modifications.

RBP RNA binding protein.

RNAP II RNA polymerase II.

Rpb1 large subunit of RNAP II.

Set2 SET domain-containing.

SETD2 SET domain-containing 2.

snRNP small nuclear RNP.

SR serine/arginine-rich.

TBP TATA binding protein.

TF transcription factor.

TSS transcription start site.

UTR un-translated region.
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