edoc-vmtest

Molecular determinants of the reversible membrane anchorage of the G-protein transducin

Seitz, H. R. and Heck, M. and Hofmann, K. P. and Alt, T. and Pellaud, J. and Seelig, A.. (1999) Molecular determinants of the reversible membrane anchorage of the G-protein transducin. Biochemistry, Vol. 38, H. 25. pp. 7950-7960.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258478

Downloads: Statistics Overview

Abstract

Transducin is a heterotrimer formed by a fatty acylated alpha-subunit and a farnesylated betagamma-subunit. The role of these two covalent modifications and of adjacent hydrophobic and charged amino acid residues in reversible anchoring at disk model membranes is investigated at different pH values, salt concentrations, and lipid packing densities using the monolayer expansion technique and CD spectroscopy. The heterotrimer only binds if the acetylated alpha-subunit is transformed into its surface-active form by divalent cations. In the presence of salts the alpha(GDP)-subunit, the betagamma-complex, and the heterotrimer bind to POPC monolayers at 30 mN/m, estimated to mimic the lateral packing density of disk membranes, with apparent binding constants of Kapp = (1.1 +/- 0.3) x 10(6) M-1 (reflecting the penetration of the fatty acyl chain together with approximately three adjacent hydrophobic amino acid residues), Kapp = (3.5 +/- 0.5) x 10(6) M-1 (reflecting the penetration of the farnesyl chain), and Kapp = (1.6 +/- 0.3) x 10(6) M-1 (reflecting a major contribution of the alpha(GDP)-subunit with only a minor contribution from the betagamma-complex). The apparent binding constant of the alpha(GTP)-subunit is distinctly smaller than that of the alpha(GDP)-subunit. Binding to negatively charged POPC/POPG (75/25 mole/mole) monolayers is reinforced by 2-3 cationic residues for the betagamma-complex. The alpha-subunit shows no electrostatic attraction and the heterotrimer shows even a slight electrostatic repulsion which becomes the dominating force in the absence of salts.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig A)
UniBasel Contributors:Seelig-Löffler, Anna
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0006-2960
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page