edoc-vmtest

Agrin is a differentiation-inducing "stop signal" for motoneurons in vitro

Campagna, J. A. and Ruegg, M. A. and Bixby, J. L.. (1995) Agrin is a differentiation-inducing "stop signal" for motoneurons in vitro. Neuron, Vol. 15, H. 6. pp. 1365-1374.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258433

Downloads: Statistics Overview

Abstract

Proteins of the synaptic basal lamina are important in directing the differentiation of motor nerve terminals. One synaptic basal lamina protein, agrin, which influences postsynaptic muscle differentiation, has been suggested to influence nerve terminals as well. To test this hypothesis, we cocultured chick ciliary ganglion neurons with agrin-expressing CHO cells. Ciliary ganglion neurons, but not sensory neurons, adhered five times as well to agrin-expressing cells as to untransfected cells. Further, ciliary ganglion neurites were growth inhibited upon contact with agrin-expressing cells. Finally, the synaptic vesicle protein synaptotagmin became concentrated at contacts between ciliary ganglion neurites and agrin-expressing cells. These activities were shared by neuronal and muscle-derived agrin isoforms, consistent with the hypothesis that muscle agrin may influence the presynaptic axon. Our results suggest that agrin influences the growth and differentiation of motoneurons in vivo.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Neurobiology > Pharmacology/Neurobiology (Rüegg)
UniBasel Contributors:Rüegg, Markus A.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Cell Press
ISSN:0896-6273
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page